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Introduction

In many situations, economic agents are heterogeneous. In economic terms, we say that

these agents are of di�erent types. When consumers go to the movies, they are likely

to be informed to varying degrees about the quality of the �lms shown in cinemas.

This may, for example, be the case because some types of movie-goers spend more time

reading review articles than others. In a �rm, the cooperation of di�erent �worker types�

may be productive to varying degrees. For instance, a �rm consisting only of managers

or only of workers is usually less productive than a �rm which is constituted by some

mixture of workers and managers in between those two extremes.

This thesis examines how the heterogeneity of economic agents impacts the shape

and design of economic institutions in industrial and societal organization. Part I fo-

cusses on the heterogeneity of economic types arising from the fact that information

is distributed asymmetrically, while Part II focusses on the heterogeneity of economic

types arising from di�erent productive abilities. Clearly, these distinctions are often

intertwined. For instance, buyers of energy-e�cient cars may be heterogeneous in how

productive they are in obtaining extra utility from energy savings. This may be be-

cause the annual mileage varies across the population. Information about the distance

driven per year is known only to the consumers themselves. A government which wants

to impose a subsidy scheme for energy-e�cient cars needs to take this informational

asymmetry regarding the productive heterogeneity among the consumers into account.

This introduction serves to de�ne the main concepts (indicated in bold letters) and

paradigms used throughout the thesis. It adds a broader perspective to the research

presented in the subsequent chapters and highlights its contribution to the literature.

An outlook on future research can be found in the conclusions at the end of each chapter.
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PART I: OVERVIEW

Informational asymmetries shape a huge variety of economic interactions. Governments

have to work out how to obtain information on the above mentioned consumers' produc-

tivity (or equivalently, their preferences) when, for example, designing subsidy schemes

for energy-e�cient cars (see Chapter 1). A hiring committee of a university has to

consider which information about its selection criteria for a professorship it should op-

timally disclose to potential applicants (see Chapter 2). Since many consumers, often

termed �laggards�, observe the consumption behavior of �early adopters�, �rms - such

as �lm studios - have to consider the information that is revealed by the early adopters'

consumption decisions (see Chapters 3 and 4). All of these situations can be analyzed

from an economic design perspective. An economic designer (the government, the hir-

ing committee, the �lm studio) shapes the economic environment and institutions in

which the agents (buyers of energy e�cient cars, applicants for a professorship, movie

goers) later on interact. The designer does so to achieve a speci�c goal, such as wel-

fare maximization in a population of car owners, e�ort maximization by applicants for

professorships, or revenue maximization by obtaining a large audience in movie theaters.

All models in Part I of this thesis are characterized by asymmetric information and

examine issues of economic design. Such settings can appropriately be analyzed using

tools from non-cooperative game theory and from information economics, which we

introduce here.

PART I: CONCEPTS

Rational Choice Theory: A Paradigm for Individual Decisions

Standard microeconomic theory analyzes economic and other social interactions under

the primacy of methodological individualism.1,2 Typically, a fundamental building block

of microeconomic models is a group of individuals N , consisting either of �nitely many

individuals (e.g., N = {1, 2, ..., n} ⊂ N), or of in�nitely many individuals (e.g., N =

[a, b], with a, b ∈ R, a < b, usually a = 0, b = 1). For now, we assume that N is �nite.

Each speci�c individual i ∈ N from that group faces a choice set Xi from which he has

1Methodological individualism is not undebated in economics, see Gylys (2017) and the sources
quoted therein. Chapter 5 discusses eusocial species, which can be considered as an example illus-
trating that group (and individual) behavior is not always derived from individual rationality. The
in�uential evolutionary theory of the sel�sh gene presented by Dawkins (1976) is a further alternative
to methodological individualism.

2Since the spread of the now predominant dynamic stochastic general equilibrium (DSGE) mod-
els, standard macroeconomic theory, too, pursues a micro-founded approach based on methodological
individualism, see Ljungqvist and Sargent (2000).



INTRODUCTION | 3

to select an action xi. Rational choice theory developed an approach to systematically

tackle such setups within a uni�ed framework.3 It is based on the axiom of rationality,

which dictates that the preference relation %i of an individual i over the elements of the

choice set Xi is speci�cally well-behaved.4,5 A (Bernoulli) utility function ui : Xi → R
of individual i can be used to represent the individual's preference relation %i. There

are important relations between the rationality of preferences and the existence of utility

functions. For instance, utility functions for a preference relation exist (and then are

unique up to monotone transformations) only if that relation is rational. Imposing the

additional property of continuity onto the preference relation guarantees the existence

of a continuous utility function.6,7 Assuming that individuals seek to maximize their

utility implies that the standard individual decision problem of a microeconomic agent

can be described by the following problem of constrained mathematical programming:8

max
xi∈Xi

ui(xi). (0.1)

These problems can be solved using the Kuhn-Tucker approach of non-linear program-

ming. Usually, an individual faces the choice set Xi(p, w) ⊆ Rm, where w ∈ R is the

individual's exogenous wealth and p ∈ Rm captures the exogenous costs of the choice

in each of the m dimensions of the choice set.

Ever since the advancement of rational choice theory, economic scholars have been

debating about its empirical validity, as well as the theoretical issues arising from the

assumptions of rationality and utility maximization. The literature investigating alter-

native behavioral paradigms is now subsumed under the term behavioral economics.

However, due to its advantages concerning tractability compared to many behavioral

3Amadae (2003) o�ers intriguing insights on the intellectual history of rational choice theory and
its impact on scienti�c, political, and social life.

4In particular, %i induces a partial order among the elements of Xi by satisfying the axioms of
completeness and transitivity. Preferences %i are complete i� x %i y, or x -i y, or both for all
x, y ∈ Xi and %i is transitive i� x %i y and y %i z implies x %i z for all x, y, z ∈ Xi.

5One of the most important results of social choice theory proves that the aggregation of individually
rational preferences does not necessarily lead to rational preferences on the aggregate level, see Arrow
(1950).

6Preference relation %i is continuous at x ∈ X i� the upper contour set {y ∈ Xi : y %i x} and the
lower contour set {y ∈ Xi : y -i x} are both closed.

7The application of mathematical tools from calculus in economic theory is often based on the
tractability of such models, captured usually by the continuity and di�erentiability of the objective
functions, and it re�ects the idea that �natura non facit saltus�. However, discontinuities are not a
marginal phenomenon in economic theory, see Rosser (1991). The models in Chapter 3 and Chapter
5 exhibit discontinuities. In the former, the objective functions of the �rms are discontinuous; in the
latter, a dynamical system evolves according to di�erential equation with a discontinuous right-hand
side.

8We wish to emphasize that this is the standard choice problem of a rational microeconomic agent
whose utility is independent of the choices of other agents. Nevertheless, rational choice theory also
allows us to model interdependent preferences; but this approach to interdependence should be distin-
guished from the game-theoretic approach to strategic interdependence described below.
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models - and, more importantly, due to its universal applicability - the rational-choice-

theory paradigm of individual behavior remains prevalent in both major approaches

to modeling economic and social �interactions�, general equilibrium theory, and game

theory, which we describe below.

General Equilibrium Theory: A Paradigm for Parametric Interaction

Above, we describe how an individual i ∈ N autonomously decides under the paradigm

of rational choice. We now proceed by introducing general equilibrium theory, which

has been the predominant paradigm to model market decisions and market equilibria

in economics since it was intiated by Smith (1776) and Walras (1874). A complete

formal presentation of this paradigm is outside of the scope of this thesis. Nevertheless,

there are two important points to make. Firstly, general equilibrium theory models

interaction among individuals in a parametric way, speci�cally through prices. In a

general equilibrium of a market economy, prices for each of the m goods, captured by

the price vector p, are such that consumers' demand equals �rms' supply. The process

of how these equilibrium prices originate, for instance in a bargaining procedure among

�rms and consumers, is not modeled explicitly. In contrast to this, it is assumed that

a Walrasian auctioneer, personalizing Adam Smith's idea of the �invisible hand�, sets

prices in a way such that an equilibrium emerges. Hence, the decision problem of all

individuals i ∈ N in this environment - taking prices as exogenous - can be described

by Equation (0.1).9

Secondly, the popularity of the general-equilibrium-theory approach is rooted in the

fundamental theorems of welfare economics, which establish that equilibria in general

equilibrium models exhibit desirable welfare properties in relation to Pareto e�ciency.

However, these results crucially rely on three further - often implicitly stated - assump-

tions: the standard general equilibrium model abstracts from externalities, and there is

neither asymmetric information nor market power among the agents.

The thesis at hand elaborates on all of these three aspects explicitly: in all chapters

of Part I, agents in�ict externalities upon each other and these models additionally

contain aspects of asymmetric information. Furthermore, Chapter 3 and Chapter 4

employ benchmark models of market power. Below, we explain why the game-theoretic

paradigm of interaction is the adequate framework to examine these settings of interest.

9General equilibrium theory distinguishes between two main economic actors: consumers and pro-
ducers. The producers maximize pro�t under the constraint of their production technology. However,
with some minor exceptions, the mathematical tools of constrained mathematical programming for the
consumer side mentioned in this introduction can equivalently be applied to the producer side as well.
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Non-Cooperative Game Theory: A Paradigm for Interactive Decisions

A scene in the movie �A Beautiful Mind� iconically pinpoints John Nash's �Copernican

moment�, which hallmarks the paradigm shift from general equilibrium to game theory,

in Nash's, alias Russell Crowe's, exclamation that �Adam Smith was wrong!�10,11 Game

theory supersedes the parametric interaction approach of general equilibrium theory

by explicitly modeling the dependence of each agent i's utility on the action of all the

other agents in the model, which are denoted by −i := N\{i}. Therefore, the standard
optimization problem of individual i in game theory is depicted by

max
xi∈Xi

ui(xi, x−i). (0.2)

This implies that game theory, in contrast to general equilibrium theory, is decision-

theoretically closed and allows for an explicit analysis of social dilemmata which arise

due to externalities. It is the theory of externalities, since it accounts for the impact of

an agent's actions on others.

We proceed with the following instrumental de�nitions originating from the seminal

works of von Neumann and Morgenstern (1944) and Nash (1951). A normal form

game G := (N,X,U) is given by the set of players N , with elements indexed i, the

(pure) strategy space X := ×i∈NXi, and the payo� structure U := (ui)i∈N with ui :

X → R for all i ∈ N . The mixed strategy space of individual i, given by ∆Xi, induces

a probability distribution over his pure strategies. Note that all models in this thesis

are analyzed in pure strategies.

The best response of player i ∈ N to the other players' actions x−i ∈ X−i :=

×j∈N,j 6=iXj in pure strategies (and, analogously, for mixed strategies) is given by the

correspondence xi : X−i ⇒ Xi with

xi(x−i) := arg max
xi∈Xi

u(xi, x−i). (0.3)

Quasi-concavity of the utility function in xi guarantees the existence and uniqueness of

the best response.

A pure-strategy Nash equilibrium of game G is given by x∗ := (x∗1, ..., x
∗
|N |) such

that

ui(x
∗
i , x
∗
−i) ≥ ui(x′i, x∗−i) ∀x′i ∈ Xi, ∀i ∈ N. (0.4)

10Ironically, just as Adam Smith was wrong according to Nash, the movie is wrong as well in depicting
the appropriate intuition of a Nash equilibrium in exactly this scene.

11Amadae (2015) investigates the impact of game theory in social science and political economy and
puts its development into a historical context.
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A Nash equilibrium in mixed strategies is de�ned analogously. In a Nash equilibrium,

no player has a unilateral incentive to deviate to another strategy, as all players behave

according to their best responses. Mathematically, �nding a Nash equilibrium boils

down to determining the intersection of the best responses. As the seminal work of

Nash (1951) points out, existence of (in this case mixed-strategy) Nash equilibria can

be proven by applying appropriate �xed-point theorems. These theorems place (usually

rather weak) restrictions on the strategy space Xi (or ∆Xi in the case of mixed strate-

gies). For instance, Brouwer's or Kakutani's �xed point theorems demand the strategy

space to be a compact and convex set, which is always ful�lled for mixed strategy spaces

de�ned on �nite pure strategy spaces.

The taxonomy of Eaton (2004) is a powerful tool to categorize games according to

two dimensions, which re�ect important economic intuitions. The �rst dimension is

that of externalities. De�ning x := (x1, ..., x|N |) ∈ X, positive externalities (of xj on

player i, i 6= j) imply ∂ui(x)
∂xj

> 0 and negative externalities imply ∂ui(x)
∂xj

< 0.12 This

distinction describes how agent i's utility changes in the action of player j. The second

dimension is that of strategic incentives, which is a particular focus of the theory of

supermodular games and monotone comparative statics. Assume that ui is increasing

and concave in xi. Strategic complements (between xj and xi for player i, i 6= j)

imply ∂ui(x)
∂xi∂xj

> 0 and strategic substitutes imply ∂ui(x)
∂xi∂xj

< 0. This distinction depicts

how i's utility changes in the action of player j, if i himself varies his choice. The

de�nitions imply that, under strategic complements, best responses increase, i.e., in a

two-player game, with i 6= j, we have ∂xi(xj)
∂xj

> 0. Obviously, under strategic substitutes

best responses decrease, i.e., ∂xi(xj)∂xj
< 0, i 6= j.

The following table depicts some canonical games to illustrate these fundamental

concepts.13 All games depict a di�erent social dilemma and in some of them the numer-

ical value of the strategy name, �0� or �1�, can be interpreted as the level of aggression

of that action against the opponent.

12All de�nitions in this paragraph can be adapted for discrete action spaces using non-marginal
changes ∆y instead of marginal changes ∂y. Eaton (2004) calls positive (negative) externalities plain
complements (substitutes).

13In these examples, action spaces are discrete and hence we speak of so-called �nite games. The
action spaces of such games can be �made continuous� by introducing mixed strategies.
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P2

0 1

P1
0 2, 2 0, 3

1 3, 0 1,1

Prisoners' Dilemma

(Individual vs. Group)

P2

0 1

P1
0 2,2 0, 1

1 1, 0 1,1

Stag Hunt

(Safety vs. Coord.)

P2

0 1

P1
0 2, 2 1,3

1 3,1 0, 0

Game of Chicken

(Con�ict in Anticoord.)

P2

0 1

P1
0 1,−1 −1, 1

1 −1, 1 1,−1

Penalty Shootout

(Pure Con�ict)

Figure 1: Canonical 2× 2 Normal Form Games. Choice sets for the players P1 and P2
are given by XP1 = XP2 = {0, 1} and the utility functions are de�ned by the entries
in the matrices (the payo� of P1 is the �rst entry in a cell, and the payo� of P2 is the
second entry in a cell). The social dilemmata are mentioned in brackets. Payo�s of best
responses are underlined and payo�s of Nash equilibria (in pure strategies) are boxed.

Coordination games, such as the Stag Hunt Game, are games in which both players'

utilities imply strategic complements. Anti-coordination games, such as the Game of

Chicken, are games of strategic substitutes for both players. In discoordination games,

such as the Penalty Shootout, one player has strategic substitutes, while his opponent

has strategic complements. The Prisoners' Dilemma has a dominant strategy, namely

�1�, for each player.14 Stag Hunt and the Game of Chicken exhibit negative externalities.

Positive externalities can be found in public good provision games, for instance, which,

with respect to Table 1, can be deduced from the Game of Chicken by �switching the

names of the strategies�, �0� and �1� (note that in this context the names of the strategies

have a meaning with respect to the di�erence ∆xi).

An important implicit informational assumption in game theory is that of common

knowledge of rationality: each player knows that all players in the game are rational,

and each player knows that each player knows that each player is rational, and so on.

Further assumptions on the information available to the players are discussed below.

First, however, we discuss games of perfect information. Intuitively, such games

depict situations in which no player has any uncertainty about the strategic situation

he is in. For instance, he exactly knows which types of players he faces, what the rules

of the game are, and what happened previously to his move(s).

All games in Part I are dynamic games and thus demand an extension of the

framework presented above. Often dynamic, intertemporal decisions involve hyperbolic

discounting of future payo�s, as for instance employed in Chapter 4. Dynamic strategic

interactions can be modeled by characterizing the appropriate extensive form of such

situations. For the sake of brevity, we omit the exact de�nition of an extensive form

14A dominant strategy is de�ned as a strategy which is a best response to any strategy of the
opponent.
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game, a subgame, and information sets here. They can be found, for instance, in

Maschler et al. (2013, pp. 43). Informally, the extensive form Γ of a game speci�es

the order of moves of players and their information at any given point of the game.

A subgame roughly comprises a speci�c decision node in the game such that every

player knows that this is the true current decision node, and furthermore a subgame

comprises all events or decision nodes which follow in subsequent periods of the game.

An information set roughly depicts the information available to an agent at a certain

decision node. In games of perfect information, all information sets are singletons

consisting of a unique decision node.

The most common re�nement of the Nash equilibrium suitable for dynamic games

with perfect information is the subgame-perfect (Nash) equilibrium, which is a set

of strategies in game Γ that induces a Nash equilibrium in every subgame of Γ. This

concept was developed by Selten (1975) and employs the same insight as the Bellman

principle in dynamic optimization: at any decision node of the game, an agent should

act optimally (even if the decision node is never reached, i.e., if it is �o�-the-equilibrium-

path�), taking into account the events which follow on from his decision. In dynamic

perfect-information games with a �nite time horizon, the subgame-perfect equilibria can

be found by the principle of backward induction. It suggests solving a game by

analyzing the optimal behavior in the subgames starting at the terminal decision nodes

and then working through the game tree towards its root, by replacing subgames with

the payo�s from optimal play in these subgames.

Product Di�erentiation

Chapter 3 and Chapter 4 analyze observational social learning in models of product

di�erentiation. However, we examine the issue using two di�erent modeling approaches

to product di�erentiation. To explore this di�erence, we now provide a broader picture

of this topic.

From a theoretical perspective, the idea of product di�erentiation was introduced

mainly in order to cope with the Bertrand paradox, which states that �rms with equal

marginal costs make zero pro�t under oligopolistic price competition, even when only

two �rms compete. By allowing for product di�erentiation in a Bertrand model, �rms

may obtain local market power and secure strictly positive pro�ts since they are able

to set prices above marginal costs. Additionally, the analysis of product di�erentiation

deals with a general question relevant in any kind of competition: do contestants become

more similar (imitation) or more di�erent (di�erentiation) when they act optimally in
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a competitive game? Another topic of this literature is examining whether, in market

equilibrium, su�cient or excessive (product) diversity is provided.15

There are two types of di�erentiation in economic theory, both of which are present

in Chapters 3 and 4. Vertical di�erentiation is related to product quality: given the

same prices, all consumers prefer the same good, namely the higher-quality good.16

Horizontal di�erentiation addresses a heterogeneity in tastes among consumers: given

the same prices, di�erent consumers prefer di�erent goods, namely each of them prefers

the one which best matches his individual preferences.17

O�ering horizontally di�erentiated products is pro�table if there is demand for dif-

ferent products. The consumer side therefore needs to be modeled accordingly. Chapter

3 pursues the �love-of-proximity approach�, also called the address, location, or charac-

teristics approach. There are several heterogeneous consumers, each with an individual

ideal consumption point. Each consumer only demands one unit of exactly one of sev-

eral goods (unit demand), which can be interpreted as a short term perspective (a

certain amount of money can only be spent on one of many goods) or the consumption

of durable goods, such as cars. The preferences are de�ned over the characteristics

of the goods. In the standard models of this approach, di�erentiation is usually en-

dogenous and �rms interact in oligopolistic competition. Finally, the �love-of-proximity

approach� naturally allows modeling of asymmetric di�erentiation; this makes it easy

to distinguish niche and mainstream products.

Chapter 4, in contrast, pursues the �love-of-variety approach�,18 also called represen-

tative-consumer approach, in which one representative consumer is equipped with pref-

erences over bundles of goods. In contrast to the �love-of-proximity approach�, in this

setting, the consumer demands bundles of goods which can be interpreted as a long-

term decision perspective. He has to decide on the quantity of each speci�c good to

consume. In the standard version of these models, di�erentiation is mostly exogenous.

Some models characterize the �rm side by monopolistic competition and consumers

by having CES-utility.19 These models without strategic interaction mainly analyze

whether the market provides the socially bene�cial number of products, or equivalently

brands, i.e., it examines issues of optimal diversity. Other models characterize the �rm

side using oligopolistic competition, e.g., a di�erentiated duopoly, and the consumer

15Page (2008) discusses the pitfalls and advantages of a diversity in society in a broader perspective.
16See Gabszewicz and Thisse (1986) and Shaked and Sutton (1982).
17See Hotelling (1929) and d'Aspremont et al. (1979).
18In neoclassical economics, the agents' love of variety is re�ected by the convexity of their preferences.

Convexity is an important assumption in many �elds of economic theory. With respect to mathematical
programming, it usually guarantees that the second-order conditions of the maximization problems are
satis�ed. Probability simplices, which are ubiquitous in information economics, are also convex sets.
In these setups, we frequently employ tools of convex analysis and convex optimization.

19See Chamberlin (1933), Spence (1976), and Dixit and Stiglitz (1977).
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side exhibits linear-quadratic utility.20 The latter is the love-of-variety approach we

apply in Chapter 4. These kinds of models include strategic interaction among �rms.

They address the Bertrand paradox and compare the social e�ciency of the two main

models of oligopolistic competition, Bertrand and Cournot competition.21 In contrast

to the love-of-proximity approach, the love-of-variety approach does usually not allow

modeling of asymmetric di�erentiation, i.e., in these models, it is di�cult to distinguish

between niche and mainstream �rms.

The love-of-proximity approach and the di�erentiated duopoly models of the love-of-

variety approach both generate linear demand functions.22 However, the main technical

di�erence is re�ected in the cross elasticities: in love-of-proximity models, consumers

would always buy the same product twice if they could (goods are always substitutes;

the marginal utility is independent of the amount of the goods consumed), while in the

love-of-variety approach, consumers always want to purchase positive quantities of both

goods (goods can have di�erent degrees of substitutability or complementarity).

Bayesian Rationality:

A Paradigm for the Individual Processing of Information

Random events in economic models usually re�ect the fact that the economic agents have

imperfect information about their environment or the consequences of their actions.

Standard theory follows the idea that the agents' beliefs assign subjective probabilities to

each possible event or state and that these probabilities satisfy Kolmogorov's axioms.23

For instance, let T : Ω→ T ⊂ R be a discrete, real-valued random variable over the

(�nite) sample space Ω. The probability P (T = t), i.e., the probability of the realization

of T being t, often abbreviated to P (t), is then given using the probability mass function

pT : T → [0, 1], with

P (T = t) = pT (t) := P ({ω ∈ Ω : T (ω) = t}). (0.5)

Settings with continuous random variables can be analyzed using analogous concepts,

such as the density function and the cumulative distribution function.24

20See Dixit (1979) and Singh and Vives (1984).
21Cournot (1838) and Bertrand (1838) can be viewed as the early forefathers of game theory.
22Unifying approaches can be found in Perlo� and Salop (1985) and Anderson et al. (1992). An

approach using networks of substitutability and complementarity between the �rms' products can be
found in Ushchev and Zenou (2016).

23Kolmogorov's three axioms are that 1) the probability of an event is a non-negative real number,
2) unit measure, i.e., the probability that at least one event in the sample space occurs is one, and 3)
(sigma) additivity. For details see Gut (2005, pp. 10).

24We do not discuss probability spaces and measurability in detail here for the sake of brevity. Details
can be found in Gut (2005) and Bertsekas and Tsitsiklis (2008).
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Being able to apply standard probability theory is particularly useful when modeling

situations in which agents receive new information and adjust their beliefs accordingly.

Ross (2007, p. 97) states that, precisely because of its applicability to such settings, the

concepts of conditional probability and the related conditional expectation are among

the most useful concepts in probability theory. In Part I, we primarily keep to the

standard approach and assume that agents are Bayes rational. This implies that they

process new information by updating their beliefs, i.e., the subjective probabilities,

according to Bayes' rule, which we explain now.

Consider vector (Ti, T ), sample space Ω, and Ti × T ⊂ R2. Then, let (Ti, T ) :

Ω → Ti × T be a random vector consisting of the two discrete random variables

Ti and T . These are completely speci�ed by their joint probability mass function

pTi,T (ti, t) = P (Ti = ti, T = t) for all ti ∈ Ti , t ∈ T . By the law of total proba-

bility, the marginal probability mass function of Ti (and T analogously) is given by

pTi(ti) =
∑

t∈T pTi,T (ti, t) for ti ∈ Ti. As above, we write P (ti) = pTi(ti), and call this

the prior of the random variable Ti (for T analogously). Note that most economic mod-

els assume that agents share a common prior. For t ∈ T , assuming that P (ti) > 0, we

de�ne P (t|ti) = pT (t|Ti = ti) :=
pTi,T (ti,t)

pTi (ti)
= P (ti,t)

P (ti)
to be the (conditional) probability

of random variable T conditional on the realization Ti = ti. A simple version of Bayes'

rule is given by25

P (t|ti) = P (t) · P (ti|t)
P (ti)

. (0.6)

Assume that an agent i ∈ N observes a speci�c signal realization Ti = ti, which is

potentially correlated with T . Then, to establish his belief incorporating the new infor-

mation of the signal, according to Bayes' rule, an agent updates the prior P (t) using

the so-called Bayesian multiplier P (ti|t)
P (ti)

.

Bayesian rationality parallels the concept of rationality in decision making and pro-

vides a tractable method for modeling information processing. However, the updating

process depicted in Equation (0.6) can have counterintuitive implications, as for in-

stance the famous Monty Hall problem illustrates, see Palacios-Huerta (2003). Because

of this, similarly to rationality, the plausibility of Bayesian rationality to model hu-

man behavior has been a matter of debate, see Binmore (2017), and alternatives have

been suggested, see Epstein et al. (2010) and Eyster and Rabin (2005). Nevertheless,

similarly to rationality, due to its mathematical tractability and universal applicability,

Bayesian rationality remains the workhorse model of information processing in infor-

mation economics.
25Bayes' rule immediately follows from the law of total probability, see Gut (2005, pp. 18). A version

of Bayes' rule for multiple events can be derived using the same tools. A version for continuous random
variables can be found in Chapter 5.
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Social learning deals with the implications of Bayesian rationality on the process-

ing of information in groups. In a setting with an uncertain state, agents observe the

behavior of others or communicate with them. Then, they update their belief about the

state of nature and act accordingly. Central results in this literature are the formation

of information cascades (Bayes rational agents may ignore their own information) and

of informational herds (from a certain point onwards, all agents pursue the same action,

even though this might be the least bene�cial for each of them), see Bikhchandani et

al. (1992) and Banerjee (1992).

Information Economics

Information is not an ordinary commodity like apples or pears, the use of

which alone should be decided upon by market logic. Rather, information

creates worldviews and opinions. Google and Facebook have increasingly

become the most important windows into the world. They decide how we

see things and what things we do not see. (Thomas Beschorner and Martin

Kolmar, economists at the University St. Gallen)26

This quote addresses two important issues. First, it emphasizes the prevalent role

of information in the economy in times of �big data�. There is an ongoing debate on

whether �information is the new oil�.27 Undoubtedly, Facebook's most valuable asset

is the information it obtains about its customers' preferences, their digital �ngerprints,

and their social network.

Second, the quote hints at the fact that information is not a typical good. While its

producers incur high �xed costs, variable (reproduction) costs are very low. The design

of the internet platform Facebook as it is today required many hours of programming,

but the data collected on it can be duplicated at almost no cost. The same holds

true for many technological inventions and other creative work, such as music. Part

I analyzes models in which information is disclosed to the agents without any explicit

costs. Instead, a random event, a signal, determines which agent obtains what infor-

mation, so that players in the game may have di�erent information about their private

characteristics, for instance their types, or preferences, or the state of nature.

Since all games in Part I entail asymmetric information, and thus uncertainty, an

extension of the game theoretic framework presented above is required at this point.

26See http://www.zeit.de/wirtschaft/2018-03/plattformkapitalismus-internetplattformen-
regulierung-facebook-cambridge-analytica/komplettansicht (author's translation, last accessed:
28/03/2018)

27See for instance https://www.economist.com/news/leaders/21721656-data-economy-demands-
new-approach-antitrust-rules-worlds-most-valuable-resource (last accessed: 15/04/2018).
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Agents are assumed to be Bayesian rational expected utility maximizers,28 that is an

agent i ∈ N solves

max
xi∈Xi

E[ui(xi, x−i)] :=
∑
t∈T

βtiui(xi, x−i(t), t), (0.7)

where t ∈ T is one of �nitely many states of the world and βti is the subjective probability

agent i assigns to state t given his belief βi : T → ∆T .29 Belief βi may be obtained

through an updating process using Bayes' rule as we will see below. The notation

indicates that the Bernoulli utility as well as the opponents' actions may vary across

states.

The famous Harsanyi transformation, introduced in Harsanyi (1967), allows us to

transform games of incomplete information into games of complete, but im-

perfect information.30 In contrast to games of perfect information, information sets

in games of imperfect information need not be singletons. Such strategic situations can

be analyzed using the tools described in the following.

A static Bayesian game G̃ := (N,X, T , p, U) is given by the set of players N and

the (pure) strategy space X de�ned as before, the type space T := ×iTi with i ∈ N , a

(prior) probability distribution pT : T → ∆T over the type space with t 7→ pT (t) and

t ∈ T , and the payo� structure U = (ui)i∈N with ui : X ×T → R. Importantly, a pure

strategy of a player now speci�es an action for each of his types, xi : Ti → Xi. Mixed

strategies can be de�ned, similarly as before, as probability distributions over the pure

strategies. The framework captures discrete as well as continuous type spaces.

The idea of a Bayesian game is that nature �rst draws one realization T = t ∈ T
from the type space, and then each player in the game updates his belief about the state

of nature, captured in the realization of T = t, according to the realization of his type

28Expected utility, also called von-Neumann-Morgenstern utility, originated in von Neumann and
Morgenstern (1944), who establish that the linearity of the expected utility form is fundamentally re-
lated to the axiom of independence of irrelevant alternatives. Allais (1953) was the �rst to demonstrate
that, empirically, humans might act contrary to the predictions of expected utility theory.

29An analogous version of expected utility for a continuum of (in�nitely many) states can be found
in Chapter 4.

30Generally speaking, games of incomplete information are characterized by the fact that (some)
players do not know the rules of the game, i.e., they do not know the extensive form of the game.
This may be the case, for example, if the players do not know anything about the payo�s or types
of other players in the game. The Harsanyi transformation overcomes implied technical di�culties
by introducing an additional player, often called �nature�, who draws the players' types (and other
relevant random events of nature, which can be interpreted as types of the player �nature�) according
to speci�ed probability distributions. Since these probability distributions are assumed to be known to
all players, each of them knows the extensive form of the game (i.e., the rules of the game) and thus it
is a situation of complete information. However, since some players do not observe the realized moves
made by nature, the information is imperfect. For details consider Harsanyi (1967).
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Ti = ti, using Bayes' rule: βi : Ti → ∆T with ti 7→ βi(ti) := pT (t|Ti = ti). A Bayesian

(Nash) equilibrium of the game G̃ is a vector of strategies x∗ such that for all i ∈ N :

E [ui(x
∗(T ), T )|Ti = ti] ≥ E

[
ui(x

′
i(Ti), x

∗
−i(T ), T )|Ti = ti

]
, ∀x′i ∈ Xi, ∀ti ∈ Ti. (0.8)

Note that the expected utilities are de�ned from an interim-stage perspective using

conditional expectations, i.e., each player knows the realization of his type. Additionally,

the equilibrium concept speci�es type-dependent equilibrium actions.

Since all games in Part I are dynamic Bayesian games (where actions from pre-

vious periods are observable), the common solution concept suitable to be applied in all

models presented here is the perfect Bayesian (Nash) equilibrium, which combines

the ideas of subgame perfection and Bayesian Nash equilibrium. It speci�es the players'

strategies and beliefs. Strategies need to be sequentially rational, i.e., at each decision

node they are optimal in expectation given the players' beliefs. Furthermore, beliefs

need to be updated according to Bayes' rule wherever possible, and o�-equilibrium-

path beliefs may be arbitrary. In dynamic Bayesian games with observable actions (i.e.,

games in which all players are only uncertain about the other players' types, but not

the other players' moves) the perfect Bayesian equilibrium coincides with the widely

spread re�nement called sequential equilibrium.31

Signaling games are an important class of Bayesian games, in which an informed

sender can disclose information to a receiver. However, in none of the games presented

in Part I does the �rst-mover in the game have this kind of information advantage at

the time of his decision; as such, signaling is not an issue in this thesis.

Economic Design

Economic design analyzes situations in which one agent, the designer (she), is able

to modify (part of) the economic environment in such a way that other agents, e.g.

consumers (all he), are more inclined to act in her interest. In most cases, it overlaps

with the economics of information because there is an information asymmetry between

the designer and the agents.

Market design, which includes mechanism design, analyzes situations in which

the designer can directly manipulate payo�-relevant aspects of the setup, for instance

prices or taxes.32 This implies changes in the marginal utilities of the a�ected agents.

31For details consider, for instance, Osborne and Rubinstein (1994, pp. 231). The literature has
discussed re�nements of these concepts which, for instance, specify alternative conditions for o�-
equilibrium-path beliefs, see also Fudenberg and Tirole (1991, chapter 8).

32A distinction in market design is usually made with respect to whether money is explicitly modeled
in the agents' utility functions or not. Matching and voting theory analyze settings in which money is
not included in the model, while mechanism design explicitly models monetary payo�s.
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Information design, in contrast, comprises models in which the designer manipulates

the agent's information environment, which is only indirectly relevant to payo�s and

instead implies changes in the agents' beliefs.

Typically, information asymmetry in market design consists of the fact that the

agents have an informational advantage compared to the designer since they have better

knowledge of their own private preferences. The designer has to take this into account.

One of the main issues for her is thus to �nd a design which induces the agents to truth-

fully reveal their private information. In information design, the information advantage

usually is on the designer's side, since she �implicitly� knows the state of nature and

has to think about how to optimally disclose or conceal information to the agents.33

In market design, the designer typically faces the constraint of having to design an

incentive compatible - or equivalently strategy-proof - mechanism, while also considering

the participation constraints of the agents. Incentive compatibility requires that agents

truthfully reveal their private information, e.g., their type, (details are presented in

Chapter 1). In contrast to this, an information designer faces the constraint that the

optimal mechanism should be credible, which translates to the technical conditions of

Bayes plausibility and consistency (details are presented in Chapter 2).

In view of the discussion of economic design from above, mechanism design is also

called �reverse game theory�: the designer structures the game played among the agents.

The methodology of mechanism design can be applied to various di�erent settings, re-

�ected by the fact that economic entities have di�erent objectives. In a typical problem

of public economics, the objective of a benevolent social planner - for instance when

deciding on an optimal tax scheme - is the maximization of social welfare (see Chapter

1). In a typical problem of industrial organization, the objective of a �rm is the

maximization of pro�t (see Chapters 2 to 4). Nonetheless, both problems can often be

solved using the same tools from mechanism design.

PART I: CONTRIBUTIONS

We will now discuss how Part I contributes to the theory of economic design.

33Actually, at the time of her decision, the information designer has no information advantage about
the state of nature. However, the idea is, that when she communicates information to the other players,
she knows the state of nature and discloses information according to a design, which she has credibly
committed to before she knows the realization of the state of the world. These issues are discussed in
detail in Chapter 2.
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Mechanism Design with Non-Bayesian Agents: Correct Me If You Can

- Optimal Non-Linear Taxation of Internalities (Chapter 1)

In this chapter, we contribute to the growing research in behavioral public economics

by analyzing a mechanism design setting with behavioral consumers. In particular, we

examine non-linear commodity taxation in a setting in which consumers systematically

misperceive the value of a product characteristic. This is a novel approach to investi-

gating corrective instruments which counteract the negative welfare e�ects of what are

referred to as �internalities�, i.e., systematic misperceptions that bias consumers' choices

and reduce their welfare

Previous evidence has shown that such behavioral failures a�ect consumer choices in

many settings, such as energy e�ciency investments, e.g., concerning vehicles or housing,

or the consumption of sugar-sweetened beverages. In this chapter, we characterize the

optimal nonlinear tax (or subsidy) for correcting behaviorally biased consumers. Using

representative examples we show that it is welfare-enhancing compared to no taxation

and linear taxation. We examine how the amount of the welfare improvement delivered

depends on informational restrictions a�ecting the mechanism designer.

Information Design in Multi-Task Contests: Whom to Inform When

the Importance of Tasks Is Uncertain (Chapter 2)

Contest theory is an important �eld of economic research on situations of con�ict and

competition. It assumes that several contestants compete for one prize (or several

possibly di�erently ranked prizes) by exerting costly e�orts, which in turn determine

the probabilities of winning. This chapter contributes to the relatively recent research

agenda on information design. Its contribution consists in analyzing information dis-

closure in a multi-task contest.

In many contests, competitors invest e�ort in di�erent tasks. Ex ante it may not be

clear to them how success in the contest depends on the mixture of e�ort investments

in the di�erent tasks. For instance, when applying for a professorship, it may not be

clear to applicants how exactly research performances in di�erent �elds are weighted

against each other by the hiring committee. Nevertheless, the committee usually has

the possibility of transmitting information to the contestants before the contest. This

chapter addresses the question of how the information structure should be designed

in such a setting in order to maximize contestants' joint e�ort. We show that, in a

two-player Tullock contest with an ex-ante uncertain Cobb-Douglas impact function,

the designer cannot bene�t by transmitting purely public messages to the contestants.

However, if the designer asymmetrically discloses information, she can evoke an increase

of contestants' e�orts. If the designer can send a purely private message to one contes-
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tant, depending on the competitiveness of the contest tasks re�ected by comparative

cost advantages, either no revelation, full revelation, or partial revelation of information

may be bene�cial for the designer. We show that in some scenarios the principle of �in-

formational favoritism� of an ex-ante disadvantaged player, e.g., disclosing information

to the �weak� underdog, increases contestants' e�orts. In other scenarios �informational

discrimination� of an ex-ante disadvantaged player, e.g., disclosing information only to

the �stronger� of two specialists, is better.

Designing Social Learning by Product Di�erentiation

(Chapters 3 and 4)

The research in these chapters examines a novel combination of the mechanism design

approach (understood in a broader sense) and the information design approach. Firms

design their products via product di�erentiation and thus determine its characteristics

relative to competitors' products in the market. In the terminology of the mechanism

design approach, �rms directly in�uence the consumers' incentives to buy the product

by changing their marginal utility of consumption. However, the consumption behavior

of consumers in the �rst period of the model is observed by consumers who purchase in

the second period. This introduces an information-design perspective into the model:

when di�erentiating its product, a �rm also has to take into account the indirect e�ect

this has on the social learning procedure among consumers. This is because purchase

decisions in earlier periods are informative signals about the quality of the �rm's product

and may thus change beliefs of consumers who purchase in later periods. Chapters 3

and 4 analyze the same general question, namely how product di�erentiation a�ects

observational social learning among the consumers, and vice versa, how social learning

a�ects the degree of product di�erentiation.

Di�erentiate and Conquer - Using Consumer Learning to Grow Out Your

Niche (Chapter 3) In Chapter 3, the idea of �Di�erentiate and conquer� suggests

exploiting an a-priori disadvantage, i.e., producing a niche product, to later on gain

power over the larger share of the market. The driving mechanism is the recommen-

dation e�ect, which introduces a new rationale for product di�erentiation other than

the usual motivation to reduce price competition. We incorporate consumer learning in

a version of Hotelling's model (1929) of spatial competition with sequential consumer

purchases and a second dimension of variation, quality, about which the consumers

have di�erential information. With consumer learning, �rms are confronted with two

o�setting e�ects: di�erentiation decreases the likelihood that a product is bought in

earlier periods, but, by making inference more valuable, it also increases the likelihood

that later consumers buy the di�erentiated good. We show that there exists a unique
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�di�erentiate-and-conquer equilibrium� in which the second e�ect dominates, so that the

market incumbent locates in the center of the market while the entrant di�erentiates

by producing an ex-ante niche product.34

The Di�erent E�ect of Consumer Learning on Incentives to Di�erentiate in

Cournot and Bertrand Competition (Chapter 4) As mentioned above, Chapter

4 analyzes the same general question as Chapter 3 about the interplay between consumer

learning and product di�erentiation. However, it applies the love-of-variety approach to

product di�erentiation instead of the love-of-proximity approach. This allows to better

analyze price competition and settings with continuous random variables.

We combine two extensions of the di�erentiated duopoly model of Dixit (1979),

namely Caminal and Vives (1996) and Brander and Spencer (2015a,b), to analyze the

e�ect of consumer learning on �rms' incentives to di�erentiate their products in models

of Cournot and Bertrand competition.

Products are of di�erent quality, consumers buy sequentially and are imperfectly

informed about the quality of the goods. Before simultaneously competing in quantities,

�rms simultaneously choose their level of investment in di�erentiation. The more a �rm

wishes to di�erentiate its product or, equivalently, the less substitutable it wants the

products to be, the higher the investments have to be. Late consumers can observe

earlier consumers' decisions and extract information about the quality of the goods.

This in�uences the �rms' incentives to di�erentiate.

If �rms compete in quantities, they are more likely to invest in di�erentiation with

consumer learning than without. This is in line with implications of the recommendation

e�ect introduced in Chapter 3. We also examine the case in which �rms compete in

prices. Here, the e�ect of consumer learning is reversed, so that di�erentiation is less

likely with consumer learning. Thus, we �nd an information-based di�erence between

Cournot and Bertrand competition: in the Bertrand setting consumer learning increases

competition, i.e., products are more likely to be substitutes; in the Cournot model it

weakens it.

PART II: OVERVIEW

Part II abstracts from informational asymmetries and strategic interaction, but main-

tains the idea that economic agents may be heterogeneous - and that this can have an

impact on economic institutions, such as the organizational structure of a �rm. On a

34Remember that the love-of-proximity approach to product di�erentiation, as employed, e.g., in
Hotelling's model (1929), is the apt model framework to capture the distinction between niche and
mainstream product.
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methodological basis, this part complements Part I since it introduces tools from the

other two main �elds of game theory: cooperative and evolutionary game theory.

PART II: CONCEPTS

We proceed by giving an overview over the paradigms of cooperative and evolutionary

game theory. All further necessary formal de�nitions can be found in Chapter 5.

Cooperative Game Theory: An Outcome-Oriented Paradigm

Cooperative game theory shifts the focus from modeling strategic interactions and the

agents' strategic reasoning to payo�s. It asks questions about which payo� distribution

among the players of a given cooperative game can be considered as fair or stable, for

example. Thus, in contrast to non-cooperative game theory, it takes strategic behavior

as a black box, looking solely at outcomes. It assumes that there are binding or en-

forceable agreements among players (cooperation rules). Therefore, individual actions

and strategies are usually not explicitly modeled in this framework.

A coalitional game (N, v) with transferable utility35 is a pair with the (�nite) set

N ⊂ N of all players involved and v : 2N → R being the coalition function that associates

for each subset S ⊆ N the worth v(S) of coalition S. The main question of cooperative

game theory is as follows: how much of the value generated by all players should be

distributed to a speci�c player in the game under a certain coalition function?

The main concept of fairness is the Shapley value. Its formula is given by Equation

(5.5) in Chapter 5. The Shapley value under game (N, v) is a weighted sum of the

marginal contributionsMCvi (S) := v(S∪{i})−v(S) of a player to each possible coalition

S ⊆ N , which weighs the marginal contributions of player i ∈ N to all possible coalitions

(in all given rank orders) as if all coalitions were equally likely. In some senses, it gives

an ex-ante expected payo� a player may expect to receive in a given cooperative game.

In Chapter 5, we apply an extension of the Shapley value to games with in�nitely many

player types, which better �ts the idea of an evolutionary model.

Evolutionary Game Theory:

A Paradigm For Boundedly-Rational Interaction

Evolutionary game theory assumes that economic behavior can rather be explained by

learning processes among the agents than by rational reasoning. Thus, it postulates evo-

lution as a process which shapes (economic) behavior. For instance, an individual could

35Transferable utility implies that players can transfer (part of their) utilities among each other. This
is possible, for instance, if players share a currency, with a common value for all.
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learn how to play according to a Nash equilibrium in a speci�c game, but need not know

how to do this the �rst time the game is played. The underlying behavioral assump-

tion is an extreme form of bounded rationality. Thus, it is an alternative approach to

behavioral economics in modeling behavioral failures and departures from the rational

choice paradigm. The main idea is that agents do not need to have on-equilibrium-path

beliefs or any other form of equilibrium knowledge.

Unlike most non-cooperative game theoretic models, which often assume a rather

small number of players, evolutionary models entail large populations, whose individuals

are assumed to interact repeatedly - something which can be explicitly or implicitly mod-

eled. The main static solution concept is that of an evolutionary stable strategy (ESS),

which implicitly assumes repeated, yet myopic interaction.36 Replicator dynamics are

the major dynamic modeling framework, which explicitly model the repeated interac-

tion process. Replicator dynamics can be considered as �population choice rules�, which

determine how a population of boundedly rational agents �choosing� among di�erent

strategies evolves.

PART II: CONTRIBUTIONS

Stability in Replicator Dynamics Derived from Transferable Utility

Games (Chapter 5)

In Chapter 5, we analyze how an evolutionary process, driven by a replicator dynamic

derived from a cooperative transferable utility game, results in the creation of speci�c

stable social structures. We propose an approach to derive a population dynamic from

an underlying cooperative transferable utility game. To our knowledge, this combination

of evolutionary and cooperative game theory is a methodological novelty. Examining

the stable points of the dynamical system, we obtain several intuitive results.

Our main result says that a coalition of player types is stable if and only if it implies

a higher average productivity than any of its super- or subcoalitions. For instance, in

the class of simple monotonic games, only minimal winning coalitions can be stable.

Moreover, we can make statements about which player types will vanish and which

ones will persist in stable states. Possible applications are the analysis of coalition for-

mation, the population constitution of eusocial species, or the organizational structure

in businesses.
36For details consider Weibull (1995).
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(2017).
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in Non-Cooperative Games



Chapter 1

Correct Me If You Can -

Optimal Non-Linear Taxation of Internalities1

Consumers' private valuations of a product characteristic can be systematically

biased, leading to welfare losses from what are referred to as �internalities�. Pre-

vious evidence has shown that these kinds of behavioral failures a�ect consumer

choices in many settings such as energy e�ciency investments concerning vehicles

or housing, for instance, or the consumption of sugar-sweetened beverages. In

this chapter, we characterize the optimal non-linear tax (or subsidy) for correcting

behaviorally biased consumers. Using representative examples we show that it is

welfare-enhancing compared to no taxation and linear taxation. We examine how

the amount of welfare improvement delivered depends on informational restrictions

a�ecting the mechanism designer. Furthermore, we brie�y contrast our result with

subsidy schemes for fostering energy e�ciency in the German housing stock and

show that the optimal tax is essentially antipodal to current practice.

1.1 Introduction

Consumer sovereignty has long been undebated among economic scholars: the primacy

of rationality implies that consumers have well-behaved preferences, and that of Bayes

rationality that new information is processed in an optimal way. Over the past decades,

researchers discuss the practical and theoretical implications of violations of these fun-

damental assumptions. Behavioral economics suggests that if agents do not act in their

best interest, then there is room for intervention by a benevolent policy maker. The

growing literature on behavioral mechanism design and behavioral public economics

examines this issue.
1This chapter is joint work with Andreas Gerster.
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Misoptimizing consumers in�ict a so-called �internality� upon themselves, which

provides a justi�cation for corrective taxation beyond the classical case of externalities.

An important feature of internalities is that they are inherently heterogeneous as they

depend on an individual's bias, in contrast to the social cost of global externalities,

for example, which do not vary by agent. As a consequence, targeting corrective taxes

towards behaviorally biased consumers to improve welfare is particularly important in

the case of internalities. Furthermore, in contrast to externalities, individuals' choices

re�ect their unobserved bias, which can be exploited for targeting.

In this chapter, we explore the potential of non-linear commodity taxation to tar-

get behaviorally biased consumers and to increase social welfare. Following Farhi and

Gabaix (2017) and Mullainathan et al. (2012), we employ a general model of biases that

encompasses a broad class of behavioral failures driving a wedge between �experienced�

and �decision utility� (Kahneman et al., 1997), such as limited attention, biased beliefs

and present bias. Based on this generic speci�cation of a behavioral bias, we derive the

optimal non-linear commodity tax using a mechanism design approach. Our approach

allows for commodity taxation in a broad sense that encompasses non-linear taxation of

quantities, but also of qualities, which is important as internalities often distort choices

between product varieties. For example, consumers fail to take product attributes into

account that are less salient than the purchase price, such as co-pays of a life insurance

policy and the operating cost of a durable (Abaluck and Gruber, 2011; Allcott and

Taubinsky, 2015).

Starting with Pigou (1920), corrective taxation to overcome market failures from

externalities has been studied extensively. Recently, a growing literature has studied

optimal taxation for behaviorally biased consumers (O'Donoghue and Rabin, 2006; All-

cott et al., 2015; Farhi and Gabaix, 2017), yet the potential to target behaviorally biased

consumers through non-linear taxation has not been investigated so far. Traditionally,

public tax schemes have targeted consumers through �tagging� (Akerlof, 1978), i.e., a

conditioning of taxes on observable characteristics. While appealing in theory, it is dif-

�cult to avoid strategic behavior and to �nd immutable characteristics that are socially

acceptable. In contrast, a large literature in industrial organization has investigated

how �rms can use price discrimination to maximize pro�ts (Mussa and Rosen, 1978).

We combine these strands of the literature and explore the potential of non-linear tax

schemes as a means to correct behaviorally biased consumers and to increase social

welfare.

We show that non-linear commodity taxes increase welfare beyond the optimal con-

stant per-unit tax. In particular, when perceived valuations and biases are positively

correlated, marginal taxes should be lower for types with a low perceived valuation,

and higher for high types. The intuition for this result is straigthforward and parallels
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the �ndings in the price discrimination literature: when confronted with a continuous

range of quality, consumers partly reveal their type through their position on the de-

mand curve, which can be exploited for targeting. We show how the scope of welfare

improvement due to a corrective taxation changes with the information about aggre-

gate consumer misoptimization available to the mechanism designer. Furthermore, we

discuss empirical and theoretical �ndings on the correlation between perceived valua-

tions and biases and contrast our optimal non-linear tax scheme with a behaviorally

motivated policy in Germany.

The chapter is structured as follows. In the next section we discuss the related

literature, and in Section 1.3 we introduce the model setup. Section 1.4 then contains

the analytical characterization of the optimal tax scheme, while Section 1.5 discusses

illustrative examples. Section 1.6 discusses our �ndings and concludes. All proofs and

the �gures for the numerical simulations discussed in Section 1.5 can be found in the

Appendices.

1.2 Related Literature

Our model is related to all three main branches of the research on optimal taxation.2

First, since we study the taxation of a consumption good such as an electricity-using

durable, our analysis examines commodity taxation. This �eld of research was origi-

nated by Ramsey (1927), and its main issue is to study how to distribute linear taxation

across di�erent commodities in order to obtain a certain government budget with the

least harming consumption distortions.

Second, the study of corrective taxation in order to combat market failures due to

externalities was initiated by Pigou (1920). We study corrective taxation with inter-

nalities. The role of heterogeneity among consumers in the valuation of a public good

and the associated externalities agents might in�ict on others by free-riding was recog-

nized for instance in the analysis of optimally individualized Lindahl prices, see Lindahl

(1919). This approach did not account for the informational asymmetries, which exist

among a social planner designing the tax and the consumers who hold private informa-

tion on their valuations or abilities.

The third main �eld of optimal taxation our work relates to - especially on a method-

ological basis - is that of non-linear income taxation. Mirrlees (1971) was the �rst to

provide a method to cope with the above mentioned informational asymmetries be-

tween the designer and consumers. He explicitly accounted for the consumers' strategic

responses to taxes and is one of the founding fathers of mechanism design due to ex-

amining incentive compatible mechnisms. The literature on optimal income taxation

2An excellent overview on the research on optimal taxation is given in Salanié (2011).
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focusses on the equity-e�ciency trade-o�. It analyzes how to redistribute income with

imperfect knowledge about the agents' labor skills by taxing income non-linearly.3 Two

major continuations in optimal non-linear taxation are Diamond (1998) and Saez (2001).

Non-linear commodity taxation has been studied, for instance, by Mirrlees (1976) and

Cremer and Gahvari (1998), and non-linear taxation with externalities has been studied

by Cremer et al. (1998), for instance.

The pathbreaking methodological advances of Mirrlees (1971) have also had an im-

mense impact outside the realm of public economics. The theory of non-linear pricing

contrasts optimal non-linear taxation in that the designer's objective no longer is the

maximization of social welfare, but rather the maximization of pro�t.4 However, the

fundamental commonality is that the designer has incomplete information about the

preferences of the individual consumer and has to take this into account when designing

the mechanism.

Behavioral economics and also behavioral game theory have become a growing �eld

of research, see K®szegi (2014) and Camerer (2003). The same holds true for behavioral

public economics, see Oliver (2013), Sunstein (2016), Congdon et al. (2011), Rees-

Jones and Taubinsky (2017), and Chetty (2015). Mullainathan et al. (2012) develope a

general model for behavioral public policy. Research on behavioral public policy with

a focus on environmental economics can be found in Allcott (2016) and Allcott et al.

(2017). Behavioral income taxation is studied in Lockwood and Taubinsky (2016) and

Gerritsen (2016). A behavioral approach to commodity taxation with internalities and

externalities is pursued in Allcott et al. (2014), Allcott et al. (2015), and Lockwood

and Taubinsky (2017). The work most closely related to ours is Allcott and Taubinsky

(2015), as we discuss below (at the end of Section 1.3 and in Section 1.4 after Proposition

1.1).

1.3 Model Setup

The main goal of this section is to establish a model that allows us to analyze how the

social planner (she), i.e., the mechanism designer, implements a welfare maximizing tax

scheme - or, equivalently, a subsidy scheme - in an economy with a behaviorally biased

consumer (he).

We model the interaction between the mechanism designer and the consumer as

a dynamic Bayesian game with two stages. In period one, the designer commits to

3Generally, incentive compatibility and externalities are closely connected. For instance, in the
second-price auction, an incentive compatible auction mechanism, the winner has to pay the second-
highest bid, which is a measure of how much harm the winner of the auction in�icts upon society, i.e.,
it takes into account the externalities of the highest bid.

4The theory of non-linear pricing is surveyed in Wilson (1997).
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a (possibly non-linear) tax regime t : X → R, where X ⊆ [0,∞) is the consumer's

choice set. In period two, the consumer then chooses his consumption x ∈ X. The

game is solved by backward induction. We begin by presenting the characteristics of

the consumer side, and then describe the problem of the mechanism designer.

1.3.1 Consumer Side

The representative consumer's choice variable is given by x ∈ X ⊆ [0,∞). The con-

sumer's experienced (or �true�, or �normative�) per-unit valuation of the bene�ts of

consuming good x is captured by the random variable v, which is distributed according

to the cumulative distribution function F with support supp(F ) := [v, v] ⊆ (−∞,∞),

−∞ < E[v] < ∞, and density function f . The bias b, re�ecting a misperception

of the experienced valuation of the consumption choice x, is distributed according to

the cumulative distribution function G with support supp(G) :=
[
b, b
]
⊆ (−∞,∞),

−∞ < E[b] <∞, and with the density g. Valuation and bias may be correlated.

The consumer's perceived per-unit valuation of the bene�ts of consuming of good

x is given by v̂ : [v, v]×
[
b, b
]
→ R, (v, b) 7→ v̂(v, b), which depends on the experienced

valuation v and the bias b. We assume that the perceived valuation increases in the

experienced valuation and in the bias. Furthermore, we specify the bias such that

v̂(v, 0) = v, i.e., a consumer with bias b = 0 is unbiased, while b < 0 (b > 0) imply

underestimation (overestimation) of the value of consumption. The perceived valuation

v̂ is distributed according to the cumulative distribution function P , which is induced by

the distributions of v and b. The density is given by p. The support supp(P ) :=
[
v̂, v̂
]

is determined by the support of the distributions F and G. We present examples for the

dependence of the functional form of P on the functional form of F and G in Section

1.5. The consumer only observes his perceived valuation v̂(v, b) and does not in any

form update his belief about his experienced valuation.

Let z ∈ R denote the money (numeraire good) the consumer spends for the con-

sumption of other goods. The consumer's objective function is given by his decision

utility ud : X×R×
[
v̂, v̂
]
→ R with (x, z, v̂) 7→ ud(x, z, v̂). The consumer's experienced

utility is given by ue : X ×R× [v, v]→ R with (x, z, v) 7→ ue(x, z, v). Experienced util-

ity increases in the experienced valuation and decision utility increases in the perceived

valuation. Experienced and decision utility increase in z and x.

We follow a common routine in the literature and assume quasilinear utility, where

the increasing bene�ts from consuming x are given by w : X → R. Thus, we can write

decision utility as ud(x, z, v̂) = z + v̂ · w(x) and experienced utility as ue(x, z, v) =

z + v · w(x).
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The increasing cost function of consuming x is given by c : X → R. We assume that

good x is produced on competitive markets so that the cost function corresponds to the

price of consuming x net of taxes. The exogenous, real-valued scalar m > 0 denotes

the initial endowment with the numeraire. Therefore, the budget constraint is given by

z ≤ m− c(x)− t(x).

We assume that w is linear and c is convex which implies that w−c is quasiconcave.5
Overall, this implies that the decision utility can be written as

ud(x, t, v̂) = m+ v̂x− t(x)− c(x),

and the experienced utility as

ue(x, t, v) = m+ vx− t(x)− c(x).6

Furthermore, we assume an additive bias v̂ := v + b. Note that then ue(x, t, v) =

ud(x, t, v̂)− bx.
The behavior of the biased consumer is captured by

xd(v̂, t) := arg max
x

ud(x, t, v̂),

and that of the unbiased consumer by

xe(v, t) := arg max
x

ue(x, t, v).

To simplify notation, we sometimes write xd instead of xd(v̂, t), and we proceed in the

same manner with xe. The individual choice of x is observable.

1.3.2 Mechanism Designer

The designer's objective is to elaborate a tax scheme t : X → R, based on information

about the distributions P , F , and G. She observes the consumer's choice x, but not any

realization of the random variables v, b, and v̂. The designer's objective function consists

of the increasing and concave social welfare function W : R → R with ue 7→ W (ue).

For simplicity, we assume ue 7→ α(v)ue with α : [v, v]→ R+.

5As usual, quasiconcavity of w − c can also be guaranteed by assuming that w is concave and c is
linear.

6With a slight abuse of notation we continue to use these objectives of the unconstrained consumer
problem instead of the above introduced objectives of the constrained consumer problem.
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Let T := {f |f : X → R} denote the function space containing all functions with

domain X and codomain R. The designer's objective is then given by

max
t∈T

∫
v̂
E [α(v)|v̂] · E

[
ue
(
xd, t, v

) ∣∣v̂] p(v̂)dv̂ +

∫
v̂
t(xd)p(v̂)dv̂.

1.3.3 Discussion of the Model Setup

The perceptional bias manifests itself in the fact that the consumer experiences a het-

erogeneous internality upon consuming or using the good under consideration, e.g., an

energy-using durable or a sugar-sweetened beverage. Although externalities and inter-

nalities both imply that a social planner can increase social welfare, for instance, via

taxation, targeting through non-linear taxes is more e�ective for internalities. Welfare

losses from externalities arise from the fact that they are not re�ected in the individu-

als' decisions. In contrast, internalities reduce welfare by (wrongly) in�uencing decision

utility. As a consequence, observing consumption choices is more informative about

internalities than about externalities.

To �x ideas, assume that a consumer chooses one of several varieties of a horizontally

di�erentiated product, such as an electricity-using durable of varying energy e�ciency

levels. In this example, x can be interpreted as the energy e�ciency of the durable,

measured relative to the worst variety on the market, and v corresponds to the actual

reduction in operating cost through better energy e�ciency, given actual usage and

prices. The random variable b can be interpreted as a misperception of the value of

energy e�ciency at the time of purchase, i.e., a wedge between perceived valuation v̂

and the experienced valuation v of energy e�ciency. We can thus interpret v̂x as the

perceived savings in monetary terms.7

We allow the bias to have any (�nite) magnitude in expectation, but it is important

to note that empirical applications have typically found that consumers are biased

downwards, which means that they undervalue certain attributes, for instance due to

limited attention (Allcott et al., 2015). An additive speci�cation of the bias is common

in the literature, see Farhi and Gabaix (2017) and Mullainathan et al. (2012).8

The departure from Bayesian rationality that is inherent in our model, i.e., the fact

that the consumer perceives only v̂ and does not make inferences on his bias, can be

explained by one of the following behavioral failures that found extensive support in

the literature. First, present biases can induce consumers to undervalue products that

pay out only in the future, such as healthy foods and energy e�cient durables (Laibson,

1997; Loewenstein and Prelec, 1992; O'Donoghue and Rabin, 1999, 2006). Second,

7Thus, it is also reasonable to assume that w is linear in x.
8The main arguments remain the same for a multiplicative speci�cation of the bias.



1.3. MODEL SETUP | 31

if consumers pay only limited attention to certain product attributes, decision utility

does not match experienced utility. Inattention has been documented in a vast variety

of settings including energy e�ciency (Allcott and Taubinsky, 2015) and health care

choices (Abaluck and Gruber, 2011). Third, biased beliefs can equally drive a wedge

between experienced and decision utility. For example, the literature has found evidence

for biased beliefs with regard to energy e�ciency, the calory content of nutrition, and

schooling returns (Attari et al., 2010; Bollinger et al., 2011; Jensen, 2010).

The assumption of quasilinear utility implies that the model abstracts from income

e�ects. These are not the focus of this chapter, but are extensively discussed in the

literature on optimal income taxation. Note also that the functional form of the con-

sumer's objective with respect to x is endogenous to the model. The related issue of

the existence of interior maximizers of consumer utility is discussed in Appendix 1.A.1.

To isolate the corrective nature of taxation in our setting, we assume that the

designer can levy lump-sum taxes. As a result, the marginal utility of public funds

is unity and the designer has no incentive to distort prices to raise public funds. In

addition, owing to our assumption that lump-sum taxation is feasible, we do not need

to model a government resource constraint.

As it is common in the mechanism design literature, using the standard solution

techniques requires that the hazard rate of the type distribution is increasing. In our

setting, the consumer's (perceived) type is given by v̂, and its distribution is determined

by the joint distribution h(v, b) of v and b according to p(v̂) =
∫∞
−∞ h(v, v̂ − v)dv. In

case v and b are independent, the distribution of v̂ is determined by a convolution of

the distributions v and b, see Bertsekas and Tsitsiklis (2008, pp. 213). Barlow et al.

(1963) show that the set of distributions with an increasing hazard rate is closed under

convolution. This implies that if the distributions of the independent random variables

v and b have an increasing hazard rate, so does the distribution of v̂.9

A central distinction to the standard mechanism design problems is the fact that

the experienced utility is evaluated at xd, the solution to the maximization problem

involving the (possibly biased) decision utility. In Section 1.4, we analyze how the

designer can possibly correct the internality to increase social welfare using non-linear

taxation. Inspired by Allcott and Taubinsky (2015), who examine corrective linear

commodity taxes in a framework with internalities and a binary decision, we investigate

the novel question of how non-linear tax instruments a�ect the welfare of heterogeneous

consumers facing a continuous choice set. In contrast to the existing literature on

9In many cases of interest, such as v and b being jointly normal distributed, p(v̂) exhibits the
increasing hazard rate property. Furthermore, alternative solution techniques (such as the Myerson-
ironing approach) are available if the increasing hazard rate property is not satis�ed.
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behavioral commodity taxation, this automatically introduces the issue of incentive

compatibility into our setup, as the consumer has an incentive to misreport his type.

1.4 The Optimal Tax Scheme

In this section, we apply the concept of a perfect Bayesian Nash equilbirium to derive

the optimal tax scheme. We proceed in two steps. First, we solve for the optimal

behavior of the behaviorally biased consumer that maximizes decision utility (but not

necessarily experienced utility). Second, we derive the optimal tax schedule and discuss

its properties.

The model will generically imply a loss in consumer surplus compared to a setup with

a non-biased consumer, as ue(xd, t, v) ≤ ue(xe, t, v). This implies that due to Bayesian

irrationality, even in the case of E[b] = 0, the consumer misoptimizes in expectation,

and a loss in consumer surplus occurs, as we discuss in Section 1.5.

Börgers (2015) paraphrases the Revelation Principle as: �If an allocation can be

implemented through some mechanism, then it can also be implemented through a

direct truthful mechanism where the consumer reveals his information about his type�.

In contrast to a conventional mechanism design approach, the consumer does not know

his experienced valuation in the setup at hand, but decides exclusively on the basis of

perceived valuation v̂. That is, in a straightforward extension of the Revelation Principle

to our setup, the type of a consumer is given by his perceived valuation v̂, rather than

by the tuple (v, b). The designer con�nes herself to designing a direct mechanism

(ξ, τ) :
[
v̂, v̂
]
→ X ×R under truthtelling to implement the desired outcome. Based on

the consumer's strategical report ṽ, the direct mechanism then assigns the consumed

quantity, ξ(ṽ) ∈ X, and the amount of taxes to be paid, τ(ṽ) ∈ R.
Under the direct mechanism, the decision utility for report ṽ given the perceived

valuation v̂ is

ud(ξ(ṽ), τ(ṽ)|v̂) = m+ v̂ · ξ(ṽ)− τ(ṽ)− c(ξ(ṽ)).

Since the consumer may strategically misreport his perceived valuation, truthtelling

can be induced by the designer by implementing an incentive compatible mechanism

(in dominant strategies). This implies that the tax scheme must satisfy

ud(ξ(v̂), τ(v̂)|v̂) ≥ ud(ξ(ṽ), τ(ṽ)|v̂) ∀v̂, ṽ ∈
[
v̂, v̂
]
. (IC)

As in the standard mechanism design setup, ξ must be increasing in v̂ for direct mech-

anisms to be valid. A standard su�cient condition for ξ to increase is that the hazard

rate of P increases.
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Optimal strategic reporting of a consumer implies that the solution v∗ to the problem

max
ṽ

ud(ξ(ṽ), τ(ṽ)|v̂) has to satisfy

v̂ξ′(v∗)− τ ′(v∗)− ξ′(v∗)c′(ξ(v∗)) !
= 0. (1.1)

Incentive compatibility implies v∗ = v̂, and thus equilibrium decision utility in an

incentive-compatible direct mechanism is given by ûd(v̂) := ud(ξ(v̂), τ(v̂)|v̂), while equi-

librium experienced utility is given by ûe(v̂, b) := ue(ξ(v̂), τ(v̂)|v) = ûd(v̂)− bξ(v̂). Put

di�erently, incentive compatibility implies that for all v̂ ∈
[
v̂, v̂
]
it has to hold that

∂ûd(v̂)
∂v̂ = ξ(v̂) + v̂ξ′(v̂)− τ ′(v̂)− ξ′(v̂)c′(ξ(v̂))

(1.1)
= ξ(v̂). (1.2)

We assume that the consumer's outside option is such that he always prefers to

participate in the mechanism. Therefore, the participation constraints are ful�lled for

any (perceived) consumer type. As usual, when incentive compatibility is satis�ed for

each perceived type, then it su�ces that the participation constraint of the lowest type

is satis�ed. In particular we can specify the model such that ûd (v̂) = u > 0 and

ûd
(
v̂
)
≥ u.

The designer solves a dynamic optimization problem which can be analyzed using the

optimal control approach.10 Note that determining the equilibrium values of ξ(v̂) and

ud(v̂) for all v̂ pins down the equilibrium value of τ(v̂) for all v̂. Hence, the mechanism

design problem of the designer is given by

max
ξ∈X

∫
v̂

(E [α(v)|v̂] · E [ûe (v̂, b) |v̂]) dP (v̂) +

∫
v̂
τ (v̂) dP (v̂), (1.3)

subject to the condition from Equation (1.2), and where X := {f |f :
[
v̂, v̂
]
→ X} is

the function space containing all functions with domain
[
v̂, v̂
]
and codomain X. The

boundary conditions of the problem are given by ûd (v̂) = u and ûd
(
v̂
)
≥ u. The

control variable is ξ and the law of motion of the state variable ûd is determined by

incentive compatibility and optimal strategic reporting, see Equation (1.2). Using the

de�nition of decision utility to replace the tax and rewriting equilibrium experienced

utility in terms of equilibrium decision utility, the Hamiltonian for the above problem

for all v̂ ∈
[
v̂, v̂
]
is given by

H
(
v̂, ξ, ûd

)
=

E[α(v)|v̂] ·
(
ûd(v̂)− E[b|v̂]ξ(v̂)

)
︸ ︷︷ ︸

=E[ûe(v̂,b)|v̂]

+
(
m+ v̂ξ(v̂)− ûd(v̂)− c(ξ(v̂))

)
︸ ︷︷ ︸

=τ(v̂)

 p(v̂) + µ(v̂)ξ(v̂).

10For details on what follows consider Sydsaeter et al. (2008, chapters 9-10).
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Following the standard solution procedure for this kind of mechanism design problem,

we employ Pontryagin's Maximum Principle, which yields the following necessary con-

ditions for the optimal tax.11

FOC on control: ∂H
∂ξ =

[
−E[b|v̂] · E[α(v)|v̂] + v̂ − c′(·)

]
p(v̂) + µ (v̂)

!
= 0, (FOCx)

FOC on state: ∂H
∂ûd

= [E[α(v)|v̂]− 1] p(v̂)
!

= −µ′ (v̂) , (FOCu)

transversality cond.: µ (v̂) · ûd (v̂) = µ
(
v̂
)
· ûd

(
v̂
)

= 0. (TVC)

We obtain the characterization of the optimal non-linear tax scheme in our main result:

Proposition 1.1. The optimal non-linear commodity tax in the model with internalities

and quasilinear utility is implicity given by

t′(x) =

∫ v̂
v̂x

(1− E[α(v)|m]) p(m)dm

p(v̂x)
+ E[b|v̂x] · E[α(v)|v̂x] ∀x ∈ X, (1.4)

where v̂x is the report to be sent by a consumer to obtain the allocation x under the

optimal tax scheme.

Proof. See Appendix 1.A.1

Remember that our results are independent of whether v and b are correlated or

not. The results apply to any distribution of perceived valuations, which satis�es the

increasing hazard rate property. In particular, this is the case for the convolution of two

uniformly distributed independent random variables v and b, which yields a trapezoid

distribution, as we discuss below in Section 1.5. Additionally, this is also the case for

the sum of two jointly normal distributed (possibly) correlated random variables v and

b, which is itself a normal distribution.

To convey the intuition of the optimal marginal tax we �rst examine the second

summand of Equation (1.4). This term embodies the behavioral aspect of our model

and does not appear in the standard literature on non-linear taxation. It corrects for

the expected bias of a consumer conditional on the report about his perceived valuation.

It may be negative as well as positive depending on the expected conditional bias. The

designer uses her potential to help the consumer in correcting his Bayes irrationality

with the optimal tax scheme - �she corrects them, if she can�.

The optimal tax formula in the binary choice model with linear taxation of Allcott

and Taubinsky (2015) does not allow for �price discrimination� among consumers. In

11Su�ciency is given if in addition the control region is convex and the Hamiltonian is concave in
(ξ, ûd) for every v̂, see Sydsaeter et al. (2008, page 315). This is satis�ed in the setup at hand.
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contrast to this, in our model, since there is a correlation between bias and report, the

consumer's strategic report about his perceived valuation reveals information about his

bias and the designer should exploit this by using Bayesian updating. Details on this

updating process can be found in Section 1.5.

If the designer has a utilitarian social welfare function with equal weights for each

consumer type independent of his valuation, we can normalize these weights to one

without loss of generality, so that E[α(v)|v̂x] = 1 for all v̂x ∈
[
v̂, v̂
]
. In this case, the

marginal tax rate, given by Equation (1.4), just equals the expected bias conditional

on the report, t′(x) = E[b|v̂x]. In Appendix 1.A.2, we show that when the designer

cannot discriminate among the di�erent consumer types and has to resort to linear

taxation, the optimal tax is given by t∗ = E[b], that is, the marginal tax rate equals the

unconditional expected bias. Furthermore, as indicated above, Allcott and Taubinsky

(2015) have shown that in a binary investment setting the optimal tax is equal to the

average bias of the consumers who are indi�erent between both goods at market prices.

Again, our result on the non-linear tax di�ers by its dependence on the consumer's

report v̂ rather than a �xed market price. In fact, it is exactly the variation in reports

that a mechanism designer can exploit with a non-linear tax scheme to improve upon a

constant per-unit tax.

Next, we contrast our optimal non-linear tax for behaviorally biased consumers

with the famous ABC formula from the theory of optimal non-linear income taxation,

derived by Diamond (1998, p. 86, Equation (10)). The ABC formula contains three

factors: e�ciency considerations (A), redistribution issues (B), and the dependence of

the incentive compatibility constraint on the density functions via the hazard rate (C).

To start with, part A of the ABC formula is not present in our model, which re�ects

that our model abstracts from income e�ects. Yet, redistribution issues (B) and the

density of v̂ (C) are contained in the �rst summand of Equation (1.4), although in

modi�ed form. The intuition of this summand is as follows. When the designer changes

the marginal tax at, say, x, she extracts money from all consumers with v̂ ≥ v̂x. The

change of her objective is captured by the term
∫ v̂x
v̂ (1− E[α(v)|m]) p(m)dm, since the

marginal value of an additional unit of tax money is one and welfare decreases by

E[α(v)|v̂x] for a consumer with type v̂x. Intuitively, if the average welfare weights for

these consumers exceed unity (and thus the marginal value of the tax income to the

designer), the designer's objective function decreases and she should reduce the tax.

The term is weighted more strongly in the optimal tax formula if the density of the

type v̂x is low, i.e., if it is unlikely that the consumer is marginal to the tax change at x

and thus has an incentive to change his behavior. The second summand in our optimal

tax formula captures the novel aspect of corrective taxation in our model and does not

appear in the standard ABC formula. Another notable di�erence to the the standard
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models without behavioral consumers is that our result allows for a non-zero marginal

tax rate at the top of the type distribution.

1.5 Illustrative Examples:

Updating, Optimal Tax, and Welfare

We now make distributional assumptions and explore the inferences that a designer

can make about the consumer type. Furthermore, we derive the optimal non-linear tax

schedules for these examples and discuss their properties. For the ease of exposition,

we assume that the designer has a utilitarian social welfare function with equal weights

normalized to one for each consumer, so that, according to Proposition 1.1, the optimal

marginal tax rate just equals the expected bias conditional on the report, i.e., t′(x) =

E[b|v̂x].

1.5.1 Density p(v̂) of the Perceived Valuation

To explore how P is determined by the two random variables v and b, we assume

that they are independently and uniformly distributed: b ∼ U
[
b, b
]
and v ∼ U [v, v].

Furthermore, we assume that b < v, i.e., the realization of the experienced valuation

is always larger than that of the bias. Note that uniform distributions exhibit the

increasing-hazard-rate property, and by the above mentioned result of Barlow et al.

(1963) this property is inherited by their convolution.

There are two distinct general cases: either the variance, and thus the entropy,12 of

the bias is smaller than that of the experienced valuation, implied by v−v ≥ b−b, or vice
versa, v−v < b−b. Figure 1.1 visualizes that in both cases the induced density p follows

a trapezoid distribution (in the case of v− v = b− b it follows a triangular distribution,
which is a special trapezoid distribution). The trapezoid distribution consists of three

ranges: a triangular lower part, a rectangular middle part, and a triangular upper

part. If the variance of the bias exceeds the variance of the valuation, the middle range

spans over the interval
[
v + b, v + b

]
, and

[
v + b, v + b

]
otherwise. This has important

implications for the updating process the designer can exploit, as we discuss below.

1.5.2 Conditional Expectation E[b|v̂] of the Bias

To obtain an estimate for the conditional bias, the designer can calculate the expectation

of the bias conditional on the report, E[b|v̂] =
∫
b b · g(b|v̂) db, using the conditional

12The entropy of a distribution is a measure of its informativeness. In the case of the uniform
distribution b ∼ U

[
b, b
]
, it is given by log(b − b), and it is positively correlated with the variance

1
12

(b− b)2.



1.5. ILLUSTRATIVE EXAMPLES | 37

p(v̂)

v̂
v + b

v

v + b v + b

v

v + b

1
b−b

(a) Variance of valuation smaller than
variance of bias: v − v < b− b:

p(v̂)

v̂
v + b v v + b v + b v v + b

1
v−v

(b) Variance of valuation greater than
or equal to variance of bias: v − v ≥
b− b

Figure 1.1: Density p derived from the convolution of f and g when both, v and b, are
i.i.d. and uniformly distributed.

density g(b|v̂). For the case of the convolution of two independent uniform random

variables, we show in Appendix 1.A.3 that the conditional expectation E[b|v̂] is as

follows:

E[b|v̂] =



v̂−v+b
2 , if v̂ < v + b, v̂ < v + b,

v̂−v+b
2 , if v̂ ≥ v + b, v̂ ≥ v + b,

2v̂−v−v
2 , if v̂ ≥ v + b, v̂ < v + b,

b+b
2 , if v̂ < v + b, v̂ ≥ v + b.

(1.5)

The �rst row of Equation (1.5) gives the conditional bias on the lower range from both

panels of Figure 1.1, while the second row gives the conditional bias for the upper

range. Row three gives the conditional bias in the middle range when the variance of

the experienced valuation is smaller than the bias (v − v < b − b), and row four gives

the conditional bias in the same range when the opposite holds true (v − v ≥ b− b).
A comparison of the conditional bias with the unconditional bias, E[b] = (b+ b)/2,

reveals that the conditional bias di�ers from the unconditional bias, which allows the

mechanism designer to update her beliefs about the consumer's bias upon receiving a

report v̂. The only exception is the middle range, when v−v ≥ b− b. For the lower and
upper range, the divergence between the conditional and unconditional bias is intuitive,

as very low or very high reports imply low and high biases, respectively. Furthermore,

as row three in Equation (1.5) shows, a mechanism designer can even extract new

information on the bias after a report from the middle range, given that the variance of

the experienced valuation is smaller than the variance of the bias (v − v < b− b). The
reason is that these are cases in which v̂ can be constituted by any valuation v ∈ [v, v]
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and a bias from a �restricted� range b ∈ [v̂ − v, v̂ − v] ⊂ [b, b]. Only when the opposite

holds true, the middle range is uninformative for a mechanism designer and does not

allow her to update her beliefs beyond the unconditional mean of the bias. The reason

is that these are cases in which v̂ can be constituted any bias b ∈ [b, b] and the according

valuation v such that v + b = v̂.

1.5.3 Speci�c Numerical Examples

We now make further distributional assumptions, discuss optimal non-linear taxation

schedules, and contrast them with both the absence of corrective taxation and the op-

timal linear tax. Speci�cally, we consider four scenarios and run a numerical simulation

for each of them. Each simulation relies on 100,000 draws.13 In all scenarios, the experi-

enced valuation is distributed i.i.d. (independent across consumers and with respect to

the bias) according to a uniform distribution, v ∼ U [90, 100]. In the �rst three scenar-

ios, we furthermore assume that b ∼ U [−10, 10], b ∼ U [−5, 5], and b ∼ U [−1, 1]. In all

three scenarios, the bias has an expectation of zero, but the variance of the bias is larger

than, equal to, and smaller than the variance of the experienced valuation, respectively.

In addition, our fourth scenario considers b ∼ U [−8, 4], so that the expectation of the

bias is negative (−2) and its variance is exactly as in the �rst scenario. The results are

depicted in the �gures of Appendix 1.B.

A common observation valid for all �gures is that the marginal tax rate (Panel (c)

in each �gure) is lowest at the lowest consumption level, i.e., the lowest perceived type,

and highest at the other end of the consumption (and perceived type) distribution.

This seems to be juxtaposed to results in many standard mechanism design problems:

in our model the designer should encourage consumption for low types and discourage

consumption for high types. The driving force is the functional form of E[b|v̂] (Panel

(a) in each �gure), which depicts the designer's informational advantage: at the low

end of the distribution of v̂ she is very certain that consumers are downward biased,

and the reverse holds for the upper end of the distribution. This is summarized in the

following observation.

Observation 1.1. In the independent-uniform case14 , the marginal tax rate is lowest

at the lowest consumption level, and highest at the highest consumption level.

We proceed by looking at cases, in which the bias is zero in expectation, i.e., Figures

1.3, 1.4, and 1.5 of Appendix 1.B. Whenever the support of the bias is large compared

13Our results hold without loss of generality in a model with a unit mass of consumers who have the
same properties as the single representative consumer described in our model setup. True valuation
and bias need to be independently and identically distributed across consumers for the results to hold.

14By �independent-uniform case� we mean that valuation and bias are independently and uniformly
distributed.
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to that of the experienced valuation, v − v < b − b, as for instance in Figure 1.3, then

the optimal non-linear tax yields a qualitatively di�erent allocation than a linear tax

(see Panel (b)). This e�ect becomes smaller as the support of the bias becomes smaller

(compare Panels (b) of Figures 1.3, 1.4, and 1.5). Note that in many applications it is

plausible to assume that (the support of) the bias is large compared to (that of) the

experienced valuation, so that optimal non-linear taxation would imply quite di�erent

allocations than linear taxation in these cases.

The support of the bias in the scenario with uniform distributions critically deter-

mines the shape of the functional form of E[b|v̂], which re�ects the designer's informa-

tion advantage: the smaller the variance of the bias, the more the distribution of E[b|v̂]

resembles a uniform distribution itself. Since the uniform distribution has maximum

entropy, the information advantage decreases in the relative size of the variance of the

bias. Obviously, this has an impact on the possibility to correct the Bayesian irrational-

ity: the welfare improvement induced by non-linear taxation decreases as the support

of the bias becomes smaller (compare Panels (e), (f), and (g) of Figures 1.3, 1.4, and

1.5). This is summarized in the following observation.

Observation 1.2. In the independent-uniform case, the larger the uncertainty about

the bias, the larger is the potential for welfare improvement by an optimal non-linear

tax scheme compared to no taxation or linear taxation.

Whenever the variance of the bias is larger than that of the experienced valuation,

the optimal mechanism implies bunching contracts for perceived types, which are in

the middle range of the distribution. Consider Panel (b) of Figure 1.3, for instance.

Remember that whenever the variance of the bias is larger than that of the experienced

valuation, v − v < b− b, the designer obtains new information about the expected bias

when she receives a report from the middle range of the domain of P . This is not the

case if the variance of the bias is smaller than that of the experienced valuation. Then,

reports from the middle range disclose no new information, E[b|v̂] = E[b], see Equation

(1.5). However, the bunching in the former case occurs since the designer learns nothing

new about v.

Observation 1.3. In the independent-uniform case, when the uncertainty about the bias

is large (v − v < b− b), the optimal non-linear tax scheme includes bunching contracts

for (perceived) types in the middle range.

In any of the examples depicted in Appendix 1.B, the highest (perceived) type ob-

tains his optimal allocation in the optimal tax scheme. As in most standard mechnism

design problems �there is no distortion at the top�. However, additionally, in the behav-

ioral mechanism design setup at hand, the designer is certain that the lowest perceived



1.6. DISCUSSION AND CONCLUSION | 40

type would be misoptimizing without her intervention. Thus, due to her informational

advantage the designer can construct a mechnism such that also the lowest type obtains

his optimal allocation, i.e., �there is no distortion at the bottom�. These observations

concerning the boundary points of the interval of the perceived valuations determine

the overall shape of the optimal mechanism.

Observation 1.4. In the independent-uniform case, the optimal non-linear tax scheme

implies �no distortion at the top and at the bottom�.

In all scenarios with E[b] = 0, linear taxation does not increase welfare compared

to no taxation (Panels (e) - (g) of Figures 1.3, 1.4, and 1.5). This is not the case when

E[b] 6= 0, as in Figure 1.6: linear taxation increases welfare, since it corrects for the

average misoptimization (see Panel (g) of the �gure). However, non-linear taxation still

improves upon this, since - in addition to correcting for the average misoptimization -

it also corrects for the �extreme� misoptimization at the margins of the distribution of

the perceived valuation by targeting those consumers with a high degree of Bayesian

irrationality. We have already mentioned above that E[b] < 0 is a plausible assump-

tion in many real-world applications. Thus, in combination with the observation from

above, we see that the designer can notably increase welfare by non-linear taxation in

applications with a large bias.

Observation 1.5. In the independent-uniform case, the optimal non-linear tax scheme

induces a higher welfare than no taxation and linear taxation.

Comparing Figures 1.3 and 1.6, we can also observe that although the marginal tax

rates are qualitatively similar (Panel (c)), the divergence of E[b] from zero implies that

the tax rate (Panel (d)) becomes less and less symmetric and for a bias with a purely

negative support the tax would be monotonically decreasing.

1.6 Discussion and Conclusion

In this chapter, we have derived the optimal non-linear tax to correct misoptimization

induced by internalities, i.e., individual welfare losses from behavioral failures. Using

a mechanism design approach, we show that consumers' reports contain information

that can be employed to improve upon a linear tax. This bene�cial e�ect of corrective

taxation increases in the informativeness of the reports available to the designer.

Empirically, there is evidence that the correlation between reports and biases has

some regularities that can be exploited by policy. For example, Allcott et al. (2015)

show for energy e�ciency investments and hybrid car purchases that higher perceived

valuations, i.e., higher reports, are positively correlated with the bias. More speci�cally,
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for low perceived valuations, the bias is negative and increases as perceived valuations

rise. In such a setting, non-linear taxation should give the largest marginal subsidies to

participants with a low perceived valuation. This is also what our analysis suggests.

To the extent that the positive correlation between reports and bias holds true,

many subsidy schemes employed in practice are e�ectively antipodal to the optimal

non-linear tax derived in this chapter. For example, the German government grants

subsidies for energy e�ciency in housing only if a newly built (or retro�tted) house

meets prede�ned minimum e�ciencies, so-called �KfW-E�zienzhaus� standards. In

other words, marginal subsidies are essentially zero if reports are small and increase only

as perceived valuations become larger. As a result, the most heavily biased consumers

with low perceived valuations receive no subsidies. This observation implies that social

welfare can be improved by implementing the optimal non-linear tax, which speci�cally

targets those consumers.

Since internalities and externalities are often intertwined15 the inclusion of exter-

nalities into our model can be part of future research. Modifying the setup to account

for income e�ects would be another sensible extension. Moreover, future research could

further investigate empirical applications and tests of the model presented in this chap-

ter.

1.A Appendix: Proofs

1.A.1 Proof of Proposition 1.1: Optimal Non-Linear Tax

The consumer's �rst-order condition characterizing optimal consumption xd is given by

∂ud(x, t, v̂)

∂x

∣∣∣∣
x=xd

= v̂ − c′(xd)− t′(xd) !
= 0⇔ c′(xd) = v̂ − t′(xd). (1.6)

The second order condition is satis�ed if −c′′(x) − t′′(x) ≤ 0 for all x ∈ X. Since

the costs are convex in x by assumption, this condition is satis�ed, if the optimal tax

schedule is convex in x as well.16 Generally, an interior solution exists, if �c is convex

enough compared to t�, i.e., c′′(x) ≥ −t′′(x) for all x ∈ X.

15For instance the consumption of highly saccherated soft drinks may cause bad health (internality)
and higher burdens for health insurances due to diabetes, etc. (externality).

16Appendix 1.B illustrates that this is the case in our examples.
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As discussed in the text we can always guarantee that û (v̂) = u > 0 and û
(
v̂
)
≥ u,

so that the transversality condition immediately implies µ (v̂) = 0 and µ
(
v̂
)

= 0. We

now use Equation (FOCu). By integrating and using µ
(
v̂
)

= 0 we obtain

∫ v̂

v̂
−µ′(n)dn = −µ

(
v̂
)
− [−µ (v̂)] = µ (v̂)

!
=

∫ v̂

v̂
(E[α(v)|m]− 1) p(m)dm. (1.7)

Using the above equations we rearrange Equation (FOCx), to obtain the result:

(
v̂ − c′(·)

) !
= −µ (v̂)

p(v̂)
+ E[b|v̂] · E[α(v)|v̂]

(1.6)⇔ t′(x) = −µ (v̂x)

p(v̂x)
+ E[b|v̂x] · E[α(v)|v̂x]

(1.7)⇔ t′(x) =

∫ v̂
v̂x

(1− E[α(v)|m]) p(m)dm

p(v̂x)
+ E[b|v̂x] · E[α(v)|v̂x].

1.A.2 Derivation of the Optimal Linear Tax

In this proof we additionally assume that c′′′(x) = 0, which simpli�es the calculation of

the optimal linear tax, but does not change our results on the optimal non-linear tax

scheme. Anticipating the behavior on the consumer side, the problem of the designer

can be written as max
t∈R

∫
v

∫
b u

e(xd, t, v)dG(b|v)dF (v) +
∫
v

∫
b t · xddG(b|v)dF (v) =: V (t).

We evaluate the derivative with respect to the linear tax t:

∂V (t)

∂t
=

∫
v

∫
b

[
−xd +

(
v − t− c′(·)

) ∂xd
∂t

]
dG(b|v)dF (v) +

∫
v

∫
b

[
xd + t · ∂x

d

∂t

]
dG(b|v)dF (v)

=

∫
v

∫
b

[(
v − c′(·)

) ∂xd
∂t

]
dG(b|v)dF (v).

The individually optimal consumption is again characterized by Equation (1.6), i.e.,

c′(·) = v̂ − t′(x) = (v + b) − t, where the last equality holds since t is linear. Thus,
∂V
∂t =

∫
v

∫
b

[
(t− b)∂xd∂t

]
dG(b|v)dF (v). We can further evaluate ∂xd

∂t by di�erentiating

Equation (1.6) with respect to t to obtain ∂xd

∂t = − 1
c′′(xd)

= a, for some real-valued

constant a < 0. The last equality follows from the assumption that c′′′(·) = 0 and that

c is convex. Therefore, the optimal tax t∗ is given by ∂V
∂t |t=t∗

!
= 0⇔ t∗ = E[b].
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1.A.3 Indep. Uniform Case: Illustration of the Calculation of the

Conditional Density and of the Conditional Expectation of the

Bias

v̂ − v b v̂ − v b

(a) low range:
v̂ < v+b, v̂ < v+b⇔ v̂−v < b, v̂−v < b

⇒ g(b|v̂) = 1
v̂−v−b , E[b|v̂] = v̂−v+b

2

b v̂ − v b v̂ − v

(b) high range:
v̂ ≥ v+b, v̂ ≥ v+b⇔ v̂−v ≥ b, v̂−v ≥ b

⇒ g(b|v̂) = 1
b+v−v̂ , E[b|v̂] = v̂−v+b

2

b v̂ − v v̂ − v b

(c) medium range for v − v ≤ b− b:
v̂ ≥ v+b, v̂ < v+b⇔ v̂−v ≥ b, v̂−v < b

⇒ g(b|v̂) = 1
v−v , E[b|v̂] = 2v̂−v−v

2

v̂ − v b b v̂ − v

(d) medium range for v − v > b− b:
v̂ < v+b, v̂ ≥ v+b⇔ v̂−v < b, v̂−v ≥ b

⇒ g(b|v̂) = 1
b−b , E[b|v̂] = b+b

2 = E[b]

Figure 1.2: Independent Uniform Case: Conditional density g(b|v̂) and conditional
expectation E[b|v̂].

1.B Appendix: Figures for the Simulations in Section 1.5

Please turn over! The �gures are discussed in Section 1.5.



(a) Conditional expectation of the bias E[b|v̂] (b) Consumption allocation (black: no tax, blue: optimal
[for each possible realization of v, b s.t. v̂ = v + b], orange:
linear tax, green: non-linear tax)

(c) Optimal non-linear marginal tax t′(x) (d) Optimal non-linear tax t(x)

(e) Individual experienced utility in equilibrium for each
possible realization of v, b s.t. v̂ = v + b (black: no tax,
green: non-linear tax)

(f) Expected experienced utility in equilibrium (black: no
tax, green: non-linear tax)

no tax: 4500.528 linear tax: 4500.528 non-linear tax: 4514.045

(g) Expected total welfare

Figure 1.3: Scenario with v ∼ U [90, 100] and b ∼ U [−10, 10], i.e., E[b] = 0, and v, b
independent.



(a) Conditional expectation of the bias E[b|v̂] (b) Consumption allocation (black: no tax, blue: optimal
[for each possible realization of v, b s.t. v̂ = v + b], orange:
linear tax, green: non-linear tax)

(c) Optimal non-linear marginal tax t′(x) (d) Optimal non-linear tax t(x)

(e) Individual experienced utility in equilibrium for each
possible realization of v, b s.t. v̂ = v + b (black: no tax,
green: non-linear tax)

(f) Expected experienced utility in equilibrium (black: no
tax, green: non-linear tax)

no tax: 4513.158 linear tax: 4513.158 non-linear tax: 4515.226

(g) Expected total welfare

Figure 1.4: Scenario with v ∼ U [90, 100] and b ∼ U [−5, 5], i.e., E[b] = 0, and v, b
independent.



(a) Conditional expectation of the bias E[b|v̂] (b) Consumption allocation (black: no tax, blue: optimal
[for each possible realization of v, b s.t. v̂ = v + b], orange:
linear tax, green: non-linear tax)

(c) Optimal non-linear marginal tax t′(x) (d) Optimal non-linear tax t(x)

(e) Individual experienced utility in equilibrium for each
possible realization of v, b s.t. v̂ = v + b (black: no tax,
green: non-linear tax)

(f) Expected experienced utility in equilibrium (black: no
tax, green: non-linear tax)

no tax: 4515.744 linear tax: 4515.744 non-linear tax: 4515.761

(g) Expected total welfare

Figure 1.5: Scenario with v ∼ U [90, 100] and b ∼ U [−1, 1], i.e., E[b] = 0, and v, b
independent.



(a) Conditional expectation of the bias E[b|v̂] (b) Consumption allocation (black: no tax, blue: optimal
[for each possible realization of v, b s.t. v̂ = v + b], orange:
linear tax, green: non-linear tax)

(c) Optimal non-linear marginal tax t′(x) (d) Optimal non-linear tax t(x)

(e) Individual experienced utility in equilibrium for each
possible realization of v, b s.t. v̂ = v + b (black: no tax,
green: non-linear tax)

(f) Expected experienced utility in equilibrium (black: no
tax, green: non-linear tax)

no tax: 4507.835 linear tax: 4509.821 non-linear tax: 4513.393

(g) Expected total welfare

Figure 1.6: Scenario with v ∼ U [90, 100] and b ∼ U [−8, 4], i.e., E[b] = −2, and v, b
independent.



Chapter 2

Information Design in Multi-Task Contests -

Whom to Inform When the Importance of Tasks

Is Uncertain

In many contests, competitors invest e�ort in di�erent tasks. Ex ante it may

not be clear to them how success in the contest will depend on the mixture of

e�ort investments in the di�erent tasks. For instance, when applying for a pro-

fessorship, it may not be clear to applicants how exactly research performances in

di�erent �elds are weighted against each other by the hiring committee. Neverthe-

less, the committee usually has the possibility of transmitting information to the

contestants before the contest. This chapter addresses the question of how the in-

formation structure should be designed in this kind of setting in order to maximize

contestants' joint e�ort. We show that, in a two-player Tullock contest with an

ex-ante uncertain Cobb-Douglas impact function, the designer cannot bene�t by

transmitting purely public messages to the contestants. However, if the designer

asymmetrically discloses information, she can evoke an increase of contestants' ex-

pected e�orts. If the designer can send a purely private message to one contestant,

depending on the competitiveness of the contest tasks re�ected by comparative cost

advantages, either no revelation, full revelation, or partial revelation of information

may be bene�cial for the designer. We show that, in some scenarios the principle

of �informational favoritism� of an ex-ante disadvantaged player, e.g., disclosing

information to the �weak� underdog, increases contestants' e�orts, while in other

scenarios �informational discrimination� of an ex-ante disadvantaged player, e.g.,

disclosing information only to the �stronger� of two specialists, is better.
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2.1 Introduction

Information design in games is a recent and very active �eld of research in information

economics, see Bergemann and Morris (2017) and Taneva (2016), for instance. It exam-

ines settings in which an information designer (�she� in the following) can manipulate

the information structure which generates the messages sent to the receivers (all �he� in

the following). These then interact in a so-called base game, which in this chapter is a

contest. Models of contest theory, in which contestants compete for prizes by exerting

costly e�orts, have taken a prominent place in game-theoretic analyses of competition,

see Vojnovic (2016), Konrad (2009), and for a non-formal discussion Frank and Cook

(1996). A central question in this literature is how the contest designer can structure

payo� incentives such that total e�ort exerted by contestants is maximized. However,

how the designer can manipulate contestants' beliefs by information design in contests

to achieve the same goal has not yet been studied extensively. This chapter contributes

to closing the gap.

Information design in multi-task contests can be applied to many situations. The

hiring committee of a university might reveal some information about the demanded

expertise in di�erent �elds of research when recruiting a new professor. This, of course,

generally applies to instances in which enterprises are hiring new employees. During the

ice-�gure skating competition at the Winter Olympics 2018 in South Korea contestants

were unsure about how exactly strength, indicated for example by the hight of jumps,

was valued by the judges compared to artistic skills, such as the elegance of the per-

formance.1 Remarks by members of the judging committee in press conferences might

have given some hints on what matters more to convince the judges. Most scienti�c

journals provide rules on what a paper worth to be published generally has to look like.

Additionally, the reviewers may have speci�c selection criteria, and they can reveal some

of that information in a review report. Similarly, teachers usually provide information

on what is relevant in an exam during a review session at the end of the lecture term.

In all of these situations, the designer of the information structure (hiring commit-

tee, judging committee, ...) usually wants to maintain her reputation of being honest,

because she represents a company or another kind of institution, which is likely to inter-

act with people observing her current behavior in the future. Therefore, it is plausible

to assume that she credibly commits to a certain information transmission strategy be-

fore even knowing the exact state of the world she can transmit information about. For

1See http://www.zeit.de/sport/2018-02/yuzuru-hanyu-eiskunstlaufen-winnie-pu-japan (last ac-
cessed 24/02/2018). In ice-�gure skating there is no trade-o� in judging athletic skill (A score) and
artistic skill (B score) for the judges. However, judges might be more inclined to give higher scores in
their preferred task (athletic or artistic), or they might be more attentive to the performance in their
preferred task compared to the other one during an ice-�gure skating competition.
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instance, German universities have a guideline for hiring professors, which each hiring

committee has to stick to, and which has been written down in a general form before the

speci�c hiring committee meets. Nevertheless, each hiring committee may have speci�c

preferences on how to �ll a vacant chair at the faculty and may communicate (part of

them) to potential applicants accordingly.

Zhang and Zhou (2016) have analyzed Bayesian persuasion, the single-receiver case

of information design, in a Tullock contest. Importantly, this approach abstracts from

the distinction between private and public information, which plays a fundamental role

in information design in games and which we explicitly elaborate on. The �rst main

contribution of this chapter is to show that the distinction between private and public

information is crucial for information design in contests: the designer can never induce

higher e�orts by disclosing information purely publicly, meaning that both contestants

receive the same message and that both of them have common knowledge about this.

This result is driven by the fact that no contestant can obtain an informational ad-

vantage over his opponent in the purely-public-messages scenario. This, however, is

important for information disclosure to be bene�cial for the designer.

The next main contribution shows that if, in a two-player contest, the designer sends

purely private messages to only one of the contestants, he can bene�t from information

revelation by adhering to a principle of �informational favoritism�: while it is never

bene�cial to disclose information to a favorite, it is bene�cial to disclose information to

a (�speci�cally weak�) underdog. Thus, optimal information disclosure in these settings

is in favor of players with an ex-ante disadvantage. Furthermore, we illustrate that,

in other settings, the designer might optimally reveal information to a contestant who

is ex ante more likely to win the contest: if each contestant is a specialist in a di�er-

ent task, then the designer can bene�t from disclosing information to the contestant

whose preferred task is more likely ex ante. This re�ects a principle of �informational

discrimination� of ex-ante disadvantaged specialists.

Arbatskaya and Mialon (2010) introduce the multi-task two-player Tullock contest

with a Cobb-Douglas impact function, which is the contest framework we employ here.

This strand of contest research is related to the famous Colonel Blotto game literature,

which is surveyed in Kovenock and Roberson (2017). Contests with multi-tasking have

also been analyzed theoretically by Clark and Konrad (2007) and Epstein and Hefeker

(2003), and experimentally by Deck et al. (2016).

The literature on optimal favoritism in contests encompasses the manipulation of

the rules of the game in favor of ex-ante disadvantaged players. The design of the

incentive structure, for instance by using head starts or biases in the contest success

function, has been studied extensively, see Franke et al. (2018), for instance.
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From the designer's perspective information design in games is a task of belief ma-

nipulation. We emphasize the two extreme cases of purely public and purely private

messages. In some instances, this implies that we can apply the methodology of the

seminal paper in the Bayesian persuasion literature by Kamenica and Gentzkow (2011),

who analyze the �decision-theoretic� (i.e. single receiver) information design setup and

derive their well-known �concavi�cation results�. In the paper �Information Design in

Games�, Mathevet et al. (2017) analyze �Bayesian persuasion in games� by extending

the concavi�cation approach to a framework with multiple strategically interacting re-

ceivers. They push forward the composition of the optimal information structure from

a public and a private message component.2 Bergemann and Morris (2016) present an

alternative approach to information design using linear programming techniques and

Bayes correlated equilibria, where - in contrast to the extension of correlated equilib-

rium to games of imperfect information introduced by Forges (1993) - one player (the

sender of the message) has more information than others (the receivers). A survey on

information design can be found in Bergemann and Morris (2017).

Research on issues arising from asymmetric information and information disclosure

in contests has been subject of the work by Einy et al. (2017), Epstein and Mealem

(2013), Kovenock et al. (2015), Ewerhart and Grünseis (2018), Fu et al. (2013), Denter

et al. (2011), Morath and Münster (2013), Münster (2009), Roesler (2015), and Gürtler

et al. (2015). Some of these papers examine how a contestant himself should reveal

information about his attributes, e.g., e�ort costs. Others - if they examine how the

designer should disclose information - either analyze how the designer should give feed-

back to contestants during the course of a tournament (by providing preliminary scores,

for instance), or they analyze how she should disclose information to an uninformed

contestant about his opponent's costs. In contrast, in this chapter both contestants

share the same information at the beginning of the game and information is disclosed

(potentially) to both of them by the designer, who has an information advantage over

the contestants when she sends the messages.

The paper most closely related to the research at hand is Zhang and Zhou (2016).3

They analyze Bayesian persuasion in a single-activity two-player Tullock contest, where

one contestant has imperfect information about the cost function of his opponent and

the contest designer decides whether to (partially or fully) disclose information about

these costs (which she can observe), or not. In contrast to their analysis, the focus of

2Note, that most games discussed in the information design literature so far contain incentives among
receivers to �coordinate� in certain situations, see Mathevet et al. (2017), for instance. In contrast to
this, the contest model discussed here is a model of pure con�ict with a zero-sum character.

3Melo Ponce (2017) also discusses information design in contests. The abstract (no complete paper
is yet available; 02/06/2018) mainly explains the employed methodological procedure using the Bayes-
correlated-equilibrium approach.
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this chapter is how a multi-task contest framework can a�ect information design if all

contestants have imperfect information. Furthermore, we explicitly account for the fact

that when analyzing information design in games the distinction between public and

private information is crucial, which has not been accounted for by Zhang and Zhou

(2016).

This chapter is structured as follows. In the next section we present an example,

which is followed by the model setup and an analysis of the Bayesian updating process.

Then, we introduce a setting which we later on explore in more detail, namely the

two-extreme-states scenario. In Section 2.6, we analyze the case in which the chosen

information design is such that both contestants can perfectly infer the opponent's

message. This setting includes non-revealing and purely public information structures.

In Section 2.7 the designer can only send purely private messages to one contestant.

To isolate the di�erent e�ects of information design, we analyze this setting for non-

Bayesian and for Bayesian agents. Section 2.8 concludes and gives a brief outlook on

possible extensions. Most proofs can be found in the Appendix.

2.2 An Example5

A contest designer (�she�) hosts a contest with two contestants (both �he�), named 1

and 2. Each contestant i ∈ {1, 2} =: N can invest e�ort in two di�erent tasks, A and

B. Let xit denote i's e�ort in task t ∈ {A,B} =: T . The e�ectiveness of the e�ort in

the tasks is ex ante uncertain to the contestants and the designer. There are two states

of nature: in state sA only e�ort in task A determines success in the contest, while in

state sB only e�ort in task B matters. The state is drawn randomly according to the

commonly known prior and pA ∈ (0, 1) denotes the ex-ante probability of state sA. If

state t ∈ {A,B} is realized, then contestant i's probability of winning the prize of the

contest with homogeneous value v ≡ 100 is given by 1/2 if xit = xjt = 0, and by

xit
xit + xjt

else, for i, j ∈ N , j 6= i. Contestants di�er in their skills in each of the tasks: i's cost of

exerting e�ort xit is given by the linear cost function citxit for all t ∈ T , with cit ∈ R+,

for all t ∈ T, i ∈ N . The costs are known to each player in the game. Contestants

maximize their expected utility (expected gain minus deterministic costs).

The contestants' evaluation of uncertainty in the contest is captured by the belief

system β̃ :=
(
β̃1, β̃2

)
, where β̃i, i ∈ {1, 2} re�ects contestant i's belief system. The

5The numerical examples in this section are also discussed more formally in Section 2.7, and they
are illustrated in the �gures of that Section.
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designer is able to manipulate the contestants' beliefs about the realization of the state

by designing an information structure (M,Q) she commits to. Before she observes

the state of nature, she has to decide about the information map Q, which is publicly

known to all players. Afterwards, depending on the realization of the state, message

m := (m1,m2) ∈ M is sent to the contestants according to Q, where mi, i ∈ {1, 2} is
the (component of the) message observed by contestant i ∈ {1, 2}, but not by contestant
j ∈ {1, 2}, j 6= i.6 For expositional purposes, we focus on two information structures

among which the designer may choose in this section: full revelation (QFRi ), i.e., the

designer discloses the true state of the world to contestant i, and non-revelation (QNR),

i.e., no contestant receives any information from the designer.7

The �meaning� of a message is determined by Q and upon receiving a message,

contestants update their belief system according to the message received. Thus, we

denote the contestants' updated belief system after observingm, which is sent according

to Q, by β̃(m,Q). The contestants' aggregate equilibrium e�ort after observing m

under Q is denoted by X∗(β̃(m,Q)). The contest designer wants to maximize the e�ort

exerted by the contestants via information design.8 Since the designer does not observe

the state according to which messages are sent �via� Q, he solves a problem under

uncertainty, where the objective is given by E
[
X∗(β̃(m,Q))

]
(Q). The dependence of

this expectation on Q re�ects the fact, that the choice of Q in�uences the probability

of the realization of message m ∈M . In short we often write E[X∗](Q).

In any case the recipient of a fully revealing message generically faces two di�erent

situations: either he receives an �encouraging� message, i.e., he learns that the relevant

task is his �preferred� task, or he receives a �discouraging message�, i.e., he learns that

the relevant task is the task he �dislikes�.9 Contestants may thus learn the extent to

which they have a cost advantage or disadvantage compared to their opponent. Of

course, this has an e�ect on the contestants' e�ort provisions.

The reaction to information described above takes into account what contestants

may learn about the relevant task. In addition to this, the information designer can

6Note that in the following we often use the term �message� or �message of contestant i� instead
of �component of the message that contestant i can observe�. The meaning becomes obvious from the
context.

7In Section 2.7 we analyze more sophisticated mechanisms, which allow also for partial revelation
of information.

8Speaking in terms of some of the examples from above, the designer wants to hire the �best be-
having� applicant. In this framework, we can think of the cost parameters as representations of the
contestants' innate skills. Even if applicant 1 might be more �talented� than applicant 2, it makes sense
to hire applicant 2 if he exerts higher e�orts. The e�orts exerted in the application process (considered
also potentially in a broader sense, e.g., as re�ected in university grades) are thus a good indicator of
performance in the job later on.

9The term �preferred task� here means that the contestant has either a higher cost advantage or a
lower cost disadvantage compared to his opponent in this task than in the other task. A �disliked task�
is de�ned analogously.
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manipulate the contestants' beliefs about the opponent's evaluation of uncertainty in

the game, i.e., their higher order beliefs. For instance, suppose that both tasks are

ex ante equally likely to matter, pA = 0.5, and Q is chosen such that it is publicly

known that the designer fully discloses the true state of the world to contestant 1, while

contestant 2 does not receive any relevant information. In this case, upon receiving

information, contestant 1 always knows the extent to which contestant 2 underestimates

the probability of the relevant task, since the belief of the uninformed contestant is �xed

by the prior. Contestants may thus learn that they have an information advantage

over their opponent. Furthermore, since Q is public, the uninformed contestant knows

about his information disadvantage. These observations obviously have an e�ect on

e�ort provision as well.

The information designer has to evaluate how to optimally design the contestants'

beliefs with respect to the cost advantage and the information advantage described

above. In order to �credibly� disclose information to Bayes rational contestants, she faces

the following trade-o�. Suppose that the designer prefers both contestants to believe

that task A is relevant since e�ort provision is higher in this task. She would want the

contestants to always believe that task A is the true state of the world. However, if

contestants know that the designer always, that is in states sA and sB, informs them

that task A is relevant, then they will never believe her and the resulting information

structure would be non-revealing. Therefore, to �credibly� disclose information to the

contestants about her preferred state sA being true, the designer sometimes, that is, for

instance, whenever sB is true, has to inform them that her least preferred, since least

e�ort intense, task is relevant.

We now analyze the e�ects described above in a numerical example. Suppose that

the e�ort costs are given by c1A = 9 and c1B = 4 for contestant 1, and by c2A = 1 and

c2B = 1 for contestant 2. Due to his cost advantage in both tasks, we call contestant

2 the favorite. The favorite has a cost advantage in any state of the world. Using

straightforward calculation of the �rst-order and equilibrium conditions, we can see that

if always task A mattered, equilibrium e�orts would be x∗1A = 1 and x∗2A = 9, so that

total e�orts in task A would be X∗A = 10. Similarly, we can calculate x∗1B = 4, x∗2B = 16

andX∗B = 20 for task B. Assuming a prior of pA = 0.5, the expected total e�ort without

any information disclosure is given by E[X∗](QNR) = 0.5 ·X∗A + 0.5 ·X∗B = 15.

Now let us analyze the incentives to transmit information by the designer. First,

suppose that the designer is restricted to transmitting a purely public message to both

contestants. Then, both Bayes rational contestants share the same belief, and therefore

none of them can obtain an information advantage over his opponent. Note also, that

the designer obviously would want both contestants to believe that the same state,

sB, is the real state of the world, as both contestants exert higher e�ort in task B.
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However, due to the above mentioned trade-o� inducing a high subjective probability

that state B is true among contestants comes at the cost that, in some situations, the

designer must reveal that state A is true. In Section 2.6.2 we show that, for the case

of purely public information, the bene�ts of fully revealing a bene�cial state for the

designer is (in expectation) exactly weighed of by the costs of fully revealing a non-

bene�cial state. This result holds in a general scenario. Under purely public messages,

the designer can never increase contestants' (expected) e�orts compared to a situation

without information disclosure.

The following discussion illustrates the important insight for information design in

contests, which also pertains generally for information design in games. It is crucial

to distinguish public and private information: in the multi-activity contest with uncer-

tainty about the tasks, a setting of pure con�ict, the designer can only bene�t from

information transmission if she distributes information asymmetrically, i.e., not purely

publicly. Suppose, that the designer can send private messages only to one of the con-

testants and this is known to all players in the game. The general question then is:

�Whom to inform when the importance of tasks is uncertain?�, i.e., to which contestant

should the designer disclose information to - if she does so at all?

Intuitively, in the numerical example from above it makes no sense for the designer to

reveal any information in a private message to the favorite, since - in addition to having

a cost advantage - he would also have an informational advantage, which induces him

to exert lower e�ort in expectation. Furthermore, the underdog knows that he has an

information disadvantage and thus is discouraged to exert higher e�ort.

However, if the designer discloses information to the underdog, she basically coun-

terbalances his cost disadvantage and expected equilbrium e�ort will be higher. We

show in Section 2.7 that this �informational favoritism� holds in a more general setting.

The increase in e�ort after the - from the underdog's perspective - encouraging message

�Task B is relevant.� (the underdog's disadvantage is smaller in task B than in task

A) is larger than the decrease in e�ort after the discouraging message �Task A is rele-

vant.�.10 This is because, in addition to learning that her preferred task is relevant, the

information advantage over the favorite, who underestimates the probability of the rel-

evant task, induces the informed underdog to overproportionately increase e�orts upon

receiving the encouraging message compared to the decrease in e�ort upon receiving the

discouraging message. In addition, the uninformed favorite exerts higher e�orts, since

he anticipates the underdog's increase in e�ort. Therefore, overall the designer can in-

crease her expected payo� from E[X∗](QNR) = 15 in a situation without information

disclosure to E[X∗](QFR1 ) = 22.1 when fully disclosing the true state to the underdog.

10This is re�ected for instance in the convexity of X̄∗(βA1 ) in Figure 2.5.



2.3. MODEL SETUP | 56

Now suppose that we change the cost structure in the example by switching the

values of c1B and c2B: c1A = 9 and c1B = 1 are the cost parameters for contestant 1, and

c2A = 1 and c2B = 4 for contestant 2. In aggregate terms nothing has changed: X∗A = 10

and X∗B = 20. However, the underlying strategic situation is fundamentally di�erent:

contestant 1 is a specialist in task B (compared to contestant 2), while contestant 2 is

a specialist in task A (compared to contestant 1).

Since in this scenario each contestant exerts higher e�orts in his preferred task

under non-disclosure (x∗1A = 1, x∗1B = 16, x∗2A = 9, x∗2B = 4), in contrast to the

scenario before, the designer wants each contestant to believe that a di�erent state is

true than his opponent. The issues arising from inducing di�erent beliefs among the

contestants, are brie�y discussed in Section 2.8. However, the focus of this chapter is

the purely-private-message scenario. It serves to analyze which contestant should be

adressed with information. It can be shown that, in the scenario with two specialists

and a prior pA = 0.5, the designer cannot bene�t from information transmission, since

in expectation for both contestants the increase in e�ort after an encouraging message is

less than the decrease after a discouraging message. The respective equilibrium e�orts

for these parameters are E[X∗](QNR) = 15 and E[X∗](QFR1 ) ≈ 14.44.

However, if pA = 0.2 with the same cost parameters then the designer can bene�t

from disclosing information to contestant 1. The respective equilibrium e�orts are

E[X∗](QNR) = 18 and E[X∗](QFR1 ) ≈ 18.99. Note that, compared to the situation with

pA = .5, the designer discloses information to the specialist whose preferred task has

become more likely, which is somewhat counterintuitive to the �informational favoritism�

discussed above. The detailed intuition for these results will be presented in Section

2.7.

2.3 Model Setup

This section describes the dynamic game of imperfect information involving the designer

(�she�) and the two contestants (both �he�). We start by presenting the contestants' side

and then continue to describe the information designer's side.

2.3.1 A Multi-Task Contest with Uncertainty and the Information

Structure

The contestant side is modelled by a base game G, which in this case is a multi-task

contest with uncertainty, and an information structure (M,Q).

The contest G = (N,X, S, p, U) with uncertainty about the tasks is played among

two contestants, who compete for a prize of homogeneous value v and where N := {1, 2}
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is the set of players. Each contestant i ∈ N chooses his strategic variables xi ∈ Xi ⊆ Rk+,
which specify an investment of e�ort xit in each of the �nitely many tasks t ∈ T , where
|T | = k, and X := ×i∈NXi is the action space, with Xi compact for all i ∈ N .

There are l <∞ mutually exclusive σ-states of nature indicated by s ∈ S, and the

vector p := (ps1 , ..., psl) ∈ int (∆(S)) depicts the prior probability of each σ-state.11

The prior is commonly known. The σ-state-dependent weight of task t in σ-state s is

captured by the scalar αst ∈ R+. The σ-state-dependent Cobb-Douglas impact function

transforms e�ort inputs into output according to

fs(xi) =

k∏
t=1

x
αst
it .

The returns to scale parameter D :=
∑

t α
s
t is constant across states. As usual, D = 1

implies constant returns to scale. Inspired by Tullock (1980), for i, j ∈ N, i 6= j, the

σ-state-dependent contest success function, given by

CSF s(x) =

1/2 if xit = xjt = 0, ∀t ∈ T with αst > 0,

fs(xi)∑
j∈N fs(xj)

else,

determines the winning probability of player i in σ-state s given the e�ort pro�le x :=

(x1, x2). Costs for e�ort investments of contestant i are non-stochastic and occur to him

according to the linear cost function
∑

t citxit, which might di�er across contestants.

Contestant i's risk-neutral Bernoulli utility is given by ui : X × S → R, so that the

payo� structure of the game is captured by U := (ui)i∈N .

In addition to the base game, the setup involves an information structure (M,Q).

It consists of the (�nite) message space M := ×i∈NMi and the information map Q :

S → ∆(M), which assigns a probability to each message m ∈M sent to the contestants

in each σ-state.12 A contestant i only observes the realization of mi ∈Mi, but not the

(component of the) message sent to his opponent. The messages of the contestants,

m1 ∈M1 and m2 ∈M2, may be correlated to a di�erent degree.

Note that the information structure (M,Q) and the base game G constitute a

Bayesian game. We call the realization mgh := (mg
1,m

h
2) ∈ M the m-state of na-

ture. Then, in the terminology of Harsanyi (1967), we can interpret Q as a probability

distribution over the contestants' m-types and the message mi ∈ Mi as contestant i's

m-type. Note that the m-type is the dimension of his type, that contestant i knows

11We can exclude events lying on the boundary of the simplex, since Bayesian updating would assign
zero probability to them in any case. We use the terminology σ-state to distinguish it from the other
random event in the model, the m-state, which is introduced below.

12It is without loss of generality to restrict the message pro�le to messages which have non-zero
marginal probabilities across states under the prior.
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when making his decision. He does not know the realization of the σ-state, which

re�ects the second dimension of his type, capturing the contestants' �competitive abil-

ities�. The state of nature in the game is thus captured by the σ-state, which re�ects

payo�-relevant information via the productivity of a certain e�ort vector, and the m-

state, which shapes the belief hierarchy of the contestants. The latter can be in�uenced

via information design by the contest host, as we discuss below. In Section 2.3.6, we

characterize di�erent information maps Q.

It is important to note that the meaning of messagemi is determined by the structure

of Q. Contestants use Bayesian updating to process new information that they receive

via the messages in order to assign a subjective probability to event e, which in this

framework can be a realization of the σ-state, or the m-state, or both:

βei (g,Q) := P (e|mi = mg
i )(Q) = P (e)(Q) · P (mg

i |e)(Q)

P (mg
i )(Q)

. (2.1)

The notation P (e)(Q) indicates that the occurrence of certain events (for instance the

realization of speci�c messages) depends on the information map Q. When contestant

i is of m-type mi, his evaluation of the uncertainty of the σ-state is captured by his

�rst-order belief βσi (mi, Q) = (βσ1
i (mi, Q), ..., βσli (mi, Q)) ∈ ∆(S) about the σ-state of

nature, so that βσsi (mi, Q), s ∈ S is the probability of σ-state s under type mi's belief.

Obviously,
∑

s β
σs
i (mi, Q) = 1 for each type mi ∈Mi of both contestants i ∈ N .

Additionally, higher-order beliefs in this strategic setting capture i's beliefs about

the opponent's beliefs. For instance, the second-order belief of player i about j's �rst-

order belief about the σ-state s is denoted by βσij . The whole system of beliefs of

contestant i is captured by his belief hierarchy β̃i, an in�nite and recursively de�ned

sequence of higher-order beliefs whose elements are coherent.13 Let β̃ := (β̃1, β̃2) denote

the belief system of the contest. The message mi ∈ Mi shapes contestant i's belief

hierarchy. Hence, we write β̃i(mi, Q) to denote contestant i's belief hierarchy upon

receiving message mi under Q and β̃(m,Q) to denote the complete belief system in the

game upon the realization of message m ∈M under Q.

Due to the stochastic impact function, contestant i's ex-ante maximization problem

involves an expected utility form and in ex-ante terms is given by

max
xi∈Xi

EUi(x) := max
xi∈Xi

E[ui(x, s)] =

[∑
s∈S

ps
∑
m∈M

P (m|s) fs(xi)

fs(xi) + fs(xj(m))

]
v−
∑
t∈T

citxit.

(2.2)

13Intuitively, a belief hierarchy is coherent, if for any level in the hierarchy, the beliefs of that level
coincide with all beliefs of lower order on lower order events, see Maschler et al. (2013, pp. 444) for
details.



2.3. MODEL SETUP | 59

Contestant i's best response as type mi to his opponent's e�ort choices x−i ∈ Rk

given his mi-type-dependent belief βσi (mi, Q) is given by maximizing his interim utility

(which we discuss in detail in Section 2.4):

xi(x−i|mi) := arg max
xi

EUi(x|mi)

Contestant i's equilibrium e�ort given his belief hierarchy is denoted by x∗i (β̃i). Finally,

X∗t (β̃) :=
∑

i∈N x
∗
it(β̃) denotes total equilibrium e�ort in task t given the belief system

β̃, and

X∗(β̃) :=
∑
t∈T

X∗t (β̃). (2.3)

is the total equilibrium e�ort exerted by the contestants given their belief systems.

2.3.2 Information Designer

The designer awards the prize v according to the contest success function which deter-

mines the contestants' winning probabilities in each σ-state depending on their e�ort

choices. The only strategic task of the contest organizer, however, is to design the

information structure (M,Q) according to which information is transmitted to the con-

testants. The choice setQ := {P |P : S → ∆M} is the set of state dependent probability
distributions over M . The designer's pro�t function is given by π : X × S → R with

(x, s) 7→ X∗(β̃(m,Q)). The objective of the designer in the setup at hand is given by

maximizing the contestants' expected aggregate e�orts over Q,

max
Q∈Q

∑
m∈M

P (m)(Q)X∗(β̃(m,Q)), (2.4)

where P (m′)(Q) :=
∑

s∈S psQ(m = m′)(s) for all m′ ∈M and the notation of the prob-

ability of the realization of message m′ ∈M , P (m′)(Q), indicates that this probability

depends on Q. The tuple (π,G) is also called the information design environment.

2.3.3 Timing of the Game

The contest host designs the information structure (M,Q) and commits to sending

the messages to the contestants according to the chosen design.14 Afterwards, nature

randomly determines the production parameters, i.e., the σ-state. Then the contestants

each receive a private message leading them to update their beliefs about the state of the

14Since Q is a probability distribution over M , in fact nature draws a message according to (M,Q).
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world (including beliefs about their oppenent's beliefs).15 Finally, contestants choose

their e�orts in each task of the contest and the prize is assigned according to the contest

success function.

Designer chooses

and publicly

announces

information

structure (M,Q)

Nature selects

s (not revealed

to any player)

Nature sends

messages to

contestants ac-

cording to (M,Q)

Contestants

update their

beliefs

Contestants

choose their

e�orts

Prize is awarded

according to

contest rules

Figure 2.1: Timing of the game with information design in a multi-task constest.

2.3.4 De�nitions: Measuring Competitiveness

In the subsequent sections we will see that it makes sense to examine the dependence of

the optimal information structure on the contestants' cost structures, which re�ect the

degree of competitiveness in the di�erent tasks and in the contest overall. Suppose for

now that there are only two tasks, i.e., without loss of generality T = {A,B}. De�ning
Ct := c1t

c2t
with t ∈ T implies that contestant 1 has a relative (dis)advantage in task t i�

Ct < 1 (Ct > 1). Ceteris paribus, task t is more competitive, the closer Ct is to one.

De�ne C := (CA, CB). Additionally, Ci := cit
cid

with i ∈ N , t, d ∈ T, t 6= d, similary

captures whether contestant i has a relative (�internal�) advantage in performing task t

or task d.

Contestants are symmetric if CA = CB = 1. If additionally C2 = 1 then exerting

e�ort in both tasks is equally costly, while if C2 > 1 then task A is more costly. We can

distinguish the following cases of interest from the point of view of contestant 1, and

which are determined by the comparative cost advantages.

De�nition 2.1. Contestant 1 is a

1. Favorite i� CA, CB ≤ 1, i.e., C ∈ F := (0, 1]2, and an

2. Underdog i� CA, CB > 1, i.e., C ∈ U := (1,∞)2, and a

3. Specialist

(a) ... in Task A i� CA ≤ 1 < CB, i.e., C ∈ SA := (0, 1]× (1,∞),

(b) ... in Task B i� CB ≤ 1 < CA, i.e., C ∈ SB := (1,∞)× (0, 1]

The de�nitions for contestant 2 are analogous.

15Maschler et al. (2013) distinguish state of nature (random events in the game excluding beliefs)
and state of the world (random events in the game including beliefs). Note that we distinguish σ-states,
which determine the e�ectiveness of e�orts, and m-states, which shape the contestants' beliefs.
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The according partition of the parameter space is visualized in Figure 2.2. Note

that specialists are de�ned relative to their opponents. Therefore, a specialist may have

higher absolute e�ort costs for what we call his �preferred� task compared to the other

task. We call task t ∈ T contestant 1's �preferred� task if Ct < Cd, t, d ∈ T, t 6= d (and

analogously for contestant 2).

CA

CB

10
0

1

F

SA

SB

U

Figure 2.2: Partition of the cost-parameter space with two tasks. The two points
indicate identical cost-parameter constellations �from the point of view of the di�erent
contestants�.

There exists a linear homeomorphism, namely ξ(C) := ( 1
CA
, 1
CB

), between F and

U , and similarly between SA and SB, such that a cost-parameter constellation from the

point of view of contestant 1 can be identi�ed with a unique point in the topologically

isomorphic space (as visualized in Figure 2.2), which �depicts the situation from the

perspective of contestant 2�. Note that for all C ∈ {C ∈ R2
++|CA ≥ CB}, i.e., points

below the angle bisector in Figure 2.2, contestant 1 �prefers� task B.

2.3.5 Assumptions and Remarks on the Setup

Note that in a setup with only two tasks, e.g., the two-extreme-states scenario (see

Section 2.5), if we normalize the cost structure by, e.g., c2A, the complete (relative) cost

structure of the contest is pinned down by CA, CB, and C2, where the last parameter

captures the relative costs of task B compared to task A for both contestants.

Assumption 2.1. We normalize the contestants' homogeneous valuation of the prize,

v ≡ 1, and assume that it is large enough relative to the cost parameters, so that each

contestant will invest a strictly positive e�ort into any task that is assigned with a

positive subjective probability by that contestant.
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This assumption implies that the existence of equilibria described by the analysis

below is guaranteed. The following assumption is implicitly made in the discussion

above.

Assumption 2.2 (Commitment Assumption). The designer chooses the information

map Q before observing the realization of the σ-state. After observing the realization

s ∈ S she transmits a message according to Q.

From a model-theoretic perspective, this assumption is restrictive, since an ex-ante

optimal information map may not necessarily imply the transmission of a message which

is optimal ex post for the designer. For instance, consider a case in which the designer

has a preferred σ-state and it is ex-ante optimal to always disclose the true state (full

revelation). Due to the trade-o� induced by being credible (as discussed in Section 2.2),

the designer has to disclose that a less preferred state is realized in some states. If the

realization of the σ-state implies that (under full revelation) the designer must reveal

that such a realization occurred, she would want to act against her commitment and send

a message which induces a belief that she prefers. As discussed in the introduction, it

is plausible to assume that social institutions, such as universities or �rms, can credibly

commit to information maps, since they want to maintain an image of credibility among

the economic agents, with whom they interact frequently. A similar argument is made

by Zhang and Zhou (2016, p. 2199), who explicitly discuss the plausibility of the

commitment assumption in contests. We additionally refer the reader to Kamenica

and Gentzkow (2011, Section I.C, pp. 2597), who extensively discuss the commitment

assumption and its applicability to real-world scenarios. Their arguments also apply to

the setup at hand.

Analogously to the Revelation Principle, which allows the mechanism designer with-

out loss of generality to restrict the choice set of optimal mechanisms to the set of

direct mechanisms, Bergemann and Morris (2016) show that the information designer

can without loss of generality restrict herself to information structures in which the car-

dinality of the message space of each individual equals that of the σ-state space when

searching for the optimal information structure. Thus, it is without loss of generality

to make the following assumption (and to �x M in the optimization problem of the

designer described above, as we did).

Assumption 2.3. |M | = |S| = l and M1 = M2.

In mechanism design theory the designer shapes the incentives of the agents. When

implementing a truthful (direct) mechanism her freedom in creating incentives is re-

striced by incentive compatibility and participation constraints. Similarly, Mathevet

et al. (2017) show that in information design theory the designer's freedom in shaping
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contestants' beliefs is restricted to designs which implement consistent belief-hierarchy

distributions, i.e., distributions which can be generated from the same prior, and which

guarantee Bayes' plausibility for one of the contestant's �rst-order belief.16 The latter

is satis�ed if for some i ∈ N it holds that for all s ∈ S

l∑
g=1

P (mg
i )(Q)βσsi (mg

i , Q) = ps. (2.5)

This implies that the expected posterior under Q equals the prior. As indicated in the

introduction, the consistency criterion is a constraint on the degree to which players

may disagree, which is re�ected in their belief hierarchies. Both, Bayes plausibility and

the consistency criterion, are satis�ed in the main analyses of this chapter, Sections 2.6

and 2.7, due to the modeling assumptions.17

2.3.6 De�nitions: Comparing Information Maps

De�ne

qsgh := P (mgh|s) = Q(m1 = mg,m2 = mh)(s)

to be the probability of contestant 1 receiving message mg and contestant 2 receiving

mh in state s under map Q. Additionally, we de�ne

q̄s1g :=

|M2|∑
h=1

qsgh and q̄s2g :=

|M1|∑
h=1

qshg

to be the marginal probability for contestant 1, and 2, respectively, to receive message

mg in state s.

De�nition 2.2. For contestant i ∈ N , Q is a

• fully-revealing [FR] information map, denoted by QFRi , whenever for s ∈ S, g ∈
{1, ..., |Mi|} it holds that q̄sig = 1 if s = g, q̄sig = 0 else, and a

• non-revealing [NR] information map, denoted by QNRi , whenever q̄sig = q̄zig for all

z, s ∈ S, s 6= z, and for all g ∈ {1, ..., |Mi|}, and a

16If there is only one receiver, as in standard Bayesian persuasion, then optimal information design
only needs to satisfy Bayes' plausibility, as the consistency criterion is trivially satis�ed, see Kamenica
and Gentzkow (2011).

17Consistency is always satis�ed since the designer in the setup either sends the same message to
both contestants or she leaves one contestant completely uninformed about the message sent to the
other opponent. Thus, contestants cannot agree to disagree. We refer the reader to Mathevet et al.
(2017) for a detailed discussion of Bayes plausibility and the consistency criterion. It can easily be
veri�ed that Bayes plausibility is always satis�ed in the setup at hand. Note that the de�nition of
consistency used in this context is di�erent from that used in the de�nition of a sequential equilibrium,
see Fudenberg and Tirole (1991, pp. 337).
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• partially-revealing [PR] information map, denoted by QPRi , whenever it is neither

NR nor FR for i.

If an information map is FR, NR, or PR for both contestants, we write QFR, or QNR,

or QPR, respectively. Furthermore, we say that an information map Q is

• a purely public information map, denoted by QPUB, if qsgh = 0 whenever h 6=
g, g ∈ {1, ..., |Mi|}, h ∈ {1, ..., |Mj |}, i, j ∈ N, i 6= j for all s ∈ S, and

• a purely private information map with information (potentially) revealed only to

contestant i ∈ N , denoted by QPRIi , if in any state s ∈ S for j ∈ N, j 6= i:

∃!mg
j ∈Mj s.t. q̄jg > 0.18

The intuitions are as follows. Under QFRi , contestant i is certain about the real-

ization of the σ-state in any state of the world. Under QNRi , contestant i does not

obtain any new information on the realization of the σ-state in any state of the world.

Under QPRIi , in any state of the world, contestant j ∈ N, j 6= i does not obtain any new

information on the realization of mi ∈ Mi, the realization of the opponent's message,

or the σ-state. Under QPUB, both contestants are certain about the realization of the

m-state in any state of the world, since they always receive the same message.

2.4 Bayesian Updating and Interim Expected Utility

Upon receiving message mg
i ∈Mi contestant i ∈ N updates his subjective probabilities

for the σ-states according to

βσsi (g) = P (s) · P (mg
i |s)

P (mg
i )

= ps ·
q̄sig∑
k pkq̄

k
ig

, (2.6)

and for the m-states (with a slight abuse of notation)19 according to

β
mhj
i (g) = P (mh

j ) ·
P (mg

i |mh
j )

P (mg
i )

=

(∑
s

psq̄
s
jh

)
·
∑

w p
w qwgh∑

d q
w
gd∑

z pz q̄
z
ig

. (2.7)

18Note that if no information is revealed in QPRIi , then according to the de�nitions, this information
map also is purely public.

19For i = 2 we need to replace gh with hg and gd with dg in the terms on the RHS of the last equality
sign.
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From the point of view of contestant i's type mg
i ∈ Mi each of the l · l di�erent states

of the world is (with a slight abuse of notation)20 assigned with the probability

β
mhj ∧s
i (g) = P (mh

j ∧ s) ·
P (mg

i |mh
j ∧ s)

P (mg
i )

=
(
psq̄

s
jh

)
·

qsgh∑
k pkq̄

k
ig

. (2.8)

Using the updated beliefs the contestant's interim expected utility in information set

mg
i ∈Mi can be written as

EUi(x|mg
i ) =

∑
s∈S

∑
h∈{1,...,l}

β
mhj ∧s
i (g)

fs(xi)

fs(xi) + f s(xj(mh
j ))

−∑
t

citxit, (2.9)

where xj(mh
j ) denotes contestant i's anticipation of the opponents behavior if he is of

type mh
j . O�-equilibrium beliefs are de�ned so that they support equilibrium play.21

2.5 The Two-Extreme-States Scenario

Since we employ the two-extreme-states scenario in the main part of the analysis, namely

in Section 2.7, we will describe it here in more detail. We set S = {sA, sB} and

M = {mA,mB} × {mA,mB}. We can without loss of generality assume that message

mg reads �sg is the true σ-state of the world�. The information map is de�ned by Table

2.1.

Q(·|sA) mA mB

mA qAAA qAAB q̄A1A
mB qABA qABB q̄A1B

q̄A2A q̄A2B

Q(·|sB) mA mB

mA qBAA qBAB q̄B1A
mB qBBA qBBB q̄B1B

q̄B2A q̄B2B

Table 2.1: Information map Q for |S| = 2. Contestant 1's messages are denoted in the
rows, while contestant 2's messages are denoted in the columns. For all s ∈ S it holds
that

∑
d

∑
t q
s
dt = 1.

With the de�nitions and conventions from above we can, for instance, see that

q̄A2A = qAAA + qABA is the degree of truthfullness of Q to contestant 2 in state sA. Thus,

if q̄A2A = q̄B2B = 1 then Q is fully-revealing for contestant 2.22

20For i = 2 we need to replace gh with hg in the terms on the RHS of the last equality sign.
21For instance, if i ∈ N receives a message that is assigned with zero probability under Q, then he

interprets this as a random mistake and acts as if he did not receive any new information.
22Technically, also q̄A2A = q̄B2B = 0 yields a fully revealing information map, only that contestant 2

knows that the designer is lying with certainty, if we assume that mg is to be understood as �sg is the
realized σ-state.�. Remember, that generally the �meaning� of the messages is determined endogenously
by Q.
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Each contestant i can be in one of two distinct information sets, which are uniquely

identi�ed by the message he receives: mA
i or mB

i (see Figure 2.3). An information set

contains four di�erent states of the world, each consisting of di�erent combinations of

two di�erent σ- and m-states.
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Suppose now that in addition there are only two tasks, labelled A and B. Further-

more, the impact function exhibits constant returns to scale, D = 1.23 We assume that

αsAA = αsBB = 1, and thus αsAB = αsBA = 0. Therefore, it makes sense to label the states,

priors, and beliefs according to which task is relevant: pA := psA , pB := psB = 1− pA,
and �nally βAi := βσsAi , βBi := βσsBi = 1− βAi .

The interim objective from Equation (2.9) becomes

EUi(x|mg
i ) = β

mAj ∧sA
i (g) · xiA

xiA+xjA(mAj )
+ β

mBj ∧sA
i (g) · xiA

xiA+xjA(mBj )

+ β
mAj ∧sB
i (g) · xiB

xiB+xjB(mAj )
+ β

mBj ∧sB
i (g) · xiB

xiB+xjB(mBj )

− ciAxiA − ciBxiB.

(2.10)

Best responses of contestant i of m-type mg
i can be calulated by maximizing EUi(x|mg

i )

with respect to xi. Contestant i's m
g
i -type equilibrium behavior, denoted by x∗i (m

g
i ) :=

(x∗iA(mg
i ), x

∗
iB(mg

i )), is then obtained by replacing the anticipation of the opponents

type-dependent behavior, xjt(mh
j ), with their type-dependent best reponses in the re-

sulting system of eight equations (each contestant has two types, and each type has to

invest e�ort in two tasks) and solving. Note that an explicit analytical solution is not

always obtainable.

2.6 Analysis: Contestants Know the Opponent's Message

In this section we analyze settings, in which both contestants are certain about m-state

in any state of nature. That is, they know the message received by the opponent. We

denote information maps which induce such a situation with Q̃. This subsumes cases

in which the designer chooses a non-revealing or a purely public information structure.

We will discuss these two cases in further detail below.

Without loss of generality we can model Q̃ by assuming that both contestants always

receive the same message. Therefore, there is only uncertainty about the σ-state of

nature, but not about the m-state of nature:

β
mhj ∧s
i (g) = 0 ∀s ∈ S, g, h ∈ {1, ..., l}, h 6= g, ∀i ∈ N.

Thus, contestants share the same belief about the σ-state of the world, and they both

know this. We can denote the commonly shared belief about the σ-state of nature after

receiving message m under Q̃, which pins down the complete system of beliefs β̃ in

23In contrast to the general setup, in the two-extreme-states scenario the contest can be split into
two �parallel� contests, each of which ocurrs with a certain probability. This makes it more tractable
for the further analysis.
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the game, by β̄σ(m, Q̃) = (β̄σ1(m, Q̃), ..., β̄σl(m, Q̃)), where β̄σs(m, Q̃) is de�ned as the

subjective probability assigned to σ-state s ∈ S given the common belief under Q upon

receiving message m.

Proposition 2.1. The optimal contestant behavior in the equilibrium of the two-player

multi-task contest with uncertainty about the tasks and with an information map Q̃,

which reveals the m-state to both contestants, is described by

x∗it(β̃(m, Q̃)) =
1

cit

∑
s∈S

β̄σs(m, Q̃)αst

∏
z∈T

(
ciz
cjz

)αsz[
1 +

∏
z∈T

(
ciz
cjz

)αsz]2 ∀i, j ∈ N, j 6= i,∀t ∈ T, ∀m ∈M.

(2.11)

Proof. See Appendix 2.A.1.

2.6.1 Benchmark: Non-Revelation

In this section no contestant obtains new information on the σ-state and both con-

testants are certain about the m-state. For the two-states scenario a non-revealing

information map can, for instance, be characterized by in Table 2.2.

Q(·|sA) mA mB

mA 1 0

mB 0 0

Q(·|sB) mA mB

mA 1 0

mB 0 0

Table 2.2: Non-revealing information map QNR for |S| = 2. Contestant 1's messages
are denoted in the rows, while contestant 2's messages are denoted in the columns.

For both contestants the posterior on the σ-state equals the prior p. Thus, we obtain

the following result.

Corollary 2.1. Under information map QNR (non-revealing for both contestants), the

contestants' equilibrium e�orts are given by replacing β̄σs(m, Q̃) with ps and Q̃ with

QNR in Proposition 2.1. In particular, for the two-extreme-states scenario we obtain

x∗it(β̃(m,QNR)) =
pt

cjt

(
1 + cit

cjt

)2 , i, j ∈ {1, 2}, j 6= i,∀m ∈M,∀t = {A,B}, (2.12)

and for all m ∈M the aggregate e�ort in task A and task B is given by,

X∗A(β̃(m,QNR)) =
pA

c1A + c2A
and X∗B(β̃(m,QNR)) =

1− pA
c1B + c2B

.
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Normalizing the cost structure with c2A in the two-extreme-states scenario yields the

total equilibrium e�ort

E[X∗](QNR) = X∗(β̃(m,QNR)) =
pA(1 + CB) + C2(1− pA)(1 + CA)

(1 + CA)(1 + CB)
.

De�nition 2.3. Contestant 1 is de�ned to be the expected winner of the two-extreme-

states contest, if under QNR his winning probability

p∗1 := pA ·
x∗1A(β̃(m,QNR))

X∗A(β̃(m,QNR))
+ (1− pA) · x

∗
1B(β̃(m,QNR))

X∗B(β̃(m,QNR))
=

pA
1 + CA

+
1− pA
1 + CB

(2.13)

exceeds one half. The case in which contestant 2 is the expected winner is de�ned

analogously.

Note that the expected winner depends on the parameters pA, CA, and CB only,

while C2 merely in�uences the costs of winning.

The comparative statics of the equilibrium choices in the two-extreme-states scenario

with respect to the cost parameters yield intuitive results considering the terminology

introduced in Section 2.3.4: Equation (2.12) implies that ex ante and under any common

prior, contestant 1 invests more e�ort in task t ∈ T in equilibrium than his opponent,

x∗1t(β̃(m,QNR)) > x∗2t(β̃(m,QNR)), i� Ct < 1, i.e., i� he is a specialist (or, equivalently,

has a relative cost advantage) in that task. Therefore, the favorite has a higher ex-ante

winning probability than the underdog in the contest with uncertainty. In contrast to

the discussion of whether a contestant invests more or less e�ort in task t ∈ T than his

opponent, the discussion of whether a contestant invests more in task A than in task

B also depends on the relative cost structure between the tasks, captured by C2, and

the relative probability, pA
1−pA , as, e.g., x

∗
1A(β̃(m,QNR)) > x∗1B(β̃(m,QNR)) holds, i�

C1
(1−pA)
pA

(1+CA)2

(1+CB)2 < 1. This implies that a specialist does not necessarily need to invest

more into his �preferred� task in equilibrium than into the other task. This might for

instance be the case when the prior puts more probability on his �non-preferred� task.

In a setup with di�erent beliefs among the contestants, the investments in the di�erent

tasks obviously also depend on higher order-beliefs about the subjective probabilities

the opponent assigns to the di�erent states.

2.6.2 Purely Public Messages: A Non-Improvement Result

In this section we show that if the contest designer always sends identical messages to

the contestants, she cannot increase her payo� via information design. For the two-

states scenario an information map with purely public messages can be characterized

by Table 2.3.
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Q(·|sA) mA mB

mA qA 0

mB 0 1− qA

Q(·|sB) mA mB

mA 1− qB 0

mB 0 qB

Table 2.3: Purely public information map QPUB for the case of |S| = 2. Contestant
1's messages are denoted in the rows, while contestant 2's messages are denoted in the
columns. It holds that qA, qB ∈ [0, 1].

Since both contestants always receive the same message, the next result immediately

follows.

Corollary 2.2. Under information map QPUB, the contestants' equilibrium e�orts are

given by replacing Q̃ by QPUB in Proposition 2.1. Therefore, for all t ∈ T,m ∈ M ,

X∗t (β̃(m,QPUB)) and X∗(β̃(m,QPUB)) are linear functions of the induced subjective

probabilities of the states, β̄σs(m,QPUB).

This result has important implications for the optimal information design. Al-

though we analyze a setting with strategically interacting receivers, we can apply the

methodology of Bayesian persuasion introduced by Kamenica and Gentzkow (2011) and

developed for the non-strategic cases, as the belief system of both contestants is pinned

down by the �rst-order belief β̄σ.

Theorem 2.1. In the two-player contest with uncertainty about the tasks, the contest

designer cannot increase her payo� (in comparison to non-revelation) by sending purely

public messages.

Note that a graphical intuition of the proof is given immediately after the proof.

Proof. The statement follows from two results: Corollary 2.2 from above and Remark

2 in Kamenica and Gentzkow (2011). Corollary 2.2 implies that total equilibrium e�ort

for any message m ∈M is a linear function of the induced subjective probabilities, β̄σs.

Note that the complete belief system β̃ is pinned down by a �rst-order belief about the

state, β̄σ, which both contestants share. From an information design perspective, since

there is no di�erence in higher-order beliefs among the contestants, this situation is thus

equivalent to the situation analyzed in Kamenica and Gentzkow (2011) with a single re-

ceiver of the message. This fact is also illustrated by the dependence ofX∗(β̃(m,QPUB))

solely on β̄σ, and not on higher order beliefs. Remember that X∗(β̃(m,QPUB)) cru-

cially determines the objective of the designer. The designer �just� has to think about

which belief β̄σ is best to induce. She then knows, according to X∗(β̃(m,QPUB)), how

the contestants react in aggregate terms to the induced belief and �does not care about

their strategic interaction�. Thus, the setting can be analyzed with the tools used in

Kamenica and Gentzkow (2011).
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The setting in Kamenica and Gentzkow (2011) subsumes the setting at hand, since

ui : X × S → R is continuous for all i ∈ N , π : X × S → R is continuous, the designer

and the contestants share the same prior, X is compact, S is �nite, Q : S → ∆M with

M �nite, the contestants observe Q and the realization of m ∈ M , the contestants are

Bayes rational, and the timing of the game is the same in both models. We can thus

employ Remark 2 of Kamenica and Gentzkow (2011), which in the terminology of our

model setup reads: if X∗(β̃(m,QPUB)) is concave in β̄σ, the information designer does

not bene�t from information design for any prior.

The intuition of the proof of the result can nicely be illustrated and follows the

idea of Kamenica and Gentzkow (2011). Suppose that β̄σ is uniquelly determined by

the parameter β̄, i.e. there are only two σ-states, which in turn implies that we can

without loss of generality assume that M1 = M2 = {mA,mB}. We can then write

X∗(β̃(m,QPUB)) as a function of β̄, denoted by X̄∗(β̄), and visualized in Figure 2.4.

Note that in contrast to Corollary 2.2, X̄∗(β̄) in Figure 2.4 is not a linear function. The

function depicts the contestants' aggregate equilibrium e�ort exerted given they hold

belief β̄. This belief can be manipulated by the designer. Figure 2.4 depicts a situation

in which the designer would want to induce the contestants to always believe that β̄ = 0,

since then they exert the highest e�ort, X̄∗(0) = 18. However, as mentioned before,

the designer faces a trade-o� when trying to credibly disclose information: to credibly

induce β̄ = 0 in some situations, she has to induce a belief that she �dislikes� in other

situations, e.g., here β̄ = 1. The trade-o� is formalized by Bayes plausibility, which

states that under the optimal information map Q∗, the expected posterior has to equal

the prior, in this case pA = 0.5 (see Equation (2.5)). This is indicated in Figure 2.4 by

the fact that the dashed horizontal line intersects the gray line exactly in the middle:

the optimal information structure Q∗ (here full revelation) induces β̄(mA, Q∗) = 1 and

β̄(mB, Q∗) = 0 with equal probability and satis�es Bayes plausibility, since 0.5 · 1 +

0.5 · 0 = 0.5 = pA. The gray graph is the concavi�cation of X̄∗(β̄), which, in cases such

as the one depicted in Figure 2.4, is the �upper boundary� of the smallest convex set

containing the graph of X̄∗(β̄). Generally, the intersection of the dashed vertical line

with the graph of the concavi�cation determines the weight of the induced subjective

probabilities under the optimal information structure and the intersections of the graph

of the concavi�cation with the black graph closest to the dashed vertical line determines

the induced probabilities under the optimal information structure. This methodology

can be used to determine the optimal information map among all possible information

maps (FR, NR, and PR). The gray line is also helpful to visualize the designer's linear

expected utility (see Equation (2.4)) given the optimal information structure Q∗.
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Figure 2.4: Concavi�cation conc(X̄∗(β̄)) [gray] of X̄∗(β̄) [black] with the indication of
the beliefs and message probabilities induced by the optimal information structure Q∗.

Figure 2.4 hints at the general concavi�cation result of Kamenica and Gentzkow

(2011). The information designer can only bene�t from information transmission, if

evaluated at the prior the concavi�cation conc(X̄∗(β̄)) of the function X̄∗(β̄) does not

equal X̄∗(pA). Otherwise, E[X∗](Q) ≤ E[X∗](QNR) = X̄∗(pA) for all Q ∈ Q. Since

under purely public information total equilibrium e�ort is a linear function of the in-

duced subjective probabilities, the designer can never increase total expected e�ort by

sending purely public messages.

Note that Theorem 2.1 holds independent of the competitiveness implied by the cost

structure, for a setting with more than two states, and also allows for �non-extreme�

stochastic impact functions. Remember the intuition of the trade-o� the designer has

to take into account when credibly disclosing information: inducing a belief, which is

bene�cial for the designer in one state of nature, comes at the cost of inducing a belief

that is not bene�cial for the designer in another state. Since aggregate equilibrium

e�orts are a linear function of the induced subjective probabilities in case of purely

public information, the bene�ts of inducing a pro�table belief are exactly weighed o�

by the costs of it.
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2.7 Analysis: Purely Private Messages for One Contestant

The previous section gives rise to the question whether there are any instances in which

the designer can bene�t from partially or fully revealing information. In this section we

show that the answer is a�rmative given that we allow the designer to adress di�erent

contestants with di�erent information.

An information map with purely private messages to contestant 1 and no information

for contestant 2 in the model at hand can be de�ned as in Table 2.4. A setting in which

only contestant 2 receives private information can be analyzed analogously.

Q(·|sA) mA mB

mA qA 0

mB 1− qA 0

Q(·|sB) mA mB

mA 1− qB 0

mB qB 0

Table 2.4: Purely private information map QPRI1 for the case of |S| = 2, when only
contestant 1 receives (potentially) informative messages. Contestant 1's messages are
denoted in the rows, while contestant 2's messages are denoted in the columns. It holds
that qA, qB ∈ [0, 1].

In contrast to the purely public information setting, contestants do not necessar-

ily share the same belief. With respect to Equations (2.6) to (2.8) for the informed

contestant 1 it holds for all g ∈ {A,B}, and qsg as de�ned by Table 2.4, that

βσs1 (g) = ps ·
q̄s1g∑
k pkq̄

k
1g

=
psq

s
g∑

k pkq
k
g

∀s ∈ S, and β
mh2
1 (g) =

1 if h = A,

0 if h = B,
and

β
mh2∧s
1 (g) =

βσs1 (g) if h = A,

0 if h = B.

Although contestant 2 does not obtain any information on the σ-state, he observes the

information map Q. He should use this information and adapt his behavior accordingly.

In the following we analyze the setup for two di�erent assumptions on how the unin-

formed contestant processes the information on Q. In the �rst case, he is non-Bayesian

and his complete system of beliefs is pinned down by the prior.24 In the second case,

he is a Bayesian updater and uses all information available to him. Obviously, these

are two extreme cases demanding either very sophisticated Bayesian reasoning or im-

plying that the contestant does not use part of the information available to him at all.

Nevertheless, this distinction allows us to examine the e�ects of belief manipulation

separately and many of the observations that follow are qualitatively the same in both
24Literature on non-Bayesian behavior is cited on page 10.
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settings. It is important to note that we �nd striking similarities in the results derived

for the di�erent setups and many of the intuitions in the non-Bayesian setup also apply

to the Bayesian setup.

In order to obtain explicit solutions for the equilibrium e�ort we restrict the analysis

in this chapter to the two-extreme-states scenario introduced in Section 2.5, so that each

state can uniquely be associated with one �relevant� task, i.e. we write βt to indicate

the subjective probability that the belief assigns to the realization of the state in which

only task t ∈ T matters. Note that the parameter βt fully pins down the �rst-order

belief of the contestant, since there are only two states.

2.7.1 Case 1: Non-Bayesian Uninformed Contestant

Here we assume that the uninformed contestant's belief system is determined by the

prior, i.e. βt2 = pt for all t ∈ T . The informed Bayesian contestant knows this, so

that for his second-order belief we have βt12 = pt for all t ∈ T . Furthermore, the

second-order belief of contestant 2 about contestant 1's belief, denoted by βt21, also

equals the prior, and thus also βt212 = βt121 = pt. Therefore, higher-order beliefs in this

scenario are pinned down in a convenient way for the analysis. Furthermore, contestant

2 ignores the fact that he faces two di�erent types of contestant 1, i.e., βm1∧s
2 = βs2 for

all s ∈ S,m1 ∈M1. Contestant 1 knows this. Instead of the superscript �∗�, we use �?�
in this section to indicate equilibrium behavior under the above behavioral assumptions.

The respective de�nitions are analogous.

Contestant Behavior

First, note that, when replacing �∗� with �?� in Corollary 2.1, it is straightforward to

show, that the result then also describes the contestants' equilibrium behavior under

non-revelation in the setup with a non-Bayesian uninformed contestant. Furthermore,

we can derive the following result.

Proposition 2.2. The contestants' equilibrium behavior in the two-extreme-states sce-

nario of the multi-task contest with uncertainty, in which a purely private message is

sent only to contestant 1, and contestant 2 is non-Bayesian, is described by

x?it(β̃(m,QPRI1 )) =
βtij(m,Q

PRI
1 )

cjt

(
1 +

citβtij(m,Q
PRI
1 )

cjtβti (m,Q
PRI
1 )

)2 , i, j ∈ {1, 2}, j 6= i, t = {A,B},m ∈Mi,

(2.14)

X̄?
t (βA1 ) := X?

t (β̃(m,QPRI1 )) =
pt

c2t

(
1 + c1tpt

c2tβt1(m,QPRI1 )

)2 +
pt

c1t

(
1 + c2t

c1t

)2 , t = {A,B},m ∈M1,

(2.15)
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X̄?(βA1 ) := X?(β̃(m,QPRI1 )) =
pA

c2A

(
1 + c1ApA

c2Aβ
A
1 (m,QPRI1 )

)2 +
pA

c1A

(
1 + c2A

c1A

)2

+
(1− pA)

c2B

(
1 + c1B(1−pA)

c2B(1−βA1 (m,QPRI1 ))

)2 +
(1− pA)

c1B

(
1 + c2B

c1B

)2 , m ∈M1.

(2.16)

Proof. See Appendix 2.A.2.

Note that we write the aggregate terms X̄?
t (βA1 ), t ∈ {A,B} and X̄?(βA1 ) as func-

tions of βA1 , which indicates that the complete belief system β̃ is pinned down by the

(manipulable) belief of contestant 1, captured by βA1 , and the (exogenous) prior pA.

As mentioned above, we employ the fact that with respect to the second-order beliefs

βt12(m) = βt21(m) = pt holds for any message m ∈ M1 and for all t ∈ T . As a result,

and in contrast to the analogous function in Corollary 2.2, X̄?(βAi ) now is a non-linear

function of the manipulable subjective probability βAi . This can be seen in Figures

2.5, 2.6, and 2.7, which depict the situations from the examples in Section 2.2. These

�gures allow important insights for the optimal information design and the intuitions

explained in Section 2.2 by analyzing the functional form of X̄?(βAi ) (remember also

the discussion below the proof of Theorem 2.1).

The left panel in Figure 2.5 shows that in the depicted scenario with a (weak)

underdog the optimal design is given by q?A = q?B = 1, i.e. full revelation. The right

panel visualizes Bayesian plausibility (see Equation (2.5)) and the designer's linear

expected utility (see Equation (2.4)). Furthermore, the equilibrium e�ort as a function

of the induced belief, X̄?(βAi ), is convex: the increase in e�ort after the - from the

underdog's perspective - encouraging message mB (his disadvantage is smaller in task

B than in task A) is larger than the decrease in e�ort after the discouraging message

mA. In the situation depicted in Figure 2.5, the designer can increase her expected

payo� from E[X?](QNR) = X̄?(pA) = 15 in a situation without information disclosure

to E[X?](Q?) = 16.1.
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Figure 2.5: The scenario c1A = 9, c1B = 4, c2A = 1, c2B = 1 with prior pA = 0.5 and
purely private messages to the underdog (contestant 1), when the favorite (contestant
2) is non-Bayesian. Left Panel: E[X?](QPRI1 ) as a function of the information map
QPRI1 . The optimal information structure is indicated by the dot, i.e. q?A = q?B = 1 (full
revelation). Right Panel: Concavi�cation [gray] of X̄?(βA1 ) [black] with the indication
of the beliefs and message probabilities induced by the optimal information structure
Q?.

Figure 2.6 depicts a scenario with two specialists. The designer cannot increase her

expected payo� by information revelation. This is re�ected in the concavity of X̄?(βAi ).
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Figure 2.6: The scenario c1A = 9, c1B = 1, c2A = 1, c2B = 4 with prior pA = 0.5 and
purely private messages to the specialist in task B (contestant 1), when the specialist
in task A (contestant 2) is non-Bayesian. Left Panel: E[X?](QPRI1 ) as a function of the
information map QPRI1 . The optimal information structure is indicated by the dot, i.e.
q?A = q?B = .5 (non-revelation). Right Panel: Concavi�cation [gray] of X̄?(βA1 ) [black].
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The right panel of Figure 2.7 shows that, if - compared to the cost structure from

Figure 2.6 - the relative costs of task B compared to task A increase for both contestants,

then partial revelation is optimal, since the function X̄?(βAi ) neither is �globally convex

enough� (full revelation) nor �globally concave enough� (non-revelation).
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Figure 2.7: The scenario c1A = 9, c1B = 10, c2A = 1, c2B = 40 with prior pA = 0.5 and
purely private messages to the specialist in task B (contestant 1), when the specialist
in task A (contestant 2) is non-Bayesian. Left Panel: E[X?](QPRI1 ) as a function of
the information map QPRI1 . The optimal information structure is indicated by the dot,
i.e. q?A = 0 and q?B = .47 (partial revelation). Right Panel: Concavi�cation [gray] of
X̄?(βA1 ) [black].

In the next section we generalize the above observations concerning the optimal

information structure.

Optimal Information Design

Suppose for a moment that the designer is completely free to shape beliefs. The designer

would want each contestant to always believe that the state in which he exerts more

e�ort is more likely. In the scenario with purely private messages for contestant 1 only

and a non-Bayesian contestant 2, contestant 2's e�ort is constant in the information

map Q. Thus, the designer can only shape contestant 1's �rst-order belief about the

σ-state and she wants him to believe that the task is more likely to matter in which

he exerts more e�ort. Additionally, the designer does not have to consider whether

the induced beliefs are consistent, since contestant 2's beliefs (also at higher orders)

always equal the prior, and contestant 1 knows this. In other words, when wanting

to induce a speci�c belief for contestant 1, this does not come at the potential costs
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of being restricted when wanting to shape contestant 2's belief in an opposite manner.

The objective function of the designer therefore becomes

E[X?](Q) =
∑

m1∈M1

P (m1)(Q) · X̄?(βA1 (m1, Q)),

which is maximized over Q ∈ QPRI1 , where QPRI1 denotes the set of all information

maps, which imply purely private messages to contestant 1.

The following results illustrate the dependence of the optimal information design

on the cost structure. Remember that in the two-extreme-states scenario with higher-

order beliefs being structured as described above, contestant 1's belief (and thus in

this case all manipulable beliefs) is fully pinned down by βA1 . We say that an action

Q is compatible with the designer's equilibrium play, if - anticipating the contestants'

optimal expected e�orts under Q - it yields a payo� which is at least as high as that of

all the other actions availble to the designer.

Lemma 2.1. In the two-extreme-states scenario of the two-player multi-activity contest,

when the designer is restricted to send purely private messages to contestant 1, and

contestant 2 is non-Bayesian, non-revelation [NR] is compatible with the designer's

equilibrium play, i� ∀βA1 ∈ [0, 1]:

(pA − βA1 )2

[
CA
(
CA(1− CA)pA + 2βA1

)
(1 + CA)3 (βA1 + CApA

)2
+
C2CB

(
CB(1− CB)(1− pA) + 2(1− βA1 )

)
(1 + CB)3 ((βA1 − 1) + CB(pA − 1)

)2
]
≥ 0,

(2.17)

and full revelation [FR] is compatible with the designer's equilibrium play, i� ∀βA1 ∈
[0, 1]:

pAβ
A
1

[
(1− βA1 )

(
p2
AC

2
A − βA1

)(
βA1 + pACA

)2
(1 + pACA)2

]

+C2(1− pA)(1− βA1 )

[
βA1
[
(1− pA)2C2

B − (1− βA1 )
](

(1− βA1 ) + (1− pA)CB
)2

(1 + (1− pA)CB)2

]
≥ 0.

(2.18)

Partial revelation [PR] is compatible with the designer's equilibrium play, i� neither

Condition (2.17), nor Condition (2.18) is satis�ed.

Proof. See Appendix 2.A.3.

Generically, the Conditions (2.17) and (2.18) are mutually exclusive by the de�nition

of the auxiliary functions in Appendix 2.A.3, i.e., they only hold simultaneously if
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X̄?
1 (βA1 ) is a linear function, that is if the designer can not bene�t from information

disclosure. It is helpful to note that the Conditions (2.17) and (2.18) exhibit a similar

structure: they consist of two summands, each describing the competitive structure in

either task A or task B, weighted with the prior probability, pA, the comparative cost

structure across tasks, C2, and the belief of the receiver, βA1 . Lemma 2.1 is helpful to

derive the following proposition.

Proposition 2.3. In the two-extreme-states scenario of the two-player multi-activity

contest, when the designer is restricted to send purely private messages to contestant 1,

and contestant 2 is non-Bayesian, a su�cient condition is satis�ed for

1. NR to be compatible with the designer's equilibrium play, if CA ≤ 1 and CB ≤ 1,

and for

2. NR not to be compatible with the designer's equilibrium play, if CA ≥ 2 and

CB ≥ 2, and for

3. FR to be compatible with the designer's equilibrium play, if CA ≥ 1
pA

> 1 and

CB ≥ 1
1−pA > 1.

Proof. See Appendix 2.A.4.

The su�cient conditions involving non-revelation only depend on the parameters

re�ecting the relative cost structure among the contestants, CA and CB, and hold for

any prior, pA, and relative costs across tasks, C2. Considering the su�cient conditions

for FR, note that if pA increases the condition on CA becomes less restrictive, while the

condition on CB becomes more restrictive. The Figures 2.8 and 2.9 depict the necessary

and su�cient conditions from Lemma 2.1 and Proposition 2.3.



pA = .1 pA = .3

pA = .5

pA = .7 pA = .9

Figure 2.8: Comparative statics of the optimal information structure with respect to pA for
C2 = 1. Orange rectangle = su�cient condition NR, green rectangle = su�cient condition
FR, purple area = numerical test of necessary condition NR positive, red area = numeri-
cal test of necessary condition FR positive, white area = PR, blue area = cost structures
under which contestant 1 is the expected winner (see Equation (2.13)). The point CUF de-
picts the situation with contestant 1 being the underdog as discussed in Figure 2.5 and the
introduction. The points C ′ and C ′′ are discussed in the current section.



2.7. ANALYSIS: PURELY PRIVATE MESSAGES FOR ONE CONTESTANT | 82

The next theorem immediately follows from the above results:

Theorem 2.2 (Informational Favoritism of the Ex-Ante Disadvantaged Player (Weak

Underdog)). In the two-extreme-states scenario of the two-player multi-activity contest,

if the designer is restricted to send purely private messages to one player, and the other

player is non-Bayesian,

1. it is never optimal to reveal information to a favorite, and

2. it is always optimal to reveal information (partially or fully) to a weak underdog,

i.e., a contestant whose e�ort costs in each task are at least twice as high as those

of his competitor.

The theorem gives an easy-to-follow rule when thinking about who to disclose in-

formation to in this setup. It is e�ort-maximizing to even out the cost disadvantage of

the weak underdog by disclosing information to him. This �informational favoritism�

induced by designing the information structure parallels favoritism induced by design-

ing incentives via the introduction of head starts or biases, which is discussed in the

literature, see Franke et al. (2018) and Fu (2006).

The above results also imply that any information regime (NR, PR, or FR) might

be optimal when thinking about transmitting information to a �strong� underdog or

to specialists. However, non-revelation is always optimal when facing a favorite. The

Figures 2.8 and 2.9 allow more detailed insights into further dependencies of the optimal

information structure on the cost structure, captured by CA, CB, and C2, and the

uncertainty about the σ-state, captured by pA.

It is useful to remember the mechanism at work when disclosing information: in

any (generic) setting each contestant has a preferred task; a task in which he has a

higher cost advantage (or a lower cost disadvantage) compared to his opponent. This

implies that when receiving an informative message, one of these reveals encouraging

information to the contestant, and the other one discouraging information. The contes-

tant's sensitivity to these messages determines whether it is bene�cial for the designer

to disclose information to the contestant. The linear homeomorphism ξ between the

di�erent elements of the partitions discussed in Section 2.3.4, re�ects the fact that the

designer can face two di�erent situations depending on the cost parameters: either he

is in a setting with an underdog and a favorite, or he faces two specialists - each pre-

ferring a di�erent σ-state to be relevant. When facing an underdog and a favorite the

decision of whom to adress with new information (if she does so at all) is straight for-

ward according to Theorem 2.2, since the favorite, a contestant who already has a cost

advantage, never increases his e�ort intensely enough after messages encouraging him

to do so to outweigh the decrease in e�ort after di�erent messages. When facing two
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specialists, the optimal information design in the current setup can be characterized by

the following results. We can observe the mechanism of the results in Figures 2.8 and

2.9.

Observation 2.1 (Informational Discrimination or Favoritism of the Ex-Ante Disad-

vantaged Specialist). In the two-extreme-states scenario of the two-player multi-activity

contest, when the designer is restricted to send purely private messages to one player,

and the other player is non-Bayesian, depending on the cost-parameter C2, the designer

may either prefer to disclose information to the ex-ante disadvantaged specialist, or to

the ex-ante advantaged specialist.

These observations are also re�ected in the following result.

Proposition 2.4. If contestant 1 is a specialist in task B, i.e. CB < 1 < CA, and

when contestant 2 is non-Bayesian, the propensity of the designer to reveal information

to contestant 1

• increases in the probability of task B, measured by 1− pA, and

• decreases in the comparative costs of task B relative to task A, measured by C2.

In view of the informational favoritism mentioned above, the result might seem

surprising, since it implies that the designer should in some cases reveal information

to the ex-ante stronger of the two specialists, i.e., the one who has a higher ex-ante

winning probability (see Equation (2.13)). Thus, we observe a form of �informational

discrimination� against the ex-ante weaker contestant. This is illustrated in Figure 2.8,

which also depicts the partition of the cost parameter space according to the winning

probability: in the left panel of the �rst row the cost structure associated with the point

C ′ = (2, 1
2) (specialist in task A: contestant 2, specialist in task B: contestant 1) implies

partial revelation to contestant 1 under prior pA = 0.1, while the other panels imply

no revelation of information at the respective priors pA. Thus �the informativeness at

C ′ decreases in pA�. Note that for the same panels in Figure 2.8 for the cost structure

C ′′ = (2, 8) (weak underdog and favorite) we observe �an increase in informativeness

in pA�. For that weak underdog, who prefers task A over task B, receiving a positive

message becomes more likely when moving from pA = .1 to pA = .5, so this encourages

him to exert more e�ort and the designer is more inclined to reveal information. For

the same reason, as Proposition 2.4 states, the designer should disclose information to

the �stronger� among the two specialists, i.e. the one who is less likely to receive a

discouraging message. For contestant 1, being the specialist in task B under the cost

structure C ′ = (2, 1
2), a positive message becomes less likely when moving from pA = .1

to pA = .5. Thus, less information is disclosed to him. The driving force behind this is
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illustrated in the third condition of Proposition 2.3: ceteris paribus, CA ≥ 1/pA is �easier

to be satis�ed�, if CA > CB, i.e., if contestant 1 has a larger relative cost disadvantage in

task A than in task B. Furthermore, as discussed above, if pA increases, the condition

on CA stated in Proposition 2.3 becomes less restrictive, while the condition on CB

becomes more restrictive.

Whether a specialist is favored depends on his ex-ante winning probability (as dis-

cussed above), and - as stated in Observation 2.1 - on the cost parameter C2. Remember

that if, ceteris paribus, C2 increases task B becomes relatively more costly compared

to task A for both contestants. Comparing Figures 2.8 and 2.9, we observe that (as

Proposition 2.4 states), the designer is more inclined to disclose information to the spe-

cialist whose preferred task becomes relatively more costly. Remember that this does

not a�ect the winning probabilities (see Equation (2.13) and the discussion below it).

However, from the designer's point of view this is desirable, since the trade-o� of an

e�ort increase after receiving a positive message and an e�ort decrease after receiving a

negative message becomes smaller for that specialist. This is also re�ected by the change

of the slope of the concavi�cation when comparing the Figures 2.6 and 2.7. Thus, the

designer is, cetris paribus, inclined to disclose more information to the specialists whose

preferred task is relatively more costly.
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Figure 2.9: Comparative statics of the optimal information structure with respect to pA for C2 = .1
and C2 = 10. Orange rectangle = su�cient condition NR, green rectangle = su�cient condition FR,
purple area = numerical test of necessary condition NR positive, red area = numerical test of necessary
condition FR positive, white area = PR, blue area = cost structures, under which contestant 1 is the
expected winner (see Equation (2.13)). Comparing the right panels in both rows indicates that the
situations with C2 = 1/10 and C2 = 10 are symmetric.
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C2 = .25, pA = .5 C2 = .025, pA = .5

Figure 2.10: Comparative statics of the optimal information structure for the examples
from Figure 2.6 and 2.7, indicated by CSBA. Orange rectangle = su�cient condition
NR, green rectangle = su�cient condition FR, purple area = numerical test of necessary
condition NR positive, red area = numerical test of necessary condition FR positive,
white area = PR, blue area = cost structures, under which contestant 1 is the expected
winner (see Equation (2.13)).

2.7.2 Case 2: Bayesian Uninformed Contestant

We now assume that contestant 2 is Bayes rational as well. Thus, in the setup with

purely private messages only for contestant 1 (as de�ned in Table 2.4), the uninformed

contestant 2 holds the updated belief, that

βσs2 (A) = ps ∀s ∈ S, and β
mh1
2 (A) =

pAqA + (1− pA)(1− qB) if h = A

pA(1− qA) + (1− pA)qB if h = B
, and

β
mh1∧s
2 (A) =

psq
s
hA∑

s psq
s
hA

∀s ∈ S, g ∈ {1, ..., l}.

In contrast to a non-Bayesian player, contestant 2 now interprets Q and anticipates his

opponent's (potential) information advantage. An analytical solution of a general setup

placing no constraints on Q is not obtainable in a manner �digestable� for the reader,

since it involves solving quartic equations. Thus, we focus on comparing non-revelation,

QNR, to full revelation to contestant 1, QFR1 .

Optimal Contestant Behavior

Note that Corollary 2.1 also describes optimal contestant behavior under QNR, given by

E[X∗](QNR) in this setup. The next proposition describes contestant behavior under

QFR1 , which is given by qA = qB = 1 as de�ned in Table 2.4. Note that in this scenario,
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contestant 1 can be of two m-types, each of which is fully informed about the true

state of the world. Contestant 2 is always of m-type mA and remains uninformed.

Nevertheless, he knowns that contestant 1 has an information advantage.

Proposition 2.5. The contestants' aggregate equilibrium e�ort in the two-extreme-

states scenario of the multi-task contest with uncertainty, in which a fully revealing

purely private message is sent only to contestant 1, is described by

E[X∗](QFR1 ) = E[X∗A](QFR1 ) + E[X∗B](QFR1 )

=
(1 + CA)p2

A

(1 + pACA)2
+
C2(1 + CB)(1− pA)2

((1 + (1− pA)CB)2
.

(2.19)

Proof. See Appendix 2.A.6.

Getting back to our introductory example of an underdog (contestant 1) and a

favorite (contestant 2) with the cost structure given by c1A = 9, c1B = 4, c2A = 1, c2B =

1, we can now isolate two e�ects of disclosing information to a contestant: the direct

e�ect of information disclosure describes that due to better knowing which task is

relevant in the contest, an informed contestant will put more e�ort into this task.

Depending on the cost structure, the increase may be overproportionally large (e.g., if

the underdog learns that his �preferred� task is relevant) compared to the decrease in

e�ort upon receiving a �discouraging� message. This e�ect is described in Section 2.7.1,

where we analyze the setting with a non-Bayesian uninformed contestant, who does not

use the information provided by Q. In the example we observed an overall increase from

E[X∗](QNR) = 15 to E[X?](QFR1 ) ≈ 16.1.

In addition to this direct e�ect there is also an indirect e�ect, which becomes obvious

when comparing the situation with a non-Bayesian uninformed contestant to that with a

Bayesian uninformed contestant: a Bayesian uninformed contestant uses the information

provided by Q and adapts his e�ort choices vis-a-vis the information advantage of the

opponent. In the example with an underdog and a favorite, the uninformed favorite

thus increases his e�ort choices. Obviously, knowing that the favorite increases his

e�ort is disadvantageous for the informed underdog (compared to a situation with a

non-Bayesian favorite), but in the example the overall e�ect is positive: the expected

e�ort increases to E[X∗](QFR1 ) ≈ 22.1.

Information Design: Full Revelation vs. Non-Revelation

We now use the results from Proposition 2.5 and Corollary 2.1 to compare full revelation

and non-revelation.
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Proposition 2.6. In the two-extreme-states scenario of the two-player multi-activity

contest, when the designer is restricted to send purely private messages to contestant 1,

a su�cient condition is satis�ed for

1. NR to be (weakly) preferred to FR by the designer, if CA ≤ 1 and CB ≤ 1, and

for

2. FR to be (weakly) preferred to NR by the designer, if CA ≥
√

1
pA

> 1 and CB ≥√
1

1−pA > 1.

Proof. See Appendix 2.A.7.

Note the similarity of the conditions in Proposition 2.6 to those stated in Proposition

2.3. Thus, the main mechanisms are similar in the model with Bayesian rational agents

(Section 2.7.2) and in the model with a non-Bayesian agent (Section 2.7.1). Therefore,

many of the intuitions we discuss in Section 2.7.1 can be applied also to the current

setup.

De�nition 2.4. Contestant 1 is a �probablistically-weak� underdog, i� CA ≥
√

1
pA

> 1

and CB ≥
√

1
1−pA > 1. The de�nition for contestant 2 is analogous.

The next theorem immediately follows from the above results:

Theorem 2.3 (Informational Favoritism of the Ex-Ante Disadvantaged Player

(Non-Bayesian Case)). In the two-extreme-states scenario of the two-player multi-activity

contest, the designer can never increase her payo� by disclosing information only to the

favorite. However, she can (weakly) increase her payo� by disclosing the true state of

the world fully only to a probablistically-weak underdog (see De�nition 2.4).

These results are in line with the idea of informational favoritism we discuss above:

it can never be (strictly) better to reveal information only to a favorite, but the designer

can increase her payo� by disclosing the σ-state of nature to an underdog, if the cost

structure satis�es the condition stated in Proposition 2.6.

Analyzing the parameter constellations from the introductory example, we observe

that the proposition predicts what we have already calculated. With c1A = 9, c1B =

4, c2A = 1, c2B = 1, which implies CA = 9 and CB = 4, and the prior pA = 0.5,

the su�cient condition for full revelation to be bene�cial for the designer is satis�ed

(CA = 9 >
√

1/0.5 ≈ 1.414, and CB = 4 >
√

1/0.5 ≈ 1.414). Thus, she can bene�t

from informational favoritism for the underdog.

With CA = 2 and CB = 5, and the prior pA = 0.1, the su�cient condition for full

revelation to be bene�cial for the designer is not satis�ed (CA = 2 <
√

1/0.1 ≈ 3.162,
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and CB = 5 >
√

1/0.9 ≈ 1.054), and indeed non-revelation is more pro�table than

revelation, since E[X∗](QNR) = 18.333 and E[X∗](QFR1 ) ≈ 18.149. However, when the

prior changes to p′A = 0.9, then the su�cient condition for full revelation to be bene�cial

for the designer is satis�ed (CA = 2 >
√

1/0.9 ≈ 1.054, and CB = 5 >
√

1/0.1 ≈ 3.162)

and thus revelation is more pro�table than non-revelation, with E[X∗](QNR) = 31.667

and E[X∗](QFR1 ) ≈ 33.661. This is an instance of the mechanism driving informational

discrimination against the ex-ante weaker contestant, which we already discussed in

Section 2.7.1. The probability of the underdogs �preferred�, less cost-disadvantageous

task A increases from pA = 0.1 to p′A = 0.9. The designer is more inclined to disclose

information to the (ex-ante) more advantaged underdog, since this contestant is more

likely to receive an encouraging message, which increases expected e�orts.

2.8 Conclusion and Outlook

This chapter analyzes how the contest host and designer of an information structure

can manipulate the contestants' beliefs about the relevance of the di�erent tasks in such

a way that it increases their (expected) exerted e�orts. The economics of information

makes a central distinction between public and private information. In the model at

hand this distinction plays a crucial role: if information is disclosed purely publicly,

which implies that all contestants share the same belief, then the designer cannot ben-

e�t from information design. The result is di�erent when information is distributed

asymmetrically, as the designer can bene�t from information design by disclosing infor-

mation to the (�probablistically-weak�) underdog, i.e., the contestant who most bene�ts

from an information advantage vis-a-vis his opponent.

We have found that in some cases the designer's self interest to maximize pro�t

induces her to level the playing �eld among contestants (informational favoritism for

the underdog), and sometimes it induces her to further enhance existing asymmetries

(informational discrimination of the ex-ante weaker contestant).

In non-strategic settings the value of information to Bayes rational agents is always

positive, see Blackwell (1951). This need not be the case in strategic settings, see Morris

and Shin (2002) and Einy et al. (2017). Speci�cally, in the setup at hand the designer

can �increase the (expected) perceived competitiveness� of the contest. Thus, it would

be interesting to examine to which extent the disclosure of information is bene�cial to

the contestants.

An important assumption in our model is the commitment assumption. This as-

sumption is not made in the cheap talk models of Crawford and Sobel (1982) for the

single receiver case, and Farrell and Gibbons (1989) and Goltsman and Pavlov (2011)

for the multiple receiver case. Extending the model to settings in which the designer
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cannot commit could be a fruitful path of future research. Furthermore, it is not clear

why contestants should not share their private information with their opponent, espe-

cially in view of the discussion of the value of information from above. Relaxing this

assumption could also yield new insights.

An obvious extension of the model would be to discuss a setup with more than

two contestants and to allow the asymmetric distribution of information in settings

with more than two states (compare Section 2.7). The assumption of �extreme states�

in the two-extreme states scenario is made mainly for expositional purposes, i.e., to

obtain explicit solutions. We conjecture that the results qualitatively also hold in more

general settings without constant returns to scale and in non-extreme scenarios, i.e.,

both task are relevant with a positive probability in both states. We also conjecture

that the results qualitatively hold for a multi-task version of the other workhorse model

in contest theory, the �rst-price all-pay auction.

The e�ect of a �problematic� change in higher-order beliefs induced by belief manip-

ulation and the related issue of consistency does not play a role in the models discussed

in Section 2.6 and 2.7. When the designer is restricted to induce consistent beliefs, she

has to consider the second-order e�ects of manipulating beliefs, i.e., how a change in

the information design a�ects beliefs about the opponent's belief, and thus she has to

consider the interplay of the di�erent order-e�ects of belief manipulation. Consider the

introductory example of Section 2.2. We discuss that in the scenario with one underdog

and one favorite (c1A = 9, c1B = 4, c2A = 1, c2B = 1) the designer wants to induce

both contestants to believe that task B is more likely, since they both exert higher

e�ort in this task. In contrast to this, in the scenario with one specialist in task A and

one specialist in task B (c1A = 9, c1B = 1, c2A = 1, c2B = 4), which yields the same

aggregate equilibrium e�ort if contestants knew the relevant task (X∗A = 10, X∗B = 20),

the designer wants to induce di�erent beliefs among the contestants. Each contestant

should believe that his preferred task is more likely, since he exerts higher e�ort in that

task. However, the designer cannot manage to induce completely opposing beliefs even

if she sends private messages to the contestants. Since Q is public, this would imply

that contestants would agree to disagree about the state of nature, which cannot be the

case if they share the same prior and are Bayesian updaters, as Aumann (1976) shows.

Their beliefs induced by Q have to be consistent. The competitiveness implied by the

underlying cost structure in the multi-task contest with uncertainty about the tasks

determines the degree to which the designer wants to induce di�erent beliefs among the

contestants. In consideration of the results from Section 2.7, if for the designer it is

optimal to induce di�erent beliefs among the contestants, then she must improve upon

her pro�t obtained when only purely private messages to one contestant are allowed.

When generalizing our results, it is thus open to further research to examine whether the
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additional freedom of shaping beliefs of both contestants is outweighed by the restriction

imposed by consistency or not.

2.A Appendix: Proofs

2.A.1 Proof of Proposition 2.1: Both Contestants Know the Oppo-

nent's Message

Proof. Note that all that follows is true for any message that a contestant receives and

any Q̃, so that we drop the dependence of βσ on m and Q̃ for the ease of notation.

Contestant i's �rst order condition with respect to task t of can be written as

∑
s∈S

β̄σs
αst
xit
·
fs(xi)

∑
j 6=i f

s(xj)[∑
j f

s(xj)
]2

!
= cit.

Since there are only two contestants, we can write

xitcit
!

=
∑
s

β̄σsαst ·
fs(xi)f

s(xj)[∑
j f

s(xj)
]2 .

In equilibrium the right-hand side of this equation has the same value for both contes-

tants and thus it must hold in equilibrium that x∗jt = cit
cjt
· x∗it. Plugging this into the

�rst-order condition and noting that

fs(x∗j ) =
∏
t∈T

(
cit
cjt
· x∗it

)αst
=
∏
t∈T

(
cit
cjt

)αst
fs(x∗i ),

gives the resulting equilibrium e�ort in task t:

x∗it =
1

cit

∑
s∈S

β̄σsαst ·
∏
k

(
cik
cjk

)αsk
[fs(x∗i )]

2[
fs(x∗i )

(
1 +

∏
k

(
cik
cjk

)αsk)]2 .

Equilibrium e�ort in each task and total e�ort can easily be calculated by summing up

the individual e�orts.

2.A.2 Proof of Proposition 2.2: Private Messages (Non-Bayesian Case)

- Contestants

Proof. In the proof we drop the dependence of β1 on the message received, m1. Each

message induces a posterior and the calculations below are valid for both realizations
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of m1. Using standard calculus and the corresponding beliefs we obtain the �rst-order

conditions:

∂EUi(x)

∂xit

!
= 0⇔

βti ·
∑

j 6=i xjt(∑
j xjt

)2 = cit ⇔ xit(xjt) =

√
βti
cit
xjt−xjt for i, j ∈ {1, 2}, j 6= i, t = {A,B}.

Best responses intersect in the Nash equilibrium and the higher-order beliefs are pinned

down by βt12 = βt21 = βt2 = pt for all t ∈ T , so we can write

x?it(β̃) =

√√√√√βti
cit

√βtij
cjt
x?it − x?it

−
√βtij

cjt
x?it − x?it

⇔ 0 =

√√√√√βti
cit

√βtij
cjt
x?it − x?it

−
√
βtij
cjt
x?it

⇔
βtij
cjt
x?it =

βti
cit

√βtij
cjt
x?it − x?it

⇔ (
1 +

citβ
t
ij

cjtβti

)2

(x?it)
2 =

βtij
cjt
x?it

⇔ (x?it)
2 −

βtij

cjt

(
1 +

citβtij
cjtβti

)2 · x?it = 0⇔ x?it(β̃) =
βtij

cjt

(
1 +

citβtij
cjtβti

)2 .

In the last line we use, that by our assumptions on the parameters, X?
t = (0, 0) cannot

be an equilibrium. Equilibrium e�ort in task t and total equilibrium e�ort are given by

X?
t (β̃) =

βt12

c2t

(
1 +

c1tβt12

c2tβt1

)2 +
βt21

c1t

(
1 +

c2tβt21

c1tβt2

)2 =
pt

c2t

(
1 + c1tpt

c2tβt1

)2 +
pt

c1t

(
1 + c2t

c1t

)2 =: X̄?
t (βA1 ),

X̄?(βA1 ) = X̄?
A(βA1 ) +X?

B(βA1 ) =
pA

c2A

(
1 + c1ApA

c2Aβ
A
1

)2 +
pA

c1A

(
1 + c2A

c1A

)2

+
(1− pA)

c2B

(
1 + c1B(1−pA)

c2B(1−βA1 )

)2 +
(1− pA)

c1B

(
1 + c2B

c1B

)2 .

2.A.3 Proof of Lemma 2.1: Private Messages (Non-Bayesian Case) -

Characterization

Proof. As we mention above, only contestant 1's e�ort can be in�uenced by belief

manipulation. Rewriting the equilibrium e�ort of contestant 1 given belief βA1 from

Proposition 2.2 in terms of the cost-structure parameters introduced in Section 2.3.4

yields

X̄?
1 (βA1 ) =

pA

c2A

(
1 + CA

pA
βA1

)2 +
(1− pA)

c2A
C2

(
1 + CB

(1−pA)

(1−βA1 )

)2 .
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We can without loss of generality normalize with c2A. The �rst derivative can be

evaluated as

∂X̄?
1 (βA1 )

∂βA1
=

2p2
ACA

(βA1 )2
(

1 + CA
pA
βA1

)3 −
2(1− pA)2C2CB

(1− βA1 )2
(

1 + CB
(1−pA)

(1−βA1 )

)3 ,

and the second derivative as

∂2X̄?
1 (βA1 )

∂
(
βA1
)2 =

6p3
AC

2
A

(βA1 )4
(

1 + CA
pA
βA1

)4 −
4p2
ACA

(βA1 )3
(

1 + CA
pA
βA1

)3

+
6(1− pA)3C2C

2
B

(1− βA1 )4
(

1 + CB
(1−pA)

(1−βA1 )

)4 −
4(1− pA)2C2CB

(1− βA1 )3
(

1 + CB
(1−pA)

(1−βA1 )

)3 .

Evaluating both derivatives at the prior yields

∂X̄?
1 (βA1 )

∂βA1

∣∣∣∣
βA1 =pA

=
2CA

(1 + CA)3 −
2C2CB

(1 + CB)3 ,

and

∂2X̄?
1 (βA1 )

∂
(
βA1
)2 ∣∣∣∣

βA1 =pA

=
6C2

A

pA (1 + CA)4−
4CA

pA (1 + CA)3 +
6C2C

2
B

(1− pA) (1 + CB)4−
4C2CB

(1− pA) (1 + CB)3 .

We need two linear auxiliary functions to �nd necessary and su�cient conditions that

characterize NR, FR, and PR equilibria. They are depicted in Figure 2.11.

0.2 0.4 0.6 0.8 1.0

0.006

0.008

0.010

0.012

0.014
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0.018

Figure 2.11: Auxiliary Functions for pA = .5, CA = 9, CB = .25, C2 = .02.
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The �rst function is a tangent to the graph of X̄?
1 (βA1 ) at the point

(
pA, X̄

?
1 (pA)

)
.

Using the results from above, we know it is given by

hNR(βA1 ) :=

[
pA

(1 + CA)2 +
(1− pA)C2

(1 + CB)2

]
+

[
2CA

(1 + CA)3 −
2C2CB

(1 + CB)3

]
(βA1 − pA).

A necessary and su�cient condition for NR to be compatible with equilibrium is given

if hNR(βA1 ) is a supporting hyperplane of the graph of X̄?
1 (βA1 ), i.e., if

hNR(βA1 )− X̄?
1 (βA1 ) ≥ 0 ∀βA1 ∈ [0, 1]. (2.20)

Reformulating this inequality yields that for all βA1 ∈ [0, 1] it must be that

(pA − βA1 )2

[
CA
(
CA(1− CA)pA + 2βA1

)
(1 + CA)3 (βA1 + CApA

)2 +
C2CB

(
CB(1− CB)(1− pA) + 2(1− βA1 )

)
(1 + CB)3 ((βA1 − 1) + CB(pA − 1)

)2
]
≥ 0.

Note that, by the de�nition of hNR(βA1 ), this is trivially satis�ed if βA1 = pA.

The second auxiliary function is a secant to the graph of X̄?
1 (βA1 ) through the points(

0, X̄?
1 (0)

)
and

(
1, X̄?

1 (1)
)
. Using limits in the calculation, we can see that it is given

by

hFR(βA1 ) :=

[
(1− pA)C2

(1 + CB(1− pA))2

]
+

[
pA

(1 + CApA)2 −
(1− pA)C2

(1 + CB(1− pA))2

]
βA1 .

A necessary and su�cient condition for FR to be compatible with equilibrium is

given by

hFR(βA1 )− X̄?
1 (βA1 ) ≥ 0 ∀βA1 ∈ [0, 1]. (2.21)

Reformulating this inequality yields that for all βA1 ∈ [0, 1] it must be that

pAβ
A
1

[(
βA1 + pACA

)2 − βA1 (1 + pACA)2(
βA1 + pACA

)2
(1 + pACA)2

]

+C2(1− pA)(1− βA1 )

[(
(1− βA1 ) + (1− pA)CB

)2 − (1− βA1 ) (1 + (1− pA)CB)2(
(1− βA1 ) + (1− pA)CB

)2
(1 + (1− pA)CB)2

]
≥ 0.

Note that by the de�nition of hFR(βA1 ) this is trivially satis�ed if βA1 = 0 or βA1 = 1.
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2.A.4 Proof of Proposition 2.3: Private Messages (Non-Bayesian Case)

- Su�ciency

Proof. It is easy to see that for Condition (2.17) to hold it su�ces that CA, CB ≤ 1.

Furthermore, it is easy to see that for Condition (2.18) to hold it su�ces that CA ≥
1
pA

> 1 and CB ≥ 1
(1−pA) > 1.

A su�cient condition for NR not to be an equilibrium is given if ∃βA1 ∈ [0, 1]

s.t. in Condition (2.17) both nominators in the brackets are negative, i.e. if CA >

1
2 +

√
1
4 +

2βA1
pA

:= C̃(βA1 ) and CB > 1
2 +

√
1
4 +

2(1−βA1 )
1−pA := Ĉ(βA1 ). For βA1 ∈ [0, 1],

C̃(βA1 ) and Ĉ(βA1 ) are positive-valued functions. The former increases, while the latter

decreases in βA1 . Their unique intersection is given when the argument satis�es βA1 = pA

and C̃(pA) = Ĉ(pA) = 2.

2.A.5 Proof of Proposition 2.4: Private Messages (Non-Bayesian Case)

- Specialists

Proof. The �rst part can be shown by proving that we can �nd a pA ∈ (0, 1) such that

there exists a βA1 ∈ [0, 1] for which Condition (2.17) is violated. Let us �x βA1 = 0,

CA > 1 and CB < 1, i.e., contestant 1 is the specialist in task B, and thus at βA1 = 0

the �rst summand in the second factor of Condition (2.17) is negative, while the second

summand is positive. We now show that by decreasing pA arbitrarily close to zero, we

can always guarantee that the sum of these two terms is negative. Evaluate the relevant

terms by applying l'Hôpital's Rule (its premises are satis�ed):

lim
pA→0

CA (CA(1− CA)pA)

(1 + CA)3 (CApA)2 = lim
pA→0

∂ [CA (CA(1− CA)pA)] /∂pA

∂
[
(1 + CA)3 (CApA)2

]
/∂pA

= lim
pA→0

C2
A(1− CA)

2 (1 + CA)3C2
ApA

= −∞ ∀CA > 1,

and

lim
pA→0

C2CB (CB(1− CB)(1− pA) + 2)

(1 + CB)3 (CB(pA − 1)− 1)2 = lim
pA→0

∂ [C2CB (CB(1− CB)(1− pA) + 2)] /∂pA

∂
[
(1 + CB)3 (CB(pA − 1)− 1)2

]
/∂pA

=
C2
B(1− CB)

2 (1 + CB)4 ∈ (0,∞) ∀CB < 1.

The second part of the proposition can be veri�ed by analyzing Condition (2.18).

Suppose that CA ≥ 1
pA

and CB < 1 < 1
1−pA , i.e., contestant 1 is a specialist in task

B. Additionally, the �rst summand in Condition (2.18) is positive, while the second

is negative. Now we can arbitrarily decrease C2 until the inequality is satis�ed for all
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βA1 ∈ [0, 1]. A similar procedure can be applied to construct a violation of Condition

(2.17) by increasing / decreasing C2.

2.A.6 Proof of Proposition 2.5: Private Messages (Bayesian Case) -

Contestants

Proof. Contestant 2 is always of m-type mA. Thus, he has to solve the following

problem:

max
x2A,x2B

[
pA ·

x2A

x2A + x1A(mA)
+ (1− pA) · x2B

x2B + x1B(mB)

]
− c2Ax2A− c2Bx2B, (2.22)

where x1t(m) denotes the choice of contestant 1's type m ∈M1 in task t ∈ T . The �rst
order conditions yield the best responses

x2t(x1t(m
t)) =

√
pt
c2t
· x1t(mt)− x1t(m

t), ∀t ∈ {A,B}. (2.23)

Contestant 2 can be of two types, mA and mB. As type mt he knows that he is in a

state, in which only task t ∈ T matters. Thus, he has to solve the following problem:

max
x1A(mt),x1B(mt)

[
x1t(m

t)

x1t(mt) + x2t

]
− c1Ax1A(mt)− c1Bx1B(mt). (2.24)

Applying the Kuhn-Tucker approach with the constraint that x1t(m
z) ≥ 0 ∀t, z ∈ T

yields the best responses for all t ∈ T :

x1t(x2t|mz) =


√

1
c1t
· x2t − x2t if z = t,

0 if z 6= t.
(2.25)

This system of six best response equations with six unknowns can be solved and we

obtain the equilibrium behavior given by

x∗1A(β̃1(mA, QFR1 )) =
pA

c2A

(
1 + pAc1A

c2A

)2 , x∗1B(β̃1(mA, QFR1 )) = 0,

x∗1A(β̃1(mB, QFR1 )) = 0, x∗1B(β̃1(mB, QFR1 )) =
(1− pA)

c2B

(
1 + (1−pA)c1B

c2B

)2 ,

x∗2A(β̃2(mA, QFR1 )) =
pA

(
pAc1A
c2A

)
c2A

(
1 + pAc1A

c2A

)2 , x∗2B(β̃2(mA, QFR1 )) =
(1− pA)

(
(1−pA)c1B

c2B

)
c2B

(
1 + (1−pA)c1B

c2B

)2 .
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Normalizing with c2A, summing up, and reformulating, we obtain the expected equilib-

rium e�orts in each task, given by

E[X∗A](QFR1 ) = P (mA)(QFR1 ) · x∗1A(β̃1(mA, QFR1 )) + x∗2A(β̃2(mA, QFR1 ))

=
(1 + CA)p2

A

(1 + pACA)2
,

(2.26)

E[X∗B](QFR1 ) = P (mB)(QFR1 ) · x∗1B(β̃1(mB, QFR1 )) + x∗2B(β̃2(mA, QFR1 ))

=
C2(1 + CB)(1− pA)2

[(1 + (1− pA)CB]2
.

(2.27)

2.A.7 Proof of Proposition 2.6: Private Messages (Bayesian Case) -

Full Vs. Non-Revelation

Proof. From Proposition 2.5 and Corollary 2.1 we obtain the di�erence we have to

evaluate:

E[X∗](QFR1 )− E[X∗](QNR) =
(1 + CA)p2

A

(1 + pACA)2
+
C2(1 + CB)(1− pA)2

((1 + (1− pA)CA)2

− pA(1 + CB) + C2(1− pA)(1 + CA)

(1 + CA)(1 + CB)

= (pA − 1)pA

[
C2(1− C2

B(1− pA))

(1 + CB)(CB(pA − 1)− 1)2}

+
1− C2

ApA
(1 + CA)(1 + CApA)2

]
Evaluating whether the nominators in the huge bracket are positive or negative at the

same time gives the conditions stated in the proposition.



Chapter 3

Di�erentiate and Conquer -

Using Consumer Learning to Grow Out Your

Niche1

�Di�erentiate and conquer� suggests exploiting an a-priori disadvantage, i.e.,

producing a niche product, to later on gain power over the larger share of the mar-

ket. The driving mechanism is the recommendation e�ect, which introduces a new

rationale for product di�erentiation other than the usual motivation to reduce price

competition. We incorporate consumer learning in a model of spatial competition

with sequential consumer purchases and a second dimension of variation, quality,

about which the consumers have di�erential information. With consumer learning,

�rms are confronted with two mutually o�setting e�ects: di�erentiation decreases

the likelihood that a product will be bought in earlier periods, but, by making

inference more valuable, it also increases the likelihood that later consumers may

buy the di�erentiated good. We show that there exists a unique �di�erentiate-

and-conquer equilibrium� in which the second e�ect dominates, so that the market

incumbent locates in the center of the market, while the entrant di�erentiates by

producing an ex-ante niche product.

3.1 Introduction

10th rule of building a successful business: Swim upstream. Go the other

way. Ignore the conventional wisdom. If everybody is doing it one way,

1This chapter is joint work with Maximilian Conze.
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there's a good chance you can �nd your niche by going exactly in the opposite

direction. (Sam Walton, founder of Walmart)2

When introducing a new product, one of the most important questions a �rm faces is how

to design its product with respect to the products already o�ered by its competitors and

with respect to consumer taste: shall it produce more of a mainstream product or shall

it occupy a niche in the market, i.e., o�er a product di�erentiated from its competitors

and preferred ex-ante only by a minority of the consumers?

This question seems to gain even more importance as early adopters (agents con-

suming in earlier periods) �nd a growing number of opportunities to publicly announce

their choice behavior using Internet platforms such as Yelp or the recommendation op-

portunities on the online market place Amazon, for instance. Platforms like foursquare,

Google and Facebook explicitly keep track of �check-ins� in restaurants, bars and many

other venues to provide this data online for undecided consumers. These sources of in-

formation in�uence the choice behavior of laggards (agents consuming in later periods).

Such e�ects are not considered in earlier research dealing with the incentives to o�er

di�erentiated products. It has instead focused on the fact that price competition may

yield incentives to di�erentiate one's product: by o�ering a di�erentiated product, �rms

are able to set a price above marginal costs and thus obtain a positive pro�t, although

they serve a smaller market share. In those situations, the competition e�ect, i.e., the

ability to raise prices because of the �local monopoly power� obtained by o�ering a

di�erentiated product, dominates the market size e�ect, i.e., the possibility to serve a

larger market share when o�ering a product similar to that of the competitor (see, e.g.,

d'Aspremont et al., 1979).

We establish a fundamentally di�erent rationale for o�ering di�erentiated products.

The e�ect driving our result is one of informational nature and arises due to the pos-

sibility of consumer learning. In our model, laggards can observe the behavior of the

early adopters. When adding vertical di�erentiation, e.g., quality, about which the con-

sumers have di�erent knowledge, into a model of (spatial) product di�erentiation, the

choice behavior of early adopters contains information in�uencing the choice behavior of

laggards. A �rm can in�uence and exploit consumer learning using its location choice.

This may yield incentives to o�er a di�erentiated (niche) product, as from a laggard's

perspective, a purchase of a niche product by an early adopter is more likely based on

its high quality than on a good match of consumer taste and product characteristic.

We call this the �recommendation e�ect�.

A recent event in the movie industry �ts our model very well. The movie �The

Artist�, which aired in cinemas in 2011, was a major success of that year and, in addition
2See http://corporate.walmart.com/our-story/history/10-rules-for-building-a-business

(last accessed: 02/11/2017).

http://corporate.walmart.com/our-story/history/10-rules-for-building-a-business
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to receiving mainly positive critique, it won numerous prizes, including �ve Oscars.3 It

brought in almost $133.5M worldwide, while being produced with a $15M budget.4 So

on both counts - artistically and economically - it was a major success. What makes this

movie especially interesting for our case, is that, compared to the advanced techniques

commonly used in the movie industry nowadays with its 3D-e�ects and Dolby Surround,

the means used for the shooting of �The Artist� were rather unconventional: it was

entirely shot in black-and-white and mainly abstracted from dialogues, almost making it

a silent movie. Compared to the other blockbusters at that time, �The Artist� de�nitely

was a �niche product�. Yet, it may well be that the high popularity of this unconventional

movie among the early adopters in the �rst weeks of broadcasting induced the laggards

to attribute the reason for that choice behavior to the high cinematographic quality of

�The Artist�. It is likely that the producers anticipated just this reasoning and therefore

decided to dive into this unorthodox project. Indeed, the director of �The Artist�, Michel

Hazanavicius, said that when he presented his idea �[he'd] only get an amused reaction

- no one took this seriously�.5

We use the term �niche product� in the sense that such a product is of relatively

low appeal to uninformed consumers ex ante. As our model shows, and the example

of the movie �The Artist� illustrates, a niche product according to this de�nition can

still generate a larger demand than a mainstream product ex-post. Thus, niche �rms

applying the �di�erentiate and conquer� strategy may in the end dominate the market.

Our contribution to the literature and the main goal of this chapter is to show in a

theoretical model how the �rms' incentives to di�erentiate are a�ected by social learning

among heterogeneous consumers. The chapter is structured as follows. In Section 3.2

we review the related literature. Section 3.3 presents a short and simpli�ed example,

while the full model is introduced in Section 3.4. In Section 3.5 we analyze the optimal

consumer behavior. A benchmark model and the main model are solved in Sections 3.6

and 3.7, respectively. Welfare comparisons are made in Section 3.7.5. Finally, Section

3.8 concludes. All proofs are relegated to the Appendix.

3See http://articles.economictimes.indiatimes.com/2012-02-27/news/31104573_1_

oscars-foreign-language-category-actor-race and http://www.theguardian.com/film/2011/

dec/08/artist-silent-film-michel-hazanavicius (last accessed: 02/11/2017).
4See http://www.boxofficemojo.com/movies/?id=artist.htm and http://www.imdb.com/title/

tt1655442/business?ref_=ttrel_ql_4 (last accessed: 02/11/2017).
5See page 5 of the o�cial press kit at: http://www.festival-cannes.com/en/films/

the-artist (last accessed: 02/11/2017). Additionally, the success of the movie was
called �surprising� by the media, see, e.g., http://www.theguardian.com/film/2012/feb/04/

hollywood-nostalgia-chaplin-valentino (last accessed: 02/11/2017).

http://articles.economictimes.indiatimes.com/2012-02-27/news/31104573_1_oscars-foreign-language-category-actor-race
http://articles.economictimes.indiatimes.com/2012-02-27/news/31104573_1_oscars-foreign-language-category-actor-race
http://www.theguardian.com/film/2011/dec/08/artist-silent-film-michel-hazanavicius
http://www.theguardian.com/film/2011/dec/08/artist-silent-film-michel-hazanavicius
http://www.boxofficemojo.com/movies/?id=artist.htm
http://www.imdb.com/title/tt1655442/business?ref_=ttrel_ql_4
http://www.imdb.com/title/tt1655442/business?ref_=ttrel_ql_4
http://www.festival-cannes.com/en/films/the-artist
http://www.festival-cannes.com/en/films/the-artist
http://www.theguardian.com/film/2012/feb/04/hollywood-nostalgia-chaplin-valentino
http://www.theguardian.com/film/2012/feb/04/hollywood-nostalgia-chaplin-valentino
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3.2 Literature

In his seminal paper on spatial competition and product di�erentiation, Hotelling (1929)

proposed that, when choosing locations (which can be interpreted as representing the

product's characteristics) on a linear bounded market - where consumers are uniformly

distributed - before setting prices, �rms choose the same location, namely the center,

and set the same price in equilibrium. It has later been shown by D'Aspremont et

al. (1979), that the celebrated Principle of Minimum Di�erentiation is only valid in

this framework if prices are exogenously �xed and equal; we will refer to this setup as

Hotelling's �pure spatial competition model�.6 As in any model of spatial competition

with endogenous prices, there exist two o�setting e�ects in Hotelling's setup. On the

one hand, �rms have an incentive to increase the distance, thereby relaxing competition

(�competition e�ect�). On the other hand, decreasing the distance allows to serve a

larger share of the market (�market size e�ect�).

In contrast to most models of spatial competition, we �nd asymmetric pure strategy

equilibria, for both cases - where �rms di�erentiate and where they do not. Tabuchi

and Thisse (1995) assume a non-uniform distribution of consumers, sequential location

choice and simultaneous price setting and also �nd asymmetric pure strategy equilibria.

However, di�ering from their results, serving a smaller ex-ante market share - that is

being a niche producer - need not be disadvantageous in our model, i.e., there is no

second-mover disadvantage as it happens to be the case in Tabuchi and Thisse (1995).

Among others,7 Economides (1989) combines price setting, horizontal and vertical

di�erentiation. In both versions of his model - price competition followed by quality

choice, or both choices of these strategic variables happening simultaneously (location

choice occurs at the �rst stage in both versions) - maximum horizontal di�erentiation

and minimal di�erentiation in quality and prices is obtained in equilibrium. Bester

(1998) di�ers from Economides (1989) in assuming quadratic instead of linear trans-

port costs (which strengthens incentives to di�erentiate) and, more importantly, in the

consumer's imperfect knowledge about qualities. He shows that this imperfect knowl-

edge mitigates product di�erentiation: as consumers associate low prices with a low

quality, there is an endogenous lower bound to prices. Thus, price competition is al-

ready relaxed, making it less necessary to horizontally di�erentiate in order to decrease

price competition.

In the literature on social learning, Bikhchandani et al. (1992) and Banerjee (1992)

are the �rst to examine the phenomena of information cascades and herding. They

6With �xed prices the �rms' goals narrow down to serving the largest possible market share. Then,
the only situation without an incentive to relocate is the one where both �rms are located at the center.

7See, e.g., Gabszewicz and Thisse (1986), Dos Santos Ferreira and Thisse (1996), and Gabszewicz
and Wauthy (2011).
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show that with sequential consumer choice, Bayes rational inference from the previous

behavior of others may guide consumers to ignore their own (imperfect) private signal

on the quality of a �rm; a behavior which in the end may result in herding, driving all

subsequent consumers to buy only from one �rm. Smith and Sørensen (2000) deliver

the most complete analysis of this setup of social learning.

Ridley (2008) combines the ideas of Hotelling and herding. Nevertheless, his research

question is fundamentally di�erent to ours: he models two �rms with di�erent infor-

mation levels about market demand and - as they sequentially decide about entering

the market - the second mover can possibly deduce information from the other �rm's

decision.

Our model is also related to the recent literature on Bayesian persuasion as intro-

duced by Kamenica and Gentzkow (2011): they analyze in which way the sender (in

our case the �rms) can in�uence the updating of the receiver (in our case the laggards)

in their favor by choosing the �sender-optimal� information structure of the signal. As

in our model, the sender does not know the realization of the state (in our case the

product's quality), when taking his decision. In the analysis at hand the early adopters

are so to speak �used� by the �rm to signal the quality of its product and di�erentiation

in some cases is advantageous for the market entering �rm, as via the Bayesian updating

mechanism producing a niche product distorts the signal (i.e., the purchase decision of

the early adopter) in its favor.

The strand of literature that is closest to our approach has taken a look at the impact

of consumers' social learning on competition among �rms producing horizontally and

vertically di�erentiated products. In Caminal and Vives (1996) two �rms compete for

homogeneous consumers by setting prices. The authors formulate two models, and,

in one of these, �rms do not know the quality of their product, just as it is the case

in this chapter. Consumers have di�erent information about the products' qualities

and observe the history only partially. Given the incomplete observation of the history,

consumers are led to believe that a good is of higher quality whenever its market share is

high. The authors show that this leads to a strategic incentive for the �rms to generate

a higher demand in early periods by setting a low price. However, Caminal and Vives

do not analyze incentives to di�erentiate.

Miklos-Thal and Zhang (2013) model a monopolistic market with consumer learn-

ing showing that �demarketing [i.e. visibly toning down the marketing e�orts] lowers

expected sales ex ante but improves the product quality image ex post, as consumers

attribute good sales to superior quality� (Miklos-Thal and Zhang, 2013, p. 55). In

the same vein, Parakhonyak and Vikander (2016) show that a monopolist may have an

incentive to reduce its capacity in order to make laggards infer a high product quality

from sold out capacities in earlier periods and thus induce herding in its favor.
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In the model at hand we assume that prices are exogenous.8 The assumption is

appropriate for situations in which prices are actually �xed, or where price di�erences

among products are perceived as too small to in�uence the consumption decision (see,

for example, Courty (2000)), or markets where prices are chosen in a long term per-

spective. Additionally, there are many markets where consumers do not pay any price

at all, but �rms nevertheless compete in order to maximize their demand. This is true

for many media markets like TV or radio stations, as discussed in Gabszewicz et al.

(2001) and Loertscher and Muehlheusser (2011). The exogeneity of prices can be seen

as a reduced form model for markets which are better characterized by competition in

market shares than by competition in prices. Theoretically, we are interested in identi-

fying the e�ect consumer learning has on the di�erentiation incentives of �rms and by

abstracting from price competition isolating this e�ect becomes easier.9

Tucker and Zhang (2011) show in an empirical paper10 that - in line with the

intuition of our theoretical results - popularity information (indicated by the choice of

previous consumers) is especially bene�cial for niche products, because for the same

popularity, niche products are more likely to be of superior quality than mainstream

products.

Another empirical paper is even more suitable for our analysis - and especially for

our example above on the movie industry: Moretti (2011) is among the �rst researchers

to empirically analyze real world data on social learning. He investigates in how far it

in�uences movie sales. The results show that social learning indeed matters and that

�surprise� in the early demand increases later demand for a movie.11 That is, if a movie

was seen by surprisingly many consumers (compared to the prior) in the �rst weeks

8In Chapter 4, we show that similar e�ects also arise in a setup of non-spatial di�erentiation with
endogenous prices. Nevertheless, in some applications the assumption of �xed prices may be plausible.
Consider the movie industry, where the entrance fees for blockbusters of the same length at cinemas
are usually the same. See Orbach and Einav (2007), for instance. Many people arguably decide on
which movie to watch before seeing the prices. Furthermore, they most probably do not revise their
decision when �nding out that prices are slightly di�erent than expected. De Vany (2006) discusses the
three di�erent pricing levels of the movie industry (producers, distributors, box o�ces) extensively and
shows that empirically box o�ce prices are �xed - which indeed is an economic puzzle. Additionally,
it is shown that the producers obtain a contractually regulated share of the revenues generated by the
box o�ces. This implies that the only way producers can in�uence their revenue is by generating a
larger audience.

9A research �eld in which exogenous prices are frequently assumed is health economics, as medical
treatment is reimbursed to consumers by their health insurance. Several research projects in this area
use models of spatial competition with �xed prices and discuss di�erences in quality among hospitals,
see, e.g., Brekke et al. (2006), Brekke et al. (2011), and Gravelle and Sivey (2010).

10In a working paper version, they also include a theoretical model in which location, however, is
given exogenously.

11While Sorensen (2007) and Chen (2008) support the social learning argumentation in another
setting, Gilchrist and Sands (2016) attribute the fact, that a positive �shock� to early demand for
cinema movies (e.g. by bad weather) increases demand in later periods, to network externalities, that
is, �people have something in common to talk about�.
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of airing, this will have the additional (indirect) e�ect of a social multiplier: while it

immediately increases pro�ts to the cinemas, it also generates a higher demand in the

following periods. We can infer that this yields an incentive for movie producers to

create �surprising� movies in the sense that they are very successful in the �rst weeks

compared to the expectations. This may just be the reason to produce a black-and-white

silent movie nowadays.

3.3 Illustrative Example With Discrete Strategy Spaces

Before presenting the full model, we demonstrate the e�ects at force in a small illustra-

tive example with discrete action spaces.

There are two �rms producing an ex-ante homogeneous good: �rm A produces a

good with a deterministic value of v = 20e, and �rm B's good B is either of value

vB = 30e or vB = 10e with probability 0.5 each. Neither �rm knows the realized value

of �rm B's product. The price of all goods is 5e. Firms A and B sequentially choose

their locations a and b along a road at one of three locations: kilometer 0, 0.5 or 1.

Firm A is the �rst mover, and as a = 0 is equivalent a = 1, we restrict �rm A to the

right part of the interval. There are two consumers (each independently located at 0,

or 0.5, or 1 with probability 1/3): an early adopter who with probability 0.5 is either

completely informed or uninformed, and a laggard, who is completely uninformed about

product B's value and the early adopter's location, but observes the choice behavior of

the early adopter. A consumer has to pay 4.5e for traveling the 0.5 km to the next

location, and costs are linear. Consumers maximize their expected utility and the �rms

compete over the two consumers by their location choice.

Let β denote the consumer's belief that �rm B's product is superior. The expected

di�erence in value between B's and A's product is then given by

E[vB − vA] = β · 30e+ (1− β) · 10e− 20e = (2β − 1) · 10e. (3.1)

Consumers compare this di�erence to the di�erent transport costs between the �rms.

An uninformed early adopter perceives the goods' values to be the same (β = 0.5), and

so chooses the closer �rm. We assume that if �rms locate at the same position, an

uninformed early adopter at the same position chooses each �rm with probability 0.5

and chooses B (A) if he is located left (right) of the �rms. In this example the tie-

breaking rules out equilibria arising only due to the discrete action space.12

12Obviously, there are several other tie-breaking rules that are also compatible with rationality of
consumers, but any other tie-breaking rule would still lead to the result of one �rm not positioning
at the center of the market, which is a result driven solely by the recommendation e�ect described
later. The tie-breaking rule at hand is the discrete analogue of the one we employ in our model with



3.3. ILLUSTRATIVE EXAMPLE WITH DISCRETE STRATEGY SPACES | 105

For an informed consumer, i.e., β ∈ {0, 1}, the sure gain of buying the superior

product (10e) is always higher than possible transport costs (9e at the maximum), so

she always buys at the better �rm, no matter where she is located.

The belief of the laggard is of more interest, since she uses Bayes' rule to calculate

the probability of each �rm o�ering the superior product as follows. If �rm B was

chosen in the �rst period the updated belief is given by

βuB := Pr(vB = 30 | C1 = B) =
Pr(C1 = B | vB = 30)

Pr(C1 = B)
· Pr(vB = 30).

The probability that B is superior given A was bought in the �rst period, βuA, is derived

analogously as

βuA := Pr(vB = 30 | C1 = A) =
Pr(C1 = A | vB = 30)

Pr(C1 = A)
· Pr(vB = 30).

In general, these probabilities depend on the �rms' locations, and because of the

possibility that the �rst period consumer was informed, the probability that a product

is bought is always higher if it is superior, so that updating is informative and βuB > 0.5

(and βuA < 0.5). When �rms are located at the same spot, every consumer has to incur

the same transport costs for both �rms, and so the laggard always follows the decision

of the early adopter. If �rms are not located at the same spot, consumers compare the

expected additional value of the goods, as stated in Equation (3.1) to the additional

transport costs. For all symmetric positions of the two �rms, the choice probabilities

and thus the beliefs are the same and are calculated as βuB = 0.75 = 1− βuA.
If, however, b = 0 and a = 0.5, i.e., the �rms locations are asymmetric, βuB =

0.5·1+0.5·1/3
0.5·0.5+0.5·1/3 · 0.5 = 4/5 and βuA = 0.5·0+0.5·2/3

0.5·0.5+0.5·2/3 · 0.5 = 2/7, so that in this case βuB =

4/5 > 1− βuA = 5/7. A choice of B in period 1 increases the laggards con�dence in this

product more than a choice of product A, in particular a laggard is willing to travel an

additional distance of 0.5 to obtain product B instead of A if B was chosen in period 1,

but she is unwilling to travel the same distance to buy A instead of B if A was chosen.

a continuous action space (see Assumption 3.2 in Section 3.5). Basically, the tie-breaking rule is a
selection mechanism which rules out other possible equilibria. In particular, in the discrete model there
are equilibria in which both �rms locate at the same end of the market (locations 0 and 0 as choices of
�rm A and B, respectively, or 1 and 1) or at di�erent ends of the market (0 and 1 or 1 and 0 as choices
of �rms A and B, respectively). This is the case for instance under the �equal-split� tie-breaking rule,
in which each consumer (independent of his location) randomizes with equal probabilities whenever
the �rms are located at the same position. In addition to its plausibility in view of the model setup,
the tie-breaking rule at hand also supports the most plausible of the possible equilibria: the market
incumbent chooses the central position and the entrant chooses the niche position. A tie-breaking rule
opposed to the one used in the example at hand might favor the niche �rm in an analogous way and
would result in a second mover advantage, which also seems implausible considering the setup at hand.
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This is easily seen by using Equation (3.1) to compare the expected additional valuation

to the additional transport costs:

(2βuB − 1) · 10e = 7e > 4.5e > (2 · (1− βuA)− 1) · 10e ≈ 4.29e

All other beliefs can directly be obtained using these calculations because of the sym-

metry of the model. The induced asymmetry in the beliefs and the consequences for

the consumers' behavior are the driving e�ects for the results to follow.

The beliefs and the resulting behavior of the laggard partition the action space of the

�rms as visualized in Figure 3.1. In situations labeled D2 �rms locate at the maximal

distance from each other, and it will never be the case that all types of laggards follow

the behavior of the early adopter, as (2βuB − 1) · 10e = 7e < 9e. In situations labeled

D4 �rms locate at the same position and a laggard always follows the behavior of the

early adopter.

In situationD3B (D3A) the �rms positions are di�erent and asymmetric, furthermore

B (A) is the niche �rm here, thus the notation. As shown above, the laggards behavior

now depends on the history: If, for instance, B is the niche �rm, i.e., (a, b) ∈ D3B
L , all

consumers located at x = 0.5 will consume at �rm B after observing it was chosen in

the �rst period.13 The same holds true for consumers located at x = 1, as they have the

same (additional) travel costs as the consumers located at x = 0.5, once they traveled

to location 0.5. Consumers located at x = 0 will still consume at �rm B, even if they

observed C1 = A. Consumer updating is bene�cial for �rm B, as it is the niche �rm.

The reverse is true in situations labeled with D3A.
13Note, that we use subscripts L and R to indicate whether �rm B is positioned left or right of �rm

A.
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Figure 3.1: Partition of the action space for the discrete example.

Let D(a, b) denote B's (expected) demand if locations are (a, b). Firm A serves

the remainder of the market, so its demand is D̃(a, b) = 2 − D(a, b). To obtain

the equilibrium we need to calculate D(0.5, 0)
[
= D̃(1, 0.5)

]
, D(1, 1) [= D(0, 0)] and

D(0.5, 0.5) [= D(1, 0)]. It is easy to see that both �rms split the market equally in the

latter cases and the resulting demand equals D(0.5, 0.5) = 1. Additionally, we have

D(0.5, 0) = Pr(C1 = B)︸ ︷︷ ︸
1st period

+ P (C1 = B) · 1 + P (C1 = A) · 1/3︸ ︷︷ ︸
2nd period

= 5/12 + 5/12 + 7/36 = 37/36,

D(1, 1) = 1/2 · 1/2 + 1/2 · 5/6 + P (C1 = B) · 1 + P (C1 = A) · 0 = 2/3 + 2/3 · 1 = 1.33.

This implies that �rm B's best response to a, b∗(a), is given by b∗(1) = 1 and b∗(0.5) =

0. Using backward induction �rm A then chooses its best point of B's best response

function, and will locate at a∗ = 0.5, so that resulting equilibrium locations are a∗ =

0.5, b∗ = 0, i.e. an equilibrium in which �di�erentiate and conquer� prevails.14 Without

consumer learning, both �rms would locate at the market center, i.e., in an equilibrium

with symmetric minimum di�erentiation.

14Obviously, the same reasoning applies for situations with b ≥ a, i.e., those indexed with R in the
partition of the action space, and thus another equilibrium with di�erentiation is given by (a∗, b∗) =
(0.5, 1).
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3.4 Model Setup

To generalize the results obtained in the example with a discrete action space, we extend

the pure spatial competition model by introducing vertical di�erentiation, letting �rms

and consumers decide sequentially and letting consumers observe previous purchase

decisions. The full model is detailed below.

Since we are interested in the e�ect of the possibility to learn from other consumers'

purchases, we also present a benchmark model where consumer learning is not possi-

ble and we demonstrate that without consumer learning there would be no product

di�erentiation in our model.

Firms Two �rms A and B (both: �it�) produce (potentially) di�erentiated goods at

zero costs. The retail price is regulated and set to p > 0. The �rms' locations describing

their products' characteristics are con�ned to the unit interval and are denoted by a

and b for �rm A and B respectively, so that a ∈ A := [0, 1], and b ∈ B := [0, 1]. The

location choice of the �rms occurs sequentially, with �rm A choosing its location �rst,

and �rm B following. The situation if A chooses a ≤ 0.5 is equivalent to a situation

where A chooses a′ = 1 − a instead. Thus, it is without loss of generality to restrict

a ∈ [0.5, 1], and b ∈ B. Note that a situation with b ≥ a can be treated as the situation

where a′ = 1 − a and b′ = 1 − b. The presentation will therefore be based on the case

b ≤ a unless stated otherwise. If �rm B chooses a position, such that 0.5 < a < b, we

say that it positions on the short side of the market. The �rm that is closer to any of

boundaries of the interval [0, 1] will be called the niche �rm. Thus, B is the niche �rm

whenever b < a and b < 1− a, or b > a and b > 1− a.
A �rm's pro�t simply is the number of consumers served, multiplied with the exoge-

nous price p. Firms are risk neutral and since discounting future pro�ts does not alter

the results qualitatively, it is left out for simplicity.

Besides the horizontal di�erentiation as measured by the �rms' locations, the goods

are also of di�erent �value� to consumers. This value can be thought of as representing

a good's quality. There is uncertainty about the quality di�erential between the �rms'

products, which is randomly determined after the �rms have chosen their locations: the

value of �rm A's product is common knowledge and given by vA = v > 0, while the

second �rm's quality vB is either vB = v + δ or vB = v − δ with δ > 0, both of which

occur with probability 0.5.15 The realized value of vB is unknown to both �rms. Thus,

producers possess the following information when choosing their location: �rm A has no

information, so its information set is given by IA = {∅}, and �rm B knows IB = {a}.
15This modeling of the supply side can be considered as the �rst mover A being the market incumbent

with a known quality, while �rm B with an unknown quality is a new entrant to the market.



3.4. MODEL SETUP | 109

Firms play pure strategies. The strategy of �rm A is the choice of its location a,

while the strategy of the second mover B maps the location a of its competitor into its

own location, i.e., b : A → B with a 7→ b(a).

All cases with b > a can be described with the formulas derived for b ≤ a, so that in
the following we focus on this case and speci�cally analyze situations with b > a only

when necessary.

Consumers On the other side of the market, there are two consumers (both: �she�)

with heterogeneous preferences, who sequentially make their purchase decisions in peri-

ods t = 1 and t = 2. Consumers are exogenously sorted into being a laggard or an early

adopter. Each consumer buys at most one good and will be referred to by the period

she has the opportunity to make a purchase (an early adopter in period t = 1 and a

laggard in period t = 2).

Heterogeneity is modeled by assuming that each consumer t is described by a location

on the unit interval. In every period, the location of consumer purchasing in period t,

denoted by xt, is independently drawn from a uniform distribution on X := [0, 1]. It

measures consumer t's preference towards a good of a �rm F ∈ {A,B} located at

f ∈ [0, 1]. The closer the location of the consumer to the �rm where she buys (holding

everything else constant), the higher is the resulting utility. The ex-post utility of a

consumer located at x when buying the product from �rm F ∈ {A,B} located at

f ∈ [0, 1] is given by

u(x, F ) = vF − p− τ |x− f |,

where the last term with the real-valued scalar τ > 0 captures the transport costs. We

normalize utility to zero for the case in which a consumer does not buy any of the two

goods. Note that with vB being stochastic this Bernoulli utility function implies risk-

neutrality in money. As long as preferences are quasilinear and the ex-ante expected

utility of both products (gross of transportation costs) is the same, the results would

not change if consumers were risk-averse.

While it is generally possible that a consumer abstains from buying, we will make

the following assumption for convenience:

Assumption 3.1. Every consumer prefers to buy one good to not buying any good, i.e.,

v − δ > p+ τ .

In addition to the heterogeneous preferences, consumers di�er in their expertise

φ ∈ {u, i} about �rm B's product. Informed consumers (φ = i) observe the realization

of vB, whereas uninformed consumers (φ = u) only have the prior information that

vB = v + δ or vB = v − δ, each with probability 0.5. In each period, the consumer
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is informed with probability q ∈ (0, 1) and uninformed with probability (1 − q).16 A

consumer's expertise is independent of her location x and of the expertise of the other

consumer. A consumer's type in period t is thus given by (xt, φt).

In the second period, the laggard observes the action taken by the early adopter,

but neither the early adopter's location nor whether she was informed. Formally, let

C0 = ∅ and let C1 ∈ {A,B} be the choice of an early adopter, then the information set

of an uninformed consumer is given by Iut = {a, b, xt, vA, Ct−1} and that of an informed

consumer by Iit = Iut ∪ {vB}, for t = 1, 2.

Consumers form beliefs β about the probability of �rm B o�ering the product of

higher quality by mapping the available information I into the probability space, β :=

Pr(vB > v|I) ∈ [0, 1]. The belief of an uninformed consumer is the function βu :

A × B × {∅, A,B} → [0, 1], and that of an informed consumer is the function βi :

A × B × {∅, A,B} × {v − δ, v + δ} → [0, 1]. Note that we assume that a consumer's

location does not in�uence her belief.

The strategy of a consumer is a mapping Ct : A × B × X × [0, 1] → {A,B} from
public and her private information into a purchase decision, where C(a, b, x, β) is the

choice of a consumer with location x ∈ X , belief β ∈ [0, 1], and �rms locations a ∈ A
and b ∈ B.

Solution Concept and Timing Because of the uniform distribution of consumers,

the situation in which �rst-mover A chooses a ≥ 0.5 is equivalent to a situation where A

chooses a′ = 1−a instead. Therefore, we focus on identifying equilibria with a ≥ 0.5 in

the following and keep in mind that for each of these equilibria an analogous equilibrium

exists for the case that a ≤ 0.5.17

We employ the concept of a perfect Bayesian Nash equilibrium in pure strategies

to solve the game. We assume that there are only �second order e�ects� of the �rms'

locations on the consumers' belief β via the interpretation of the early adopter's choice

C1. This assumption �xes o�-equilibrium beliefs and is plausible, as �rms have no

information about the quality di�erential.

The timing of the game is depicted in the �gure below:

16In contrast to the above example with a discrete action space, we allow for informed laggards in
the second period in the model with continuous action spaces. The minor modeling di�erence in the
example was merely introduced to simplify calculations.

17We do not impose any further restrictions, such as the usual assumption b ≤ a. The coordination
issue of this assumption discussed in Bester et al. (1996) does not arise in our setup due to the sequential
location choice.
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A enters and

chooses a

knowing IA

−2

B enters and

chooses b

knowing IB

−1

vB realizes

0

Consumer 1

chooses C1 ∈
{A,B} knowing
Iφ1

1 with

φ1 ∈ {u, i}

1

Consumer 2

chooses C2 ∈
{A,B} knowing
Iφ2

2 with

φ2 ∈ {u, i}

2

Figure 3.2: Timing of the di�erentiate-and-conquer game

Discussing the Assumptions

Before solving the model, some of the assumptions deserve additional thought. Similar

e�ects as in this model are also be obtained in a model with endogenous prices, simul-

taneous choice of product di�erentiation, a continuously distributed quality di�erential,

and a continuous information structure (see Chapter 4).

Many other unit demand models, where the consumer's type is drawn from some

distribution G(·), are equivalent to models with a continuum of consumers of mass one

distributed according to G(·), because both formulations yield the same probabilistic

demand and thus lead to the same behavior of the �rms. However, since observing

choices of the whole population is completely informative in our model, this equivalence

does not hold. Nevertheless, introducing additional uncertainty to the model, for in-

stance, by assuming that the distribution of the �rst period consumers and the value of

q is uncertain reestablishes this connection even if the laggard observes choices of the

whole population. Alternatively, we could reinterpret our modeling assumption as each

laggard being drawn from a unit mass of consumers observing only one particular early

adopter also drawn from a (di�erent) unit mass of consumers.

In order to simplify the updating of an uninformed laggard, we restrict ourselves

to binary signals. One could well assume more than two possible levels of expertise so

that consumers would not either be completely informed or completely uninformed. We

leave out such speci�cations as this complicates the Bayesian updating and distracts

from the main issue under consideration.

Since the updated probabilities are di�erent for each history of the game, the (sets

of) indi�erent consumer types (see Assumption 3.2 in Section 3.5 and the discussion

below it) are also potentially di�erent for each history, meaning that in each period

t > 1, 2t−1 indi�erent consumers have to be determined, quickly making the model

intractable. The e�ects we wish to characterize are already apparent with one period

of updating, i.e., with two consumers, which is why we concentrate on this case.
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Di�erent cost functions than the linear one applied here do not eliminate the under-

lying e�ects of our model, as long as costs are increasing in distance.18 In the common

Hotelling model, quadratic costs enhance the incentive to di�erentiate and would thus

probably make the detection of the driving forces yielding the di�erentiation result in

our model more complicated.

As mentioned above, the assumption of exogenous prices is applicable for markets

in which the main endogenous determinant of the �rms' pro�t is the market share. We

show that, while without consumer learning the Principle of Minimum Di�erentiation

prevails, consumer learning is su�cient for the existence of equilibria with di�erentiated

products - even when prices are �xed. From a modeling perspective the assumption of

exogenous prices has two advantages: on the one hand it assures the existence of a pure-

strategy equilibrium (non-existence is a common problem in the original Hotelling model

with linear transport costs), and on the other hand it eliminates the competition e�ect,

which allows to more clearly identify the source of di�erentiation. Thus, the assumption

of exogenous prices is in favor of our focus on the e�ect of consumer learning.

The exogeneity of the quality di�erential seems plausible in many cases. For in-

stance, concerning the example of the movie �The Artist� and the movie industry in

general, it may well be that producers can not completely in�uence the (perceived) qual-

ity of a movie (see De Vany (2006) on this aspect of the movie industry). Also, note that

movies - and many other goods - are experience goods (see, e.g., De Vany, 2006), whose

value is revealed to consumers only after their consumption. Thus, in many cases even

�rms arguably do not know their product's relative quality (or the consumers' perceived

quality) ex ante. This directly implies that the �rms can not signal information about

the realized quality to consumers. If their location choice would signal information to

consumers, i.e., in a separating equilibrium, the information would already be revealed

before the �rst consumer's choice and social learning would not occur. Since the e�ects

of social learning by the consumers on the �rms' location choices are exactly what we

are interested in, situations with separating equilibria are not of our primary concern.

We thus impose the assumption that �rms are unaware of their quality in order to make

sure that social learning is possible.

Overall, while the assumptions may seem restrictive �rst, they allow us to fully

characterize the equilibria of this game. We conjecture that the underlying e�ects

identi�ed in this chapter emerge in many di�erent settings.

18We show later that Bayesian updating is una�ected by the cost function. Obviously, the demand
functions - and thus in our model the best response functions of the �rms - are not discontinuous
for quadratic costs. Nevertheless, they entail regions, in which the recommendation e�ect makes it
pro�table to di�erentiate.
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In the following sections it will become clear that the assumed setup is the most

conservative one leading to product di�erentiation: abstracting from consumer learning

leads to the usual result of (symmetric) minimal di�erentiation.

3.5 General Analysis of Optimal Consumer Behavior

The expected utility of a consumer with location type x and belief β is given by

u(x, β, a, b, A) = v − p− τ |a− x|, if she buys from �rm A, and by E[u(x, β, a, b, B)] =

v + (2β − 1)δ − p− τ |x− b|, if she buys from B. Clearly, the expected utilities depend

on a consumer's belief β and location x. For any consumer type x ∈ (b, a), the expected

utility from B's (A's) product decreases (increases) in x. For all types x that are not

located between the �rms, changing x a�ects both expected utilities in exactly the same

way, so that the di�erence of expected utilities is constant. The reason for this is that

for all these consumers the di�erence in distances to the two �rms is the same and so is

the di�erence in transportation costs between the �rms. This means that all consumers

with the same belief β located left of b or right of a must prefer the same �rm or are

indi�erent.

These observations imply that whenever there exists an unique indi�erent consumer

type, it must be located in the interval (b, a). A consumer located at x holding belief β

is indi�erent between the products of A and B if

E[u(x, β, a, b, B)]− u(x, β, a, b, A) = (2β − 1)δ − τ(|x− b| − |a− x|) = 0. (3.2)

We de�ne

x̄(β) :=
a+ b

2
+
δ

τ

(
β − 1

2

)
, (3.3)

which, for a given belief β, coincides with the consumer type x solving Equation (3.2)

whenever Equation (3.2) has a solution x ∈ (b, a). In this case, there exists an unique

indi�erent consumer type x ∈ (b, a) and it is given by x̄(β). Then, all consumers with

the same belief β and a location left (right) of x̄(β) must prefer B (A).

If x̄(β) = b (x̄(β) = a) the consumer with belief β and type x = b (x = a) is

indi�erent between both products and so are all types with the same belief located left

of b (right of a).

Inequality x̄(β) < b means that the consumer with belief β and located at x = b

prefers good A over B and thus this must be true for all consumers located left of x = b

and in fact for any consumer type with belief β. Similarly, if x̄(β) > a, all consumer

types x with belief β prefer good A.

We impose the following assumption on the behavior of indi�erent consumers:
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Assumption 3.2. If a 6= b, then all indi�erent consumer types buy from the �rm that

is located closer to them. If a = b ≥ 1/2 , then types x ≤ b of indi�erent consumers buy

from �rm B and the remaining indi�erent consumers buy from �rm A.

In the standard model of spatial competition à la Hotelling and in our model, situations

where sets of consumer types are indi�erent may emerge. Assumption 3.2 deals with

those cases. In the standard Hotelling model such a situation can only arise if �rms

locate at the same place. In contrast, in our model multiple consumer types may be

indi�erent if the distance between �rms is su�ciently small. The behavior described

in Assumption 3.2 is obtained as the limiting case of situations in which the distance

between the �rms' locations is marginally greater. The second part of Assumption 3.2

seems plausible in that light: as �rm B is the second mover, it can always choose to

locate in�nitesimally close to �rm A on each side, so that B intuitively chooses which

side to position itself on, even if both �rms are located at the same spot. If indi�erent

consumers behave otherwise than assumed, best responses may not be de�ned and a

pure-strategy equilibrium may cease to exist, so that only this behavior is compatible

with equilibrium. This argument is also put forward by Simon and Zame (1990) for

general discontinuous games involving �sharing rules� such as Assumption 3.2. Thus,

we only postulate it here to avoid complications due to o�-equilibrium-path behavior.19

With Assumption 3.2 and with b ≤ a, the above observations imply that there must

be one highest consumer type for a given belief that purchases from �rm B. We denote

by x̃(β) the threshold, such that all consumers with location x ≤ x̃(β) and belief β

choose the product of �rm B. Threshold x̃(β) equals the indi�erent consumer type in

(b, a) with belief β whenever it exists. Otherwise, x̃(β) = 0, if all consumers with belief

β prefer A, and in the analogous case, when all consumers with β prefer to buy from

B, x̃(β) = 1. Thus, the threshold type can be calculated as

x̃(β) =


0 if β < 1

2 − τ
δ · a−b2 ⇔ x̄(β) < b,

x̄(β) if β ∈
[

1
2 − τ

δ · a−b2 , 1
2 + τ

δ · a−b2

]
⇔ x̄(β) ∈ [b, a],

1 if β > 1
2 + τ

δ · a−b2 ⇔ x̄(β) > a.

(3.4)

As consumers are uniformly distributed over [0, 1], x̃(β) is constructed such that it

equals the probability of a consumer with belief β buying product B .

19In the light of our results, the recommendation e�ect, i.e., �rm B's incentive to di�erentiate, is
independent of Assumption 3.2, which merely determines the equilibrium behavior of �rm A.
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The consumer's optimal strategy with location x and belief β is always characterized

by

C(x, β) =

B if x ≤ x̃(β),

A if x > x̃(β).

Thus, to obtain the optimal consumer behavior we just need to �nd the relevant thresh-

old types x̃(β).

3.6 Equilibrium Analysis Without Consumer Learning

(Benchmark)

In our benchmark model, consumers are unable to infer information from the other

consumer's action. This is essentially the same as having two independent consumers

purchasing in period one. In all other aspects, the model remains unchanged. Our

benchmark model di�ers from Hotelling's original model in that prices are �xed, �rms

move sequentially, products are of di�erent quality, and some consumers possess in-

formation about the quality di�erential. Proposition 3.1 shows that this leads to the

�symmetric minimum di�erentiation� result also obtained by Hotelling. The result is

easily obtained by the following steps.

3.6.1 Consumer Behavior

Let us start with assuming b ≤ a. With the assumptions from above, an uninformed

consumer's belief in the �rst period must equal the prior, and we denote it by βu∅ :=

Pr(vB = v + δ) = 1/2. As there is no updating involved in the benchmark model,

according to Equation (3.4) the uninformed indi�erent consumer type

x̃(βu∅ ) =
a+ b

2
,

i.e., the midpoint between the �rms, characterizes the behavior of uninformed con-

sumers. Note that, given b ≤ a, whenever x̃(βu∅ ) > 0.5 (x̃(βu∅ ) < 0.5), �rm B (A) is the

niche �rm, i.e., it serves the smaller ex-ante market share.

Informed consumers possess all relevant information and hence their beliefs are the

same in all periods, depending only on which �rm's product is of higher quality. Thus,

from now on we write βiA := Pr(vB = v + δ|vB < vA) = 0 to denote the belief of an

informed consumer when A is the better �rm, and βiB := Pr(vB = v + δ|vB > vA) = 1
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analogously for the case where B sells the superior product. Using Equation (3.4) and

de�ning

b1(a) := a− δ

τ
,

which solves the equations

b s.t. x̄(βiA) = b and b s.t. x̄(βiB) = a, (3.5)

threshold types for informed consumers can easily be calculated as

x̃(βiA) =

x̄(βiA) := a+b
2 − δ

2τ if b ≤ b1(a)⇔ x̄(βiA) ∈ [b, a],

0 if b > b1(a)⇔ x̄(βiA) < b,
(3.6)

if A is the superior product, and

x̃(βiB) =

x̄(βiB) := a+b
2 + δ

2τ if b ≤ b1(a)⇔ x̄(βiB) ∈ [b, a],

1 if b > b1(a)⇔ x̄(βiA) > a,
(3.7)

in the case that B's product is of higher quality. Intuitively, if b > b1(a), i.e., �rm B

locates relatively close to �rm A, the additional transport costs when traveling to the

better �rm matter less than the additional value to informed consumers, and thus all of

them buy according to their signal. It can directly be seen that x̄(βiA) ∈ [b, a]⇔ x̄(βiB) ∈
[b, a], and furthermore that x̄(βiA) < b ⇔ x̄(βiB) > a. These two cases distinguish

whether �rms are su�ciently close to each other or not, such that all informed consumers

follow their signal.

3.6.2 Firm Behavior and Equilibrium

Combining the thresholds from above, �rm B's demand, given b ≤ a, calculates as

DL(a, b) = 2 ·
[q

2
(x̃(βiA) + x̃(βiB)) + (1− q)x̃(βu∅ )

]
=

a+ b if b ≤ b1(a),

q + (1− q)(a+ b) if b > b1(a),

where the subscript L denotes that �rm B is located left of A. As stated in the model

setup, it is without loss of generality to concentrate on situations where a ≥ 0.5. Clearly,

B's demand is increasing in b in both cases, so that with a ≥ 0.5, B can never pro�t

from choosing b > a, implying that B's best response b∗(a) is given by one of the two
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maximal points of each segment, i.e., b∗(a) ∈ {b1(a), a}, where b1(a) is a feasible choice

whenever b1(a) ≥ 0.

Firm A's goal is to minimize B's demand by choosing its optimal point of B's best

response function. In order for B to prefer b = b1(a) to b = a, a must be su�ciently

high, in particular, as shown in Appendix 3.A.1 it must exceed 0.5. For any a > 0.5,

B's demand is higher than 1. By choosing a = 0.5, A induces B to choose b = a, which

leads to a demand of 1 for each �rm, the highest demand A can generate in this model.

The result in the benchmark model is thus as follows:

Proposition 3.1 (Symmetric Minimum Di�erentiation). In the unique equilibrium of

the model without consumer learning, �rms do not di�erentiate their products and equi-

librium locations are a = b = 0.5.

Proof. See Appendix 3.A.1.

3.7 Equilibrium Analysis With Consumer Learning

This section shows that the possibility to learn from previous consumers' actions can

drastically change the outcome of the game compared to the benchmark model. With

the consumer's ability to observe her predecessor's action, new e�ects arise in the model

and Proposition 3.1 will not generally hold. Instead, our main result, Proposition 3.3,

shows that for particular values of the parameters at least one �rm moves away from

the center, and di�erentiation can arise in equilibrium. We postpone this result to the

end of the section in order to now guide the reader through its construction. We again

let the subscript L indicate that �rm B positions left of �rm A, i.e., b ≤ a, whereas

the subscript R represents the opposite case. We then make use of the fact that all

situations b > a can be described using the formulas obtained for b ≤ a.

3.7.1 Informed Consumers and Uninformed Early Adopters

The decision of the consumer in the �rst period does not di�er from the benchmark

model, so that their behavior is fully characterized by x̃(βu∅ ) if uninformed and - de-

pending on which �rm is superior - by x̃(βiA) or x̃(βiB) if informed. As mentioned above,

because informed consumers already have perfect information about both goods, an in-

formed consumer in t = 2 behaves as one in period t = 1. In what follows, we discuss

peculiarities only occurring in the model with consumer learning.
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3.7.2 Uninformed Laggards: Updating and the Recommendation Ef-

fect

An uninformed laggard uses her information to update her belief βu(a, b, C1) : A×B×
{A,B} → [0, 1]. Let βuC1

:= βu(a, b, C1) denote the belief of an uninformed laggard

given that C1 ∈ {A,B} was chosen in the �rst period. Although we assume that the

beliefs do not depend on the �rms' locations directly, a and b have an indirect e�ect

via the interpretation of the predecessor's action, C1. Observing C1 becomes useful

for uninformed consumers, because of the possibility that the previous consumer was

informed. Hence, history C1 can now contain information that allows an uninformed

laggard to update her estimate of which �rm produces the good of higher value. Using

Bayes' rule she will calculate her belief βuC1
of the probability that �rm B is the higher

quality �rm as

βuC1
= Pr(vB > v|C1) =

Pr(C1|vB > v)

Pr(C1)
· Pr(vB > v).

In the �rst period, the products of both �rms have the same expected utility (gross

transportation costs) for uninformed consumers. This however is not the case in the sec-

ond period, as the updated probability βuC1
must be used to calculate expected utilities

when comparing the utility of buying good A to the expected utility from purchasing

�rm B's product. The updating introduces an asymmetry in the expected valuations

of the products, implying that in contrast to period t = 1, it is possible that no type of

uninformed consumer is indi�erent between the products.

It is thus necessary to distinguish three cases for any given belief βuC1. Either there

is an unique indi�erent consumer type, meaning it is in the interval [b, a],20 or the

consumer located at a prefers B or the consumer type at b prefers A. In the latter two

cases the same holds for all types right of a, respectively left of b; the intuition behind

this was described in Section 3.5. Using Equation (3.4) we have

x̃(βuC1
) =


x̄(βuC1

) := x̃(βu∅ ) + δ
τ

(
βuC1
− βu∅

)
if x̄(βuC1

) ∈ [a, b],

0 if x̄(βuC1
) < b,

1 if x̄(βuC1
) > a.

(3.8)

The uninformed indi�erent consumer for the case that it is in [b, a], i.e., x̄(βuC1
) ∈ [a, b],

can nicely be interpreted, in that it is the �rst period's uninformed indi�erent type,

shifted to the left (right) by a term that weighs the product of the additional likeliness

20For the case of sets of indi�erent consumers their behavior is determined by Assumption 3.2.
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that B is the superior �rm, if the choice in the �rst period was �rm B (�rm A), and the

excess utility from choosing the better product against the additional transport costs.

In the literature on social learning (see, e.g., Smith and Sørensen (2000)), �herding�

is de�ned as a behavior, where an agent's action is independent of her private signal:

all information she uses comes from the (possibly updated) public belief derived from

the behavior of others. The situation where an uninformed laggard always follows the

early adopter can be viewed from a similar perspective: an agent chooses to buy from

one �rm using information which only comes from the observed behavior of other con-

sumers. Thus, in our model herding does not mean that imitation dominates private

information, but rather that imitation dominates own (ex-ante) tastes. We could ex-

tend our model to the case where signals are not completely informative and �herding�

consumers additionally ignore the information revealed by their own private signal.

The results that follow crucially depend on the behavior of an uninformed laggard,

which in turn is dictated by her belief. Bayes' rule is used to calculate the updated

probability that B is the superior �rm given C1 = B as

βuB = Pr(vB > v|C1 = B) =
Pr(C1 = B|vB > v)

Pr(C1 = B)
· Pr(vB > v)

=
qx̃(βiB) + (1− q)x̃(βu∅ )

q(x̃(βiA) + x̃(βiB)) + (1− q)2x̃(βu∅ )
.

(3.9)

The updated probability that vB > vA after observing C1 = A is calculated similarly,

and given by

βuA = Pr(vB > v|C1 = A) =
Pr(C1 = A|vB > v)

Pr(C1 = A)
· Pr(vB > v)

=
q[1− x̃(βiB)] + (1− q)[1− x̃(βu∅ )]

q{[1− x̃(βiA)] + [1− x̃(βiB)]}+ (1− q) · 2 · [1− x̃(βu∅ )]
.

(3.10)

It was shown before, that x̃(βiA) < x̃(βiB), so that we can see from Equations (3.9)

and (3.10) that βuB > 0.5 > βuA, meaning that observing C1 = B (C1 = A) increases

(decreases) the probability that B sells the good of higher value, just as one would

expect.

Letting the fraction of informed consumers approach zero, that is q → 0, the �up-

dated� probabilities approach the prior: βuA, β
u
B → 1

2 . Overall, we can order all relevant

beliefs according to 0 = βiA < βuA < βu∅ = 0.5 < βuB < βiB = 1.

An interesting observation that can be made with regard to the updated probabili-

ties, is that product di�erentiation has two e�ects for a �rm. Suppose that both �rms

are symmetrically positioned around 0.5, i.e. a+ b = 1. In this case a purchase of each

good is equally informative to uninformed laggards as βuB = 1− βuA. Now consider �rm
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Bs' incentives to increase the di�erentiation to A's product. If b ≤ a, this means that

B considers decreasing b. Increasing the product di�erentiation, which means that B

is now producing a �niche product�, makes it less likely that product B is chosen by

uninformed consumers in the �rst period, thus Pr(C1 = B) and Pr(C1 = B|vB > v)

and therefore the nominator and the denominator of Equation (3.9) get smaller. Since

b a�ects all threshold types x̃(·) in Equation (3.9) in the same way, the e�ect on the

denominator is twice as large as the one on the nominator and the updated probability

that B's product is superior given it was chosen in the �rst period, βuB, increases, i.e.,

∂βuB/∂b < 0. This mechanism lays the foundation for the �recommendation e�ect�.

Intuitively, since a niche product is a good match to relatively few consumer types

(compared to a mainstream product), if it was chosen in t = 1, it is more likely that

this was due to superior information about the quality than due to a better match of

the product's characteristic and the consumer's taste.

An opposing e�ect is created regarding the updated probability, βuA. With A being

the mainstream product (compared to B), an observed choice of it in the �rst period

was more likely induced by a good match (a consumer located close to a) than by an

informed consumer.

Put di�erently, the increased con�dence that a product is of superior quality after

having observed that it was bought in the �rst period, is higher for a niche product than

for a mainstream product. Those are precisely the e�ects for which Tucker and Zhang

(2011) �nd empirical evidence by examining the usefulness of popularity information

for what they call products of �narrow� and �broad appeal�.

The next subsections will show that, because of the recommendation e�ect, the (ex-

pected) demand of �rm B will not be monotonically increasing the smaller the distance

to �rm A gets. Clearly, in the benchmark model it is monotonically increasing in that

distance. It will be shown that the introduction of the recommendation e�ect can dra-

matically change the equilibria of the game, not only for the above model, but also for a

hypothetical model where the two �rms choose their locations simultaneously (but the

rest of the model is unchanged).

3.7.3 Firms' Expected Demand

Having calculated the threshold types of the consumers, B's demand for b ≤ a is given

by

DL(a, b) = q
[
x̃(βiA) + x̃(βiB)

]
+ (1− q)

[
x̃(βu∅ ) + Pr(C1 = A)x̃(βuA) + Pr(C1 = B)x̃(βuB)

]
. (3.11)
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It was shown in the previous sections that the threshold for a given belief β, x̃(β), can

either be at an interior value, meaning in the interval [b, a], or it equals 0 or 1. As x̃(β)

is shifted away from x̃(βu∅ ) = (a + b)/2, whether the threshold for some belief β is at

an interior level, or not, depends on the distance between the two �rms. Only for a

su�ciently large distance, x̃(β) can be at an interior level. Equations (3.4) and (3.8)

show that the necessary distance between �rms' locations implying x̃(β) to be interior

is increasing with the belief, and, by Equation (3.3), also ∂x̄(β)/∂β > 0. Hence, the

threshold type for informed consumers is always shifted further away from x̃(βu∅ ) than

the one of the uninformed laggards, meaning that x̄(βuA) ≥ x̄(βiA) and x̄(βuB) ≤ x̄(βiB).

Thus, x̄(βuB) < a or x̄(βuA) < b directly imply x̄(βiA) < b, x̄(βiB) > a. It was already

argued that x̄(βiA) /∈ [b, a]⇔ x̄(βiB) /∈ [b, a] and because a �rst period purchase from one

�rm increases the belief that it o�ers the superior product, a situation with x̄(βuB) = b

or x̄(βuA) = a can not occur.

This leaves us with �ve qualitatively di�erent combinations of threshold types in-

duced by di�erent tuples (a, b). More precisely, in Proposition 3.4 in Appendix 3.A.2

we show that for each con�guration of the values of the parameters δ, τ and q there is

a unique partition DL of {(a, b) ∈ A× B|b ≤ a} given by

1) x̄(βiA), x̄(βiB) ∈ [b, a], x̄(βuB), x̄(βuA) ∈ [b, a],

2) x̄(βiA), x̄(βiB) /∈ [b, a], x̄(βuB), x̄(βuA) ∈ [b, a],

3A) x̄(βiA), x̄(βiB) /∈ [b, a], x̄(βuB) ∈ [b, a], x̄(βuA) /∈ [b, a],

3B) x̄(βiA), x̄(βiB) /∈ [b, a], x̄(βuB) /∈ [b, a], x̄(βuA) ∈ [b, a],

4) x̄(βiA), x̄(βiB) /∈ [b, a], x̄(βuB), x̄(βuA) /∈ [b, a].

We use the notation DL to indicate that B is located left of A and D3F to imply that

�rm F ∈ {A,B} is the niche �rm in this region.

For b > a there also exist �ve qualitatively di�erent and mutually exclusive situations

described by the threshold types x̄(·)′ := 1 − x̄(·), which induce a partition DR of

{(a, b) ∈ A × B|b > a}, where the R symbolizes B being located right of A. The

partition is given by Dj
R obtained from the de�nition of DL, by replacing all a, b and

x̄(·) by (a′, b′) := (1 − a, 1 − b) and x̄(·)′. Thus, D := DL ∪ DR describes a partition

of the whole action space A× B. Further below we will describe the boundaries of the

respective elements of the partition in more detail.

Each element of the partition leads to a speci�c form of B's demand, and we will

denote B's demand in any given part by D(a, b) = Dj
S(a, b) i� (a, b) ∈ Dj

S ∈ D for

j ∈ {1, 2, 3A, 3B, 4} and S ∈ {L,R}.
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If �rm B chooses a position such that b > a and additionally a ≥ 0.5, we say that it

positions on the short side of the market. Figure 3.3 depicts the partition of the action

space and visualizes many results we obtain in the following.

a

b

1 − ā 0.5 ā 1
0

1

1 − b↓3(1 − a)

1 − b↑3(1 − a)

1 − b1(a)

D1
L

D2
L

D3A
L

D3B
L

D4
LD4

R

D3B
R

D3A
R

D2
R

D1
R

b↑3(a)

b↓3(a)

a = b

(a) Generic partition of the action space.
Note that the graphs for a < 0.5 are point
re�ection at (0.5, 0.5) of the graphs for a ≥
0.5. The gray area depicts the short side.
The little ticks indicate which region the
respective boundaries belong to.

(b) Firm B's demand as an area over the
action space.

Figure 3.3: Visualization of the partition of the action space and the implied form of
�rm B's expected demand. (Parameters: q = 0.4, τ = 2, δ = 1)

For a �xed a, we can calculate the boundaries between the di�erent regions by choosing b

such that the threshold consumer types of the respective parts of the partition are at the

location of one of the �rms. In addition to b1(a) as de�ned in the benchmark model,

there are two further points of discontinuity of B's demand, namely the two points

where, for each history C1 and for a given a, the unique indi�erent uninformed laggard

ceases to exist. Whereas x̃(βiA) = 0 implies x̃(βiB) = 1 and vice versa, this generally is

not the case for x̃(βuA) and x̃(βuB). Here, one threshold type may still be interior while

the other already is at a corner value. Whenever �rms are not symmetrically positioned

around 0.5, the updating is asymmetric, so that the thresholds' distances from (a+b)/2

are not the same. Those two discontinuity points are implicitly characterized by the
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following equations stating that the indi�erent type in period 2 after A (B) was chosen

in the �rst period is located at b (a):

b s.t. x̄(βuA) = b ⇔ b =
a+ b

2
+

δ

2τ
(2βuA − 1)

⇔ δq

τ
=(2− q)(a− b)− (1− q)

(
a2 − b2

)
, (3.12)

and

b s.t. x̄(βuB) = a ⇔ a =
a+ b

2
+

δ

2τ
(2βuB − 1)

⇔ δq

τ
=q(a− b) + (1− q)

(
a2 − b2

)
. (3.13)

Since both equations are quadratic in b, they both have two solutions. As shown in

Lemma 3.2 in Appendix 3.A.2, at most one of those solutions, for each equation, lies

in the permissible range of [0, 1]. Those permissible solutions will in the following be

referred to as b↓3(a) for Equation (3.12) and b↑3(a) for Equation (3.13). They are the

discontinuity points in B's demand and mark the boundaries between demand parts

D2
L, D

3B
L , and D4

L, or between D
2
L, D

3A
L , and D4

L.

To illustrate the underlying mechanism of the discontinuity in the demand of �rm

B, suppose that b is chosen such that x̄(βuB) = a, meaning that �rm B positions itself at

the location b↑3(a), and all uninformed laggards to the right of a are indi�erent between

both �rms. If B instead chose a location slightly smaller than b↑3(a), this would increase

the transport costs of all consumers located at or to the right of a, meaning that those

uninformed laggards would then prefer A's product. On the other hand, a location b

slightly larger than b↑3(a) would induce all those uninformed laggards to buy the product

from �rm B. Taken together this implies that at b↑3(a), B's demand has an upward jump.

Thus, we use the notation �↑�.
Similar reasoning leads to the observation that B's demand jumps downward at

b↓3(a), as at this point the whole mass of consumers to the left of b switches from

preferring B's good to preferring the one of �rm A if C1 = A. Thus, overall we have

x̃(βuA) =

x̄(βuA) := a+b
2 + δ

2τ (2βuA − 1) if b ≤ b↓3(a)⇔ x̄(βuA) ∈ [a, b],

0 if b > b↓3(a)⇔ x̄(βuA) < b.
(3.14)

if A is the superior product, and

x̃(βuB) =

x̄(βuB) := a+b
2 + δ

2τ (2βuB − 1) if b ≤ b↑3(a)⇔ x̄(βuB) ∈ [a, b],

1 if b > b↑3(a)⇔ x̄(βuB) > a.
(3.15)
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The calculations in Appendix 3.A.2 show that for small a we have b↑3(a) < b↓3(a)

and b↑3(a) > b↓3(a) for larger a. By a = ā we denote the location of �rm A, so that

b↓3(a) = b↑3(a). In the case of b↑3(a) < b↓3(a), B's �middle� demand is characterized by

D3B
L and �starts" with an �upward jump�. In the case of b↑3(a) > b↓3(a), B's �middle�

demand is characterized by D3A
L and �starts" with a �downward jump�. To understand

these points intuitively, recall, that in order for x̃(βuB) to be at an interior value, the

distance between a and b must be large enough and that updating is more favorable for

a niche �rm, meaning that x̃(βuB) is shifted further from (a+ b)/2 than x̃(βuA) whenever

�rm B is the niche �rm. Depending on a, it can be the case that the distance between a

and b at which x̃(βuB) stops being at an interior level is obtained with B being the niche

�rm, i.e., b↑3(a) < 1− a, or not. Whenever x̃(βuB) = 0 and B is the niche �rm, we are in

region D3B
L with resulting demand D3B

L . This will happen if a is su�ciently small. If a

is large enough so that x̃(βuB) stays at interior levels as long as A is the niche �rm, x̃(βuA)

changes to its corner value �before� x̃(βuB) does, and the applicable region is D3A
L with

the corresponding demand. The transition between those two situations is obtained

for a = ā, which plays a crucial role in the following equilibrium characterization. At

this point, b↓3(a) = b↑3(a), meaning that (only with this location a) x̃(βuA) = 0 implies

x̃(βuB) = 1 and vice versa, hence, no �rm is a niche �rm when either x̃(βuF ), F ∈ {A,B}
stops being at an interior level. If a = ā, then (a, b) /∈ D3B

L and (a, b) /∈ D3A
L for

all b ≤ a, and so B's demand does not contain demand part 3, for smaller (larger) a,

(a, b) ∈ D3B
L ((a, b) ∈ D3A

L ) for any b ≤ a.
The behavior of consumer types x̃(·) determines which part of the demand functions

the discontinuity points belong to (see Lemma 3.6 in Appendix 3.A.2 for a complete

description of the boundary points in the unique partition of the action space). By

construction these types are indi�erent and their behavior is pinned down in Assumption

3.2 to guarantee the existence of equilibrium.

From Equation (3.11) it is easy to see that the demand for b ≤ a is increasing in a

and b as long as no threshold type changes from being interior to 0 or 1, which implies

that the demand in each part Dj
L(a, b) is increasing in a and b (see also Lemma 3.5 in

Appendix 3.A.2). By symmetry, demand in each part Dj
R(a, b) is then decreasing in a

and b.

With these observations and the above description of the demand parts, we can

depict B's demand for a �xed a and varying choices of b, as is done in Figure 3.4, which

shows the three generic situations that may occur in our model. Each of the di�erent

panels in this �gure can be viewed as �slice� cut out of the demand depicted in the right

panel of Figure 3.3 for a �xed a.
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(a) B's expected demand given a = 0.5 (exploiting
the recommendation e�ect is advantageous for �rm
B). Note: b1(0.5) = 0, i.e., D1 is not available for
B.
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(b) B's expected demand given a = ā = 0.6.
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(c) B's expected demand given a = 0.75 (exploiting
the recommendation e�ect is not advantageous for
�rm B).

Figure 3.4: B's expected demand as a function of the chosen location b for three dif-
ferent locations of A. In Panel (a), b↓3 > b↑3, so that D3 of the demand is an upward
step. Reversed situation in Panel (c) and no jump in Panel (b). The parameters yield
an equilibrium with asymmetric central di�erentiation (see Proposition 3.3), which is
visualized also by the dashed line. (Parameters: q = 0.4, τ = 2, δ = 1)

3.7.4 Firms' Best Responses and Equilibrium

In the description of the di�erent parts of the demand it was argued that B's demand

is increasing in b in each part. Thus, for a given a ≥ 0.5, the demand of �rm B is

maximized by setting b equal to one of the points b = b1(a), b = b↓3(a), b = a, or by

b = 1 − b↓3(1 − a) > a. Point b = 1 − b↓3(1 − a) > a is the only point right of a that

can ever be optimal, since for the highest points in the other demand parts with b > a,
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there is a corresponding point left of a yielding a higher demand given that a ≥ 0.5. For

ease of notation we de�ne the value functions V j
S (a) with j ∈ {1, 2, 3, 4}, S ∈ {L,R} to

equal B's demand if it locates optimally in part j of its demand left (S = L) or right

(S = R) of a. Let the function VS(a) denote the maximum of all value functions V j
S (a)

and let V (a) be the overall maximum, that is the maximum of V 3
R(a) and VL(a).21 B's

best response to any a can then be written as

b∗(a) ∈ arg max
b∈{b1(a),b↓3(a),a,1−b↓3(1−a)}

V (a)

We are interested in equilibria where the outcome is not symmetric minimal dif-

ferentiation, in particular when �rm B prefers to di�erentiate from the center, which

follows whenever

V 3
L (0.5) > V 4

L (0.5). (BDC)

Given that demand is shared equally when both �rms locate at the center (i.e. V 4
L (0.5) =

1), Condition (BDC) implies that, whenever A locates at the center, B's demand is

higher if b = b↓3(0.5) than if b = a = 0.5. This directly implies, that whenever Condition

(BDC) holds, both �rms locating at the center can not be the outcome of any equilibrium

in this game.

In a simultaneous model, both �rms' reaction function would be given by the one

of �rm B in our model. For any division of market shares when both locate at the

center, at least one �rm has a total demand that is not greater than one, so that at

least this �rm has an incentive to deviate to b↓3(0.5). Thus, the result of �symmetric

minimum di�erentiation� would also not be obtained in a model where the two �rms

choose their locations simultaneously. In such a model no equilibrium in pure strategies

exists, which is why we concentrate on the model with sequential location choice of the

�rms.22

The following proposition summarizes those �rst �ndings, the full equilibrium char-

acterization for the sequential location choice model follows in the next proposition.

Proposition 3.2. For su�ciently small values of δq
τ , Condition (BDC) holds. In this

case, the strategies from the benchmark model do not constitute an equilibrium, irrespec-

tively of whether the �rms choose their locations simultaneously or sequentially.
21As indicated above, we show in Lemma 3.7 in Appendix 3.A.3, that B's demand on the short side

obtains its maximal value via V 3
R(a). The formal de�nition of V (·) can be found in Corollary 3.3 in

Appendix 3.A.3.
22As symmetric minimum di�erentiation is no equilibrium in a simultaneous model, in a hypothetical

pure strategy equilibrium at least one �rm must be located at a location di�erent from 0.5. Firms would
either share the market equally or one �rm would serve more than half of the demand. In any case, at
least one �rm would have an incentive to relocate.
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With simultaneous location choice, no equilibrium in pure strategies exists.

Firm B's demand for all b ≤ a consists of the same parts for any a < ā or for any

a > ā, and since every single V j
L(a) is increasing in a, the same must be true for VL(a)

for any point but ā. Clearly, V 3
R(a) is decreasing in a. Firm A's problem is given by

mina V (a), which is either obtained by equalizing VL(a) and V 3
R(a) or by setting a = ā,

where VL(a) potentially has a downward jump. Setting a = 0.5 equalizes VL(a) and

V 3
R(a), but there might also be some a > ā equalizing the two value functions, so that

a∗ ∈ arg min
a∈{ā,a′}

V (a),

where a′ = maxa s.t. VL(a) = V 3
R(a).

Firm A thus decides between inducing two qualitatively di�erent situations. By

setting a = a′, it induces B to di�erentiate and exploit the recommendation e�ect,

either left of a, then a = a′ = 0.5, or right of a, then a = a′ > ā. For some particular

values of the parameters, A can keep B from di�erentiating by granting a relatively high

(ex-ante) market share to �rm B, which might be obtained by a = ā.

Which of the situations is preferred by �rm A depends on whether

V 3
L (0.5) ≤ V 4

L (ā), (ADC)

which states that �rm A prefers to induce di�erentiation from the center. If �rm A

does not prefer to induce di�erentiation from the center, i.e., for its optimal decision a∗

it holds that a∗ > 0.5, �rm B might still want to di�erentiate on the short side:

V 4
L (ā) ≤ V 3

R(ā), (BDS)

states that �rm B prefers to locate at 1− b↓3(ā) instead of b = a = ā.

The three di�erent situations are depicted in Figure 3.5. The complete parameter

space is characterized in Figure 3.6 further below.
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(a) δ/τ = 0.5, q = 0.4 (b) δ/τ = 1, q = 0.1

(c) δ/τ = q = 0.25

Figure 3.5: Combinations of the value functions induced by particular values of the
parameters. In Panels (a) and (b), B never pro�ts from di�erentiating on the short side
of the market. In Panel (a), V 4

L (ā) > V 3
L (0.5), so that a∗ = 0.5. Reversed situation in

Panel (b), and a∗ = ā. In Panel (c), V 3
R(ā) > V 4

L (ā), and a∗ = max a s.t V 3
R(a) = V 4

L (a).

Conditions (BDC), (ADC) and (BDS) distinguish the equilibria and are used to

derive the respective parameter restrictions stated in Proposition 3.3. Note that (BDS)

implies that (ADC) is violated, which in turn implies (BDC).

Proposition 3.3. In the model with consumer learning, we obtain the following results.

1. Conditions (BDC) and (ADC) are necessary and su�cient conditions so that the

locations are a∗ = 0.5 and b∗ < 0.5 in the unique equilibrium (Central Differenti-

ation Equilibrium).

2. If Conditions (ADC) and (BDS) do not hold the locations are a∗ = b∗ > 0.5 in

the unique equilibrium (Asymmetric Minimum Differentiation Equilibrium).
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3. Condition (BDS) is a necessary and su�cient condition so that there exist an

equilibrium (not necessarily unique) with locations b∗ > a∗ > ā > 0.5 (Short Side

Differentiation Equilibrium).

Uniqueness is up to symmetry, as to any equilibrium with (a∗, b∗) there exists an anal-

ogous equilibrium with (1− a∗, 1− b∗).

Proof. See Appendix 3.A.3.

The proposition shows that in two of the described equilibria the strategy �di�erentiate-

and-conquer� prevails. Su�cient conditions for the equilibria can be calculated as fol-

lows (see Corollary 3.4 of Appendix 3.A.3 for details):

δq

τ
< 0.192⇒ V 3

L (0.5) > V 4
L (0.5) (BDC)

δq

τ
> 0.166, q < 0.4⇒ V 3

L (0.5) ≤ V 4
L (ā) (ADC)

If both those su�cient conditions are ful�lled, equilibrium locations are b∗ = b↓3(0.5) <

a∗ = 0.5. If

δq

t
< 0.079⇒ V 3

R(ā) > V 4
L (ā) (BDS)

holds, there is an equilibrium with b∗ = 1 − b↓3(1 − a) > a > ā. We only state the

su�cient conditions here, as there exist no closed form solutions to the necessary and

su�cient conditions, which are implied by the inequalities.

The following �gure depicts the necessary and su�cient conditions on the values of

the parameters inducing the equilibria, as well as the (weaker) su�cient conditions for

Conditions (BDC) and (ADC), and additionally (BDS).
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Figure 3.6: The �gure depicts the necessary and su�cient parameter restrictions of the
equilibria stated in Proposition 3.3. The black dot shows that the parameter combina-
tions used in Figure 3.4 ful�lls the conditions stated in Conditions (BDC) and (ADC).

Figure 3.6 shows that δq
τ has to be su�ciently small for either of the �new� equilibria

(with di�erentiation) to exist. The reason is that for all equilibria, �rm B must want to

deviate from a situation with symmetric minimum di�erentiation, which is formalized

by condition (BDC). For di�erentiation to matter, δqτ must not be too large. A large

fraction implies that either the relative gain from choosing the higher quality product, δτ ,

or the likelihood that the �rst consumer is informed, q, is high. This makes it especially

promising for uninformed consumers to follow the previous consumers' behavior even

for large distances between the two �rms' locations, in turn making di�erentiation

unattractive for the �rms.

As δq
τ decreases, ā approaches 0.5, which has two e�ects. Firstly, this makes it less

costly for �rm A to locate at ā, thereby granting a relatively high ex-ante market share

to �rm B. Secondly, as ā→ 0.5, demand at the sides left and right of ā are getting more

and more alike, implying that it is �more likely� that B also wants to di�erentiate on

the short side of the market, given that it prefers to do so if a = 0.5.
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In contrast to Hotelling's result of �symmetric minimum di�erentiation� where both

�rms choose to locate at the center, the �rms' positions are not symmetric in any of the

�new� equilibria from above. The doubly sequential nature of the game clearly makes

�rm A worse o� compared to the situation where consumers decided simultaneously (or

were unable to observe the others' decisions). This also contrasts Tabuchi and Thisse

(1995), who �nd asymmetric pure strategy equilibria with a �rst-mover advantage.23

3.7.5 Welfare

We use an utilitarian approach to compare the welfare induced by the three new equilib-

ria (central di�erentiation [b∗ < a∗ = 0.5], short side di�erentiation [0.5 < a∗ < b∗] and

asymmetric minimum di�erentiation [0.5 < a∗ = b∗]) in the model with consumer learn-

ing to that of the equilibrium with symmetric minimum di�erentiation [a∗ = b∗ = 0.5]

in the benchmark model.

We start by comparing the equilibrium with central di�erentiation under consumer

learning with the symmetric minimum di�erentiation result in the benchmark model.

First, note that producer surplus is the same in both equilibria. When analyzing con-

sumer surplus it is convenient to distinguish agents according to their di�erent informa-

tion. An informed consumer will have the same expected gain in both equilibria, which

is given by gi = v + δ. However, in the di�erentiation equilibrium she has additional

expected transport costs due to the fact that she might need to travel to niche �rm B

instead of the market center with probability 0.5.24 These additional costs are given by

∆ci = M/2 with M as visualized in Figure 3.7 below.

23Bester et al. (1996) �nd asymmetric equilibria in mixed strategies in a game with simultaneous
location choice (followed by simultaneous price setting).

24Note that when comparing expected transport, any location di�erent from the center of the market,
i.e., f 6= 0.5, f ∈ {a, b}, implies additional expected transport costs compared to those of a �rm located
at the center, i.e. f = 0.5, f ∈ {a, b}: the decrease in expected costs for the consumers located closer
to the �rm with f 6= 0.5, f ∈ {a, b} does not outweigh the increase in expected costs of the consumers
located further away from that �rm.
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0

x̃(βuA) =

b↓3(0.5)

x̃(βu∅ )

0.5

b↓3(0.5)+

0.5

x̃(βuB) =

1

−τb↓3(0.5)

−τ/2

−τ [1−
b↓3(0.5)]

O

N

M

A A

Figure 3.7: The �gure depicts transport costs in the equilibrium of the benchmark
model (b∗ = a∗ = 0.5) and the central di�erentiation result of the model with consumer
learning (b∗ = b↓3(0.5) < a∗ = 0.5). Indi�erent types are depicted for the model with
learning.

In the equilibrium with central di�erentiation, �rm A is at the same location as in

the benchmark model, namely at a = 0.5. For (completely) uninformed consumers,

both �rms have the same expected quality and �rm A's quality is deterministic (and

thus the same in both models regardless of the available information). This implies that

uninformed consumers can obtain the same expected utility in the model with learning

as in the model without learning, whenever they choose to purchase good A in the

model with learning. A revealed preference argument then implies that all uninformed

consumers must be (weakly) better o� in the model with learning.

Although the simple argument is enough to show that uninformed consumers (weakly)

bene�t from the outcome of the model with learning, we can go into further detail, by

examining the uninformed consumers in the two periods and the di�erent possible his-

tories separately.

The uninformed early adopter (t = 1) unambiguously bene�ts in the central di�er-

entiation equilibrium: while her expected gain remains the same (gu1 = v), the expected

transport costs decrease by ∆cu1 = x̃(βu∅ ) · [N + O], with N and O as visualized in

Figure 3.7, due to the fact that di�erentiation allows some consumer types to travel to



3.7. EQUILIBRIUM ANALYSIS WITH CONSUMER LEARNING | 133

the niche �rm which is located closer to them and has the same expected quality as the

main stream �rm.

Additionally, for an uninformed laggard (t = 2), we can distinguish three cases.25

Either she buys good A (then A must have been bought in period 1), or she buys B

which can occur in both occasions, when A or B was bought in the �rst period.

Whenever the uninformed laggard buys A her utility is exactly equal to the one

in the benchmark model. When she buys B after observing a purchase of A she also

obtains exactly the same utility as in the benchmark model. This is because of the

way the equilibrium is constructed: �rm B chose its location precisely to make the

uninformed laggard after history C1 = A indi�erent. For the last possible situation,

that is, a purchase of B in both periods, the revealed preference argument again implies

that all consumers must be weakly better o� compared to the benchmark model. But

now some consumer types 0 < x < a+b
2 are strictly better o� in terms of expected

utility. Take the consumer located at the same spot as �rm B, for example. She has less

distance to travel and since B was bought in the �rst period, she expects the product

B to be of better quality. Thus, she has less transport costs and a higher expected

valuation when compared to her situation in the benchmark model.

Hence, uninformed consumers are unambiguously better o� in the equilibrium with

central di�erentiation and bene�t from the fact that observing informed consumers

provides additional information. Informed consumers, on the other hand, prefer the

result of the benchmark model without consumer learning. Which of these opposing

e�ects on the consumers dominates, depends on the share of informed consumers, q,

and the excess utility when consuming the superior product, δ/τ . Since the explicit

formulation of the answer to the question under which parameter restrictions the welfare

is enhanced is too complex, the numerical condition on the parameters is depicted in

Figure 3.8 below.

25Overall, there are two e�ects on the expected transport costs of uninformed laggards, which stems
from the fact that, given the history of the game, either the threshold type satis�es x̃(βuB) = 1 (just as
the threshold type of informed consumers given vB > v) or the threshold type x̃(βuA) is in the interval
(b, a) (just as the threshold type of uninformed early adopters). In the �rst case, expected costs increase,
as she might have to travel further to the �rm, which she perceives to be superior. In the second case,
expected costs decrease. Overall, we have ∆cu2 = P (C1 = A) · x̃(βuA) ·N + P (C1 = B) ·M .
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Figure 3.8: The shaded areas depict values of the parameters implying the existence
of the central di�erentiation equilibrium (b∗ < a∗ = 0.5) in the model with consumer
learning. The di�erently shaded areas show whether the central di�erentiation equilib-
rium yields a welfare improvement / deterioration compared to the symmetric minimum
di�erentiation result (b∗ = a∗ = 0.5) in the model without consumer learning.

A social planner might consider two di�erent transparency enhancing policies: on the

one hand, she could force the �rms to provide more information on the product, so that

q increases.26 Figure 3.8 then shows that welfare is decreasing, simply because the share

of informed consumers (which bear higher expected transportation costs in the model

with learning than uninformed consumers) increases. On the other hand, the social

planner could increase market transparency by making the �rms provide information

about previous sales, i.e., it could induce a transition from a world without consumer

learning to a world with consumer learning. In this case, the result is ambiguous, i.e.,

welfare might increase or decrease depending on the particular values of the parameters
δ
τ and q, as Figure 3.8 shows.

The welfare analysis of the equilibrium with di�erentiation on the short side is similar

to the equilibrium with central di�erentiation. However, expected transport costs (for

informed and uninformed consumers) now increase even more due to the fact that

a 6= 0.5.

In the equilibrium with asymmetric minimum di�erentiation of the model with con-

sumer learning all consumers incur higher expected transportation costs and uninformed

early adopters and informed consumers obtain the same expected gain as in the equilib-

rium of the benchmark model. Because of the updating the expected gain of uninformed

26Even if �rms do not know the quality (di�erential), the information provided by them might be
helpful to evaluate the products' quality, as it might be the case for experience goods.
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laggards is higher. Overall, the comparison of consumer surplus depends on which e�ect

dominates.

3.8 Conclusion

This chapter gives an information-related explanation for why a �rm may want to pro-

duce a product which appeals to relatively few consumers ex-ante. In our variant of

the classical model of spatial competition due to Hotelling (1929), the e�ect emerges

because consumers, who are heterogeneous with respect to their preferred good and

with respect to the level of information they possess, make their purchase decisions se-

quentially and are able to observe which good previous consumers bought. Uninformed

consumers in later periods rationalize the choice of other consumers by considering that

earlier consumers possibly made their decision because they were better informed about

the quality of the di�erent goods. An uninformed consumer thus updates her estimate

about the di�erence in the good's quality after observing previous consumer choices

using Bayes' rule.

This updating is especially favorable for niche products. Niche products are not

as appealing as mainstream products to a broad range of consumers. Therefore, later

consumer's reasoning after having observed an earlier consumer's purchase of a niche

product puts more weight on the possibility that this purchase was due to the earlier

consumer being informed instead of being due to a good match of the earlier consumer's

preference and the good's characteristic.

When deciding about the good's characteristics, i.e., how much to di�erentiate from

the opponent's product, a �rm has to take into account two o�setting e�ects. On the one

hand, producing a niche product decreases the product's overall appeal to consumers,

hence the expected demand in early periods is decreased. But on the other hand, ex-

actly because the overall appeal is decreased, an early purchase of the niche product

leads to a larger boost of later uninformed consumers' con�dence in the niche products

superior quality. As this chapter shows, the second e�ect can dominate, making the

�di�erentiate-and-conquer strategy� pro�table for a market entrant, and leading to an

equilibrium with di�erentiated goods. The underlying e�ect, the �recommendation ef-

fect�, is di�erent from what is generally called the �competition e�ect�, which goes into

a similar direction as it makes di�erentiation pro�table for �rms, but in the latter the

driving force is that it relaxes price competition, thus increasing possible markups.

In biology there is an e�ect similar to the one described in this chapter: the Handicap

Principle (see e.g. Zahavi, 1975) explains why some animals have certain features which

at a �rst glance seem to be an evolutionary disadvantage. A popular example is the tail

of the peacock. This tail is a huge obstacle when being hunted by predators. But if one
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such peacock survives and is chosen by a mate to pass on his genes, then the (probably

even bigger) tail of the o�spring can work as a strong signal for its high (evolutionary)

quality.27

On a broader view, our research is related to the literature which emphasizes the

(evolutionary) value of diversity in the need for innovation (see, e.g., Page, 2008 or

Surowiecki, 2005): when �solutions� (e.g. products) to �problems� are more diverse,

then the process of �nding out which is the �better� one is more e�ective.28 Our model

shows that this �social rationale� for diversity can be compatible with the decisions of

�individually rational� �rms. Future research could investigate this relationship more

explicitly.

3.A Appendix: Proofs

3.A.1 Proof of Proposition 3.1 for the Benchmark Model

Proof. In the following, we start with assuming b ≤ a, but similar arguments apply to

a′ := 1− a and b′ := 1− b with x̃′ := 1− x̃ if b > a.

In the benchmark model there are two qualitatively di�erent positions �rm B

can choose for a given a: either it chooses a small b which implies a high degree

of di�erentiation and also that both, x̄(βiA) and x̄(βiB) are in the interval [b, a] and

x̄(βiA) + x̄(βiB) = a + b, or it chooses a location relatively close to a so that x̄(βiA) > b

and x̄(βiB) < a. We de�ne b1(a) to be the largest b where the �rst case occurs. It is

calculated as b1(a) = a− δ
τ from b s.t. x̄(βiB) = a. Note that if b1(a) < 0, �rm B cannot

induce a case in which all informed consumers follow their signal and the result follows

immediately.

Let DL(a, b) denote B's expected demand depending on �rm A's location a and �rm

B's location b whenever b ≤ a. In the benchmark model it is given by

DL(a, b) = 2 ·
[q

2
(x̃(βiA) + x̃(βiB)) + (1− q)x̃(βu∅ )

]
=

a+ b if b ≤ b1(a),

q + (1− q)(a+ b) if b > b1(a).

27In contrast to our model, this theory however attributes the e�ect to the underlying mechanism of
costly signaling.

28The related issue (and the importance) of the speed of social learning and its convergence �to the
truth� is discussed, for instance, in Gale (1996).
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As B's demand is increasing in b (there are no �information e�ects� in the model without

consumer learning), a pro�t-maximizing �rm B chooses between the locations b = b1(a)

and b = a. B will prefer b = b1(a) to b = a if

DL(a, b1(a)) ≥ DL(a, a)

⇔ 2 · a+ b1(a)

2
= 2a− δ

τ
≥ 2[(1− q)a+

q

2
]

⇔ a ≥ 1

2
+

δ

2τq
=: ǎ.

Thus, �rm B's best response is given by

b∗(a) =

b1(a) if a ≥ ǎ,
a if a < ǎ.

Note that �rm A could always guarantee a demand of 2 − DL(0.5, 0.5) = 1 to itself.

We have established that A would have to choose a location further to the right (a =

ǎ instead of a = 0.5), if it would want to induce b = b1(a). The smallest a that

would induce b1(a) is given by ǎ. Firm A's expected demand D̃L(a, b) := 2 −DL(a, b)

anticipating the behavior of �rm B is

D̃L(a, b∗(a)) =

2(1− a) + δ
τ if a ≥ ǎ,

2− q − 2a(1− q) if a < ǎ.

For �rm A to prefer inducing b = b1(a), we would need:

D̃L(ǎ, b1(ǎ)) ≥ D̃L(0.5, 0.5)

⇔ 2

[
1− ǎ+ b1(ǎ)

2

]
≥ 1

⇔ 1 ≤ 1 +
δ

τ
− δ

τq
,

which never holds. Thus, it will always be the case that x̄(βiA) < b and x̄(βiB) > a in

equilibrium. It also follows immediately, that in equilibrium we have a = b = 0.5.

3.A.2 Generic Properties of Firm B's Expected Demand

Proposition 3.4. For each particular con�guration of the values of the parameters δ, τ

and q, the demand of both �rms is characterized by the constellation of the di�erent

threshold types x̄(·). For b ≤ a, �ve qualitatively di�erent and mutually exclusive cases

can occur:
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1) x̄(βiA), x̄(βiB) ∈ [b, a], x̄(βuB), x̄(βuA) ∈ [b, a],

2) x̄(βiA), x̄(βiB) /∈ [b, a], x̄(βuB), x̄(βuA) ∈ [b, a],

3A) x̄(βiA), x̄(βiB) /∈ [b, a], x̄(βuB) ∈ [b, a], x̄(βuA) /∈ [b, a],

3B) x̄(βiA), x̄(βiB) /∈ [b, a], x̄(βuB) /∈ [b, a], x̄(βuA) ∈ [b, a],

4) x̄(βiA), x̄(βiB) /∈ [b, a], x̄(βuB), x̄(βuA) /∈ [b, a].

For b > a, there also exist �ve qualitatively di�erent and mutually exclusive cases

described by the threshold types x̄(·)′ := 1 − x̄(·), and replacing all a, b and x̄(·) by

(a′, b′) := (1− a, 1− b) and x̄(·)′ in the above cases.

These cases translate to the following unique partition D := DL ∪DR of the action

space A× B with (possibly empty) elements Dj
L and Dj

R:

D1
L = {(a, b) ∈ A× B | b ≤ b1(a)},

D2
L = {(a, b) ∈ A× B | b1(a) < b ≤ b↑3(a)} ∩ {(a, b) ∈ A× B | b1(a) < b < b↓3(a)},

D3A
L = {(a, b) ∈ A× B | b↓3(a) ≤ b < b↑3(a)}, 29

D3B
L = {(a, b) ∈ A× B | b↑3(a) < b ≤ b↓3(a)},

D4
L = {(a, b) ∈ A× B | b↓3(a) < b↑3(a) ≤ b ≤ a} ∪ {(a, b) ∈ A× B | b↑3(a) ≤ b↓3(a) < b ≤ a} ∪ {b↓3(ā), ā},

D4
R = {(a, b) ∈ A× B | a < b ≤ 1− b↑3(a) < 1− b↓3(a)}

∪ {(a, b) ∈ A× B | a < b < 1− b↓3(a) ≤ 1− b↑3(a)},
D3B
R = {(a, b) ∈ A× B | 1− b↓3(a) ≤ b < 1− b↑3(a)},

D3A
R = {(a, b) ∈ A× B | 1− b↑3(a) < b ≤ 1− b↓3(a)},

D2
R = {(a, b) ∈ A× B | 1− b↑3(a) ≤ b < 1− b1(a)} ∩ {(a, b) ∈ A× B | 1− b↓3(a) < b < 1− b1(a)},

D1
R = {(a, b) ∈ A× B | 1− b1(a) ≤ b}.

The generic partition is depicted in Figure 3.3. The functional form of demand is

di�erent in each element of the partition, but in each element, �rm B′s demand is

increasing in a and b if b ≤ a and decreasing in a and b otherwise.30

Proof. The proof is constructed using a succession of lemmata.

Lemma 3.1. For b ≤ a, �rm B's demand, and thus also �rm A's demand, consists of

�ve qualitatively di�erent and mutually exclusive cases described by the threshold types

x̄(·).
29As b↑3(a) might be complex valued for values of a where b↓3(a) > 0, the precise formulation of this

conditions reads D3A
L = {(a, b) ∈ A× B | 0 > b > b↓3(a)} ∩ {(a, b) ∈ A× B | ¬[b↓3(a) < b↑3(a)]}

30We deal with the fact that D3A and D2 have no maximizers by de�ning the value function in these
parts in terms of limits.
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Proof. For b ≤ a, �rm B's demand is given by

DL(a, b) = q
[
x̃(βiA) + x̃(βiB)

]
+ (1− q)

[
x̃(βu∅ ) + Pr(C1 = A)x̃(βuA) + Pr(C1 = B)x̃(βuB)

]
.

Case distinctions depending on whether the thresholds x̄(·), determining the value of

x̃(·), are at interior or corner values, which in turn depends on the locations a and b,

have to be made. As a �rst period purchase from one �rm increases the belief that

it o�ers the superior product, a case with x̄(βuB) < b or x̄(βuA) > a can not occur.

It can directly be seen that x̄(βiA) ∈ [b, a] ⇔ x̄(βiB) ∈ [b, a], and furthermore that

x̄(βiA) /∈ [b, a] ⇔ x̄(βiB) /∈ [b, a]. Another crucial insight is that the threshold type

for informed consumers is always shifted further apart from x̄(βu∅ ) than the one of the

uninformed laggards, meaning that x̄(βuA) ≥ x̄(βiA) and x̄(βuB) ≤ x̄(βiB). This can easily

be seen in Equation (3.8) with 0 or 1 put in place of the belief βuC1
. Thus, x̄(βuB) /∈ [b, a]

or x̄(βuA) /∈ [b, a] directly imply x̄(βiA) /∈ [b, a] and x̄(βiB) /∈ [b, a]. These �ve cases

describe all cases. Note that x̄(βu∅ ) = (a+ b)/2 in any case.

Lemma 3.2. Equations (3.5), implicitly de�ning the boundaries between regions D1
L and

D2
L have the solution b1(a) = a − δ

τ . Equations (3.12) and (3.13), implicitly de�ning

the boundaries between regions D2
L,D

3
L and D4

L have at most one solution in [0, 1]. Call

these solutions b↓3(a) and b↑3(a), respectively. If a is s.t. b↑3(a), b↓3(a) ∈ [0, 1], then the

respective function is continuous in a. Function b1 : A → [0, 1] is continuous in a. For

any given a, the function values b↑3(a), b↓3(a) and b1(a) correspond to the discontinuity

point of the demand.

Proof. The �rst statement can be proven by straightforward calculations. The possibly

valid solutions to Equations (3.12) and (3.13) are given by

b↓3(a) =

(2− q)−
√

(2− q)2 − 4(1− q)
[
(2− q)a− (1− q)a2 − δq

τ

]
2(1− q)

for (3.12), and

b↑3(a) =

q −
√
q2 + 4(1− q)

[
qa+ (1− q)a2 − δq

τ

]
−2(1− q)
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for (3.13). A bit of calculation shows that both discontinuity points exist for a such

that

b↓3(a) ∈ [0, 1] ⇔ a ∈

(2− q)−
√

(2− q)2 − 4(1− q) δqτ
2(1− q) ,

(2− q)−
√

(2− q)2 − 4(1− q) δq+ττ
2(1− q)

 ,
and

b↑3(a) ∈ [0, 1] ⇔ a ∈

−q +
√
q2 + 4(1− q) δqτ
2(1− q) ,

−q +
√
q2 + 4(1− q) δq+ττ
2(1− q)

 .
Note that these two restrictions on a imply that the radicands in the de�nition of b↑3(a)

and b↓3(a) are in the interval [q2, (2− q)2] ⊂ R++, which in turn implies that b↑3(a) and

b↓3(a) are real valued if they are in [0, 1].31 Continuity can easily be seen and the last

statement in the lemma follows by construction of b1(a), b↓3(a) and b↑3(a).

Lemma 3.3.
∂b↑3(a)
∂a > 1 >

∂b↓3(a)
∂a > 0 for b ≤ a and a, b ∈ [0, 1]. Furthermore, b↓3(a) and

b↑3(a) cross only once at ā = 1
2 + δq

2τ , and b
↓
3(a) is concave. Hence a < ā⇔ b↑3(a) < b↓3(a)

and a > ā⇔ b↑3(a) > b↓3(a). In addition b↓3(ā) = b↑3(ā) = 1− ā.

Proof. Derivatives can be calculated directly from Equations (3.12) and (3.13) via im-

plicit di�erentiation as:

∂b↓3(a)

∂a
=

(2− q)− 2(1− q)a
(2− q)− 2(1− q)b↓3(a)

,

and

∂b↑3(a)

∂a
=

q + 2(1− q)a
q + 2(1− q)b↑3(a)

.

Simple calculations show that the stated inequalities hold, given that b↓3(a), b↑3(a) < a.

Continuity of b↑3(a) and b↓3(a) allows the application of the intermediate value theo-

31To handle situations in which they are smaller than zero and complex-valued, which is a relevant
situation for the de�nition of the partition in the proposition, we could de�ne b↑3(a) and b↓3(a) as
functions with the same positive slope intersecting the horizontal axis at b↑3(a) = 0, and b↓3(a) = 0 (as
de�ned above), respectively.
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rem, and monotonicity implies the uniqueness of the intersection point ā. The second

derivative of b↓3(a) is negative whenever

0 > −2(1− q)[2− q − 2(1− q)b↓3(a)] + 2(1− q)∂b
↓
3(a)

∂a
[2− q − 2(1− q)a].

The right hand side of this expression is smaller than

−2(1− q)[2− q − 2(1− q)b↓3(a)] + 2(1− q)[2− q − 2(1− q)a] = 2(1− q)2(1− q)(b↓3(a)− a) < 0,

so that b↓3(a) is indeed concave.

The rest of the lemma is obtained by simply equalizing Equations (3.12) and (3.13),

which gives the condition b↓3(ā) = b↑3(ā) = 1− ā. Plugging in one of the values of b↓3(a)

or b↑3(a) for b allows to calculate ā as stated in the lemma.

Lemma 3.4. Let b↓3(a) := a − δq
τ and b↓3 := b↓3(ā) = 1

2 −
δq
2τ . For any a ≤ ā, b↓3(a) lies

in the interval
[
b↓3(a), b↓3

]
. If a > ā, then b↓3(a) ∈

[
b↓3, b

↓
3(a)

]
. Furthermore, it holds that

b↑3(a) > b1(a) and b↑3(a) < a, if b ≤ a.

Proof. Lemma 3.3 implies that the distance a − b↓3(a) is increasing in a for all a ≤ ā,

hence

a− b↓3(a) ≤ ā− b↓3(ā) = 2ā− 1,

which, for any a ≤ ā gives a lower bound on b↓3(a) as b↓3(a) := a − δq
τ . Since b↓3(a) is

increasing in a, b↓3 := b↓3(ā) is an upper bound on b↓3(a) for all a ≤ ā.
De�ne a′′ as a s.t. b↑3(a) = 0 and a′′′ as a s.t. b1(a) = 0. As ∂b↑3(a)

∂a > 1 = ∂b1(a)
∂a , we

need to show that a′′ < a′′′, in order to show b↑3(a) > b1(a).

b↑3(a) = 0⇔ a =

√
δq

τ(1− q) +
q2

4(1− q)2
− q

2(1− q) =: a′′,

and

a′′ < a′′′ :=
δ

τ
⇔ 0 <

δ

τ
,

which always holds under the assumptions.
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As ∂b↑3(a)
∂a > 1, and as the slope of the diagonal through the action space is 1, we

need to show that b↑3(1) < 1 in order to show b↑3(a) < a.

b↑3(1) =
q −

√
q2 + 4(1− q)(1− δq

τ )

2q − 2
< 1⇔ 4δq

τ
(q − 1) < 0,

which always holds under the assumptions.

Corollary 3.1. b1(a) < b↑3(a) < a and b1(a) < b↓3(a) < a, ∀(a, b) ∈ A× B with b ≤ a.

Proof. This follows from Lemma 3.3 and 3.4 .

Corollary 3.2. There is an equivalence between the �ve cases of Proposition 3.4 and

the partition described therein.

Proof. The result follows immediately from Equations (3.6), (3.7), (3.14) and (3.15)

and the previous lemmata.

Lemma 3.5. If b ≤ a, �rm B's expected demand is strictly increasing in a and b in

each element of partition DL. The opposite is true for DR, i.e., when b > a.

Proof. The following reformulation of the second period parts of demand of an unin-

formed consumer will prove to be useful:

Pr(C1)x̃(βuC1
) = Pr(C1)

(
a+ b

2
+

δ

2τ

(
2
Pr(C1|vL > v) · Pr(vL > v)

Pr(C1)
− 1

))
= Pr(C1)x̃(βu∅ ) +

δ

2τ

(
Pr(C1|vL > v)− Pr(C1)

)
.

Note that a enters each of the demand parts in the same way as b (this will become

even more obvious below), and thus whenever demand is increasing in b it also increases

in a.

• Part 1: D1
L(a, b) := {(a, b) ∈ A×B | x̃(βuB) ∈ (b, a), x̃(βuA) ∈ (b, a), x̃(βiA)+x̃(βiB) =

a + b} With all indi�erent types being at interior levels, they are symmetrically

spread around x̃(βu∅ ) and D1
L(a, b) simpli�es to:

D1
L(a, b) = q[2x̃(βu∅ )] + (1− q)[2x̃(βu∅ )] = 2x̃(βu∅ ) = a+ b.

Obviously, D1
L(a, b) is increasing in b.
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• Part 2: D2
L(a, b) := {(a, b) ∈ A×B | x̃(βuB) ∈ (b, a), x̃(βuA) ∈ (b, a), x̃(βiA)+x̃(βiB) =

1} If the uninformed indi�erent laggard, and thus x̃(βuC1), is always in between

the location of both �rms, demand can be written as follows:

D2
L(a, b) = q + (1− q)

{
x̃(βu∅ ) + Pr(C1 = B)x̃(βu∅ ) +

δ

2τ

(
Pr(C1 = B|vL > v)− Pr(C1 = B)

)
+Pr(C1 = A)x̃(βu∅ ) +

δ

2τ

(
Pr(C1 = A|vL > v)− Pr(C1 = A)

)}
With Pr(C1 = A) = 1 − Pr(C1 = B) and Pr(C1 = A|vL > v) = 1 − Pr(C1 =

B|vL > v), this simpli�es to

D2
L(a, b) = q + (1− q)(2 · x̃(βu∅ )) = q + (1− q)(a+ b).

Hence, for the case where x̃(βuC1) is between both �rms' locations, B's demand

increases linearly in b.

• Part 3A: D3A
L (a, b) := {(a, b) ∈ A×B | x̃(βuB) ∈ (b, a), x̃(βuA) = 0, x̃(βiA)+x̃(βiB) =

1} In this part, uninformed laggards follow the choice if the early adopter chose

A. If C1 = B, the indi�erent consumer in period 2 lies between the two �rm's

locations. Hence, B's demand calculates as

D3A
L (a, b) = q + (1− q)

[
x̃(βu∅ ) + Pr(C1 = B)x̃2(B)

]
= q + (1− q)

[
x̃(βu∅ )

(
1 +

q + (1− q)(a+ b)

2

)
+
qδ

4τ

]
,

and the following derivative shows that D3A
L (a, b) is strictly increasing in b:

∂D3A
L

∂x̃(βu∅ )
= (1− q)

[
1
2q + 1 + 2(1− q)a+b

2

]
.
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• Part 3B: D3B
L (a, b) := {(a, b) ∈ A×B | x̃(βuB) = 1, x̃(βuA) ∈ (b, a), x̃(βiA)+x̃(βiB) =

1} If a purchase of B in the �rst period is always followed by an uninformed

laggard, but not a purchase of A, demand of B is given by

D3B
L (a, b) = q + (1− q)

[
x̃(βu∅ ) + Pr(C1 = B) + Pr(C1 = A)x̃(βuA)

]
= q + (1− q)

{
x̃(βu∅ ) +

q

2
+ (1− q)x̃(βu∅ ) + Pr(C1 = A)x̃(βu∅ )

+
δ

2τ

(
Pr(C1 = A|vL > v)− Pr(C1 = A)

)}
= q + (1− q)

{
x̃(βu∅ )

[
2− q

2 + (1− q)(1− x̃(βu∅ ))
]
− qδ

4τ
+
q

2

}
,

which is quadratic in x̃(βu∅ ) and thus in b. Nevertheless, the derivative:

∂D3B
L

∂x̃(βu∅ )
=
[
3− 3

2q − 2(1− q)a+b
2

]
(1− q)

shows that it is strictly increasing in b for the relevant values of a and b.

• Part 4: D4
L(a, b) := {(a, b) ∈ A× B | x̃(βuB) = 1, x̃(βuA) = 0, x̃(βiA) + x̃(βiB) = 1}

x̃(βuB) = 1 and x̃(βuA) = 0 means that an uninformed laggard always follows the

lead of the early adopter. The demand in such a case is described by

D4
L(a, b) = q + (1− q)

[
x̃(βu∅ ) + Pr(C1 = B)

]
= q + (1− q)

[
(2− q)

(a+ b

2

)
+
q

2

]
.

Demand in this case is linear, and increasing in b.

Inspection of the di�erent demand parts shows that updating of the uninformed

laggards, and thus the shifting of the indi�erent consumer types, is symmetric in

parts D2 and D4 and asymmetric in parts D3B and D3A. Only in the latter cases

does the demand depend on the parameters δ and τ . Furthermore, ∂Dj/∂b ↓ as
�j ↑� with j ∈ {1, 2, 3B, 3A, 4}.

Combining the lemmata yields the result.

Lemma 3.6. b↓3(a) and b↑3(a) converge to b1(a), as q → 1. Also, b↓3(a) and b↑3(a)

converge to a, as q → 0. Thus, increasing (decreasing) δ
τ �stretches� (�compresses�) the

graphs of b↑3(a) and b↓3(a) (compare Figure 3.3).
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Proof. Straightforward calculations show that the derivative of the numerator of b↓3(a)

w.r.t. q is given by

−1− (2a− 1)[2a(q − 1)− q + 2]τ + δ(2− 4q)

τ

√
τ [q−2−2a(q−1)]2−4δ(q−1)q

τ

.

Similarly, the derivative of the numerator of b↑3(a) w.r.t. q can be calculated as

1− (2a− 1)[2a(q − 1)− q]τ + δ(4q − 2)

τ

√
4(q−1){aτ [a(q−1)−q]+δq}

τ + q2

.

Applying l'Hopital's rule then yields the results for q → 1. The limits for q → 0 can be

obtained directly.

Using these results, and as b1(a) = a − δ
τ , b1(a) < b↑3 < a, and b1(a) < b↓3 < a, one

can easily observe that increasing (decreasing) δ
τ �stretches� (�compresses�) the graphs

of b↑3(a) and b↓3(a).

3.A.3 Proof of Proposition 3.3 (Main Result)

Remember that for any equilibrium with b∗ < a∗ there exists an analogous equilibrium

with 1 − b∗ > 1 − a∗. Thus, if we assume a ≥ 0.5 in the following, this is without loss

of generality.

Lemma 3.7. B's best response b∗(a) to any a ∈ [0.5, 1] is a subset of {b1(a), b↓3(a), a, 1−
b↓3(1− a)}.

Proof. By Lemma 3.5 all parts of B's demand are increasing in b. The highest demand in

each part is thus obtained at the highest possible value, belonging to this part. Clearly,

it can never be optimal to choose b = b↑3(a), since B's demand has an upward jump

at this point, so any slightly larger b will increase the demand. For 0.5 ≤ a ≤ ā, the

demands DL(a, b) and DR(a, b) consist of the same parts, so the optimum of B's demand

must be obtained for some b ∈ DL, i.e. b∗(a) ≤ a ≤ ā, as B's demand increases in a.

If, however, 0.5 ≤ ā ≤ a, then DL(a, b) and DR(a, b) do not consist of the same parts

anymore. On the left side, part 3 of B's demand is given by D3A
L (a, b), but on the right,

the demand part 3 consists of D3B
R (a, b). Hence, the demand maximizing location for

�rm B might be at the optimum of D3B
R (a, b), which is calculated as 1− b↓3(1− a).
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Corollary 3.3. The value function of �rm B in the respective regions of the action

space is given by

V 1
L (a) =

0 if b1(a) < 0,

D1
L(a, b1(a)) else.

V 2
L (a) =


D2
L(a, b↑3(a)) if a ≤ ā,
lim

b→b↓3(a)
D2
L(a, b) if a > ā,

0 if min{b↑3(a), b↓3(a)} < 0.

V 3
L (a) =


D3B
L (a, b↓3(a)) if a ≤ ā,
lim

b→b↑3(a)
D3A
L (a, b) if a > ā,

0 if max{b↑3(a), b↓3(a)} < 0.

V 4
L (a) = D4

L(a, a)

V 3
R(a) =

0 if 1− b↓3(a) > 1,

D3B
R (a, 1− b↓3(1− a)) else.

Lemma 3.8. For a ≤ ā, V 4
L (a) > V 2

L (a) > V 1
L (a). This implies that for a ≤ ā, �rm B

will choose a location such that (a, b) /∈ D1
L and (a, b) /∈ D2

L.

Proof. Remember that all demand parts are increasing in a and b. With b↓3(ā) = 1− ā,
we can calculate V 1

L (ā) = D1
L(ā, b1(ā)) = 2ā − δ/τ = 1 + δq/τ − δ/τ < 1 and V 2

L (ā) =

D2
L(ā, 1−ā) = q+(1−q)(ā+1−ā) = 1. For V 4

L we knowD4
L(ā, 1−ā) = q+(1−q)(ā+1−

ā) = 1 < D4
L(ā, ā) = V 4

L (ā). As ∂D4(a, b)/∂a = (1 − q)(2 − q)/2 < ∂D1(a, b)/∂a = 1,

and V 2
L (0.5) = D2

L(0.5, b↑3(0.5)) < D2
L(0.5, 0.5) = D4

L(0.5, 0.5) = V 4
L (0.5), the result

follows.

Lemma 3.9. B's demand at the optimum of any part of DL is increasing in a, i.e.,

∂V j
L(a)/∂a > 0 ∀j ∈ {1, 2, 3, 4}. Furthermore, D3B

L (a, b↓3(a)) is concave, while V j
L(a) is

linear in a for j ∈ {1, 4}.

Proof. By Lemma 3.5 all parts of DL(a, b) are increasing in a and b. Since all potentially

optimal locations of B, i.e., b1(a), b↓3(a), b↑3(a) and a, are increasing in a, the �rst part
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of the lemma follows. For B's demand D3B
L (a, b↓3(a)), we can calculate the derivative

w.r.t. a as follows

∂D3B
L (a, b↓3(a))

∂a
=(1− q)

(
1 +

∂b↓3(a)

∂a

)[
4− q

4
+ (1− q)1− a− b↓3(a)

2

]
.

This derivative is positive if

b↓3(a) ≤ 6− 3q

2− 2q
− a,

which always holds for a ∈ [0, 1].

The second derivative of D3B
L (a, b↓3(a)) w.r.t a is negative if

∂2b↓3(a)

∂a2

(
4− q

4
+ (1− q)1− a− b↓3(a)

2

)
+

(
1 +

∂b↓3(a)

∂a

)(
−1− q

2

(
1 +

∂b↓3(a)

∂a

))
< 0,

which can be veri�ed using the results of Lemma 3.3. Linearity can directly be seen

from the linearity of b1(a), b = a and from the demand Dj
L, j ∈ {1, 4} calculated in

Lemma 3.5.

Lemma 3.10. For a ≥ 0.5, VL(a) := maxV j
L(a), j ∈ {1, 2, 3, 4} is increasing in a for

all a ∈ A \ ā and the function V 3B
R (a) is decreasing in a for all a ≥ 0.5.

Proof. By Lemma 3.9, given b ≤ a, B's demand is increasing in a at the maximizing b in

any single part. Below and above a = ā, the maximum taken over increasing functions

must thus be increasing in a. Note that, whenever V 4
L (ā) ≥ V 3B

L (ā), VL(a) is increasing

in a for all a ∈ {A ∪ ā | a ≥ b}. Since ā > 0.5, symmetry implies that V 3B
R (a) is

decreasing for all b > a.

Lemma 3.11.

V 4
L (0.5) < V 3B

L (0.5) (BDC)

implies that ā < 1 and b↓3(0.5) > 0.

Proof. An upper bound of V 3B
L (0.5) = D3B

L (0.5, b↓3(0.5)) is given by

D3B
L (0.5, 0.5(1− δq/τ)) = q + (1− q)

{(
1

2
− δq

4τ

)(
2− q

2
+ (1− q)

(
1

2
+
δq

4τ

))
− δq

4τ
+
q

2

}
= q + (1− q)

{
5

4
− δq

4τ

(
3− q

2
+ (1− q) δq

4τ

)}
.
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In order for this upper bound to be larger than 1 for some q ∈ (0, 1), δq/τ must

be smaller than 2/5. By Lemma 3.4, b↓3(a) ∈
[
a− δq

τ ,
1
2 −

δq
2τ

]
, meaning that, given

δq/τ < 2/5, b↓3(a) > 0 if a > 2/5. Additionally, ā = 0.5 + δq/(2τ) < 7/10.

Lemma 3.12. If (ADC) does not hold, that is,

V 3B
L (0.5) > V 4

L (ā),

ā < 2/3 < 1 and 1− b↓3(1− ā) < 1. Furthermore, ∃a′ < 2/3 s.t. V 4
L (a′) = V 3B

R (a′).

Proof. If (ADC) is violated, it must be that

V 4
L (ā) = D4

L(ā, ā) = q + (1− q)
(

1 + (1− 0.5q)
δq

τ

)
< V 3

L (0.5) = D3B
L (0.5, b↓3(0.5))

< D3B
L (0.5, 0.5) = q + (1− q)

{
1

2

(
2− q

2
+ (1− q)1

2

)
− δq

4τ
+
q

2

}
= q + (1− q)

{
5

4
− δq

4τ

}
,

which implies

1 +
δq

τ
(1− 0.5q) <

5

4
− δq

4τ
⇔ δq

τ

(
5

4
− q

2

)
<

1

4
.

For this equation to be ful�lled for some q ∈ (0, 1), it must be that δq
τ < 1

3 . In this case,

ā = 0.5 + δq/2t < 2/3 and b↓3(a) > 0 if a > 1/3, so that 1− b↓3(1− ā) < 1.

The demand D4
L(2/3, 2/3) calculates as

D4
L(2/3, 2/3) = q + (1− q)

(
(2− q)2

3
+
q

2

)
= q + (1− q)

(
4

3
− q

6

)
> q + (1− q)

(
5

4
− δq

4τ

)
= D3B

L (0.5, 0.5) > D3B
L (1− 2/3, b↓3(1− 2/3)).

As V 4
L (a) = D4

L(a, a) is increasing and V 3B
R (a) = D3B

L (1− a, b↓3(1− a)) is decreasing in

a, the remainder of the lemma follows.

Proposition 3.3. In the model with consumer learning, we obtain the following results.

1. Conditions (BDC) and (ADC) are necessary and su�cient conditions so that the

locations are a∗ = 0.5 and b∗ < 0.5 in the unique equilibrium (Central Differenti-

ation Equilibrium).

2. If Conditions (ADC) and (BDS) do not hold the locations are a∗ = b∗ > 0.5 in

the unique equilibrium (Asymmetric Minimum Differentiation Equilibrium).
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3. Condition (BDS) is a necessary and su�cient condition so that there exist an

equilibrium (not necessarily unique) with locations b∗ > a∗ > ā > 0.5 (Short Side

Differentiation Equilibrium).

Uniqueness is up to symmetry, as to any equilibrium with (a∗, b∗) there exists an anal-

ogous equilibrium with (1− a∗, 1− b∗).

Proof. A's objective is given by mina V (a) := max{VL(a), VR(a)}. It is useful to notice,
that whenever V 3B

R (ā) ≤ V 4
L (ā), as the former is decreasing in a and the latter is

increasing in a, it must be that V (a) = VL(a).

• Central Di�erentiation Equilibrium: b∗ = b↓3(0.5) < a∗ = 0.5

V 3B
L (0.5) ≤ V 4

L (ā) implies D3B
R (ā) < V 3B

L (0.5) ≤ V 4
L (ā), and thus V (a) = VL(a).

By Lemma 3.10, VL(a) is increasing in a if V 3B
L (0.5) ≤ V 4

L (ā), so A's optimal

choice is the smallest possible a, given by a∗ = 0.5. As V 4
L (0.5) < V 3B

L (0.5),

b∗(0.5) = b↓3(0.5).

• Asymmetric Minimum Di�erentiation Equilibrium: b∗ = a∗ = ā

V 3B
L (0.5) > V 4

L (ā) > D3B
R (ā) again implies V (a) = VL(a). In contrast to the

previous case, VL(a) has a downward jump at a = ā. By Lemma 3.10, it is

increasing in a at all other points. As V 3B
L (0.5) > V 4

L (ā), a = ā is the unique

minimizer of VL(a) in this case. Since demand partD3B(a, b) exists only for a < ā,

B's best response is given by b∗(ā) = ā.

• Short Side Di�erentiation Equilibrium: b∗ = 1− b↓3(1− a) > a∗ > ā

If V 3B
R (ā) > V 4

L (ā), there is some a′ > ā is such that V (a′) = V 3B
R (a′) = V 4

L (a′), as

V 3B
R decreases in a and V 4

L (a) increases in a. Clearly, a′ minimizes V (a). B's best

response to this a′ is not unique, since, by construction, B is indi�erent between

choosing either the b ≤ a maximizing demand, or the b > a maximizing demand.

Furthermore, the optimal b ≤ a can be any of the set {b1(a′), b↓3(a′), a′}. The

optimal b > a, however, is given by 1− b↓3(1− a′), which by Lemma 3.12 exists in

the action space.

Note that what distinguishes the last two equilibria, is whether a′ ≤ ā or a′ > ā.
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Corollary 3.4. Su�cient conditions for the conditions of Proposition 3.3 can be cal-

culated as follows:

δq

τ
< 0.192⇒ D3B

L (0.5, b↓3(0.5)) > D4
L(0.5, 0.5), (BDC)

δq

τ
> 0.166, q < 0.4⇒ D3B

L (0.5, b↓3(0.5)) ≤ D4
L(ā, ā), (ADC)

δq

t
< 0.079⇒ D3B

L (1− ā, b↓3(1− ā)) > D4
L(ā, ā). (BDS)

Proof. Using the upper and lower bound of b↓3(a) as calculated in Lemma 3.4, su�cient

conditions for the conditions of Proposition 3.3 can be calculated as follows:

δq

τ
< 0.192⇒ δq

τ

(
(1− q)δq

τ
+ 5− q

)
< 1⇔ D3B

L (0.5, b↓3(a)) > 1

⇒ D3B
L (0.5, b↓3(0.5)) > D4

L(0.5, 0.5), (BDC)

δq

τ
> 0.166, q < 0.4⇒ 1 ≤ δq

2τ

[
δq

2τ
(1− q) + 14− 5q

]
⇔ D3B

L (0.5, b↓3(a)) ≤ D4
L(ā, ā)

⇒ D3B
L (0.5, b↓3(0.5)) ≤ D4

L(ā, ā). (ADC)

If both those su�cient conditions are ful�lled, equilibrium locations are b = b↓3(0.5) <

a = 0.5.

δq

t
< 0.079⇒ 1 >

δq

τ

(
13− 4q + 4(1− q)δq

τ

)
⇔ D3B

L (1− ā, 1− ā) > D4
L(ā, ā)

⇒ D3B
L (1− ā, b↓3(1− ā)) > D4

L(ā, ā) (BDS)

If this holds, there is an equilibrium with b = 1 − b↓3(1 − a) > a > ā. Note that

we do not derive su�cient conditions for the equilibrium with asymmetric minimum

di�erentiation, i.e., b = a = ā, as these would be �too small� in the parameter space.



Chapter 4

The Di�erent E�ect of Consumer Learning

on Incentives to Di�erentiate in Cournot and

Bertrand Competition1

We combine two extensions of the di�erentiated duopoly model of Dixit (1979),

namely Caminal and Vives (1996) and Brander and Spencer (2015a,b), to analyze

the e�ect of consumer learning on �rms' incentives to di�erentiate their products

in models of Cournot and Bertrand competition. Products are of di�erent quality,

consumers buy sequentially and are imperfectly informed about the quality of the

goods. Before simultaneously competing in quantities, �rms simultaneously select

their level of investment in di�erentiation. The more a �rm wishes to di�erentiate

its product or, equivalently, the less substitutable it wants the products to be, the

higher the investments have to be. Late consumers can observe earlier consumers'

decisions and extract information about the quality of the goods from it. This in�u-

ences the �rms' incentives to di�erentiate. If �rms compete in quantities, they are

more likely to invest in di�erentiation with consumer learning than without. This

is in line with implications of the recommendation e�ect introduced in Chapter 3

in a model of spatial di�erentiation. We also examine cases in which �rms compete

in prices. Here, the e�ect of consumer learning is reversed, so that di�erentiation is

less likely with consumer learning. Thus, we �nd an information-based di�erence

between Cournot and Bertrand competition: in the Bertrand setting consumer

learning increases competition, i.e., products are more likely to be substitutes; in

the Cournot model, it weakens it.

1This chapter is joint work with Maximilian Conze.
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4.1 Introduction

Most of the literature dealing with �rms' incentives to di�erentiate characterizes two

di�erent and opposing e�ects. The competition e�ect induces �rms to di�erentiate their

products from each other, since they then obtain local monopoly power and are able

to charge higher prices. On the other hand, di�erentiating decreases the market share

and the amount of goods that the �rm in question is able to sell. This is the so-called

market-size e�ect (see e.g. Belle�amme and Peitz, 2010, Chapter 5.2).

In the related Chapter 3 we use a spatial model of product di�erentiation à la

Hotelling (1929) to establish a new e�ect that may incentivize �rms to di�erentiate.

The e�ect arises because of the possibility of consumer learning, and is called the rec-

ommendation e�ect. Let us recall the intuition of that e�ect. In the model, two �rms A

and B compete by choosing their locations on the unit interval, representing the choice

of the goods' characteristics. Two consumers sequentially choose between the two goods

that are of di�erent quality. Consumers are heterogeneous with respect to their prefer-

ence towards the goods and to their information about the quality di�erential. The late

consumer (laggard) observes the purchase decision of her predecessor (early adopter),

which may contain valuable information. Neither the information, nor the preference

of the early adopter is observed by the laggard. The laggard then uses Bayes' rule to

update her belief on the good's qualities. In this setup, it is the case that a purchase

of a niche (i.e. a di�erentiated) product in the �rst period is more likely based on its

high quality than on a good match of consumer taste and product characteristic. A

�rm can in�uence and exploit consumer learning using its location choice (mainstream

vs. niche), which yields incentives to o�er a di�erentiated (niche) product.

In order to make the above mentioned model tractable, it abstracts from endogenous

prices by assuming that they are regulated to the same value for both �rms. Addition-

ally, there are only two consumers and two situations concerning the stochastic quality

(either good A's quality exceeds the one of good B by a �xed amount, or vice versa).

Although there are situations plausibly described by these assumptions, the goal of the

research at hand is to show that similar e�ects as described above also arise in a model

where these assumptions are relaxed. More explicitly, the model in this chapter di�ers

from Chapter 3 in that it entails endogenous prices, a simultaneous choice of product

di�erentiation, a continuously distributed quality di�erential, a continuous information

structure and the fact that �rms may reset one of their choice variables (quantities in

Cournot, prices in Bertrand competition), which would be equivalent to allowing �rms

to relocate in Chapter 3.

The underlying model in this chapter is the standard model of di�erentiated duopoly

introduced by Dixit (1979). Dixit's model was extended in various ways. In particular,
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Caminal and Vives (1996) formulate a model of Bertrand competition with two �rms

who compete for a continuum of consumers in each of two periods by setting prices. The

goods of the two �rms are horizontally and vertically di�erentiated, but �rms can not

control either dimension. Firms also do not know the quality of their good when setting

their prices. Consumers receive signals about the goods' qualities, and the consumers

in the second period observe past market shares but not past prices. The authors show

that such a situation leads to lower prices in the �rst period - compared to a situation

without consumer learning - as each �rm has an incentive to decrease its price in order

to obtain a higher market share. This is because a high market shares serves as a signal

of high quality to consumers in the second period. The authors state that �[...] an

increase in the degree of product substitutability [...] increases the e�ectiveness of the

manipulation by �rms� (Caminal and Vives, 1996, p. 228). As the model does not allow

for endogenous levels of di�erentiation or substitutability, Caminal and Vives do not

elaborate on this insight any further.

This is where the model of Brander and Spencer (2015a,b), also based on Dixit's

model, comes in. In their papers, the authors analyze the competition between two

�rms in the common di�erentiated duopoly setup without vertical di�erentiation. The

goal of their article is to compare the �rms' incentives to di�erentiate in Cournot and

Bertrand competition setups. To endogenize the levels of di�erentiation, the authors

assume that �rms can make costly investments in order to increase the di�erentiation

between the products. It is shown that di�erentiation is more likely to occur in Bertrand

than in Cournot setups.

We combine the approaches of Caminal and Vives (1996) and Brander and Spencer

(2015a) to explore how the possibility of consumer learning in�uences �rms incentives

to di�erentiate their products. Our model thus makes the following changes to the

di�erentiated duopoly setup of Dixit (1979). First, we allow the �rms' products to

be of di�erent, random, and a priori unknown quality, which introduces information

asymmetries. The model consists of three stages. Before �rms compete in quantities,

they decide on their investment into di�erentiation. This stage is followed by two stages

in which �rms set quantities and consumers buy the goods, based on imperfect signals

about the goods qualities. In the last stage, consumers additionally observe past prices

(but not market shares).

Additionally, we analyze an analogous Bertrand model with consumer learning and

compare the implications of Bayesian updating among consumers between the two mod-

els of price and quantity competition. We start with analyzing Cournot competition as

in this model the endogenous variable of interest, namely the product di�erentiation,

appears more intuitively in the consumers' utility function.
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4.2 Model Setup: Quantity Competition

Consumers In two periods, t = 1, 2, consumption decisions are made for two (po-

tentially) di�erentiated goods, A and B, with the respective quantities denoted by

xj , j ∈ {A,B}. In each period there is a (di�erent) continuum of consumers with mass

one uniformly distributed on [0, 1] and indexed by i. Note that each consumer only pur-

chases goods once. The utility of a consumer when consuming any real-valued amount

x = (xA, xB, x0) ∈ R3 is given by

U(xA, xB, x0) = (α+ q)xA + (α− q)xB − 0.5
[
(xA)2 + 2γxAxB + (xB)2

]
+ x0, (4.1)

with α > 0. All consumers have the same utility function, which can be derived from

quasilinear preferences. Quantity x0 captures the consumption of a composite good

containing all other goods di�erent from xA and xB, and its price is normalized to

p0 = 1.

The feasible range of the measure of product di�erentiation or substitutability is

γ ∈ (0, 1]. The higher γ, the higher is the substitutability between the products. Goods

are perfect substitutes if γ = 1, and they would be independent if γ = 0.

Consumers have access to distinct information. The (relative) quality of the goods is

measured by the random variable q, which is normally distributed with mean zero and

variance 1/τq.2 The realization of variable q is unknown to �rms and consumers, but

each consumer receives a signal sit = q+ εit about it, where ε also is an independent and

normally distributed random variable with zero mean and variance 1/τε. Both variances,

1/τq and 1/τε, are known to the players in the model. We assume
∫ 1

0 s
i
tdi

a.s.−−→ q, t ∈
{1, 2}, analogously to a version of the Strong Law of Large Numbers.3 The consumers

in period two also observe past prices, but not sold quantities or previous signals. Let

Iit denote all information available to consumer i in period t, and let

ηt :=

∫ 1

0
E(q|Iit)di

denote the aggregate belief on quality of all rational consumers in period t ∈ {1, 2}.
Rational consumers maximize their expected utility subject to the budget constraint

m = x0 + pA · xA + pB · xB.
In addition to the rational consumers, in each period, there are also consumers

who ignore prices and whose utility for both products is the same irrespectively of the

realized quality. Those consumers purchase from both �rms randomly (see also Caminal

2As will become clear later on, when dealing with the Bayesian updating of the consumers, it is
easier to work with precisions τ than with variances.

3This assumption needs to be made due to a related issue pointed out by Judd (1985).
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and Vives, 1996). Their impact on the inverse demand at �rm j in period t is the given

by the random variable ujt . These random variables are i.i.d. draws from N (0, 1/τu).

Firms In two periods, t = 1, 2, two �rms, j = A,B, compete by producing quantities

xjt . For both �rms marginal production costs are zero and no �xed costs occur.

The product substitutability γ is endogenous and chosen by the �rms via their

investment decision. At the beginning of the game, in period t = 0, �rms can make

monetary investments kA ∈ R+ and kB ∈ R+ in order to increase the di�erentiation

between their products, according to the following functional form

γ = e−λ(kA+kB).

If both �rms make zero investments, then γ = 1 and the goods become perfect sub-

stitutes. Larger investments of any �rm decrease γ, which approaches zero if the in-

vestments approach in�nity. As γ ∈ (0, 1], the goods are between the extremes of inde-

pendence or perfect substitutability. The parameter λ ∈ R+ measures the technology

(or, equivalently, e�ectiveness) of how the �rms' investments translate into increased

di�erentiation. The higher λ, the smaller are the necessary investments to increase the

di�erentiation by a certain amount.

Firms maximize their expected total pro�ts and second period pro�ts are discounted

with the factor δ ∈ (0, 1). Firms do not know the quality (di�erential) when making their

di�erentiation investments and when choosing their quantities. Thus, their information

set in the �rst two periods is given by I0 = I1 = {∅}, and by I2 = {x1, p1} in the last

period, where xt := (xAt , x
B
t ) and pt := (pAt , p

B
t ) denote the quantities and prices of the

respective period t ∈ {1, 2}.

Auctioneer, Timing, and Solution Concept As it is common for Cournot models,

the process of price formation can be modeled via an auctioneer. She knows quality q,

which allows her to calculate the consumers' aggregate belief on quality ηt, and she also

knows the realization of uAt and uBt for t = 1, 2. In each period, the �rms inform the

auctioneer about the quantity produced and the auctioneer calculates the prices of the

two goods, pAt and pBt , with t ∈ {1, 2}. These prices are announced to consumers and

each of them purchases his optimal quantity of each of the two goods. As announced

prices contain information on the quality, we assume that consumers' beliefs are not

a�ected by announced prices.

For convenience, we let �rm speci�c variables without superscript denote the vector

of the two variables of both �rms and by ∆y we describe the di�erence of variable yA
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and yB, so for example x1 = (xA1 , x
B
1 ) and ∆u1 = uA1 − uB1 . The following graphic

depicts the timing of the game:

• Quality q realizes.
• Firms make their di�erentiation investments kA and kB simultaneously knowing I0 = ∅.t = 0

• Firms set quantities xA1 , x
B
1 knowing I1 = ∅ .

• Consumer i receives signal si1
(• Auctioneer announces prices pA1 and pB1 knowing η1 and u1)

• Consumer i purchases optimal quantity of goods knowing Ii1 = {si1, x1}.

t = 1

• Firms set quantities xA2 , x
B
2 knowing I2 = {p1, x1} .

• Consumer j receives signal sj2
(• Auctioneer announces prices pA2 and pB2 knowing η2 and u2)

• Consumer j purchases optimal quantity of goods knowing Ij2 = {sj2,∆p1, x2}.

t = 2

Figure 4.1: Timing of the Di�erentiated Duopoly Game with Consumer Learning

We employ the solution concept of perfect Bayesian Nash equilibrium. To avoid

complications �o� the equilibrium path�, it is assumed that consumers' beliefs are con-

stant with respect to observed current-period quantities, i.e. ∂ηit/∂xt = 0.

Discussion of the Model Setup

In addition to heterogeneous information levels among the consumers, we could in-

troduce heterogeneity in the utility by choosing an individual parameter αi with an

appropriate distribution such that the results continue to hold. One could interpret

each representative agent with a certain information level as representing a group of

consumers with that same information level.

The fact that consumers in period two observe past prices, but not sold quantities

or previous signals, is plausible, for instance, at online platforms on which consumers

can observe the history of past prices and current quantities, but not quantities sold in

previous periods.

As in many economic models, the application of normally distributed random vari-

ables has economically implausible consequences: depending on the received signal,

individual demand might become negative or tend to in�nity for a �xed set of prices.
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Analogous consequences can be found for the individual inverse demand for a �xed set

of quantities in Bertrand competition. To rule out such cases we could alternatively

assume that q is distributed according to a truncated normal distribution on an in-

terval [−Y, Y ] with 0 < Y < α/(1 − γ2). One would then only need to incorporate

the changed variance of q, the rest of the Bayesian updating described below remains

unchanged. Another possibility to decrease the probability of the above mentioned �un-

wanted� events would be to increase the precision of the random variables. Our results

hold if we approach the model without asymmetric information and consumer learning,

i.e., when τε → ∞. If γ = 1, the optimal consumer behavior implies that individual

demands (see Equation 4.2 in Section 4.3 below) become in�nitely large or small. Fur-

thermore, in the analogous model of Bertrand competition, the consumers' �rst order

conditions are not invertible, such that there are problems with the microfoundation of

the aggregate model described in Section 4.4 below. However, when starting directly

with the standard aggregated form of the oligopoly models as represented in Equations

(4.3) and (4.9) stated in Section 4.4, such issues are avoided.

The fact that irrational consumers may have a negative impact on (inverse) demand

might be interpreted as some part of the rational consumers refraining from a purchase of

the good, although rational utility optimization implies the opposite. Random shoppers

are included in the model to prevent that Bayes rational consumers purchasing in the

second period can perfectly infer the product qualities by observing the decisions of

consumers who bought in the �rst period. The assumption that consumers' beliefs are

not a�ected by announced prices can be justi�ed by the fact that consumers do not

understand the (informationally complex) process of price formation implemented by

the auctioneer.

In the model at hand, the substitutability parameter γ can be manipulated by �rms

via their investment decision into di�erentiation. An example is the investment of Coca

Cola and Pepsi into advertisement in order to emphasize the di�erences between the

two products, although their taste is indistinguishable for consumers (see Brander and

Spencer, 2015a,b). Of course there are cases in which �rms invest into making their

products complementary to each other, which however is not modeled in our setup.

Our model is a special case of a speci�cation using the utility function U(xA, xB, x0) =

(α+ q)xA+ (α− q)xB−0.5
[
β(xA)2 + 2γxAxB + β(xB)2

]
+x0 with β = 1. In the more

general model, goods may also be perfect complements, i.e. γ = −1. Cases where the

goods are (or can become) complements are left out here, as our focus are situations

like the Coke-Vs-Pepsi example mentioned above.

Note that �rms do not know the quality (di�erential) when making their di�er-

entiation investments and choosing their quantities, which is plausible in the case of
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experience goods, for instance. A strand of recent literature deals with the implications

of unknown quality to both, buyers and sellers, see Szentes and Roesler (2017).

Kreps and Scheinkman (1983) employ a model with a stage where both �rms choose

capacities before competing in prices, and which under certain assumptions leads to

�standard� Cournot outcomes This framework of the �justi�cation� of Cournot models

can not be applied here, because introducing demand uncertainty in a capacity-then-

price-competition model leads to non-existence of a pure strategy equilibrium, in par-

ticular also to the absence of the equilibrium with Cournot quantities (see for example

Hviid, 1991 and Behrens and Lijesen, 2012). As the case of homogeneous goods is nested

in our model, the same applies here.

4.3 Solving the Model with Quantity Competition

We �rst replicate and adapt the results for Bertrand competition of Caminal and Vives

(1996) for our Cournot framework. Then we analyze the e�ect of consumer learning on

product di�erentiation in this framework.

4.3.1 Consumers

Optimal behavior of the rational consumer i ∈ [0, 1] implies that his demand in period

t ∈ {1, 2} is given by

xA,it =
α

1 + γ
+

sit
1− γ −

pA

1− γ2
+

γpB

1− γ2
,

xB,it =
α

1 + γ
− sit

1− γ −
pB

1− γ2
+

γpA

1− γ2
,

x0,i
t = m− pA · xA,i − pA · xB,i.

(4.2)

Aggregating the rational consumers' demands via xjt :=
∫ 1

0 x
j,i
t di, j ∈ {A,B}, and

inverting yields the total inverse demand for the product of �rm j ∈ {A,B} generated
by rational consumers. Combining the demand of rational consumers and random

shoppers leads to the following aggregated inverse demand functions

pAt = α+ ηt − xAt − γxBt + uAt ,

pBt = α− ηt − xBt − γxAt + uBt .
(4.3)

In order to fully characterize the optimal behavior of consumers in each period, we now

need to calculate how they use the available information to update their beliefs about

the goods' qualities, captured by ηt in aggregate terms, and can then use the aggregated

inverse demand calculated in Equation (4.3). We exploit the properties of the normal
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distribution, in particular the fact that the updating rules for both, mean and variance,

are linear (see e.g. Section 2.2.2 of Chamley, 2004). Details on the calculations can be

found in Appendix 4.A.1.

First Period Early adopter i's belief about the quality is given by ηi1 := E[q|Ii1] =

m1s
i
1 where m1 := τε

τε+τq
weighs the precisions of the distributions of the signal the

consumers receive against the precision of the quality. The aggregate expectation in the

�rst period can be calculated as

η1 =

∫ 1

0
ηi1di = m1q.

As Var(η1) < Var(q), some uncertainty is resolved in the aggregate and in aggregate the

consumers' belief is closer to the true value of q than the unconditional expectation E[q].

In equilibrium, beliefs are correct, such that the consumers' �rst period equilibrium

belief is η∗1 = m1q.

The utility maximization of the rational consumers and the behavior of the random

shoppers results in the following inverse demand

pA1 = α+m1q − xA1 − γxB1 + uA1 ,

pB1 = α−m1q − xB1 − γxA1 + uB1 .

Second Period In addition to the signal and the quantities x2, the laggard i's infor-

mation set now also contains the observed price di�erence in period 1, i.e., her infor-

mation set is Ii2 = {si2,∆p1, x2}. The price di�erential ∆p1 contains information about

q:

∆p1 := pA1 − pB1 = 2m1q − (1− γ)∆x1 + ∆u

⇔ q = [∆p1 + (1− γ)∆x1 −∆u1]/2m1.

As ∆x1 is not observed by consumers in the second period and E[∆u1] = 0, a laggard's

best estimate of the quality is qe = [∆p1+(1−γ)∆xe1]/2m1, where ∆xe1 is the conjectured

di�erence in quantities. Because actual �rst period quantities are not observed by

consumers in the second period, they have to make conjectures about them, that is,

they need to interpret past prices as signals of the chosen quantities, which is formalized

by ∆xe1. Thus, qe is obtained by solving the observed price di�erence ∆p1 for q and

replacing the unknown variables from the perspective of the consumer by their expected
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value (∆u1) and the conjecture about the played strategy (∆x1). Inserting the realized

price di�erence ∆p1, it equals

qe = q + [∆u1 − (1− γ)(∆x1 −∆xe1)]/2m1. (4.4)

This expression contains the two random variables q and ∆u1, and the second summand

captures the error the consumers make in conjecturing past market shares.

The laggard now combines his observation extracted from the price di�erence with

his signal using Bayesian updating, so that her belief is given by ηi2 := E[q|Ii2] =

m2s
i
2 +n2q

e, with m2 = τε/τ
i
2, n2 = 2τum

2
1/τ

i
2, and τ

i
2 = τε+τq+2τum

2
1. The aggregate

belief then is given by

η2 =

∫ 1

0
ηi2di = m2q + n2q

e.

As in equilibrium beliefs are correct we obtain the equilibrium belief η∗2 = m2q + n2q̃

with q̃ = q + ∆u1/2m1. Note that q̃ equals qe with correctly conjectured �rst period

quantities, i.e. with ∆xe1 = ∆x1.

Clearly,

∂η2

∂xA1
= − ∂η2

∂xB1
= n2 ·

∂qe

∂xA1
= −(1− γ)n2

2m1
. (4.5)

The derivative shows that the e�ect of a change in the �rst period quantity on the

consumer belief in the second period is higher, the smaller the substitutability between

products, γ. Phrased di�erently, the more di�erentiated the goods are, the higher is

the impact of a �rm's change of its choice variable in the �rst period on the laggards'

belief. The decreased price pA1 induced by a higher quantity xA1 decreases the belief

that product A is of superior quality because �rst period quantities are not observed

by laggards, so that consumers can not be certain whether the price decrease was due

to a low quality product, or due to a high volume of sales. This reasoning is analogous

to the recommendation e�ect introduced in Chapter 3.

Similarly as in period one, the utility maximization of the rational consumers and

the behavior of the random shoppers results in the following inverse demand in period

two:

pA2 = α+m2q + n2q
e − xA2 − γxB2 + uA2 ,

pB2 = α−m2q + n2q
e − xB2 − γxA2 + uB2 .
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4.3.2 Firms

Firm behavior is analyzed via backward induction, but we start with analyzing the

�rms' information processing.

Bayesian Updating

In order to optimally set quantities, �rms need to forecast the consumers' beliefs on

quality, so they form a belief about the consumers' (aggregate) belief on quality denoted

by θt := E[ηt|It]. Both �rms have identical information, so that they cannot manipulate

each other.

In period 1, the �rms do not have any information about the consumers' belief, and

thus θ1 = E[m1q|I1] = 0.

In period 2, in contrast to the consumers, the �rms can extract q̃ (the consumers'

second period estimate of the quality extracted from the price di�erence in the previous

period with correctly conjectured quantities) from past prices and quantities, so that

θ2 = E[m2q + n2q
e|I2] = m2E[q|q̃] + n2E[qe|q̃]. Equilibrium beliefs are satisfy θ∗t =

E[η∗t |It].

Optimal Quantities

Given the beliefs about consumers' beliefs, �rms choose optimal quantities. Details

on the calculations can be found in Appendix 4.A.2. In the second period, �rms take

the di�erentiation parameter and �rst period quantities and prices as given so that

their optimization problem boils down to maximizing the pro�t πj2 = xj2 · pj2(x2) by the

choice of xj2. Best responses are given by xA2 (xB2 ) =
α+θ2−γxB2

2 and xB2 (xA2 ) =
α−θ2−γxA2

2 .

Equilibrium quantities are

xA∗2 =
α

2 + γ
+

θ∗2
2− γ ,

xB∗2 =
α

2 + γ
− θ∗2

2− γ .

In the �rst period, �rms take into account the indirect e�ect of their quantity choice

via Bayesian updating among the consumers on the pro�t in period 2. Thus, the

objective function of �rm A is given by

πA1 (x1) = xA1 (α+ θ1 − xA1 − γxB1 ) + δE[πA2 |I1], (4.6)

where πA2 is �rm A's second period pro�t and πA1 is the total revenue of �rm A, that is

the pro�t from periods one and two, ignoring potential investments in di�erentiation.
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Remember that θ1 = 0. Furthermore, note that E[pA2 |I1] = α
2+γ + θ2

2−γ = xA∗2 , which

implies that E[πA2 |I1] = E[(xA∗2 )2|I1]. Firm A's best response is then xA1 (xB1 ) = α/2−
xB1 γ/2 +

δxA∗2
2−γ · ∂θ2∂xA1

. Firm B's best response can be calculated analogously, and using

Equation (4.5) shows that equilibrium quantities are

xA∗1 = xB∗1 =
α

2 + γ
·
(

1 +
2δ

4− γ2

∂θ2

∂xA1

)
.

Overall, we obtain the following result, which is analogous to the proposition for Bertrand

competition in Caminal and Vives (1996).

Lemma 4.1. In the equilibrium of our model, optimal quantities in period 2 are given

by

xA∗2 =
α

2 + γ
+

θ∗2
2− γ and xB∗2 =

α

2 + γ
− θ∗2

2− γ . (4.7)

Optimal quantities in period 1 are given by

xA∗1 = xB∗1 =
α

2 + γ
·
(

1− δ(1− γ)

4− γ2
· n2

m1

)
. (4.8)

The optimal second-period quantity of �rm j is higher (lower) than in a standard

di�erentiated Cournot model (α/(2 + γ)), if the expectation of the consumer belief

is (not) in favor of �rm j.4 That is, the �rm which is expected to be preferred by

consumers sells a higher quantity.

As γ ≤ 1, �rst period quantities are (weakly) lower than those without consumer

learning, meaning that �rst period prices exceed those of the standard di�erentiated

Cournot model. This is due to the fact that consumers in period 2 only observe past

prices but not quantities. A higher price thus leads them to expect the good to be of

higher quality.

Optimal Di�erentiation Investments

Forecasting the resulting optimal quantities, �rms choose the investment into di�er-

entiation in period zero. There exist no closed-form solutions to derive the optimal

investment in di�erentiation, kj∗, and furthermore, conventional comparative static

tools such as the implicit function theorem or approaches via lattice theory involve cal-

culations, which are too computationally complex. Thus, to compare the di�erentiation

incentives without relying on the full solution, we use the technique of Brander and

Spencer (2015a), who compare the minimal e�ectiveness of investments in di�erentia-

4Equilibrium quantities are positive whenever n2/m1 < 4, which is always ful�lled.
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tion needed to induce �rms to invest, that is, we derive and compare the thresholds λ

so that �rms investments become positive.

Without Consumer Learning (Benchmark) If second period consumers were to

have a belief of η2 = 0, the model in the second period is the same as the standard model

of Dixit (1979), and the resulting optimal quantities would be xA∗NL = xB∗NL = α/(2 + γ).

The pro�t of a benchmark model with two periods without consumer learning is thus

given by

πjNL = (1 + δ) · E[πj2|I1]− kj = (1 + δ) · (xj∗NL)2 − kj .

The derivative of the objective function is then

∂πjNL/∂k
j = (1 + δ) · d(xj∗NL)2

dγ
· ∂γ
∂kj
− 1 = (1 + δ) · −2α2

(2 + γ)3
· (−λγ)− 1

= (1 + δ) · 2λγα2

(2 + γ)3
− 1.

Firm j will invest in di�erentiation in equilibrium if

∂πjNL/∂k
j
∣∣
γ=1

> 0⇔ λ >
27

2(1 + δ)α2
:= λ̄CNL.

The threshold without learning can also be obtained as a corollary of Proposition 4 from

Brander and Spencer (2015a) by extending their model to two periods. The threshold

decreases in α, as the positive e�ect of increased di�erentiation on pro�t is higher

the higher α, so that the necessary technology (λ̄) is decreasing in α. Additionally,

di�erentiation incentives are stronger, as δ increases. This is because the gain from

di�erentiation is higher than the costs compared to a situation with a lower δ.

With Consumer Learning With πjL(·) := πj1(·) − kj , j ∈ {A,B} using Equation

(4.6) and the results mentioned thereafter, implies that the derivative of the objective

function is given by

∂πjL(x∗)/∂kj =
∂
[
xj∗1 {α− (1 + γ)xj∗1 }

]
∂kj

+ δ · d(xj∗2 )2

dγ
· ∂γ
∂kj
− 1.
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Firm j will invest into di�erentiation in equilibrium if

∂πjL/∂k
j
∣∣
γ=1

=
α2(n2δ + 2m1(1 + δ))λ

27m1
− 1 > 0

⇔ λ >
27m1

α2(2m1 + 2δm1 + δn2)
:= λ̄CL .

We can easily see that λ̄CL < λ̄CNL, as

λ̄CL = λ̄CNL
2α2(1 + δ)

2α2(1 + δ) + α2δn2/m1
< λ̄CNL,

which leads to our �rst main result:

Proposition 4.1. In the Cournot model, in equilibrium �rms o�er perfect substitutes

for a smaller range of parameters λ with consumer learning than without. That is, the

threshold λ above which �rms invest in di�erentiation is lower with consumer learning

than without, λ̄CL < λ̄CNL.

The comparative statics of threshold λ̄L with respect to α and δ are the same as

those of threshold λ̄CNL, but the extent of the changes on the threshold induced by

changes in α and δ now depends on the parameters introduced by consumer learning,

m1 and n2. Furthermore, as ∂n2
∂τu

> 0 and ∂λ̄L
∂n2

< 0, the critical value λ̄L decreases in

τu,
∂λ̄L
∂τu

< 0. Intuitively, the more noise caused by the random shoppers is contained in

the observed statistic about the quality, the smaller are the incentives to di�erentiate.

4.4 Solving the Model with Price Competition

As shown by Singh and Vives (1984), with a linear quadratic utility function as given in

Equation (4.1), there is a close relationship between Cournot and Bertrand competition.

In their words:

Cournot (Bertrand) competition with substitutes is the dual of Bertrand

(Cournot) competition with complements. This means that they share simi-

lar strategic properties. For example, with linear demand, reaction functions

slope downwards (upwards) in both cases. It is a matter of interchanging

prices and quantities. (Singh and Vives, 1984, p. 547)

Indeed, using the following utility function from Caminal and Vives (1996) which slightly

di�ers from the one of the previous sections,

UB(xA, xB, x0) = (α+ (1− γ)q)xA + (α− (1− γ)q)xB − 0.5
[
(xA)2 + 2γxAxB + (xB)2

]
+ x0,



4.4. SOLVING THE MODEL WITH PRICE COMPETITION | 165

and including random shoppers similarly to the model before, we obtain the following

set of demand functions

xAt = a+ ηt − bpAt + cpBt + uAt ,

xBt = a− ηt − bpBt + cpAt + uBt ,
(4.9)

where a = α/(1 + γ), b = 1/(1 − γ2) and c = γ/(1 − γ2). Variable ηt again is the

aggregate consumers' belief about the quality in period t. Besides the slightly di�erent

utility function and induced demands, all variables remain as in the previous section.

Comparing the above system of direct demands in Equation (4.9) to the inverse

demand system from Equation (4.3), we can obtain one from the other by simply ex-

changing quantities and prices and replacing a by α, b by β = 1, and c by −γ.
Using Equation (4.5), this implies that the recommendation e�ect in the Bertrand

model is formalized by

∂η2

∂pA1
= − ∂η2

∂pB1
= n2 ·

∂qe

∂pA1
= − n2

2(1− γ)m1
. (4.10)

This shows that, in Bertrand competition, the parameter of substitution (γ), has the

inverse impact on the magnitude of the recommendation e�ect compared to Cournot

competition.

Additionally, using the above shortcut, we know from Lemma 4.1 that the equilib-

rium prices in this setting are given by the following lemma.

Lemma 4.2 (Caminal and Vives, 1996). In the equilibrium of the model with price

setting, optimal prices in period 2 are given by

pA∗2 =
a

2b− c +
θ∗2

2b+ c
and pB∗2 =

a

2b− c −
θ∗2

2b+ c
. (4.11)

Optimal prices in period 1 are given by

pA∗1 = pB∗1 =
a

2b− c ·
(

1− (b+ c)bδ

4b2 − c2
· n2

m1

)
. (4.12)

Without learning, optimal prices of both �rms are calculated as pA∗NL = pB∗NL = a
2b−c .

We see that the �rm with the higher perceived quality charges a higher price, and in

the �rst period both �rms charge a lower price than in a model without learning.

As in the previous section, we can use the equilibrium prices to calculate equilibrium

pro�ts for a �xed γ and solve the derivative of the pro�t with respect to the investment

kj evaluated at γ = 1 for the threshold λ above which �rms make their investments in
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di�erentiation. Details on the calculations can be found in Appendix 4.A.3. We obtain

the following result:

Proposition 4.2. In the Bertrand model, in equilibrium �rms o�er perfect substitutes

for a smaller range of parameters λ without consumer learning than with consumer

learning. That is, the threshold λ above which �rms invest in di�erentiation with con-

sumer learning (λ̄BL ) is higher than the threshold without learning (λ̄BNL):

λ̄BL =
2

α2
[
(1 + δ)− 2δn2/(3m1)

] > 2

α2(1 + δ)
= λ̄BNL.

4.5 Informational Incentives to Di�erentiate:

Bertrand Vs. Cournot

While we should keep in mind, that the parameter of substitution (γ) is incorporated in

a di�erent manner in the microfoundation of the Bertrand and the Cournot model,5 it is

nevertheless worthwhile to compare the in�uence of consumer learning on the incentives

to di�erentiate of the two models. Comparing our �ndings in the di�erent models yields

our �nal main result:

Proposition 4.3. The e�ect of consumer learning on the �rms' incentives to di�er-

entiate their products is di�erent in the Cournot model and in the Bertrand model.

In contrast to quantity competition, consumer learning in a model with price setting

decreases the �rms' incentives to di�erentiate:

λ̄BL − λ̄BNL > 0 > λ̄CL − λ̄CNL.

Consumer learning thus tends to increase the competition in the Bertrand setting, and

it weakens it in the Cournot model.

In order to understand this result in more detail, it is useful to compare the equi-

librium choices from the models with learning to those without. From the perspective

of period zero, where �rms choose their di�erentiation investments, and given the equi-

librium strategies for periods one and two, the expected optimal quantities in period 2

are the same in the models with and without learning, as E(θ2) = 0. Thus, the second

period a�ects the di�erentiation incentives only through its in�uence on the optimal

5The di�erent utility functions in the two models are employed, as they allow to compare the impact
of γ on the aggregated (inverse) demand systems in Equations (4.3) and (4.9) more easily.
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�rst period choices of the �rms. In the Cournot game, equilibrium quantities in the

�rst period are given by

xj∗1 = xj∗NL ·
(

1− δ(1− γ)

4− γ2
· n2

m1

)
=

α

2 + γ
·
(

1− δ(1− γ)

4− γ2
· n2

m1

)
,

and equilibrium prices in the Bertrand model are

pj∗1 = pj∗NL ·
(

1− (b+ c)bδ

4b2 − c2
· n2

m1

)
=

a

2b− c ·
(

1− (b+ c)bδ

4b2 − c2
· n2

m1

)
=
α(1− γ)

2− γ ·
(

1− (1 + γ)δ

4− γ2
· n2

m1

)
for j ∈ {A,B}. In both models, the �rst factor, gives the optimal choices in a model

without consumer learning. The second factor in both cases is (weakly) smaller than

one, so that quantities in a Cournot style competition and prices in the Bertrand variant

of our model are (weakly) decreased by the introduction of consumer learning. Only

if γ = 1, the optimal choices in the models with learning and those without learning

coincide.

Starting with the Cournot model and comparing the marginal pro�t of investing

in di�erentiation (increasing kA or kB) in a situation where γ = 1 (kA = kB = 0),

the previous calculations showed that the marginal pro�t is higher with learning than

without, leading to the lower threshold value in the model with learning compared to

the model without.

The mechanisms behind this di�erence are as follows. In the Cournot model without

learning, and in any similar model, the two �rms could increase their �rst period pro�t

by reducing their quantities. In the model without learning, decreasing one's quantity

below xA∗NL = xB∗NL is not individually rational. If γ < 1 consumer learning however

introduces an incentive to decrease �rst period quantities below the level of a model

without learning due to the recommendation e�ect, meaning that at γ = 1, consumer

learning generates an additional incentive to invest in di�erentiation, as this enhances

the impact of the recommendation e�ect.

The situation in the Bertrand setup is di�erent in that prices are already too low

in the model without learning if the goal is to maximize the joint �rst period pro�t of

the �rms. Firms could therefore increase their pro�ts if they were to jointly raise their

prices. With γ = 1, prices in the model with and without learning coincide and equal

zero. Decreasing γ, that is increasing the di�erentiation, increases the optimal �rst

period price, but the increase is smaller with consumer learning. The marginal pro�t of

increasing kA = kB(= 0), is thus higher in the model without learning than it is in the

model with learning, explaining the ordering of the thresholds in this setup.
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Finally, we can elaborate on the result of Brander and Spencer (2015a,b), who

showed that �rms are more likely to invest in di�erentiation in Bertrand than in Cournot

competition. As our benchmark models without learning are two-period extensions of

their models, we obtain the same result if we compare the models without learning,

that is λ̄CNL > λ̄BNL. Consumer learning has been shown to decrease the threshold in the

Cournot model and to increase it in the Bertrand setting, but even then, the ranking

of the two models is maintained, i.e., we also have λ̄CL > λ̄BL .

4.6 Conclusion

Di�erentiating one's product from those of a competitor results in a weaker competition

and thus allows for higher prices and pro�ts. By introducing consumer learning in a

duopoly model with vertically di�erentiated goods and by endogenizing the horizontal

di�erentiation between the products, we have shown that the incentives to di�erentiate

are changed when consumer learning about the size of the vertical di�erentiation, i.e.,

the di�erence in quality, is introduced. Furthermore, the e�ects created by consumer

learning di�er between a model of quantity and a model of price competition.

In each of the two models, consumers learn from observed previous purchasing deci-

sions. As their observations are not fully revealing all information, �rms can manipulate

the inference of late consumers by in�uencing the purchase decisions of early consumers.

When setting their prices or quantities in early periods, �rms take this e�ect of their

choices on the inference of later consumers into account. Only when the two products

are perfect substitutes (γ = 1), the presence of consumer learning does not change the

�rms optimal behavior compared to a model without consumer learning.

For quantity competition with di�erentiated products, �rms optimally choose lower

quantities in a model with consumer learning than in a model without. Low quanti-

ties lead to higher prices which tend to signal higher quality to later consumers. If

�rms compete in prices, optimal �rst period prices are below those of a model without

consumer learning, as here higher sold quantities signal high quality to later consumers.

These �distortions� of the optimal choices in early periods lead to di�erent e�ects on

the di�erentiation incentives of the �rms induced by consumer learning. Because pro�ts

in a Cournot model can typically be increased by reducing the produced quantities,

which is precisely the e�ect consumer learning has in our model of quantity competition,

consumer learning increases the incentives to di�erentiate above the incentives generated

by the desire to relax competition. The reverse is true in a model of Bertrand style

price competition: here increasing prices would increase the pro�t of the �rms, but

consumer learning reduces the prices even further than the already strong competition



4.A. APPENDIX: PROOFS | 169

in a Bertrand setup. The introduction of consumer learning thus decreases the incentives

to invest in di�erentiation if �rms compete in prices.

The presented results seem to support the notion that price competition, i.e., a game

with strategic complements, leads to a stronger competition than quantity competition,

that is competition with strategic substitutes, as, in the setting discussed here, products

are more likely to be substitutes (in the equilibrium) in the former oligopoly model.

4.A Appendix: Proofs

4.A.1 Bayesian Updating Among Consumers

Bayes' rule in the context at hand can be formulated as

f(q|o) =
φ(o|q) · f(q)∫
φ(o|q) · f(q)dq

,

where f(·) is the density of q and φ(·) is the density of some observation o containing

information on quality q, i.e., in our case signal sti or the estimate of q extracted from

the price di�erence in the �rst period, qe. Gaussian models as the one at hand (i.e.,

Bayesian updating over normally distributed random variables and observations), are

particularly tractable, as the posterior distribution is also normal and the updating

rules for mean and variance are linear: the posterior mean is the weighted average of

the prior mean and that of the observation weighted with the respective precisions,

while the posterior variance is that of the prior increased by that of the observation.

In our model, consumers want to best estimate q from their observations. Consumers

have the prior knowledge that q ∼ N
(
µq,

1
τq

)
and they make one or two additional

observations or, r ∈ {1, 2}, with information about q. All consumers receive a signal

about q, and consumers in period two additionally observe past prices. Both, the signal

and the information extracted from past prices can be reformulated to observation oir,t
of consumer i in period t in the following form:

oir,t = q + vir,t where vir,t ∼ N
(

0,
1

τvir,t

)

Using Bayesian updating as described above, this leads to the following distribution of

q conditional on the available observations, for t ∈ {1, 2}

q|Iit ∼ N
(
τqµq +

∑t
r=1 τvir,to

i
r,t

τq +
∑t

r=1 τvir,t

,
1

τq +
∑t

r=1 τvir,t

)
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Let ηi1 := E[q|Ii1] be the updated belief of consumer i about q in period 1 after

receiving signal si1, then

ηi1 ∼ N
(

(1−m1) · 0 +m1 · si1, 1
τq+τε

)
.

with m1 := τε
τq+τε

. Using the assumption on the average signal, the aggregate belief is

given by

η1 :=

∫ 1

0
ηi1di =

∫ 1

0
m1s

i
1di = m1

∫ 1

0
si1di→ m1q.

The information a consumer i in period 2 can extract about q from the observed

price di�erence only is given by

qe = [∆p1 + (1− γ)∆xe1]/2m1

= q + [∆u1 − (1− γ)(∆x1 −∆xe1)]/2m1. (4.13)

This expression contains the two random variables q ∼ N(0, 1
τq

) and ∆u1
2m1
∼ N(0, 2

4m2
1τu

).

When combining this with the signal, ηi2 := E[q|Ii2], the updated belief of consumer i

about q in period 2, is normally distributed with

ηi2 ∼ N
(

(1−m2 − n2) · 0 +m2s
i
2 + n2q

e, 1
τ i2

)
,

with τ i2 = τε + τq + 2τum
2
1, m2 = τε/τ

i
2, and n2 = 2τum

2
1/τ

i
2. Thus, the aggregate belief

is given by

η2 :=

∫ 1

0
ηi2di =

∫ 1

0
(m2s

i
2 + n2q

e)di = m2

∫ 1

0
si2di+ n2q

e → m2q + n2q
e,

again making use of the assumption on the average signal.

4.A.2 Firm Behavior in the Cournot Model

Firm behavior is analyzed via backward induction.

Quantity Setting in Stage t = 2

Firm A's pro�t in stage t = 2 is given by

πA2 = xA2 · pA2 = xA2 · (α+ θ2 − xA2 − γxB2 ).
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Best responses are obtained by the FOCs ∂πj2/∂x
j
2 = 0 with j ∈ {A,B}, which gives

xA2 (xB2 ) =
α+ θ2 − γxB2

2
, and similarly xB2 (xA2 ) =

α− θ2 − γxB2
2

.

In equilibrium best responses intersect, so we obtain the equilibrium quantities

xA∗2 =
α

2 + γ
+

θ2

2− γ and xB∗2 =
α

2 + γ
− θ2

2− γ .

Quantity Setting in Stage t = 1

Firm A's expected pro�t considered in stage t = 1 is given by

πA1 = xA1 p
A
1 + δE[πA2 |I1] = xA1 · (α+ θ1 − xA1 − γxB1 ) + δE[pA2 x

A
2 |I1].

In period 1, �rms anticipate the equilibrium quantities from period 2, so thatE[pA2 (x∗2)|I1] =
α

2+γ + θ2
2−γ = xA∗2 , and thus E[πA2 |I1] = (xA∗2 )2. We can additionally use the observations

that θ1 = E[θ∗1|I1] = 0 and

∂θ2/∂x
A
1 = −∂θ2/∂x

B
1 = ∂η2/∂x

A
1 = (γ − 1) n2

2m1
.

Using ∂E[πA2 |I1]/∂xA1 = 2xA2 · 1
2−γ · ∂θ2∂xA1

, we obtain the FOC of �rm A, given by

∂πA1
∂xA1

= α− 2xA1 − γxB1 + δ

(
2xA2

2− γ ·
∂θ2

∂xA1

)
= 0.

This yields the best responses

xA1 (xB1 ) =
α

2
− γxB1

2
+ δ

(
2xA2

2− γ ·
∂θ2

∂xA1

)
,

and similarly

xB1 (xA1 ) =
α

2
− γxA1

2
+ δ

(
2xB2

2− γ ·
∂θ2

∂xA1

)
.

In equilibrium best responses intersect, and using E[θ∗2|I1] = m1E[q] + n2E[q̃] = 0 the

equilibrium quantities are given by

xA∗1 = xB∗1 =
α

2 + γ

(
1 +

δ(γ − 1)

4− γ2
· n2

m1

)
.
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Di�erentiation Investment in Stage t = 0

It holds that for j ∈ {A,B}

d(xj∗NL)2

dγ
· ∂γ
∂kj

∣∣∣∣
γ=1

=
d(xj∗2 )2

dγ
· ∂γ
∂kj

∣∣∣∣
γ=1

=
2δλα2

27
.

Further helpful results for the calculation of the model with consumer learning are

dxj∗1
dγ
· ∂γ
∂kj

=

[ −α
(2 + γ)2

+
αδn2

m1

{
(2 + γ)2(2− γ)− (γ − 1)[2(2 + γ)(2− γ)− (2 + γ)2]

(2 + γ)4(2− γ)2

}]
· (−λγ)

and

∂[α− (1 + γ)xj∗1 ]

∂kj
= λγxj∗1 − (1 + γ)

[
dxj∗1
dγ
· ∂γ
∂kj

]
.

Evaluating at γ = 1, using the sum rule in di�erentiation and the above results, we

obtain

∂{xj∗1 · [α− (1 + γ)xj∗1 ]}
∂kj

∣∣∣∣
γ=1

=
λα2

27

(
1− δn2

m1

)
+
λα2

9
·
(

1− 2

3

{
1− δn2

m1

})
=
λα2

9
·
(

2

3
+
δn2

3m1

)
.

Overall, the derivative of pro�t w.r.t. investment in di�erentiation, evaluated at γ = 1,

is

∂πjL/∂k
j
∣∣
γ=1

=

(
∂
[
xj∗1 {α− (1 + γ)xj∗1 }

]
∂kj

+ δ · d(xj∗2 )2

dγ
· ∂γ
∂kj
− 1

)∣∣∣∣
γ=1

=
λα2

9
·
(

2

3
+
δn2

3m1
+

2δ

3

)
− 1.

4.A.3 Firm Behavior in the Bertrand Model

The calculations on the price setting in stages one and two of the Bertrand model can

be done analogously to the quantity setting in the Cournot model (see Appendix 4.A.2),

and thus we will only calculate the optimizing behavior for di�erentiation investment

in stage t = 0. In the following, the pro�t functions Πj
k represent the same pro�ts as in

the Cournot model, only adapted to the Bertrand setting.
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Di�erentiation Investment Without Consumer Learning (Benchmark)

No consumer learning implies θ2 = 0, such that the resulting optimal quantities and

prices for �rm A are

E[xA2 (pA∗2 )|I1] =
α

(2− γ)(1 + γ)
,

E[pA∗2 |I1] =
α(1− γ)

(2− γ)
.

The pro�t of �rm A in a benchmark model with two periods without consumer learning

is thus given by

Πj
NL = (1 + δ) · E[ΠA

2 |I1]− kA = (1 + δ)E[xA2 (pA∗2 )|I1] · E[pA∗2 |I1]− kA.

The derivative of the objective function is then

∂Πj
NL/∂k

j = (1 + δ) · d(E[xA2 (pA∗2 )|I1] · E[pA∗2 |I1])

dγ
· ∂γ
∂kj
− 1

= (1 + δ) · −α
2(γ3 − 3γ2 + 4) + (3γ2 − 6γ)(α2(1− γ))

(γ3 − 3γ2 + 4)2
· (−λγ)− 1.

Firm A will invest in di�erentiation in equilibrium if

∂Πj
NL/∂k

j
∣∣
γ=1

> 0⇔ λ >
2

α2(1 + δ)
= λ̄BNL.

Di�erentiation Investment With Consumer Learning

We can write

pA∗1 =
a

2b− c ·
(

1− (b+ c)bδ

4b2 − c2
· n2

m1

)
=
α(1− γ)

2− γ ·
(

1− (1 + γ)δ

4− γ2
· n2

m1

)
=
α(1− γ)

2− γ − (1− γ2)δα

(4− γ2)(2− γ)
· n2

m1
.

The pro�t of �rm A in the model with consumer learning is given by

Πj
L = pA∗1 ·

[
a+ (c− b)pA∗1

]
+ δ · E[xA2 (pA∗2 )|I1] · E[pA∗2 |I1]− kA

= pA∗1 ·
[

α

1 + γ
+

γ − 1

1− γ2
· pA∗1

]
+ δ · E[xA2 (pA∗2 )|I1] · E[pA∗2 |I1]− kA.
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Further helpful results are

∂pA∗1

∂γ
=
−α(2− γ) + α(1− γ)

(2− γ)2
− (−2γδα)(2− γ)(4− γ2)− (3γ2 − 4γ − 4)αδ(1− γ2)

(2− γ)2(4− γ2)2
,

∂

[
α

1+γ + γ−1
1−γ2 · pA∗1

]
∂kA

= −α+
(1− γ2) + 2γ(γ − 1)

(1− γ2)2
· pA∗1 +

γ − 1

1− γ2
· ∂p

A∗
1

∂γ
,[

α

1 + γ
+

γ − 1

1− γ2
· pA∗1

]∣∣∣∣
γ=1

= α/2,

pA∗1

∣∣∣∣
γ=1

= 0,

∂pA∗1

∂γ

∣∣∣∣
γ=1

= −α+
2αδn2

3m1
.

Overall, the derivative of pro�t w.r.t. investment in di�erentiation, evaluated at γ = 1,

is

∂Πj
L/∂k

j
∣∣
γ=1

= αλ

(
1− 2δn2

3m1

)
· α

2
+ 0 ·

∂

[
α

1+γ + γ−1
1−γ2 · pA∗1

]
∂kA

(−λ) + δλ
α2

2
− 1

=

[
α2

2
(1 + δ)− α2δn2

3m1

]
λ− 1.

Firm j will invest in di�erentiation in equilibrium if

∂Πj
L/∂k

j
∣∣
γ=1

> 0

⇔ λ >
2

α2
[
(1 + δ)− 2δn2/(3m1)

] := λ̄BL .



Part II

Evolution and Cooperative Games



Chapter 5

Stability in Replicator Dynamics

Derived from Transferable Utility Games1

We propose an approach to derive a population dynamic from an underlying

cooperative transferable utility game. To our knowledge, this combination of evo-

lutionary and cooperative game theory is a methodological novelty. Examining

the stable points of the dynamical system, we obtain several intuitive results. Our

main result says that a coalition of player types is stable if and only if it implies a

higher average productivity than any of its super- or subcoalitions. For instance,

in the class of simple monotonic games, only minimal winning coalitions can be

stable. Moreover, we can make statements about which player types will vanish

and which ones will persist in stable states. Possible applications are the analy-

sis of coalition formation, the population constitution of eusocial species, or the

organizational structure in businesses.

5.1 Introduction

In non-cooperative game theory, the evolutionary approach has long been used to model

the behavior of boundedly rational agents and to analyze the relation between the stable

outcomes of the dynamical process generated by their repeated interaction and the

common static solution concept of Nash equilibrium, see Weibull (1995) and Sandholm

(2010), for instance. In contrast to non-cooperative game theory, cooperative game

theory shifts the focus from modeling strategic interactions and the agents' strategic

reasoning to payo�s: it asks questions about which payo� distribution among the players

of a given cooperative game can, for instance, be considered as fair or stable, see Peleg

and Sudhölter (2007), for instance.

1This chapter is joint work with André Casajus and Harald Wiese.
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Our approach is to introduce the evolutionary methodology to cooperative game

theory in order to answer questions on the relation between the properties of the under-

lying cooperative game, which also determines the attributes of (coalitions of) players,

and the stable outcomes of the dynamical evolutionary process. In non-cooperative

game theory evolutionary pressures work against strategies, for instance, dominated

strategies may die out (see, e.g., Hofbauer and Weibull, 1996), while in our approach

these pressures work against certain types of coalitions, like, for instance, non-minimal

winning coalitions, or against certain player types, like null players or dominated play-

ers (see Section 5.5). That is, in our setup evolution takes place over player types and

not over strategies. We can thus answer questions on the connection between asymp-

totically stable coalitions and the underlying transferable utility (TU) game, as well

as what characterizes aymptotically stable coalitions or which player types survive the

evolutionary process.

Aside the new methodological approach, a contribution of our research is to model

the dynamic process of coalition formation. The common interpretation of the Shapley

value is that it distributes the worth of the grand coalition among all players in the

cooperative game according to their individual marginal contributions to each possible

coalition. This ex-ante perspective is implausible in many settings: it often seems more

suitable to assume that - once a coalition is formed - its structure plays a crucial role

for how wealth is allocated among members of society. Thus, it is important to examine

the process of coalition formation and the stability of its outcomes, as it has been done,

for instance, by Hart and Kurz (1983) or Ray and Vohra (1999).2 Moreover, in view of

the fact that coalitions often are an outcome of an �evolutionary� process, the dynamic

nature of the model is a desirable feature.

The work at hand is related to the concept of dynamic cooperative games introduced

by Filar and Petrosjan (2000). They de�ne a sequence of games so that one TU game

is determined by the previous one and by the payo�s achieved under some solution

concept. The players obtain the sum of payo�s for this sequence of coalition functions

and the problem of whether the payo�s satisfy a consistency criterion is discussed.

Nash (2008) also adresses the issue of a �cooperative evolutionary game theory�,

but takes a completely di�erent approach, as he models the formation of cooperative

coalitions by allowing non-cooperative players to decide repeatedly whether or not to

completely follow another players agency, i.e., to be cooperative.

In contrast to the �nite population models of Nax (2015) and Nax and Pradelski

(2015, 2016) we assume an in�nite population of agents of di�erent player types of the

coalitional game. To our knowledge we are the �rst to derive an evolutionary dynamic

from a cooperative game in a similar fashion as it is done in non-cooperative evolutionary

2Ray and Vohra (2015) survey game theoretic approaches to coalition formation.
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game theory. By this we mean that there is a fraction of the population (consisting of

in�nitely many agents) that belong to a certain player type of the underlying TU game.

This is similar to a fraction of the population in non-cooperative evolutionary game

theory playing one of the strategies of the underlying non-cooperative game.

The rest of this chapter is structured as follows. In Section 5.2 we use a simple

example to illustrate our results. In Section 5.3 we build up the framework in which

coalitions of players generate worth, and in Section 5.4 we introduce the evolutionary

model. Section 5.5 contains results on the asymptotic stability. Section 5.6 �nally

concludes.

5.2 Illustrative Example

Triadic coalitions - i.e., situations in which two players can unite against one other

player, all three players can unite, or each of them can stay autonomous - have long

been at the center of attention in the study of coalition formation, see Mesterton-

Gibbons et al. (2011). Consider, for instance, the cooperative game de�ned by the

coalition function v(·) for the player set N = {1, 2, 3} as de�ned by Table 5.1.

v(1) = 3 v(1, 2) = 4 v(N) = 7

v(2) = 2 v(1, 3) = 5 v(∅) = 0

v(3) = 1 v(2, 3) = 7

Table 5.1: A three-player cooperative game with transferable utility

The core of this game is empty, so that an important concept of stability does not

yield any predictions on the realization of the �nal allocation. The Shapley value, the

main fairness-related concept in cooperative game theory, yields the payo�s Sh(v,N) =(
12
6 ,

15
6 ,

15
6

)
for players one, two, and three, respectively.3 A frequently discussed as-

sumption of the Shapley value is the symmetry of players, i.e., equally productive play-

ers obtain the same payo�. This implies that, in the underlying calculations, symmetric

players are not distinguished when considering coalition formation. However, certain

political parties - although symmetric on a payo� basis - might be inclined to a di�er-

ent degree to form a coalition with a third party, for instance, due to historical reasons.

Additionally, the Shapley value satis�es the axiom of e�ciency, that is, the worth to

be distributed is that generated by the grand coalition. This implies that the grand

coalition is actually formed. These assumptions seem to be restrictive and unrealistic

in many settings.

3We maintain this order of players when using vector notation in what follows.
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We propose a framework in which only the worth generated by actually formed

coalitions is redistributed. We can interpret the players of the above example as in-

vestors, each having a certain endowment of time (e.g., working hours per day) at their

disposal, depicted by the vector s =
(

2
6 ,

1
6 ,

3
6

)
, where the �rst entry denotes the (abso-

lute) amount of time of the �rst investor, and so on. This implies each investor can

invest one sixth of a working hour per day into the project �grand coalition� to generate

worth. Investors 1 and 3 have enough time left to form a coalition, i.e., to cooperate in

a project consisting only of them both, and �nally one sixth of a working hour is left

for investor 3 to produce worth alone. Thus, for the initial investment state s and the

coalition function v de�ned by Table 5.1 the overall worth generated by the society is

v̄(s) = 1
6 · 7 + 1

6 · 5 + 1
6 · 1.4

The generated worth is distributed according to the Lovász-Shapley value LS(s, v),

which has plausible axiomatic properties in the setup at hand, see Casajus and Wiese

(2016). The value pays each investor according to his marginal contribution to the coali-

tion in which players are ordered with respect to their agent population sizes, starting

with the largest population, i.e., here they are ordered according to ρ(s) = (3, 1, 2).5

The calculated marginal productivity is then multiplied with the initial endowment of

the investor. Thus, we obtain LS(s, v) =
(

8
6 ,

2
6 ,

3
6

)
.

If we assume that the Lovász-Shapley value equals the growth of the investors'

disposable working hours in each state (e.g., they might hire new employees with the

income generated by the executed projects), then we obtain the following dynamic

depicting the evolution of the investors' relative shares in the working time available for

society:

4The term v̄ is the Lovász-extension of the game (v,N). Details on this follow below. The described
way of forming coalitions to create worth is not e�cient for society and may also not be individually
rational. It can however be justi�ed by the fact that investors are boundedly rational, which is the
common intuition for evolutionary models. We further discuss this issue in Section 5.6.

5Intuitively, investor 2's time is most scarce in the initial state s and thus his investment is in some
way �most crucial� to form the grand coalition, so that he should obtain a payo� proportional to his
marginal contribution to the grand coalition, MCv2 (3, 1, 2) = 2. Next, investor 1's time is most crucial
to form the coalition of investors 1 and 3, so he should obtain a payo� proportional toMCv1 (3, 1, 2) = 4.
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3

2

1
Figure 5.1: Vector �eld for the TU game described in Table 5.1 assuming that the
growth of disposable working time (population sizes) equals the Lovász-Shapley value.
The �gure depicts the dynamics �in relative terms�, i.e., each point in the simplex
determines the (relative) population shares (or working-hour shares relative to the time
worked in total) of the three di�erent investors. For instance, the vertex labeled �1�
depicts a state in which only investor 1 has a positive population share.

There exist two asymptotically stable distributions of wealth: one characterized by the

coalition of investors 2 and 3, and one is the singleton containing only investor 1. These

coalitions have in common that they yield a higher average payo� for the investors than

each of its sub- or supercoalitions, which is one main result of this chapter.

An alternative interpretation of our framework suits the usual evolutionary inter-

pretation very well: society consists of in�nitely many agents (vector s) of the distinct

player types or casts (the three di�erent investors). Our model then determines which

are the evolutionary stable population pro�les of the player types for a given initial

population state.

5.3 Populations of Players Generating Worth

In this section, we �rst provide the foundation of cooperative game theory needed for

what follows. Then, we present the Lovász-Shapley value, which will be used to derive

the �tness of type populations from cooperative games.
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5.3.1 Basic De�nitions and Notation

A (�nite) cooperative game with transferable utility (TU game) for a non-empty and �-

nite set of playersN is given by a coalition function v ∈ V :=
{
f | f : 2N → R, f (∅) = 0

}
.

The latter describes the worths v (S) that can be generated by individuals who coop-

erate within coalitions S ⊆ N . A solution is a mapping ϕ : V→ RN , which assigns a

payo� ϕi (v) to any player i ∈ N for any game v ∈ V.
For v, w ∈ V, α ∈ R, the coalition functions v + w ∈ V and α · v ∈ V are given

by (v + w) (S) = v (S) + w (S) and (α · v) (S) = α · v (S) for all S ⊆ N. The game

0 ∈ V given by 0 (S) = 0 for all S ⊆ N is called the null game. For T ⊆ N, T 6= ∅, the
game uT ∈ V, uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise, is called an unanimity

game. Any v ∈ V can uniquely be represented by unanimity games, i.e.,

v =
∑

T⊆N :T 6=∅
λT (v) · uT , (5.1)

where the coe�cients λT (v) , the so-called Harsanyi dividends (Harsanyi, 1959), can be

determined recursively via

v (S) =
∑

T⊆S:T 6=∅
λT (v) , S ⊆ N. (5.2)

Player i ∈ N is called a null player in v i� v (S ∪ {i}) = v (S) for all S ⊆ N \ {i}.
Players i, j ∈ N are called symmetric in v if v (S ∪ {i}) = v (S ∪ {j}) for all S ⊆
N \ {i, j}.

A rank order of a set N is a bijection ρ : N → {1, . . . , |N |} with the interpretation

that i is the ρ (i)th player in ρ. The set of rank orders of N is denoted by R (N) . The

marginal contribution of i to S ⊆ N \ {i} is denoted by

MCvi (S) := v (S ∪ {i})− v (S)
(5.2)
=

∑
T⊆S\{i}

λT∪{i} (v) , (5.3)

and the marginal contribution of i under ρ is denoted by

MCvi (ρ) := v ({j : ρ(j) ≤ ρ(i)})− v ({j : ρ(j) < ρ(i)}) . (5.4)

The Shapley value (Shapley, 1953), Sh, is given by

Shi (v) := |R(N)|−1 ·
∑

ρ∈R(N)

MCvi (ρ) =
∑

T⊆N :i∈T
|T |−1 ·λT (v) , v ∈ V, i ∈ N. (5.5)
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We add some further de�ntions needed for our analysis in Section 5.5. Let S, T ⊆ N .

Game (v,N) is a simple game i� for all S we have v(S) ∈ {0, 1} and v(N) = 1, and

it is a monotonic game i� we have v(S) ≤ v(T ) for all S ⊆ T . Coalition T is a

minimal winning coalition in a simple game i� we have v(T ) = 1 and v(S) = 0 for

all S ( T . For i ∈ N with |N | ≥ 2, the apex game (v,N) is de�ned by v(S) = 1 if

i ∈ S ∧ S\{i} 6= ∅, v(S) = 1 if S = N\{i}, v(S) = 0 otherwise. Player i is called the

apex player. Player i strictly dominates player j in v i� v(K ∪ {i}) > v(K ∪ {j})
holds for all K ⊆ N\{i, j}. Player i weakly dominates player j in v i� v(K ∪ {i}) ≥
v(K ∪ {j}) holds for all K ⊆ N\{i, j} and there is a coalition K̂ ⊆ N\{i, j} such that

v(K̂ ∪ {i}) > v(K̂ ∪ {j}).

5.3.2 The Lovász-Shapley Value and the Fitness of Populations

Casajus and Wiese (2016) suggest to interpret the players in a TU game as types of

agents. The population sizes of the types are given by a vector s ∈ RN+ of non-

negative weights, where si denotes the size of the population (of agents) of type i ∈ N.
We address pairs (v, s) ∈ V × RN+ as population games. A population solution is

a mapping ϕ : V× RN
+ → RN , which assigns a payo� ϕi (v, s) to any population of type

i ∈ N for any population game (v, s) ∈ V.
Speci�cally, Casajus and Wiese (2016, Theorem 1) advocate a particular population

solution called the Lovász-Shapley value, LS. It is given by

LSi (v, s) := |R (s)|−1 ·
∑

ρ∈R(s)

si ·MCvi (ρ) , for all v ∈ V, s ∈ RN+ , and i ∈ N, (5.6)

where

R (s) := {ρ ∈ R(N) | ρ (i) < ρ (j) for all i, j ∈ N with si > sj} for all s ∈ RN+ . (5.7)

Note that R (s) contains those rank orders for which types with a greater population

size preceed types with a smaller population size. This de�nition allows for states with

equal population sizes, and, as a consequence, for such population states R(s) is not

a singleton, but rather a set consisting of all rank orders that order the types with

di�erent population sizes accordingly.

Alternatively, the Lovász-Shapley value can be expressed in terms of the Harsanyi

dividends (Casajus and Wiese, 2016, Equation 13). In particular, we have

LSi (v, s) = si ·
∑

T⊆N :i∈argminT (s)

λT (v)

|argminT (s)| , for all v ∈ V, s ∈ RN+ , and i ∈ N,

(5.8)
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where

minT (s) := min
i∈T

si and argminT (s) := {i ∈ T | si = minT (s)} for all s ∈ RN+ .

Equations (5.6) and (5.8) indicate a number of crucial properties of the Lovász-Shapley

value. For a more detailed account and motivation of these, we refer to Casajus and

Wiese (2016, Section 3).

(i) From Equation (5.8), one can infer that the �tness generated with respect to the

dividend λT (v) is restricted by the smallest population from T, i.e., the smallest

population involved in the creation of this dividend. This indicates that the types

generate �tness via a Leontief-type technology. In particular, the total �tness in

the population game (v, s) amounts to the worth generated by the population

state represented by s under the Lovász extension6

v̄(v, s) :=

q(s)∑
l=1

(s̄l − s̄l−1) · v({i ∈ N |si ≥ s̄l, l ∈ {1, ..., q(s)}}) ∀s ∈ RN+ (5.9)

of the game v (see Casajus and Wiese (2016), Lovász (1983) and Algaba et al.

(2004) for details). This Leontief-type process of generating worth is described in

the introductory example of Section 5.2.

(ii) Further, Equations (5.6) and (5.8) imply that type populations of the same size

that are equally productive with respect to the underlying game generate the

same amount of �tness. The types i and j are equally productive in the game v

whenever they are symmetric in v, that is, whenever their marginal contributions

to coalitions not containing them coincide, i.e., we have v (S ∪ {i}) − v (S) =

v (S ∪ {j})− v (S) for all S ⊆ N \ {i, j}.

(iii) Equation (5.6) entails that, for given population sizes as in s, a type i's �tness

does not decrease whenever this type's productivity in the underlying game does

not decrease. A type i's productivity does not decrease from game v to game w

whenever this type's marginal contributions to coalitions not containing it does not

decrease, i.e., we have v (S ∪ {i})−v (S) ≥ w (S ∪ {i})−w (S) for all S ⊆ N \{i}.7
6Let q(s) := |{si|i ∈ N}| and mapping s̄ : {1, ..., q(s)} → {si|i ∈ N} s.t. ∀k, l ∈ {1, ..., q(s)} with

k > l this implies s̄(k) > s̄(l), i.e., the mapping orders types in the reverse order of ρ ∈ R(s). Set
s̄l := s̄(l) and s̄0 := 0.

7Note, that in their Remark 5, Casajus and Wiese (2016) mention that in the axiomatization of
the Lovász-Shapley value, one can replace strong monotonicity by additivity in the game and the null
player property for population games.
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(iv) In view of Equation (5.8), the �tness generated with respect to the dividend λT (v)

is only attributed to the scarce types from T. This can be interpreted as a kind of

competitive remuneration of types, i.e., remuneration according to their marginal

contribution to �tness driven by the pressure to increase the total �tness of the

population. This �ts, for example, the interpretation that types represent the

casts of a eusocial species8 as the European hornet (Vespa crabro) or the naked

mole rat (Heterocephalus glaber).

For generic9 weight vectors, that is si 6= sj for all i, j ∈ N, i 6= j, the Lovász-

Shapley value can be expressed in a particularly simple way (Casajus and Wiese, 2016,

Remark 5). From Equation (5.6) it immediately follows that for all ρ ∈ R, v ∈ V,
i ∈ N, we have

LSi (v, s) = si ·MCvi (ρ) for all s ∈ RN+ (ρ) , (5.10)

where for each ρ ∈ R(N) we de�ne the set of population states

RN+ (ρ) :=
{
s ∈ RN+ | for all i, j ∈ N, ρ (i) < ρ (j) implies si > sj

}
. (5.11)

Note that RN+ (ρ) does not contain population states in which any two player types

i, j ∈ N, i 6= j have an equal population size. This implies, that R(s) is a singleton

if s ∈ RN+ (ρ). Equation (5.10) has important implications. We interpret the term

si ·MCvi (ρ) as the �tness of the population of type i. It is obtained by multiplying

the �tness of a single agent, MCvi (ρ) , by the population size si. Now observe that the

�tness of a single agent does depend on the population size only with respect to the

(strict) order of the population sizes. This fact will prove to be very useful later on,

when we study the stability of population states.

5.4 A Framework for Evolutionary Cooperative

Game Theory

The general idea is to establish an evolutionary setup in which the population dynamics

are determined by an underlying TU game (N, v), where i ∈ N is one of the player-types

from the �nite and non-empty type set N , and the coalition function v ∈ V determines

the worth generated by any set of players S ⊆ N . As the population dynamics are

8A common �criterion for eusociality is the presence of castes, which are groups of individuals
that become irreversibly behaviorally distinct at some point prior to reproductive maturity. Eusocial
societies are characterized by two traits: (1) helping by individuals of the less-reproductive caste,
and (2) either behavioral totipotency of only the more reproductive caste (facultative eusociality) or
totipotency of neither caste (obligate eusociality)�, see Crespi and Yanega (1995).

9Throughout the chapter we use a measure-theoretic de�nition for a generic property, i.e., a generic
property holds almost everywhere except on a set of measure zero.
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evolving in a continuous space of the types' population sizes, we use the Lovász-Shapley

value as a plausible concept to determine the �tness of a type in each population state

s ∈ RN+ from the underlying TU game (N, v).

5.4.1 Replicator Dynamics Derived From a TU Game

If in total a society in population state s generates worth according to the Lovász

extension v̄ of TU game (v,N), one may view v̄(s) as the total additional �tness of

the society to be distributed among its members. We can thus interpret LSi(s) as the

growth of type i's (absolute) population size in state s, that is, the population dynamic

is generally described by

ṡi = LSi(v, s), ∀s ∈ RN+ , (5.12)

where throughout we use the notation ḟ := ∂f/∂t for the �rst derivative of function

f with respect to (continuous) time t. We can reformulate these dynamics in relative

terms, as the vector �eld of the population size dynamics of s is positive homogeneous

in s:10

ẋi = gi(x), ∀x ∈ ∆N
+ , (DYN)

where xi := si/
∑

j∈N sj is the population share of type i, that is x ∈ ∆N
+ := {x ∈

RN+ |
∑

i∈N xi = 1}. The real valued, measurable and bounded function gi(x) in Equation

(DYN) is implicitly de�ned by Equation (5.12) and will be discussed explicitly further

below. Note that the right-hand side of Equation (5.12) is discontinuous (indicated by

the minimum operator in Equation (5.8)), which obviously implies that also gi(x) is

discontinuous.

Equation (5.12) implies that for generic population states, i.e., s ∈ RN+ (ρ), by

Equation (5.10) we obtain the population dynamics in absolute terms for some given

ρ ∈ R(N) by

ṡi = si ·MCvi (ρ), ∀s ∈ RN+ (ρ) , i ∈ N. (5.13)

Therefore, the growth rate of types i's population size is ṡi/si = MCvi (ρ) for ρ ∈ R(s).

Equation (5.13) de�nes an autonomous, linear and homogeneous dynamical system and

the local solution χ : I → RN+ to the initial value problem ṡ = s ·MCv(ρ) with the

initial value condition s(0) = s0 ∈ RN+ (ρ) is given by χ(t) = exp[MCv(ρ) · t] · s0, where

exp[·] denotes the matrix exponential, MCv(ρ) denotes the vector whose entries are the

10See Remark 3 in Casajus and Wiese (2016) on the positive homogeneity of the Lovász-Shapley
value in the population states.
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marginal contributions of all types under ρ in the game v(·), and I := [0, T ] denotes the

(time) interval of de�nition.

Looking at this setup in relative terms yields the common replicator dynamics (see

e.g. Taylor and Jonker, 1978), which we focus on in the following. For ρ ∈ R(N) and

x ∈ ∆N
+ (ρ) it follows from Equation (5.13) and (DYN) that

ẋi = gi(x) := xi ·
(
MCvi (ρ)−MC

v
(ρ, x)

)
, ∀i ∈ N, (RD)

where the weighted average of the population �tness is given byMC
v
(ρ, x) :=

∑
j∈N xj ·

MCvj (ρ), and ∆N
+ (ρ) := ∆N

+ ∩ RN+ (ρ). Hence, the growth rate of type i's population

share, ẋi/xi, is given by the di�erence of its marginal contribution and the weighted

average marginal contribution in population state x. Note that ∆N
+ (ρ) is a region in

∆N
+ in which population shares are strictly ordered according to ρ ∈ R(N).

5.4.2 The Dynamics as a Di�erential Inclusion and Its Filippov Solu-

tion

As mentioned above, Equation (DYN) generally describes a system with a discontinuous

right-hand side, so that we use the speci�c techniques for the analysis of such setups.

Fixing ρ ∈ R(N), from the de�nition of MCvi (ρ) in Equation (5.4) we can see that this

�tness indicator is constant on ∆N
+ (ρ) for each type i ∈ N . This obviously simpli�es

the behavior of the solution to Equation (DYN) for x ∈ ∆N
+ (ρ) , ρ ∈ R(N), which is

described by Equation (RD): the function gi(x) is Lipschitz continuous in each region

∆N
+ (ρ), which guarantees the existence and uniqueness of the solution according to

the Picard-Lindelöf theorem (see de la Fuente (2000, pp. 433)), when �looking at each

region ∆N
+ (ρ) , ρ ∈ R(N) separately�.

For J ⊆ N with |J | ≥ 2, let

ΣJ := {x ∈ ∆N
+ | xi = xj , ∀i, j ∈ J ⊆ N} ⊂ ∆N

+ (5.14)

be the set of population shares, where all players j ∈ J have the same population share.

For |J | > 1, the set

D := ∪J⊆NΣJ , (5.15)
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which is closed relative to ∆N
+ , then is a union of a �nite number (of subsets) of hyper-

planes between the (open) regions ∆N
+ (ρ) , ρ ∈ R(N), and it is of measure zero relative

to ∆N
+ .11 While the replicator dynamic is Lipschitz continuous on

C := ∆N
+\D = ∪ρ∈R(N)∆

N
+ (ρ) , (5.16)

the Lovázs-Shapley value, which determines the behavior of Equation (DYN), has dis-

continuity points on D, so that below we describe the dynamics on the complete simplex

∆N
+ = C ∪D as a di�erential inclusion.

3 1

2

Σ2,3

∆N
+ (1, 3, 2)

Figure 5.2: Areas of continuity, C (gray), and of discontinuity
points, D (black), in the simplex ∆3

+.

A system of di�erential equations with a discontinuous right-hand side as in Equation

(DYN) can be adequately dealt with using a di�erential inclusion, which in our case

yields the set valued vector �eld G : ∆N
+ ⇒ RN , so that for all i ∈ N, ρ ∈ R(x)

ẋi ∈ Gi(x) := con

 lim
(xk)∈∆N

+ (ρ):

(xk)→x

gi(xk)

 =


{gi(x)} if x ∈ C,

con

 lim
(xk)∈∆N

+ (ρ):

(xk)→x

gi(xk)

 if x ∈ D,

(DI)

where con{p} is de�ned as the convex hull of vectors in the set p and (xk)→ x means

that the sequence (xk) converges to x.12 The above di�erential inclusion depicts a

crucial insight, on which we further elaborate below: the collection of hyperplanes, D,

being of measure zero can be interpreted as being �too small to matter for the overall

vector �eld�. This is re�ected by the fact that in Equation (DI) the vector �eld on D is

11For the case where |N | = 2, we de�ne D := (∪J⊆NΣJ) ∪ {x ∈ ∆N
+ |xi = 1 for some i ∈ N}.

12Note that all points x ∈ ∆N
+ are regular, i.e.,

∑
i ẋi = 0, even if x ∈ D, as the vector �eld Gi(x) is

determined by a convex combination of regular points.
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determined by the points lying close to it in the adjacent regions. The Filippov solution

(Filippov, 1988) uses this insight:13

De�nition 5.1 (Filippov Solution). A Filippov solution at x∗ of the di�erential equation

(DYN) with a discontinuous right-hand side is an absolutely continuous function χ : I →
∆N

+ for which χ(0) = x∗ and with respect to the di�erential inclusion (DI) it satis�es

χ(t) ∈ G(x) almost everywhere on some set I := [0, T ] ⊆ R.

The trajectory of the Filippov solution to (DYN) is equal to that of the �usual�

solution in the region C, where the vector �eld is Lipschitz continuous. The �ow on the

measure-zero region D can intuitively be distinguished according to three generic cases,

which can be visualized for |N | ∈ {2, 3}: in the sewing mode, the vector �eld points

towards the hyperplane Σse ⊆ ΣJ on one side and it points away from Σse ⊆ ΣJ on the

other side, while, in the escaping mode, the vector �eld points away from Σes ⊆ ΣJ on

both sides. In the sliding mode, the vector �eld points towards Σsl ⊆ ΣJ on both sides.

Σse

(a) Sewing mode

Σes

(b) Escaping mode

Σsl

(c) Sliding mode

Figure 5.3: Di�erent modes of the vector �eld with respect to the hyperplane (dotted)
and Filippov solution (gray arrow).

As depicted in Figure 5.3, in the sewing mode, we can just appose the trajectories of

the solutions of the adjacent Lipschitz continuous regions to obtain the trajectory of the

Filippov solution. In the escaping mode, the solution to (DYN) may be non-unique, as

we can not always determine at which point it will leave D. At a point in a sliding mode

region, x ∈ Σsl, the vector �eld points into a direction which is lying in the convex hull

of all �ow vectors which are generated by approaching x in the limit and whose vector

is tangent to Σsl. Thus, the Filippov solution will move along Σsl.

13These techniques have been applied to economic theory for instance in Honkapohja and Ito (1983),
Ito (1979) and Mohlin (2012), while other solution concepts such as the Caratheodory solution to
di�erential inclusions have been applied to economics for instance in Lahkar and Sandholm (2008).
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5.5 Stability Analysis

First, we analyze where stable pro�les lie in the simplex, and then we show how these

pro�les are related to the underlying TU game.

5.5.1 General Stability Results

Equation (RD) describes a system of non-linear, coupled �rst order ordinary di�erential

equations in region C. Therefore, an exact solution is di�cult to determine for the

general case and we use the insights from Lyapunov theory to analyze the stability of

the system.14

De�nition 5.2 (Lyapunov function). The C1-function L : RN → R is an (increasing)

strict Lyapunov function for the di�erential equation ẋ = g(x) if L̇(x) ≥ 0 for all

x ∈ ∆N
+ , with equality only at stationary points of g(x).

As it is commonly known, this implies that L(·) increases along all solutions and is

positive semi-de�nite, see Sydsaeter et al. (2008, pp. 273). Remember that D is a set

of hyperplanes of measure zero and thus the dynamics in this region are determined by

the dynamics in the adjacent regions of continuity. The case of MCv1 (ρ) = MCv2 (ρ) =

... = MCvN (ρ) for ρ ∈ R(N) is non-generic and trivial, as each point x ∈ ∆N
+ (ρ) then is

stationary. Thus, we leave it out in the discussions below.

Lemma 5.1. A Lyapunov function of the dynamical system (DI) is given by

L(x) :=
∑
i∈N

MCvi (ρ)xi for ρ ∈ R(x).

Proof. Using vector notation, due to the chain rule we have L̇(x) = ∇L(x) · ẋ =∑
iMCvi (ρ)ẋi. Now, take some state x, where ẋ 6= 0. Such a state generically ex-

ists. We can always divide the types into the two sets N+(x) := {i ∈ N |ẋi > 0} and
14For the case where |N | = 2 the dynamics in a region ∆N

+ (ρ) can be broken down to a Bernoulli
di�erential equation and an exact solution can be found according to the common procedure used
for such equations. For |N | = 3 the system resembles a competitive Lotka-Volterra equation for two
species (due to ẋ1 + ẋ2 + ẋ3 = 0 we have one degree of freedom). Abdelkader (1974) shows that an
exact solution can be determined for a model equivalent to the three-type-case at hand, that is his
�case 3�.
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N−(x) := {i ∈ N |ẋi < 0} according to their growth rate in state x. Rewriting the above

condition yields∑
i∈N

MCvi (ρ)ẋi =
∑

i∈N+(x)

MCvi (ρ)ẋi +
∑

i∈N−(x)

MCvi (ρ)ẋi

≥
[
min

i∈N+(x)
MCvi (ρ)

] ∑
j∈N+(x)

ẋj +

[
max

i∈N−(x)
MCvi (ρ)

] ∑
j∈N−(x)

ẋj

=

(
min

i∈N+(x)
MCvi (ρ)− max

i∈N−(x)
MCvi (ρ)

)
︸ ︷︷ ︸

>0

∑
j∈N+(x)

ẋj︸ ︷︷ ︸
>0

> 0,

using −∑i∈N+(x) ẋi =
∑

i∈N−(x) ẋi in the last step, which holds, as the population

states have to lie in the simplex. This implies that L(·) increases along all Filippov

solutions to ẋ = g(x) with the starting condition x0 ∈ ∆N
+ (ρ). De�ne 0 ∈ R|N | to be a

vector with all entries being zeros. Obviously, L̇(x) = 0 if ẋ = 0.

Note, that L(x) is single valued, even if R(x) is not a singleton. To see this, �x

y ∈ ∆N
+ to be such a population state where R(y) is not a singleton for the rest of the

proof. In this case, there exist i, j ∈ N, i 6= j, such that yi = yj . Assume for now

that there exists exactly one group of players Q ⊆ N , such that for all i, j ∈ Q, i 6= j

it holds that yi = yj =: z(y). Therefore, z(y) is uniquely de�ned. If there would be

several types with the same population share di�ering from z(y), the same reasoning as

below applies by adding further summands of types with the same population share in

the summation below. De�ne sets of player types according to

Z(y) = {i ∈ N : yi = z(y)},
Z(y) = {i ∈ N : yi < z(y)},
Z(y) = {i ∈ N : yi > z(y)}.

For all ρ ∈ R(y) we can write∑
i∈N

MCi(ρ)yi =
∑
i∈Z(y)

MCi(ρ)yi +
∑
i∈Z(y)

MCi(ρ)yi +
∑
i∈Z(y)

MCi(ρ)yi.

Let the set of players weakly coming before i in ρ be denoted by

Bi (ρ) = {j ∈ N : ρ (j) ≤ ρ (i)} .

In the expression above, the �rst and the third summation term on the right-hand side

of the equality sign are constant for all ρ, ρ′ ∈ R(y). This is, because elements of Z(y)
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have the same position in ρ and ρ′, and, in addition, the elements of Bi(ρ) and Bi(ρ′)

are the same for al i ∈ Z(y). The same reasoning applies for i ∈ Z(y). Note that v(S) is

independent of the rank order of the elements of S for all S ⊆ N . De�ne Z(y) := |Z(y)|.
For all ρ ∈ R(y) we have∑

i∈Z(y)

MCi(ρ)yi = z(y)
∑
i∈Z(y)

MCi(ρ) = z(y)Z(y) [v (Z(y) ∪ Z(y))− v (Z(y))] ,

where the last factor is equal for all ρ ∈ R(y), as v(S) is independent of the rank order.

If Z(y) or Z(y) have elements with an equal population share, the same reasoning

applies.

Figure 5.4: Region-wise Lyapunov functions for the illustrative example in Section 5.2.
The white lines are not to be understood as areas, in which the function is not de�ned,
but rather indicate the points in which the graph of the continuous function has kinks.

The Lyapunov function is a piecewise linear function on ∆N
+ , it is non-di�erentiable

(but continuous) at x ∈ D, and it is an indicator of the �tness of the whole population,

as it coincides with the Lovász extension. Intuitively, the evolutionary process will drive

the population to states with larger attainable �tness for a given starting point.
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x2

G2(x), L2(x)

x2 = x3 .9

0

0

Figure 5.5: The graph of the growth of the population share, G2(x) [dotted], and
L2(x) [straight] for the example in Section 5.2 (The population share of type 1 is �xed

to x̄1 = 0.1).

Due to the possibility of the non-uniqueness of the Filippov solution in the escaping

mode we need to use the adapted de�nition of asymptotic stability accordingly.

De�nition 5.3 (Asymptotic Stability). A population pro�le x∗ ∈ ∆N
+ is asymptotically

stable in (DI), if both of the following properties hold:

1. For any ε > 0 there is some δ > 0 such that for any solution χ to (DI) and any

x0 ∈ ∆N
+ such that ||x∗ − x0|| < δ and χ(x0, 0) = x0, we have ||χ(x0, t)− x∗|| < ε

for all t ∈ [0,∞).

2. lim
t→∞
||χ(x0, t)− x∗|| = 0 for any solution χ to (DI) and any x0 ∈ ∆N

+ .15

Note that x ∈ ∆N
+ is a strict local maximizer of the Lyapunov function i� it is an

asymptotically stable point.

Theorem 5.1. An asymptotically stable population pro�le generically exists.

Proof. As ∆N
+ is a compact set in a metric space (here, equipped with the Euclidean

metric) and L(·) is a continuous, real-valued function de�ned on it, the existence of

a maximum follows from Weierstrass' extreme-value theorem. Additionally, as for all

x ∈ ∆N
+ it holds that L(x) 6= L(y) for all y ∈ Bε(x), each extremum is strict.16

15In di�erence to the usual de�nition of stability, the properties have to hold for any solution to
(DI).

16Bε(x) := {y ∈ ∆N
+ |d(x, y) < ε} is the epsilon ball around x with radius ε > 0, and d(x, y) denotes

the Euclidean distance between the points x and y.
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The linear functional form of L does not allow for strict local maxima lying in the

region C, so that the next lemma immediately follows.

Lemma 5.2. No population pro�le x ∈ C is asymptotically stable.

We now analyze the stability of the system including the area of discontinuity D.

For S ⊆ N , let

ξS :=

{
x ∈ ∆N

+

∣∣∣ξSi = 0 ∀i /∈ S and ξSi =
1

|S| ∀i ∈ S
}
, (5.17)

that is, in population state ξS only types i ∈ S have a positive (and equally split)

population share.

Theorem 5.2. If x is asymptotically stable, then there exists some S ⊆ N such that

x = ξS ∈ D.

Proof. Let x be stable. From Lemma 5.2 we know that asymptotically stable pro�les

can only lie in areas of discontinuity, i.e., x ∈ D. We know x ∈ D is an asymptotically

stable point, i� the di�erent parts of the piecewise de�ned Lyapunov function in each

adjacent region attain a strict local maximum in x. Remember that we have shown

that L(x) is single-valued even if x ∈ D. The set

Ξ(y) := ∪ρ∈R(y)∆
N
+ (ρ) (5.18)

is the set of all regions ∆N
+ (ρ) which are adjacent to some point y ∈ ∆N

+ . Obviously,

Ξ(y) is equivalent to ∆N
+ (ρ) if y ∈ ∆N

+ (ρ), i.e., if R(y) is a singleton. Thus, by stability,

L(x) > L(y), ∀y ∈ Ξ(x).

As the Lyapunov function is piecewise linear and non-constant in the generic case,

this implies that x /∈ D \
(⋃

S⊆N ξ
S
)
, and hence there exists some S ⊆ N such that

x = ξS .

It is easy to �nd examples of underlying TU games where point x = ξS for some

S ⊆ N is asymptotically stable, as can be seen in the illustrative example of Section

5.2. We can interpret this result in the following way: either player types survive the

evolutionary process and are part of one single coalition (possibly consisting of only

one single member), or they die out. While the above �ndings suggest that states

with di�erent positive population shares are not asymptotically stable, such states may

nevertheless be a stationary point of the evolutionary process.17 This is the case for
17In the replicator dynamic, stationary points trivially exist; these are the corners of the simplex,

i.e., states with xi = 1 for some i ∈ N .
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instance if L(x) is constant on some hyperplane ΣJ with |J | ≥ 2. Stable states however

consist of only one coalition, meaning that in it all player types have the same population

share. It is a natural question to ask which properties such a surviving coalition and

its members must have considering the underlying TU game. We will adress these

questions in the following.

5.5.2 Relating Asymptotically Stable Pro�les to the Underlying TU

Game

The following result shows that �ine�cient� coalitions will not persist in the replicator

dynamics derived from TU games.

Theorem 5.3. For S ⊆ N,S 6= ∅, ξS is asymptotically stable i� v(S)
|S| > v(T )

|T | for all

T ⊆ N such that T ( S or T ) S.

Proof. By Theorem 5.2 we know that we only have to consider points x = ξS where

ξSi = 0 for all i /∈ S and ξSi = 1
|S| for all i ∈ S. I� ξS is a strict local maximizer of L(·),

it must in our case hold for all T ⊆ N with T ( S or T ) S and ρ ∈ R(N) such that

∆N
+ (ρ) ⊆ Ξ(x), that

L(ξS) > L(ξT )⇔
∑
i∈S

MCi(ρ)ξSi >
∑
i∈T

MCi(ρ)ξTi

⇔
∑
i∈S

MCi(ρ)

|S| >
∑
i∈T

MCi(ρ)

|T | ⇔ v(S)

|S| >
v(T )

|T | .

The result says that a coalition of player types is stable if and only if it implies a

higher average productivity than any of its super- or subcoalitions. This re�ects the

idea, that starting from a population pro�le, those types with the highest marginal

productivity in that pro�le proliferate with the largest growth rate, and as the popula-

tion as a whole strives for the maximum �tness, the dynamics end up in asymptotically

stable population pro�les as characterized in the theorem.

We say that a state x ∈ ∆N
+ is characterized by a coalition S i� xi = 0 for all i /∈ S

and xi 6= 0 for all i ∈ S, that is if S = {i ∈ N : xi > 0}. The next statements on the

general properties of the stable population pro�les follow immediately from Theorem

5.3.

Corollary 5.1 (General Properties of Asymptotically Stable Population Pro�les).

• Asymptotically stable population pro�les are robust to small perturbations to the

coalition function of the underlying TU game.
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• Asymptotically stable population pro�les which are characterized by the grand coali-

tion imply that no other population state (characterized by another coalition) is

asymptotically stable in that population game.

The interpretation of the �rst statement is that small �mutations� do not have an

impact on the constellation of aymptotically stable pro�les. Next, we state results for

important classes of TU games, which also immediately follow from Theorem 5.3.

Corollary 5.2 (Asymptotically Stable Population Pro�les in Speci�c Games).

• If x is an asymptotically stable point in a simple monotonic game, then it is

characterized by a minimal winning coalition.

• If x is an asymptotically stable point in an apex game, then it is characterized by

a coalition of the apex player with one small player or by the coalition of all small

players.

The �rst statement re�ects the message of the previous theorem: only �e�cient� coali-

tions are stable. An apex game is a special form of a simple monotonic game in which

only a coalition of the apex player and one �small� player or the coalition of all small

players are the minimal coalitions that can generate positive value. Thus, the second

statement follows from the �rst.

Below, we present some insights on which kind of player types can be members of

surviving coalitions. Persistence and extinction are to be understood in reference to

stable states: if a player is extinct in a certain stable state, this means that he is not a

member of that stable coalition, while if he persists in a certain stable state, he is the

member of that stable coalition.

Corollary 5.3 (Persistence and Extinction of Player Types in Stable States).

1. A su�cient condition for player i to be extinct in any stable state is that for all

ρ ∈ R(N): MCi(ρ) < MCj(ρ) for all j ∈ N .

2. A necessary condition for player i to persist in some stable state is that for some

ρ ∈ R(N): MCi(ρ) > MCj(ρ) for some j ∈ N .

3. A weakly dominating player can be extinct in a stable state, while the players

dominated by him need not.

4. Strictly dominated players may persist in some stable state.

5. A necessary condition for a null player i ∈ N to persist in some stable state which

is characterized by coalition S is that v(S\{i}) < 0. Therefore, strictly dominated

null players will be extinct in any stable state.
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Proof.

1. MCi(ρ) < MCj(ρ) for all j ∈ N and all ρ ∈ R(N) implies v(S)
|S| <

v(S\{i})
|S|−1 for all

S with i ∈ S and v({i})
1 < v(T )

|T | for all T ⊃ {i}.

2. Follows from the converse of 1.

3. Follows from Corollary 5.2, as the apex player weakly dominates the �small� play-

ers.

4. Consider the game N = {1, 2}, v(1) = 1, v(2) = 0, v(1, 2) = 3, where player 2 is

strictly dominated, and apply the previous results.

5. For a null player, Condition 2. of the corollary can only be satis�ed if some other

player type generates �negative worth�.

5.6 Conclusion

We have introduced an approach to derive an evolutionary dynamic from an underlying

cooperative transferable utility game. This allows us to relate the survival of certain

types of coalitions to the payo� structure of the cooperative game. For instance, we

obtain the plausible result that in simple monotonic games only minimal winning coali-

tions, that is, so to say, �e�cient� coalitions, can be asymptotically stable under the

replicator dynamic. Besides these results, our model also adds to the literature on dy-

namic models of coalition formation. Furthermore, we derive a straightforward method

to determine stability of coalitions even in rather complicated games as for instance the

one de�ned by Table 5.1 in Section 5.2.

Future research could exploit the fact that the model at hand allows to evaluate the

�evolutionary plausibility� of cooperative solution concepts like the Shapley value or the

Aumann-Dreze value (Aumann and Dreze, 1974) in the same way as non-cooperative

evolutionary game theory allows to examine the �evolutionary plausibility� of Nash

equilibria. Thus, it could also be viewed as a complementary approach to the Nash

program, which tries to establish non-cooperative foundations of cooperative solution

concepts.

An extension of the model at hand would be to add to the selection process implied

by the replicator dynamics some form of mutation - either via small changes in the

coalition function or by introducing a small fraction of a new player type.

Obviously, the dynamics of the model we discuss are driven by how worth is gen-

erated. This is captured here by the Lovász extension, telling the story of a society
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in which scarcity and competition are driving forces for the production of worth. A

straightforward extension of the model would be to incorporate di�erent and more

general production functions such as, for instance, the common constant-elasticity-of-

substitution function.
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