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Abstract 
In this paper, death probabilities derived from the Gompertz and Wittstein models are 
used to project mortality at advanced ages beginning at the age of 101 years.  Life table 
data of Germany from 1871 to 2012 serve as a basis for the empirical analysis. 
Projections of the death probabilities and life table survivors will be shown. The increase 
of the death probabilities slows down at very old ages. Finally, Wittstein´s formula will 
be regarded as a distribution function. Its reversed hazard rate function, which will be 
derived together with the median and the modal value, will clarify the significance of the 
parameters of the Wittstein distribution. 
 
Keywords: Life table, Mortality deceleration, Wittstein distribution, Reversed hazard 
rate, Centenarians. 
 

1. Introduction 
 

The maximum age for a life table is in general 100 years because there is evidence that 
life tables for older ages are not reliable for lack of sufficient empirical data (small 
number of survivors at the most extreme ages). In order to calculate some demographic 
parameters like the life expectancy at birth, one should know the mortality beyond the 
age of 100, but the influence of that mortality is so small that it can be neglected, as we 
will demonstrate later. Other parameters like the median and modal age of death do not 
need information about that old-age mortality. Earlier, the calculation of mortality rates 
for the very old was not very important because the numbers involved were very small. 
However, the numbers of centenarians and supercentenarians (age 110 ) are now 
growing fast and there is much interest within society, government, and insurance 
companies in their projected numbers – particularly with regard to the impact on pensions 
and the financial burden of long-term care. Since there is not sufficient data available, 
mortality at advanced ages has to be determined by a model. Some of the methodologies 
used to produce mortality rates at advanced ages for life tables are described in Gallop 
and Macdonald (2005). Death probabilities derived from the Gompertz distribution will 
be used to project mortality at those old ages. Whereas in the Gompertz model the force 
of mortality increases exponentially with age, the increase of the death probabilities 
slows down at very old ages, a phenomenon commonly known as mortality deceleration 
(see, e.g., Ouellette and Bourbeau, 2014, and the references cited therein). Life table data 
of Germany from 1871 to 2012 serve as a basis for the empirical analysis. Projections of 
the death probabilities from the age of 100 will be shown. Finally, an alternative to the 
Gompertz death probability function, Wittstein´s mortality formula, is proposed, whose 
rate of increase is less.  
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2. The Gompertz distribution and its death probabilities 
 
The British actuary, Benjamin Gompertz, proposed a simple formula in 1825 for 
describing the mortality rates of the elderly. This famous law states that death rates 
increase exponentially with age. 

In terms of actuarial notation, this formula can be expressed as  

( ) kxx A e   , 
where ( )x is the force of mortality, A>0 and k>0. A represents the general mortality 
level, and k is the age-specific growth rate of the force of mortality. Since 

( ) 1 ln ( )
( )

( )

d l x d l x
x

dx l x dx
    , 

one gets through integration the survivor function of the Gompertz distribution, 

( ) exp
A A k xl x e
k k

    
 

 0x . 

The mode can be simply determined by differentiation of the density function ( )dl x

dx
  

ln
A

km
k

 
 
  . 

From  

( )k m k mA k e m e        
follows 

   ( ) ( )k x m k x mx k e m e        . 
In this representation the survivor function is given by 

 ( ) exp k m k x ml x e e      
 

  / ( ) /exp m s x m se e     (cf., e.g., Carriere, 1994). 

One recognizes that the survivor function is characterized by the mode m and a spread 

parameter 1
s

k
 . 

Since with human populations 0k me   , the survivor function can be approximated for 
x  by 

  ( ) exp k x ml x e    

(see, e.g., Pollard and Valkovics, 1992), which is the survivor function of the Gumbel 
distribution (minimum) or the extreme value type I distribution for the minimum. 
 
 
 The chance of living one year for a person aged x is 

       ke 1l(x 1) l (x 1) k k x m k x mGop(x) exp e 1 e exp e
l(x) l (x)Go

                  
   

 ke 1 kl(x) l(x)


   

where  k x ml(x) exp e    
 

(Gumbel Distribution) and  k m k x ml (x) exp e eGo
      
 

 

(Gompertz Distribution) 
 
Therefore the chance of dying for a person aged x within a year is 

ke 1 kq(x) 1 p(x) 1 l(x) 1 l(x)      . 
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The force of mortality increases exponentially at old ages, but the probability of death 
tends to the limit of 1 with decreasing increments. The force of mortality at the modal age 

m is (m) k  . The probability of death at this age is   3kkq(m) 1 exp 1 e k
6

     . 

The relative change or growth rate of q(x) is 
dq(x)

d ln q(x)dx
q(x) dx

    (x) (x) p(x)ke 1 k k (x)
q(x) q(x) q(x)

1 q(x) 1 q(x)

       

 

. 

The difference between the force of mortality (x) and the probability of death q(x) is 

small at young ages x, so it can be assumed that (x) q(x)  . The growth rate of the force 
of mortality function is k and is nearly identical to the growth rate of the death probability 
at young ages, since p(x) is near one. 

The Gompertz distribution implies that the force of mortality ( ) k xx A e   , and not the 

death probability ( ) k xq x A e   , increases exponentially with age. This exponential 
increase of the force of mortality at very old ages often leads to criticism of the use of the 
Gompertz distribution in life table analysis, because it is argued that the mortality at old 
ages is overestimated. But this criticism overlooks the fact that practical life table 
analysis is done with discrete functions and therefore with death probabilities. Using the 
Gompertz distribution, one has to calculate the death probabilities q(x) for x=0, 1, 2, 3,… 
with the previous formula for a given or estimated m and k. The correct use of the 
Gompertz distribution implies exponentially increasing death probabilities up to a certain 
age. After this age, the death probabilities increase with decreasing growth rates. Finally, 
they approach 1. Only if the death probabilities flatten out faster or are substantially 
below 1 above a certain age, then the Gompertz model will overestimate mortality at old 
ages. This point is disputed controversially in the literature. But Gavrilov and Gavrilova 
(2011), for example, found that the Gompertz law is a good fit up to the age of 106. 
 
Remarks: 

1. If one knows l(x) and p(x) of a life table, it is easy to estimate k by means of simple 

linear regression forced through the origin, since  kln p(x) e 1 ln l(x) k ln l(x)     . 

2. The probability of death function q(x) is a distribution function having an inflection 

point at 
 ln 1ke

x mi k


  with   1

1 0.632q x ei
   . Its α-quantiles are 

 ln 1
ln

1 kex m
k





 
 

   with 1 exp( )
( ) 1

k
q m e k


   . 

 
 

3. Empirical analysis 
 
We will begin our analysis with the German life table of 2012/2014. Some key dates are 
given in Table 1. In life table construction, it is impossible to calculate death probabilities 
at certain old ages, because of a lack of deaths or at-risk population. In these 
circumstances, the creators of the German life table used a model for estimating old-age 
mortality rates.  The problem now is that we partly fit our model to their model and not to 
values derived from empirical data. We partly explain one model with another model. We 
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have therefore to assume that their model is an accurate representation of the mortality 
pattern. This restriction will not really be relevant for the analysis, because the 
projections should rather demonstrate the application of the proposed models and serve 
less as a resource for real forecasts. 
 

Table 1: German life table 2012/2014 

Parameter Male Female 
Life expectancy at birth 78.13 83.05 
Median age 81.3 85.9 
Modal age 84.64 88.45 
Life expectancy at age 100 1.83 2.09 
Number surviving to age 100 100l *) 622 1873 

Death probability at age 100 100q  0.4046 0.35596 

*) 
0

100, 000l   

We used non-linear least squares to estimate the parameters (the non-linear regression 
procedure of STATISTIX 10.0, a statistical software package). The estimation results are 
seen in Table 2a and 2b. Because of the low mortality at young ages the results do not 
depend on the age range x (x=0, 1, 2.. or x=70, 71,….). The estimators are significant and 
the (approximative) coefficient of variation is near 1. The estimated modal values are 
similar to the modal values in the life tables of 2012 (cf. Table 1 and Table 2). The life 

expectancy of the model is  (0) exp
0

k x me e dx


     
 

. Through numerical integration we 

obtain for the female life expectancy a value of 82.7 years and for the male one a value of 
78.7 years. Again, the model values are similar to those of the life table. This similarity 
shows the goodness of the fit. It is possible to adequately describe the German life table 
with only two parameters m and k. The influence of mortality beyond 100 is not of great 
importance for the life expectancy at birth, since  

 exp (0) (100) 0.033
100

k x me dx l e


       
 

(model value) or  

(100) (100) 0.01873 2.09 0.039l e    (life table value). 
 

Table 2 a: Regression results for male death probabilities 
MODEL: qxm = (1-exp(-exp(k*(x-m)))^(exp(k)-1)) for x=0, 1, 2 …100 
 
                       Lower    Upper  
Parameter Estimate  Std Error 95% C.I. 95% C.I. 
k 0.102974   0.0000798 0.101389 0.104558 
m 84.23541   0.162900 83.91218 84.55864 
 
Standard Deviation     0.0040 
Degrees of Freedom        99 
Pseudo R²     0.9982 
 
Age x > 70 
Parameter Estimate  Std Error L95% C.I. U95% C.I. 
k 0.103068   0.00154 0.099928 0.106209 
m 84.25454   0.31294 83.61450 84.89457 
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Table 2 b: Regression results for female death probabilities 

MODEL: qxw = (1-exp(-exp(k*(x-m)))^(exp(k)-1)) for x=0,1,2,…100 
 
                       Lower    Upper  
Parameter Estimate  Std Error 95% C.I. 95% C.I. 
 k 0.113375  0.0013541 0.110688 0.116062 
 m 87.76842   0.206590 87.35850 88.17834 
 
Standard Deviation  0.005289 
Degrees of Freedom        99 
Pseudo R²    0.9959 
 
Age x >70 
 
Parameter Estimate  Std Error L95% C.I. U95% C.I. 
k 0.113171   0.002558 0.107940 0.118402 
m 87.73680   0.391932 86.93521 88.53839 
 
Table 3 shows the projected death probabilities up to the age of 120. The probabilities of 
the female population are less than those of the male population up to the age of 113. 
Then, a mortality crossover can be observed. The death probability of the female 
population is now higher than that of the male population. If this is not a measurement or 
estimation error, then possible explanations of this phenomenon can be found, e.g., in 
Wrigley-Field and Elwert, 2016.  

 
 

Table 3: Projected female (qxwd) and male (qxmd) probabilities of death 

x 100 101 102 103 104 105 106 107 108 109  

qxwd 0.3560* 0.4161 0.4527 0.4909 0.5305 0.5712 0.6127 0.6544 0.6958 0.7363  

qxmd 0.4046* 0.4564 0.4912 0.5271 0.564 0.6016 0.6394 0.6772 0.7144 0.7507  

x 110 111 112 113 114 115 116 117 118 119 120 

qxwd 0.7753 0.8121 0.8463 0.8772 0.9046 0.928 0.9475 0.9632 0.9752 0.9841 0.9903 

qxmd 0.7856 0.8186 0.8492 0.8772 0.9022 0.924 0.9425 0.9578 0.9701 0.9796 0.9866 
*)  probabilities of the life table 2012/2014 

 
We can now calculate the number of survivors from age 100 using the projected death 
probabilities. The results are given in Table 4. In the last two columns the number of 
survivors at age 100 has been set to a radix of 100,000 in order to visualize the size of the 
centenarians.  

Since ( ) ( ) ( )
x

l u du e x l x


  and at very high ages
1

( )
( )

e x
x

  , we get the proportion of 

those people in a stationary population as 

  
 

( ) exp
( )

( )
( )

(0) (0)

k x m

k x m
x

l x e
l u du

x k ex
e e m

k




  





 





with 

0,577221566...  (Euler-Mascheroni-Constant). For example, one expects about 3 
supercentenarians in a stationary population of 80 million (k=0.113, m=87.7). 
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Table 4: Projected number of female (lxwd) and male (lxmd) survivors at age x 
for the German life table 2012/2014 

x lxwd lxmd lxwd lxmd 
0 100,000 100,000 5,455,537 16,077,170 

100 1,833* 622* 100,000 100,000 
101 1,181 370 64,404 59,543 
102 689 188 37,603 30,297 
103 377 89 20,581 14,326 
104 192 39 10,478 6,246 
105 90 15 4,920 2,489 
106 39 6 2,109 897 
107 15 2 817 290 
108 5 1 282 83 
109 2 0 86 21 
110 0 0 23 4 
111 0 0 5 1 
112 0 0 1 0.1 
113 0 0 0.1 0 
114 0 0 0 0 
115 0 0 0 0 
116 0 0 0 0 

*)  Values of the life table 2012/2014 
 
In the next step, the analysis has been expanded to German life tables for females 
between 1871 and today. The Gompertz model is only valid at the ages of 30 and more, if 
there is high infant mortality. Therefore all data with age x<30 were omitted. The 
estimation results are given in Table 5. The last two columns show the inverse probability 
of a newborn reaching the ages 100 and 110, where the following formula has been used: 

 ( )( ) exp k x ml x e     for x=100 and 110. 

For example, in 2012 at least 1 in every 55 newborns will reach the age of 100, whereas 
in 1871 only 1 in every 22,256 achieved that age. The probability of becoming a 
supercentenarian according to our projected life table is still very low today. Only 1 in 
about 250,000 will celebrate their 110th birthday. The Gompertz model yields 
l(100)=0.01828, whereas the life table 2012/14 is  l(100)=0.01873. This small difference 
again shows the good fit of the model to the data. 
Figure 1 shows death probabilities for females between the ages of 30 and 120 calculated 
and projected from different German life tables. The graph clearly demonstrates the 
deceleration of mortality at advanced ages. Mortality has declined enormously during the 
last 150 years. In the first phase, infant mortality decreased, which resulted in an increase 
of the life expectancy at birth. In later phases, adult mortality, especially in the age 
classes 70 to 90 fell strongly. The mortality also decreased in midrange age classes, but 
this was not so remarkable, because it fell from an already low level. In the current phase, 
notably mortality at very high ages decreases, which yields an increase of centenarians. 
As shown earlier, the mortality decline at those ages, however, will hardly influence the 
expectancy at birth. 
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Table 5: Estimation results for death probabilities of females 

Year k m R-Square 1/l(100) 1/l(110) 
1871 0.071527 67.7937 0.9976 22,256 775,144,003 
1881 0.068369 67.12033 0.9925 12,943 140,170,764 
1891 0.070106 68.31711 0.9926 10,077 117,565,666 
1901 0.069963 68.93485 0.989 6,556 48,193,542 
1910 0.07465 70.26028 0.995 9,976 273,053,620 
1924 0.071535 71.42316 0.994 2,260 7,227,715 
1932 0.081696 74.43494 0.9968 3,208 86,426,203 
1949 0.080676 75.54479 0.9914 1,329 9,962,347 
1960 0.080922 76.47939 0.9863 819 3,498,068 
1970 0.086222 78.44302 0.993 611 3,969,222 
1986 0.097385 83.40172 0.9967 154 617,490 
2012 0.113376 87.76853 0.9955 55 251,450 

(Age 30x  , number of observations n=70, all estimators are significant) 
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Figure 1: Death probabilities calculated and projected from German life tables for 

females between 1871 and 2012. 
 
 
 
 
 

4. Wittstein´s Mortality Formula 
 

The question of how realistic the projection results are using the Gompertz distribution 
cannot be answered easily, for lack of sufficient empirical observations. However, 
Ouellette and Bourbeau (2014) used a highly reliable set of data on French-Canadian 
centenarians in the province of Quebec in order to investigate mortality at the ages 
between 100 and 112. Their data set included 2198 females born between 1870 and 1896 
who died between 1970 and 2009. Their results provided evidence of a late-life mortality 
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deceleration at very old ages for this population. Comparing their results (cf. Fig. 2b and 
Fig. 3 in Ouellette and Bourbeau, 2014) with our results in Table 3, it is observed that our 
death probabilities are around 0.15–0.2 percentage points higher. In view of this fact, we 
consider as an alternative model Wittstein´s mortality formula, whose mortality increase 
at advanced age is smaller. Wittstein´s formula was employed, for example, by the US 
Bureau of the Census for calculating the life table of 1910, where the rate of mortality 
was taken as unity at the age of 115 (see US Bureau of the Census, 1916, p. 12). 
 
The Wittstein formula (Wittstein, 1883) is given by  

 

   n n n nM x m x k (M x) k (m x)1 1
q(x) a a e e

m m
             

with the parameters 0n  , m>0, M>0, 0 1a  , k>0: It is
1

q(0) ; q(M) 1
m

   (see 

also Appendix 1). 
 
If n>1, then q(x) is increasing with decreasing growth rates. If n=1, then q(x) is 
exponentially increasing with a constant growth rate. If 0 1n  , then q(x) is increasing 
with an increasing growth rate. 
 
The function has a minimum at the age 
 

M
x

m 1



. 

 
Since the value of the last term of this equation is practically zero at the older ages, only 
the first term will be employed 

 n nM x k(M x)q(x) a e      
 
The parameter M should not be considered as the maximum age, as is sometimes done, 
because it is extremely unlikely that this age will be ever reached. 
 
The estimation results are seen in Table 6a and 6b using data of the German life table 
2012/14.  Note that the estimator k is close to zero and is not significant. The main 
problem we experienced with the Wittstein model (with unknown M) is the fact that the 
starting values for the nonlinear estimation procedure must be close to the as yet 
unknown parameter estimates or the optimization procedure will not converge. Table 7 
shows the projected death probabilities. However, the main differences between the 
Gompertz and Wittstein models are seen in Figure 2.  The projected increase of the death 
probabilities is lower when employing Wittstein´s formula. The difference is also 
expressed in Table 8, where the probabilities of reaching extreme age are compared. The 
projected rates are similar to the rates obtained by Ouellette and Bourbeau (2014).  
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Table 6a: Regression results for Wittstein´s formula (female) 

MODEL: qxw = exp(-k*(M-x)^n)   70x    
 
                              Lower       Upper  
Parameter    Estimate  Std Error     95% C.I.    95% C.I. 
k 6.64019E-07 2.0798E-06 -3.59617E-06 4.92421E-06 
M    152.7083   10.46822     131.2651    174.1515 
n    3.590523   0.611484     2.337954    4.843093 
 
 
Residual SS (SSE) 4.743E-04 
Residual MS (MSE) 1.694E-05 
Standard Deviation 4.116E-03 
Degrees of Freedom        28 
Pseudo R²    0.9987 
 
If M=152.8 were known, then the following would be obtained: 
 
 Parameter    Estimate  Std Error  L. 95% C.I.   U. 95% C.I. 
k 6.46036E-07 8.6448E-08 4.69231E-07 8.22841E-07 
n    3.595883   0.032675    3.529054    3.662711 
      
 
 

Table 6b: Regression results for Wittstein´s formula (male) 

   
MODEL: qx = exp(-k*(M-x)^n)      70x   
 
                              Lower       Upper  
Parameter    Estimate  Std Error     95% C.I.    95% C.I. 
k 8.81775E-04 7.3209E-04 -6.17852E-04 2.38140E-03 
M    127.6605   3.167486     121.1722    134.1488 
n    2.082986   0.179941     1.714394    2.451578 
 
 
Residual SS (SSE) 5.052E-04 
Residual MS (MSE) 1.804E-05 
Standard Deviation 4.248E-03 
Degrees of Freedom        28 
Pseudo R²    0.9988 
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Table 7: Projected female (qxdwW) and male (qxdmW) probabilities of death 

(Wittstein´s formula) 

x qxdwW qxdmW x qxdwW qxdmW 
101 0.3893 0.4391 121 0.8498 0.9552 

102 0.4150 0.4676 122 0.8650 0.9679 

103 0.4409 0.4968 123 0.8792 0.9785 
104 0.4671 0.5263 124 0.8924 0.9869 

105 0.4933 0.5562 125 0.9047 0.9933 

106 0.5196 0.5863 126 0.9160 0.9975 

107 0.5456 0.6164 127 0.9263 0.9996 
108 0.5715 0.6464 128 0.9358  

109 0.5970 0.6761 129 0.9444  

110 0.6221 0.7054 130 0.9522  
111 0.6467 0.7341 131 0.9592  

112 0.6706 0.7621 132 0.9655  
113 0.6939 0.7891 133 0.9710  

114 0.7165 0.8151 134 0.9759  

115 0.7383 0.8399 135 0.9802  
116 0.7592 0.8633 136 0.9839  

117 0.7792 0.8852 137 0.9871  

118 0.7983 0.9054 138 0.9898  

119 0.8165 0.9239 139 0.9921  
120 0.8336 0.9406 140 0.9940  
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Figure 2: Death probabilities for males (qxm) and females (qxw) and their projections 
with the Gompertz model (qxdmG, qxdwG) and the Wittstein model (qxdmW, qxdwW) 

 
Table 8: Probabilities (female) 

 Gompertz Wittstein 

1/l(100) 55 55 

1/l(110) 251,450 42,036 
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Table 9 shows the estimation results which have been obtained using the Wittstein 
formula and different life tables. Over time, M and n have increased, whereas k has 
decreased. Note, however, that the estimators of k are not significant. It was not possible 
to obtain estimation results for the other German life tables, because the iterative 
estimation procedure failed to converge and produced "strange", i.e. very large or very 
small, parameter estimates. The mortality pattern of these life tables in the age range 70 
to 100 differed from that in Table 9. The death probabilities in the life tables in Table 9 
exhibited an exponentially growing trend, whereas the other life tables showed a trend 
with decreasing growth rates (S-shape pattern). Thus, the estimation finally depends on 
the assumptions on the pattern of old age mortality which have been made by the creators 
of the German life tables. As pointed out earlier, the creators of the German life table 
used a model to estimate old-age mortality rates. 
In Figure 3 projections of death probabilities in different years for females are shown. 
The noticeable mortality reduction at all ages over time is clearly visible. However, a 
mortality crossover occurs at age 109 for the life tables of 2012 and 1986, i.e., the 
(projected) mortality after the age 109 is higher in 2012 than in 1986. The turning point 
m (modal age) of the q(x)-functions and the slopes at the turning points did not change 
substantially. However, the death probabilities fell from 0.582 to 0.486. The median x0.5, 
the age at which q(x)=0.5, increased from about 100 in the older life tables to about 105 
in the more current life tables (see Table 9). Although n increased, the differences 
between M and m respectively M and the median  0.5x  did not change because there was 

a decrease of k. The influence of parameter changes on the q(x)-function can be observed 
in Figure 4 (in Appendix 2). Beginning with the death probability function of 1871, one 
parameter after the other is changed in order to finally obtain the current death probability 
function of 2012. 
  

Table 9: Estimation results for the Wittstein formula and some parameters (age x >69) 
 Parameter Standard deviation 

Year k M n sd(k) sd(M) sd(n) 
1871 2.81E-04 135.8 2.18 2.08E-04 3.31 0.1523 
1932 1.30E-05 146.7 2.85 0.00001 1.92 0.0944 
1986 2.91E-06 152.3 3.21 2.13E-06 2.76 0.1425 
2012 6.64E-07 152.7 3.59 2.08E-06 10.47 0.6115 

All pseudo" R-squareds” are near 1 
 

Year k M n m 

 
 

q(m) 
slope at 

m 0.5x  

 
difference 

M-m 

difference 

M- 0.5x  

1871 2.81E-04 135.8 2.18 103.7 0.582 0.0214 99.8 32.1 36 
1932 1.30E-05 146.7 2.85 102.2 0.525 0.0216 101.1 44.5 45.6 
1986 2.91E-06 152.3 3.21 105.1 0.502 0.0215 105 47.2 47.3 
2012 6.64E-07 152.7 3.59 104.7 0.486 0.0262 105.2 48 47.5 
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Figure 3: Projections of death probabilities for females (qxdwW) with the Wittstein 
model  
 

 
5. Concluding Remarks 

 
Death probabilities functions derived from the Gompertz and Wittstein models are an 
alternative to the currently widely used logistic functions to fit observed probabilities at 
the oldest ages. In order to find the best model, it is necessary to have more data. Thus, a 
solution will be found in the future, when the number of persons at advanced ages will 
have increased significantly.  
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Appendix 1: Wittstein Distribution 
 
The mortality pattern in the Wittstein formula can be regarded as a distribution function: 

( )( )
nk M xF x e x M     , k>0, 0n   

The density function is given by 

  1 ( )( )
nn k M xf x k n M x e x M

          . 

 
The median and modal value can easily be determined: 

1

0.5

ln 2 n
x M

k
    
 

and 

1

1
1

nn
m M n

k n

     
. 

The slope or gradient of the distribution function at x=m increases with increasing n. 

We find that 0.5

1
3.2588

1 ln 2
x m if n  


. 

The reversed hazard rate function is given by: 
 

  1( )
( )

( )
nf x

r x k n M x
F x

     . 

The partial derivatives of r(x) are 
( )

1

( )

dr x
dk

r x k
   (k is responsible for an exponential increase) 

 

( )
1

ln( )
( )

dr x
dn M x

r x n
     (n is responsible for the S-shape, if n>1). The higher n is, the 

higher the growth rate at age x is.  
 
The difference in years between M and m (decreasing with increasing n): 

1

1 nn

k n

 
  

with 

1

1
lim 1

n

n

n

k n

    
. 

The difference in years between M and m (decreasing with increasing n): 
1

ln 2 n

k
 
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 

with 

1

ln 2
lim 1

n

n k
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Appendix 2:  Graphical presentation of parameter changes in Wittstein´s formula  
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 Figure 4:  Parameter changes and their influence on the shape of the q(x)-function 

 

Definitions and R-codes: 

nk(M x)q(x) e   

qxd1871<-exp(-2.81E-04*(135.8-x)**2.18) 

qxdM<-exp(-2.81E-04*(152.7-x)**2.18) 

qxdMn<-exp(-2.81E-04*(152.7-x)**3.59) 

qxdMk<-exp(-6.64E-07*(152.7-x)**2.18) 

qxd2012<-exp(-6.64E-07*(152.7-x)**3.59) 
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