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Abstract

Multigrid methods belong to the best-known methods for solving linear systems
arising from the discretization of elliptic partial differential equations. The
main attraction of multigrid methods is that they have an asymptotically mesh-
independent convergence behavior. Multigrid with Vanka (or local multilevel
pressure Schur complement method) as smoother have been frequently used for
the construction of very efficient coupled monolithic solvers for the solution of
the stationary incompressible Navier-Stokes equations in 2D and 3D. However,
due to its innate Gauß-Seidel/Jacobi character, Vanka has a strong influence
of the underlying mesh, and therefore, coupled multigrid solvers with Vanka
smoothing very frequently face convergence issues on meshes with high aspect
ratios. Moreover, even on very nice regular grids, these solvers may fail when
the anisotropies are introduced from the differential operator.

In this thesis, we develop a new class of robust and efficient monolithic finite
element multilevel Krylov subspace methods (MLKM) for the solution of the
stationary incompressible Navier-Stokes equations as an alternative to the cou-
pled multigrid-based solvers. Different from multigrid, the MLKM utilizes a
Krylov method as the basis in the error reduction process. The solver is based
on the multilevel projection-based method of Erlangga and Nabben, which ac-
celerates the convergence of the Krylov subspace methods by shifting the small
eigenvalues of the system matrix, responsible for the slow convergence of the
Krylov iteration, to the largest eigenvalue.

Before embarking on the Navier-Stokes equations, we first test our implemen-
tation of the MLKM solver by solving scalar model problems, namely the
convection-diffusion problem and the anisotropic diffusion problem. We vali-
date the method by solving several standard benchmark problems. Next, we
present the numerical results for the solution of the incompressible Navier-Stokes
equations in two dimensions. The results show that the MLKM solvers produce
asymptotically mesh-size independent, as well as Reynolds number independent
convergence rates, for a moderate range of Reynolds numbers. Moreover, nu-
merical simulations also show that the coupled MLKM solvers can handle (both
mesh and operator based) anisotropies better than the coupled multigrid solvers.

Key words: Monolithic multilevel methods, Krylov subspace, GMRES, FEM,
Navier-Stokes equations, saddle point problems
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1
Introduction

Everything on this earth is either a fluid or interacting with a fluid. The atmo-
sphere that surrounds this planet and oceans that constitute 70 % of this earth
are fluids. Fluid flows are vital for the existence of the life that we live. Our
body gets oxygen due to the fluid flow and blood flow provides important nu-
trients to all parts of the body. Ocean waves and wind fields regulate the global
climate by spreading the uneven solar radiations received by the Earth surface.
Similarly, fluid flows play a pivotal role in many industries, for instance, power
generation, oil and gas exploration, food processing, and chemical manufactur-
ing to mention a few. This ubiquitous nature of the fluids and the importance
of fluid flows in our life has made the study of fluid flows a fundamental and
evolving field that spans major areas in science and technology.

The Navier-Stokes equations (NSE) are at the heart of studying fluid flows, and
they are used to describe the physics of various flows of scientific and engineering
interest. They are used by:

• meteorologists to predict the weather conditions

• aerodynamics engineers to design aircraft that have low resistance and
high lift forces

• civil engineers to build safe hydraulic structures such as dams

• chemical engineers to design and optimize industrial plants and equipment

• mechanical engineers to design pumps, turbines, and HVACR (heating,
ventilation, air conditioning, and refrigeration) systems

Unfortunately, except for the very simple flow scenarios, the exact analytical
solution of the Navier-Stokes equations is in general not known. The wide
spectrum of applications of the Navier-Stokes equations attracted the attention
of scientists, engineers, mathematicians, and computer scientists during the past
few decades, to develop numerical methods for the approximate solution of
the Navier-Stokes equations. This interest led to the rapid development of a
wide range of numerical and algorithmic tools for solving complex fluid flow
problems, which emerged as a new scientific field termed as computational fluid
dynamics (CFD). CFD encompass numerical techniques for the solution of many
different types of fluid flows. This thesis is only concerned with the numerical
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CHAPTER 1. INTRODUCTION

solution of the (steady-state) Navier–Stokes equations governing the flow of a
Newtonian, incompressible viscous fluid, which may be a very small subset of the
CFD. However, the numerical techniques presented in this thesis can be easily
extended to other more complicated fluid flows, for instance non-isothermal,
non-Newtonian, and/or turbulent fluid flows.

Numerical solution of NSE involves the application of discretization techniques
such as finite element methods (FEM), finite volume methods (FVM), or finite
difference methods (FDM) that transform the infinite dimensional partial dif-
ferential equations into a finite dimensional algebraic system of equations. In
this thesis, we use FEM discretizations which can handle complex geometries
(mostly encountered in practice) more efficiently than FVM and FDM. LBB
compatible mixed finite elements are employed to ensure the well-posedness of
the algebraic system of equations.

Since NSE are nonlinear, the resulting algebraic system of equations coming
from FEM discretization is also nonlinear. Suitable linearization techniques
such as Picard iteration or Newton iteration are applied to the nonlinear discrete
system. The linearization process results in a linear system of saddle point type,
with a large zero block on the main diagonal due to the absence of pressure in
the continuity equation of the incompressible flows. The linear saddle point
systems coming from the FEM discretization are sparse and in practice involve
hundreds of millions of unknowns. Solving such linear systems is the major
bottleneck of the numerical solution process since solution and storage of these
saddle point systems constitutes most of the computational resources (CPU
time and memory) of the whole solution process.

The solution of saddle point problems is pivotal in the design of solution algo-
rithms for Navier-Stokes equations. These solution algorithms can be broadly
categorized into two groups, namely segregated or coupled methods, depend-
ing on the way the saddle point linear system is solved. Segregated algorithms
decouple the velocity and pressure variables, and thereby, solve the reduced
systems for each variable separately. Coupled algorithms respect the natural
coupling between the solution variables and solve them simultaneously. Both
classes of solvers have their own problem-dependent strengths and weaknesses
and hence have specific application areas. Coupled solvers are suitable for flows
involving low Reynolds numbers resp. high viscosity parameters, however, they
are very expensive for non-stationary high Reynolds number flows. On the other
hand, segregated solvers are suitable for such non-stationary flows, whereas, they
face convergence issues for stationary and non-stationary flows involving high
viscosities. The focus of this thesis is only on coupled solvers for stationary
incompressible Navier-Stokes equations.

1.1 Open problem

Coupled saddle point linear systems arising from the discretization of the Navier-
Stokes equations are nonsymmetric, indefinite and ill-conditioned, and solving
such systems pose a great challenge for the development of efficient and ro-
bust monolithic numerical solvers. Direct (sparse) linear solvers give the exact
solution to the linear system and are very stable. However, their intrinsic com-
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1.2. THESIS CONTRIBUTION

putational costs and in particular memory requirements are very high for the
big linear systems originating from the discretization of NSE (especially in the
3D case), and they become impractical for use as standalone solvers. For such
highly sparse and large coupled linear systems, iterative linear solvers are a bet-
ter choice because of their low memory requirements. Moreover, in numerical
algorithms for nonlinear Navier-Stokes equations, the accuracy requirements on
each inner linear solve are low, therefore, iterative methods are more suitable
since they can be stopped as soon as the desired accuracy is reached.

Preconditioned Krylov subspace methods or multigrid methods are mostly em-
ployed as linear solvers in coupled nonlinear iterative solvers. A coupled geomet-
ric multigrid with local pressure Schur complement smoothing (a generalization
of Vanka smoother) is a very efficient state of the art solver that produces mesh
size and Reynolds number independent convergence rates, for stationary flow
problems[132]. This solver is currently the standard coupled solver in the FEAT-
FLOW software. The Vanka smoother is a strongly coupled iterative relaxation
technique, originally presented by Vanka in 1986 [138] to solve the Navier-Stokes
equations using finite difference method. The concept of Vanka smoothing is
simple, the local saddle point subsystem associated with each mesh cell (or a
cluster of cells) is extracted and solved exactly by treating all the variables
simultaneously. The calculated local degrees of freedom are then updated by
Jacobi or Gauss-Seidel relaxation iterations.

From scalar elliptic problems such as diffusion and convection-diffusion prob-
lems, it is well known that multigrid with pointwise Jacobi smoothing or point-
wise Gauss-Seidel smoothing suffers serious convergence issues for the highly
convective flows or highly distorted meshes (meshes with large aspect ratio el-
ements or with a large difference in neighboring elements size). Multigrid with
Vanka smoother, due to its implicit Jacobi/Gauß-Seidel nature, also suffers sim-
ilar convergence issues on such grids.

For scalar problems, the convergence issues of MG solvers for highly convective
or highly anisotropic situations can be mitigated by employing incomplete LU
factorization as a smoother to the multigrid solver. However, in the case of cou-
pled NSE, the straightforward application of ILU factorization is not possible;
it may suffer breakdown due to the zero pivots, or the resulting factorization is
not stable. Although various reordering, dropping, scaling and pivoting strate-
gies have been proposed in the literature to avoid breakdowns and to produce
stable LU factors, however, still the resulting factorization of nonsymmetric,
indefinite and ill-conditioned saddle point problems is often not of good qual-
ity, and produce poor convergence rates. Therefore, designing a robust as well
as an efficient coupled numerical solver for the solution of the incompressible
Navier-Stokes equations, which produces mesh-size, mesh-shape, and Reynolds
number independent convergence behavior, is an open challenge for the scientific
community.

1.2 Thesis contribution

In this thesis, we propose a new coupled multilevel FEM solver for the monolithic
solution of stationary incompressible Navier-Stokes equations, which can be
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CHAPTER 1. INTRODUCTION

considered as an alternative to the existing coupled multigrid method. The
solver is based on the multilevel Krylov subspace method (MLKM) proposed by
Nabben and Erlangga in [54] to solve the scalar model problems. To the best of
our knowledge, no one has so far used such multilevel Krylov subspace solution
techniques for the solution of Navier-Stokes equations in a coupled way.

The main idea of MLKM method is to apply a projection-type shift precondi-
tioner which shifts the small eigenvalues of the system matrix, responsible for
the slow convergence of the Krylov subspace methods, to the largest eigenvalue.
This clustering of the eigenvalues away from zero accelerates the convergence of
Krylov subspace solver. The multilevel Krylov subspace method contains the
ingredients of Krylov subspace methods as well as the multigrid method; grid
hierarchies similar to multigrid are used for the recursive application of shift
preconditioning and the solution is extracted from the Krylov subspaces. As
a consequence, it inherits properties of both the solver classes, i.e., robustness
from the Krylov subspace solvers and level independent convergence rates from
the multigrid methods.

Shift preconditioning alone does not produce acceptable convergence rates in
many situations and is often applied in combination with the “traditional pre-
conditioners” to further improve the convergence behavior of the Krylov sub-
space solvers. MLKM algorithm in [54] requires explicit calculation of the in-
verse of the preconditioner matrix M−1 at every mesh level in the initialization
phase of the algorithm. Such matrices are in general dense, and working with
such dense matrices is very expensive and not advisable. This restricts the
user to Jacobi preconditioning only, which is not very effective in most practi-
cal problems. In the particular case of incompressible NSE, point-wise Jacobi
preconditioning cannot be applied due to the zeros on the diagonal.

Our implementation of MLKM algorithm in the FEATFLOW software is dif-
ferent from the one given in [54] and allows the use of any iterative method as
a preconditioner to the Krylov subspace solver. In this thesis, we have success-
fully used the traditional preconditioners such as Jacobi, Gauß-Seidel, and ILU
to the MLKM method for solving scalar convection-diffusion and anisotropic
diffusion problems.

Moreover, this flexibility in preconditioning allows extending the MLKM method
to solve coupled system of equations of the saddle point type such as the Navier-
Stokes equations. We have used local pressure Schur complement or Vanka pre-
conditioning to MLKM method, which has resulted into a new class of efficient
and robust monolithic multilevel numerical solution techniques for saddle point
type problems. The coupled MLKM solver produces mesh-size and Reynolds
number independent convergence rates; moreover, it is more robust than cou-
pled MG solvers towards handling the anisotropic meshes and solving the flows
involving higher Reynolds numbers.

1.3 Thesis Outline

Below we present an outline of the thesis, which gives a brief overview of all the
chapters to follow.

4



1.3. THESIS OUTLINE

Chapter 2 gives a basic introduction to the finite element method, which is a
spatial discretization method used in this thesis. Section 2.1 explains the work-
ing principle of the finite element method, thereby, showing how the method
converts the infinite dimensional partial differential equations into a finite di-
mensional linear system of equations. Section 2.2 discusses the finite element
basis functions (or shape functions) and their properties; the section also in-
cludes the description of bilinear (Q1) and biquadratic (Q2) quadrilateral finite
elements and the construction of their shape functions. The chapter ends with
a discussion of FEM error estimates in section 2.3.

Chapter 3 reviews the most popular numerical methods for the solution of
sparse linear systems arising from the FEM discretization of PDEs. Section 3.1
mentions some popular sparse direct methods and discusses their strengths and
limitations. Iterative methods for sparse linear systems are described in section
3.2. Basic iterative methods such as Jacobi, Gauß-Seidel, and SOR methods
are reviewed in section 3.2.1. In section 3.2.2, working principle of Krylov
subspace methods is explained, and some famous Krylov subspace methods
such as conjugate gradient, CGNR, and GMRES are presented as representative
Krylov subspace methods. Multigrid and its components are discussed in section
3.2.3. Section 3.3 concludes the chapter with a discussion of node renumbering
strategies being used in this thesis.

Chapter 4 is mainly devoted to the discussion of multilevel Krylov space
method (MLKM), which is a combination of ideas from Krylov subspace solvers
and multigrid methods. The chapter starts with the discussion of an important
concept in the context of Krylov subspace solvers called preconditioning, with
the traditional preconditioners being discussed in section 4.1 and the eigenvalue
distribution preconditioners in section 4.2. After that we review in detail the
construction of the MLKM solver proposed by Nabben and Erlangga in section
4.3, followed by our implementation of MLKM solver in the context of FEAT-
FLOW solver in section 4.4 and discuss how it differs from the MLKM algorithm
of Nabben and Erlangga. At the end of the chapter, section 4.5 briefly compares
the MLKM solver with the multigrid solvers and explains how both the solvers
are different from each other.

Chapter 5 deals the scalar convection diffusion problem. FEM formulation
of the problem is presented in section 5.1, with the stabilization techniques for
the convective term discussed in section 5.1.1. Numerical results of the MLKM
solver for the solution of convection-diffusion problem, and its comparison with
the multigrid solvers are presented in section 5.2.

Chapter 6 presents the numerical results for the anisotropic diffusion problem,
with section 6.1 presenting the results for the operator-based anisotropy and
section 6.1.1 discussing the results for the grid-based anisotropy.

Chapter 7 extends the work from the previous chapters of solving the scalar
PDEs using FEM/MLKM solver and presents a new monolithic FEM/MLKM
solver for the numerical solution of stationary incompressible Navier-Stokes
equations in a fully coupled way. Section 7.1 introduces the Navier-Stokes prob-
lem and discusses the boundary conditions for the problem. Weak formulation
of Navier-Stokes equations and their FEM discretization are discussed in sec-
tion 7.2 and 7.3 respectively. In section 7.4, we consider the LBB condition
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CHAPTER 1. INTRODUCTION

for the well posedness of the weak formulation of the Navier-Stokes equations,
and in section 7.5, we discuss our choice of LBB-stable mixed finite element
pairs. Section 7.6 is dedicated to the construction of coupled multilevel Krylov
subspace solver, and we discuss its various components; we explain the lineariza-
tion of nonlinear equation using Newton method (section 7.6.1) and fixed point
iteration (section 7.6.2), functioning of the local pressure Schur complement pre-
conditioner (section 7.6.3), and the calculation of optimal damping parameters
(section 7.6.4).

Chapter 8 presents numerical results for the solution of steady incompressible
Navier-Stokes equations, for various characteristic flow scenarios. In section 8.1,
we validate our coupled MLKM solver by solving standard benchmark problems
using conforming as well as non-conforming finite elements, on structured and
unstructured meshes. In section 8.2, we study the influence of different param-
eters of coupled MLKM solver on its performance. Finally, in section 8.3, we do
the performance comparison of coupled MLKM solver with the existing mono-
lithic solvers available in the FEATFLOW software with respect to the shape
of the mesh and the size of Reynolds number.

Chapter 9 is the concluding chapter that summarizes the work being presented
in this thesis and provides directions for the possible future research initiatives.

6



2
Introduction to Finite Element Method

In this chapter, we give the introduction of the finite element method (FEM),
used for the spatial discretization of model problems throughout this thesis.
FEM is a powerful numerical technique used for the approximate solution of
partial differential equations. The method originated from solving the elasticity
and structural mechanics problems in aerospace engineering, but due to its
robustness, flexibility, and accuracy, its use quickly spread to other disciplines
of engineering and applied sciences. The method, in contrast to finite differences,
can handle problems on complex geometries really well. Moreover, the method
provides discretization error estimates at reasonable cost, which allows adaptive
mesh refinements to compute the solution to the desired accuracy optimally [10,
9, 142].

FEM converts the original partial differential equation representing the physi-
cal system into an integral form, called the variational or weak form, defined
over the problem domain. This domain is then subdivided into a number of
geometrically simple, smaller pieces called finite elements. Simple piecewise
polynomial functions, called trial functions are defined on these finite elements,
and the solution of the variational integral is approximated by the linear com-
bination of these finite set of trial functions. This process converts the infinite
dimensional PDE into a finite dimensional algebraic system, just like finite dif-
ference method (FDM). However, in FDM the solution is only known at the
discrete points, whereas in FEM the solution is known throughout the domain
as a piecewise polynomial function.

2.1 Fundamentals of the finite element method

To explain the basics of finite element solution procedure, we consider the fol-
lowing linear model problem

Lu = f in Ω, (2.1a)

u = g on ΓD, (2.1b)

∇u.n = β on ΓN , (2.1c)

where L is the second order elliptic Laplacian operator, i.e., L = −∆ and
Ω ⊂ Rd, d = 1, 2, 3 with boundary Γ = ΓD ∪ ΓN . Dirichlet boundary condition

7



CHAPTER 2. INTRODUCTION TO FINITE ELEMENT METHOD

is prescribed on ΓD and Neumann boundary condition on ΓN part of Γ. Since
the operator L is second order, a classical solution u : Ω 7→ R that satisfies (2.1)
is required to be twice continuously differentiable, that is, u ∈ C2(Ω) [52, 114].

2.1.1 Weak formulation

Finite element method, unlike finite difference methods, does not approximate
the partial differential equation directly, rather it formulates the original PDE
into a more suitable integral formulation known as variational formulation. In
what follows, we use the method of weighted residuals to construct the varia-
tional form of (2.1). To this end, we multiply the residual of equation (2.1a)
with a test or weighting function v and integrate over Ω to obtain∫

Ω

(L[u]− f)vdΩ = 0. (2.2)

Generally, the integral of the product of two functions represents the so-called
L2 inner product which induces the L2 norm ‖.‖0

(v, w) :=

∫
Ω

vwdΩ, ‖v‖0 :=
√

(v, v). (2.3)

A function v is called square integrable if the inner product (v, v) exists. If u is
a solution to the original PDE (2.1), it is also a solution to integral form (2.2)
for all square integrable functions v [81]. We may write (2.2) in inner product
form as

(v,L[u]− f) = 0, ∀v ∈ L2(Ω). (2.4)

Equation (2.4) is called the variational form of problem (2.1). In FEM proce-
dure, the strong continuity requirement on the solution function u is relaxed by
applying the integration by parts on the second derivative terms through the
application of Green’s theorem∫

Ω

−v∇.∇u dΩ =

∫
Ω

∇v.∇u dΩ−
∫

Γ

v∇u.n ds. (2.5)

By doing so we shift one derivative from u to v. Thus in the resulting formula-
tion, v has more continuity requirement than the functions in L2(Ω), whereas,
the strong continuity requirement C2(Ω) of u is weakened. For this reason, the
new formulation is called the weak formulation, and its solution is called weak
solution. Since the highest derivatives involved are now of first order, it suffices
for u and v to be elements of the Sobolev space H1, which contains all the square
integrable functions whose first weak derivatives are also square integrable,

H1(Ω) =
{
w ∈ L2(Ω),

∂w

∂xi
∈ L2(Ω) i = 1, ..., d

}
. (2.6)

The treatment of the boundary integral resulting from the application of Green’s
theorem (2.5) requires greater attention. Since u is a member of H1 and it must
also satisfy (2.1b), therefore we take u ∈ H1

E , with the subscript E showing
that solution u satisfies the essential Dirichlet boundary condition. Weighting
function v should not vary at the boundary where the solution is specified,
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2.1. FUNDAMENTALS OF THE FINITE ELEMENT METHOD

which means that it should vanish at the Dirichlet boundary, and hence belongs
to space

H1
0 :=

{
w ∈ H1 : w|ΓD

= 0
}
. (2.7)

At Neumann boundary, the derivative value of the solution function u is spec-
ified. When u is not prescribed at the boundary, the test function need not
vanish there, i.e., v|ΓN

6= 0. Since v is zero at Dirichlet boundary, and nonzero
at Neumann boundary, the boundary integral in Green’s theorem (2.5) can be
restricted to ΓN only∫

Γ

v∇u.nds =

∫
ΓD

v∇u.nds

︸ ︷︷ ︸
= 0

+

∫
ΓN

v∇u.nds =

∫
ΓN

vβ =: (v, β). (2.8)

Application of the Green’s theorem on (2.4) and subsequent use of (2.8), results
in the following weak form
Find u ∈ H1

E such that

a(v, u) = b(v) ∀v ∈ H1
0, (2.9)

where

a(v, u) =

∫
Ω

∇v.∇u dΩ

is called the bilinear form, and

b(v) := (v, f) + (v, β),

is called the linear form. Solution space H1
E is an affine space, and instead, we

can write H1
E = ug ⊕H1

0, where ug ∈ H1 such that ug = g on ΓD. Clearly, for
pure homogeneous Dirichlet boundary condition (Γ = ΓD), we have H1

E = H1
0,

and the weak form in this case becomes
Find u ∈ H1

0 such that

a(v, u) = b(v) ∀v ∈ H1
0. (2.10)

In finite element method, the infinite dimensional spaces H1
E and H1

0 are re-
placed by their convenient finite dimensional subsets ShE and Sh0 , respectively.
To this end, we subdivide the computational domain into a regular partition
called triangulation, containing Nel non-overlapping, and nonempty convex sub-
domains Ωk, each with piecewise smooth boundary Γk, such that

Ω =

Nel⋃
k=1

Ωk, Ωk ∩ Ωl = ∅ for k 6= l.

The finite element spaces are characterized by the span of basis functions defined
on these subdomains. We consider the approximations of the form

u(x) ≈ uh = uhg + Uh = uhg +

N∑
j=1

ujφj , (2.11a)

v(x) ≈ vh =

N∑
i=1

viψi. (2.11b)

9



CHAPTER 2. INTRODUCTION TO FINITE ELEMENT METHOD

where uhg is the discrete version of ug. The approximate uh is called trial func-

tion, and belongs to the finite-dimensional function space ShE ⊂ H1
E , called trial

space. Similarly, vh is termed as test function belonging to the finite-dimensional
test space Sh0 ⊂ H1

0. The basis functions φj and ψi are pre-selected piecewise
polynomials that vanish on ΓD.

Remark:
Dirichlet boundary conditions are essentially built into the trial and test spaces,
therefore, they are also called essential boundary conditions. Neumann bound-
ary conditions are also called natural boundary conditions, because they are
automatically included in the weak form, and are not explicitly imposed in trial
and test spaces.
Inserting (2.11) into equation (2.9), we have the discretized form of the weak
formulation

a(vh, Uh) = b(vh)− a(vh, g
h) ∀vh ∈ Sh0 . (2.12)

See [127] for more details on the treatment of non-homogeneous Dirichlet bound-
ary conditions. In Galerkin finite elements (that we have used in this thesis),
the trial and test spaces are taken to be the same, i.e., φi = ψi. Since (2.12)
holds for all functions vh ∈ Sh0 , it also holds for the basis functions φi. This
yields the linear algebraic system

N∑
j=1

a(φi, φj)uj = b(φi)− a(φi, g
h), i = 1, ..., N, (2.13)

for the unknowns u1, ..., uN . In practical finite element implementation, the
equation (2.13) is restricted to the element level, and the bilinear and linear
forms are evaluated elementwise using the local basis functions φ(k), also called
shape functions. The system matrix and the right-hand side vector are assem-
bled by the summation of contributions from each element

Nel∑
k=1

ak(φ
(k)
i , φ

(k)
j )uj = bk(φ

(k)
i )− ak(φ

(k)
i , gh), i, j = 1, ..., n (2.14)

where Nel is the number of elements and n is the number of local degrees of
freedom in each element. For an exhaustive discussion of finite element methods,
we refer the interested readers to the literature [21, 34, 44, 81, 57, 103, 102].

2.2 Finite element shape functions

Finite element formulation hinges critically on shape functions for its working.
These local basis functions are used with the computed nodal solution values
uj to interpolate the approximate solution uh inside the element Ωk

uh(x) =

n∑
j=1

ujφ
(k)
j (x) ∀x ∈ Ωk, (2.15)

where n denotes the number of local degrees of freedom for a single element Ωk.
Summation of the local interpolation functions over the whole domain yields

10
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the global approximation of uh, given by

uh(x) =

N∑
j=1

ujφj(x) ∀x ∈ Ω. (2.16)

where N denotes the total number of degrees of freedom. As we shall see
shortly, the construction of a shape function on each element involves geometric
information from that element only. This provides FEM with the flexibility
to incorporate more accurate higher order interpolation functions locally or to
add more refined meshes in the regions involving steep solution gradients, such
as boundary layers. The shape functions are required to possess the following
general properties, so that the resulting finite element method provides accurate
approximations at reasonable costs [88]:

1. Interpolation property: The shape function φ
(k)
j is one at the node j

and zero at all other nodes in the domain

φj(xi) = δij =

{
1, ifj = i,

0, if j 6= i.
(2.17)

where δij is the Kronecker delta. This property makes it possible to use
the expansion coefficients as nodal solution values in relation (2.15).

2. Constant sum property: The sum of all the local basis functions φ
(k)
j

should be equal to one on each element Ωk. This property ensures the
correct representation of constant functions through the shape functions.

N∑
j=1

φj(x) = 1. (2.18)

3. Conservation property: The sum of derivatives of all the shape func-
tions should vanish at any point in the element.

N∑
j=1

∇φj(x) = 0. (2.19)

4. Local support property: For computational efficiency, it is required that

a local shape function φ
(k)
j vanishes over any element boundary (an edge

in 2D, a surface in 3D) that does not contain the node j. This require-
ment results in global basis functions with compact local support, which
consequently produce a computationally desirable sparse linear system.

Next, we show with examples how these local basis functions are built from
simple polynomials defined piecewise over the finite elements. In particular, we
employ Lagrangian polynomials, since they provide a systematic way of generat-
ing the shape functions of any order. As we deal with two-dimensional problems
in this thesis and employ quadrilateral finite elements for the discretization, we
find it helpful to present the shape functions for Q1 and Q2 quadrilateral finite
elements.

11



CHAPTER 2. INTRODUCTION TO FINITE ELEMENT METHOD

2.2.1 Bilinear element (Q1)

Bilinear element Q1 consists of four nodes at the four corners of the quadrilateral
as shown in the Figure 2.1. Instead of expressing the shape functions directly
on arbitrary physical elements Ωk, they are typically defined on some reference
element with simple geometry. Let Ωref = [−1, 1]2 be the reference element with
a local coordinate system (ξ, η) introduced at its center as depicted in Figure 2.1
(right). Interpolation polynomials on the reference quadrilateral are constructed
by the tensor product of one dimensional linear Lagrange polynomials. One
dimensional linear shape functions are given by [103]

ϑ̂1 =
1− ξ

2
, ϑ̂2 =

1 + ξ

2
, −1 ≤ ξ ≤ 1. (2.20)

Bilinear Lagrange shape functions resulting from the tensor product of their 1D
counterparts (2.20) are listed below:

χ̂1(ξ, η) = ϑ̂1(ξ)ϑ̂1(η) = 1/4[1− ξ − η + ξη]

χ̂2(ξ, η) = ϑ̂2(ξ)ϑ̂1(η) = 1/4[1 + ξ − η − ξη]

χ̂3(ξ, η) = ϑ̂2(ξ)ϑ̂2(η) = 1/4[1 + ξ + η + ξη]

χ̂4(ξ, η) = ϑ̂1(ξ)ϑ̂2(η) = 1/4[1− ξ + η − ξη]

(2.21)

It is easy to show that these shape functions possess all the general properties

discussed before. A shape function χ̂
(k)
j varies linearly along the two edges

containing the node j and is identically equal to zero at the other two edges.
Thus, the global basis function χj resulting from the union of all the shape
functions at the node j is non-zero at all the elements containing node j and
vanishes at all other elements.

The bilinear map Fk : Ωref 7→ Ωk, defines a transformation between the refer-
ence element Ωref and the physical element Ωk as follows:[

x
y

]
= Fk(ξ, η) =

4∑
i=1

[
xi
yi

]
χ̂i(ξ, η). (2.22)

Above transformation leads to an isoparametric mapping on each element, where
same bilinear interpolation functions are used for both the geometry (mappings
of nodal coordinates) and the unknown function u. For the inverse mapping
F−1
k : Ωk 7→ Ωref to hold, it is necessary that the physical quadrilateral Ωk

must be convex.

x1 x2

x3

x4

Ωk
ξ

η

Ωref

x

y

0

Fk

F−1
k

-1 1

-1

1

x̂1 x̂2

x̂3x̂4

Figure 2.1: Mapping between Q1 physical and reference quadrilaterals.
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2.2.2 Biquadratic element (Q2)

Biquadratic finite elementQ2 consists of nine nodal degrees of freedom, with four
corner nodes, four mid-side nodes and one node at the center of quadrilateral
as shown in Figure 2.2. Shape functions on these nodes are constructed by the
tensor product of the following one dimensional quadratic Lagrange polynomials

θ̂1(ξ) =
ξ(ξ − 1)

2
, θ̂2(ξ) =

ξ(ξ + 1)

2
, θ̂3(ξ) =

(1− ξ2)

2
, −1 ≤ ξ ≤ 1.

Biquadratic shape functions at the nodes of the reference element are as follows:

φ̂1(ξ, η) = θ̂1(ξ)θ̂1(η),

φ̂2(ξ, η) = θ̂2(ξ)θ̂1(η),

φ̂3(ξ, η) = θ̂2(ξ)θ̂2(η),

φ̂4(ξ, η) = θ̂1(ξ)θ̂2(η),

φ̂5(ξ, η) = θ̂3(ξ)θ̂1(η),

φ̂6(ξ, η) = θ̂2(ξ)θ̂3(η),

φ̂7(ξ, η) = θ̂3(ξ)θ̂2(η)

φ̂8(ξ, η) = θ̂1(ξ)θ̂3(η)

φ̂9(ξ, η) = θ̂3(ξ)θ̂3(η)

(2.23)

Bilinear mapping (2.22) can be used for the transformations between the Q2

reference and physical elements, which will be subparametric mapping in this
scenario (Figure: 2.2, left). It is also possible to define isoparametric mapping
using the biquadratic shape functions (2.23), which are useful for discretizing
curved boundaries (Figure: 2.2, right). For more details, please follow the
references [103, 34]

1

2

3
4

2

3

4

5

6

7

8 9

Ωk

x

y

0

1
-1

1

1-1 ξ

η

1
5

6

7

8 9

x

y

Ωk
Ωref

2

34

5

6

7

8
9

0

Fk

F−1
k

Fk

F−1
k

Subparametric Isoparametric

Figure 2.2: Bilinear and biquadratic mappings between Q2 physical and refer-
ence elements.

2.3 Error estimates for FEM

In this section, we mention the results of the so-called a priori error estimates
for the finite element method without going into their details and proofs. The
finite element solution error u − uh, can be bounded in some n−norm ‖.‖n by
the following relation

‖u− uh‖n ≤ Chα‖u‖r with α = min(k + 1− n, r − n), (2.24)

where h is the maximum mesh width, C is the constant independent of mesh
width, k is the polynomial degree of the finite element basis functions, and r
is the regularity of the exact solution with ‖u‖r representing the measure of
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CHAPTER 2. INTRODUCTION TO FINITE ELEMENT METHOD

smoothness of u. Now for a sufficiently smooth u, the bound (2.24) for the
H1-norm (n = 1) becomes

‖u− uh‖1 ≤ Chk‖u‖r, (2.25)

and similarly, provided that the problem is H2 regular which means that f ∈
L2(Ω) and the solution of the dual problem is in H2(Ω) and satisfies the a priori
bound

‖u‖H2
≤ c‖f‖L2

,

then the a priori error bound in the L2 or H0 norm (n = 0) becomes

‖u− uh‖0 ≤ Chk+1‖u‖r. (2.26)

For proof of the a priori errors see the book by C. Johnson [81]. Please note
that the polynomial degree here means the highest degree complete polynomial
that can be represented exactly by the shape functions. In case of bilinear Q1

element, although the local basis functions (2.21) contain quadratic monomial
(ξη), however, they can represent polynomials of degree one accurately. Thus,
for Q1 element we have k = 1, and for a sufficiently smooth u, the error is O(h)
in H1-norm and O(h2) in the L2-norm. Similarly, the shape functions (2.23) of
Q2 element contain higher order terms, but the highest degree polynomial that
they can represent exactly is two. In this case, therefore, we have k = 2 and the
solution error is O(h2) in H1-norm and O(h3) in the L2-norm.

In general, we do not know the exact solution, and these a priori error esti-
mates can never be computed in realistic simulations. Nevertheless, these error
estimates provide an excellent debugging tool for the code validation purposes.
To debug the code, the problem with a sufficiently smooth known exact so-
lution is solved. If our numerical scheme/code is correctly implemented, then
the solution error with each mesh refinement should reduce with some constant
factor. For example, for the Q1 finite element discretization, the error should
reduce with a factor of two in the H1-norm and with a factor of four in the
L2-norm. If these factors are not observed in the error reduction, then there is
most probably a bug in the code.
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3
Solution Methods for Sparse Linear

Systems

Discretization of linear PDEs as seen in chapter 2, and linearization and dis-
cretization of nonlinear PDEs (see chapter 7), lead to the linear system of equa-
tions of the form:

Ax = b, (3.1)

where the coefficient matrix A is large and sparse. A sparse matrix is a matrix
with enough zeroes so that special algorithms and data structures can be devised
to save time and memory by exploiting these zeros [41]. Solving such large and
sparse systems is the bottleneck of the modeling and simulation process, as
it takes most of the computational cost in the whole process. The research
community has put a huge amount of effort to develop algorithms that can
efficiently solve large sparse linear systems, and till today this is still a hot
research area. These enormous research activities over the period of decades
have resulted in a large number of linear solvers, which can be grouped into two
main categorize namely direct methods and iterative methods.

We begin this chapter with a brief overview of the direct methods for sparse
linear systems, and mention their strengths and weaknesses. Next section dis-
cusses the iterative methods, which are the preferred choice over the direct
methods, for large sparse linear systems. These iterative methods fall under
three subgroups, namely, basic iterative methods, Krylov subspace methods,
and multigrid methods, based on their working principle. We explain the work-
ing principles of each group and mention some well-known solvers from each
of them. We also discuss the node renumbering strategies that are quite often
employed to help improve the performance of linear solvers.

3.1 Sparse direct methods

Direct methods are smart variants of Gaussian elimination and involve the fol-
lowing three steps:

1. Perform matrix factorization

PAQ = LU, (3.2)
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CHAPTER 3. SOLUTION METHODS FOR SPARSE LINEAR SYSTEMS

where P and Q are permutation matrices chosen to reduce fill-ins and
to maintain stability, L and U are lower triangular and upper triangular
matrices, respectively.

2. Perform forward elimination

Lz = Pb.

3. Perform back-substitution

UQTx = z.

If the matrix A is symmetric, then following factorization is used:

PAPT = LDLT, (3.3)

where D is (block) diagonal matrix [2].

Dense Gaussian elimination algorithm costs O(n3) flops whereas forward, and
backward substitutions require O(n2) flops, where n is the number of unknowns.
However various very effective and efficient sparse implementations of Gaussian
elimination have been developed by using sophisticated techniques to exploit the
sparsity in the coefficient matrix to minimize the computational costs. Frontal
method [79] is one such technique that was initially developed for solving sym-
metric positive-definite (SPD) sparse linear systems coming from finite element
applications. In the frontal method, the Gaussian elimination process is carried
out in parallel with the finite element assembly process. During the assembly
process as soon as the variable is entirely summed (i.e., subsequent assemblies
do not affect the values in its rows and columns), row operations are carried out
to make the entries below diagonal zero, and the resulting row is saved as a new
row of upper triangular U matrix; see for instance Johnson [81, page 117-120].
Th name frontal method comes from the fact that at each elimination step,
only the entries (also termed active variables) in the small dense matrix, called
frontal matrix are modified, which forms the front that separates the eliminated
variables (behind the front) from the not-yet activated variables (after the front)
in the finite-element mesh.

The frontal approach has many benefits over the standard Gaussian elimination
method[2]. First, it allows the use of efficient BLAS subroutines for dense
matrix calculations. Second, it improves the stability of algorithm by applying
the pivoting only in the frontal matrix. Thirdly, because of the small size of the
frontal matrices, the elimination process can be efficiently carried out in a fast
cache memory.

Reordering schemes are often used in a frontal method to reduce the number
of fill-ins during the elimination process; this reduces both the computational
and memory costs of the method. However, the reordering results into frontal
matrices that are too small to achieve proper exploitation of the memory hier-
archy available in modern processors. Moreover, the frontal method lacks the
scope of parallelism except what can be accomplished within the dense BLAS
operations. The multifrontal method by Duff and Reid [48], which is, in fact, the
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generalization of the frontal method, addresses the above issues by using many
fronts at the same time. Prior to factorization, the method comprises analysis
phase that involves symbolic preprocessing operations to determine various in-
dependent fronts that can be processed in parallel. This in addition to providing
more possibility of parallelism, also gives the liberty of using sparsity preserving
pivot orderings. For a detailed description of the multifrontal method see also
[86].

Multifrontal methods perform efficiently if the matrix has a structural sym-
metric pattern, and may give poor performance for matrices whose patterns
are highly unsymmetric. Davis and Duff in [40] propose the first efficient
unsymmetric-pattern multifrontal method (UMFPACK) for general matrices
with a highly unsymmetric structural pattern. The term UMFPACK is also
used for the user-callable subroutines package available for the solution of the
unsymmetric sparse linear system, that uses unsymmetric multifrontal method
[38]. For more details on sparse direct solvers see [47],[39], [42].

Despite the fact that the classy multifrontal approach combined with the intel-
ligent renumbering schemes increase the efficiency of direct solvers greatly, for
very large sparse systems (as for instance in 3D case) there associated CPU costs
are still very high and more importantly, their huge memory requirements in
such cases make them even impractical for use [130]. Nevertheless, they are used
as a building block inside iterative multilevel solvers for large sparse systems.

3.2 Iterative Methods

In many areas of scientific computing, iterative methods have almost replaced
direct methods for solving general, large sparse linear systems. In iterative
methods, the coefficient matrix remains unchanged, which means no additional
memory is needed for the fill-ins. Therefore, memory requirements for iterative
methods are much less than direct methods. Iterative methods generate a se-
quence of approximate solution vectors {xk}, k = 0, 1, ... (x0 given), with the
iterates converging towards the exact solution x, as k →∞

lim
k→∞

‖x− xk‖ = 0.

The iteration process can be stopped as soon as the desired accuracy is achieved.
These features make iterative methods very attractive for solving large sparse
systems, especially if the accuracy requirements are low.

Iterative methods are also particularly suitable for nonlinear and nonstationary
problems. In such cases, the solution of the linear system is part of an outer
iteration loop: Fixed point or Newton-Raphson linearization iteration for a
nonlinear problem and time stepping iteration for a time-dependent problem.
For each inner linear solve, a good start vector in the form of a solution of
the previous outer iteration is available; moreover, the accuracy requirement for
inner solve is generally low. Both properties lead to the fact that few iterations
are required to solve the linear system approximately.

Iterative methods for solving equation (3.1) can be broadly categorized as:

• Basic Iterative Methods

17



CHAPTER 3. SOLUTION METHODS FOR SPARSE LINEAR SYSTEMS

• Krylov Subspace Methods

• Multigrid Methods

In the following sections, we give an overview of these methods. For a more
comprehensive survey of iterative methods for linear systems we refer to [122].

3.2.1 Basic iterative methods

The main idea of basic iterative methods is to split the coefficient matrix A as
a sum of two matrices

A = M−N,

where M is an easily invertible matrix. Then (3.1) can be written as a sequence
xk

Mxk+1 = Nxk + b. (3.4)

It can be easily seen that for a converging iteration process (xk → x), the vector
x is also the solution to (3.1). Replacing N by N = M −A in equation (3.4),
we may write

xk+1 = xk + M−1rk, (3.5)

where rk = b−Axk is the residual at kth iteration. Equation (3.5) is often called
the basic preconditioned Richardson iteration. Adding a damping parameter
(relaxation parameter) ω leads to its damped version:

xk+1 = xk + ωM−1rk. (3.6)

The choice of M, also called preconditioner, is very crucial and different choices
lead to different iterative methods. Desired properties for a good preconditioner
include that it should be (spectrally) close to A, should be easy to build and
apply. To show some basic choices of M, we express the matrix A as the matrix
sum

A = D−E− F,

in which D is the diagonal of A, -E and -F are strict lower triangular and strict
upper triangular parts of A respectively. Choosing M to be the diagonal of A
results in point Jacobi iteration:

MJAC := D

In Jacobi method, each equation (unknown) is treated independently. There-
fore, the order in which the equations are treated does not affect the convergence
behavior of the method. For this reason, the reordering techniques discussed
later, will not be applied to Jacobi method. It is also called a method of simulta-
neous displacements[140] since the updates could be done simultaneously. This
feature makes Jacobi method a good candidate for parallel implementation.

Letting M be the lower triangular part of A defines what is called point Gauß-
Seidel iteration:

MGS := (D−E)

In contrast to the Jacobi method, in the Gauß-Seidel method the equations
are examined sequentially, one at a time, in such a way that the most current
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estimates of previously computed components are used in calculations. The
updates cannot be done simultaneously, because each component of the new
iterate relies on the already calculated components. Another consequence of
sequential dependence is that the elements of new iterate depend on the order
in which equations are solved. If the order changes, it also alters the elements of
new iterate. Depending on the ordering, families of Gauß-Seidel preconditioners
with different numerical properties can be constructed[145].

In case of sparse A, the presence of zeroes may nullify the influence of some of
the preceding components. By employing prudent reordering schemes, it may
be possible to reduce such dependence further, thus allowing certain groups
of unknowns to be processed in parallel. Nevertheless, reorderings aimed at
parallelism can hurt the convergence of Gauß-Seidel method, and there is always
a tradeoff between parallelism and convergence rate [12].

Successive overrelaxation method (SOR) extrapolates between the current and
previous iterates of Gauß-Seidel componentwise. This extrapolation is achieved
by using an additional relaxation parameter ω̃ (different from ω in (3.6)) with
the lower triangular part; the idea is to accelerate the convergence rate of the
iterates to the solution.

MSOR := (D− ω̃E)

Defining ek = x−xk to be the kth iteration error, equation (3.4) takes the form

M(x− xk+1) = N(x− xk)

ek+1 = M−1Nek

ek+1 = (M−1N)ke0 (3.7)

The matrix (M−1N) is called the iteration matrix. Using Jordan form its easy
to show that (M−1N)k → 0 as k → ∞, if for all the eigenvalues of iteration
matrix it holds that |λ| < 1; which implies that ek+1 → 0 as k → ∞. Hence
the eigenvalues of iteration matrix play a vital role in the convergence of basic
iterative methods. Above discussion can be formulated as a theorem.

Theorem 3.2.1. The iterative method (3.4) converges to the exact solution
x = A−1b for any starting vector x0, if the spectral radius1 of iteration matrix
ρ(M−1N) < 1.

The convergence condition given in the above theorem is guaranteed only if the
coefficient matrix A of the linear systems is M-matrix. Moreover, the theorem
gives the criterion for the convergence of basic iterative schemes, but does not
say anything about the rate of convergence of these methods. These schemes
have local stencil since they involve averaging of nodal values from immediate
neighbors in some order and neglect the effects of neighbors which are computa-
tionally far away. The detailed Fourier analysis of these schemes [24], [71] reveals
that such local averagings remove the local (or high frequency) error components
quickly in just a few iterations, leaving the low frequency or smooth (less os-
cillatory) components relatively unchanged. However, once the error field is
smoothed out (i.e., it consists of only low frequency errors), the convergence
rates of basic relaxation schemes are significantly reduced. For many applica-
tions, their convergence rates are very sensitive to the value ω, and it is difficult

1Spectral radius of A = ρ(A) = max |λi|, where λi are the eigenvalues of A }
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in practice to find an optimal choice of the damping parameter ω. Moreover,
the convergence rates of these solvers depend on the mesh width h and on finer
mesh levels, which are usually required for achieving the desired accuracy, the
basic iterative methods converge very slowly. For these very reasons, they are
almost never used as standalone solvers, instead, are used as preconditioners in
advanced iterative methods such as Krylov subspace solvers and in particular
as smoothers in multigrid solvers. For more discussion on the convergence of
basic iterative methods see [140], [145] and [149].

3.2.2 Krylov subspace methods

Krylov subspace methods are the most widely used iterative methods to solve
sparse linear systems, and are included in “Top 10” best algorithms of the
20th century [30]. The main reasons for this popularity are their low memory
requirements and good approximation properties. Mathematically speaking,
these methods are projection based methods (see [118], chapter 5). Instead
of solving the potentially very huge linear system, Krylov methods through
projections extract an approximate solution from an affine subspace x0 + Km
of dimension m(m � n), where x0 is the initial guess and Km is the Krylov
subspace defined as:

Km(A, r0) = span{r0,Ar0,A
2r0, ...,A

m−1r0},

with r0 = b − Ax0. A popular choice is to take initial guess x0 = 0 which
gives r0 = b, and the corresponding Krylov subspace is Km(A,b) generated by
right-hand side b of the linear system being solved.

Why is Krylov subspace a nice subspace?

Now the question may arise why one would construct the solution from Krylov
subspace, or why Krylov methods are a natural way to solve the linear systems?
To answer this question we follow the discussion in [78], which uses the mini-
mal polynomial of A to show that x = A−1b (for nonsingular A) is naturally
contained in a Krylov subspace.
The minimal polynomial p(z) of a matrix A is defined as a unique monic poly-
nomial of smallest degree for which p(A) = 0. If λ1, ..., λd are the distinct
eigenvalues of A with λj having index mj (the maximal dimension of the Jor-
dan block containing λj), then

p(z) =

d∏
j=1

(z − λj)mj ,

moreover, for m ≡
∑d
j=1mj , we can write

p(z) =

m∑
j=0

γjz
j ,
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with γ0 =
∏m
j=1(−λj)mj (γ0 6= 0 for nonsingular A). Since

0 = p(A) = γ0I + γ1A + ...+ γmAm,

where I is the identity matrix, thus

A−1 =
1

γ0

m−1∑
j=0

γj+1A
j . (3.8)

With A−1 in above form, x = A−1b can be immediately seen as a member of
Krylov space

x = A−1b = (γ̃1b + γ̃2Ab + ...+ γ̃mAm−1b), (3.9)

with γ̃i = γi
γ0
. Therefore, if the degree of minimal polynomial is small, the

dimension of Krylov subspace containing the solution is also small, and the
Krylov method will converge faster.

Many Krylov subspace methods have been developed, and here we discuss few
of the most widely used such methods.

Conjugate Gradient Method (CG)

Conjugate Gradient method by Hestenes and Stiefel [73] is an efficient and one
of the best methods for symmetric (A = AT ) and positive definite (xTAx > 0
for x 6= 0) systems. For an SPD A, A-norm (or energy norm) can be defined as

‖x‖2A := xTAx. (3.10)

The CG method at the kth iteration constructs an approximate solution xk ∈
x0 + Kk(A, r0) that is optimal in the sense that it minimizes the energy norm
of the error vector

‖x− xk‖A = min
y∈Kk(A,r0)

‖x− y‖A. (3.11)

The solution of the above minimization problem results in the conjugate gradient
algorithm 3.1. The CG algorithm constructs search directions which are A-

Algorithm 3.1 CG algorithm

1: Compute r0 = b−Ax0 for some initial guess x0, p0 = r0 . initialization
2: for k = 0, 1, ... until convergence, do
3: wk = Apk

4: αk = rk
T rk

pk
Twk

5: xk+1 = xk + αkpk . update solution
6: rk+1 = rk − αkwk . update residual

7: βk =
rk+1

T rk+1

rk
T rk

8: pk+1 = rk+1 + βkpk . update search direction
9: end for
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orthogonal or conjugate to each other. This motivates the name of the algorithm:
the directions (or gradients) of the updates are conjugate to each other.

Api.pj = δij ∀i, j = 1, ..., N.

For a symmetric A, a three-term recurrence suffices for generating the orthogo-
nal basis of Krylov subspace. The same is true for the residuals being generated
by conjugate gradient algorithm as they are also orthogonal to each other. In
CG method, however, two coupled two-term recursions are used: one for updat-
ing the residual and the other for updating the search direction. This feature of
the conjugate gradient makes it very attractive solver since there is no need to
store all the previous residuals or search directions.

The algorithm involves two ratios, one for calculating βk and other for αk. The
algorithm breaks down if the denominator in these ratios happens to be zero.
However, these breakdowns are lucky breakdowns, as they indicate that solution
has been reached. For the case of βk, the zero denominator means rk

T rk = 0, so
rk = 0, and thus xk = x, which means that the linear system has been solved.
Similarly for αk, if the denominator is zero we have pk

TApk = 0, which implies
pk = 0. Now using the fact that span{p0, ...,pk} = span{r0, ..., rk}, this again
implies that rk = 0 thus further implying that the solution has been reached.

The computational cost of conjugate gradient method involves one matrix-vector
product, three vector updates, two inner products, and one norm evaluation (for
stopping criterion). The scheme requires storage of 4 vectors (x, r,p, and w),
along with some scalars. The convergence rate of CG scheme depends on the
spectral condition number2 of matrix A.

Theorem 3.2.2. At the kth iteration the iterate obtained from the CG algorithm
satisfies the following inequality:

‖x− xk‖A ≤ 2
(√κ2(A)− 1√

κ2(A) + 1

)k
‖x− x0‖A. (3.12)

Proof. See [89, p.187].

Above theorem suggests that CG algorithm has a linear convergence, however,
in practice a superlinear convergence of the scheme is observed if the extremal
eigenvalues of the matrix are well separated. In [137], authors have shown that
during the iteration process the Ritz values converge to extremal eigenvalues
and as soon as eigenvalues of the original operator are well approximated by
Ritz values, the error vector has no components related to the eigenvectors
of these eigenvalues. Therefore, the CG algorithm converges as fast as for a
related system in which these eigenvalues are missing. For more discussion on
the convergence of CG see also [12] and [31].

According to equation (3.11), as CG iterations proceed there is a monotone
decrease in energy norm of the error. In fact, this is merely a theoretical result,
and in practice, we cannot compute ‖x − xk‖A because x is never known. In
practice we compute ‖rk‖2, however, CG does not minimize this quantity and
it may not reduce monotonously.

2If λmax and λmin are the largest and smallest eigenvalues of a symmetric positive definite
matrix A, then the spectral condition number of A is defined as κ2(A) = λmax/λmin.
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Remark 3.2.3. We list here the three sought-after characteristics of CG algo-
rithm, which make it such a successful and widely used solver:

1. The solution obtained belongs to Krylov subspace i.e; xk ∈ Kk(A, r0).

2. The algorithm involves short recurrences.

3. CG is based on a certain optimality property.

In [56], Faber and Manteuffel have shown that for a general matrix A (the only
condition on A is that it is nonsingular), it is impossible to construct a Krylov
method which has all the characteristics mentioned in remark 3.2.3. Table 3.1
shows for three popular Krylov subspace methods for general matrices, which
of these properties they possess.

CGNR Bi-CGSTAB GMRES

xk ∈ Kk(A, r0) 7 3 3
Short recurrence 3 3 7

Optimality 3 7 3

Table 3.1: Characteristics and Krylov methods.

CGNR method

The idea of CGNR method is that for a general linear system Ax = b with
a non-SPD A, solve the related SPD system (ATA) with conjugate gradient
method:

ATAx = ATb, ATA is SPD. (3.13)

Note that CGNR will be very fast if A is close to the unitary matrix (QTQ = I).
The kth iterate of CGNR minimizes the following energy norm of the error:

‖x− xk‖ATA = (x− xk)TATA(x− xk)

= (Ax−Axk)T (Ax−Axk)

= ‖b−Axk‖22.

Therefore, CGNR produces iterates in the Krylov subspace Kk(ATA,AT r0)
that minimize the norm of the residual related to the original linear system
Ax = b. Generalized minimal residual (GMRES) solver also minimizes the
same residual norm but in different Krylov subspace. Although the approach
of CGNR seems to be easy, there are some serious drawbacks associated which
hinder the scheme to be a popular method of choice for most of the applica-
tions. First, because κ(ATA) = κ(A2), the convergence rate of the conjugate
gradient method may reduce significantly, as it now depends on the square of
the condition number of the actual coefficient matrix. Second, the precondi-
tioning normally used in Krylov subspace methods to improve the performance
is difficult to apply on normal equations (see [118, section 10.8, p. 339]). Third,
as seen in algorithm 3.2, the scheme requires two matrix-vector products per
iteration which increases the computational cost of the algorithm considerably.
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Algorithm 3.2 CGNR algorithm

1: Compute r0 = b−Ax0, z0 = AT r0, p0 = z0 . initialization
2: for k = 0, 1, ... until convergence, do
3: wk = Apk

4: αk = zk
T zk

wk
Twk

5: xk+1 = xk + αkpk . update solution
6: rk+1 = rk − αkwk . update residual
7: zk+1 = AT rk+1

8: βk =
zk+1

T zk+1

zk
T zk

9: pk+1 = zk+1 + βkpk . update search direction
10: end for

Generalized Minimal Residual (GMRES) Method

The generalized minimal residual (GMRES) method developed by Saad and
Schultz in 1986 [121] is applicable to general matrices. We follow [78] to ex-
plain the working idea of GMRES. In the kth iteration, the GMRES algorithm
chooses the ‘optimal’ solution zk ∈ Kk(A, r0), in such a way that the resid-
ual is minimized in Euclidean norm over Kk(A, r0). For xk = x0 + zk with
zk ∈ Kk(A, r0),

‖rk‖2 = ‖b−Axk‖2 = min
z∈Kk(A,r0)

‖r0 −Az‖2. (3.14)

GMRES solves the above least squares problem by constructing the orthonormal
basis for Kk(A, r0) using Arnoldi iteration, which is nothing but modified Gram-
Schmidt procedure adapted for the Krylov subspace. Arnoldi method works as
follows: for a given set of orthonormal basis {v1,v2, ...,vj} for Kj(A, r0), the
basis is expanded by orthonormalizing the vector Avj against the previous basis.
If we collect the orthonormal basis vectors in a matrix form, Vj = (v1...vj), we
can write

AVj = Vj+1Hj ,

where Hj is an upper Hessenberg matrix3 of size (j + 1) × j. Now any vector
z ∈ Kk can be written as

z = Vky, (3.15)

for some y. So

r0 −Az = r0 −AVky

= βv1 −Vk+1Hky

= Vk+1(βe1 −Hky), (3.16)

where β = ‖r0‖2 and e1 is first column of identity matrix. As Vk+1 is a unitary
matrix, we have

‖r0 −Az‖2 = ‖βe1 −Hky‖2 (3.17)

3A matrix with zeroes below first sub-diagonal
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Thus the least squares problem in the kth iteration of GMRES becomes

min
z∈Kk(A,r0)

‖r0 −Az‖2 = min
y
‖βe1 −Hky‖2 (3.18)

Typically, it is inexpensive to compute the minimizer y, as it involves solving
a smaller (m + 1) ×m least squares problem. The GMRES method is shown
in algorithm 3.3. The minimization problem (3.18) is solved by converting

Algorithm 3.3 GMRES algorithm

1: Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β
2: for j = 1, ..., k until convergence, do
3: wj := Avj
4: for i = 1, ..., j, do
5: hij := (wj ,vi)
6: wj := wj − hijvi
7: end for
8: hj+1,i = ‖wj‖2. If hj+1,i = 0 set k := j and exit loop
9: vj+1 = wj/hj+1,i

10: end for
11: Define the (k + 1)× k Hessenberg matrix Hk = {hij}1≤i≤k+1,1≤j≤k
12: Compute y, the minimizer of ‖βe1 −Hky‖2, and xk = x0 + Vky

the upper Hessenberg matrix into an upper triangular system using the Givens
rotations and then solving this triangular system for y (the minimizer of (3.18)).
The Givens rotations are applied progressively at each step of the GMRES
algorithm; the benefit of this approach is that it gives as a byproduct the norm
of the actual residual at each step without additional arithmetic operations. As
algorithm 3.3 does not explicitly provide the approximate solution at each step,
it’s difficult to determine when to stop. Using the Givens rotations, we have
the norm of the residual available at hand to decide when to terminate. For a
more detailed discussion on this issue, we refer to [118, section 6.5.4].

For general matrices, it is impossible to give convergence bounds similar to the
one given in theorem 3.2.2 for the SPD case. Here we mention an analogous
result for diagonalizable nonsymmetric matrices. Let Pk be the space of all
polynomials of degree less than k and let σ = {λ1, ..., λn} be the spectrum of A
with eigenvalues arranged in ascending order.

Theorem 3.2.4. Let A ∈ Rn×n be a nonsymmetric and diagonalizable matrix
with spectral decomposition A = XΛX−1. Here X = {x1, ...,xn} be the right
eigenvectors of A and Λ = diag{λ1, ..., λn}. Let

ε(k) = min
p∈Pk

p(0)=1

max
λi∈σ

|p(λi)|.

Then at the kth iteration, GMRES produces the residual that satisfies the fol-
lowing inequality

‖rk‖2 ≤ κ(X)ε(k)‖r0‖2, (3.19)

where κ(X) := ‖X‖2‖X−1‖2 is the condition number of X. Moreover, if all the
eigenvalues lie inside a circle centered at C ∈ R with C > 0 and having radius
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R with C > R, then

ε(k) ≤
(R
C

)k
. (3.20)

Proof. see [121]

If A is SPD then κ(X) = 1, for more general matrices its value is not known and
expensive to compute. If κ(X) is very large, then inequality (3.19) is not useful
[67]. We can see that in (3.20), the ratio R/C will be smaller if the eigenvalues
are more clustered (small R) and are away from the origin (large C). This
suggests that GMRES will have faster convergence rates if the eigenvalues of
A are clustered away from the origin. It is important to note that for GMRES
convergence rates, eigenvalue distribution is much more important than the
condition number of the matrix.

GMRES has some very nice features which make it a popular solution algo-
rithm for nonsymmetric matrices. It is a stable method and no breakdowns
occur; if hj+1,i = 0 then xk = x and the solution is reached. The scheme satis-
fies the optimality property (3.14) and as a consequence has monotone conver-
gence behavior. This is true since rj is minimized over Kj and as Kj+1 ⊃ Kj ,
the minimization over a larger subspace will result in smaller residual norm
(‖rj+1‖ ≤ ‖rj‖). GMRES, like CG, also exhibit the superlinear convergence
behavior [144].

The disadvantage of GMRES is that it involves long recurrences, as the Arnoldi
iteration requires all the previous k vectors for orthogonalization at the kth it-
eration. Hence the work and memory requirements increase prohibitively for an
increasing number of iterations. To avoid the excessive storage and computa-
tional costs, GMRES is restarted after m iterations, using the last approximate
solution as an initial solution for next restart. The restarted GMRES is usually
denoted by GMRES(m). However, restarting ruins many of the nice features
of full GMRES, like GMRES(m) does not satisfy the minimization property as
a whole and superlinear convergence behavior is inhibited [144]. The conver-
gence behavior of restarted GMRES in many applications is very sensitive to
the value of m, and an inappropriate choice of m may lead to the stagnation of
the GMRES[75].

We like to mention here another variant of GMRES method, called flexible GM-
RES (FGMRES), which allows changing the preconditioner at each step. This
flexibility allows the use of any other iterative solver as a preconditioner to GM-
RES (e.g., GMRES itself), and this feature can be exploited to build efficient
iterative methods, possibly multilevel techniques. An essential aspect of FGM-
RES is that, like standard GMRES, it satisfies the optimality condition (3.14).
FGMRES algorithm 3.4 can be implemented by doing a minimal modification to
the preconditioned version of standard GMRES algorithm. Precisely speaking
there is no additional mathematical cost involved but the memory cost doubles
as in FGMRES an extra set of vectors need to be stored.
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Algorithm 3.4 FGMRES algorithm

1: Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β
2: for j = 1, ..., k do
3: zj = M−1

j vj
4: wj := Azj
5: for i = 1, ..., j, do
6: hij := (wj ,vi)
7: wj := wj − hijvi
8: end for
9: hj+1,i = ‖wj‖2.

10: vj+1 = wj/hj+1,i

11: end for
12: Define Zk := [z1, ..., zk],and the (k + 1) × k Hessenberg matrix Hk =
{hij}1≤i≤k+1,1≤j≤k

13: Compute y, the minimizer of ‖βe1 −Hky‖2, and xk = x0 + Zky
14: If satisfied Stop, else set x0 := xk and go to 1.

Biconjugate Gradient Stabilized (Bi-CGSTAB) method

Biconjugate gradient stabilized method proposed by van der Vorst [143] belongs
to the family of Krylov subspace solvers which solve nonsymmetric systems
using Lanczos biorthogonalization. Other famous algorithms that belong to
this family are Biconjugate gradient (Bi-CG) (see [84] and [58]) and Conjugate
gradient squared (CGS) [126]. Instead of using the orthogonal sequence of
Krylov vectors (as used by CG, CGNR, and GMRES), these methods rely on
a pair of mutually orthogonal (biorthogonal) Krylov subspaces to compute an
approximate solution. The drawback of this approach is that the solvers do not
fulfill any optimality (or minimization) property and their convergence behavior
may be quite irregular, sometimes leading to the breakdown of the algorithm.
Bi-CGSTAB is an improved variant of this family developed with the goal to
stabilize or smooth this irregular convergence behavior. The advantage of Bi-
CGSTAB algorithm 3.5 is that it uses short recurrences and works well for
unsymmetric systems. Contrary to GMRES it requires only six auxiliary vectors
to be stored in memory and requires two matrix-vector products and four inner
products per iteration.

Remark 3.2.5. Krylov iteration methods are very robust, but their convergence
depends on the condition number of matrix A, which for the model problems that
we investigate in turn depends on mesh width h. Hence the convergence rate of
these methods slows down with the refinement of the mesh. A remedy for this
problem is the well established multigrid methods.

3.2.3 Multigrid methods

Geometric multigrid (GMG) methods are one of the best-known methods for
solving linear systems arising from discretization of (elliptic) partial differential
equations. Their computational complexity is O(N), and they give convergence
rates that are independent of the mesh refinements. The GMG comprise the
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Algorithm 3.5 BiCGSTAB algorithm

1: Compute r0 = b−Ax0, for some initial guess x0 . initialization
2: Choose r̂0 such that (r̂0, r0) 6= 0, e.g., r̂0 = r0

3: p0 = r0

4: for k = 0, 1, ... until convergence do
5: wk = Apk

6: αk =
(rk, r̂0)
(wk, r̂0)

7: sk = rk − αkwk

8: tk = Ask

9: γk =
(tk, sk)
(tk, tk)

10: xk+1 = xk + αkpk + γksk . update solution
11: rk+1 = sk − γktk . update residual

12: βk =
(rk+1, r̂0)
(rk, r̂0)

× αk
γk

13: pk+1 = rk+1 + βk(pk − γkwk)
14: end for

following ingredients:

• A hierarchy of grids as shown in figure 3.1

• Smoother (usually a basic iterative method)

• Grid transfer operators (Restriction and Prolongation)

• Coarse grid solver (mostly a sparse direct solver)
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Direct Solve

V-CyclePre-smoothing Post-smoothing

Figure 3.1: Multigrid V-cycle

The main idea of MG is to accelerate the convergence of basic relaxation schemes
presented in section 3.2.1. These schemes rapidly remove highly oscillating
errors in the solution, however, after the first few iterations, the error field
is smoothed out and the convergence rate reduces significantly. MG lets the
relaxation schemes do what they are good at only: remove the high-frequency

28



3.2. ITERATIVE METHODS

error components by applying few relaxation iterations at the finer grid. This
process is called smoothing, and the relaxation scheme itself is called smoother.
Next, MG transfers the residual from the fine grid to the coarser grid by applying
the restriction operator. The restriction operator uses the nodes from the fine
grid and gathers information to the coarse grid using weighted averaging. As the
smooth error function can be well approximated on the coarser grid without loss
of essential information, the smooth error is calculated by solving the related
coarser linear system.

The coarse grid solution is then projected back to the fine grid using the prolon-
gation operator, for correction of the fine grid approximation. Hence, the pro-
longation operator does the opposite to that of restriction operator and spreads
information from the coarse mesh to fine mesh. We use the standard finite
element based grid transfer routines, that work on each solution component
individually, to perform the grid transfer operations. The elementwise prolon-
gation for the bilinear Q1 finite element functions is shown schematically in
figure 3.2. On the coarse mesh are shown the weights of the corresponding
d.o.f’s that are used to evaluate the d.o.f on the fine mesh. Each node in the
fine mesh coincides with either the vertex, edge midpoint or the quadrilateral
midpoint in the coarse mesh.
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Figure 3.2: Schematic representation of prolongation in Q1 element.

The coarse grid solve in algorithm 3.6 can be carried out using sparse direct
solvers discussed in section 3.1. However, if the coarse grid problem is still
large, direct solve can be very expensive or even impossible due to huge memory
requirements. As the low-frequency errors are high-frequency errors on the
coarser grid, the multigrid does not stop at second level and extends the two-
grid method to more grid hierarchies. The way grid hierarchies are reached
by multigrid is determined by the multigrid cycles. Figure 3.3 shows the three

29



CHAPTER 3. SOLUTION METHODS FOR SPARSE LINEAR SYSTEMS

Algorithm 3.6 Two-grid algorithm

1: Choose xh0
2: Pre-smoothing: [xh

i+ 1
3

, rh
i+ 1

3

] = smooth(Ah,xh0 ,b
h, ω, ν1)

3: Restriction: rH
i+ 1

3

= IHh rh
i+ 1

3

IHh : Gh 7→ GH

4: Coarse grid solve: eH = (AH)
−1

rH
i+ 1

3

5: Prolongation: eh = IhHeH IhH : GH 7→ Gh
6: Defect correction: xh

i+ 2
3

= xh
i+ 1

3

+ eh

7: Post-smoothing: [xhi+1, r
h
i+1] = smooth(Ah,xh

i+ 2
3

,bh, ω, ν2)

ν1, ν2 : number of pre- and post-smoothing steps
ω : relaxation parameter

famous multigrid cycles namely V, W and F cycles. The type of the multigrid
cycle along with other multigrid components play a vital role in the convergence
behavior of MG method. If the geometric data of problem is not available or

Lev
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2
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4

Figure 3.3: V-,W- and F-Multigrid cycles.  − smoothing, �− coarse grid solve

if the geometric complexity of the problem prohibits the use of GMG, then
algebraic multigrid (AMG) methods can be used, which construct the level
hierarchies directly from the system matrix. For more details on AMG methods
we refer the interested readers to [128], [20], and [116].

3.3 Node reordering strategies

Reordering the node numbers can have a significant effect on the performance
of solution methods for sparse linear systems. Renumbering can dramatically
reduce the fill-ins, and thus considerably boost the performance of sparse direct
solvers. Incomplete LU and Gauß-Seidel method are also quite often used as
a preconditioner to Krylov subspace methods and as a smoother to multigrid
for problems arising from numerical discretization of fluid flow problems. It has
been widely reported in the literature that performance of both the schemes
can be significantly enhanced in certain flow situations by choosing the correct
numbering scheme (cf. [133, 72, 96]), as the renumbering makes them ‘more
exact’. ILU has a twofold benefit with a fill-in reducing reordering: First, ILU
will drop fewer terms and likely produce more accurate L and U factors; secondly
if ILU with a high level of fill-in is used, it will be more efficient. For Gauß-Seidel,
the orderings which follow the flow of information are helpful, for example,
numberings aligned with the flow stream in case of convection dominated flows
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[72, 15]. Reorderings can also unravel the parallelism in linear solvers and are
the most important ingredient in parallel implementations. (cf. [51, 42]).

Many renumbering techniques have been proposed, but unfortunately, there is
no one the best performer for all situations. It is possible to make a numer-
ical setup in which one scheme outperforms others, while in another setup it
performs worst. Here we mention few grid ordering techniques:

1. Cuthill- Mckee ordering (CMK)

2. Reverse Cuthill-Mckee ordering (RCM)

3. Two level ordering (TLO)

4. Rowwise or x-coordinate sorting (GR)

5. Columnwise or y-coordinate sorting (GC)

The Cuthill-Mckee algorithm by E. Cuthill and J. McKee [33], is an automatic
nodal numbering scheme that ensures significant bandwidth4 improvement for
a wide range of problems. It is a level set based technique that traverses the
adjacency graph of a sparse matrix by level sets. It starts with level 1 consisting
of one node (more nodes also possible), which can be the node with the lowest
degree5, and numbers it as the first vertex. The next level set contains the
adjacent nodes6 of the previous level set. The nodes in a level set are numbered
from lowest to the highest degree for each neighbor node from the previous
level. This process is repeated until all the nodes are numbered. As illustrated
in figure 3.4, the finite element two-level ordering produce a matrix with a
bandwidth equal to 7, whereas, the CMK ordering reduce the bandwidth to
3. Reduced bandwidth implies reduced fill-ins, and the scheme can be useful
for direct methods and ILU based solvers. In [133], the author has shown for
driven cavity stokes problem, MG solver with ILU as a smoother has better
performance with Cuthill-Mckee renumbering.

Reverse Cuthill-Mckee ordering by A. George [64], is very similar to the CMK
but numbers the grid points in reverse order. George noticed that reversing
the Cuthill-Mckee ordering produces same bandwidth but yields the nonzero-
pattern inside the bandwidth that better suits the Gaussian elimination based
solvers. In [32], the superior performance of reverse scheme for various problems
has been reported. In [87], authors have proved that compared with the CMK,
the reverse ordering is always at least as good, from storage and operation
counts viewpoint. Therefore, reverse Cuthill-Mckee is a more popular ordering
choice among the scientific community. Minimum degree (MD)[62] and nested
dissection (ND)[63] are two other popular reordering techniques primarily used
in sparse direct solvers to reduce the fill-in, which are not bandwidth reducing
schemes.

Two level ordering is used in FEATFLOW7 (Finite Element Analysis and Tools
for Flow problems, Version 2) software, for numbering the nodes in mesh re-
finements. In TLO, on the refined mesh, grid points from old mesh retain their

4Bandwidth of a matrix A ∈ Rn×n, is defined as max1≤i,j≤n{|i− j|, aij 6= 0}
5The degree of node j is the number of edges meeting at j
6Two nodes are adjacent if they are connected by an edge
7For more information visit www.featflow.de
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Figure 3.4: Node numbering of unit square mesh for different reordering tech-
niques

numbers, while new vertices get new numbers. This renumbering is helpful for
elementwise application of grid transfer routines in multigrid but produces large
bandwidths.

Rowwise and columnwise sortings are geometry-based reorderings, which require
the coordinate information of nodes. Although these techniques cannot be very
useful for general applications, however, for some special situations they can beat
other sophisticated schemes like RCM. For instance, for a convection dominated
flow in a channel with convection in the x-direction and without any vortices
involved, the value at a particular node is only influenced by the upstream
nodes only. In such a case, if we use the upwind stabilization and use rowwise
renumbering then the resulting coefficient matrix will have nonzeros only in
the lower triangular part, and Gauß-Seidel or ILU will solve the problem in
only one step. However, in most practical situations, there computational costs
and memory requirements are very high, and also its difficult to use them for
unstructured grids.
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4
Multilevel Krylov subspace method

As the name suggests, the main focus of this chapter is the multilevel Krylov
subspace method (MLKM), which incorporates components from the Krylov
subspace iterative methods and multigrid methods. However, before embarking
on the idea of MLKM, we start this chapter with the discussion of an important
concept of preconditioning, that continues to play a pivotal role in the construc-
tion of efficient and reliable Krylov subspace solvers for handling challenging
real life computational problems. The performance of Krylov subspace meth-
ods depends on the condition number κ(A) of the coefficient matrix A of the
linear system, and on the clustering of the eigenvalues of the coefficient matrix.
We discuss two classes of preconditioners: first the traditional preconditioners,
aimed at improving the condition number of the coefficient matrix; second the
eigenvalue distribution preconditioners, aimed at the clustering of eigenvalues of
the coefficient matrix.

Next, we review in detail the MLKM solver proposed by Nabben and Erlangga,
which is primarily based on the concept of clustering the eigenvalues around
maximum eigenvalue of the coefficient matrix, however, it also uses the tradi-
tional preconditioner to further improve the overall convergence behavior of the
solver. After that, we explain our implementation of MLKM solver in the con-
text of FEATFLOW solver and discuss how it differs from MLKM algorithm
of Nabben and Erlangga. At the end of the chapter, we briefly compare the
MLKM solver with the multigrid solver and explain how both the solvers are
different from each other.

4.1 Preconditioning

In chapter 3, we have discussed that the convergence rate of Krylov subspace
solvers, for both symmetric and nonsymmetric linear systems, is strongly de-
pendent on the spectral properties of the system matrix. Conjugate gradient
method, for example, works best when spectral condition number of matrix
κ(A) is small and/or eigenvalues are clustered around one [13]. Krylov sub-
space methods for general matrices, like GMRES, also have better convergence
if the eigenvalues of a matrix are clustered away from the origin. However, the
linear systems originating from the discretization of PDEs, do not possess such a
desired eigenvalue distribution in most cases. Preconditioning is usually applied
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to these systems with the objective of having transformed systems with same
solution as the original systems but with more favorable spectral properties for
the iterative methods. Let M be an invertible matrix (called preconditioner),
then the preconditioned linear system

M−1Ax = M−1b, (4.1)

has the same solution as Ax = b, but is expected to be easily solvable by Krylov
subspace methods. Please note that in the Krylov solver, the product M−1A
is never computed explicitly, as it would be expensive and the resulting matrix
would be dense. Instead, matrix-vector product and solution of linear system
of the form Mz = w are solved.

Preconditioning involves extra costs: a preconditioner setup or construction
cost, and a preconditioner application cost at every iteration of the iterative
solver. A good preconditioner is one for which the improvement in convergence
rate is good enough to justify these extra costs. To be a good preconditioner
M should generally possess the following properties:

• M is (spectrally) as close to A as possible.

• M should be cheap to construct and apply.

First property implies that the condition number of the preconditioned matrix
should be close to one and the preconditioned iteration should converge faster.
Second property ensures that each preconditioned iteration is economical. How-
ever, if we try to achieve one property, other property is compromised. There-
fore, while constructing a preconditioner, there is always a trade-off between
the two properties.

In equation (4.1), the preconditioner is applied on the left side of the matrix A;
this is called left preconditioning. Alternatively, one can also apply M from the
right, in which case it is called right preconditioning :

AM−1u = b, x = M−1u. (4.2)

Split preconditioning can also be applied:

M−1
1 AM−1

2 u = M−1
1 b, x = M−1

2 u. (4.3)

Matrices M−1A, AM−1, and M−1
1 AM−1

2 are all similar and have same eigen-
values. For CG method, the convergence will be same in all cases. For GMRES
method, if the preconditioned matrix is far from normal, convergence rates can
vary greatly depending on if the preconditioning is applied from left or right
(see [118, p. 255] for a detailed discussion).

Customarily, the preconditioners can be categorized based on their construction
approach as follows:

• Physics-based preconditioners (application specific)

• Coefficient matrix based preconditioners (general purpose)
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Physics-based preconditioners (also called PDE based preconditioners) are based
on the simpler nearby PDEs which are easy to solve. For instance, Carey et
al. [28], have used full factorization of Stokes problem as a preconditioner
to Krylov solvers for solving Newtonian and Non-Newtonian flows. In [36],
Dahl and Wille have used Stokes based ILU factorization as a preconditioner
to the Bi-CGSTAB solver for solving the Navier-Stokes equations. For more
information on the physics-based preconditioners, we refer the interested readers
to [14, 8, 150], and the references therein. The physics based-preconditioners are
application specific and can not be applied to general problems. Although these
preconditioners are at times very effective, they require a complete application
specific knowledge. They are very sensitive to the details of the problem, and
small changes in the problem can drastically affect the performance of the solver.
Carey et al. have reported that Stokes based preconditioner worked fine for
driven cavity flow problem at low Reynolds numbers, but for relatively higher
Reynolds numbers (Re = 300 and more) the performance was poor compared
with the frontal solver.

Matrix-based preconditioners are also called algebraic preconditioners and are
built from the information available in the coefficient matrix. They are easier
to develop and apply, are universal and achieve reasonable efficiency on a wide
range of problems. In the following section, we discuss some matrix-based pre-
conditioners which we will be using in our thesis. Brenzi has given an excellent
survey of algebraic preconditioning techniques in his article[13], and we refer
the interested readers to this manuscript for more details.

4.1.1 Basic iterative methods as preconditioners

From the preconditioned system (4.1) we have:

(I−M−1(M−A)x = M−1b,

and in iteration form, we may write

xk+1 = (I−M−1A)xk + M−1b

= xk + M−1rk.

Above equation is the same as preconditioned Richardson iteration (3.5). This
means that application of one iteration of the basic iterative methods is the same
as preconditioning of linear system. Hence using MJAC , MGS and MSOR in
preconditioned system (4.1) will result in Jacobi, Gauss-Seidel, and Successive
over-relaxation preconditioners:

Jacobi preconditioning
D−1Ax = D−1b. (4.4)

Gauss-Seidel preconditioning

(D−E)−1Ax = (D−E)−1b. (4.5)

Successive over-relaxation preconditioning

(D− ω̃E)−1Ax = (D− ω̃E)−1b. (4.6)
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When applying the preconditioner to the symmetric matrix, it is important not
to lose the symmetry in preconditioned system matrix, so that Krylov subspace
methods for symmetric matrices (like CG) can be applied. Aforementioned
basic iterative preconditioners when applied would not retain the symmetry, and
therefore, symmetric version of SOR called symmetric successive over-relaxation
(SSOR) preconditioner is used. In 1972, Axelsson [6] published an extensive
study of SSOR preconditioning for accelerating the convergence of conjugate
gradient method [see also [118]].

An advantage of the basic iterative preconditioners is that they do not involve
any construction cost, and they do not require an extra matrix for their storage.

4.1.2 ILU Preconditioner

Incomplete LU (ILU) factorization preconditioner is one of the most widely
used algebraic preconditioners. The idea of incomplete factorization was first
introduced by Buleev [27] and by Varga [139] independently in the late 1950s.
Nonetheless, Meijerink and van der Vorst were the first ones who identified the
potential of ILU as a preconditioner in their remarkable work [95]. They ob-
served that for a class of M-matrices, the convergence rate of conjugate gradient
method could be significantly improved if it is preconditioned with incomplete
factorization. Influenced by this phenomenal work, since then ILU precondition-
ing has been used by many people for solving the discretized systems arising
from various PDEs. Munksgaard [104] formed incomplete factorization using
different dropping and reorderings strategies and used it as a preconditioner to
CG to solve sparse symmetric positive definite matrices. Manteuffel [93] used
incomplete factorization preconditioning to solve large sparse symmetric linear
systems that arise from the application of finite element methods. Dutto [50]
applied the idea to solve the compressible Navier-Stokes equation problem. An
excellent introduction to ILU and its variants can be found in the books by
Hackbusch [69] and Axelsson [7].

ILU Idea

Full LU decomposition of large sparse systems results in L and U matrices
which are remarkably less sparse. Even if the fill-in reducing reorderings are
used, the related computational and memory costs of resulting factorization are
often so enormous that the method becomes impractical to use. The basic idea
of incomplete LU factorization is straightforward: drop out some of the fill-ins
that occur during the elimination process to preserve sparsity. Instead of exact
factorization A = LU, this results in incomplete (or approximate) factorization

A = L̃Ũ−R,

where L̃ and Ũ are the incomplete lower and upper triangular matrices re-
spectively, and R is called the residual matrix containing the discarded entries.
Various ILU algorithms have been proposed which differ on the dropping cri-
teria of the fill-ins. ILU(l) algorithms allow the fill-ins based on their position
in the matrix, whereas ILU(t) allow the fill-ins based on their size. Unlike ba-
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sic iterative methods preconditioners, all ILU based preconditioners involve the
construction cost and require extra matrix for their storage.

In ILU(l), l stand for the level of fill-in. In ILU(0), level of fill-in is zero, i.e.,
ILU(0) takes the sparsity pattern of matrix A, and does not allow any fill-in.
Let S be defined as

S = {(i, j)|i 6= j; 1 ≤ i, j ≤ n},

then the sparsity pattern S0 for ILU(0) is a subset of S

S0 = {(i, j)| aij 6= 0}.

The ILU(0) algorithm is defined constructively in Algorithm 4.1. ILU(0) precon-

Algorithm 4.1 ILU(0) algorithm

1: for i = 2, ..., n do
2: for k = 1, ..., i− 1 and for (i, k) ∈ S0 do
3: Compute aik = aik/akk
4: for j = k + 1, ..., n and for (i, j) ∈ S0 do
5: Compute aij := aij − aikakj
6: end for
7: end for
8: end for

ditioning has been reported to be very effective for PDEs resulting in M-matrices
or diagonally dominant matrices [13]. However, for more difficult problems (such
as highly nonsymmetric matrices), ILU(0) may result in an inaccurate approxi-
mation of A and give no significant improvement in convergence rates [29]. For
such cases, more accurate incomplete factorizations that allow some fill-ins may
work better. In ILU(l) a hierarchy of more accurate factorizations is obtained
based on the concept of level of fill. A level of fill is assigned to each matrix
element that is processed during the factorization process. Here we follow the
level of fill definition of Saad [118, Definition 10.5, page 298]. The initial level
of fill of a sparse matrix entry aij is defined by

levij =

{
0 if aij 6= 0 or i = j,

∞ otherwise.

Each time aij is modified in algorithm 4.1, its level of fill must be updated by

levij = min{levij , levik + levkj + 1}.

Note that during the iteration process, the level of fill of an element never
increases. Therefore, for nonzero elements of the original matrix A, the level of
fill will always remain zero during the whole elimination process.

Fill-ins are discarded based on the values of their level of fill. For ILU(1), all
fill-ins whose level of fill is higher than 1 are discarded. The cost to construct
and apply ILU(1) preconditioner are reasonable, and in many applications it
gives a considerable improvement over ILU(0). In practical implementations,
the symbolic factorization is done before numerical factorization, to assign the
level of fills and to determine the structure of L and U factors.
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ILU(l) with a lower level of fill is not robust for matrices which are far from being
diagonally dominant, because the fill-ins being dropped are not of the smaller
size and the resulting L and U factors do not approximate A very well. For
higher levels of fill, the associated construction and application costs of ILU(l)
increase rapidly, and are rarely used in practice. For many such cases, ILU(t)
with droppings based on their size results in efficient preconditioner. However,
the difficulty with this approach is to choose a good drop tolerance value, which
usually is done by trial and error method and is very much problem dependent.
Saad [117], in his ILUT algorithm, has combined both the position based and
value based approaches. Modified ILU (MILU) is another variant of incomplete
factorization that compensates the effect of dropping, by adding all the elements
to be dropped in a row and subtract it from a diagonal entry in U (see [49, 68]
for more details)

4.2 Preconditioning based on the spectral informa-
tion

Preconditioners mentioned in the previous section are also called traditional
preconditioners. These traditional preconditioners improve the condition num-
ber of the original matrix in many cases, however, condition number is not the
only indicator of convergence improvement. It has been reported in [137], that
convergence rates of the conjugate gradient can be significantly higher, if the
eigenvalues of system matrix are clustered near one. Similarly, for GMRES it is
well known that its convergence can be better if eigenvalues of the system ma-
trix are clustered away from zero. The traditional preconditioners do not take
into consideration the details of the eigenvalue spectrum of the matrix during
their operation, and consequently, the spectrum of M−1A may still have many
eigenvalues near zero. These near zero eigenvalues hamper the convergence of
Krylov subspace methods. The convergence of Krylov subspace methods can be
improved, if by some means during the iteration process, the components cor-
responding to these small eigenvalues can be removed from the residual vector.

Deflation is the technique that is used to deal with the problematic part of
the spectrum in the (un)preconditioned linear system. There are essentially
two ways to implement deflation techniques. In the first approach, called aug-
mentation or enrichment, the eigenvectors related to the small eigenvalues are
augmented to the Krylov subspace, then these eigenvectors will have no com-
ponents in the residuals. Nicolaides [108] showed the convergence improvement
of CG method using augmentation. Morgen [97, 99, 98] has shown that if
at each GMRES restart, the approximate eigenvectors corresponding to the
smallest eigenvalues are formed and added to the Krylov subspace, restarted
GMRES considerably improves convergence rates and retains the residual op-
timality property. In the second approach, called projection or deflation, a
projection matrix is constructed from the offending eigenvectors and is used as
a preconditioner, which deflates the small eigenvalues to zero. We explain the
construction and properties of the projection based deflation preconditioner in
detail below.
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4.2.1 Deflation preconditioner

For symmetric positive definite systems, Frank and Vuik in [60], have proposed
a projection matrix that deflates smallest eigenvalues and used it as a precon-
ditioner to CG. Here we call this a two-level deflation preconditioner. However,
we aim to build a solver that can ultimately solve coupled Navier-Stokes equa-
tions, which are not SPD. Therefore, following [53], we define here the deflation
preconditioner to solve the sparse linear system Ax = b where A ∈ Rn×n is
a general nonsingular matrix. To deflate m smallest eigenvalues to zero, the
deflation preconditioners can be constructed as

PD = I−AK, QD = I−KA, K = ZE−1YT , E = YTAZ. (4.7)

PD and QD are the left and right deflation preconditioners respectively. It
can be easily verified that PD and QD are projectors since P2

D = PD and
Q2
D = QD. Here Z, Y ∈ Rn×m are full rank matrices, with Z called deflation

subspace corresponding to the offending eigenvalues that we want to project out
from the residual. The solution of a linear system preconditioned with deflation
is carried out as follows. Decompose the solution vector into

x = (I−QD)x + QDx, (4.8)

where
(I−QD)x = ZE−1YTAx = ZE−1YTb. (4.9)

If m � n, then the matrix E ∈ Rm×m can be easily computed and inverted,
and calculating (4.9) is not a problem. The main task is to compute the factor
QDx in (4.8), and this is done by solving the following system for x̃

PDAx̃ = PDb, (4.10)

using Krylov subspace solver for nonsymmetric systems (GMRES or Bi-CGSTAB)
and then premultiplying the solution with QD. The result is then added to (4.9)
to get the solution x. Since the solution x̃ is an approximate solution coming
from Krylov subspace solver, it may still have some components in the deflated
space Z, which is also the null space of PDA. Therefore, the projected solution
QDx̃ is used.

For a nonsingular matrix A, let the spectrum of A is given by

σ(A) = {λ1, λ2, ..., λn},

with |λi| ≤ |λi+1|, for i = 1, ..., n. The following theorem gives the spectrum of
deflated matrix PDA.

Theorem 4.2.1. Let A be nonsingular and diagonalizable, and let Z and Y
be the left and right eigenvectors corresponding to the first m eigenvalues of A,
chosen such that YTZ = Im, then

σ(PDA) = {0, ..., 0, λm+1, ..., λn}.

Proof. Here E=YTAZ = diag(λ1, ..., λm) := Λm For i = 1, ...,m

PDAZ = AZ−AZE−1 YTAZ︸ ︷︷ ︸
=E

= 0.
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For i = m+ 1, ..., n

PDAzi = (I−AZE−1YT )Azi = λizi − ZΛmΛ−1
m λi Y

T zi︸ ︷︷ ︸
=0

= λizi.

As can be seen, deflation with eigenvectors changes the first m eigenvalues to
zero, while the rest of the eigenvalues remain unchanged. Also, note that the
eigenvectors of PDA and A remain the same.

A Krylov method (like GMRES) builds solution for the problem 4.10 from the
Krylov subspace

Kk(PDA, r0) = {r0, PDAr0, (PDA)2r0, ..., (PDA)k−1r0},

with the residual r0 = PD(b−Ax0). Since the null space of PDA never enters
into the Krylov iteration, the zero eigenvalues do not effect the Krylov iteration.
Therefore, we define the effective condition number of the deflated system 4.10
as

κeff (PDA) =
λn
λm+1

, (4.11)

which is less than the condition number of the linear system A and the Krylov
subspace method is expected to perform better on this deflated system.

4.2.2 Balancing Preconditioner

Mandel [90] proposed a projection-like preconditioner for symmetric matrices,
called balancing preconditioner, which has been widely used in domain decompo-
sition methods. Here we discuss the balancing preconditioner very briefly, and
refer to the literature for more details [91, 92, 46, 129, 111]. Again following
[53], we write the balancing preconditioner for nonsymmetric systems as

PB = QDPD + ZE−1YT . (4.12)

Theorem 4.2.2. Let A be nonsingular and diagonalizable, and let Z and Y
be the left and right eigenvectors corresponding to the first m eigenvalues of A,
chosen such that YTZ = Im, then

σ(PBA) = {1, ..., 1, λm+1, ..., λn}.

Proof. See [53]

The effect of balancing preconditioner on A is very similar to that of deflation
preconditioner, with the exception that the first m eigenvalues are shifted to 1
instead of 0. Moreover, PDA, PBA and A all have same eigenvectors.

Deflation and balancing preconditioners have been compared for symmetric pos-
itive definite systems in [106], and for nonsymmetric systems in [53]. In [106],
it has been shown that CG applied to the deflated preconditioned system al-
ways has smaller A-norm of the error than that for CG applied to the system
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preconditioned with balancing preconditioner. Similarly, in [53], authors have
shown that under certain conditions the GMRES with deflation preconditioner
produces residuals whose 2-norm is always less than the 2-norm of residuals
of GMRES with balancing preconditioner. Moreover, deflation preconditioning
has less computational costs than the balancing preconditioning.

From equation 4.11, it is easy to infer that if we use a larger deflation sub-
space (larger m), we can have reduced effective condition number and conse-
quently much better convergence rates for the Krylov subspace solvers. How-
ever, note that both deflation and balancing preconditioning involve inversion
of E ∈ Rm×m, which will be expensive for larger values of m. Nabben and Vuik
[105] have shown that deflation preconditioning is sensitive to the inaccurate
inversion of E, which means that iterative methods cannot be used to invert
E approximately. The demand for exact inversion of E limits the potential of
deflation preconditioner. On the other hand, a big advantage of balancing pre-
conditioner is that it is insensitive to the inaccurate solve of Galerkin matrix E.
This allows the use of larger deflation subspace and the corresponding large E
matrix can be inverted approximately using iterative methods.

Deflation or balancing preconditioning can be used in combination with the
traditional preconditioning, for which case the linear system becomes

PDM−1Ax = PDM−1b or PBM−1Ax = PBM−1b (4.13)

4.3 Multilevel Krylov Subspace Method

Erlangga and Nabben in 2008 [54], have proposed a new projection-like method
which, like balancing preconditioner, is insensitive to the inaccurate solve of
Galerkin system E, and has the computational demands similar to that of de-
flation preconditioner. The basic idea of this method is to shift small eigenvalues
that are responsible for the slow convergence of Krylov subspace solvers to an
a priori fixed constant, thus resulting in a more clustered spectrum. Shifting
of eigenvalues to a nonzero constant allows the resultant coarse level system to
be solved inexactly or iteratively by a few steps of Krylov method. To further
improve the convergence of coarse level solve, the new shifting operator is again
used as a preconditioner for a Krylov subspace method. Repeated application
of the shifting operator as a preconditioner results in a multilevel method called
multilevel projection Krylov method (MLKM) by the authors. Here we briefly
explain the construction of MLKM and refer to authors article [54] for a more
detailed discussion.

4.3.1 Deflation from an eigenvalue computation viewpoint

Deflation process has been used for quite a long in eigenvalue problem solving
algorithms [147]. We first show here that deflation preconditioner (4.9) can
be developed from the deflation process used in computing few of the small-
est eigenvalues in eigenvalue computation. From this eigenvalue computation
viewpoint, then we develop the stable abstract projection type preconditioner
of MLKM algorithm that shifts small eigenvalues to a priori constant.
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Consider a preconditioned linear system

Âx̂ = b̂, (4.14)

with Â = M−1
1 AM−1

2 , x̂ = M2x, and b̂ = M−1
1 b, with M1 and M2, be the

nonsingular matrices. For left preconditioning, set M1 = M and M2 = I; for
right preconditioning set M1 = I and M2 = M. For the purpose of analysis we
assume that the eigenvalues of Â, are all positive and real, and let the spectrum
of Â, denoted by σ(Â) is given by σ(Â) = {λ1, ..., λn} and λi ≤ λi+1,∀i ∈ N .
Power method is one of the simplest and oldest methods used for computing the
extremal eigenvalues of a system [119]. The method starts with an arbitrary
nonzero initial vector v0 and generates a sequence of vectors

vk =
1

αk
Akv0,

with αk to be the element of Akv0 with the largest absolute value. For large
values of k, αk and vk converge to the largest eigenvalue and largest eigenvector
respectively. If the method is applied to Â−1, it will approximate the smallest
eigenvalue λ1 and corresponding eigenvector z1 of the matrix Â. To find the
next smallest eigenvalue in the spectrum, we have to first deflate λ1 to zero, and
then apply Power method again on the deflated system. λ1 can be deflated to
zero using the Wielandt deflation as follows:

Â1 = Â− λ1z1y
T , yT z1 = 1, (4.15)

where y is an arbitrary vector. If we apply the Power method to Â−1
1 , we get

the eigenpair (λ2, z2). Deflating λ1 to zero is not the only choice to enable
computation of λ2 from Power method. Instead, if the smallest eigenvalue is
shifted to some value larger than λ2, Power method can compute eigenpair
(λ2, z2). We can generalize the Wielandt deflation process by

Â1,γ1 = Â− γ1z1y
T , yT z1 = 1, γ1 ∈ R. (4.16)

Theorem 4.3.1. The spectrum of Â1,γ1 as defined in (4.16) is given by

σ(Â1,γ1) = {λ1 − γ1, λ2, ..., λn}. (4.17)

Proof. See [54]

In generalized deflation, if we choose γ1 = λ1 , then from theorem 4.3.1 we
get the spectrum of Wielandt deflation in (4.15) as σ(Â1) = {0, λ2, ..., λn}.
Similarly, for the choice γ1 = λ1 − λn, we get the spectrum as σ(Â1,λn) =
{λn, λ2, ..., λn}.
Deflation can be applied with several vectors to deflate many eigenvalues simul-
taneously. Suppose m smallest eigenvalues with Z = [z1...zm] the corresponding
eigenvectors are previously computed. Next,to compute the (m+1)th eigenpair
using Power method, the first m eigenvalues can be deflated simultaneously by
applying the following deflation

Âm = Â− ZΓmYT with YTZ = 1, (4.18)

where Γm = diag(γ1, ..., γm) and Y = [y1, ...,ym].
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Theorem 4.3.2. Let Âm be defined as in (4.18), then for i = 1, ...,m we have:

(i) If we set γi = λi, then σ(Âm) = {0, ..., 0, λm+1, ..., λn}

(ii) If we set γi = λi − λn, then σ(Âm) = {λn, ..., λn, λm+1, ..., λn}

Proof. See [54]

So far in the above discussion, the matrix Y is chosen to be composed of arbi-
trary vectors. If we choose Y = [y1...yr] to be the left eigenvector matrix of A,

then the eigenvalue matrix Ê satisfies the following relation

Ê = YT ÂZ = diag(λ1, ..., λm).

Now for the first case in theorem 4.3.2 with γi = λi and for i = 1, ...,m, we have
Γm = Ê. Therefore, from (4.18) we have

Âm = Â− ZÊYT = Â− ZÊÊ−1ÊYT = Â− ÂZÊ−1YT Â.

Above relation can be rewritten as

Âm = (I− ÂZÊ−1YT )Â =: P̂DÂ, (4.19)

or as
Âm = Â(I− ZÊ−1YT Â) =: ÂQ̂D. (4.20)

Here P̂D and Q̂D are the left and right deflation preconditioners similar to the
one defined in (4.7). Now if deflation preconditioner is applied to (4.14), i.e.,

P̂DÂx̂ = P̂Db̂ or ÂQ̂Du = b̂ with u = Q̂−1
D x̂, (4.21)

then from theorem 4.3.2, the spectrum of the deflated system is given by

σ(P̂DÂ) = σ(ÂQ̂D) = {0, ..., 0, λm+1, ..., λn}. (4.22)

Since κeff (P̂DÂ) = κeff (ÂQ̂D) = λn/λm+1 ≤ λn/λ1 = κ(Â), a Krylov
method (like GMRES) applied on the deflated system will converge faster as

compared to when applied on Â. It is evident from the relation for effective
condition number that larger deflation subspace implies better convergence,
however, inverting larger deflation subspace exactly is not feasible from solver
performance viewpoint. Instead, if the iterative method is used to invert large
Ê, the small eigenvalues are not shifted exactly to zero, but to some very small
value 0 < ε � λ1, which makes the convergence more worse. The following
proposition explains this.

Proposition 4.3.3. Let Z = [z1...zm] and YT = [y1...ym]T be the right and

left eigenvectors of Â respectively, and let P̃D = I− ÂZẼ−1YT , with

Ẽ−1 = diag
(1− ε
λ1

...
1− ε
λm

)
,

where |ε| � 1. Then the spectrum of P̃DÂ is given by

σ(P̃DÂ) = {ελ1, ..., ελm, λm+1, ..., λn}. (4.23)
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Proof. For i = i, ...,m, we have

P̃DÂZ = (I− ÂZẼ−1YT )ÂZ

= ÂZ− ÂZ diag
(1− ε
λ1

, ...,
1− ε
λm

)
YT ÂZ

= ÂZ− ÂZ diag
(1− ε
λ1

, ...,
1− ε
λm

)
diag(λ1, ..., λm)

= Z diag(ελ1, ..., ελm).

For i = m+ 1, ..., n,

P̃DÂzi = Âzi − ÂZẼ−1YT Âzi = λizi − ÂZẼ−1λi Y
T zi︸ ︷︷ ︸
=0

= λizi.

From (4.23), for 0 ∼ ε � λ1, the condition number κ(P̃DÂ) = λn/ελ1, will be
very large, and Krylov solver will have serious convergence problems.

4.3.2 Stable shifting preconditioner

Since shifting the small eigenvalues to zero restricts the use of large deflation
subspace, it seems a potential idea to shift the problematic eigenvalues to some
constant other than zero, which may enable the use of large deflation subspaces.
Based on this idea, Erlangga and Naben have proposed a projection-type pre-
conditioner which is stable with respect to the inexact solve of the Galerkin
system. For the construction of this stable preconditioner, we consider the sec-
ond case of theorem 4.3.2, where γi = λi − λn, for i = 1, ...,m. For this choice
of γi, we have Γm = Ê− λnIm, where Im is an (m×m) identity matrix. Again

by taking YT to be the left eigenvectors of Â, we get

Âm,γ = Â− ZΓmYT = Â− Z(Ê− λnIm)YT = Â− ZÊYT + λnZYT

= Â− ZÊÊ−1ÊYT + λnZÊ−1ÊYT = Â− ÂZÊ−1YT Â + λnZÊ−1YT Â.

Therefore,

Âm,γ = (I− ÂZÊ−1YT + λnZÊ−1YT )Â = P̂NÂ, (4.24)

with

P̂N = I− ÂZÊ−1YT + λnZÊ−1YT = P̂D + λnZÊ−1YT , (4.25)

is the left stable shifting preconditioner. Notice that P̂2
N 6= P̂N , therefore, it is

not a projection, but we call it projection-like preconditioner since it projects
the small eigenvalues to λn. The spectrum of P̂NÂ is similar to that of P̂DÂ,
with same effective condition number, therefore, a Krylov method applied to
any of them will have similar convergence behavior. Note that if we take λn = 0
in equation (4.25), we get the deflation preconditioner. Similarly, a right version
of shifting preconditioner can also be obtained as follows:

Âm,γ = Â− ZÊYT + λnZYT = Â− ZÊÊ−1ÊYT + λnZÊÊ−1YT

= Â− ÂZÊ−1YT Â + λnÂZÊ−1YT .
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Thus,

Âm,γ = Â(I− ZÊ−1YT Â + λnZÊ−1YT ) = ÂQ̂N , (4.26)

with

Q̂N = I− ZÊ−1YT Â + λnZÊ−1YT = Q̂D + λnZÊ−1YT . (4.27)

The following proposition shows that P̂N is stable with respect to the inexact
solve of Galerkin matrix Ê.

Proposition 4.3.4. Let Z = [z1...zm] and YT = [y1...ym]T be the right and

left eigenvectors of Â respectively, and let P̃N = I− ÂZẼ−1YT + λnZẼ−1YT ,
with

Ẽ−1 = diag
(1− ε
λ1

...
1− ε
λm

)
,

where |ε| � 1. Then the spectrum of P̃NÂ is given by

σ(P̃NÂ) = {(1− ε)λn + ελ1, ..., (1− ε)λn + ελm, λm+1, ..., λn}. (4.28)

Proof. For i = 1, ...,m, we have

P̃NÂZ = ÂZ− ÂZẼ−1YT ÂZ + λnZẼ−1YT ÂZ

= ÂZ− ÂZ diag
(1− ε
λ1

, ...,
1− ε
λm

)
diag(λ1, ..., λm)

+ λnZ diag
(1− ε
λ1

, ...,
1− ε
λm

)
diag(λ1, ..., λm)

= Z diag(λ1ε, ..., λmε) + Z diag(λn(1− ε), ..., λn(1− ε))
= Z diag(λn(1− ε) + λ1ε, ..., λn(1− ε) + λmε).

For i = m+ 1, ..., n,

P̃NÂzi = Âzi − ÂZẼ−1YT Âzi + λnZẼ−1YT Âzi

= λizi − ÂZẼ−1λi Y
T zi︸ ︷︷ ︸
=0

+λnZẼ−1λi Y
T zi︸ ︷︷ ︸
=0

= λizi.

If Ê is inverted without sufficient accuracy, and if 0 ∼ ε� 1 and ε < λ1 < λm+1,
we have

κ(P̃NÂ) =
(1− ε)λn + ελm

λm+1
u

λn
λm+1

= κ(P̂NÂ).

In P̃NÂ, λm+1 still remains the smallest eigenvalue. Therefore, for a system
preconditioned with P̂N , the convergence rate of Krylov method will not be
much affected, if Galerkin system Ê is solved approximately with some iterative
method. This gives the liberty to use larger deflation subspace to cluster many
small eigenvalues around λn, and Krylov methods have better convergence rates
for such clustered spectra.
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Deflation process with general vectors

In the previous discussion, the deflation subspaces Z and Y are taken as invari-
ant subspaces corresponding to the smallest eigenvalues of A and AT respec-
tively. However, these invariant subspaces are generally not available at hand,
and computing them is something not suggestive, because of the substantial
computational demands. If we choose Z = Y ∈ Rn×m to be full rank and con-
sist of arbitrary vectors, then P̂D still deflates the first m eigenvalues to zero
(since P̂DÂZ = 0). However, the remaining eigenvalues will not remain un-

touched, but instead will be changed. Similarly, for P̂N , the first m eigenvalues
are still shifted to λn (because P̂NÂZ = λnZ), and the rest of the eigenvalues

change in a similar fashion to that for P̂D. Above discussion can be stated in
the form of the theorem as

Theorem 4.3.5. Let Â be a nonsingular matrix, and Z, Y ∈ Rn×m be any
full rank matrices. If the spectrum of P̂DÂ is given by

σ(P̂DÂ) = {0, ..., 0, µm+1, ..., µn}, (4.29)

then the spectrum of P̂NÂ is

σ(P̂NÂ) = {λn, ..., λn, µm+1, ..., µn}. (4.30)

Proof. See [54].

If λi and µi are the eigenvalues of Â and P̂DÂ respectively, then for nonsym-
metric matrix Â, it is not possible to make any relation between λi and µi.
However, if A is SPD, then P̂DÂ is also symmetric, and in this case, it can
be shown that µn ≤ λn [74]. Thus deflation preconditioner will result in a
better-clustered spectrum than shifting preconditioner

κ(P̂DÂ) :=
µn
µm+1

≤ λn
µm+1

=: κ(P̂NÂ).

However, there always exist ω1 ∈ R for which ω1λn = µn. If in the shifting
preconditioner, the small eigenvalues are shifted to new constant ω1λn, instead
of λn, then we have

P̂N = I− ÂZÊ−1YT + ω1λnZÊ−1YT , (4.31)

and
σ(P̂NÂ) = {µn, ..., µn, µm+1, ..., µn}. (4.32)

Now the quality of clustering for deflation and shifting preconditioners is same,
since κ(P̂DÂ) = κ(P̂NÂ), and similar convergence behaviors can be expected

for P̂DÂ and P̂NÂ.

Maximum eigenvalue approximation

Another issue related to the implementation of P̂N is that it involves maximum
eigenvalue λn of Â, which is not known. Exact computation of λn is expen-
sive, Erlangga and Nabben have shown it numerically that an approximation
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to the maximum eigenvalue is sufficient. If the estimated eigenvalue λn,est is
not very far from the exact λn (i.e., the error is not of the order of λn), the
convergence rate of Krylov subspace solver is unaltered. Moreover, there always
exists some ω2 ∈ R such that λn = ω2λn,est. Maximum eigenvalue can be esti-
mated either using Gerschgorin’s method or by some other means (for example
by simple guess). Erlangga and Nabben have used the following consequence of
Gerschgorin’s theorem [74, page 24], to estimate the maximum eigenvalue for
the Poisson and convection-diffusion problems.

λn ≤ max
i∈N

∑
j∈N
|ai,j | = λn,est. (4.33)

The scaling factors ω1 and ω2 can be combined and replaced with single scaling
factor as follows

µn = ω1λn = ω1ω2λn,est = ωλn,est,

where ω = ω1ω2 is called the shift scaling factor.

Remarks

We list some important remarks related to the stable shift preconditioners P̂N

and Q̂N .

• P̂N and Q̂N are not projection operators, as P̂2
N 6= P̂N and Q̂2

N 6= Q̂N .

• P̂N and Q̂N are nonsingular.

• P̂NÂ 6= ÂQ̂N , but σ(P̂NÂ) = σ(ÂQ̂N )

• P̂NÂ and ÂQ̂N are not symmetric, even if Â is symmetric. Therefore,
a Krylov method for nonsymmetric matrices (GMRES, BiCGSTAB, etc.)
has to be used.

4.3.3 Two level implementation

Stable left preconditioning when applied to equation (4.14), results in the fol-
lowing left preconditioned system

P̂NÂx̂ = b̂, (4.34)

with
Â = M−1A, x̂ = x, b̂ = P̂NM−1b,

and

P̂N = I−M−1AZÊ−1YT + ωλn,estZÊ−1YT , Ê = YT (M−1A)Z. (4.35)

Similarly, stable right preconditioning results in the following right precondi-
tioned system

ÂQ̂N x̂ = b̂, (4.36)
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with
Â = AM−1, x = M−1QN x̂, b̂ = b,

and

Q̂N = I− ZÊ−1YTAM−1 + ωλn,estZÊ−1YT , Ê = YT (AM−1)Z. (4.37)

Left preconditioned GMRES can be used to solve (4.34), while right precondi-

tioned GMRES can be employed to solve (4.36). Since ÂQ̂N and P̂NÂ have
same spectra, the GMRES is expected to have similar convergence behavior for
both left and right preconditioned systems. In algorithm 4.2, the right precondi-
tioned GMRES is shown for solving equation (4.34). At kth iteration, GMRES
builds the solution from the Krylov subspace

Kk{ro,AM−1Q̂Nr0, ..., (AM−1Q̂N )k−1r0},

with r0 = b − Ax0. To calculate the Arnoldi vectors, GMRES requires the
matrix Q̂N . However, Q̂N is not a sparse matrix, and calculating it explicitly
is not advisable particularly for large A. Therefore, in MLKM implementation,
the direct calculation of Q̂N is avoided and its application on some vector vj
is carried out as shown in lines 4-8 of algorithm 4.2. When inner iterations

Algorithm 4.2 Two level Flexible GMRES right preconditioned with Q̂N and
M

1: Choose x0 (x0 = 0) ω and λn,est
2: Compute r0 = b − Ax0, β = ‖r0‖2, and v1 = r0/β
3: for j = 1, 2, , ..., k do
4: s := AM−1vj
5: Restriction: vR := YT (s− ωλn,estvj).
6: Coarse-grid solve: ṽ = Ê−1vR.
7: Prolongation: vP := Zṽ.
8: Correction: xj := vj − vP
9: w := AM−1xj

10: for i = 1, 2, ..., j do
11: hi,j = (w,vj).
12: w = w − hi,jvi.
13: end for
14: Compute hj+1,j := ‖w‖2 and vj+1 = w/hj+1,j .
15: end for
16: Define Xk := [x1, ...,xk] and Ĥk = {hi,j}1≤i≤j+1;1≤j≤k.

17: Compute yk the minimizer of ‖βe1 − Ĥky‖2 and xk = x0 + M−1Xkyk.

are used, Q̂N is in general not constant, therefore, flexible version of GMRES
is used to accommodate the variable preconditioner. This requires storage of
Xk = [x1, ...,xk], in addition to Vk = [v1, ...,vk] vectors, and the solution
is built using Xk. One iteration of algorithm 4.2 requires two preconditioner
solves, followed by two matrix-vector multiplications (line 4 and 9), and one

solve involving smaller dimension matrix Ê. If we set M = I, this work is equal
to the work with deflation preconditioner PD, and less than that with balancing
preconditioner PB .
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4.3.4 Multilevel implementation

If large deflation subspaces are used, then the Galerkin system solve in algorithm
4.2, given by

Êṽ = vR, (4.38)

should be performed with some (inner) Krylov method using weak termination
criterion, to ensure optimal overall computational complexity of the algorithm.
If the condition number of Galerkin matrix Ê is large, the Krylov method will
require many iterations to converge. The convergence rate can be enhanced
by again applying the shift preconditioner Q̂N to (4.38). Even if the condition
number of Galerkin system is not large, the action of shift preconditioner can
further enhance the convergence of Krylov iteration. Application of this shift
operator further involves a coarse grid solve similar to (4.38) at the next coarser
level, which can be performed by another inner Krylov iteration. Each inner
iteration solves a much smaller Galerkin system than the previous inner solve.
A recursive application of this process results in a multilevel Krylov method
(MLKM).

4.4 MLKM in context of FEATFLOW

Erlangga and Nabben in [54], have used Galerkin coarse grid projection as a rep-

resentation of the Galerkin system, i.e., Ê = YT (AM−1)Z. Their MLKM im-
plementation requires the explicit calculation of Galerkin matrices at all coarse
levels in the initialization phase of the algorithm. Notice that to calculate these
matrices at each coarse level, one needs to have preconditioner matrix M−1

available at hand at these levels. However, the preconditioner matrix may not
be explicitly available in many cases (for example how to get the M−1 matrix
if a Krylov iteration is used as a preconditioner, or if one iteration of multigrid
is used as a preconditioner). Even if M−1 is explicitly available, generally the
M−1 matrix will be dense, and the resulting Galerkin matrix will also be dense.
Computing and storing the dense M−1 and Ê matrices will be too much time
and memory consuming, something we do not want at all. The only possibility
is to use Jacobi as a preconditioner, for which the M−1 and Ê will not be dense,
and this is the choice being used by authors in [54]. However, in general, the
diagonal preconditioning does not achieve much in terms of convergence rate
improvement.

In FEATFLOW, we do not explicitly calculate and store the M−1 matrix; in-
stead, a preconditioner is applied to some vector to get the preconditioned vec-
tor. Hence, the M−1 matrix is not readily available to calculate the Galerkin
matrix. In our implementation of MLKM algorithm, we use discretization coarse
grid approximation to setup Galerkin system at the coarse levels. With this ap-
proach, the Galerkin system at the second level reads

A(2h)M(2h)−1

ṽ = vR, (4.39)

where A(2h) is a coarse grid matrix, which like fine grid matrix A(h), is obtained
from the discretization of the original equation at the second level, and M(2h)
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is the preconditioner matrix based on A(2h). Thus, at the second level MLKM
solves the system

A(2h)M(2h)−1

Q̂Nv′ = vR, ṽ = Q̂Nv′, (4.40)

using FGMRES iterations.

The advantage of using the discretized coarse grid matrix for Galerkin system
is that we have the liberty of using any iterative method as a preconditioner M,
without having a fear of getting into the trouble of dense matrices. However,
an apparent disadvantage is that at the lowest level we cannot exactly solve
the associated Galerkin system of the form (4.39) since we do not have the
matrix M available with us. Nevertheless, our numerical results have shown
that at coarsest level whether we solve exactly or approximately, it does not
significantly affect the convergence of the MLKM solver. Moreover, in most of
the real-life applications, the geometries are large and complex, and the grids
are highly irregular, thus making it impossible to coarsen the grids to the point
that direct methods could be used to solve the coarse problems. In MLKM, the
coarse grid systems at all levels are solved approximately using few iterations
of GMRES.

To facilitate the explanation of our multilevel Krylov method implementation
in more detail, we introduce new notations to cater for the level identification.
Suppose that L levels are used, with l = L to be the finest level on which we
want to solve the problem, and l = 1 to be the coarsest level. Let A(l) be
the discretized system matrices at each level l and M(l) be the corresponding
preconditioner matrices. At the level L, MLKM solves the following system

A(L)M(L)−1

Q
(L)
N x̂(L) = b(L), x(L) = M(L)−1

Q
(L)
N x̂(L), (4.41)

where the shift operator is given by

Q
(L)
N = I(L) − Z(L,L−1)E(L−1)−1

Y(L,L−1)T A(L)M(L)−1

+ ω(L)λ
(L)
n,estZ

(L,L−1)E(L−1)−1

Y(L,L−1)T ,

with

E(L−1) = A(L−1)M(L−1)−1

.

(4.42)

The Galerkin system at level l = (L − 1) is given by E(L−1)ṽ(L−1) = v
(L−1)
R .

Letting ṽ(L−1) = x(L−1) and v
(L−1)
R = b(L−1), at level (L − 1) MLKM solves

the system of the form

A(L−1)M(L−1)−1

Q
(L−1)
N x̂(L−1) = b(L−1), x(L−1) = Q

(L−1)
N x̂(L−1), (4.43)

with projection preconditioner

Q
((L−1)
N = I((L−1) − Z((L−1,L−2)E(L−2)−1

Y((L−1,L−2)T A((L−1)M((L−1)−1

+ ω((L−1)λ
((L−1)
n,est Z((L−1,L−2)E(L−2)−1

Y((L−1,L−2)T

and

E(L−2) = A(L−2)M(L−2)−1

.
(4.44)
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Likewise, at each subsequent level till l = 2, the Galerkin system similar to
(4.43) is solved. At the coarsest level l = 1, the following Galerkin system is
solved approximately using few iterations of FGMRES

A(1)M(1)−1

x̂(1) = b(1), x(1) = x̂(1). (4.45)

If we look at the relation between x̂ and x in equations (4.41),(4.43), and (4.45),
it is clear that at finest level l = L, MLKM extracts solution from xk = x0 +
M−1Xkyk, at levels 1 < l < L from xk = x0 + Xkyk, and at the coarsest
level l = 1 from xk = x0 + Vkyk (see line 17 of algorithm 4.2). Algorithm 4.3
represents our implementation of MLKM in the FEATFLOW software.

Erlangga and Nabben in [54] have used piece-wise constant interpolation matrix
as Z and taken Y = Z. With this choice of deflation subspaces, they have used
(4.33) for approximating the maximum eigenvalue λn,est. We have used stan-
dard finite element based inter-grid transfer operators of multigrid as deflation
subspaces Z and YT . The first reason for using these grid transfer operators is
that they are already implemented in FEATFLOW. Secondly, we have observed
that with these standard MG grid transfer operators, setting maximum eigen-
value equal to one for all levels and choosing an appropriate value of ω, in most
of the cases resulted in best convergence rates for the MLKM solver. Hence
we can avoid the calculation of approximate eigenvalue of the preconditioned
system matrix, thus reducing the computational head of the solver.

Algorithm 4.3 stops if either the convergence criterion set at the finest level is
met or if the maximum number of iterations is reached. In MLKM algorithm,
GMRES is not restarted at the coarse levels (for l < L) and maximum number
of iterations at these levels is set equal to the Krylov subspace dimension at
these levels. The MLKM iteration is represented with the Krylov dimensions
set at these levels. For example, MLKM(4,2,1) means one iteration of MLKM
at the finest level involves 4 FGMRES iterations at level l = L− 1, 2 FGMRES
iterations at levels 1 < l < L − 1, and 1 iteration at the coarsest level (l = 1).
Figure 4.1 shows one iteration of MLKM(4,2,2) configuration.

Level 4

3

2

1

Figure 4.1: MLKM(4,2,2) iteration.  − GMRES solve after completion of the
number of GMRES iterations set at that level.
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Algorithm 4.3 Multilevel Krylov Method

1: MLKM (A(l), M(l), Z(l,l−1), Y(l,l−1), b(l), λ
(l)
n,est, ω

(l), l) with all the
arguments already chosen or determined.

2: Choose x
(l)
0 and calculate: r

(l)
0 = b(l) −A(l)x

(l)
0 , β(l) = ‖r(l)

0 ‖2, and v
(l)
1 =

r
(l)
0 /β(l)

3: ite = 0
4: for ite < maximum iterations do
5: for j = 1, ..., k do . k = Krylov subspace dimension
6: ite = ite+ 1
7: x

(l)
j = v

(l)
j

8: if (l > 1) then

9: s := A(l)M(l)−1

v
(l)
j

10: Restriction: v
(l−1)
R := Y(l,l−1)T (s− ω(l)λ

(l)
n,estv

(l)
j )

11: Coarse-grid solve: Solve A(l−1)M(l−1)−1

ṽ(l−1) = v
(l−1)
R for

ṽ(l−1) by a recursive call to MLKM (A(l), M(l), Z(l,l−1), Y(l,l−1), b(l) =

v
(l)
R , λ

(l)
n,est, l = l − 1)

12: Prolongation: v
(l)
P := Z(l,l−1)ṽ(l−1).

13: Correction: x
(l)
j := v

(l)
j − v

(l)
P

14: end if
15: w(l) := A(l)M(l)−1

x
(l)
j

16: for i = 1, 2, ..., j do

17: h
(l)
i,j = (w(l),v

(l)
j ).

18: w(l) = w(l) − h
(l)
i,jv

(l)
i .

19: end for
20: Compute h

(l)
j+1,j := ‖w(l)‖2 and v

(l)
j+1 = w(l)/h

(l)
j+1,j .

21: end for
22: Set X

(l)
k := [x

(l)
1 , ...,x

(l)
k ] and Ĥ

(l)
k = {h(l)

i,j}1≤i≤j+1;1≤j≤k.

23: Compute y
(l)
k the minimizer of ‖β(l)e1 − Ĥ

(l)
k y(l)‖2.

24: if (l = 1) then

25: Compute x
(l)
k = x

(l)
0 + M(l)−1

X
(l)
k y

(l)
k

26: else
27: Compute x

(l)
k = x

(l)
0 + X

(l)
k y

(l)
k

28: end if
29: v

(l)
1 = (b(l) − A(l)x

(l)
k )/‖b(l) − A(l)x

(l)
k ‖2

30: end for
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4.5 Multilevel Krylov method vs. MultiGrid method

Although MLKM involves ingredients similar to that of multigrid, however, both
solvers are different in many aspects. MLKM is different from multigrid and
other multilevel solvers like domain decomposition methods, in a way that these
multilevel solvers can be represented as a multistep fixed point iteration[54]. In
multigrid, for example, the error at each iteration can be written in terms of
the error at previous iteration by the relation:

e(k+1) = B e(k), (4.46)

where B = (I −M−1
h Ah)︸ ︷︷ ︸

Post-smoothing

(I − IhHA−1
H IHh Ah)︸ ︷︷ ︸

Coarse−grid correction

(I −M−1
h Ah).︸ ︷︷ ︸

Pre-Smoothing

However, for multilevel Krylov method, no such fixed point relation can be
established, and it can only be seen as a Krylov subspace iteration. Multigrid
works on the solution vector x and the error vector e, while MLKM works
on the Arnoldi vectors which form the basis of Krylov subspace in which the
approximate solution vector is contained. In MLKM, M−1 does not work as
smoother but only as a preconditioner to improve the condition number of the
matrix. If the matrix is not very ill conditioned, we can set M = I and MLKM
still works fine (see chapter 5, table 5.2). On the other hand, MG without
smoother does not work.

Even though the coarse-grid correction of MLKM is similar to that of multigrid,
the construction of inter-level transfer operators of MLKM does not require
accurate interpolations; it only requires that the inter-grid transfer matrices are
full rank. Erlangga and Nabben in [54], therefore, have used piece-wise constant
interpolation matrix as Z and taken Y = Z. This choice of deflation subspaces
leads to efficient MLKM solver, whereas, MG with prolongation and restriction
based on piece-wise constant interpolation does not produce good results.
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5
Convection-Diffusion Problem

In this chapter and the next chapter, we solve the scalar partial differential equa-
tions with MLKM solver and compare its performance with geometric multigrid,
which is the standard multilevel solver technique available in FEATFLOW. We
have chosen the convection-diffusion problem and anisotropic diffusion problem
as our scalar model problems. These PDEs represent many important physical
phenomena in nature. However, the main reason for choosing these partial differ-
ential equations as our model problems is that they exhibit numerical challenges
for the solvers, that also appear in the more complex Navier-Stokes equations.
Therefore, before embarking on the complicated systems of Navier-Stokes equa-
tions, we analyze the performance of MLKM solver on these relatively simple
scalar problems.

The convection-diffusion problem is dealt with in this chapter, and the anisotropic
diffusion problem is considered in the next chapter. We first describe the
convection-diffusion problem and then give its weak formulation. We also briefly
discuss the stabilization techniques used to stabilize the numerical results for
highly convective flows. Numerical results begin with the code validation tests,
where we ensure that our MLKM implementation is correct by solving the prob-
lem with a known exact solution and compare our numerical results with this
exact solution. We calculate the solution error at different mesh refinement
levels and observe the asymptotic error decay. Next, we present the numerical
results for the solution of the convection-diffusion problem on various test cases
and compare the performance of our multilevel Krylov method implementation
in FEATFLOW with the multigrid solver. The solvers are tested for a wide
range of problem parameters (Peclet number, mesh refinement) to check their
robustness. We also analyze the performance of solvers for various precondi-
tioners/smoothers.

5.1 Convection-diffusion problem

Convection and diffusion play a vital role in the transport of scalar quantities
(e.g., temperature, density, concentration, and so forth) in various science and
engineering applications. Convection is the transport phenomenon due to the
bulk motion of the fluid, whereas diffusion attributes to the transport of quan-
tities from high concentration areas to low concentration areas caused by the
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random molecular motion. In many situations both convection and diffusion
occur side by side, for instance, the smoke coming out of the chimney spreads
into the atmosphere due to the wind (convection) and due to concentration gra-
dients (diffusion). The combined effect of both the processes can be studied by
solving the convection-diffusion equation. If we take L = −d∆+c.∇ in equation
(2.1), we get the steady state convection-diffusion boundary value problem as
follows

−d ∆u+ c.∇u = f in Ω,

u = g on ΓD and ∇u.n = β on ΓN ,
(5.1)

where c is convective velocity and d is diffusive coefficient. The transport pro-
cess may be quite different depending on the convective and diffusive transport
rates. For example, on a windy day, the smoke coming out of the chimney
moves downstream faster than it spreads out, whereas, on a calm day the smoke
spreads out faster due to molecular diffusion than it moves downstream. The
dimensionless number called Peclet number can quantify the relative strength
of convection and diffusion

Pe =
CL

d
, (5.2)

here C is the velocity magnitude, and L is the characteristic length in the
problem. Equation (5.1) can be seen as a “linear scalar version” of Navier-
Stokes equations, discussed in chapter 7, in which case the unknown u is the
vector-valued velocity field, c is also the unknown u that makes the problem
nonlinear, and d is the viscosity parameter. Likewise, the Peclet number for the
linear equation (5.1) corresponds to the Reynolds number for the Navier-Stokes
equations.
The weak form of the convection-diffusion equation (5.1) is given as follows:
Find u ∈ H1

E such that

a(v, u) = b(v) ∀v ∈ H1
0, (5.3)

where a(., .) : H1(Ω)×H1(Ω) 7→ R is the bilinear form given by

a(v, u) := d

∫
Ω

∇v.∇u+

∫
Ω

(c.∇u)v. (5.4)

As is obvious a(v, u) 6= a(u, v), therefore, the bilinear form is nonsymmetric.
The linear form b : H1(Ω) 7→ R on the right side of equation (5.3) has the form

b(v) :=

∫
Ω

vf +

∫
ΓN

vβ. (5.5)

Following the standard Galerkin finite element process as described before in
chapter 2, the discrete form of the equation (5.3) is as follows:

Find uh ∈ ShE such that

a(vh, uh) = b(vh) ∀vh ∈ Sh0 . (5.6)
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5.1.1 Stabilization of convective term

For a self adjoint (symmetric) operator L, the standard Galerkin method pro-
duces best approximations, i.e., it minimizes the error in the energy norm. How-
ever, the nonsymmetric convective part in convection-diffusion equation deprives
the Galerkin method from its best approximation property. In highly convec-
tive (large Peclet number) flows, the solution u may exhibit steep gradients,
particularly near the boundaries to satisfy the boundary conditions. If these
steep gradients are not accurately captured by the numerical scheme used to
solve the discrete problem, spurious oscillations, also called wiggles, may occur
at the boundary layer. These oscillations then propagate along the streamlines
into the domain where the solution u is even smooth, thus spoiling the whole
solution, and making the iterative solver unstable.

One approach to handle the problem is to use locally refined meshes in the ar-
eas where the solution is changing rapidly. In some cases, the areas where the
steep gradients arise are apparent. However, in general, it is not always possible
to identify all the areas where the solution is nonsmooth, especially when the
streamlines are complicated. In such cases, adaptive local mesh refinement may
be applied: a discrete solution and the corresponding a posteriori error is com-
puted on the initial grid, then the mesh is locally refined in the areas where the
error is significant. Nonetheless, this strategy can only be useful, if the errors do
not propagate into the regions of the domain where the solution is well behaved.

Several methods have been proposed in the literature to stabilize the discrete
solution of the convection-diffusion problem coming from standard Galerkin
method. Streamline diffusion method (SD), introduced by Hughes and Brooks
[76], adds some artificial diffusion along the streamlines that rectifies the oscilla-
tory behavior of the discrete solution. The Streamline-Upwind Petrov-Galerkin
(SUPG) method, also proposed by Hughes and Brooks [25], interpret the diffu-
sion added in the streamline direction as a modification of the test space and
uses this modified test function for all terms of the weak form. This method
results in a consistent scheme, where the exact solution of the problem still sat-
isfies the weak form resulting from the stabilization of SUPG method. For more
details on SD and SUPG, see [52, 83, 61].

In this thesis, we use another promising stabilization technique called edge-
oriented jump (EOJ) stabilization, originally proposed by Douglas and Dupont
[45]. The working philosophy of the EOJ stabilization is different from SD and
SUPG; instead of looking at local Peclet/Reynold numbers, EOJ checks the
smoothness of the discrete solution to determine the amount of the stabilization
required. The main idea of the technique involves introducing additional interior
penalty terms into the weak formulation of the standard Galerkin discretization
in a consistent manner. The penalty term controls the jump of the gradient of
the discrete solution over the element boundaries. Different jump terms have
been proposed in the literature; we use the unified edge-oriented jump term
proposed by A. Ouazzi and S. Turek [134], which is of the form

〈Suh, vh〉 =
∑

edge E

max(γ∗νhE , γh
2
E)

∫
E

[∇uh][∇vh]dσ, (5.7)

where ν is the viscosity, hE is the length of an element edge E, and [·] the jump
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of function over an edge E. The stabilization parameters γ and γ∗ are free
constants, and the results are in many cases insensitive to their choice. We have
always used γ∗ = 0 in all the numerical experiments. The negative implication
of the EOJ stabilization is that the standard sparsity pattern of the Galerkin
FEM discretization is destroyed. An extended matrix stencil is required to
introduce the extra nonzero entries resulting from stabilization term, which
leads to additional memory requirements, as well as an extra computational
head for the linear solvers. For more details on EOJ stabilization, see [134].

5.2 Numerical results

We analyze the Multilevel Krylov method numerically for stationary convection-
diffusion equation where the associated coefficient matrix is nonsymmetric.
MLKM performance is compared with the multigrid method for the said prob-
lem on structured as well as unstructured meshes. As a test problem for struc-
tured meshes, the convection-diffusion problem is solved on a unit square do-
main. For performance analysis on the unstructured meshes, the problem is
solved on the rectangular domain with a circular obstacle. However, before
starting this solver performance comparison, we validate our multilevel Krylov
solver implementation by solving the convection-diffusion equation on a unit
square domain with some known exact solution.

5.2.1 Code validation

For validation purpose, we consider the following stationary convection-diffusion
equation in two dimensions

− 1

Pe
∆u+

(
0
1

)
∇u = f in Ω = (0, 1)× (0, 1) (5.8)

where Pe is the Peclet, and the convection is in vertical direction only. The
boundary conditions of Dirichlet type read as follows

u(x, y) =


0 if x = 0 or y = 0,

y3 if x = 1,

x3 if y = 1.

(5.9)

The right hand side f in equation (5.8) is set to f = −3xy(−x2y + 2x2 + 2y2)
to produce the solution u = x3y3. MLKM (4,2,2) with Jacobi preconditioner
is used to solve the above problem with Pe = 1. Maximum eigenvalue (λmax)
and scaling parameter (ω) in MLKM are set equal to one. The mesh at level 1
consists of one cell, and refined meshes are obtained by performing the uniform
mesh refinements, whereby the midpoints of opposite edges of each coarse mesh
cell are joined. In all the simulations, level 2 mesh with four quadrilaterals is
used as a coarse mesh. Simulations are performed at various mesh refinement
levels for both bilinear (Q1) and biquadratic (Q2) finite element discretizations,
and the corresponding L2 and H1 norms of the errors are presented in table 5.1.
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The results show that with the grid refinements, the solution error for Q1 finite
element discretization in L2 and H1 norms are reduced with factors of 4 and
2, respectively. Similarly, in the case of Q2 discretization, for the first few
mesh refinement levels, the L2 and H1 errors are reduced by a factor of 8 and
4, respectively. As soon as the L2 error is reduced to the same order as that
of stopping criterion (10−06), these factors are not obtained. If the stopping
criterion is further reduced, then in the next levels also L2 and H1 errors reduce
with the same factors of 8 and 4, respectively. The asymptotic error reduction
behavior follows precisely what the theory suggests, thus confirming that our
code is bug-free, and we may proceed to compare the performance of MLKM
solver with geometric MG solver.

Q1 Q2

Level L2-Error H1-Error L2-Error H1-Error

4 3.89E-03 6.72E-02 3.61E-05 1.87E-03

5 9.76E-04 3.34E-02 4.51E-06 4.67E-04

6 2.44E-04 1.67E-02 5.64E-07 1.167E-04

7 6.10E-05 8.35E-03 8.55E-08 2.92E-05

8 1.52E-05 4.18E-03 3.74E-08 7.78E-06

Table 5.1: Error analysis of MLKM solver for Convection-Diffusion problem
with Pe = 1

5.2.2 Test Problem 1 (Structured meshes)

We study the effect of convection on the performance of MLKM and compare it
with the MG solvers. To this end, we solve the stationary convection-diffusion
equation for increasing Peclet numbers and list the number of iterations taken
by these solvers to reach the desired accuracy. We begin with solving the two
dimensional stationary convection-diffusion problem on a unit square domain
with the right-hand side f set equal to zero,

− 1

Pe
∆u+

(
0
1

)
∇u = 0 in Ω = (0, 1)× (0, 1), (5.10)

and subject to the following Dirichlet boundary conditions

u(0, y) = −1/2,
u(1, y) = 1/2,
u(x, 0) = x− 1/2,
u(x, 1) = 0.

We abbreviate this first test case for the convection-diffusion problem as CD1.
The problem features vertical flows with steep gradients near the upper bound-
ary (y = 1) to satisfy the boundary conditions. As can be seen in figure 5.1,
the boundary values on the vertical walls alter quickly at the upper boundary,
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from -1/2 to 0 on the left wall and from 1/2 to 0 on the right wall. This dra-
matic change of the solution u results in exponential boundary layers formation
near the upper boundary, whose thickness is inversely proportional to the Peclet
number. The similar problem has been described in [52] on Ω ∈ (−1, 1)2 with
Dirichlet boundary conditions producing more steeper gradients at upper cor-
ners. Erlangga and Nabben have solved this problem in [54] with MKLM solver
using finite volume method along with the upwind scheme for flux terms.

We employee quadrilateral finite elements (Q1 and Q2) for the discretization
of the domain. For the numerical results presented below, the mesh consisting
of 16 regular squares with edge length h = 1/4 (as shown in figure 5.1), is
taken as coarse mesh. The CD1 problem is solved for Peclet numbers Pe =
20, 50, 100 and 200 on uniform meshes with 322, 642, 1282 and 2562 squares.

− 1
2

1
2

x− 1
2

0

(0,0) (1,0)

(1,1)(0,1)

x

y

Level Grid

3 42

4 82

5 162

6 322

7 642

8 1282

9 2562

Figure 5.1: CD1: Coarse mesh with boundary conditions (left); Number of grid
cells at each refinement level (right)

Right preconditioned MLKM with (4,2,2) configuration is used on the left pre-
conditioned system M−1A = M−1b. The maximum eigenvalue λ is set equal to
one, the shifting parameter ω is varied to improve the guessed eigenvalue, and
the results presented are for the optimum value of ω. On the other hand, MG
with F-cycle, 4 pre- and post-smoothing steps and UMFPACK as a coarse grid
solver is used. For MG with Jacobi smoother, a damping parameter of 0.7 is
used. Standard bilinear/biquadratic grid transfer operators from finite element
spaces are used as prolongation and restriction operators (deflation subspaces Z
and Y in case of MLKM solver). The solvers are required to reduce the residual
norm by six digits, i.e., the termination criterion for all the simulations is set to
ε = 10−6 relative.

The first test results (table 5.2) show the number of iterations of the multilevel
Krylov solver without any preconditioner (M = I). As is evident from the re-
sults, the MLKM method works fine even without the use of any preconditioner.
The convergence rates are independent of the mesh parameter h, even for prob-
lems with higher Pe numbers. However, convergence rates of the solver without
preconditioner are greatly influenced by the Pe number, with poor convergence
rates for larger Pe number problems.
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Level/ Pe 20 50 100 200

6 23 54 107 231

7 21 44 89 229

8 20 41 80 187

9 20 (0.22) 37 (0.44) 66 (0.86) 137 (2.22)

Table 5.2: CD1: MLKM solver without any preconditioner on Q1 finite element
discretization. Time (in seconds) taken by solver at level 9 is also shown.

Next, the numerical tests are performed for different preconditioners/smoothers
with bilinear as well as biquadratic finite element approximations. The number
of iterations needed for the solvers to reach the convergence criterion for the
above numerical tests are shown in the tables 5.3-5.6.

MLKM with point Jacobi preconditioning shows convergence rates that are
bounded independent of the discretization parameter h associated with mesh
refinements, for both bilinear (table 5.3) as well as biquadratic (table 5.4) finite
element discretizations. Moreover, on suitably refined meshes, the convergence
rates of MLKM/Jacobi solver are also Peclet number independent, for the range
of Peclet numbers considered. On the other hand, multigrid method (with
Jacobi smoothing) based on standard Galerkin discretization leads to a divergent
method for the convection dominated problems.

Level/ Pe 20 50 100 200

MLKM

6 9 12 21 47

7 9 9 12 25

8 9 9 9 13

9 9 (0.16) 9 (0.16) 9 (0.16) 9 (0.16)

MG

6 4 div div div

7 4 div div div

8 4 div div div

9 4 (0.11) div div div

Table 5.3: CD1: Comparison of MLKM/Jacobi (ω = 1.1) and MG/Jacobi on
Q1 finite element discretization. Time taken by solvers at level 9 is also shown.

For the case of point Gauß-Seidel preconditioner/smoother (see tables 5.5 and
5.6), the convergence behavior of solvers is essentially similar to that of Jacobi
case. Here again, MLKM exhibits convergence rates that are grid independent
and almost Pe number independent (as long as the refinement level is not too
small and the Pe number is not too large at the same time), both for Q1 and
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Level/ Pe 20 50 100 200

MLKM

6 11 12 16 34

7 11 11 12 20

8 11 11 11 14

9 11 (0.83) 11 (0.84) 11 (0.81) 11 (0.81)

MG

6 4 div div div

7 5 5 div div

8 5 5 div div

9 5 (0.73) 5 (0.76) div div

Table 5.4: CD1: Comparison of MLKM/Jacobi (ω = 1.0) and MG/Jacobi on
Q2 finite element discretization. Time taken by solvers at level 9 is also shown.

Q2 finite element approximations. Similarly, MG with Gauß-Seidel smoother is
not robust and diverges for large Pe numbers.

We want to emphasize here that these problem parameters (h and Pe) inde-
pendent convergence rates for MLKM are obtained without using any special
reordering schemes, without using any stabilization schemes for the convective
term, and without using any adaptively refined meshes in the vicinity of the
upper boundary.

Figure 5.2 shows contour plots of the solution for Peclet numbers 20 and 200,
produced by MLKM/Jacobi method on uniform meshes and without using any
stabilization for the convective term. Note that MLKM/Jacobi without sta-
bilization, produces solutions without any nonphysical spurious wiggles in the
domain, and the solver nicely captures the exponential layered solution at the
top boundary, even at higher Pe numbers. Notice the change in the width of
the boundary layer with the change in Peclet number, which complies with the
physics of the problem.

MLKM convergence rates are not very sensitive to the choice of the value of
ω, and the solver works fine in many cases even if we simply take ω = 1.0. In
table 5.7, we show the number of iterations taken by MLKM solver to converge
for optimal ω used in tables 5.3 and 5.5, and for ω = 1.0; the results presented
are at level 9 for Q1 finite element approximation. The results show that for
both Jacobi and Gauß-Seidel preconditioners, the convergence rates of MLKM
are not much altered if we take ω = 1.0.
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Level/ Pe 20 50 100 200

MLKM

6 9 12 21 50

7 8 9 13 22

8 8 8 9 13

9 8 (0.16) 8 (0.16) 8 (0.16) 9 (0.18)

MG

6 4 div div div

7 3 div div div

8 4 div div div

9 3 (0.10) div div div

Table 5.5: CD1: Comparison of MLKM/Gauß-Seidel (ω = 0.7) and MG/Gauß-
Seidel on Q1 finite element discretization. Time taken by solvers at level 9 is
also shown.

Level/ Pe 20 50 100 200

MLKM

6 9 10 13 24

7 9 9 11 16

8 9 9 9 12

9 9 (0.82) 9 (0.81) 9 (0.80) 10 (0.88)

MG

6 3 3 div div

7 3 3 div div

8 3 3 div div

9 3 (0.54) 3 (0.56) div div

Table 5.6: CD1: Comparison of MLKM/Gauß-Seidel (ω = 0.7) and MG/Gauß-
Seidel on Q2 finite element discretization. Time taken by solvers at level 9 is
also shown.
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Figure 5.2: CD1: Contour plots for the solution of the convection-diffusion
problem for Pe numbers 20 (left) and 200 (right) on 1282 uniform mesh.
MLKM/Jacobi without stabilization is used as a solver.

ω/Pe 20 50 100 200

Jacobi

Optimal 9 9 9 9

1.0 9 9 9 10

Gauß-Seidel

Optimal 8 8 8 9

1.0 10 10 10 11

Table 5.7: CD1: Number of iteration of MLKM for optimal ω, and for ω = 1.0.

64



5.2. NUMERICAL RESULTS

5.2.3 Test Problem 2 (unstructured meshes)

As a second test case, we solve the convection-diffusion equation in a rectangular
channel with a circular obstacle. The circular obstacle may represent a heat
source placed in the stream of the fluid, and the convection-diffusion problem
then depicts the transport of heat in the channel. The mathematical model of
the problem along with boundary conditions is as follows

− 1

Pe
∆u+

(
1
0

)
∇u = 0 in Ω, (5.11)

with boundary conditions

u(0, y) = 0

u(x, 0) = 0

u(x, 0.41) = 0

u(x, y) = 1 for (x, y) on the circle.

∂nu(2.2, y) = 0 natural boundary condition

We abbreviate this second test case for the convection-diffusion problem as CD2.
The computational domain is discretized using unstructured quadrilaterals, and
the corresponding coarse level mesh is shown in the figure 5.3.

Level Elements Unknowns
Q1 Q2

5 33280 33696 133952
6 133120 133952 534144
7 532480 534144 2133248
8 2129920 2133248 8526336
9 8519680 8526336 34092032

Figure 5.3: CD2: Coarse mesh along with the problem size at each refinement
level.

For Q1 finite element discretization, MLKM with (4,2,2) configuration is used.
With Q2 finite elements, although MLKM (4,2,2) worked fine for lower Pe num-
bers, however, at higher Pe numbers the solver required more iterations at the
coarse level to achieve better convergence rates. Therefore, for Q2 approxima-
tions MLKM (4,2,5) configuration with 5 GMRES iterations at the coarse level
are used. In the case of Jacobi preconditioner, the maximum eigenvalue of the
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preconditioned system is approximated as follows

λmax(M−1A) = max
i∈N

∑
j∈N
|ai,j/ai,i|,

and for Gauß-Seidel preconditioner, it is taken as equal to one. Reverse Cuthill
Mckee renumbering is used with Gauß-Seidel preconditioner/smoother, which
results in improved convergence rates for both MLKM and MG solvers. All
other solvers and numerical settings are same as in the test case one. Similar
to the first test case for the convection-diffusion problem, we solve the problem
5.11 for varying Pe numbers (100, 200, 500, 1000, and 5000) and study the effect
of convection on the performance of MLKM solver and compare it with the MG
solver. Numerical results are shown for the solvers without any stabilization,
as well as with the edge-oriented jump stabilization to stabilize the convective
term in the problems involving higher Peclet numbers, see tables [5.8 - 5.15].

Figure 5.4: CD2: Velocity magnitude profiles for Pe = 100 (top) and Pe = 5000
(bottom).

Numerical results, in the second test case, are similar to the test case one; again
for the convection dominated flows, the multilevel Krylov method with Jacobi
or Gauß-Seidel preconditioning stands out as a more robust solver than the
multigrid method. In this test problem also, MLKM is convergent and produces
mesh parameter (h) independent convergence rates, even when no stabilization
is used. For highly convective flows (Pe = 5000) also, the method produces
h independent convergence rates, without any stabilization. This problem size
independent convergence behavior of the method is observed for both bilinear
and biquadratic finite element approximations. On the contrary, multigrid is
divergent for slightly large Peclet numbers, even when the edge-oriented jump
stabilization is used.

The results also show that on appropriately refined meshes, the convergence be-
havior of the MLKM solver is independent of the Peclet number (for moderately
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large Peclet numbers). This means that convergence rates and the computa-
tional costs are the same for a range of moderate Peclet number problems (upto
Pe = 1000). However, for very high values of Peclet numbers (Pe = 5000)
further mesh refinements may produce similar convergence rates. Another im-
portant observation is that for highly convective flows, MLKM with diagonal
preconditioning performs better than MLKM with Gauß-Seidel preconditioning.
Numerical experiments also reveal that convergence rates of both MLKM and
MG are not much improved by the use of edge-oriented jump stabilization, for
the problem at hand.

Level/ Pe 100 200 500 1000 5000

MLKM

6 18 18 29 60 304

7 17 17 18 32 198

8 16 16 16 19 111

9 15 (37) 15 (37) 15 (37) 15 (37) 57 (166)

MG

6 15 Div Div Div Div

7 15 Div Div Div Div

8 17 Div Div Div Div

9 18 (86) Div Div Div Div

Table 5.8: CD2: Comparison of MLKM/Jacobi and MG/Jacobi on Q1 finite
element discretization. Time taken by solvers at level 9 is also shown.

Table 5.16 shows time taken by MLKM and MG solvers to solve the problem
5.11 with Pe = 100, at various mesh refinement levels using Q2 finite elements.
With each uniform mesh refinement, the number of unknowns are increased
four times. The time taken by both the solvers is also increased with a factor of
approximately four at each level, indicating the linear computational complexity
of both the solvers.
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Level/ Pe 100 200 500 1000 5000

MLKM

6 18 19 31 58 220

7 17 17 20 30 140

8 16 16 16 19 78

9 15(64) 15(64) 15(64) 16(69) 43 (195)

MG

6 15 Div Div Div Div

7 15 Div Div Div Div

8 17 Div Div Div Div

9 18 (183) Div Div Div Div

Table 5.9: CD2: Comparison of MLKM/Jacobi and MG/Jacobi on Q1 finite
element discretization with EOJ stabilization. Time taken by solvers at level
9 is also shown.

Level/ Pe 100 200 500 1000 5000

MLKM

6 14 14 72 176 not conv.

7 13 13 28 81 not conv.

8 12 12 18 40 not. conv

9 11(35) 11(35) 13 (41) 22(72) not conv.

MG

6 3 Div Div Div Div

7 3 Div Div Div Div

8 3 Div Div Div Div

9 3 (16) Div Div Div Div

Table 5.10: CD2: Comparison of MLKM/Gauß-Seidel and MG/Gauß-Seidel on
Q1 finite element discretization. Time taken by solvers at level 9 is also shown.
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Level/ Pe 100 200 500 1000 5000

MLKM

6 14 14 21 38 133

7 13 13 14 25 110

8 13 13 13 17 86

9 12(56) 12(56) 12 (56) 13(61) 59 (301)

MG

6 5 9 39 Div Div

7 4 7 29 Div Div

8 3 6 43 Div Div

9 3 (26) 4 (35) 70 (606) Div Div

Table 5.11: CD2: Comparison of MLKM/Gauß-Seidel and MG/Gauß-Seidel
on Q1 finite element discretization with EOJ stabilization. Time taken by
solvers at level 9 is also shown.

Level/ Pe 100 200 500 1000 5000

MLKM

5 21 22 33 65 415

6 21 21 23 35 277

7 21 21 21 25 146

8 21 (82) 21 (82) 21 (82) 21 (82) 90 (418)

MG

5 7 Div Div Div Div

6 6 Div Div Div Div

7 6 Div Div Div Div

8 6 (48) Div Div Div Div

Table 5.12: CD2: Comparison of MLKM/Jacobi and MG/Jacobi on Q2 finite
element discretization. Time taken by solvers at level 8 is also shown.
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Level/ Pe 100 200 500 1000 5000

MLKM

5 21 22 32 64 395

6 21 21 23 35 242

7 21 21 21 27 116

8 21 (193) 21 (193) 21 (193) 21 (194) 76 (739)

MG

5 7 Div Div Div Div

6 6 Div Div Div Div

7 6 Div Div Div Div

8 6 (144) Div Div Div Div

Table 5.13: CD2: Comparison of MLKM/Jacobi and MG/Jacobi on Q2 finite
element discretization with EOJ stabilization. Time taken by solvers at level
8 is also shown.

Level/ Pe 100 200 500 1000 5000

MLKM

5 21 23 47 367 not conv.

6 21 21 32 130 not conv.

7 21 21 23 85 not conv.

8 21 (93) 21 (93) 21 (93) 51 (237) not conv.

MG

5 4 Div Div Div Div

6 4 Div Div Div Div

7 4 Div Div Div Div

8 4 (30) Div Div Div Div

Table 5.14: CD2: Comparison of MLKM/Gauß-Seidel and MG/Gauß-Seidel on
Q2 finite element discretization. Time taken by solvers at level 8 is also shown.
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Level/ Pe 100 200 500 1000 5000

MLKM

5 21 23 40 141 not conv.

6 21 21 30 50 346

7 21 21 23 33 185

8 21 (197) 21 (198) 21 (198) 26 (259) 125 (1252)

MG

5 4 Div Div Div Div

6 4 Div Div Div Div

7 4 Div Div Div Div

8 4 (70) Div Div Div Div

Table 5.15: CD2: Comparison of MLKM/Gauß-Seidel and MG/Gauß-Seidel
on Q2 finite element discretization with EOJ stabilization. Time taken by
solvers at level 8 is also shown.

MLKM Multigrid

DOF Iter. Time Factor Iter. Time Factor

133952 21 1.16 - 7 0.60 -

534144 21 4.51 3.9 6 2.38 4.0

2133248 21 19.38 4.3 6 11.10 4.7

8526336 21 82.12 4.2 6 50.12 4.51

Table 5.16: CD2: Time taken by MLKM/Jacobi and MG/Jacobi solvers at
various mesh levels, for solving the problem with Pe = 100 using Q2 finite
elements discretization.
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6
Anisotropic Diffusion Problem

The multigrid method is considered an optimal solver for solving the isotropic
diffusion problem, with convergence rates oblivious to the problem size. How-
ever, it is a well-known fact that these MG features no longer exist as soon as
anisotropy is introduced into the problem, either from the differential operator
or the underlying mesh of the problem (cf. [70, chapter 10],[4], [131, chapter
5]). The reason for this poor performance is that, contrary to the isotropic case,
the error after relaxation is not smooth in every direction and cannot be well
represented at the coarse mesh.

Various remedies have been proposed in the literature in an attempt to improve
the convergence rates of MG solver for solving such anisotropic problems. One
such remedy is to use semi- or directional-coarsening of the meshes instead of
full-coarsening [100, 101]. In this approach, the grid is coarsened only in the di-
rection in which the error is smoothed out. Another approach is to modify the re-
laxation and use line-smoothing (also called block smoothing) on the fully coars-
ened meshes [19]. Mavriplis [94] has combined directional-coarsening with line-
smoothing and reported the improved convergence behavior of multigrid solver
against anisotropies. However, both directional-coarsening and line-smoothing
have limitations and drawbacks. Directional-coarsening (or semi-coarsening for
structured meshes) produce coarse meshes with higher complexity than those
from full-coarsening. Full-coarsening reduces mesh complexity between succes-
sive meshes four times in 2D case and eight times in 3D problems. However, the
directional-coarsening reduce mesh complexity only two times for both 2D and
3D cases. The resulting coarse meshes have much higher computational and
memory requirements, particularly for 3D problems. Line-smoothing performs
well on structured meshes since in this case, it produces block tridiagonal ma-
trices which can be efficiently solved. However, for unstructured grids, the grid
lines do not exist, and it is not straightforward to implement line-smoothing on
such grids. Moreover, the techniques mentioned above work well only when the
anisotropy is parallel to coordinate axis or aligned with the grid. However, if
the anisotropy is not aligned with the grid or coordinate axis, these techniques
are not very useful.

In this chapter, we solve the operator-based anisotropic diffusion problem as
well as mesh-based anisotropic diffusion problem; however, we do not use any
of the remedies mentioned above for handling anisotropies. Instead, we solve
the problems using standard full-coarsening and pointwise smoothing and com-
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pare how robustly the multilevel solvers, namely MLKM and MG, can handle
anisotropies with such standard solver ingredients.

6.1 Operator-based Anisotropy

Directionally dependant or anisotropic diffusion occurs in various science and
engineering applications. Composite materials often exhibit anisotropic heat
and mass diffusion; for instance, water is absorbed in the wind turbine blades
made of composite material through anisotropic diffusion [115]. Polymers with
long-chain structures diffuse more easily in the direction of the chain axis than
in the transverse direction [85]. A stretched membrane subject to the trans-
verse loading experiences an anisotropic deflection. In microfluidic devices, the
diffusion is more dominant along the channel length with a limited diffusion
in the direction normal to the channel length [43]. A mathematical model of
the anisotropic diffusion problem can be obtained by taking L = − ∇ . (G ∇)
in equation (2.1). Assuming homogeneous Dirichlet boundary conditions, the
anisotropic diffusion problem is given by

− ∇ · (G∇u) = f in Ω, (6.1a)

u = 0 on Γ, (6.1b)

with u : Ω ⊆ R2 7→ R, f ∈ L2(Ω), and G ∈ R2×2 is the diffusion coefficient
matrix, which introduces anisotropic diffusion along some vector field v, and is
defined as:

G = α vvT + β (I − vvT )

For a vector field v = (v1 , v2)T , anisotropic diffusion matrix can be written as:

G =

(
(α− β) v1v1 + β (α− β) v1v2

(α− β) v1v2 (α− β) v2v2 + β

)
.

For the existence of the solution of equation (6.1), it is necessary that G be
symmetric positive definite.

The weak form of the anisotropic diffusion equation (6.1) is given as follows:
Find u ∈ H1

0 such that

a(v, u) = b(v) ∀v ∈ H1
0, (6.2)

where a(., .) : H1(Ω)×H1(Ω) 7→ R is the bilinear form given by

a(v, u) :=

∫
Ω

∇v.G∇u. (6.3)

In anisotropic diffusion a(v, u) = a(u, v), therefore bilinear form is symmetric,
but the presence of anisotropic coefficient affects the eigenvalues and therefore
the condition number of the resulting matrix. The linear form b : H1(Ω) 7→ R
on the right side of equation (6.2) has the form

b(v) :=

∫
Ω

vf. (6.4)
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The discrete form of the equation (6.2) is as follows:

Find uh ∈ Sh0 such that

a(vh, uh) = b(vh) ∀vh ∈ Sh0 . (6.5)

6.1.1 Numerical results for operator-based anisotropy

We present the performance comparison of multilevel Krylov solver with multi-
grid solver for the solution of anisotropic-diffusion problem (6.1), with the
right-hand side f taken as 1. Domain considered is a square domain, Ω =
(−1, 1) × (−1, 1), with homogeneous Dirichlet boundary conditions, i.e., u = 0
on Γ. This model problem represents the anisotropic thermal diffusion in a
square plate which is uniformly heated (constant source term on the right) with
the edges of the plate kept at water-freezing temperature. Bilinear finite ele-
ments (Q1) are used for the spatial discretization, and the coarse level contains
16 uniform quadrilaterals. Solvers are required to achieve six digits accuracy
in relative error before termination, i.e., ε = 10−6, and the maximum number
of iterations to reach this stopping criterion is set to 500. We present the con-
vergence rates (ρ) of the solvers to reach the convergence criterion, with the
convergence rate defined as

ρ :=

(
‖rk‖
‖r0‖

) 1
k

, (6.6)

where ‖rk‖ represents the l2 norm of the residual rk at the kth iteration. Mul-
tilevel Krylov method with the following configuration is used:

• Right Preconditioned MLKM(4,2,2) is used.

• Largest eigenvalue of preconditioned matrix λmax = 1.

• Relaxation parameter ω is varied and the results presented are for the
optimum value of ω.

The following configuration for MG solver is used:

• MG with F-cycle is used

• UMFPACK is used as a coarse grid solver

• Number of pre and post smoothing steps = 4. Jacobi and ILU smoothers
are damped with a factor of 0.7.

The anisotropic diffusion matrix G determines the direction and strength of
anisotropy in equation (6.1). Depending on the form of G, the following three
cases may arise:

• Isotropic diffusion with no anisotropy, if

G = I.
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• Normal or axis parallel anisotropy if

G =

(
1 0
0 β

)
.

• Rotated anisotropy if

G = α vvT + β (I − vvT ).

Figure 6.1 shows different anisotropic diffusion cases for α = 1 and β = 100, with
an axis parallel anisotropic diffusion on the left, rotated anisotropic diffusion
along v = (1 , 1)T in the middle, and rotated anisotropic diffusion along v =
(1 , 0.3)T on the right of the figure.

Figure 6.1: Anisotropic diffusion cases: Axis parallel (left), Rotated anisotropy
v = (1 , 1)T (middle), Rotated anisotropy v = (1 , 0.3)T (right)

Axis-parallel anisotropy

In the case of axis-parallel anisotropy, the results are presented for β = 50, 100,
and 500; tables [6.1-6.3] show the results with Jacobi, Gauß-Seidel, and ILU(0)
preconditioners/smoothers. With all the preconditioners, MLKM solver pro-
duces convergent results for all the values of anisotropic diffusion coefficient
β. However, MG is divergent with Jacobi smoother, while convergent with the
Gauß-Seidel and ILU(0) smoothing. For larger values of the anisotropic dif-
fusion coefficient(β = 500), MG/Gauß-Seidel has poor convergence rates than
MLKM/Gauß-Seidel and in comparison takes four times more computational
times. Although, MG/ILU(0) has better convergent rates as compared to that
of MLKM/ILU(0), the total CPU times of MLKM/ILU(0) are of the same order
as that of MG/ILU(0). Moreover, for the axis-parallel grid anisotropy case, both
MLKM and MG (when it converged) solvers produce problem size independent
convergent rates.
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MLKM MG

Lev/ β 50 100 500 50 100 500

6 0.80 0.85 0.91 div div div

7 0.80 0.85 0.93 div div div

8 0.80 0.85 0.93 div div div

9 0.80 0.85 0.93 div div div

Time 5.4 8.2 20.9 - - -

Table 6.1: Convergence rates of MLKM/Jacobi and MG/Jacobi for axis-parallel
anisotropic diffusion.

MLKM MG

Lev/ β 50 100 500 50 100 500

6 0.63 0.72 0.84 0.56 0.74 0.93

7 0.64 0.73 0.86 0.57 0.75 0.94

8 0.64 0.73 0.86 0.57 0.75 0.94

9 0.64 0.73 0.86 0.57 0.75 0.94

Time 3.1 4.3 10.3 4.1 6.0 37.7

Table 6.2: Convergence rates of MLKM/Gauß-Seidel and MG/Gauß-Seidel for
axis-parallel anisotropic diffusion.

MLKM MG

Lev/ β 50 100 500 50 100 500

6 0.16 0.16 0.16 7E-4 4E-4 1E-4

7 0.16 0.16 0.16 1E-3 9E-4 3E-4

8 0.16 0.16 0.16 2E-3 2E-3 6E-4

9 0.16 0.16 0.16 2E-3 2E-3 1E-3

Time 0.95 0.94 0.94 0.58 0.58 0.58

Table 6.3: Convergence rates of MLKM/ILU(0) and MG/ILU(0) for axis-
parallel anisotropic diffusion.

Rotated anisotropy

Next, we discuss the case where the anisotropy direction vector v is not aligned
with the grid lines but is at some rotation (angle) to them. In tables [6.4-
6.9], we present the results for rotated anisotropic diffusion with the direction
vectors v = (1 , 1)T and v = (1 , 0.3)T . In axis parallel anisotropy, the
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diffusion is essentially 1D, and the coefficient matrix becomes tridiagonal for
row-wise renumbering. ILU(0) becomes exact in this case, and results in ex-
cellent convergence of MG/ILU(0) solver. For the rotated anisotropy case, no
renumbering scheme results into an exact ILU(0), and the convergence rates
of MG with ILU(0) smoothing are significantly poor for the rotated anisotropy
case as compared to the axis parallel anisotropy. This is evident from the results
in tables 6.6 and 6.9.

For the rotated anisotropy case, the convergence rates of MLKM are better
than MG with all the preconditioners/ smoothers tested. Moreover, MLKM
produces (almost) grid size independent convergence rates, even with the weak
preconditioner like Jacobi (See Tables 6.4 and6.7). On the contrary, numerical
results show that multigrid loses h independent convergence behavior for higher
values of anisotropic diffusion coefficient (β > 100), even when strong smoother
like ILU(0) is used (Tables 6.6 and 6.9). Numerical results also depict that
the increase in the anisotropy negatively influences the performance of both
the solvers. However, MLKM is less sensitive to this change in anisotropy as
compared to MG; this can also be seen from the graphs 6.2 and 6.3, which
provide a visual comparison of the change in the convergence rates of the two
solvers with the change in anisotropy.

MLKM MG

Lev/ β 100 500 1000 100 500 1000

6 0.39 0.42 0.43 0.60 0.72 0.73

7 0.39 0.43 0.43 0.62 0.78 0.81

8 0.39 0.43 0.44 0.61 0.82 0.86

9 0.39 0.43 0.45 0.61 0.84 0.88

Time 1.2 1.4 1.5 3.5 9.6 13.5

Table 6.4: Convergence rates of MLKM/Jacobi and MG/Jacobi for anisotropic
diffusion along v = (1 , 1)T

MLKM MG

Lev/ β 100 500 1000 100 500 1000

6 0.41 0.44 0.46 0.45 0.59 0.62

7 0.41 0.46 0.47 0.47 0.68 0.71

8 0.41 0.46 0.48 0.46 0.73 0.78

9 0.41 0.46 0.48 0.46 0.75 0.82

Time 1.6 1.8 1.9 3.5 9.6 13.5

Table 6.5: Convergence rates of MLKM/Gauß-Seidel and MG/Gauß-Seidel for
anisotropic diffusion along v = (1 , 1)T .
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MLKM MG

Lev/ β 100 500 1000 100 500 1000

6 0.22 0.27 0.28 0.21 0.35 0.37

7 0.22 0.29 0.31 0.24 0.46 0.50

8 0.21 0.30 0.32 0.23 0.53 0.60

9 0.21 0.30 0.32 0.23 0.56 0.65

Time 1.1 1.4 1.5 2.1 4.9 6.8

Table 6.6: Convergence rates of MLKM/ILU(0) and MG/ILU(0) for anisotropic
diffusion along v = (1 , 1)T .

MLKM MG

Lev/ β 100 500 1000 100 500 1000

6 0.69 0.73 0.74 0.64 0.77 0.79

7 0.69 0.74 0.75 0.65 0.82 0.84

8 0.69 0.74 0.76 0.65 0.85 0.88

9 0.69 0.74 0.76 0.65 0.86 0.90

Time 3.0 3.7 4.1 3.8 11.1 16.4

Table 6.7: Convergence rates of MLKM/Jacobi and MG/Jacobi for anisotropic
diffusion along v = (1 , 0.3)T .

MLKM MG

Lev/ β 100 500 1000 100 500 1000

6 0.63 0.68 0.69 0.42 0.59 0.62

7 0.62 0.68 0.69 0.43 0.67 0.71

8 0.62 0.68 0.69 0.43 0.71 0.77

9 0.62 0.68 0.69 0.43 0.73 0.80

Time 2.7 3.4 4.1 2.5 6.4 9.3

Table 6.8: Convergence rates of MLKM/Gauß-Seidel and MG/Gauß-Seidel for
anisotropic diffusion along v = (1 , 0.3)T .
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MLKM MG

Lev/ β 100 500 1000 100 500 1000

6 0.34 0.40 0.41 0.27 0.44 0.46

7 0.34 0.41 0.42 0.28 0.52 0.57

8 0.34 0.41 0.43 0.28 0.57 0.64

9 0.34 0.41 0.43 0.28 0.59 0.69

Time 1.6 1.9 1.9 2.2 5.3 7.5

Table 6.9: Convergence rates of MLKM/ILU(0) and MG/ILU(0) for anisotropic
diffusion along v = (1 , 0.3)T .
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Figure 6.2: Comparison of convergence rates of MLKM and MG solver at level
9, for various values of β in anisotropic diffusion direction vector v = (1 , 1)T
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Figure 6.3: Comparison of convergence rates of MLKM and MG solver at level
9, for various values of β in anisotropic diffusion direction vector v = (1 , 0.3)T
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6.2 Grid-based Anisotropy

Anisotropic diffusion can also occur due to the underlying anisotropic meshes.
These meshes are useful to approximate the functions that have high gradients
in a specific direction, such as in boundary layers. In this case, anisotropic
meshes have typically a smaller dimension in the direction of high gradients and
larger dimension in the orthogonal direction. These meshes are also used to
discretize high aspect ratio domains.

6.2.1 Numerical results for grid-based anisotropy

In this section, a performance comparison of the multilevel Krylov method with
multigrid solvers is presented for the solution of the diffusion equation

− ∆u = f (6.7)

on the anisotropic grid shown in figure 6.4. Right-hand side f in equation 6.7 is
chosen to produce the solution u = (x−1)(x+ 1)(y−1)(y+ 1). Domain consid-
ered is a square domain, Ω = (−1, 1)2, with homogeneous Dirichlet boundary
conditions, i.e., u = 0 on Γ. All the numerical settings and configurations
of MLKM and MG solver are kept the same as that for the operator-based
anisotropic diffusion case.

a
b

Level DOF (Q1)

6 4225
7 16641
8 66049
9 263169

Figure 6.4: Anisotropic coarse mesh with aspect ratio a/b (left); Number of
degrees of freedom at each refinement level (right)

Results for grid-anisotropy are very similar to the axis-parallel operator-based
anisotropy. Here again, MLKM with a weak Jacobi preconditioner results in
a convergent solver on anisotropic grids, whereas MG with such a diagonal
smoothing is divergent even for small aspect ratios. MLKM/Gauß-Seidel pro-
duces better convergent rates and computational times than MG/Gauß-Seidel,
particularly on the meshes with larger aspect ratios. For example, on a mesh
with an aspect ratio of 31, MLKM/Gauß-Seidel takes five times less time to
converge as compared to MG/Gauß-Seidel solver (Table 6.11). Similar to the
axis-parallel anisotropy case, with the row-wise reordering, MG/ILU(0) has bet-
ter convergence rates than MLKM/ILU(0), however, the CPU times of both the
solvers are of the same order.
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MLKM MG

Lev/ AR 7 15 31 7 15 31

6 0.74 0.82 0.84 div div div

7 0.75 0.83 0.87 div div div

8 0.74 0.84 0.88 div div div

9 0.73 0.84 0.88 div div div

Time 3.5 6.6 9.5 - - -

Table 6.10: Convergence rates of MLKM/Jacobi and MG/Jacobi for solving
diffusion equation on anisotropic grids.

MLKM MG

Lev/ AR 7 15 31 7 15 31

6 0.56 0.69 0.76 0.41 0.75 0.89

7 0.57 0.72 0.79 0.43 0.78 0.92

8 0.57 0.72 0.80 0.42 0.80 0.93

9 0.57 0.72 0.80 0.42 0.80 0.94

Time 2.1 4.1 5.7 2.3 9.3 29.7

Table 6.11: Convergence rates of MLKM/Gauß-Seidel and MG/Gauß-Seidel for
solving diffusion equation on anisotropic grids.

MLKM MG

Lev/ AR 7 15 31 7 15 31

6 0.17 0.19 0.17 2.6E-03 4.5E-03 6.1E-03

7 0.17 0.19 0.19 3.9E-03 5.9E-03 9.8E-03

8 0.17 0.18 0.23 4.3E-03 6.2E-03 1.9E-02

9 0.17 0.17 0.23 4.3E-03 5.9E-03 9.9E-03

Time 0.8 0.9 1.0 0.5 0.5 0.6

Table 6.12: Convergence rates of MLKM/ILU(0) and MG/ILU(0) using row-
wise renumbering, for solving diffusion equation on anisotropic grids.
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7
A monolithic FEM/MLKM solver for

Navier-Stokes Equations

The Navier-Stokes equations (NSE) are a set of nonlinear partial differential
equations that describe the flow of fluids. Their importance can be understood
from the ubiquitous nature of the fluids. These equations are used to study
the blood flow inside the human body, to model the weather, to predict the
effect of global warming on climate, to design the aircraft, ships, and cars,
and to describe many other significant engineering and scientific phenomena.
We extend our work form the previous chapters of solving the scalar prob-
lems using FEM/MLKM solver, and present in this chapter a new monolithic
FEM/multilevel Krylov subspace solver for the numerical solution of stationary
incompressible Navier-Stokes equations in a fully coupled way.

We present the stationary incompressible NSE and briefly discuss their finite ele-
ment discretization. Since the continuity equation does not involve the pressure
unknown, the FEM discretization of Navier-Stokes equations is not straightfor-
ward. One cannot freely choose the discrete pressure and velocity approximation
spaces independent of each other. Their choice must satisfy the compatibility
condition, called the LBB (Ladyzhenskaya-Babuška-Brezzi) condition, which es-
tablishes the relation between velocity and pressure approximations for the well-
posedness of the problem. We briefly discuss the LBB condition and our choice
of admissible mixed finite elements.

The resulting algebraic system is nonlinear that can only be solved using itera-
tions. We present our new coupled multilevel Krylov method, as an alternative
to the coupled geometric multigrid algorithm, to solve the nonlinear algebraic
system resulting from the FEM discretization of steady-state incompressible
Navier-Stokes equations. The solver involves an outer iteration to handle the
nonlinearity; we discuss the Picard and the Newton iteration techniques to
linearize the system of nonlinear equations. Linearization results in indefinite
saddle point type linear systems with zeros on the diagonal, and solving such
linear systems poses a great challenge for the linear solvers. We use MLKM
solver discussed in chapter (4) to solve these linear systems in a monolithic way.
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CHAPTER 7. A MONOLITHIC FEM/MLKM SOLVER FOR
NAVIER-STOKES EQUATIONS

7.1 The Navier-Stokes Problem

Consider the steady-state incompressible Navier-Stokes equations governing the
flow of a Newtonian, viscous fluid:

−ν∆u + u.∇u + ∇p = f in Ω, (7.1a)

∇.u = 0 in Ω, (7.1b)

where
Ω ⊂ Rd − is the bounded flow domain with a sufficiently regular boundary

Γ, (d = 2 or 3 is a spatial dimension),
u − is the velocity of the fluid,
p − is the pressure field,
ν − is the kinematic viscosity constant,
f − is the forcing term,
∆ − is the Laplacian operator,
∇ − is the gradient and
∇. − is the divergence operator.

The equation (7.1a) is called the momentum equation and represents the conser-
vation of momentum of the fluid, while equation (7.1b) is called the continuity
equation or incompressibility constraint and represents the conservation of mass.

Similar to the convection-diffusion equation in chapter 5, it is useful in the study
of the Navier-Stokes equations to have some quantitative measure of relative
strength of inertial forces of the flow (convection) and the viscous forces in the
flow (viscous diffusion). To this end, the Navier-Stokes equations are normalized
with respect to the size of domain and velocity magnitude by introducing the
dimensionless parameter called Reynolds number defined by

Re =
LU

ν
, (7.2)

where L is a characteristic length and U is a characteristic velocity. Using (7.2),
the equation (7.1) can be rewritten into the normalized Navier-Stokes equations
as follows

− 1

Re
∆u + u.∇u + ∇p = f in Ω, (7.3a)

∇.u = 0 in Ω. (7.3b)

The equations (7.1) or (7.3) form a system of second order partial differential
equations in space and to solve these equations it is necessary to prescribe
boundary conditions on the whole boundary of the domain. We consider here
the Dirichlet type boundary condition where the velocity field is given on the
boundary as

u = g on ΓD. (7.4)

The special case of

u = 0 ⇐⇒ u . n = 0, u . t = 0,

is called the no-slip boundary condition. The velocity component u . n = 0 at
the boundary means that there is no fluid passing through the boundary and
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the component u . t = 0 states that the fluid does not slip along the wall. If
the Dirichlet boundary condition is specified everywhere on the boundary of Ω,
then the pressure solution to the Navier-Stokes equations is determined only up
to an arbitrary additive constant (since the governing equations, in this case,
contain only the gradient of the pressure). To fix the constant, a supplemental
condition is imposed requiring the vanishing of the integral mean value pressure∫

Ω

p = 0.

Moreover, it follows from the integration of the continuity equation over the
domain, followed by the application of the divergence theorem that the pure
Dirichlet boundary condition should also satisfy the following compatibility con-
dition

0 =

∫
Ω

∇.u =

∫
Γ

u . n =

∫
Γ

g . n, (7.5)

or equivalently ∫
Γin

g . n−
∫

Γout

g . n = 0. (7.6)

This means that the pure Dirichlet boundary conditions should ensure that the
net flow of the fluid through the domain boundaries is equal to zero. This prob-
lem can be avoided by replacing the Dirichlet condition at the outflow with a
Neumann condition (typically do nothing boundary condition) that automati-
cally adjusts u . n at the outflow boundary to satisfy the equation (7.5). For
the sake of simplicity in presentation, we next consider the Navier-Stokes equa-
tions with homogeneous Dirichlet boundary conditions only, for which case the
compatibility condition is naturally satisfied.

Many fluid flows involve small Reynolds numbers (Re� 1), for instance, flows
involving small length scales (fluid flow in MEMs), flows with very small veloc-
ities (creeping flow), or flows involving highly viscous fluids (honey). In such
low Reynolds number flows, the inertial forces are negligible compared to the
viscous forces; this suggests that the convective term can be neglected in Navier-
Stokes equations. The resulting system of equations is linear, called the Stokes
equations and the flow is termed Stokes flow

−ν∆u + ∇p = f in Ω, (7.7a)

∇ . u = 0 in Ω, (7.7b)

u = 0 on Γ. (7.7c)

7.2 Weak Formulation

To obtain the weak form of the Navier-Stokes equations, we need the following
usual Lebesgue and Sobolev spaces

L2
0(Ω) =

{
q : q ∈ L2(Ω) with

∫
Ω

q = 0
}
,

H1
0(Ω) =

{
v : v ∈ H1(Ω)d | v = 0 on Γ

}
.
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Multiply the momentum equation (7.1a) with the velocity test function v and
the continuity equation with pressure test function q, and integrate the resulting
equations over the domain Ω to obtain

−
∫

Ω

v . ν∆u +

∫
Ω

v . (u . ∇u) +

∫
Ω

v . ∇p =

∫
Ω

v . f , (7.8a)∫
Ω

q∇ . u = 0. (7.8b)

We reduce the strong continuity requirements on the weak solution (u, p) by
shifting the derivatives to the test functions (v, q). For this let us first consider
the second order term and apply integration by parts on it

−
∫

Ω

v . ν∆u = −
∫

Γ

ν(∇u . v) . n +

∫
Ω

(ν∇u) : (∇v)

= ν

∫
Ω

(∇u) : (∇v). (7.9)

Next take the pressure term, using the product rule we get∫
Ω

v . ∇p =

∫
Ω

∇ . (pv)− p∇ . v

=

∫
Γ

(pv) . n−
∫

Ω

p∇ . v using divergence theorem

= −
∫

Ω

p∇ . v. (7.10)

Inserting (7.9) and (7.10) in equation (7.8a) results in the standard weak form
of the Navier-Stokes equation as follows:

Find u ∈ H := H1
0 and p ∈ L := L2

0(Ω) such that

ν

∫
Ω

(∇u) : (∇v) +

∫
Ω

v . (u . ∇u)−
∫

Ω

p∇ . v =

∫
Ω

v . f ∀ v ∈ H,

(7.11a)∫
Ω

q∇ . u = 0 ∀ q ∈ L.

(7.11b)

In equations (7.11a) and (7.11b), p and q do not involve any derivatives, and
therefore it is sufficient that they are integrable but not necessarily continuous
over the element boundaries. On the other hand, u and v involve derivatives,
and thus not only u and v but also their derivatives are required to be integrable,
which implies the continuity of u and v across the element boundaries. This
fact is important in the selection of finite elements for Navier-Stokes equations
that will be discussed later. Alternatively, the weak form of steady-state Navier-
Stokes equations can be written as:

Find u ∈ H := H1
0 and p ∈ L := L2

0(Ω) such that

ν a(u,v) + c(u,u,v) + b(p,v) = (f ,v) ∀ v ∈ H, (7.12)

b(q,u) = 0 ∀ q ∈ L, (7.13)
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where a(., .) , b(., .) are the bilinear forms, (., .) the linear form and c(., ., .) the
trilinear form, defined as follows

a(u,v) := (∇u,∇v), (7.14a)

b(p,v) := − (p,∇.v), (7.14b)

(f ,v) :=

∫
Ω

v . f , (7.14c)

c(u,u,v) := ((u.∇)u,v). (7.14d)

7.3 Finite Element Discretization

We define the discretized form of the weak formulation by replacing the infinite
dimensional function spaces H and L with finite dimensional spaces Hh and
Lh respectively. In case of conforming finite elements, Hh ⊂ H and Lh ⊂ L,
and therefore the bilinear and trilinear forms in the discretized problem can be
used in a similar way to the continuous problem. For the nonconforming finite
elements Hh 6⊂ H, one has to work with the bilinear and trilinear forms defined
elementwise. Assuming conforming finite elements here (for nonconforming fi-
nite elements see [132]), the discrete weak form of Navier-Stokes problem reads
as follows:

Find uh ∈ Hh and ph ∈ Lh such that

ν

∫
Ω

(∇uh) : (∇vh) +

∫
Ω

vh.(uh . ∇uh)−
∫

Ω

ph∇.vh =

∫
Ω

vh.f ∀ vh ∈ Hh,

(7.15)∫
Ω

qh∇.uh = 0 ∀ qh ∈ Lh.

(7.16)

Next, we introduce two sets of basis functions, a set of scalar basis {ψi} for the
pressure and a set of vector-valued basis {φi} for the velocity vector. Generally,
vector-valued basis functions are built from scalar finite element spaces. Given
a set of scalar finite element basis functions {φj}nu

j=1, the velocity basis functions
for a two-dimensional problem can be written in the vector form as

{φ1, ...,φ2nu} = {(φ1, 0)T , ..., (φnu , 0)T , (0, φ1)T , ..., (0, φnu)T }. (7.17)

The approximations of velocity and pressure can be written as

uh =

2nu∑
j=1

ujφj , ph =

np∑
j=1

pjψj , (7.18)

where nu is the number of unknowns for one velocity component and np is the
number of pressure unknowns. Letting vh = φi and qh = ψi in equations (7.15)
and (7.16), we arrive at the standard Galerkin formulation.
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Find uh ∈ Hh and ph ∈ Lh such that

ν

∫
Ω

(∇uh) : (∇φi) +

∫
Ω

φi.(uh.∇uh)−
∫

Ω

ph∇.φi =

∫
Ω

φi.f for i = 1, ..., 2nu,

(7.19)∫
Ω

ψi∇.uh = 0 for i = 1, ..., np.

(7.20)

In matrix format, above nonlinear system of equations can be written as[
A + N(u) BT

B 0

] [
U
P

]
=

[
F
0

]
, (7.21)

where U and P represent the unknown real coefficients (uj)
2nu
j=1 and (pj)

np

j=1

respectively. The matrix A represents the discretization of Laplacian opera-
tor ∆(.), N(u) the discretization of nonlinear convective operator u.∇(.), BT

denotes the discretization of the negative of the gradient operator, and B the
divergence operator.

7.4 Conditions for Elements selection

Systems of the form (7.21) are called saddle point systems. The zero block in
the system comes from the discretization of the continuity equation and reflects
the absence of pressure term in the continuity equation. However, we know
from equation (7.20), the number of rows in the continuity equation is equal to
pressure unknowns. If pressure unknowns are more than the velocity unknowns,
the system (7.21) becomes rank deficient, and we have a singular system. So a
necessary condition for the unique solution of the above saddle point problem to
exist is that the pressure unknowns should never exceed the velocity unknowns
(np ≤ 2nu), irrespective of the grid size. This condition deprives the liberty of
choosing the pressure and velocity approximations independent of each other.
To satisfy this condition, a rule of thumb is to approximate the pressure with
the polynomial basis functions having a degree at least one less than the degree
of velocity basis functions. However, this rule does not ensure that pressure
unknowns are always less than velocity unknowns on any grid. It can be shown
[125] that even if the pressure and velocity elements are chosen such that pres-
sure has a lower degree polynomial approximation as compared with velocity,
still the resulting coefficient matrix is singular.

A sufficient condition that elements must satisfy to ensure the well posed-
ness of the saddle point problem (7.21) is a well-known compatibility condi-
tion between pressure and velocity ansatz functions called the inf-sup or LBB
(Ladyžhenskaya-Babuška-Brezzi) condition [11, 22], given in discrete form as

inf
qh∈Lh

sup
vh∈Hh

(qh,∇.vh)

‖qh‖Lh
‖vh‖Hh

≥ γ > 0, (7.22)

where γ is a mesh independent parameter. The elements satisfying the above
condition are called admissible elements. See [35] for the derivation of an exact
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LBB condition. From a practical viewpoint, it is difficult to verify directly if
the LBB condition (7.22) is satisfied by an element or not. In [59], Fortin has
provided a more practical criterion to check the LBB condition, which states
that:
Assume that the continuous LBB condition is satisfied and assume that there
exists a continuous operator πh : H→ Hh satisfying:{

(∇ · (u− πhu), qh) = 0 ∀ qh ∈ Qh,
‖πhu‖Hh

≤ C‖u‖H ∀ u ∈ H,
(7.23)

then the discrete LBB condition (7.22) is satisfied [23]. In [35], it is shown how
to check the condition (7.23) on various elements.

7.5 Our choice of admissible elements

Finite elements used for the approximation of Navier-Stokes equations are cate-
gorized into two families; Taylor-Hood family with continuous pressure approx-
imation and Crouzeix-Raviart family with discontinuous pressure approxima-
tion. Our choice of LBB-stable quadrilateral finite elements used in this thesis,
namely conforming Q2/P

disc
1 (see [113, 66]) and nonconforming Q̃1/Q0 [112],

belong to the Crouzeix-Raviart family. The mesh cell oriented Vanka smooth-
ing/ preconditioning can be conveniently applied on such approximations with
discontinuous pressure [80].

7.5.1 Nonconforming Q̃1/Q0 Element

The nonconforming Q̃1/Q0 finite element pair, also called Rannacher–Turek el-
ement, uses rotated multilinear (bilinear in 2D and trilinear in 3D) polynomial
shape functions for velocity approximations in combination with piecewise con-
stants for the pressure. The element was introduced by Rannacher and Turek
in [112] and can be considered as a quadrilateral counterpart of the famous tri-
angular Crouzeix-Raviart element [66]. Let us define a bilinear transformation
ψT : T̂ → T from the reference element T̂ = [−1, 1]2 to each element T ∈ Th.
So, the rotated bilinear element is defined as

Q̃1(T ) := {q ◦ ψ−1
T : q ∈ span〈1, x, y, x2 − y2〉}, (7.24)

with four degrees of freedom at the midpoints of edges. The degrees of freedom
are determined by either of the nodal functionals

F
(a)
E := |E|−1

∫
E

vdγ, F
(b)
E := v(mE), (7.25)

where E ⊂ ∂Th is the cell edge and mE its midpoint. The related parametric
finite element space for velocity approximation is given by

H
(a,b)
h := S

(a,b)
h × S(a,b)

h

S
(a,b)
h := {vh ∈ L2(Ω) | vh|T ∈ Q̃1(T ), ∀T ∈ Th, vh continuous w.r.t. nodal

functionals F
(a,b)
Eij

(.), ∀Eij , and F
(a,b)
Ei0

(vh) = 0, ∀Ei0}, (7.26)
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with Eij all inner edges shared by the elements i and j and Ei0 the boundary
edges. The pressure is approximated using Q0 element defined by the piecewise
constant functions from the space

Lh := {qh ∈ L2
0(Ω), qh|T = constant, ∀T ∈ Th}. (7.27)

In [112], authors have mentioned that the stability and approximation properties
of above defined parametric version of Q̃1/Q0 element deteriorate on highly
distorted meshes. As an alternative, non-parametric version of the element can
be used for which the reference space Q̃1(T ) := {q ∈ span〈1, ξ, η, ξ2 − η2〉}
is defined on each physical element T independently using the local coordinate
system (ξ, η) obtained by joining the midpoints of T [112, 132]. Hence, the shape
functions are defined directly on the physical element instead of the reference
element. Although this ansatz is computationally more expensive than the
parametric counterpart, it shows better performance on the grids with large
anisotropies. In this thesis, we use the non-parametric version of Q̃1/Q0 with
degrees of freedom corresponding to the mean values over the edges. See also
[82] for details on the non-parametric Q̃1/Q0 element.

7.5.2 Conforming Q2/P
disc
1 Element

Let us define the finite element spaces Hh for the velocity and Lh for the pressure
as follows

Hh := {vh ∈ [H1
0 (Ω)]2, vh|T ∈ [Q2(T )]2 ∀T ∈ Th, vh = 0 on ∂Ω}, (7.28)

Lh := {ph ∈ L2(Ω), ph|T ∈ P1(T ) ∀T ∈ Th}, (7.29)

with Q2(T ) the biquadratic and P1(T ) the linear space on the quadrilateral
element T . Let us again define the bilinear transformation ψT : T̂ → T from
the reference element T̂ = [−1, 1]2 to arbitrary element T . The space Q2 is
defined on the physical element as

Q2(T ) := {q ◦ ψ−1
T : q ∈ span〈1, x, y, xy, x2, y2, x2y, xy2, x2y2〉}, (7.30)

with nine nodes located at vertices, edge mid-points and centroid of quadrilat-
eral. The space P disc1 (T ) consists of linear polynomials discontinuous across the
element boundaries and zero outside the element, defined by

P disc1 (T ) := {q ◦ ψ−1
T : q ∈ span〈1, x, y〉}. (7.31)

The approximation comprises three degrees of freedom, corresponding to the
function value and its two partial derivatives, located at the centroid of the
quadrilateral. A problem with the above presented formulation is that when
bilinear transformation ψT is applied to the linear function on the reference
element, the resulting basis functions on the T̂ are not full bilinear. As a conse-
quence, the method is accurate only up to first order on general meshes, obtained
for instance from certain mesh adaptation (see [5, 113])

‖p− ph‖ = O(h).

To fix this problem, the reference space is defined on each physical element
individually as

P1(T ) := {1, ξ, η},
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by using the local coordinate system (ξ, η) obtained by joining the midpoints of
opposite sides of T [5]. This non-parametric approximation satisfies the LBB
condition and the second order approximation for the pressure is also recovered
[113, 66]

‖p− ph‖ = O(h2).

: Velocity : Pressure : Pressure gradients

Figure 7.1: Nodal points for Q2/P
disc
1 (left) and Q̃1/Q0 finite elements

7.6 Monolithic Multilevel Krylov Subspace Solver

Although the selection of LBB stable finite elements ensures the well posedness
of the discrete Navier-Stokes problem, the resulting saddle point type problem
is non-symmetric and indefinite, and poses great challenges for the develop-
ment of efficient and robust numerical solvers. Many iterative solution methods
have been proposed in the literature to solve such saddle point problems that
can be broadly categorized as segregated or operator splitting methods and cou-
pled methods. Segregated methods split the linear system into smaller reduced
systems, and solve the unknown variables, velocity and pressure, separately.
On the other hand coupled methods treat the linear system as a whole, and
solve both the pressure and velocity unknowns simultaneously. Both classes of
methods have their own problem-dependent advantages and shortcomings, and
one cannot say in general which one is better than the other. For instance,
segregated methods work fine for unsteady flows with large Reynolds numbers
that involve small time steps. However, for steady or unsteady flows with low
Reynolds numbers, they face considerable problems, and the coupled methods
are the preferred choice in this case[132, 136].

Previously, many authors have used multigrid as a multilevel solver to solve
Stokes or Navier-Stokes equations in a coupled way (see [18, 141, 138, 148,
17, 16, 132, 146]). In this section, we present our monolithic multilevel Krylov
subspace solver for the solution of steady incompressible Navier-Stokes equations
in a coupled way, which can be considered as an alternative to the coupled
multigrid method.
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The presence of the convective term in the Navier-Stokes equations makes the
algebraic system (7.21) nonlinear, and to handle such a non-linearity, the solver
consists of an outer nonlinear iterative procedure. To derive this nonlinear
iterative procedure, we start with the continuous form of the Navier-Stokes
equations (7.1) and write them in the form of a nonlinear function

d(u, p) =

(
−ν∆u + u.∇u + ∇p− f

∇.u

)
. (7.32)

d(u, p) is a nonlinear defect function whose root is the solution to Navier-Stokes
equations (7.1). Let x(u, p) be the root of d(u, p), the nonlinear defect correction
iteration can be written as:

xk+1 = xk + ω̃k(T−1(xk))d(xk), k ∈ N, (7.33)

where xk+1 is the approximate solution at the k+ 1 iteration, xk is the solution
from the previous iteration, T(xk) is the preconditioner evaluated at the xk,
and ω̃k is the damping parameter.

The nonlinear iteration loop (7.33) is carried out in three steps as shown in the
algorithm (7.1).

Algorithm 7.1 Nonlinear defect correction iteration

1: Given x0, f
2: k ← 0
3: while (xk not converged) do
4: Calculate the nonlinear defect d(xk) using equation (7.32).
5: Evaluate the correction term δxk by a linear solve:

δxk := T−1(xk)d(xk) ⇐⇒ T(xk)δxk = d(xk). (7.34)

6: Update the defect:
xk+1 = xk + ω̃kδxk. (7.35)

7: k ← k + 1
8: end while

Linearization in equation (7.34) is commonly performed using either Newton or
fixed point linearization methods. Next, we discuss both of these methods.

7.6.1 Newton linearization

In Newton method, the preconditioning operator T(xk) is the exact Fréchet-
derivative (∇d(xk)) of the continuous Navier-Stokes equations evaluated at the
xk. Thus the correction term in equation (7.34) can be evaluated by solving the
system

∇d(xk)δxk = d(xk). (7.36)

The left-hand side in the above equation represents the directional derivative
of the defect function d(x) at xk along δxk. Using the definition of directional
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derivative, we can write

∇d(uk, pk)(δuk, δpk) = lim
t→0

1

t
(d(uk + tδuk, pk + t∇δpk)− d(uk, pk)).

Applying Taylor expansion and neglecting second order and higher terms, we
get

∇d(uk, pk)(δuk, δpk) =

(
−ν∆δuk + uk.∇δuk + δuk.∇uk +∇δpk

∇.δuk
)
. (7.37)

The resulting linearized Newton correction system is then given by

−ν∆δuk + uk.∇δuk + δuk.∇uk +∇δpk = fu, (7.38a)

∇.δuk = fp, (7.38b)

where the right-hand side, fu = −ν∆uk + uk.∇uk + ∇pk − f and fp = ∇.uk,
is the defect calculated based on the information from the previous iteration.
Following the finite element discretization procedure described previously, and
using the following basis functions representation for the correction term

δuh =

2nu∑
j=1

∆ujφj , δph =

np∑
j=1

∆pjψj , (7.39)

the linear algebraic system corresponding to the Newton correction problem
turns out to be as follows:[

A + N + W BT

B 0

] [
∆u
∆p

]
=

[
F
g

]
. (7.40)

Using velocity splitting (7.17), above algebraic system can also be written as:A11 +N11 +W11 W12 BT1
W21 A22 +N22 +W22 BT2
B1 B2 0

∆u1

∆u2

∆p

 =

F1

F2

g

 . (7.41)

The Newton iteration is known to converge quadratically if the initial guess
is close to the solution. However, if the initial guess is far from the solution,
then the Newton iteration converges slowly, or it may diverge. The Newton
correction system (7.38) contains a reaction term δuk.∇uk that is additional to
the usual Navier-Stokes system. Discretization of this reaction term involves the
calculation and storage of additional velocity blocks, thus increasing the storage
requirements and assembly costs of the Newton iteration. Moreover, as can be
seen from equation (7.41), the block matrix W corresponding to the reaction
term also influences the sparsity structure of the linear system. Consequently,
the computational cost of each linear solver iteration also increases. Another
problem with the Newton method is its lack of robustness for the large Reynolds
number problems. As the Reynolds number is increased, even better initial
guesses are needed to ensure the convergence of Newton iteration. To avoid
these problems, the reaction term in the Jacobian is dropped which results in
the fixed point scheme discussed next.
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7.6.2 Fixed point linearization

Dropping out the ”bad” reaction term in equation (7.38) gives the following
linearized fixed point system

−ν∆δuk + uk.∇δuk +∇δpk = fu, (7.42a)

∇.δuk = fp. (7.42b)

This is equivalent to linearizing the convective term in the Navier-Stokes equa-
tion with the velocity from the previous iteration. The related linear algebraic
system for the fixed point iteration reads asA11 +N11 0 BT1

0 A22 +N22 BT2
B1 B2 0

∆u1

∆u2

∆p

 =

F1

F2

g

 . (7.43)

The computational costs and storage requirements of the fixed point iteration
are less than Newton iteration. Another advantage of the fixed point method is
that it is more robust, particularly at high Reynolds numbers, and has a larger
radius of convergence as compared to the Newton method. However, in contrast
to the Newton method, the scheme has only linear convergence rates.

Efficient solution strategy can be built by combining both fixed point and New-
ton iterations, which works well particularly for higher Reynolds number flows.
The strategy involves starting with some initial guess (e.g., the solution of Stokes
problem), perform few fixed point iterations to reach near the final solution.
Next provide this solution as an initial guess to the Newton iteration, which
is expected to converge fast (hopefully quadratically) as the iteration is in the
neighborhood of the final solution. An alternative approach to solving the large
Reynolds number flows is to start with the low Reynolds number problem and
gradually increase the Reynolds number. The low Re problem is solved, and
the solution is used as an initial guess to Newton iteration for the next higher
Re number. This method is called a continuation method.

7.6.3 MLKM as a coupled linear solver

Each outer nonlinear defect correction iteration described above involves the
solution of a nonsymmetric and indefinite linear system of the type (7.41) or
(7.43). Let’s rewrite this linear system in the standard form as

Ax = b. (7.44)

Solving such a linear system is the computationally most intensive part of the
whole numerical process, and developing an efficient and robust linear solver is
of utmost importance. In our monolithic multilevel Krylov subspace solver, we
use MLKM solver described in chapter (4) to solve this linear system as a whole.
From our experience of solving the scalar problems with the MLKM solver, we
expect that our coupled MLKM solver will also converge independently of the
mesh size.

As already discussed in the chapter (4), MLKM solver requires various ingredi-
ents for its functioning, such as a hierarchy of system matrices, deflation sub-
spaces, and the preconditioner at each mesh level.
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• The hierarchy of system matrices Al is obtained by discretizing the infinite
dimensional Navier-Stokes equations on a hierarchy of spatial meshes Ωl

(l = 1, ..., L with Ω1 the coarsest mesh and ΩL the finest mesh where
we seek the solution to our problem), using the Galerkin finite element
method. The right-hand side bL at the finest level is specified while the
right-hand side at all other levels is generated during the MLKM run. The
outer nonlinear iteration works on the finest level, and the inner linear
iteration solves at each mesh level the linear system of the form

Alxl = bl. (7.45)

• Standard multigrid prolongation and restriction inter-grid transfer oper-
ators are taken as deflation subspaces Z and YT , respectively. These
grid transfer operators have already been discussed in section (3.2.3) for
the Q1 element. The elementwise prolongation for the nonconforming
rotated bilinear finite element functions and piecewise constant finite el-
ement functions is shown schematically in figure (7.2). On the coarse
mesh are shown the weights of the corresponding d.o.f’s that are used to
evaluate the d.o.f on the fine mesh. In the top row, full prolongation in
Q̃1 element (with mean values on edges as d.o.f’s) is shown only for two
nodes; remaining nodes are calculated analogously. For nodes on edges,
take the average of the two adjacent macro-elements. For the piecewise
constant Q0 element (bottom row), the constant value of the function at
the coarse cell is transferred to all the children cells in the fine mesh. See
[132] for more details. The restriction operator is obtained as an adjoint
of the prolongation operator. See [70, 77] for the Q2/P

disc
1 element.
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Figure 7.2: Schematic representation of prolongation in rotated bilinear Q̃1

element (with mean values on edges as DOFs) using full interpolation [top], and
in Q0 element using piecewise constant interpolation [bottom].

Local pressure Schur complement(LPSC) preconditioner

Our experience of solving the scalar problems with MLKM method in the previ-
ous chapters tells us that preconditioning is vital for the performance of MLKM
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method. It would be convenient from the practical viewpoint, if the basic it-
erative schemes used as preconditioners for the scalar problems, could also be
used as preconditioners for the solution of Navier-Stokes equations. The zero
diagonal block in the saddle point problem unfortunately makes it impossible to
use the point Jacobi and point Gauss-Seidel as preconditioners to the MLKM
method. Similarly, direct application of ILU(0) preconditioner may also fail due
to the zeros on the diagonal. Although various numerical strategies (such as
using special reorderings and /or pivoting) have been proposed by the scien-
tific community to avoid ILU breakdowns, still incomplete factorization failure
rates are high for the nonsymmetric and indefinite matrices arising from the
discretization of Navier-Stokes equations. In coupled MLKM solver, we use
local pressure Schur complement preconditioner at each mesh level. The idea
was originally introduced by Vanka [138] to solve the Navier-Stokes equations
discretized with finite difference method on staggered grids.

The main idea of the LPSC approach is to divide the domain in small patches
Ωi, solve the local subsystem on each patch exactly by treating all the variables
(velocity and pressure) associated with the patch monolithically and update the
local degrees of freedom in a blockwise Jacobi or Gauss-Seidel manner. The
patch may constitute one cell or many neighboring cells. In case of one cell, the
preconditioner is called cell-oriented LPSC preconditioner. In this thesis, we
have used the cell-oriented LPSC preconditioner embedded in a block Gauss-
Seidel iteration.

To better illustrate the functioning of the LPSC preconditioner, following [82]
we introduce few terminologies. Let I(K) be the index set containing the list
of all degrees of freedom associated with the element K. Through this index
set, let us define the rectangular matrix AK containing only those rows from
the global matrix A that correspond to the index set I(K). Similarly, xK
and bK are the subvectors of x and b respectively, restricted to the element
K. Furthermore, we define the square matrix AK,K by dropping out all the
columns from the matrix AK that do not correspond to the index set I(K).
Using these notations, the LPSC preconditioner can be realized by applying the
defect correction elementwise as

xj+1
K = xjK − ω

jC−1
K (AKxj − bK), (7.46)

where ω > 0 is a damping parameter, and CK is an appropriate preconditioner
yet to be defined. In practice, above iteration is carried out in three steps:

1. Calculate the defect for the element K

defxK = (AKxj − bK). (7.47)

2. Solve the local system for yK

CKyK = defxK . (7.48)

Depending on the choice of the matrix CK , two types of the LPSC pre-
conditioners are defined

(a) Diagonal LPSC preconditioner

CK := diag(AK,K).
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(b) Full LPSC preconditioner

CK := AK,K .

The diagonal version is cheaper and faster, however, the full version is
more stable and robust. In both the cases, the resulting local problem is
of saddle point type and small; in 2D case, the system has 9 unknowns for
the Q̃1/Q0 space and 21 unknowns for the Q2/P

disc
1 space. These systems

can be feasibly solved either directly (e.g., with the LAPACK package [3])
or using the Schur complement decomposition [132].

3. Find the new iterate using the damping factor ω

xj+1
K = xjK − ω

jyK .

The calculated local degrees of freedom are updated successively in a Gauss-
Seidel manner, i.e., as soon as the local degrees of freedom are calculated in the
current patch, their new updated values are used for the calculations in the next
patch.

7.6.4 Adaptive step length control

After the solution of the linear system in nonlinear defect correction iteration
(line 5 in algorithm 7.1), the next step is to choose the appropriate damping
factor ω̃k to ensure the stabilization and acceleration of the numerical solver.
This optimal damping parameter is determined such that the error between the
new iterate xk+1 and the exact solution is minimized in the Euclidean norm.
This means that ω̃k should satisfy

ω̃k = min
ω
‖T (xk + ωδxk)(xk + ωδxk)− f‖E . (7.49)

Above equation is a one-dimensional nonlinear optimization problem in variable
ω; to solve it we linearize the fully nonlinear operator T (xk +ωδxk) using ω̃k−1

from the previous iteration and solve the resulting linear minimization problem
as follows:

1. On the finest level, build the global matrix T at point xk + ω̃k−1δxk, i.e.,

T (xk + ω̃k−1δxk) =

(
Sk BT

B 0

)
,

where Sk = A +N(uk + ω̃k−1δuk).

2. Calculate optimal damping parameter ω̃k as follows:

ω̃k =

〈
Tδxk, f − Txk

Tδxk, T δxk

〉
E

,

where 〈., .〉E is the Euclidean scalar product.

3. Calculate the new iterate using equation (7.35)

xk+1 = xk + ω̃kδxk.
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This completes the description of the main components of the coupled MLKM
solver. Of course, other several possible ingredients can be added to the solver,
however, they have been omitted for the sake of simplicity. For example,
a proper stabilization is crucial for the Navier-Stokes equations with higher
Reynolds numbers, since pure Galerkin FEM discretization, in this case, would
result in numerical oscillations thus leading to wrong solutions and convergence
problems for the numerical solver. Edge oriented jump stabilization, introduced
in the chapter (5) and used for the scalar convection dominated flows, will be
used for the Navier-Stokes problems involving higher Reynolds numbers. In the
next chapter, we present the numerical analysis of the proposed coupled MLKM
solver and study its efficiency and robustness for solving the Navier-Stokes equa-
tions.
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8
Numerical results for stationary

incompressible Navier-Stokes problem

Chapters 5 and 6 have presented the numerical description and analysis of the
MLKM solver for the scalar model problems. These scalar problems pose chal-
lenges for the numerical solvers that also arise in the case of more complicated
Navier-Stokes equations. For instance, the numerical instabilities observed in
a convection-diffusion problem with high Peclet numbers, also exist in Navier-
Stokes equations with high Reynolds numbers. Similarly, the convergence issues
faced by numerical solvers while solving scalar problems on anisotropic meshes,
are also exhibited when Navier-Stokes equations are solved on such meshes.
In this chapter, we numerically analyze the coupled multilevel Krylov subspace
solver, presented in the previous chapter, for the solution of Navier-Stokes equa-
tions, and see how robustly it can handle these numerical challenges and com-
pare its performance with other coupled solvers in FEATFLOW software.

We have seen from the scalar elliptic problems that in hard numerical setups
(highly convective or highly anisotropic situations), MLKM solver performed
better than multigrid solver when Jacobi or Gauss-Seidel are used as precondi-
tioner/ smoother. Whereas, multigrid with ILU(0) smoothing has shown better
convergence rates than MLKM/ILU(0) solver in some cases. However, the in-
complete factorization is known to have high failure rates when applied to the
indefinite systems arising from the discretization of Navier-Stokes equations
[120]. The presence of zeros on the diagonal of these indefinite systems makes
the incomplete factorization nonexistence in many cases. Even if the incomplete
LU factorization does exist, the triangular solves are quite frequently highly un-
stable or too inaccurate to produce satisfactory convergence rates. The LPSC
preconditioner, which always exists for such indefinite systems, can be consid-
ered as a local block Jacobi or block Gauss-Seidel preconditioner. Based on our
experience from the scalar problems, we expect that the coupled MLKM solver
preconditioned with LPSC preconditioner will be more robust for the solution
of Navier-Stokes equations as compared to the coupled multigrid solver with
LPSC as smoother.

Following the precedent set by the scalar test problem cases, we first validate
our monolithic coupled MLKM solver by solving the Navier-Stokes equations on
standard benchmark problems. The solver is tested using both conforming and
nonconforming finite elements, and the numerical results are compared with the
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already published results in the literature. Next, we perform numerical exper-
iments to see which parameters of our linear solver influence the convergence
behavior of the monolithic coupled MLKM solver and choose optimal values for
these parameters.

Finally, the benchmark problems are solved for a range of Reynolds numbers
on the meshes with increasing aspect ratios, to analyze the robustness of the
proposed solver numerically. The solver robustness is checked and compared
with other solvers like multigrid and UMFPACK, with respect to the following
two key points:

• How does the solver behave, in comparison with other solvers, in view
of the increasing nonlinearity (occurring due to the increasing Reynolds
number) in the problem?

• How does the increase in anisotropy in the spatial mesh influences the
solver convergence behavior in comparison with the other methods?

We also compare the time taken by the solvers to reach the stopping criterion,
as an indication of the overall efficiency comparison of the solvers. These tests
are performed for both conforming and nonconforming finite elements and using
the fixed point as well as Newton nonlinear iterations.

8.1 Numerical Validation

This section is dedicated to the validation of the code, which is a crucial step
in the development of new numerical methods. To validate our code, we have
chosen two well-known benchmark problems from two different classes of flow
problems, namely enclosed flows and inflow/outflow type flows. Enclosed flows
have u.n = 0 everywhere on the boundary Γ, i.e., the flow does not cross
the boundaries of the domain. The nontrivial flow is generated by imposing a
nonzero tangential velocity at some part of the boundary. On the other hand,
inflow/outflow type flows are characterized by specifying

∫
Γ

u.n 6= 0.

8.1.1 Lid-driven cavity flow benchmark

Lid-driven cavity (LDC) flow is a well known enclosed flow type benchmark
problem, used by the scientific community to test and validate new numerical
techniques. Highly accurate numerical results are available in literature [65, 55,
26, 135, 37] for moderately high Reynolds numbers for the benchmark compar-
isons. Despite its geometric simplicity, the physics of the driven cavity fluid flow
involves recirculations, counter-rotating vortices formation, and point singular-
ities, which pose enormous challenges for numerical methods. A standard setup
of the problem involves producing a shear flow in the cavity by moving the up-
per wall at a constant speed. This flow configuration is akin to many industrial
applications such as coater for producing high-grade paper and photographic
films [1].

The problem domain in our numerical experiments consists of a unit square
Ω = (0, 1)2, with the Dirichlet boundary conditions prescribed on the whole
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boundary as follows: the top wall or lid is moved from left to right with a
constant velocity ux = 1, and a no-slip boundary condition is set on the side and
bottom walls of the cavity. The coarse grid consists of 16 quadrilaterals obtained
by the uniform refinement of a unit square. Table 8.1 shows the problem size at
various levels for both Q̃1/Q0 and Q2/P

disc
1 finite elements. The simulations are

DOF

Level Cells Q̃1/Q0 Q2/P
disc
1

4 1024 5248 11522

5 4096 20736 45570

6 16384 82432 181250

7 65536 328704 722946

8 262144 1312768 2887682

9 1048576 5246976 11542530

Table 8.1: LDC problem: Problem size at various mesh levels.

run for the constant viscosities of ν = 10−3 and ν = 2×10−4 which correspond to
Re = 1000 and Re = 5000 respectively. Streamline contours for the simulations
on mesh level 8 are presented in Figure 8.1. These streamline patterns exhibit
the physics of the flow inside the cavity, with the large primary vortex in the
middle and small counter-rotating secondary and tertiary vortices developing at
the corners as the inertia of the flow increases. At Reynolds number 1000, two
secondary vortices are visible at the two bottom corners of the cavity. Moreover,
if we look carefully at the contours for Re = 1000, the tertiary vortices are also
visible at the bottom corners, as also reported by Kumar et al. [123] at fine
grid resolutions. At Re = 5000, the primary vortex moves more towards the
geometric center, and the smaller vortices in the bottom corners grow in size
due to the increased inertia in the flow. It also exhibits a new secondary vortex
near the upper left corner.

Benchmark Numerical Quantities

As a quantitative measure for the comparison of our numerical results, we cal-
culate the total kinetic energy at each mesh level as

E =
1

2
‖u‖20,Ω, (8.1)

and compare our results with the other published results in the literature for
both nonconforming Q̃1/Q0 and conforming Q2/P

disc
1 finite elements. These

kinetic energy comparisons are presented in Tables 8.2 and 8.3, and as can be
seen, our solver results are consistent with the published results. The results also
reveal the fact that for highly nonlinear flows (Re = 5000), higher order finite
elements are necessary for obtaining the mesh converged solutions on reasonably
refined meshes. Figure 8.2 also shows that with higher order Q2/P

disc
1 finite

elements, the grid independent velocity profile is obtained on mesh refinement
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Figure 8.1: LDC problem: Streamlines for RE = 1000 (left) and RE = 5000
(right).

level as low as level 5, whereas, for the lower order Q̃1/Q0 finite elements the
mesh convergence is not achieved even at the mesh refinement level 9.

Re=1000 Re=5000

cells Present Ref. [135] Present Ref. [135]

4 4.2555E-02 4.2554E-02 4.7442E-02 4.7442E-02

5 4.2928E-02 4.2927E-02 4.5427E-02 4.5427E-02

6 4.3545E-02 4.3545E-02 4.3942E-02 4.3942E-02

7 4.4091E-02 4.4090E-02 4.4621E-02 4.4622E-02

8 4.4368E-02 4.4367E-02 4.5896E-02 4.5896E-02

9 4.4473E-02 4.4472E-02 4.6772E-02 4.6771E-02

Table 8.2: LDC problem: Comparison of kinetic energy with other published
results for Q̃1/Q0 finite element

Finally in addition to comparing the global quantity (total kinetic energy), we
also compare the local quantities (velocity component profiles) along the cutlines
passing through the geometric center of the cavity. u−velocity profile along the
vertical line and v − velocity profile along the horizontal line passing through
the geometric center of the cavity are plotted in figures 8.3 and 8.4, respectively.
Here also these profiles are in excellent agreement with that of the Ghia et al.[65]
and Erturk et al.[55].
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Re=1000 Re=5000

cells Present Ref. [37] Present Ref. [37]

4 4.5395E-02 4.8095E-02 5.9387E-02 6.1149E-02

5 4.4605E-02 4.4590E-02 4.9229E-02 4.9571E-02

6 4.4525E-02 4.4524E-02 4.7684E-02 4.7691E-02

7 4.4519E-02 4.4519E-02 4.7446E-02 4.7465E-02

8 4.4518E-02 4.4518E-02 4.7429E-02 4.7430E-02

Table 8.3: LDC problem: Comparison of kinetic energy with other published
results for Q2/P

disc
1 finite element

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RE=1000

x

V
el

o
ci

ty
M

ag
n

it
u

d
e

Q̃1/Q0

Lev 5

Lev 6

Lev 7

Lev 8

Lev 9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RE=5000

x

V
el

o
ci

ty
M

ag
n

it
u

d
e

Q̃1/Q0

Lev 5

Lev 6

Lev 7

Lev 8

Lev 9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RE=1000

x

V
el

o
ci

ty
M

ag
n

it
u

d
e

Q2P1

Lev 5

Lev 6

Lev 7

Lev 8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RE=5000

x

V
el

o
ci

ty
M

ag
n

it
u

d
e

Q2P1

Lev 5

Lev 6

Lev 7

Lev 8

Figure 8.2: LDC problem: Velocity magnitude profiles at a horizontal line
passing through the geometric center.
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Figure 8.3: LDC problem: u-velocity profiles computed at a vertical line
passing through the geometric center
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Figure 8.4: LDC problem: v-velocity profile computed at a horizontal line
passing through the geometric center
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8.1.2 Flow around cylinder benchmark

The flow around a cylinder (FAC) is a benchmark based on the 1995 DFG
Priority Research Programme: “Flow Simulation on High Performance Com-
puters” [124, 132]. The problem consists of simulating and analyzing the flow
behavior of an incompressible Newtonian fluid past the circular obstacle placed
at right angle to the oncoming fluid in a rectangular channel. The Kinematic
viscosity of the fluid is taken as ν = 10−3 m2/s and the density of the fluid
as ρ = 1.0 kg/m3. The problem domain consists of the rectangular channel of
height H = 0.41 m and length L = 2.2 m, with a circular cylinder of radius
r = 0.05 m placed at the position (0.2,0.2), as shown in figure 8.5. The domain

2.2m

0.16m

0.15m
Inlet

0.20m

Outlet 0.41m

u = v = 0

u = v = 0

Umax

Figure 8.5: Geometry of flow around a cylinder problem

is subject to the following boundary conditions:

• No slip boundary condition (u = v = 0) is imposed on the upper wall (at
y = 0.41 m), lower wall (at y = 0.0 m) and on the boundary S of the
circular cylinder.

• Parabolic inflow boundary profile is imposed on the left wall as follows:

u(0, y) = 4Umax y(H − y)/H2, v(0, y) = 0

• The right wall is an outflow boundary and is subject to the “do nothing”
natural boundary condition

ν
∂u

∂n
− pn = 0

If the maximum velocity is taken as Umax = 0.3m/s, then the mean velocity of
the parabolic profile, which is also the characteristic velocity of the flow, comes
out to be

Umean =
2

3
Umax = 0.2.

The characteristic length L here is the diameter of the obstacle normal to the
flow direction, i.e., L = 2× 0.05 = 0.1m. The resulting Reynolds number of the
flow is given by

Re =
UmeanL

ν
=

0.2× 0.1

10−3
= 20,

which corresponds to the laminar and stationary flow past the cylinder. The
domain is discretized using quadrilateral finite elements, and the hierarchy of
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fine meshes are obtained by the uniform mesh refinements, i.e., by joining the
midpoints of the opposite sides of each cell of the immediate coarse level mesh.
Figure 8.6 shows coarse mesh at level 1, and the number of cells and degrees of
freedom at various mesh levels for both Q̃1/Q0 and Q2/P

disc
1 finite elements.

Degrees of freedom

Level Cells Q̃1/Q0 Q2/P
disc
1

1 130 702 1534
2 520 2704 5928
3 2080 10608 23296
4 8320 42016 92352
5 33280 167232 367744
6 133120 667264 1467648
7 532480 2665728 5863936
8 2129920 10656256 23442432

Figure 8.6: FAC problem: Coarse mesh (top); Problem size at various mesh
levels (bottom).

Benchmark Numerical Quantities

We calculate drag and lift coefficients at the surface S of the cylinder as bench-
mark quantities, which are important quantities of interest in many real life
engineering applications. For instance, calculation of such quantities is critical
for the design of aircraft, automobiles, high-rise buildings and offshore struc-
tures, etc. Drag and lift coefficients are the dimensionless quantities defined
as

CD =
2

U2
meanL

∫
S

(ρν
∂ut
∂n

ny−pnx)dS, DL =
2

U2
meanL

∫
S

(ρν
∂ut
∂n

nx+pny)dS,

(8.2)
where ut is the tangential velocity and n = (nx, ny)T is the unit normal on
S. Nabh [107] has computed highly accurate results for CD and CL using high
order spectral methods, which are taken as reference results:

• Drag coefficient: CD = 5.57953523384

• Lift coefficient: CL = 0.010618948146
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The problem is solved with coupled MLKM solver on various mesh refinement
levels for both Q̃1/Q0 and Q2/P

disc
1 finite elements. For Q̃1/Q0 discretization,

edge oriented jump stabilization (stabilization parameter γ = 0.01) is used,
while higher order Q2/P

disc
1 finite element discretization solves the problem

without any stabilization. Figure 8.7 shows the velocity, pressure and stream
function contours for the solution at level 6 using Q2/P

disc
1 finite elements. Drag

and lift coefficient values at various mesh levels are compared with the published
results in the literature, see Tables 8.4 and 8.5. As can be seen, our results at
each level are in good agreement with the published results for both the finite
element discretizations used. Also, for both the discretizations, the solution
converges to the reference solution with the increase in the mesh refinements.

Figure 8.7: FAC problem: Velocity, pressure and stream function contours
for stationary flow at Re = 20.

Drag/ Lift

Lev. Present Ref.[109]

3 5.6102/ 0.008590 5.6186/ 0.008874

4 5.5935/ 0.009619 5.5901/ 0.010022

5 5.5841/ 0.010271 5.5823/ 0.010436

6 5.5808/ 0.010508 5.5803/ 0.010566

7 5.5799/ 0.010585 -

8 5.5796/ 0.010608 -

Table 8.4: FAC problem: Results for Q̃1/Q0 finite elements.
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Drag/ Lift

Lev. Present Ref.[37]

2 5.5456/ 0.00904 5.5424/ 0.00945

3 5.5671/ 0.01043 5.5672/ 0.01047

4 5.5761/ 0.01057 5.5761/ 0.01057

5 5.5786/ 0.01059 5.5786/ 0.01060

6 5.5793/ 0.01061 -

7 5.5795/ 0.01062 -

Table 8.5: FAC problem: Results for Q2/P
disc
1 finite elements.

8.2 Influence of solver parameters on the perfor-
mance of coupled MLKM solver.

Coupled MLKM solver presented in the previous chapter involves some solver
parameters. In this section, we study the effect of these parameters on the con-
vergence behavior of the solver. Numerical experiments are performed by fixing
all the parameters of the solver except one parameter, and then simulations are
run for a range of values of this parameter. The purpose of these experiments is
two-fold: first to see how sensitive our coupled MLKM solver performance is to
the change in values of a certain parameter, and second to choose the optimal
value of this parameter (optimal in a sense that the overall cost of the coupled
MLKM solver is minimized). As a test problem for these experiments, we have
considered a lid-driven cavity flow problem with Re = 1000, discretized using
Q̃1/Q0 finite elements. Coupled MLKM solver with a damped full Vanka or full
LPSC preconditioner (ω̄ = 0.7) is used to solve this test problem. In all the
numerical results presented in this section, the absolute stopping criterion for
the outer nonlinear iteration is set to εNL = 10−10, where εNL is the norm of the
nonlinear defect vector. Moreover, the shift scale parameter ω of the MLKM
solver is set equal to 1.0.

8.2.1 Number of FGMRES iterations at each level

As mentioned previously in chapter 4, one iteration of MLKM solver is con-
figured with three numeric letters in the brackets. If lmax is the finest mesh
refinement level on which the problem is solved and lmin is the minimum mesh
refinement level, then MLKM(x, y, z) means one iteration of MLKM solver in-
volves:

• x number of FGMRES iterations at level (lmax − 1).

• y number of FGMRES iterations at all levels between (lmax−1) and lmin.

• z number of FGMRES iterations at the coarsest level lmin.
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The test problem is solved using various FGMRES iterations configurations of
the MLKM solver. Fixed point is used as a nonlinear iteration, and the linear
solver is set to gain one digit at each outer nonlinear iteration. Approximate
maximum eigenvalue in MLKM solver is taken as λmax = 1.0. Figure 8.8
shows the convergence behavior of the solver for various FGMRES iterations
configurations at the mesh refinement level 7.

The top-left graph in the Figure 8.8 with title MLKM(x,2,2) shows the effect
of changing the number of FGMRES iterations at level (lmax − 1) while keep-
ing the number of FGMRES iterations at all the other coarse levels fixed. As
can be seen, for the MLKM(2,2,2) configuration, the convergence of solver is
slightly deteriorated, indicating that with only two FGMRES iterations at level
(lmax − 1), the related Galerkin system solve is not accurate enough. Doubling
these iterations improves the convergence rate of the solver, however, increas-
ing the iterations beyond four at this level produces no more improvement in
the convergence rates. The other two graphs in this figure (top-right and bot-
tom) show that convergence of solver is not affected by the accuracy of the
solutions at the rest of the coarse levels. Although the convergence behavior
of MLKM(4,2,2) and MLKM(4,2,5) is almost identical (see also Table 8.6), we
choose MLKM(4,2,5) configuration as our optimal choice because of its slightly
improved convergence at fine meshes and almost similar computational costs as
that of MLKM(4,2,2).

This convergence behavior of coupled MLKM is very much similar to the one
reported by Erlangga and Nabben in [54] for the scalar Poisson problem. How-
ever, in their results, the grid levels are fixed to five, with the minimum level
increasing with the increase in the finest mesh level. In our case, the coars-
est mesh level is always fixed. Moreover, they solve the Galerkin problem at
the coarsest grid exactly, whereas, in our case, this system is solved with few
FGMRES iterations.

MLKM(4,2,2) MLKM(4,2,5)

Lev. NL/MLKMtotal Time NL/MLKMtotal Time

5 27/109 5.9 26/105 5.8

6 20/79 17.9 20/79 18

7 17/67 69.5 16/63 65.9

Table 8.6: Performance comparison of two MLKM configurations for solving
LDC problem at Re = 1000

8.2.2 Approximate maximum eigenvalue

In this subsection, we solve the test problem using various values of approxi-
mate maximum eigenvalue (λmax) to see the effect of λmax on the convergence
behavior of the solver. The following MLKM configuration is used for these
numerical experiments: MLKM(4,2,5), fixed point as a nonlinear iteration, and
εlin=10−1 as a stopping criterion for the linear iteration. Table 8.7 depicts the
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Figure 8.8: Convergence behavior of the solver for various MLKM configurations
to solve LDC problem (Re = 1000) at level 7. Total linear solver iterations on
the horizontal axis and nonlinear defect with logarithmic scale on vertical axis.

convergence behavior of the solver by presenting the number of iterations re-
quired for convergence for different values of λmax. Here NL represents the
total number of nonlinear iterations and MLKMavg. represents the average lin-
ear iterations taken per nonlinear iteration. The results show that the solver is
not very sensitive to the value of λmax and mesh size independent convergence
is achieved for a range of values of λmax (0.8− 1.4). We take λmax = 1.0 as our
optimal choice of the approximated maximum eigenvalue.

8.2.3 Linear solver stopping criterion

Next, we study the effect of the linear solver stopping criterion(εlin) on the
convergence properties and efficiency of the fixed point and Newton nonlinear
iterations. To this end, we employ MLKM(4,2,5) with λmax = 1.0 as a linear
solver and solve the test problem on mesh level 7 for different values of the εlin.
In figure 8.9, the norm of the defect is plotted at each nonlinear iteration to see
the convergence behavior of the nonlinear solvers. With the fixed point nonlin-
ear iteration (left), all the defect reduction curves for the coupled MLKM solver
are almost identical, which means that the global convergence of the solver in
this case is not influenced by the linear solver stopping criterion. Moreover, as
expected the defect reduces linearly for the fixed point iteration. The conver-
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PERFORMANCE OF COUPLED MLKM SOLVER.

Iterations (NL/MLKMavg.)

Lev./λmax 0.6 0.8 1.0 1.2 1.4

5 27/13 26/5 26/4 27/4 27/5

6 21/20 21/4 20/4 22/4 23/4

7 18/13 18/4 16/4 17/4 18/4

Table 8.7: Effect of approximate maximum eigenvalue on the convergence be-
havior of the coupled MLKM solver for LDC problem at Re = 1000.

gence of the Newton iteration (right) is quadratic for the case εlin = 10−10,
however, it becomes linear for εlin = 10−1. For εlin = 10−2, the convergence is
quadratic in the beginning, and becomes linear in the last two iterations, since
the residual becomes very small in the last two iterations and reaches the region
of linear convergence.

In Table 8.8, the number of iterations and the time (in seconds) taken by the
solvers to reach the convergence are compared for the above numerical experi-
ments. Here NL means the total number of nonlinear iterations and MLKMTotal

the total number of linear iterations. The table reveals the fact that for fixed
point iteration, gaining only one digit in linear iteration is computationally more
economic than gaining two or more digits. Hence, for fixed point iteration, we
take εlin = 10−1 as our optimal choice of linear solver stopping criterion. In case
of Newton solver, although εlin = 10−10 produces quadratic convergence, how-
ever, linear solver requires much more iterations to satisfy the stopping criterion,
and as a consequence, the CPU times are very high. We take εlin = 10−2 as our
optimal choice due to the fast convergence of the linear solver in this case. Al-
though εlin = 10−1 results in minimum linear solver iterations for this problem,
for higher nonlinear flows the linear solver with such weak stopping criterion
will not result in minimum iterations, or it may even lead to the divergence of
nonlinear Newton solver.
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Figure 8.9: Convergence behavior of coupled MLKM solver for different lin-
ear solver stopping criteria. Standard fixed point iteration(left) and Newton
iteration (right).
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Fixed Point Newton

εlin NL MLKMTotal Time NL MLKMTotal Time

10−1 16 63 66 6 25 51

10−2 16 120 89 4 31 51

10−10 16 554 266 3 104 128

Table 8.8: Number of nonlinear iterations and CPU times (in seconds) of coupled
MLKM solver using fixed point and Newton nonlinear iteration, for various
linear solver stopping criteria.

We conclude this section by presenting the “optimal” configuration of the cou-
pled MLKM as follows:

• MLKM(4,2,5)

• Shift scale parameter, ω = 1.0.

• Approximate maximum eigenvalues λmax = 1.0.

• εlin = 10−1 (for fixed point iteration), εlin = 10−2 (for Newton iteration).

This configuration of coupled MLKM solver is used in the numerical experiments
presented in the later sections of this chapter unless otherwise mentioned.

8.3 Numerical comparison of monolithic MLKM solver
with other monolithic solvers

In this section, we present the numerical comparison of our monolithic MLKM
solver with other monolithic solvers available in FEATFLOW software, namely
multigrid and UMFPACK solvers. For these comparative studies, once again
we choose two benchmark problems, one from the enclosed flow category (lid-
driven cavity flow problem) and other from the inflow/ outflow category (flow
around a square obstacle). We make these problems numerically harder and
more challenging by solving them for a range of Reynolds numbers on spatial
meshes with increasingly higher aspect ratios. We compare the robustness of
the solvers by looking at their convergence behavior against:

• The increase in the nonlinearities in the flow.

• The increase in the anisotropies of the spatial mesh.

We show the number of iterations to convergence (total nonlinear iterations/
average linear iterations per nonlinear iteration) as an indicator of the conver-
gence behavior of the solvers. We also present the total CPU time elapsed as
an indicator of the overall efficiency of these solvers. This total CPU time in-
cludes all the times taken during pre-processing, matrix generation, solution
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phase and the post-processing phase. All tests for such CPU time measurement
and comparison are performed on Intel Xeon E5-26700 processor with 2.6 GHz
frequency.

The solvers are required to satisfy the following stopping criteria on the nonlin-
ear and linear iterations:
Nonlinear solver stopping criteria:

• Absolute residual for the momentum equation = 10−8

• Absolute residual for the continuity equation = 10−8

• Maximum relative changes for the velocity u = 10−5

• Maximum relative changes for the pressure p = 10−3

Linear solver stopping criteria:

• The relative change in the residual εlin = 10−1 (for fixed point iteration)
and εlin = 10−2 (for Newton iteration).

8.3.1 Numerical results for lid-driven cavity flow

Lid-driven cavity flow problem as described in section (8.1.1) is solved on the
anisotropic meshes. The coarsest level mesh used by the multilevel solvers is
shown in figure 8.10. Anisotropy in the mesh is increased by moving the hori-
zontal and vertical lines neighboring the boundary, further closer to the bound-
ary. Mesh at the next refinement level is achieved by joining the midpoints of
the opposite sides of each cell in the coarse mesh. The domain is discretized
using the nonparametric finite elements quadrilaterals, once using the noncon-
forming Q̃1/Q0 finite elements and once using the conforming Q2/P

disc
1 finite

elements. Edge-oriented jump stabilization is used to stabilize less smooth prob-
lems. MLKM solver with full Vanka preconditioner and optimal configuration
is used to solve the problem. Multigrid with F-cycle, 4 pre- and post-smoothing
steps of full Vanka smoother, and UMFPACK as a coarse grid solver is used.
Results are shown for the solvers using both fixed point and Newton methods.

Tables 8.9-8.12 compare the performance of solvers for Q̃1/Q0 discretization
by presenting the number of solver iterations to convergence. Table 8.9 shows
the results on a regular isotropic mesh with an aspect ratio (AR) equals one.
On such a regular mesh, both MLKM and multigrid solvers show mesh width
independent convergence behavior. Furthermore, both coupled solvers also show
Reynolds number independent convergence on such meshes. However, as soon
as the anisotropy is introduced into the mesh, the multigrid solver shows serious
convergence issues, and the solver breaks down. Even with the higher number
of smoothing steps, we could not find any configuration of the multigrid solver
that can solve the problem on anisotropic meshes.

On the other hand, MLKM solver can robustly handle the mesh anisotropies
and produce convergent results for both the fixed point method and the Newton
method. Although the convergence behavior of the MLKM solver is adversely
affected by the increase in the grid anisotropy, the solver produces grid size
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Figure 8.10: LDC flow: Mesh at the coarse level. “Regular mesh” with aspect
ratio = 1 (left), anisotropic mesh with aspect ratio = 6 (right).

independent convergence rates, even on meshes with large anisotropies. Another
interesting observation is that the convergence rate of the MLKM solver is in
fact improved with the increase in the mesh refinement levels.

Tables 8.13-8.16 present results for the Q2/P
disc
1 discretization. Here again on

a regular mesh (Table 8.13), all the solvers produce mesh width independent
convergence rates. Nevertheless, multigrid with Newton as a nonlinear iteration
fails to converge for Re = 2000, whereas, MLKM solver for a similar numerical
situation not only converges but also produces convergence rates independent
of the mesh size. This shows the superior robust behavior of the MLKM solver
over the multigrid solver. On anisotropic meshes again multigrid solver diverges,
while MLKM solver produces converged results.

Results also reveal the fact that on anisotropic grids Q̃1/Q0 discretization is
more efficient as compared to the higher order Q2/P

disc
1 discretization, when

solving low Reynolds number flows on highly stretched meshes (see Tables 8.12
and 8.16). The reason for this behavior is that for the case of Q̃1 element we
are using nonparametric version of the finite element. In nonparameteric finite
element, the shape functions are defined independently on each physical ele-
ment instead of the reference element. Such ansatz are robust with repect to
the shape of the element, and hence the effect of the mesh anisotropy is minimal
in this case. On the other hand, for the biquadratic Q2 finite element, the non-
parametric shape function is quartic along an edge that is not aligned with the
coordinate axis, and therfore, cannot be uniquely defined with its value at three
points on the edge. This will result into a broken element which is not contin-
uous with the adjacent element. To circumvent this difficulty, the parametric
finite elements with the shape functions defined on the reference element are
used. The shape functions are then mapped back to the general elements using
isoparamteric transformations. These mapped shape functions are quadratic
along an element edge, and connect continuously to the adjacent element. How-
ever, the transformations from the reference element to the highly anisotropic
meshes result in ill-conditioned matrices, which explains the poor convergence
of MLKM solver for the case of conforming Q2/P1 finite elements. Many impor-
tant engineering applications require solution of such low Reynolds number flows
on anisotropic meshes, such as modeling of fluid flow in microelectromechanical

116



8.3. NUMERICAL COMPARISON OF MONOLITHIC MLKM SOLVER
WITH OTHER MONOLITHIC SOLVERS

systems (MEMS), and analysis of hydraulic performance of ventricular assist
devices[110]. Our numerical experience suggests that lower order discretization
such as Q̃1/Q0 should be the preferred choice for such applications, with coupled
MLKM/fixed point as a numerical solver.

Another observation is that the effect of anisotropy is more pronounced in the
case of low Reynolds number flows, while for the high Reynolds number flows
the effect of anisotropy is not that significant. We can see from the results
for fixed point linearization in Table 8.16, MLKM takes much less linear solver
iterations for Re = 2000 than the number of linear solver iterations for Re = 1.
The reason for this behavior is that anisotropy hits diffusion term harder than
the convection term; since diffusion is more dominant in low Reynolds number
flows, the discretized system in this case is more ill-conditioned than that for
the highly convective flows. The high convection seems to stabilize the MLKM
solver. Moreover, with the mesh refinements the 2nd order ‘elliptic’ diffusion
operator becomes more dominant, we can observe the convergence rates of the
MLKM solver become worse with mesh refinements.

The performance of the MLKM/Newton solver for solving high Reynolds num-
ber flows on isotropic grids is as expected, with quadratic convergence in the
nonlinear iterations while having similar convergence rates of the linear solver
as that for the fixed point iteration case. Therefore, the MLKM/Newton solver
takes much less total linear solver iterations than the MLKM/fixed point solver.
However, the performance of the MLKM/Newton solver for solving highly con-
vective flows on anisotropic grids is not very convincing. Hence, for solving flow
problems involving high Reynolds numbers and highly anisotropic meshes, we
recommend Q2/P1 discretization over Q̃1/Q0 and MLKM/fixed point solver
over MLKM/Newton.

One question may arise that since the nonlinearity in the problem depends only
on the Reynolds number, why in the results number of nonlinear iterations
increase with the increase in the mesh anisotropy for a fixed Reynolds number?
The answer to this question is that the anisotropic mesh is taken arbitrarily to
make the problem harder for the numerical solvers, and is not adapted to the
underlying solution. When the resulting linear system is solved with just one
digit gain, it does not provide adequate correction to the nonlinear solution,
and nonlinear solver has to do more work (more iterations) to reach to the
convergence. If the linear solver stopping criterion is made more strict on the
anisotropic grids, the number of nonlinear iterations to convergence are reduced.

Moreover, numerical results also depict that the convergence rates of Umfpack
solver are not affected by either the mesh size, the mesh anisotropy, or the choice
of finite element discretization. However, the huge memory requirements and
computational costs of the solver make it unsuitable for the problems involving
a higher number of unknowns, which is the case for most real life simulations.
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Umfpack Multigrid MLKM

Lev Fixed Pt. Newton Fixed Pt. Newton Fixed Pt. Newton

Re = 1
5 3/1 3/1 6/1 3/2 8/4 4/7
6 3/1 3/1 5/1 3/2 8/4 4/7
7 ** ** 5/1 3/2 7/4 4/7
8 ** ** 5/1 3/2 7/4 4/7

Re=1000
5 18/1 4/1 18/2 5/5 18/4 4/8
6 ** ** 15/2 5/4 14/4 4/8
7 ** ** 12/1 4/3 12/4 4/8
8 ** ** 10/1 5/3 11/4 4/8

Re=2000
5 33/1 5/1 33/2 5/6 28/5 5/13
6 ** ** 22/2 4/7 21/5 4/9
7 ** ** 17/2 5/7 17/4 4/8
8 ** ** 14/1 5/6 16/4 4/8

**: Out of memory; *: Solver diverged

Table 8.9: LDC flow: Performance comparison of solvers on a grid with AR=
1 and Q̃1/Q0 discretization.

Umfpack Multigrid MLKM

Lev Fixed Pt. Newton Fixed Pt. Newton Fixed Pt. Newton

Re = 1
5 3/1 3/1 7/86 5/159 9/4 5/8
6 3/1 3/1 6/67 5/120 8/4 4/8
7 ** ** 6/67 4/100 8/4 5/8
8 ** ** 6/100 4/100 8/5 4/9

Re=1000
5 19/1 5/1 * * 18/5 5/13
6 ** ** * * 16/5 4/12
7 ** ** * * 14/5 4/10
8 ** ** * * 14/5 4/9

Re=2000
5 25/1 6/1 * * 24/7 6/19
6 ** ** * * 20/6 4/16
7 ** ** * * 16/5 4/13
8 ** ** * * 17/5 4/11

**: Out of memory; *: Solver diverged

Table 8.10: LDC flow: Performance comparison of solvers on a grid with AR=
6 and Q̃1/Q0 discretization.
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Umfpack Multigrid MLKM

Lev Fixed Pt. Newton Fixed Pt. Newton Fixed Pt. Newton

Re = 1
5 3/1 3/1 * * 10/7 5/12
6 3/1 2/1 * * 10/7 5/13
7 ** ** * * 10/7 5/14
8 ** ** * * 10/7 5/15

Re=1000
5 21/1 5/1 * * 27/7 6/23
6 ** ** * * 19/7 5/22
7 ** ** * * 14/7 4/19
8 ** ** * * 13/7 5/17

Re=2000
5 21/1 6/1 * * 34/9 6/36
6 ** ** * * 23/10 5/34
7 ** ** * * 20/8 5/25
8 ** ** * * 21/6 5/20

**: Out of memory; *: Solver diverged

Table 8.11: LDC flow: Performance comparison of solvers on a grid with AR=
12 and Q̃1/Q0 discretization.

Umfpack Multigrid MLKM

Lev Fixed Pt. Newton Fixed Pt. Newton Fixed Pt. Newton

Re = 1
5 3/1 3/1 * * 10/14 5/30
6 3/1 3/1 * * 11/17 5/32
7 ** ** * * 11/15 5/30
8 ** ** * * 10/16 5/32

Re=1000
5 24/1 6/1 * * 25/11 6/51
6 ** ** * * 20/10 5/41
7 ** ** * * 17/11 5/37
8 ** ** * * 17/11 5/36

Re=2000
5 28/1 12/1 * * 36/18 12/119
6 ** ** * * 25/18 6/79
7 ** ** * * 25/12 6/70
8 ** ** * * 25/13 6/42

**: Out of memory; *: Solver diverged

Table 8.12: LDC flow: Performance comparison of solvers on a grid with AR=
24 and Q̃1/Q0 discretization.
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Umfpack Multigrid MLKM

Lev Fixed Pt. Newton Fixed Pt. Newton Fixed Pt. Newton

Re = 1

5 4/1 3/1 5/1 3/2 7/4 4/7

6 3/1 ** 5/1 3/2 7/4 4/7

7 ** ** 5/1 3/2 8/4 4/7

Re=1000

5 12/1 4/1 12/2 4/5 14/6 4/12

6 ** ** 10/1 4/3 13/5 4/9

7 ** ** 7/1 4/2 12/5 4/7

Re=2000

5 19/1 4/1 19/3 * 19/8 5/19

6 ** ** 15/2 * 16/5 4/13

7 ** ** 11/2 * 16/5 4/9

**: Out of memory; *: Solver diverged

Table 8.13: LDC flow: Performance comparison of solvers on a grid with AR=
1 and Q2/P

disc
1 discretization.

Umfpack Multigrid MLKM

Lev Fixed Pt. Newton Fixed Pt. Newton Fixed Pt. Newton

Re = 1

5 3/1 3/1 7/87 4/199 9/9 5/18

6 3/1 ** * * 9/10 5/19

7 ** ** * * 9/10 5/20

Re=1000

5 8/1 4/1 * * 16/6 5/23

6 ** ** * * 12/6 4/16

7 ** ** * * 12/6 4/18

Re=2000

5 15/1 4/1 * * 47/8 7/52

6 ** ** * * 30/6 5/28

7 ** ** * * 16/5 5/18

**: Out of memory; *: Solver diverged

Table 8.14: LDC flow: Performance comparison of solvers on a grid with AR=
6 and Q2/P

disc
1 discretization.
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Umfpack Multigrid MLKM

Lev Fixed Pt. Newton Fixed Pt. Newton Fixed Pt. Newton

Re = 1

5 3/1 2/1 * * 10/17 5/35

6 ** ** * * 10/21 5/45

7 ** ** * * 10/24 5/49

Re=1000

5 14/1 3/1 * * 15/9 5/41

6 ** ** * * 14/9 5/47

7 ** ** * * 14/10 4/49

Re=2000

5 14/1 4/1 * * not conv. 5/88

6 ** ** * * 40/7 5/59

7 ** ** * * 19/8 5/42

**: Out of memory; *: Solver diverged

Table 8.15: LDC flow: Performance comparison of solvers on a grid with AR=
12 and Q2/P

disc
1 discretization.

Umfpack Multigrid MLKM

Lev Fixed Pt. Newton Fixed Pt. Newton Fixed Pt. Newton

Re = 1

5 3/1 2/1 * * 10/28 5/54

6 ** ** * * 10/42 5/80

7 ** ** * * 11/51 5/100

Re=1000

5 11/1 3/1 * * 15/19 6/58

6 ** ** * * 14/21 5/77

7 ** ** * * 14/22 5/100

Re=2000

5 19/1 4/1 * * 55/16 8/141

6 ** ** * * 40/11 6/92

7 ** ** * * 22/14 6/109

**: Out of memory; *: Solver diverged

Table 8.16: LDC flow: Performance comparison of solvers on a grid with AR=
24 and Q2/P

disc
1 discretization.
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8.3.2 Stationary channel flow around a square

This numerical test is very similar to the DFG benchmark flow around cylinder
problem, where the circular obstacle in the channel is replaced with the square
one. This enables us to easily introduce anisotropies in the mesh, with the aim to
study the robustness behavior of various monolithic Navier-Stokes solvers. The
problem domain comprises a rectangular channel of height H = 0.75 m and
length L = 1.8 m, with a square obstacle of side s = 0.1 m placed at right angle
to the flow inside the channel. The square is positioned with its center at the
point (0.45, 0.35). No slip boundary conditions are imposed on the upper and
lower walls of the channel and the boundary of the square obstacle. A parabolic
inflow profile with a maximum velocity Umax = 1.0 m/s is provided at the left
boundary, and the right wall is taken as an outflow boundary imposed with do
nothing natural boundary condition. We consider an incompressible Newtonian
fluid with constant density ρ = 1.0 kg/m3, and the numerical tests are run
for various values of Kinematic viscosity parameter ν = {1/5, 1/50, 1/500}.
All these numerical tests produce laminar and stationary flow past the square
cylinder.

Q̃1/Q0 finite element quadrilaterals are used for the discretization of the domain,
along with the edge oriented jump stabilization for the unsmooth problems.
Figure 8.11 shows the coarse mesh at level 1 with moderately anisotropic mesh
of aspect ratio 10; the meshes at the refined levels are obtained by joining the
opposite midpoints of each cell of the immediate coarse mesh. Meshes with
higher anisotropies are obtained by increasing the aspect ratio of the innermost
elements around the square and keeping all the other elements in the mesh
unchanged. This problem has also been solved in [132], and our calculated drag
and lift values are in good agreement with this work (see Table 8.17).

Level Cells Degrees of freedom

1 86 466
3 1,376 7,024
4 5,504 27,808
5 22,016 110,656
6 88,064 441,472

Figure 8.11: FAS problem: Coarse mesh with AR ∼ 10 (top); Problem size
at various mesh levels (bottom).
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In Tables 8.18-8.20, we show the results of monolithic MLKM and MG solvers
with fixed point method as nonlinear iteration, for solving stationary Navier-
Stokes equation on meshes with aspect ratios AR = {10, 20, 40}. Our numerical
results have shown that MLKM (2,2,5) is the best configuration for these prob-
lems, and an increase in the number of FGMRES iterations at any level does
not improve the convergence behavior of the solver. All the other numerical
settings of the MLKM solver remain the same as described in the LDC flow
problem. Similarly, all the numerical configurations of the MG solver are the
same as that used in the LDC flow problem, except for the number of smooth-
ing steps. Unlike LDC flow problem, in the case of flow around a square (FAS)
problem, increasing the number of smoothing steps produces converged results
for the MG solver on the stretched grids.

The results show that on a moderately anisotropic mesh with aspect ratio 10,
both linear solvers produce (almost) mesh width and Reynolds number inde-
pendent convergence behavior. On meshes with higher aspect ratios, MG with
4 smoothing steps breaks down. Our numerical experience showed that if the
aspect ratio in the grid is doubled, smoothing steps need to be increased 4 times
to get the converged results with the MG solver. Even with such an increase
in smoothing steps, we can see from the Table 8.18, MG with 64 smoothing
steps on a grid with aspect ratio 40, the solver diverged for Reynolds number
500 on mesh refinement level 6. On the other hand, MLKM(2,2,5) successfully
produces converged results on the grids with higher aspect ratios. Although the
ideally desired mesh size independent convergence behavior of MLKM solver is
lost, the total CPU time of the MLKM solver is still less than that of MG solver,
for most cases.

Lev MLKM Ref.[132]

Re = 5
3 5.0462+1 / 0.1297+1 4.8239+1 / 0.1241+1
4 5.1685+1 / 0.1329+1 5.0098+1 / 0.1292+1
5 5.2100+1 / 0.1341+1 5.1009+1 / 0.1316+1
6 5.2250+1 / 0.1345+1 5.1507+1 / 0.1330+1

Re = 50
3 6.0601+0 / 0.2029-0 6.0175+0 / 0.1904-0
4 6.1880+0 / 0.2070-0 6.0820+0 / 0.2000-0
5 6.2306+0 / 0.2091-0 6.1274+0 / 0.2047-0
6 6.2461+0 / 0.2100-0 6.1651+0 / 0.2072-0

Re = 500
3 1.7955+0 / -0.1235-1 1.7795+0 / -0.7125-2
4 1.7279+0 / -0.6910-2 1.7195+0 / -0.5231-2
5 1.6974+0 / -0.4840-2 1.6843+0 / -0.4375-2
6 1.6886+0 / -0.4090-2 1.6733+0 / -0.4459-2

Table 8.17: FAS problem: Comparison of the calculated drag and lift values
on a mesh with AR = 10 with the reference results.
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Multigrid (4)∗ MLKM (2,2,5)

Lev Iterations Time Iterations Time

Re = 5
3 5/2 0.31 7/5 0.30
4 5/2 0.74 7/5 0.99
5 6/2 3.15 6/7 3.74
6 5/2 12.38 6/7 16.24

Re= 50
3 7/1 0.33 8/6 0.35
4 6/2 0.83 7/6 1.08
5 5/2 2.81 6/6 3.78
6 4/2 10.78 6/7 16.60

Re= 500
3 15/2 1.50 15/7 1.31
4 12/2 4.72 13/6 4.43
5 12/2 19.89 11/6 14.98
6 11/2 77.50 10/7 62.58

*: Multigrid with 4 pre and post smoothing steps.

Table 8.18: FAS problem: Performance comparison of solvers on a grid with
AR = 10 and Q̃1/Q0 discretization.

Multigrid (16)∗ MLKM (2,2,5)

Lev Iterations Time Iterations Time

Re = 5
3 5/1 0.34 7/6 0.32
4 5/1 1.07 7/8 1.19
5 5/2 5.12 7/10 5.30
6 5/2 28.51 7/12 25.77

Re= 50
3 7/1 0.43 7/6 0.32
4 6/1 1.09 7/8 1.27
5 5/2 4.65 7/10 5.28
6 5/2 28.48 6/11 22.52

Re= 500
3 15/1 1.58 15/8 1.43
4 13/2 6.80 15/9 5.96
5 11/2 23.87 13/12 24.69
6 10/2 103.69 11/19 121.07

*: Multigrid with 16 pre and post smoothing steps.

Table 8.19: FAS problem: Performance comparison of solvers on a grid with
AR = 20 and Q̃1/Q0 discretization.
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Multigrid (64)∗ MLKM (2,2,5)

Lev Iterations Time Iterations Time

Re = 5
3 4/1 0.62 8/6 0.36
4 4/1 2.04 8/12 1.71
5 5/2 15.38 8/17 8.72
6 5/3 157.54 8/31 65.80

Re= 50
3 6/1 0.89 8/6 0.36
4 5/1 3.02 7/12 1.54
5 5/1 14.19 7/17 7.64
6 5/3 136.54 7/29 53.84

Re= 500
3 15/1 3.03 17/10 1.95
4 13/5 52.40 15/20 11.40
5 11/2 86.80 14/33 67.21
6 ** - 13/67 442.29

*: Multigrid with 64 pre and post smoothing steps.
**: Solver diverged.

Table 8.20: FAS problem: Performance comparison of solvers on a grid with
AR = 40 and Q̃1/Q0 discretization.
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9
Summary and outlook

We close this thesis by briefly summarizing the presented work and drawing
some conclusions from the conducted studies, and finally proposing possible
future extensions in work.

9.1 Summary and Conclusions

The focus of this work has been on the development, implementation and nu-
merical analysis of a new class of robust and efficient monolithic finite-element
multilevel Krylov subspace solvers for the numerical solution of stationary in-
compressible Navier-Stokes equations, using FEATFLOW software library. De-
veloping such a solution algorithm that possesses both the highly sort-after prop-
erties, namely robustness and efficiency, is not an easy task. Two most widely
used classes of iterative methods for the solution of incompressible Navier-Stokes
equations are preconditioned Krylov subspace solvers and multigrid methods.
Krylov subspace solvers are robust but in general not so fast; their convergence
rates deteriorate as the problem size increases due to the mesh refinements.
Multigrid methods are fast with the convergence rates independent of the prob-
lem size; however, they are not very robust and often face convergence issues.
An ideal solver for the Navier-Stokes equations is the one that is robust and
fast and produces convergence rates that are independent of the problem size,
mesh shape, and Reynolds number.

We have proposed a new monolithic multilevel Krylov subspace algorithm to
solve stationary incompressible Navier-Stokes equations using finite element
methods. Our solver is based on the multilevel projection-based Krylov sub-
space method proposed by Nabben and Erlangga [54] to solve the scalar partial
differential equations. In chapter 4, the working principle and the construction
of this method have been discussed in detail. The idea of this projection method
is to accelerate the convergence rate of the Krylov subspace solver by clustering
the small eigenvalues of system matrix, responsible for the slow convergence of
Krylov subspace solvers, around the largest one. Galerkin system related to
the linear system contains the information about these problematic eigenval-
ues. In [54], authors have used Galerkin coarse grid projection to represent the

Galerkin system, i.e., Ê = YT (AM−1)Z. A disadvantage of this approach is
that it requires explicit calculation of the inverse preconditioner matrix M−1 at
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every mesh level in the initialization phase of the algorithm. Such matrices are
in general dense, except for the Jacobi preconditioning; however the diagonal
preconditioning is not very efficient in most practical problems, and stronger
preconditioners are often required. Moreover, in the particular case of Navier-
Stokes equations, diagonal preconditioning is not applicable due to the presence
of zero diagonal block, and one has to look for other preconditioning possibil-
ities. Calculating and storing the dense M−1 matrices is very expensive, thus
making it impossible to use preconditioners other than Jacobi preconditioners
in the MLKM solver. Our implementation of MLKM solver in the FEATFLOW
software is different from the MLKM algorithm in [Erlangga2008]; it uses dis-
cretization coarse grid approximation to setup Galerkin matrices at the coarse
levels. The benefit of this approach is that the explicit calculation of the M−1

matrix is not required. Implementation of the MLKM solver in the context of
FEATFLOW software has been explained in detail in chapter 4 and its pseu-
docode is given in algorithm 4.3.

This implementation of MLKM algorithm gives the freedom of using any it-
erative method as a preconditioner in the MLKM solver. The solver becomes
more flexible in a sense that it can use weaker but faster preconditioners for
simple problems, and stronger but complicated preconditioners for more harder
and ill-conditioned problems. Jacobi, Gauss-Seidel, and ILU have been suc-
cessfully used as preconditioners to MLKM solver in this thesis to solve the
convection-diffusion and anisotropic diffusion problems. Similarly, local pressure
Schur complement techniques in combination with MLKM has resulted in a new
class of efficient and robust monolithic multilevel Krylov subspace solvers for
the stationary incompressible Navier-Stokes equations. Our monolithic MLKM
solver can be considered as an alternative to the already implemented monolithic
multigrid method in the FEATFLOW software.

MLKM combines the ideas of Krylov subspace solvers and MG methods. Like
Krylov subspace solvers, it extracts the solution by making projections on to
the Krylov subspaces; moreover, it uses grid hierarchies similar to the multigrid
methods, during the course of its action. Consequently, it inherits properties of
both the solver classes, i.e., robustness from the Krylov subspace solvers and effi-
ciency from the multigrid methods. The solver has been tested for the solution of
convection-diffusion problems, anisotropic diffusion problems, and incompress-
ible Navier-Stokes problems. Numerical studies presented in the thesis have
shown that MLKM solver produces level independent convergence rates, a typi-
cal trait of the MG methods. Numerical results have also revealed that MLKM
solver is more robust than the MG method towards handling the anisotropies in
the problem and solving the flows involving higher Peclet/ Reynolds numbers.

Numerical results for the convection-diffusion problem are presented in chapter
5. The problem is solved for various flow configurations, and the results show
that MLKM solver is robust with respect to the underlying flow configuration.
Numerical tests also show that MLKM solver worked equally fine with bilinear
as well as biquadratic finite elements, structured as well as unstructured grids.
High inertia flow simulations produce instabilities in the numerical solution,
leading to wrong solutions and convergence issues for numerical solvers; this
can be circumvented by using numerical stabilization techniques. In this work,
we have used edge-oriented jump stabilization to stabilize the convective terms,
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which has worked successfully with the MLKM solver. Numerical experiments
have also revealed that in comparison with the multigrid solver, MLKM solver
can more robustly solve the convection dominated problems. With the tested
smoothers/ preconditioners, MG is divergent for high Pe numbers, while MLKM
not only converged but also produced mesh-level and Peclet number independent
convergence rates.

Anisotropic diffusion problem results are shown in chapter 6, where the solver is
tested for operator-based as well as grid-based anisotropies. When the anisotropy
is aligned with the grid, MG/Jacobi solver is divergent whereas MLKM/Jacobi
is always convergent. MG/ILU(0) with suitable renumbering scheme produced
better convergence rates than MLKM/ILU(0) for grid aligned anisotropies; how-
ever, the computational costs of MLKM are of the same order as that of MG
solver, in this case. When the anisotropy is at an angle to the grid lines, MLKM
solver always produced convergence rates superior to that of the MG solver.

Finally, we presented the numerical results of our monolithic MLKM solver for
the solution of Navier-Stokes equations in chapter 8. The solution technique
is validated through a couple of well-known benchmark problems. For the lid-
driven cavity flow benchmark, the total kinetic energy and velocity component
profiles are calculated. In the second benchmark, drag and lift values are cal-
culated for the flow around a cylinder at Re = 20. These validation studies are
carried out using nonconforming Q̃1/Q0 and conforming Q2/P1 mixed finite el-
ement formulations. The results of benchmark studies for both the formulations
are found in excellent agreement with the previously published results in the
literature.

Further, numerical studies are conducted on a model problem to see the effect
of various solver parameters on the overall convergence behavior of the solver.
Based on these experiments, an optimal configuration of the coupled MLKM
solver is proposed. This optimal configuration of the MLKM solver is used for
the performance comparison studies with other monolithic solvers. To compare
the robustness of our monolithic MLKM solver with other existing monolithic
solvers in FEATFLOW, lid-driven cavity flow and flow around a square problems
are solved for a range of Reynolds numbers and grid anisotropies.

Numerical results for the lid-driven cavity flow have shown that on isotropic
meshes, both multilevel coupled solvers produced mesh parameter (h) and Re
independent convergence rates. Thus, MLKM solver is perfectly scalable on
isotropic meshes, i.e., the number of iterations does not scale with the increase
in the number of degrees of freedom. On anisotropic meshes MG is divergent,
and we could not find any converging MG configuration. On the other hand,
monolithic MLKM solver is always convergent and produced mesh size indepen-
dent convergence behaviors in most cases. In the case of flow around a square
problem, although convergence rates of monolithic MLKM solver are not mesh-
level independent, the overall CPU times to convergence of the MLKM solver
are still better than that for the MG solver.
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9.2 Outlook

We have established through code validations and performance comparison stud-
ies with the MG solver, that the new coupled MLKM solver is an efficient and
robust solution algorithm. We end this thesis by making some recommendations
for the possible future extensions of the presented work.

Application to non-Newtonian and non-isothermal problems The
monolithic multilevel Krylov subspace solver with local pressure Schur comple-
ment preconditioner provides a framework that can be applied to any problem
of the saddle point type. One possible extension of the present work can be to
apply the solver to more complex non-Newtonian or non-isothermal flows.

Governing equations for non-Newtonian flows are very similar to the standard
Navier-Stokes equations 7.1, with the exception that now they have additional
nonlinearity in the diffusion operator, due to the nonconstant viscosity. The
resulting algebraic system obtained after linearization will be more complex and
involve more terms (see [109]). This requires that the inner linear solver in the
monolithic solution algorithm should be robust. We hope that our monolithic
MLKM solver with robust inner linear solver in combination with the optimal
damping in the outer nonlinear iteration will result in an efficient and robust
overall solution technique for non-Newtonian fluids.

Non-isothermal flows involve temperatures that are not constant. This brings
into play an additional energy equation in the standard Navier-Stokes equations.
Since fluid flow transports heat, a change in the flow field will affect the tem-
perature field as well. Thus momentum, continuity and energy equations form
a coupled system of equations, and the monolithic MLKM solver can be used to
solve non-isothermal flows in a coupled way. The introduction of the tempera-
ture equation, however, changes the structure of the resulting local system, and
the local pressure Schur complement method has to be adapted accordingly.

Parallel implementation Cell-oriented Vanka preconditioner acts locally
on a single mesh cell at a time. This local procedure can be parallelized in a
straightforward way by embedding it into an outer block Jacobi iteration. From
our experience with the scalar problems, we have seen that MG with Jacobi
smoother fails to produce a convergent solution scheme at higher Peclet num-
bers. However, MLKM solver with Jacobi preconditioner produced convergence
rates which are equally as good as with the Gauss-Seidel preconditioner (see
Tables 5.9, 5.11,5.13, 5.15); in fact the convergence rates with Jacobi precondi-
tioner are even better than Gauss-Seidel preconditioner for large Pe numbers.
Based on this experience, we hope that Vanka preconditioning with an outer
block Jacobi iteration, instead of block Gauss-Seidel iteration, will not adversely
affect the overall convergence behavior of the solver. MLKM algorithm involves
two preconditioner applications in every iteration, and this preconditioning task
is one of the most computationally intensive operations of the algorithm. A
parallel implementation of this task will improve the efficiency of the solver
considerably.

Moreover, a significant advantage of MLKM method over the MG method is the
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liberty in the choice of inter-grid transfer operators (deflation subspaces in the
context of MLKM solver). In MLKM algorithm, the only condition on these
deflation subspaces is that they should be full rank, and they are not required to
do accurate interpolations like that required in MG. Exploiting this freedom, one
can select such deflation subspaces that facilitate the parallel implementation
of the algorithm. Nabben and Erlangga in [54] have used subdomain deflation,
which is nothing but piecewise constant interpolations. Frank and Viuk [60]
have given an efficient parallel implementation of the subdomain deflation on
the distributed memory system with small communication overhead.

Patch based LPSC When there are large jumps in the size/aspect ra-
tio of the two neighboring cells in the triangulation, the convergence rates of
cell-oriented LPSC with Jacobi/Gauss-Seidel iteration deteriorate significantly.
Turek [132] has used patch-based local pressure Schur complement smoother to
increase the robustness of the coupled MG solver. The idea of the patch based
LPSC is to collect all elements of nearly the same size and shape into a patch.
These patches hide the anisotropies, and the resulting small ill-conditioned ma-
trices are solved exactly. The outer global convergence behavior of LPSC be-
comes independent of the grid anisotropies. This patch based LPSC precondi-
tioner can also be applied to monolithic MLKM solver, and the resulting solver
is expected to produce convergence rates independent of the mesh anisotropies.

3D Extension The most important feature of the monolithic MLKM solver
is its numerical scalability. We have seen that the computational complexity of
the MLKM solver is linear, i.e., the computational work of the solver increases
linearly with the number of unknowns. Moreover, the convergence rates of
the solver are independent of the mesh refinement level. These features make
monolithic MLKM solver a potential solver candidate for the solution of 3D CFD
simulations that involve refined meshes due to high accuracy requirements.

Code optimization In this work, we have made comparisons with the
monolithic multigrid solver being implemented in FEATFLOW software. This
implementation of the multigrid solver is highly optimized. Our implementation
of the monolithic MLKM solver is not optimal, and a careful and optimized
implementation can further improve the CPU times of the solver.
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