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Abstract

Multigrid methods belong to the best-known methods for solving linear systems
arising from the discretization of elliptic partial differential equations. The
main attraction of multigrid methods is that they have an asymptotically mesh-
independent convergence behavior. Multigrid with Vanka (or local multilevel
pressure Schur complement method) as smoother have been frequently used for
the construction of very efficient coupled monolithic solvers for the solution of
the stationary incompressible Navier-Stokes equations in 2D and 3D. However,
due to its innate GauB-Seidel/Jacobi character, Vanka has a strong influence
of the underlying mesh, and therefore, coupled multigrid solvers with Vanka
smoothing very frequently face convergence issues on meshes with high aspect
ratios. Moreover, even on very nice regular grids, these solvers may fail when
the anisotropies are introduced from the differential operator.

In this thesis, we develop a new class of robust and efficient monolithic finite
element multilevel Krylov subspace methods (MLKM) for the solution of the
stationary incompressible Navier-Stokes equations as an alternative to the cou-
pled multigrid-based solvers. Different from multigrid, the MLKM utilizes a
Krylov method as the basis in the error reduction process. The solver is based
on the multilevel projection-based method of Erlangga and Nabben, which ac-
celerates the convergence of the Krylov subspace methods by shifting the small
eigenvalues of the system matrix, responsible for the slow convergence of the
Krylov iteration, to the largest eigenvalue.

Before embarking on the Navier-Stokes equations, we first test our implemen-
tation of the MLKM solver by solving scalar model problems, namely the
convection-diffusion problem and the anisotropic diffusion problem. We vali-
date the method by solving several standard benchmark problems. Next, we
present the numerical results for the solution of the incompressible Navier-Stokes
equations in two dimensions. The results show that the MLKM solvers produce
asymptotically mesh-size independent, as well as Reynolds number independent
convergence rates, for a moderate range of Reynolds numbers. Moreover, nu-
merical simulations also show that the coupled MLKM solvers can handle (both
mesh and operator based) anisotropies better than the coupled multigrid solvers.

Key words: Monolithic multilevel methods, Krylov subspace, GMRES, FEM,
Navier-Stokes equations, saddle point problems
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Introduction

Everything on this earth is either a fluid or interacting with a fluid. The atmo-
sphere that surrounds this planet and oceans that constitute 70 % of this earth
are fluids. Fluid flows are vital for the existence of the life that we live. Our
body gets oxygen due to the fluid flow and blood flow provides important nu-
trients to all parts of the body. Ocean waves and wind fields regulate the global
climate by spreading the uneven solar radiations received by the Earth surface.
Similarly, fluid flows play a pivotal role in many industries, for instance, power
generation, oil and gas exploration, food processing, and chemical manufactur-
ing to mention a few. This ubiquitous nature of the fluids and the importance
of fluid flows in our life has made the study of fluid flows a fundamental and
evolving field that spans major areas in science and technology.

The Navier-Stokes equations (NSE) are at the heart of studying fluid flows, and
they are used to describe the physics of various flows of scientific and engineering
interest. They are used by:

e meteorologists to predict the weather conditions

e aerodynamics engineers to design aircraft that have low resistance and
high lift forces

e civil engineers to build safe hydraulic structures such as dams
e chemical engineers to design and optimize industrial plants and equipment

e mechanical engineers to design pumps, turbines, and HVACR (heating,
ventilation, air conditioning, and refrigeration) systems

Unfortunately, except for the very simple flow scenarios, the exact analytical
solution of the Navier-Stokes equations is in general not known. The wide
spectrum of applications of the Navier-Stokes equations attracted the attention
of scientists, engineers, mathematicians, and computer scientists during the past
few decades, to develop numerical methods for the approximate solution of
the Navier-Stokes equations. This interest led to the rapid development of a
wide range of numerical and algorithmic tools for solving complex fluid flow
problems, which emerged as a new scientific field termed as computational fluid
dynamics (CFD). CFD encompass numerical techniques for the solution of many
different types of fluid flows. This thesis is only concerned with the numerical



CHAPTER 1. INTRODUCTION

solution of the (steady-state) Navier—Stokes equations governing the flow of a
Newtonian, incompressible viscous fluid, which may be a very small subset of the
CFD. However, the numerical techniques presented in this thesis can be easily
extended to other more complicated fluid flows, for instance non-isothermal,
non-Newtonian, and/or turbulent fluid flows.

Numerical solution of NSE involves the application of discretization techniques
such as finite element methods (FEM), finite volume methods (FVM), or finite
difference methods (FDM) that transform the infinite dimensional partial dif-
ferential equations into a finite dimensional algebraic system of equations. In
this thesis, we use FEM discretizations which can handle complex geometries
(mostly encountered in practice) more efficiently than FVM and FDM. LBB
compatible mixed finite elements are employed to ensure the well-posedness of
the algebraic system of equations.

Since NSE are nonlinear, the resulting algebraic system of equations coming
from FEM discretization is also nonlinear. Suitable linearization techniques
such as Picard iteration or Newton iteration are applied to the nonlinear discrete
system. The linearization process results in a linear system of saddle point type,
with a large zero block on the main diagonal due to the absence of pressure in
the continuity equation of the incompressible flows. The linear saddle point
systems coming from the FEM discretization are sparse and in practice involve
hundreds of millions of unknowns. Solving such linear systems is the major
bottleneck of the numerical solution process since solution and storage of these
saddle point systems constitutes most of the computational resources (CPU
time and memory) of the whole solution process.

The solution of saddle point problems is pivotal in the design of solution algo-
rithms for Navier-Stokes equations. These solution algorithms can be broadly
categorized into two groups, namely segregated or coupled methods, depend-
ing on the way the saddle point linear system is solved. Segregated algorithms
decouple the velocity and pressure variables, and thereby, solve the reduced
systems for each variable separately. Coupled algorithms respect the natural
coupling between the solution variables and solve them simultaneously. Both
classes of solvers have their own problem-dependent strengths and weaknesses
and hence have specific application areas. Coupled solvers are suitable for flows
involving low Reynolds numbers resp. high viscosity parameters, however, they
are very expensive for non-stationary high Reynolds number flows. On the other
hand, segregated solvers are suitable for such non-stationary flows, whereas, they
face convergence issues for stationary and non-stationary flows involving high
viscosities. The focus of this thesis is only on coupled solvers for stationary
incompressible Navier-Stokes equations.

1.1 Open problem

Coupled saddle point linear systems arising from the discretization of the Navier-
Stokes equations are nonsymmetric, indefinite and ill-conditioned, and solving
such systems pose a great challenge for the development of efficient and ro-
bust monolithic numerical solvers. Direct (sparse) linear solvers give the exact
solution to the linear system and are very stable. However, their intrinsic com-
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1.2. THESIS CONTRIBUTION

putational costs and in particular memory requirements are very high for the
big linear systems originating from the discretization of NSE (especially in the
3D case), and they become impractical for use as standalone solvers. For such
highly sparse and large coupled linear systems, iterative linear solvers are a bet-
ter choice because of their low memory requirements. Moreover, in numerical
algorithms for nonlinear Navier-Stokes equations, the accuracy requirements on
each inner linear solve are low, therefore, iterative methods are more suitable
since they can be stopped as soon as the desired accuracy is reached.

Preconditioned Krylov subspace methods or multigrid methods are mostly em-
ployed as linear solvers in coupled nonlinear iterative solvers. A coupled geomet-
ric multigrid with local pressure Schur complement smoothing (a generalization
of Vanka smoother) is a very efficient state of the art solver that produces mesh
size and Reynolds number independent convergence rates, for stationary flow
problems|132]. This solver is currently the standard coupled solver in the FEAT-
FLOW software. The Vanka smoother is a strongly coupled iterative relaxation
technique, originally presented by Vanka in 1986 [138] to solve the Navier-Stokes
equations using finite difference method. The concept of Vanka smoothing is
simple, the local saddle point subsystem associated with each mesh cell (or a
cluster of cells) is extracted and solved exactly by treating all the variables
simultaneously. The calculated local degrees of freedom are then updated by
Jacobi or Gauss-Seidel relaxation iterations.

From scalar elliptic problems such as diffusion and convection-diffusion prob-
lems, it is well known that multigrid with pointwise Jacobi smoothing or point-
wise Gauss-Seidel smoothing suffers serious convergence issues for the highly
convective flows or highly distorted meshes (meshes with large aspect ratio el-
ements or with a large difference in neighboring elements size). Multigrid with
Vanka smoother, due to its implicit Jacobi/Gaufl-Seidel nature, also suffers sim-
ilar convergence issues on such grids.

For scalar problems, the convergence issues of MG solvers for highly convective
or highly anisotropic situations can be mitigated by employing incomplete LU
factorization as a smoother to the multigrid solver. However, in the case of cou-
pled NSE, the straightforward application of ILU factorization is not possible;
it may suffer breakdown due to the zero pivots, or the resulting factorization is
not stable. Although various reordering, dropping, scaling and pivoting strate-
gies have been proposed in the literature to avoid breakdowns and to produce
stable LU factors, however, still the resulting factorization of nonsymmetric,
indefinite and ill-conditioned saddle point problems is often not of good qual-
ity, and produce poor convergence rates. Therefore, designing a robust as well
as an efficient coupled numerical solver for the solution of the incompressible
Navier-Stokes equations, which produces mesh-size, mesh-shape, and Reynolds
number independent convergence behavior, is an open challenge for the scientific
community.

1.2 Thesis contribution

In this thesis, we propose a new coupled multilevel FEM solver for the monolithic
solution of stationary incompressible Navier-Stokes equations, which can be

3



CHAPTER 1. INTRODUCTION

considered as an alternative to the existing coupled multigrid method. The
solver is based on the multilevel Krylov subspace method (MLKM) proposed by
Nabben and Erlangga in [54] to solve the scalar model problems. To the best of
our knowledge, no one has so far used such multilevel Krylov subspace solution
techniques for the solution of Navier-Stokes equations in a coupled way.

The main idea of MLKM method is to apply a projection-type shift precondi-
tioner which shifts the small eigenvalues of the system matrix, responsible for
the slow convergence of the Krylov subspace methods, to the largest eigenvalue.
This clustering of the eigenvalues away from zero accelerates the convergence of
Krylov subspace solver. The multilevel Krylov subspace method contains the
ingredients of Krylov subspace methods as well as the multigrid method; grid
hierarchies similar to multigrid are used for the recursive application of shift
preconditioning and the solution is extracted from the Krylov subspaces. As
a consequence, it inherits properties of both the solver classes, i.e., robustness
from the Krylov subspace solvers and level independent convergence rates from
the multigrid methods.

Shift preconditioning alone does not produce acceptable convergence rates in
many situations and is often applied in combination with the “traditional pre-
conditioners” to further improve the convergence behavior of the Krylov sub-
space solvers. MLKM algorithm in [54] requires explicit calculation of the in-
verse of the preconditioner matrix M~! at every mesh level in the initialization
phase of the algorithm. Such matrices are in general dense, and working with
such dense matrices is very expensive and not advisable. This restricts the
user to Jacobi preconditioning only, which is not very effective in most practi-
cal problems. In the particular case of incompressible NSE, point-wise Jacobi
preconditioning cannot be applied due to the zeros on the diagonal.

Our implementation of MLKM algorithm in the FEATFLOW software is dif-
ferent from the one given in [54] and allows the use of any iterative method as
a preconditioner to the Krylov subspace solver. In this thesis, we have success-
fully used the traditional preconditioners such as Jacobi, Gau3-Seidel, and ILU
to the MLKM method for solving scalar convection-diffusion and anisotropic
diffusion problems.

Moreover, this flexibility in preconditioning allows extending the MLKM method
to solve coupled system of equations of the saddle point type such as the Navier-
Stokes equations. We have used local pressure Schur complement or Vanka pre-
conditioning to MLKM method, which has resulted into a new class of efficient
and robust monolithic multilevel numerical solution techniques for saddle point
type problems. The coupled MLKM solver produces mesh-size and Reynolds
number independent convergence rates; moreover, it is more robust than cou-
pled MG solvers towards handling the anisotropic meshes and solving the flows
involving higher Reynolds numbers.

1.3 Thesis Outline

Below we present an outline of the thesis, which gives a brief overview of all the
chapters to follow.

4



1.3. THESIS OUTLINE

Chapter [2] gives a basic introduction to the finite element method, which is a
spatial discretization method used in this thesis. Section [2.1] explains the work-
ing principle of the finite element method, thereby, showing how the method
converts the infinite dimensional partial differential equations into a finite di-
mensional linear system of equations. Section [2.2] discusses the finite element
basis functions (or shape functions) and their properties; the section also in-
cludes the description of bilinear (()1) and biquadratic (Q2) quadrilateral finite
elements and the construction of their shape functions. The chapter ends with
a discussion of FEM error estimates in section 2.3

Chapter [3| reviews the most popular numerical methods for the solution of
sparse linear systems arising from the FEM discretization of PDEs. Section [3.1
mentions some popular sparse direct methods and discusses their strengths and
limitations. Iterative methods for sparse linear systems are described in section
B2l Basic iterative methods such as Jacobi, GauB-Seidel, and SOR methods
are reviewed in section [3.2.1] In section [3.2.2] working principle of Krylov
subspace methods is explained, and some famous Krylov subspace methods
such as conjugate gradient, CGNR, and GMRES are presented as representative
Krylov subspace methods. Multigrid and its components are discussed in section
Section [3.3] concludes the chapter with a discussion of node renumbering
strategies being used in this thesis.

Chapter |4] is mainly devoted to the discussion of multilevel Krylov space
method (MLKM), which is a combination of ideas from Krylov subspace solvers
and multigrid methods. The chapter starts with the discussion of an important
concept in the context of Krylov subspace solvers called preconditioning, with
the traditional preconditioners being discussed in section [4.I] and the eigenvalue
distribution preconditioners in section After that we review in detail the
construction of the MLKM solver proposed by Nabben and Erlangga in section
followed by our implementation of MLKM solver in the context of FEAT-
FLOW solver in section[f.4]and discuss how it differs from the MLKM algorithm
of Nabben and Erlangga. At the end of the chapter, section [£.5]briefly compares
the MLKM solver with the multigrid solvers and explains how both the solvers
are different from each other.

Chapter [5] deals the scalar convection diffusion problem. FEM formulation
of the problem is presented in section [5.1] with the stabilization techniques for
the convective term discussed in section [5.1.1] Numerical results of the MLKM
solver for the solution of convection-diffusion problem, and its comparison with
the multigrid solvers are presented in section |5.2

Chapter [6] presents the numerical results for the anisotropic diffusion problem,
with section [6.1] presenting the results for the operator-based anisotropy and
section discussing the results for the grid-based anisotropy.

Chapter [7] extends the work from the previous chapters of solving the scalar
PDEs using FEM/MLKM solver and presents a new monolithic FEM/MLKM
solver for the numerical solution of stationary incompressible Navier-Stokes
equations in a fully coupled way. Section introduces the Navier-Stokes prob-
lem and discusses the boundary conditions for the problem. Weak formulation
of Navier-Stokes equations and their FEM discretization are discussed in sec-
tion [7:2] and [7.3] respectively. In section [7.4] we consider the LBB condition
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for the well posedness of the weak formulation of the Navier-Stokes equations,
and in section [7.5] we discuss our choice of LBB-stable mixed finite element
pairs. Section is dedicated to the construction of coupled multilevel Krylov
subspace solver, and we discuss its various components; we explain the lineariza-
tion of nonlinear equation using Newton method (section and fixed point
iteration (section nctioning of the local pressure Schur complement pre-
conditioner (section [7.6.3), and the calculation of optimal damping parameters

(section [7.6.4)).

Chapter (8| presents numerical results for the solution of steady incompressible
Navier-Stokes equations, for various characteristic flow scenarios. In section 8.1
we validate our coupled MLKM solver by solving standard benchmark problems
using conforming as well as non-conforming finite elements, on structured and
unstructured meshes. In section [8.2] we study the influence of different param-
eters of coupled MLKM solver on its performance. Finally, in section [8:3] we do
the performance comparison of coupled MLKM solver with the existing mono-
lithic solvers available in the FEATFLOW software with respect to the shape
of the mesh and the size of Reynolds number.

Chapter [9]is the concluding chapter that summarizes the work being presented
in this thesis and provides directions for the possible future research initiatives.



Introduction to Finite Element Method

In this chapter, we give the introduction of the finite element method (FEM),
used for the spatial discretization of model problems throughout this thesis.
FEM is a powerful numerical technique used for the approximate solution of
partial differential equations. The method originated from solving the elasticity
and structural mechanics problems in aerospace engineering, but due to its
robustness, flexibility, and accuracy, its use quickly spread to other disciplines
of engineering and applied sciences. The method, in contrast to finite differences,
can handle problems on complex geometries really well. Moreover, the method
provides discretization error estimates at reasonable cost, which allows adaptive
mesh refinements to compute the solution to the desired accuracy optimally [10,
9, [142].

FEM converts the original partial differential equation representing the physi-
cal system into an integral form, called the variational or weak form, defined
over the problem domain. This domain is then subdivided into a number of
geometrically simple, smaller pieces called finite elements. Simple piecewise
polynomial functions, called trial functions are defined on these finite elements,
and the solution of the variational integral is approximated by the linear com-
bination of these finite set of trial functions. This process converts the infinite
dimensional PDE into a finite dimensional algebraic system, just like finite dif-
ference method (FDM). However, in FDM the solution is only known at the
discrete points, whereas in FEM the solution is known throughout the domain
as a piecewise polynomial function.

2.1 Fundamentals of the finite element method

To explain the basics of finite element solution procedure, we consider the fol-
lowing linear model problem

Lu = f in Q, (2.1a)

u =g on I'p, (2.1b)

Vun = f on 'y, (2.1c)

where L is the second order elliptic Laplacian operator, i.e., L = —A and

Q c R d=1,2,3 with boundary I' = I'p U I'y. Dirichlet boundary condition

7



CHAPTER 2. INTRODUCTION TO FINITE ELEMENT METHOD

is prescribed on I'p and Neumann boundary condition on I'y part of I'. Since
the operator L is second order, a classical solution u : € — R that satisfies (2.1)
is required to be twice continuously differentiable, that is, u € C?(2) |52, [114].

2.1.1 Weak formulation

Finite element method, unlike finite difference methods, does not approximate
the partial differential equation directly, rather it formulates the original PDE
into a more suitable integral formulation known as wvariational formulation. In
what follows, we use the method of weighted residuals to construct the varia-
tional form of . To this end, we multiply the residual of equation ([2.1al)
with a test or weighting function v and integrate over €2 to obtain

/umq—ﬁmaza (2.2)
Q

Generally, the integral of the product of two functions represents the so-called
L? inner product which induces the L? norm |||

(v,w) := /vadQ7 lvllo :== v/ (v, v). (2.3)

A function v is called square integrable if the inner product (v,v) exists. If u is
a solution to the original PDE ({2.1)), it is also a solution to integral form (2.2)
for all square integrable functions v [81]. We may write (2.2) in inner product
form as

(v, Llu) — f) = 0, YveL*9). (2.4)

Equation is called the wvariational form of problem . In FEM proce-
dure, the strong continuity requirement on the solution function w is relaxed by
applying the integration by parts on the second derivative terms through the
application of Green’s theorem

/ —oV.Vu dQ) = / Vou.Vu dQ—/UVu.n ds. (2.5)
Q Q r

By doing so we shift one derivative from w to v. Thus in the resulting formula-
tion, v has more continuity requirement than the functions in L?(§2), whereas,
the strong continuity requirement C?(§2) of u is weakened. For this reason, the
new formulation is called the weak formulation, and its solution is called weak
solution. Since the highest derivatives involved are now of first order, it suffices
for « and v to be elements of the Sobolev space H', which contains all the square
integrable functions whose first weak derivatives are also square integrable,

Jw
63%

H%ﬂ:{weﬂam € L2(Q) i:LmJ} (2.6)
The treatment of the boundary integral resulting from the application of Green’s
theorem requires greater attention. Since u is a member of H' and it must
also satisfy (2.1b]), therefore we take u € H},, with the subscript £ showing
that solution u satisfies the essential Dirichlet boundary condition. Weighting
function v should not vary at the boundary where the solution is specified,

8



2.1. FUNDAMENTALS OF THE FINITE ELEMENT METHOD

which means that it should vanish at the Dirichlet boundary, and hence belongs
to space

Hi = {w eH wlp, = o}. (2.7)

At Neumann boundary, the derivative value of the solution function u is spec-
ified. When u is not prescribed at the boundary, the test function need not
vanish there, i.e., v|r, # 0. Since v is zero at Dirichlet boundary, and nonzero
at Neumann boundary, the boundary integral in Green’s theorem can be
restricted to Iy only

/vVu.nds = /vVu.nds + / vVu.nds = /v@’ =: (v, f). (2.8)
r D Tn Tn
=0
Application of the Green’s theorem on and subsequent use of , results

in the following weak form
Find u € H, such that

a(v,u) = b(v) Vv € Hg, (2.9)

where

a(v,u) = / Vo.Vu df)
Q
is called the bilinear form, and

b(v) = (U’f) + (U’B)7

is called the linear form. Solution space H% is an affine space, and instead, we
can write H} = u, ® H}, where u, € H! such that u, = g on I'p. Clearly, for
pure homogeneous Dirichlet boundary condition (I' = I'p), we have HL = H},
and the weak form in this case becomes

Find w € H{ such that

a(v,u) = b(v) Vv € Hp. (2.10)

In finite element method, the infinite dimensional spaces H} and H} are re-
placed by their convenient finite dimensional subsets St and S%, respectively.
To this end, we subdivide the computational domain into a regular partition
called triangulation, containing N.; non-overlapping, and nonempty convex sub-
domains €, each with piecewise smooth boundary I'j, such that

Nei
Q=] %, BN =0 for k#I
k=1

The finite element spaces are characterized by the span of basis functions defined
on these subdomains. We consider the approximations of the form

N
u(z) &~ up :u;’—i—Uh ZUZ+ZUj¢j, (2.11a)
j=1
N
v(x) & vy = Zvi@/}i. (2.11b)
i=1
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h
g

tion, and belongs to the finite-dimensional function space Sp C HL,, called trial
space. Similarly, vy, is termed as test function belonging to the finite-dimensional
test space S{f C H{. The basis functions ¢; and 1; are pre-selected piecewise
polynomials that vanish on I'p.

where u, is the discrete version of uy. The approximate uy, is called trial func-

Remark:
Dirichlet boundary conditions are essentially built into the trial and test spaces,
therefore, they are also called essential boundary conditions. Neumann bound-
ary conditions are also called natural boundary conditions, because they are
automatically included in the weak form, and are not explicitly imposed in trial
and test spaces.
Inserting into equation , we have the discretized form of the weak
formulation
a(vn, Up) = b(vp) — a(vn, g") Yoy, € Sp. (2.12)

See [127] for more details on the treatment of non-homogeneous Dirichlet bound-
ary conditions. In Galerkin finite elements (that we have used in this thesis),
the trial and test spaces are taken to be the same, i.e., ¢; = ;. Since
holds for all functions v, € 56‘7 it also holds for the basis functions ¢;. This
yields the linear algebraic system

N

Za((bza(b])uj :b(¢z)_a(¢zagh)7 1= 177N7 (213)

Jj=1

for the unknowns uq,...,uy. In practical finite element implementation, the
equation is restricted to the element level, and the bilinear and linear
forms are evaluated elementwise using the local basis functions ¢(¥), also called
shape functions. The system matrix and the right-hand side vector are assem-
bled by the summation of contributions from each element

Nel

k k k k .o
E ak((,ZSE )ad)g ))u] = bk(¢£ )) 704]{;((257(; )7gh)7 )= 17"'7” (214)
k=1

where N¢; is the number of elements and n is the number of local degrees of
freedom in each element. For an exhaustive discussion of finite element methods,
we refer the interested readers to the literature |21} 34 44} [81], [57, (103 [102].

2.2 Finite element shape functions

Finite element formulation hinges critically on shape functions for its working.
These local basis functions are used with the computed nodal solution values
u; to interpolate the approximate solution uj, inside the element {2,

un(x) = > uoM(x)  vx ey, (2.15)
j=1

where n denotes the number of local degrees of freedom for a single element .
Summation of the local interpolation functions over the whole domain yields

10
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the global approximation of uy, given by
N
un(x) = uidi(x)  Vx €. (2.16)
j=1

where N denotes the total number of degrees of freedom. As we shall see
shortly, the construction of a shape function on each element involves geometric
information from that element only. This provides FEM with the flexibility
to incorporate more accurate higher order interpolation functions locally or to
add more refined meshes in the regions involving steep solution gradients, such
as boundary layers. The shape functions are required to possess the following
general properties, so that the resulting finite element method provides accurate
approximations at reasonable costs [88]:

1. Interpolation property: The shape function qi)g»k) is one at the node j
and zero at all other nodes in the domain

1, ifj =1,
0, ifj#i.

where 6;; is the Kronecker delta. This property makes it possible to use
the expansion coefficients as nodal solution values in relation (2.15).

¢j(xi) = 6ij = { (2.17)

2. Constant sum property: The sum of all the local basis functions ¢§-k)
should be equal to one on each element €. This property ensures the
correct representation of constant functions through the shape functions.

N
D oi(x) =1. (2.18)
j=1

3. Conservation property: The sum of derivatives of all the shape func-
tions should vanish at any point in the element.

N
D Vej(x) =0. (2.19)
j=1

4. Local support property: For computational efficiency, it is required that
a local shape function ¢>§»k) vanishes over any element boundary (an edge
in 2D, a surface in 3D) that does not contain the node j. This require-
ment results in global basis functions with compact local support, which
consequently produce a computationally desirable sparse linear system.

Next, we show with examples how these local basis functions are built from
simple polynomials defined piecewise over the finite elements. In particular, we
employ Lagrangian polynomials, since they provide a systematic way of generat-
ing the shape functions of any order. As we deal with two-dimensional problems
in this thesis and employ quadrilateral finite elements for the discretization, we
find it helpful to present the shape functions for (; and ()2 quadrilateral finite
elements.

11
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2.2.1 Bilinear element (Q;)

Bilinear element ) consists of four nodes at the four corners of the quadrilateral
as shown in the Figure 21} Instead of expressing the shape functions directly
on arbitrary physical elements 2, they are typically defined on some reference
element with simple geometry. Let Q,.; = [—1, 1)? be the reference element with
a local coordinate system (£, 7) introduced at its center as depicted in Figure
(right). Interpolation polynomials on the reference quadrilateral are constructed
by the tensor product of one dimensional linear Lagrange polynomials. One
dimensional linear shape functions are given by [103]

jo_1-8 5 1+4¢

9 =15
1 5 2 5

Bilinear Lagrange shape functions resulting from the tensor product of their 1D
counterparts (2.20)) are listed below:

—1<e<1 (2.20)

(n) = 1/4[1 =& —n+&n)

= U2(§)th(n) = 1/4[1+&—n—&n)
= 05()D2(n) = 1/4[L+E+n+ &)

Xa(&m) = V1(§V2(n) = 1/4[1 =& +n—E&n)
It is easy to show that these shape functions possess all the general properties
discussed before. A shape function )Z(k) varies linearly along the two edges
containing the node j and is identically equal to zero at the other two edges.
Thus, the global basis function x; resulting from the union of all the shape

functions at the node j is non-zero at all the elements containing node j and
vanishes at all other elements.

1

X1(&,m
)22(577’
X3(&,m

3

(2.21)

)

—_ = = =
>

The bilinear map Fy, : Qe — i, defines a transformation between the refer-
ence element €,y and the physical element )}, as follows:

H = Fu(&n) = i {m} wi(E,m). (2.22)

y — |vi

Above transformation leads to an isoparametric mapping on each element, where
same bilinear interpolation functions are used for both the geometry (mappings
of nodal coordinates) and the unknown function u. For the inverse mapping
F Lo = Qe ¢ to hold, it is necessary that the physical quadrilateral €2
must be conver.

Y n
1
€3 Fy, Ty z3
Ty ‘/_\ 1 Q’(‘ef 1
3
Fk;_l (%1 -%2
I i) _
0 T

Figure 2.1: Mapping between (01 physical and reference quadrilaterals.
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2.2.2 Biquadratic element (Q3)

Biquadratic finite element Q5 consists of nine nodal degrees of freedom, with four
corner nodes, four mid-side nodes and one node at the center of quadrilateral
as shown in Figure Shape functions on these nodes are constructed by the
tensor product of the following one dimensional quadratic Lagrange polynomials

s EE-1) éz(g):f@;l), é3(5)2(1_252), —1<e<.

Biquadratic shape functions at the nodes of the reference element are as follows:

$1(&,m) = 0:1()01 (), a(€,m) = 0:1(&)Ba (), S7(€,m) = 03(£)(n)

G2(€,m) = 02()01(n),  5(&,m) = 03(€)01(n),  ds(&,m) = 01(6)05(n) (2.23)

qg:a(f’??) = é2(§)é2(77)a </56(€777) = é2(§)é3(7l)7 P9(&,m) = éB(f)és(U)

Bilinear mapping can be used for the transformations between the Qo
reference and physical elements, which will be subparametric mapping in this
scenario (Figure: left). It is also possible to define isoparametric mapping
using the biquadratic shape functions (2.23), which are useful for discretizing
curved boundaries (Figure: right). For more details, please follow the
references [103}, |34]

Y K Y

F 4 7 3 E,

ref
8 6
-1 9 1] ¢
~ 7 _1 N~
—1 —
B B o Fy'
0 x 0 x
Subparametric Isoparametric

Figure 2.2: Bilinear and biquadratic mappings between ()2 physical and refer-
ence elements.

2.3 Error estimates for FEM

In this section, we mention the results of the so-called a priori error estimates
for the finite element method without going into their details and proofs. The
finite element solution error u — uyp, can be bounded in some n—norm |.||, by
the following relation

llu —uplln < ChY||ul|, with & = min(k + 1 —n,r — n), (2.24)

where h is the maximum mesh width, C' is the constant independent of mesh
width, k is the polynomial degree of the finite element basis functions, and r
is the regularity of the exact solution with |lu|, representing the measure of

13
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smoothness of u. Now for a sufficiently smooth u, the bound (2.24]) for the
H'-norm (n = 1) becomes

lu = unlls < CR¥|fully, (2.25)

and similarly, provided that the problem is H? regular which means that f €
L5(Q) and the solution of the dual problem is in H(Q2) and satisfies the a priori
bound

[ull, < el fllz,,

then the a priori error bound in the Ly or HY norm (n = 0) becomes
lu — unllo < CAFFH|ul|,. (2.26)

For proof of the a priori errors see the book by C. Johnson [81]. Please note
that the polynomial degree here means the highest degree complete polynomial
that can be represented exactly by the shape functions. In case of bilinear Q4
element, although the local basis functions contain quadratic monomial
(&n), however, they can represent polynomials of degree one accurately. Thus,
for Q1 element we have k = 1, and for a sufficiently smooth wu, the error is O(h)
in H'-norm and O(h?) in the Ly-norm. Similarly, the shape functions of
Q2 element contain higher order terms, but the highest degree polynomial that
they can represent exactly is two. In this case, therefore, we have k = 2 and the
solution error is O(h?) in H'-norm and O(h?) in the Ly-norm.

In general, we do not know the exact solution, and these a priori error esti-
mates can never be computed in realistic simulations. Nevertheless, these error
estimates provide an excellent debugging tool for the code validation purposes.
To debug the code, the problem with a sufficiently smooth known exact so-
lution is solved. If our numerical scheme/code is correctly implemented, then
the solution error with each mesh refinement should reduce with some constant
factor. For example, for the ()1 finite element discretization, the error should
reduce with a factor of two in the H'-norm and with a factor of four in the
Lo-norm. If these factors are not observed in the error reduction, then there is
most probably a bug in the code.

14



Solution Methods for Sparse Linear
Systems

Discretization of linear PDEs as seen in chapter 2, and linearization and dis-
cretization of nonlinear PDEs (see chapter , lead to the linear system of equa-
tions of the form:

Ax =D, (3.1)

where the coefficient matrix A is large and sparse. A sparse matriz is a matrix
with enough zeroes so that special algorithms and data structures can be devised
to save time and memory by exploiting these zeros [41]. Solving such large and
sparse systems is the bottleneck of the modeling and simulation process, as
it takes most of the computational cost in the whole process. The research
community has put a huge amount of effort to develop algorithms that can
efficiently solve large sparse linear systems, and till today this is still a hot
research area. These enormous research activities over the period of decades
have resulted in a large number of linear solvers, which can be grouped into two
main categorize namely direct methods and iterative methods.

We begin this chapter with a brief overview of the direct methods for sparse
linear systems, and mention their strengths and weaknesses. Next section dis-
cusses the iterative methods, which are the preferred choice over the direct
methods, for large sparse linear systems. These iterative methods fall under
three subgroups, namely, basic iterative methods, Krylov subspace methods,
and multigrid methods, based on their working principle. We explain the work-
ing principles of each group and mention some well-known solvers from each
of them. We also discuss the node renumbering strategies that are quite often
employed to help improve the performance of linear solvers.

3.1 Sparse direct methods

Direct methods are smart variants of Gaussian elimination and involve the fol-
lowing three steps:

1. Perform matrix factorization

PAQ = LU, (3.2)
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CHAPTER 3. SOLUTION METHODS FOR SPARSE LINEAR SYSTEMS

where P and Q are permutation matrices chosen to reduce fill-ins and
to maintain stability, L and U are lower triangular and upper triangular
matrices, respectively.

2. Perform forward elimination
Lz = Pb.
3. Perform back-substitution
UQTx =z.
If the matrix A is symmetric, then following factorization is used:
PAPT = LDLT, (3.3)

where D is (block) diagonal matrix [2].

Dense Gaussian elimination algorithm costs O(n?) flops whereas forward, and
backward substitutions require O(n?) flops, where n is the number of unknowns.
However various very effective and efficient sparse implementations of Gaussian
elimination have been developed by using sophisticated techniques to exploit the
sparsity in the coefficient matrix to minimize the computational costs. Frontal
method 79| is one such technique that was initially developed for solving sym-
metric positive-definite (SPD) sparse linear systems coming from finite element
applications. In the frontal method, the Gaussian elimination process is carried
out in parallel with the finite element assembly process. During the assembly
process as soon as the variable is entirely summed (i.e., subsequent assemblies
do not affect the values in its rows and columns), row operations are carried out
to make the entries below diagonal zero, and the resulting row is saved as a new
row of upper triangular U matrix; see for instance Johnson [81) page 117-120].
Th name frontal method comes from the fact that at each elimination step,
only the entries (also termed active variables) in the small dense matrix, called
frontal matriz are modified, which forms the front that separates the eliminated
variables (behind the front) from the not-yet activated variables (after the front)
in the finite-element mesh.

The frontal approach has many benefits over the standard Gaussian elimination
method[2]. First, it allows the use of efficient BLAS subroutines for dense
matrix calculations. Second, it improves the stability of algorithm by applying
the pivoting only in the frontal matrix. Thirdly, because of the small size of the
frontal matrices, the elimination process can be efficiently carried out in a fast
cache memory.

Reordering schemes are often used in a frontal method to reduce the number
of fill-ins during the elimination process; this reduces both the computational
and memory costs of the method. However, the reordering results into frontal
matrices that are too small to achieve proper exploitation of the memory hier-
archy available in modern processors. Moreover, the frontal method lacks the
scope of parallelism except what can be accomplished within the dense BLAS
operations. The multifrontal method by Duff and Reid [48], which is, in fact, the
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generalization of the frontal method, addresses the above issues by using many
fronts at the same time. Prior to factorization, the method comprises analysis
phase that involves symbolic preprocessing operations to determine various in-
dependent fronts that can be processed in parallel. This in addition to providing
more possibility of parallelism, also gives the liberty of using sparsity preserving
pivot orderings. For a detailed description of the multifrontal method see also
[86].

Multifrontal methods perform efficiently if the matrix has a structural sym-
metric pattern, and may give poor performance for matrices whose patterns
are highly unsymmetric. Davis and Duff in [40] propose the first efficient
unsymmetric-pattern multifrontal method (UMFPACK) for general matrices
with a highly unsymmetric structural pattern. The term UMFPACK is also
used for the user-callable subroutines package available for the solution of the
unsymmetric sparse linear system, that uses unsymmetric multifrontal method
[38]. For more details on sparse direct solvers see [47],[39], [42].

Despite the fact that the classy multifrontal approach combined with the intel-
ligent renumbering schemes increase the efficiency of direct solvers greatly, for
very large sparse systems (as for instance in 3D case) there associated CPU costs
are still very high and more importantly, their huge memory requirements in
such cases make them even impractical for use [130]. Nevertheless, they are used
as a building block inside iterative multilevel solvers for large sparse systems.

3.2 lterative Methods

In many areas of scientific computing, iterative methods have almost replaced
direct methods for solving general, large sparse linear systems. In iterative
methods, the coefficient matrix remains unchanged, which means no additional
memory is needed for the fill-ins. Therefore, memory requirements for iterative
methods are much less than direct methods. Iterative methods generate a se-
quence of approximate solution vectors {x;},k = 0,1,... (X¢ given), with the
iterates converging towards the exact solution x, as k — oo

lim ||x —xg|| =0.
k—o0

The iteration process can be stopped as soon as the desired accuracy is achieved.
These features make iterative methods very attractive for solving large sparse
systems, especially if the accuracy requirements are low.

Iterative methods are also particularly suitable for nonlinear and nonstationary
problems. In such cases, the solution of the linear system is part of an outer
iteration loop: Fixed point or Newton-Raphson linearization iteration for a
nonlinear problem and time stepping iteration for a time-dependent problem.
For each inner linear solve, a good start vector in the form of a solution of
the previous outer iteration is available; moreover, the accuracy requirement for
inner solve is generally low. Both properties lead to the fact that few iterations
are required to solve the linear system approximately.

Tterative methods for solving equation (3.1]) can be broadly categorized as:

e Basic Iterative Methods
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e Krylov Subspace Methods
e Multigrid Methods

In the following sections, we give an overview of these methods. For a more
comprehensive survey of iterative methods for linear systems we refer to [122].

3.2.1 Basic iterative methods

The main idea of basic iterative methods is to split the coefficient matrix A as
a sum of two matrices
A=M-N,

where M is an easily invertible matrix. Then (3.1]) can be written as a sequence
Xk
Mxy+1 = Nxi + b. (34)

It can be easily seen that for a converging iteration process (x; — x), the vector
x is also the solution to . Replacing N by N = M — A in equation ,
we may write

Xp41 =X + My, (3.5)

where r, = b—Axy, is the residual at k" iteration. Equation (3.5]) is often called
the basic preconditioned Richardson iteration. Adding a damping parameter
(relaxation parameter) w leads to its damped version:

Xp+1 = X + (.UMilrk. (36)

The choice of M, also called preconditioner, is very crucial and different choices
lead to different iterative methods. Desired properties for a good preconditioner
include that it should be (spectrally) close to A, should be easy to build and
apply. To show some basic choices of M, we express the matrix A as the matrix
sum

A=D-E-F,

in which D is the diagonal of A, -E and -F are strict lower triangular and strict
upper triangular parts of A respectively. Choosing M to be the diagonal of A
results in point Jacobi iteration:

M74¢ .= D

In Jacobi method, each equation (unknown) is treated independently. There-
fore, the order in which the equations are treated does not affect the convergence
behavior of the method. For this reason, the reordering techniques discussed
later, will not be applied to Jacobi method. It is also called a method of simulta-
neous displacements|140] since the updates could be done simultaneously. This
feature makes Jacobi method a good candidate for parallel implementation.

Letting M be the lower triangular part of A defines what is called point Gauf-
Seidel iteration:
M%% .= (D — E)

In contrast to the Jacobi method, in the GauB-Seidel method the equations
are examined sequentially, one at a time, in such a way that the most current

18



3.2. ITERATIVE METHODS

estimates of previously computed components are used in calculations. The
updates cannot be done simultaneously, because each component of the new
iterate relies on the already calculated components. Another consequence of
sequential dependence is that the elements of new iterate depend on the order
in which equations are solved. If the order changes, it also alters the elements of
new iterate. Depending on the ordering, families of Gauf3-Seidel preconditioners
with different numerical properties can be constructed|145].

In case of sparse A, the presence of zeroes may nullify the influence of some of
the preceding components. By employing prudent reordering schemes, it may
be possible to reduce such dependence further, thus allowing certain groups
of unknowns to be processed in parallel. Nevertheless, reorderings aimed at
parallelism can hurt the convergence of Gauf3-Seidel method, and there is always
a tradeoff between parallelism and convergence rate [12].

Successive overrelazation method (SOR) extrapolates between the current and
previous iterates of Gauf3-Seidel componentwise. This extrapolation is achieved
by using an additional relaxation parameter @ (different from w in ) with
the lower triangular part; the idea is to accelerate the convergence rate of the

iterates to the solution.
MSCF .= (D — GE)

Defining e = x — X}, to be the k" iteration error, equation (3.4)) takes the form
M(x — xg+1) = N(x — x3)
€ept1 = MilNek

err1 = (MIN)Fe (3.7)

The matrix (M'N) is called the iteration matriz. Using Jordan form its easy
to show that (M~!N)* — 0 as k — oo, if for all the eigenvalues of iteration
matrix it holds that |A| < 1; which implies that e;+; — 0 as kK — oo. Hence
the eigenvalues of iteration matrix play a vital role in the convergence of basic
iterative methods. Above discussion can be formulated as a theorem.

Theorem 3.2.1. The iterative method (3.4) converges to the exact solution
x = A~ 'b for any starting vector Xq, if the spectral mdiuﬁ of iteration matriz
p(M™IN) < 1.

The convergence condition given in the above theorem is guaranteed only if the
coefficient matrix A of the linear systems is M-matrix. Moreover, the theorem
gives the criterion for the convergence of basic iterative schemes, but does not
say anything about the rate of convergence of these methods. These schemes
have local stencil since they involve averaging of nodal values from immediate
neighbors in some order and neglect the effects of neighbors which are computa-
tionally far away. The detailed Fourier analysis of these schemes [24], |71] reveals
that such local averagings remove the local (or high frequency) error components
quickly in just a few iterations, leaving the low frequency or smooth (less os-
cillatory) components relatively unchanged. However, once the error field is
smoothed out (i.e., it consists of only low frequency errors), the convergence
rates of basic relaxation schemes are significantly reduced. For many applica-
tions, their convergence rates are very sensitive to the value w, and it is difficult

ISpectral radius of A = p(A) = max|)\|, where )\; are the eigenvalues of A }

19



CHAPTER 3. SOLUTION METHODS FOR SPARSE LINEAR SYSTEMS

in practice to find an optimal choice of the damping parameter w. Moreover,
the convergence rates of these solvers depend on the mesh width A and on finer
mesh levels, which are usually required for achieving the desired accuracy, the
basic iterative methods converge very slowly. For these very reasons, they are
almost never used as standalone solvers, instead, are used as preconditioners in
advanced iterative methods such as Krylov subspace solvers and in particular
as smoothers in multigrid solvers. For more discussion on the convergence of
basic iterative methods see [140|, [145] and [149].

3.2.2 Krylov subspace methods

Krylov subspace methods are the most widely used iterative methods to solve
sparse linear systems, and are included in “Top 10” best algorithms of the
20th century [30]. The main reasons for this popularity are their low memory
requirements and good approximation properties. Mathematically speaking,
these methods are projection based methods (see [118|, chapter 5). Instead
of solving the potentially very huge linear system, Krylov methods through
projections extract an approximate solution from an affine subspace x¢ + )y,
of dimension m(m < n), where x¢ is the initial guess and K, is the Krylov
subspace defined as:

]Cm(A, I‘o) = spcm{ro, ArOv A21‘0, ey Amier}v

with rp = b — Axg. A popular choice is to take initial guess xg = 0 which
gives rg = b, and the corresponding Krylov subspace is K, (A, b) generated by
right-hand side b of the linear system being solved.

Why is Krylov subspace a nice subspace?

Now the question may arise why one would construct the solution from Krylov
subspace, or why Krylov methods are a natural way to solve the linear systems?
To answer this question we follow the discussion in 78], which uses the mini-
mal polynomial of A to show that x = A~!'b (for nonsingular A) is naturally
contained in a Krylov subspace.

The minimal polynomial p(z) of a matrix A is defined as a unique monic poly-
nomial of smallest degree for which p(A) = 0. If Aq,...,Aq are the distinct
eigenvalues of A with \; having index m; (the maximal dimension of the Jor-
dan block containing \;), then
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with vy = Hjm:l(f/\j)mj (70 # 0 for nonsingular A). Since
0=p(A) =7l + 1A+ ..+ 7, A",

where I is the identity matrix, thus
1 & i
~ Z Vit1 A (3.8)
V =0

With A~! in above form, x = A~'b can be immediately seen as a member of
Krylov space

x=A"'b = (31b+AAb+ ...+ 5,A™ 'b), (3.9)

with 4; = % Therefore, if the degree of minimal polynomial is small, the
dimension of Krylov subspace containing the solution is also small, and the
Krylov method will converge faster.

Many Krylov subspace methods have been developed, and here we discuss few
of the most widely used such methods.

Conjugate Gradient Method (CG)

Conjugate Gradient method by Hestenes and Stiefel [73] is an efficient and one
of the best methods for symmetric (A = AT) and positive definite (x7 Ax > 0
for x # 0) systems. For an SPD A, A-norm (or energy norm) can be defined as

Ix)% = xT Ax. (3.10)

The CG method at the k' iteration constructs an approximate solution xj, €
x0 + Kr(A,rg) that is optimal in the sense that it minimizes the energy norm
of the error vector

X —X = min X — . 3.11
x=sxila= _min fx—yla (311)

The solution of the above minimization problem results in the conjugate gradient
algorithm The CG algorithm constructs search directions which are A-

Algorithm 3.1 CG algorithm

1: Compute ryg = b — Ax( for some initial guess xg, pg =rg > initialization

2: for £ = 0,1,... until convergence, do
3: wi = Aps
T
4: ap = 7rkT Lk
Pr Wi ]
5: Xk+1 = Xk + Ok Pk > update solution
6: Tpt+1 =Tk — QW > update residual
I‘k+1T1‘k+1
7 ﬁk = T
I Tk
8: Prk+1 = Tiy1 + BePr > update search direction
9: end for
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orthogonal or conjugate to each other. This motivates the name of the algorithm:
the directions (or gradients) of the updates are conjugate to each other.

Apng = 61']' V’L,] = ]., ,N

For a symmetric A, a three-term recurrence suffices for generating the orthogo-
nal basis of Krylov subspace. The same is true for the residuals being generated
by conjugate gradient algorithm as they are also orthogonal to each other. In
CG method, however, two coupled two-term recursions are used: one for updat-
ing the residual and the other for updating the search direction. This feature of
the conjugate gradient makes it very attractive solver since there is no need to
store all the previous residuals or search directions.

The algorithm involves two ratios, one for calculating 8 and other for a. The
algorithm breaks down if the denominator in these ratios happens to be zero.
However, these breakdowns are lucky breakdowns, as they indicate that solution
has been reached. For the case of 3, the zero denominator means r”rj, = 0, so
r; = 0, and thus x; = x, which means that the linear system has been solved.
Similarly for oy, if the denominator is zero we have pr’ Ap;, = 0, which implies
pr = 0. Now using the fact that span{po, ..., pr} = span{ro,...,,ry}, this again
implies that rp = 0 thus further implying that the solution has been reached.

The computational cost of conjugate gradient method involves one matrix-vector
product, three vector updates, two inner products, and one norm evaluation (for
stopping criterion). The scheme requires storage of 4 vectors (x,r,p, and w),
along with some scalars. The convergence rate of CG scheme depends on the
spectral condition numberﬂ of matrix A.

Theorem 3.2.2. At the k'" iteration the iterate obtained from the CG algorithm
satisfies the following inequality:

% — x|l < 2(m>kx—xo||,4. (3.12)

Proof. See [89, p.187].

Above theorem suggests that CG algorithm has a linear convergence, however,
in practice a superlinear convergence of the scheme is observed if the extremal
eigenvalues of the matrix are well separated. In [137], authors have shown that
during the iteration process the Ritz values converge to extremal eigenvalues
and as soon as eigenvalues of the original operator are well approximated by
Ritz values, the error vector has no components related to the eigenvectors
of these eigenvalues. Therefore, the CG algorithm converges as fast as for a
related system in which these eigenvalues are missing. For more discussion on
the convergence of CG see also |12] and [31].

According to equation , as CG iterations proceed there is a monotone
decrease in energy norm of the error. In fact, this is merely a theoretical result,
and in practice, we cannot compute ||x — xi||4 because x is never known. In
practice we compute ||ry||2, however, CG does not minimize this quantity and
it may not reduce monotonously.

2If Amaxz and Apin are the largest and smallest eigenvalues of a symmetric positive definite
matrix A, then the spectral condition number of A is defined as k2(A) = Amaz/Amin-
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Remark 3.2.3. We list here the three sought-after characteristics of CG algo-
rithm, which make it such a successful and widely used solver:

1. The solution obtained belongs to Krylov subspace i.€; Xy, € Ki.(A,rg).
2. The algorithm involves short recurrences.

8. CG is based on a certain optimality property.

In [56], Faber and Manteuffel have shown that for a general matrix A (the only
condition on A is that it is nonsingular), it is impossible to construct a Krylov
method which has all the characteristics mentioned in remark [3.2.31 Table 3.1
shows for three popular Krylov subspace methods for general matrices, which
of these properties they possess.

CGNR | Bi-CGSTAB | GMRES

xp € Ki(A,rg) | X Ve Ve

Short recurrence v e X
Optimality / X /

Table 3.1: Characteristics and Krylov methods.

CGNR method

The idea of CGNR method is that for a general linear system Ax = b with
a non-SPD A, solve the related SPD system (AT A) with conjugate gradient
method:

ATAx = AT, ATA is SPD. (3.13)

Note that CGNR will be very fast if A is close to the unitary matrix (Q7Q =1I).
The k" iterate of CGNR minimizes the following energy norm of the error:

(x —xx)TATA(x — x)
= (Ax — Ax)T(Ax — Axy)
= |Ib — Axulf3.

% — xk[| a7 2

Therefore, CGNR produces iterates in the Krylov subspace Kr(ATA, ATry)
that minimize the norm of the residual related to the original linear system
Ax = b. Generalized minimal residual (GMRES) solver also minimizes the
same residual norm but in different Krylov subspace. Although the approach
of CGNR seems to be easy, there are some serious drawbacks associated which
hinder the scheme to be a popular method of choice for most of the applica-
tions. First, because k(ATA) = k(A?), the convergence rate of the conjugate
gradient method may reduce significantly, as it now depends on the square of
the condition number of the actual coefficient matrix. Second, the precondi-
tioning normally used in Krylov subspace methods to improve the performance
is difficult to apply on normal equations (see [118|, section 10.8, p. 339]). Third,
as seen in algorithm [3:2] the scheme requires two matrix-vector products per
iteration which increases the computational cost of the algorithm considerably.
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Algorithm 3.2 CGNR algorithm

1: Compute rg =b — Axg, zo0 = ATrg, po = 2o > initialization
2: for £ = 0,1, ... until convergence, do
3: W = Apk
T
4: Qp = 2k, 2k
Wi Wi
5: Xi+1 = Xk + Qi Pk > update solution
41 =Tk — QW > update residual
7 Zi+1 = ATI‘k_H
Zk+1 Zk+1
8: ﬁk = + T +
Zy Zg
9: Pk+1 = Zk+1 + BkPk > update search direction
10: end for

Generalized Minimal Residual (GMRES) Method

The generalized minimal residual (GMRES) method developed by Saad and
Schultz in 1986 [121] is applicable to general matrices. We follow [78] to ex-
plain the working idea of GMRES. In the k" iteration, the GMRES algorithm
chooses the ‘optimal” solution z € Ki(A,rp), in such a way that the resid-
ual is minimized in Euclidean norm over Ky(A,rg). For x; = xg + 2z, with
zy, € Ki(A, 1),

r =|b - Ax = min ro — Az||s. 3.14
feulls = b~ Axifla = _min [lvo — sl .14

GMRES solves the above least squares problem by constructing the orthonormal
basis for K (A, ro) using Arnoldi iteration, which is nothing but modified Gram-
Schmidt procedure adapted for the Krylov subspace. Arnoldi method works as
follows: for a given set of orthonormal basis {vi,va,...,v;} for K;(A,rp), the
basis is expanded by orthonormalizing the vector Av; against the previous basis.
If we collect the orthonormal basis vectors in a matrix form, V; = (vi...v;), we
can write

AV, =V, Hj,

where H; is an upper Hessenberg matri)ﬂ of size (j + 1) x j. Now any vector
z € K can be written as
z=Vyy, (3.15)

for some y. So

ro—Az= rqg— AV,y
= pvi— Vi Hyy
= Viii(fer — Hyy), (3.16)

where 8 = ||ro||2 and e; is first column of identity matrix. As Vi1 is a unitary
matrix, we have

[ro — Az|[2 = [|Ber — Hyyl|2 (3.17)

3 A matrix with zeroes below first sub-diagonal
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3.2. ITERATIVE METHODS

Thus the least squares problem in the k" iteration of GMRES becomes

min ro — Az|s = min||fe; — H 3.18
eiin lIro |2 = min || fe; — Hiyll2 (3.18)
Typically, it is inexpensive to compute the minimizer y, as it involves solving
a smaller (m + 1) x m least squares problem. The GMRES method is shown
in algorithm (3.3l The minimization problem (3.18) is solved by converting

Algorithm 3.3 GMRES algorithm
1: Compute rg = b — Axg, 8 = ||rol|2, and vi =ro/8

2: for j = 1,...,k until convergence, do

3: W, = AVj

4: fori = 1,...,7,do

5: hij = (Wj,Vi)

6: W; 1= W; — hijVi

7: end for

8: hj+1,,' = ||W]H2 If hj+1,i =0 set k :j and exit 100p
9: Vit1 = Wj/hj+171'

10: end for

11: Define the (k + 1) x k Hessenberg matrix Hy = {hij }1<i<kt+1,1<j<k
12: Compute y, the minimizer of ||fe; — Hiy||2, and x; = xo + Vi y

the upper Hessenberg matrix into an upper triangular system using the Givens
rotations and then solving this triangular system for y (the minimizer of (3.18)).
The Givens rotations are applied progressively at each step of the GMRES
algorithm; the benefit of this approach is that it gives as a byproduct the norm
of the actual residual at each step without additional arithmetic operations. As
algorithm does not explicitly provide the approximate solution at each step,
it’s difficult to determine when to stop. Using the Givens rotations, we have
the norm of the residual available at hand to decide when to terminate. For a
more detailed discussion on this issue, we refer to [118, section 6.5.4].

For general matrices, it is impossible to give convergence bounds similar to the
one given in theorem [3.:2.2] for the SPD case. Here we mention an analogous
result for diagonalizable nonsymmetric matrices. Let P, be the space of all
polynomials of degree less than k and let o = {\1,..., A\, } be the spectrum of A
with eigenvalues arranged in ascending order.

Theorem 3.2.4. Let A € R" ™ be a nonsymmetric and diagonalizable matrix
with spectral decomposition A = XAX 1. Here X = {x1,...,X,} be the right
eigenvectors of A and A = diag{\1,...,\n}. Let

(k) — ; A

€ min - max [p(A;)]

p(0)=1

Then at the k" iteration, GMRES produces the residual that satisfies the fol-
lowing inequality

[rellz < £(X)e® o2, (3.19)

where k(X) := ||X||2||X 7|2 is the condition number of X. Moreover, if all the
eigenvalues lie inside a circle centered at C € R with C > 0 and having radius

25



CHAPTER 3. SOLUTION METHODS FOR SPARSE LINEAR SYSTEMS

R with C > R, then

k
e® < (5) . (3.20)
Proof. see [121] O

If A is SPD then x(X) = 1, for more general matrices its value is not known and
expensive to compute. If x(X) is very large, then inequality is not useful
[67). We can see that in ([3.20), the ratio R/C will be smaller if the eigenvalues
are more clustered (small R) and are away from the origin (large C). This
suggests that GMRES will have faster convergence rates if the eigenvalues of
A are clustered away from the origin. It is important to note that for GMRES
convergence rates, eigenvalue distribution is much more important than the
condition number of the matrix.

GMRES has some very nice features which make it a popular solution algo-
rithm for nonsymmetric matrices. It is a stable method and no breakdowns
occur; if hjy1; = 0 then x; = x and the solution is reached. The scheme satis-
fies the optimality property and as a consequence has monotone conver-
gence behavior. This is true since r; is minimized over K; and as K;11 D Kj,
the minimization over a larger subspace will result in smaller residual norm
(Ilrj+all < fIrj]l). GMRES, like CG, also exhibit the superlinear convergence
behavior [144].

The disadvantage of GMRES is that it involves long recurrences, as the Arnoldi
iteration requires all the previous k vectors for orthogonalization at the k" it-
eration. Hence the work and memory requirements increase prohibitively for an
increasing number of iterations. To avoid the excessive storage and computa-
tional costs, GMRES is restarted after m iterations, using the last approximate
solution as an initial solution for next restart. The restarted GMRES is usually
denoted by GMRES(m). However, restarting ruins many of the nice features
of full GMRES, like GMRES(m) does not satisfy the minimization property as
a whole and superlinear convergence behavior is inhibited [144]. The conver-
gence behavior of restarted GMRES in many applications is very sensitive to
the value of m, and an inappropriate choice of m may lead to the stagnation of
the GMRES|75].

We like to mention here another variant of GMRES method, called flexible GM-
RES (FGMRES), which allows changing the preconditioner at each step. This
flexibility allows the use of any other iterative solver as a preconditioner to GM-
RES (e.g., GMRES itself), and this feature can be exploited to build efficient
iterative methods, possibly multilevel techniques. An essential aspect of FGM-
RES is that, like standard GMRES, it satisfies the optimality condition .
FGMRES algorithm[3.4] can be implemented by doing a minimal modification to
the preconditioned version of standard GMRES algorithm. Precisely speaking
there is no additional mathematical cost involved but the memory cost doubles
as in FGMRES an extra set of vectors need to be stored.
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Algorithm 3.4 FGMRES algorithm

1: Compute rg = b — Axq, 8 = ||rol|2, and vi =ro/8
2: fOI’j = 1,...,k' do

3: Z; = Mj_1Vj

4: W = AZj

5: fori = 1,...,7,do

6: hij = (W]',Vi)

7 W; 1= W; — hijvi

8: end for

9 hjsr = [[wylla.

10: Vit1 = Wj/hj+171'

11: end for

12: Define Zy := [z1,...,2;],and the (k + 1) x k Hessenberg matrix H =

{hijh<i<kr11<j<k
13: Compute y, the minimizer of ||Se; — Hiy||2, and xx = xo + Zry
14: If satisfied Stop, else set xo := x;, and go to 1.

Biconjugate Gradient Stabilized (Bi-CGSTAB) method

Biconjugate gradient stabilized method proposed by van der Vorst [143] belongs
to the family of Krylov subspace solvers which solve nonsymmetric systems
using Lanczos biorthogonalization. Other famous algorithms that belong to
this family are Biconjugate gradient (Bi-CG) (see [84] and [58]) and Conjugate
gradient squared (CGS) [126]. Instead of using the orthogonal sequence of
Krylov vectors (as used by CG, CGNR, and GMRES), these methods rely on
a pair of mutually orthogonal (biorthogonal) Krylov subspaces to compute an
approximate solution. The drawback of this approach is that the solvers do not
fulfill any optimality (or minimization) property and their convergence behavior
may be quite irregular, sometimes leading to the breakdown of the algorithm.
Bi-CGSTAB is an improved variant of this family developed with the goal to
stabilize or smooth this irregular convergence behavior. The advantage of Bi-
CGSTAB algorithm [3.5] is that it uses short recurrences and works well for
unsymmetric systems. Contrary to GMRES it requires only six auxiliary vectors
to be stored in memory and requires two matrix-vector products and four inner
products per iteration.

Remark 3.2.5. Krylov iteration methods are very robust, but their convergence
depends on the condition number of matrix A, which for the model problems that
we investigate in turn depends on mesh width h. Hence the convergence rate of
these methods slows down with the refinement of the mesh. A remedy for this
problem is the well established multigrid methods.

3.2.3 Multigrid methods

Geometric multigrid (GMG) methods are one of the best-known methods for
solving linear systems arising from discretization of (elliptic) partial differential
equations. Their computational complexity is O(N), and they give convergence
rates that are independent of the mesh refinements. The GMG comprise the
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Algorithm 3.5 BiCGSTAB algorithm

1: Compute ry = b — Axq, for some initial guess xg
2: Choose 1y such that (fo,ro) # 0, e.g., Tp = 1g

> initialization

3: Po =Tp
4: for £ = 0,1,... until convergence do
5 Wg = ?PkA )
Iy, To
6: A = 7——=~
"7 (Wi, To)
7 S =T — QWi
8: tr, = As;
. _ (tr,sg)
L (P 7
10: Xp+1 = Xk + QxPk + ViSk > update solution
11: Ti+1 = Sk — Vite > update residual
, _ (rry1,T0) L ag
12 = (rr,F0)
13: Pr+1 = Tkt + Bk(Pr — 1 Wrk)
14: end for

following ingredients:

e A hierarchy of grids as shown in figure
e Smoother (usually a basic iterative method)
e Grid transfer operators (Restriction and Prolongation)

e Coarse grid solver (mostly a sparse direct solver)

Pre-smoothing V-Cycle Post-smoothing
LN N W, W . WA W WAL LL L L T 7 2277
L L/
L 7 9 9 7 A
LLL L L L/
VAV A £V £ A A A A4

Direct Solve

Figure 3.1: Multigrid V-cycle

The main idea of MG is to accelerate the convergence of basic relaxation schemes
presented in section These schemes rapidly remove highly oscillating

errors in the solution, however, after the first few iterations,

the error field

is smoothed out and the convergence rate reduces significantly. MG lets the
relaxation schemes do what they are good at only: remove the high-frequency
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error components by applying few relaxation iterations at the finer grid. This
process is called smoothing, and the relaxation scheme itself is called smoother.
Next, MG transfers the residual from the fine grid to the coarser grid by applying
the restriction operator. The restriction operator uses the nodes from the fine
grid and gathers information to the coarse grid using weighted averaging. As the
smooth error function can be well approximated on the coarser grid without loss
of essential information, the smooth error is calculated by solving the related
coarser linear system.

The coarse grid solution is then projected back to the fine grid using the prolon-
gation operator, for correction of the fine grid approximation. Hence, the pro-
longation operator does the opposite to that of restriction operator and spreads
information from the coarse mesh to fine mesh. We use the standard finite
element based grid transfer routines, that work on each solution component
individually, to perform the grid transfer operations. The elementwise prolon-
gation for the bilinear @; finite element functions is shown schematically in
figure On the coarse mesh are shown the weights of the corresponding
d.o.f’s that are used to evaluate the d.o.f on the fine mesh. Each node in the
fine mesh coincides with either the vertex, edge midpoint or the quadrilateral
midpoint in the coarse mesh.

7N N

— emm—y

|
I_J_] L

Vertex Edge Midpoint

N[

J_1

L

N[,

Quadrilateral Midpoint

Figure 3.2: Schematic representation of prolongation in @; element.

The coarse grid solve in algorithm can be carried out using sparse direct
solvers discussed in section [3.1} However, if the coarse grid problem is still
large, direct solve can be very expensive or even impossible due to huge memory
requirements. As the low-frequency errors are high-frequency errors on the
coarser grid, the multigrid does not stop at second level and extends the two-
grid method to more grid hierarchies. The way grid hierarchies are reached
by multigrid is determined by the multigrid cycles. Figure |3.3|shows the three
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Algorithm 3.6 Two-grid algorithm

1: Choose x

2: Pre-smoothing:  [x? ,,r" ;] = smooth(A" x} b" w, 1)

ity ity
) F b H _ T1Huh H . oh H
3. Restriction: rﬂ_% =1 rﬂ_% L :G"—@G

. -1
4: Coarse grid solve: efl = (Af) rfil
3
5: Prolongation: el = I;&IeH I’}LI :GH — gh
6: Defect correction: x" , =x" | +e"
it+35 it+3
T h ho7_ b h h

7. Post-smoothing:  [x} |, 1} ;] = smooth(A ,X;_’_%,b , W, U2)
V1,V : number of pre- and post-smoothing steps
w : relaxation parameter

famous multigrid cycles namely V, W and F cycles. The type of the multigrid
cycle along with other multigrid components play a vital role in the convergence
behavior of MG method. If the geometric data of problem is not available or

Lev
4

Figure 3.3: V-,W- and F-Multigrid cycles. @— smoothing, B— coarse grid solve

if the geometric complexity of the problem prohibits the use of GMG, then
algebraic multigrid (AMG) methods can be used, which construct the level
hierarchies directly from the system matrix. For more details on AMG methods
we refer the interested readers to [128], [20], and [116].

3.3 Node reordering strategies

Reordering the node numbers can have a significant effect on the performance
of solution methods for sparse linear systems. Renumbering can dramatically
reduce the fill-ins, and thus considerably boost the performance of sparse direct
solvers. Incomplete LU and GauB-Seidel method are also quite often used as
a preconditioner to Krylov subspace methods and as a smoother to multigrid
for problems arising from numerical discretization of fluid flow problems. It has
been widely reported in the literature that performance of both the schemes
can be significantly enhanced in certain flow situations by choosing the correct
numbering scheme (cf. [133, |72} |96]), as the renumbering makes them ‘more
exact’. ILU has a twofold benefit with a fill-in reducing reordering: First, ILU
will drop fewer terms and likely produce more accurate L and U factors; secondly
if ILU with a high level of fill-in is used, it will be more efficient. For Gau$3-Seidel,
the orderings which follow the flow of information are helpful, for example,
numberings aligned with the flow stream in case of convection dominated flows

30



3.3. NODE REORDERING STRATEGIES

[72, |15]. Reorderings can also unravel the parallelism in linear solvers and are
the most important ingredient in parallel implementations. (cf. [51, 42]).

Many renumbering techniques have been proposed, but unfortunately, there is
no one the best performer for all situations. It is possible to make a numer-
ical setup in which one scheme outperforms others, while in another setup it
performs worst. Here we mention few grid ordering techniques:

1. Cuthill- Mckee ordering (CMK)

2. Reverse Cuthill-Mckee ordering (RCM)
3. Two level ordering (TLO)

4. Rowwise or x-coordinate sorting (GR)
)

. Columnwise or y-coordinate sorting (GC)

The Cuthill-Mckee algorithm by E. Cuthill and J. McKee [33], is an automatic
nodal numbering scheme that ensures significant bandwidtlﬁ improvement for
a wide range of problems. It is a level set based technique that traverses the
adjacency graph of a sparse matrix by level sets. It starts with level 1 consisting
of one node (more nodes also possible), which can be the node with the lowest
degreeﬂ and numbers it as the first vertex. The next level set contains the
adjacent nodeﬂ of the previous level set. The nodes in a level set are numbered
from lowest to the highest degree for each neighbor node from the previous
level. This process is repeated until all the nodes are numbered. As illustrated
in figure [3.4] the finite element two-level ordering produce a matrix with a
bandwidth equal to 7, whereas, the CMK ordering reduce the bandwidth to
3. Reduced bandwidth implies reduced fill-ins, and the scheme can be useful
for direct methods and ILU based solvers. In [133], the author has shown for
driven cavity stokes problem, MG solver with ILU as a smoother has better
performance with Cuthill-Mckee renumbering.

Reverse Cuthill-Mckee ordering by A. George [64], is very similar to the CMK
but numbers the grid points in reverse order. George noticed that reversing
the Cuthill-Mckee ordering produces same bandwidth but yields the nonzero-
pattern inside the bandwidth that better suits the Gaussian elimination based
solvers. In [32], the superior performance of reverse scheme for various problems
has been reported. In [87], authors have proved that compared with the CMK,
the reverse ordering is always at least as good, from storage and operation
counts viewpoint. Therefore, reverse Cuthill-Mckee is a more popular ordering
choice among the scientific community. Minimum degree (MD)[62] and nested
dissection (ND)[63] are two other popular reordering techniques primarily used
in sparse direct solvers to reduce the fill-in, which are not bandwidth reducing
schemes.

Two level ordering is used in FEATFLO\aﬂ (Finite Element Analysis and Tools
for Flow problems, Version 2) software, for numbering the nodes in mesh re-
finements. In TLO, on the refined mesh, grid points from old mesh retain their

4Bandwidth of a matrix A € R"*" is defined as maxi<; j<nilt — jl, ai; # 0}
5The degree of node j is the number of edges meeting at j

STwo nodes are adjacent if they are connected by an edge

"For more information visit www.featflow.de
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Bandwidth: 7

Bandwidth: 3

GR

Bandwidth: 3

Bandwidth: 3

RCM

Bandwidth: 3
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Figure 3.4: Node numbering of unit square mesh for different reordering tech-
niques

numbers, while new vertices get new numbers. This renumbering is helpful for
elementwise application of grid transfer routines in multigrid but produces large
bandwidths.

Rowwise and columnwise sortings are geometry-based reorderings, which require
the coordinate information of nodes. Although these techniques cannot be very
useful for general applications, however, for some special situations they can beat
other sophisticated schemes like RCM. For instance, for a convection dominated
flow in a channel with convection in the x-direction and without any vortices
involved, the value at a particular node is only influenced by the upstream
nodes only. In such a case, if we use the upwind stabilization and use rowwise
renumbering then the resulting coefficient matrix will have nonzeros only in
the lower triangular part, and Gaufl-Seidel or ILU will solve the problem in
only one step. However, in most practical situations, there computational costs
and memory requirements are very high, and also its difficult to use them for
unstructured grids.



Multilevel Krylov subspace method

As the name suggests, the main focus of this chapter is the multilevel Krylov
subspace method (MLKM), which incorporates components from the Krylov
subspace iterative methods and multigrid methods. However, before embarking
on the idea of MLKM, we start this chapter with the discussion of an important
concept of preconditioning, that continues to play a pivotal role in the construc-
tion of efficient and reliable Krylov subspace solvers for handling challenging
real life computational problems. The performance of Krylov subspace meth-
ods depends on the condition number x(A) of the coefficient matrix A of the
linear system, and on the clustering of the eigenvalues of the coefficient matrix.
We discuss two classes of preconditioners: first the traditional preconditioners,
aimed at improving the condition number of the coefficient matrix; second the
eigenvalue distribution preconditioners, aimed at the clustering of eigenvalues of
the coefficient matrix.

Next, we review in detail the MLKM solver proposed by Nabben and Erlangga,
which is primarily based on the concept of clustering the eigenvalues around
maximum eigenvalue of the coefficient matrix, however, it also uses the tradi-
tional preconditioner to further improve the overall convergence behavior of the
solver. After that, we explain our implementation of MLKM solver in the con-
text of FEATFLOW solver and discuss how it differs from MLKM algorithm
of Nabben and Erlangga. At the end of the chapter, we briefly compare the
MLKM solver with the multigrid solver and explain how both the solvers are
different from each other.

4.1 Preconditioning

In chapter [3] we have discussed that the convergence rate of Krylov subspace
solvers, for both symmetric and nonsymmetric linear systems, is strongly de-
pendent on the spectral properties of the system matrix. Conjugate gradient
method, for example, works best when spectral condition number of matrix
k(A) is small and/or eigenvalues are clustered around one [13]. Krylov sub-
space methods for general matrices, like GMRES, also have better convergence
if the eigenvalues of a matrix are clustered away from the origin. However, the
linear systems originating from the discretization of PDEs, do not possess such a
desired eigenvalue distribution in most cases. Preconditioning is usually applied
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to these systems with the objective of having transformed systems with same
solution as the original systems but with more favorable spectral properties for
the iterative methods. Let M be an invertible matrix (called preconditioner),
then the preconditioned linear system

M 'Ax =M"'b, (4.1)

has the same solution as Ax = b, but is expected to be easily solvable by Krylov
subspace methods. Please note that in the Krylov solver, the product M~1A
is never computed explicitly, as it would be expensive and the resulting matrix
would be dense. Instead, matrix-vector product and solution of linear system
of the form Mz = w are solved.

Preconditioning involves extra costs: a preconditioner setup or construction
cost, and a preconditioner application cost at every iteration of the iterative
solver. A good preconditioner is one for which the improvement in convergence
rate is good enough to justify these extra costs. To be a good preconditioner
M should generally possess the following properties:

e M is (spectrally) as close to A as possible.

e M should be cheap to construct and apply.

First property implies that the condition number of the preconditioned matrix
should be close to one and the preconditioned iteration should converge faster.
Second property ensures that each preconditioned iteration is economical. How-
ever, if we try to achieve one property, other property is compromised. There-
fore, while constructing a preconditioner, there is always a trade-off between
the two properties.

In equation (4.1]), the preconditioner is applied on the left side of the matrix A;
this is called left preconditioning. Alternatively, one can also apply M from the
right, in which case it is called right preconditioning:

AM™'u=b, x=M""u. (4.2)
Split preconditioning can also be applied:
M;'AM;'u = M;'b, x = M, 'u. (4.3)

Matrices M—'A, AM~! and Ml_lAMQ_1 are all similar and have same eigen-
values. For CG method, the convergence will be same in all cases. For GMRES
method, if the preconditioned matrix is far from normal, convergence rates can
vary greatly depending on if the preconditioning is applied from left or right
(see [118, p. 255] for a detailed discussion).

Customarily, the preconditioners can be categorized based on their construction
approach as follows:

e Physics-based preconditioners (application specific)

e Coefficient matrix based preconditioners (general purpose)
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Physics-based preconditioners (also called PDE based preconditioners) are based
on the simpler nearby PDEs which are easy to solve. For instance, Carey et
al. |28], have used full factorization of Stokes problem as a preconditioner
to Krylov solvers for solving Newtonian and Non-Newtonian flows. In [36],
Dahl and Wille have used Stokes based ILU factorization as a preconditioner
to the Bi-CGSTAB solver for solving the Navier-Stokes equations. For more
information on the physics-based preconditioners, we refer the interested readers
to |14} 8,/150], and the references therein. The physics based-preconditioners are
application specific and can not be applied to general problems. Although these
preconditioners are at times very effective, they require a complete application
specific knowledge. They are very sensitive to the details of the problem, and
small changes in the problem can drastically affect the performance of the solver.
Carey et al. have reported that Stokes based preconditioner worked fine for
driven cavity flow problem at low Reynolds numbers, but for relatively higher
Reynolds numbers (Re = 300 and more) the performance was poor compared
with the frontal solver.

Matrix-based preconditioners are also called algebraic preconditioners and are
built from the information available in the coefficient matrix. They are easier
to develop and apply, are universal and achieve reasonable efficiency on a wide
range of problems. In the following section, we discuss some matrix-based pre-
conditioners which we will be using in our thesis. Brenzi has given an excellent
survey of algebraic preconditioning techniques in his article|13], and we refer
the interested readers to this manuscript for more details.

4.1.1 Basic iterative methods as preconditioners

From the preconditioned system we have:
I-M*'(M-A)x=M"'b,
and in iteration form, we may write
X1 =T -M1A)x, + M 'b
=xi + My

Above equation is the same as preconditioned Richardson iteration . This
means that application of one iteration of the basic iterative methods is the same
as preconditioning of linear system. Hence using M74¢, M5 and MS9F in
preconditioned system will result in Jacobi, Gauss-Seidel, and Successive
over-relaxation preconditioners:

Jacobi preconditioning
D !Ax=D"'b. (4.4)

Gauss-Seidel preconditioning

(D-E)'Ax = (D -E) 'b. (4.5)

Successive over-relaxation preconditioning

(D - &E) 'Ax = (D - QE) " 'b. (4.6)

35



CHAPTER 4. MULTILEVEL KRYLOV SUBSPACE METHOD

When applying the preconditioner to the symmetric matrix, it is important not
to lose the symmetry in preconditioned system matrix, so that Krylov subspace
methods for symmetric matrices (like CG) can be applied. Aforementioned
basic iterative preconditioners when applied would not retain the symmetry, and
therefore, symmetric version of SOR called symmetric successive over-relaxation
(SSOR) preconditioner is used. In 1972, Axelsson [6] published an extensive
study of SSOR preconditioning for accelerating the convergence of conjugate
gradient method [see also [118]].

An advantage of the basic iterative preconditioners is that they do not involve
any construction cost, and they do not require an extra matrix for their storage.

4.1.2 ILU Preconditioner

Incomplete LU (ILU) factorization preconditioner is one of the most widely
used algebraic preconditioners. The idea of incomplete factorization was first
introduced by Buleev [27] and by Varga |139] independently in the late 1950s.
Nonetheless, Meijerink and van der Vorst were the first ones who identified the
potential of ILU as a preconditioner in their remarkable work [95]. They ob-
served that for a class of M-matrices, the convergence rate of conjugate gradient
method could be significantly improved if it is preconditioned with incomplete
factorization. Influenced by this phenomenal work, since then ILU precondition-
ing has been used by many people for solving the discretized systems arising
from various PDEs. Munksgaard [104] formed incomplete factorization using
different dropping and reorderings strategies and used it as a preconditioner to
CG to solve sparse symmetric positive definite matrices. Manteuffel [93] used
incomplete factorization preconditioning to solve large sparse symmetric linear
systems that arise from the application of finite element methods. Dutto [50]
applied the idea to solve the compressible Navier-Stokes equation problem. An
excellent introduction to ILU and its variants can be found in the books by
Hackbusch [69] and Axelsson [7].

ILU Idea

Full LU decomposition of large sparse systems results in L and U matrices
which are remarkably less sparse. Even if the fill-in reducing reorderings are
used, the related computational and memory costs of resulting factorization are
often so enormous that the method becomes impractical to use. The basic idea
of incomplete LU factorization is straightforward: drop out some of the fill-ins
that occur during the elimination process to preserve sparsity. Instead of exact
factorization A = LU, this results in incomplete (or approximate) factorization

A=LU-R,

where L and U are the incomplete lower and upper triangular matrices re-
spectively, and R is called the residual matrix containing the discarded entries.
Various ILU algorithms have been proposed which differ on the dropping cri-
teria of the fill-ins. ILU(!) algorithms allow the fill-ins based on their position
in the matrix, whereas ILU(¢) allow the fill-ins based on their size. Unlike ba-
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sic iterative methods preconditioners, all ILU based preconditioners involve the
construction cost and require extra matrix for their storage.

In ILU(I), I stand for the level of fill-in. In ILU(0), level of fill-in is zero, i.e.,
ILU(0) takes the sparsity pattern of matrix A, and does not allow any fill-in.
Let S be defined as

S={(i,j)li#j;1<i,j<n},
then the sparsity pattern Sg for ILU(0) is a subset of S
So = {(i,J)] ai; # 0}.
The ILU(0) algorithm is defined constructively in Algorithm[4.1} ILU(0) precon-

Algorithm 4.1 ILU(0) algorithm

1: fori = 2,...,ndo

2 for k = 1,...,i—1 and for (i,k) € Sy do

3 Compute a;r = a;x/akk

4 forj = k+1,...,n and for (¢,5) € Sg do
5: Compute a;; := a;; — aikk;

6 end for

7 end for

8: end for

ditioning has been reported to be very effective for PDEs resulting in M-matrices
or diagonally dominant matrices [13]. However, for more difficult problems (such
as highly nonsymmetric matrices), ILU(0) may result in an inaccurate approxi-
mation of A and give no significant improvement in convergence rates |29]. For
such cases, more accurate incomplete factorizations that allow some fill-ins may
work better. In ILU(l) a hierarchy of more accurate factorizations is obtained
based on the concept of level of fill. A level of fill is assigned to each matrix
element that is processed during the factorization process. Here we follow the
level of fill definition of Saad [118, Definition 10.5, page 298]. The initial level
of fill of a sparse matrix entry a;; is defined by

0 ifaij;é()ori:j,
levij = .
oo otherwise.

Each time a;; is modified in algorithm its level of fill must be updated by

lev;; = min{lev;;, levy, + levy; + 1}.

Note that during the iteration process, the level of fill of an element never
increases. Therefore, for nonzero elements of the original matrix A, the level of
fill will always remain zero during the whole elimination process.

Fill-ins are discarded based on the values of their level of fill. For ILU(1), all
fill-ins whose level of fill is higher than 1 are discarded. The cost to construct
and apply ILU(1) preconditioner are reasonable, and in many applications it
gives a considerable improvement over ILU(0). In practical implementations,
the symbolic factorization is done before numerical factorization, to assign the
level of fills and to determine the structure of L and U factors.
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ILU(I) with a lower level of fill is not robust for matrices which are far from being
diagonally dominant, because the fill-ins being dropped are not of the smaller
size and the resulting L and U factors do not approximate A very well. For
higher levels of fill, the associated construction and application costs of ILU(I)
increase rapidly, and are rarely used in practice. For many such cases, ILU(t)
with droppings based on their size results in efficient preconditioner. However,
the difficulty with this approach is to choose a good drop tolerance value, which
usually is done by trial and error method and is very much problem dependent.
Saad [117], in his ILUT algorithm, has combined both the position based and
value based approaches. Modified ILU (MILU) is another variant of incomplete
factorization that compensates the effect of dropping, by adding all the elements
to be dropped in a row and subtract it from a diagonal entry in U (see [49, 68|
for more details)

4.2 Preconditioning based on the spectral informa-
tion

Preconditioners mentioned in the previous section are also called traditional
preconditioners. These traditional preconditioners improve the condition num-
ber of the original matrix in many cases, however, condition number is not the
only indicator of convergence improvement. It has been reported in [137], that
convergence rates of the conjugate gradient can be significantly higher, if the
eigenvalues of system matrix are clustered near one. Similarly, for GMRES it is
well known that its convergence can be better if eigenvalues of the system ma-
trix are clustered away from zero. The traditional preconditioners do not take
into consideration the details of the eigenvalue spectrum of the matrix during
their operation, and consequently, the spectrum of M~!A may still have many
eigenvalues near zero. These near zero eigenvalues hamper the convergence of
Krylov subspace methods. The convergence of Krylov subspace methods can be
improved, if by some means during the iteration process, the components cor-
responding to these small eigenvalues can be removed from the residual vector.

Deflation is the technique that is used to deal with the problematic part of
the spectrum in the (un)preconditioned linear system. There are essentially
two ways to implement deflation techniques. In the first approach, called aug-
mentation or enrichment, the eigenvectors related to the small eigenvalues are
augmented to the Krylov subspace, then these eigenvectors will have no com-
ponents in the residuals. Nicolaides [108] showed the convergence improvement
of CG method using augmentation. Morgen [97, (99, [98] has shown that if
at each GMRES restart, the approximate eigenvectors corresponding to the
smallest eigenvalues are formed and added to the Krylov subspace, restarted
GMRES considerably improves convergence rates and retains the residual op-
timality property. In the second approach, called projection or deflation, a
projection matrix is constructed from the offending eigenvectors and is used as
a preconditioner, which deflates the small eigenvalues to zero. We explain the
construction and properties of the projection based deflation preconditioner in
detail below.
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4.2.1 Deflation preconditioner

For symmetric positive definite systems, Frank and Vuik in [60], have proposed
a projection matrix that deflates smallest eigenvalues and used it as a precon-
ditioner to CG. Here we call this a two-level deflation preconditioner. However,
we aim to build a solver that can ultimately solve coupled Navier-Stokes equa-
tions, which are not SPD. Therefore, following [53], we define here the deflation
preconditioner to solve the sparse linear system Ax = b where A € R"*" ig
a general nonsingular matrix. To deflate m smallest eigenvalues to zero, the
deflation preconditioners can be constructed as

Pp=1I-AK, Qp =1-KA, K=ZE Y7, E=YTAZ. (47

Pp and Qp are the left and right deflation preconditioners respectively. It
can be easily verified that Pp and Qp are projectors since P% = Pp and

2 = Qp. Here Z, Y € R™ ™ are full rank matrices, with Z called deflation
subspace corresponding to the offending eigenvalues that we want to project out
from the residual. The solution of a linear system preconditioned with deflation
is carried out as follows. Decompose the solution vector into

x=(I—-Qp)x+ Qpx, (4.8)

where

I-Qp)x=ZE 'Y'Ax=ZE'Y"b. (4.9)

If m < n, then the matrix E € R™*™ can be easily computed and inverted,
and calculating (4.9) is not a problem. The main task is to compute the factor
Qpx in (4.8), and this is done by solving the following system for %

PpA% = Ppb, (4.10)

using Krylov subspace solver for nonsymmetric systems (GMRES or Bi-CGSTAB)
and then premultiplying the solution with Qp. The result is then added to
to get the solution x. Since the solution x is an approximate solution coming
from Krylov subspace solver, it may still have some components in the deflated
space Z, which is also the null space of PpA. Therefore, the projected solution
Qpx is used.

For a nonsingular matrix A, let the spectrum of A is given by

U(A) = {)\1, )\27 ceey )\n},

with |A;| < |Aig1], for i = 1,...,n. The following theorem gives the spectrum of
deflated matrix PpA.

Theorem 4.2.1. Let A be nonsingular and diagonalizable, and let Z and Y
be the left and right eigenvectors corresponding to the first m eigenvalues of A,
chosen such that YTZ =1,,, then

o (PpA) = {0, .0, A 15 oy An ).

Proof. Here ESYTAZ = diag(\1, ..., Am) := Ay, Fori =1,...,m

PpAZ =AZ - AZE'YTAZ =0.
N—_——
=E
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Fori=m+1,...,n

PpAz;, = (I - AZE'YT)Az; = \izi — ZA, AP0 Yz, = Nz
N——"

=0

O

As can be seen, deflation with eigenvectors changes the first m eigenvalues to
zero, while the rest of the eigenvalues remain unchanged. Also, note that the
eigenvectors of PpA and A remain the same.

A Krylov method (like GMRES) builds solution for the problem from the
Krylov subspace

K:k(PDA,’I“()) = {T(),PDA’I"Q, (PDA)Q’I“O7 ceny (f)DA)k_l’l“o}7

with the residual ro = Pp(b — Axg). Since the null space of PpA never enters
into the Krylov iteration, the zero eigenvalues do not effect the Krylov iteration.
Therefore, we define the effective condition number of the deflated system [£.10]
as

An

/\m+1

kerf(PpA) = : (4.11)

which is less than the condition number of the linear system A and the Krylov
subspace method is expected to perform better on this deflated system.

4.2.2 Balancing Preconditioner

Mandel [90] proposed a projection-like preconditioner for symmetric matrices,
called balancing preconditioner, which has been widely used in domain decompo-
sition methods. Here we discuss the balancing preconditioner very briefly, and
refer to the literature for more details [91} (92} |46| [129] [111]. Again following
[53], we write the balancing preconditioner for nonsymmetric systems as

Pz =QpPp +ZE'YT. (4.12)

Theorem 4.2.2. Let A be nonsingular and diagonalizable, and let Z and Y
be the left and right eigenvectors corresponding to the first m eigenvalues of A,
chosen such that YTZ =1,,, then

o (PA) = {1, 1, At 1 ooy An ).
Proof. See [53] O

The effect of balancing preconditioner on A is very similar to that of deflation
preconditioner, with the exception that the first m eigenvalues are shifted to 1
instead of 0. Moreover, Pp A, PgA and A all have same eigenvectors.

Deflation and balancing preconditioners have been compared for symmetric pos-
itive definite systems in [106], and for nonsymmetric systems in [53]. In [106],
it has been shown that CG applied to the deflated preconditioned system al-
ways has smaller A-norm of the error than that for CG applied to the system
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preconditioned with balancing preconditioner. Similarly, in [53], authors have
shown that under certain conditions the GMRES with deflation preconditioner
produces residuals whose 2-norm is always less than the 2-norm of residuals
of GMRES with balancing preconditioner. Moreover, deflation preconditioning
has less computational costs than the balancing preconditioning.

From equation [4.11] it is easy to infer that if we use a larger deflation sub-
space (larger m), we can have reduced effective condition number and conse-
quently much better convergence rates for the Krylov subspace solvers. How-
ever, note that both deflation and balancing preconditioning involve inversion
of E € R™*™_ which will be expensive for larger values of m. Nabben and Vuik
[105] have shown that deflation preconditioning is sensitive to the inaccurate
inversion of E, which means that iterative methods cannot be used to invert
E approximately. The demand for exact inversion of E limits the potential of
deflation preconditioner. On the other hand, a big advantage of balancing pre-
conditioner is that it is insensitive to the inaccurate solve of Galerkin matrix E.
This allows the use of larger deflation subspace and the corresponding large E
matrix can be inverted approximately using iterative methods.

Deflation or balancing preconditioning can be used in combination with the
traditional preconditioning, for which case the linear system becomes

PpM 'Ax=PpM'b or PpM 'Ax=PpM 'b (4.13)

4.3 Multilevel Krylov Subspace Method

Erlangga and Nabben in 2008 [54], have proposed a new projection-like method
which, like balancing preconditioner, is insensitive to the inaccurate solve of
Galerkin system E, and has the computational demands similar to that of de-
flation preconditioner. The basic idea of this method is to shift small eigenvalues
that are responsible for the slow convergence of Krylov subspace solvers to an
a priori fixed constant, thus resulting in a more clustered spectrum. Shifting
of eigenvalues to a nonzero constant allows the resultant coarse level system to
be solved inexactly or iteratively by a few steps of Krylov method. To further
improve the convergence of coarse level solve, the new shifting operator is again
used as a preconditioner for a Krylov subspace method. Repeated application
of the shifting operator as a preconditioner results in a multilevel method called
multilevel projection Krylov method (MLKM) by the authors. Here we briefly
explain the construction of MLKM and refer to authors article [54] for a more
detailed discussion.

4.3.1 Deflation from an eigenvalue computation viewpoint

Deflation process has been used for quite a long in eigenvalue problem solving
algorithms [147). We first show here that deflation preconditioner can
be developed from the deflation process used in computing few of the small-
est eigenvalues in eigenvalue computation. From this eigenvalue computation
viewpoint, then we develop the stable abstract projection type preconditioner
of MLKM algorithm that shifts small eigenvalues to a priori constant.
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Consider a preconditioned linear system
Ax =D, (4.14)

with A = M7'AM; !, & = Mox, and b = M 'b, with M; and My, be the
nonsingular matrices. For left preconditioning, set M; = M and My = I; for
right preconditioning set M1 = I and My = M. For the purpose of analysis we
assume that the eigenvalues of A, are all positive and real, and let the spectrum
of A, denoted by o(A) is given by o(A) = {A1,...,A\n} and \; < A1, Vi € N
Power method is one of the simplest and oldest methods used for computing the
extremal eigenvalues of a system [119]. The method starts with an arbitrary
nonzero initial vector vg and generates a sequence of vectors
Vi = iAkvo7
Ak

with oy, to be the element of AFv, with the largest absolute value. For large
values of k, a and v converge to the largest eigenvalue and largest eigenvector
respectively. If the method is applied to A‘l, it will approximate the smallest
eigenvalue A\; and corresponding eigenvector z; of the matrix A. To find the
next smallest eigenvalue in the spectrum, we have to first deflate \; to zero, and
then apply Power method again on the deflated system. A can be deflated to
zero using the Wielandt deflation as follows:

Al = A — )\1Z1yT7 yT21 = 1, (415)

where y is an arbitrary vector. If we apply the Power method to Afl, we get
the eigenpair (A2,22). Deflating A\; to zero is not the only choice to enable
computation of Ay from Power method. Instead, if the smallest eigenvalue is
shifted to some value larger than Ao, Power method can compute eigenpair
(A2,22). We can generalize the Wielandt deflation process by

Alv"/l = A — 'ylzlyT, yTZ1 =1, Y1 € R. (416)

Theorem 4.3.1. The spectrum of Al,,yl as defined in (4.16)) is given by
O-(Alv"/l) = {)‘1 *717>\27"'a)\n}- (417)
Proof. See |54] O

In generalized deflation, if we choose v; = A1 , then from theorem [4.3.1] we
get the spectrum of Wielandt deflation in as o(A1) = {0,Ag,...; An}.
Similarly, for the choice v1 = A — \,,, we get the spectrum as 0(1211)\”) =
{Ans A2, ey Ante

Deflation can be applied with several vectors to deflate many eigenvalues simul-
taneously. Suppose m smallest eigenvalues with Z = [z;...z,,] the corresponding
eigenvectors are previously computed. Next,to compute the (m+ 1)th eigenpair
using Power method, the first m eigenvalues can be deflated simultaneously by
applying the following deflation

A, =A-72I,Y" withY?'Z=1, (4.18)

where T';, = diag(y1, .oy Ym) and Y = [y1, .o, Yin-
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Theorem 4.3.2. Let A,, be defined as in (4.18), then fori=1,...,m we have:

(1) If we set v; = \;, then o(Ay,) ={0,...,0, \t1,y -0y An}

(i1) If we set y; = Ni — An, then o(A) = { Ay ooy Ay A1y ooy An b
Proof. See [54] O

So far in the above discussion, the matrix Y is chosen to be composed of arbi-
trary vectors. If we choose Y = [y;...y,] to be the left eigenvector matrix of A,
then the eigenvalue matrix E satisfies the following relation

E=YTAZ = diag(\1, ..., A

Now for the first case in theorem [£.3.2] with v; = A; and for i = 1,...,m, we have
I',, = E. Therefore, from (4.18) we have

A,=A-ZEYT = A -ZEE'EYT = A - AZE'YTA.

Above relation can be rewritten as

A, =(I1-AZE'YT)A = PpA, (4.19)

or as R R ~ . L
A, =A0-ZE'YTA)=:AQp. (4.20)

Here P and Qp are the left and right deflation preconditioners similar to the
one defined in (4.7). Now if deflation preconditioner is applied to (4.14), i.e.,

PpAx=Ppb or AQDu =b with u = QBlfc, (4.21)
then from theorem the spectrum of the deflated system is given by
J(PDA) = U(AQD) = {Oa"'a07)\m+1w~~7>\n}' (422)

Since Keff(PpA) = kerr(AQp) = A/Amt1 < A/M = k(A), a Krylov
method (like GMRES) applied on the deflated system will converge faster as
compared to when applied on A. It is evident from the relation for effective
condition number that larger deflation subspace implies better convergence,
however, inverting larger deflation subspace exactly is not feasible from solver
performance viewpoint. Instead, if the iterative method is used to invert large
E, the small eigenvalues are not shifted exactly to zero, but to some very small
value 0 < € < A1, which makes the convergence more worse. The following
proposition explains this.

Proposition 4.3.3. Let Z = [21...2,,] and YT = [y1..ym]T be the right and
left eigenvectors of A respectively, and let Pp =1 — AZE~'YT, with
1—€¢ 1—c€

-
E fdzag( VR ),

where |e| < 1. Then the spectrum of PpA is given by

c(PpA) = {eA, ooy Xy At 1y s An b (4.23)
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Proof. For i =1,...,m, we have
PpAZ = (I1- AZE 'YT)AZ
1—e¢ 1-—

= AZ - AZ di o ——
Za’g( )\1 ’ ’ )\m

1-
= AZ - AZ dzag(

€ — €
)\1 ,...,7)\m
=7 diag(e\1, ..., EAm).
Fori=m+1,...,n
].BDAZi = AZZ‘ - AZE_lYTAZi = )\izi - AZE_l)\i YTZi = AiZi.
——
=0
O

From (4.23), for 0 ~ € < A1, the condition number K(PDA) = \p /e, will be
very large, and Krylov solver will have serious convergence problems.

4.3.2 Stable shifting preconditioner

Since shifting the small eigenvalues to zero restricts the use of large deflation
subspace, it seems a potential idea to shift the problematic eigenvalues to some
constant other than zero, which may enable the use of large deflation subspaces.
Based on this idea, Erlangga and Naben have proposed a projection-type pre-
conditioner which is stable with respect to the inexact solve of the Galerkin
system. For the construction of this stable preconditioner, we consider the sec-
ond case of theorem where v; = \; — A, for ¢ = 1,...,m. For this choice
of v;, we have T';, = E — A\, I, where I,,, is an (m x m) identity matrix. Again
by taking Y7 to be the left eigenvectors of A, we get

Apr=A-7T,Y' =A-Z(E - )\1,) Y =A - ZEY" + )\, ZY"

=A-ZEE'EYT + \,ZE'EYT = A - AZE'YTA + \,ZE'YTA.

Therefore,

Ay, =0-AZE'YT £ )\, ZET'YT)A = PyA, (4.24)
with
Py=1-AZE'YT + \,ZE'YT =Pp + N, ZE Y7, (4.25)

is the left stable shifting preconditioner. Notice that 13’2 =+ P N, therefore, it is
not a projection, but we call it projection-like precondltloner since it projects
the small eigenvalues to A,. The spectrum of PyA is similar to that of P DA
with same effective condition number, therefore, a Krylov method applied to
any of them will have similar convergence behavior. Note that if we take \,, =0
in equation , we get the deflation preconditioner. Similarly, a right version
of shifting preconditioner can also be obtained as follows:

Apy=A-ZEYT + )\, Z2YT = A - ZEE'EYT 4+ )\, ZEE Y7
A—AZE'YTA + )\, AZE YT,
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Thus,
Ay =AI-ZE'YTA + N ZE'YT) = AQy, (4.26)

with
Qy =1-ZE'YTA + \,ZE'Y" = Qp + M ZE'YT. (4.27)

The following proposition shows that Py is stable with respect to the inexact
solve of Galerkin matrix E.

Proposition 4.3.4. Let Z = [z1...2,,] and YT = [y1..ym]T be the right and
left eigenvectors of A respectively, and let Py =1 — AZE-'YT + X\, ZE~'YT,
with
~ 1—€ 1—¢€
E'=di
Zag( >\1 )\m ’

where |e| < 1. Then the spectrum of PyA is given by

o(PnA) = {(1 —)An + €Aty oy (1 — )X + Xy A 15 s An b (4.28)

Proof. For i =1,...,m, we have

PyAZ = AZ - AZE'YTAZ + )\, ZE"'YTAZ

R R . 1 —e 1—e€
= A.Z — A.Z dlag(T’ ceey v)

1—e¢ 1—e€e, ..
b\ ,...,V) dlag()\l,...7)\m)
=Z diag(A€, ..., A\me) + Z diag(An (1L —€), ..., A\ (1 —€))
=Z diag(An(1 —€) + A1€, ..., \p (1 — €) + Ape).

diag(A1, ..oy Am)

+ \Z diag(

Fori=m+41,..,n,

PyAz; = Az, — AZE'YTAz, + \,ZE 'YT Az,
=Nz — AZE'N YTz, + 0\, ZE '\, YTz, = Nz
S~~~ S—~—
=0 =0

O

If E is inverted without sufficient accuracy, and if 0 ~ e < 1 and € < A1 < Appt1,
we have

2

)\m—&-I >\m+1 K(PNA)
In P NA, Am+1 still remains the smallest eigenvalue. Therefore, for a system
preconditioned with P ~, the convergence rate of Krylov method will not be
much affected, if Galerkin system E is solved approximately with some iterative
method. This gives the liberty to use larger deflation subspace to cluster many
small eigenvalues around A, and Krylov methods have better convergence rates
for such clustered spectra.
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Deflation process with general vectors

In the previous discussion, the deflation subspaces Z and Y are taken as invari-
ant subspaces corresponding to the smallest eigenvalues of A and AT respec-
tively. However, these invariant subspaces are generally not available at hand,
and computing them is something not suggestive, because of the substantial
computational demands. If we choose Z =Y € R"*™ to be full rank and con-
sist of arbitrary vectors, then Pp still deflates the first m eigenvalues to zero
(since PpAZ = 0). However, the remaining eigenvalues will not remain un-
touched, but instead will be changed. Similarly, for Py, the first m eigenvalues
are still shifted to A, (because P NAZ = M Z), and the rest of the eigenvalues
change in a similar fashion to that for Pp. Above discussion can be stated in
the form of the theorem as

Theorem 4.3.5. Let A be a nonsingular matriz, and Z, Y € R™™™ be any
full rank matrices. If the spectrum of PpA is given by

c(PpA) = {0, ..., 0, flans1s s i } (4.29)

then the spectrum of PyA is

c(PNA) = { A\, e Ay Lt s s fln ) (4.30)
Proof. See [54]. O

If \; and p; are the eigenvalues of A and PpA respectively, then for nonsym-
metric matrix A, it is not possible to make any relation between \; and p;.
However, if A is SPD, then PpA is also symmetric, and in this case, it can
be shown that p, < A, |74]. Thus deflation preconditioner will result in a
better-clustered spectrum than shifting preconditioner
> A Hn )\n - A
k(PpA) = —— < —— =: k(PyA).
/Ufm+1 ,le+1

However, there always exist w; € R for which w1\, = p,. If in the shifting
preconditioner, the small eigenvalues are shifted to new constant wq\,, instead
of \,,, then we have

Py=I1-AZE YT + w \ZE Y7, (4.31)

and o
U(PNA) = {,U/na ooy Mms 41, 7/J"n,} (432)

Now the quality of clustering for deflation and shifting preconditioners is same,
since K(PpA) = k(PyA), and similar convergence behaviors can be expected
for PpA and PyA.

Maximum eigenvalue approximation

Another issue related to the implementation of Py is that it involves maximum
eigenvalue \,, of A, which is not known. Exact computation of A, is expen-
sive, Erlangga and Nabben have shown it numerically that an approximation
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to the maximum eigenvalue is sufficient. If the estimated eigenvalue A, ¢s: is
not very far from the exact A, (i.e., the error is not of the order of \,), the
convergence rate of Krylov subspace solver is unaltered. Moreover, there always
exists some wo € R such that A, = waA;, ¢s:. Maximum eigenvalue can be esti-
mated either using Gerschgorin’s method or by some other means (for example
by simple guess). Erlangga and Nabben have used the following consequence of
Gerschgorin’s theorem (74, page 24|, to estimate the maximum eigenvalue for
the Poisson and convection-diffusion problems.

< il = " 4.
)\n ~ r?eaf\lxzel;l |az,]‘ /\n,est ( 33)
J

The scaling factors w; and wo can be combined and replaced with single scaling
factor as follows

Hn = WAy = W1W2>\n,est = W)\n,esta

where w = wjws is called the shift scaling factor.

Remarks

We list some important remarks related to the stable shift preconditioners Py
and Qn.
° f’N and QN are not projection operators, as f’?\, =+ PN and Q?V #* QN.
o P N and Q N are nonsingular.
e PyA #£ AQy, but o(PyA) = 0(AQy)
o P ~A and AQ ~ are not symmetric, even if A s symmetric. Therefore,

a Krylov method for nonsymmetric matrices (GMRES, BiCGSTAB, etc.)
has to be used.

4.3.3 Two level implementation

Stable left preconditioning when applied to equation (4.14)), results in the fol-
lowing left preconditioned system

% = b, (4.34)

>>

Py
with . A .
A =M1A, X = X, b=PyM 'b,

and

Py=T-MAZE'YT 4wl o ZE'YT, E=YT(M 'A)Z. (4.35)

Similarly, stable right preconditioning results in the following right precondi-
tioned system

AQn% = b, (4.36)
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with A
A=AM1, x =M 1Qunx, b =b,

and

Qy =T1-ZE'YTAM ™ + whp o ZET'YT, E=YT(AM Y)Z. (4.37)

Left preconditioned GMRES can be used to solve (4.34)), while right precondi-
tioned GMRES can be employed to solve (4.36). Since AQy and PyA have
same spectra, the GMRES is expected to have similar convergence behavior for
both left and right preconditioned systems. In algorithm[4.2] the right precondi-
tioned GMRES is shown for solving equation . At k" iteration, GMRES
builds the solution from the Krylov subspace

Ick{rov AM?lQNr07 ey (AMilQN)kier}v

with rg = b — Axg. To calculate the Arnoldi vectors, GMRES requires the
matrix Q ~. However, Q N~ is not a sparse matrix, and calculating it explicitly
is not advisable particularly for large A. Therefore, in MLKM implementation,
the direct calculation of Q ~ is avoided and its application on some vector v;
is carried out as shown in lines 4-8 of algorithm When inner iterations

Algorithm 4.2 Two level Flexible GMRES right preconditioned with Q ~ and

M

1: Choose xg (x0 = 0) w and Ay, est

2: Computerg = b — Axg, 8 = ||roll2, and vi = r¢/f8
3: for j=1,2,,....k do

4: s = AM_lvj

5: Restriction: vi = YT (s —whyestVy)-

6: Coarse-grid solve: v = E-lvg.

7 Prolongation: vp := Zv.

8: Correction: x; := v; — vp

9: w = AMlx;

10: fori=1,2,....,5 do

11: hi,j = (W7Vj).

12: W = W — hi)jVZ‘.

13: end for

14: Compute hj+1,j = ||W||2 and Viy1 = W/hj+1,j-
15: end for A

16: Define X, := [xl,...,xk] and H, = {hi,j}1§i§j+1;1§j§k~

17: Compute yj the minimizer of ||fe; — fIky||2 and x;, = X9 + M 'X,ys.

are used, Qu is in general not constant, therefore, flexible version of GMRES
is used to accommodate the variable preconditioner. This requires storage of
X = [X1,...,Xx], in addition to Vi = [vy,...,vi] vectors, and the solution
is built using Xj. One iteration of algorithm requires two preconditioner
solves, followed by two matrix-vector multiplications (line 4 and 9), and one
solve involving smaller dimension matrix E. If we set M = I, this work is equal
to the work with deflation preconditioner P p, and less than that with balancing
preconditioner Pp.
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4.3.4 Multilevel implementation

If large deflation subspaces are used, then the Galerkin system solve in algorithm
[4.2] given by
Ev = vg, (4.38)

should be performed with some (inner) Krylov method using weak termination
criterion, to ensure optimal overall computational complexity of the algorithm.
If the condition number of Galerkin matrix E is large, the Krylov method will
require many iterations to converge. The convergence rate can be enhanced
by again applying the shift preconditioner Q N to . Even if the condition
number of Galerkin system is not large, the action of shift preconditioner can
further enhance the convergence of Krylov iteration. Application of this shift
operator further involves a coarse grid solve similar to at the next coarser
level, which can be performed by another inner Krylov iteration. Each inner
iteration solves a much smaller Galerkin system than the previous inner solve.
A recursive application of this process results in a multilevel Krylov method
(MLKM).

4.4 MLKM in context of FEATFLOW

Erlangga and Nabben in [54], have used Galerkin coarse grid projection as a rep-
resentation of the Galerkin system, i.c., E = YT(AM~YZ. Their MLKM im-
plementation requires the explicit calculation of Galerkin matrices at all coarse
levels in the initialization phase of the algorithm. Notice that to calculate these
matrices at each coarse level, one needs to have preconditioner matrix M~!
available at hand at these levels. However, the preconditioner matrix may not
be explicitly available in many cases (for example how to get the M~! matrix
if a Krylov iteration is used as a preconditioner, or if one iteration of multigrid
is used as a preconditioner). Even if M~! is explicitly available, generally the
M ! matrix will be dense, and the resulting Galerkin matrix will also be dense.
Computing and storing the dense M~! and E matrices will be too much time
and memory consuming, something we do not want at all. The only possibility
is to use Jacobi as a preconditioner, for which the M~! and E will not be dense,
and this is the choice being used by authors in [54]. However, in general, the
diagonal preconditioning does not achieve much in terms of convergence rate
improvement.

In FEATFLOW, we do not explicitly calculate and store the M~! matrix; in-
stead, a preconditioner is applied to some vector to get the preconditioned vec-
tor. Hence, the M~! matrix is not readily available to calculate the Galerkin
matrix. In our implementation of MLKM algorithm, we use discretization coarse
grid approzimation to setup Galerkin system at the coarse levels. With this ap-
proach, the Galerkin system at the second level reads

ACHMEN G = vy, (4.39)

where A" is a coarse grid matrix, which like fine grid matrix A" is obtained
from the discretization of the original equation at the second level, and M2
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is the preconditioner matrix based on A", Thus, at the second level MLKM
solves the system

ACOMED T Qv = v, v =Qnv, (4.40)

using FGMRES iterations.

The advantage of using the discretized coarse grid matrix for Galerkin system
is that we have the liberty of using any iterative method as a preconditioner M,
without having a fear of getting into the trouble of dense matrices. However,
an apparent disadvantage is that at the lowest level we cannot exactly solve
the associated Galerkin system of the form since we do not have the
matrix M available with us. Nevertheless, our numerical results have shown
that at coarsest level whether we solve exactly or approximately, it does not
significantly affect the convergence of the MLKM solver. Moreover, in most of
the real-life applications, the geometries are large and complex, and the grids
are highly irregular, thus making it impossible to coarsen the grids to the point
that direct methods could be used to solve the coarse problems. In MLKM, the
coarse grid systems at all levels are solved approximately using few iterations
of GMRES.

To facilitate the explanation of our multilevel Krylov method implementation
in more detail, we introduce new notations to cater for the level identification.
Suppose that L levels are used, with [ = L to be the finest level on which we
want to solve the problem, and [ = 1 to be the coarsest level. Let A® be
the discretized system matrices at each level [ and M® be the corresponding
preconditioner matrices. At the level L, MLKM solves the following system

A(L)M(L)’ng\f)g((L) — b, (D) — 1\/[(L)’1Q§\f)§((L)7 (4.41)
where the shift operator is given by
(L) _ (L) _ g(LL-D)RL-1)" "y (LL-1)T A (L))"

N

—1 T
+ w(L)/\sLl:gstZ(L,Lfl)E(Lfl) Y(L,Lfl) ’ o
with (1.42)

EL-D — A@E-DppEI-D7H
. - (L L-1)
The Galerkin system at level | = (L — 1) is given by EC-Dg(E-1) = vg% .

Letting v(£~1) = x(L=1 and V%_l) = b(E=1 | at level (L — 1) MLKM solves
the system of the form

A(L—l)M(L—l)flQ%*l)g{(L—l) = pE-D), x(I=1) — Q%*U&(L—l)7 (4.43)
with projection preconditioner
L—1 _ _ _ _ —1 _ _oT _ _ —1
(=D _ (@) _ z(@-LL-2) (-2 7y (L-1L=)T A (Z-Dpp((E-D)
+ w((Lfl))\gl(is—tl)Z((Lfl,L72)E(L72)’1Y((Lfl,LfZ)T

and
EL-2 — A@T-2)ppE-2)""
(4.44)
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Likewise, at each subsequent level till [ = 2, the Galerkin system similar to
(4.43)) is solved. At the coarsest level [ = 1, the following Galerkin system is
solved approximately using few iterations of FGMRES

AOMO 0 ZpM) @) Z 5O, (4.45)

If we look at the relation between % and x in equations (4.41),(4.43)), and (4.45)),

it is clear that at finest level [ = L, MLKM extracts solution from x;, = xg +
M~ 'X,yk, at levels 1 < | < L from x, = X9 + Xiyi, and at the coarsest
level I =1 from xi = %o + VY (see line 17 of algorithm . Algorithm
represents our implementation of MLKM in the FEATFLOW software.

Erlangga and Nabben in [54] have used piece-wise constant interpolation matrix
as Z and taken Y = Z. With this choice of deflation subspaces, they have used
for approximating the maximum eigenvalue A, .s;. We have used stan-
dard finite element based inter-grid transfer operators of multigrid as deflation
subspaces Z and YT'. The first reason for using these grid transfer operators is
that they are already implemented in FEATFLOW. Secondly, we have observed
that with these standard MG grid transfer operators, setting maximum eigen-
value equal to one for all levels and choosing an appropriate value of w, in most
of the cases resulted in best convergence rates for the MLKM solver. Hence
we can avoid the calculation of approximate eigenvalue of the preconditioned
system matrix, thus reducing the computational head of the solver.

Algorithm stops if either the convergence criterion set at the finest level is
met or if the maximum number of iterations is reached. In MLKM algorithm,
GMRES is not restarted at the coarse levels (for I < L) and maximum number
of iterations at these levels is set equal to the Krylov subspace dimension at
these levels. The MLKM iteration is represented with the Krylov dimensions
set at these levels. For example, MLKM(4,2,1) means one iteration of MLKM
at the finest level involves 4 FGMRES iterations at level [ = L — 1, 2 FGMRES
iterations at levels 1 < ! < L — 1, and 1 iteration at the coarsest level (I = 1).
Figure shows one iteration of MLKM(4,2,2) configuration.

Level 4 __

Figure 4.1: MLKM(4,2,2) iteration. @— GMRES solve after completion of the
number of GMRES iterations set at that level.
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Algorithm 4.3 Multilevel Krylov Method

1:

10:
11:

12:

13:
14:
15:
16:
17:

18:
19:
20:
21:
22:

23:
24:

25:
26:
27:
28:
29:
30:

© P> oW

MLKM (A(l), M(l), Z(l,lfl)’ Y(l,lfl)’ b(l), )\(l)

n,est) w(l), l) with all the
arguments already chosen or determined.

Choose Xél) and calculate: r(()l) =b® — A(l)xél), B = Hrél)Hg, and vgl) =
r((]l)/ﬂ(l)
ite =0
for ite < maximum iterations do
for j=1,...,k do > k = Krylov subspace dimension
ite =ite + 1
0 _ 0

j j
if (I > 1) then
s = A(Z)M(l)flvgl)
Restriction: v%fl) = Y(l’l_l)T(S—w(l)/\g,)estvg-l))
Coarse-grid solve: Solve AC-DME-DT G- — v%_l) for

v~ by a recursive call to MLKM (A®), M®), ZG=D yGi=1) - ph() —
MORNY)

s \n,ests l:l_l)
Prolongation: vg) = ZGIDH=1),
Correction: xy) = Vy) - Vg)
end if
w®) .= A(l)M(l)’lxy)
fori=1,2,...,j do
n _ )
hi; = (w(),vj ).
wlh) = wlb — hgg-vgl).
end for l l l
Compute h§»}rl’j = [|[w®|, and vﬁrl = w(l)/h§ll’j.
end folr l l oy (1 l
Set X,E:) = [xg),...,x;)] and Hé) = {h,('7])'}1§i§j+1;1§j§k-

Compute y,(cl) the minimizer of ||3Ve; — I:I,gl)y(l)\|2.
if (I =1) then

Compute xg) = x(()l) + M(l)71X;l)y;l)

else
Compute x,(gl) = x(()l) + X,gl)y,gl)
el(llgi it O] O]
v = (b0 — AOx)/ b0 — ADXD,
end for

52



4.5. MULTILEVEL KRYLOV METHOD VS. MULTIGRID METHOD

4.5 Multilevel Krylov method vs. MultiGrid method

Although MLKM involves ingredients similar to that of multigrid, however, both
solvers are different in many aspects. MLKM is different from multigrid and
other multilevel solvers like domain decomposition methods, in a way that these
multilevel solvers can be represented as a multistep fixed point iteration[54]. In
multigrid, for example, the error at each iteration can be written in terms of
the error at previous iteration by the relation:

e+ = B e, (4.46)

where B = (I — M, *Ap) (I — IFAG T A) (I — M, Ap).

Post-smoothing Coarse—grid correction  Pre-Smoothing

However, for multilevel Krylov method, no such fixed point relation can be
established, and it can only be seen as a Krylov subspace iteration. Multigrid
works on the solution vector x and the error vector e, while MLKM works
on the Arnoldi vectors which form the basis of Krylov subspace in which the
approximate solution vector is contained. In MLKM, M~! does not work as
smoother but only as a preconditioner to improve the condition number of the
matrix. If the matrix is not very ill conditioned, we can set M = I and MLKM
still works fine (see chapter 5, table . On the other hand, MG without
smoother does not work.

Even though the coarse-grid correction of MLKM is similar to that of multigrid,
the construction of inter-level transfer operators of MLKM does not require
accurate interpolations; it only requires that the inter-grid transfer matrices are
full rank. Erlangga and Nabben in [54], therefore, have used piece-wise constant
interpolation matrix as Z and taken Y = Z. This choice of deflation subspaces
leads to efficient MLKM solver, whereas, MG with prolongation and restriction
based on piece-wise constant interpolation does not produce good results.
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Convection-Diffusion Problem

In this chapter and the next chapter, we solve the scalar partial differential equa-
tions with MLKM solver and compare its performance with geometric multigrid,
which is the standard multilevel solver technique available in FEATFLOW. We
have chosen the convection-diffusion problem and anisotropic diffusion problem
as our scalar model problems. These PDEs represent many important physical
phenomena in nature. However, the main reason for choosing these partial differ-
ential equations as our model problems is that they exhibit numerical challenges
for the solvers, that also appear in the more complex Navier-Stokes equations.
Therefore, before embarking on the complicated systems of Navier-Stokes equa-
tions, we analyze the performance of MLKM solver on these relatively simple
scalar problems.

The convection-diffusion problem is dealt with in this chapter, and the anisotropic
diffusion problem is considered in the next chapter. We first describe the
convection-diffusion problem and then give its weak formulation. We also briefly
discuss the stabilization techniques used to stabilize the numerical results for
highly convective flows. Numerical results begin with the code validation tests,
where we ensure that our MLKM implementation is correct by solving the prob-
lem with a known exact solution and compare our numerical results with this
exact solution. We calculate the solution error at different mesh refinement
levels and observe the asymptotic error decay. Next, we present the numerical
results for the solution of the convection-diffusion problem on various test cases
and compare the performance of our multilevel Krylov method implementation
in FEATFLOW with the multigrid solver. The solvers are tested for a wide
range of problem parameters (Peclet number, mesh refinement) to check their
robustness. We also analyze the performance of solvers for various precondi-
tioners/smoothers.

5.1 Convection-diffusion problem

Convection and diffusion play a vital role in the transport of scalar quantities
(e.g., temperature, density, concentration, and so forth) in various science and
engineering applications. Convection is the transport phenomenon due to the
bulk motion of the fluid, whereas diffusion attributes to the transport of quan-
tities from high concentration areas to low concentration areas caused by the
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random molecular motion. In many situations both convection and diffusion
occur side by side, for instance, the smoke coming out of the chimney spreads
into the atmosphere due to the wind (convection) and due to concentration gra-
dients (diffusion). The combined effect of both the processes can be studied by
solving the convection-diffusion equation. If we take £ = —dA+¢.V in equation
(2.1), we get the steady state convection-diffusion boundary value problem as
follows

—dAu+cVu = f in Q

(5.1)
v =g on I'p and Vun = f on Iy,

where ¢ is convective velocity and d is diffusive coefficient. The transport pro-
cess may be quite different depending on the convective and diffusive transport
rates. For example, on a windy day, the smoke coming out of the chimney
moves downstream faster than it spreads out, whereas, on a calm day the smoke
spreads out faster due to molecular diffusion than it moves downstream. The
dimensionless number called Peclet number can quantify the relative strength

of convection and diffusion
CL

Pe = R (5.2)
here C' is the velocity magnitude, and L is the characteristic length in the
problem. Equation can be seen as a “linear scalar version” of Navier-
Stokes equations, discussed in chapter [7 in which case the unknown u is the
vector-valued velocity field, ¢ is also the unknown u that makes the problem
nonlinear, and d is the viscosity parameter. Likewise, the Peclet number for the
linear equation corresponds to the Reynolds number for the Navier-Stokes
equations.

The weak form of the convection-diffusion equation is given as follows:
Find u € Hf, such that

a(v,u) = b(v) Vv € Hp, (5.3)

where a(.,.) : H1(Q) x HY(Q) — R is the bilinear form given by

a(v, ) = d / Vo.Vu+ / (e.Vu)o. (5.4)
Q

Q

As is obvious a(v,u) # a(u,v), therefore, the bilinear form is nonsymmetric.
The linear form b : H*(Q) — R on the right side of equation (5.3 has the form

bv) = Q/ of +F { VB, (5.5)

Following the standard Galerkin finite element process as described before in
chapter [2 the discrete form of the equation (5.3)) is as follows:

Find ujy, € S& such that
a(vp, up) = b(vp,) Yo, € SP. (5.6)
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5.1.1 Stabilization of convective term

For a self adjoint (symmetric) operator £, the standard Galerkin method pro-
duces best approximations, i.e., it minimizes the error in the energy norm. How-
ever, the nonsymmetric convective part in convection-diffusion equation deprives
the Galerkin method from its best approximation property. In highly convec-
tive (large Peclet number) flows, the solution u may exhibit steep gradients,
particularly near the boundaries to satisfy the boundary conditions. If these
steep gradients are not accurately captured by the numerical scheme used to
solve the discrete problem, spurious oscillations, also called wiggles, may occur
at the boundary layer. These oscillations then propagate along the streamlines
into the domain where the solution u is even smooth, thus spoiling the whole
solution, and making the iterative solver unstable.

One approach to handle the problem is to use locally refined meshes in the ar-
eas where the solution is changing rapidly. In some cases, the areas where the
steep gradients arise are apparent. However, in general, it is not always possible
to identify all the areas where the solution is nonsmooth, especially when the
streamlines are complicated. In such cases, adaptive local mesh refinement may
be applied: a discrete solution and the corresponding a posteriori error is com-
puted on the initial grid, then the mesh is locally refined in the areas where the
error is significant. Nonetheless, this strategy can only be useful, if the errors do
not propagate into the regions of the domain where the solution is well behaved.

Several methods have been proposed in the literature to stabilize the discrete
solution of the convection-diffusion problem coming from standard Galerkin
method. Streamline diffusion method (SD), introduced by Hughes and Brooks
[76], adds some artificial diffusion along the streamlines that rectifies the oscilla-
tory behavior of the discrete solution. The Streamline- Upwind Petrov-Galerkin
(SUPG) method, also proposed by Hughes and Brooks [25], interpret the diffu-
sion added in the streamline direction as a modification of the test space and
uses this modified test function for all terms of the weak form. This method
results in a consistent scheme, where the exact solution of the problem still sat-
isfies the weak form resulting from the stabilization of SUPG method. For more
details on SD and SUPG, see [52, 83, 61].

In this thesis, we use another promising stabilization technique called edge-
oriented jump (EOJ) stabilization, originally proposed by Douglas and Dupont
[45]. The working philosophy of the EOJ stabilization is different from SD and
SUPG; instead of looking at local Peclet/Reynold numbers, EOJ checks the
smoothness of the discrete solution to determine the amount of the stabilization
required. The main idea of the technique involves introducing additional interior
penalty terms into the weak formulation of the standard Galerkin discretization
in a consistent manner. The penalty term controls the jump of the gradient of
the discrete solution over the element boundaries. Different jump terms have
been proposed in the literature; we use the unified edge-oriented jump term
proposed by A. Ouazzi and S. Turek [134], which is of the form

Sunsun) = Y. max(r"vheoty) | (Vun](Vonldo, (5.7)
edge E Vo

where v is the viscosity, hg is the length of an element edge F, and [-] the jump
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of function over an edge E. The stabilization parameters v and ~v* are free
constants, and the results are in many cases insensitive to their choice. We have
always used v* = 0 in all the numerical experiments. The negative implication
of the EOJ stabilization is that the standard sparsity pattern of the Galerkin
FEM discretization is destroyed. An extended matrix stencil is required to
introduce the extra nonzero entries resulting from stabilization term, which
leads to additional memory requirements, as well as an extra computational
head for the linear solvers. For more details on EOJ stabilization, see [134].

5.2 Numerical results

We analyze the Multilevel Krylov method numerically for stationary convection-
diffusion equation where the associated coefficient matrix is nonsymmetric.
MLKM performance is compared with the multigrid method for the said prob-
lem on structured as well as unstructured meshes. As a test problem for struc-
tured meshes, the convection-diffusion problem is solved on a unit square do-
main. For performance analysis on the unstructured meshes, the problem is
solved on the rectangular domain with a circular obstacle. However, before
starting this solver performance comparison, we validate our multilevel Krylov
solver implementation by solving the convection-diffusion equation on a unit
square domain with some known exact solution.

5.2.1 Code validation

For validation purpose, we consider the following stationary convection-diffusion
equation in two dimensions

where Pe is the Peclet, and the convection is in vertical direction only. The
boundary conditions of Dirichlet type read as follows

0 ifx = 0ory = 0,
u(z,y) =<qy> ifzx = 1, (5.9)
23 ify = 1.

The right hand side f in equation is set to f = —3zy(—22y + 222 + 2y?)
to produce the solution u = x3y%. MLKM (4,2,2) with Jacobi preconditioner
is used to solve the above problem with Pe = 1. Maximum eigenvalue (A,qz)
and scaling parameter (w) in MLKM are set equal to one. The mesh at level 1
consists of one cell, and refined meshes are obtained by performing the uniform
mesh refinements, whereby the midpoints of opposite edges of each coarse mesh
cell are joined. In all the simulations, level 2 mesh with four quadrilaterals is
used as a coarse mesh. Simulations are performed at various mesh refinement
levels for both bilinear (Q1) and biquadratic (Q2) finite element discretizations,
and the corresponding L, and H; norms of the errors are presented in table
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The results show that with the grid refinements, the solution error for ()7 finite
element discretization in Lo and H; norms are reduced with factors of 4 and
2, respectively. Similarly, in the case of Q2 discretization, for the first few
mesh refinement levels, the Lo and H; errors are reduced by a factor of 8 and
4, respectively. As soon as the Lo error is reduced to the same order as that
of stopping criterion (107%6), these factors are not obtained. If the stopping
criterion is further reduced, then in the next levels also Lo and H; errors reduce
with the same factors of 8 and 4, respectively. The asymptotic error reduction
behavior follows precisely what the theory suggests, thus confirming that our
code is bug-free, and we may proceed to compare the performance of MLKM
solver with geometric MG solver.

Q1 Q2
Level Lo-Error Hi-Error Lo-Error  Hi-Error

3.89E-03  6.72E-02 3.61E-05  1.87E-03
9.76E-04  3.34E-02 4.51E-06 4.67E-04
2.44E-04 1.67E-02 5.64E-07 1.167E-04
6.10E-05  8.35E-03 8.55E-08  2.92E-05
1.52E-05 4.18E-03 3.74E-08  7.78E-06

0 3 O Ut

Table 5.1: Error analysis of MLKM solver for Convection-Diffusion problem
with Pe =1

5.2.2 Test Problem 1 (Structured meshes)

We study the effect of convection on the performance of MLKM and compare it
with the MG solvers. To this end, we solve the stationary convection-diffusion
equation for increasing Peclet numbers and list the number of iterations taken
by these solvers to reach the desired accuracy. We begin with solving the two
dimensional stationary convection-diffusion problem on a unit square domain
with the right-hand side f set equal to zero,

1 0 .
~ pglu+ <1> Vu=0 in Q=(0,1)x(0,1), (5.10)

and subject to the following Dirichlet boundary conditions

u(0,y) = —1/2,
u(l,y) = 1/2,
u(z,0) = z—1/2,
u(z,1) = 0.

We abbreviate this first test case for the convection-diffusion problem as CD1.
The problem features vertical flows with steep gradients near the upper bound-
ary (y = 1) to satisfy the boundary conditions. As can be seen in figure
the boundary values on the vertical walls alter quickly at the upper boundary,
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from -1/2 to 0 on the left wall and from 1/2 to 0 on the right wall. This dra-
matic change of the solution w results in exponential boundary layers formation
near the upper boundary, whose thickness is inversely proportional to the Peclet
number. The similar problem has been described in [52] on Q € (—1,1)? with
Dirichlet boundary conditions producing more steeper gradients at upper cor-
ners. Erlangga and Nabben have solved this problem in [54] with MKLM solver
using finite volume method along with the upwind scheme for flux terms.

We employee quadrilateral finite elements (Q; and Q2) for the discretization
of the domain. For the numerical results presented below, the mesh consisting
of 16 regular squares with edge length A = 1/4 (as shown in figure , is
taken as coarse mesh. The CD1 problem is solved for Peclet numbers Pe =
20,50, 100 and 200 on uniform meshes with 322,642, 1282 and 2562 squares.

Ay

(0,1) 0 (11) _
Level Grid
3 42
4 82
_1 1 5 16
2 2 6 322
7 642
8 1282
9 2562
>
(0,0) z—1 (1,0) *

Figure 5.1: CD1: Coarse mesh with boundary conditions (left); Number of grid
cells at each refinement level (right)

Right preconditioned MLKM with (4,2,2) configuration is used on the left pre-
conditioned system M~'A = M~!'b. The maximum eigenvalue ) is set equal to
one, the shifting parameter w is varied to improve the guessed eigenvalue, and
the results presented are for the optimum value of w. On the other hand, MG
with F-cycle, 4 pre- and post-smoothing steps and UMFPACK as a coarse grid
solver is used. For MG with Jacobi smoother, a damping parameter of 0.7 is
used. Standard bilinear /biquadratic grid transfer operators from finite element
spaces are used as prolongation and restriction operators (deflation subspaces Z
and Y in case of MLKM solver). The solvers are required to reduce the residual
norm by six digits, i.e., the termination criterion for all the simulations is set to
e = 1076 relative.

The first test results (table show the number of iterations of the multilevel
Krylov solver without any preconditioner (M = I). As is evident from the re-
sults, the MLKM method works fine even without the use of any preconditioner.
The convergence rates are independent of the mesh parameter h, even for prob-
lems with higher Pe numbers. However, convergence rates of the solver without
preconditioner are greatly influenced by the Pe number, with poor convergence
rates for larger Pe number problems.
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Level/ Pe 20 50 100 200
6 23 54 107 231
7 21 44 89 229
8 20 41 80 187
9 20 (0.22) 37 (0.44) 66 (0.86) 137 (2.22)

Table 5.2: CD1: MLKM solver without any preconditioner on @; finite element
discretization. Time (in seconds) taken by solver at level 9 is also shown.

Next, the numerical tests are performed for different preconditioners/smoothers
with bilinear as well as biquadratic finite element approximations. The number
of iterations needed for the solvers to reach the convergence criterion for the
above numerical tests are shown in the tables

MLKM with point Jacobi preconditioning shows convergence rates that are
bounded independent of the discretization parameter h associated with mesh
refinements, for both bilinear (table as well as biquadratic (table finite
element discretizations. Moreover, on suitably refined meshes, the convergence
rates of MLKM /Jacobi solver are also Peclet number independent, for the range
of Peclet numbers considered. On the other hand, multigrid method (with
Jacobi smoothing) based on standard Galerkin discretization leads to a divergent
method for the convection dominated problems.

Level/ Pe 20 50 100 200
MLKM
6 9 12 21 47
7 9 9 12 25
8 9 9 9 13
9 9 (0.16) 9(0.16) 9 (0.16) 9 (0.16)
MG

6 4 div div div
7 4 div div div
8 4 div div div
9 4 (0.11) div div div

Table 5.3: CD1: Comparison of MLKM/Jacobi (w = 1.1) and MG/Jacobi on
Q1 finite element discretization. Time taken by solvers at level 9 is also shown.

For the case of point GauB-Seidel preconditioner/smoother (see tables and
, the convergence behavior of solvers is essentially similar to that of Jacobi
case. Here again, MLKM exhibits convergence rates that are grid independent
and almost Pe number independent (as long as the refinement level is not too
small and the Pe number is not too large at the same time), both for ; and
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Level/ Pe 20 50 100 200
MLKM
6 11 12 16 34
7 11 11 12 20
8 11 11 11 14
9 11 (0.83) 11 (0.84) 11 (0.81) 11 (0.81)
MG
6 4 div div div
7 5 5 div div
8 5 5 div div
9 5(0.73) 5 (0.76) div div

Table 5.4: CD1: Comparison of MLKM /Jacobi (w = 1.0) and MG/Jacobi on
@2 finite element discretization. Time taken by solvers at level 9 is also shown.

Q- finite element approximations. Similarly, MG with Gauf}-Seidel smoother is
not robust and diverges for large Pe numbers.

We want to emphasize here that these problem parameters (h and Pe) inde-
pendent convergence rates for MLKM are obtained without using any special
reordering schemes, without using any stabilization schemes for the convective
term, and without using any adaptively refined meshes in the vicinity of the
upper boundary.

Figure shows contour plots of the solution for Peclet numbers 20 and 200,
produced by MLKM/Jacobi method on uniform meshes and without using any
stabilization for the convective term. Note that MLKM/Jacobi without sta-
bilization, produces solutions without any nonphysical spurious wiggles in the
domain, and the solver nicely captures the exponential layered solution at the
top boundary, even at higher Pe numbers. Notice the change in the width of
the boundary layer with the change in Peclet number, which complies with the
physics of the problem.

MLKM convergence rates are not very sensitive to the choice of the value of
w, and the solver works fine in many cases even if we simply take w = 1.0. In
table we show the number of iterations taken by MLKM solver to converge
for optimal w used in tables and and for w = 1.0; the results presented
are at level 9 for Q1 finite element approximation. The results show that for
both Jacobi and Gauf-Seidel preconditioners, the convergence rates of MLKM
are not much altered if we take w = 1.0.
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Level/ Pe 20 50 100 200
MLKM
6 9 12 21 50
7 8 9 13 22
8 8 8 9 13
9 8 (0.16) 8 (0.16) 8 (0.16) 9 (0.18)
MG

6 4 div div div
7 3 div div div
8 4 div div div
9 3 (0.10) div div div

Table 5.5: CD1: Comparison of MLKM /GauB-Seidel (w = 0.7) and MG /Gau$-
Seidel on @, finite element discretization. Time taken by solvers at level 9 is

also shown.
Level/ Pe 20 50 100 200
MLKM
6 9 10 13 24
7 9 9 11 16
8 9 9 9 12
9 9(0.82) 9(0.81) 9 (0.80) 10 (0.88)
MG

6 3 3 div div
7 3 3 div div
8 3 3 div div
9 3(0.54) 3 (0.56) div div

Table 5.6: CD1: Comparison of MLKM/GauB-Seidel (w = 0.7) and MG/Gau$-
Seidel on Q5 finite element discretization. Time taken by solvers at level 9 is

also shown.
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Figure 5.2: CD1: Contour plots for the solution of the convection-diffusion
problem for Pe numbers 20 (left) and 200 (right) on 1282 uniform mesh.
MLKM/Jacobi without stabilization is used as a solver.

w/Pe 20 50 100 200

Jacobi
Optimal 9 9 9 9
1.0 9 9 9 10

Gauf3-Seidel
Optimal 8 8 8 9
1.0 10 10 10 11

Table 5.7: CD1: Number of iteration of MLKM for optimal w, and for w = 1.0.
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5.2.3 Test Problem 2 (unstructured meshes)

As a second test case, we solve the convection-diffusion equation in a rectangular
channel with a circular obstacle. The circular obstacle may represent a heat
source placed in the stream of the fluid, and the convection-diffusion problem
then depicts the transport of heat in the channel. The mathematical model of
the problem along with boundary conditions is as follows

—%Au + (é) Vu=0 in €, (5.11)
with boundary conditions
u(0,y) =0
u(z,0) =0
u(z,0.41) =0
u(xz,y) =1 for (x,y) on the circle.
Onpu(2.2,y) =0 natural boundary condition

We abbreviate this second test case for the convection-diffusion problem as CD2.
The computational domain is discretized using unstructured quadrilaterals, and
the corresponding coarse level mesh is shown in the figure 5.3

[ ]

Level Elements Unknowns
Q1 Q2

33280 33696 133952
133120 133952 534144
532480 534144 2133248
2129920 2133248 8526336
8519680 8526336 34092032

© 00 O Ot

Figure 5.3: CD2: Coarse mesh along with the problem size at each refinement
level.

For @ finite element discretization, MLKM with (4,2,2) configuration is used.
With Q3 finite elements, although MLKM (4,2,2) worked fine for lower Pe num-
bers, however, at higher Pe numbers the solver required more iterations at the
coarse level to achieve better convergence rates. Therefore, for (Q2 approxima-
tions MLKM (4,2,5) configuration with 5§ GMRES iterations at the coarse level
are used. In the case of Jacobi preconditioner, the maximum eigenvalue of the
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preconditioned system is approximated as follows

Amaz(M™TA) = max > laij/ail,
JEN
and for Gauf3-Seidel preconditioner, it is taken as equal to one. Reverse Cuthill
Mckee renumbering is used with GauB-Seidel preconditioner/smoother, which
results in improved convergence rates for both MLKM and MG solvers. All
other solvers and numerical settings are same as in the test case one. Similar
to the first test case for the convection-diffusion problem, we solve the problem
for varying Pe numbers (100, 200, 500, 1000, and 5000) and study the effect
of convection on the performance of MLKM solver and compare it with the MG
solver. Numerical results are shown for the solvers without any stabilization,

as well as with the edge-oriented jump stabilization to stabilize the convective
term in the problems involving higher Peclet numbers, see tables -[5.15].

Velocit magnitude

000 025 0.50 0.75 1.00

— T .

Figure 5.4: CD2: Velocity magnitude profiles for Pe = 100 (top) and Pe = 5000
(bottom).

Numerical results, in the second test case, are similar to the test case one; again
for the convection dominated flows, the multilevel Krylov method with Jacobi
or GauB-Seidel preconditioning stands out as a more robust solver than the
multigrid method. In this test problem also, MLKM is convergent and produces
mesh parameter (h) independent convergence rates, even when no stabilization
is used. For highly convective flows (Pe = 5000) also, the method produces
h independent convergence rates, without any stabilization. This problem size
independent convergence behavior of the method is observed for both bilinear
and biquadratic finite element approximations. On the contrary, multigrid is
divergent for slightly large Peclet numbers, even when the edge-oriented jump
stabilization is used.

The results also show that on appropriately refined meshes, the convergence be-
havior of the MLKM solver is independent of the Peclet number (for moderately
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large Peclet numbers). This means that convergence rates and the computa-
tional costs are the same for a range of moderate Peclet number problems (upto
Pe = 1000). However, for very high values of Peclet numbers (Pe = 5000)
further mesh refinements may produce similar convergence rates. Another im-
portant observation is that for highly convective flows, MLKM with diagonal
preconditioning performs better than MLKM with Gauf3-Seidel preconditioning.
Numerical experiments also reveal that convergence rates of both MLKM and
MG are not much improved by the use of edge-oriented jump stabilization, for
the problem at hand.

Level/ Pe 100 200 500 1000 5000

MLKM
6 18 18 29 60 304
7 17 17 18 32 198
8 16 16 16 19 111
9 15 (37) 15 (37) 15 (37) 15 (37) 57 (166)
MG
6 15 Div Div Div Div
7 15 Div Div Div Div
8 17 Div Div Div Div
9 18 (86) Div Div Div Div

Table 5.8: CD2: Comparison of MLKM/Jacobi and MG/Jacobi on @ finite
element discretization. Time taken by solvers at level 9 is also shown.

Table [5.16] shows time taken by MLKM and MG solvers to solve the problem
with Pe = 100, at various mesh refinement levels using Q- finite elements.
With each uniform mesh refinement, the number of unknowns are increased
four times. The time taken by both the solvers is also increased with a factor of
approximately four at each level, indicating the linear computational complexity
of both the solvers.
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Level/ Pe 100 200 500 1000 5000
MLKM
6 18 19 31 58 220
7 17 17 20 30 140
8 16 16 16 19 78
9 15(64)  15(64) 15(64) 16(69) 43 (195)
MG

6 15 Div Div Div Div
7 15 Div Div Div Div
8 17 Div Div Div Div
9 18 (183) Div Div Div Div

Table 5.9: CD2: Comparison of MLKM/Jacobi and MG/Jacobi on @ finite
element discretization with EOQJ stabilization. Time taken by solvers at level

9 is also shown.

Level/ Pe 100 200 500 1000 5000
MLKM
6 14 14 72 176 not conv.
7 13 13 28 81 not conv.
8 12 12 18 40 not. conv
9 11(35) 11(35) 13 (41) 22(72) mnot conv.
MG

6 3 Div Div Div Div
7 3 Div Div Div Div
8 3 Div Div Div Div
9 3 (16) Div Div Div Div

Table 5.10: CD2: Comparison of MLKM/Gaufl-Seidel and MG /Gauf3-Seidel on
@1 finite element discretization. Time taken by solvers at level 9 is also shown.
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Level/ Pe 100 200 500 1000 5000
MLKM
6 14 14 21 38 133
7 13 13 14 25 110
8 13 13 13 17 86
9 12(56) 12(56) 12 (56) 13(61) 59 (301)
MG

6 5 39 Div Div
7 4 29 Div Div
8 43 Div Div
9 3(26) 4 (35) 70 (606) Div Div

Table 5.11: CD2: Comparison of MLKM/Gau$-Seidel and MG/Gau3-Seidel
on (1 finite element discretization with EOQJ stabilization. Time taken by

solvers at level 9 is also shown.

Level/ Pe 100 200 500 1000 5000
MLKM
5 21 22 33 65 415
6 21 21 23 35 277
7 21 21 21 25 146
8 21 (82) 21 (82) 21(82) 21(82) 90 (418)
MG

5 7 Div Div Div Div
6 6 Div Div Div Div
7 6 Div Div Div Div
8 6 (48) Div Div Div Div

Table 5.12: CD2: Comparison of MLKM /Jacobi and MG /Jacobi on Q5 finite
element discretization. Time taken by solvers at level 8 is also shown.
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Level/ Pe 100 200 500 1000 5000
MLKM
5 21 22 32 64 395
6 21 21 23 35 242
7 21 21 21 27 116
8 21 (193) 21 (193) 21 (193) 21 (194) 76 (739)
MG

5 7 Div Div Div Div
6 6 Div Div Div Div
7 6 Div Div Div Div
8 6 (144) Div Div Div Div

Table 5.13: CD2: Comparison of MLKM/Jacobi and MG/Jacobi on Q2 finite
element discretization with EOQJ stabilization. Time taken by solvers at level

8 is also shown.

Level/ Pe 100 200 500 1000 5000
MLKM
5 21 23 47 367 not conv.
6 21 21 32 130 not conv.
7 21 21 23 85 not conv.
8 21 (93) 21(93) 21(93) 51(237) mnot conv.
MG

5 Div Div Div Div
6 Div Div Div Div
7 Div Div Div Div
8 4 (30) Div Div Div Div

Table 5.14: CD2: Comparison of MLKM/Gaufl-Seidel and MG /Gauf3-Seidel on
@2 finite element discretization. Time taken by solvers at level 8 is also shown.
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Level/ Pe 100 200 500 1000 5000
MLKM
5 21 23 40 141 not conv.
6 21 21 30 50 346
7 21 21 23 33 185
8 21 (197) 21 (198) 21 (198) 26 (259) 125 (1252)
MG
5 Div Div Div Div
6 Div Div Div Div
7 Div Div Div Div
8 4 (70) Div Div Div Div

Table 5.15: CD2: Comparison of MLKM/Gau$-Seidel and MG /Gauf3-Seidel
on (s finite element discretization with EOQJ stabilization. Time taken by
solvers at level 8 is also shown.

MLKM Multigrid
DOF Iter. Time Factor Iter. Time Factor
133952 21 1.16 - 7 0.60 -
534144 21 4.51 3.9 6 2.38 4.0
2133248 21 19.38 4.3 6 11.10 4.7
8526336 21 82.12 4.2 6 50.12 4.51

Table 5.16: CD2: Time taken by MLKM/Jacobi and MG/Jacobi solvers at

various mesh levels, for solving the problem with Pe

elements discretization.

100 using Q- finite
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Anisotropic Diffusion Problem

The multigrid method is considered an optimal solver for solving the isotropic
diffusion problem, with convergence rates oblivious to the problem size. How-
ever, it is a well-known fact that these MG features no longer exist as soon as
anisotropy is introduced into the problem, either from the differential operator
or the underlying mesh of the problem (cf. [70, chapter 10],[4], |131, chapter
5]). The reason for this poor performance is that, contrary to the isotropic case,
the error after relaxation is not smooth in every direction and cannot be well
represented at the coarse mesh.

Various remedies have been proposed in the literature in an attempt to improve
the convergence rates of MG solver for solving such anisotropic problems. One
such remedy is to use semi- or directional-coarsening of the meshes instead of
full-coarsening [100}, [101]. In this approach, the grid is coarsened only in the di-
rection in which the error is smoothed out. Another approach is to modify the re-
laxation and use line-smoothing (also called block smoothing) on the fully coars-
ened meshes [19]. Mavriplis [94] has combined directional-coarsening with line-
smoothing and reported the improved convergence behavior of multigrid solver
against anisotropies. However, both directional-coarsening and line-smoothing
have limitations and drawbacks. Directional-coarsening (or semi-coarsening for
structured meshes) produce coarse meshes with higher complexity than those
from full-coarsening. Full-coarsening reduces mesh complexity between succes-
sive meshes four times in 2D case and eight times in 3D problems. However, the
directional-coarsening reduce mesh complexity only two times for both 2D and
3D cases. The resulting coarse meshes have much higher computational and
memory requirements, particularly for 3D problems. Line-smoothing performs
well on structured meshes since in this case, it produces block tridiagonal ma-
trices which can be efficiently solved. However, for unstructured grids, the grid
lines do not exist, and it is not straightforward to implement line-smoothing on
such grids. Moreover, the techniques mentioned above work well only when the
anisotropy is parallel to coordinate axis or aligned with the grid. However, if
the anisotropy is not aligned with the grid or coordinate axis, these techniques
are not very useful.

In this chapter, we solve the operator-based anisotropic diffusion problem as
well as mesh-based anisotropic diffusion problem; however, we do not use any
of the remedies mentioned above for handling anisotropies. Instead, we solve
the problems using standard full-coarsening and pointwise smoothing and com-
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pare how robustly the multilevel solvers, namely MLKM and MG, can handle
anisotropies with such standard solver ingredients.

6.1 Operator-based Anisotropy

Directionally dependant or anisotropic diffusion occurs in various science and
engineering applications. Composite materials often exhibit anisotropic heat
and mass diffusion; for instance, water is absorbed in the wind turbine blades
made of composite material through anisotropic diffusion [115]. Polymers with
long-chain structures diffuse more easily in the direction of the chain axis than
in the transverse direction [85]. A stretched membrane subject to the trans-
verse loading experiences an anisotropic deflection. In microfluidic devices, the
diffusion is more dominant along the channel length with a limited diffusion
in the direction normal to the channel length [43]. A mathematical model of
the anisotropic diffusion problem can be obtained by taking L =—V . (G V)
in equation . Assuming homogeneous Dirichlet boundary conditions, the
anisotropic diffusion problem is given by

-V (GVu)=f in Q, (6.1a)
u =20 on T, (6.1b)

with u : @ C R? — R, f € L*(Q), and G € R?**? is the diffusion coefficient
matrix, which introduces anisotropic diffusion along some vector field v, and is
defined as:

G=avl +p -
For a vector field v = (v; , v2)T, anisotropic diffusion matrix can be written as:

_ ((a=pB)viv1 + 8 (o — B) v1vg
G( (a = B) viva (a—ﬁ)vzszrﬁ)'

For the existence of the solution of equation (6.1)), it is necessary that G be
symmetric positive definite.

The weak form of the anisotropic diffusion equation (6.1)) is given as follows:
Find u € H{ such that

a(v,u) = b(v) Vv € Hp, (6.2)
where a(.,.) : H1(Q) x H}(Q) — R is the bilinear form given by
a(v,u) = /Vv.GVu. (6.3)
Q

In anisotropic diffusion a(v,u) = a(u,v), therefore bilinear form is symmetric,
but the presence of anisotropic coefficient affects the eigenvalues and therefore
the condition number of the resulting matrix. The linear form b : H!(Q) — R
on the right side of equation has the form

b(v) = / vf. (6.4)

Q
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The discrete form of the equation (6.2)) is as follows:

Find uj, € S such that

a(vp, up) = b(vy) Yoy, € Sg. (6.5)

6.1.1 Numerical results for operator-based anisotropy

We present the performance comparison of multilevel Krylov solver with multi-
grid solver for the solution of anisotropic-diffusion problem , with the
right-hand side f taken as 1. Domain considered is a square domain, ) =
(=1,1) x (—1,1), with homogeneous Dirichlet boundary conditions, i.e., u =0
on I'. This model problem represents the anisotropic thermal diffusion in a
square plate which is uniformly heated (constant source term on the right) with
the edges of the plate kept at water-freezing temperature. Bilinear finite ele-
ments (1) are used for the spatial discretization, and the coarse level contains
16 uniform quadrilaterals. Solvers are required to achieve six digits accuracy
in relative error before termination, i.e., ¢ = 1079 and the maximum number
of iterations to reach this stopping criterion is set to 500. We present the con-
vergence rates (p) of the solvers to reach the convergence criterion, with the

convergence rate defined as
1
7| ) *
o= (1) (6.6
[I7oll

where ||r;|| represents the I norm of the residual 7y at the k** iteration. Mul-
tilevel Krylov method with the following configuration is used:

e Right Preconditioned MLKM(4,2,2) is used.
e Largest eigenvalue of preconditioned matrix A\,q, = 1.

e Relaxation parameter w is varied and the results presented are for the
optimum value of w.

The following configuration for MG solver is used:

e MG with F-cycle is used
e UMFPACK is used as a coarse grid solver

e Number of pre and post smoothing steps = 4. Jacobi and ILU smoothers
are damped with a factor of 0.7.

The anisotropic diffusion matrix G determines the direction and strength of
anisotropy in equation (6.1)). Depending on the form of G, the following three
cases may arise:

e Isotropic diffusion with no anisotropy, if

G=L
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e Normal or axis parallel anisotropy if
10
G- (O 6) |

G=avvl +3 (I -wT).

e Rotated anisotropy if

Figure[6.1]shows different anisotropic diffusion cases for « = 1 and 8 = 100, with
an axis parallel anisotropic diffusion on the left, rotated anisotropic diffusion
along v = (1, 1)7 in the middle, and rotated anisotropic diffusion along v =
(1, 0.3)T on the right of the figure.

Figure 6.1: Anisotropic diffusion cases: Axis parallel (left), Rotated anisotropy
v = (1, 1)T (middle), Rotated anisotropy v = (1, 0.3)T (right)

Axis-parallel anisotropy

In the case of axis-parallel anisotropy, the results are presented for § = 50, 100,
and 500; tables [6.116.3] show the results with Jacobi, GauB-Seidel, and ILU(0)
preconditioners/smoothers. With all the preconditioners, MLKM solver pro-
duces convergent results for all the values of anisotropic diffusion coefficient
. However, MG is divergent with Jacobi smoother, while convergent with the
GauB-Seidel and ILU(0) smoothing. For larger values of the anisotropic dif-
fusion coeflicient(S = 500), MG/Gauf}-Seidel has poor convergence rates than
MLKM/GauB-Seidel and in comparison takes four times more computational
times. Although, MG/ILU(0) has better convergent rates as compared to that
of MLKM/ILU(0), the total CPU times of MLKM/ILU(0) are of the same order
as that of MG /ILU(0). Moreover, for the axis-parallel grid anisotropy case, both
MLKM and MG (when it converged) solvers produce problem size independent
convergent rates.
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MLKM MG

Lev/ f§ 50 100 500 50 100 500

0.80 0.85 091 div div  div
0.80 0.85 0.93 div div  div
0.80 0.85 0.93 div div  div
0.80 0.85 0.93 div  div  div
Time 54 82 209 - - -

© N o

Table 6.1: Convergence rates of MLKM/Jacobi and MG/Jacobi for axis-parallel
anisotropic diffusion.

MLKM MG

Lev/ f§ 50 100 500 50 100 500

0.63 0.72 0.84 0.56 0.74 0.93
0.64 0.73 0.86 0.57 0.75 0.94
0.64 0.73 0.86 0.57 0.75 0.94
0.64 0.73 0.86 0.57 0.75 0.94
Time 3.1 43 103 41 6.0 377

© N o

Table 6.2: Convergence rates of MLKM/GauB-Seidel and MG/GauB-Seidel for
axis-parallel anisotropic diffusion.

MLKM MG
Lev/ 3 50 100 500 50 100 500
6 0.16 0.16 0.16 7E-4 4E-4 1EA4
7 0.16 0.16 0.16 1E-3 9E-4 3EA4
8 0.16 0.16 0.16 2E-3 2E-3 6EA4
9 0.16 0.16 0.16 2E-3 2E-3 1E-3

Time 0.95 094 094 0.58 0.58 0.58

Table 6.3: Convergence rates of MLKM/ILU(0) and MG/ILU(0) for axis-
parallel anisotropic diffusion.

Rotated anisotropy

Next, we discuss the case where the anisotropy direction vector v is not aligned
with the grid lines but is at some rotation (angle) to them. In tables [6.4
, we present the results for rotated anisotropic diffusion with the direction

vectors v = (1 , 1)7 and v = (1, 0.3)T. In axis parallel anisotropy, the
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diffusion is essentially 1D, and the coefficient matrix becomes tridiagonal for
row-wise renumbering. ILU(0) becomes exact in this case, and results in ex-
cellent convergence of MG/ILU(0) solver. For the rotated anisotropy case, no
renumbering scheme results into an exact ILU(0), and the convergence rates
of MG with ILU(0) smoothing are significantly poor for the rotated anisotropy
case as compared to the axis parallel anisotropy. This is evident from the results

in tables [6.6] and [6.91

For the rotated anisotropy case, the convergence rates of MLKM are better
than MG with all the preconditioners/ smoothers tested. Moreover, MLKM
produces (almost) grid size independent convergence rates, even with the weak
preconditioner like Jacobi (See Tables an. On the contrary, numerical
results show that multigrid loses h independent convergence behavior for higher
values of anisotropic diffusion coefficient (8 > 100), even when strong smoother
like TLU(0) is used (Tables and [6.9). Numerical results also depict that
the increase in the anisotropy negatively influences the performance of both
the solvers. However, MLKM is less sensitive to this change in anisotropy as
compared to MG; this can also be seen from the graphs [6.2] and which
provide a visual comparison of the change in the convergence rates of the two
solvers with the change in anisotropy.

MLKM MG

Lev/ s 100 500 1000 100 500 1000

6 039 042 043 0.60 0.72 0.73
7 0.39 043 043 0.62 0.78 0.81
8 039 043 044 0.61 0.82 0.86
9 039 043 045 0.61 0.84 0.88
Time 1.2 14 1.5 35 96 135

Table 6.4: Convergence rates of MLKM/Jacobi and MG/Jacobi for anisotropic
diffusion along v = (1, 1)T

MLKM MG

Lev/ 3 100 500 1000 100 500 1000

6 0.41 0.44 0.46 0.45 0.59 0.62
7 0.41 046 047 0.47 0.68 0.71
8 041 046 048 0.46 0.73 0.78
9 041 046 048 0.46 0.75 0.82
Time 1.6 1.8 1.9 35 96 135

Table 6.5: Convergence rates of MLKM/GauB-Seidel and MG/GauB-Seidel for
anisotropic diffusion along v = (1, 1)T.
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MLKM MG
Lev/ 4 100 500 1000 100 500 1000
6 0.22 0.27 0.28 021 035 0.37
7 0.22 0.29 031 024 046 0.50
8 0.21 030 0.32 0.23 0.53 0.60
9 0.21 030 0.32 0.23 0.56 0.65
Time 1.1 14 1.5 21 49 6.8

Table 6.6: Convergence rates of MLKM /ILU(0) and MG/ILU(0) for anisotropic

diffusion along v = (1, 1)7.

MLKM MG
Lev/ 5 100 500 1000 100 500 1000
6 0.69 0.73 0.74 0.64 0.77 0.79
7 0.69 0.74 0.75 0.65 0.82 0.84
8 0.69 0.74 0.76 0.65 0.85 0.88
9 0.69 0.74 0.76 0.65 0.86 0.90
Time 3.0 3.7 4.1 3.8 11.1 164

Table 6.7: Convergence rates of MLKM /Jacobi and MG /Jacobi for anisotropic

diffusion along v = (1, 0.3)T.

MLKM MG
Lev/ 4 100 500 1000 100 500 1000
6 0.63 0.68 0.69 0.42 0.59 0.62
7 0.62 0.68 0.69 0.43 0.67 0.71
8 0.62 0.68 0.69 0.43 071  0.77
9 0.62 0.68 0.69 0.43 0.73 0.80
Time 2.7 34 4.1 25 64 9.3

Table 6.8: Convergence rates of MLKM/GauB-Seidel and MG/GauB-Seidel for

anisotropic diffusion along v = (1, 0.3)7.
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MLKM MG
Lev/ 8 100 500 1000 100 500 1000
6 034 040 041 0.27 044 0.46
7 0.34 041 042 0.28 0.52 0.57
8 0.34 041 043 0.28 0.57 0.64
9 0.34 041 043 0.28 0.539 0.69
Time 1.6 1.9 1.9 22 53 7.5

Table 6.9: Convergence rates of MLKM /ILU(0) and MG/ILU(0) for anisotropic

diffusion along v = (1, 0.3)7.

v=(1,1T
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Figure 6.2: Comparison of convergen

ce rates of MLKM and MG solver at level

9, for various values of 3 in anisotropic diffusion direction vector v = (1, 1)T
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Convergence Rate

02p —o— MLKM-Jac -e- MG-Jac

—= MLKM-GS -®- MG-GS
—o— MLKM-TLU(0) - - MG-ILU(0)

| | | |
(%()0 300 500 700 900
Beta

Figure 6.3: Comparison of convergence rates of MLKM and MG solver at level
9, for various values of 3 in anisotropic diffusion direction vector v = (1, 0.3)7
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6.2 Grid-based Anisotropy

Anisotropic diffusion can also occur due to the underlying anisotropic meshes.
These meshes are useful to approximate the functions that have high gradients
in a specific direction, such as in boundary layers. In this case, anisotropic
meshes have typically a smaller dimension in the direction of high gradients and
larger dimension in the orthogonal direction. These meshes are also used to
discretize high aspect ratio domains.

6.2.1 Numerical results for grid-based anisotropy

In this section, a performance comparison of the multilevel Krylov method with
multigrid solvers is presented for the solution of the diffusion equation

- Au=f (6.7)

on the anisotropic grid shown in figure [6.4] Right-hand side f in equation [6.7]is
chosen to produce the solution u = (z —1)(z+1)(y —1)(y 4+ 1). Domain consid-
ered is a square domain, = (—1, 1)2, with homogeneous Dirichlet boundary
conditions, i.e., u = 0 on I'. All the numerical settings and configurations
of MLKM and MG solver are kept the same as that for the operator-based
anisotropic diffusion case.

Level DOF (@)

6 4225
7 16641
8 66049
9 263169

Y
b
a A
Figure 6.4: Anisotropic coarse mesh with aspect ratio a/b (left); Number of
degrees of freedom at each refinement level (right)

Results for grid-anisotropy are very similar to the axis-parallel operator-based
anisotropy. Here again, MLKM with a weak Jacobi preconditioner results in
a convergent solver on anisotropic grids, whereas MG with such a diagonal
smoothing is divergent even for small aspect ratios. MLKM/GauB-Seidel pro-
duces better convergent rates and computational times than MG/GauB-Seidel,
particularly on the meshes with larger aspect ratios. For example, on a mesh
with an aspect ratio of 31, MLKM/GauB-Seidel takes five times less time to
converge as compared to MG/GauB-Seidel solver (Table [6.11). Similar to the
axis-parallel anisotropy case, with the row-wise reordering, MG/ILU(0) has bet-
ter convergence rates than MLKM/ILU(0), however, the CPU times of both the
solvers are of the same order.
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MLKM MG
Lev/ AR 7 15 31 7 15 31
6 0.74 0.82 0.84 div div div
7 0.75 0.83 0.87 div div div
8 0.74 0.84 0.88 div div div
9 0.73 0.84 0.88 div div div
Time 3.5 6.6 9.5 - - -

Table 6.10: Convergence rates of MLKM/Jacobi and MG/Jacobi for solving

diffusion equation on anisotropic grids.

MLKM MG
Lev/ AR 7 15 31 7 15 31
6 0.56 0.69 0.76 0.41 0.75 0.89
7 0.57 0.72 0.79 0.43 0.78 0.92
8 0.57 0.72 0.80 0.42 080 0.93
9 0.57 0.72 0.80 0.42 080 0.94
Time 21 41 5.7 23 93 297

Table 6.11: Convergence rates of MLKM/GauB-Seidel and MG /Gau$-Seidel for

solving diffusion equation on anisotropic grids.

MLKM MG
Lev/ AR 7 15 31 7 15 31
6 0.17 0.19 0.17 2.6E-03 4.5E-03 6.1E-03
7 0.17 0.19 0.19 3.9E-03 5.9E-03 9.8E-03
8 0.17 0.18 0.23 4.3E-03 6.2E-03 1.9E-02
9 0.17 0.17 0.23 4.3E-03 5.9E-03 9.9E-03
Time 08 09 1.0 0.5 0.5 0.6

Table 6.12: Convergence rates of MLKM/ILU(0) and MG/ILU(0) using row-
wise renumbering, for solving diffusion equation on anisotropic grids.
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A monolithic FEM/MLKM solver for
Navier-Stokes Equations

The Navier-Stokes equations (NSE) are a set of nonlinear partial differential
equations that describe the flow of fluids. Their importance can be understood
from the ubiquitous nature of the fluids. These equations are used to study
the blood flow inside the human body, to model the weather, to predict the
effect of global warming on climate, to design the aircraft, ships, and cars,
and to describe many other significant engineering and scientific phenomena.
We extend our work form the previous chapters of solving the scalar prob-
lems using FEM/MLKM solver, and present in this chapter a new monolithic
FEM /multilevel Krylov subspace solver for the numerical solution of stationary
incompressible Navier-Stokes equations in a fully coupled way.

We present the stationary incompressible NSE and briefly discuss their finite ele-
ment discretization. Since the continuity equation does not involve the pressure
unknown, the FEM discretization of Navier-Stokes equations is not straightfor-
ward. One cannot freely choose the discrete pressure and velocity approximation
spaces independent of each other. Their choice must satisfy the compatibility
condition, called the LBB (Ladyzhenskaya-Babuska-Brezzi) condition, which es-
tablishes the relation between velocity and pressure approximations for the well-
posedness of the problem. We briefly discuss the LBB condition and our choice
of admissible mixed finite elements.

The resulting algebraic system is nonlinear that can only be solved using itera-
tions. We present our new coupled multilevel Krylov method, as an alternative
to the coupled geometric multigrid algorithm, to solve the nonlinear algebraic
system resulting from the FEM discretization of steady-state incompressible
Navier-Stokes equations. The solver involves an outer iteration to handle the
nonlinearity; we discuss the Picard and the Newton iteration techniques to
linearize the system of nonlinear equations. Linearization results in indefinite
saddle point type linear systems with zeros on the diagonal, and solving such
linear systems poses a great challenge for the linear solvers. We use MLKM
solver discussed in chapter to solve these linear systems in a monolithic way.
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CHAPTER 7. A MONOLITHIC FEM/MLKM SOLVER FOR
NAVIER-STOKES EQUATIONS

7.1 The Navier-Stokes Problem

Consider the steady-state incompressible Navier-Stokes equations governing the
flow of a Newtonian, viscous fluid:

—vAu + uVu + Vp = f in Q, (7.1a)
Vu =0 in Q, (7.1b)
where
Q cR? — is the bounded flow domain with a sufficiently regular boundary
I, (d =2 or 3 is a spatial dimension),
u — is the velocity of the fluid,
D — is the pressure field,
v — is the kinematic viscosity constant,
f — is the forcing term,
A — is the Laplacian operator,
v — is the gradient and
V. — is the divergence operator.

The equation (|7.1a)) is called the momentum equation and represents the conser-
vation of momentum of the fluid, while equation ([7.1b) is called the continuity
equation or incompressibility constraint and represents the conservation of mass.

Similar to the convection-diffusion equation in chapter 5] it is useful in the study
of the Navier-Stokes equations to have some quantitative measure of relative
strength of inertial forces of the flow (convection) and the viscous forces in the
flow (viscous diffusion). To this end, the Navier-Stokes equations are normalized
with respect to the size of domain and velocity magnitude by introducing the
dimensionless parameter called Reynolds number defined by

Re = g, (7.2)

v

where L is a characteristic length and U is a characteristic velocity. Using ,
the equation can be rewritten into the normalized Navier-Stokes equations
as follows

—RiAu + uVu + Vp = f in Q, (7.3a)
e
V.u in Q. (7.3b)

I
o

The equations or form a system of second order partial differential
equations in space and to solve these equations it is necessary to prescribe
boundary conditions on the whole boundary of the domain. We consider here
the Dirichlet type boundary condition where the velocity field is given on the
boundary as

u=g on I'p. (7.4)

The special case of
u=0 <= u.n=0, u.t=0,

is called the no-slip boundary condition. The velocity component u . n = 0 at
the boundary means that there is no fluid passing through the boundary and
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the component u . t = 0 states that the fluid does not slip along the wall. If
the Dirichlet boundary condition is specified everywhere on the boundary of €,
then the pressure solution to the Navier-Stokes equations is determined only up
to an arbitrary additive constant (since the governing equations, in this case,
contain only the gradient of the pressure). To fix the constant, a supplemental
condition is imposed requiring the vanishing of the integral mean value pressure

/sz.
Q

Moreover, it follows from the integration of the continuity equation over the
domain, followed by the application of the divergence theorem that the pure
Dirichlet boundary condition should also satisfy the following compatibility con-

dition
0:/V.u:/u.n:/g.n, (7.5)
Q r r
J

This means that the pure Dirichlet boundary conditions should ensure that the
net flow of the fluid through the domain boundaries is equal to zero. This prob-
lem can be avoided by replacing the Dirichlet condition at the outflow with a
Neumann condition (typically do nothing boundary condition) that automati-
cally adjusts u . n at the outflow boundary to satisfy the equation (7.5)). For
the sake of simplicity in presentation, we next consider the Navier-Stokes equa-
tions with homogeneous Dirichlet boundary conditions only, for which case the
compatibility condition is naturally satisfied.

or equivalently

g.n—/F g.n=0. (7.6)

in out

Many fluid flows involve small Reynolds numbers (Re < 1), for instance, flows
involving small length scales (fluid flow in MEMs), flows with very small veloc-
ities (creeping flow), or flows involving highly viscous fluids (honey). In such
low Reynolds number flows, the inertial forces are negligible compared to the
viscous forces; this suggests that the convective term can be neglected in Navier-
Stokes equations. The resulting system of equations is linear, called the Stokes
equations and the flow is termed Stokes flow

—vAu + Vp = f in Q, (7.7a)
V.au=0 in (7.7b)
u=20 on T. (7.7¢)

7.2 Weak Formulation

To obtain the weak form of the Navier-Stokes equations, we need the following
usual Lebesgue and Sobolev spaces

L5(Q)

{q: q € L*(Q) with /Qq = O},

Hj(Q) = {v: veH' Q)| v = 0OonT}.
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Multiply the momentum equation (7.1al) with the velocity test function v and
the continuity equation with pressure test function ¢, and integrate the resulting
equations over the domain ) to obtain

—/Qv.uAu—k/Qv.(u.Vu)—&-/QV~VP=/QV~f7 (7.8a)
/qu.u 0. (7.8b)

We reduce the strong continuity requirements on the weak solution (u,p) by
shifting the derivatives to the test functions (v, ¢). For this let us first consider
the second order term and apply integration by parts on it

—/V.VAu
Q

- /Fz/(Vu .v).n + /Q(VVu) 2 (Vv)
I//Q(Vu) 2 (Vv). (7.9)

Next take the pressure term, using the product rule we get

/Qv.Vp: /QV.(pv)—pV.v

= / (pv) . n— / pV . v using divergence theorem
r Q
= —/pV.V. (7.10)
Q

Inserting (|7.9) and (7.10)) in equation (7.8al) results in the standard weak form

of the Navier-Stokes equation as follows:

Findu e H:=H]} and p € L := L(Q) such that

V/Q(Vu):(Vv)Jr/Qv.(u.Vu)—/QpV.v = /Qv.f VveH,
(7.11a)

/qV.u =0 VqelL.
Q
(7.11b)

In equations (7.11a)) and (7.11b)), p and ¢ do not involve any derivatives, and

therefore it is sufficient that they are integrable but not necessarily continuous
over the element boundaries. On the other hand, u and v involve derivatives,
and thus not only u and v but also their derivatives are required to be integrable,
which implies the continuity of u and v across the element boundaries. This
fact is important in the selection of finite elements for Navier-Stokes equations
that will be discussed later. Alternatively, the weak form of steady-state Navier-
Stokes equations can be written as:

Findu e H:=H]} and p € L := L(Q) such that

v a(u,v) +c(u,u,v) +b(p,v) = (f,v) VveH, (7.12)
b(g,u) = 0 VqgelL, (7.13)
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where a(.,.) , b(.,.) are the bilinear forms, (.,.) the linear form and ¢(.,.,.) the
trilinear form, defined as follows

a(u,v) = (Vu,Vv), (7.14a)
b(p,V) = —(p,V.V), (714b)
(f,v) = /Qv.f, (7.14c¢)
c(u,u,v) = ((u.V)u,v). (7.144)

7.3 Finite Element Discretization

We define the discretized form of the weak formulation by replacing the infinite
dimensional function spaces H and L with finite dimensional spaces Hj;, and
Ly, respectively. In case of conforming finite elements, Hy, € H and L, C L,
and therefore the bilinear and trilinear forms in the discretized problem can be
used in a similar way to the continuous problem. For the nonconforming finite
elements Hy, ¢ H, one has to work with the bilinear and trilinear forms defined
elementwise. Assuming conforming finite elements here (for nonconforming fi-
nite elements see [132]), the discrete weak form of Navier-Stokes problem reads
as follows:

Find u;, € Hy, and p, € Ly, such that

V/Q(Vllh) 2 (Vvy) —l—/th.(uh . Vuy,) —/QphV.vh

/ qnV.uy,
Q

Next, we introduce two sets of basis functions, a set of scalar basis {t;} for the
pressure and a set of vector-valued basis {¢;} for the velocity vector. Generally,
vector-valued basis functions are built from scalar finite element spaces. Given
a set of scalar finite element basis functions {¢; ;‘;1, the velocity basis functions
for a two-dimensional problem can be written in the vector form as

/Vh.f Vv, € Hy,
Q
(7.15)

I
o

Y qy € Ly,
(7.16)

{¢1a E) ¢2nu} = {<¢1’O)T’ ) ((ban)T’ (07 ¢1)T> [ (O’ (bnu)T}' (7'17>

The approximations of velocity and pressure can be written as
2N,

wo= > uig;,  ph = > pib, (7.18)
j=1 j=1

where n,, is the number of unknowns for one velocity component and n,, is the
number of pressure unknowns. Letting v;, = ¢; and ¢, = 1; in equations (|7.15))
and ([7.16)), we arrive at the standard Galerkin formulation.
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Find u, € Hy, and py, € Ly, such that

I//Q(Vuh) : (V(bl) +/Q¢i.(uh.Vuh) 7/Qphv.¢i = /ng1f for ¢ = 1,(,2’/lu;
7.19

/Qwiv.uh =0 fori=1,...,n,p.
(7.20)

In matrix format, above nonlinear system of equations can be written as

[A+é\1(u) B(ﬂ m _ m (7.21)

where U and P represent the unknown real coefficients (u])fiﬁ and (pj)?il
respectively. The matrix A represents the discretization of Laplacian opera-
tor A(.), N(u) the discretization of nonlinear convective operator u.V(.), BT
denotes the discretization of the negative of the gradient operator, and B the
divergence operator.

7.4 Conditions for Elements selection

Systems of the form are called saddle point systems. The zero block in
the system comes from the discretization of the continuity equation and reflects
the absence of pressure term in the continuity equation. However, we know
from equation , the number of rows in the continuity equation is equal to
pressure unknowns. If pressure unknowns are more than the velocity unknowns,
the system becomes rank deficient, and we have a singular system. So a
necessary condition for the unique solution of the above saddle point problem to
exist is that the pressure unknowns should never exceed the velocity unknowns
(np < 2ny,), irrespective of the grid size. This condition deprives the liberty of
choosing the pressure and velocity approximations independent of each other.
To satisfy this condition, a rule of thumb is to approximate the pressure with
the polynomial basis functions having a degree at least one less than the degree
of velocity basis functions. However, this rule does not ensure that pressure
unknowns are always less than velocity unknowns on any grid. It can be shown
[125] that even if the pressure and velocity elements are chosen such that pres-
sure has a lower degree polynomial approximation as compared with velocity,
still the resulting coeflicient matrix is singular.

A sufficient condition that elements must satisfy to ensure the well posed-
ness of the saddle point problem is a well-known compatibility condi-
tion between pressure and velocity ansatz functions called the inf-sup or LBB
(Ladyzhenskaya-Babuska-Brezzi) condition |11} [22], given in discrete form as

inf sup (gr, V.v1)

e VYR s, (7.22)
an€lnv,em, lanlle, IVl m,

where 7 is a mesh independent parameter. The elements satisfying the above
condition are called admissible elements. See [35] for the derivation of an exact

90



7.5. OUR CHOICE OF ADMISSIBLE ELEMENTS

LBB condition. From a practical viewpoint, it is difficult to verify directly if
the LBB condition is satisfied by an element or not. In [59], Fortin has
provided a more practical criterion to check the LBB condition, which states
that:

Assume that the continuous LBB condition is satisfied and assume that there
exists a continuous operator 7, : H — Hj, satisfying:

{(V'(u—ﬂhu),%) =0 VgqneQn,

7.23
Imnulle, < Cllullu VueH, (7.23)

then the discrete LBB condition ([7.22) is satisfied [23]. In [35], it is shown how
to check the condition (|7.23) on various elements.

7.5 Our choice of admissible elements

Finite elements used for the approximation of Navier-Stokes equations are cate-
gorized into two families; Taylor-Hood family with continuous pressure approx-
imation and Crouzeiz-Raviart family with discontinuous pressure approxima-
tion. Our choice of LBB-stable quadrilateral finite elements used in this thesis,
namely conforming Qo/P{**¢ (see [113} [66]) and nonconforming Ql/QO [112],
belong to the Crouzeix-Raviart family. The mesh cell oriented Vanka smooth-
ing/ preconditioning can be conveniently applied on such approximations with
discontinuous pressure [80].

7.5.1 Nonconforming Ql/QO Element

The nonconforming Ql /Qo finite element pair, also called Rannacher—Turek el-
ement, uses rotated multilinear (bilinear in 2D and trilinear in 3D) polynomial
shape functions for velocity approximations in combination with piecewise con-
stants for the pressure. The element was introduced by Rannacher and Turek
in [112] and can be considered as a quadrilateral counterpart of the famous tri-
angular Crouzeix-Raviart element [66]. Let us define a bilinear transformation

¢r : T — T from the reference element 7' = [—1,1]? to each element T € 7j,.
So, the rotated bilinear element is defined as
Qu(T) :={qovy' :q€ span(l,z,y,2* —y*)}, (7.24)

with four degrees of freedom at the midpoints of edges. The degrees of freedom
are determined by either of the nodal functionals

Féa) = |E|71/ vdry, ng) =v(mg), (7.25)
E

where E C O7}, is the cell edge and mpg its midpoint. The related parametric
finite element space for velocity approximation is given by

Hgla,b) — S}(La,b) « S}(Ia,b)
S}(la’b) = {on, € L*(Q) | vy € Q1(T), VT € T, vy, continuous w.r.t. nodal

functionals Fii™") (), VEi;, and Fi” (v,) =0, ¥Ei}, (7.26)
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with Fj;; all inner edges shared by the elements ¢ and j and E;y the boundary
edges. The pressure is approximated using @)y element defined by the piecewise
constant functions from the space

Ly = {qn € L(Q), qn|7 = constant, VT € Tp}. (7.27)

In [112], authors have mentioned that the stability and approximation properties
of above defined parametric version of Q /Qo element deteriorate on highly
distorted meshes. As an alternative, non-parametric version of the element can
be used for which the reference space Q:(T) := {q € span(1,&,n, &% — n?)}
is defined on each physical element T independently using the local coordinate
system (&, n) obtained by joining the midpoints of 7' [112}[132]. Hence, the shape
f