
Uncertainty Handling in Surrogate

Assisted Optimisation of Games

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

Vanessa Volz

Dortmund

2019

Tag der mündlichen Prüfung 25. Februar 2019

Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter: Prof. Dr. Günter Rudolph

(TU Dortmund, Fakultät für Informatik)

Prof. Dr. Mike Preuss

(Universiteit Leiden, LIACS)

EXECUTIVE SUMMARY

I
n this thesis entitled Uncertainty handling in surrogate assisted optimisation of

games, we started out with the goal to investigate the uncertainty in game optimisa-

tion problems, as well as to identify or develop suitable optimisation algorithms. In

order to approach this problem systematically, we first created a benchmark consisting

of suitable game optimisation functions (GBEA). The suitability of these functions was

determined using a taxonomy that was created based on the results of a literature survey

of automatic game evaluation approaches. In order to improve the interpretability of

the results, we also implemented an experimental framework that adds several fea-

tures aiding the analysis of the results, specifically for surrogate-assisted evolutionary

algorithms.

After describing potentially suitable algorithms, we proposed a promising algorithm

(SAPEO), to be tested on the benchmark alongside state-of-the-art optimisation al-

gorithms. SAPEO is utilising the observation that most evolutionary algorithms only

need fitness evaluations for survival selections. However, if the individuals in a popu-

lation can be distinguished reliably based on predicted values, the number of function

evaluations can be reduced. After a theoretical analysis of the performance limits of

SAPEO, which produced very promising insights, we conducted several sets of exper-

iments in order to answer the three central hypotheses guiding this thesis. We find

that SAPEO performs comparably to state-of-the-art surrogate-assisted algorithms, but

all are frequently outperformed by stand-alone evolutionary algorithms. From a more

detailed analysis of the behaviour of SAPEO, we identify a few pointers that could help

to further improve the performance.

Before running experiments on the developed benchmark, we first verify its suitab-

ility using a second set of experiments. We find that GBEA is practical and contains

interesting and challenging functions. However, we also discover that, in order to produce

interpretable result with the benchmark, a set of baseline results is required. Due to

this issue, we are not able to produce meaningful results with the GBEA at the time of

writing. However, after more experiments are conducted with the benchmark, we will be

able to interpret our results in the future. The insights developed will most likely not

only be able to provide an assessment of optimisation algorithms, but can also be used to

gain a deeper understanding of the characteristics of game optimisation problems.

iii

ACKNOWLEDGEMENTS

I would like to thank...

• ... Günter, my supervisor, for his feedback and support, but also for the academic

freedom I have enjoyed.

• ... all my collaborators on several publications over the last years for their valuable

insights, interesting discussions and constant nitpicking. I am glad I was able to

use these papers (and bibfiles!) as a foundation for my thesis. Special mentions go

out to my frequent co-authors Boris and Mike!

• ... everyone that agreed to proofread for their feedback. Thanks mum, dad, Andy,

Günter, Mike and Boris!

• ... friends and family for their encouragements and interest in my work. Shout-out

to Lisa, hope to see you in London soon!

• ... my colleagues for a great working environment at the LS11. Special thanks to

Jan and Christiane, my office roommates, as well as Gundel for her great support

in everything. Thanks also to the colleagues in Leiden, NYU and at Brown, I

thoroughly enjoyed my stints in your labs. Thanks also for the warm welcome to the

people at QMUL. The thanks also extend to the regulars at GECCO and CIG/CoG,

and the attendees of the 2017 Dagstuhl seminar and the SAMCO workshop.

• ... my teachers, professors and fellow students over the years that eventually led

me down the path to my PhD, of which there are too many to name.

But mostly, I’m thankful that it is done! :)

v

TABLE OF CONTENTS

Page

Executive Summary iii

1 Introduction 1

1.1 Motivation . 1

1.2 Hypotheses . 3

1.3 Contributions . 3

1.4 Limitations . 5

1.5 Structure . 6

2 Background 7

2.1 Evolutionary Optimisation Algorithms . 7

2.1.1 Concept . 7

2.1.2 Evolutionary Optimisation under Uncertainty 11

2.1.3 Algorithms . 13

2.2 Benchmarking with the COCO framework 14

2.2.1 Core Concepts . 15

2.2.2 Post-Processing . 16

2.2.3 Function Suites . 17

2.2.4 BBOB Suite . 18

2.2.5 BBOB-BIOBJ Suite . 18

2.3 Kriging . 20

2.4 Game Optimisation . 21

2.4.1 TopTrumps Deck Generation . 21

2.4.2 Mario Level Generation . 24

2.4.3 StarCraft II Winner Prediction . 30

3 Related Work 33

3.1 Numerical Game Optimisation . 33

3.2 Surrogate-Assisted Evolutionary Optimisation 37

3.2.1 Efficient Global Optimisation of Expensive Black-Box Functions

(EGO) [68] . 39

3.2.2 Single- and Multi-objective Evolutionary Optimization Assisted by

Gaussian Random Field Metamodels (Pre-screening) [37] 40

3.2.3 Differential Evolution for Multiobjective Optimization Based on

Gaussian Process Models (GP-DEMO) [95] 41

3.3 Uncertainty Handling in Evolutionary Optimisation 43

3.4 Benchmarks for Expensive Continuous Optimisation 44

4 Approach 47

4.1 Taxonomy of Automatic Game Evaluation 47

4.1.1 Concept . 47

vi

TABLE OF CONTENTS

4.1.2 Application to MarioAI Usecase . 50

4.1.3 Context . 51

4.1.4 Sources of Uncertainty . 54

4.2 SAPEO . 57

4.2.1 Comparisons under Uncertainty . 58

4.2.2 Runtime Model Validation . 60

4.2.3 Probability of Ranking and Selection Errors 61

4.2.4 SAPEO Framework . 68

4.3 Game-Benchmark for Evolutionary Algorithms 69

4.3.1 Requirements Analysis . 70

4.3.2 Implementation of Requirements . 71

4.3.3 Technical Details . 74

4.4 Experimental Framework . 82

4.4.1 Features . 83

4.4.2 Uncertain Functions . 86

4.4.3 Algorithms . 87

4.4.4 Post-Processing . 90

5 Evaluation 93

5.1 Experiments . 93

5.2 Experiments on Artificial Functions . 95

5.2.1 Single-Objective Results (bbob) . 97

5.2.2 Multi-Objective Results (bbob-biobj) 113

5.2.3 Summary of Results . 117

5.3 Suitability of GBEA . 118

5.3.1 Line Walks . 118

5.3.2 Practicality . 120

5.3.3 Baseline Results . 123

5.3.4 Summary of Results . 125

5.4 Experiments on GBEA . 126

6 Conclusions and Future Work 129

6.1 Conclusions . 129

6.2 Future Work . 130

6.2.1 Game Optimisation Problems . 130

6.2.2 Game Benchmark for Evolutionary Algorithms (GBEA) 133

6.2.3 Surrogate-Assisted Evolutionary Algorithms 133

A Game Evaluation Survey 135

A.1 Characterisation of Game Evaluation AIs 135

A.2 Game Evaluation Methods . 136

A.2.1 Grid-based Games . 136

A.2.2 Platformers . 136

A.2.3 Dungeon Games . 137

vii

TABLE OF CONTENTS

A.2.4 Arcade Games . 138

A.2.5 Parlour Games . 139

A.2.6 Strategy, Action and Narrative-Based Games 140

A.3 Observations and Conclusion . 142

B Case Study on Data Generation bias 143

B.1 Acquired Data . 143

B.2 Descriptive Analysis . 144

B.3 Results . 147

Bibliography 151

List of Tables 163

List of Figures 165

viii

C
H

A
P

T
E

R

1
INTRODUCTION

1.1 Motivation

Real-world optimisation problems often exhibit a so called observation uncertainty,

because physical measurements usually contain errors [4]. This uncertainty can cause

issues, especially if the application is sensitive, such as in case of medical treatments

[111]. Research in the field of noisy optimisation and real-world applications targets this

and related issues.

However, additional sources of uncertainty can also be introduced by the optimisation

algorithm itself. Surrogate-assisted optimisation, for instance, relies on the predictions

of machine learning models, which of course can be erroneous. Still, most state-of-the-

art optimisation algorithms assisted by surrogate models do not take into account the

uncertainty introduced by modelling.

Both observation and prediction uncertainty are often modelled by a symmetric error

distribution with a mean of 0. This type of modelling is reasonable in most applications,

but there are sources of uncertainty that can likely not be described by symmetric

error distributions. For example, real-world problems that, instead of the actual fitness

function, use simulations to estimate the fitness of a given solution might introduce a

non-symmetric bias to the evaluation.

For instance, in the research field of computational intelligence in games, many

approaches require an evaluation method for a game or game content, such as a level.

A common usecase are functions intended to describe the difficulty of an automatically

generated game [130, 150]. We call this type of problem game optimisation in the

remainder of this thesis. Human behaviour is then often modelled by an AI player. While

the field of player modelling persistently works towards the goal of creating human-like

AI, it is still unclear in most cases how to quantitatively express differences in behaviour

[57, 146]. It is even less clear, how these differences affect automatic game evaluation

measures based on AI behaviour.

Besides game-related optimisation problems, there is a large number of real-world

problems that, too, rely on simulated evaluations. Simulations become necessary in cases

where the actual fitness function is either (1) too expensive to compute or (2) carries a

safety or security risk. For shape optimisation problems, for example, simulations using

cheaper computational fluid dynamics models are often employed [28]. The need for

simulations becomes especially prevalent when the problem involves the need to predict

or react to human behaviour, as it is difficult to obtain data to train a model on.

To summarise, there is a large number of simulation-based real-world optimisation

1

CHAPTER 1. INTRODUCTION

problems, where certain fitness evaluations are either non-existent or very limited. Game

optimisation problems are a prominent group of problems that fall into this category. Still,

existing research rarely addresses the uncertainty incurred by the various models and

algorithms. This thesis is intended to fill this gap by incorporating approaches from noisy

and surrogate-based optimisation, as well as detailed information on game optimisation

problems to develop a uniquely suited algorithm. The main feature of the developed

algorithm, SAPEO, is its usage of uncertainty information to assess the confidence of

the obtained fitness estimates to dynamically decide whether to use an estimate or the

correct fitness value.

The algorithm is evaluated based on its theoretical performance limits, as well as

an established benchmark of diverse (albeit artificial) functions. However, artificially

created functions usually have a discernible global structure that can be learned with

machine learning techniques. This is not necessarily true for real-world problems. There-

fore, the type and magnitude of model prediction errors likely differ between artificial

and real-world functions, which can affect an optimisation algorithm based on these

predictions. We therefore develop extend the existing benchmarking framework and add

game optimisation function suites. The benchmark is then also used to compare the

behaviour of SAPEO to state-of-the-art algorithms developed to solve computationally

expensive (real-world) problems.

While this benchmark is naturally not representative for all types of problems

imaginable, it serves as a demonstration of the effect of differences in uncertainties. We

chose to add game optimisation problems specifically for several reasons:

1. Games describe highly complex systems, but their true state is always completely

observable. This is a contrast to problems that rely on real-world measurements

such as described in [28].

2. Games are designed for human decision makers and at the same time often have a

player AI that allows the simulation of playthroughs.

3. The popularity of games paired with an increasing research and popular interest1

make large datasets available2 that are required for statistical analysis.

4. Game optimisation does not pose safety concerns.

5. Actual evaluations can be comparatively cheap, as no measurement equipment is

required and typical game sessions do not last for more than a few hours at a time.

In addition to these reasons why games are a suitable test bed for researching

uncertainty in optimisation problems, this study is also important in the context of games

research. As demonstrated in section 3.1, the potential errors in game evaluation are

rarely considered in game optimisation. This is despite the fact that the bias introduced

for example by using an AI for game simulation has a demonstrable effect on the

1see recent successes of OpenAI’s DotA AI https://openai.com/five/
2e.g. for StarCraft II [144] or League of Legends https://developer.riotgames.com/

2

1.2. HYPOTHESES

discoverable solutions for the problem, as we illustrate in appendix B. The algorithm we

propose considers uncertainty information and might thus lead to less biased results. We

investigate this assumption further by the hypotheses specified in the following.

1.2 Hypotheses

Based on the above, we formulate the following hypotheses that are the central investig-

ative part of this thesis:

H1 SAPEO exhibits comparable performance to comparable state-of-the-art optimisa-

tion algorithms on established benchmarks.

H2 Game optimisation problems can be used as a challenging benchmarking suite for

optimisation algorithms.

H3 Due to its awareness of inherent uncertainties, SAPEO outperforms comparable

state-of-the-art optimisation algorithms on the game optimisation benchmark.

These claims are investigated in detail in the remainder of this thesis. The results

are described in section 5.

1.3 Contributions

The main contributions made in this thesis and specifically by the author are detailed

in the following. The author is the first author and main contributor of all previously

published work this thesis is based on.

Taxonomy of Game Evaluation Methods A taxonomy of approaches to game evalu-

ation methods used for game (content) optimisation from a data-driven perspective. The

taxonomy allows reasoning about uncertainties introduced by popular game evaluation

approaches.

As of yet, the taxonomy is not published, but is part of a more extensive journal article

including a survey of game evaluation methods currently under review. The taxonomy

was developed based on discussion with the second author of this article, Boris Naujoks.

Illustrative Example of Effects of Bias in Game Optimisation A detailed illus-

trative example of how modelling human players using AIs can bias the obtained out-

comes based on published data for the game StarCraft II (Blizzard 2010). The example

conclusively shows the need for uncertainty handling in simulation-based game-related

optimisation.

The example is based on an algorithm for StarCraft II winner prediction as published

in [VPB18] with my co-authors Mike Preuss and Mathias K. Bonde. The analysis presen-

ted in this paper was however not published yet and is based on newly generated results

from different datasets. The example also profited from discussion with Boris Naujoks.

3

CHAPTER 1. INTRODUCTION

Game-Benchmark for Evolutionary Algorithms An extension of the existing COCO

benchmarking framework for numerical black-box optimisation3 that introduces two

new functions suites based on game optimisation problems. The benchmark code, results

and further information is freely available4. Two workshops around the benchmark were

also organised for GECCO 2018 and 2019 in collaboration with Tea Tušar, Boris Naujoks

and Pascal Kerschke. The interface for the new functions to the existing framework was

implemented by Tea Tušar.

The new function suites are based on two previous publications. The first is an

optimisation problem for cards in TopTrumps that was introduced to demonstrate

the feasibility of automatic game balancing with and without surrogate models in

collaboration with Boris Naujoks and Günter Rudolph in [VRN16]. The second function

suite is based on a significantly extended version of a procedural content generation

technique for Super Mario Bros. levels proposed in [Vol+18] developed with Jacob Schrum,

Jialin Liu, Simon M. Lucas, Adam Smith and Sebastian Risi5.

SAPEO Algorithm SAPEO, an algorithm designed for the robust optimisation of

games and similar complex simulation-based real-world problems. The algorithm is

extensively evaluated theoretically and empirically. Benchmarks on artificial functions

do attest SAPEO robust performance, especially for complex functions. However, we

were not able to obtain a meaningful interpretation of the algorithm’s performance on

the game benchmark.

Previous versions of SAPEO have been published for both single- and multi-objective

optimisation problems in [VRN17a] and [VRN17b] in collaboration with Günter Rudolph

and Boris Naujoks 6. The version of SAPEO proposed in this thesis is however improved

based on findings from previous publications and extended by model validation features

as suggested by Alma Rahat. The results presented in this thesis are thus novel and not

previously published. The theoretical performance assessment was supported by Michael

Emmerich in context of a short term scientific mission7.

Modular Implementation of Experiments A modular and thus easily extensible

implementation of the experiments available on GitHub8. The implementation contains

a C++ interface to the COCO benchmarking framework and adds extensive logging

capabilities including the ability to track prediction errors and post-processing features.

3NumBBO COCO https://github.com/numbbo/coco
4http://url.tu-dortmund.de/gamesbench
5The publication is the result of work at Dagstuhl Seminar 17471 - Artificial and Computational

Intelligence in Games: AI-Driven Game Design (2017)
6The main idea was developed from discussions at Lorentz center workshop SAMCO: Surrogate-

Assisted Multi-Criteria Optimization (2016)
7sponsored by COST Action CA15140: Improving Applicability of Nature-Inspired Optimisation by

Joining Theory and Practice (ImAppNIO) in 2016
8https://github.com/TheHedgeify/uncertaincoco

4

1.4. LIMITATIONS

The code uses the Shark machine learning library9, which makes the implementation

easily understandable and extensible.

The software also allows for a fair comparison of surrogate-based optimisation al-

gorithms by allowing implemented algorithm access only to the same modelling features.

These features include sampling and modelling techniques combined from various dif-

ferent publications. Model management strategies that are currently implemented are

pre-screening, efficient global optimisation and SAPEO.

Related Publications

[VRN17a] V. Volz, G. Rudolph and B. Naujoks. ‘Surrogate-Assisted Partial Order-

Based Evolutionary Optimisation’. In: Evolutionary Multi-Criterion Op-

timization (EMO). Springer, Berlin, 2017, pp. 639–653.

[VPB18] V. Volz, M. Preuss and M. K. Bonde. ‘Towards Embodied and Interpretable

StarCraft II Winner Prediction’. In: Computer Games Workshop at Inter-

national Joint Conference on Artificial Intelligence (ICJACI). (in press).

2018.

[VRN16] V. Volz, G. Rudolph and B. Naujoks. ‘Demonstrating the Feasibility of

Automatic Game Balancing’. In: Genetic and Evolutionary Computation

Conference (GECCO). ACM Press, New York, 2016, pp. 269–276.

[VRN17b] V. Volz, G. Rudolph and B. Naujoks. ‘Investigating Uncertainty Propagation

in Surrogate-Assisted Evolutionary Algorithms’. In: Genetic and Evolu-

tionary Computation Conference (GECCO). ACM Press, New York, 2017,

pp. 881–888.

[Vol+18] V. Volz et al. ‘Evolving Mario Levels in the Latent Space of a Deep Convo-

lutional Generative Adversarial Network’. In: Genetic and Evolutionary

Computation Conference (GECCO). ACM Press, New York, 2018, pp. 221–

228.

1.4 Limitations

Due to the interdisciplinary and complex nature of game optimisation and surrogate-

assisted optimisation, we have chosen to focus our study on easily observable and

well-researched aspects of both research fields. Limiting the issues addressed in this

thesis also serves to foster a more streamlined and in-depth analysis.

In this thesis, we therefore do not address the following aspects related to the topic of

uncertainty handling in surrogate-assisted optimisation of games:

• There is a distinctive lack of formal validation of methods to evaluate game (con-

tent) in state-of-the-art research. This issue puts into question the practical applic-

ability of this research to industrial game development. As the fitness functions

9http://image.diku.dk/shark/

5

CHAPTER 1. INTRODUCTION

implemented for the game benchmark are taken from previous publications, this

issue is reflected in the games benchmark. We forego a thorough investigation of

these fitness functions as it would require an extensive study with human parti-

cipants and be beyond the scope of this thesis. However, the author is set to chair a

IEEE CIS task force addressing this issue in the future. We also discuss several

future work directions in this regard in section 6.2.1.1.

• Many real-world and game optimisation problems are not continuous in search-

and objective space. However, most publications in surrogate-assisted optimisation

address only continuous optimisation and employ Kriging models. In this thesis, we

thus focus on continuous game optimisation problems. We discuss in section 6.2.3

potential ways to address mixed-integer optimisation with SAPEO by changing

the surrogate model used.

1.5 Structure

In order to answer the hypotheses specified above, we first provide background inform-

ation in chapter 2. In this chapter, we describe all general information regarding the

optimisation algorithms used in this thesis. We also provide background on benchmark-

ing, as well as the games intended for our function suites. Following this, we give an

overview of related work in chapter 3.

Afterwards we describe our approach to analysing uncertainty handling in surrogate-

assisted optimisation of games in more detail in chapter 4. An evaluation of the contribu-

tions can be found in chapter 5. We conclude this thesis with a summary of the results

and a discussion of future work in chapter 6.

6

C
H

A
P

T
E

R

2
BACKGROUND

In the following, we describe the background information required for the description

and interpretation of the experiments we conducted to investigate uncertainty handling.

2.1 Evolutionary Optimisation Algorithms

Evolutionary optimisation algorithms are optimisation algorithms that are designed

based on some principles of biological evolution. They thus belong to the category of

nature-inspired algorithms and are usually considered to be under the umbrella of

computational intelligence methods.

In this thesis, we use three evolutionary algorithms on different optimisation tasks. In

the following section, we thus first describe the underlying general concept of evolutionary

algorithms for single- and multi-objective optimisation. Following that, we detail the

specifics of the three algorithms in question, i.e. CMA-ES (section 2.1.3.1), MO-CMA-ES

(section 2.1.3.3) and SMS-EMOA (section 2.1.3.2).

2.1.1 Concept

Evolutionary algorithms use the imagery of Darwinian evolution. Solutions of a problem

are thus represented as individuals that have a fitness, i.e. the result of the objective

function. The most low-level representation of an individual is usually called its genotype,

after the concepts of genes in biology. The genotype is the level of representation that

is modified during evolution. The phenotype is a more abstract representation of the

individual and dependent on the genotype. In biology, the phenotype is the physical

organism of an individual.

In the context of evolutionary algorithms, the genotype and phenotype are not always

distinct. For example, when optimising real-valued functions

f ∶Rn→R
m,

the genotype and phenotype of an individual are usually a point in the search space

x ∈Rn. The corresponding fitness value of the individual is then f (x) ∈Rm. In contrast,

consider the application of finding the optimal weights in a fixed artificial neural network

that is used as a classifier. The genotype could then be a vector in Rn representing the

different weights, where each index is assigned to a specific connection between neurons.

The phenotype is then the resulting neural network, whereas its fitness is the resulting

classification accuracy.

7

CHAPTER 2. BACKGROUND

init pop

evaluation

parent selection variation

evaluation

survival

selection
stop?out best

yes

no

Figure 2.1: Algorithmic Skeleton of Evolutionary Algorithms

In the following, we will only address problems where the genotypic representation

is a vector in Rn. Most problems have such a representation, however, there are a

number of applications where a different representation improves performance. One

such application are problems where, on top of the weights in a neural network, its

structure needs to be optimised as well. Several encodings have been proposed for this

type of applications. One of the most popular ones was introduced in [128], where the

genotype is split up into two parts. Node genes define nodes in the artificial neural

network and their layer. Connection genes specify connections between these nodes as

well as their weights.

Regardless of the representation chosen for the problem, an evolutionary algorithm

usually still follows the same algorithmic skeleton as visualised in figure 2.1.

A population of individuals, i.e. a set of problem solutions, is generated as a first step.

All individuals in the population are then evaluated to determine their fitness. From

the population, a set of individuals is selected as parents to create new offspring from.

These offspring are generated by variation operators that modify and/or recombine the

genotypes of their parents. After the offspring are evaluated, the next generation of

individuals is selected. The algorithm stops when a stopping criterion is met, for example

a certain budget of function evaluations is exhausted. The output of the algorithm is

finally the fittest individual or population.

2.1.1.1 Common Variations

Based on this general algorithmic skeleton, a variety of algorithms have been suggested.

However, for most of the steps in the algorithm, different approaches have been suggested

in the literature. In the following, we provide an overview of the most popular strategies

for each of these steps. This is intended as a framework to characterise the algorithms

used in the experiments for this thesis and help streamline their description. It is not

intended to be exhaustive.

8

2.1. EVOLUTIONARY OPTIMISATION ALGORITHMS

Selection Methods In an evolutionary algorithm, individuals are selected at two

different steps for two different purposes:

• Reproduction: Parents for the creation of offspring

• Survival: Individuals that constitute the next generation

Both of these selection step should not favour worse individuals over fitter ones. While

one selection step can be neutral, at least one should favour fitter individuals in order

to progress the algorithm. Selection is thus typically based on the fitness values of

individuals, but can also consider their genotype to control the diversity of a population.

In most algorithms, selection is either based on

• a total order of the individuals, where the top individuals are selected,

• a tournament, where in each round the better individual is chosen,

• purely chance.

In the case of survival selection, there is an important further distinction to be

made. Consider an algorithm with µ parents and λ offspring. For the next generation, µ

individuals need to be selected. These individuals can then either be selected from

• the offspring (µ,λ) or

• the union of parents and offspring (µ+λ).
(µ+λ) strategies have inherent elitism, that is the best solution in a generation is

guaranteed to survive. This is not true for (µ,λ) selection strategies.

Variation Operators Two types of variation operators are popular, namely

• mutation: modification of one parent to create one offspring

• recombination: combination of two or more parents to create one offspring.

Either type of variation can be used exclusively in one algorithm, but typically, offspring

are generated via recombination and then mutated with some probability.

Variation operators can be

• local, where only a subset of most close individuals can be reached by one variation,

• or global, where all feasible solutions can be reached by one variation.

In both cases, however, the probability of reaching more similar solutions, i.e. solutions

closer in search space, is typically higher than generating more dissimilar ones.

In order to enable optimal behaviour of an evolutionary algorithm for an unknown

optimisation problem, the variation operators chosen should fulfil the following three

principles according to [35]

9

CHAPTER 2. BACKGROUND

• reachability: All feasible solutions in search space should be reachable from any

given solution after a finite number of repeated variation with a probability > 0.

• unbiasedness: The search direction should only depend on chance (unless favour-

able directions are known).

• control: The distance in search space between a given solution and any reachable

solution after a single variation should be controllable.

As variation operators modify the genotype of an individual, they depend on its

representation. For the most common representations, such as vectors in Bn,Rn or Pn,

variation operators have been proposed that provably adhere to the principles described

above. For less used representations, appropriate variation operators usually need to

be specifically defined. For genotypes that are vectors in Rn, the most commonly used

variation operators are described below.

For mutation, the offspring is usually generated by adding noise sampled from a

symmetric probability distribution with an expected value of 0. The support of this

distribution can be bounded for local mutation, but is usually unbounded. In cases where

some information about the fitness landscape of the problem at hand is available, the

distribution can be chosen to be non-symmetric in order to bias the search into the

intended direction. Popular choices of probability distributions are multivariate normal

and polynomial distributions.

A popular recombination operator is simulated binary crossover (SBX). Assume we

have two parents x, y and offspring z, all ∈Rn. xi, yi and zi are the values of the respective

individual at index i ∈ {1,n}. A polynomial distribution with highest and equal densities

at xi and yi is then used to sample the value of zi. This method is based on binary

crossover popular in integer-valued optimisation.

Stopping Criteria Evolutionary algorithms are usually stopped after a predefined

number of function evaluations or generations. However, since evolutionary algorithms

are stochastic search algorithms, they can get trapped in local optima. In these cases,

restarting the algorithm can potentially improve the best discovered solution.

However, it is not always straightforward to detect entrapment in a local optimum, es-

pecially if the fitness landscape is unknown. Instead, other methods have been suggested

that hinge on performance measures. In [153], for example, convergence is determined

base on statistical tests on the variance and regression trend.

2.1.1.2 Single- vs. Multi-objective Optimisation

Evolutionary algorithms are applicable to problems for both single- and multi-objective

optimisation. When multiple objectives are considered at once, some individuals may be

incomparable in terms of their fitness. This occurs e.g. in a two-objective minimisation

problem when comparing individuals with the fitness values (2,3) and (3,2). As a

result, the individuals cannot be sorted into a total order. This requires some alternative

10

2.1. EVOLUTIONARY OPTIMISATION ALGORITHMS

strategies for selection methods that depend on the fitness of individuals to make them

comparable again.

Pareto dominance is a concept that induces a partial order on the individuals. A

solution or individual x is said to strictly (Pareto) dominate another solution y (denoted

x ≺ y) iff x is better than y in all objectives. Considering minimisation this reads

x ≺ y iff ∀i ∈ {1,. . . ,m} ∶ f (xi) < f (yi)
for fitness function

f ∶ X ⊂Rn→R
m, f (x) = (f1(x), . . . , fm(x)).

Based on this, the set of all (Pareto) non-dominated and thus incomparable solutions as

defined above is called Pareto set. The Pareto front is the image of the Pareto set under

fitness function f .

The Pareto dominance relation can then be used to rank the individuals in a pop-

ulation. However, in order to work with the framework depicted in figure 2.1, making

decisions between incomparable solutions is still necessary. Indicator-based MOEAs,

as used in this thesis, decide based on information gained from performance indicat-

ors, which describe the quality of the acquired solutions at a given point in time. The

most popular indicators are hypervolume contribution, additive ε and R2 indicator, all

presented in detail by Knowles et al. [74].

In this thesis, we will be focusing on the hypervolume contribution as a secondary

criterion, as dominated hypervolume is the only performance measure available in the

benchmarking software we employ to date (COCO, see section 2.2). The dominated

hypervolume, sometimes also called S metric, was originally proposed by [162] and

the SMS-EMOA is designed around it, after it was made computationally viable [11,

36]. A definition of the hypervolume of a set of solutions M according to [36] follows.

Consider the hypercubes ai defined by their respective non-dominated point pi and

a nadir reference point xre f . These hypercubes cover the range of solutions included

in the solution set. The hypervolume is then the Lebesgue measure Λ of the union of

hypercubes (see [36], eq. 1):

(2.1) S(M) ∶=Λ({⋃
i

ai∣pi ∈M}) =Λ(⋃
p∈M
{x∣p ≺ x ≺ xre f })

The hypervolume contribution of a given point m ∈M can be expressed by the difference

between the dominated hypervolume of the set M with and without point m (see [36], eq.

3):

(2.2) ∆s(m, M) ∶= S(M)−S(M∖{m})
2.1.2 Evolutionary Optimisation under Uncertainty

Real world applications in many cases signify uncertain environments for an optim-

isation algorithm. In their survey [67], the authors distinguish between four types of

uncertainties that need to be handled. In this thesis, we will apply uncertainty handling

technique from research on noise and fitness approximations.

11

CHAPTER 2. BACKGROUND

Noise The observed fitness value is subject to additive, symmetric noise, caused, for

example, by sensory measurement errors. In order to not mislead evolutionary algorithms

operating on noisy fitness functions, an average of multiple evaluations is usually used

to estimate the true value of an individual.

Besides explicitly evaluating an individual multiple times to combat noise on fitness

functions and its implicit counterpart, where re-sampling is steered by the evolutionary

algorithms, there are other strategies that modify the selection step in an evolutionary

algorithm. The selection is modified in such a way, that the operator takes into account

the uncertainty in the fitnesses of two individuals that are compared.

One popular way is to define relations that induce a partial order on uncertain

individuals. For example, in case the uncertainty intervals are bounded as in [110], we

can make the following comparisons of two uncertain individuals A and B. Let f (X) be

the true fitness of individual X and its measured fitness f̃ (X) ∈ [X l , Xu], with X l and

Xu the lower and upper bounds of the uncertainty interval. Of course, it also must hold

that f (X) ∈ [X l , Xu]. [110] then defines the following relation

[X l , Xu] ≺ [Yl ,Yu] ⇐⇒ Xu <Yl(2.3) [X l , Xu] = [Yl ,Yu] ⇐⇒ X l =Yl ∧Xu =Yu(2.4) [X l , Xu] ⪯ [Yl ,Yu] ⇐⇒ X ≺Y ∨X =Y(2.5)

The author of [110] then suggests to use evolutionary algorithms designed to find

minimal elements of partially ordered sets. In case the uncertainty is not bounded, a

threshold can be introduced [90]. The effect of these thresholds on the comparisons and

their statistical significance has been investigated previously as well [10].

Robustness The search point of the individual might change slightly due, e.g., to man-

ufacturing tolerances. A solution is robust if the fitness is still satisfactory for all points

within the tolerance. The effective fitness of an individual is then the expected fitness

value, considering all possible modifications of the search point and their probability.

Fitness Approximation In applications with very expensive fitness functions, so-

called meta-models are sometimes used to estimate the fitness function (see section 3.2).

Since these models incur a systemic bias that cannot be reduced by repeated evaluation,

they are usually used in conjunction with the true fitness function. The decision which

fitness function to evaluate is made based on model-management strategies surveyed in

[65, 66]. The different strategies we address here are described in section 3.2 in context

of the specific algorithms.

Time-varying Fitness Functions While the fitness function is deterministic at a

specific point in time t, its value depends on t. As a result, the changes in fitness need to

be tracked if no full restart of the algorithm is desired.

12

2.1. EVOLUTIONARY OPTIMISATION ALGORITHMS

2.1.3 Algorithms

In the following, we describe the three algorithms used in this thesis in more detail.

2.1.3.1 CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is the state-of-the-art

algorithm for single-objective continuous optimisation. CMA-ES uses (µ,λ) survival

selection and mutation from the population mean as the only variation operator. These

mutations are guided by an iteratively computed covariance matrix estimated into the

direction of the negative gradient of the given problem.

The CMA-ES thus consciously introduces a bias into its variation. This does, however,

not violate the unbiasedness principle for evolutionary algorithms, as favourable direc-

tions are estimated based on the covariance matrix. CMA-ES can thus also be considered

an Estimation of Distribution Algorithm (EDA).

symbol value explanation

λ 4+ ⌊(3logn⌋) number of offspring [49]

µ ⌊λ2 ⌋ number of parents[49]

wi
1
µ individual weights

ccov 2
n2 covariance matrix update weight[2]

σ 1 step size[2]

Table 2.1: CMA-ES parametrisation

According to the authors, the values of the various parameters are also part of the

algorithm design and specified as listed in table 2.1. As described in [149], the mean

m and covariance matrix C are adapted in a single iteration as follows (with rank-one

update):

xi =m+σyi, yi ∼Ni(0,C)
m =m+σyw where yw =

µ∑
i=1

wi yi∶λ

C = (1− ccov)C+ ccov µw yw yT
w where µw =

1∑µ

i=1 w2
i

≥ 1

The implementation in Shark ML1, the framework we use, is based on [50], where

more details on the algorithm and default parameters can be found.

2.1.3.2 SMS-EMOA

The S-Metric Selection - Evolutionary Multi-objective Evolutionary Algorithm (SMS-

EMOA, proposed in [11]) is popularly used for continuous multi-objective optimisation.

1http://image.diku.dk/shark/

13

CHAPTER 2. BACKGROUND

It typically uses a (µ+1) selection scheme, but other schemes are also possible. Accord-

ing to the original publication, this decision was mostly made due to the significant

computational effort of the hypervolume computation.

Like most EMOAs, the algorithm first uses non-dominated sorting to rank the solu-

tions in a population. The secondary ranking criterion is based on the contribution of

a solution to the population’s hypervolume (i.e the amount of objective space covered

by a Pareto front w.r.t. (maxx∈X f1(x)+1,. . . ,maxx∈X fm(x)+1) as reference point). See

section 2.1.1.2 for more details on the hypervolume contribution measure.

SMS-EMOA is commonly used in conjunction with the most widely used variation

operators in the field, namely simulated binary crossover and polynomial mutation, cf.

Deb [29]. In [153], online convergence detection for the SMS-EMOA are described and

improved. In [11], it was shown that the SMS-EMOA exhibits a robust performance

independent of the specific implementation. Moreover, what is specifically relevant in

this thesis, in the authors’ experiments, the algorithm performed well on challenging

real-world applications (in this case, the optimisation of airfoils).

The implementation in Shark ML2, the framework we use, is based on [11], where

more details on the algorithm and default parameters can be found.

2.1.3.3 MO-CMA-ES

The MO-CMA-ES resulted from applying the step size and covariance matrix adapta-

tion from CMA-ES (see section 2.1.3.1) to a multi-objective evolutionary optimisation

framework [61]. In order to rank the solutions in a given population, MO-CMA-ES em-

ploys non-dominated sorting, as most EMOAs do. Like the SMS-EMOA described in the

previous section, the original publication uses hypervolume contribution as a secondary

ranking criterion. However, other indicators popular for multi-objective optimisation

have also been employed.

The extensive study in [61] suggests a (µ+1) selection scheme for the MO-CMA-ES,

just like in the SMS-EMOA. In this case, the two algorithms only differ in terms of their

variation operators and strategy adaptation. In a later publication, further refinements

were made to the MO-CMA-ES. One that resulted in major performance improvements

is a new step size adaptation procedure that besides the evaluation of the individual in

question, also considers the success of their parents and / or the whole population [152].

The implementation in Shark ML3, the framework we use, is based on [61, 152],

where more details on the algorithm and default parameters can be found.

2.2 Benchmarking with the COCO framework

Benchmarks are a commonly used tool to compare different algorithms. The goal is often

to determine the best algorithm for a given problem type. In this thesis, we use the

COmparing Continuous Optimisers framework [51] for several reason:

2http://image.diku.dk/shark/
3http://image.diku.dk/shark/

14

2.2. BENCHMARKING WITH THE COCO FRAMEWORK

• COCO is a popular framework with regular workshops in the EA research com-

munity.

• COCO enables easy comparisons with other algorithms without the need for

re-implementation and fine-tuning. It includes data from well-known and best-

performing algorithms, which ensures that the benchmark is not biased by insuffi-

cient hyperparametrisation for some algorithms.

• COCO measures performance of algorithms in relation to the number of function

evaluations.

2.2.1 Core Concepts

One core intent of the COCO benchmarking framework is to measure anytime per-

formance. This means that the framework does not only measure the performance of

the algorithm after a set number of function evaluations, but instead can record each

evaluation made. The progress of the optimiser can thus be expressed.

Precision Targets Furthermore, this progress is always expressed in terms of so-

called precision targets. These targets are defined a-priori and specify the difference

between the target value and the known globally best fitness fitness value. For multi-

objective problems, the optimal value is expressed as the dominated hypervolume of the

best population observed instead of the actual value of the fitness functions. If the global

optimum is unknown, an estimate can be given. The framework allows for exceeding the

previously estimated optimum. For each algorithm, the number of function evaluations

needed to reach a given target can then be observed.

The advantage of this target-based approach is that it allows a meaningful comparison

between different algorithms. To illustrate this, let’s assume algorithm A requires 100

function evaluations to reach a precision of 10−3 on function f . Algorithm B requires 200

function evaluations to do the same. We can therefore observe that algorithm A is twice

as fast as B to reach precision 10−3.

Now let’s further assume that algorithm A reaches a precision of 10−4 after 200

function evaluations. We now know that after the same number of function evaluations,

algorithm A is closer to the global optimum than algorithm B (targets 10−4 vs. 10−3).

However, it is unclear how much more difficult reaching a higher precision really is. Al-

gorithm B could potentially reach 10−4 at the very next function evaluation. A meaningful

comparison of fitness values is thus not easily possible.

Average Runtime and Bootstrapping However, there are further caveats even

when using the target-based approach. COCO has to account for the fact that many

optimisation algorithms are stochastic. Therefore, a single set of observations does

not suffice to express the behaviour of an algorithm. Additionally, since stochastic

optimisation algorithm such as evolutionary algorithms cannot guarantee convergence

to the global optimum, common practice is to restart the algorithm after either a fixed

15

CHAPTER 2. BACKGROUND

budget of function evaluations or after some form of convergence was detected. This

practice increases the chance of finding the global optimum

COCO enforces simulated restarts by providing multiple instances for the same

function and will automatically restart an algorithm when it stops before its allocated

budget of function evaluations is exceeded. It can thus be safely assumed that all

algorithms run on COCO are restarted. This assumption is used to give a more accurate

estimate of the expected runtime of an algorithm until the optimum is found. The average

runtime measure (aRT) of a restart algorithm can be measured by dividing the number

of function evaluations conducted in all trials divided by the number of successful runs

[52].

A further benefit of using aRT is that it allows for bootstrapping the estimated per-

formance after a given amount of function evaluations, even when the algorithm was

stopped earlier. For example, let’s assume we evaluate algorithm A with 5 restarts. In our

imaginary scenario, after 100 function evaluations, we observed the following final preci-

sion values 10−3, 10−4, 10−3, 10−3, 10−4. Target 10−3 was reached after 100,50,100,100,50

function evaluations.

The aRT for 10−3 is thus 100+50+100+100+50
5 = 80, while for 10−4 it is 100+100+100+100+100

2 =

250, a value larger than the 100 function evaluations we ran the algorithm for. The aRT

can only be computed for a target that has been reached in at least one run, as this

proves that the specific target is obtainable within a finite number of restarts.

Instances While COCO will automatically restart algorithms that stop before their

allocated budget of function evaluation is exceeded, it also enforces repeated runs by

implementing a feature called instances. Instances are shifted versions of a given function

that are intended to have only slightly modified fitness landscapes from the original

function. Algorithms have to run on all instances of a function, where each instance is

interpreted as a restart.

Using these instances instead of restarting on the same function has the added benefit

of providing a more robust measurement of performance by increasing the difficulty of

overfitting to a function. A deterministic optimiser that was by chance started close to

the global optimum of the original function would thus only have an advantage in one

run. This avoids observing an uncharacteristically high performance on all restarts.

2.2.2 Post-Processing

The COCO framework provides a set of post-processing features based on the aRT-

measure described above. Chief among them are ECDF plots, an example is depicted in

figure 2.2.

The graphs show the expected average runtime of an algorithm for all precision

targets. The targets are displayed in decreasing order on the y-axis, normalised to [0,1].
The respective average runtime for each of the targets is displayed on the x-axis in

log-scale. The large cross signifies the number of function evaluations the algorithms

were run for. The plots can be generated to compare the performance of a single algorithm

16

2.2. BENCHMARKING WITH THE COCO FRAMEWORK

Figure 2.2: Bootstrapped empirical cumulative distribution of the number of objective

function evaluations divided by dimension (FEvals/n) for 51 targets with target precision

in 10[−8..2] for the sphere function (fid 1). The “best 2009” line corresponds to the best

aRT observed during BBOB 2009 for each selected target. Left: Comparison between

various algorithm from the 2018 BBOB competitions on dimension 2. Right: Comparison

between CMA-ES performance on different dimensions (2, 3, 5, 10).

across different dimensions 2.2 (right) or to compare different algorithms on the same

function and dimension 2.2 (left).

Scaling behaviour is additionally visualised in separate figures, see figure 2.3 for an

example. In these plots, the aRT in log-scale is plotted on the y-axis and the dimension

of the problem is indicated on the x-axis. This way, scaling behaviour over search space

dimension can be visualised for selected targets. The example plot shows 7 targets and

the corresponding scaling behaviour. It can be clearly seen, that for lower target, i.e.

less precise optimisation, the algorithm in question (CMA-ES) scales really well (almost

linearly, as parallel to the horizontal lines). This observation is not true, however, for

target 10−5, which was not reached for the 10-dimensional problem and took significantly

longer for dimension 5 when compared to dimension 2 and 3.

The values visualised in the scaling figures are also available in a table format, along-

side additional statistics regarding a slew of statistical tests regarding the significance

of the results obtained as well as their distribution. These tables provide the opportunity

for further and more detailed analysis where the visualisations produced by the existing

post-processing plots are not sufficient.

2.2.3 Function Suites

Different function suites can be integrated into COCO in order to test different types of

algorithms and/or scenarios. Besides the standard single-objective BBOB function suite,

there is a multi-objective, a noisy and an expensive version. In this thesis, we use BBOB

and BBOB-BIOBJ, which are described below.

17

CHAPTER 2. BACKGROUND

Figure 2.3: Average running time (aRT in number of f -evaluations as log10 value),

divided by dimension for target function values versus dimension. Slanted grid lines

indicate quadratic scaling with the dimension, while horizontal lines indicate linear

scaling. Light symbols give the maximum number of function evaluations from the

longest trial divided by dimension. Black stars indicate a statistically better result

compared to all other algorithms with p < 0.01 and Bonferroni correction number of

dimensions. Plot shows CMA-ES performance on the sphere function (fid 1).

2.2.4 BBOB Suite with small modifications from [145]

BBOB is a single-objective Black-Box Optimisation Benchmarking test suite [53] which

contains 24 functions. In order to measure general algorithm performance across function

types, the functions were selected such that the resulting benchmark would be diverse

in terms of separability, conditioning, modality and global structure [53].

The test suite contains 15 instances for each function, which are generated using a

combination of various transformations (e.g. linear, local non-linear, rotations) on the

original functions. All of the functions in the test suites are defined for search spaces

of multiple dimensions d ∈ {2,3,5,10,20} in order to be able to evaluate a wide range of

problem sizes. The global optimum of each of the functions is located in [−5,5]d ⊂Rd.

2.2.5 BBOB-BIOBJ Suite with small modifications from [145]

BBOB-BIOBJ is a bi-objective Black-Box Optimisation Benchmarking test suite [141].

It consists of 55 bi-objective functions that are a combination of 10 of the 24 single-

objective functions in the BBOB test suite. In order to measure general algorithm

performance across function types, single-objective functions were chosen such that the

resulting benchmark would be diverse in terms of separability, conditioning, modality

and global structure [53]. Based on these properties, the single-objective functions are

divided into 5 function groups, from which 2 functions are chosen each. The resulting

18

2.2. BENCHMARKING WITH THE COCO FRAMEWORK

separable

moderate

ill−conditioned

multi−modal

weakly structured

f01 f02 f06 f08 f13 f14 f15 f17 f20 f21

f21

f20

f17

f15

f14

f13

f08

f06

f02

f01

Gallagher 101

Schwefel x*sin(x)

Schaffer F7 c10

Rastrigin

Sum diff. powers

Sharp ridge

Rosenbrock

Attractive sector

Ellipsoid

Sphere01 02 03 04 05 06 07 08 09 10

11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40

41 42 43 44 45

46 47 48 49

50 51 52

53 54

55

Figure 2.4: The 55 BBOB-BIOBJ functions are combinations of 10 single-objective

functions (on the top and right). The groups the single-objective and the resulting bi-

objective functions belong to are colour-coded according to the legend.

problems and corresponding properties are visualised in figure 2.4.

Each of the functions in this test suite has 10 instances, which are combinations of

the existing instances for the single-objective functions. Like in the BBOB test suite, all

functions are defined for dimensions d ∈ {2,3,5,10,20}. The global optimum of each of

the separate single-objective function is contained in [−100,100]d ⊂Rd.

The performance of an algorithm on the benchmarking suite is measured using a

quality indicator expressing both the size of the obtained Pareto set and the proximity

to a reference front. Since the true Pareto front is not known for the functions in the

test suite, an approximation is obtained by combining all known solutions from popular

algorithms. The ideal and nadir points are known, however, and used to normalise the

quality indicator to enable comparisons across functions [15]. The metric reported as

a performance measure for the algorithm is called precision. It is the difference of the

quality indicator of the reference set Ire f and the indicator value of the obtained set. 58

target precisions are fixed and the number of function evaluations needed to achieve

them is reported during a benchmark run. This way, the COCO platform enables an

anytime comparison of algorithms, i.e. an evaluation of algorithm performance for each

target precision and number of function evaluations [15]. In its current version (2018),

the framework uses the hypervolume of all evaluated individuals as a performance

indicator.

19

CHAPTER 2. BACKGROUND

2.3 Kriging

The Kriging model was originally proposed as a geostatistical estimator to find gold based

only on the locations of previous gold finds [91]. Kriging, also called Gaussian process

regression, models a given fitness landscape using Gaussian processes. A prediction for a

given point x is then made by interpolation. A more detailed description is given in the

following based on [91].

Let f be a single-objective, continuous optimisation problem. We assume that f is

a minimisation problem without loss of generality. Further, let X ∈RM×n be a set of M

samples from the n-dimensional search space. Let D = {(xi, f (x))}, where xi ∈R
n is the

i-th sample, be the initial design, where the sampled points in search space are paired

with their function value. The initial design is the basis for the construction of a Kriging

model.

The Kriging model is based on the assumption that a collection of random variables

representing observations follows a joint Gaussian distribution with kernel κ. A ker-

nel defines the assumed correlation between the fitness of two values based on their

proximity in search space. The kernel can be characterised further by a set of hyperpara-

meters θ that control the nature and flexibility of the chosen kernel function. We denote

κ(x′,x′′,θ) as the covariance between two vectors x′, x′′ ∈ X . Further, we define κ(x, X ,θ)
as the vector of covariances (κ(x, X i,θ)), i ∈ {1, . . . , M}. Finally, K ∈RM×M is the resulting

covariance matrix consisting of the covariance vectors κ(X i, X ,θ), i ∈ {1,. . . , M}.
We know that for any finite set of random variables exists a joint Gaussian distri-

bution [108]. With the kernel chosen, we can now formulate the predictive density of a

Kriging model for a point in search space x as:

(2.6) P(f̂ (x)∣x,D,θ) =N(µ(x),σ(x)),
where the predicted mean and the variance are given by

µ(x) =κ(x, X ,θ)K−1f(2.7)

σ(x) = κ(x,x,θ)−κ(x, X ,θ)⊺K−1
κ(X ,x,θ).(2.8)

Technically, any function κ(x′,x′′,θ) can be interpreted as a kernel, as long as the

derived covariance matrix K is positive semi-definite [108]. The Kriging implementation

used in this thesis4 uses a composite covariance function as a default, in this case the

sum of two different Covariance functions, namely CovSEiso and CovNoise. The former

is a squared exponential covariance function with isotropic distance measure, with the

characteristic length scale Λ = diag(l2, . . . , l2) and signal variance α:

κ(x, y) ∶=α2 exp(−1

2
(x− y)T Λ

−1 (x− y))
4https://github.com/mblum/libgp

20

2.4. GAME OPTIMISATION

The latter is the independent covariance function, representing simple white noise

controllable by parameter σ2. We use the default values for the parameters as suggested

in the documentation5, i.e. l2 = 1, α = 1, and σ2 = e−4.

In order to train a Kriging model, the hyperparameters θ of the chosen kernel need

to be determined. This is done in accordance with the initial design D and usually with

maximum likelihood estimation. The maximum likelihood estimate for θ is thus the θ′

that maximises the following equation:

logP(D∣θ) =−1

2
log ∣K ∣− 1

2
f⊺K−1f−M

2
log(2π).(2.9)

Other methods to compute θ have been proposed in the literature, such as the Markov

Chain Monte Carlo method [124], but the implementation used in this thesis uses

maximum likelihood estimation, as it is more precise.

2.4 Game Optimisation

As explained in section 1.4, this thesis tackles handling uncertainty in surrogate op-

timisation applied to games optimisation specifically. For the purposes of this thesis we

define game optimisation as follows:

Definition 2.1. Game Optimisation. A game optimisation problem can be formalised as

a function f ∶Rn→Rm, where the search space modifies some configurations of a game.

The function f can be computed directly from the input or based on AI playthroughs of

the game.

In this thesis, we choose to focus on a subset of game optimisation problems in order to

allow for a clear analysis. The two problems we focus on have been published previously

([148], [150]) along with their respective results. In the following we describe just the

problems that form the basis of the function suites implemented for our benchmark

described in 4.3. According to the framework proposed in [83], both problems can be

classified as level generation methods with embedded input. Both problems are intended

to also allow for an interactive process with input from human-based computation.

2.4.1 TopTrumps Deck Generation

This problem is based on the card game TopTrumps and the task of generating a deck for

the game. In the following, we first describe the game. We then introduce a formalisation

which we use to define fitness functions for a card deck.

5In the code, the parameters are computed as l̂2 = 0, α̂ = 0, σ̂2 =−2, respectively, as they are processed

as l2 = exp(l̂2), α = exp(2α̂) and σ2 = exp(2σ̂2).

21

CHAPTER 2. BACKGROUND

Figure 2.5: Example card from a car-themed TopTrumps deck with 6 categories

2.4.1.1 Game Description verbatim from [148]

TopTrumps is a themed card game originally published in the 1970s and relaunched

in 1999. Popular themes include cars, motorcycles, and aircrafts. Each card in the deck

corresponds to a specific member of the theme (such as a specific car model in a car-

themed deck) and displays several of its characteristics, such as cubic capacity, top speed,

or width. An example can be found in Fig. 2.5.

At the start of a game, the deck is shuffled and distributed evenly among players.

The starting player chooses a characteristic whose value is then compared to the corres-

ponding values on the cards of the remaining players. The player with the highest value

receives all cards played in this round (called trick) and then continues the game by

selecting a new attribute from their next card. The game usually ends when at least one

player has lost all their cards. However, for the purpose of this benchmark, we end the

game after all cards have been played once in order to avoid possible issues of non-ending

games.

2.4.1.2 Formalisation verbatim from [148]

For the remainder of this thesis, we denote the number of cards in a deck as K and the

number of characteristics (categories) displayed on a card L. Two representations are

used for a deck, a vector x ∈RKL for the evolutionary algorithm and a K ×L matrix V for

easier comprehensibility.

The value of the k-th card in the l-th category is vk,l with k ∈ {1,. . . ,K}, l ∈ {1,. . . ,L}.
The values on the k-th card in a deck are vk,⋅ = (vk,1, . . . ,vk,L). A partial order for the

cards can be expressed with vk1,⋅ ≺ vk2,⋅ meaning that card vk2,⋅ beats vk1,⋅ in all categories

(dominant cards have larger values, since higher values win according to the game rules).

22

2.4. GAME OPTIMISATION

We only consider decks that fulfil two basic requirements we deem existential for

entertaining gameplay:

• all cards in the deck are unique:∄(k1,k2) ∈ {1,. . . ,K}2, k1 ≠ k2 with vk1,⋅ = vk2,⋅

• there is no strictly dominant card in the deck:∄k1 ∈ {1,. . . ,K} with vk2,⋅ ≺ vk1,⋅∀k2 ∈ {1,. . . ,K}
We consider two agents p4, p0 with different knowledge about the played deck in

order to investigate how much of the game is based on skill vs. luck:

• p4 knows the exact values of all cards in the deck

• p0 only knows the valid value range for all values vk,l

Both agents are able to perfectly remember which cards have been played already. Player

p4 is expected to perform better than p0 on average on a balanced deck. In order to

reduce the number of simulations needed to verify this, only games of a player p4 against

p0 will be considered here.

In our simulation, both agents compute the probability to win with each category on

a given card with consideration of their respective knowledge about the deck as well as

the cards already played. p0 therefore has to assume a uniform distribution and will

only take the values of their current card into account. p4, in contrast, is able to model

the probability more precisely by accounting for the number of cards with a higher value

in each category and still in play.

Let RG be the number of simulation runs. The number of tricks that p4 received at

the end of the r-th game (r ∈ {1, . . . ,RG}) with deck V will be called t
(r,V)
4 henceforth, and

thus iff t
(r,V)
4 >

K
2 , p4 won the game, iff t

(r,V)
4 =

K
2 the game was a draw, and else, p4 lost.

t
(r,V)
c is the number of times the player choosing the category did not win the trick in

round r of the game with deck V, i.e. the number of times the player announcing the

categories changed.

2.4.1.3 Fitness Functions with small modifications from [148]

Without loss of generality, all problems are transformed into minimisation problems.

• Single-objective optimisation according to the dominance-related (D) measure

proposed in [21] which describes the distance of the cards in a deck V to the Pareto

front of the deck, where categories are interpreted as objectives:

fD(V) ∶RKL→ [−K ,0] ∈R
fD(V) =− 1

K

K∑
k=1

K∑
i=1

(1−1(vk ≺ vi))
• Multi-objective optimisation with simulation-based

measures developed with expert knowledge that are supposed to express the decks

V ’s fairness (high p4 win rate), excitement (high average # trick changes, low

average trick difference), and resulting balance (B):

23

CHAPTER 2. BACKGROUND

fB(V) ∶RKL→ ([−1,0]×[−K

2
,0]×[0,

K

2
]) ∈R3

fB(V) = (− 1

RG

RG∑
r=1

1(t(r,V)
4 >

K

2
) ,

− 1

RG

RG∑
r=1

t
(r,V)
c ,

1

RG

RG∑
r=1

∣2t
(r,V)
4 − K

2
∣) .

• Multi-objective optimisation with simulation-independent measures developed in

the pre-experimental planning phase. With an appropriate mapping, the objectives

can be used as a surrogate (S) for (the simulation-based) fitness fB of different

decks used for speed-up and interpretation purposes:

fS(V) ∶RKL→R
2

fS(V) = (−hv(V),−sd({avg(v
⋅,l)∣l ∈ {1,. . . ,L}})),

with the dominated hypervolume hv of a deck V , sd the empirical standard devi-

ation and avg the average.

2.4.2 Mario Level Generation

This problem is based on a procedural level generation method proposed in [150]. The

method is generally applicable, but is applied here to a platformer heavily based on Super

Mario Bros.. In the following, we first describe the concept of latent variable evolution,

which is central to the publication. We then explain the approach used in [150] in greater

detail. Following that, we describe the level representation and the training process.

Afterwards, we introduce the fitness functions used to evaluate the generated levels.

2.4.2.1 Generative Adversarial Networks verbatim from [150]

Generative Adversarial Networks (GANs) were first introduced by Goodfellow et al. [44]

in 2014. Their training process can be seen as a two-player adversarial game in which a

generator G (faking samples decoded from a random noise vector) and a discriminator D

(distinguishing real/fake samples and outputting 0 or 1) are trained at the same time

by playing against each other. The discriminator D aims at minimizing the probability

of misjudgement, while the generator G aims at maximizing that probability. Thus, the

generator is trained to deceive the discriminator by generating samples that are good

enough to be classified as genuine. Training ideally reaches a steady state where G

reliably generates realistic examples and D is no more accurate than a coin flip.

GANs quickly became popular in some sub-fields of computer vision, such as im-

age generation. However, training GANs is not trivial and often results in unstable

models. Many extensions have been proposed, such as Deep Convolutional Generat-

ive Adversarial Networks (DCGANs) [107], a class of Convolutional Neural Networks

(CNNs), Auto-Encoder Generative Adversarial Networks (AE-GANs) [89], and Plug

and Play Generative Networks (PPGNs) [96]. A particularly interesting variation are

24

2.4. GAME OPTIMISATION

Wasserstein GANs (WGANs) [6, 48]. WGANs minimize the approximated Earth-Mover

(EM) distance (also called Wasserstein metric), which is used to measure how differ-

ent the trained model distribution and the real distribution are. WGANs have been

demonstrated to achieve more stable training than standard GANs.

At the end of training, the discriminator D is discarded, and the generator G is used

to produce new, novel outputs that capture the fundamental properties present in the

training examples. The input to G is some fixed-length vector from a latent space (usually

sampled from a block-uniform or isotropic Gaussian distribution). For a properly trained

GAN, randomly sampling vectors from this space should produce outputs that would be

mis-classified as examples of the target class with equal likelihood to the true examples.

However, even if all GAN outputs are perceived as valid members of the target class,

there could still be a wide range of meaningful variation within the class that a human

designer would want to select between. A means of searching within the real-valued

latent vector space of the GAN would allow a human to find members of the target class

that satisfy certain requirements.

2.4.2.2 Latent Variable Evolution verbatim from [150]

The first latent variable evolution (LVE) approach was introduced by Bontrager et al. [13].

In their work the authors train a GAN on a set of real fingerprint images and then apply

evolutionary search to find a latent vector that matches with as many subjects in the

dataset as possible.

In another paper Bontrager et al. [14] present an interactive evolutionary system, in

which users can evolve the latent vectors for a GAN trained on different classes of objects

(e.g. faces or shoes). Because the GAN is trained on a specific target domain, it becomes

a compact and robust genotype-to-phenotype mapping (i.e. most produced phenotypes do

resemble valid domain artifacts) and users were able to guide evolution towards images

that closely resembled given target images. Such target based evolution has been shown

to be challenging with other indirect encodings [156].

2.4.2.3 Approach verbatim from [150]

The approach is divided into two main phases, visualised in Figure 2.6. First, a GAN is

trained on existing Mario levels (Figure 2.7). The levels are encoded as multi-dimensional

arrays as described in Section 2.4.2.4 and depicted in the yellow box. The generator

(green) operates on a Gaussian noise vector (red) and is trained to output levels using

the same representation. The discriminator is then employed to tell the existing and

generated levels apart. Both the generator and discriminator are trained using an

adversarial learning process as described in Section 2.4.2.1.

Once this process is completed, the generator network of the GAN, G, can be viewed

as our learned genotype-to-phenotype mapping: Based on a latent vector (blue) of real

numbers (of size 32 in the experiments in this paper), it produces a tile-level description

of a Mario level. Instead of simply drawing independent random samples from the latent

space, we put exploration under evolutionary control. In other words, we search through

25

CHAPTER 2. BACKGROUND

Real	levels

Generator

G
a
u
ss
ia
n
	n
o
is
e

Real

samples

Generated

samples

Real?	Fake?

Discriminator

GAN	training	process

(Phase	1)

Generated	levels

Trained	

Generator

La
te
n
t	
v
e
ct
o
r

CMA-ES
Evolution

(Phase	2)

Simulations	of	game

Evaluation

Figure 2.6: Overview of the GAN training process and the evolution of latent vectors.

The approach is divided into two distinct phases. In Phase 1 a GAN is trained in an

unsupervised way to generate Mario levels. In the second phase, we search for latent

vectors that produce levels with specific properties.

26

2.4. GAME OPTIMISATION

Figure 2.7: The Training Level. The training data is generated by sliding a 28 × 14

window over the level from left to right, one tile at a time.

Table 2.2: Tile types used in generated Mario levels. The symbol characters come from

the VGLC encoding, and the numeric identity values are then mapped to the correspond-

ing values employed by the Mario AI framework to produce the visualisation shown.

The numeric identity values are expanded into one-hot vectors when input into the

discriminator network during GAN training. Taken from [150]

Tile type Symbol Identity Visualisation

Solid/Ground X 0

Breakable S 1

Empty (passable) - 2

Full question block ? 3

Empty question block Q 4

Enemy E 5

Top-left pipe < 6

Top-right pipe > 7

Left pipe [8

Right pipe] 9

the space of latent vectors to produce levels with different desirable properties such as

distributions of tiles, difficulty, etc..

2.4.2.4 Level Representation

As Mario levels are tile-based, the most straightforward way to represent them is as a

matrix where each cell encodes a different tile. In the training levels taken from the Video

Game Level Corpus (VGLC) [131], the tiles are encoded as ASCII symbols. These are

then translated to an integer value and further to a one-hot encoding for GAN training.

The integer value can also be read into the MarioAI framework to achieve a playable

level and visualisation. The encoding used is specified in table 2.2.

2.4.2.5 GAN Training with small modifications from [150]

Our Deep Convolutional GAN (DCGAN) is adapted from the model in [6] and trained

with the WGAN algorithm. The network architecture is shown in Figure 2.8. Following

the original DCGAN architecture, the network uses strided convolutions in the discrim-

inator and fractional-strided convolutions in the generator. Additionally, we employ

batchnorm in the generator and discriminator after each layer. In contrast to the original

architecture in [6], we use ReLU (Rectified Linear Units) activation functions for all

27

CHAPTER 2. BACKGROUND

layers in the generator, even for the output (instead of Tanh), which we found gave better

results. Following [6], the discriminator uses LeakyReLU activation in all layers.

Generator

32 z

4 x 4 x 256 8 x 8 x 128
16 x 16 x 64

32 x 32 x 10

conv

conv

conv

Discriminator

1

Figure 2.8: The Mario DCGAN architecture.

When training the GAN, each integer tile was expanded to a one-hot vector. Therefore

the training inputs for the discriminator are 10 channels (one-hot across 10 possible tile

types) of size 32 × 32 (the DCGAN implementation we used required the input size to be

a multiple of 16 so the levels were padded). For example, in the first channel, the location

of ground titles are marked with a 1.0, while all other locations are set to 0.0. The size of

the latent vector input to the generator has a length of 32.

Once training of the GAN is completed the generator represents our learned genotype-

to-phenotype mapping. When running evolution, the final 10×32×32 dimensional output

of this generator is cropped to 10×28×14 and each output vector for a tile is converted

to an integer using the argmax operator, resulting in a level that can be decoded by the

Mario AI framework.

The GAN input files were created by processing a level file from the VGLC for the

original Nintendo game Super Mario Bros, which is shown in Figure 2.7. Each level file

is a plain text file where each line of the file corresponds to a row of tiles in the Mario

level. Within a level all rows are of the same length, and each level is 14 tiles high. The

GAN expected to always see a rectangular image of the same size, hence each input

image was generated by sliding a 28 (wide) x 14 (high) window over the raw level from

left to right, one tile at a time. The width of 28 tiles is equal to the width of the screen

in Mario. In the input files each tile type is represented by a specific character, which

was then mapped to a specific integer in the training images, as listed in Table 2.2. This

procedure created a set of 173 training images.

2.4.2.6 Fitness Functions

In the following section, we describe the fitness functions used for optimising the Mario

levels. We propose two types of fitness functions, the first solely based on the level tiles

and the second one based on AI playthroughs.

Representation-based Fitness Functions with small modifications from [150]

In the representation-based scenarios we directly optimize for a certain distribution

of tiles. In more detail, we test (1) if the approach can generate levels with a certain

28

2.4. GAME OPTIMISATION

number of ground titles, and (2) a combination of ground titles and number of enemies.

We seek to minimize the following functions.

• Distance between produced fraction of ground tiles g and the targeted fraction t

Fground =

√(g− t)2 .

• Combination of ground coverage and maximising the total number n of enemies:

F = Fground +0.5 ⋅(20.0−n).
This particular weighting was found through prior experimentation.

Simulation-based Fitness Functions with small modifications from [150]

While being able to generate levels with exactly the desired number of ground tiles and

enemies is one desirable feature of a level generator, a fitness function based entirely on

the level representation has two inherent weaknesses:

• Levels with maximal fitness value might not be playable, especially if they are

optimized for a small number of ground tiles and/or a large number of enemies.

• The number of ground tiles and enemies does not necessarily affect the playthrough

of a human or AI agent, and may thus not result in levels with the desired difficulty.

E.g., the enemies might fall into a hole before Mario can reach them or there might

exist an alternative route that avoids difficult jumps.

These problems can be alleviated by using an evaluation that is based on playthrough

data instead of just the level representation. This way, playability can be explicitly tested

and characteristics of a playthrough can be observed directly.

To this end, we implemented agent-based testing using the Mario AI competition

framework, as there are a variety of agents already available [138]. To evaluate a level,

the latent vector in question is mapped to [−1,1]n with a sigmoid function and then

sent to the generator model in order to obtain the corresponding level. The level is then

imported into the Mario AI framework using the encoding detailed in Table 2.2, so that

agent simulations can be run.

While there are a variety of properties that can be measured using agent-based

testing, for this proof-of-concept we chose to specifically focus on the two weaknesses of

representation-based fitness functions mentioned above. As before, our use case is to find

playable levels with a scalable difficulty.

Given that the A* agent by Robin Baumgarten6 (winner of the 2009 Mario AI com-

petition) performs at a super-human level, we use its performance to determine the

playability of a given level. For an approximation of experienced difficulty, we use the

number of jump actions performed by the agent. The correlation between the number of

6https://www.youtube.com/watch?v=DlkMs4ZHHr8

29

CHAPTER 2. BACKGROUND

jumps and difficulty is an assumption, however, jumping is the main mechanic in Mario

and is required to overcome obstacles such as holes and enemies. The fitness function we

seek to minimize is:

F1 ={−p for p < 1−p−# jumps for p = 1,

where p is the fraction of the level that was completed in terms of progress on the x-axis.

In order to investigate the controllability of the level generation process, we introduce

the following fitness function

F2 ={−p+60 for p < 1−p+# jumps for p = 1,

where p is the fraction of the level that was completed in terms of progress on the x-axis.

The offset of 60 for the incomplete levels was chosen after preliminary experiments so

that unbeatable levels where the agent is trapped and repeatedly jumps are discouraged.

As a result, passable levels will always score a higher fitness than impassable ones.

Since the exact number of jumps is non-deterministic and can produce outliers if the

agent gets stuck under an overhang, the actual fitness value in both cases is the average

of 10 simulations.

2.4.3 StarCraft II Winner Prediction

This problem is based on the popular real-time strategy (RTS) game StarCraft II (Blizzard

Entertainment, 2010). It is not a game optimisation problem per se, but closely related.

The task is to predict the winner of a StarCraft II game in real-time based on statistics

observable to only a single player. This predictor can then be used as a fitness function in

game optimisation, for example to automatically adjust the difficulty of an AI opponent.

The predictor could be used here as a way to assess how frustrated the human player

might feel at any given point in the game. Of course, the predictor could also be used as

a model to evaluate game states, as is e.g. required in some popular AI approaches such

as Monte-Carlo Tree Search [17].

In the following, we first briefly describe the game StarCraft II. Following that, we

introduce the pre-processing methods used on the acquired player data.

2.4.3.1 Game Description verbatim from [147]

StarCraft Series StarCraft II7 is a popular real-time strategy (RTS) game with a

science-fiction theme released by Blizzard in 2010, which was followed up with further

expansion packs in 2013, 2015, and 2016. It is the second game in the series, the first

StarCraft game was published in 1998. StarCraft II was designed as an E-Sport [16]

and has a massive following, regular tournaments (e.g. World Championship Series) and

professional players.

7https://starcraft2.com

30

2.4. GAME OPTIMISATION

StarCraft II features three playable races (Terran, Protoss, Zerg) and several game

modes (1v1, 2v2, 3v3, 4v4 and campaign). Each player spawns with a town-hall building

and a small number of workers at a predetermined location on a map, their base. The

players can construct additional buildings, which can be used to produce more workers

and military units. The properties of the available buildings and units are determined

by the race played. There are additional upgrade mechanisms available to buildings

as well as units. Buildings, units, and upgrades require different amounts of minerals

and vespene gas, the two resources in the game. Both can be gathered by worker units.

The supply value, which may be increased by additional buildings, poses a limit to the

number of units that can be built by a player.

The player that successfully destroys all their opponent’s buildings has won the game.

The game also ends if a player concedes or if a stalemate is detected by the game.

StarCraft as Research Environment The first game version, and specifically its

expansion pack StarCraft: Brood War, have been used in research as a benchmark and

competition framework8 for AI agents since 2009 [143]. In 2017, DeepMind and Blizzard

published the StarCraft II Learning Environment (SC2LE) [144]. The SC2LE provides

an interface for AI agents to interact with a multi-platform version of StarCraft II and

supports the analysis of previously recorded games.

Specifically, the SC2LE offers an interface through which a large set of game state

observations9 can be made available for every game tick in a replay or in real-time. The

information that can be obtained includes raw data on features such as unit health

and unit type in the form of heatmaps. At the same time, it also includes aggregated

information that is usually displayed to game observers that can help to characterise

a player’s progress. Examples include the resource collection rate and the number of

units destroyed represented as their value in resources. The SC2LE consists of multiple

sub-projects, which include, among other things, a python wrapper library pysc210.

Even before releasing SC2LE, Blizzard has been allowing players to save their

own StarCraft II games to a file using the .S2Replay format. These replays can then

be watched using the StarCraft II software and even analysed using the S2 Protocol

published by Blizzard. s2protocol11 is a Python library that provides a standalone tool

to read information from .S2Replay files. The files contain repositories with different

information. The metadata repository, for example, contains general information on the

game and the players, such as the result, the selected races, the game map, and the

duration of the game as well as technical details such as the StarCraft II build number.

2.4.3.2 Data Pre-Processing

A model for winner prediction can theoretically be trained on any type of obtained Star-

Craft II data, that is playthroughs from AI or human tournaments, or ladder games. In

8http://bwapi.github.io/
9https://github.com/deepmind/pysc2/blob/master/docs/environment.md

10https://github.com/deepmind/pysc2
11https://github.com/Blizzard/s2protocol

31

CHAPTER 2. BACKGROUND

either case, these game should be pre-processed in order to remove any uncharacteristic

examples, such as player disconnects. This is especially important in ladder games with

participants from lower leagues.

We thus remove games

1. where at least one player performed 0 actions per minute,

2. that lasted 30 seconds or less,

3. where at least one player spent less than 50 minerals and already destroyed one of

their own buildings (player is losing intentionally).

32

C
H

A
P

T
E

R

3
RELATED WORK

In the following section, we present related work for several topics addressed in this

thesis. We start with a review of research on game optimisation in section 3.1 and

highlight persisting issues with uncertainty handling in the state-of-the-art. This is

our main motivation for proposing the application of concepts established in surrogate-

assisted optimisation and noisy optimisation research. We describe work related to these

fields in sections 3.2 and 3.3.

Finally, we also describe publications on benchmarking evolutionary algorithms in

order to put the benchmark we propose in this thesis into context.

3.1 Numerical Game Optimisation

Game optimisation problems according to the definition given in section 2.4 can be

mainly found in research on automatic game balancing and search-based procedural

generation of different creative artefacts, such as levels. Both types of problems have

two major characteristics in common:

• They require an automatic evaluation of the game or a specific part of its content.

• An optimisation algorithm is operating on the evaluation function in order to find

an optimal game configuration or piece of content.

The evaluation function is a common bottleneck in game optimisation, as it is often

based on simulations, i.e. AI players playing the game. This observation is corroborated

by [137], a survey on search-based PCG. This issue is the main focus of this thesis, and

we propose a surrogate-based algorithm with dynamic uncertainty handling as described

in section 4.2. In the following, we provide an overview of how related publications

have approached the issue of expensive evaluation functions in game optimisation.

In order to focus the discussion and improve comparability, we will mainly highlight

work on numerical game optimisation, i.e. where the optimisation algorithm was run

on continuous real-world inputs. Furthermore, we will not discuss the question of the

validity of the fitness functions chosen for game optimisation here, as it is not relevant

for the topics in this thesis. However, we address this issue in section 6.2.1.1.

There are many publications that fit into the category of game optimisation in the

context of platformers [58]. In [129], for example, metrics like the number of jumps and

the number of enemies killed by an AI player are used to evaluate generated levels.

The search algorithm used is a combination of Markov chains and Monte Carlo Tree

33

CHAPTER 3. RELATED WORK

Search. However, the authors ran into issues of unmanageably large runtimes when

using full simulations with a state-of-the-art player AI. To combat this problem, they

replaced the full simulations by a lower fidelity function using a simplified AI. Similarly,

as the approach proposed in [63] requires numerous simulations, the agents chosen are

very simple and fast. In Ludi, a famous system that generates board game rules, the

computational budget for the agents and the number of moves allowed are restricted in

order to allow manageable computation times [18].

Approaches that speed up computation by simplifying the simulation itself have the

benefit of allowing the designer to explicitly model (in greater detail) the behaviour that

the evaluation function is based on. The experiments can therefore be very focused on

selected aspects of the game. However, in most reasonably complex and long games, the

designer is not acutely aware of all interactions between the various components of a

game. Therefore, any decisions on how a game can be simplified or reduced to certain

aspects will incur a bias which is not easily understood or expressed. As a consequence,

it is difficult to reason about the optimality of solutions found on a simplified fitness

function and its transferability to the complete game as intended.

A similar problem occurs in approaches that seek to avoid AI playthroughs completely

to save computational resources. Numerous of these approaches can be found in literature.

In fact, a majority of the publications surveyed for this thesis fall into this category.1

For instance, a survey of fitness functions used for Mario and related platformers can

be found in [130]. In [92], the fitness function used is based on the similarity to already

existing levels. Ludi also includes a multitude of measures without simulation [18].

Especially when targeting more complex games such as real-time strategy games, for

example, evaluation concepts that do not require simulation are very prevalent [81, 82,

103, 136].

Of course, without any simulations at all, these approaches rely all the more on the

correctness of the assumptions the game designer makes when creating the evaluation

functions. This issue can be observed in [148], for example. In this paper, we first

used an optimisation algorithm to create optimal decks for a card game with a multi-

objective evaluation function based on AI playthroughs. Through observations made on

these playthroughs and considering our knowledge of the AIs we implemented, we then

created bi-objective evaluation function that did not require simulations. We called this

newly created function a surrogate for the original, simulation-based one. The solutions

found on the surrogate function achieved very good results, even when evaluated with

the original function. Additionally, they were achieved much faster without the need

for simulation. However, while we found numerous solutions on the Pareto front (as

visualised in figure 3.1), they occupy a very different region than the solutions found

using the original function. While it is certainly beneficial to be able to explore different

regions of the Pareto front in order to find the best solutions, it is also clear that the

fitness landscapes of the original and surrogate functions differ. Even if this fact can

be beneficial in some cases, such as in [148], the intention was to model the original

function as closely as possible. We therefore have to conclude that biases were introduced

1For complete survey, see the appendix A

34

3.1. NUMERICAL GAME OPTIMISATION

Figure 3.1: Final solutions from multiple optimisation runs of TopTrumps using various

evaluation functions encoded by colour. Original function: ∎ and ∎, surrogate function: ∎
and ∎, alternative surrogate function: ∎ and ∎. Existing decks for comparison: ∎. Larger

squares depict solutions on shared Pareto front. Taken from [148].

into the evaluation which we were unaware of, even though we had complete access to

all sources for a relatively simple game. An alternative surrogate function suggested in

[21] was also tested, but did not achieve comparable results in terms of the performance

of the discovered solutions as shown in figure 3.1.

To combat the issue of unintended and obscure biases introduced by surrogate

evaluation functions, some authors choose a data-driven machine learning approach

instead. For example, in [70], the authors used an automatic game evaluation function

based on performance statistics of two opposing AIs to balance a simplified shooter game.

The game is modelled after Team Fortress 2 (Valve 2007) and thus supports multiple

character classes, which makes the problem of balancing the classes against each other

more complex and requires a multitude of evaluations. Since the simulations, even

though simplified, would otherwise become forbiddingly expensive, a surrogate model is

used in [70] to replace the fitness function. The model chosen is a Convolutional Neural

Network (CNN) which is trained before optimisation starts and using a deep learning

approach using the results of 2 ⋅105 simulated playthroughs. The input for the CNN are

the modifiable parameters of the game to be balanced.

However, while the models are evaluated in terms of their accuracy, the obtained

information is not considered during the optimisation at all. The model is pre-trained

and not changed at all during the actual optimisation. As a result, any solutions found

are entirely reliant on the model, which can produce large errors at times. In the field of

surrogate-based optimisation, it is common practice to combine results from the original

and surrogate functions in order to avoid the issue of finding optima on the surrogate

function that do not align with the optima in the original one. See Fitness Approximation

in section 2.1.2 and the following section 3.2 for more details. The approach we propose

in this thesis uses these best practices from surrogate-assisted optimisation, and addi-

35

CHAPTER 3. RELATED WORK

tionally has the ability to improve the model in interesting regions close to the optimum

and identify low-fidelity predictions during runtime.

Several approaches have been published using pre-trained surrogates as the sole

evaluation function, which of course induces the same issues as described above. In

[117], for instance, a neural network trained on human feedback is used as a surrogate

function to optimise the aesthetics of platform games. Integrating human feedback into

an evaluation model is a very attractive approach to reduce the amount and influence of

assumptions made by the designer. Despite the additional effort required for collecting

enough data, this approach can be observed in several publications. In [54], for example,

the feedback considered is the popularity of specific items within the game. In [154], the

game is evaluated based on player retention statistics.

However, while reducing the amount of assumptions required for game evaluation

is certainly a step in the right direction, pre-trained models still have the issue of

questionable fidelity for newly discovered solutions. Additionally, they cause significant

upfront costs. To address this issue, in surrogate-assisted optimisation algorithms (see

section 3.2), the model is usually constructed during the runtime of the algorithm.

The only paper taking this approach on game-related optimisation we found was [75],

where a random mutation hill climber is used in conjunction with a surrogate model.

This approach greatly resembles a simplified and potentially more efficient version of

the popular iterative sampling methods discussed in more detail in section 3.2.1 and

specifically GP-UCB [7, 8]. The surrogate model used is a multi-armed bandit model in

conjunction with Upper Confidence Bounds (UCB1, see [17]) as the criterion to determine

which point to sample in each iteration. The bandit model makes this approach very

promising for noisy optimisation problems, but unfortunately is only designed for finite

search spaces. It is thus not applicable to game optimisation as defined in this thesis.

Besides fully automatic approaches as discussed above, there are also integrated

approaches that address the issue of model fidelity by including newly generated feed-

back from human testers into the algorithm during runtime. For example, we recently

proposed an integrated process for game balancing that involves manual and auto-

matic game balancing, as well as strategic reduction of the search space [104]. However,

the tools and processes proposed in the paper still require a large amount of human

involvement and decisions.

The proposed method falls into the umbrella of mixed-initiative design. Mixed-

initiative approaches can be broadly clustered into two main concepts; computer-aided

design and interactive evolution [80]. In Computer-aided design, the computer helps

support the human creative process by evaluating the human-designed content auto-

matically, e.g. in terms of playability. These approaches therefore use the same type of

evaluation procedures as fully-automatic ones and thus carry the same issues discussed

above. One famous example would be restricted play [64], where test cases are manually

defined by a designer and then automatically executed.

In interactive evolution methods, however, the interaction is framed the other way

around, i.e. one or multiple humans evaluate content generated by a computer system.

These methods thus resemble another extreme of game evaluation methods, sacrificing

runtime for the ability to avoid modelling errors. They therefore come with a different

36

3.2. SURROGATE-ASSISTED EVOLUTIONARY OPTIMISATION

set of issues, mainly user fatigue caused by the continued cognitive effort required from

a human for generating a large amount of feedback. A common approach to combat

cognitive overload is through conscious design of the user interface and efficient and

intuitive representations of potential solutions [80]. Furthermore, crowdsourcing is

sometimes used to reduce the cognitive effort for a single user [113]. In some instances,

the population size of the evolutionary algorithm is kept relatively small to ensure fast

convergence [133].

In any case, however, interactive evolution methods require runtimes that are dispro-

portionately larger than conventional optimisation methods. In order to alleviate this

issue, the number of decisions delegated to the human decision maker can be reduced

by automatically evaluating some of the individuals in a generation or all individuals

in certain generations. To do this, [60] propose to use a fitness value that is inversely

proportional to the distance of unevaluated individuals to evaluated ones. However, in

this case, the validity of the model and the assumptions necessary to build it are not

considered. This resembles previously proposed model management strategies popular

for surrogate assisted evolutionary optimisation, which we discuss in section 3.2. Unfor-

tunately, none of these methods involves checks on model validity either. This is one of

the main motivations for the algorithm proposed in this thesis.

3.2 Surrogate-Assisted Evolutionary Optimisation

In evolutionary optimisation, algorithms generally follow the algorithmic skeleton de-

picted in figure 2.1 inspired by Darwinian theories on evolution, as described in section

2.1. Most evolutionary algorithms do not make any assumptions about the convexity and

differentiability of the objective and constraint functions [24, 29]. This makes them a

likely choice for real-world optimisation problems where, in many cases, the fitness land-

scape is not or only partially known. As a result of their typically exploratory approach,

however, evolutionary algorithms tend to require a relatively large number of function

evaluations until convergence or until a suitable solution is found.

This becomes an issue when evaluating a solution is computationally / economically

expensive or otherwise time-consuming. This is a common issue in real-world applications

and in game optimisation specifically, as discussed in the previous section 3.1. To alleviate

this problem, surrogate-assisted evolutionary algorithms have been proposed. Broadly

speaking, there are two types of popular approaches in literature:

• iterative sampling (e.g. [68, 73])

• evolution control (survey in [66])

In the following, we first briefly outline both approaches in general. Following that,

we describe the specific publications and corresponding algorithms relevant to this thesis

in greater detail. In theory, any kind of optimisation algorithm can be coupled with any

kind of predictive model. However, we will only be covering evolutionary algorithms (see

section 2.1) working in conjunction with Kriging models (see section 2.3) in this thesis.

37

CHAPTER 3. RELATED WORK

DoE

evaluation

global model

stop?

evaluation

end

Archive init pop

infill evaluation

parent selection variation

infill evaluation

survival

selection
stop?out best

yes

no

no

yes

Figure 3.2: Iterative Sampling methods. The expensive objective function is optimised by

iteratively improving a surrogate model guided by an infill criterion. The optimiser is

used to select solutions for evaluation with the expensive objective function. The model

is then updated accordingly and the next iteration starts. The process terminates after

the budget of expensive function evaluations is exhausted. Evaluations indicated with

double borders are added to an archive. Additions to the EA skeleton from figure 2.1 are

marked in orange.

As the predicted values from the model act as a surrogate to evaluations of the objective,

the model is also often called a surrogate model. Hence the name surrogate-assisted

evolutionary optimisation.

Iterative Sampling Iterative sampling methods seek to improve a surrogate model

throughout the runtime of the algorithm. This process is usually guided by a function

(also called infill criterion) that expresses both the predicted accuracy of the model after

the new sample as well as the estimated progress regarding the original expensive

fitness function. If an evolutionary algorithm is used to optimise the infill criterion,

iterative sampling methods fall under the umbrella of surrogate-assisted evolutionary

optimisation. A visualisation of iterative sampling methods can be found in figure 3.2.

Iterative sampling methods usually start from a sample using a space-filling design of

experiments (DoE) method. For a clear distinction it is important to note that in iterative

sampling approaches, the optimisation algorithm works on the model exclusively and

does not automatically trigger evaluations of the true expensive fitness function during

its execution.

38

3.2. SURROGATE-ASSISTED EVOLUTIONARY OPTIMISATION

init pop

evaluation

parent selection variation

evaluation

survival

selection
stop?out best

local search

(prediction)

yes

no

Figure 3.3: Evolution control methods. Steps where surrogate models can be helpful

according to [66] are coloured in red. Additional steps are indicated in orange. Figure

adapted with modifications from [66].

Evolution Control In evolution control methods, one or multiple steps in the al-

gorithmic skeleton as depicted in figure 2.1 are supported by a surrogate model. For

example, the random generation of offspring for a new generation might be biased using

information from the model. Figure 3.3 depicts those steps where a surrogate model

can be helpful according to the survey in [66]. The method of integration of surrogate

model and evolutionary algorithm is often called model management strategy and can

generally be classified as either individual-based, generation-based or population-based.

The survey by Y. Jin [66] also gives an overview of popular model management strategies.

3.2.1 Efficient Global Optimisation of Expensive Black-Box

Functions (EGO) [68]

Efficient Global Optimisation (EGO) is an iterative sampling framework (cf. figure 3.2)

that was proposed by D. Jones, M. Schonlau and W. Welch in [68], which is popular in

research (see [114] and references therein). Since the original publication, modifications

have been suggested [27, 100], as well as adaptations to multi-objective problems, for

example ParEGO [73]. We will mainly present EGO according to its original publication

[68] in the following, but add notes on the most popular applications and modifications.

EGO starts with an initial sample of the fitness landscape, which it constructs a

Kriging model from. This initial experimental design is supposed to be space-filling,

which is why Latin hypercube designs [93] are often used. In [68], the authors suggest to

use about 10d points for the initial sample, where d is the dimension of the search space.

After the model is fit to the data using maximum likelihood estimation, diagnostic

tests are performed in order to ensure the fit of the model is satisfactory. These tests

include multiple plots and a test whether the cross-validated standardised residuals are

less than 3. If these tests fail, transformations to the dependent variable (such as log

or inverse −1
y) are applied and used for the remainder of the algorithm, if the models

39

CHAPTER 3. RELATED WORK

can thus be improved. The model validation step is skipped in many of the more recent

publications. However, recent investigations seem to suggest that the choice of model and

its fitness do not have a significant effect on the performance of EGO [23]. Still, further

experiments need to be conducted to validate these counter-intuitive observations.

Following initial model construction (and validation), the algorithm starts a loop

where in each iteration, a new point is evaluated and added to the model. In [68], the

next point to be sampled is the one that maximises the expected improvement, which is

identified using a branch-and-bound algorithm. Expected improvement is the stochastic

expected value of improvement over the current best solution found by the optimiser,

computed using the uncertainty prediction of the surrogate model. It thus automatically

introduces a compromise between improving the model (sampling in areas with higher

uncertainty) and improving the optimisation solution (sampling in more promising

areas).

The algorithm stops when the highest expected improvement value is small (less

than 1%) relative to the function values. In many adaptations of EGO, an evolutionary

algorithm is used to choose the next point to sample instead of the branch-and-bound

algorithm. Additionally, other infill criteria for deciding which point to sample next have

been proposed, such as lower confidence bounds [100], and probability of improvement

(of the best solution found) [27].

The EGO algorithm has many strengths (see [23]), such as its flexibility due to the

free choice of kernel function for Kriging [108] and the possibility to incorporate expert

knowledge, for instance via Co-Kriging [40], or trend functions [4]. Furthermore, noisy

data can also be considered in a statistically sound fashion [39]. Additionally, EGO is

very well suited for settings where multiple optima have to be found in multi-modal

functions [155]. However, there are also several issues with EGO (see [23]). Chief among

them the are computational effort and number of evaluations required for training

satisfactory non-local Kriging models [9], especially in case of high-dimensional search

spaces [1]. Furthermore, the flexibility of the Kriging model also necessitates various

decisions, which are difficult to make without domain expertise. Additionally, if a model

in EGO is used without validity checks, the infill criterion used might mislead the search

completely [124].

3.2.2 Single- and Multi-objective Evolutionary Optimization

Assisted by Gaussian Random Field Metamodels

(Pre-screening) [37]

Pre-screening is an approach where a local search is applied to the offspring before

the most promising ones are evaluated (cf. figure 3.3). The steps added to the EA

algorithmic skeleton are visualised in more detail in figure 3.4. Effectively, a bias is

added to the offspring generation step based on knowledge gathered from previous

function evaluations, similar to estimation of distribution algorithms, such as CMA-ES

(see section 2.1.3.1). This approach has been analysed for both single- and multi-objective

evolutionary optimisation in [37].

40

3.2. SURROGATE-ASSISTED EVOLUTIONARY OPTIMISATION

init pop

evaluation

parent selection variation

evaluation

survival

selection (µ)
stop?out best

infill evaluation

survival

selection (λ)

local model

Archive

yes

no

Figure 3.4: Pre-Screening. A local search is conducted on generated offspring in order

to bias the search, i.e. (1) select λ individuals based on infill criterion, (2) select µ

individuals based on fitness functions. Steps added to the EA skeleton are marked in

orange. Evaluations indicated with double borders are added to an archive.

The algorithm can be applied to any evolutionary algorithm and type of surrogate

model. Applying it only requires two changes to the EA:

• All fitness evaluations are recorded

• Only the most promising offspring are selected for fitness evaluation

In order to identify how promising the individuals are, several criteria popular in

surrogate-assisted evolutionary optimisation are used, namely expected improvement

[68], probability of improvement [142], lower confidence bounds [32, 140] and the mean

predicted value. In [37], these criteria are also introduced for multi-objective problems,

where the improvement is expressed in terms of some performance criterion for multi-

objectives EAs. In the paper, hypervolume (see section 2.1.1.2) is used for that purpose.

The experiments in the paper were conducted using a (µ+λ)-ES as an underlying

algorithm with µ = 5,λ = 100. From the λ individuals, at most υ = 20 were selected for

evaluation via pre-screening. Pre-screening as described in [37] uses local surrogate

models with 2d samples, where d is the search space dimension. The samples considered

for each model are the 2d closest ones w.r.t. the Euclidian distance in search space from

the point of interest.

3.2.3 Differential Evolution for Multiobjective Optimization

Based on Gaussian Process Models (GP-DEMO) [95]

The algorithm most similar to SAPEO (cf. section 4.2) is called GP-DEMO and was

published in [95]. While the ideas were developed independently and the algorithms

use different optimisers as a basis, some of the main concepts still share a remarkable

similarity.

41

CHAPTER 3. RELATED WORK

GP-DEMO extends a specific differential evolution algorithm called DEMO [109] for

multi-objective problems. This algorithm is based on the differential evolution framework,

but allows for the existence of incomparable individuals as well, as required for multi-

objective optimisation (cf. section 2.1.1.2). For each parent and child combination, DEMO

still adds the better individual to the population, now in terms of Pareto dominance.

In case the individuals are incomparable, both are added to the population. At the end

of an iteration, the population is truncated to the required size. This is done using a

secondary selection criterion like in many other MOEAs (cf. section 2.1.1.2). DEMO uses

the crowding distance as does the popular NSGA-II [30].

As described in section 2.1.2, a partial order can also be introduced to compare indi-

viduals in a noisy environment. This same principle can be applied to fitness predictions,

if the surrogate model also contains an uncertainty estimate from which uncertainty

intervals can be derived. Kriging models (see section 2.3) have this feature and are used

in GP-DEMO to estimate the fitness of newly created individuals. It then follows the

same selection process as introduced in DEMO, i.e. adds all incomparable individuals,

and thus avoids unnecessary evaluations. However, this also means that non-dominated

sorting and the computation of crowding distance are computed on estimates instead

of the actual fitness values. To avoid misleading the search, GP-DEMO evaluates all

individuals on the first front with the expensive fitness function.

In order to not slow down the algorithm by computing Kriging models from all exactly

evaluated solutions (full Kriging model), GP-DEMO uses a sparse-approximation method

called Sparse Gaussian Processes using Pseudo-inputs (SPGP) [123]. The active set, i.e.

the m solutions used to compute the model from, are computed in each iteration of

the main loop according to SPGP. In addition, GP-DEMO also restricts the solutions

considered for the active set by only considering the k most recently evaluated search

points. Assuming the search steadily moves towards the true Pareto front, this sliding

window approach causes more samples to be chosen close to the approximation of the

Pareto front in a given iteration. As a result, the Kriging model would be most accurate

around the first front, which is also the area where the most critical selection decisions

are made.

While the comparisons under uncertainty do consider estimates of the prediction

errors, which increases their reliability, there are still two potential sources for incorrect

decisions. The first is the fact that the comparisons are based on bounding boxes, whereas

the predictions are expressed in the form of probability distributions with unbounded

support. As a result, there is a chance, albeit small and controllable, of a true value

outside the bounding box. The second, more critical source is the validity of the model

and specifically the reliability of the uncertainty estimates. The failure to validate the

Kriging model in GP-DEMO could thus lead to a large amount of incorrect decisions

slowing down the algorithm, especially in high-dimensional problems where a large

number of samples is required to build a reliable Kriging model.

In order to maintain consistency in the descriptions, we also provide a visualisation

of GP-DEMO in context of the EA algorithmic skeleton in figure 3.5. To do this, we only

visualise the main feature from GP-DEMO, i.e. the comparisons under uncertainty, as

an abstract concept within an EA. The same concept was previously used in [85] to

42

3.3. UNCERTAINTY HANDLING IN EVOLUTIONARY OPTIMISATION

init pop

evaluation

parent selection variation

evaluation

survival

selection
stop?out best

predict

local model

Archive

µ?

yes

no

noyes

Figure 3.5: EA and comparisons under uncertainty. Generalised visualisation of compar-

isons under uncertainty when applied to EA algorithmic skeleton. Steps added to the EA

skeleton are marked in orange. Evaluations indicated with double borders are added to

an archive.

assist a combination of the multi-objective evolutionary algorithms NSGA-II [30] and

SMS-EMOA [11].

3.3 Uncertainty Handling in Evolutionary

Optimisation

Uncertainty handling by evolutionary algorithms for different types of uncertainties is

surveyed in [67] and we give short overview in section 2.1.2. However, there are several

applications, where several sources of uncertainty interact at the same time. Specifically

for physical processes with a simulator and an emulator, history matching has been

developed as a method to take into account different uncertainties [4] and create more

trustworthy models. The authors depict a physical process with the flow chart showed

in figure 3.6. A simulator in this case is the implementation of a theoretical model of

a physical process. For example, when optimising the shape of a car to optimise flow

conditions, a simulator might be based on models developed in research on computational

fluid dynamics. However, evaluating this simulator at a specific search point might be

expensive, which is where the emulator comes into play. The emulator is a data-driven

model trained on data obtained from the simulator with some basic assumptions about

the shape of the function.

The physical process y is observed through measurements z with a finite accuracy,

thus introducing uncertainty (observation uncertainty [OU]). The simulator and emulator

both produce a prediction f (x) for y based on the input x. The emulator, however,

additionally introduces code uncertainty [CU], as the number of data points that it is

43

CHAPTER 3. RELATED WORK

x Simulator f (x) ?

EV

?

MD

y ?

OU

z

Emulator ?

CU

Figure 3.6: The physical process y is observed via z and described by the simulator

output f (x). The simulator is substituted by the emulator for computational efficiency.

The question mark indicate the various sources of uncertainty present in the system.

Plot from [4]

trained on. Furthermore, the stochasticity of the simulator introduces further uncertainty

(ensemble variability [EV]). Finally, the model discrepancy [MD] is the uncertainty caused

by inaccurate selection or tuning of the model. The uncertainties are all linked to the

observation of the physical process z.

The paper goes ahead and suggests a workflow for estimating these different uncer-

tainties and accounting for them during the optimisation process. This is done via an

implausibility check that identifies areas in the search space where the model is insuffi-

cient. The authors apply history matching, i.e. they seek to minimise the implausible

regions of the search space by iteratively reducing the models’ input space. The result is

then a more trustworthy simulator in the restricted space.

A similar approach as described above is also taken in [38], where its success is

demonstrated on a realworld application optimising an airfoil shape.

3.4 Benchmarks for Expensive Continuous

Optimisation

Despite a large interest in real-world problems from the research field of evolutionary

optimisation (see for example Real-World Optimisation track at GECCO 2), established

benchmarks in the field are mostly artificial. The popular BBOB test suite (see section

2.2.4), for example, includes 24 popular test function with diverse characteristics, in-

cluding e.g. sphere and linear functions, as well as Schwefel and Rosenbrock functions.

The same functions are combined for a bi-objective function suite for the BBOB-BIOBJ

function suite (see section 2.2.4). For multi-objective problems with larger dimensions,

the DTLZ test suite is also popular [31].

A common trick to assess performance independent of the computational effort

required is to record the number of function evaluations instead of execution time.

Pseudo-expensive problems have been proposed as well, achieved by artificially delaying

2http://gecco-2018.sigevo.org/index.html/tiki-index.php?page=Program%20Tracks#id_

RWA%20-%20Real%20World%20Applications)

44

3.4. BENCHMARKS FOR EXPENSIVE CONTINUOUS OPTIMISATION

the execution. However, either way, artificial problems often exhibit vastly different

characteristics than actual real-world problems. For example, while single-objective

multi-modal functions are considered regularly, this is less true for functions with plat-

eaus. The existence of plateaus is a characteristic that we would expect many game

optimisation problems exhibit (see section 3.1). Furthermore, recent visualisation ap-

proaches have determined that popular multi-objective benchmarks such as DENT,

DTLZ2 and ED2 mostly contain problems with very simple fitness landscapes[45]. In

contrast, if the multi-objective functions are constructed as a combination of multiple

single-objective functions (as they are in BBOB-BIOBJ), the structures in the fitness

landscapes are usually very complex[45]. It is however not clear, whether these func-

tions are at all comparable to real-world functions, or whether they instead contain

unnecessary complexity.

This results in a lack of appropriate benchmarks for algorithms specifically designed

for expensive fitness function, such as surrogate-assisted evolutionary algorithms (see

section 3.2). According to [28], these benchmarks are rare because real-world problems

in relevant publications are mostly proprietary in nature. This claim is made despite

the existence of the Black Box Optimization Competition (BBComp)3, which includes

expensive as well as bi-objective problems, but is set up as a competition rather than a

benchmark. This means that the problems included in the competition are only seldom

published or available for analysis, as the competition is intended to be on black box

optimisation.

Recently, efforts have been made to tackle these issues. For example, in [28], three

real-world problems involving computational fluid dynamics (CFD) are compiled into a

benchmark for computationally expensive optimisation available on BitBucket4. Two

of these problems are single-objective and one is bi-objective, and all rely on a CFD

simulation for the computation of a fitness function. The problems are also scalable in

search space dimension and offer multiple instances. However, the function suite lacks

features that the established benchmarks have, such as the ability to estimate any-time

performance as well as sophisticated post-processing. Therefore, it is likely that the

widespread usage of this suite is going to be difficult to achieve.

Another recent effort was a workshop at PPSN 2018 [106] entitled Investigating

Optimization Problems from Machine Learning and Data Analysis5. In this instance,

the organisers suggest to use problems from the area of machine learning in order to

compile a benchmark. The problems they propose include standard applications such as

clustering and model training, as well as more specific ones such as one simulating buoy

placement6. According to the organisers, they plan to extend the set of problems they

proposed and eventually compile them into a benchmark. However, this benchmark is

not publicly available at the time of writing.

Therefore, in this thesis, we propose to use game optimisation problems in order

to form a benchmark and include it as function suites within the established COCO

3https://bbcomp.ini.rub.de/
4https://bitbucket.org/arahat/cfd-test-problem-suite/src
5https://sites.google.com/view/optml-ppsn18/home
6https://drive.google.com/file/d/1fc1sVwoLJ0LsQ5fzi4jo3rDJHQ6VGQ1h/view

45

CHAPTER 3. RELATED WORK

benchmarking framework (see section 2.2). The resulting benchmark is described in

section 4.3. As argued in section 1.1, game optimisation problems are real-world prob-

lems that are safe, reasonably complex and at the same time practicable, as they are

relatively fast to compute. Additionally, benchmarks in general are also rare in the

field of computational intelligence in games. This is often caused by licensing issues

for games, as well as the effort required to set-up game-based problems. These issues

are resolved for the popular AI and game-related competitions, however. There are a

variety of popular competitions in this field7, chief among them the general video game AI

(GVGA) competition. Unfortunately, there exists no systematic analysis of the problems

posed in these competitions and the comparison mechanics are difficult to interpret8.

This makes them difficult to use as an independent benchmark. For this reason, we use

the established benchmarking techniques implemented in the COCO framework as a

baseline for the game-based benchmark.

7https://project.dke.maastrichtuniversity.nl/cig2018/competitions/
8https://ls11-www.cs.tu-dortmund.de/people/volz/gamesbench_events.html#cig18

46

C
H

A
P

T
E

R

4
APPROACH

In this chapter, we describe our systematic approach towards developing and evaluating

an algorithm to optimise games such as defined in 3.1. In this regard, we first develop

a taxonomy (see section 4.1) that enables a more detailed understanding of the fitness

landscapes and sources of uncertainty characteristics for game optimisation problems.

Based on the taxonomy and a corresponding survey of game optimisation problems, we

identify several interacting sources of uncertainty. We hypothesise that this uncertainty

has a large effect on optimisation algorithms run on this type of problem. We support

this claim with a case study in appendix B, which clearly demonstrates these effects.

Based on these findings, we propose SAPEO, an algorithm designed specifically for

game optimisation due to the fact it takes into account and efficiently handles validated

uncertainty information of fitness evaluations, even in the presence of systematic bias. A

description and justification of SAPEO can be found in section 4.2.

We also develop a benchmark suitable to assess whether SAPEO or any other al-

gorithm successfully handles the challenges characteristic to game optimisation. The

benchmark is described in section 4.3. The related experiments are conducted through

an additional experimental framework that allows for the easy comparison of vari-

ous algorithm and includes specifically designed analysis features. The experimental

framework is described in section 4.4.

4.1 Taxonomy of Automatic Game Evaluation

In the following, we first describe the taxonomy of automatic game evaluation we propose.

In order to improve the readability of the following, we use the automatic evaluation of

Mario levels as a usecase (cf. section 2.4.2). For example, we use the taxonomy to classify

different approaches to evaluate Mario levels in order to provide a characterisation of

each of the taxonomic categories. All explanation related to this usecase are printed in

cursive.

Afterwards, we interpret our taxonomy in the context of existing publications that

provide a characterisation of game evaluation methods to highlight similarities and

differences in order to demonstrate the novelty of our approach.

4.1.1 Concept

The most straightforward way to evaluate a game or specific content is obviously con-

ducting a survey and asking players to provide feedback. This is commonly done, for

47

CHAPTER 4. APPROACH

Game
(content)

Gameplay
data

Outcome
statistics

Evaluation
player comp out

stat

code

play

Figure 4.1: Visualisation of game evaluation AIs and their interactions. AIs are paths

between data visualised as red and blue arrows. Paths that produce game evaluation are

highlighted in red. Used acronyms are COMP: compute statistics, CODE: encoding, OUT:

outcome statistics, PLAY: gameplay data and STAT: statistics.

example using think-aloud testing [42]. In this case, it is important to not only listen to

verbal feedback, but also interpret social cues in order to obtain a reliable evaluation.

For example, the play testers might say the Mario level that they tested is very difficult as

they were unable to complete it, but while playing they were talking to their neighbour

or were distracted on their phone. In this case, the failure in terms of game progression

would stem from a lack of engagement instead of a lack of skill, which a human hosting

the play-test could observe and interpret.

In contrast to many existing approaches, we focus on fully automatic evaluation,

where the data collection and interpretation has to be executed by an AI agent. All

approaches thus require a model defined and trained before runtime. This fact enables

us to formalise all methods as statistical models that can be classified based on the type

of data processed (for example tournament results or level encodings). As a result, we

propose a taxonomy for game evaluation methods based on two dimensions. The first

dimension is the type of input data that is processed in order to arrive at an evaluation

of the game (content). The second characterising dimension is what type of feedback is

used to train the model. In the following, we first describe each dimension separately,

followed by a description of the complete taxonomy. The taxonomy can be applied to both

the evaluation of complete games (i.e. rules) and specific game content (e.g. game levels)

by simply changing the frame of reference and comparing the resulting evaluations.

4.1.1.1 Input Dimension

In figure 4.1, we illustrate different existing and possible approaches to automatic

game evaluation by visualising the flow of information, i.e. what data is collected or

generated. In the figure, the blue circles describe information or data. The arrows (both

colours) visualise how this information is transformed and interpreted via different

types of models / AI. It thus depicts different paths from a game prototype or specific

game content (leftmost) to a qualitative or quantitative evaluation (rightmost). The red

arrows all describe an evaluation method, while the blue arrows describe data generation

methods.

The most direct path from a game to an evaluation is depicted as CODE in Fig 4.1,

48

4.1. TAXONOMY OF AUTOMATIC GAME EVALUATION

short for encoding. The distinguishing feature of this path is that the evaluation does not

rely on simulating or analysing gameplay, but is solely informed by the ENCODING of the

game (content). For example, the difficulty of a Mario level could be expressed based on the

weighted sum of the number of opponents and other obstacles in the level. The aesthetics

of game (content) can also often be directly evaluated based on their representation (i.e.

visualisation) by human judges.

Instead of the direct approach, game evaluation can also be based on directly observ-

able statistics of the final game state (OUTCOME STATISTICS) such as the final score

as depicted with path OUT. An estimate of Mario level difficulty could therefore be the

average score of a large number of playthroughs by human players. In this case, the

game (content) is only represented by selected statistics that do not take into account

the actual gameplay, i.e. how the game ran its course.

As depicted in the figure, these statistics can be obtained in several ways. A very

popular approach is to generate playtraces using AI PLAYERS (path PLAYER) and then

COMPUTING the appropriate statistics on the outcome, e.g. the mean score of multiple

tries (path COMP). Of course, gameplay data can also be collected from human players.

Alternatively, sometimes gameplay STATISTICS are available via APIs, but the gameplay

data is not fully or easily accessible to the public1, which is depicted as path STAT. A

model following path STAT could also be learned and used to directly predict gameplay

statistics without playtraces, e.g. in order to speed up the process of data collection (cf.

[148]).

Finally, instead of just relying on outcome statistics, game evaluation can also be

based directly on GAMEPLAY DATA (cf. path PLAY), i.e. data that changes in every game

tick. Gameplay data can either be the complete observable state to a player (AI) (e.g.

all pixels on the screen) at a given time, or statistics describing the same (e.g. number

of visible enemies). These statistics are dependent on the game tick and thus describe

a trend. However, if the order is not of importance, sometimes aggregated statistics,

such as entropy, are used instead. If gameplay data from human players is available,

a method that follows this path is affective computing [71]. A Mario level could for

example be evaluated based on the facial expressions of human players recorded during

a playthrough. Another option could be to base an estimation of the difficulty (curve)

directly on the frequency of inputs received from an AI or human player at a given point

in the game.

4.1.1.2 Feedback Dimension

With regard to feedback, the approaches can be distinguished based on whether they

(1) employ an independently defined model (i.e. non-supervised learning (NONE) using

expert knowledge or theories from related fields such as psychology and neurology), or

(2) are trained from labelled data (using e.g. a machine learning approach). The second

category can be further divided in terms of how the labelled data is obtained; some

algorithms call for explicit feedback from users (EXP) and some base the data labels on

1for example RiotGames API: https://developer.riotgames.com/

49

CHAPTER 4. APPROACH

Table 4.1: Taxonomy of game evaluation approaches along input and feedback dimension.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

input

feedback none

NONE

implicit

IMP

explicit

EXP

encoding

CODE
CODE-NONE CODE-IMP CODE-EXP

outcome statistics

OUT
OUT-NONE OUT-IMP OUT-EXP

gameplay data

PLAY
PLAY-NONE PLAY-IMP PLAY-EXP

observations of human behaviour instead (implicit feedback IMP). The key difference

here is that in EXP, the targeted question is asked directly to the player, whereas in IMP,

the answer is sought from unconscious responses. If we were targeting the difficulty of a

Mario level, for example, if we ask the player to play the game and rate its difficulty, it

would be explicit feedback (EXP). Alternatively, we could base our measure of difficulty on

the player’s score instead, which is implicit feedback (IMP). The resulting categories are:

• NONE: non-supervised model based on designer experience or scientific theories

• IMP: trained from data labelled by implicit feedback

• EXP: trained from data labelled by explicit feedback

4.1.1.3 Taxonomy Description

We can thus classify game (content) evaluation methods based on the taxonomy described

in table 4.1. Naturally, the identified approaches can potentially be combined across both

dimensions. Because some approaches complement each other, this has great potential

for improving the evaluation model.

Additionally, different sources of information can also be combined as input for the

model. This is especially suitable for deep learning approaches or when using algorithms

that are capable of handling multiple models with varying fidelity.

4.1.2 Application to MarioAI Usecase

In the following, we will demonstrate the practicability of our taxonomy by providing

different methods of evaluating the difficulty of MarioAI levels that fit into each of the

resulting categories.

4.1.2.1 Encoding-based methods (CODE)

Since levels with more enemies and more obstacles to conquer are arguably more difficult

than ones with less, a weighted sum of the number of enemies and gaps can potentially

50

4.1. TAXONOMY OF AUTOMATIC GAME EVALUATION

be a reasonable estimate of the level difficulty if the levels are of similar lengths. As

this approach operates without data from playthroughs and is based on assumptions

formulated by a designer, it would fit into category CODE-NONE.

Asking human players for feedback directly on a level representation would likely be

most suitable when evaluating aesthetics. However, it is of course also possible to train a

model based on the level encoding, but using labelled data obtained through different

means. For example, to obtain a CODE-EXP model, one could ask players to play several

levels and rank them in terms of difficulty. Afterwards, a correlation between a level

representation (e.g. the number of enemies and obstacles as described above) and the

obtained feedback can be computed and employed as a model. To keep with the previous

example, this approach could be used in order to compute the weights for the sum.

Instead of labelling the data explicitly via a survey, one could record video footage

of human players and collect data on physiological responses. By interpreting this

information in terms of the level of engagement and frustration of the players, one could

obtain the labels for the data. A model based on level encoding and this data would be

categorised as CODE-IMP.

4.1.2.2 Outcome-based methods (OUT)

A possible outcome-based model could rely on the assumption that winrates are neg-

atively correlated with level difficulty. Any unknown level would then be played by

human and/or AI players and the winrate would be computed. This method is based

purely on designer experience and statistics of the game outcome, and thus is considered

OUT-NONE.

As humans would probably use a similar assumption if asked to directly interpret

winrates, to train OUT-IMP and OUT-EXP models, one could again obtain labelled data

using different means as described in the previous subsection. Afterwards, models can

be computed using e.g. winrates as an input.

4.1.2.3 Gameplay-based methods (PLAY)

Playtraces contain a large amount of information that could be used as an input for a

model that estimates level difficulty. One possibility would be to compute the distance of

the optimal path through the level from the actual player trajectory. The assumption for

a PLAY-NONE model would be that, the more the player diverges from optimal gameplay,

the more difficult the level. As described in the previous paragraphs, labelled data can be

obtained from human players in order to train a model with supervised learning methods

on this specific measure for models categorised as PLAY-IMP and PLAY-EXP.

4.1.3 Context

In several survey papers and books on procedural content generation (PCG) and game

research in general, such as [116], some categorisation of game evaluation methods

51

CHAPTER 4. APPROACH

is applied. In the following, we motivate our taxonomy by relating it to existing char-

acterisations of game (content) evaluation and demonstrate its novelty, as well as its

suitability to find strengths and weaknesses in the different modelling approaches.

In [158], the authors describe a general framework of experience-driven procedural

content generation (EDPCG), which consequently also includes automatic evaluation

of game content. The framework divides the general PCG process into four compon-

ents: Player Experience Model, Content Quality, Content Representation, and Content

Generator. It provides categorisations for each of these components. We discuss which

categories in our taxonomy have counterparts in [158] in the following.

The categories for the component Content Quality in [158] correspond most to our

first taxonomy dimension: input. Direct evaluation functions are the counterpart of our

encoding-based category CODE. In [158], the methods are further distinguished between

theory-driven (i.e. CODE-NONE) and data-driven (i.e. CODE-IMP and CODE-EXP). The

category simulation-based encompasses all approaches that require data obtained from

playthroughs, while we distinguish between methods that use the final game state

OUT and approaches that include additional gameplay information PLAY. In [158], the

simulation-based category is instead split based on whether the player AI (PLAYER)

dynamically adapts to the game. The third category of the Content Quality component in

[158] is interactive. This is not included in our taxonomy as it is only semi-automatic,

but all online-learning algorithms fall into this category (mixed-initiative).

While this categorisation seems similar at first glance, the distinction in the EDPCG

framework is actually not made based on the input to the game evaluation model,

but based on the content representation used for the content generator. This becomes

obvious when considering the example provided in [158]. In their example, Mario levels

are evaluated based on the playing style expressed by features such as the number of

enemies killed by stomping on them and the time spent moving left. In our taxonomy,

this would be considered PLAY as the evaluation would be based on data that describes

playthroughs and requires a simulation. However, in [158], the example is categorised as

direct (data-driven) because the search space for the content generator is a representation

of the level. While this is certainly the most helpful distinction when looking to describe

different PCG methods, it is not the most suitable categorisation when intended for a

discussion on strengths and limitations. This is because it does not include the mapping

from the content representation to the model input and thus ignores a potential source

of otherwise explicable bias.

The Player Experience Model in [158] describes different approaches to modelling

the experience of a player. They distinguish between subjective, objective, and gameplay-

based models based on what type of data they are trained on. The category subjective

corresponds here to the mapping from explicit feedback to an evaluation, whereas ob-

jective is the mapping between implicit feedback and an evaluation. GamePlay-Based

methods, according to [158], model a link between gameplay and a player’s experience.

The proposed categories seem to roughly correspond to the distinctions we make regard-

ing the feedback dimension (EXP, IMP, NONE). However, in their example the model is

built using explicit feedback and based on measures expressing the playing style and is

thus categorised as both subjective and gameplay-based. The Player Experience Model

52

4.1. TAXONOMY OF AUTOMATIC GAME EVALUATION

component thus also contains elements of both dimensions of our taxonomy.

However, it could not describe a model that takes just the encoding of a level as an

input. This would require the combination of the Player Experience Model and Content

Quality components, which the authors also provide. But as both of the components

contain aspects describing input and feedback, the resulting taxonomy is rather complex

and contains many hybrid cases. In combination with the fact that the representation

mapping is not considered, it is difficult to interpret this taxonomy in terms of which

modelling biases are introduced where. This is corroborated by the fact that no distinction

is made regarding what type of data is collected from the simulations.

We thus conclude that the taxonomy in [158], while very similar, does not meet the

requirements for our analysis. It was of course also intended to provide a thorough char-

acterisation of EDPCG instead. These statements also hold true for the categorisations

described in [116] chapter 2 and 10, which correspond roughly to the content quality and

player experience model components, respectively. It is still interesting to note the consid-

erable similarities between our proposed taxonomy and the EDPCG framework, even

though we took a completely different more technical approach to identifying taxonomic

categories.

Besides EDPCG, there are other related taxonomies, that, however, only focus on one

dimension of our proposed taxonomy. The categorisation along the first dimension, input,

aligns with the one that is described to characterise the 57 aesthetic measurements

for board games in [18]. Intrinsic criteria are directly based on the rule set, i.e. the

encoding, which corresponds to CODE in our model. The playability criteria in [18] are

based on self-play outcomes, i.e. outcome statistics, corresponding to OUT. Finally, like

PLAY, quality measurements in [18] take trends of the gameplay into consideration.

A characterisation in terms of our second taxonomy dimension, feedback, is described

in [116, ch. 12], where model-based approaches are called top-down, while approaches

based on player feedback are bottom-up. By providing a more detailed distinction of the

methods, we hope to be able to characterise the survey game (content) evaluation method

in a more thorough fashion.

Gameplay evaluation measures were also discussed in a 2017 Dagstuhl workshop

[151]. In the report, the measures are categorised based on what information and

computation is required when implemented inside a logging framework. For example,

measures on agent decisiveness would need an AI-specific implementation and likely

information on previously considered decisions. The Dagstuhl taxonomy thus focuses

more on the technical aspects of logging, not the type of information needed or assumed.

In their chapter on Game Data Mining [34], Drachen et al. also provide a character-

isation of related methods, but focus more on data mining and corresponding technical

aspects. Additionally, it provides an overview of methods that can be used to model the

data. Thus, methods of retrieving labelled data as well as algorithms that can train

based on it are categorised in the chapter. This is an entirely different focus than what

we hope to provide here.

In [161, ch. 5], a taxonomy for player modelling is discussed which is based on

the different possible types of input and output of the model. However, the output

dimension does not align with our feedback dimension. Furthermore, the taxonomy does

53

CHAPTER 4. APPROACH

not consider encoding as an input as it is intended for player modelling, not content

evaluation. In chapter 4 of the same book, different aspects of PCG are discussed, among

them the content evaluation component from EDPCG. In addition, a model of four roles

of PCG is defined. According to this model, we address autonomous PCG here, both

experience-driven and experience-agnostic.

4.1.4 Sources of Uncertainty

Based on the described taxonomy, we can identify several different sources and types

of uncertainties that all interact in a typical game optimisation problem (see sections

4.1.4.1 and 4.1.4.2). These also depend on the choice of evaluation model (see section

4.1.4.3).

4.1.4.1 Feedback Dimension

The process of obtaining appropriate feedback for game content can be relatively complex,

and there are many caveats to consider, depending on what type of data is acquired.

Feedback Survey For example, the most common way to obtain feedback from human

players, either explicitly or implicitly (EXP, IMP) is via a survey. While using this type

of feedback reduces the amount of assumptions required to build an evaluation model,

there are also several possible problems due to the nature of real-world experiments. For

example, there could be external issues with the experiments, potentially causing loss of

immersion for the participants. Additionally, human bias might affect the creation and

answering of a survey questionnaire. For instance, the questions might not be neutral

or a participant might be influenced by factors unrelated to a given question, e.g. by

the entertainment value of a game. Furthermore, it is difficult to even mobilise enough

survey participants to obtain enough data to train an evaluation model. Nevertheless,

survey participants should be selected with care and considering the target audience in

order to avoid introducing a sampling bias.

Interpretation of feedback data No matter how and what feedback is obtained, the

collected data needs to be interpreted and translated to a fitness function. This can

introduce additional errors and biases. While it is of course true that the risk of errors is

reduced the more detailed and the more explicitly human players are asked (EXP), there

is always the possibility of miscommunication. Additionally, when qualitative feedback is

obtained, it is interpreted through the perspective of a designer, opening up this process

to potential subjectivity and issues such as confirmation bias.

Obtaining implicit feedback (IMP) does alleviate these issues, as no human is con-

sciously involved in either the interpretation or response process. IMP approaches, how-

ever, have to rely on a model that translates unconscious behaviour such as physical

signals to some form of qualitative feedback for the game. These models are still heavily

researched at the time of writing [41, 78, 132, 159], and it is not entirely clear how

reliable they are. They therefore probably introduce an unobservable bias if applied

54

4.1. TAXONOMY OF AUTOMATIC GAME EVALUATION

exclusively. Additionally, the interpretation of physical signals in the context of games is

complicated by the fact that survey participants react less expressively when confronted

with a virtual reality [33].

Finally, if the evaluation model does not consider feedback data at all (NONE), the

evaluation is of course entirely reliant on the accuracy of the modelling assumptions

made by the designer. Designers might be able to define a fitness function that expresses

their design goals, and it seems to be common practice in industry to consider some

statistics such as win rates in design considerations. Still, the definition of these functions

undoubtedly requires design experience and their results are usually only used in

conjunction with playtests.

Non-determinism in Games As most games are non-deterministic, depending on a

specific playthrough, the feedback might vary as well. Especially if no human players are

involved (NONE), this issue is mostly addressed by aggregating quantitative feedback.

In surveys (EXP, IMP), questions can be instead formulated in a way that does not

(significantly) change with the playthrough.

Types of Errors In order to handle the uncertainties introduced in an optimisation

problem, it is important to consider what type of errors might occur. Errors resulting

from a survey or the interpretation of its result will probably be non-symmetric. The

same is true for modelling errors as potentially introduced by approaches in category

NONE. In contrast, most non-determinism in games will cause symmetric noise.

4.1.4.2 Input Dimension

Uncertainties can of course also result from the decisions made on the input dimension.

Depending of what type of data is used for a game evaluation model, for instance,

additional issues might occur.

Data Selection As in any data-driven modelling approach, the selection of input data

is important. Omitting relevant data will not produce accurate models, whereas adding

too much data will result in overfitting and uninterpretable results. Thus, especially if

the evaluation model is only trained from outcome statistics (OUT) or measures based

on the encoding (CODE), many intricacies that affect the gameplay and the resulting

feedback might be completely missed and thus not modelled. The resulting evaluation

model would thus not express the intended fitness function.

A related problem also occurs in methods that use playthrough data (PLAY). Here, all

relevant data theoretically should be available, but usually raw data cannot be parsed as

input. The data is therefore selected and aggregated, thus allowing for potential biases

introduced by the conscious decisions and intentions of the designer.

It is furthermore important with all approaches that the input space is sampled

adequately. Sparsely sampled regions can result in extrapolation issues for the model

trained on the data. Bias in the choice of samples can affect the model as well.

55

CHAPTER 4. APPROACH

Data Generation As the data used in evaluation models for game optimisation is

generated from a process that is consciously designed as well, additional issues can occur

in methods that use data from playthroughs (OUT, PLAY). One of the main issues in this

regard are the AIs required to automatically obtain this data. Despite the continuous

efforts in the field of player modelling [56, 94, 127], there is no reliable general approach

to developing AIs that behaves human-like. In fact, there is not even an appropriate

measure that expresses behavioural differences in players on a strategic level [146]. As a

result, in most game optimisation problems, AIs are used to generate input data despite

the fact that AIs might behave entirely differently than human players. The effect this

has one the evaluation models is rarely investigated, but it might be more striking the

more information is used (playthrough data PLAY vs. outcome statistics OUT).

In order to combat the issues described above, some approaches (e.g. restricted play

[64]) choose to analyse specific usecases instead of the whole game. This reduces the

complexity of the problem and the restricted setting might improve an AI’s ability to

imitate human behaviour. At the same time, the reduced complexity might not produce

data that can be translated in order to evaluate the complete game. Additionally, the

need to select usecases to analyse of course introduces an additional source of bias and

important aspects might be missed entirely.

Types of Errors As explained in the previous section, it is important to consider the

types of errors that need to be handled. Both data selection and data generation issues

will likely result in non-symmetric error distributions, as these issues are modelling

problems.

4.1.4.3 Evaluation Model

In addition to potential issues and uncertainties in the data obtained, the choice and

implementation of the model to train can introduce problems. This is in addition to

issues resulting from insufficient data, for example caused by the lack of data in either

dimension (see above sections 4.1.4.1 and 4.1.4.2).

Model Choice Many machine learning models do make assumptions about the prob-

lem and data they are trained on. The Kriging model used in this thesis, for example,

assumes a specific form of correlation between search space and objective space by the

choice of kernel (see section 2.3). The assumptions of a specific model in question should

therefore be carefully tested before using it as an evaluation model.

This is especially important for we are dealing with black-box problems, where it

is often difficult to decide which assumptions are safe to make. Additionally, in game

optimisation due to the many interacting mechanisms in a game, fitness landscapes are

likely rarely continuous. This is because even when only making small changes to game

parameters, the balance between different characters or mechanisms might flip, causing

entirely different behaviour. This is a caveat that should be considered as most models

do assume some form of continuity of the fitness function.

56

4.2. SAPEO

Types of Errors The errors discussed above are all modelling errors and most likely

non-symmetric.

4.2 SAPEO

In the following, we describe the SAPEO (Surrogate-Assisted Partial order-based Evol-

utionary Optimisation) algorithm, which we suggest for game optimisation problems.

As explained in section 3.1, game optimisation problems usually have an expensive

black-box fitness function, which is why we suggest a surrogate-assisted evolutionary

algorithm. The SAPEO algorithm [145, 149] is aimed at finding an optimal balance

between the number of function evaluations and the uncertainty introduced by fitness

estimates, which is then propagated throughout the runtime of the algorithm .

Additionally, SAPEO was developed considering the many non-symmetric uncertain-

ties it would have to handle as identified in section 4.1.4. This achieved via uncertainty

aware comparisons for solutions. We hope to address Data Generation bias (see section

4.1.4.2) specifically, as it is a very common issue that does affect automatic game evalu-

ation significantly as demonstrated in appendix B. To tackle these issues, we propose to

use comparisons under uncertainty that are able to take non-symmetric error estimates

into account as well. Furthermore, in the analysis of sources of uncertainty, it also

becomes apparent that appropriate model validation is critical, as common modelling

assumptions might fail in the context of game optimisation.

Finally, SAPEO is essentially a framework, where any type of surrogate model with

uncertainty estimate and evolutionary algorithm can be combined. This allows, for

example, an easy adaptation from single- to multi-objective problems. This is important

due to the fact that many game optimisation problems differ in terms of their search and

objective spaces (e.g. mixed-integer vs. continuous). What is more, the game evaluation

function might also be adapted based on feedback obtained during the development

process of the game. By modifying the evolutionary algorithm and/or surrogate model,

SAPEO can easily be adapted to changing circumstances.

We describe the SAPEO framework in detail in the following. We first discuss the

most important underlying concepts, namely comparisons under uncertainty and runtime

model validation. Following that, we present some deliberations on the probabilities

of introducing errors into an evolutionary algorithm using those concepts. Finally, we

present the SAPEO framework.

Please note that SAPEO as introduced in this thesis uses the same concepts as

previous publications [145, 149], but is heavily modified. Previous versions used a self-

adapting threshold for allowable uncertainty estimates. This was intended as a form of

model validation, but proved to be ineffective and added complexity and parameters to

the algorithm. Additionally, in contrast to the uncertainty threshold, the cross-validation

approach used in this thesis is justifiable from a statistical perspective. This also re-

moved the need to enforce the generation of a space-filling design of experiments as

an initialisation of the algorithm. More details on the model validation approach are

described in section 4.2.2.

57

CHAPTER 4. APPROACH

Furthermore, SAPEO as introduced in the following is more modularised and can

thus incorporate ideas from related algorithms more easily. For example, the creation of

the surrogate model can be modified, so that instead of the k nearest neighbours, the k

most recently evaluated samples are used. This thesis also focuses on the dominance

relation based on confidence intervals exclusively (cf. GP-DEMO, section 3.2.3). In [145],

alternatives to this relation were introduced, which we do not discuss in this thesis

to streamline the experiments and maintain comparability to related work. However,

these dominance relations could still be used within the framework as introduced in this

thesis.

4.2.1 Comparisons under Uncertainty

Comparison under uncertainty is a concept that allows the comparison of solutions based

on fitness predictions up to a controllable degree of certainty. When used for instance

in context of an evolutionary algorithm, these comparisons can be used in order to save

exact function evaluations. The comparisons rely on a dominance relation defined on

confidence intervals computed for the predictions. This dominance relation and the

resulting partial orders where first analysed in the context of evolutionary algorithms in

[110]. Comparisons under uncertainty are used in GP-DEMO [95] (see also section 3.2.3)

as well as SAPEO [145, 149]. For this thesis, we have extended the definitions to also

allow arbitrary surrogate models (such as AI player simulations) with non-symmetric

error predictions.

Let f ∶Rn→R be a single-objective fitness function. Now assume there is a surrogate

model that predicts the fitness for each individual xi as f̂ (xi) ∈ R with a prediction

uncertainty σ̂i as

(4.1) f̂ (xi) = f (xi)+ e i, e i ∼ F(σ̂i, . . .),
where F is an arbitrary probability distribution controlled by σ̂i and potentially addi-

tional parameters. Assuming that the predicted uncertainty and error distribution is

correct (Assumption A1), it follows that

P(f (xi) ∈ [f̂ (xi)+ l i, f̂ (xi)+ui]) = 1−α with

l i = F−1(α
2
∣ σ̂i, . . .) , ui = F−1(1− α

2
∣ σ̂i, . . .) ,(4.2)

since P(e i < l i ∨ e i > ui) ≤ α
2 + α

2 =α.

In case the model in question is actually a Kriging model, the previous definitions

can be further specified to

(4.3) f̂ (xi) = f (xi)+ e i, e i ∼N (0, σ̂2
i).

With assumption A1, and considering that l i =−ui due to zero mean and symmetry of

normal distribution, we obtain

P(f (xi) ∈ [f̂ (xi)−ui, f̂ (xi)+ui]) = 1−α with

ui = σ̂i z(1− α
2
) .(4.4)

58

4.2. SAPEO

Here, z denotes the quantile function of the standard normal distribution.

Based on the partial orders introduced for noisy optimisation in [110] (cf. section

2.1.2), we can then define the following dominance relation ⪯c to compare solutions under

uncertainty (c for confidence intervals):

xi ⪯c x j ∶= f̂ (xi)+ui < f̂ (x j)+ l j(4.5)

and specified for Kriging models

xi ⪯c x j ∶= f̂ (xi)+ui < f̂ (x j)−u j.(4.6)

The confidence intervals as described above can of course also be computed separately

for multiple dimensions. The dominance relations can thus be extended to also apply to

multi-objective optimisation. Let f ∶ Rn→ Rd be a multi-objective fitness function. Let

further fk ∶ Rn→ R,k ∈ {1.. .d} be the function that describes objective k. Now assume

there is a separate surrogate model for each objective k that predicts the fitness for

each individual xi as f̂k(xi) ∈R with a prediction uncertainty σ̂k,i. As above, we can then

define confidence intervals as

P(fk(xi) ∈ [f̂k(xi)+ lk,i, f̂k(xi)+uk,i]) = 1−α with

lk,i = F−1
k (α2 ∣ σ̂k,i, . . .) , uk,i = F−1

k (1− α2 ∣ σ̂k,i, . . .) .(4.7)

The corresponding dominance relation can then be defined as:

xi ⪯c x j ∶= ⋀
k∈{1...d}

f̂k(xi)+uk,i < f̂k(x j)+ lk, j(4.8)

Again, if the surrogate models used are Kriging models, these definitions can be

specified further. In the following, we also assume that the models are trained on the

same set of points. In Kriging models, the error prediction only depends on the distances

of the samples and the point to predict in search space as defined by the kernel (see

section 2.3). The prediction uncertainty σ̂k,i is thus equal for all k. We therefore only use

σ̂i = σ̂k,i,k ∈ {1.. .d} in the following. We can then specify

P(fk(xi) ∈ [f̂k(xi)−ui, f̂k(xi)+ui]) = 1−α with

ui = σ̂i z(1− α
2
)(4.9)

and

xi ⪯c x j ∶= ⋀
k∈{1...d}

f̂k(xi)+ui < f̂k(x j)−u j(4.10)

59

CHAPTER 4. APPROACH

4.2.2 Runtime Model Validation

In state-of-the-art surrogate-assisted evolutionary algorithms as described in our section

on related work, the models used are rarely validated (see section 3.2). However, in

iterative sampling methods, the surrogate model is only used to guide the search for new

samples. The model will thus improve over time, even if the mode would fail a validation

check. Similarly, in most evolution control methods, the predicted function values are

not actually propagated throughout the algorithm. As a result, an invalid model might

slow down the optimisation process, but not effectively derail it.

This is different in case of GP-DEMO and SAPEO, where solutions are only evaluated

if they are incomparable with dominance relation ⪯c as defined in section 4.2.1. Here, an

invalid model would violate assumption A1 and thus have a probability larger than α

of resulting in incorrect orders and selections. Additionally, the risk is now not actually

controllable, as this probability is only limited to 1.

We therefore introduce runtime model validation in SAPEO. We use leave-one-out

cross-validation as suggested in the original publication of the EGO framework [68].

This method allows a validation of the model without adding new samples, thus making

it applicable during the runtime of the algorithm without causing disruptions.

Cross-validation is regularly applied to any type of prediction models. Assume there

is a sample X with k points evaluated using fitness function f ∶ Rn→R. The idea is to

pick a previously evaluated sample xi ∈ X and compute a model f̂−i ∶ Rn→ R only with

the remaining k−1 points. As xi was evaluated previously, we are then able to compute

the prediction error as ∥ f (xi)− f̂−i(xi)∥. Statistics such as the mean squared error can

then be determined from the prediction errors for all x ∈ X , computed as above.

In SAPEO, the models provide an error estimate in addition to a prediction. Such a

model can still be considered valid, even if the prediction error is high, provided that the

corresponding predicted error is as well. Therefore, instead of computing the prediction

error, model validation procedures in this case determine whether the true value is

within a confidence interval predicted by the model. The confidence intervals we use are

the same as defined in section 4.2.1. We thus effectively test whether assumption A1

from that section holds.

For Kriging models, this process can again be simplified, as the predicted errors follow

a known symmetric distribution. To do this, instead of prediction errors, the standard

errors are computed. Assume as above a sample X with k points, but now let the model

also predict the uncertainties σ̂−i ∶Rn→R. The standard error for each sample xi ∈ X can

then be computed as

∥ f (xi)− f̂−i(xi)∥
σ̂−i

(4.11)

However, to make a binary decision whether a model is valid or not, we need to define

a cut-off value regarding average standard errors of the model. A popular method is to

use the value 3 [4], which is motivated by Pukelsheim’s 3σ rule [105]. The reasoning here

is, that with this setting, we only incorrectly denote a model as invalid in 5% of the cases.

60

4.2. SAPEO

We can thus give an estimate of model validity by computing the average standard

errors using leave-one-out cross-validation and checking the result against the value

3. Thus, to determine the validity of a model to predict the value and corresponding

uncertainty for a point x′ ∈ Rn, the k nearest neighbours for x′ are determined. The

resulting sample we call X , with each xi ∈ X being one of the neighbours. The model is

accepted if it holds that

1

k

k

∑
i=1

∥ f (xi)− f̂−i(xi)∥
σ̂−i

< 3.

4.2.3 Probability of Ranking and Selection Errors

Even when the model is validated and the comparisons consider uncertainty, errors

can still be introduced when using these concepts. In the following, we analyse their

theoretical limits in single-objective functions in more detail. In the analysis, we only

consider Kriging models in order to simplify the computation. Kriging models are also

the only type of surrogate model used in this thesis.

4.2.3.1 Ranking Errors

We define ranking errors as the pairwise differences between the correct order according

to fitness values and the one induced by the proposed relations. We present the relations

in the following along with the probability of ranking errors e.

We can compare two individuals in a population in terms of their fitness just based

on the predicted intervals, provided we allow the occurrence of errors in the comparison.

Given A1, these errors only occur if the actual function value f (xi) does not fall inside the

defined interval. The probabilities of a ranking error e i, j occurring, i.e. two individuals

xi and x j being sorted incorrectly, is then bounded by α (cf. [145]).

Let xi, x j be individuals in a population with predicted values f̂ (i) ∶= f̂ (xi), f̂ (j) ∶=
f̂ (x j) and uncertainties σ̂i, σ̂ j, respectively. Please note that the notation f̂ (i) is chosen

in order to avoid confusion with f i, which often denotes an objective function within a

multi-objective problem. We now want to compute the probability that ranking solutions

with relation ⪯c sorts given pairs of individuals correctly. More formally, we compute

P(f (xi) ≤ f (x j)∣xi ⪯c x j) =∶ P(xi ≤ f x j ∣xi ⪯c x j).
For the analysis, we assume in the following that the computed Kriging model is valid,

i.e. assumption A1 holds.

Now, let Yi,Y j be random variables distributed according to the prediction of a

surrogate model with Yi ∼ N(f̂ (i), σ̂2
i
) and Y j ∼ N(f̂ (j), σ̂2

j
). We can now express the

probability we are looking for in terms of the random variables independent of the

condition as

P(f (xi) ≤ f (x j)) = P(Yi ≤Y j) = P(Yi −Y j ≤ 0).
Generally, for two random variables A and B, it holds for the expected value that

E(A+B) = E(A)+E(B) and Var(A+B) =Var(A)+Var(B)+2Cov(A,B). Since the Kriging

61

CHAPTER 4. APPROACH

model assumes that Yi and Y j follow a joint distribution, it follows that Yi−Y j ∼N(f̂ (i)−
f̂ (j), σ̂2

i
+ σ̂2

j
−2σ̂i j). Given the definition of the normal distribution, we know that

P(Yi ≤Y j) = 1

2

⎛⎜⎝1+erf
⎛⎜⎝

− f̂ (i)+ f̂ (j)√
2(σ̂2

i
+ σ̂2

j
−2σ̂i j)

⎞⎟⎠
⎞⎟⎠ ,

with erf being the Gauss error function defined as

erf(x) = 2

π
∫

x

0
e−t

2

dt.

In the following, we look at P(Yi ≤ Y j) given a ranking by the dominance relation ⪯c.

First, however, we compute the same probability if the solutions were ranked just based

on their predicted values. We denote this relation ≤p and use it as a baseline comparison.

Relation ≤p The relation ≤p ranks individuals according to their predicted value, i.e.

xi ≤p x j⇔ f̂ (i) ≤ f̂ (j).

Thus, xi ≤p x j⇒ f̂ (i)+d = f̂ (j) with d ≥ 0. It follows that:

P(Yi ≤Y j ∣xi ≤p x j) = 1

2

⎛⎜⎝1+erf
⎛⎜⎝
− f̂ (i)+(f̂ (i)+d)√
2(σ̂2

i
+ σ̂2

j
−2σ̂i j)

⎞⎟⎠
⎞⎟⎠

=
1

2

⎛⎜⎝1+erf
⎛⎜⎝

d√
2(σ̂2

i
+ σ̂2

j
−2σ̂i j)

⎞⎟⎠
⎞⎟⎠

Because d ≥ 0 and the error function erf is monotonous increasing, we can estimate

1

2

⎛⎜⎝1+erf
⎛⎜⎝

d√
2(σ̂2

i
+ σ̂2

j
−2σ̂i j)

⎞⎟⎠
⎞⎟⎠ ≥

1

2
(1+erf(0)) = 1

2
.

Therefore:

P(Yi ≤Y j ∣xi ≤p x j) ≥ 1

2

The relation ≤p therefore performs at least as well in terms of ranking errors as random

sorting would. The performance improves the further apart the two individuals in

question are. This relationship is visualised in figure 4.2. The figure also shows that,

while clearly always better than random sorting, the values of σ̂i, σ̂i j,β =
σ̂ j

σ̂i
clearly

influence the probability of ranking errors.

As can be observed in the first row of plots, the smaller the absolute values for σ̂i

and σ̂ j, the less likely are ranking errors. This is of course expected, as this situation

results in less overlap of the confidence intervals for the same d. This overlap is used for

a second dominance relation described in the following section.

62

4.2. SAPEO

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 0.1 , σ̂i j = 0

d

P
(Y

i
≤

Y
j |

 x
i ≼

p
 x

j)

lbound
β = 0.5
β = 1
β = 1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1 , σ̂i j = 0

d

P
(Y

i
≤

Y
j |

 x
i ≼

p
 x

j)

lbound
β = 0.5
β = 1
β = 1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 3 , σ̂i j = 0

d

P
(Y

i
≤

Y
j |

 x
i ≼

p
 x

j)

lbound
β = 0.5
β = 1
β = 1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1.5 , σ̂i j = 0.25

d

P
(Y

i
≤

Y
j |

 x
i ≼

p
 x

j)

lbound
β = 0.5
β = 1
β = 1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1.5 , σ̂i j = 0.5

d

P
(Y

i
≤

Y
j |

 x
i ≼

p
 x

j)

lbound
β = 0.5
β = 1
β = 1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1.5 , σ̂i j = 0.9

d

P
(Y

i
≤

Y
j |

 x
i ≼

p
 x

j)

lbound
β = 0.5
β = 1
β = 1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1.5 , σ̂i j = -0.25

d

P
(Y

i
≤

Y
j |

 x
i ≼

p
 x

j)

lbound
β = 0.5
β = 1
β = 1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1.5 , σ̂i j = -0.5

d

P
(Y

i
≤

Y
j |

 x
i ≼

p
 x

j)

lbound
β = 0.5
β = 1
β = 1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1.5 , σ̂i j = -0.9

d

P
(Y

i
≤

Y
j |

 x
i ≼

p
 x

j)

lbound
β = 0.5
β = 1
β = 1.5

Figure 4.2: Lower bounds (solid black) and computed probabilities for correct ranking

with dominance relation ⪯p plotted against d for different values of σ̂i, σ̂i j,β =
σ̂ j

σ̂i
, where

line type corresponds to β.

This same issue relating to the width and overlap of the confidence intervals can also

be observed when comparing the different lines in each plots, signifying different values

of β =
σ̂ j

σ̂i
. Here, when one confidence interval is made smaller (e.g. β = 0.5 vs. β = 1), the

probability of ranking errors decreases.

Comparing the second to the third row of plots, we observe generally lower probabil-

ities of correct ranking with negative correlation. This is probably because with positive

correlation, errors are mainly made in the same direction.

63

CHAPTER 4. APPROACH

Relation ⪯c Dominance relation ⪯c only identifies individuals as dominant if the

confidence intervals do not overlap. Thus, if xi ⪯c x j, the upper confidence interval bound

of Yi has to be smaller than the lower bound for Y j.

More formally:

xi ⪯c x j ⇒ f̂ (i)+ σ̂i z(1−α
2
) ≤ f̂ (j)− σ̂ j z(1−α

2
).

with Φ−1 (1− α
2) denoted as z(1−α

2
). Let d ≥ 0, so that

f̂ (i)+ σ̂i z(1−α
2
)+d = f̂ (j)− σ̂ j z(1−α

2
)

⇔ f̂ (j)
= f̂ (i)+ σ̂i z(1−α

2
)+ σ̂ j z(1−α

2
)+d

⇔ f̂ (j)
= f̂ (i)+ z(1−α

2
)(σ̂i + σ̂ j +d′)

with d′ = d
z(1−α

2
)
. Thus:

P(Yi ≤Y j ∣xi ⪯c x j) = 1

2

⎛⎜⎝1+erf
⎛⎜⎝
− f̂ (i)+(f̂ (i)+ z(1−α

2
)(σ̂i + σ̂ j +d′))√

2(σ̂2
i
+ σ̂2

j
−2σ̂i j)

⎞⎟⎠
⎞⎟⎠

=
1

2

⎛⎜⎝1+erf
⎛⎜⎝

z(1−α
2
)(σ̂i + σ̂ j +d′)√

2(σ̂2
i
+ σ̂2

j
−2σ̂i j)

⎞⎟⎠
⎞⎟⎠

=
1

2

⎛
⎝1+erf

⎛
⎝

z(1−α
2
)√

2

¿ÁÁÀ(σ̂i + σ̂ j +d′)2
σ̂2

i
+ σ̂2

j
−2σ̂i j

⎞
⎠
⎞
⎠(4.12)

In the following, we determine the limits of two parts of the equation in order to

obtain the lower bound of its value. We can state that

z(1−α
2
) ∶=
√

2 erf−1(2(1− α
2
)−1) =√2 erf−1 (1−α) .

Further, it holds that

(4.13) σ̂2
i + σ̂2

j −2σ̂i j > 0

since it the variance of Yi −Y j and thus per definition larger than 0. As we show in the

following, we determine that

(σ̂i + σ̂ j +d′)2
σ̂2

i
+ σ̂2

j
−2σ̂i j

≥
(σ̂i + σ̂ j)2

σ̂2
i
+ σ̂2

j
−2σ̂i j

≥ 1. (shown below)

(σi +σ j)2 ≥σ2
i +σ2

j −2σi j (with 4.13)

⇔σ2
i +2σiσ j +σ2

j ≥σ
2
i +σ2

j −2σi j

⇔ 2σiσ j ≥−2σi j

⇔ 1 ≥− σi j

σiσ j

⇔−1 ≤
σi j

σiσ j

=∶ ρ i j ∈ [−1,1]
64

4.2. SAPEO

The last inequality holds per definition, as the correlation coefficient ρ i j is always in the

interval [−1,1]. With the obtained inequalities, we can then state that

P(Yi ≤Y j ∣xi ⪯c x j) = 1

2

⎛⎝1+erf
⎛⎝

z(1−α
2
)√

2

¿ÁÁÀ(σ̂i + σ̂ j +d′)2
σ̂2

i
+ σ̂2

j
−2σ̂i j

⎞⎠⎞⎠
≥

1

2
(1+erf(√2 erf−1(1−α)√

2

√
1))

=
1

2
(1+erf(erf−1(1−α))) = 1− α

2
.

The computed lower bound for correct ranking with relation ⪯c, i.e. P(Yi ≤Y j ∣xi ⪯c x j),
is depicted in figure 4.3 as a solid black line for values of α ∈ [0,1]. Of course, for large α,

the probability of incorrect ranking approaches 1
2 , i.e. random sorting performance. We

also include the probabilities according to equation 4.12 for different values of d′, σ̂i, σ̂i j

and β =
σ̂ j

σ̂i
. The colours of the lines identify the value of d′ ∈ {0,1,2} and the type of the

line (solid, dashed or dotted) corresponds to the value of β ∈ {0.5,1,1.5} in each plot. Each

plot is generated from different combinations of σ̂i and σ̂i j.

As is obvious from equation 4.12, the higher d′, the higher is the probability of correct

ranking. Therefore, it is expected that the green lines are generally above the blue ones

which are above the red ones. What we also observe from the comparison of the solid,

dashed and dotted lines per colour is that, if the absolute values of uncertainties σ̂i and

σ̂ j are higher, the correct ranking probability is higher in most cases (except for small

σ̂i). However, depending on σ̂i and σ̂i j, the overall order of the compared combinations

does vary.

By comparing the different plots in figure 4.3, we can see that, if the uncertainties

are uncorrelated (σ̂i j, first row), small differences in the distance of the predictions d′

make a large difference in terms of the resulting correct ranking probabilities, especially

for smaller d′. For higher d′, the probabilities remain very high, even for large α. With

increasing σ̂i (first row, left to right), however, d′ is a much less distinguishing factor as

the probabilities decrease overall. This is of course expected, since for large prediction

uncertainties, the actual predictions contains less certain information for ranking them.

In the second row of the plots, we can observe that for constant σ̂i, increasing the

correlation of the prediction uncertainties σ̂i j also increases the probability of correct

ranking overall. In this case, β, i.e. the ratio between σ̂i and σ̂ j, is the main distinguishing

factor. This is probably because the relation can handle larger absolute uncertainties if

they are positively correlated, as errors are mainly made in the same direction.

In case of negative correlation, as depicted in the third row of the plot, we do not

observe the same increase of correct ranking probability with increasing absolute cor-

relation. Consequently, β, i.e. the ratio between σ̂i and σ̂ j, seems to make less of a

difference.

We have reviewed our theoretical results for relation ⪯c by simulating ranking with

⪯c on data generated according to the various combinations of the parameters. We were

able to observe very similar results as depicted in figure 4.3. In general, for the default

65

CHAPTER 4. APPROACH

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 0.1 , σ̂i j = 0

α

P
(Y

i
≤

Y
j |

 x
i ≼

c
 x

j)

lbound

d'=0

d'=1

d'=2
β = 0.5
β = 1
β = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1 , σ̂i j = 0

α

P
(Y

i
≤

Y
j |

 x
i ≼

c
 x

j)

lbound

d'=0

d'=1

d'=2
β = 0.5
β = 1
β = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 3 , σ̂i j = 0

α

P
(Y

i
≤

Y
j |

 x
i ≼

c
 x

j)

lbound

d'=0

d'=1

d'=2
β = 0.5
β = 1
β = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1.5 , σ̂i j = 0.25

α

P
(Y

i
≤

Y
j |

 x
i ≼

c
 x

j)

lbound

d'=0

d'=1

d'=2
β = 0.5
β = 1
β = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1.5 , σ̂i j = 0.5

α

P
(Y

i
≤

Y
j |

 x
i ≼

c
 x

j)

lbound

d'=0

d'=1

d'=2
β = 0.5
β = 1
β = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1.5 , σ̂i j = 0.9

α

P
(Y

i
≤

Y
j |

 x
i ≼

c
 x

j)

lbound

d'=0

d'=1

d'=2
β = 0.5
β = 1
β = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1.5 , σ̂i j = -0.25

α

P
(Y

i
≤

Y
j |

 x
i ≼

c
 x

j)

lbound

d'=0

d'=1

d'=2
β = 0.5
β = 1
β = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1.5 , σ̂i j = -0.5

α

P
(Y

i
≤

Y
j |

 x
i ≼

c
 x

j)

lbound

d'=0

d'=1

d'=2
β = 0.5
β = 1
β = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

σ̂i = 1.5 , σ̂i j = -0.9

α

P
(Y

i
≤

Y
j |

 x
i ≼

c
 x

j)

lbound

d'=0

d'=1

d'=2
β = 0.5
β = 1
β = 1.5

Figure 4.3: Lower bounds (solid black) and computed probabilities for correct ranking

with dominance relation ⪯c plotted against α for different values of d′, σ̂i, σ̂i j,β =
σ̂ j

σ̂i
,

where colours correspond to d′ and line type corresponds to β.

value of α = 0.05, the observed probability / frequency of correct ranking is very high.

Even the lower bound of (1− α
2) = 0.975 results in a acceptable error probability.

Conclusions As expected, we were able to significantly improve the probability of

achieving correct rankings using the concept of comparison under uncertainty when

contrasted against comparing individuals just using their predicted values. However, for

the previous analysis, we assumed that the model was actually valid (assumption A1

66

4.2. SAPEO

holds). The lower bound for ranking errors with ⪯c was determined to be 1− α
2 with this

assumption.

However, if we consider that in SAPEO, all models are validated using cross-validation

as described in section 4.2.2, we can relax this assumption further. Given a model that is

valid in SAPEO, there is a 5% chance that the model is not reliable. In the following, we

assume the worst case, i.e. all rankings based on these invalid models are incorrect. We

then get an updated lower bound for correct rankings as

0.95 ⋅ (1− α
2
)+0.05 ⋅0 = 0.92625(4.14)

for α = 0.05, which is still very promising.

4.2.3.2 Selection Errors

We define selection errors as the number of incorrectly selected parents. More formally,

the number of selection errors is the set difference between the correct selection according

to the actual fitness function and the population selected based on the dominance relation.

In the following, we analyse the expected number of selection errors.

Let Rr be the set of individuals of rank r according to ⪯c and rh be the highest rank.

The ranking does not cause an incorrect selection iff all pairwise comparisons between

individuals of different ranks are correct, i.e.

∀r ∈ {1,. . . , rh−1}, ∀xi ∈Rr, ∀x j ∈Rr+1 ∶ xi ≤ f x j.

The necessary comparisons can be encoded in a similar form as above, i.e. as the

difference of two random variables. Let x
(r)
i
∈Rr be the i-th individual in rank r. Y

(r)
i

then denotes the random variable describing the fitness value prediction for individual

x
(r)
i

. Also, let

Z
(r)
i, j
=Y
(r)
i
−Y
(r+1)
j

,

with r ∈ {1,. . . , rh −1}, i ∈ {1,. . . , ∣Rr∣} and j ∈ {1,. . . , ∣Rr+1∣}. Now, let Er be a random

variable that describes the number of ranking errors. Thus, the probability of no ranking

errors can be described as

P(E = 0)⇔P (Z(r)
i, j
≤ 0 for all r ∈ {1,. . . , rh−1}, i ∈ {1,. . . , ∣Rr∣}, j ∈ {1,. . . , ∣Rr+1∣}) .

In order to express this probability, we can use an affine transformation with y = c+Bx

and c = 0⃗ where

x ∼N(m,Σ), m = (f̂ (x1), . . . , f̂ (xλ))T ,Σ =
⎛⎜⎝
σ2

1 σ1,2 . . . σ1,λ⋮
σλ,1 σ2

λ

⎞⎟⎠
y ∼N(Bm,BΣB−1)

according to [139, p. 32]. In this case, B encodes the comparisons, i.e. B contains λ

columns and a row for each Z
(r)
i, j

where the i-th element is 1, the j-th is −1 and the rest

67

CHAPTER 4. APPROACH

init pop

evaluation

parent selection variation

evaluation

survival

selection
stop?out best

predict

local model

Archive

valid?

µ?

yes

no
no

yes

noyes

Figure 4.4: SAPEO. A framework to integrate uncertain evaluations into an evolutionary

algorithm. Indviduals are only evaluated when necessary: (1) the model is unreliable, or

(2) no safe selection can be made. Evaluations indicated with double borders are added

to an archive. Additions to the EA skeleton from figure 2.1 are marked in orange.

0. We can then compute the probability of no ranking errors p = P(Er = 0) using the

cumulative distribution function of the multivariate normal distribution for y.

Let Es be a random variable that describes the number of selection errors. It is clear

that Er = 0⇒ Es = 0, which is the case with a probability of p. For a non-strict upper

bound on the expected value of Es, we assume that in cases where Er ≠ 0 (and thus

Er > 0, as the number of ranking errors is always positive), we observe the worst-case

selection error. This means that none of the µ individuals in the parent population would

have been selected based on the actual fitness function, thus resulting in µ selection

errors. We thus assume

P(Es = 0) = p and

P(Es =µ) = 1− p.

It follows that for the expected value of Es it holds that E(Es) ≤µ(1− p).

4.2.4 SAPEO Framework

In the previous section, we have shown that we can reasonably assume that comparisons

under uncertainty are correct, provided the models are validated. We use these find-

ings to define the SAPEO framework. We thus describe how we integrate comparisons

under uncertainty and model validation into the standard EA algorithmic skeleton. A

visualisation of SAPEO can be found in figure 4.4.

In general, an evolutionary algorithm (cf. white elements in figure 4.4) creates an

initial population, which it then evaluates and sorts according to the obtained fitness

values. Based on the order, it then selects a subset as parent population to generate a new

68

4.3. GAME-BENCHMARK FOR EVOLUTIONARY ALGORITHMS

population from via variation. This loop continues until a stopping criterion is reached,

for example because the algorithm converged or the budget is exhausted. Fundamentally,

SAPEO follows the same steps, but adds a small number of mechanisms in order to

incorporate a surrogate model and the dominance relations.

The most important change is that the exact evaluation is replaced with a prediction

computed by a local surrogate model. The model is trained on k individuals that have

been evaluated exactly in previous iterations. For that reason, SAPEO keeps an archive

of all exact function evaluations.

The main characteristic of SAPEO is its lazy evaluation, which is possible because

as long as the individuals can be selected according to their predicted fitness value, the

true objective value is not needed in an evolutionary algorithm. Thus, in SAPEO, exact

evaluations are replaced with predictions computed by a validated local surrogate model.

Provided that a partial order already clearly identifies the µ best individuals, the

evolutionary algorithm can continue with these individuals as parents for the next

generation without diverging from the evolutionary path. If this is not the case, SAPEO

refines the partial order by ranking the individuals that can not be selected confidently

(critical individuals) with another dominance relation[145]. In this thesis, we only

consider Pareto dominance based on the exact function evaluations as a secondary

dominance relation. Critical individuals are therefore evaluated with the expensive

fitness function until all relevant ties are broken and µ individuals can be selected

confidently.

4.3 Game-Benchmark for Evolutionary Algorithms

The game-benchmark for evolutionary algorithms (GBEA)2 was specifically designed to

provide the means to analyse and compare the performance of evolutionary algorithms

on game optimisation problems. The first version of the benchmark was presented to

the research community at a workshop at GECCO 2018 (Kyoto, Japan)3. It is under

active development and meant to be continuously extended with new problem suites

from publications related to game optimisation4.

The reasoning for developing a novel benchmark for the purposes of this thesis, and

research beyond that, are two-fold. As discussed in section 3.4, at the time of writing . . .

1. . . . there exists no benchmark for game-related algorithm based on established

benchmarking principles.

2. . . . there exists no real-world benchmark for evolutionary algorithms that measures

anytime performance and provides comparable post-processing features.

A major advantage of creating a new benchmark is of course that it enables us to

tailor the problems specifically to the questions we want to tackle in this thesis. As

2https://ls11-www.cs.tu-dortmund.de/people/volz/gamesbench.html
3https://ls11-www.cs.tu-dortmund.de/people/volz/gamesbench_events.html#gecco18
4https://ls11-www.cs.tu-dortmund.de/people/volz/gamesbench_part.html

69

CHAPTER 4. APPROACH

we want to specifically tackle uncertainty handling in game optimisation, we take into

account the insights developed in section 4.1.4 in order to identify requirements for the

benchmark in section 4.3.1. Following that, we describe how these requirements are

achieved along with more implementation and technical details in section 4.3.2.

4.3.1 Requirements Analysis

For the game-based benchmark used in this thesis, we identify the requirements de-

scribed in the following.

I: Problem characteristics Problems contained in the benchmark should not be

artificial in nature. As justified in sections 1.1 and 3.1, we focus on game optimisation

problems. The problems and their fitness functions therefore should make sense within

the context of the game and the corresponding design goals. The benchmark should

contain a diverse set of fitness functions and reflect numerous state-of-the-art approaches

to game evaluation. To follow this requirement, several fitness functions should be

included for the same game that use different principles according to the taxonomy (see

section 4.1). In order to simulate the playthroughs, AI players should be available for the

game that perform at a reasonable standard.

II: Practicality Despite the fact that the benchmark is intended to contain (expensive)

real-world problems, the execution of the benchmark should still be possible within a

reasonable time frame. Therefore, it should be easy to parallelise the benchmark and the

evaluation of a single solution should result in practical execution speeds on standard

machines.

Ideally, it should also be possible to export and import benchmarking results. This

enables a comparison of algorithms without the need for re-implementation and re-

running the algorithm.

III: Analysis of Uncertainties The benchmark should allow an analysis of all or

some of the uncertainties that occur in game optimisation problems as identified in

section 4.1.4. It should also include features that allow an analysis of non-symmetric

uncertainties, such as Data Generation bias. Data Generation bias is specifically relevant,

as it occurs in game optimisation (and other simulation-based optimisation problems)

and significantly affects algorithms (cf. case study in appendix B), but is rarely addressed

systematically (see section 3.1).

In the context of an automatic benchmark, it is naturally not possible to include feed-

back from human players, unless pre-recorded. However, this would be impracticable for

even small game optimisation problems. An alternative is therefore to simulate human

feedback with an AI or model different from the one used for automatic evaluation.

IV: Statistical significance As evolutionary algorithms are stochastic, the statistics

obtained via the benchmark should be statistically justified and thus interpretable.

70

4.3. GAME-BENCHMARK FOR EVOLUTIONARY ALGORITHMS

V: Investigation of scaling behaviour Functions should be scalable in search space

dimension, so that scaling behaviour can be analysed. Plots that visualise scaling beha-

viour should be generated.

Bonus: Comparability of SAEA The benchmark is intended for evolutionary al-

gorithms targeted at expensive optimisation problems. Most of these algorithms are

surrogate-assisted EAs, therefore it would be a useful feature to provide a modularised

framework with implementations of commonly employed models and techniques, such

as Kriging models and infill functions. This allows for a fair comparison independent of

specific implementations for the algorithms and enables an analysis of the underlying

approaches instead.

4.3.2 Implementation of Requirements

For many of the requirements, the COCO framework provides suitable features already.

For example, COCO already includes a batch mechanism, allowing for the independent

execution of subsets of the benchmark functions. This provides an easy opportunity

to parallelise the the benchmark as required (II). Export and import features are also

provided by the COCO framework (II).

Furthermore, the COCO framework is also designed to include the same functions in

multiple search-space dimensions and provides post-processing features that contain

plots that visualise an algorithm’s behaviour in that regard (V). Similarly, COCO expects

the existence of multiple instances of any given function. The average runtime measures

that are automatically computed based on an algorithm’s aggregated performance across

these instances are easily interpretable and justified in terms of statistical significance

(IV) (see section 2.2.1).

COCO also provides features that allow the creation of new functions and correspond-

ing suites. However, this is only intended for artificial functions defined within c. For the

GBEA workshop at GECCO 18, we (mainly Tea Tušar) created an interface to allow the

interaction with external applications, called either via c or python.

Given this interface, fulfilling the requirements listed above only relies on the ability

to define benchmarking problems for multiple search dimensions and with suitable

instantiation methods. Similarly, the problem characteristics (I) and execution speed (II)

also relies on the included benchmarking problems. We therefore discuss the function

suites developed for GBEA, specifically with regards to the requirements. We have

created function suites (TopTrumps and MarioGAN) based on two optimisation problems

previously published in literature. Both of these problems concern the generation of

game content and allow for its automatic evaluation. They are described in more detail

in sections 2.4.1 and 2.4.2, respectively. Unfortunately, we were not able to find feedback

data appropriate to evaluate the targeted problems. We therefore are not able to represent

functions in feedback categories EXP and IMP, but plan to do so in the future. However,

we were able to define functions spanning all categories of the input dimension.

71

CHAPTER 4. APPROACH

TopTrumps Suite The TopTrumps problem could be used without major modifications.

Specifications of the function suite and more details can be found in in section 4.3.3.1. As

the problem requires the generation of a deck, the predetermined number of cards in a

deck and/or the number of values on each card can be modified in order to create scalable

problems (V). The original publication [148] already contains diverse functions with

differing numbers of objectives (I). For instance, all taxonomic categories across the input

dimension (i.e. NONE, IMP, EXP) are represented. Furthermore, AIs of different skill

levels are already implemented (I) as well as surrogate functions suitable to simulate AI

bias (III).

As expected in game optimisation problems, the included functions are noisy. However,

the fitness for each solution is reported as the average of 2000 simulations, which has

been shown in [148] to produce an appropriate balance between computational effort (II)

and resulting standard deviations.

The only remaining issue is to create suitable instances of the functions (IV), that

one the one hand create fitness landscapes of similar type and structure, but on the

other hand do not share the locations of e.g. optima (cf. section 2.2.1 for the intentions

and requirements on COCO instances). We therefore decide to interpret instances as

themes for the created decks. These themes along with the chosen categories dictate the

value ranges that are expected for each of the categories on the cards (see figure 2.5). We

therefore represent the different themes by introducing lower and upper bounds for each

category on the cards. The bounds are created via seeded pseudo-random generation,

and each configuration of constraints is considered a separate instance.

MarioGAN Suite In order to increase the variety of game optimisation problems in

the benchmark (I), we wanted to include a second suite that addresses a game optimisa-

tion problem significantly different than TopTrumps deck generation, as described in

section 2.4.2. We were thus looking for a more complex and popular game with existing

well-performing AI (I), that still allow for reasonably fast simulations of a playthrough

(II). We settled on Mario, as this game has been heavily researched before [138], the

levels are relatively short, and there is a publicly available framework MarioAI contain-

ing various state-of-the-art AI players. Specifically, we base the function suite on the

recently published level generation method using GANs [150] as discussed in section

2.4.2. The solutions of a problem are in this case represented as continuous latent vec-

tors, thus making them suitable for state-of-the-art evolutionary computation methods.

Additionally, this differs from the near direct encoding in the TopTrumps Suite.

Another benefit of the latent vector encoding is that it allows for easily scalable

functions (V), as the dimension of this latent vector is chosen arbitrarily when training

the GAN. Therefore, fitness functions with different search space dimensions can be

created by simply basing them on the results of GANs trained to have appropriately

sized latent vectors. Similarly, different GANs can also be used to create instances

(IV), as they represent different level generation models that assumably exhibit similar

characteristics. Therefore, to create instances, GAN models are trained from different

seeds, resulting in neural networks with different weight configurations. As the best

72

4.3. GAME-BENCHMARK FOR EVOLUTIONARY ALGORITHMS

latent vector is dependent on the weight configuration, the location optima for the

instances will likely be significantly different across the instances. Furthermore, a

simulation of a playthrough with a player AI in the MarioAI framework is capped at 20

seconds, thus also enabling practicable benchmarking speeds (II).

A major issue with the MarioGAN suite, however, were the characteristics of the

fitness functions (I) in the original publication [150]. Only two functions were proposed,

and it was not entirely clear whether these functions were chosen to be meaningful

from a design perspective. Additionally, the GAN was trained on a single level in order

to test the limits of the level generation method proposed in the paper. However, in

practice, the GAN would need to be trained on a sizeable sample of representative levels.

The optimisation problem as described in section 2.4.2 with only a single level sample,

is therefore still somewhat artificial. Another issue making this implementation not

ideally suitable as a real-world problem is that the available mechanics, enemies and

tiles for the Mario levels were restricted. This reduces the complexity of the actual level

generation problem and constraints the search space significantly.

In order to create a better real-world representation in context of MarioGAN, we

therefore made several changes:

• The set of samples was extended significantly (from a single level to 12, 2, or 19

levels, depending on which function is used)

• Additional fitness functions were added, inspired by a survey of automatic evalu-

ation methods for Mario [130]

• Where possible, restrictions on the search space are lifted (added 4 more types of

enemies, including variations)

Details on these changes and the specifications of the problems contained in the

MarioGAN function suite can be found in section 4.3.3.2.

Experimental Framework Unfortunately, the COCO framework does not provide a

way to track uncertainties during the runtime of the algorithm. Therefore, even if the

function suites allow for usecases to investigate Data Generation bias and other errors,

the actual tracking is not supported. To combat this issue, we provide a framework that

includes an interface to COCO. To allow for easy integration, it is written in C++. More

details can be found in section 4.4.

The framework provides a modularised approach to surrogate-assisted EAs using

an object-oriented implementation of commonly required components, such as Kriging

models, evolutionary algorithms and infill criteria. This satisfies the bonus requirement

by facilitating fair comparisons between SAEA algorithms. Additionally, if the algorithms

are implemented using the framework, predicted values, uncertainties, and correct values

are tracked and reported automatically. The data can then be visualised with the included

plot scripts for an analysis of uncertainties (III).

73

CHAPTER 4. APPROACH

fid description input feedback goal

1 deck hypervolume CODE NONE max

2 standard deviation of category averages CODE NONE max

3 winrate of better player OUT NONE max

4 switches of trick winner PLAY NONE max

5 trick difference at the end of the game OUT NONE min

Table 4.2: Overview and characterisation of functions in rw-top-trumps

4.3.3 Technical Details

In the following, we provide technical details on the GBEA and its implementation. We

only describe information directly relevant to this thesis, such as for the interpretation

of evaluation results. Any additional details can be found in the documentation of the

framework, available from the GBEA website5.

4.3.3.1 TopTrumps Suite Details

We created a single- and a bi-objective suite for TopTrumps based on the functions

described in the original publication [148]. A detailed explanation of the functions can

be found in section 2.4.1. However, the original publication explicitly addressed multi-

objective optimisation, making their single-objective versions less interesting. In this

thesis, we will thus only address the bi-objective function suite (rw-top-trumps-biobj),

which contains functions combinations from the single-objective suite which are likely

conflicting.

rw-top-trumps Contains 5 different functions, where function 1 and 2 are based on

encoding, whereas the others are based on a simulation as described in section 2.4.1.

An overview of the functions along with a characterisation according to the taxonomy

described in section 4.1 can be found in table 4.2. It can be seen that, while the proposed

functions are diverse in terms of their input, none of them are based on any feedback.

However, this imbalance is reflected in our survey on automatic game evaluation methods

(see appendix A), as well as in the original publication [148]. As this benchmark is

intended as a reflection of the game optimisation problems presently targeted in research,

and not a discussion on game evaluation itself, we deem this selection of functions

suitable. However, more functions can of course be added in the future.

While the functions are not based on feedback, they are motivated by a model of the

intended gameplay achieved with a generated deck of cards for TopTrumps. Function 3,

for example, is the winrate of the better player. This function is set to be maximised so

that higher skill levels lead to higher winrates. This could appeal to a player’s sense of

fairness, while it might be frustrating for weaker players. In contrast, functions 4 and 5

target the tension of the game instead, as they both reach their optimum if the game was

5http://norvig.eecs.qmul.ac.uk/gbea/gamesbench_doc.html

74

4.3. GAME-BENCHMARK FOR EVOLUTIONARY ALGORITHMS

rw-top-trumps

objectives 1

dimensions (88,128,168,208) = 4 ⋅ (22,32,42,52)
functions 5

instances 15

simulations per point 2 000 [148]

rw-top-trumps-biobj

objectives 2

dimensions (88,128,168,208) = 4 ⋅ (22,32,42,52)
functions 6

instances 15

simulations per point 2 000 [148]

rw-gan-mario

objectives 1

dimensions 10, 20, 30, 40

functions 84

instances 7

simulations per point 30

Table 4.3: Function suite details

close, independent of the skill levels of the players. Function 5 looks at the final outcome,

while function 4 also considers how dramatic the playthrough was.

Functions 1 and 2 are computed without simulations, but still target similar concepts.

If the deck hypervolume (function 1) is maximised, each card is not dominated by another

one. This makes it possible for anyone to come back from a losing streak, as there is

always at least one category for each card with which it could beat another. Maximising

this function allows for tension in the game, just like expressed in functions 4 and 5.

However, having only non-dominated cards in a deck also reduces the randomness in the

game, which would aid weaker players. Function 2 uses some implementation intricacies

of the weaker and stronger AI player and, if maximised, should result in higher winrates

of the stronger AI.

More details on the function suite are specified in table 4.3. As described in section

4.3.2, instances are interpreted as different deck themes, signified by setting different

lower and upper bounds for the card values. In order to achieve compatibility to the

BBOB function suite, we created 15 instances. The problems are relatively large in terms

of search dimension (see table 4.3) when compared to most existing benchmark suites.

This because we intended to create realistic problems with a typical number of cards

in the deck (i.e. 22, 32, 42 or 52) and number of categories on each card (4). For the

simulated functions, each solution is simulated 2 000 times as suggested in [148].

rw-top-trumps-biobj The bi-objective function suites combines functions from the

single-objective suite that are seemingly conflicting. An overview of the functions is

75

CHAPTER 4. APPROACH

function 1 function 2

fid fid input feedback fid input feedback

I 1 CODE NONE 2 CODE NONE

II 3 OUT NONE 4 PLAY NONE

III 3 OUT NONE 5 OUT NONE

IV 1 CODE NONE 3 OUT NONE

V 1 CODE NONE 4 PLAY NONE

VI 1 CODE NONE 5 OUT NONE

Table 4.4: Overview and characterisation of functions in rw-top-trumps-biobj

presented in table 4.4. Details on the suite can again be found in table 4.3.

Function I is just based on functions 1 and 2, so only computed based on the encoding.

It is thus significantly faster to compute than the others. However, the functions are only

partly conflicting, as function 1 expresses both tension as well as fairness (with regard

to better winrates for the better player). However, previous work also showed that just

optimising function 1 did not create satisfying results when compared to a Pareto front

based on functions 3-5 [148]. To investigate this further, functions IV-VI test the case

where functions 3-5 are added as a second objective to function 1.

The conflict of objectives is more obvious for functions II and III, where the first

function (function 3) targets fairness, while the second function (function 4 or 5) targets

some expression of tension in the game.

4.3.3.2 MarioGAN Suite Details

Based on the MarioGAN problem, we created an extensive single-objective function suite

using the problem described in section 2.4.2 as a baseline. As stated in section 4.3.2, the

existing work was modified in terms of the level encoding, the training samples as well

as the evaluation functions. The details for all are described in the following.

The GBEA also contains a bi-objective function suite created by combining the single-

objective functions. However, the conflicts between the objectives are not always clear, as

these functions were created to be stand-alone. In this thesis, we will therefore only be

targeting the single-objective suite.

Level Representation The encoding is detailed in table 4.5. Note that the tubes (both

with piranha plant and without) as well as the bullet bill stands are only represented by

a single symbol. When processing the generated level, if one of these symbols is detected,

the corresponding obstacle is automatically extended downwards until it meets the

ground or a solid tile. This reduces the complexity of the encoding and at the same time

will ensure that tubes and bullet bill stands are always generated correctly (i.e. without

missing chunks), which was an issue with the previous encoding [150]. Additional enemy

characters are added when compared to the original publication. All regular enemy

characters (identity 9 and upwards) are rendered as winged if they are on top of a

passable tile (i.e. in the air).

76

4.3. GAME-BENCHMARK FOR EVOLUTIONARY ALGORITHMS

Tile type Symbol Identity Visualization

Stone X 0

Breakable x 1

Empty (passable) - 2

Question Block with coin q 3

Question Block with power up Q 4

Coin o 5

Tube t 6

Piranha Plant Tube p 7

Bullet Bill b 8

Goomba g 9

Green Koopa k 10

Red Koopa r 11

Spiny s 12

Table 4.5: Tile types used in generated Mario levels.

original replacement

empty question block brick

surprise brick question block

star fire flower

1-up mushroom regular mushroom

hammer bro red koopa

lakitu

lakitu egg winged spiny

buzzy beetle goomba

Table 4.6: Original tiles and their replacements

Modifications to the Training Data The VGLC encoding of the original levels was

modified slightly, as not all tile behaviours in Super Mario Bros. are implemented in the

MarioAI framework. A table with the original tiles and their replacements can be found

in table 4.6.

Additionally, some of the levels had to be modified. Areas, where usage of moving

platforms was required, were removed. As MarioAI does not implement the option to

traverse through pipes, Mario always starts on the left of the level. Thus, vertical walls

as visualised in figure 4.5, where Mario would have dropped down from the top, were

also removed. In order to keep the height of the levels constant, empty rows also had to

be removed for some levels.

77

CHAPTER 4. APPROACH

Figure 4.5: Example of Mario level with vertical walls (Super Mario Bros. Bonus Area D)

Training Samples In the following, we list the levels that were transferable to the

MarioAI framework without large modifications an are thus used as training samples.

I Super Mario Bros [overworld]: 1-1, 2-1, 3-1, 3-2, 4-1, 5-1, 5-2, 6-1, 6-2, 7-1, 8-1, 8-2

II Super Mario Bros [underground]: 1-2, 4-2

III Super Mario Bros 2 (Japan) [overworld]: 1-1, 2-1, 2-2, 3-1, 4-1, 4-2, B-1

Separate GANs were trained for 3 sets of training samples, namely

• overworld (small): I

• underground: II

• overworld (large): I + III

For each of these sets, GANs were trained for an input vector of dimension d ∈
{5,10,20,30,40}, thus resulting in 15 distinct genotype-phenotype mappings for Mario

levels. In order to create different instances, i.e. similar mappings, we started the

respective training processes with varying random seeds. We thus created 7 instances

per mapping.

Fitness Functions In the following, we discuss the objective functions included in the

benchmark suite along with their original publications. We implemented a set of diverse

functions, ranging through all types of inputs (see table 4.7). Like for the TopTrumps

suite and with the same arguments (cf. section 4.3.3.1 and specifically the paragraph on

rw-top-trumps), we only included model-based objective functions without feedback. All

of these functions were proposed in previous literature (see source column in table 4.7).

78

4.3. GAME-BENCHMARK FOR EVOLUTIONARY ALGORITHMS

fid description input feedback AI goal source

A enemyDistribution CODE NONE - max [130] (tile position)

B positionDistribution CODE NONE - max [130] (tile position)

C decorationFrequency CODE NONE - max [130]

D negativeSpace CODE NONE - max [20]

E leniency CODE NONE - min [118]

F density CODE NONE - max [130] (tile freq)

G progress OUT NONE A* max [150]

H basicFitness PLAY NONE A* min competition [138]

I airTime PLAY NONE A* max [130, 150]

J timeTaken PLAY NONE A* max [150], cf. [130]

K progress OUT NONE Scared max see G

L basicFitness PLAY NONE Scared min see H

M airTime PLAY NONE Scared max see I

N timeTaken PLAY NONE Scared max see J

Table 4.7: Overview and characterisation of functions in rw-gan-mario

More details on the functions and how they are computed can be found in the following

list:

A standard deviation of enemy tiles (x-axis)

B standard deviation of tiles you can stand on (y-axis)

C percentage of pretty tiles:= {Tube, Enemy, Destructible Block, Question Mark Block,

or Bullet Bill Shooter Column} [130]

D percentage of tiles you can stand on

E weighted sum of subjective leniency of tiles

F percentage of ground and breakable tiles

G;K percentage of progress on x-Axis

H;L MarioAI championship score for AI: (lengthOfLevelPassedPhys−timeSpentOnLevel+
numberOfGainedCoins+marioStatus∗5000)/5000

I;M ratio between ticks in air vs. total ticks

J;N ratio between time taken and total time allowed

Function A, B and F are based on statistics suggested in [130] with no directly

assumed meaning. Function B is proposed as an aesthetic measure in [130]. Function E

is designed to express the leniency of the level design, as suggested in [118]. Function D

is intended to capture how much of the space in the level is traversable, as proposed in

[20].

79

CHAPTER 4. APPROACH

The remaining functions are all based on simulations with two different types of AIs.

One of them is a particularly successful agent from the MarioAI Championship based

on the A* algorithm by Robin Baumgarten, which exhibits super-human performance

on levels that do not require backtracking6. The other AI, ScaredAgent, is one of the

default agents in the MarioAI source code, which works by avoiding any sort of obstacles,

including enemies. It does not do any forward planning, however, and thus does not

perform well in comparison to the A* agent. In contrast, it plays more like a novice

human player.

Both of the AI agents are technically not stochastic, however, due to small variations

during runtime in the game engine implemented in Java, their behaviour does vary in

some cases. In instances where this variation occurs, if a given AI is run repeatedly on

the same level, it will typically switch between a small number of (similar) behavioural

patterns. However, in order to not rely on outliers to evaluate a given solution, we execute

the simulation 30 times per solution and average the results given by the fitness function

in question.

Function G is the progress of the AI, similar to the playability used in many publica-

tions, including [150]. Functions I and J are based on functions implemented for [150] as

well (# jump actions and total actions taken, respectively), they are however modified

slightly to optimise their expressiveness. Function I was modified to target the number of

ticks in the air instead of the number of times the jump action was selected, because the

jump action can be triggered without observable effect (while Mario is already in the air),

and can result in different lengths of jumps. Airtime is thus more indicative of whether

the level is easily traversable without jumping or not. For function J, we replaced the

number of total actions with the ratio of time taken to total time allowed. Both functions,

when optimised, result in levels that take longer / more actions to complete. However,

timeTaken has a clear optimum and nadir value, which the number of total actions

does not. In the original publication [150], for function I and J, the values were heavily

penalised if the level was not playable, i.e. function G resulted in a value less than 1. For

our implementation of the benchmark, this is still true, but as penalty, we are now able

to set the nadir value instead of a large arbitrary value that might upset the optimisation

algorithm significantly. Finally, function H is based on the MarioAI competition score for

the AI agents.

The above also holds for functions K-N, which are the same respective objectives, but

measured using the ScaredAgent instead of the A* agent.

Unfortunately, there is no clear target value or optimisation direction for any of

these functions. For example, when trying to generate easy levels, one might intend

to minimise leniency (E) and / or maximise how well the AI players do (basicFitness,

H/L). As the benchmark is not directly related to a specific task, however, this decision is

arbitrary. We fixed the optimisation goals as specified in table 4.7, aiming for interesting

benchmark functions.

We have added two types of variations for each of the fitness functions described

above:

6http://www.youtube.com/watch?v=DlkMs4ZHHr8

80

4.3. GAME-BENCHMARK FOR EVOLUTIONARY ALGORITHMS

Figure 4.6: Examples of generated level segments. Left: underground level. Right: over-

world level.

• training samples (overworld, underground, overworlds)

• level segment concatenation

The first variation are the various models trained for the respective sets of samples.

Since, for example, overworld and underground levels exhibit different characteristics

that are imitated by the generated levels, the same fitness function will produce different

challenges in this case. An example of the different characteristics of underground and

overworld levels can be seen in figure 4.6. The underground levels are designed to look

like a dungeon which is visualised by the existence of a ceiling. This characteristic is

picked up by the level generator and clearly reflected in the generated levels, as seen in

the example in the figure. The ceiling adds an additional challenge to the level, as jumps

might not be executed as planned when Mario bumps into the ceiling.

We further introduced a concatenation mode to make the problems more realistic and

challenging. In the original publication [150], level segments of a fixed size are created

by a generator. The levels were split into segments in order to assure a sufficient number

of level samples. However, in practice, these segments would need to be played in direct

sequence in order to allow for a reasonably long playing experience. We therefore also

trained GANs with a latent vector dimension of 5. Since the dimensions this suite is

available for are all multiples of 5, the latent vector inputs of a given problem can be split

into multiple 5-dimensional vectors. These are then fed to the corresponding generator for

5-dimensional inputs and the resulting levels are concatenated. The concatenation mode

adds an additional realistic challenge, as the intersections between different segments

still need to be playable, which is not considered in the training phase of the generator.

The variations naturally extend the number of problems in the suite significantly.

The resulting functions are listed below. The function ids can be computed as follows:

id = g+ f ⋅G+ c ⋅F ⋅G+1,

where

• G is the number of different sample sets (3: overworld + underground + overworlds)

• F is the number of fitness functions (14)

81

CHAPTER 4. APPROACH

• g is the id for sample sets (i.e. 0 for overworld, 1 for underground, 2 for overworlds)

• f is the id for fitness functions (i.e 0 for enemyDistribution, 1 for positionDistribu-

tion, etc.)

• c is an indicator for concatenation (i.e. 0 if not concatenated, 1 if concatenated)

The resulting 84 functions are listed in the following tables, with the letters A-N

specifying the type of objective function as listed in table 4.7.

Without concatenation:

A B C D E F G H I J K L M N f /g
1 4 7 10 13 16 19 22 25 28 31 34 37 40 I: overworld

2 5 8 11 14 17 20 23 26 29 32 35 38 41 II: underground

3 6 9 12 15 18 21 24 27 30 33 36 39 42 I + III: overworld

With concatenation:

A B C D E F G H I J K L M N f /g
43 46 49 52 55 58 61 64 67 70 73 76 79 82 I: overworld

44 47 50 53 56 59 62 65 68 71 74 77 80 83 II: underground

45 48 51 54 57 60 63 66 69 72 75 78 81 84 I + III: overworld

rw-gan-mario The resulting single objective suite thus contains 84 different functions

for 4 different search space dimensions and 7 instances. The dimension of the search

space is solely determined by the size of the random vector that is fed into the neural

network and can thus be set arbitrarily. We chose dimensions 10, 20, 30 and 40 based

on the similarity to the BBOB search space dimensions. We also considered that in the

original publication [150], the random vector was 32-dimensional, which resulted in

several dimensions of the vector with only minor effects on the generated levels. It is

important to note, however, that the corresponding GAN was trained on only a single

level. The details of the function suite are summarised in table 4.3.

4.4 Experimental Framework

As stated in section 4.3.2, in order to fulfil the requirements developed in section 4.3.1,

we have implemented an experimental framework in C++ that interfaces to the COCO

benchmarking framework. The main reason for not using the COCO framework directly

is that for our analysis, additional features were necessary that were difficult to add

within the existing software. This approach also ensures the validity of the results, as no

programming bugs can be added to the evaluation. Furthermore, this decision allows

COCO, which is in continuous development, to be updated easily. The experimental

framework is made available on GitHub7.

7https://github.com/TheHedgeify/uncertaincoco

82

4.4. EXPERIMENTAL FRAMEWORK

In section 4.4.1 we thus present an overview of the features implemented in the

framework. Section 4.4.2 gives further details on features that relate to the usage of

surrogate models and their predictions. Afterwards in section 4.4.3, the algorithms

that are already included in the framework are described. Finally, we detail the post-

processing features implemented in the framework in section 4.4.4.

4.4.1 Features

Below is an overview of features included in the experimental framework along with a

short description of their purpose.

• COCO interface: Direct interface to the COCO framework, in order to make use of

all of COCO’s features, including logging and post-processing

• Shark: The Shark Machine Learning library 8 is used, which allows access to stable,

fast and tested implementations of several state-of-the-art optimisation algorithms

for both single- and multi-objective problems.

• Features for Surrogate-assisted Optimisation:

– Improved Hypercube Sampling (IHS): Hypercube Sampling strategy using

the ihs library9.

– Archive: Function evaluations can be automatically archived to collect the

data required for training a surrogate model.

– Kriging: As no suitable Kriging implementation was available in Shark, we

added one using the libgp library10.

– "Cheater" Function: With each prediction made by the Kriging model, the

true value of the search point in question is also evaluated and logged. This

way, the prediction errors of the surrogate model can be computed and used

for further analysis. Of course, the true value is not made available to the

optimisation algorithm and does not add to the number of function evaluations

counted within COCO.

– Uncertainty Logging: In addition to the true values, all predictions along with

the estimated uncertainties are logged automatically.

• Surrogate function: The experimental framework allows to specify another function,

dubbed surrogate function, within the same function suite that is made available to

the optimisation algorithm in addition to the actual function. The surrogate func-

tion can be evaluated independently from the actual function, and its evaluations

do not count as function evaluations. This feature enables imitating the common

practice of using models with different fidelities and associated computation costs

8http://image.diku.dk/shark/
9https://people.sc.fsu.edu/~jburkardt/cpp_src/ihs/ihs.html

10https://github.com/mblum/libgp

83

CHAPTER 4. APPROACH

when optimising expensive problems. The experimental framework thus also allows

benchmarking model management strategies for multi-fidelity models. In addition,

it is possible to gather information on the reliability and systematic errors of the

lower-fidelity model.

• Online convergence detection (OCD): In order to make the algorithms within the

framework as comparable as possible, and also to increase the accuracy of the

aRT measurements in COCO by ensuring multiple restarts (see section 2.2.1), we

implemented online convergence detection based on the performance statistics

used within COCO (i.e. fitness value for single-objective suites, and dominated

hypervolume for multi-objective suites). An algorithm will be deemed as converged

according to a χ2 statistical test proposed in [153], which checks the most recent

improvements over a given window of evaluations.

• Batch mode: As benchmarking a given algorithm on a given problem is independent

to its performance on other problems, running the same algorithm on different

problems at the same time is a natural and easy avenue to reduce the runtime

of the benchmark through parallelisation. We implemented a batch mode within

the framework that supports this type of parallelisation. The number of batches

can be set arbitrarily, and the different problems are spread evenly between the

batches. When the desired number of batches is set to the number of functions

multiplied by the number of available instances for a given suite, the problems

are distributed in a way, where one batch consists of a single problem (i.e. unique

function and instance) in all available dimensions. This is an attempt at evening

out the runtime for each batch, as problems with a larger search space take longer

to solve, and are allocated a larger budget of function evaluations.

A schematic depiction of the framework can be found in figure 4.7. When starting an

experiment, the optimiser is set up, as well as a function suite. The suite will then auto-

matically handle iterating through the functions contained and restarting the optimiser

as needed. The optimiser is implemented as an abstract class that aligns with the Shark

implementation. Any optimiser in the Shark library can thus be set up as an optimiser

within the framework. Several additional algorithms are also implemented, as visualised

in figure 4.8 and described in section 4.4.3. All optimisation algorithms have access

to their evaluation archive, a Kriging model and several sorting strategies, including

comparisons under uncertainty (see section 3.2.3). In addition to the convenience added

by the features listed above, they also improve the comparability of the implemented

algorithms, as all use the same baseline implementations. For the surrogate-assisted

evolutionary algorithms targeted in this thesis, this is especially relevant regarding

the implementations of sampling and modelling, as well as the underlying optimisation

algorithms.

The suite and the optimiser interact through the objective function, which is a direct

interface to the COCO framework. COCO then handles the function evaluations as

intended, either internally for the BBOB function suites, or by calling the respective

applications for Mario and TopTrumps. The implementation is however also compatible

84

4.4. EXPERIMENTAL FRAMEWORK

COCOfunc

Suite

COCO

CocoOptimiser KrigingArchive

Sort

TopTrumps

Mario

Figure 4.7: Schematic depiction of experimental framework.

Figure 4.8: Inheritance graph for CocoOptimiser

85

CHAPTER 4. APPROACH

Figure 4.9: Inheritance graph for COCOfunc

with the implementation of objective functions in Shark. This allows running any o the

existing algorithm in Shark on COCO benchmarks. See the inheritance graph in figure

4.9 for more details. In the graph, COCOfunc_m and COCOfunc_s are direct interfaces

to COCO. On the other hand, UncertainFunc_m and UncertainFunc_s implement the

model prediction, surrogate functions and several logging features. More details can be

found in section 4.4.2.

In addition to the usual COCO postprocessing of the logs, we have added additional

features described in section 4.4.4.

4.4.2 Uncertain Functions

As depicted in figure 4.7, evaluations of the fitness functions are handled by the COCO

framework, which processes them and returns the result (COCO function). These evalu-

ations are also automatically logged by COCO, as two COCO observers are tied to them.

At the end of a run, the recorded data is written to files in a format suitable for the

COCO post-processing features (see section 2.2.2). However, there are specific cases

where calls are made to the COCO framework, but the evaluations are not tracked by a

COCO observer. These cases are detailed below.

Uncertain Functions generally use a surrogate model and previously archived evalu-

ations to compute an output value. They therefore are not counted towards the perform-

ance of the algorithm on the true fitness function. However, if configured accordingly,

they can return true evaluations in certain cases, for example if there are not enough

evaluations to train a model from. In these cases, evaluations are delegated to the

corresponding COCO function, and therefore counted via the COCO framework. These

evaluations are of course also added to the internal archive.

However, in order to be able to assess the errors throughout the runtime of an

algorithm with the framework, the true values need to be computed and logged alongside

86

4.4. EXPERIMENTAL FRAMEWORK

the predicted values and their uncertainties. Therefore, for each evaluation, Uncertain

Functions make a call to a second instance of COCO Function, which is not tracked by

an observer. The resulting values are then logged, but not accessible to the algorithm.

Uncertain functions furthermore have a feature intended to enable the analysis of

Data Generation bias. Data Generation bias can occur when AI playthrough behaviour

is used as a basis for the evaluation of game content for human players. The intent of

this approach is to include additional information on the problem, in order to reduce the

number of expensive function evaluations required. However, this information can also

be misleading, which is why it is important to analyse these specific errors within the

experimental framework.

As it is impractical to include live human feedback in a benchmark, this behaviour

can be simulated by indicating a specific function from the same function suite that

can be used as a surrogate. Based on this surrogate function, a prediction model can

then be computed that is not just based on the location of the sample, as is the default

for surrogate-assisted EAs. Instead, a prediction model is computed that takes the

surrogate function value (or both, surrogate value and location) as an input. In practice,

the surrogate function would be chosen to be appropriately cheap to compute. Therefore,

evaluations of the surrogate function are not recorded via the COCO framework.

The prediction model implemented is a Kriging model and trained during runtime,

similar to the regular location-based model. However, the only requirement for the

model is that it provides both a prediction and an error estimate to enable comparisons

under uncertainty. Therefore, other modelling techniques can also be used, as well as

pre-computed models.

4.4.3 Algorithms

Despite the efforts made in the implementation, the algorithms mentioned in the related

work section 3.2 are still not comparable directly, as the original papers and correspond-

ing implementations all contain specificities that the others do not. The most obvious

difference is the usage of different underlying optimisation algorithms: The original EGO

uses a branch-and-bound algorithm, while pre-screening uses the SMS-EMOA and GP-

DEMO uses the DEMO algorithm. There are a number of additional differences, such as

whether the algorithm was originally intended for single- or multi-objective optimisation.

Even more differences become apparent when going into more detail, such as the fact

that ParEGO uses scalarisation to handle multi-objective problems, where pre-screening

uses an SMS-EMOA and therefore non-dominated sorting and hypervolume to guide the

selection. The algorithms also differ in terms of their strategies to select samples to train

the surrogate models.

As a result, a reliable comparison of the algorithms would require an extensive

hyperparameter optimisation, potentially even specific to each function suite. Such a

comparison could however also only rely on the performance exclusively and not take

into account more in-depth statistics e.g. on the uncertainty predictions made or the

percentage of offspring that improve the previous solution. Furthermore, this thesis

87

CHAPTER 4. APPROACH

is targeted at uncertainty handling, which should thus be evaluated independently of

which surrogate model or which evolutionary algorithm is used.

Therefore, instead of exact implementations of the algorithm, the concepts introduced

in the respective papers are implemented. Based on our analysis described in section 3.2,

this results in three basic concepts that are available in the experimental framework:

• Iterative Sampling: Implemented according to figure 3.2. Covers publications

mentioned in section 3.2.1, among them EGO and ParEGO.

• Pre-Screening: Implemented according to figure 3.4. Covers publications mentioned

in section 3.2.2.

• Lazy Evaluation: Implemented according to figure 3.5. Covers publications men-

tioned in section 3.2.3, among them GP-DEMO, as well as SAPEO, the algorithm

proposed in section 4.2.

Because of the required abstraction, however, some details of the algorithms are

not captured fully. This is critical when it comes to functionalities that all algorithms

require, such as a strategy to select samples for training the surrogate model. This leads

to a conflict of interest, as choosing one of the proposed solutions (e.g. using the best

individuals observed as a sample), would unfairly favour the corresponding algorithm

(GP-DEMO in this case). However, implementing different sampling strategies for each

algorithm again reduces the comparability of the algorithms. A similar problem occurs for

common parameters, such as the number of samples selected for training the model. To

solve this problem, we implemented all of the proposed solutions within the experimental

framework, but without a tie to the original algorithm. This way, all variations can be

used independent of which one of the implemented concepts (see list above) is selected.

This resulted in the following list of configurable parameters, applicable to all, or a

subset, of the concepts.

• Uncertainty Method: Specifies what value is returned when an evaluation is based

on the surrogate model. Available options are:

– Mean: The predicted value by the Kriging model, i.e. the mean prediction.

– PoI: Probability of improvement, see [37] for more details

– ExI: Expected improvement, see [37] for more details

– LB: Lower bound, i.e. the predicted value minus 2 time the predicted standard

deviation, see [37] for more details and justification

• Sampling Method: Specifies the method used to select k training samples for the

surrogate model

– fit: Select the k fittest individuals from the archive. For multi-objective prob-

lems, these are the k individuals that would be selected from the archive by

non-dominated sorting combined with hypervolume contribution as a second-

ary criterion

88

4.4. EXPERIMENTAL FRAMEWORK

– recent: The k individuals added to the archive most recently. If the algorithms

are able to make continuous improvements, this strategy selects a similar

sample as "fit", but is a significantly faster to compute.

– close: The k-nearest individuals in the archive, computed based on which

point in search space is to be predicted

– random: k random points from the archive

– all: All point in the archive

• Sample Size: Configurable as required. Largest sample size was used for ParEGO,

with 11d−1 samples for the initial design of experiments, where d is the search

space dimension.

• Transformation: In some cases, transforming the fitness function can improve the

accuracy of the surrogate model

– None: No transformation done - t(f (x)) = f (x)
– Log: Natural logarithm - t(f (x)) = ln(f (x))
– Inverse: Inverse function value - t(f (x)) = 1

− f (x)

• Surrogate Data: Usually, the input for the surrogate model is the location of the

point in search space. When a surrogate function is used (see section 4.4.2), this

evaluation result of the surrogate function for that point is available as well:

– Loc: The location of the point in search space (Default case)

– Surr: The objective value(s) of the point according to the surrogate function

– Both: Concatenation of both of the above options

• Optimisation Algorithm: We are using three popular algorithms that are imple-

mented in Shark. Other algorithms available in Shark could easily be added.

– CMA-ES http://image.diku.dk/shark/doxygen_pages/html/classshark_

1_1_c_m_a.html

– MO-CMA-ES (with Hypervolume Indicator) http://image.diku.dk/shark/

doxygen_pages/html/classshark_1_1_indicator_based_m_o_c_m_a.html

– SMS-EMOA http://image.diku.dk/shark/doxygen_pages/html/classshark_

1_1_s_m_s_e_m_o_a.html

• Algorithm Budget: Most papers included a fixed budget for evaluations of the

evolutionary algorithm. However, as the optimal parameter here has a strong

dependency to the problem, we decided to enable online convergence detection

(see feature list in section 4.4.1) for all evolutionary algorithms used. This has the

added benefit of allowing automatic restarts of the complete algorithm in case of

early convergence.

89

CHAPTER 4. APPROACH

4.4.4 Post-Processing

For the most part, the experimental framework relies on the post-processing capabilities

of the COCO framework, which provides statistical tests and plots regarding the per-

formance of the tested algorithms. However, the features added for the experimental

framework are naturally not included. We therefore developed scripts that are able to

process the information logged from evaluations of Uncertain Functions (see above).

If Uncertain Functions functions are used, there are three types of logs available:

• fevals: Tracks all evaluations of the objective function (x and y values)

• krig_pred: Tracks all evaluations of both the objective function and the Uncertain

Function, along with predicted value, predicted uncertainty and cross-validation

value

• EAlog: Tracks all individuals present in the population after each iteration, along

with additional information on each individual, such as x and y values, predicted

value and uncertainty, as well as cross-validation value. It also records the indi-

vidual’s rank according to the algorithm in questions, and whether it is selected for

the survival. In addition, it also computes the true rank of the individual within

the population based on the correct fitness value, as well as whether it would have

been selected based on it.

4.4.4.1 Selection Error Plots

While there are numerous interesting plots that can be generated based on the data

collected, we were especially interested on how many correct decisions are made during

the runtime of an algorithm using lazy evaluation. This question was investigated

before with small-scale simulations in [149], as well as theoretically in section 4.2.3.2. We

implemented two types of plots that visualise the collected information on selection errors.

The first one is a bar plot that depicts the frequency correct and incorrect selections for a

given function (averaged over all instances). In order to be able to put these frequencies

into context, the number of rankings that were made based on predictions are added in

the last bar as well. An example can be found in figure 4.10 on the left. The second plots

the number of iterations against the number of correctly selected individuals. An example

plot is included in figure 4.10 on the right. Each black line represents an optimisation

run on a separate instance. The additional blue line marks 1 correctly selected individual

per iteration, while the red line represents behaviour without any selection errors.

We also implemented an overview plot, which plots the frequencies in the bar plot for

each function.

4.4.4.2 SAPEOreader

An additional post-processing feature is targeted at assessing further the behaviour

of algorithms that use lazy evaluation approaches based around comparisons under

uncertainty (see section 4.2.1), namely GP-DEMO and SAPEO. This is because the

90

4.4. EXPERIMENTAL FRAMEWORK

true neg false neg false pos true pos uncertain

fr
e
q
u
e
n
c
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 500 1000 1500 2000

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

iteration

c
o
rr

e
c
tl
y
 s

e
le

c
te

d
 i
n
d
iv

id
u
a
ls

Figure 4.10: Example for selection error plots. Left: Barplot of selection error frequencies.

Right: Number of correctly selected individuals over runtime.

report on anytime performance via the COCO framework only considers actual function

evaluations. However, both of the algorithms mentioned will delay evaluating very

promising solutions for as long as individuals can be selected confidently using the

comparisons under uncertainty. At the same time, both algorithms evaluate the final

population as their last step before being stopped. Therefore, to accurately record the

performance after a given amount of function evaluations, all remaining uncertain

individuals would need to be evaluated.

Thus, assume one of these algorithms is stopped after k evaluations and has three

remaining uncertain individuals. These evaluations would then be executed, thus re-

cording their values for evaluations k+1,k+2 and k+3. However, if the algorithm is

stopped after k+1 evaluations instead, whichever individual is evaluated first in the

next iteration would be recorded. Therefore, in this case, there are 2 equally valid values

that could be recorded for k+1 function evaluations. The number of potential candidates

of course is not limited to two, but can be significantly higher depending on the number

of individuals in a population that are not evaluated with the actual fitness function.

In order to assess how much this issue affects performance, we implemented another

post-processing feature within the experimental framework called SAPEOreader. It

records all potential evaluations for each number of function evaluations by reading the

EAlog files, and then selects the solution with the best fitness value. We then simulate an

algorithm run with COCO, where for each evaluation, the previously selected solutions

are evaluated. This allows us to capture the performance of an algorithm with lazy

evaluation without the issues potentially introduced by the COCO logging approach.

91

CHAPTER 4. APPROACH

Fastest − dim 2

1e1 1e0 1e−1 1e−2 1e−3 1e−5 1e−7

 0

10

0

6

 0

11

 0

12

 0

11

 0

13

 0

12

4
,
1
0

5
,
6

0
,
2

1
,
3

9
8

7

Not Reached − dim 2

1e1 1e0 1e−1 1e−2 1e−3 1e−5 1e−7

0

2

 0

11

 0

17

 1

21

 2

21

 5

23

11

24

0
1
,
2

3
,
6

5
4
,
7
,
8
,
1
0

Figure 4.11: Example for aRT table plots. Algorithms are depicted as colour-coded lines.

Left: Number of functions where algorithm was fastest to reach target as indicated on

x-axis. Right: Number of functions where algorithm did not reach indicated target.

4.4.4.3 aRT Table Plots

In addition to the uncertainty-related post-processing features, we also added visualisa-

tions for the statistical tests included in COCO post-processing. This enables a digestible

and interpretable representation of all the information produced (cf. section 2.2.2). As

mentioned in this section, the tables list the aRT values for all algorithms and all func-

tions and selected targets. This of course allows a more precise assessment of algorithm

performance when compared with the ECDF plots.

However, the information does not allow evaluating overall performance over multiple

functions. For this reason, we have introduced plots that depict an aggregation of the

information recorded in the tables. Two of the most interesting points of information is

(1) whether a target was reached at all, and (2), which algorithm was fastest to reach it

(i.e. the algorithm with the lowest aRT). We process this information from the tables and

depict it with parallel plots (example in figure 4.11). Each coloured each line represents

one algorithm recorded with COCO. The plot on the left depicts the number of functions

where the algorithm in question was able to reach the respective targets the fastest. The

plot on the right visualises the number of functions where the algorithm was not able to

reach the respective target at all.

92

C
H

A
P

T
E

R

5
EVALUATION

In section 1.2, we developed hypotheses regarding three main topics. In order to in-

vestigate all of these claims, we conducted a series of experiments which are described

in section 5.1. We present a detailed analysis of the results in the following sections,

sorted based on the three hypotheses. The claims translate to the following points of

investigation, which are targeted in separate sections as indicated below.

H1 General performance of SAPEO on artificial functions (see section 5.2)

H2 Suitability of the game benchmark GBEA (see section 5.3)

H3 Performance of SAPEO on GBEA (see section 5.4)

5.1 Experiments

We ran several sets of experiments using the experimental framework as described

in section 4.4. We ran 5 sets of experiments, where we tested several optimisation

algorithms on the following testbeds.

E1 bbob suite (single-objective, see section 2.2.4)

E2 bbob-biobj suite (bi-objective, see section 2.2.5)

E3 rw-mario-gan suite (single-objective, see section 4.3.3.2)

E4 rw-top-trumps-biobj suite (bi-objective, see section 4.3.3.1)

E5 rw-mario-gan-offset suite (single-objective)

The function suites have all been described previously in the sections referenced,

except for the last one. This function suite was created using the Surrogate Function

feature as described in section 4.4.1. This means that, during the optimisation process,

additional information is available as computed by a surrogate function. The pairs of

objective functions and their respective surrogate functions are listed in table 5.1. Please

refer to section 4.3.3.2 and specifically table 4.7 for more details on the functions.

The objective functions in these pairings are all based on AI simulations, as these

can be assumed to be more computationally expensive. The first 6 functions all provide

information based on an encoding-based surrogate function. Function K, i.e. the progress

the AI is able to make, is paired with leniency (E), which is intended as a difficulty

93

CHAPTER 5. EVALUATION

surrogate function objective function

fid id description sample AI id description sample AI

19 13 leniency (E) I - 19 progress (K) I A*

20 14 leniency (E) II - 20 progress (K) II A*

21 15 leniency (E) I+III - 21 progress (K) I+III A*

25 16 density (F) I - 25 airTime (I) I A*

26 17 density (F) II - 26 airTime (I) II A*

27 18 density (F) I+III - 27 airTime (I) I+III A*

31 19 progress (G) I A* 31 progress (K) I Scared

32 20 progress (G) II A* 32 progress (K) II Scared

33 21 progress (G) I+III A* 33 progress (K) I+III Scared

34 22 basicFitness (H) I A* 34 basicFitness (L) I Scared

35 23 basicFitness (H) II A* 35 basicFitness (L) II Scared

36 24 basicFitness (H) I+III A* 36 basicFitness (L) I+III Scared

37 25 airTime (I) I A* 37 airTime (M) I Scared

38 26 airTime (I) II A* 38 airTime (M) II Scared

39 27 airTime (I) I+III A* 39 airTime (M) I+III Scared

40 28 timeTaken (J) I A* 40 timeTaken (N) I Scared

41 29 timeTaken (J) II A* 41 timeTaken (N) II Scared

42 30 timeTaken (J) I+III A* 42 timeTaken (N) I+III Scared

Table 5.1: Surrogate and objective function pairings in suite rw-mario-gan-offset. Refer

to section 4.3.3.2 and table 4.7 for more details on the functions.

measure. In case of airTime (function I), density (F) is used as a surrogate in order to

express the frequency of obstacles in the level.

The remaining functions all correspond to the same fitness measure, but are computed

based on a simulation with different AIs. The intention in this case is to imitate the case

where information from AI playthroughs is used as a surrogate for human behaviour.

Of course, this is not a completely accurate model of the issue, as the objective function

is still based on an AI simulation. However, as the behaviour of ScaredAgent is much

more human-like than that of the A*, we believe that these experiments will still provide

interesting insights.

All of the experiments described in the following sections use some common para-

meters, which are listed in table 5.2. For each of the experiments, there are also several

modifiable settings, which are explained in table 5.3.

The results for all experiments are presented using a series of plots, which have been

described previously in this thesis. For more details, please refer to the sections and

example figures as indicated below.

• Runtime distribution (ECDF) plots (see section 2.2.2 and example figure 2.2)

• Selection error plots (see section 4.4.4.1 and example figure 4.10)

• aRT table plots (see section 4.4.4.3 and example figure 4.11)

94

5.2. EXPERIMENTS ON ARTIFICIAL FUNCTIONS

name value description comment

krigSize 11d−1 sample size for local Kri-

ging models

largest value observed in related

work

histSize 1 k in k-fold cross-

validation of model

instead of general fit, we are only

trying to estimate this value locally

i 1000 duplication factor see section 4.4.1

α 0.05 significance level for con-

fidence intervals

rs 10000 granularity for random

search algorithms

number of different options in dis-

crete distribution per dimension

cs 16 window considered for

OCD (single-objective)

see section 4.4.1

cm 160 window considered for

OCD (multi-objective)

see section 4.4.1

Table 5.2: Common parameters for all experiments

name description

id unique experiment id for reference

EA underlying evolutionary algorithms for surrogate-assisted EAs (see

section 4.4.3)

ht cut-off value for model validation (see section 4.2.2)

um Uncertainty Method: Value returned when evaluation is based on

surrogate model (see section 4.4.3)

sm Sampling Method: Method used to select training samples (see

section 4.4.3)

Table 5.3: Modifiable parameters in experiments

The COCO post-processing application performs automatic consistency checks, which

remove any questionable results from the generated plots. Incomplete optimisation runs

are removed, for example. This feature thus explains why in some rare cases, specific

algorithms on specific instances are not depicted in the corresponding generated plots.

5.2 Experiments on Artificial Functions

In the first set of experiments, we investigate the performance of several algorithms

on existing benchmarks consisting of artificial functions. We test the single-objective

versions as well as the multi-objective ones of these algorithms using the bbob and

bbob-biobj suites. An overview of the experiments run can be found in tables 5.4 and 5.5.

Both sets of experiments contain random search in order to obtain a baseline per-

formance (experiment ids 9 and 20). Additionally, each of the evolutionary algorithms

selected for the experimental framework are run in their stand-alone versions in order to

95

CHAPTER 5. EVALUATION

id algorithm EA ht um sm note

0 CMA-ES - - - - -

1 SAPEO CMA-ES 3 mean close -

2 SAPEO CMA-ES 5 mean close -

3 SAPEO CMA-ES 3 mean fit GP-DEMO

4 SAPEO CMA-ES ∞ mean close without model validation

5 prescreening CMA-ES ∞ mean close -

6 prescreening CMA-ES ∞ LB close -

7 EGO CMA-ES ∞ PoI fit -

8 EGO CMA-ES ∞ ExI fit -

9 RS - - - - random search

10 SAPEO CMA-ES 3 mean fit transformation: inverse

Table 5.4: Experiments in set E1 (bbob suite)

id algorithm EA ht um sm note

11 SMS-EMOA - - - - -

12 SAPEO SMS-EMOA 3 mean close -

13 SAPEO SMS-EMOA 5 mean close -

14 SAPEO SMS-EMOA 3 mean fit GP-DEMO

15 SAPEO SMS-EMOA ∞ mean close without model validation

16 prescreening SMS-EMOA ∞ mean close -

17 prescreening SMS-EMOA ∞ LB close -

18 EGO SMS-EMOA ∞ PoI fit -

19 EGO SMS-EMOA ∞ ExI fit -

20 RS - - - - random search

21 SAPEO SMS-EMOA 3 mean fit transformation: inverse

22 MOCMA - - - - -

23 SAPEO MOCMA 3 mean close -

24 SAPEO MOCMA 5 mean close -

25 SAPEO MOCMA 3 mean fit GP-DEMO

26 SAPEO MOCMA ∞ mean close without model validation

27 prescreening MOCMA ∞ mean close -

28 prescreening MOCMA ∞ LB close -

29 EGO MOCMA ∞ PoI fit -

30 EGO MOCMA ∞ ExI fit -

31 SAPEO MOCMA 3 mean fit transformation: inverse

Table 5.5: Experiments in set E2 (bbob-biobj suite)

96

5.2. EXPERIMENTS ON ARTIFICIAL FUNCTIONS

be able to analyse the effects of adding a surrogate model. This means we ran CMA-ES

in set E1 (experiment id 0) and SMS-EMOA and MOCMA in set E2 (experiment ids 11

and 22).

The experiments on the BBOB functions in this case serve as a baseline performance

comparison and allow selecting the most viable algorithms for further investigation with

the GBEA. We thus also ran 9 other types of experiments on surrogate management

strategies for each of the evolutionary algorithms listed above. They are described in

more detail in the following list:

1;12;23 Default SAPEO as described in section 4.2

2;13;24 SAPEO, but with more lenient model validation (ht=5 instead of ht=3)

3;14;25 SAPEO, but sampling the k fittest individuals instead of the k closest, as sug-

gested in GP-DEMO 3.2.3

4;15;26 SAPEO, but without any model validation

5;16;27 Default pre-screening as proposed in [37] and described in section 3.2.2

6;17;28 Pre-screening version with lower bounds instead of mean predictions (performed

well in [37])

7;18;29 Popular EGO version with probability of improvement instead of expected

improvement (see section 3.2.1) and sampling of the k fittest individuals.1

8;19,30 Most common EGO version with expected improvement and sampling of the k

fittest individuals.

10;21;31 Default SAPEO, but with transformation of fitness functions (see section 4.4.3)

5.2.1 Single-Objective Results (bbob)

In the following, we present a detailed analysis of the performance results on the bbob

function suite. We first investigate aggregated performance measures in section 5.2.1.1

and then investigate identified observed patterns in more detail by considering selected

functions separately in section 5.2.1.2. Following this, in an attempt to explain the

observed behaviour patterns, we perform an in-depth analysis of SAPEO in section

5.2.1.3, using some of the additional features introduced in the experimental framework

(see section 4.4).

1While this is not true for the original publication of EGO, many popular versions of EGO use

global models, i.e. all available samples are used to train the model. This has a noticeable effect on the

computational costs, especially with higher budgets. Additionally, it makes the comparison with algorithms

that only use local models difficult. As the function evaluations in the benchmarks are relatively cheap,

even for the GBEA, using excessively many resources for model computation seemed unreasonable. We

thus choose to use local models within EGO as well. However, we opt for relatively large sample sizes as

suggested in [73] in order to reflect EGO behaviour as closely as possible.

97

CHAPTER 5. EVALUATION

5.2.1.1 Aggregated overall performance

Runtime distribution plots A summary of all experiments in set E1, i.e. the aggreg-

ated aRT from all 24 functions, can be found in figure 5.1. As can be seen in the plots,

the stand-alone CMA-ES (experiment id 0) slightly outperforms all other algorithms for

higher budgets. However, especially for the lower-dimensional problems, we see other

algorithms perform better or on par until approximately 100 function evaluations. This

observation is very obvious for both versions of EGO (experiment ids 7 and 8). Based

on the bootstrapped values, it seems that the EGO algorithm reaches precision targets

comparably fast, but seldom reaches higher targets. However, the performance of random

search (experiment 9) is very similar to that of EGO across all tested dimensions. EGO

should probably be rerun with full global models in order to assess how the decision to

only allow relatively small models for each of the algorithms affected the performance.

The SAPEO with fitness transformations (experiment id 10) and the SAPEO without

model validation (experiment id 4) also perform consistently worse than the remaining

algorithms, but also slightly better than EGO and random search. This suggests that a

well-fitted model is crucial for SAPEO.

Both versions of pre-screening (experiment ids 5 and 6) perform similar to each other

across all dimensions. For dimension 2, pre-screening reaches slightly more targets after

10 function evaluations than most other algorithms, but still less than random search

and both EGO versions. The algorithm starts performing obviously better than EGO,

random search and the weaker SAPEO versions mentioned above starting after about

100 function evaluations. At 500 function evaluations, it does however not perform as

well as the stronger SAPEO versions (experiment ids 1−3) and CMA-ES (experiment id

0). A similar behaviour pattern can be observed for all other dimensions. However, for

dimensions 3 and 5, pre-screening seems to have been able to reach a relatively higher

number of high-precision targets, resulting in a higher aRT than some SAPEO runs for

large budgets.

The default SAPEO version, along with SAPEO with less strict model validation and

the SAPEO version inspired by GP-DEMO are consistently performing well across all

dimensions, although mostly slightly worse than CMA-ES.

Based on the aggregated results it thus seems that surrogate-assisted algorithms

can not really improve the overall performance of CMA-ES, independent on which model

management strategy is chosen. For low budgets, where EGO is performing comparably

well, random search offers comparable results. SAPEO with verified models is likely

performing very similarly to the CMA-ES for small budgets, as at this point, not enough

points have been sampled to train a verified model. While pre-screening is not performing

model validation, the less fit models after only a few function evaluations will create

a less effective bias for selection, which evidently does affect performance. It also has

to be noted that none of the algorithms is close to the aggregated best performances

observed in 2009. Due to the no free lunch theorem, this observation is not surprising

when analysing aggregated results over all functions in the benchmark.

98

5.2. EXPERIMENTS ON ARTIFICIAL FUNCTIONS

2D 3D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

7

9

10

4

6

5

2

1

3

0

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

9

7

4

10

2

1

5

6

3

0

best 2009bbob f1-f24, 3-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

5D 10D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

7

9

8

4

10

3

2

1

6

5

0

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

7

9

10

4

5

6

3

2

1

0

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

Figure 5.1: E1 runtime distribution plots aggregated over all bbob functions ○ CMA-ES

(0), ♢ SAPEO (1), ▽ SAPEO - less validation (2), 9 SAPEO - GP-DEMO (3), △ SAPEO -

no validation (4), D pre-screening (5), * pre-screening - lower bound (6), + EGO - PoI (7),

◇ EGO - ExI (8), ⊲ Random Search (9), ⋆ SAPEO - transformation (10)

aRT Table Plots As the previous observations were solely based on the ECDF plots

obtained using the COCO post-processing features, in the following, we want to verify

whether these observations are also reflected in the aRT values computed by COCO (see

section 2.2.2). In order to do that, we use parallel plots as described in section 4.4.4.3.

The resulting plots can be found in figure 5.2.

The Fastest aRT table plot for dimension 2 depicts for each algorithm for how many

functions they were able to reach a given target the fastest. In the plot, we see a similar

pattern reflected as described above. The EGO algorithms (experiment ids 7 and 8) reach

the lowest target 1e1 quickest in most of the experiments. We also clearly see the good

performance of the CMA-ES (experiment id 0), especially starting from target 1e−1.

CMA-ES reaches target 1e−7 the quickest for 12 functions, i.e. half the time. However,

we also see that pre-screening and some versions of SAPEO do achieve higher targets

99

CHAPTER 5. EVALUATION

Fastest − dim 2

1e1 1e0 1e−1 1e−2 1e−3 1e−5 1e−7

 0

10

0

6

 0

11

 0

12

 0

11

 0

13

 0

12

4
,
1
0

5
,
6

0
,
2

1
,
3

9
8

7

Not Reached − dim 2

1e1 1e0 1e−1 1e−2 1e−3 1e−5 1e−7

0

2

 0

11

 0

17

 1

21

 2

21

 5

23

11

24

0
1
,
2

3
,
6

5
4
,
7
,
8
,
1
0

Fastest − dim 3

1e1 1e0 1e−1 1e−2 1e−3 1e−5 1e−7

0

5

0

8

 0

12

 0

14

 0

13

 0

11

0

2

1
0

3
,
5

4
,
6

8
,
9

2
,
7

0
,
1

Not Reached − dim 3

1e1 1e0 1e−1 1e−2 1e−3 1e−5 1e−7

0

7

 0

15

 2

21

 2

23

 4

23

 8

24

19

24

0
,
2

1
,
3
,
6

5
4
,
7
,
8
,
1
0

9

Figure 5.2: aRT table Plots for E1, dimensions 2 and 3. ● CMA-ES (0), ● SAPEO (1),● SAPEO - less validation (2), ● SAPEO - GP-DEMO (3), ● SAPEO - no validation (4),● pre-screening (5), ● pre-screening - lower bound (6), ● EGO - PoI (7), ● EGO - ExI (8),● Random Search (9), ● SAPEO - transformation (10)

100

5.2. EXPERIMENTS ON ARTIFICIAL FUNCTIONS

the quickest for some functions. Especially interesting is target 1e0, which is reached

the quickest 6 times by random search (experiment id 9), as well as the default SAPEO

(experiment id 1).

From the plot on how many times target were not reached, we can also clearly see

the lack of robustness of some of the algorithms. As expected, the number of missed

targets for random search (experiment id 9) increases rapidly the higher the target. Both

EGO algorithms (experiment ids 7 and 8) also rarely reach higher targets, as do the

SAPEO with function transformation (experiment id 10) and the SAPEO without model

validation (experiment id 4). As assumed based on the ECDF plots, we also observe that

the two pre-screening versions (experiments 5 and 6) do not reach higher targets as often

as the more successful SAPEO versions (experiment ids 1−3) and CMA-ES (experiment

id 0).

We thus see similar behaviour based on the parallel plots for dimension 2 as described

above. For dimension 3 we see comparable behaviour in the aRT table plots with only a

few exceptions. Target 1− e7 is rarely reached by any algorithm, making it seem that

the EGO algorithms are suddenly more successful than they are (in the plot on bottom

left). After the CMA-ES, the default SAPEO again achieves good performance for lower

targets (until 1e−1), but there is no pronounced spike (cf. plots for dimension 2). Random

search also performs worse than in dimension 2, which is expected. Both EGO versions

perform better for lower targets, but outperform other functions less often in dimension

3. For dimensions 5 and 10, we observe smaller absolute differences in the aRT values.

However, the parallel plots make them appear larger due to solely focusing on which

algorithm reached the target first, and additionally because of the rescaling along the

y-axis. As this is misleading, we do not include the corresponding plots here.

5.2.1.2 Performance on Selected Functions

In order to further analyse the results, we look at separate functions in the following.

We discuss interesting patterns and observations, especially ones that depart from the

overall behaviour described in the previous section. Looking at the single function plots,

we see the overall trends as described above confirmed in terms of general performance

differences. We also see reflected that there are some functions where different algorithms

perform best, although the stand-alone CMA-ES (experiment id 0) seems generally most

successful. In many functions, as was suggested based on the aggregated runtime

distribution plots in figure 5.1, we see two groups of algorithms. EGO (experiment ids 7

and 8), random search (experiment id 9), SAPEO with transformation (experiment id

10) and SAPEO without model validation (experiment id 4) form a group with generally

lower performance than the remaining algorithms. The performance within these groups

tends to not differ much. An example with slightly larger performance differences can be

found in the top row in figure 5.3, which plots the performance on the sphere function in

2D and 5D.

There are, however, some functions where only a small number of algorithms was

significantly more successful than the remaining ones. Examples can be found in the

second and third row of plots in figure 5.3. The last row shows instances where the

101

CHAPTER 5. EVALUATION

Sphere 2D Sphere 5D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

9

10

4

7

1

2

0

5

6

3

best 2009bbob f1, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

1 Sphere

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

7

9

10

4

2

1

5

6

0

3

best 2009bbob f1, 10-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

1 Sphere

Schwefel xsin(x) 2D Skew Rastrigin-Bueche separ 3D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

7

9

0

10

4

6

2

1

5

3

best 2009bbob f20, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

20 Schwefel x*sin(x)

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

7

9

4

10

1

5

0

6

3

2

best 2009bbob f4, 3-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

4 Skew Rastrigin-Bueche separ

Lunacek bi-Rastrigin 2D Katsuuras 5D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

7

9

8

10

2

3

4

1

0

6

5

best 2009bbob f24, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

24 Lunacek bi-Rastrigin

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

4

7

10

9

0

1

6

2

5

3

best 2009bbob f23, 5-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

23 Katsuuras

Figure 5.3: E1 runtime distribution plots on selected functions ○ CMA-ES (0), ♢ SAPEO

(1), ▽ SAPEO - less validation (2), 9 SAPEO - GP-DEMO (3), △ SAPEO - no validation

(4), D pre-screening (5), * pre-screening - lower bound (6), + EGO - PoI (7), ◇ EGO - ExI

(8), ⊲ Random Search (9), ⋆ SAPEO - transformation (10)

102

5.2. EXPERIMENTS ON ARTIFICIAL FUNCTIONS

best2009 performance was improved notably. No obvious patterns in scaling behaviour

were detected.

Unfortunately, there did not seem to be any obvious pattern of performances regarding

the different function groups defined in COCO, as described in section 2.2.4. In order

to look for potentially existing patterns, we take a closer look at a few functions that

are contained in the benchmark in multiple versions. It would be reasonable to assume

that functions with more complex landscapes could benefit more from surrogate models

in cases where the complexity is due to deceptive characteristics. However, it is also

true that highly multi-modal landscapes are difficult to model with local models and

small sample sizes. In the following, we thus investigate the influence of some of the

characteristics considered in the benchmark, namely separability and condition number

(i.e. the sensitivity to small changes).

To investigate the influence of separability, we compare two sets of separable functions

(Ellipsoid and Rastrigin) with their non-separable counterparts. See figure 5.4, rows 1

and 2 for the corresponding plots. When comparing the results on the Ellipsoid functions,

we see similar overall patterns. However, there are some striking differences. The

performance of pre-screening with lower bounds (experiment id 6) drops significantly

for the non-separable Ellipsoid and exhibits a similar performance as pre-screening

with mean predictions (experiment id 5). This seems to indicate that the uncertainty

predictions for the separable Ellipsoid were more reliable and thus rewarded the more

optimistic behaviour of selecting for individuals with minimal lower bounds of their

fitness predictions. This same behaviour can not be seen when comparing Rastrigin with

its separable version, as both pre-screening algorithms consistently perform similarly.

SAPEO performance seems to be better in general for non-separable functions. This

might be due to the choice in the Kriging kernel, which does not assume separability.

We also observe interesting behaviour patterns when comparing the successful SAPEO

(experiment ids 1−3) versions with each other. The performance of the version with

less strict model validation actually increases when the function is not separable for the

Ellipsoid function. Meanwhile, the ranking between the default SAPEO (experiment id

1) and the SAPEO inspired by GP-DEMO (experiment id 3) seems to be similar in both

versions. For Rastrigin, als three versions of SAPEO exhibit similar performances.

It appears that for the separable Rastrigin function, it pays off to select the samples

for Kriging according to fitness instead of locality, as pre-screening (experiment ids 7 and

8), which has fitness-based selection, and SAPEO inspired by GP-DEMO (experiment

id 3) perform well. This pattern is less pronounced for the non-separable version of

Rastrigin.

To investigate the influence of the condition number, we compare Schaffer F7 with

condition 10 to Schaffer F7 with condition 1000, which are both contained in bbob. The

results are depicted in figure 5.4, row 3. For the Schaffer F7 function with condition

1000, we see a stark performance drop for many algorithms that use fitness-based

sample selection methods, namely pre-screening (experiment ids 7 and 8) and SAPEO

inspired by GP-DEMO (experiment id 3). The higher sensitivity resulting from the higher

condition number seems require a model with higher accuracy in order to perform well.

The performances of the default SAPEO with stricter model validation (experiment id 1)

103

CHAPTER 5. EVALUATION

Ellipsoid separable 2D Ellipsoid 2D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

4

10

9

7

5

6

2

3

1

0

best 2009bbob f2, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

2 Ellipsoid separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

7

4

10

9

6

5

3

1

0

2

best 2009bbob f10, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

10 Ellipsoid

Rastrigin separable 2D Rastrigin 2D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

9

7

4

10

1

2

0

3

5

6

best 2009bbob f3, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

3 Rastrigin separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

7

9

4

10

3

2

1

0

6

5

best 2009bbob f15, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

15 Rastrigin

Schaffer F7, condition 10 2D Schaffer F7, condition 1000 2D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

7

9

10

4

2

3

1

0

5

6

best 2009bbob f17, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

17 Schaffer F7, condition 10

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

7

4

9

10

5

6

3

2

0

1

best 2009bbob f18, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

18 Schaffer F7, condition 1000

Figure 5.4: E1 runtime distribution plots on selected functions ○ CMA-ES (0), ♢ SAPEO

(1), ▽ SAPEO - less validation (2), 9 SAPEO - GP-DEMO (3), △ SAPEO - no validation

(4), D pre-screening (5), * pre-screening - lower bound (6), + EGO - PoI (7), ◇ EGO - ExI

(8), ⊲ Random Search (9), ⋆ SAPEO - transformation (10)

104

5.2. EXPERIMENTS ON ARTIFICIAL FUNCTIONS

as well as the stand-alone CMA-ES (experiment id 0) are barely affected by the higher

condition number, whereas we see another drop for the SAPEO with less strict model

validation (experiment id 2). However, this algorithm did also perform significantly worse

for the Schaffer F7 with lower condition number.

5.2.1.3 Analysis of SAPEO Variants

In order to be able to assess the success of SAPEO as proposed in this thesis (see

section 4.2), and especially regarding the modifications made when compared to previous

publications in [145, 149], we compare different SAPEO variants in the following.

SAPEOreader However, before we conduct a more in-depth analysis, we check how

influential the COCO logging behaviour is on the performance of SAPEO. In other words,

would SAPEO performance be improved if the COCO framework allowed recommending

solutions that would capture the best predicted solution, instead of only recording

evaluated solutions. In order to do this, we use the SAPEOreader feature as described in

section 4.4.4.2. The resulting simulated runs are named like the original experiments,

but with an "a" appended to the experiment id.

For most functions, there are no or only minor differences between the original data

collected from SAPEO and the version based on the recommendations. A depiction of

the most common behaviour can be found in figure 5.5 in the top left plot. However,

there are also a number of functions where there are considerable differences between

potential performance and the performance that was logged. For examples, see the last

three plots in figure 5.5. Especially the default SAPEO seems to be affected by the lack

of recommendation ability. The observed differences occur mostly in problems with lower

dimensional search spaces, which might be because the SAPEO is more likely to fall

back to the underlying EA behaviour if the Kriging predictions are less certain. This

case would be more likely in higher dimensions. Other patterns were not observed.

While these results are certainly interesting and could be an argument in favour of

implementing recommendation capabilities in COCO, it does not suggest that the aRT

values as computed by COCO are misleading in general. As the differences between

the SAPEOreader and original SAPEO algorithms are mostly minor, we consider the

experiment results reliable nevertheless.

Selection Errors Next, we investigate the behaviour of the default SAPEO version,

which was approached from a theoretical angle in section 4.2.1 in more detail. This is

intended, on the one hand, to put the theoretical results into context. On the other hand,

we seek to explain why SAPEO is outperformed by the underlying CMA-ES for many

functions. This is insofar remarkable as SAPEO should make only a very small number

of ranking errors if the model predictions can indeed be trusted. For our analysis, we

therefore use the default SAPEO which has the strictest model validation approach.

We first plot an overview of the frequencies of selection errors, which are depicted

as solid lines in figure 5.6 and colour coded by search space dimension as indicated in

the legend. All functions available in bbob are listed with their id on the x-axis. The

105

CHAPTER 5. EVALUATION

Sphere 2D Schwefel xsin(x) 2D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

1a

1

2

2a

3

3a

best 2009bbob f1, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

1 Sphere

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

2

2a

1

1a

3a

3

best 2009bbob f20, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

20 Schwefel x*sin(x)

Rastrigin separable 2D Rastrigin 3D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

1

2

1a

2a

3

3a

best 2009bbob f3, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

3 Rastrigin separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

3

2

2a

3a

1

1a

best 2009bbob f15, 3-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

15 Rastrigin

Figure 5.5: E1 runtime distribution plots with recommendations ○ SAPEO (1), ♢ SAPEOr-

eader (1a), ⋆ SAPEO - less validation (2),▽ SAPEOreader - less validation (2a), 9 SAPEO

- GP-DEMO (3), △ SAPEOreader - GP-DEMO (3a)

dashed lines in the plot represent the percentage of rankings made based on predicted

values for each of the functions. This value is added for context in order to determine

how successful the comparisons under uncertainty were.

A first observation from the figure is that, while both the percentage of incorrect

selections and the percentage of rankings under uncertainty vary depending on the func-

tion, there seems to be only minor variations between different search space dimensions.

Only the numbers for dimension 10 seem to vary more, but this could be explained by

the fact that for dimension 10 both λ and µ as determined by CMA-ES are different from

the remaining dimensions.

As could be expected, in functions where only few rankings are computed under

uncertainty, the resulting number of incorrect selections is also low. For some functions

(2 - Ellipsoid separable, 5 - Linear slope, 19 - Griewank-Rosenbrock F8F2), it seems

that barely any rankings are based on predicted values. In these cases, the SAPEO

106

5.2. EXPERIMENTS ON ARTIFICIAL FUNCTIONS

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

function

fr
e

q
u

e
n

c
y

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

●

●

●

●

dim 2

dim 3

dim 5

dim 10

error

uncertain

Figure 5.6: Selection errors for default SAPEO (experiment id 1) on E1

performance should very closely resemble that of the CMA-ES. This behaviour can be

considered a fallback for functions where comparisons cannot be made under uncertainty,

because either the confidence intervals overlap, or because the model is not considered

valid. For an ECDF plot, see the top left plot in figure 5.4.

However, the default SAPEO performs similar to the CMA-ES in many more than the

aforementioned functions. Examples are both Schaffer F7 functions (function ids 17 and

18, see bottom row in figure 5.4). This is despite the fact that around 60% (50%) of the

rankings are based on predicted values for function 17 (18). For both of these functions,

we observe a medium amount of ranking errors around 20%. Of course, the impact of

the errors also depends on the specific individuals in question, and on whether their

selection still results in an overall improvement of the populations. For more details and

an analysis of the impact of selection errors on the evolution path of the CMA-ES, see

[149].

Functions 1 (Sphere, see figure 5.7, top left), 14 (Sum of different powers, see figure

5.7, bottom left) and 21 (Gallagher 101 peaks) see particularly frequent uncertain

107

CHAPTER 5. EVALUATION

rankings according to the plot. We also see a relatively high frequency of selection errors

in these functions. Interestingly, this still results in very similar behaviour of the CMA-

ES and SAPEO on function 21. In both other functions, this results in a detriment to the

performance of SAPEO.

In order to investigate this correlation further, we analyse functions 1 and 14 in more

detail in the following, using separate plots of ranking errors as described in section

4.4.4.1. To contrast the observations, we conduct the same experiments for function 16

(Weierstrass), where the default SAPEO shows a particularly good performance after

around 1000 function evaluations, especially when compared to the CMA-ES. In figure

5.7 we thus plot the runtime distribution plots of the aforementioned functions next to

graphs depicting the number of correctly selected individuals over the runtime of the

algorithm. The exact frequencies of selection errors and uncertain decisions (as depicted

in figure 5.6) are indicated above the plots in the second column.

From the selection error plots we can see that for all functions, there are instances

(black lines, detailed description of the plot in section 4.4.4.1) where SAPEO only selects

correct individuals in almost all iterations, i.e. that follow the red line. These are probably

instances where the predictions are only very rarely used for the comparisons. From the

comparison with the blue line, which marks 1 correctly selected individual per iteration,

we can see that there are instances for all functions where the number of correctly

selected individuals averages less than 1 per instance. However, we see decidedly more

instances to the left of the blue line for the Weierstrass function in the middle row, when

compared to the sphere function in the top row and the sum of different powers in the

bottom row. Interestingly, even for the Weierstrass function where SAPEO performed

remarkably well, the average number of correctly selected individuals seems to be closer

to 1 than to 2 (red line, 2 individuals are selected by CMA-ES 2-dimensional search

spaces).

Additionally, from the plots it seems that on instances where SAPEO made fewer

selection errors (i.e. left of the blue line) the algorithm stopped earlier than on instances

where the number of selection errors was larger (right of blue line). In addition, the

runs on the Weierstrass function were stopped earlier than on the other functions.

SAPEO stops either when the final precision target (1e−8) was hit for a given instance,

or because the algorithm detected convergence. According to the tables generated by

COCO (see section 2.2.2), SAPEO was not able to hit the final target for any of the

functions in any of the instances. That means that the observed behaviour is entirely

explained by convergence. This observation might be used to compute an indicator based

on convergence rate that determines whether the number of decision based on predictions

should be reduced in order to improve the performance of SAPEO.

Another interesting observation is that SAPEO outperforms CMA-ES on the Weier-

strass function, even though the number of decisions that rely on the prediction model

and where function evaluations are thus avoided, is relatively low. This might indicate

that the predictions of the surrogate model should be used more selectively as already

done in the default SAPEO. We investigate this deliberation more in the following by

analysing how the model validation approach used within SAPEO affects performance.

108

5.2. EXPERIMENTS ON ARTIFICIAL FUNCTIONS

Sphere 2D error: 0.34, uncertain: 0.72

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

9

10

4

7

1

2

0

5

6

3

best 2009bbob f1, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

1 Sphere

0 500 1000 1500 2000

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

iteration

c
o
rr

e
c
tl
y
 s

e
le

c
te

d
 i
n
d
iv

id
u
a
ls

Weierstrass 2D error: 0.21, uncertain: 0.44

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

4

10

9

7

5

6

3

0

2

1

best 2009bbob f16, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

16 Weierstrass

0 500 1000 1500 2000

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

iteration

c
o
rr

e
c
tl
y
 s

e
le

c
te

d
 i
n
d
iv

id
u
a
ls

Sum of different powers 2D error: 0.37, uncertain: 0.79

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

8

7

4

10

9

2

3

6

1

5

0

best 2009bbob f14, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

14 Sum of different powers

0 500 1000 1500 2000

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

iteration

c
o
rr

e
c
tl
y
 s

e
le

c
te

d
 i
n
d
iv

id
u
a
ls

Figure 5.7: Left: Runtime distribution plots for E1 and dimension 2. Right: Selection

error plots for default SAPEO (experiment id 1) and dimension 2. Top: Sphere (fid 1).

Middle: Weierstrass (fid 16). Bottom: Sum of different powers (fid 14). ○ CMA-ES (0),

♢ SAPEO (1), ▽ SAPEO - less validation (2), 9 SAPEO - GP-DEMO (3), △ SAPEO - no

validation (4), D pre-screening (5), * pre-screening - lower bound (6), + EGO - PoI (7),

◇ EGO - ExI (8), ⊲ Random Search (9), ⋆ SAPEO - transformation (10)

109

CHAPTER 5. EVALUATION

Model Validation In order to investigate the effects of the model validation approach

as proposed in section 4.2.2, we included three different versions of SAPEO, the default

one (experiment id 1), one with more lenient model validation (ht=5 instead of ht=3,

see section 5.2) and one without any model validation (experiment id 4). See list of

experiments in table 5.4 for details. It is important to note here that none of the other

algorithms surveyed for the related work use model validation, except for the original

publication of EGO. As pre-screening and EGO both do not actually introduce the

predicted values into the algorithm, using a model with bad fit likely does not affect

their performance as much as it would for SAPEO or GP-DEMO. We seek to verify this

hypothesis in the following.

From the results presented in section 5.2.1.1 and 5.2.1.2, we can already clearly see

that for SAPEO, using models without additional validations hinders the performance of

the underlying CMA-ES significantly. The corresponding SAPEO variant (experiment

id 4) is consistently in the weaker group of algorithms together with random search,

whereas both of the other SAPEO versions belong to the top group most of the time.

Some plots showing a direct comparison of the three aforementioned SAPEO versions

can be found in figure 5.8.

In our post-processing results, we see the same pattern of overall performance

regardless of dimension. The default SAPEO with stricter model validation reaches

targets faster than both other variants for more functions (see figure 5.8, right column).

However, the aggregated ECDF plots in figure 5.8 (left column) also show that the

resulting absolute differences in terms of aggregated aRT values are only minor.

While there are some functions where the SAPEO without model validation per-

forms better than both other variants (only for lower budgets, see figure 5.9), it seems

worthwhile to validate the model in order to achieve a robust performance. This is true

even though there are still numerous selection errors made if the model is validated,

as discussed in the previous paragraph on selection errors. In order to obtain a more

detailed picture on the effect of stricter model validation on the number of selection

errors, we generated a side-by-side comparison of selection errors for the default SAPEO

(experiment id 1) and SAPEO with weaker validation (experiment id 2).

The corresponding plots can be found in figure 5.10. While we can clearly see that

both SAPEO variants react similarly to the different functions in terms of the frequency

of using rankings under uncertainty, the SAPEO variant with less model validation does

so more often. The corresponding numbers of selection errors are also slightly higher

when compared to the default SAPEO. This leads to the conclusion that model validation

is indeed important and might need to be even stricter than using a cut-off value of 3 for

the cross-validation, as suggested in literature.

Sample Selection Method Another interesting question is how selecting the samples

for the local Kriging models affects the performance of SAPEO. Obviously, increasing

the sample size reduces the uncertainty of the model and also often results in better

performance [149]. However, for the experiments in the thesis, we decided to investigate

the method of sampling instead. In GP-DEMO, the k fittest individuals are selected

110

5.2. EXPERIMENTS ON ARTIFICIAL FUNCTIONS

Dim 2

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

4

2

1

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

Fastest − dim 2

1e1 1e0 1e−1 1e−2 1e−3 1e−5 1e−7

10

12

 6

11

 4

15

 3

15

 0

17

 0

13

0

8

2
,
4

1

Dim 3

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

4

2

1

best 2009bbob f1-f24, 3-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

Fastest − dim 3

1e1 1e0 1e−1 1e−2 1e−3 1e−5 1e−7

 5

12

 1

13

 2

14

 0

18

 0

16

0

9

0

4

Figure 5.8: Left: Runtime distribution plots for E1, dimensions 2 and 3, aggregated

over all functions ○ SAPEO (1), ♢ SAPEO - less validation (2), ⋆ SAPEO - no validation

(4). Right: aRT Table plots for E1, dimensions 2 and 3. ● SAPEO (1), ● SAPEO - less

validation (2), ● SAPEO - no validation (4).

111

CHAPTER 5. EVALUATION

Gallagher 21 peaks 2D Gallagher 21 peaks 3D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

4

2

1

best 2009bbob f22, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

22 Gallagher 21 peaks

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

4

1

2

best 2009bbob f22, 3-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

22 Gallagher 21 peaks

Figure 5.9: Runtime distribution plots for Gallagher 21 peaks function (fid 22) in E1,

dimensions 2 (left) and 3 (right) ○ SAPEO (1), ♢ SAPEO - less validation (2), ⋆ SAPEO -

no validation (4).

Default SAPEO (1) SAPEO - less validation (2)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

function

fr
e
q
u
e
n
c
y

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

●

●

●

●

dim 2

dim 3

dim 5

dim 10

error

uncertain

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

function

fr
e
q
u
e
n
c
y

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

●

●

●

●

dim 2

dim 3

dim 5

dim 10

error

uncertain

Figure 5.10: Selection errors on E1. Left: Default SAPEO (experiment id 1). Right:

SAPEO with weaker model validation (experiment id 2)

112

5.2. EXPERIMENTS ON ARTIFICIAL FUNCTIONS

Dim 2 Dim 10

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

1

3

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

3

1

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.2.1.480

Figure 5.11: Runtime distribution plots for E1, dimensions 2 and 10, aggregated over all

functions ○ SAPEO (1), ♢ SAPEO - GP-DEMO (3)

instead of the k closest ones.

Based on the runtime distribution plots in figure 5.11, we see only very slight per-

formance differences. In terms of aggregated aRT values, default SAPEO is performing

slightly better on lower budgets, but is overtaken by SAPEO with fitness-based selection

at around 103 function evaluations on dimensions 2 and 3. The default SAPEO has a

consistently better overall performance on dimensions 5 and 10.

The ECDF plots suggest very similar behaviour, even when looking at functions

separately. However, this observation is not at all true, which we see in the selection

error plots in figure 5.12. The SAPEO variant with fitness-based selection for sampling

relies on predictions far less than the default SAPEO variant. This is most likely due

to the fact that with fitness-based sampling, the predicted uncertainties for any given

point are likely higher than those predicted by a local model. The resulting overlap of

the confidence intervals then forces evaluation.

As comparisons under uncertainty are used less often in SAPEO - GP-DEMO, we also

tend to see less selection errors overall (with a few exceptions). However, this SAPEO

variant is also not able to save as many fitness evaluations as the default SAPEO, as

confidence intervals are overlapping more often. These two aspects seem to even out in

terms of overall aRT values, resulting in the behaviour observed in figure 5.11. However,

based on the analysis above, it seems that a similar effect in terms of a reduction of

selection errors could also be achieved by improving the models by either increasing

sample size or by introducing stricter model validation. Using fitness-based selection

does not seem to produce the intended effect of better predictions in relevant regions.

5.2.2 Multi-Objective Results (bbob-biobj)

A summary of all experiments in set E2, i.e. the aggregated aRT from all 55 functions, can

be found in figures 5.13 and 5.15. The former depicts all algorithms that are based around

113

CHAPTER 5. EVALUATION

Default SAPEO (1) SAPEO - GP-DEMO (3)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

function

fr
e
q
u
e
n
c
y

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

●

●

●

●

dim 2

dim 3

dim 5

dim 10

error

uncertain

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

function

fr
e
q
u
e
n
c
y

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

●

●

●

●

dim 2

dim 3

dim 5

dim 10

error

uncertain

Figure 5.12: Selection errors on E1. Left: Default SAPEO (experiment id 1). Right:

SAPEO with fitness-based selection (experiment id 3)

2D 3D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

17

15

18

19

21

20

14

13

12

11

16

best 2016bbob-biobj f1-f55, 2-D
58 targets: 1..-1.0e-4
10, 3 instances

v2.2.1.480, hv-hash=d240b271ab0b4926

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

17

19

18

15

20

21

13

12

14

11

16

best 2016bbob-biobj f1-f55, 3-D
58 targets: 1..-1.0e-4
10, 2 instances

v2.2.1.480, hv-hash=d240b271ab0b4926

Figure 5.13: E2 runtime distribution plots aggregated over all bbob-biobj functions with

algorithms based on SMS-EMOA. Dimensions 2 (left) and 3 (right) ○ SMS-EMOA (11),

♢ SAPEO (12), ⋆ SAPEO - less validation (13), ▽ SAPEO - GP-DEMO (14), 9 SAPEO -

no validation (15), △ pre-screening (16), D pre-screening - lower bound (17), * EGO - PoI

(18), + EGO - ExI (19), ◇ Random Search (20), ⊲ SAPEO - transformation (21)

114

5.2. EXPERIMENTS ON ARTIFICIAL FUNCTIONS

the SMS-EMOA, while the latter depicts the algorithms using the MOCMA. As can be

seen in the plots (figure 5.13, left), pre-screening with the SMS-EMOA (experiment id 16)

outperforms all other algorithms for dimension 2. This observation is also reflected when

considering functions separately. For larger dimensions, the difference in performance

is less pronounced, but still existent (see figure 5.13, right). In a stark contrast, pre-

screening with lower bounds (experiment id 17) is the worst-performing algorithm in

this set. As in the single-objective version, both EGO versions (experiment ids 18 and 19)

as well as the SAPEO with transformation (experiment id 21) do not perform well. They

produce aRT values similar (or even worse) than random search (experiment id 20).

However, all SAPEO variants and the SMS-EMOA exhibit extremely similar perform-

ances. As this is true even for the SAPEO without any model validation (experiment id

15), this seems to suggest that comparisons on predicted values cannot be used, because

there is always an overlap in the predicted confidence intervals. However, when looking

at the functions, we see that this patterns is actually not always true. But it is nearly

always the case that the successful SAPEO variants with model validation achieve the

same or similar aRT values. As is confirmed in the logs, this is because the models can

be validated only very rarely. The result is that SAPEO falls back onto the underlying

SMS-EMOA and thus shows the same performance. This is insofar a positive, as SAPEO

is not misled by an unreliable model. However, this obviously also does not result in any

significant improvements of the performance.

In comparison to the best2016 benchmark, overall performance of all algorithms

seems not to be up to par. There are a few functions where relatively good values are

reached, though. For examples, see the first row in figure 5.14, as well as the plot in the

middle row on the right.

There are only a few functions where the patterns described above are not true. In

a few cases, both EGO versions perform comparably well (see figure 5.14, middle row,

left). For some functions, the successful SAPEO variants along with the SMS-EMOA

outperform pre-screening or perform at least on par (see figure 5.14, bottom row).

Overall, the experiments based on the SMS-EMOA perform better than the ones

based on the MOCMA (see comparison between figures 5.13 and 5.15). Interestingly,

it seems that pre-screening, which worked well in conjunction with both the CMA-ES

and the SMS-EMOA, has a very weak performance when paired with the MOCMA

(experiment ids 27 and 28). Instead, EGO with expected improvement (experiment id 30)

performs best on 2-dimensional problems overall, and the SAPEO with transformation

(experiment id 31) is successful for 3D problems. However, due to the generally low

performance, we are not going to look into the results in more detail, as they likely do

not offer meaningful interpretations.

115

CHAPTER 5. EVALUATION

sep Ellipsoid / Attractive sector 2D sep Ellipsoid / Rosenbrock 2D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

19

18

17

20

21

12

11

14

13

16

best 2016bbob-biobj f12, 2-D
58 targets: 1..-1.0e-4
10 instances

v2.2.1.480, hv-hash=d240b271ab0b4926

12 sep. Ellipsoid/Attractive sector

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

17

20

19

18

21

12

11

14

13

16

best 2016bbob-biobj f13, 2-D
58 targets: 1..-1.0e-4
10 instances

v2.2.1.480, hv-hash=d240b271ab0b4926

13 sep. Ellipsoid/Rosenbrock

Attractive Sector / Gallagher 101 2D Rosenbrock / Rosenbrock 2D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

17

20

21

13

14

12

11

16

19

18

best 2016bbob-biobj f27, 2-D
58 targets: 1..-1.0e-4
10 instances

v2.2.1.480, hv-hash=d240b271ab0b4926

27 Attractive sector/Gallagher 101

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

19

18

17

21

20

14

12

13

11

16

best 2016bbob-biobj f28, 2-D
58 targets: 1..-1.0e-4
10 instances

v2.2.1.480, hv-hash=d240b271ab0b4926

28 Rosenbrock/Rosenbrock

sep Ellispoid/Schwefel 3D Attractive sector / Attractive sector 3D

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

19

18

17

21

16

20

13

12

14

11

best 2016bbob-biobj f18, 3-D
58 targets: 1..-1.0e-4
10 instances

v2.2.1.480, hv-hash=d240b271ab0b4926

18 sep. Ellipsoid/Schwefel

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

19

18

17

21

20

12

11

14

13

16

best 2016bbob-biobj f20, 3-D
58 targets: 1..-1.0e-4
10 instances

v2.2.1.480, hv-hash=d240b271ab0b4926

20 Attractive sector/Attractive sector

Figure 5.14: E2 runtime distribution plots for algorithms based on SMS-EMOA on

selected functions ○ SMS-EMOA (11), ♢ SAPEO (12), ⋆ SAPEO - less validation (13),

▽ SAPEO - GP-DEMO (14), 9 SAPEO - no validation (15), △ pre-screening (16), D pre-

screening - lower bound (17), * EGO - PoI (18), + EGO - ExI (19), ◇ Random Search (20),

⊲ SAPEO - transformation (21)

116

5.2. EXPERIMENTS ON ARTIFICIAL FUNCTIONS

Dim 2 Dim 3

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

28

27

31

20

29

22

24

23

25

30

best 2016bbob-biobj f1-f55, 2-D
58 targets: 1..-1.0e-4
10 instances

v2.2.1.480, hv-hash=d240b271ab0b4926

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

30

27

28

29

24

25

22

23

20

31

best 2016bbob-biobj f1-f55, 3-D
58 targets: 1..-1.0e-4
10 instances

v2.2.1.480, hv-hash=d240b271ab0b4926

Figure 5.15: E2 runtime distribution plots aggregated over all bbob-biobj functions with

algorithms based on MOCMA. Dimensions 2 (left) and 3 (right) ♢MOCMA (22), ⋆ SAPEO

(23), ▽ SAPEO - less validation (24), 9 SAPEO - GP-DEMO (25), △ pre-screening (27),

D pre-screening - lower bound (28), * EGO - PoI (29), + EGO - ExI (30), ○ Random Search

(20), ◇ SAPEO - transformation (31)

5.2.3 Summary of Results

In the following, we summarise the results presented previously in this section, which

are based on results from experiment suites E1 and E2, i.e. benchmarks with artificial

functions. We make the following observations:

• While there are functions where an improvement can be achieved using surrogate-

assisted algorithms, the underlying evolutionary algorithms tend to perform on

par or even better. This is especially true for the single-objective versions and for

higher budgets.

• While performance is lower for higher dimensional problems overall, the Kriging-

based algorithms were able to handle 10 dimensional problems. Kriging is thus

suitable for more than just very low-dimensional problems.

• SAPEO and pre-screening tend to perform best, while EGO does not work well in

our implementation.

• Model validation is required for SAPEO and improves performance. An even

stricter validation could potentially improve performance further.

• Fitness-based selection in SAPEO as suggested in GP-DEMO is not particularly

successful.

• For SAPEO, algorithm convergence and the number of selection errors might be

correlated.

117

CHAPTER 5. EVALUATION

Regarding hypothesis H1 from section 1.2, we can thus confirm that SAPEO does ex-

hibit comparable performance to state-of-the-art optimisation algorithms on established

benchmarks.

5.3 Suitability of GBEA

Before we run the algorithms that proved successful on the artificial functions (see

section 5.2), we conduct a brief analysis of the functions contained in the benchmark.

As mentioned in section 4.3, all functions in both suites can be justified in terms of the

context of the real-world application, as all functions have been used in previous research.

However, the functions in the corresponding applications are rarely analysed and usually

treated as black boxes. In order to help our interpretation of the GBEA results, we thus

seek to determine some characteristics of the functions.

Both of the GBEA function suites contain scalable problems. However, to keep the

analysis concise, we will mostly conduct the experiments in the following for only one

dimension for each function suite. In case of the rw-mario-gan suite, we selected the

smallest dimension 10 in order to speed up the experiments, but also to achieve compar-

ability with the artificial single-objective function suite bbob. For rw-top-trumps-biobj,

we chose dimension 128, as this results in 32 cards, which is a common deck size for card

games.

5.3.1 Line Walks

In order to gain a first impression of the fitness landscape of the various functions

contained in the benchmarks, we conducted so called line walks through a random point.

This means we generate a random point that represents a valid solution. We then "walk"

on a line parallel to the axis corresponding to the first dimension that goes through the

random point, evaluating the fitness function at equidistantly spaced points. We do this

for each dimension separately. Two examples of resulting plots can be found in figure

5.16. The function values depicted only represent a single instance. The observations

made are of course only true for the specific random point picked, and can not offer any

insights in terms of global optima. However, this approach does offer a simple way to

investigate locality, for example.

The first plot in figure 5.16 is very representative of the encoding-based functions.

It has numerous steps in the fitness function, as well as a discernible global structure

for most, if not all, dimensions. The steps are likely a result of the genotype-phenotype

mapping. If values are varied along a continuous axis in the random vector, for a specific

cut-off value, the one-hot encoding in the ANN will flip and produce a tile (for more

details on the encoding, see section 2.4.2.4). This is a result of using GANs on Mario

levels in a discrete encoding, as opposed to images with pixels encoded as continuous

values. In the latter case, it is possible to produce smooth transitions [12]. For Mario, the

levels created in this manner are still similar visually, as well as in terms of distance

118

5.3. SUITABILITY OF GBEA

1 0 1

0.98

0.99

x0

1 0 1
0.975

0.980

0.985

x1

1 0 1

0.975

0.980

x2

1 0 1
0.94

0.96

0.98

1.00
x3

1 0 1

0.975

0.980

0.985

0.990
x4

1 0 1

0.97

0.98

0.99
x5

1 0 1
0.97

0.98

0.99

x6

1 0 1
0.970

0.975

0.980

0.985

x7

1 0 1

0.975

0.980

0.985

0.990
x8

1 0 1

0.96

0.97

0.98

0.99
x9

GAN Mario f9 (random point)

1 0 1

0.1

0.2

x0

1 0 1

0.05

0.10

x1

1 0 1

0.05

0.10

0.15
x2

1 0 1

0.03

0.04

x3

1 0 1

0.2

0.4
x4

1 0 1
0.0

0.2

0.4

0.6

x5

1 0 1
0.02

0.04

0.06

0.08
x6

1 0 1
0.0

0.2

0.4

x7

1 0 1
0.0

0.2

0.4

0.6

x8

1 0 1
0.0

0.2

0.4

0.6

x9

GAN Mario f21 (random point)

Figure 5.16: Line walks for rw-mario-gan functions 9 (before inversion, top) and 21

(bottom)

119

CHAPTER 5. EVALUATION

measures such as Hamming distance. However, because of the discrete encoding, the

steps in the tile-based fitness functions will always occur.

In contrast, the second plot on the bottom is what most simulation-based fitness

function look like, with extremely large and flat plateaus, very high spikes and almost

no structure at all. The steps are significantly less pronounced, because the addition or

removal of a single tile can influence the gameplay significantly. This is then captured by

simulation-based fitness functions, and we therefore do not see the distinctive steps.

In the following, we compare the line walks from rw-mario-gan with selected function

from the bbob suite. The results can be found in figures 5.17 and 5.18. Function 6 (figure

5.17, top) is representative of a lot of bbob functions, as it is continuous and has a global

structure without any major local irregularities. Function 7 (figure 5.17, bottom) could

be considered similar to the encoding-based fitness function, as both have pronounced

steps (cf. figure 5.16, top). The bbob suite however also contains functions with high local

irregularities, as depicted in figure 5.18. While most functions do possess an obvious

global structure, such as function 24 (figure 5.18, bottom), there are evidently also

functions where (at least for the line walk) no structure is discernible (function 23, figure

5.18, top).

Unfortunately, line walks cannot easily be created for multi-objective functions, which

is why we refrain from generating them for suites rw-top-trumps-biobj and bbob-biobj.

5.3.2 Practicality

The practicality in terms of computational effort is an important consideration in real-

world benchmarks. The optimisation problems inspired by real-world applications are

usually expensive, which makes compiling these functions into a benchmark difficult.

The functions then either need to be simplified (e.g. in terms of search space dimension)

or represented by a simulation instead of an actual evaluation (e.g. computational fluid

dynamics model). In cases where the functions are only moderately expensive, they can

still not be easily compiled into a benchmark, as multiple instances of the functions

should exist, and they need to be scalable. Even if these two requirements are fulfilled, a

full benchmark with a diverse set of functions is likely still impractical to compute for a

multitude algorithms.

In order to assess the practicality of the GBEA with regards to computation time, we

thus measure the time it takes to compute one function evaluation. The experiments

were run on a regular quad-core laptop. We obtain the following results:

• rw-mario-gan, without simulation: 0-1 seconds

• rw-mario-gan, with poorly performing AI: 1-3 seconds

• rw-mario-gan, with A*: 1-350 seconds, majority under 100 seconds. Theoretical

maximum would be 600 seconds due to limit on simulation time

• rw-top-trumps, without simulation: 0-1 seconds

• rw-top-trumps, with simulation: 0-2 seconds

120

5.3. SUITABILITY OF GBEA

5 0 5

300000

400000

500000

x0

5 0 5
200000

300000

400000

500000
x1

5 0 5

200000

400000

600000

800000
x2

5 0 5

300000

400000

500000
x3

5 0 5
220000

240000

260000

x4

5 0 5

200000

400000

x5

5 0 5

200000

300000

400000

x6

5 0 5

250000

300000

x7

5 0 5

200000

250000

300000
x8

5 0 5

200000

300000

400000

x9

BBOB f6 (random point)

5 0 5
500

1000

x0

5 0 5

1000

1500

2000
x1

5 0 5

1000

1500
x2

5 0 5

500

1000

1500

x3

5 0 5
1000

1500

2000

x4

5 0 5
1000

1250

1500

1750

x5

5 0 5

1000

1500

x6

5 0 5

1000

1200

1400

x7

5 0 5

900

1000

1100

1200
x8

5 0 5

1000

1200

1400

x9

BBOB f7 (random point)

Figure 5.17: Line walks for bbob functions 6 (top) and 7 (bottom)

121

CHAPTER 5. EVALUATION

5 0 5
10

20

30

40

x0

5 0 5
10

20

30

40
x1

5 0 5

20

30

x2

5 0 5
10

20

30

40
x3

5 0 5
10

20

30

40
x4

5 0 5
10

20

30

40

x5

5 0 5
10

20

30

40
x6

5 0 5
10

20

30

40

x7

5 0 5
10

20

30

40

x8

5 0 5
10

20

30

40
x9

BBOB f23 (random point)

5 0 5

300

350

400

x0

5 0 5
300

350

400

450

x1

5 0 5

350

400

450

x2

5 0 5
300

350

400

450

x3

5 0 5
300

350

400

450
x4

5 0 5
300

400

500
x5

5 0 5
300

350

400

450
x6

5 0 5
300

400

x7

5 0 5

300

400

x8

5 0 5
300

400

x9

BBOB f24 (random point)

Figure 5.18: Line walks for bbob functions 23 (top) and 24 (bottom)

122

5.3. SUITABILITY OF GBEA

We observe that, as expected, functions that do not rely on simulations are fast to

compute. For TopTrumps, even the simulated functions are very fast despite, the fact

that 2000 simulations are executed for each point. For Mario, if the AI agent performs

well and does not fail at the start of the levels, the simulations do take longer. Although a

majority of the simulations finish within less than 100 seconds, there are a considerable

number that take longer and finish after up to 350 seconds. We have not observed any

evaluations that took as long as 600 seconds, which is the maximally allotted time.

The execution times were calculated on dimension 10 for rw-mario-gan and 128 for

rw-top-trumps. However, the runtimes for Mario are independent of the size of the search

space, as the solution vector is always transformed into a level snippet of constant size.

The time to simulate TopTrumps playthroughs will increase in larger dimensions. But,

as the simulation is very fast, increasing the dimension further is likely still going to

result in reasonable runtimes.

We would consider these results sufficient to claim that the benchmark is indeed

practical in terms of computational resources required. This is based on the average exe-

cution times reported for a comparable benchmark [28]. For their CFD-based benchmark,

the authors report average execution times of 40.35, 947.37 and 34.44, respectively, for

the three functions included in the benchmark. The observed execution times for the

functions in GBEA are significantly lower for a majority of the functions included. The

only exception are simulated functions in rw-mario-gan, which take longer in comparison.

However, the resulting average computation time is still in the same ballpark as in the

CFD benchmark, and definitely below the second function.

Additionally, the batchmode included in the experimental framework (see section

4.4.1) also provides an easy way to parallelise the experiments and run them on a cluster.

Given that a cluster is available, this can dramatically improve the practicability of

running the complete benchmark.

5.3.3 Baseline Results

There is one major issue that arises when integrating real-world problems into the COCO

framework. For real-world problems, the global optimum value is usually unknown, even

when a theoretical optimum can be computed. This becomes an issue in conjunction

with the COCO post-processing and logging, as it is based on pre-defined target values.

If the optimal value for a given function is set to a theoretical optimum which can not

be reached in reality, no algorithm can ever reach the higher precision targets. Due to

the way the targets are distributed, this might make algorithms with widely different

performance appear similar in terms of when they reach the targets.

A solutions is to compile a set of baseline results and to then define the best observed

result as the global optimum. This was also done for the bbob-biobj suite, as the globally

optimal hypervolume is not computable analytically. This issue is especially problematic

for the rw-top-trumps-biobj suite, as in this case, even the optima for the single objective

functions are unknown. The globally optimal hypervolume is therefore even more difficult

to estimate. As the results presented for this thesis are the first results obtained, there is

123

CHAPTER 5. EVALUATION

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

40-D

20-D

30-D

10-Drw-gan-mario f3
51 targets: 100..1e-08
 instances

v2.2.1.480

3 enemyDistribution overworld I+III

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

20-D

10-D

40-D

30-Drw-gan-mario f41
51 targets: 100..1e-08
 instances

v2.2.1.480

41 timeTaken Scared underground II

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

20-D

30-D

10-D

40-Drw-gan-mario f37
51 targets: 100..1e-08
 instances

v2.2.1.480

37 airTime Scared overworld I

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

10-D

20-D

30-D

40-Drw-gan-mario f7
51 targets: 100..1e-08
 instances

v2.2.1.480

7 decorationFrequency overworld I

Figure 5.19: Runtime distribution plots for CMA-ES (experiment id 32) on selected

functions in rw-mario-gan suite).

no baseline available. The plots generated from COCO therefore have to be interpreted

with this issue in mind.

As a very first baseline for rw-mario-gan, we ran CMA-ES on the first half of the

suite (non-concatenated functions, see section 4.3.3.2). Runtime distribution plots for

selected functions may be found in figure 5.19. While there are some functions where the

targets seem to have been suitably distributed (top row), there are also plots where this

is decidedly not the case (bottom row). For both of the functions plotted in the bottom

row, we can explain why the specified optimum is never reached.

For airTime (fid 37) the optimum is reached if all simulations time out, i.e. the AI

playing Mario is stuck. This is only possible if levels are generated with insurmountable

obstacles or levels that require backtracking. Naturally, the former type of levels are

not playable and there are no training examples of levels with such obstacles. They are

therefore also not generated (as intended), independent of the input to the generator.

For decoration frequency (fid 7), the optimal percentage of pretty tiles (i.e. Tube, En-

emy, Destructible Block, Question Mark Block, or Bullet Bill Shooter Column) is specified

as 1. While this is a theoretical upper bound, reaching it would require generating levels

124

5.3. SUITABILITY OF GBEA

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

128-D

rw-top-trumps-biobj f2
58 targets: 1..-1.0e-4
 instances

v2.2.1.480

2 3 vs 4

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

128-D

rw-top-trumps-biobj f4
58 targets: 1..-1.0e-4
 instances

v2.2.1.480

4 1 vs 3

Figure 5.20: Runtime distribution plots for SMS-EMOA (experiment id 41) on selected

functions in rw-top-trumps-biobj suite.

without any passable space or ground tiles at all. With the same explanation as above,

the generator is very likely not able to produce such a level.

For a baseline for the rw-top-trumps-biobj suite, we first run the SMS-EMOA on the

suite with dimension 128. As expected after the results on the rw-mario-gan suite, we

obtain mostly flat graphs (see figure 5.20).

5.3.4 Summary of Results

Summarising the observations made in this section, we determine that:

• Based on the line walk plots, the game optimisation problems are interesting and

challenging as optimisation problems (plateaus and steps, as well as existence /

lack of global structure).

• Simulation-based and encoding-based functions possess different characteristics.

• Some functions resemble artificial functions, while other characteristics seem to be

novel.

• The GBEA functions run with practical execution times.

• In order to use the COCO post-processing features fully, better estimates of the

true global optima of each function need to be determined.

Regardless of the issues with plotting of the aRT values, we can confirm hypothesis

H2. The functions contained in both suites seem to be challenging based on their fitness

landscape. The examination of different uncertainties in game optimisation from section

4.1.4 also supports this claim.

125

CHAPTER 5. EVALUATION

id algorithm EA ht um sm note

32 CMA-ES - - - - -

33 SAPEO CMA-ES 3 mean close -

36 SAPEO CMA-ES 3 mean fit GP-DEMO

39 prescreening CMA-ES ∞ mean close -

40 RS - - - - random search

Table 5.6: Experiments in set E3 (rw-mario-gan suite)

id algorithm EA ht um sm note

41 SMS-EMOA - - - - -

42 SAPEO - SMS-EMOA 3 mean close -

45 SAPEO - SMS-EMOA 3 mean fit GP-DEMO

48 prescreening SMS-EMOA ∞ mean close -

49 RS - - - - random search

Table 5.7: Experiments in set E4 (rw-top-trumps-biobj suite)

5.4 Experiments on GBEA

After the considerations in the previous two sections, we can compute the results for

promising algorithms (as per their performance on the artificial benchmarks, see section

5.2) on the GBEA benchmark, which is deemed interesting and practicable (see section

5.3). We thus set up experiment sets E3 and E4 on rw-mario-gan and rw-top-trumps-biobj,

respectively. We reduced both sets of experiments in comparison to E1 and E2. As EGO

was not successful on either of the benchmarks, the corresponding experiments were

removed. The same holds for algorithms based on the MOCMA. Similarly, the SAPEO

version without model validation and SAPEO with fitness transformation were removed

for the same reasons. We also only kept 2 SAPEO versions and 1 pre-screening variant,

as these algorithms seemed to perform similarly as each other.2 Random search and

the underlying evolutionary algorithms are of course kept as baselines. The resulting

experiments with their ids can be found in tables 5.6 and 5.7.

However, due to the issues explored in section 5.3.3, the obtained results are barely

interpretable. In order to visualise the issue, we plotted some results in figure 5.21. As

determined previously based on the plots in figure 5.19, there are only a few functions in

rw-mario-gan where different performances can be distinguished. For these functions, it

seems that random search is among the worst-performing algorithms. However, even

random search is able to reach the optimum for the enemyDistribution functions (see

figure 5.21, top left). A majority of the remaining functions display very flat graphs,

2The selected pre-screening algorithm is the variant most similar to pre-screening as implemented for

the analysis in [149], which already compares pre-screening with (a previous version of) SAPEO.

126

5.4. EXPERIMENTS ON GBEA

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

40

33

39

36

32rw-gan-mario f3, 10-D
51 targets: 100..1e-08
7 instances

v2.2.1.480

3 enemyDistribution overworld I+III

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

40

36

39

32rw-gan-mario f41, 10-D
51 targets: 100..1e-08
7 instances

v2.2.1.480

41 timeTaken Scared underground II

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

40

39

36

32rw-gan-mario f37, 10-D
51 targets: 100..1e-08
7 instances

v2.2.1.480

37 airTime Scared overworld I

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

40

39

36

33

32rw-gan-mario f7, 10-D
51 targets: 100..1e-08
7 instances

v2.2.1.480

7 decorationFrequency overworld I

Figure 5.21: E3 runtime distribution plots on selected functions.

id algorithm EA ht um sm data note

34 SAPEO CMA-ES 3 mean close surr -

35 SAPEO CMA-ES 3 mean close both -

37 SAPEO CMA-ES 3 mean fit surr GP-DEMO

38 SAPEO CMA-ES 3 mean fit both GP-DEMO

Table 5.8: Experiments in set E5 (rw-mario-gan-offset suite)

as expected (see figure 5.21, bottom row). The results are thus not useful to evaluate

algorithm performances without a baseline comparison.

The same observations and conclusions unfortunately hold true for the results ob-

tained from experiment suite E4 on rw-top-trumps-biobj (see figure 5.22). It therefore

also does not make sense to run the experiments planned for suite E5, as the results will

not be interpretable. However, for the sake of completeness, the planned experiments

can be found in table 5.8.

Unfortunately, this also means that we are not able to answer hypothesis H3, as it

127

CHAPTER 5. EVALUATION

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

48

45

42

41

49rw-top-trumps-biobj f2, 128-D
58 targets: 1..-1.0e-4
10 instances

v2.2.1.480

2 3 vs 4

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
fu

n
ct

io
n

,t
a
rg

e
t

p
a
ir

s

48

49

41

42

45rw-top-trumps-biobj f4, 128-D
58 targets: 1..-1.0e-4
10 instances

v2.2.1.480

4 1 vs 3

Figure 5.22: E4 runtime distribution plots for on selected functions.

relates to the performance comparisons of various algorithms on the GBEA benchmark.

128

C
H

A
P

T
E

R

6
CONCLUSIONS AND FUTURE WORK

In the following, we first summarise our conclusions in section 6.1. Following that, we

detail various directions for future work in section 6.2.

6.1 Conclusions

In this thesis entitled Uncertainty handling in surrogate assisted optimisation of games,

we started out with the goal to investigate the uncertainty in game optimisation problems,

as well as to identify or develop suitable optimisation algorithms. In order to approach

this problem systematically, we first created a benchmark consisting of suitable game

optimisation functions (GBEA). The suitability of these functions was determined using

a taxonomy that was created based on the results of a literature survey of automatic

game evaluation approaches. In order to improve the interpretability of the results, we

also implemented an experimental framework that adds several features aiding the

analysis of the results, specifically for surrogate-assisted evolutionary algorithms.

After describing potentially suitable algorithms, we proposed a promising algorithm

(SAPEO), to be tested on the benchmark alongside state-of-the-art optimisation al-

gorithms. SAPEO is utilising the observation that most evolutionary algorithms only

need fitness evaluations for survival selections. However, if the individuals in a popu-

lation can be distinguished reliably based on predicted values, the number of function

evaluations can be reduced. After a theoretical analysis of the performance limits of

SAPEO, which produced very promising insights, we conducted several sets of exper-

iments in order to answer the three central hypotheses guiding this thesis. We find

that SAPEO performs comparably to state-of-the-art surrogate-assisted algorithms, but

all are frequently outperformed by stand-alone evolutionary algorithms. From a more

detailed analysis of the behaviour of SAPEO, we identify a few pointers that could help

to further improve the performance.

Before running experiments on the developed benchmark, we first verify its suitab-

ility using a second set of experiments. We find that GBEA is practical and contains

interesting and challenging functions. However, we also discover that, in order to produce

interpretable result with the benchmark, a set of baseline results is required. Due to

this issue, we are not able to produce meaningful results with the GBEA at the time of

writing. However, after more experiments are conducted with the benchmark, we will be

able to interpret our results in the future. The insights developed will most likely not

only be able to provide an assessment of optimisation algorithms, but can also be used to

gain a deeper understanding of the characteristics of game optimisation problems.

129

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.2 Future Work

In the following sections, we discuss several topics that constitute interesting directions

of future work. We first address game optimisation problems in general in section 6.2.1,

before considering possible improvements to the GBEA in section 6.2.2. We close with

further thoughts on surrogate-assisted evolutionary optimisation in section 6.2.3.

6.2.1 Game Optimisation Problems

6.2.1.1 Validation of Evaluation Functions

The GBEA benchmark presented in this thesis and run for the GECCO 18 and 19

workshops1 consciously utilises previously published game optimisation problems and

the evaluation functions proposed in the corresponding papers. This is done in order to

reflect the state-of-the-art in automatic game (content) generation and tuning.

This has the added benefit of not requiring a thorough validation of these functions

in terms of how meaningful they are for human gameplay. However, as made apparent

by our taxonomy (see section 4.1) and survey (see appendix A), validation functions

in literature are of a very limited variety. Most evaluation approaches in the survey

are based on model assumptions that are not validated for human players (category

feedback NONE). However, we have also shown in our case study in appendix B that

these assumptions can be very misleading for any optimisation algorithm or prediction

model utilising the resulting evaluation functions.

For this reason, I would recommend that more effort is made towards validating

evaluation functions in context of (semi-) automatic game design / tuning. Unfortunately,

conducting comprehensive experiments with human players is not always possible,

especially in cases where the evaluation approach is only a minor component of the

project. In our planned task force on game evaluation, we are attempting to tackle these

problems and facilitate the validation of evaluation functions.

One suggestion is to host websites where surveys based on popular research games

(such as Mario and the GVGAI framework) can be set up for online participation. Re-

ducing the effort to set up these surveys might lead to more researchers collecting data

from human players. Making the survey available through a browser online should also

increase the number of participants, and thus the significance of the results. Ideally, this

set-up would also include several game playing agents, as well as extensive logging and

visualisation capabilities. A description of what such a system could entail, in addition

to a description of its potential can be found in a recent vision paper [47].

An even easier approach is to make researchers aware of previously published

evaluation functions, especially if they have been validated. In context of the task force,

a website that provides this information in an easily accessible way is planned. Further

in the future, it would be worthwhile to investigate whether meaningful and validated

evaluation functions exhibit specific patterns that can be generalised to multiple (similar)

games. Such an investigation could be based on the data from both the website and

1http://norvig.eecs.qmul.ac.uk/gbea/gamesbench.html

130

6.2. FUTURE WORK

online surveys as described above. From the GBEA results, we were already able to

observe some characteristics that were consistent for certain types of functions, such as

steps in fitness functions based on the encoding in MarioGAN. With more results, these

observations could be extended and verified.

Another option is to depart from automatic evaluation and instead obtain the evalu-

ations of game content by playtests directly. Of course, this is only practicable if a small

number of solutions need to be evaluated. One potential approach could be surrogate-

based algorithms that reduce the number of exact evaluations required to a minimum. A

promising option here is to use surrogates based on a variety of information, possibly

including multiple diverse fully automatic evaluation functions. Such an experimental

set-up was proposed in section 5.1. Even though the corresponding experiments were

conducted, they are unfortunately only interpretable after more baseline experiments

have been completed for the GBEA. We will therefore definitely come back to these

results in the future.

Further tools for similar scenarios, i.e. semi-automatic optimisation of game problems

have also been proposed in [104] and tested using an real-world strategy (RTS) game.

This thus shows that considering several types of data is a promising solution, even for

complex games with large search spaces.

6.2.1.2 Analysis of Fitness Landscapes

Independent of the validity of the evaluation function, it should also be considered what

type of fitness landscape is created with its usage. Information on the fitness landscapes

are crucial for the choice of suitable optimisation algorithms as well as for putting their

performance into context. The need for further analysis of existing evaluation functions

has also been recognised in other publications as well, see for example recent surveys

and vision papers [19, 130].

This is the reason we are investigating the function suites in GBEA in more detail.

Part of this analysis are the line walks as described in section 5.3.1. In addition, we also

plan to do further analysis using techniques from the field of Exploratory Landscape

Analysis (ELA). Corresponding approaches center around computable features intended

to characterise functions in terms of a set of abstract concepts, such as their modularity

and the existence of plateaus. The features have been commonly used as inputs for

models that choose which one of a set of algorithms to run on a given problem [72].

We want to use them instead as a way to characterise the resulting fitness landscapes.

This could be done by training models to recognise specific characteristics based on

information from the ELA features.

The analysis is also going to include visualisations of the fitness functions, as ELA

features do not necessarily provide interpretable information. Visualisations allow a

more holistic overview for the human observer. However, corresponding plots would

likely be done on smaller scale versions of the GBEA problems, due to the inherent

dimensional limitations of visualisations.

Additionally, since the fitness functions seem to be flatter than expected due to

the lack of baseline performance results (see section 5.3.3), properties that are usually

131

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

assumed of a fitness landscape should be investigated further. One such property is

locality, i.e. sensitivity to small modifications in search space. This is especially important

with regard to the correlations between fitness and available mutation operators. This

relationship is of course influenced by the representation of the search space, as game

optimisation problems invariably include some form of phenotype-genotype mapping.

For example, the steps in the encoding-based fitness functions were clearly a result of the

one-hot encoding used in MarioGAN (see section 5.3.1). Based on these insights, common

representation methods for levels and game parameters should also be analysed in terms

of their influence on the properties of the resulting game optimisation problems.

6.2.1.3 Analysis of Uncertainty

The analysis of the uncertainties identified in the taxonomy described in section 4.1

have largely been quantitative in nature, see chapter 5. The only large exception is the

case study in appendix B that verifies the existence of a specific type of bias. However,

common sources of uncertainty should ideally be investigated qualitatively and in more

detail. To discuss potential future work in this regard, we refer to the several sources of

uncertainty identified in section 4.1.4.

For the feedback dimension, the main errors are based on survey design and the

interpretation of the feedback. Both of these problems would be mitigated if the eval-

uations function could be validated as discussed in section 6.2.1.1. If enough data is

available, even the non-determinism in games would not be an issue in terms of obtaining

a meaningful signal for the evaluation.

Lacking a thorough validation of a given evaluation function, other approaches to

analyse the uncertainty could be taken. If no feedback from human players is available,

survey design becomes irrelevant. The issues caused by non-determinism in games are

also alleviated, as evaluations that do not require playtests can usually be repeated often

enough to obtain statistically significant results. What remains is the interpretability

of the feedback, which is significantly harder without human feedback. Explainable AI

as envisioned in [146] could be the key to translating AI behaviour into interpretable

feedback. However, explainable and interpretable algorithms are still an active field of

research, with sometimes counter-intuitive results.2

For the input dimension, data selection and data generation have been identified

as the two main issues. The latter has been covered by the case study in appendix B.

However, more of these studies should be conducted in different settings in order to

identify how prevalent and noticeable data generation bias really is. Uncertainty from

data selection can be approached by either avoiding a selection completely (by using

enough computational resources and employing deep learning practices), or by using

suitable dimensionality reduction techniques developed in machine learning, such as

feature selection or principal component analysis.

The final source of uncertainty stemming from the choice of model can be investigated

using model validation approaches, e.g. cross-validation as described in the context

2Such a result comes from a recent study that finds that increasing the transparency of models reduced

the ability of human survey participants to detect erroneous model behaviour [101].

132

6.2. FUTURE WORK

of SAPEO (see section 4.2.2). Because the experimental framework (see section 4.4)

includes automatic logging of the prediction error, as well as the predicted uncertainty,

model fit can be conveniently investigated. These features already produced interesting

results in the experiments. An example is the conclusion from section 5.2.1.3 to increase

the strictness of model validation in SAPEO.

6.2.2 Game Benchmark for Evolutionary Algorithms (GBEA)

The first and most important addition, as mentioned in the previous sections, are baseline

performances. Based on these results, appropriate targets can be determined in order

to increase the interpretability of results obtained with the benchmark. As the GBEA

is part of a workshop at GECCO, this is an ongoing project and will be tackled in the

future.

Furthermore, based on a more extensive analysis of the existing problems as described

in section 4.3.2, the functions should be examined in terms of their contribution to the

benchmark. Functions with high correlation or low meaningfulness might be dropped in

order to reduce the computation time of the full benchmark.

An additional important aspect for further examination is whether the fitness func-

tions can be further adapted so that evolutionary algorithms can be distinguished based

on their performance. This seems to be a property that benchmarks aspire to, which is

not the case in the GBEA at the moment. However, whether this is useful depends on

what the reason behind the lack of differences in performance is. If it is solely because

of the definition of targets, the issue will be solved by adding baseline results. If it is

because some optimisation algorithms genuinely struggle on the problems, it still might

be worthwhile to include them in the benchmark, as they did occur in previous research.

Besides potential modifications of the existing function suites, we also plan to add

more suites based on different applications in the future. To do this, ideally, the COCO

framework should be extended in order to fully supported noisy optimisation in this

context. This would allow to leave noise handling up to the optimisation algorithm

instead of setting a specific number of simulations in order to consistently produce

similar values.

Furthermore, many of the game optimisation problems targeted in literature seem

to have a non-continuous search space [75]. In order to be able to represent these types

of problems, appropriate functions suites should be added to the GBEA. As COCO is

designed for continuous optimisation, this aspect also requires further modification of the

framework. For example, we plan to add the GVGAI parameter optimisation problems

that were part of the BBComp competition at EMO in 2017 to the benchmark.

6.2.3 Surrogate-Assisted Evolutionary Algorithms

Based on the results for SAPEO in section 5.2.1.3, we have concluded that model val-

idation is definitely one aspect to consider further. It seems that even stricter model

validation might further improve the performance. In this context, it should be invest-

133

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

igated where the behaviour switches and SAPEO always resorts to falling back on the

underlying algorithms, as in these cases, no improvements are made either.

An additional result from the analysis is that potentially convergence detection

mechanisms, especially in CMA-ES, could be able to detect whether the number of

selection errors is large. If this hypothesis can be verified, this observation could be used

to either restart SAPEO, or to adapt the strictness of model validation.

As many game optimisation problems also include mixed-integer search spaces

(see section 6.2.2), it would also be interesting to investigate how SAPEO performs in

conjunction with other surrogate models. One potential candidate are bandit models,

which require only minor assumptions and work well for problems with small search

spaces, but noisy fitness functions [75].

Furthermore, it should be investigated why the surrogate-assisted algorithm tested

in our experiments performed mostly below our expectations. It is possible that these

algorithms were only intended for a small subset of problems with very low budgets

and specific properties. If that is the case, future work could be to find out whether

performance can be improved overall. If this is not the case, additional implementations

of these algorithms should be tested. One algorithm that should definitely be run is EGO

with full global models.

134

A
P

P
E

N
D

I
X

A
GAME EVALUATION SURVEY

In the following, we first identify relevant areas of research in the field of Artificial

and Computational Intelligence in Games. We then survey work from these areas and

classify the described approaches according to our taxonomy as described in section 4.1.

The presented work is grouped by type of game (content) that is evaluated. We hope to

identify dominant and unexplored methods using this structure. This analysis will be

visually supported by displaying the publications in tables based on our taxonomy (cf.

Tab. 4.1).

A.1 Characterisation of Game Evaluation AIs

All the arrows in Fig. 4.1 describe an information processing step which can be executed

by a human or an AI. In case of automatic processing as addressed in this survey, all steps

need to be executed by an AI. The employed AIs can be classified using the taxonomy

presented in [160]. This is done in the following, in order to identify areas with relevant

literature.

So in terms of the End User (Human) Perspective according to the paper, the paths

PLAYER, COMP and STAT (blue arrows) all model player behaviour. PLAYER is inten-

ded to predict the actions of a player within the game context, while STAT models the

behaviour of a whole group of players in terms of gameplay statistics. In contrast, COMP

models player behaviour in the sense that it aggregates gameplay data into statistics

(e.g.average final score), thus potentially biasing it by selecting specific statistics.

The processes depicted in red, i.e. CODE, OUT and PLAY, all describe an evaluation

of content in terms of the End User (Human) Perspective. In all cases, the game or

content is evaluated in terms of a goal that is defined a priori. While CODE uses a direct

evaluation based on an encoding of the content, PLAY and OUT evaluate the content

based on further data that is generated from it.

The intended end user of game evaluation is mainly the game designer, but of course

producers/publishers are indirectly affected as well. Depending on how the evaluation

results are used, researchers have a stake in game evaluation as well.

In case of the red arrows, it is very clear that the methods employed here fall into the

research area of player modelling. PLAYER, however, describes some form of player AI

which relates to research in nonplayer character (NPC) behaviour learning and search

and planning, depending on the game in question. General game AI also ties into this

process, as the AI generating playtraces should be as general as possible in order to deal

with different levels and rulesets equally well. Additionally, as the AI in case of PLAYER

135

APPENDIX A. GAME EVALUATION SURVEY

Table A.1: Publications applying game (content) evaluation to grid-based games. Research

on platformers is displayed in blue, on dungeons in green and on general arcade games

in red.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

input

feedback none

NONE

implicit

IMP

explicit

EXP

encoding

CODE

[58, 92, 121, 122, 129, 130]

[82] [26, 88]
[5] [117]

outcome statistics

OUT

[63]

[26, 59, 97, 98, 135]

gameplay data

PLAY
[46, 126] [125] [84] [119]

serves as a stand-in for a human playtester, research in believable agents is relevant

here as well.

COMP is the selection of statistics that characterise a playtrace appropriately and

is thus most related to player modelling. Similarly, while there are not currently many

examples of methods that follow STAT, they could be realised using machine learning

methods and would then most likely fall under player modelling as well.

Finally, research on AI-assisted game design naturally includes various forms of game

evaluation. The fields of procedural content generation and computational narrative do

not relate directly to any of the AIs in the figure. However, publications using search-

based algorithms in both fields often employ processes that are visualised in Fig. 4.1 in

order to evaluate the generated content and are thus relevant as well [116, ch. 2].

A.2 Game Evaluation Methods

A.2.1 Grid-based Games

Grid-based games are a class of games that is very popular in general games research

and also PCG research, probably since they are easily observable and usually have an

obvious encoding. In this chapter, we survey game (content) evaluation methods that

have been applied to platformer, dungeon and general arcade-like games that are based

on a 2D-grid. The corresponding work is displayed in Tab. A.1, colour coded by the specific

application.

A.2.2 Platformers

As is clearly visible from Tab. A.1, research on grid-based 2D-platformers focuses heavily

on CODE-NONE models. [130] provides a summary of commonly used metrics to evaluate

platformers based on their level encoding and adds more. The metrics range from

expressing challenge (e.g. leniency) to measuring visual aesthetics (e.g. symmetry). They

136

A.2. GAME EVALUATION METHODS

are either based directly on the positioning of different tiles on the grid or else on optimal

paths that can be computed from the encoding. They all rely on models that are either

defined using designer experience, or, especially in the case of visual aesthetics, based on

design theories. Similar metrics have been used in [129] and [58].

While the measures and games are similar in these cases, the context in which

they are used in is not. While [130] provides a survey and characterisation of different

measures, in [58] they are used to describe the expressive range [116, ch. 12] of a level

generator. In [129], they are used instead to guide a search-based level generator [116,

ch. 2] employing Markov chains. In this case, the results are evaluated using explicit

feedback from human players, information which the authors of [129] suggest to add to

the evaluation function in future work.

Instead of grid-based encodings as described above, [122] and [121] use a specific

geometry and rhythm-based encoding of platformer levels. In this case, the rhythm of

required actions to traverse the level are represented. The encoding is thus abstracted

from its visualisation and implementation and instead corresponds closer to the player

experience. The evaluation of the level in [122] can be transformed into a constraint

satisfaction problem because of the appropriate encoding and can thus be solved analyt-

ically. In [121], the measures on the rhythm-based representation are extended and used

to analyse the expressive range of a level generator.

The authors of [92] take yet another approach by evaluating how similar two levels

are based on a chunk-encoding. They use this measure to generate levels that replicate

the style of existing ones designed by humans.

Other research operates on simulation-based evaluation instead. [63], for instance,

takes a Monte-Carlo approach to evaluating diversity and playability by observing the

scores of a large number of simple AI players. In contrast, [126] and [46] apply models of

game experience that originate from related research, namely the concepts of flow and

empowerment. In [46], the employed model is also verified using explicit quantitative

and qualitative feedback from human players.

In contrast to the work presented above, which is all based on an independently

defined model, [117] and [119] introduce methods that use models trained from explicit

player feedback. Both publications use gameplay data with annotated experience based

on a survey. While [117] learns a neural network that predicts the visual aesthetics of a

MarioAI level based on different features that describe the level encoding, in [119], a

model employing neuroevolutionary pairwise preference learning and automatic feature

selection is trained to predict engagement, frustration and challenge from recorded

gameplay data.

A.2.3 Dungeon Games

Grid-based dungeon games can be evaluated in a very similar fashion as the platformer

games described above. An example of a similar-style evaluation of dungeon levels is

[82], where measures for area control, exploration and balance are computed from coarse

map sketches of either dungeons or strategy games.

137

APPENDIX A. GAME EVALUATION SURVEY

However, a completely different approach is presented and applied to the game

MiniDungeons1 in [84]. In this work, the dungeon map is evaluated based on a set of AIs

that all value different gameplay outcomes and actions differently (encoded in a utility

function), thus exhibiting distinct playing styles. In this case, the AIs are used to provide

critique of the maps based on their different utility functions. Ideally the AIs, dubbed

procedural personas behave similar to different player types, thus modelling possible

responses of the game audience.

A.2.4 Arcade Games

Many of the publications on arcade-style games that include game evaluation are related

to the framework of the General Video Game AI competition (GVGAI)2. The framework

allows arcade-style games to be defined using the video game description language

(VGDL) and then automatically processed by an engine to be played by human and / or

AI players. The player AIs that participate in the competition have to be general, i.e. play

previously unseen games just based on the engine responses and a forward model. The

evaluation methods for GVGAI games also tend to be generally applicable to all games

that can possibly be defined within the framework.

Some of the evaluation methods are based directly on the VGDL representation, such

as [5] and [88]. In [5], strategic depth is estimated based on the minimal complexity of a

heuristics representation of human player behaviour, i.e. implicit feedback. The assump-

tion here is that more complex behaviour patterns and irregular behaviour correspond to

a higher perceived strategic depth. The model is evaluated based on a small case study

with explicit feedback. In contrast, the methods in [88] are popular recommendation

methods that rely on object- and user-similarity measures. The evaluation in [26] is also

based on a ruleset representation (other than VGDL), but includes information on the

map and outcome statistics as well.

Many evaluation approaches rely on a specific form of outcome statistics, namely

algorithm performance profiles ([59, 97, 98, 135]). Algorithm performance profiles are a

popular approach for automatic game (content) evaluation in general. The underlying

principle is the formal theory of fun [112], that is based on the assumption that learning

and progressing in a game over time is fun. Human players would thus enjoy learning

patterns which can be mimicked by player AIs with intrinsic rewards for learning novel

and surprising patterns [112]. Algorithm performance profiles take up this idea by

measuring the performance of simple (random) agents vs. more sophisticated ones, or

alternatively, algorithms with varying budget restrictions. The underlying idea is that, if

the game distinguishes these agents based on performance, there are (1) a large set of

learnable patterns with (2) differing difficulty levels. This would give a human player an

opportunity for noticeable progress and increase enjoyment according to [112]. Restricted

play proposed in [64] is also based a similar concept. In this case, however, restrictions

1http://minidungeons.com/
2http://gvgai.net/

138

A.2. GAME EVALUATION METHODS

Table A.2: Publications applying game (content) evaluation to parlour games. Research

on board games is displayed in blue, on card games in green and on dice games in red.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

input

feedback none

NONE

implicit

IMP

explicit

EXP

encoding

CODE
[18] [99, 148]

outcome statistics

OUT
[18, 120] [99] [62]

gameplay data

PLAY
[18] [99, 148]

are placed on the AI players and the resulting performances are compared. The influence

of these different restrictions on the game outcome can thus be assessed.

In contrast, the work in [125] is on the enjoyability of Pacman ghost teams and not

related to GVGAI. The presented method is a weighted sum of several measures that

express challenge and spatial, as well as behavioural diversity, based on gameplay data.

It is evaluated using explicit feedback.

A.2.5 Parlour Games

Parlour games are another topic of regular games research, popular examples are board

games, card games and dice games. We survey research that falls into this category in

the following section. Corresponding work is displayed in Tab. A.2, colour coded by the

specific application.

One of the most prominent publications on board game evaluation is [18], where 57

different measures using varying types of inputs are defined to automatically evaluate

board games. Many of the measures are based on scientific models describing aesthetics

in different fields, while some are based on designer intuition. The measurements are

integrated within a PCG framework called Ludi that has produced games that have

successfully been published as board games3.

[120] is another example of work on board games (Ticket to Ride4), this time based

on outcome statistics from playthroughs of AIs that model player behaviour based on

established strategies. The framework was able to detect situations that were not covered

by the game rules, as well as dominant sub-strategies. The latter discovery would need

to be verified with outcome statistics from human player data. The former, however,

demonstrates that rulesets can successfully be tested for coverage automatically in a

cost-efficient way.

3http://www.cameronius.com/games/yavalath/
4https://www.daysofwonder.com/tickettoride/en/

139

APPENDIX A. GAME EVALUATION SURVEY

Table A.3: Publications applying game (content) evaluation to strategy, action, and

narrative-based games. Research on strategy games is displayed in blue, on action games

in green and on narrative-based games in red.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

input

feedback none

NONE

implicit

IMP

explicit

EXP

encoding

CODE

[81, 82, 103, 115, 136]

[87]

[54, 154]

[77]

[81]

[79]

outcome statistics

OUT

[22, 76, 115]

[86, 134]

gameplay data

PLAY

[102] [3, 69]

[43, 55]
[159]

Game evaluation of card games has also been used to detect issues in game specific-

ation, such as the work by Osborn et al. on Dominion5 [99]. As in [18], the evaluation

is also based on a combination of several measures that use different input data. In

contrast, [148] demonstrates how gameplay-data based evaluation can be approximated

with different models based only on the encoding for the game TopTrumps6.

In case of [148], the evaluation is based on abstract concepts such as fairness, sus-

pense and engagement that are modelled with gameplay statistics of different AI players.

Similar concepts and implementations are used in [62] for dice games. The authors even

suggest that the dice games can be a representation of battles in games in general, thus

suggesting a generalisation of these concepts for a wide range of games beyond parlour

games.

A.2.6 Strategy, Action and Narrative-Based Games

In the following section, we present work from several different game genres, namely

strategy, action and narrative-based games. Strategy games include real-time strategy

(RTS) games, physics-based games and puzzles as well as games with a purpose. Ra-

cing, fighting, sports and physical games are all considered examples of action games.

Corresponding work is displayed in Tab. A.3, colour coded by the specific application.

Most of the strategy games identified as category CODE-NONE are targeted towards

map-evaluation in (real-time) strategy games such as StarCraft7. Examples are [81, 82,

103, 136]. These publications all include model-based measures computed directly from

grid-based simplifications of the maps which express properties such as enemy density

and symmetry, that are expected to relate to difficulty and fairness, respectively. [81]

also includes a model of designer preferences that is updated online based on explicit

feedback during the design process.

5https://dominion.games/
6http://www.toptrumps.com/
7https://starcraft2.com/en-gb/

140

A.2. GAME EVALUATION METHODS

In [115], the levels of the physics-based puzzle game Cut the Rope8 are represented

as geometric constructs, thereby also encoding possible solutions of the puzzles. In the

publication, the aesthetics and playability of generated Cut the Rope levels are evaluated

mainly based on their representation, but outcome-based measures are added as well.

The measure for strategic depth proposed in [76] applies the concept of algorithm

performance profiles that was described in section A.2.4 to strategy games in this case.

This is true as well for the method to evolve car racing presented in [86]. The work in

[22] is also based on outcome statistics, but in this case mainly evaluated in terms of

system utility. This measure expresses the efficiency of computational resources (i.e.

human player input), as the game in question is categorised as a game with a purpose

(GWAP). [102] describes further genre-specific model-based evaluation measures for

another physics-based game.

The measures applied to action games as defined above are used for very different

purposes and thus differ significantly. One purpose is dynamic difficulty adaptation

(DDA), i.e. adapting the difficulty in real-time such that the human player is challenged,

but not frustrated. Work in this field naturally requires an evaluation of game (content)

difficulty. DDA can of course be applied to a variety of genres, for example in car racing

[134] and fighting games [3]. [134] adapts opponents in car races based on an aggregated

statistics of the results. This makes for a slower adaptation when compared to [3], where

the difficulty at each point in time is estimated based on player health.

A model based on implicit feedback from game (content) popularity is used in both

[54] and [154]. While [54] gathers data on content popularity, [154] evaluates the game

based on player retention. The models are used to either (1) evolve weapons in a space

arms race9 in [54] or (2) to predict player retention based on observed gameplay patterns

in a sports game10 [154]. The method described in [79] is applied to another space-themed

game, but instead evaluates the aesthetics of spaceships using a model-based approach.

The evaluation methods described in [87] and [157] both measure emotional responses

in their respective domains. In [87], the tension created by audio in the context of a

horror game is evaluated. In contrast, the entertainment in physical children’s games is

measured in [157]. While [87] employs a model-based approach that evaluates different

patterns of tension, the tension model is actually crowdsourced and learned from human

feedback. The model for entertainment in [157] is based on human feedback as well. In

this case, it is an artificial neural network (ANN) trained on explicit feedback.

Similar to the evaluation of dungeons based on so-called mission graphs that express

the type and order of challenge in [69], all the evaluation methods for narrative in games

we found [43, 55, 77] are based on a kindred representation of the temporal order of

events. While a crowdsourced approach that includes implicit feedback is proposed in

[77], [43, 55] add information collected from gameplay data instead.

8https://www.cuttherope.net/
9http://galacticarmsrace.blogspot.de/

10Madden NFL 11: https://www.easports.com/madden-nfl

141

APPENDIX A. GAME EVALUATION SURVEY

A.3 Observations and Conclusion

Analysing the distribution of the surveyed work, it is very apparent that a majority of

research that incorporates automatic evaluation of games and game content is based on

models that express designer intuition and/or scientific theories. In contrast, data-driven

approaches are much rarer, independent of the type of game that is addressed. Many

publications use player feedback in order to evaluate their model, although not all do.

A likely reason for this distribution is that there just is not enough data available to

train a model successfully. It is also striking that we have found no published evaluation

methods in categories OUT-IMP, OUT-EXP and PLAY-IMP at all. It is not obvious why that

is and thus, these categories might be an interesting avenue of future research.

In terms of the distribution of work across the different categories, it is also noticeable

that research based on the GVGAI framework is relying more heavily on outcome

statistics when compared to other types of games. This can probably be explained by

the fact that in case of a general evaluation function, it is not possible to introduce

game-specific knowledge to the model. As a result, many of the models are based on

algorithm performance profiles, which is a popular method for all types of games.

There are several other approaches that are used across multiple game genres, such

as recommendation-based methods. These methods also allow for the incorporation of

online feedback, resulting in mixed-initiative models. While there are a few successful

approaches that rely on Monte-Carlo AI performance, many simulation-based approaches

seem to include player AI that is supposed to behave similar to human players in regard

to the property that is tested. One way of doing that is to use intrinsically motivated or

utility-based agents, that also have been used to provide qualitative feedback on games.

The downside of all these approaches is of course that it is difficult to control the error

that is introduced by inaccurate models for player AI.

Automatic game evaluation often targets properties that can be determined ob-

jectively, such as playability or the exploitability of a ruleset. A significant subset of

representation-based game evaluation methods also uses a graph- or heuristics-based

representation that encodes possible solutions to the game. This obviously facilitates

evaluation, especially when assessing playability.

Another common approach is to use concepts from other fields, especially when

evaluating aesthetics. Weighted sums are very popular as well, and commonly used

in methods based on encoding and gameplay data. The measures might in some cases

appear arbitrary at first, but there are noticeable similarities between the abstract

concepts they are intended to measure. Examples of these concepts are fairness, at what

point a winner is determined and difficulty, which are also commonly addressed in game

design literature. It is also apparent that many successful publications combine multiple

approaches to game evaluation.

A disconcerting pattern, however, is that many approaches are not tested exhaustively

in terms of potential errors inherent to the chosen method and how biases are propagated

inside an application. We hope to see more work in this regard in the future. In the

following section, we take a first step in this direction by discussing which different types

of errors and biases can occur for different game evaluation methods.

142

A
P

P
E

N
D

I
X

B
CASE STUDY ON DATA GENERATION BIAS

In the following, we specifically address the uncertainties addressed by basing the

evaluation on data generated from AI instead of human playthroughs. We will be calling

this type of uncertainty Data Generation bias in the following. We choose to discuss Data

Generation bias further, as it is an issue that occurs in most game evaluation methods,

but is rarely ever addressed (see survey in appendix A).

We therefore present a small case study on StarCraft II that demonstrates Data

Generation bias and its effects on game optimisation. We choose StarCraft II for the

example as it is a well-researched and at the same time popular game with an interesting

complexity. Additionally, both AI and human player data is available for the game in

sufficient quantity after the release of the the StarCraft II Learning Environment

(SC2LE) [144]. The case study is based on the StarCraft II winner prediction problem

described in section 2.4.3.

In the following, we first present the data this study is based on. Following that, we

perform a descriptive analysis of the datasets in order to characterise them. Finally, we

compute winner prediction models and assess the effect of Data Generation bias on their

performance.

B.1 Acquired Data

In order to investigate Data Generation bias, we have obtained three different play-

through datasets:

• LADDER: 4955 1v1 ladder games human vs. human player randomly sampled from

publicly available replay packs. Ladder games count towards a player’s ranking,

which one generally seeks to improve.

• WCS: 419 1v1 games human vs. human player, played during the World Champion-

ship Series (WCS) tournament in Leipzig, Germany, January 26th-28th 20181.

• AI: 651 1v1 games ai vs. ai player from the StarCraft II AI ladder2

It is important to note that, while the players whose games are contained in the LADDER

dataset are not absolute beginners, their proficiency is expected to differ significantly

from the (semi-)professional players in a WCS tournament. (Non-cheating) AI players

1https://wcs.starcraft2.com/en-us/tournament/3895/
2http://sc2ai.net/

143

APPENDIX B. CASE STUDY ON DATA GENERATION BIAS

are considered to be less proficient than most human players. This is one of the reason

why the StarCraft AI competitions and the SC2LE continue to have traction.

After pre-processing as described in section 2.4.3, we are left with 4410 LADDER

games, 419 WCS games and 651 AI games. For each of the games in the datasets, we

collect several features that describe player progress. For the purposes of the following

analysis, we only consider the values at the very last game tick. The features we were

able to collect and use for further analysis are listed along with their interpretation in

the following.

General features (metadata)
Map name unique identifier of map

Race Protoss, Terran, Zerg

Result win, loss, tie, undecided

APM actions per minute

Game duration number of game ticks

The collected features contain some general information like the name of the map the

match was played on, and how many game ticks it lasted. Additionally, the assigned race

and result of both players are saved along with the actions per minute (APM) statistic.

Resource features (stats)
collection rate resources collected per minute

current number of unspent resources

used number of spent resources (total)

killed opponent units, buildings destroyed by player

lost own units, buildings destroyed

friendly fire own units, buildings destroyed by player

All resource features are available for both minerals and vespene gas separately and

measured in these resource units. They describe the collection status of the respective

resource, as well as building and units expressed in terms of their resource costs for

an aggregated measure. The last four features are divided into three more categories

(economy, army and technology) that indicate the type of building or unit the resource

was spent on. Expert players are able to identify player strategy and progress based on

these resource features.

B.2 Descriptive Analysis

All experiments are performed on data only and using a Kolmogorov-Smirnov test [25].

We are using the standard confidence level of α = 0.05 for all tests. The results are

supported visually by histograms and barplots similar to the one displayed in figure

B.1. The figures plot the value distribution of a specific feature given in the title (e.g.

vespene gas used for technology, i.e. used_vespene_technology, in figure B.1). Only relative

frequencies are displayed to allow a comparison between datasets of different sizes. The

144

B.2. DESCRIPTIVE ANALYSIS

used_vespene_technology

D
e

n
s
it
y

0 500 1000 1500 2000 2500 3000

0
.0

0
0

0
0

.0
0

1
0

0
.0

0
2

0
0

.0
0

3
0

Figure B.1: Histogram of vespene gas used for technology. Values from the LADDER

dataset are displayed in blue and AI in red.

different datasets visualised in the figures are colour coded (blue: LADDER, red: AI) and

can overlap, resulting in a purple colouring.

While the plots show the complete datasets, i.e. feature values for both players in

a game for the sake of completeness, the tests are done only on feature vectors where

the corresponding player won the game. This ensures that the data is independently

distributed as is assumed by the Kolmogorov-Smirnov Test. It should also make the

values of the features more comparable, especially since there are considerably more

undecided or tied games in the AI datasets that produce outliers, especially in terms of

game duration.

The following experiment is intended to assess the influence of player modelling

errors. Our usecase is that we want to use the feature measurement on the AI dataset to

predict how human players play the game and find possible correlations between both

data sets. Interesting features in this regard would be the APM, game duration and all

resource statistics.The results are visualised in figures B.2 and B.3.

We observe that, while human players seem to play the races about equally (with

slightly more Terran players, cf. figure B.2 upper left part), research seems to focus on

Zerg players. There is also a striking difference in terms of game result, since 20% of

AI games end without a winner (cf. figure B.2 upper right part), which is very unusual

for games played by humans (LADDER as well as WCS). It is interesting to see that apm

does not translate to proficiency in case of AI players, as they on average clearly perform

145

APPENDIX B. CASE STUDY ON DATA GENERATION BIAS

Protoss Terran Zerg

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Defeat Tie Undecided Victory

0
.0

0
.1

0
.2

0
.3

0
.4

apm

D
e
n
s
it
y

0 50000 100000 150000

0
e
+

0
0

2
e
−

0
5

4
e
−

0
5

6
e
−

0
5

8
e
−

0
5

1
e
−

0
4

collection_rate_minerals

D
e
n
s
it
y

0 1000 2000 3000 4000 5000

0
.0

0
0
0

0
.0

0
0
4

0
.0

0
0
8

0
.0

0
1
2

Figure B.2: Comparison of features in LADDER and AI. Dataset LADDER is displayed in

blue, AI in red. Features displayed from left to right, top to bottom are assigned race,

result, apm and mineral collection rate.

worse than human players from LADDER, i.e. less actions per minute as can be seen in

figure B.2, left column, second row. This is most likely due to the fact that AIs will often

execute actions that are not meaningful, especially if exploratory algorithms are used.

With only very few exceptions, the features from the AI and LADDER datasets are

significantly differently distributed. We show some examples of differently distributed

features, namely mineral collection rate (figure B.2, second row right), vespene gas

used for technology and minerals used for economy (figure B.3, first row left and right,

respectively) as well as minerals used for technology (figure B.3, second row left). As a

counterexample, we also add vespene gas lost by economy (figure B.3, second row right).

The observations described above from the visual comparison of distributions presen-

ted in figures B.2 and B.3 are also strongly supported by the corresponding p-values

received from the Kolmogorov-Smirnov test (see above). The hypothesis that both data-

sets share the same cumulative distribution function is rejected in almost all cases.

146

B.3. RESULTS

used_vespene_technology

D
e
n
s
it
y

0 500 1000 1500 2000 2500 3000

0
.0

0
0
0

0
.0

0
1
0

0
.0

0
2
0

0
.0

0
3
0

used_minerals_economy
D

e
n
s
it
y

0 5000 10000 15000 20000

0
.0

0
0
0
0

0
.0

0
0
1
0

0
.0

0
0
2
0

0
.0

0
0
3
0

used_minerals_technology

D
e
n
s
it
y

0 5000 10000 15000 20000

0
.0

0
0
0
0

0
.0

0
0
1
0

0
.0

0
0
2
0

0
.0

0
0
3
0

lost_vespene_economy

D
e
n
s
it
y

0 500 1000 1500 2000 2500

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

Figure B.3: Comparison of features in LADDER and AI. Dataset LADDER is displayed in

blue, AI in red. Features displayed from left to right, top to bottom are minerals spent on

army, economy and technology, respectively. The last graphic in the lower right corner

shows economy lost measured in vespene gas.

Typical p-values received were 9.592 ⋅10−14 for the chosen race, or less than 2.2 ⋅10−16

for apm, minerals collection rate, vespene gas used for technology, or minerals used

for technology. Otherwise, the hypothesis was accepted for economy lost measured in

vespene gas (last row right in figure B.3) with a p-value of 0.7116. We thus conclude that

our datasets follow different distributions.

B.3 Results

Having shown that the datasets in fact have different characteristics, suggesting different

behaviours of human and AI players, in the following we investigate how these difference

might affect game optimisation. We thus analyse the performance of an ANN trained on

147

APPENDIX B. CASE STUDY ON DATA GENERATION BIAS

the datasets to predict the winner of a game. The ANN used is very simple (1 hidden layer,

10 neurons) and is given all collected features (see section B.1) except for the winner

as an input. We report the mean and standard deviation of the prediction accuracies

observed in 30 independent tests.

For a baseline, we first train a predictor separately on each of the datasets using

cross-validation and a 90/10 split. Results are presented in table B.1. The obtained mean

accuracies are very high, with a small standard deviation. This was expected, as the

data describes the gamestate at the end of the game.

Table B.1: Winner prediction accuracy of the baseline experiment with a predictor

trained on each data set separately. Mean values (mean) and standard deviations (SD)

are provided.

dataset mean SD

ladder 0.939531 0.008019

AI 0.975128 0.014095

WCS 0.920238 0.035114

However, in automatic game evaluation, the model would be trained on artificially

generated data, but applied to predict the winner of human vs. human matches, or

vice versa. This would be necessary if e.g. a trained predictor is used to determine the

frustration of a player. We thus conduct a second set of experiments, where we train the

ANN on one data set and test it on a different one. In table B.2, we list the different

combinations of training and test set in the first two columns as well as the obtained

mean prediction accuracy and standard deviation in the last two columns.

Table B.2: Winner prediction accuracy received from second experiment where different

datasets were considered for training and tests. Mean values (mean) and standard

deviations (SD) are provided.

learned on tested on mean SD

ladder ai 0.529391 0.059723

ai ladder 0.510401 0.011530

ladder wcs 0.950040 0.006451

wcs ladder 0.869531 0.019162

We observe that in the experiments involving AI playthroughs, the trained predictors

achieve prediction accuracies of around 0.5. In case of the LADDER dataset, this is barely

better than chance as there are almost no undecided or tied games. However, as a

much more accurate predictor is possible for the datasets separately (cf. table B.1), we

conjecture that different features are indicators for the outcome in the two datasets.

In order to investigate whether this observation is due to the artificially generated

data, we repeat the experiment with the WCS dataset instead of AI. The players in the

WCS are much more experienced and should behave significantly differently, including

usage of different strategies. Despite this, the trained predictors still achieve relatively

148

B.3. RESULTS

high accuracies. The prediction accuracy on the WCS dataset was even improved when

compared to the baseline experiment. This might be due to the small number of games

in WCS. This conjecture would also be supported by the fact that the WCS predictor has

the highest standard deviation in table B.1. Even the predictor trained on WCS data is

able to achieve 86% accuracy on the LADDER dataset.

These results indicate a substantial difference in behaviour between human and

AI players. Approaches that rely exclusively on AI data (like self-play) should thus

carefully be tested in terms of the error they induce. If it is forbiddingly large, as in our

example, one way to reduce it would be to incorporate additional data that reflect human

behaviour.

Another alternative would be to train a mapping function that is able to translate the

features observed in the artificially generated dataset to the ones observed in real-world

data. The mapping function (e.g. a transition matrix) could be specified using an EA

that minimises the multivariate statistical distance between the mapped AI data and

the target data (e.g. Energy distance). However, depending on the application, such

a function does not necessarily exist and would introduce another, albeit measurable,

source or error.

Since we have not tested different applications, we cannot generalise our findings to

all instances where artificially generated data was the sole input to natural computing

methods. However, we have provided a counter-example, thus demonstrating the need of

a careful evaluation of the different errors introduced.

149

BIBLIOGRAPHY

[1] C. C. Aggarwal, A. Hinneburg and D. A. Keim. ‘On the Surprising Behavior of

Distance Metrics in High Dimensional Space’. In: Database Theory — (ICDT).

Ed. by J. V. den Bussche and V. Vianu. Springer, Berlin, 2001, pp. 420–434.

[2] Y. Akimoto, A. Auger and N. Hansen. ‘Continuous Optimization and CMA-ES’.

In: Companion of Genetic and Evolutionary Computation Conference (GECCO).

ACM Press, New York, 2015, pp. 313–344.

[3] G. Andrade et al. ‘Challenge-sensitive action selection: An application to game

balancing’. In: IEEE/WIC/ACM Intelligent Agent Technology. IEEE Press, Pis-

cataway, NJ, 2005, pp. 194–200.

[4] I. Andrianakis et al. ‘Bayesian history matching of complex infectious disease

models using emulation: A tutorial and a case study on HIV in Uganda’. In: PLoS

Computational Biology 11.1 (2015), pp. 1–18.

[5] D. Apeldoorn and V. Volz. ‘Measuring Strategic Depth in Games Using Hierarch-

ical Knowledge Bases’. In: IEEE Computational Intelligence and Games (CIG).

IEEE Press, Piscataway, NJ, 2017, pp. 9–16.

[6] M. Arjovsky, S. Chintala and L. Bottou. ‘Wasserstein Generative Adversarial Net-

works’. In: International Conference on Machine Learning (ICML), Proceedings

of Machine Learning Research (PLMR). Ed. by Y. W. T. Doina Precup. Vol. 70.

http://proceedings.mlr.press/v70/, (accessed 12. Jan. 2019). 2017, pp. 214–

223.

[7] P. Auer. ‘Using confidence bounds for explotation-exploration trade-offs’. In:

Journal of Machine Learning Research 3 (2002), pp. 397–422.

[8] P. Auer, N. Cesa-Bianchi and P. Fischer. ‘Finite-time analysis of the multiarmed

bandit problem’. In: Machine Learning 47.2-3 (2002), pp. 235–256.

[9] D. Barber. Bayesian reasoning and machine learning. Cambridge University

Press, Cambridge, UK, 2012.

[10] T. Beielstein and S. Markon. ‘Threshold selection, hypothesis tests, and DOE

methods’. In: IEEE Congress on Evolutionary Computation (CEC). IEEE Press,

Piscataway, NJ, 2002, pp. 777–782.

[11] N. (Beume) Hochstrate, B. Naujoks and M. Emmerich. ‘SMS-EMOA: Multiob-

jective Selection Based on Dominated Hypervolume’. In: European Journal of

Operational Research 181.3 (2007), pp. 1653–1669.

[12] P. Bojanowski et al. ‘Optimizing the Latent Space of Generative Networks’. In:

CoRR abs/1707.05776 (2017). arXiv: 1707.05776.

[13] P. Bontrager, J. Togelius and N. D. Memon. ‘DeepMasterPrint: Generating Fin-

gerprints for Presentation Attacks’. In: CoRR abs/1705.07386 (2017). arXiv:

1705.07386.

151

BIBLIOGRAPHY

[14] P. Bontrager et al. ‘Deep Interactive Evolution’. In: Computational Intelligence in

Music, Sound, Art and Design (EvoMUSART). Ed. by A. Liapis, J. J. R. Cardalda

and A. Ekárt. Springer, Cham, Switzerland, 2018, pp. 267–282.

[15] D. Brockhoff et al. ‘Biobjective Performance Assessment with the COCO Platform’.

In: CoRR abs/1605.01746 (2016). arXiv: 1605.01746.

[16] D. Browder. ‘The Game Design of STARCRAFT II: Designing an E-Sport’. In:

Game Developers Conference (GDC). http://www.gdcvault.com/play/1014488/

The-Game-Design-of-STARCRAFT (accessed 12. Jan. 2019). 2011.

[17] C. Browne et al. ‘A Survey of Monte Carlo Tree Search Methods’. In: IEEE

Transactions on Computational Intelligence and AI in Games 4.1 (2014), pp. 1–43.

[18] C. B. Browne. ‘Automatic generation and evaluation of recombination games’.

PhD Thesis. Queensland University of Technology, Brisbane, Australia, 2008.

[19] R. Canaan et al. ‘Towards Game-based Metrics for Computational Co-creativity’.

In: IEEE Computational Intelligence and Games (CIG). IEEE Press, Piscataway,

NJ, 2018.

[20] A. Canossa and G. Smith. ‘Towards a Procedural Evaluation Technique: Metrics

for Level Design’. In: Foundations of Digital Games (FDG). http://www.fdg2015.

org/proceedings.html (accessed 12. Jan. 2019). 2015.

[21] A. B. Cardona et al. ‘Open Trumps, a Data Game’. In: Foundations of Digital

Games (FDG). http://www.fdg2014.org/proceedings.html (accessed 12. Jan.

2019). Society for the Advancement of the Science of Digital Games, Santa Cruz,

CA, 2014.

[22] L. J. Chen, B. C. Wang and W. Y. Zhu. ‘The design of puzzle selection strategies for

ESP-like GWAP systems’. In: IEEE Transactions on Computational Intelligence

and AI in Games 2.2 (2010), pp. 120–130.

[23] T. Chugh et al. ‘Towards Better Integration of Surrogate Models in Optimizers’.

In: High-Performance Simulation Based Optimization. Ed. by T. Bartz-Beielstein,

B. Filipic and E. Korosec. Springer, 2019, To appear.

[24] C. C. Coello, G. Lamont and D. Veldhuizen. Evolutionary Algorithms for Solving

Multi-objective Problems. 2nd ed. Springer, New York, 2007.

[25] W. J. Conover. Practical nonparametric statistics. 3rd ed. Wiley series in probabil-

ity and statistics. Wiley, New York, 1999.

[26] M. Cook and S. Colton. ‘Multi-Faceted Evolution of Simple Arcade Games’. In:

IEEE Computational Intelligence in Games (CIG). IEEE Press, Piscataway, NJ,

2011, pp. 289–296.

[27] I. Couckuyt, D. Deschrijver and T. Dhaene. ‘Fast calculation of multiobjective

probability of improvement and expected improvement criteria for Pareto optim-

ization’. In: Journal of Global Optimization 60 (2014), pp. 575–594.

152

BIBLIOGRAPHY

[28] S. J. Daniels et al. ‘A Suite of Computationally Expensive Shape Optimisation

Problems Using Computational Fluid Dynamics’. In: Parallel Problem Solving

from Nature (PPSN XV). Ed. by A. Auger et al. Springer, Cham, Switzerland,

2018, pp. 296–307.

[29] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,

Chichester, UK, 2001.

[30] K. Deb et al. ‘A fast and elitist multiobjective genetic algorithm: NSGA-II’. In:

IEEE Transactions on Evolutionary Computation 6.2 (2002), pp. 182–197.

[31] K. Deb et al. ‘Scalable Test Problems for Evolutionary Multiobjective Optimiz-

ation’. In: Evolutionary Multiobjective Optimization: Theoretical Advances and

Applications. Ed. by A. Abraham et al. Springer, London, 2005, pp. 105–145.

[32] J. Dennis and V. Torczon. Managing approximation models in optimisation. Tech.

rep. CRPC-TR95550. Center for Research and Parallel Computation, Houston,

TX, 1995.

[33] A. Drachen et al. ‘Correlation between Heart Rate, Electrodermal Activity and

Player Experience in First-Person Shooter Games’. In: 5th ACM SIGGRAPH

Symposium on Video Games. Ed. by S. N. Spencer. ACM Press, New York, 2010.

[34] A. Drachen et al. ‘Game Data Mining’. In: Game Analytics. Ed. by M. S. El-Nasr,

A. Drachen and A. Canossa. Springer, London, 2013, pp. 205–253.

[35] S. Droste and D. Wiesmann. ‘Metric Based Evolutionary Algorithms’. In: Genetic

Programming. Ed. by R. Poli et al. Springer, Berlin, 2000, pp. 29–43.

[36] M. Emmerich, N. (Beume) Hochstrate and B. Naujoks. ‘An EMO Algorithm

Using the Hypervolume Measure as Selection Criterion’. In: Evolutionary Multi-

Criterion Optimization (EMO). Ed. by C. A. Coello Coello, A. Hernández Aguirre

and E. Zitzler. Springer, Berlin, 2005, pp. 62–76.

[37] M. Emmerich, K. Giannakoglou and B. Naujoks. ‘Single- and Multi-objective

Evolutionary Optimization Assisted by Gaussian Random Field Metamodels’. In:

IEEE Transactions on Evolutionary Computation 10.4 (2006), pp. 421–439.

[38] M. Emmerich et al. ‘Metamodel-Assisted Evolution Strategies’. In: Parallel Prob-

lem Solving from Nature (PPSN VII). Ed. by J. J. M. Guervós et al. Springer,

London, UK, 2002, pp. 361–370.

[39] A. Forrester, A. Sobester and A. Keane. Engineering design via surrogate model-

ling. Wiley, Chichester, UK, 2008.

[40] A. I. Forrester, A. Sóbester and A. J. Keane. ‘Multi-fidelity optimization via sur-

rogate modelling’. In: Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences 463.2088 (2007), pp. 3251–3269.

[41] T. Friedrichs et al. ‘Simple Games – Complex Emotions: Automated Affect Detec-

tion Using Physiological Signals’. In: International Conference on Entertainment

Computing (ICEC). Ed. by K. Chorianopoulos et al. Springer, Cham, Switzerland,

2015, pp. 375–382.

153

BIBLIOGRAPHY

[42] T. Fullerton. Game Design Workshop. 3rd ed. CRC Press, Boca Raton, FL, 2014.

[43] S. Giannatos et al. ‘Generating narrative action schemas for suspense’. In: Work-

shop on Intelligent Narrative Technologies. 2012, pp. 8–13.

[44] I. Goodfellow et al. ‘Generative Adversarial Nets’. In: Neural Information Pro-

cessing Systems 27 (NIPS). Ed. by Z. Ghahramani et al. Curran Associates, Red

Hook, NY, 2014, pp. 2672–2680.

[45] C. Grimme, P. Kerschke and H. Trautmann. ‘Multimodality in Multi-Objective

Optimization – More Boon than Bane?’ In: Evolutionary Multi-Objective Optimiz-

ation (EMO). (accepted for publication). 2019.

[46] C. Guckelsberger et al. ‘Predicting Player Experience without the Player: An

Exploratory Study’. In: Annual Symposium on Computer-Human Interaction in

Play (CHI PLAY). ACM Press, New York, 2017, pp. 305–315.

[47] C. Guerrero-Romero, S. M. Lucas and D. Perez-Liebana. ‘Using a Team of General

AI Algorithms to Assist Game Design and Testing’. In: IEEE Computational

Intelligence and Games (CIG). IEEE Press, Piscataway, NJ, 2018.

[48] I. Gulrajani et al. ‘Improved Training of Wasserstein GANs’. In: Neural Informa-

tion Processing Systems 30 (NIPS). Ed. by I. Guyon et al. Curran Associates, Red

Hook, NY, 2017, pp. 5767–5777.

[49] N. Hansen and A. Ostermeier. ‘Completely derandomized self-adaptation in

evolution strategies’. In: Evolutionary Computation 9.2 (2001), pp. 159–195.

[50] N. Hansen. ‘The CMA Evolution Strategy: A Tutorial’. In: CoRR abs/1604.00772

(2016). arXiv: 1604.00772.

[51] N. Hansen et al. ‘COCO: A Platform for Comparing Continuous Optimizers in a

Black-Box Setting’. In: CoRR abs/1603.08785 (2016). arXiv: 1603.08785.

[52] N. Hansen et al. ‘COCO: Performance Assessment’. In: CoRR abs/1605.03560

(2016). arXiv: 1605.03560.

[53] N. Hansen et al. Real-Parameter Black-Box Optimization Benchmarking 2009:

Noiseless Functions Definitions. Research Report RR-6829. INRIA, Paris, France,

2009.

[54] E. J. Hastings, R. K. Guha and K. O. Stanley. ‘Automatic content generation in

the Galactic Arms Race video game’. In: IEEE Transactions on Computational

Intelligence and AI in Games 1.4 (2009), pp. 245–263.

[55] S. P. Hernandez, V. Bulitko and M. Spetch. ‘Keeping the Player on an Emotional

Trajectory in Interactive Storytelling’. In: AAAI Conference on Artificial Intelli-

gence and Interactive Digital Entertainment (AIIDE). AAAI Press, Palo Alto, CA,

2015, pp. 65–71.

[56] C. Holmgård et al. ‘Automated Playtesting with Procedural Personas through

MCTS with Evolved Heuristics’. In: CoRR abs/1802.06881 (2018). arXiv: 1802.

06881.

154

BIBLIOGRAPHY

[57] C. Holmgard et al. ‘Personas versus Clones for Player Decision Modeling’. In:

International Conference on Entertainment Computing (ICEC). Ed. by Y. Pisan,

N. M. Sgouros and T. Marsh. Springer, Berlin, 2014, pp. 159–166.

[58] B. Horn et al. ‘A Comparative Evaluation of Procedural Level Generators in

the Mario AI Framework’. In: Foundations of Digital Games (FDG). http://

www.fdg2014.org/proceedings.html (accessed 12. Jan. 2019). Society for the

Advancement of the Science of Digital Games, Santa Cruz, CA, 2014.

[59] H. Horn et al. ‘MCTS/EA hybrid GVGAI players and game difficulty estimation’.

In: IEEE Computational Intelligence in Games (CIG). IEEE Press, Piscataway,

NJ, 2016, pp. 278–285.

[60] F. C. Hsu and J.-S. Chen. ‘A study on multi criteria decision making model:

interactive genetic algorithms approach’. In: IEEE International Conference on

Systems, Man, and Cybernetics (SMC). Vol. 3. IEEE Press, Piscataway, NJ, 1999,

pp. 634–639.

[61] C. Igel, T. Suttorp and N. Hansen. ‘Steady-State Selection and Efficient Covari-

ance Matrix Update in the Multi-objective CMA-ES’. In: Evolutionary Multi-

Criterion Optimization (EMO). Ed. by S. Obayashi et al. Springer, Berlin, 2007,

pp. 171–185.

[62] A. Isaksen et al. ‘Characterising Score Distributions in Dice Games’. In: Game

& Puzzle Design 2.1 (2016). http://game.engineering.nyu.edu/projects/

exploring-game-space/ (accessed 12. Jan. 2019), pp. 24–37.

[63] A. Isaksen et al. ‘Discovering Unique Game Variants’. In: Computational Creativ-

ity and Games Workshop at the International Computational Creativity. http:

//game.engineering.nyu.edu/projects/exploring-game-space/, (accessed

12. Jan. 2019). 2015.

[64] A. Jaffe. ‘Understanding Game Balance with Quantitative Methods’. PhD Thesis.

University of Washington, Seattle, WA, 2013.

[65] Y. Jin. ‘A Comprehensive Survey of Fitness Approximation in Evolutionary Com-

putation’. In: Soft Computing 9.1 (2005), pp. 3–12.

[66] Y. Jin. ‘Surrogate-assisted evolutionary computation: Recent advances and future

challenges’. In: Swarm and Evolutionary Computation 1.2 (2011), pp. 61–70.

[67] Y. Jin and J. Branke. ‘Evolutionary Optimization in Uncertain Environments - A

Survey’. In: IEEE Transactions on Evolutionary Computation 9.3 (2005), pp. 303–

317.

[68] D. Jones, M. Schonlau and W. Welch. ‘Efficient global optimization of expensive

black-box functions’. In: Journal of Global Optimization 13.4 (1998), pp. 455–492.

[69] D. Karavolos, A. Liapis and G. N. Yannakakis. ‘Evolving Missions to Create Game

Spaces’. In: IEEE Computational Intelligence and Games (CIG). IEEE Press,

Piscataway, NJ, 2016.

155

BIBLIOGRAPHY

[70] D. Karavolos, A. Liapis and G. N. Yannakakis. ‘Using a Surrogate Model of

Gameplay for Automated Level Design’. In: IEEE Computational Intelligence

and Games (CIG). IEEE Press, Piscataway, NJ, 2018, pp. 277–284.

[71] K. Karpouzis and G. N. Yannakakis. Emotion in Games: Theory and Praxis.

Springer, Cham, Switzerland, 2016.

[72] P. Kerschke. ‘Automated and Feature-Based Problem Characterization and Al-

gorithm Selection Through Machine Learning’. PhD thesis. WWU Münster, Ger-

many, 2018.

[73] J. Knowles. ‘ParEGO: a hybrid algorithm with on-line landscape approximation

for expensive multiobjective optimization problems’. In: IEEE Transactions on

Evolutionary Computation 10.1 (2006), pp. 50–66.

[74] J. Knowles, L. Thiele and E. Zitzler. A Tutorial on the Performance Assessment

of Stochastic Multiobjective Optimizers. TIK Report 214. Computer Engineering

and Networks Laboratory (TIK), ETH Zurich, 2006.

[75] K. Kunanusont et al. ‘The N-Tuple bandit evolutionary algorithm for automatic

game improvement’. In: IEEE Congress on Evolutionary Computation (CEC).

IEEE Press, Piscataway, NJ, 2017, pp. 2201–2208.

[76] F. Lantz et al. ‘Depth in Strategic Games’. In: What’s Next for AI in Games?

Workshop of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI

Press, Palo Alto, CA, 2017.

[77] B. Li et al. ‘Cowdsourcing narrative intelligence’. In: Advances in Cognitive

Systems 2 (2012), pp. 25–42.

[78] Y. Li et al. ‘Using physiological signal analysis to design affective VR games’. In:

IEEE International Symposium on Signal Processing and Information Technology

(ISSPIT). IEEE Press, Piscataway, NJ, 2015, pp. 57–62.

[79] A. Liapis, G. N. Yannakakis and J. Togelius. ‘Adapting Models of Visual Aesthetics

for Personalized Content Creation’. In: IEEE Transactions on Computational

Intelligence and AI in Games 4.3 (2012), pp. 213–228.

[80] A. Liapis, G. Smith and N. Shaker. ‘Mixed-initiative Content Creation’. In: Pro-

cedural Content Generation in Games. Ed. by N. Shaker, J. Togelius and M. J.

Nelson. Springer, Cham, Switzerland, 2016, pp. 195–214.

[81] A. Liapis, G. N. Yannakakis and J. Togelius. ‘Designer modeling for Sentient

Sketchbook’. In: IEEE Computational Intelligence and Games (CIG). IEEE Press,

Piscataway, NJ, 2014.

[82] A. Liapis, G. N. Yannakakis and J. Togelius. ‘Towards a Generic Method of

Evaluating Game Levels’. In: AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment. AAAI Press, Palo Alto, CA, 2013, pp. 30–36.

[83] A. Liapis et al. ‘Orchestrating Game Generation’. In: IEEE Transactions on

Games (2018). (accepted for publication).

156

BIBLIOGRAPHY

[84] A. Liapis et al. ‘Procedural personas as critics for dungeon generation’. In:

European Conference on Application of Evolutionary Computation (EvoApplica-

tion). Ed. by A. M. Mora and G. Squillero. Springer, Cham, Switzerland, 2015,

pp. 331–343.

[85] P. Limbourg and D. E. Salazar Aponte. ‘An Optimization Algorithm for Impre-

cise Multi-Objective Problem Functions’. In: IEEE Congress on Evolutionary

Computation (CEC). IEEE Press, Piscataway, NJ, 2005, pp. 459–466.

[86] D. Loiacono, L. Cardamone and P. L. Lanzi. ‘Automatic Track Generation for High-

End Racing games Using Evolutionary Computatation’. In: IEEE Transactions

on Computational Intelligence and AI in Games 3.3 (2011), pp. 245–259.

[87] P. Lopes, A. Liapis and G. N. Yannakakis. ‘Framing Tension for Game Genera-

tion’. In: Proceedings of the Seventh International Conference on Computational

Creativity (ICCC). Ed. by F. Pachet et al. Sony CSL, Paris, France, 2016, pp. 205–

212.

[88] T. Machado et al. ‘Shopping for Game Mechanics’. In: 7th Workshop on Proced-

ural Content Generation (PCG) within the 1st Joint International Conference of

DiGRA and FDG. http://game.engineering.nyu.edu/pcg-workshop-2016/

(accessed 12. Jan. 2019). 2016.

[89] A. Makhzani et al. ‘Adversarial Autoencoders’. In: CoRR abs/1511.05644 (2015).

arXiv: 1511.05644.

[90] S. Markon et al. ‘Thresholding-a selection operator for noisy ES’. In: IEEE Con-

gress on Evolutionary Computation (CEC). Vol. 1. IEEE Press, Piscataway, NJ,

2001, pp. 465–472.

[91] G. Matheron. ‘Principles of Geostatistics’. In: Economic Geology 58 (1963), pp. 1246–

1266.

[92] P. Mawhorter and M. Mateas. ‘Procedural level generation using occupancy-

regulated extension’. In: IEEE Computational Intelligence and Games (CIG).

IEEE Press, Piscataway, NJ, 2010, pp. 351–358.

[93] M. Mckay, R. Beckman and W. Conover. ‘A comparison of three methods for

selecting values of input variables in the analysis of output from a computer code’.

In: Technometrics 42.1 (2000), pp. 55–61.

[94] B. Mikkelsen, C. Holmgård and J. Togelius. ‘Ethical Considerations for Player

Modeling’. In: What’s Next for AI in Games? Workshop of the Thirty-First AAAI

Conference on Artificial Intelligence. AAAI Press, Palo Alto, CA, 2017.

[95] M. Mlakar et al. ‘GP-DEMO: Differential Evolution for Multiobjective Optimiz-

ation based on Gaussian Process models’. In: European Journal of Operational

Research 243.2 (2015), pp. 347–361.

[96] A. Nguyen et al. ‘Plug & Play Generative Networks: Conditional Iterative Gen-

eration of Images in Latent Space’. In: CoRR abs/1612.00005 (2016). arXiv:

1612.00005.

157

BIBLIOGRAPHY

[97] T. S. Nielsen et al. ‘Towards generating arcade game rules with VGDL’. In: IEEE

Computational Intelligence and Games (CIG). IEEE Press, Piscataway, NJ, 2015,

pp. 185–192.

[98] T. S. Nielsen et al. ‘General video game evaluation using relative algorithm

performance profiles’. In: Applications of Evolutionary Computation (EvoApplic-

ations). Ed. by A. Mora and G. Squillero. Springer, Cham, Switzerland, 2015,

pp. 369–380.

[99] J. C. Osborn, A. Grow and M. Mateas. ‘Modular Computational Critics for Games’.

In: Artificial Intelligence for Interactive Digital Entertainment Conference (AIIDE).

AAAI Press, Palo Alto, CA, 2013, pp. 163–169.

[100] W. Ponweiser et al. ‘Multiobjective optimization on a limited budget of evaluations

using model-assisted S-metric selection’. In: Parallel Problem Solving from Nature

(PPSN X). Ed. by G. Rudolph et al. Springer, Berlin, 2008, pp. 784–794.

[101] F. Poursabzi-Sangdeh et al. ‘Manipulating and Measuring Model Interpretability’.

In: CoRR abs/1802.07810 (2018). arXiv: 1802.07810.

[102] E. J. Powley et al. ‘Semi-automated Level Design via Auto-Playtesting for Hand-

held Casual Game Creation’. In: IEEE Computational Intelligence and Games

(CIG). IEEE Press, Piscataway, NJ, 2016.

[103] M. Preuss, A. Liapis and J. Togelius. ‘Searching for good and diverse game levels’.

In: IEEE Computational Intelligence and Games (CIG). IEEE Press, Piscataway,

NJ, 2014.

[104] M. Preuss et al. ‘Integrated Balancing of an RTS Game: Case Study and Toolbox

Refinement’. In: IEEE Computational Intelligence in Games (CIG). IEEE Press,

Piscataway, NJ, 2018.

[105] F. Pukelsheim. ‘The Three Sigma Rule’. In: The American Statistician 48.2 (1994),

pp. 88–91.

[106] R. Purshouse et al. ‘Workshops at PPSN 2018’. In: Parallel Problem Solving from

Nature (PPSN XV). Ed. by A. Auger et al. Springer, Cham, Switzerland, 2018,

pp. 490–497.

[107] A. Radford, L. Metz and S. Chintala. ‘Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial Networks’. In: CoRR abs/1511.06434

(2015). arXiv: 1511.06434.

[108] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning.

MIT Press, Cambridge, MA, 2006.

[109] T. Robič and B. Filipič. ‘DEMO: Differential Evolution for Multiobjective Optimiz-

ation’. In: Evolutionary Multi-Criterion Optimization (EMO). Ed. by C. A. Coello

Coello, A. Hernández Aguirre and E. Zitzler. Springer, Berlin, 2005, pp. 520–533.

[110] G. Rudolph. ‘A Partial Order Approach to Noisy Fitness Functions’. In: IEEE

Congress on Evolutionary Computation (CEC). IEEE Press, Piscataway, NJ, 2001,

pp. 318–325.

158

BIBLIOGRAPHY

[111] K. Sadowski et al. ‘Exploring trade-offs between target coverage, healthy tissue

sparing, and the placement of catheters in HDR brachytherapy for prostate cancer

using a novel multi-objective model-based mixed-integer evolutionary algorithm’.

In: Genetic and Evolutionary Computation Conference (GECCO). ACM Press,

New York, 2017, pp. 1224–1231.

[112] J. Schmidhuber. ‘Formal theory of creativity, fun, and intrinsic motivation (1990-

2010)’. In: IEEE Transactions on Autonomous Mental Development 2.3 (2010),

pp. 230–247.

[113] J. Secretan et al. ‘Picbreeder: Evolving pictures collaboratively online’. In: SIGCHI

Conference on Human factors in Computing Systems. ACM Press, New York, 2008,

pp. 1759–1768.

[114] B. Shahriari et al. ‘Taking the human out of the loop: A review of Bayesian

optimization’. In: Proceedings of the IEEE 104.1 (2016), pp. 148–175.

[115] M. Shaker et al. ‘Automatic generation and analysis of physics-based puzzle

games’. In: IEEE Computational Intelligence and Games (CIG). IEEE Press,

Piscataway, NJ, 2013, pp. 241–248.

[116] N. Shaker, J. Togelius and M. J. Nelson. Procedural Content Generation in Games.

Springer, Cham, Switzerland, 2016.

[117] N. Shaker, G. N. Yannakakis and J. Togelius. ‘Crowdsourcing the aesthetics of

platform games’. In: IEEE Transactions on Computational Intelligence and AI in

Games 5.3 (2013), pp. 276–290.

[118] N. Shaker et al. ‘Evolving levels for Super Mario Bros using grammatical evolu-

tion’. In: Conference on Computational Intelligence and Games (CIG). IEEE Press,

Piscataway, NJ, 2012, pp. 304–311.

[119] N. Shaker et al. ‘Fusing Visual and Behavioral Cues for Modeling User Experience

in Games’. In: IEEE Transactions on Cybernetics 43.6 (2013), pp. 1519–1531.

[120] F. Silva et al. ‘Search Driven Playtesting of Contemporary Board Games’. In:

Foundations of Digital Games (FDG). ACM Press, New York, 2017.

[121] G. Smith and J. Whitehead. ‘Analyzing the expressive range of a level generator’.

In: Procedural Content Generation in Games (PCGames). ACM Press, New York,

2010.

[122] G. Smith, J. Whitehead and M. Mateas. ‘Tanagra: Reactive planning and con-

straint solving for mixed-initiative level design’. In: IEEE Transactions on Com-

putational Intelligence and AI in Games 3.3 (2011), pp. 201–215.

[123] E. Snelson and Z. Ghahramani. ‘Sparse Gaussian Processes Using Pseudo-inputs’.

In: Neural Information Processing Systems 18 (NIPS). MIT Press, Cambridge,

MA, 2005, pp. 1257–1264.

[124] J. Snoek, H. Larochelle and R. P. Adams. ‘Practical Bayesian optimization of

machine learning algorithms’. In: Neural Information Processing Systems 25

(NIPS). Vol. 2. Curran Associates, Red Hook, NY, 2012, pp. 2951–2959.

159

BIBLIOGRAPHY

[125] W. Sombat, P. Rohlfshagen and S. M. Lucas. ‘Evaluating the enjoyability of the

ghosts in Ms Pac-Man’. In: IEEE Computational Intelligence and Games (CIG).

IEEE Press, Piscataway, NJ, 2012, pp. 379–387.

[126] N. Sorenson and P. Pasquier. ‘The evolution of fun: Automatic level design through

challenge modeling’. In: Computational Creativity. Ed. by D. Ventura et al. ACC

Association for Computational Creativity. 2010, pp. 258–267.

[127] P. Spronck et al. ‘Player Modeling’. In: Artificial and Computational Intelligence

in Games (Dagstuhl Seminar 12191). Ed. by S. M. Lucas et al. Vol. 2. 5. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2012, pp. 59–

61.

[128] K. O. Stanley and R. Miikkulainen. ‘Evolving Neural Networks Through Aug-

menting Topologies’. In: Evolutionary Computation 10.2 (2002), pp. 99–127.

[129] A. Summerville, S. Philip and M. Mateas. MCMCTS PCG 4 SMB : Monte Carlo

Tree Search to Guide Platformer Level Generation. AAAI Technical Report WS-

15-21, pages 68–74. AAAI Press, Palo Alto, CA, 2015, pp. 68–74.

[130] A. Summerville et al. ‘Understanding Mario: An Evaluation of Design Metrics

for Platformers’. In: Foundations of Digital Games (FDG). ACM Press, New York,

2017.

[131] A. J. Summerville et al. ‘The VGLC: The Video Game Level Corpus’. In: 7th Work-

shop on Procedural Content Generation (PCG) within the 1st Joint International

Conference of DiGRA and FDG. http://game.engineering.nyu.edu/pcg-

workshop-2016/ (accessed 12. Jan. 2019). 2016.

[132] W. Szwoch. ‘Emotion Recognition Using Physiological Signals’. In: Mulitimedia,

Interaction, Design and Innnovation (MIDI). ACM Press, New York, 2015, 15:1–

15:8.

[133] H. Takagi. ‘Active user intervention in an EC search’. In: International Conference

on Information Sciences. http://hdl.handle.net/2324/1670068, (accessed 12.

Jan. 2019). 2000, pp. 995–998.

[134] C. H. Tan, K. C. Tan and A. Tay. ‘Dynamic game difficulty scaling using adaptive

behavior-based AI’. In: IEEE Transactions on Computational Intelligence and AI

in Games 3.4 (2011), pp. 289–301.

[135] J. Togelius and J. Schmidhuber. ‘An Experiment in Automatic Game Design’. In:

IEEE Symposium on Computational Intelligence and Games (CIG). IEEE Press,

Piscataway, NJ, 2008, pp. 111–118.

[136] J. Togelius et al. ‘Controllable procedural map generation via multiobjective

evolution’. In: Genetic Programming and Evolvable Machines 14.2 (2013), pp. 245–

277.

[137] J. Togelius et al. ‘Search-based procedural content generation: A taxonomy and

survery’. In: IEEE Transactions on Computational Intelligence and AI in Games

3.3 (2011), pp. 172–186.

160

BIBLIOGRAPHY

[138] J. Togelius et al. ‘The Mario AI Championship 2009-2012’. In: AI Magazine 34.3

(2013), pp. 89–92.

[139] Y. Tong. The Multivariate Normal Distribution. Springer, New York, 1990.

[140] V. Torczon and M. Trosset. Direct search methods: Then and now. Tech. rep.

2000-26. NASA/CR-2000-210125. ICASE, Hamption, VA, 2000.

[141] T. Tušar et al. ‘COCO: The Bi-objective Black Box Optimization Benchmarking

(bbob-biobj) Test Suite’. In: CoRR abs/1604.00359 (2016). arXiv: arXiv:1604.

00359v2.

[142] H. Ulmer, F. Streichert and A. Zell. ‘Evolution Strategies assisted by gaussian

processes with improved pre-selection criterion’. In: Congress on Evolutionary

Computation (CEC). IEEE Press, Piscataway, NJ, 2003, pp. 692–699.

[143] M. Čertický and D. Churchill. ‘The Current State of StarCraft AI Competitions

and Bots’. In: Artificial Intelligence for Interactive Digital Entertainment Confer-

ence (AIIDE). AAAI Press, Palo Alto, CA, 2017.

[144] O. Vinyals et al. ‘StarCraft II: A New Challenge for Reinforcement Learning’. In:

CoRR abs/1708.04782 (2017). arXiv: 1708.04782.

[145] V. Volz, G. Rudolph and B. Naujoks. ‘Surrogate-Assisted Partial Order-Based Evol-

utionary Optimisation’. In: Evolutionary Multi-Criterion Optimization (EMO).

Springer, Berlin, 2017, pp. 639–653.

[146] V. Volz, K. Majchrzak and M. Preuss. ‘A Bottom-Up Approach to Explanations

for (Game) AI’. In: Computational Intelligence in Games (CIG). IEEE Press,

Piscataway, NJ, 2018, pp. 474–481.

[147] V. Volz, M. Preuss and M. K. Bonde. ‘Towards Embodied and Interpretable

StarCraft II Winner Prediction’. In: Computer Games Workshop at International

Joint Conference on Artificial Intelligence (ICJACI). (in press). 2018.

[148] V. Volz, G. Rudolph and B. Naujoks. ‘Demonstrating the Feasibility of Auto-

matic Game Balancing’. In: Genetic and Evolutionary Computation Conference

(GECCO). ACM Press, New York, 2016, pp. 269–276.

[149] V. Volz, G. Rudolph and B. Naujoks. ‘Investigating Uncertainty Propagation

in Surrogate-Assisted Evolutionary Algorithms’. In: Genetic and Evolutionary

Computation Conference (GECCO). ACM Press, New York, 2017, pp. 881–888.

[150] V. Volz et al. ‘Evolving Mario Levels in the Latent Space of a Deep Convolutional

Generative Adversarial Network’. In: Genetic and Evolutionary Computation

Conference (GECCO). ACM Press, New York, 2018, pp. 221–228.

[151] V. Volz et al. ‘Gameplay Evaluation Measures’. In: Artificial and Computational

Intelligence in Games: AI-Driven Game Design (Dagstuhl Seminar 17471). Ed. by

P. Spronck et al. Vol. 7. 11. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 2018, pp. 122–125.

161

BIBLIOGRAPHY

[152] T. Voß, N. Hansen and C. Igel. ‘Improved Step Size Adaptation for the MO-CMA-

ES’. In: Genetic and Evolutionary Computation Conference (GECCO). ACM Press,

New York, 2010, pp. 487–494.

[153] T. Wagner and H. Trautmann. ‘Online convergence detection for evolutionary

multi-objective algorithms revisited’. In: IEEE Congress on Evolutionary Compu-

tation (CEC). IEEE Press, Piscataway, NJ, 2010, pp. 1–8.

[154] B. G. Weber et al. ‘Modeling Player Retention in Madden NFL 11’. In: AAAI

Innovative Applications of Artificial Intelligence. AAAI Press, Palo Alto, CA, 2011.

[155] S. Wessing and M. Preuss. ‘The true destination of EGO is multi-local optim-

ization’. In: IEEE Latin American Conference on Computational Intelligence

(LA-CCI). IEEE Press, Piscataway, NJ, 2017, pp. 1–6.

[156] B. G. Woolley and K. O. Stanley. ‘On the deleterious effects of a priori objectives

on evolution and representation’. In: Genetic and Evolutionary Computation

Conference (GECCO). ACM Press, New York, 2011, pp. 957–964.

[157] G. N. Yannakakis. ‘AI in computer games: generating interesting interactive

opponents by the use of evolutionary computation’. PhD thesis. University of

Edinburgh, Scotland, UK, 2005.

[158] G. N. Yannakakis and J. Togelius. ‘Experience-Driven Procedural Content Gener-

ation’. In: IEEE Transactions on Affective Computing 2.3 (2011), pp. 147–161.

[159] G. N. Yannakakis and J. Hallam. ‘Entertainment Modeling in Physical Play

Through Physiology Beyond Heart-Rate’. In: Affective Computing and Intelligent

Interaction (ACII). Ed. by A. C. R. Paiva et al. Springer, Berlin, 2007, pp. 254–265.

[160] G. N. Yannakakis and J. Togelius. ‘A Panorama of Artificial and Computational

Intelligence in Games’. In: IEEE Transactions on Computational Intelligence and

AI in Games 7.4 (2015), pp. 317–335.

[161] G. N. Yannakakis and J. Togelius. Artificial Intelligence and Games. Springer,

Cham, Switzerland, 2018.

[162] E. Zitzler and L. Thiele. ‘Multiobjective optimization using evolutionary al-

gorithms — A comparative case study’. In: Parallel Problem Solving from Nature

(PPSN V). Ed. by A. E. Eiben et al. Springer, Berlin, 1998, pp. 292–301.

162

LIST OF TABLES

2.1 CMA-ES parametrisation . 13

2.2 Tile types used in generated Mario levels. The symbol characters come from

the VGLC encoding, and the numeric identity values are then mapped to

the corresponding values employed by the Mario AI framework to produce

the visualisation shown. The numeric identity values are expanded into one-

hot vectors when input into the discriminator network during GAN training.

Taken from [150] . 27

4.1 Taxonomy of game evaluation approaches along input and feedback dimension. 50

4.2 Overview and characterisation of functions in rw-top-trumps 74

4.3 Function suite details . 75

4.4 Overview and characterisation of functions in rw-top-trumps-biobj 76

4.5 Tile types used in generated Mario levels. 77

4.6 Original tiles and their replacements . 77

4.7 Overview and characterisation of functions in rw-gan-mario 79

5.1 Surrogate and objective function pairings in suite rw-mario-gan-offset. Refer

to section 4.3.3.2 and table 4.7 for more details on the functions. 94

5.2 Common parameters for all experiments . 95

5.3 Modifiable parameters in experiments . 95

5.4 Experiments in set E1 (bbob suite) . 96

5.5 Experiments in set E2 (bbob-biobj suite) . 96

5.6 Experiments in set E3 (rw-mario-gan suite) . 126

5.7 Experiments in set E4 (rw-top-trumps-biobj suite) 126

5.8 Experiments in set E5 (rw-mario-gan-offset suite) 127

A.1 Publications applying game (content) evaluation to grid-based games. Re-

search on platformers is displayed in blue, on dungeons in green and on

general arcade games in red. 136

A.2 Publications applying game (content) evaluation to parlour games. Research

on board games is displayed in blue, on card games in green and on dice

games in red. 139

A.3 Publications applying game (content) evaluation to strategy, action, and

narrative-based games. Research on strategy games is displayed in blue,

on action games in green and on narrative-based games in red. 140

B.1 Winner prediction accuracy of the baseline experiment with a predictor

trained on each data set separately. Mean values (mean) and standard devi-

ations (SD) are provided. 148

B.2 Winner prediction accuracy received from second experiment where different

datasets were considered for training and tests. Mean values (mean) and

standard deviations (SD) are provided. 148

TABLE Page

163

LIST OF FIGURES

2.1 Algorithmic Skeleton of Evolutionary Algorithms 8

2.2 Bootstrapped empirical cumulative distribution of the number of objective

function evaluations divided by dimension (FEvals/n) for 51 targets with

target precision in 10[−8..2] for the sphere function (fid 1). The “best 2009” line

corresponds to the best aRT observed during BBOB 2009 for each selected

target. Left: Comparison between various algorithm from the 2018 BBOB com-

petitions on dimension 2. Right: Comparison between CMA-ES performance

on different dimensions (2, 3, 5, 10). 17

2.3 Average running time (aRT in number of f -evaluations as log10 value), di-

vided by dimension for target function values versus dimension. Slanted grid

lines indicate quadratic scaling with the dimension, while horizontal lines

indicate linear scaling. Light symbols give the maximum number of function

evaluations from the longest trial divided by dimension. Black stars indicate

a statistically better result compared to all other algorithms with p < 0.01 and

Bonferroni correction number of dimensions. Plot shows CMA-ES performance

on the sphere function (fid 1). 18

2.4 The 55 BBOB-BIOBJ functions are combinations of 10 single-objective func-

tions (on the top and right). The groups the single-objective and the resulting

bi-objective functions belong to are colour-coded according to the legend. . . . 19

2.5 Example card from a car-themed TopTrumps deck with 6 categories 22

2.6 Overview of the GAN training process and the evolution of latent vectors. The

approach is divided into two distinct phases. In Phase 1 a GAN is trained in

an unsupervised way to generate Mario levels. In the second phase, we search

for latent vectors that produce levels with specific properties. 26

2.7 The Training Level. The training data is generated by sliding a 28 × 14

window over the level from left to right, one tile at a time. 27

2.8 The Mario DCGAN architecture. 28

3.1 Final solutions from multiple optimisation runs of TopTrumps using various

evaluation functions encoded by colour. Original function: ∎ and ∎, surrogate

function: ∎ and ∎, alternative surrogate function: ∎ and ∎. Existing decks for

comparison: ∎. Larger squares depict solutions on shared Pareto front. Taken

from [148]. 35

3.2 Iterative Sampling methods. The expensive objective function is optimised

by iteratively improving a surrogate model guided by an infill criterion. The

optimiser is used to select solutions for evaluation with the expensive objective

function. The model is then updated accordingly and the next iteration starts.

The process terminates after the budget of expensive function evaluations is

exhausted. Evaluations indicated with double borders are added to an archive.

Additions to the EA skeleton from figure 2.1 are marked in orange. 38

165

LIST OF FIGURES

3.3 Evolution control methods. Steps where surrogate models can be helpful

according to [66] are coloured in red. Additional steps are indicated in orange.

Figure adapted with modifications from [66]. 39

3.4 Pre-Screening. A local search is conducted on generated offspring in order to

bias the search, i.e. (1) select λ individuals based on infill criterion, (2) select

µ individuals based on fitness functions. Steps added to the EA skeleton are

marked in orange. Evaluations indicated with double borders are added to an

archive. 41

3.5 EA and comparisons under uncertainty. Generalised visualisation of com-

parisons under uncertainty when applied to EA algorithmic skeleton. Steps

added to the EA skeleton are marked in orange. Evaluations indicated with

double borders are added to an archive. 43

3.6 The physical process y is observed via z and described by the simulator

output f (x). The simulator is substituted by the emulator for computational

efficiency. The question mark indicate the various sources of uncertainty

present in the system. Plot from [4] . 44

4.1 Visualisation of game evaluation AIs and their interactions. AIs are paths

between data visualised as red and blue arrows. Paths that produce game

evaluation are highlighted in red. Used acronyms are COMP: compute statist-

ics, CODE: encoding, OUT: outcome statistics, PLAY: gameplay data and STAT:

statistics. 48

4.2 Lower bounds (solid black) and computed probabilities for correct ranking with

dominance relation ⪯p plotted against d for different values of σ̂i, σ̂i j,β =
σ̂ j

σ̂i
,

where line type corresponds to β. 63

4.3 Lower bounds (solid black) and computed probabilities for correct ranking with

dominance relation ⪯c plotted against α for different values of d′, σ̂i, σ̂i j,β =
σ̂ j

σ̂i
,

where colours correspond to d′ and line type corresponds to β. 66

4.4 SAPEO. A framework to integrate uncertain evaluations into an evolutionary

algorithm. Indviduals are only evaluated when necessary: (1) the model is

unreliable, or (2) no safe selection can be made. Evaluations indicated with

double borders are added to an archive. Additions to the EA skeleton from

figure 2.1 are marked in orange. 68

4.5 Example of Mario level with vertical walls (Super Mario Bros. Bonus Area D) 78

4.6 Examples of generated level segments. Left: underground level. Right: over-

world level. 81

4.7 Schematic depiction of experimental framework. 85

4.8 Inheritance graph for CocoOptimiser . 85

4.9 Inheritance graph for COCOfunc . 86

4.10 Example for selection error plots. Left: Barplot of selection error frequencies.

Right: Number of correctly selected individuals over runtime. 91

166

LIST OF FIGURES

4.11 Example for aRT table plots. Algorithms are depicted as colour-coded lines.

Left: Number of functions where algorithm was fastest to reach target as

indicated on x-axis. Right: Number of functions where algorithm did not reach

indicated target. 92

5.1 E1 runtime distribution plots aggregated over all bbob functions ○ CMA-ES

(0), ♢ SAPEO (1), ▽ SAPEO - less validation (2), 9 SAPEO - GP-DEMO (3),

△ SAPEO - no validation (4), D pre-screening (5), * pre-screening - lower

bound (6), + EGO - PoI (7), ◇ EGO - ExI (8), ⊲ Random Search (9), ⋆ SAPEO -

transformation (10) . 99

5.2 aRT table Plots for E1, dimensions 2 and 3. ● CMA-ES (0), ● SAPEO (1),

● SAPEO - less validation (2), ● SAPEO - GP-DEMO (3), ● SAPEO - no

validation (4), ● pre-screening (5), ● pre-screening - lower bound (6), ● EGO -

PoI (7), ● EGO - ExI (8), ● Random Search (9), ● SAPEO - transformation (10) 100

5.3 E1 runtime distribution plots on selected functions ○ CMA-ES (0), ♢ SAPEO

(1), ▽ SAPEO - less validation (2), 9 SAPEO - GP-DEMO (3), △ SAPEO - no

validation (4), D pre-screening (5), * pre-screening - lower bound (6), + EGO -

PoI (7), ◇ EGO - ExI (8), ⊲ Random Search (9), ⋆ SAPEO - transformation (10)102

5.4 E1 runtime distribution plots on selected functions ○ CMA-ES (0), ♢ SAPEO

(1), ▽ SAPEO - less validation (2), 9 SAPEO - GP-DEMO (3), △ SAPEO - no

validation (4), D pre-screening (5), * pre-screening - lower bound (6), + EGO -

PoI (7), ◇ EGO - ExI (8), ⊲ Random Search (9), ⋆ SAPEO - transformation (10) 104

5.5 E1 runtime distribution plots with recommendations ○ SAPEO (1), ♢ SAPEOr-

eader (1a), ⋆ SAPEO - less validation (2), ▽ SAPEOreader - less validation

(2a), 9 SAPEO - GP-DEMO (3), △ SAPEOreader - GP-DEMO (3a) 106

5.6 Selection errors for default SAPEO (experiment id 1) on E1 107

5.7 Left: Runtime distribution plots for E1 and dimension 2. Right: Selection

error plots for default SAPEO (experiment id 1) and dimension 2. Top: Sphere

(fid 1). Middle: Weierstrass (fid 16). Bottom: Sum of different powers (fid 14).

○ CMA-ES (0), ♢ SAPEO (1), ▽ SAPEO - less validation (2), 9 SAPEO - GP-

DEMO (3), △ SAPEO - no validation (4), D pre-screening (5), * pre-screening

- lower bound (6), + EGO - PoI (7), ◇ EGO - ExI (8), ⊲ Random Search (9),

⋆ SAPEO - transformation (10) . 109

5.8 Left: Runtime distribution plots for E1, dimensions 2 and 3, aggregated over

all functions ○ SAPEO (1), ♢ SAPEO - less validation (2), ⋆ SAPEO - no

validation (4). Right: aRT Table plots for E1, dimensions 2 and 3. ● SAPEO

(1), ● SAPEO - less validation (2), ● SAPEO - no validation (4). 111

5.9 Runtime distribution plots for Gallagher 21 peaks function (fid 22) in E1,

dimensions 2 (left) and 3 (right) ○ SAPEO (1), ♢ SAPEO - less validation (2),

⋆ SAPEO - no validation (4). 112

5.10 Selection errors on E1. Left: Default SAPEO (experiment id 1). Right: SAPEO

with weaker model validation (experiment id 2) 112

5.11 Runtime distribution plots for E1, dimensions 2 and 10, aggregated over all

functions ○ SAPEO (1), ♢ SAPEO - GP-DEMO (3) 113

167

LIST OF FIGURES

5.12 Selection errors on E1. Left: Default SAPEO (experiment id 1). Right: SAPEO

with fitness-based selection (experiment id 3) 114

5.13 E2 runtime distribution plots aggregated over all bbob-biobj functions with

algorithms based on SMS-EMOA. Dimensions 2 (left) and 3 (right) ○ SMS-

EMOA (11), ♢ SAPEO (12), ⋆ SAPEO - less validation (13), ▽ SAPEO -

GP-DEMO (14), 9 SAPEO - no validation (15), △ pre-screening (16), D pre-

screening - lower bound (17), * EGO - PoI (18), + EGO - ExI (19), ◇ Random

Search (20), ⊲ SAPEO - transformation (21) . 114

5.14 E2 runtime distribution plots for algorithms based on SMS-EMOA on selected

functions ○ SMS-EMOA (11), ♢ SAPEO (12), ⋆ SAPEO - less validation (13),

▽ SAPEO - GP-DEMO (14), 9 SAPEO - no validation (15), △ pre-screening

(16), D pre-screening - lower bound (17), * EGO - PoI (18), + EGO - ExI (19),

◇ Random Search (20), ⊲ SAPEO - transformation (21) 116

5.15 E2 runtime distribution plots aggregated over all bbob-biobj functions with

algorithms based on MOCMA. Dimensions 2 (left) and 3 (right) ♢ MOCMA

(22), ⋆ SAPEO (23), ▽ SAPEO - less validation (24), 9 SAPEO - GP-DEMO

(25), △ pre-screening (27), D pre-screening - lower bound (28), * EGO - PoI

(29), + EGO - ExI (30), ○ Random Search (20), ◇ SAPEO - transformation (31) 117

5.16 Line walks for rw-mario-gan functions 9 (before inversion, top) and 21 (bottom)119

5.17 Line walks for bbob functions 6 (top) and 7 (bottom) 121

5.18 Line walks for bbob functions 23 (top) and 24 (bottom) 122

5.19 Runtime distribution plots for CMA-ES (experiment id 32) on selected func-

tions in rw-mario-gan suite). 124

5.20 Runtime distribution plots for SMS-EMOA (experiment id 41) on selected

functions in rw-top-trumps-biobj suite. 125

5.21 E3 runtime distribution plots on selected functions. 127

5.22 E4 runtime distribution plots for on selected functions. 128

B.1 Histogram of vespene gas used for technology. Values from the LADDER dataset

are displayed in blue and AI in red. 145

B.2 Comparison of features in LADDER and AI. Dataset LADDER is displayed

in blue, AI in red. Features displayed from left to right, top to bottom are

assigned race, result, apm and mineral collection rate. 146

B.3 Comparison of features in LADDER and AI. Dataset LADDER is displayed in

blue, AI in red. Features displayed from left to right, top to bottom are minerals

spent on army, economy and technology, respectively. The last graphic in the

lower right corner shows economy lost measured in vespene gas. 147

FIGURE Page

168

	Executive Summary
	Introduction
	Motivation
	Hypotheses
	Contributions
	Limitations
	Structure

	Background
	Evolutionary Optimisation Algorithms
	Concept
	Evolutionary Optimisation under Uncertainty
	Algorithms

	Benchmarking with the COCO framework
	Core Concepts
	Post-Processing
	Function Suites
	BBOB Suite
	BBOB-BIOBJ Suite

	Kriging
	Game Optimisation
	TopTrumps Deck Generation
	Mario Level Generation
	StarCraft II Winner Prediction

	Related Work
	Numerical Game Optimisation
	Surrogate-Assisted Evolutionary Optimisation
	Efficient Global Optimisation of Expensive Black-Box Functions (EGO) CRVZJones1998
	Single- and Multi-objective Evolutionary Optimization Assisted by Gaussian Random Field Metamodels (Pre-screening) Emmerich
	Differential Evolution for Multiobjective Optimization Based on Gaussian Process Models (GP-DEMO) Mlakar2015

	Uncertainty Handling in Evolutionary Optimisation
	Benchmarks for Expensive Continuous Optimisation

	Approach
	Taxonomy of Automatic Game Evaluation
	Concept
	Application to MarioAI Usecase
	Context
	Sources of Uncertainty

	SAPEO
	Comparisons under Uncertainty
	Runtime Model Validation
	Probability of Ranking and Selection Errors
	SAPEO Framework

	Game-Benchmark for Evolutionary Algorithms
	Requirements Analysis
	Implementation of Requirements
	Technical Details

	Experimental Framework
	Features
	Uncertain Functions
	Algorithms
	Post-Processing

	Evaluation
	Experiments
	Experiments on Artificial Functions
	Single-Objective Results (bbob)
	Multi-Objective Results (bbob-biobj)
	Summary of Results

	Suitability of GBEA
	Line Walks
	Practicality
	Baseline Results
	Summary of Results

	Experiments on GBEA

	Conclusions and Future Work
	Conclusions
	Future Work
	Game Optimisation Problems
	Game Benchmark for Evolutionary Algorithms (GBEA)
	Surrogate-Assisted Evolutionary Algorithms

	Game Evaluation Survey
	Characterisation of Game Evaluation AIs
	Game Evaluation Methods
	Grid-based Games
	Platformers
	Dungeon Games
	Arcade Games
	Parlour Games
	Strategy, Action and Narrative-Based Games

	Observations and Conclusion

	Case Study on Data Generation bias
	Acquired Data
	Descriptive Analysis
	Results

	Bibliography
	List of Tables
	List of Figures

