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Abstract

An important research topic in bioinformatics is the analysis of DNA, the
molecule that encodes the genetic information of all organisms. The basis
for this is sequencing, a procedure in which the sequence of DNA bases
is determined. In addition to the identification of variations in the base se-
quence itself, advances in sequencing methods and a steady reduction in se-
quencing costs open up new fields of research: the analysis of functionally
relevant non-base-related changes, so-called epigenetics. An important ex-
ample of such a mechanism is DNA methylation, a process in which methyl
groups are added to DNA without altering the sequence itself. Methylation
takes place only at specific sites, and the methylation information of hu-
man DNA consists of approximately 30 million methylation levels between
0 and 1 in total. This thesis deals with problems and solutions for each
phase of DNA methylation analysis.

The most advanced method for detecting DNA methylation based on res-
olution is Whole-Genome Bisulfite Sequencing (WGBS), a technique that
modifies DNA at unmethylated sites. We describe the special in-silico treat-
ment required to process this altered DNA and existing concepts as well
as newly developed bioinformatic methods for efficient determination of
DNA methylation levels and their further processing with our developed
tool camel. A common downstream analysis step is the detection of dif-
ferentially methylated regions (DMRs), for which we have implemented a
modification of the widely used method BSmooth in order to deal with
today’s common data sizes.

Setting up and creating new sequencing protocols, e.g., the mentioned
WGBS, is complicated and requires adjustments to several parameters. We
have developed a method based on a linear program (LP) that can predict
the duplicate rate of supersamples. This critical quality measure represents
the proportion of redundant data that in most cases needs to be removed
from any further analysis. By using our method, it becomes possible to
test, adjust and improve parameters for small test libraries only and to
estimate the duplication rate for potential full-size samples.

Once the sequencing protocol has been established, the methylation recog-
nition of camel can be used as part of automated workflows, such as our
mosquito workflow. This pipeline processes the generated WGBS sam-
ples from the raw data to the degree of methylation, including all essential
intermediate steps. Such workflows are one of the central components of
bioinformatics since the calculation must be parallel, reproducible and scal-
able.

The distribution of the detected methylation levels, e.g., values of several
samples at a specific location, can often be described as a beta-mixture
model. The standard approach for estimating the parameters for such a
model, the EM algorithm, has problems for data points of 0 or 1, which are
very common as methylation levels. For this reason, we have developed an
alternative algorithm based on moments that overcome this disadvantage.
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It is robust for data points within the closed interval [0, 1] and can also be
applied to similar data sets in addition to methylation levels.

This work deals not only with epigenetic but also with genetic variants. To
analyze these, we present a second pipeline (ape) for data from targeted
sequencing, where for example only genes are sequenced. The recognized
variants then serve as input for our graphical environment eagle, a tool
for computer scientists and geneticists to recognize possible causal genetic
variants. As the name implies: The configuration of the analysis and pre-
sentation of the results is done via a graphical user interface. Unlike other
tools, eagle is not based on databases, but on encapsulated hdf5 files. The
use of this universal file-system-like data structure offers some advantages
and makes the system easy to use especially for non-computer scientists.

At the end of the thesis, we use all methods presented for the detection,
analysis, and characterization of interindividual DMRs between several
donors. This leads to some computational challenges because DMR
detection is usually performed on two different groups.

Our developed approach processes independent samples and calculates
key metrics such as p-values and the number of undetectable DMRs.
Through whole genome association studies (GWAS) on more than 1000 array
data sets of methylation and variants, we show that (interindividual)
DMRs as a subtype of epigenetics are related to genetic variation.
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Chapter 1

Introduction

Several decades have passed since the four components of deoxyribonu-
cleic acid (DNA) (Levene, ) and its structure were discovered (Watson
and Crick, ). This molecule contains the genetic information respon-
sible for the biological development of all known life forms. Since then,
several techniques have been developed to identify DNA sequences and
the genomes of many species have been fully sequenced, including the hu-
man genome (except for regions at the beginning and end of a chromosome
and its center). As a result, and through constant further development and
research in the fields of sequencing, sequence analysis, and human genet-
ics, more and more disease-causing genetic variations have been identified.
The ongoing reduction of sequencing costs enables additional studies of
heritable phenotype changes that do not involve alterations in the DNA
sequence, so-called epigenetics (Dupont et al., ).

One of the most important epigenetic mechanisms is methylation. Specific
enzymes (DNA methyltransferases) catalyze a chemical reaction that re-
places a single atom or group of atoms with a methyl group. Methylation
typically takes place in the form of 5-methylcytosine on a cytosine followed
directly by guanine (CpG). Figure 1.1 (b, ¢, and d) shows the structure of cy-
tosine, 5-methylcytosine, and for comparison thymine. About 80% to 90%
of all CpG sites in human DNA are methylated. In a biological context,
CpG methylation serves as an inactivation marker or regulation for specific
DNA regions (e.g., protein transcription, see Section 1.1) without changing
the sequence itself.

While the vast majority of cells in an organism have the same DNA se-
quence, methylation differs in different cell types and may also change
due to external influences or age (Berdasco and Esteller, ; Hackett and
Surani, ; Heyn et al.,, ; Johnson et al., ). DNA methylation is
involved in gene deactivation, tissue differentiation and diseases such as
different types of cancer (Robertson, ; Suzuki and Bird, ). While
the DNA sequence and its variations only differ from individual to indi-
vidual and have been studied intensively, technological progress has only
recently allowed detailed research into tissue-specific methylation. Neither
most disease-related methylations nor the differences between most normal
cell types have been investigated so far.

This thesis includes the basic principles of methylome sequencing as well as
methods, workflows, and improvements of methylation processing step by
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step from data generation to downstream analysis of differentially methy-
lated regions. It is divided into nine chapters. The chapter structure fol-
lows the process from the sequencing of the methylome to the final result of
the differentially methylated regions and their annotation and downstream
analysis.

Chapter 1 provides biological and technical knowledge about DNA, the
genome, genes, variants, and sequencing. The information contained in
this chapter is basic bioinformatics and is required for the rest of the thesis.

In Chapter 2 we develop a procedure for estimating the duplication rate
of a sample library from a given subsample. The duplication rate is an es-
sential indicator of sequencing data and a quality criterion for sequencing
protocols. Our method can be used to estimate this metric for newly emerg-
ing protocols by cost-effectively sequencing only a small portion of the total
data. Although the method is independent of the type of sequencing used,
it is particularly useful for methylomes due to its high cost and large data
volume.

Chapter 3 describes details of methylation data generation and bioinfor-
matic processing, consisting of aligning raw data and identifying methy-
lation levels by a process called methylation calling. We describe our de-
veloped method and its implementation in Came 1, which has some advan-
tages over existing tools. One aspect is the availability of an included down-
stream analysis of the called methylation data, for example, the detection
of differently methylated regions (DMRs) between two sample groups, e.g.,
a comparison between tumor and blood methylation. Section 3.3 describes
the implementation of our algorithm, which is based on a method of the
widely used tool bsmooth. We present the original approach, our modifi-
cations, and evaluate our improvements by comparing the list of DMRs of
both approaches.

For diploid genomes (see Section 1.1), the degree of methylation is typically
either close to 1, close to 0, or close to 0.5 for allele-specific methylation.
Some analysis, such as in Chapter 7, require the determination of the value
distribution, which can be described by a mixture of beta distributions. In
Chapter 4 we develop a method to adjust a mixture of beta distributions
even at critical values close to 0.0 or 1.0, where a standard EM algorithm
based on likelihoods would fail.

Chapter 5 shows two different workflows: one for processing methylomes
and one for genetic variations, which mainly adresses data in selected re-
gions such as the exome. The latter is also suitable for generating data for
the system described in Chapter 6. Such workflows are core bioinformatics
systems that allow to perform all steps from raw reads to the requested data
(e.g., methylation levels) on a large scale automatically and are therefore an
essential component in a study.

Sample-specific variations, such as SNPs (see Section 1.1), which are identi-
fied by the previously mentioned workflow then serve as input for further
customer-specific downstream analyses. As mentioned above, a significant
number of studies in recent years have dealt with disease-causing genetic
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variants. Also, sequencing costs have fallen to a level that enables medical
tests based on sequencing. In Chapter 6 we present a system that allows
geneticists to analyze exonic data via a web interface without the help of a
bioinformatician. This system can also serve as a blueprint for methylation
analysis as the continued increase in data production in this research area
may require soon.

Finally, we use the results from Chapter 1-6 to perform a methylation analy-
sis of real data in Chapter 7. In contrast to the usual two-group comparison,
here we investigate into methylation differences between several individu-
als by adapting the methods presented. Besides, we show several smaller
methods that we have developed for this purpose.

The work concludes in Chapter 8 with a summary and open problems, as
well as possible solutions.

1.1 The Genome

The information and all images in this section are based on the book by
Alberts et al. ( ) unless stated otherwise.

A genome carries the individual genetic information of an organism and is
responsible for its development, functionality, growth, and proliferation. It
is encoded by double helix structured macromolecules called deoxyribonu-
cleic acid (DNA), which in turn is formed by two chains (strands) of four
possible monomer units each, the so-called nucleotides. Each nucleotide
consists of one of four nitrogen-containing nucleobases — cytosine (C), gua-
nine (G), adenine (A) or thymine (T), a sugar called deoxyribose and a phos-
phate group. Covalent bonds between the sugar of one nucleotide and the
phosphate of the next connect these nucleotides. Thus a DNA strand is di-
rected with a free phosphate at one end (5"-end) and a free sugar at the other
end (3’-end). Hydrogen bonds between the bases connect both strands of
the double-stranded DNA molecule. Adenine binds (is complementary) to
thymine and guanine to cytosine. Both strands are complementary to each
other. This means that the base of the 3’-end of one strand is complementary
to the 5’-end of the other strand. Computer scientists generally interpret the
genome and DNA sequences as text over the alphabet A, C, G and T, which
represents the four nucleobases. Figure 1.1 shows the chemical structure of
a double-stranded DNA molecule consisting of four bases.

The genome in complex species such as plants and animals is organized
in sets of double-stranded DNA molecules known as chromosomes. Most
species have several copies of each chromosome in their chromosome set.
The term ploidy refers to the number of copies of the chromosomes of an
organism: monoploid (1 copy), diploid (2 copies), triploid (3 copies) and
so on. There are 23 diploid chromosomes in the human genome. There-
fore humans have two copies of each chromosome, with one exception: the
sex chromosomes X and Y. While women have a diploid pair of X chromo-
somes, men have the Y chromosome replacing one of the two X chromo-
somes. A person inherits one chromosome (allele) from each parent, and at
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FIGURE 1.1: The chemical structure of (a) a four base pair long DNA molecule, (b)
cytosine, (c) thymine, (d) uracil and (e) 5-methylcytosine with the difference
between 5-methylcytosine and unmethylated cytosine (red) and the difference
between thymine and 5-methylcytosine (blue).

DNA Intron | protein-coding gene

s L] | | | [ ] ?

L Exon — Intron Exon Intron L Exon —

‘ Transcription
Primary Transcript (RNA)

Jou I T

5' cap / ! L poly(A) tail -
. / ‘Splicing / L o
Mature Transcript (nNRNA) @ l l l l ooo
-
5' cap L poly(A) tail -
‘ Translation
Protein 00000000,

FIGURE 1.2: The process of protein biosynthesis. Special enzymes use the DNA
nucleotide sequences of gene regions on the genome as a blueprint to generate
protein amino sequences. The gene is transcribed into an RNA copy — the primary
transcript. A process called splicing then builds the mature transcript by removing
all intronic parts (white) from the RNA, and the remaining exons (green) are
finally translated to synthesize the amino acid chain - the protein (yellow).
So-called UTR regions (blue) flank protein-coding genes and the transcription
adds a single guanine (5 cap) to the 5° UTR region and several adenines
(poly(A)-tail) to the 3" UTR region. We do not describe the functions of the UTR
regions, 5’-Cap and Poly (A) at this point, they are not required in this thesis.

a very early stage of development, the DNA is exchanged blockwise (hap-
loblock) between the two chromosomes. Often variants exist only on one
allele (heterozygous variants), but sometimes also on both (homozygous
variants).

Specific regions on the DNA called genes encode blueprints of proteins,
chains of amino acids responsible for a variety of functions. While genes
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may have additional functions, in this work we focus on protein-coding
genes. A gene itself consists of smaller subsequences called exons and in-
trons (Figure 1.2), and the protein biosynthesis works as follows:

1. In the transcription phase, an RNA polymerase copies the DNA gene
sequence into the precursor messenger RNA (pre-mRNA), but only
one of the two strands is transcribed. This makes a gene strand-
specific; the strand containing the gene is called sense strand in con-
trast to the complementary antisense strand. The resulting RNA is a
copy of the original gene sequence with all exons and introns, but due
to the nature of the RNA thymine is replaced by uracil (U), which has
similar chemical properties to thymine (e.g., both T and U bind to A).

2. In a gene, only the exons carry the protein sequence information.
To produce the protein, a process called RNA splicing cuts the pre-
mRNA, removes introns and fuses the remaining exon sequences to
form a new molecule called mature messenger RNA (mRNA).

3. The mRNA is transported from the nucleus into the cytoplasm to the
ribosome, itself a protein complex. Here, a process called translation
synthesizes the protein sequence consisting of 20 different types of
amino acids from the information of the mRNA. This sequence is fi-
nally folded into the final protein.

In some cases, splicing removes not only the introns but also selective ex-
onic sequences. Thus, a single gene can serve as a blueprint for numerous
proteins, each with a different combination of exons. This so-called alter-
native splicing leads to different transcripts of a single gene. The sum of
all genome-wide protein-coding sequences (exons) is called exome, which
accounts for about 2% of human DNA. The remaining 98% builds the non-
coding DNA.

During the translation phase at the ribosomes, triplets of mRNA nu-
cleotides, so-called codons, are processed into an amino acid. This means
that the coding part of the mRNA has a length of a multiple of three.
Since each triplet consists of four different nucleotides, 4> = 64 different
combinations of {A,C,G,T} are possible for each codon. Three of these
combinations (TAA, TAG, TGA) are stop codons and represent a stop signal
that causes the end of translation. Another special case is the combination
ATG, that represents the start of a translated sequence or the amino acid
methionine (Met). Each of the remaining 60 codons encodes precisely one
amino acid. However, since there are only 20 different proteins, some of
the proteins have more than one codon coding for them. This redundancy
is referred to as codon-degeneration. Figure 1.3 illustrates the coding scheme
for all codons and amino acids. The upper part of the figure 1.4 shows a
sequence of annotated codons and the resulting amino acid chain.
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Name Abbr.  #codons
Alanine Ala 4
Arginine Arg 6
Asparagine Asn 2
Aspartic acid Asp 2
Cysteine Cys 2
Glutamic acid Glu 2
Glutamine GIn 2
Glycine Gly 4
Histidine His 2
Isoleucine Ile 3
Leucine Leu 6
Lysine Lys 2
Methionine Met 1
Phenylalanine ~ Phe 2
Proline Pro 4
Serine Ser 6
Threonine Thr 4
Tryptophan Trp 1
Tyrosine Tyr 2
Valine Val 4

FIGURE 1.3: Standard coding scheme (genetic code) of the various codons
(nucleotide triplets). Read from the innermost (5" end) to the outermost ring (3’
end), the codons are specified by the bases in this order. The outer grey ring
indicates the amino acid that is formed. For example, codon UCC codes for the
amino acid serine, codon CCG for proline and codon ACU for threonine. The
figure is a modified version of the coding sun introduced by Bresch and
Hausmann,

1.2 Variants

Two DNA sequences may differ in various ways. Usually, an individuals’
sequence is compared to a previously generated reference genome. In the
case of the human genome, the currently available reference is at version 38
(hg38), generated from anonymous volunteers by the Genome Reference
Consortium ( ) and was released in December
2013. A difference in one or more bases of a sequence compared to a refer-
ence is called a variant and there exist two classes of variants:

A single nucleotide variant (SNV) is a variant where a single nucleotide
differs from the given single reference base. The complete terminology is:
Variant v substitutes base = by base y at chromosome ¢ and position p (in
sample s). Most scientific studies evaluating SN'Vs concentrate their efforts
on these located in protein-coding regions (the exome) and the causing pro-
tein sequence change. Depending on the codon context, a variant affects
the translated protein in different ways.

Synonymous variants change the base, but in a way such that the trans-
lated amino acid remains unaffected. This is possible due to the degeneracy
of the genetic code. Figure 1.3 also shows a table of the 20 amino acids and
the number of codons coding for them. One example for a synonymous
variant might be a substitution of CCU to CCG. Although the last base of
the codon changes, the resulting amino acid remains Proline. Even if syn-
onymous mutations do not affect the amino acid, it has been shown that
different synonymous SNVs may influence the protein folding process and
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Reference DNA sequence for an amino acid sequence.

v

1 1 1 T T T T 1 1 1 T T T T T T T°1 1 T T 1
GAGCAGCCCATCCATCAGGTCT A AGG
. ) ) I ) I L I ) I ) ) )

T
G
=— Gu H Gn H Po H e H Hs H Gn H Va [ )
i
Amino Acid Synonymous variant Missense variant Readthrought variant

v

T rrTr T T 1T 17T 1T T T _ T "T T T T T "T"T T T 1T T T T
GAGCAGCCCATTCATCTGGTCTGGAGG
[ [ [

L )L l )L )L )L )L )L l )L )L s
| Glu H Gin H Pro His J Leu L Va J Trp L Arg [

FIGURE 1.4: Upper half: A reference DNA sequence and the corresponding
amino acid chain that is translated from each triplet (codon) until a stop signal
(blue circle) is reached. Lower half: The same sequence with three different
modifications. D a Synonym variant (green box) in which the codon with the
modified nucleotide still codes for the same amino acid, 2) a missense variant
(yellow box) in which both the codon and its amino acid have changed and 3 a
readthrough variant (blue boxes), which influences a stop codon and is replaced
by a coding amino acid codon.

therefore change the protein structure (Sauna and Kimchi-Sarfaty, )-

Missense variants change the base of an affected codon so that the new
codon is converted into another amino acid. This means that neither the
affected codon nor the resulting codon is a stop codon and both codons
are not synonymous. Protein structure and functionality can either be com-
pletely different, partially different or not changed at all compared to the
original. Methods exist to estimate the effect of a variant on a protein struc-
ture — often referred to as impact (Ramensky et al., ; Schwarz et al., ;
Wong and Zhang, )-

Nonsense variants change an amino acid coding codon to a stop codon.
This causes the translation to stop before the original end is reached, trun-
cating the amino acid sequence prematurely. This type of variant usually
has a significant impact on protein functionality since several amino acids
are missing.

Readthrough variants target a stop codon. The change in a stop codon
causes prolongation of the translation process, resulting in more extended
amino acid sequences. Codons are translated until reaching the next in-
frame stop codon. In the case of an absent stop coding, the mRNA is
called nonstop mRNA. A decrease by 100-fold in RNA expression due to
mRNA degradation, translation repression, and protein destabilization was
observed (Ito-Harashima et al., ).

The second category of variants are INDELs — an abbreviation for insert and
deletions — where multiple bases are involved. Depending on the number of
modified bases, this type usually has a much stronger impact on the protein
structure.
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Insertions are variants that have one or more base pairs inserted at spe-
cific locations compared to the reference. If inserts in coding regions and
the number of inserted bases is a multiple of three, this results in one or
more newly added codons. If the number of inserted bases is not a multiple
of three, a so-called frame shift takes place, shifting the three-base reading
frame for subsequent codons. Then the resulting amino acids and protein
structures in the very most cases differ dramatically from the original refer-
ence.

Deletions are the opposite of insertions that lack one or more bases related
to the reference. If the deletion occurs within an exon, multiple codons may
be the target of the variation. Similar to inserts, a frameshift occurs when
the number of deleted bases is not a multiple of three.

Duplications double a certain region of a chromosome. Often individual
genes or groups of genes are duplicated as a whole.

Translocations are chromosomal abnormalities caused by the rearrange-
ment of parts between non-homologous chromosomes. Chromosomal
translocations are one of the most common types of genetic alterations and
are molecular signatures for many cancers. They are considered the major
causes of many diseases, especially lymphomas and leukemias (Nambiar
and Raghavan, ).

The recognition of variants of a sample is the task of a so-called variant
caller. Popular general variant callers are e.g. GATK (McKenna et al., )
and Freeabyes (Garrison and Marth, ), which we also use for our
Exome pipeline Ape (see Section 5.2). There are also specialized tools like
Delly (Rausch et al., ) for structure variants or MuTect (Cibulskis et
al., ) for somatic variants between tumor and blood DNA.

In some cases, it may be useful or necessary to deal with variants or se-
quences containing positions whose nucleobases are variable rather than
fixed. For this reason, the IUPAC nucleotide code was introduced, which
allows several options to be offered for a single base position. Table 1.1
shows the complete IUPAC alphabet. For example, the letter Y in a DNA
sequence represents the basic cytosine or thymine.

1.3 Next Generation Sequencing

Sequencing describes the process of identifying the nucleotide order of
DNA or RNA molecules. Since 1975, most sequencing has been performed
with the chain termination method (Sanger and Coulson, ; Sanger
etal, ) proposed by Sanger, Nicklen and Coulson. Scientists were able
to reconstruct the human genome and to create a reference sequence — a
consensus sequence of several subjects. A new generation of sequencing
methods was developed between 2005 and 2008, called second or next
generation sequencing (NGS). Millions to billions of DNA strands are broken
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IUPAC code Mnemonic Meaning Complement
A Adenine A T
C Cytosine C G
G Guanine G C
T/U Thymine/Uracil T/U A
K Keto GorT M
M Amino AorC K
R Pyrine AorG Y
Y Pyrimidine CorT R
W Weak AorT W
S Strong CorG S
B not A CorGorT \%
D not C AorGorT H
H not G AorCorT D
\Y not T/U AorCorG B
N any base AorCorTorG N

TABLE 1.1: The IUPAC nucleotide code, a mnemonic to remember the meaning,
the related bases and their complement.

™ Adapter Adapter —

DNA Fragment o

FIGURE 1.5: Sample preparation step of Illumina sequencing by synthesis (SBS).
One of two different adapter sequences (blue and green) is attached to each side
of the nucleotides (circles) of each strand and its reverse complement (R-marks).

down into shorter pieces, sequenced in parallel and then aligned in silico
to the reference genome to identify their original chromosomal position.
We have developed all methods in this work for the widely used (NGS)
sequencing-by-synthesis (SBS) method developed by Illumina, which is
responsible for generating more than 90% of the world’s sequencing data
in 2018 (Illumina Inc, ).

Sample preparation

The DNA is randomly cut into pieces of a particular target length, usually
from about 100bp to 200bp (base pairs). These fragments are then extended
at both ends by artificial adapter sequences, as shown in Figure 1.5. In con-
trast to the simplification shown in the figure, the adapter sequence con-
sists of a primer and an index part, which are required for the simultaneous
sequencing of several mixed samples. At this point, we do not provide fur-
ther details about the adapters, as they are not required for this thesis. The
double-stranded DNA is then denatured into two single-stranded DNA (ss-
DNA) fragments.
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Cluster generation

The generated fragments are sequenced on a flow cell, a glass plate with bil-
lions of copies of two different short sequences (oligonucleotides or oligos).
These oligos are reverse complementary to the previously attached adapter
sequences of the ssDNA fragments. When applied to the flow cell, the
adapter binds each fragment to its complementary oligos. A polymerase
then synthesizes the chain of reverse complementary nucleic acids to com-
plete the oligo and form a double-stranded DNA. This DNA is denatured
into two single strands, and the now free original ssDNA is washed away.
A process called bridge amplification copies the remaining backward com-
plementary ssDNA molecules bound to the flow cell. Each strand bends
and the free adapter hybridizes with the second type of oligo, which is
then again complemented by a polymerase to double-stranded DNA. The
DNA is denatured on two ssDNA strands, both of which are bound to the
flow cell. This process (PCR cycle) is repeated several times in parallel for
all strands of the flow cell. Finally, the inverted strands are cleaved and
washed away so that clusters of identical forward DNA remain on the flow
cell. Figure 1.6 shows the process of cluster generation.

Sequencing by synthesis

The final step of sequencing consists of biochemical treatment and image-
based data acquisition. A short ssDNA sequence (primer) connects to the
adapter and is extended step by step with complementary nucleotides.
Each of the nucleotides A, C, G, T has a different fluorescent tag. When a
nucleotide binds to a (complementary) base, the tag is released after each
cycle, and all free tags are measured in parallel. The detected wavelength
then determines the bound base for each cluster. Figure 1.7 shows the
sequencing process. After a predefined number of sequencing cycles, the
product is denatured and washed away. Again, a single bridge amplifica-
tion step is applied, and now the forward strands are washed away similar
to the cluster generation shown in Figure 1.6 steps 4 and 5. The sequencing
by synthesis step is repeated for the reverse strand, and the resulting
data is computationally analyzed and output as two sequences (read pair)
and a quality score for each base (see Chapter 1.6). Today’s sequencing
techniques produce several million reads per sample with a typical length
of 50bp-150bp.

Information about SBS and the figures are based on Illumina Inc ( ).

1.4 Sample preparation modification

Depending on the desired information, the various sample preparation
steps can be extended or modified in different ways. The following list
gives an overview of the main techniques mentioned in this thesis.



1.4. Sample preparation modification 11

Adapter complimentary oligo —-

1. Hybridizati
ybridization attached to the flow cell

DNA fragment with adapters
hybridized to the complimentary

2. Complement Creation
complimentary sequences
created by polymerase _

SECCCCeetiteesessesessseeeeseessssssees ettty

3. Denaturation and washing —

Denaturation [

OOO000000C
Free (orginal) fragment L
gets washed away

4. Bridge amplification

Strand folds over and the
second adapter hybradizes

[ L
second type of adapter
complimentary oligo on flow cell

>

Repeated multiple times

The strand is duplicated |
by polymerase
(brigde amplification)

&
L 229000000000900000)

2
NS00 000000000000000e

Denaturation two single stranded copies

Reverse strangs are cleaved
and washed away

FIGURE 1.6: Cluster generation steps of Illumina sequencing by synthesis (SBS).
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1. Sequencing Readl fluorescent tag

first @ ®» @ @ @ ®®® free fluorescently
sequencing primer ““~complimentary @ @ tagged nucleotide
©&  nuclectide ®

Repeated multiple times
(sequencing cicles)

flourescence signal is emitted and measured

2 .Washing ]
00660 Read product is
.’..°°° washed away

Denaturation

FIGURE 1.7: The sequencing step of Illumina sequencing by synthesis (SBS).

Whole Genome Sequencing (WGS) uses fragments of the entire genome-
wide DNA. This method is expensive and the most general of all tech-
niques. It generates the genetic information of the entire genome and can
be used to identify point mutations, small and large structural variations,
and copy number variations.

Whole Exome Sequencing (WES) targets exonic regions. Only 2% of the
human DNA sequence is used as protein blueprints (see Section 1.1). Mod-
ifications in these regions are of great interest because a variation can di-
rectly alter their translated protein structure and thus affect protein func-
tionality. It is possible to extract only read from predefined coding regions
with commercially available capture kits using hybridization techniques
and biotinylated oligonucleotide probes complementary to the target re-
gion. Such a capture kit can also capture regions other than the exome,
which is generally summarized under the term targeted sequencing.

Whole Genome Bisulphite Sequencing (WGBS) is used for genome-wide
measurement of DNA methylation at single base pair resolution. During
library preparation, the DNA is treated with sodium bisulfite, which con-
verts the unmethylated cytosine in the CpG context to uracil (U) and leaves
5-methylcytosine unaffected. Uracil is then recognized as thymine by the
sequencer. This work mainly deals with this kind of sequencing, and the
technique is described in detail in Chapter 3.

Nucleosome allocation and methylome sequencing (NOMe-seq)is a
modification of bisulfite sequencing using a GpC methyltransferase to
methylate cytosine in GpC instead of in the CpG context (Kelly et al., )-
In general, most of a DNA strand is wrapped around several scaffold pro-
teins (histone nuclei), while about 146bp of the DNA (nucleosome nucleus
particles, NCP) is wrapped around the histone octamer, each consisting
of 2 copies of the nuclear histones (Felsenfeld and Groudine, ). The
complex of histone nucleus and NCP is called nucleosome. When proteins



1.5. Alignment and coverage 13

Homozygotic SNV? Heterozygotic SNV?
|
cC AT A G C T G A C
;
AT G A T T A A C C cC AT A G C T G A C
| |
G AT T A A C C T A T C T T A G C T G A
Reads |
c c T AT AG T C

Reference Sequence

Coverage

FIGURE 1.8: Multiple DNA reads (green) of length ten at their genomic position
and the reference sequence (white squares) with consensus base at position p. The
coverage (lower numbers) counts the number of bases from all reads overlapping
p and alternative bases (blue) relative to the reference base show either a variant
or a sequencing error.

are translated, this structure changes in such a way that RNA polymerases
can access the DNA. The added methyltransferase only comes into contact
with GpC at these accessible sites, the so-called open chromatin. GpCs
are never methylated in mammalian genomes, and methylated cytosine
implies open chromatin in this context. Therefore, this method allows the
analysis of open chromatin states.

1.5 Alignment and coverage

The extraction of genetic or epigenetic information often requires knowl-
edge of the exact origin positions of the generated reads. Instead of assem-
bling the entirety of all reads into a sequence, the sequences are usually
aligned against the species-specific reference genome by programs called
read mappers. This task is performed by tools such as the widely used BWA
(Li and Durbin, ) or bowtie2 (Langmead et al., ) done. In addi-
tion to the genomic position of each pair, differences to the reference and
mismapping probability are also determined.

The sequencing generates from several nanograms of DNA from many cells
(except single-cell sequencing) millions to billions of read pairs, which usu-
ally overlap. The number of overlapping reads of a single position p is
called coverage at p. Figure 1.8 shows overlapping reads at a genomic posi-
tion and coverage. Base differences in comparision to the reference can be
either the result of a technical error or an existing variant at this position.
In order to distinguish these two cases and not to miss real variants, high
coverage is one of the crucial quality metrics in genome sequencing. Al-
gorithms of so-called SNV callers are usually able to identify errors if the
coverage is high enough. The sequencing costs are almost proportional to
the desired coverage.
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Q P Accuracy (1-P) Usage

0 N/A N/A special case, e.g. read unmapped

10 0.1 90% minimum threshold for SNV analysis
13 0.05 95%

20 0.01 99%

30 0.001 99.9%

40 0.0001 99.99%

50 0.00001  99.999% typical threshold for SNP analysis
60 0.000001 99.9999% maximum read mapping quality

TABLE 1.2: Example quality to error probability transformations and their usage.

1.6 Quality scores

Bioinformatic analyses often deal with tiny probabilities in the calculation
of uncertainty; floating point numbers with large negative exponents. For
subsequent analyses, it is often sufficient to consider the size of the expo-
nent rather than dealing with exact values. For this reason, the so-called
Phred scaling was established (Ewing et al., ), which converts a proba-
bility P into a quality score () by

Q =—-10 logm P
and equivalently @ to P by
P =10"9/10,

The Phred scaled quality score is used in a variety of bioinformatics appli-
cations and is typically stored as an integer in a human-readable range of
[0, 255] or [0,65535]. Although the quality score can always be used instead
of small probabilities, the values in table 1.2 are of particular importance
for this work.

Base Quality Scores (BQS) are generated by the sequencing platform for
each sequenced base. It reflects the Phred scaled probability that the base
was incorrectly determined, where BQS € [0, 60] (Ewing and Green, ;
Pavlopoulos et al., ).

Mapping Quality Scores (MAPQ/MQS) are a measure of confidence in the
correctness of an identified genomic position. It is estimated by read align-
ers and was introduced in 2008 by Heng Li and Richard Durbin (Li et al,,

). Mapping qualities are in the range of [0, 60] and depend on the null
model of the algorithm used, while MAPQ = 0 is usually assigned to reads
with several equivalent positions (ambiguous reads) or no mapping posi-
tion at all.

SNP quality is the measure of uncertainty for an estimated variant geno-
type. They are calculated by a variant caller and calculated from the base
call, orientation, and assembly and coupled with prior information such as
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allele frequencies and patterns of relationship imbalances (LD) (Nielsen et
al., ).

1.7 HdAf5

Most of our tools presented in this thesis store and load their data in Hier-
archical Data Format Version 5 (hdf5) — an universal data format for storing
and organizing large amounts of data. Similar to directories and files, hdf5
files are organized in a hierarchical structure with groups and records. A
group contains any number of additional groups or data sets and optional
metadata. A data set is a multidimensional data array (and optional meta-
data) that can consist of primitive data types (whole or unsigned integers
of 8, 16, 32 or 64 bits, floating point numbers of 32 or 64 bits, references
or strings) or structured data consisting of multiple heterozygous data of
primitive types.

Hdf5 supports compression and chunked storage, and also stores an in-
dex in the form of B-trees in the hdf5 file itself, allowing random access to
groups and records. There are hdf5 parsing libraries for all common lan-
guages, such as h5py for python (Collette, ), thdf5 for R (Fischer and
Pau, ) or hfd5.jl for julia (Holy, ).
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Chapter 2

Duplicate Rate Estimation

Current NGS mass technologies require several PCR amplification steps.
Depending on the number of PCR cycles, thousands of copies of fragments
are generated, and multiple copies of the same fragment can be sequenced
multiple times. Such PCR duplicates are usually identified during data pro-
cessing and marked as such in order to avoid unintentional biases. It does
not make sense to sequence a library with many duplicates in great depth:
Most reads will then be duplicates of each other and excluded from sub-
sequent analysis. Many different factors influence the proportion of PCR
duplicates (duplicate rate) such as the amount of DNA used and the prepa-
ration of the library. If possible, these factors should be optimized by sev-
eral iterations in order to minimize the number of duplicates.

A strategy of some projects is to first sequence a small sub-sample of a li-
brary, for example in the range of 1% to 10%, to determine the duplicate
rate and then extrapolate the duplicate rate of the entire library. Therefore,
methods for estimating the duplicate rate at increased sequencing depth
are of great interest for such large projects or implementations and param-
eter tuning of new sequence protocols. The equivalent question is that of
library complexity, which refers to the number of observable original reads
(counting each fragment present in multiple copies only once) at a given
sequencing depth.

In this chapter, we propose an explicit optimization approach based on ele-
mentary probability theory and combinatorics. We formulate the complex-
ity estimation problem of the library first as a convex optimization problem
and then give a more practical linear program to avoid the inconsistency of
the original question. This chapter is based on a lecture at the German Con-
ference for Bioinformatics (GCB) 2015 and its proceedings (Schroder and
Rahmann, ), where Sven Rahmann wrote most of the text.

2.1 Family Partitioning

The duplicate rate of a dataset is usually estimated as follows. DNA
fragments are aligned with a read mapper and then compared based on
their identified genomic position (and fragment length, if applicable).
For paired-end reads, the mapping positions of both ends are taken into
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account. The reason for this approach is that it is highly unlikely that
independently generated DNA fragments at both ends have the same
starting position in the genome with typical covers. This approach is
problematic if only short single-end reads are available or if the coverage
is extremely high. In this case, it is impossible to distinguish independent
fragments from PCR duplicates, and the approach will overestimate the
actual duplicate rate. Another approach is to estimate the duplicate rate
by sequence identity (modulo sequencing errors). The use of the exact
identity is below the true duplicate rate, and this option is preferable only
if there is no reference genome on which the reads can be mapped.

Notwithstanding these problems, there are working operational defi-
nitions of the duplicate rate and tools that mark and count duplicates,
such as picard-tools MarkDuplicates. (Broad Institute, ) and
samtools rmdup. (Liet al., ). For our purposes, the exact definition
of duplicates is of secondary importance. We assume that we have a large
set of sequential and potentially mapped single-end or paired-end reads
and a procedure that can identify reads as duplicates of each other. This
can be achieved either by comparing sequence contents or by mapping
information.

Thus the set of fragments can be partitioned into families, such that each
family contains all copies of a fragment and no other fragments. We say that
a family is of type c or a type-c family if it contains exactly ¢ elements, one of
which is original and ¢ — 1 are duplicates. The number a. of type-c families
in the complete dataset is called the occupancy number of c¢. The number
of fragments in type-c families is thus ¢ - a.. The vector a = (a1,a2,...) is
called the occupancy vector of the dataset.

Thus, the total number of sequenced fragments is

N:Zc-ac.

c>1

The complexity T" of the dataset is the number of original fragments, i.e., the
total number of families:
r=> a. (2.1)

c>1

The duplicate rate of the full dataset then is

d:(N—F)/N:%Z(c—l)-ac. 2.2)

c>1

2.2 The Subsampling Process

When taking a random subsample of size n < NN, a family of type c will
have 0 < k < c of its c members in the subsample. We call a family with
k members in the subsample a family of subtype k regardless of its type c.
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FIGURE 2.1: Example of the subsampling process of a type-5 family to a
subtype-3 family (blue). The example contains also a type-4 (green) and a type-5
(white) family, both sampled to a subtype-2 family.
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FIGURE 2.2: Example of the downsampling process of a single type-5 family and
illustration of the probabilities Pé)],\;’n) to obtain a specific subtype k.

Figure 2.1 shows an example of sub-sampling a sample of 14 elements to a
sub-sample of size seven. The full sample contains a type-5 family that is
reduced in the subsample to a subtype-3 family represented as blue balls.
In this example, the occupancy vector for the entire example is given by
a=(0,0,0,0,0,1,2). There is exactly one family with four members (green)
and two families with five members (white and blue).

We can explicitly calculate the probability that a type c family will be down-
sampled to subtype k for each ¢ > 1 and each k£ > 0.

The probability that a family of type cis of subtype k for sample size NV and
subsample size n is given by the hypergeometric probability

P = (Z) (g:;) / <JX> (k=0,...,c).

The reason is a standard combinatorial argument: There are (]X ) possible

size-n subsamples of a set of size N, there are (}) ways to choose k objects

from ¢, representing the copies of the particular read, and (gjkc) ways to
choose the remaining objects. Figure 2.2 illustrates probabilities of a single

type-5 family to become a specific subtype-k family.

Note that families of subtype k& = 0 are not observed, while families of
subtype k > 1 are observed, but it is unknown from which type c they
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multiple type-5 families
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FIGURE 2.3: Example of the downsampling process of multiple type-5 families.
The height of each rectangle represents the number of family members for each
type or subtype.
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FIGURE 2.4: Example of families of type 1 to 5 downsampled to subtype k
families. The height of each rectangle represents the number of members in each
family.

originate.

For a given occupancy vector a = (a1, ..., ay) of the complete dataset, we
can thus compute the expected occupancy vector of the subsample as z =
z(a) = (xg,...,x,) with

w=ap(a) =Y ac- PR (0<k<n) (2.3)

c>1

Figure 2.4 shows an example of subfamilies, where the number of mem-
bers is such a linear combination of the downsampling process of multiple
families.
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2.3 The Estimation Problem

Given the observed occupancy vector o = (ox)r>1 of the subsample consisting
of n = Zkzl k - o fragments, and given the size N of the full dataset,
estimate the duplicate rate d (or equivalently the complexity I') of the full
dataset.

The presentation so far suggests that the problem can be addressed by es-
timating the occupancy vector a = (a.) of the full dataset such that the ex-
pected occupancy vector x = (z},) of the subsample given by Equation (2.3)
is close to the observed occupancy vector o = (o). It should be noted
that the precise values of (a.) are not asked for, but estimating their sum I
is sufficient for solving the problem. The classical solution (Good and Toul-
min, ) approximates the subsampling process by a Poisson process that
is then extrapolated for N/n < 2. Convergence acceleration methods of
power series can be used to extend this approach up to N/n < 5. For larger
factors, the variance of the estimator becomes too large to provide useful
results. Precisely for this reason, Daley and Smith, has developed
a robust extrapolation of this approach for larger N/n, based on rational
functions.

In this work, we show a direct and explicit optimization approach for the
problem. Indeed, we translate the requirement that x = (z) = 0o = (o)
into an objective function and model the constraints directly. Our approach
makes it possible to assess the uncertainty of the estimate and determine
confidence intervals.

2.4 Modeling the Optimization Problem
Before stating the optimization problem, a few remarks are in order.

1. There are several possibilities to measure the closeness between z
and o, which is discussed below.

2. The value of zy, i.e., the expected number of families that are never
observed in the subsample, cannot be related to an observation and
does not take part in the objective function.

3. While N and n can be as large as several hundred million and are the
maximally possible lengths of a and o, respectively, there are no frag-
ments with excessively many copies in typical real datasets. Thus the
observed nonzero entries (o) typically end at a small value Kj,g, i.e.
or = 0 for k > Kj,s. Because families of large type ¢ would generate
families of large subtype £ > Kj,s, we can effectively put an upper
bound C' on the read types to consider and restrict the occupancy vec-
tor a to (a1,...,ac). Likewise, this choice of C' bounds the subtype
of the reads that can be reasonably generated by subsampling, and
we limit the occupancy vector x to (z1,...,zk). It follows that only



22 Chapter 2. Duplicate Rate Estimation

the hypergeometric probabilities Pc(],:’n) are needed for 0 < ¢ < C,
0 < k < K. The choice of C and K is discussed in Section 2.4.4.

4. While the true occupancy vector of the complete sample consists of
integer counts, we shall not constrain the estimates a. to integers.
Solving an integer-constrained problem is much more difficult, and
our goal is not the precise estimation of the single a. values, but an
approximate estimate of I' =  _ _ ac.

The following shows how to quantify the difference between the subsam-
ple’s expected occupancy vector x = z(a) = (x1,...,2x) and the observa-
tion o = (o1,...,0kK,,,0,...,0) with K > Kj, elements.

241 Maximum Likelihood Approximation

Consider the random variable X, that counts families of subtype k after
subsampling. Such families arise from type-c families for any ¢ > k, and

the success probability for a type-c family to become of subtype k is precisely

(N;n)
Pc,k: !

distribution with size parameter a. and success probability Pc(],z/’n). Under
mild assumptions, this can be approximated by a Poisson distribution with

. Thus we can write X;, = > ., X . where X} . has a Binomial

parameter A\ . := a. - PC(],X’"). Assuming approximate independence of the
Poisson-distributed X ;w’(the only violation is the known size n of the sub-
sample) we can approximate their sum X}, by a Poisson distribution with
parameter ) . A\p. =) . aC-PC(],X’n) = x1 according to Eq. (2.3). For large z,
this is approximately a Normal distribution with expectation z; and vari-
ance zy. (In fact, because of the known size, the X, . have a small negative
correlation, and the overall variance is slightly smaller than z;.) With this
approximation in mind, the (approximate) maximum likelihood approach

suggests minimizing

K
fila) ==Y (@r(a) - o) /i(a)
k=

1

K
= (xk(a) + 0f /z(a)) + const. (2.4)
It can be shown that f; is convex by proofing the convexity of

T — (xk + ck/xk), (2.5)

N

as z(a) is a linear function of a.
A function f(z) is convex if the following inequality is true:

FOw1+ (1= Naz) < Mf(@1) + (1- N f(az) for Ae[0,1]  (26)
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Theorem 1. The sum of two convex functions h = f + g is again convex:

h(A-x1 4+ (1= X) - x2)
g+ N a1+ (1= ) - 22)
=fA-z1+Q=X)-z2)+gA-z1+ (1 =) x92)
SAf(@) + (A= A) - flaz2) + A g(@1) + (1= A) - g(a2)
= A (f(@) +g(@1) + (1= A) - (f(21) + g(22))
= A (f+9) @)+ (1 =A) - (f+9)(2)
=X-h(z1)+ (1= X) - h(x2) O

Equation 2.5 can be transformed into

K K
xl—>2$k+26k/:ﬁk (2.7)
k=1 k=1

and Theorem 1 allows us to infer convexity when both sum terms are con-
vex, and to infer convexity of a single sum when all summands are convex.
The coordinate selection = — zj, is convex (linear) for each k£ € 1..K. Term
¢/x is convex for z > 0, which is proofen by the use of inequation 2.6:

C C C
vy Gy gl S <
! <A yp1mA &
Arp+ (1= Nze — a1 9
1 Axg + (1 — Nz
)\(SL’l — :Ez) —+ x9 = : 13(1:E2 ) 1 <
1 Mzxg —21) +2
)\(SL’l — ZUQ) —+ X9 = ( : 1’11,‘12) : <
T1To < ()\(331 — xg) + xg)(A({L'Q — 1'1) + 1‘1) =
0< ()\(331 — .rg) + xg)(A(.%'Q — 1'1) -+ :L'l) — T122 =
0 < =M (xy — 20)> + My (21 — 22) — Aaa(zy — 20) &
0 < —N(z1 — 29)% + M1 — 29) (21 — 29) &
0 < —A%(21 — 22)” + AMzy — 22)° &
0< ()\ — )\2)(561 — :B2)2 <
0 S )\(1 - )\)(1’1 - CL‘2)2 OJ

since A(1 — A\) > 0and (z1 — x2)% > 0 for A € [0;1] and z1, 2 > 0.

As all summands of both sums of Equation 2.7 are convex, both sums are
convex and therefore the function itself.

While f; would be the most principled objective function to use, several
properties of the problem make f; both inconvenient and unnecessary to
use in practice.
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1. While there has been much progress on convex optimization meth-
ods, they are not as easy to use, numerically robust or widely avail-
able as linear optimization methods.

2. We found that in particular, the numerical robustness issues prevent
us from successfully using the existing libraries such as CVXOPT (An-
dersen et al., )- Realistic numbers of involved fragments are ap-
proximately n = 10% and N = 108, while some of the small but still
relevant hypergeometric probabilities are 10~°.

3. Because of the compression effects of subsampling (we are trying to
estimate an occupancy vector a with C elements from a smaller oc-
cupancy vector o with K < C elements), it will in most cases be no
problem to fit z(a) to o almost exactly with several choices of a, and
the optimal objective function will be close to zero.

2.4.2 Linear Program

The above considerations suggest using a linear proxy for f;. We replace
each term by its square root, and as z;, ~ oy, we replace the xj in the de-
nominator by oy, + 1 to avoid singularities at zero. The objective function

K
fla) =" |ex(a) — okl /Vor +1 (2.8)
k=1

is obtained. Each term approximately specifies how many standard devia-
tions oy, differs from its expected value z(a) for a candidate a (as long as
o ~ i (a), which we can expect from the solution given the above consid-
erations).

Using f, the problem can be cast as a linear program (LP) with variables
(a1,...,ac,x1,...,zx) and weights wy, := 1/y/o; + 1 by transforming the
absolute value term into linear inequalities using additional auxiliary vari-
ables ((51, . 75K) with (5k > ’Ok — xk\:

K
minimize Z Wy, * O such that (2.9)
k=1
o — x < O (k=1,...,K), (2.10)
—ok + xp < Ok (k=1,...,K), (2.11)
c
o= ac- PR (k=1,...,K), (2.12)
c=k
C
N=> c-a, (2.13)
c=1
ac>0 (c=1,...,C). (2.14)

Some observations on the LP follow.
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1. The above constraints imply additional ones. For example, using that
the expectation of the hypergeometric distribution PC(,].V’N) is (cn)/N,

together with (2.12) and (2.13), shows that

Z k xy, :Z ac~z k:Pc(g’n) = Z ac - (en)/N = n,
k

c>1 k>1 c>1

i.e. the total number of fragments in x is constrained to be the same
as that in o.

It also follows that x;, > 0 for all k, as well as a. < N/c for all ¢ and
xr < n/k forall k.

2. The variables (z}) can be eliminated from the problem by replacing
xy, with the appropriate linear combination of a given by (2.12). The
LP formulation here includes them for readability.

3. Solving the LP (2.9)—(2.14) will give one (out of possibly many almost
equivalent) solutions for a, from which we derive an estimate of the
complexity I' or of the duplicate rate d using Eqgs. (2.1) and (2.2).

4. In an optimal solution (a*,z*,5*), the k-th term wy, 6; = 8 /\/or + 1
states approximately how many standard deviations the observed
value o, deviates from the expected zj for the computed a*. For
subtypes k with sufficiently many observations, say > 25, we may
expect small values (less than 1).

2.4.3 Approximate Confidence Intervals

As already stated, the problem of estimating a from o is ill-conditioned.
For large enough ¢, two adjacent rows of the hypergeometric probability

matrix, PC(,J.V’”) and Pc(ivl’?) have very similar entries, and for an individual
observed read of subtype k, the type c is undecidable. There may be so-
lutions @’ # a that achieve almost the same objective function value, i.e.
z(d') =~ z(a) even though o’ — a is large by any measure. Thus an interval

estimate [dmin, dmax] may be more informative than a point estimate of d.

We proceed as follows. Given the optimal solution (a*,z*, §*) of the lin-
ear program (2.9)—(2.14), we set up a new linear program to minimize resp.
maximize the duplicate rate (maximize resp. minimize the complexity I' =
S°¢ | a.) under constraints that the admissible solutions do not differ much
from the optimal one. In particular, we constrain each term of the original
objective function to stay within two standard deviations unless it was al-
ready larger in the original solution,

wy, - 0 < max{2,wy - 45} (k=1,...,K). (2.15)

Additionally, we constrain the sum of these terms by

Z wy - 0 < Z max{Z, wy - 6}, (2.16)

keK, ke K,
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where K| := {k | o > 25} is the set of ks with a non-negligible amount
of observations and Z > 0 is a tunable parameter that we set to Z := 1
by default. We empirically found this choice to produce approximate 95%
confidence intervals. In summary, the two LPs to be solved are

C
minimize / maximize Z Ge, (2.17)

c=1

such that (2.10)~(2.16) hold. This produces solutions ™" and a™®, from
which we derive the duplicate rates d™® and d™", respectively, by (2.2).

As a remark, we have chosen this particular approach for numerical robust-
ness. While one could argue that a more natural approach is to require that
the total variance V := S 1 | w?d? be limited by 4K, this would be the
solution of a quadratically constrained program. Our attempts with freely
available solvers led to severe numerical problems, no solutions, and even
frequent crashes, and we found the above strategy more robust and accu-
rate.

2.4.4 Linear Program Size

It remains to choose reasonably small values for the problem dimen-
sions C < N and K < n, ie, for the lengths of the vectors a and z,
respectively that enter the LP formulation. Let Kj,5 be the maximal type
observed in the subsample, such that o, = 0 for all & > Kj,g, but og, , > 0.

The probability that a type-c read generates a subtype-k read with k& > K,
is given by pe. k. = 2k r, Pc(f:’n). As no such reads were observed, we
need not consider values of ¢ where p. g, , is high, say larger than some
threshold ¢ := 0.5. If there were ten such type-c reads, we would then
expect at least 5 with subtype larger than K, instead of the observed zero
reads. Thus we set

Klast
C::min{cz 1: Z PC(J,X’H) < 1—t}.
k=0

Given C, we might set K := Kj,q, but as the error terms in the objective
function measure the error only up to the K-th term, we must choose a
larger value to ensure that almost the whole probability mass of the hyper-
geometric distribution for type C' is contained in the considered range for
K, say up to an error of 7 := 10~%. Thus for the given C, we set

K
K::min{/ﬁz 1:ZPg\l[€’n) 21—7’}.
k=0

As an example, consider the observation

0= (01,...,05) = (65610, 14580, 1620, 90, 2)
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with n = 100000 and K¢ = 5. With N = 105, ¢t = 0.5 and 7 = 10~%, we find
C =57 and K = 16. Using more relaxed parameters ¢t = 0.2 and 7 = 1073,
we find C' =40 and K = 11.

2.4.5 Reducing Linear Program Size

The strategy described in the Section "Linear Program Size" (2.4.4) is accu-
rate and results in small LP sizes for most real datasets. However, with
extremely high duplicate rates or extreme outliers (some families with ex-
tremely many copies in the subpattern), an LP can become too large to be
resolved in a few seconds. In cases (e.g.,, when C > K > 50) we can use
the following heuristic, which sacrifices a little accuracy in favor of a much
smaller problem size and higher speed.

Instead of using the real value of Kj,q of the observed occupancy vector
o = (01,...,0K,,), we cut off the observed occupancy vector at a smaller,
convenient index, say K 0 and perform the estimation procedure for a with
this shortened vector. Accordingly, the values of n and N for the LP must
be reduced (see below). At the end, we separately add back the cut-off
part as follows. Since the sampling factor is n/N, the resulting subtype of
most type-c families is close to k = ¢n/N. Conversely, for large enough k, a
family of observed subtype k can be assumed to come from a family whose
original type is close to ¢ = [kN/n], where [z] is the next integer up to x. For
each k > K we increase AN /n) Y Ok

This procedure accounts for n® >°, _ o k- oy, observed fragments and N? :=
> ksko [kN/n] - o fragments in the full dataset, so that the LP must be
solved with n’ = n — n% and N’ = N — N instead of the original n and N.

We may expect that the error introduced by this heuristic is small because

1. the absolute number of affected families, ) ", . 0 oy is small;

2. the error introduced by inferring the wrong type ¢ = [kN/n] instead
of the true c has a small effect on the resulting N’ if |¢ — ¢| is small.

2.5 Software

We have implemented the point and interval estimation for the duplicate
rate in a software package called dupre (for duplicate rate estimation).
Python 3.4, along with the PuLP package is required. The linear programs
are solved with the standard solver of PuLP, the Cbc (Coin-or branch and
cut) command line tool (CBC-CMD) from the COIN-OR project (Computa-
tional Infrastructure for Operations Research').

Our tool dupre is open source (MIT license) and can be obtained from
Bioconda (Griining et al., ) or its BitBucket code repository’. For

'http:/ /www.coin-or.org/
2


http://bitbucket.org/genomeinformatics/dupre
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easy installation, we recommend following the README instructions
in the repository. No commercial or proprietary optimization libraries
are required. The software takes as input an observed occupancy vector
o= (o1,...,0K,,) (provided as a file or on the command line) and a target
library size N and outputs point and interval estimates of the duplicate
rate. On demand, other useful properties of the problem can be provided,
such as the LP size (C, K) or the estimated full occupancy vector a.

The example in Section Linear Program Size can be run as follows (with —v
for verbose output):

dupre -o 65610 14580 1620 90 2 -N 1000000 -v

Running dupre --help explains available options.

A separate tool bam2occupancy is available to compute the occupancy
vector from reads in a BAM file. It is provided as part of the dupre package
and additionally needs the pysam package to be installed.

Note that dupre itself is a general tool and not closely related to sequencing
libraries. It is of potential use in other areas that require estimating the
increase in observed diversity as sampling depth increases, such as capture-
recapture experiments in biodiversity studies.

2.6 Evaluation

Three other works are dealing with the same problem. The first,
MarkDuplicates tool from picard-tools, outputs, among other
things, a return-on-investment table that estimates the useful coverage
factor f(c) (new original fragments) if the current coverage, including
duplicates, was multiplied by c for each ¢ = 1,2,...,100. The estimation
is based on Poisson statistics and not on the occupancy vector of multiple
copies, which in some situations leads to inaccurate results as described in
Section 2.4.1.

Second, the preseq tool suite of Daley and Smith, upscales the occu-
pancy vector of the observed subsample as we do. However, our method-
ology differs greatly from theirs. Their estimate is based on a classical em-
pirical estimator (Good and Toulmin, ), which is originally numerically
unstable and has exceptionally high variance for ¢ > 2. Daley and Smith
uses rational functions to stabilize them and enable smooth extrapolation
for large sequencing depths.

Third, recon (Kaplinsky and Arnaout, ) iteratively applies an EM al-
gorithm to a growing number of Poisson-distributed clone sizes to estimate
an overall parental distribution. The duplicate rate is then determined by
resampling the parent distribution. It was developed to estimate the di-
versity of an organism’s B- and T-cell repertoires. The approach has been
experimentally tested for this particular application, but may not be appro-
priate for the general duplicate rate problem addressed by dupre.
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TABLE 2.1: Left: average properties of different scenarios for artificial and real
datasets: length of full occupancy vector a, number of original reads, total
number of reads, typical duplicate rate, number of problems to solve. Right: size
of evaluated real datasets. Abbreviations: M: million. For the real datasets, the
values are averaged over all instances.

scenario len(a) > .a. reads dup.rate #problems

d = dirac 10 1.0M 10.0M 90 % 2500

e = easy 7 97M 108M 11 % 2500

h = hard 91 1.0M 10.0M 90 % 2500

m = monotone 16 50M 101M 42 % 2500

exome 230 46.5M 55.3M 16 % 20700

rna 2662 35.8M 42.5M 16 % 11160
Also, an approach of Tauber and Haeseler, uses the Pitman Sampling
Formula (Pitman, ) to estimate the size of the gene universe.

For the evaluation, we compare dupre with preseqgand recon on

1. artificially generated occupancy vectors with different properties,

2. occupancy vectors obtained from several full and subsampled
in-house datasets of different types: Exomes and RNA-seq.

Some of our internal records are confidential and cannot be released. How-
ever, we provide the occupancy vectors for all records in the same reposi-
tory as the software and facilitate (a) the reproduction of our experiments
and (b) the comparison of dupre estimates with those of other tools.

We describe the following four scenarios (dirac, easy, hard, monotone) with
different artificial full occupancy vectors, each posing different challenges.
A summary of the properties of each scenario is given in table 2.1.

For each scenario, we generate 50 instances, i.e., true occupancy vectors
a9 where s is the scenario and i = 1,...,50 enumerates instances. For
each instance, we consider five different subsampling ratios

p € {0.01,0.02,0.05,0.10,0.20}.

For each instance and sampling ratio, we generate 10 independent sub-
samples and their occupancy vectors o(*##7), r = 1,...,20 for a total of
10000 problem:s.

dirac We create an occupancy vector a by setting a0 := 1000000 and a. :=
0 for ¢ # 10; no randomness is involved. Thus each family has precisely ten
members, for a total of ten million sequenced fragments.

easy We create an occupancy vector a whose entries drop approximately
exponentially at a given rate r < 1. We choose a. uniformly around a target
number T, between T./2 and 2T, and then set 7.1 1 = r - T,.. We here use
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Ty := 7000000 and r := 0.1. This creates short occupancy vectors with
steeply decreasing values.

hard This scenario is similar to the easy one, but we use 77 := 80000 and
r = 0.9. We obtain long vectors whose entries are of similar size to each
other.

monotone We set a; = 2500000 and then each a. randomly uniformly dis-
tributed between 0 and a._; until we reach zero. This creates monotone
decreasing occupancy vector a.

We tested both tools additionally on real occupancy vectors from BAM files
of projects at the University Hospital Essen. The available data sets con-
sisted of 414 exome sequencing and 232 RNA-Seq samples. The properties
(library size, length of a, duplicate rate) varied considerably within each
scenario and led to a variety of problems of different difficulty and size. We
computed the true duplicate rates from the given BAM files with mapped
reads and then created 10 random subsamples for each of the five sampling
rates p € {0.01,0.02,0.05,0.10,0.20} for a total of (414 + 232 +92)-10-5 =
32 300 problems to solve.

Results

Each observed occupancy vector o(*%"), together with the known full sam-
ple size N of a®?) serves as input to dupre, preseq and recon. For each
problem, each tool outputs a point estimate and an interval estimate for
the duplicate rate; dupre and preseq claim to provide approximate 95%
confidence intervals. We evaluate according to the following criteria:

1. number of instances solved without errors or crashes

2. the difference between the point estimate of the duplicate rate and the
known true duplicate rate, which should be close to zero and of small
variation

3. the number of times that the true duplicate rate is in the estimated
confidence interval, which should be close to 95%

Since recon reports a confidence interval for the estimated parent distribu-
tion, but not for its downsampling, the confidence interval precision is not
given for recon).

Evaluations were automated with Snakemake (Koster and Rahmann, )
and took a few days overall, including instance creation. Every single prob-
lem is solved in a few seconds up to a minute with dupre. The running
time is longer for smaller p because the LP size increases with 1/p2. As
shown below, preseq had convergence problems on several instances and
took extremely long times for some of them. In practice, running time for a
single instance is not an issue for none of the three tools.
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FIGURE 2.5: Results for scenario dirac. Left: Error of estimated duplicate rate
(boxplots) for dupre (light blue), preseq (dark blue) and recon (green) with
median (centered bars), interquartile range (boxes) and minimum and maximum
(black bars) except outliers (blue crosses). An ideal estimate has an error of zero
(dashed vertical line), while positive values state that the tool overestimates the
true duplicate rate. Center: Fraction of problems solved for each subsampling
rate p € {0.01,0.02,0.05,0.10,0.20} and each tool. Right: Fraction of solved
instances where the output confidence interval contains the true solution. As
dupre and preseq methods claim to output 95% confidence intervals, this
should be approximately 0.95 (dashed vertical line). preseq produced no
solutions for p > 0.02 and few for p = 0.01. Due to the missing estimation this
value is omitted for recon.

Figure 2.5 shows the results for the dirac record. Dupre resolves each in-
stance and keeps the 95% confidence interval promise for each partial sub-
sample rate. The point estimation errors of dupre are nearly zero, except
for some outliers at the lowest partial sample rates, which we expected.
Unfortunately, preseq is not able to solve most of these problems, either
because it rejects the small input vector or returns an error during the cal-
culation. While preseq solves only a few problems with p = 0.01 where it
underestimates the exact duplicate rate by about 0.05, recon can solve all
problems with good performance. It slightly underestimates the duplica-
tion rate across the entire spectrum of downsampling rates.

Figure 2.6 (a) shows the results for the data set easy. Also here preseq
cannot solve most problems and does not keep the 95% confidence interval
promise. For solved problems, however, the estimate is very accurate. In
fact, both tools estimate the duplicate rate accurately, even for small p. The
larger variation in the error in dupre is partly due to the much larger num-
ber of resolved instances. On the other hand, recon can solve all problems
but overestimates the duplication rate for small p < 0.1 strongly.

On the record "hard" (Figure 2.6) (b)), preseq and recon improve their
results: Preseq solves most but not all of them and both competitors have
very small estimation errors. The confidence intervals of preseq are some-
what too narrow (95% is not reached). The estimation errors of dupre show
alarger deviation around zero, especially with low p, where also confidence
intervals are a bit too wide.
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FIGURE 2.6: Results for scenario (a) easy, (b) hard and (c) monotone; cf. Figure 2.5.
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Figure 2.5.
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For the record "Monoton" (Figure 2.6) (c)) we get a similar picture for dupre
and preseq. Dupre solves all instances, gives good (slightly too wide)
confidence intervals and shows a larger variation of errors, while preseq
does not solve most instances and gives narrow confidence intervals, but
achieves excellent point estimates. Recon overestimates again for small
p <0.1.

The results are also reflected in the first real exome dataset. Again, preseq
only solves a few problems for small p and gives too small confidence
bounds. Both preseq and dupre can estimate the duplicate rate very ac-
curately. The middle and lower and upper quartiles of the error are very
close to zero, but we find that both tools produce multiple outliers, even for
large p.

In the RNA Seq record (rna), preseq solves almost all problems, but still
doesn’t give exact confidence intervals for small p. The estimates of dupre
have a small distortion (medians are on the zero line), but a large variation
for p < 0.05, while the estimates of preseq are too high with a smaller
variation. recon overestimates again for small rho. However, for p > 0.1
all three tools perform well.

The evaluation on the WGBS dataset shows similar results as in the case
of the RNA-Seq dataset. However, dupre does not give sufficiently large
confidence intervals for p = 0.2. This is the only case where dupre under-
estimates the interval accuracy. Interestingly, recon shows almost exactly
the same differences as before for rna and exome of about +0.4 for a rate of
0.01, about +0.25 for a rate of 0.02, +0.1 for a rate of 0.05 and +0.05 for a rate
of 0.1. This is probably caused by similar distribution forms in all three sets
of real data and may allow the application of a correction factor depending
on the downsampling rate rho.

2.7 Summary

In this chapter, we present an optimization approach to estimate the du-
plicate rate in a large sequencing library from a small subsample. Our ap-
proach uses a linear program based on hypergeometric probabilities that
capture the subsampling dynamics to estimate the occupancy vector of the
full sample from that of the subsample. Our method is useful in a variety
of situations: it provides reliable estimates and confidence intervals, while
the existing presseq method does not solve multiple cases and often gen-
erates too narrow confidence intervals. The second method of recon, de-
veloped initially to estimate cell repertoires, overestimates the duplication
rate for small subsampling rates in the vast majority of cases. However, we
found that the error is very constant depending on the rate for real read
data. Correcting this error with an appropriate function is possible.

While our primary motivation for developing this approach was to explore
the benefits of increasing sequencing depth for a particular library, it solves
a general problem with biodiversity applications, as evidenced by the tra-
ditional statistical research on this problem (Good and Toulmin, )-
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Methylome Processing

Adaptations to existing NGS methods allow the sequencing of different
parts or properties of the genetic material (see Section 1.3), e.g., methyla-
tion. The current state of the art for determining DNA methylation levels
at the whole genome level is whole genome bisulfite sequencing (WGBS).
Treatment of DNA with sodium bisulfite (HSO3) converts unmethylated
cytosine into uracil, which is recognized and output as thymine by the se-
quencer. As a result, bisulfite sequencing and its subsequent in silico steps
produce aligned paired reads, most unmethylated cytosines being substi-
tuted by thymine - a so-called methylome. The mean degree of methylation
for each CpG can then be calculated from the number of thymines and cy-
tosines measured in the reads overlapping at this point. This leads to some
computational challenges.

Due to the substituted cytosines, the reads may show several mismatches
compared to a specific reference genome. The aligner used must be modi-
fied to handle such reads.

For methylomes, the information of interest is the ratio of methylated Cs
in the CpG context to its coverage, which is typically extracted from an
alignment by a methylation caller. The most popular caller Bis—-SNP (Liu
et al., ) uses a method to extract bisulfite substitutions from a list of
genetic variants generated by The Genome Analysis Toolkit (GATK,
McKenna et al., ). Allelic frequencies of the identified cytosines in the
CpG context then lead directly to their degree of methylation. However,
the whole genome variant calling on bisulfite reads with high coverage is
very computationally intensive. The data can contain several hundred bil-
lion bases, and since each position is covered, the program creates 3 billion
pileups in a first step. Also, the substitution of almost all cytosines present
in the genome led to a massive list of variants and probability calculations
for each of these variants. Even for a single data set and parallel execution,
the calculation can take days on suitable server hardware.

This chapter describes general concepts for the alignment of bisulfite-
modified reads and our newly developed tool Calling and Analysing
Methylation Levels. (camel). This tool reduces the time required to
determine the methylation level by creating an index in a previous step
and then considering only predefined positions for these values.
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FIGURE 3.1: The bisulfite sequencing process. (D A double-stranded DNA,
consisting of the Watson (W) and its reverse-complementary Crick (C) strand is
denaturated and treated with bisulfite. In this process, unmethylated cytosine
(with an attached white circle) is converted to uracil while methylated cytosine
(with an attached red circle) is unaffected. Because the sequencer does not
distinguish between uracil and thymine, it notes Uracil as T. The resulting strands
are named WB (Watson bisulfite treated) and CB (Crick bisulfite treated). @) The
3’ ends of WB and CB are extended by an adapter sequence (blue), which binds to
the flowcell. The 5" ends are extended by a second (free) adapter. 3) As described
in Section 1.3, the reverse complement is hybridized to WB and CB by
PCR-amplification, resulting in two fragments named WBR and CBR, which
binds to the second type of flowcell probes.

3.1 Bisulfite Read Mapping

The methylome sequencing process is similar to the unmodified DNA se-
quencing described in Section 1.3 except for an additional DNA bisulfite
treatment step. This leads to a DNA change, which leads to alignment prob-
lems. In the following, we describe these problems and their solution.

3.1.1 Bisulfite Treatment

DNA consists of two reverse complementary strands: the Watson (W)
and the Crick. (C) Strand, named after James Watson and Francis Crick,
two of the discoverers of DNA structure. A bisulfite treatment causes
non-methylated cytosines on both strands to transform independently into
uracil. Note that this eliminates the property of reverse complementarity.
Sequencing adapters are added to the transformed strands to form the
fragments, often referred to as WB and CB, which then bind to the flow
cell probes and are amplified by PCR amplification. The reverse comple-
mentary fragments that hybridize to WB and CB are called WBR and CB,
respectively. CBR. Now hybridization bases in WBR and CBR are adenine
instead of guanine at positions where unmethylated cytosine in WB and
CB has been substituted with thymine. After the last PCR cycle, WBR and
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CBR are washed away (identified by the respective adapters). Therefore,
the first reads of the pairs are sequenced by synthesis only on the WB and
CB fragments, the second reads on their reverse complements (WBR and
CBR). Figure 3.1 illustrates the process of bisulfite sequencing.

Bisulfite sequencing generates reads from four different sequences instead
of the two different strands common in traditional sequencing. Depend-
ing on the methylation state and strand, cytosine may be substituted by
thymine and guanine by adenine instead of the two different strands of
WGS. This leads to read aligning problems. SNPs, indels or sequencing
errors cause mismatches compared to the reference. The read mapper pun-
ishes these rare events in its internal alignment score. Compared to genetic
mismatches or mismatches caused by sequencing errors, cytosine/thymine
substitutions are quite common, and a single read usually contains several
such modifications, resulting in a high number of mismatches. In general,
fault-tolerant read mappers can handle multiple single-base substitutions,
but any deviation reduces the calculated mapping quality. This leads to dis-
tortions in the direction of those reads that contain methylated cytosines,
with the bases matching the reference after bisulfite treatment. Besides, the
alignment is discarded if the score falls below a certain threshold. This, in
turn, causes the mapper to generate lousy quality alignments or unmap-
pable reads. For unbiased alignments, an Aligner must correctly handle
methylation-induced C — T and G — A misalignments by ignoring them.

There are two ways not to count these substitutions as mismatch: wildcard
and three-letter alignments. We illustrate these two methods with an ex-
ample from Bock ( ). Figure 3.2 (above) shows the example setup with
eight reads generated by WBGS that were aligned by both methods. For
simplicity, the example deals with single-end forward reads only.

3.1.2 Wildcard Alignment

Unlike ordinary mappers, wildcard aligners can map both nucleotides — C
and T — directly to a specific reference base without affecting the mapping
score. They often support the complete [IUPAC code (see Section 1.2). In the
case of bisulfite mapping, the codes Y = {C, T} and R = {A, G} are important.
Before indexing, the specified reference sequence is changed by replacing
each C with Y, so that read accesses with converted and unconverted Cs
can be aligned at this position. Instead of the IUPAC code, a placeholder
alignment can also be realized by completely ignoring all Cs in the refer-
ence. This is implemented either by specially developed algorithms that
mask these bases during their reference indexing or mapping step or by
copying the reference and replacing C with N. Figure 3.2 (mid) shows the
wildcard alignment approach for the example presented. Here, the wild-
card approach multiple recognizes optimal mapping positions for one of
our eight example reads, resulting in distorted methylation values. Pop-
ular wildcard aligners for bisulfite treated DNA are, for example, BSMAP.
(Xi and Li, ), RMAPBS (Smith et al., ), GSNAP (Wu and Nacu, )
or RRRBSMAP. (Xi et al., ).
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FIGURE 3.2: Example comparison of wildcard and three-letter alignment. Top:
Reference sequence and eight reads consisting of four bases generated by WGBS
and assumed (real) methylation levels. C — T substitutions are applied on
unmethylated cytosines. Center: Wildcard alignment of the example reads. All Cs
of the references sequence are replaced by Y, allowing the wildcard aligner to map
reads with C or T at these specific positions. Each four-base snippet represents
one read alignment. One read maps to multiple positions (ambiguous) and is
therefore ignored from methylation level estimation. Additional estimations
based on mapped reads of methylation levels are shown. Bottom: Three-letter
Alignment: All Cs of the references and read sequences are replaced by T. Four
reads map to multiple positions (ambiguous) and are ignored.
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3.1.3 Three-letter alignment

A second approach uses two artificial references. The first reference Ry is
obtained by C — T substitutions representing WB string sequences, and the
second reference R, by G — A substitutions corresponding to CBR. Since
the alphabet in principle reduced from four to three letters per string, this
approach is called three-letter mapping. R¢ and R, can then be used with a
general read mapper.

As the name implies, the paired-end sequencing creates pairs of reads for
each fragment. The wash step before the first sequencing process ensures
that the origin of the first read p; of each pair is P = (p1, p2) either WB or
CB. In both cases, only C-T substitution may have occurred. Due to con-
volution, amplification (by backward complementation) and the additional
washing step, the origin of every second p; read is either WBR or CBR, with
possible G to A substitutions.

The general approach is to replace each C by T in p; and each G by A in
p2 to obtain two new sequences p} and ph. P’ = (p,ph) is then aligned by
a regular read aligner to the artificial references R and R;. There are two
ways for the mapper to align the read results:

1. p) maps directly to R and the reverse complement of pj, to Ry

2. the reverse complement of pj maps to R, and p/, directly to R,

The final output is the combination of (original) sequences of P and the
alignment information of P’.

Depending on the maximum reference size of the mapper, concatenating
R¢ and R; to a unified reference R, of about 6 billion in length can allow
alignment to both references in a single step. An aligner index is typi-
cally able to address 232 ~ 4.3 billion positions, more than the 3 billion
base pairs of the human genome, but not enough for a unified reference. If
the mapper supports 64-bit indexing, R, can be indexed directly and used
as a single combined reference. If only 32-bit indexing is supported, the
mapping for R and R, must be performed independently of each other by
two processes, each receiving a copy of the transformed reads. Both assign
Phred-scaled quality values to their alignment of the same reads pair, rep-
resenting the probability that the read operation was mapped at the wrong
position. Note that mappers are often able to generate alignments (of low
quality and complex sequence editing operations) even with an unsuitable
reference. The final alignment is calculated by comparing the results of
both independent mapping processes. For each read pair, the quality val-
ues are calculated, and the alignment with the higher value is taken as the
final result. Figure 3.3 illustrates the workflow for mappers with and with-
out 64-bit support. Popular tools of this category are BS Seeker (Chen et
al., ), Bismark (Krueger and Andrews, ), MethylCoder (Pedersen
et al., ), BatMeth (Lim et al., ), BRAT-BW (Harris et al., ) or
BWA-Meth (Pedersen et al., )-
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R1.fastq 64bit reference R2.fastq R1.fastq 32bit reference (c->t) 32bit reference (g->a) R2.fastq

R [0 B R OO OO B

reads reads reads reads
o>t g->a >t g->a

convert convert convert convert

original original original mapped mapped original
sequence reads
a mapped ~ seduence sequence reads sequence

reads

replace replace replace

mapped
correct sequence
reads

mapped L / mapped
correct sequence 'y ¥ correct sequence
reads reads

compare

best position reads

]

mapped.sam mapped.sam

FIGURE 3.3: The basic structure of a three-letter alignment. Left: the input is a
64-bit reference. The fastq files get transformed by aCto T,and a G to A
transformation, mapped by the mapper and the sequences are reconverted to its
originals. Right: the input are two 32 bit references. Two independent mapping
processes map the duplicated transformed reads to each of the references. The
processed re-transformed reads are pairwise compared and chosen by the highest
quality.

The error rates in our example for both approaches (wildcard and three-
letter approach) are quite high, with 50% false methylation values for the
wildcard and 50% of reads lost in the three-letter alignment. In real data,
the effect of ambiguous alignments is much smaller than in this example.
The more extended sequences and link information usually lead to unam-
biguous mapping positions, even with three-letter alignments. Even if a
small bias is present, small distortions of the methylation values for certain
CpGs usually do not influence the results in the downstream analysis if the
degree of methylation of all samples is estimated equally.

Three letter alignment is a general principle and can be used in conjunction
with almost any read mapper. This makes it possible to build a univer-
sal methylation wrapper that does not rely on a single specific aligner. We
have started to develop such a tool, but it shows that existing implemen-
tations of three-letter aligners often use the specific functions of the aligner
to improve system performance. This would be, for example, storing the
original sequence recovery information as a suffix of the read name or us-
ing interleaved paired-end reads. Since mapping speed is one of the most
important metrics, a universal wrapper cannot compete with other tools,
and we rejected this idea. We recommend the use of one of the existing and
published solutions based on established standard mappers. However, the
described principle can serve as a blueprint to create wrappers for each se-
lected mapper.
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3.2 Calling methylation values

Methylome sequencing is used to determine the binary information on the
methylation state of each methylated or unmethylated CpG. Today’s se-
quencing is typically based on millions of cells, each with its unique methy-
lation pattern. Due to shotgun sequencing and the overlapping of Reads n.,
binary methylation states are measured for each CpG c with coverage n..
The degree of methylation for ¢ is an average measurement of the total bi-
nary states and can be expressed in various ways.

Let m. be the count of methylated and u. the count of unmethylated states
at CpG ¢, with m. + u. = n.. So called beta values (3-values)

me me

fo= —e— =

Me + Ue e

describe the ratio of methylated reads compared to the coverage of a CpG.
A second option, often used for methylation arrays, are M-values

Me + &
MCZIOgQ(uC—i—a)
C

with additional pseudo count « to prevent drastic changes for small mea-
surements. While -values allow for an intuitive interpretation of methyla-
tion (% methylation for a given site), the M-value may provide some insight
into the distribution of methylation across the genome that is difficult to
visualize with the g-value (Du et al., ). Both values can be transformed
into one another (assuming a = 0) by

2Me

Be
= LM, =1
Pe= g yqs Me=loe <1—/3€

AtAt this point, we mention M-values only for the sake of completeness.
It is common to base the sequencing of whole genome bisulfite data on 3
values. Also in this thesis, the term methylation refers to 3 values, unless
otherwise stated. Regardless of whether the values are § or M, the counts
m. and u, for ¢ € C must be measured using a given read orientation. A
so-called methylation caller performs this task.

WGBS generates an enormous amount of information consisting of more
than a billion mapped reads and a hundred billion bases covering most ge-
nomic positions. One method to estimate these counts is to use a variant
caller that recognizes genetic variants based on the reads provided and the
reference genome. Since unmethylated cytosine has been converted into
thymine, such position is recognized by such a program as SNP. A second
step then identifies Cs in a CpG context based on the reference and SNP
lists and uses the SNP information to estimate m. and u.. For example, this
approach is applied by Bis-Snp (Liu et al,, ). The main disadvantage
of this method is the costly necessary step to create a pileup for each ge-
nomic position. These form the basis of SNP detection. The identification
of genetic variants on the whole genome as pre-processing is computation-
ally intensive and can take several days depending on available resources



42 Chapter 3. Methylome Processing

hg38.ref.fasta

4 A

camel call

hg38.ref.h5
(Camel-index-file)

camel index

samplel1.h5
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FIGURE 3.4: Basic concept of camel analysis. Camel stores all required data in a
static index-file and dynamic data-file for each sample. Most of the provided
downstream analysis required these files. In this example camel index uses the
reference (hg38.ref.fasta) ro create the camel-index-file (hg38.ref.h5), which contains
positions for potential methylation. The index is then used by camel call in
combination with two alignments (samplel.bam and sample2.bam) to create two
camel-data-files (samplel.h5 and sample2.h5). These files then contain the
methylation values associated with the given positions. See Figure 3.5 for details
about the camel-data- and Camel-index-files.

Camel view Camel dmr Camel cluster

and sample coverage.

We present camel based on fixed CpG positions instead of calling individ-
ual CpGs in each sample as executed by bis-Snp and other tools. This
approach drastically shortens the runtime compared to the above method
and has some additional computational advantages. Camel can handle not
only WGBS but also NOMe-seq data where the degree of methylation of
cytosine is measured in a GpC context (see Chapter 1.3 for details). Its gen-
eral concept relies on two separate files: an index file — the camel-index —
with all CpGs and GpC positions and a file with the data for each sample —
the camel-data-file. In the following we describe details of this structure, the
camel call process, additional features and their advantages.

3.2.1 The Camel Index

Once calculated from the Fasta reference, the camel index holds all cytosine
positions with CpG context C}, and GpC context G}, for the chromosome
h. The analysis of NOMe-seq methylomes requires such GpC positions.
Camel supports two different modes: a normal mode, in which counts are
processed in the CpG context, and a NOMe mode, in which the methylation
of cytosine is simultaneously handled in the CpG and GpC context. In the
following, we describe camel in NOMe mode, unless otherwise stated.

For both the index and the following measurements, hierarchically struc-
tured hdf5 files (see Section 1.7) are used. The positions in the index are
stored as a group for each h chromosome. Each group contains a |C}|
dataset with the CpG positions of the reference and a |G| dataset for GpC
positions.
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FIGURE 3.5: HAf5 structure of the camel index (left) and the camel data file
(right).For each chromosome, the index is divided into groups containing the
CpG and GpC positions (for NOMe-seq) of the reference genome.There are two
additional arrays with information about overlaps between GpC and CpGs
(cpg_valid and gpc_valid). The origin of the methylation information in such an
ambiguous context (see also Figure 3.6) cannot be determined and must,
therefore, be ignored in most downstream analyses. Position corresponding CpG
and GpC methylation values are stored as four-tuples (methylated and
unmethylated values on forward and backward strands) in the camel data file
under methylation and nome.

In the case of NOMe-seq, methylation of cytosine in the context of GpCpGs
is caused by either natural CpG methyltransferase or artificial GpC methyl-
transferase. Figure 3.6 shows an example sequence where this problem oc-
curs. To exclude such an ambiguous cytosine from downstream analyses,
we have added two additional Boolean datasets of |C}| x 2 and |G},| % 2,
which store whether a corresponding cytosine position on the forward or
backward (or both) position is ambiguous. These matrices are used in
downstream analyses to mask and ignore such positions. The left side of
Figure 3.4 shows the index hdf5 structure.

ambiguous context

~ N ~

~~-ambiguous context”

FIGURE 3.6: Example for ambiguous contexts of cytosines with CpG context
(yellow) and GpC context (green). Some bases (dual color: yellow and green)
belong to both contexts. Cytosines in both contexts are called ambiguous. Their
methylation origin is indistinguishable when NOMe is applied.
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3.2.2 The Camel-data-file

While the index holds all CpG positions, a corresponding camel-data-file
contains counts mj, and uy, for one specific sample. Similar to the index
structure, each chromosome h gets its own group, containing a matrix |Cj, | x
4 holding the counts of ...

... methylated C on the forward strand (m{i)

¢ ... unmethylated C on the forward strand (u{i)

... methylated C on the reverse strand (m},)
... unmethylated C on the reverse strand (u},)

Row ¢, with 0 < i < |C},|, addresses the counts for the i-th CpG on chromo-
some h. The required values to calculate the methylation level are given by
mp, = mi +mj) and up, = ui + u}. When created in NOMe mode it contains
a second matrix of the same structure and counts for methylation in GpC
context. Figure 3.5 shows the hdf5 structure of a camel-data-file. The sim-
ilar structure of index and data-file allows unifying both into a single file

storing data and index information and still keeping a simple structure.

3.2.3 The Calling Process

Camel’s calling function is responsible for generating a camel-data-file
from a given methylation alignment and the previously calculated camel-
index. Instead of building the pileup of covering bases for each of the 3
million base pairs, camel determines the necessary counts read-wise. Two
read properties are of importance. For a read r, let

First(r) = 1, ifread i's the first sequenced read in a pair. 3.1)
0, otherwise.
and
rev(r) = 1, if the re'ad is reverse complementary mapped. (3.2)
0, otherwise.

Both information can be seen from the alignment. The first step of the algo-
rithm identifies the strand origin and which nucleotide was substituted by
which. Four different combinations are possible.

‘ first —first
rev |G—oA/R C—T/R;
-rev | C=T/R G—=A/R;

e first(r) A—rev(r). The first read always substitutes C by T, and there-
fore a non-reverse complementary alignment of the first read always
refers to Ry as a reference with a C to T substitution.
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o first(r) A rev(r). If the first read maps reverse alignment the used
reference is R, and due to the reverse complemented sequence, the
substitution is G to A.

o —first(r)A—rev(r). Anon-reverse mapping of a second read aligns to
R;, due to the additional folding step before sequencing and therefore
a G to A substitution happened.

e —first(r) Arev(r). The reverse mapping of a second read aligns to R
with a C to T substitution.

Algorithm 1 shows a simple function to identify substitution bases and
mapped strand.

Data: a read
Result: origin base, substitution base, mapped strand (0 for r, 1 for f)
Function orientation(Read r)
if first(r) == rev(r) then
| returnG, A, 1

else
| returnC, T, 0

ALGORITHM 1: Determine the subtitution bases and the mapped strand

Data: a read, a position

Result: a sequence position relative to the read start with respect to its
edit operations, given an absolute position or -1 if the position
is inside a deletion or -2 if the position is outside the sequence
boundaries

Function relative_position(Read r, Integer position)

relative_pos = position - read.position

curr_pos = 0

foreach type, n in cigar do

if curr_pos + n < relative_pos then

if type == "deletion” or type == "soft-clipping” then

L relative_pos-=n // deleted bases

else if type == "insertion” then
‘ relative_pos +=n // inserted bases
else

L curr_pos+=n// matching bases

else
if type == "deletion” then
‘ return Null // cpg inside deletion

else
L return

| relative_pos

L return -2

ALGORITHM 2: Determine the subtitution bases and the mapped strand
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The procedure itself searches for read overlapping CpGs using the indices
and position as well as edit operations of the read. Insertions, deletions
and splitting of the read must be taken into account, since CpGs that are
actually covered could possibly be omitted. The code in algorithm 2 returns
the relative position of the read sequence base at an absolute position.

The functions of algorithm 1 and 2 extract the bases covered by CpGs and
compare them with the expected base (C/T or G/A) to identify the binary
methylation state of each read sequence at that position.

Starting with a binary search, the main loop of the algorithm 3 increases
the CpG positions and searches for bases that overlap the respective CpG.
Strand-specific methylation counts for the given position are then incre-
mented based on the observed bases. The first four columns of the re-
sulting C}, x 6 matrix for each h chromosome form the camel-data-file as
described in Section 3.2.2. The last two additional columns 5}; and sj, rep-
resent non-methylation related base observations. Positions with high per-
centages (default > 0.2 in one of the strands) are likely to be affected by
SNPs and removed by zeroing the respective counts.

Function Main(Reads reads, Camellndex index)

foreach r € reads do
ref, alt, strand = orientation(r)

// note: strand € {0,1}
indices = index.cpg_positions[r.chromosome]
p = binary_search_index(r.position, indices)

while rel_pos = relative_position(indices[p] + strand) > -2 do
p++

if rel_pos == -1 then
// inside deletion, ignore CpG
L continue
f r.sequence[rel_pos] == ref then
// strand specific methylated CpG

o

// index depending on strand € {0,2}
| count[r.chrom][0 + strand - 2] +=1

[¢)

Ise if r.sequence[rel_pos] == alt then
// strand specific unmethylated CpG
// index depending on strand € {1,3}
count[r.chrom][1 + strand - 2] +=1
else
// strand specific other base (SNP)
// index depending on strand € {4,5}
| count[r.chrom][4 + strand] +=1

ALGORITHM 3: Main loop of the algorithm, iterating over all (unsorted) reads
and comparing observed to expected bases to store methylation counts and
SNP counts.

Fixed CpG-positions also allow extracting methylation levels of unsorted
and unindexed alignments, as illustrated in Figure 3.7. Due to otherwise
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FIGURE 3.7: The call process of Camel (right) compared to a call process with a
conventional tool (left). The ability to use unsorted reads and duplicate detection
allows direct extraction of methylation levels from a streamed alignment.

missing PCR-duplication information, we added a preprocessing step that
mark duplicates by samblaster (Faust and Hall, ), which can mark
them without the requirement of position sorted reads.

3.3 DMR calling

Scientific research usually focuses on differently methylated regions
(DMRs) identified by comparing methylation profiles of several samples
divided into two different groups. An example would be the comparison
of tumor samples with blood samples. There are different approaches and
tools to detect DMRs, e.g. bsmooth (Hansen et al.,, ) — one of the most
popular DMR callers. It identifies differentially methylated CpGs (DMCs)
by t-test statistics and connects adjacent DMCs to larger regions (DMRs).
Camel includes an implementation of this algorithm:

Let S be a set of samples, X, € {0,1} the class of sample s € S, S; = {s €
S : X = i} the set of class i specific samples, n; = |.S;| the number of class
i specific samples and fs(c) € [0, 1] the S-values of CpG c in sample s. We
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FIGURE 3.8: Two DMRs over two classes, each with two samples and different
annotated properties. Boxes represent CpG with background methylation (green),
high methylation (red) and low methylation (blue) in relation to mean
methylation. We call the left boundary of the left DMR sharp because the
methylation of the first DMC encountered is already on the DMR mean level. On
the right side of the same DMR, we illustrate a smooth boundary at which the
degree of methylation gently decreases until it reaches the background level. We
call a CpG within a DMR static if there is no methylation difference between the
sample classes. So this CpG is not a DMC. In some cases, a second, slightly
smaller DMR can be observed, whose appearance is bound to the first.

build a t-test statistic

o) = LU0 ypere (o) = = 37 Ae)

o)/ + & ni o5

with average group methylation difference y1(c) — po(c) and standard de-
viation for the methylation values

o) = [ S (Bl — @)+ o 3 (Bule) - ()

s€Sp seS

of all samples at a given c. Neighboured CpGs with t(c) > 0 > g7, are
then merged to hypermethylated and ¢(c) < 0 < g, o5 to hypomethylated
DMRs, where ¢ o is the (adjustable) 95% quantile of all positive ¢ and ¢ s
the (adjustable) 5% quantile of all negative ¢.

Finally, the method filters previously identified regions according to a min-
imum number of CpGs and the mean DMR group methylation difference
A. Through several experiments (see Chapter 7) we were able to observe
variable properties of DMRs, especially at their borders. This is visualized
in Figure 3.8.

* Some DMRs have sharp boundaries, where the methylation value
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changes rapidly on the first CpG encountered. Others increase or de-
crease smoothly over several CpGs up to their final level. Bsmooth’s
parameters, such as the quantile threshold and smoothing parame-
ters (see below), have a massive impact on which CpG become part
of the DMR and which CpG is selected as background methylation.

* Some DMRs overspan CpGs with normal background methylation.
These could be considered as two distinct DMRs separated by non-
DMCs. Since they always appear in pairs, they are comparable to
haplotype SNPs. Depending on calling algorithm and parameters,
they are often called single big continuous DMRs rather than two sep-
arated.

¢ Some DMRs contain static CpGs, that have the same methylation level
in every sample. These CpGs could lower or raise the DMRs methy-
lation level significantly, especially if the DMR consists only of a few
CpGs.

Based on these observations, we have modified our implementation.

Bsmooth has initially been developed to handle data with low coverage.
For this reason, bsmooth applies sample-wise smoothing pre-processing
to the methylation profile to compensate for errors in the methylation mea-
surement due to too small coverage and thus increase the DMR detection
rate. In recent years, however, coverage of WGBS data has increased to
a point where smoothing can be considered unnecessary. This not only
makes smoothing superfluous but also detrimental, as it leads to blurred
boundaries. This makes accurate boundary prediction difficult, even if it
is clearly defined. Although disabled by default, the DMR call algorithm
of camel still offers the possibility to smooth the input with a Savitzky-
Golay filter (Savitzky and Golay, ), which itself performs a polynomial
regression (window size = 10 CpGs, polynomial degree = 3).

We have addressed the problems mentioned above of the different DMR
peculiarities found in the following way. After merging adjacent DMCs to
build DMRs, our algorithm once again merges nearby DMRs separated at
most by £ non-DMCs (default £ = 3). This preserves sharp boundaries,
yet allows static CpGs in each DMR, and provides a way to configure DMR
separation/unification. However, this can cause multiple non-DMCs in a
DMR to distort the mean methylation group difference. This, in turn, be-
comes problematic for the final step, removing DMRs with low mean dif-
ferences.

Unlike bsmooth, which uses the simple average, we build a weighted av-
erage methylation. p}(d) = m > cec(a) o(c) - Bs(c) for each DMR d, its
set of CpGs C(d) and sample s. We call y}(d) the core methylation of DMR
d for the sample s. It improves the accuracy of the group methylation by
weighting the influence of a CpG on the mean methylation with its stan-
dard deviation. CpGs with static or background methylation values that
do not differ between samples at all are ignored and split DMRs become
less problematic. This allows our algorithm, represented in Algorithm 4, to
address these difficulties without the drawbacks a smoothing process.
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Data: case samples, control samples, a list of chromosomes
Result: Differentially methylated regions
Function CallDMRs(List<Samples> case, List<Samples> control, List<Int>
chromosomes)
// Create a dictionary for the t-stats
t = dictionary
foreach chrom in chromosome do

// optional smoothing

CpGc = smooth_values(chrom)

foreach c in CpGe do

L // calculate t-stat for each CpG
t[c] = calculate_t_stat(c, case, control)

// get all positive t-stat values

t_pos=allt>0

// get the 95% quantile for the positive t
threshold_pos = quantile(t_pos, 0.95)

// get CpGs with high positive t-stat > threshold
c_selected_pos = all ¢ with t[c] > threshold_pos

// merge close CpGs to DMRs

dmrs_pos = merge(c_selected_pos, maxdist = 3)

// repeat for low negative t-stats
t_neg=allt<0

threshold_neg = quantile(t_neg, 0.05)
c_selected_neg = all ¢ with t[c] < threshold_neg
dmrs_neg = merge(c_selected_neg, maxdist = 3)

// unify DMRs

dmrs = dmrs_pos + dmrs_neg

// filter DMRs

dmrs = filter(dmrs, delta = 0.3, min_cpg_count = 4)
return dmrs

ALGORITHM 4: Algoritm for calling DMRs.

3.4 Downstream Analysis

Storing index-file and camel-data-file in hdf5 has advantages. Thanks to the
hierarchical structure, data can also be efficiently retrieved, modified and
processed using tools or scripts written in other languages due to the vari-
ous hdf5 parsing libraries available (see Section 1.7).

In addition to its core functions - calling the CpG methylation level and
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FIGURE 3.9: Example PCA of eight samples of monocytes and macrophages
(three different conditions) from two different donors. As expected, PCA shows a
clear separation between donors and cell types.

identifying differentiated regions - camel itself provides several down-
stream functions to analyze or visualize the previously determined methy-
lation levels. All of them are based on the camel-index and the correspond-
ing camel-data-files. The simplest way to display the data is in the form
of text. Other tools have already established different text formats for in-
put and output. For compatibility reasons, camel can output its data in
the most common formats, e.g., the coverage output format of Bismark,
the output format generated by Bis-SNP or a native simplified bed format.
This variety of formats allows the data to be visualized with the Integrative
Genomics Viewer (IGV) (Thorvaldsdoéttir et al., ) or processed with ex-
ternal tools that support one of the standard formats, e.g., the widely used
RnBeads (Assenov et al., )-

In addition to the text, camel offers functions for graphical output. It
can perform a principal component analysis (PCA), t-distributed stochastic
neighborhood embedding (t-SNE) (Maaten and Hinton, ) and cluster-
ing of the 1000 most variant CpGs to visualize the general similarity be-
tween the samples. Figure 3.9 shows an example of a PCA from Chapter 7
(Figure 7.1) of four samples of four different diseases from two donors. De-
tails on this figure can be found in the Chapter 7.

We have also implemented a nucleosome protection plot for NOMe-seq,
which can be seen in Figure 3.10. In this diagram type, NOMe-seq-induced
GpC methylation is calculated as a function of distance to a transcription
start point. A typical wave pattern is shown which can react to different
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FIGURE 3.10: Example of a nucleosome protection plot. The mean GpC
methylation within the CpG islands relative to all transcription start sites (-1000
bp to 1000 bp) shows the typical wave pattern. Different cell conditions and
diseases can alter this pattern and indicate transcription problems that are the
subject of current research. Biological interpretations of each partial wave go
beyond the scope of this work.

cell conditions with changes.

Furthermore Camel provides some useful helper functions. Be S a set of
camel-data-files, I the corresponding index and D a set of regions, for ex-
ample DMRs. It can generate synthetic average, maximum and minimum
samples of S and calculate the core methylation for each sample in S for
each region in D. The provision of I also makes it possible to simulate re-
gions similar in size to the given regions in D, with a minimum number
in CpG. We used all these functions for example in the study described in
Chapter 7.

3.5 Software

Camel has been implemented in Python 3, while all computationally ex-
pensive parts are realized using numpy and scipy functions. Camel is open
source (MIT license) and may be obtained from its BitBucket code reposi-
tory'. We recommend to follow the README instructions at the repository
for easy installation and the user-manual at gitbook”. No commercial or
proprietary optimization libraries are required.

1
2


https://bitbucket.org/christopherschroeder/camel
https://www.gitbook.com/book/christopherschroeder/camel-documentation
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3.6 Evaluation

For newly developed methods, a geFor newly developed methods, a gen-
eral evaluation strategy is to apply this either to simulated data or to real
data with the known result. The calculated result is then compared with
the ground truth to calculate the true and false positive and negative rates.
Different parameter settings result in different precision and recall values,
which are then summarized in a ROC curve (Hajian-Tilaki, ). In the
case of DMR detection, this requires WBGS methylomes of several bio-
logical replicates of at least two different groups with known differential
methylation. However, in contrast to genetic variations in diploid organ-
isms, where the differences are usually found in 50% (heterozygous variant)
or 100% (homozygous variant) of the data, methylation differences between
samples can be very small, and the biological variance between samples in
a group causes additional noise. Many biological replicates with high cov-
erage are required to distinguish even small differences from noise Besides,
all samples must be sequenced by the same institute and sequencing pro-
tocols to avoid bias (see Chapter 7). For improved evaluation, several sam-
ples from several different groups should be compared, as different tissue
comparisons may lead to DMRs of different size and shape. Due to high
sequencing costs, such data are not available, and there is not enough infor-
mation about biological differences and character traits of DMRs to model
a suitable simulator, even if this would be interesting and useful.

Instead, it is common to evaluate the newly developed method by compar-
ing its DMRs with existing approaches. For this purpose, we use data from
DEEP?, the German epigenome program focusing on the production and
interpretation of 80 reference genomes of selected human cells and tissues.
The data consist of monocytes and macrophages from two donors. Since
our method is a modification of bsmooth, we compare our tool with the
original approach. Chapter 7 also deals with these monocytes to perform
an interindividual methylation analysis of several independent samples.

We configured camel to call DMRs with realistic parameters of a minimum
DMR methylation difference A = 0.4 and a minimum size of n = 4 CpGs
and a maximum number of undifferentiated CpGs of 3, as used for real
data. These DMRs are then used for pairwise comparison with DMRs cal-
culated by bsmooth and met ilene under different settings.

The smoothing step of bsmooth usually reduces the methylation differ-
ence. We have therefore decided to reduce the difference from camel to
A = 0.3. A close examination of the resulting regions with these parameters
reveals inaccurate boundaries and thus an incorrect number of CpGs and a
lower methylation difference for most DMRs. This leads to low detection
rates and is caused by smoothing parameters optimized for low coverage.
To improve the fairness of the rating, we have reduced the calculation with
the smoothing of the genomic window size w from 1000 bp (default) to 500
bp, and the minimum amount of windowed CpGs h from 70 (default) to 35.

3
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FIGURE 3.11: Comparison of DMRs called by Camel against bsmooth with
different parameters. Camel is set to a minimum DMR size of n = 4 CPGs and
difference A = 0.4. The parameters of bsmooth are specified in each subfigure.

This adjustment reduces the total number of CpGs considered for smooth-
ing and, as expected, results in a larger number of precise DMRs. We call a
DMR exclusive if there is no overlap with a DMR called the other tool. Fig-
ure 3.11 (a to d) shows four Venn diagrams of DMRs called by camel and
bsmooth for different parameter configurations. We examined the exclu-
sive DMRs of camel. To investigate only highly secure camel-exclusive
DMRs, we further lowered A for bsmooth to 0.2 to exclude DMRs that
were not even recognized by unrealistically sensitive parameters, as shown
in Figure 3.11 (c). We then manually examined randomly selected ranges
of 635 came 1-exclusive DMRs. All regions are optically convincing, even if
there are only small differences.

On the other hand, we also examined randomly selected DMRs of the 43
bsmooth-exclusive regions shown in Figure 3.11. (b and d). In all DMRs ex-
amined, we could either see no difference or, if so, only a weak one in three
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CpGs or less. These small areas are not displayed (correctly) by camel, be-
cause they fall below the selected minimum size of four CpGs. We assume
that the smoothing step is responsible for this behavior and conclude that
our modifications have a real (positive) influence on the detection rate and
the false positive rate.

3.7 Summary

In this chapter, we present the two approaches to aligning bisulfite con-
verted reads to a standard reference genome: Wildcard Alignment and
Three-Letter Alignment. We also show how three-letter alignment differs
between 32-bit and 64-bit references and how this basic concept allows any
generic read mapper to align WGBS data. Besides, we have developed
camel, a caller for methylation levels for bisulfite converted reads that,
unlike others, only recognizes and stores the degree of methylation at spe-
cific reference positions. This not only allows you to ignore most data (only
1% of base pairs in the human genome are CpGs) but also simplifies the
downstream analysis, since each sample contains an equal number of reads
at corresponding positions. Among other useful functions, such as PCA
or the calculation of an average sample, Camel also includes a DMR call-
ing algorithm. Our implementation and changes to the algorithm of the
widely used bsmooth based on the discovered DMR properties also lead
to improved DMR detection.






57

Chapter 4

Beta Distribution Fitting

When working with methylation, it is sometimes useful to consider the dis-
tribution of several measured methylation levels, which can be described
by a beta mixture model. An example is given in Section 7.3, where we deal
with differentially methylated regions between individuals and use such
distributions among other things to identify DMR related SNPs.

The beta distribution is a continuous probability distribution that assumes
values in the unit interval [0, 1]. In addition to the degree of DNA methy-
lation of CpG dinucleotides or average methylation of larger genomic re-
gions, it has been used in various bioinformatics applications to model data
that naturally assume values between 0andl, such as relative frequencies,
probabilities, or absolute correlation coefficients. One of the best-known ap-
plications is the estimation of false discovery rates (FDRs) from p-value dis-
tributions after several tests by adaptation of a beta-uniform mixture (BUM,
Pounds and Morris, )- By linear scaling, beta-mixture distributions are
able to model any set whose values come from a finite interval [L, U] C R.

This leads to the problem of estimating these scaling parameters and the ac-
tual parameters for the individual beta distributions in the mixture model.
A popular and successful method for parameter optimization in mixtures
is the expectation maximization (EM) algorithm (Dempster et al., ),
which is based on Maximum Likelihood. (ML) Estimation (MLE). It itera-
tively solves an ML problem for each estimated component and then re-
estimates which data points belong to which component. However, as
shown in Section 4.2, MLE is not suitable for beta distributions. The main
problem is that the probability function may not be finite (for some param-
eter values) if some of the observed data points are 0 or 1, as often observed
in methylation levels. Since MLE is used for a single beta distribution is
problematic, the use of EM for beta mixtures is even more difficult - un-
less ad hoc corrections are made. In this chapter, we propose an algorithm
for parameter estimation in beta mixtures called iterated method of moments
published in (Schroder and Rahmann, ).
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FIGURE 4.1: Different shapes of beta distributions depending its shape
parameters « and §.

4.1 The Beta Distribution

The beta distribution with parameters & > 0 and 8 > 0 is a continuous
probability distribution on the unit interval [0, 1] whose density on [0, 1] is
given by

1
B(a, B)

and T refers to the gamma function I'(z) = [ 2! e *da with I'(n) =
(n — 1)! for positive integers n. It can be shown that fol bo p(z)dz = 1.

N ) _ T(@r(s)
22l (1 —2)%71,  where B(a,8) = Tatp)’

ba,8(x) =

The distribution can take a variety of shapes depending on whether
O<a<lora=lora>land0< B <1lorpB=1orpj > 1;seeFigure4.l.
Note that for @« = 8 = 1, we obtain the uniform distribution.

If X is a random variable with a beta distribution, then its expected value

and variance o2 are

(01

= Uz::Var[X]:u(l—u) p(l —p)

a+pB+1 14¢

pi=E[X] =

where ¢ = a + 3 is often called a precision parameter; large values indicate
that the distribution is concentrated.

Conversely, the parameters o and 3 may be directly expressed in terms of
uand o2. First, compute

o=t 1 then a=po, F=(-po. @D

o2
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While a single beta distribution can take a variety of shapes, mixtures of beta
distributions are even more flexible. Such a mixture has the general form

folz) =Y mj-ba, (), (4.2)
j=1

where c is the number of components, w; are mixture coefficients satisfying
>.; ™ = land 7; > 0, and oy, B; are called component parameters. In to-
tal, we refer to all of these as model parameters and abbreviate them as 6. The
number of components c is often assumed to be a given constant and not
part of the parameters to be estimated.

4.2 Maximum Likelihood Estimation for Beta Distri-
butions

Maximum likelihood (ML) estimation (MLE) is a frequently used paradigm
for estimating 6 from n observed usually independent samples (z1, ..., zy,)
such that the observations are well explained by the resulting distribution
(the parameter estimation problem). This can be expressed as an optimization
problem, as follows:

Given (x1,...,2,), maximize £(0) := H fo(x:),
i=1

or equivalently, L(0) := Z In fo(z;).
i=1

Since 6 represents the parameters and fy(x) is the probability density of a
single observation, the goal is to find parameters 0* that maximize L(6).

Because v(y) := InI'(y), the beta log-likelihood can be written as
L(a, 8) = n(y(a+8) —y(@) =v(8)) +(a=1)-Y_ Inai+(6-1)-Y In(l-z).

The optimum conditions dL/da = 0 and dL/dS = 0 are solved numeri-
cally and iteratively. While this is inconvenient (in comparison to a mixture
of Gaussians where analytical formulas exist for the ML estimators), the
main problem is a different one. The log-likelihood function is not well de-
fined for a # 1 or B # 1 if any of the observations z; are 0 or 1. Several
implementations of ML estimators for beta distributions (e.g. betareg, see
below) fail with error in these cases.

Note that there is no problem in theory, because x; € {0,1} is an event of
probability zero if the data are truly generated by a beta distribution. Real
data — such as observed methylation levels — may very well take these val-
ues. The primary motivation of this chapter is to work with beta mixtures
and observations of = 0 and z = 1 in a principled way.
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FIGURE 4.2: Estimated parameter values « (green) and § (blue) from a dataset
consisting of the ten observations 0.01, ..., 0.10 and ten observations of ¢ for
varying values of €. Estimation was done using MLE (dotted lines) as
implemented in the R package betareg and by our (moment-based) method
(solid lines).

A typical ad-hoc solution is to linearly rescale the unit interval [0, 1] to a
smaller sub-interval [e,1 — €| for some small ¢ > 0 or to simply replace
values < ¢ by € and values > 1 — € by 1 — ¢, such that, in both cases, the
resulting adjusted observations are in [, 1 — €.

A simple example shows that the resulting parameter estimates depend
strongly on the choice of ¢ in the ML paradigm. Consider 20 observa-
tions, half of them at x+ = 0, the other half at x = 0.01,...,0.10. For dif-
ferent values of 0 < ¢ < 0.01, replace the ten zeros by ¢ and compute
the ML estimates of o and 3. We used the R package betareg' (Griin
etal, ), which performs numerical ML estimation of logit(x) and In(¢),
where logit(y) = In(u/(1 — p)). We then used Equation 4.1 to compute ML
estimates of o and 3. We additionally used our new approach (Section 4.4)
with the same varying €. In contrast to traditional MLE, our approach also
works with € = 0. The resulting estimates for o and 3 are shown in Fig. 4.2:
Not only is our approach able to use ¢ = 0 directly; it is also insensitive to
the choice of € for small € > 0.

In summary, MLE is known to be statistically efficient for correct data, but
its results can be sensitive to data corruption. The problems of MLE are
particularly severe when modeling with beta distributions. The probability
function is not well defined for reasonable real data sets, and the solution
depends heavily on ad hoc parameters. Before we present our solution to
these problems, we first discuss parameter estimation in mixed models.

1


https://cran.r-project.org/web/packages/betareg/betareg.pdf
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4.3 The EM Algorithm for Beta Mixture Distributions

For parameters 0 of mixture models, including each component’s parame-
ters and mixture coefficients, the log-likelihood function

L(0) =) Infy(z;) with fy(z;) as in Eq. (4.2)
=1

often has many local maxima. Also a global optimal solution is difficult to
compute.

The EM algorithm (Dempster et al., ) is a general iterative method for
ML parameter estimation for incomplete data. In mixed models, the miss-
ing data is the information which data point belongs to which component.
However, this information can be estimated in the E-step (expectation step)
(for initial parameter estimates) and then used to derive better parameter
estimates of ML for each component separately in the M-step (maximiza-
tion step). In general, EM slowly converges to a local optimum of the log-
likelihood function (Redner and Walker, ).

E-Step To estimate the expected responsibility W; ; of each component j for
each data point z;, the component’s relative probability at that data point is
computed, such that > Wiy =1 for all <.

i baj p; (i
T basn0s @) g T ==3 Wi 4.3)

W, . =
" Zk Tk bay, By (i) i1

M-Step. By using the responsibility weights W; ;, the components are un-
mixed, and a separate (weighted) sample is obtained for each component
so that its parameters can be estimated independently of each other using
MLE. The ML estimates of the new mixing coefficients 7r;-r in equation 4.3
are the average values of the responsibility weights across all samples.

Initialization and termination. EM requires initial parameters before start-
ing an E-step. The resulting probable local optimum depends on these ini-
tial parameters. Therefore, it is common to either select the initial parame-
ters based on additional information (e.g., a component with small values,
a component with large values) or to restart EM with different random ini-
tializations. Convergence is detected by monitoring relative changes in log-
arithmic probability or parameters between iterations and stopping if these
changes are below a specified tolerance.

Properties and problems with beta mixtures. One of the main reasons why
the EM algorithm is mainly used in practice for mixture estimation is the
availability of an objective function (the log-likelihood). Due to Jensen’s
inequality, it increases with each EM iteration until it reaches a stationary
point (Redner and Walker, ). Someone can objectively compare so-
lutions obtained by two runs with different initializations, based on their
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log-likelihood values.

In beta mixtures, there are several problems with the use of the EM algo-
rithm. First, the responsibility weights W; ; for z; = 0 or z; = 1 are not well
defined because of the singularities in the likelihood function described in
Section 4.1. Second, the M step cannot be executed if the data contains
such a point for the same reason. Third, even if all z; €10, 1], the resulting
mixtures are sensitive to data corruption. Fourth, since each M-step already
contains a numerical iterative maximization, the arithmetic load over multi-
ple EM iterations is significant. In the following, we propose our algorithm
for parameter estimation in beta mixtures, which does not suffer from these
drawbacks.

4.4 The Iterated Method of Moments

With the necessary preliminaries in place, the basic idea of the algorithm
can be stated compactly.

From the initial parameters, proceed iteratively as in the EM frame and
alternate between an E-step, which is a small modification of the E-step
of EM, and a parameter estimation step, which is not based on the ML
paradigm, but Pearson’s moment method, until a stationary point is
reached.

To estimate () free parameters, the approach is to choose (Q moments of the
distribution, express them through the parameters, and equate them with
the corresponding (Q moment values. This is usually equivalent to solv-
ing a system of nonlinear () equations. The method of moments is applied
directly to the mixture distributions. For example, a mixture of two one-
dimensional Gaussian equations has five free parameters: two mean val-
ues /1, fl2, two variances o7, 03, and the weight 7 of the first component.
Thus one needs to choose five moments, say my, := E[X*] fork = 1,...,5
and solve the corresponding relations. The solution of these equations for
many components (or in high dimensions) seems frightening, even numer-
ical. Moreover, it is not clear whether there is always a unique solution.

However, for a single beta distribution, o and j are easily estimated from
the sample mean and variance by equation 4.1 using sample moments in-
stead of real values. To avoid the problems of MLE in beta distributions,
we replace the Likelihood Maximization Step (M-Step) in EM by a Method
of Moments Estimation Step (MM-Step) with expectation and variance.

We, therefore, combine the idea of using latent responsibility weights of EM
with the instantaneous estimation but avoid the problems of pure instanta-
neous estimation (large nonlinear systems of equations).
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Initialization

A reasonable general strategy for beta mixtures is to let each component
concentrate on a specific sub-interval of the unit interval. For c components,
we start with a component that is responsible for values around k/(c — 1)
foreach k =0, ...,c— 1. The expectation and variance of the near k/(c — 1)
component is initially first from the corresponding sampling moments of
all data points in the [(k — 1)/(c — 1), (k+ 1)/(c — 1)] N [0, 1] interval. (If an
interval contains no data, the component is removed from the model.) The
initial mixing coefficients are estimated in proportion to the number of data
points in that interval.

E-step

The E-step is essentially the same as for EM, except that we assign weights
explicitly to data points z; = 0 and x; = 1.

Let jo be the component index j with the smallest «;. If there is more than
one, choose the one with the largest 3;. The jo component takes full respon-
sibility for all ¢ with z; = 0, i.e, Wi j, = 1and W;; = 0 for j # jo. Similarly,
let j; be the component index j with the smallest 3; (among several ones,
the one with the largest o). For all i withz; = 1,set W; ;, =land W; ; =0

for j # ji1.

MM-step

The MM-step estimates mean and variance of each component j by the
responsibility-weighted sample moments,

YL Wy n-m;
2 i Wi - (@i = 1y)°
J n-mj ’

Then «; and j3; are computed according to Equation 4.1 and new mixture
coefficients according to Equation 4.3.

Termination

Let 0, be any real-valued parameter to be estimated and 7} a given thresh-
old for 6,. After each MM-step, we compare 6§, (old value) and 0; (up-
dated value) by the relative change r, := [0} — 0, / max (|07, |0,]). (If
0 = 0, = 0, we set ry := 0.) We say that 6, is stationary if x, < 7. The
algorithm terminates when all parameters are stationary.

Properties

The proposed method has no objective function that can be maximized.
Therefore we can neither make statements about the improvement of such
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a function nor directly compare two solutions from different initializations
by objective function values. It also makes no sense to talk about “local
optima”, but analogous to the EM algorithm there can be several stationary
points. We have not yet determined whether the method always converges.
On the other hand, we have the following desirable property. In each MM-
step, before updating the component weights, the expectation of the esti-
mated density equals the mean value of the sample. This is especially true
at a stationary point.

For a density f we write E[f] for its expectation [ z - f(z) dz. For the mix-
ture density Equation 4.2, we have by linearity of expectation that E[fy] =
> T Elba;5,] = >_; mjp;. Using Equation 4.4 for 4, this is equal to
%Zj > Wiz = 237, x;, because >.; Wi; = 1 for each j. Thus E[fy]
equals the sample mean. O

4.5 Evaluation

We evaluated our method from two points of view: the determined class al-
location against the true component origin of the data points and the num-
ber of estimated components against the actual number.

4.5.1 Simulation and Fitting for Class Assignment

We investigate the advantages of beta-mixture modeling by simulation. In
the following, let U be a uniform random number from ]0, 1[. We generate
two datasets, each consisting of 1000 three-component mixtures. The first
(second) dataset consists of 200 (1000) samples per mixture.

To generate a mixture model, we first pick mixture -coefficients
m = (m,m,m3) by drawing U;, Us,Us, computing s := Zj U; and
setting 7; := Uj/s. This does not generate a uniform element of the
probability simplex but induces a bias towards distributions where all
components have similar coefficients, which is reasonable for the intended
application.

The first component represents the unmethylated state; therefore we choose
ana < landa 8 > 1 by drawing Uy, Us and setting o := U; and 8 := 1/Us.
The third component represents the fully methylated state and is generated
symmetrically to the first one. The second component represents the semi-
methylated state (0.5) and should have large enough approximately equal
a and 5. We draw Uj,U; and define v := 5/ min{U;,Us}. We draw V
uniformly between 0.9 and 1.1 and set a := vV and § := «/V.

To draw a single random sample = from a mixture distribution, we first
draw component j according to 7 and then a value x from the beta distri-
bution with parameters a; and ;. After drawing n = 200 (dataset 1) or
n = 1000 (dataset 2) samples, we modify the result as follows. For each
mixture sample from dataset 1, we set the three smallest values to 0.0 and
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FIGURE 4.3: Examples of generated three-compoment beta mixtures(blue solid
lines), data samples (light green histograms) and fitted mixture models (black
solid lines). Dashed lines show estimated weighted component densities
(green: unmethylated; red: semi-methylated; magenta: fully methylated).

Left row: examples with n = 200 samples; right row: n = 1000.

the three largest values to 1.0. In dataset 2, we proceed similarly with the
ten smallest and largest values.

We use the algorithm described in Section 4.4 to fit a mixture model with a
slightly different initialization. The first component is estimated from the
samples in [0, 0.25], the second one from the samples in [0.25,0.75] and the
third one from the samples in [0.75, 1]. The first (last) component is enforced
to be falling (rising) by setting oy = 0.8 (83 = 0.8) if it is initially estimated
larger.

Figure 4.3 shows examples of generated mixture models, sampled data and
fitted models. The examples have been chosen to convey a representative
impression of the variety of generated models, from well-separated com-
ponents to close-to-uniform distributions in which the components are dif-
ficult to separate. Overall, fitting works well (better for n = 1000 than for
n = 200), but our formal evaluation concerns that we can infer the methy-
lation state.
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FIGURE 4.4: Performance of several classification rules. Fraction of called classes
N/n (i.e., data points for which a decision was made) is shown on the x-axis
against the fraction of correct classes C'/n (solid lines) and against the precision
C/N (dashed lines) on the y-axis for the three decision rules in Section 4.5 (green:
fixed intervals; blue: highest weight with weight threshold; yellow (almost
perfectly overlapping with blue): highest weight with gap threshold). The
datasets are in the same layout as in Fig. 4.3.

4.5.2 Evaluation of Class Assignment Rules

Given samples (z1,..

., %) and information about which component J;

generated which observation z;, we evaluate different procedures:

1. Fixed intervals with a slack parameter 0 < s < 0.25: Point z is as-
signed to the leftmost component if z € [0,0.25 — s], to the middle
component if x €]0.25 4+ 5,0.75 — s] and to the right component if
z €]0.75 + s,1]. The remaining points are left unassigned. For each
value of s, we obtain the number of assigned points N(s) and the
number of correctly assigned points C(s) < N(s). We plot the frac-
tion of correct points C(s)/n and the precision C(s)/N(s) against the
fraction of assigned points N (s)/n for different s > 0.
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FIGURE 4.5: Signed areas between the blue curve and the green curve as in
Fig. 4.4 for all 1000 simulated mixtures in dataset 1 (left; 200 samples each) and in
dataset 2 (right; 1000 samples each).

2. Choosing the component with the largest responsibility weight, ig-
noring points when the weight is low: Point z; is assigned to com-
ponent j* with maximal responsibility W;* = W;;+, unless W;;» < t
for a given threshold 0 < t < 1, in which case it is left unassigned.
We examine the resulting numbers C(¢) and N (t) as for the previous
procedure.

3. Choosing the component with the largest responsibility weight, ig-
noring points when the distance to the second largest weight is low:
as before, but we leave points x; unassigned if they satisty W} —

w® <.

4. Repeating 2. and 3. with the EM algorithm instead of our algorithm
would be interesting, but for all reasonable choices of ¢ (recall that we
have to replace x; = 0 by ¢ and x; = 1 by 1 — ¢ for EM to have a well-
defined log-likelihood function), we could not get the implementation
in betareg to converge; it exited with the message “no convergence
to a suitable mixture”.

Figure 4.4 shows examples (the same as in Fig. 4.3) of the performance of
each rule (rule 1: green; rule 2: blue; rule 3: yellow) in terms of N/n against
C'/n (fraction correct: solid) and C'/N (precision: dashed). If a blue or yel-
low curve is predominantly above the corresponding green curve, using
beta mixture modeling is advantageous for this dataset. Mixture modeling
fails in particular for the example in the upper right panel. Considering the
corresponding data in Fig 4.3, the distribution is close to uniform except at
the extremes, and indeed this is the prototypical case where beta mixtures
do more harm than they help.

We are interested in the average performance over the simulated 1000 mix-
tures in record 1 (n = 200) and record 2 (n = 1000). Since the yellow and
blue curves do not differ significantly, we have calculated the (signed) area
between the blue and green curves in Fig. 4.4 for each of the 1000 mix-
tures. Positive values indicate an advantage of the blue curve (classification
by mixture modeling). For data set 1 we get a positive sign in 654/1000
cases (+), a negative sign in 337/1000 cases (-) and absolute differences of at
most 107% in 9/1000 cases (0). For record 2, the numbers are 810/1000 (+),
186/1000 (-), and 4/1000 (0). Figure 4.5 shows histograms of the sizes of the
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area between the curves. While there are more cases with advantages for
mixed modeling, the averages (—0.0046 for dataset 1; +-0.0073 for dataset 2)
do not reflect this due to a small number of strong outliers on the negative
side. Without analyzing each instance separately, we identified the primary
cause of this behavior as almost uniformly distributed data, similar to the
example in the upper right panel in the figures 4.3 and 4.4 for which ap-
propriate (but incorrect) parameters are found. A single beta distribution
of « < 0 and 8 < 0 would correspond reasonably well to this data, and
accordingly a three-component model is not readily identifiable. Of course,
such a situation can be diagnosed by calculating the distance between the
sample and the even distribution and using fixed thresholds if necessary.

4.5.3 Simulation and fitting for estimating the number of compo-
nents

To evaluate the component estimation algorithm, we simulate datasets with
one to five components, each with n = 1000 samples. We simulate two
different types of data sets, both using the 7 mixture coefficient selection
method as described above.

Independent simulation

For the first kind of data, we choose components independently from each
other. This frequently leads to datasets that can be effectively described
by fewer components than the number used to generate the dataset. Let
E be a standard exponentially distributed random variable with density
function f(z) = e™*. The parameters are chosen for each component j
independently by choosing o = E;; and § = 1 — E;» from independent
exponentials. (If 3 < 0, we re-draw.)

Realistic simulation

We simulate more realistic and separable data by a second approach. The
intention is to generate mixtures whose components are approximately
equally distributed on the unit interval, such that each component slightly
overlaps with its neighbors.

To generate a set of data points, we pick an interval I = [E;,1 — E»] with
exponentially distributed borders. (If 1 — E» < Ej, or if the interval is too
small to admit ¢ components with sufficient distance from each other, we
re-draw.) For each component j, we uniformly choose a point u; € 1. We
repeat this step if the distance between any two p values is smaller than
0.2. Sort the values such that By < pg < -+ < pe < 1 — Ea. Letd; :=
min[{|p; — pj| 1 i # j} U{E1,1— Es}]. Then we set 0; = 1/4d;. Now p and
o serve as mean and standard deviation for each component to generate its
parameters o and ; by Eq. (4.1).
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FIGURE 4.6: Comparison of the real number of components (x-axis) and the
estimated number of components (y-axis) by our algorithm. Simulations
consisted of 1000 datasets with 1000 data points each. Each column of each matrix
sums to 1000; row sums are variable.

4.5.4 Evaluation of component estimation

We estimate the number of components as described above with a thresh-
old dxs corresponding to a p-value of > 0.5 of the corresponding Kolmogo-
rov-Smirnov test (as the fit gets better with more components, the p-value
increases). The choice of 0.5 as the p-value threshold is somewhat arbitrary;
it was chosen because it shows that there is clearly no significant deviation
between the matched mix and the empirical CDF from the data; see below
for the influence of this choice). We compare the actual simulated number
of components with the estimated number of 1000 datasets at 1000 points
each generated by (a) independent simulation and (b) realistic simulation.
Figure 4.6 shows the resulting confusion matrix. Perfect estimation mani-
fest as sharp diagonal, but we observe an underestimation of the number
of components on the independently generated data, especially with higher
component numbers. This is to be expected because the components of the
independent simulation often overlap and lead to relatively flat and hardly
separable mixture densities. For the data from the realistic simulations, we
see a strong diagonal and our algorithm rarely overestimates or underesti-
mates the number of components when the components are separable. For
both data sets, our method rarely overestimates the number of components.

Choice of p-Value Threshold

In principle, we can argue for any not significant p-value threshold. Choos-
ing a low threshold would result in mixtures with fewer components,
which would increase under- but decrease overestimations. Choosing
a high threshold would do the opposite. By systematically varying the
threshold, we can check whether there is an optimal threshold, which
maximizes the number of correct component estimates. Figure 4.7 shows
the proportion of under- and over-estimates for both data sets (I: inde-
pendent, blue; R: realistic, green), and the total error rate (sum of under-
and over-estimates) for different p-thresholds. We see that the error rate in
the independent model (I) is generally higher because we systematically
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FIGURE 4.7: Fraction of under- and overestimations and total error rate (their
sum) for datasets “independent” (I; blue) and “realistic” (R; green) for varying
p-value threshold of the Kolmogorov-Smirnov stopping criterion when choosing
the number of mixture components.

underestimate the true number of components (see above); this applies to
any reasonable threshold of < 0.9. We also see that both total error curves
have a flat valley between 0.4 and 0.6 (or even 0.2 and 0.8), so the choice of
a threshold in this range is close to the optimum; we chose 0.5 because it is
a smallest complex in the sense of Occam’s razor.

4.6 Summary

In this chapter, we present an alternative to the EM algorithm for parameter
estimation of mixture models at given data points € [0, 1]. We developed a
hybrid approach between maximum likelihood estimation and the method
of moments; it follows the iterative framework of the EM algorithm. While
existing tools (with EM) have problems dealing with values of 0 and 1, our
method remain robust. A comparison of our algorithm with the EM algo-
rithm (from the betareg package) failed because the EM algorithm was
not convergent and ended with errors. Although the method was initially
developed to describe distributions of methylation levels where the values
0 and 1 are prevalent, it can be used to describe a whole family of distribu-
tion problems with data € [0, 1] from multiple components. Our approach
is computationally simpler and faster than numerical ML estimation in beta
distributions. Data and Python code can be obtained from the Bitbucket
repository 2.

2


https://bitbucket.org/genomeinformatics/betamix
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Chapter 5

Workflows for Methylation and
Exome Analysis

The previous chapters deal with methods and solutions for specific prob-
lems in the field of methylome analysis. This chapter is more descriptive
and explicitly lists all steps from the raw data to the extraction of all critical
information such as methylation values. Unlike most downstream anal-
yses, this process requires no custom calculations and can be fully auto-
mated, which we implement in the workflow Methylome (Methylome Se-
quencing Tooling - mosquito).

Additionally, we explain A Pipeline for Exomes (ape), which can process
exom data analogously to mosquito) and then provides the exom analysis
system described in Chapter 6.

Both systems are optimized for performance, easy configuration, scalability
and reproducibility. The latter is critical for performing scientific analysis,
especially when multiple samples and steps are involved. We describe each
pipeline step including its implementations and configurations and start
with ape because of its easier structure.

5.1 Snakemake

Both workflows are based on the workflow managment system
snakemake. (Koster and Rahmann, ). It allows the simultane-
ous execution of independent parts, the resumption of the workflow in
case of errors, supports cluster systems and allows a simple workflow
extension.

Snakemake workflows are composed of functional rules, each of which
consists of several parameters. The most important of these are:

* input - input file(s) required to execute the rule

¢ ouput — output file(s) created by this rule

shell — bash command that is executed if the rule is invoked

threads — number of threads the bash command is using on execution

* params — a set of parameters that may be used in shell
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FIGURE 5.1: Snakemake Dependency diagram of ape, configured for three
samples. Each command (blue) creates one or more files (green). Sample A (left)
is configured for the single sample call, while B and C are processed via group
calling.

When invoked, snakemake creates a dependency graph based on these
input and output definitions and specifies the order of execution. Inde-
pendent rules are executed in parallel, taking into account the maximum
available CPU cores. Within a shell command, parameters are accessible
via {input}, {output} and {threads}, and sub-elements, such as a particular
input file, are addressed by the dot notation and a defined name for that
element, e.g. {input.mybamfile}. We reduce all rule definitions in this chapter
to their shell command and enter an output, as these are the essential parts
to describe them.

5.2 Exome Pipeline

Exome sequencing is applied to identify SNPs and Indel on protein cod-
ing regions (see Section 1.2). We have developed our workflow A Pipeline
for Exomes (ape) to process raw data from exomes and to retrieve differ-
ent information as well as different statistical indicators. It performs the
following steps shown in Figure 5.1.
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Exome Mapping

NGS data is generated by shotgun sequencing, which produces millions
of short DNA pieces. For most downstream analyses, reference aligned
reads are necessary (see Chapter 1 for detailed information) which is ac-
complished by a so-called read-alignment. This process searches for the orig-
inal position of all read sequences relative to the given species reference
genome and determines a CIGAR string describing the differences between
the read and reference sequences. We choose the widely used read mapper
BWA-MEM(LI, ) for this first action of Ape which is to align all raw se-
quences. It uses a technique called split read mapping, which allows map-
ping not only the entire read sequence but also its substrings. This allows
the automatic trimming of previously attached adapter sequences, which
would otherwise be necessary manually. The following (partial) command
is executed:

mkfifo {output.tmp_rl}

mkfifo {output.tmp_r2}

cat {input.fastq_rl} > {output.tmp_rl} &

cat {input.fastq_r2} > {output.tmp_r2} &

bwa mem -R {params.RG} -M -t {threads} {

{output.tmp_rl} {output.tmp_r2} |

input.ref} \

Raw data is often divided into several compressed blocks (chunks) with a
fixed number of reads. One way to deal with this is to merge the chunks
into a single file and use this file as input for the read aligner. This is easily
possible because a binary concatenation of gzip-compressed files is also a
valid gzip file. Ape is designed to save as much computing time as possible.
However, to save time and computing resources by reading and writing
files, we avoid this step of merging. Instead, ape creates two named pipes
by calling mkfifo for forward and backward reads. These are identified as
files but behave like piped streams. Exactly one process can read the pipe,
while precisely one process writes to this file, and the data is streamed from
writer to reader process without caching. Ape passes the concatenated data
of the strand-specific raw files to the named pipes that serve as input for
BWA-MEM (concatenation of gz files creates valid gz files). Thus the raw
data are indirectly merged by the mapping process itself.

Like most mappers, BWA-MEM outputs its alignments in sam format. Instead
of converting sam to bam first, we decided to take the stream directly to the
next step of Marking Duplicates (described below) to avoid (again) unneces-
sary caching on the hard disk. Note: The command is not yet finished at
this point (pipe symbol at the end). To improve readability, we describe it
in several parts.

Marking Duplicates

Duplicated DNA fragments produced by several PCR cycles (see Chapter 2)
can lead to numerous sequenced copies of the same original reads. As usual
in pre-processing, ape identifies and marks duplicates as such in order to
avoid distortions in further downstream analyses. We have decided to use
samblaster (Faust and Hall, ) for this operation. It uses a hash table to
store read pairs it has already seen and can mark duplicates in a single piped
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iteration. It requires Read-id grouped (sam formatted) input, where paired
reads are stored adjacently. This format and output structure is standard
for most mappers, including BWA-MEM. A disadvantage of this approach is
that the first read pair found is identified as the original read pair, which
is not necessarily of the highest quality. We ignore this because current ex-
ome sequencing generates reads whose duplicates are usually of the same
quality, often 60, the highest possible value. Accordingly, the command is:

samblaster -M | \
sambamba view -t {threads} -S -f bam -h /dev/stdin |

The samblaster output with marked duplicates is then transformed from sam
(text) to bam (binary) using sambamba view. Note that up to this point, all
calculations are done in memory and no files were written.

Sorting

Raw data are unsorted and so are the generated bam files. For downstream
analyses random access in constant time is desirable. An index can achieve
this without having to load the large alignment files entirely into memory.
Indexing the bam file requires the reads to be sorted by their positions, e.g.
with the sambamba’s sort operation:

sambamba sort /dev/stdin -m 20GB -t {threads} -o {output}

With a permitted total memory of 20 GB, most Exome samples can be sorted
in memory. The generated sorted bam files contain the reads and are finally
stored on the hard disk. This means that we can perform all the steps from
raw reads to sorted alignments in memory without accessing the hard disk,
which is usually the bottleneck.

Indexing

As an additional part of data preparation, bam files are indexed for efficient
direct access in the form of an R-tree (Guttman, ). This bam.bai file
allows direct access to any reads of a certain genomic region (chrome:start-
stop) in the corresponding bam. (Li et al., ). The index is created by

sambamba index -t {threads} {input}

Providing an index, for example, allows visualization tools such as IGV
(Robinson et al., ) to display reads of a particular region of interest
without having to read the entire file first.

Variant Calling

Several different variant callers exist to detect variants and their geno-
types from a given read alignment. For performance reasons we use the
haplotype-based variant caller freebayes (Garrison and Marth, ) instead
of the more commonly used GATK (McKenna et al., ) by
"./scripts/freebayes-parallel \
< (fasta_generate_regions.py {ref}.fai 10000000) \

{threads} -u -f {ref} {input} --min-alternate-fraction 0.10 | \
veffilter -f "QUAL > 10" > {output}’
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For each position with at least one or more overlapping reads, the call de-
termines possible differences to the reference sequence and identifies its
true positive probabilities. A typical study would be the identification of
interesting variants by filtering calls of several samples against each other
(case against control). For this purpose, we keep variants if they occur in
at least 10% of all reads at this position and have a Phred-scaled quality
score > 10. These tolerant parameters allow us to detect doubtful variants in
healthy samples, which are then used as filters for other variants in Eagle.
(see Section 6.4). To further improve sensitivity in low coverage areas, we
use user-defined calling groups containing multiple samples, where multi-
ple samples are called together. This approach has proven beneficial (sig-
nificantly improved call quality) (Roach et al., ) because multi-sample
variant calls can use additional information from multiple samples at a sin-
gle location. Therefore, the input consists of several bam files, one for each
sample of the corresponding group. Group calling is particularly crucial for
tumor analysis, where the variant set of tumor and blood samples have a
high overlap.

Freebayes is able to recognize SNPs and short indels (see Section 5.2),
but longer structural variants (SVs) are overlooked if they exceed a certain
length. Therefore ape also applies Delly2 (Rausch et al., ):

export OMP_NUM_THREADS={Threads }
delly_parallel_0.7.1 -g {ref} {bam} {bam} -t {type} -o {output}

Delly2 can call three different types of SVs: Deletions, insertions and in-
versions. Since it can only call one type of structure variant at a time, the
command is executed multiple times in parallel for each sample.

Both tools output variants in standard vcf format (Danecek et al., ) with
one variant per line listing the genomic position, reference, and alternative
bases and counts, as well as quality values and genotype. Vcf files con-
sisting of multiple Incoming samples generated contain genotype and count
information for each sample.

Annotation of Variants

In most cases, a list of variants with basic information is not sufficient to
identify interesting disease-causing genetic differences. For this reason,
ape SnpEff (Cingolani et al., ) to add multiple annotations to each
variant. The most important annotations are: The effect — A sequence ontol-
ogy term that describes a relationship to a particular gene (e.g., 3’'UTR or
intronic') — and affected genes and transcripts, as well as their putative effect
that describe the effects on protein structure.

'For a complete list of supported annotation terms, see
, page 6.


http://snpeff.sourceforge.net/VCFannotationformat_v1.0.pdf
http://snpeff.sourceforge.net/VCFannotationformat_v1.0.pdf
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Conversion

Eagle (see Chapter 6) requires data as eagle-data-files (see Chapter 6.3). A
script provided by Eagle generates these files from SnpEff annotated
VCFs, which is invoked by ape for each sample per default.

5.3 WGBS Pipeline

WGBS is used to retrieve epigenetic information in the form of CpG methy-
lation levels. While the DNA sequence is the same in almost all (non-tumor)
cells of an organism, the levels of methylation are cell- and age-specific
and may change due to external influences. In most studies dealing with
methylation, the information of interest is deferentially methylated regions
(DMRs - see Chapter 3.3). These are not restricted to specific genomic sites
such as genes. Thus, bisulfite sequencing is applied to the entire genome
(WBGS), which produces significantly more data than exome sequencing
(WES). This is why the requirements for a WGBS pipeline differ from those
of an exome pipeline. While a sequenced WES sample consists of approxi-
mately 30 million reads, this number can increase to more than one billion
for a single WBGS sample. Unlike WES, a WGBS experiment typically con-
sists of fewer larger samples but uses multiple traces for a single sample
with average coverage >20. Sequencing protocols may also vary between
tracks, and data must be unified for downstream analysis. For these rea-
sons, we divide our WGBS pipeline (mosquito) into a first part where indi-
vidual traces are processed and a second part where data from all traces are
aggregated. The first part consists of the following steps.

WGBS Mapping

The mapping process is similar to that for exonic data, except for the

specialized mapper, which must be designed to map bisulfite-treated

sequences, i.e. a three-letter aligner (see Section 3.1.3). We use BWA-Meth

(Pedersen et al., ) to do this (with default parameters) by calling
bwameth.py -t {threads} -r {params.rg} \

--reference {input.ref} {input.rl} {input.r2} \
| samtools view -bS -@ {threads} |

BWA-meth applies the transformation described in Section 3.1 and uses
BWA-mem to align the reads. It converts read sequences by replacing C
— T and G — A, uses BWA-mem as the backend to align the reads, and
then restores the original sequences. Due to the split read mapping tech-
nique, mosquito does not require any configuration of adapter sequences,
and adapter trimming is done implicitly during the mapping process. The
number of threads (currently 20) should be adjusted according to available
system resources.

Sorting

Sorting is applied for each alignment by
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FIGURE 5.2: First part of mosquito exemplary for a lane lanel of sample A, divided
by the sequencing process into three parts (001 - 003) with produced output files
(green boxes) and executed steps (blue boxes). Temporary files (dashed black
border) get deleted after execution. The upper part illustrates the separate
mapping and sorting steps for the three individual paired-end reads, which are
then merged into a single bam file. In addition to serving as input for the second
part of the pipeline (Figure 5.3), these bam files are used to call single-track
methylation levels and derive various metrics. To simplify the diagram, we have
merged individual steps into a single node. Finally, metrics and calls are
combined into a single h5 file. Nodes within the lower square are reused in the
second part of the pipeline.

sambamba sort \
--tmpdir tmp /dev/stdin -m 100GB -t {threads} -o {output}

with 50gb maximum memory usage and 20 threads by default. Note that
the alignment is directly piped to save unnecessary hard disk storing (sim-
ilar to ape).
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Merging and Marking Duplicates

Here, too, raw data can be divided into multiple chunks of several million
reads each. Due to larger files, we decided to map and sort each chunk
individually instead of merging them first. Sorted bamfiles are merged at
the end of this process by sambamba, which allows simultaneous merging
and marking of duplicates in a single command

sambamba markdup -t {threads} --sort-buffer-size 131072 \
--overflow-list-size 2000000 {input} {output.bam}

where input consists of all “parts” of one lane. For the large number of
reads, we increased the sort buffer size to 128 GB and the overflow list size
to 2000000. This reduces the number of temporary simulations accessed
files, which might otherwise reach the operating system limit.

The requirement of merging chunks may be eliminated by making use of
the fact that BWA-Meth can handle multiple input fasta files. Because the
applied duplication mark algorithm of sambamba requires two iterations
over bam files stored on disk and allows marking and merging in a single
step. This does not improve mosquito’s performance. Replacing sambamba
with samblaster would allow for piping of mapping, duplication mark-
ing and sorting without intermediate temporary storage (like in ape), but
mosquito requires the second merging and mark duplication step (second
part of the pipeline), where applying samblaster is not possible. For con-
sistency reasons we choose sambamba over samblaster to perform both
duplication mark processes equally.

Indexing

The process of indexing bam files is equal to the indexing process of ape.

sambamba index -t {threads} {input}

In principle this step is not necessary, since sambamba merge produces
indices as a by-product. It applies in cases where the input is a sorted bam
file but not indexed, yet. In all other cases, sambamba merge creates the
index.

Methylation Calling

In order to obtain methylation levels for each CpG, we apply Camel call
(Section 3.2):

camel call {params.nome} {input.bam} {input.index} {output}

The previously merged single-lane bam serves as input to generate camel-
call-files containing methylation levels. We use default parameters of
camel, i.e.,, minimum base quality of 17 and minimum mapping quality of
30. Camel is also able to call NOMe-seq GpC methylation if the respective
configuration flat is set, represented by the params.nome parameter.
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FIGURE 5.3: Second part of mosquito exemplary for preprocessed bam files of
three tracks. Call and Metrics in the lower part are reused steps of the first part.

Metrics

Several metrics are calculated for each lane. For that purpose, the following
counts are obtained:

e Number of all reads:

sambamba view -c -t {threads} {input}
* Number of mapped reads:

sambamba view -c -F "not unmapped" -t {threads} {input}
* Number of duplicated reads:

sambamba view -c -F "duplicate" -t {threads} {input}

Lane duplication rates and mappability are also calculated based on these
counts. Additionally, two methylation metrics are determined by camel
average in combination with awk.

Mean CpG methylation, calculated by

camel average {input.index} {input.calls} \
| awk “{sum+=%$4+$5; total+=$4} END {print sum / total}’
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and bisulfite conversion rate by

camel average {input.index} {input.calls} -r L \
| tail -n +2 | awk ’“{print 1-$5}’

which describes the fraction of unmethylated cytosines that are success-
fully converted to thymine. This metric is calculated by adding completely
unmethylated Lambda phage DNA to the experiment. The bisulfite con-
version rate is 1 — #methylated Cs of the Lambda DNA.

Finalize finally unifies calling data and statistical data into a single camel-
data-file.

Multi Lane Steps

Previous steps refer only to data of individual tracks. WGBS samples of-
ten require sequencing of multiple tracks to achieve desired coverage. In
the end, all bam files are merged into a unified alignment that serves as the
basis for sample calls and metrics. We process the unified bam by reusing
the previously described steps Merging + Mark Duplicates, Index, Call and
Metrics. Note that the merge of sambamba is performed, which also per-
forms duplicate detection. We reuse this rule from part 1 of the workflow,
but due to different read groups (commented by the host), read accesses
from separate lanes are not considered potential duplicates. So this step is
just a merge step. Figure 5.3 shows an example of this second part of the
pipelines for three tracks (lanel, lane2, lane3) of a single sample A.

In this way, all critical information is generated for each lane and summa-
rized for each sample. We have designed the system to allow analysis of the
merged sample while still having access to all metrics and mapping data as
well as the calls for each lane. This enables crucial lane-wise quality control
and the detection of sequencing problems.

5.4 Summary

In this chapter we present two pipelines, ape for exonic data and
mosquito for WGBS data. Both pipelines use similar steps, e.g., mapping,
sorting, and indexing. Because of its multi-lane data, mosquito is more
complex and uses a two-tier system in which data is first processed at the
lane level and then uniformly as a whole. The underlying snakemake
structure allows workflows to run on cluster systems, and both pipelines
are designed to maximize CPU utilization and minimize disk space and
access. Since all types of NGS data require similar necessary steps, the
workflows presented here can also serve as blueprints for other pipelines
such as RNA-Seq.
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Chapter 6

Exome Analysis Graphical
Environment

While methylome sequencing cost is still very high, whole exome sequenc-
ing (WES) has become a commonplace method to discover genes involved
in, or even causing, rare heritable diseases (Maxmen, ; Nguyen and
Charlebois, ) and syndromes (e.g., Wieczorek et al., ), with over
220 publications listed in PubMed between 2010 and early 2018. It is also
a frequently used method to obtain characteristic mutations or mutational
landscapes of tumors (Liu et al., ; Martin et al., ), or to characterize
tumor dynamics and evolution (Masetti et al., ; Schramm et al., ).
In contrast to genome-wide association studies (GWASs), direct discovery
of deleterious variants is possible with WES. Compared to whole genome
sequencing (WGS), WES is more cost effective because only 1-3% of the
genome is captured and sequenced, i.e., regions covering at least all coding
parts. The concrete definition of exome in a particular study depends on the
used exome capture kit; this varies over time and from supplier to supplier.

Bioinformatics analysis of a sequenced exome consists of several steps from
raw sequence data to (ideally) causative genetic variants. A typical pro-
cess includes clinical data curation, sequence quality control, and trimming,
read mapping and alignment, variant calling, annotation of called variants,
and finally the derivation of association between variants or affected genes
and disease status. Downstream, a network-based analysis of discovered
genes can give further insights into disrupted pathways. For each of these
steps, several methods exist, each of which has several parameters that can
be adjusted, and which in turn produce additional quality metrics that can
be used to guide subsequent steps in the process. For example, raw se-
quence reads in FASTQ files come with Phred-scale quality information,
and after quality trimming and read mapping, we have mapping quality
values, which quantify the uniqueness and certainty of the presumable ori-
gin of the read in the genome. Further downstream, variant calls come with
several quality metrics, such as coverage and strand bias. Fortunately, best
practice guidelines for exome analysis, such as the GATK Best Practices
from the Broad Institute! have been developed from experience, which has
helped to establish WES as a standard tool for genetic disease investigation.
In the end, weighted, ranked and annotated results have to be interpreted
by a scientist or clinician.

1


https://software.broadinstitute.org/gatk/best-practices/
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From a cost perspective, three factors define the costs of a WES analysis:
costs for library preparation and sequencing, costs for the computational
analysis (hardware, software, computing time), and personnel cost. Both
sequencing costs (Muir et al., ) and computational costs (Schaller, )
have decreased exponentially; however, personnel costs remain at the same
level or increase. Hence, it is desirable to automate WES analysis as much
as possible and, for the final steps of reviewing and interpretation, simplify
the analysis as much as possible, in order to handle the increasing amount
of DNA samples assigned to each scientist or clinician for discovery or di-
agnosis.

We present the Exome Analysis Graphical. Environment (Eagle), a system
that allows life scientists to analyze WES data without the contiguous sup-
port of computer scientists. We designed it with the goal of minimizing the
workload of everyone involved in the analysis; this concerns both the bioin-
formaticians who run the system and feed data into it by applying pipelines
like RUbioSeq (Rubio-Camarillo et al., ) and the life scientists who eval-
uate data and results. For the latter, Eagle provides a web-based frontend
to analyze single nucleotide variants, deletions, and insertions called from
next-generation sequencing data. Eagle allows users to interactively ex-
plore variant calls, adjust filter parameters, view quality information, ob-
tain aggregated summary statistics, and exchange data with other tools.

6.1 Design Overview

Exome sequencing aims to retrieve genetic sequences of protein-coding re-
gions in order to identify disease-causing variants. A crucial step in the
analysis of variant calls is filtering by attributes like quality scores, or the
number of supporting samples on the one hand, and by appearance in cer-
tain groups of samples (tumor vs. normal or affected vs. not affected) on
the other hand (see Chapter 6.4 for details). The former filtering is neces-
sary to remove artifacts or to narrow the obtained results to variants called
with very high confidence. The latter filtering allows scientists to investi-
gate different questions. From our experience this filtration process is both:
manual and iterative. It involves, for example, examining statistics, adjusting
quality thresholds for filtering or weights for ranking variants, or manually
checking interesting variants in a genome browser, such as IGV (Robinson
etal, ), by examining the aligned reads. Systems capable of analyzing
exonic data requires at least the possibility to access and treat this variant
information, which can be described by:

* *
Sample B E— Variant T Annotation

Each sample holds multiple variants (with different calling quality scores),
and each variant may exist in one or more samples. We assume that the
variant annotation is of high complexity and diversity so that each annota-
tion exists precisely in one variant, but a variant may have multiple anno-
tations. This is the minimum core data to deal with for a system that can



6.1. Design Overview 83

. g 2

Sz g % 2 Tz 52
Eagle | v/ v/ /| browser HDF5 1: bioconda v/
Gemini | v v/ V| browser  DB:sqlite 3 v
CanvasDB | v X V/ R DB:MySQL 39+ X

Var2Go | v v/ X | browser N/A N/A N/A
VCF-Miner | X /| browser MongoDB | wininstaller
VarSifter | v v X | Java GUI VCF 1 v

TABLE 6.1: Feature comparison between Eagle and existing exome analysis and
variant filtering tools. Column cohorts, pairs and trios refer to supported analysis
tasks; cohorts means that variants of large sample sets can be compared, pairs
refers to sets of paired samples, such as tumor/normal comparisons, and trios
refers to family trios (mother, father, child) often examined in rare disease studies.
Column interface refers to how the user interacts with the system; most tools
nowadays use the web browser even if they run locally. Column storage describe
which database or file format is used as backend to store and process the variants.
Column install/steps lists the number of steps (lines) of the installation
instructions. Column install/userspace indicates whether the software can be
installed without administrator rights. The EVA tool mentioned in the text is not
included in this comparison because it could not be obtained.

store and analyze exonic data. Traditional approaches of systems that filter
data entries against thresholds and each other rely on multi-table databases
and use backend queries for most calculations.

A unique feature of Eagle is that its architecture is not based on a database
backend, which is in contrast to what has been considered before (Janetzki

et al., ) and implemented in existing exome analysis systems, such as
EVA (Coutant et al., ), GEMINI (Paila et al., ), CanvasDB (Ameur
et al., ), and our own unpublished internally used exomate system

(Martin, ). While this design decision may lead to a partial reimple-
mentation of existing common database functionality, we shall argue below
that it in return offers several advantages especially for the bioinformatics
group or core facility that runs and maintains the system. Indeed, some
existing desktop systems directly work with variant call files (VCF), such
as VarSifter (Teer et al., ), which is typically less efficient than using
an indexed and searchable database. Again other systems like VAR2GO
(Granata et al., ) are pure cloud-based systems, where users submit
their variant data online. This is often not desirable for data privacy rea-
sons. We provide a comparison of existing systems with Eagle in Table 6.1.

Eagle is designed as a system with four layers (Files, Backend, Core, GUI;
Figure 6.1). Separation into different layers allows external scripts to in-
voke Eagle functions without the graphical interface. This is useful for au-
tomated workflows in core facilities, for example. Each layer is exchange-
able and only uses functions of the layer below. As Eagle does not use an
underlying database, all data storage is file-based. The layers from top to
bottom are the following.
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Provide input mask Ul Generate output
Send parameters l T and display results

to specific core function Return calculated results as dict

Core
Call different basic functions i T
of selected samples wrappers Return results of basic functions
Backend
Access data stored in hdf5 files i T
X Provide the data
Files

FIGURE 6.1: Illustration of Eagle’s layers and its query, processing and
answering process. Submitting a query input invokes the process. Each layer calls
only functions of the layer below. Results are returned upwards and finally
displayed.

GUI

Eagle includes a browser-based graphical user interface (GUI) to allow
life scientists to perform exome analysis without the continuous support
of bioinformaticians. It provides a user-friendly way to invoke the various
analysis methods by the use of input masks. On submission, the query
is sent to the respective function of the core layer, which in turn invokes
underlying backend functions that access file data. In that way, functions
are invoked through all layers, and results returned upward until a human-
readable output is generated in the browser window.

Core

While the GUI is responsible for human-readable output, the computation
of results is decoupled. All high-level functions, such as the search for
causative variants or statistical calculations, are located in the core layer.

Backend

The backend is a mediator between the high-level core functions and the
concrete file structure below where the data is stored. The backend layers
thus provide wrappers that are used by the core layer to access the under-
lying file data. Currently, two wrappers exist. The sample wrapper enables
full access to variant data for each sample. The group wrapper allows users
to create, access, and modify group files, which are used to manage custom
sample groups. The backend layer makes it possible to modify internal file
structures without adapting implementations of high-level functions.

Files

Eagle data files are stored in structured HDF5 format (see Section (The
HDF Group, )).- Each sample file stores all called variants and
statistics of exactly one sample. When working with typical workflows that
produce variant call format (VCF) files, Eagle directly converts VCF infor-
mation per sample into HDF?5 files. Details of the file structure are described
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FIGURE 6.2: Comparison of system structures used by example database based
approach (a) and Eagle (b). The database approach diagram shows GUI
generation (green), responsible for data transformation and html output
generation. It is separated from and built on top of a database backend, consisting
of six internally connected tables (blue) and stores all relevant information.
Filtering variants is performed by use of database-queries. Figure (b) shows the
four layer structure of Eagle. From top to bottom: GUI (green), which generates
output html and pr, core, which performs all calculations, backend (yellow), which
provides basic core functionality like selecting specific data, and files (grey),
storing the variants and statistical metrics.

in the section 6.3.

Figure 6.2 visualize eagles’s file based layer structure as well as an exam-
ple database scheme (exomate).

6.2 GUI

The web-based graphical user interface of Eagle provides three main
views: the statistics view, the query view and the results view.

The statistics view provides summary statistics for each available sample,
such as the number of mapped and unmapped reads, the estimated dupli-
cation rate of the library and its average coverage (Figure 6.3a). The pro-
vided numbers can be used for quality control, or to select suitable samples
for an analysis.

The query view (Figure 6.3b) is the central interface of Eagle. It allows to
select the (groups of) case samples of interest and also (groups of) control
samples whose variants are likely not relevant for the question under study
and which will be excluded from the reported variants. Following filtration
options can be set here.

Case samples. A list of samples or a predefined group of samples defines
the samples from which the variants are taken.



86 Chapter 6. Exome Analysis Graphical Environment

Variant filtration
Sample Disease Eamined Reads o caton Rate UMPPEA RIS Goerage (Sureselectys)

2083 027 07 186.22 S——

1178 0.18 09 12657

1225 022 0s 12399
1268 02s 0s 12215
1283 026 04 12067
1195 019 0s 1180
e 02 04 11585

1129 02 05 11897

107.9 017 05 111.99

101.0 0.8 09 10531

%5 02 04 0432 el ety
97 019 08 10209 e
952 047 07 10207
1030 021 09 101.44
857 0.16 06 9118
75 014 03 8956
755 012 03 8621
757 015 03 8296
543 014 02 6418
558 013 02 6324
543 011 02 63.14
544 013 02 6239

526 0.3 02 618

2506 029 58 5973

(a) Statistics view (b) Query view

FIGURE 6.3: Screenshots from two different views of the Eagle graphical user
interface. (a) Statistics view with sample information and metrics (left to right:
sample name, associated disease, number of processed reads (millions), estimated
duplication rate of the sequencing library, number of unmapped reads (millions)
and average coverage estimated based on the captured regions of an exome
capture kit). (b) Query view: variant filtration input mask with input elements for
single case and control samples, as well as case and control groups (i.e,
pre-defined collections of samples), and options for selecting particular genes,
various filter thresholds, effect filters, and pre-defined variant collections to be
filtered out (such as dbSNP in different variations).

Control samples. A list of samples or a predefined group of control samples
defines the samples from which variants are used to filter the list of case
variants.

Minimum sample per variant. When searching for a specific variant, this
option may help to remove variants, that are only affected by a small num-
ber of samples and are therefore uninteresting.

Minimum samples per genes Conditions of case samples are often not
caused by specific variants, but by a specific affected and altered gene. Sim-
ilar to the minimum sample per variant this options allows to only show
variants, where minimum number of other samples have at least one vari-
ant in that specific gene. That allows to search for causing genes instead of
specific variants.

Minimum variants per genes. In some cases (compound heterozygous dis-
eases) it is of interest if a gene have more that one heterozygous variant.
This option allows to search for this state.

Affected Genes. The user may limit the search for variants to specific genes,
that can be defined here. Please not that gene symbols vary between differ-
ent gene sets. We annotate the variants via SnpEff (Cingolani et al., ),
which internally uses the RefSeq database O’Leary et al., to annotate
the gene symbols.
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Qualities. Here the threshold for variant quality score and mapping quality
is set to remove variants of low certainty.

Ignore heterozygosity. The user may set if the heterozygosity state is im-
portant for variant filtration or if variants are filtered independently from
this state.

Effect. The query view can be used to exclude variants based on their effect.
For example, frameshift or missense variants can be retained while synony-
mous variants are excluded (for details about effects please see Section 5.2).

dbsnp. Finally, variants from public databases like dbSNP (Sherry et al.,
) can be used as additional control variants and subtracted from the
results.

A common use case is using samples of a specific disease as case and
healthy samples as control. First, the user selects case samples affected
by the disease, either individually or by user predefined groups. Then he
repeats this step for control samples, which are usually all available healthy
samples. Eagle automatically provides groups for each condition, and
healthy (consisting of all healthy samples) is preselected for convenience.
For typical users, it is advised to leave most filtering options at their
defaults at first, unless no or far too many results are obtained.

Finally, the results view is shown after Eagle has finished processing a
query (Figure 6.4). The view shows a table with one row for each variant.
The columns present various variant attributes, such as affected samples,
calling quality, allele frequency, chromosomal position, and predicted ef-
fect. Shown variants are condensed to affected genes instead of transcripts,
and a detailed transcript view is available via hyperlink. Variants can be
viewed in external browsers like UCSC (Kent et al., ), 1000 Genomes
(The 1000 Genomes Project Consortium, ), OMIM (McKusick, )
ExAC (Karczewski et al., ) and gnomeAd (Lek et al., ). Addi-
tionally, variants can be displayed in the Integrated Genome Viewer IGV
(Robinson et al., ), together with the aligned reads of the selected sam-
ples.

Both the statistics view and the results view are complemented by config-
urable plots that enable additional quality control and ease the discovery of
patterns (Figure 6.5).

6.3 File Structure

Eagle stores variant data in one hdf5 file (see Section 1.7) per sample,
each containing one group per chromosome (Figure 6.6). Each chromo-
some group contains a variant table (dataset) consisting of heterogeneous
information, such as the variant key (see below), and sample-specific call-
ing quality and zygosity for each variant. The complete list of contained
values is:
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FIGURE 6.4: Result view of a query. Each row corresponds to one detected
variant, each column to a variant property (left to right: +: hyperlink to show
detailed information on affected transcripts (the standard view shows gene
symbols only); #: running number; RSID: identifier of the variant in dbSNP (if
present); Symbol: list of symbols of genes affected by the variant; C: number of
samples affecting the gene; Samples: list of these samples; Effect: keyword
description of estimated variant effect; Het: zygosity flag (Het for heterozygous,
Hom for homozygous); Alt: reference and alternative base; Qual: variant calling
quality score; AF: estimated range of allele frequencies of this variant; Location:
chromosome and chromosomal position; Impact: predicted impact on protein
sequence; IGV: Link to open the variant in a running IGV genome browser
instance; UCSC, 1000G (HG19), OMIM, ExAc (HG19), gnomeAd (HG19): external
hyperlinks to genome browsers).

unique 64 bit integer identification key (variant id)
¢ integer length of the variant (= 1 for SNPs, > 1 for indels)
¢ quality (Phred scaled false positive calling probability) of the variant

¢ quality-per-depth value, describing the fraction of the quality divided
by the variants coverage

¢ the byte mean mapping quality of the variant covering reads
* 64 bit integer vector storing a bitwise-or of all single transcript effects

¢ 32 bit unsigned integer overall coverage and specific coverage for the
alternative base(s)

* 3 byte context of this variant, character sequence of length three con-
sisting of the variant base and flanking bases

¢ 32 bit rsid, the boolean precious flag and the boolean common flag from
dbsnp, if available

* two 32 bit unsigned integers, transcript-start and transcript-end, refer-
ring to the range of transcript annotations associated with the variant.

A second dataset stores one or more variant-related transcript effects (e.g.
gene name, effect or exon number) for each variant and the variant id for fast
access. On the other hand, each variant stores its related transcripts by a
range (transcript start index, transcript end index). Each sample file holds
many (possibly millions of) variants, and each variant may exist in one
or more samples (with different sample-specific information). The dataset
contains following list of values:

e variant id
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FIGURE 6.5: Screenshots from various statistics. (a) Alternative view to the
standard list output of variant filtration. The matrix consists of genes g (rows) and
samples s (columns). Filled cells mark homozygous (black), heterozygous (red) or
both types (green) of variants in pair (¢, g). (b) Venn diagram illustrating variant
counts and overlaps of two or three selected samples. (c) Histogram created by
the row sum for each sample (column) of matrix of (a).

* 64 bit vector that stores the effect of the variant to the transcript
¢ the gene symbol of the affected transcript

¢ 32 bit unsigned integer index of the affected exon and total number of
exons for the transcript

* 32 bit unsigned integer transcript id

¢ the hgusc, which is a special representation string of a variant affecting
a protein coding region

* 32 bit integer distance to the transcript, if the variant does not overlap
with the transcript, but is in proximity

¢ the byte impact, describing the probability to change the resulting pro-
tein structure and functionality represented by the transcript

* boolean flag if the variant is inside a coding region

6.4 Variant Filtration

The central functionality of Eagle is the fast and interactive filtration of
variants. In the following, we outline how this is achieved.
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FIGURE 6.6: Eagle sample file structure. The data is organized as tree. There is
one group for each chromosome. Each chromosome group contains data about
variants in tabular form (numpy record arrays; see text).

6.4.1 Variant keys

To perform variant filtering, each variant must be uniquely identifiable. We
conceptually define the key of a variant as a 4-tuple of chromosome, po-
sition, reference allele sequence and alternative allele sequence. However,
operating on 4-tuples as keys would be computationally expensive on large
numbers of variants. Therefore, we encode each variant as a 64-bit integer
key (Figure 6.7) in the following way.

First, note that the chromosome can be omitted, as they are encoded in
the tree structure of the Eagle sample files. (The processing of queries
occurs chromosome-by-chromosome, and independent chromosomes may
be processed in parallel, although this is currently not done). Also note that
the reference allele sequence can be deduced from chromosome, position
and reference allele length, so it does not need to be explicitly stored.

The least significant bit (bit 0) holds the heterozygosity state of the variant
in the sample, where 0 represents an estimated homozygous variant, and
1 represents a heterozygous variant. While this flag is not part of the vari-
ant key itself, it is convenient to have it encoded in the same integer for
filtering; it can always be ignored by right-shifting the keys by one bit. Bits
1-3 encode the variant type: The are four single nucleotide variant (SNP)
types, one with alternative allele A, C, G, and T each. Because most stored
variants are SNDPs, it helps to encode them specially. The fifth type is a
deletion, whose length is stored in subsequent bits. The sixth type is a in-
sertion, where the inserted sequence needs to be uniquely identified (using
subsequent bits). The remaining types are reserved for multiple nucleotide
variants (which are not supported yet and ignored at the moment). Bits
4-31 encode the position of the variant. Note that 28 bits are sufficient to
encode any position in the largest human chromosome. Bits 32-63 encode
information about deletions and insertions. Since there may exist different
deletions or insertions at the same position, each with a different length or
insertion sequence, the key needs to be able to distinguish between them. In
case of a deletion, the 32 bits store the length of the deleted sequence, and



6.4. Variant Filtration 91

indel information (32bits) position (28bits) type (3bits) - heterozygosity
flag

63 62 61 34 33 32 31 30 29 6 5 4 3 2 1 0

FIGURE 6.7: The 64-bit variant key. The least significant bit (bit 0; blue) stores the
heterozygosity state of the variant in the sample. Bits 1-3 (green) store the variant
type, bits 4-31 (yellow) store the chromosomal position, and bits 32-63 (grey)
store indel information (see text).

the deleted sequence is given by the (globally known) reference genome.
For insertions, a hash value of the inserted sequence is stored; to be precise,
the variable length SHAKE-128 algorithm, set to 32 bit output. (While it is
possible that hashes of two distinct sequences collide, the probability is ex-
tremely low that this happens at the same position. If it does happen, the
system treats two different insertion variants as the same one.)

The variant keys are computed for every variant in every sample. Variant
information is sorted by the variant key in each chromosome group in each
sample file. Then, variant filter operations can be performed via combina-
tions of linear time set operations over the key vectors.

6.4.2 Standard variant filtration

Let S be the set of all samples available in an Eagle instance. Let A C S be
the set of selected case samples, O C S be a disjoint set of selected control
samples and let V; be the set of all variant calls in sample s € S. Filtration
is carried out in three steps:

1. For each sample a € A, a subset vIicv,is generated containing the
set of variants in V,, that meet the selected per-sample filter criteria
(i.e., quality thresholds).

2. For each sample, a subset Vf =V Uoco Vo is generated by remov-
ing all variants that occur in at least one control sample. The user can
decide whether whether variants of different zygosity are considered
as the same or not.

3. The final set of variants V' C |J,c4 V2 is generated by taking the
union of all variants of the selected case samples filtered for global
criteria like minimum number of samples supporting the variant.

Note that in steps 1 and 2, calculations can de done independently, and
hence in parallel, for each case sample a € A (this is presently not imple-
mented).

6.4.3 Child-parents trio filtration

A special type of analysis that cannot be handled by standard filtration is
the investigation of child-parent trios. This can be important to understand
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genetic causes of a disease the child is suffering from. If the parents are
healthy, one may hypothesize that the disease is caused by recessive vari-
ants, such that symptoms do not occur as long as the affected gene has at
least one working copy. Here, two cases can be distinguished.

First, both parents can exhibit the same variant, which then occurs as ho-
mozygous in the child. For this case, above filtration mode can be used di-
rectly.

Second, both parents can exhibit different variants affecting the same gene,
which then occur as two heterozygous variants in the child. This is called
compound heterozygosity. Here, we can filter by seeking for variants where
at least one additional variant exists that targets the the same gene. Both
variants must be heterozygous, one inherited from mother, the other from
the father.

We now describe these cases formally. Let ¢, f,m € S denote the child, fa-
ther and mother sample, respectively. Let g(v) be the set of genes targeted
by variant v. Let V! C V! be the subset of heterozygous variants and
V. = V1\ V! be the subset of homozygous variants from those obtained for
sample s in the first of above filtration steps. The candidate set of homozy-
gous variants for c is given by

71 ~ ~
V.nVinv,,
the set of compound heterozygous variants by

{e eV | JyeV) y#a g@)ngly) #0,
(mEVfl/\eré)\/(meV%Aerf)}.

6.4.4 Performance Example

As an example for a typical in-house use of Eagle, we provide numbers
on a dataset consisting of 10 individuals (case samples) with a rare congen-
ital defect. Here, a typical question would be which variants occur only in
individuals suffering from the syndrome. To obtain these, we queried for
all variants with a minimum quality of 200, a minimum average mapping
quality of 40, and filtered against an in-house cohort of 259 healthy individ-
uals (control samples). In addition, we remove all variants that are marked
as being non-clinical in dbSNP.

The case samples exhibit in total 17,668,654 variant calls (avg. 1,766,865 per
sample), the control samples exhibit in total 253,824,358 variant calls (avg.
1,450,424 per sample). On a harddisk-based server (no SSD usage except
for the operating system), on a single core of an AMD Opteron 6276 CPU,
the query is calculated in 3 minutes.
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6.5 Features for Bioinformatics Teams

Eagle was designed not only as a user-friendly system, but also as a system
that is easy to set up and maintain for bioinformatics support groups or core
facilities.

Installation and setup

Installation and maintenance of Eagle is particularly simple, without the
need to configure a database engine, or obtaining administration privileges.
There are no dependencies except a number of commonly used Python
packages. As Eagle is available as a Bioconda’ package, it can be installed
(including all dependencies) with a single command

conda install -c bioconda eagle

After that, only minimal configuration (setting paths and genome versions)
is required. Detailed instructions, alternatives, and configuration examples
can be found at

Sample handling

Because each sample is stored in a separate file in the filesystem, it is
straightforward to add, remove, relabel, and backup samples. Moreover, a
sample file can be easily exchanged between instances or even labs.

Eagle assumes that the endpoint of an exome processing workflow is one
or more variant call format (VCF) file(s) that have been annotated with
SnpEff (Cingolani et al., )- SnpEff estimates the effect of variants and
annotates whether they are contained in public databases such as dbSNP.
These files must be initially converted to one Eagle HDF?5 file per sample.
During this process, the relevant fields of the VCF records are converted
into the HDF5 based format. Once the files are registered in the Eagle con-
figuration, the system is ready to be used for analysis of the variant calls via
the GUL

Importing new samples entails running an automated script to convert
called variants in VCF format to Eagle’s internal HDF5 format and
making the new samples known to Eagle by assigning a label, such as
'healthy’ or a particular disease name, to each sample.

Fewer communication iterations

Variant calling workflows are typically tuned in such a way that they out-
put a reasonable number of variants to be shown to the clinician or biologist

2
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under typical sequencing conditions. However, the optimal workflow pa-
rameters may change on a case-by-case basis. For us and others, this has
sometimes resulted in requests to re-run the analysis to produce a larger/s-
maller set of variants. The idea behind Eagle is that a standard workflow
is run only once, but with very relaxed parameters, producing large candi-
date variant sets, resulting in large HDF?5 files as well. From that starting
point, Eagle can be used to dynamically adjust any filter threshold to a
more stringent one and dynamically re-compute the output set. Eagle is
able to deal with very large variant sets in reasonable amounts of time (see
performance example and example use case below).

Usage as library

Because of its layered architecture, Eagle is not only a frontend but can
also be used as a library. Hence, it can be accessed from analysis workflows
that perform additional postprocessing or create publication quality figures
in a reproducible and automated way.

6.6 Example Use Case

During the last years Eagle improved performance in handling and
calculation. We show these improvements be reproducing the results of
Schramm et al., . In this work we identified tumor and relapse specific
genetic variants using 16 neuroblastoma triples: tumor, relapse and normal
tissue for 16 different donors. Calling and analysis was done by a Exomate
(and its preprocessing pipeline) and results were filtered with a quality
threshold of 200 (false positive probability < 1072°) and a mean mapping
quality threshold of 40. We reprocessed the neuroblastoma raw data using
Ape and Eagle (using the same thresholds).

The first thing that we noticed is that we obtained much higher quality
scores. We assume that this is due to the fact that Ape employs group call-
ing, where where related samples are called together, leading to higher con-
fidence. As shown in figure 6.8, we detected 7026 genetic variants in our
reanalysis, while the original work describes 1104. 930 of these variants oc-
cur in both sets, 174 are exclusively represented in the original work and
6102 newly discovered variants, which appear due to the threshold being
smaller relative to the overall higher quality scores. Since we investigate
the difference between both systems, this intersection is not relevant to us.
We had a deeper look at the 174 missing variants to identify the reasons why
these were missing:

¢ We found that 92 of these variants are suppressed as their calling qual-
ity was below the threshold and 2 are suppressed as their mapping
quality was below the threshold. We call these variants low quality. In
principle these could be detected with lower thresholds.

* 47 variants were not only called in the expected samples, but also in
their associated control blood samples. The pipeline of exomate was
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O healthy exist

M low coverage

M not detected

O not target effect
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reanalysis
6096

(a) variant overlap of both analysis (b) type of undetected variants

FIGURE 6.8: (a): Number of exclusive variants found in the original analysis
(blue), our reanalysis (green) and common variants contained in both (yellow).
(b): The 174 undetected variants classified by reason of non detection.

not able to identify these. We were not able to find any evidence for
a miscalling and conclude that these are false positives of the original
work.

* Eagle is not yet configured to show mitochondrial variants, which
excludes 4 variants.

¢ Another 4 variants have had an effect assigned which was not selected
for the analysis (intergenic and downstream). An analysis with pa-
rameters where these effects were added to the selection detects them,
but also largely increase the number of additional (probably uninter-
esting) variants.

e Another 19 variants, all of them insertions, are not detected due to
low coverage for the alternative allele of 3 or less. We cannot exclude
the possibility that some of them might be undetected false negatives,
especially if coverage is low and the relative alternative allele high. 4
of these 19 are likely true negatives (noise / originally miscalled), due
to their coverage of about 120.

* Finally, 6 of the variants are undetected by Ape and Eagle for un-
known reasons.

Of all 174 undetected variants (low quality, different target effect and mito-
chondrial), 102 could be detected with different parameters or the inclusion
of the mitochondrial chromosome to the system. 47 of the 174 variants are
assumed to be false positives in the original work and the number of miss-
ing variants lies between 6 to 25, depending on the real genotype of the low
coverage variants. Figure 6.8 shows a visualization of these numbers. If we
include the numbers in the overlap, we summarize that there are at most
1104 — 47 = 1057 true positives in the original analysis and we are able to
find 930 + 92 + 4 + 4 = 1030 (97.4%) of the given variants. We conclude
that we were not only able to reproduce the main results, but also improve
them. Group calling and higher quality scores allow us to detect a much
higher number of genetic variants and detect false positives in the original
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work. It would be interesting to incorporate the new variants and reanalyze
the original study in cooperation with a geneticist.

6.7 Implementation

Eagle is implemented in Python 3, using scipy and numpy (Walt et al.,
) for all computationally demanding tasks. In particular, no custom
C extensions are required. The webserver and the graphical interface is

implemented with flask (Ronacher, ) and jinja2 (Ronacher, )
in combination with foundation (ZURB, Inc., ). Dynamic server-side
graphics are generated via matplotlib (Hunter, ), client-side graph-

ics by NVD3 (Novus Partners, ). We use the python provided 128
bit hash function SHAKE-128, which allows arbitrary output length (set to
32 bit) on the insertion sequence string to generate the insertion sequence
hash. The underlying HDF5 (The HDF Group, ) files are created,
modified and accessed by h5py (Collette, )-

The variant filtration operations described above are implemented with ap-
propriate numpy functions. For example, one step consists of generating a
common set of control variants by first concatenating variant keys from all
control samples (numpy .concatenate) and merging them into a set of
unique keys (numpy .unique). For sorted arrays containing unique ele-
ments, numpy . inld is used for membership testing.

6.8 Summary

In this chapter we present Eagle, a framework and graphical environ-
ment for interactive analysis of variant calls from exome sequencing data.
The system is specifically designed for intuitive interactive exploration and
quality control, reducing the otherwise required error-prone iterative com-
munication process between life scientists and computer scientists. In con-
trast to other tools, data is stored in sample-wise encapsulated (HDF5) files,
offering easy setup and maintenance without the requirement to setup and
configure a database backend, while achieving the same runtime complex-
ity for queries as relational databases.

Naturally, manually writing code for specific filter queries on HDF5 files
instead of using an object-relational database system comes with imple-
mentation overhead. However, note that the filtering needed here is of an
algebraic nature; the main operations are forming set unions and set dif-
ferences of variants, while applying filtration criteria on different levels at
the same time. Compared to what object-relational databases offer, this is a
very narrow use case that, in our opinion, does not justify the overhead of
setup and maintenance of a database system. Moreover, the extensive and
fine-grained control that a low-level storage like HDF5 offers allows for ad-
ditional optimization, which we strive to explore in future work. A unique
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feature of HDF5 is the ability to combine column-wise and row-wise stor-
age. This enables the optimization of the table structure to different access
patterns. Together with the numerous transparent compression filters of-
fered by HDF5, we plan to leverage this to further tune the practical perfor-
mance of Eagle. For example, for fast filtering, the variantkey column
(see Figure 6.6) can be stored as a single continuous block which can be
loaded in one operation without overhead. In contrast, when variants have
been filtered, only certain rows in the rest of the variants table have to be
accessed. Hence, it is reasonable to choose row-wise storage for everything
except the variantkey column.

We plan to further extend Eagle in the future, by, e.g., allowing to persist
query results and allowing to access them later both in the frontend and via
the library through an accession. Moreover, we will investigate the scaling
of Eagle to whole genome variant analysis and whole genome methylation
analysis.
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Chapter 7

Analysis of Interindividual
Methylation Pattern

In one of our studies, we investigated the differences between monocytes
and macrophages (Wallner et al., ) using the methods described in
the previous chapters. Two male donors each provided four different cell
types: Monocytes (MoCt), macrophages (MaCt), macrophages with E-LDL
(MaTe) or Ox-LDL (MaTo) (two different types of lipoproteins). We have
performed three analyses:

1. Monocytes vs. macrophages (MoCt vs. MaCt)
2. Macrophages vs. E-LDL macrophages (MaCt vs. MaTe)
3. E-LDL macrophages vs. Ox-LDL macrophages (MaTe vs. MaTo)

We processed all samples with mosquito (Chapter 5.3) and applied
bsmooth to all three groups. While we could not detect methylation
differences for MaCt vs. MaTo and MaCt vs. MaTe, we identified 114

DMRs between monocytes and macrophages (MoCt vs. MaCt).

A principal component analysis (PCA), shown in Figure 7.1 (a), of methyla-
tions levels of the 2-4 = 8 (donors - cell types) methylomes reveals not only
differences between cell types, but also between both donors. The PCA
shows greater differences for donors than for cell types, and we have in-
vestigated these interindividual methylation differences in a second study
(Schroder et al., ).

This work differs from most other epigenetic research because it deals with
differences between several individuals and not with differences between
two groups, as well as genetic information. In this chapter, we describe the
bioinformatics methods we have developed and the standard analysis steps
we have applied. These can be used directly or with slight adaptation to
any methylome analysis and are also applicable to normal DMRs between
groups.
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FIGURE 7.1: (a) Principal component analysis (PCA) of all methylation levels of
CpGs with coverage > 10 of four different cell tissues (monocytes, native
macrophages, Ox-LDL-loaded, and E-LDL-loaded macrophages symbolized by
different forms) from two different donors (green and blue). The figure shows
differences between monocytes and macrophages (top vs. bottom), as well as
(larger) individual differences between both donors (left vs. right). b) PCA of
monocyte methylomes obtained from DEEP (yellow), BLUEPRINT (blue) and
CEEHRC (green). The analysis shows institute-wide clustering, probably due to
different sequencing protocols and bioinformatic processing.

7.1 Detecting Interindividual DMRs

Usually, analyses of epigenetic data (such as methylomes in Wallner et al.,

) are performed on groups of several samples. Methods for methylome
comparison, including the DMR call of Came1 (Chapter 3.3), were therefore
developed for work with two groups. The identification and characteriza-
tion of DMRs between several individuals without biological replicas re-
quire different approaches and methods.

711 Methylome Data

The study was performed on the original monocyte methylomes from
two donors and additional monocytes from three donors, using a total of
five ungrouped and independent samples. Since an increased number of
samples significantly improved detection sensitivity, we considered adding
methylomes produced by other institutes within the IHEC (Stunnenberg
et al,, ). We rejected this idea because a PCA of four DEEP, two
BLUEPRINT and three CEEHRC methylomes retrieved from the IHEC
data portal (Bujold et al., ) showed clear institute-specific clustering as
shown in Figure 7.1. (b). This is probably due to differences in sequencing
and post-processing steps, which means that mixing methylomes from
different institutes can cause distortions.
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FIGURE 7.2: Creation of two synthetic (maximum and minimum) methylomes.
The maximum synthetic methylome (red) consists of the maximum methylation
concentrations of all samples for each CpG and the minimum values for the
minimum synthetic methylomE (blue). These methylomes are used as inputs for
the DMR calling.

7.1.2 Calling by Synthetic Methylomes

We processed the data regularly with Mosquito and determined the
methylation level for each sample. To call DMRs between independent
methylomes, we created two synthetic methylomes generated from the
five samples. One consists of the maximum, the other of the minimum
methylation level of each CpG, illustrated in Figure 7.2. These two syn-
thetic methylomes then serve as two groups (of one sample each) for a
DMR calling algorithm that supports groups of size one.

We applied the approach described in Chapter 3.3 and identified 157 in-
terindividual DMRs of at least 4 CpGs and a mean methylation level dif-
ference greater than 0.8. The DMRs comprise 1165 CpGs with a total size
range of 9-1,495 bp and 4-44 CpGs. Five of these DMRs have already been
reported by others: Two regions (DMR87 and DMR134) overlap with the
named hap-ASM-DMRs (Do et al., ), two DMRs contain a reported
SNP mQTL (DMR25 - rs6760544), Schalkwyk et al., ) and DMR104 -
rs11158727 (Gibbs et al., )) and a DMR contains a reported ASM-SNP
(DMR24 - rs1530562 (Paliwal et al., ).

Note that the described approach of detecting DMRs with synthetic methy-
lomes is only suitable for a small number of samples. If applied to a large
number of methylomes, outliers would increase the false-positive rate of
DMRs detected. This can be avoided by, for example, using the n-th lowest
and highest values.

7.1.3 Statistical Significance

We have developed a method to test DMRs for their statistical significance.
First, we calculate an empirical p-value by simulating 1000 sets of five sam-
ples from the null model that there is no methylation difference as follows:
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FIGURE 7.3: Visualization of the Hardy-Weinberg equilibrium. The distribution
of the genotypes depending on the allele frequency p (a) and the general
Punnett-Square (b) visually explaining the genotype frequency for two alleles.

Let n, . be the coverage and m; . the methylation count for observed sam-
ple s at CpG c. The average methylation level is given by

D M

p =
¢ ZS nsvc

for each CpG c. For each of the five samples s we simulate a correspond-
ing null sample o: We set the coverage of CpG c in sample o to n, . = ns .
and methylation counts M, . for each c are randomly chosen with binomial
probability

n _

Therefore, the coverage of each CpG in each simulated null sample is equal
to the coverage in corresponding observed samples, while differences in
methylation are caused only by the finite sample size. By definition, there
are no DMRs for the null samples and any DMR detected is a false positive.
We have applied our DMR detection algorithm to the null samples. The
algorithm did not detect DMRs in one of 1000 replicates, resulting in an
empirical p-value < 0.001 for each DMR. This general approach to statistical
significance can be applied to any DMR detection method because the null
model is independent of the method.

7.1.4 Missing DMRs

Our analysis is based on only five samples, and strict settings allowed us
to detect only DMRs that were homozygously methylated in at least one
individual and homozygously unmethylated in at least one other individ-
ual. We can estimate the number of undiscovered DMRs in the human
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population that meet the same criteria. Assuming that exactly one SNP
is responsible for the methylation state of a DMR and that the probabil-
ity of being causal is independent of its allele frequency, we conclude that
methylation states are related to genotypes of causal SNPs, and therefore
epigenetic genotypes equally follow the Hardy-Weinberg equilibrium.

The Hardy Weinberg Equilibrium. In case of a single locus with two
alleles A and B and allele frequencies f(A) = pand f(B) = ¢ =1—p,
the expected genotype frequencies are f(AA) = p* for AA homozygotes,
f(BB) = ¢* for BB homozygotes and f(AB) = 2pq for heterozygotes.
Figure 7.3 visualize the Hardy-Weinberg equilibrium.

Our approach and the chosen parameters are only able to detect DMRs if at
least one sample is fully methylated and there is no methylation for at least
another sample. To estimate the number of undetected DMRs, we calculate
the expected proportion of SNP positions without two different homozy-
gotes. This problem can be abstracted by a urns model containing spheres
in three different colors. Two types of spheres with the probabilities p? and
¢®> = (1 — p)? represent the two different homozygous SNP states and the
third type with the probability 2pq represents the heterozygous SNP state.
Applying the inclusion-exclusion principle to the complementary event,
the probability of obtaining such a position for n draws (samples) and p
allele frequency is

P(p,q) = (1 =p*)" + (1 = ¢*)" — (2pq)".

With ¢ = 1 — p the equation is reduced to

Pp)=1—-p)"+(1—(1-p)*"—(2p(1—p)"
=1 —p)"+ (=2p+p*)" — (2p — 2pH)".

Assuming that a DMR is directly connected to exactly one SNP, we con-
clude that we can detect a DMR if we can detect the corresponding SNP. In
general, for a given set of SNPs S and allele frequency p, for SNPs s € S
the expected SNP detection rate is given by

. Zses P(ps).

d= =S (7.1)

Since a DMR is connected to a single (random) SNP, we come to the con-
clusion that the detection rate of this DMR is d. Let D be the amount of
DMRs identified. Even if we cannot determine the set of all available DMRs
R O D, we can use the detection rate to estimate its size

L]
2

From over 300 Million publicly available SNPs from dbSNP (Sherry et al.,

|R)| (7.2)
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) v143 we keep those with MAF < 0.05 and calculate a common de-
tection rate of d = 0.23. Thus 77% of all existing common DMRs are unde-
tected in our study.

7.2 DMR Characteristics

After validation, we classify the detected DMRs using different statistical
values and metrics described below, which also serve as features for the
currently developed methylome system (see Section 6.8). Biological expla-
nations, interpretations, and hypotheses have been done by Elsa Leitao and
Bernhard Horsthemke and are left out on purpose.

721 CGI Overlap

Unexpectedly, 29/157 DMRs overlap a CpG island (CGI). These regions
with a high frequency of CpG sites stretches of DNA 500-1500 bp long and
have a observed-to-expected CpG ratio

number of CpG - length of sequence
number of C - number of G

greater 0.6 (Gardiner-Garden and Frommer, )- CGls are typically found
at promoters and contain the 5" end of the transcript (Cross and Bird, )
and are usually unmethylated and not affected by differential methylation.

In 24 of these CGI-DMRs all CpGs are within a CGI, in 4 cases there is a
partial overlap with at least 50% of the CpGs belonging to a CGI, and in one
case the CGI is within the DMR. In some cases, closely related DMRs affect
the same CGI, probably because the DMR recognition algorithm splits a
large DMR into two or more DMRs. A total of 19 CGIs overlap a DMR.
Most of these CGIs are orphaned CGIs, i.e., they are not associated with a
transcription start site (Illingworth et al., ).

7.2.2 Genomic Environment

We try to answer the question: Are interindividual DMRs typically sur-
rounded by a highly methylated background and the DMR itself is un-
methylated or vice versa. These different states are visualized in Figure 7.4.
We compare the mean degree of methylation of each DMR with that of the
flanking regions using all five encoders. To avoid uncertain DMR bound-
aries, we ignore three CpGs on both sides of each DMR and analyze the
following 10 CpGs upstream and downstream. We call these 10 CpGs right
flanking region and left flocculating regions. We observe that the mean de-
gree of methylation of our DMRs is 0.49, which is close to the expected
level of methylation when methylated and unmethylated alleles occur on
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FIGURE 7.4: Examples of DMRs identified with the two synthetic methylomes
(red and blue) with (a) low background methylation (7/157 DMRs) and (b) high
background methylation (107/157 DMRs) (c) different background methylation
on both sides of DMR (40/157 DMRs). Background methylation is measured on
10 CpGs flanking the upstream and downstream regions while ignoring 3 CpGs
directly adjacent to the DMRs.

average in the five donors with a similar frequency. In contrast, both up-
stream and downstream flanking regions show a significantly higher de-
gree of methylation at 0.72. The average of methylated and unmethylated
alleles in the five donors is similar. In fact, 107/157 DMRs (68.2%) have an
average methylation level lower than their two flanking regions (Figure 7.4)
(b)), while only 7/157 (4.5%) have higher methylation (Figure 7.4) (a)). In
40 (25.5%) DMRs, methylation is higher in one flank region and lower in
the other (Figure 7.4 (c)). For the remaining 3 DMRs, data is missing for one
of their flanks. Thus, in most cases a methylation valley results from a causal

genotype.

7.2.3 Chromatin States of the DMRs

Based on the combination of different histone marks in Hm03 and Hm05
monocytes, we applied with the help of ChromHMM (Ernst and Kellis,

), which segments a genome into 18 chromatin states (CS), and inves-
tigated whether certain chromatin states are over- or underrepresented in
our DMRs. To test this, we estimate empirical p-values by simulating as
follows:

1. Simulate 1 million datasets L, where [ € L consists of 157 regions
from non-repetitive segments of the DNA with similar distribution
size compared to our DMRs D and covers at least 4 CpGs.

2. Identify overlaps of CS of Hm03 with each DMR.
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FIGURE 7.5: (a) Absolute DMR differences of Hm03 and HmO05 separated for the
groups of DMRs with same and different chromatin states. (b) Expressions of
DMR related genes and not DMR related genes.

3. Identify overlaps of CS of Hm03 with each simulated region.

4. Compare the count of CS of the DMRs and each /

The empirical p-value for overrepresentation for chromatin state z is the
fraction of L that have a higher count for = than our DMRs and underrepre-
sentation the fraction of sets with a lower count. The analysis is performed
analogously on Hm05. We find that in both data sets the states 1_TssA, 5_Tx
and 17_ReprPCWk were underrepresented and that 16_ReprPC and 2_Tss-
Fink or 4_TssFInkD were overrepresented.

Furthermore, we divide the absolute methylation differences between
HmO03 and HmO5 into 1) a set for DMRs with different chromatin states
in both donors and 2) a set for DMRs with the same chromatin states. We
consider a state different for two donors when the cross between DMR and
overlapping chromatin states is empty. As shown in Figure 7.5 (a) There
are many DMRs with the same chromatin state in both donors that have
no difference in DNA methylation (absolute methylation difference < 0.1),
but there are very few DMRs with the same methylation with different
chromatin states. Relative frequencies of DMRs with different chromatin
states and methylation differences of 0.4 and 0.8 can be explained by
homozygosity for one state in one donor and heterozygosity for the other,
or homozygosity for opposite chromatin states. These results show that
there is a correlation between DNA methylation and chromatin state. The
significance test using the Wilcoxon-Rank sum test (Wilcoxon, ) gives
a p-value of about 0.000023.
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FIGURE 7.6: Two histograms of associated genes per DMR (left) and distance to
their TSS (right) generated by GREAT (color modified).

7.2.4 Location of DMRs and Putative Target Genes

We use the Genomic Regions Enrichment of Annotations Tool (GREAT)
(McLean et al.,, ) to predict DMR functions by analyzing the annota-
tions of nearby genes under species Assembly GRCh37 with whole genome
background and basal plus extension with standard parameters of 5 kilo-
bases upstream, 1 kilobase downstream and up to 1000 kilobases distal. The
identification of cis-regulating elements and their target genes by GREAT
shows that 155/157 DMRs are associated with at least one gene and that
in most cases they are far away (Figure 7.6). A total of 240 different genes
were identified. The expression levels of these genes do not differ from
those not associated with DMRs, with a p-value of 0.45 in the Wilcoxon-
Rank sum test. As shown in Figure 7.5 (b), there is no correlation between
differences in gene expression and differences in methylation in Hm03 and
HmO5. There was also no significant accumulation of GO conditions.

7.2.5 Methylation Level Distribution

A more detailed investigation shows that the CpGs of a particular sample
in these regions are either nearly unmethylated, fully methylated or about
50% methylated and 50% unmethylated. For semi-methylated samples that
we observe, most reads are either fully methylated or non-methylated and
rarely contain CpGs of both states. Figure 7.7 shows an exemplary region
with methylation data of the five donors at read level. We conclude that
methylation in these regions is likely to be allele-specific, with one of two
alleles methylated and the other non-methylated, and investigate this be-
low.

7.3 DMR-to-SNP correlation

Allele-specific DNA methylation indicates an inheritance mechanism.
Since methylation states are not directly inherited, we assume that this



108 Chapter 7. Analysis of Interindividual Methylation Pattern

zzzzzz

Fry O [ N [ PR N 1A O ([ S T 1]
i i

FIGURE 7.7: IGV screenshot of a detected interindividual DMR. Each of the five
separated rows shows reads (bars) for one of the donors with methylated (red)
and unmethylated (blue) CpGs.

type of methylation is probably caused by inherited single nucleotide poly-
morphisms (SNPs) near the differentially methylated region and therefore
depends on the genotype. To prove this hypothesis, we genotyped the five
donors with the 2.5 million SNPs Omni2.5Exome Bead Array produced by
[Nlumina.

To identify a correlation between SNPs and methylation states, we have
developed a correlation value. As mentioned above, we expected and ob-
served allele-specific methylation levels close to 0.0, close to 1.0, or about
0.5. We assume three possible classes: fully-methylated (both alleles methy-
lated), halmethylated (one of the two alleles methylated) and unmethylated
(both alleles unmethylated) for this epigenetic genotype. To compare these
epigenotypes with SNP genotypes, we need to classify the degree of methy-
lation of each sample for each DMR. Due to inaccurate DMR boundaries,
limited sequence coverage, and noise, measurements may deviate from
this expectation. We avoid fixed thresholds for class allocation by calcu-
lating the posterior probabilities of mean DMR methylation levels falling
into each of the classes as follows. We consider the empirical distribution
(histogram) of 157 - 5 = 768 (#DMRs - #samples) core methylation level
wi(d) (see Chapter 3.3) of each sample i and DMR d containing data from
all three classes. This empirical distribution can be broken down into a
three-component mixture of beta distributions (see Section 4). We used the
betamix software to robustly fit a three-component beta-mix model to the
observed histogram of nuclear methylation values. This is shown in Figure
7.8.

Let aj and Bj; be the beta distribution parameters for beta distribution
B, p(z) and 7, the mixture coefficient of component k € {AA, AB, BB}
after fitting. For a single sample, DMR with core methylation level 1 and
SNP genotype g € {AA, AB, BB}, the posterior probability of g given p is
given by
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FIGURE 7.8: Exemplary visualization of the assignment of a correlation value for
each DMR within a certain range (here 6kb). Each line represents a string from
one of five samples. For each sample, methylation for DMR is represented as the
ratio of methylated (red) to unmethylated (blue) CpGs. The genotypes of the
SNPs considered are homozygous (blue), heterozygous (green) or homozygous
for the alternative base (yellow). The two best correlation values (marked red)
form an SNP group.
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FIGURE 7.9: Histogram of the 768 nuclear methylation values, adapted to three
beta distributions, showing the three different states full- (green), halb- (red) and
unmethylated (purple).
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L(g.p) = =2 Bay s, (1)
’ >k Tk Bay,8, (1)

Furthermore let ¢;(s) € {AA, AB, BB} be the genotype and p;(d) the core
methylation for a DMR d, sample ¢ and SNP s. The posterior probability

score(s,d) = [ L(gi(s), mi(d)).

samples %

is given by the product of the single posterior probabilities over all samples.
We use this posterior probability as a score to assess whether d and s are
co-varying. Scores are calculated for each DMR and SNP within a range
of +6 kb of the DMR’s location. For n = 5 samples, we used a SNP-to-
SNP correlation of 0.9 obtained from the HaploReg database (Ward and
Kellis, ) as threshold to call a SNP correlated to a DMR. 82/157 (52%)
of the DMRs have a methylation level that is correlated with the genotype
of at least one nearby SNP. In 21/157 DMRs that SNP is located within the
corresponding DMR and in 18/157 its location is in the distance < 200 bp
from the corresponding DMR border.

7.4 Representative SNPs

Results such as those described above must be verified experimentally. We
have developed an approach for the SNPs that need to be verified for our
DMR/SNP correlation.

Genotypes of two SNPs often correlate up to a perfect correlation of 1.0.
This phenomenon is described by the so-called binding imbalance (LD),
a non-random association of alleles at different sites in a given population
(Slatkin, ). Loci are said to be in linkage disequilibrium if the frequency
of association of their different alleles is higher or lower than expected if
the loci were independently and randomly associated. LD is influenced by
many factors, including selection, recombination rate, mutation rate, ge-
netic drift, mating system, population structure, and genetic linkage. The
verification of an SNP indirectly verifies all correlated SNPs of the same LD.
In order to minimize the number of SNPs to be verified (and the verification
costs), we first formulate the situation as a dominant set problem.

Dominating Set Problem In graph theory, a dominanting set for a graph
G = (V,E) is a subset D C V, so that any node not contained in D is
adjacent to at least one element of D. The minimum dominating set (MDS)
problem is to find the smallest dominant set. Figure 7.10 shows three
different dominating sets for the same graph. The problem is NP-complete
(McDonald, ), but there is an approximation algorithm, e.g. as part of
the Python graph framework NetworkX (Hagberg et al., )-
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FIGURE 7.10: Illustration of the minimum dominant set problem. The same
diagram is shown three times (left), each with a different dominating set (green).
The dominant sets on the second and third position are minimal since there is no
smaller dominant set than size two. The right graph shows the same example
with annotation as it would be constructed from the DMR correlation and the
HapMap data. Each node named by a rsid represents an SNP with DMR
correlation. Each edge represents an existing SNP to SNP genotype correlation
and is provided with this coefficient.

We'll create a graph based on SNP to SNP genotype correlations obtained
from HapMap - publicly available precalculated LD information with corre-
lation coefficients provided by the The International HapMap Project. (Inter-
national HapMap Consortium, )-

For each set of SNPs S and DMR d selected for verification, we add a v,
node for each s € S. An edge (v, , vs, ) exists between two nodes if and only
if the genotype correlation between s and s, is above a selected threshold,
e.g. > 0.8. The goal is to select the minimum set of representatives so that
every second s € S is correlated with at least one representative. The MDS
solution of this graph provides a minimum number of SNPs that must be
verified by targeted sequencing and that also indirectly verify S. To solve
this problem we used the approximation algorithm of NetworkX, which is
an implementation of an algorithm of Vazirani ( ). The approximation
algorithm always led to a correct MDS solution for our small graphs. An-
other way to solve the MDS is an ILP with the indicator variables

in 0,1

for each node and a sum that ensures that the node itself or one of its neigh-
bors is selected. The target function to be minimized is then the sum of the
indicator variables. We finally decided to check all SNPs instead, but the
idea might still be useful in future studies.

7.5 Whole Genome Association

A correlation analysis based on five monocytes leads to a low level of evi-
dence. The Heinz Nixdorf Recall Study (Erbel et al., ) provided us with
450k and SNP array data from 1131 donors to increase the significance of
the study. The tissue of these samples was blood (whole blood) consisting
of mixed cell types. The table 7.1 shows the distribution of different cell
types in whole blood tissue. We used isolated monocytes for our analysis,
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Name cells per pl blood percentage
Erythrocytes 4.5 - 5.5 Mio. ~ 94%
Leucocytes 4.000 - 11.000 ~ 0.1%

|- Granulocytes

| |- Neutrophiles 2.500 - 7.500 ~ 0.09%

| |- Eosinophiles 40 - 400 ~ 0.004%

| |- Vasophiles 10 - 100 ~ 0.001 %
|- Lymphocytes 1.500 - 3.500 ~ 0.05 %
|- Monocytes 200 - 800 ~0.01 %
Thrombocytes 300000 ~ 5%

TABLE 7.1: The distribution of different cell types in whole blood tissue.

which make up only a small part (about 0.01%) of the whole blood and
our detected DMRs may be monocyte exclusive and may not occur in this
tissue.

We investigate the possibility of using whole blood material provided. A
correlation coefficient of > 0.9 for the correlation of methylation data of
pure monocytes of six donors with their whole blood samples proofs that
we can. Figure 7.11 shows this correlation for each of the six donors.

450k methylation arrays cover the status of 485,764 CpG of the 30 million
CpGs of the human genome. Our goal is to indirectly correlate our DMRs
with SNPs by selecting single 450k CpGs that represent a complete DMR.
After using RnBeads (Assenov et al., ) for normalization by SWAN
(Maksimovic et al., ) and exporting the CpG beta values for all 1131
donors, we select representative CpGs by searching for DMRs that overlap
450k CpG probes. Only 51 CpGs overlap with one DMR and 30/157 (19%)
DMRs contain at least one 450k CpG. One implication of this is that 450k
arrays miss a large part of the DNA methylation variation and are not capa-
ble of recognizing (short) interindividual DMRs. Even when a differential
analysis is performed on individual CpGs, only a fraction of about 20% of
the DMRs present is obtained at maximum. The degree of methylation of
the covered CpGs serves as a representative for whole DMRs. Figure 7.12
shows histograms of six examples of such CpGs. We observe the similar
multi-beta distribution of methylation for most of the representative CpGs,
which is an expected result. Instead of the mean DMR methylation, we
want to correlate the methylation values for each representative with the
genotypes of SNPs.

The SNP array data were generated with three different SNP array types:
Omnil_Quad_v1 (334 subjects), OmniExpress_12v1.0 (627 subjects) and Om-
niExpress_12v1.1 (170 subjects). We filter each array separately by removing
SNPs that did not pass the Hardy-Weinberg test at a significance limit of
0.001, a small allele frequency of less than 0.01, or a missing rate of more
than 0.1 reported by plink v1.07 (Purcell et al., ). Because each ar-
ray type covers different SNPs, we merge the arrays by plink and filter
(again with plink) using the parameters described above. The final set

contains 600,000 SNPs with data from each array serving as genotypes for
the GWASs.
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FIGURE 7.11: Scatterplot of methylation in monocytes and whole blood. Each dot
represents one of our detected DMRs. The x-value of each dot represents the
mean methylation of the DMR in the monocytes cell type; the y-value the mean
methylation in whole-blood for the same donor. Additionally the correlation
coefficient (pearsons r) for each donor is annotated.
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FIGURE 7.12: Six example histograms of different shapes generated from 1131
(450k) methylation values in six selected single CpG. The subcaption of the six
plots refer to the chromosomal position of the CpG.

We perform 51 whole genome association studies (GWAS) for each of the
51 selected CpGs for each available SNP, based on the methylation and
genotype values of the 1131 donors. Methylation and genotype values are
not necessarily normally distributed. We, therefore, apply the Spearman
test (McDonald, ) and set the p-value threshold to the standard for
Common-Variant GWAS of 5 x 10~%(Fadista et al., ).

As expected, in 47 /51 cases we can observe correlating SNPs near the CpG
position. Figure 7.13 shows Manhattan plots of six selected examples of this
Spearman correlation. The SNP with the highest correlation value for each
CpG cis called lead SNP L.. It has the highest probability of causing the
DMR methylation differences. For the CpG in DMR94 on chromosome 12,
there is a correlation peak at the CpG position (p = 1.59 x 1071%), but the
lead SNP is on chromosome 19 (p = 1.40 x 10~41).

DMR53 and DMR94 (not shown) are two special cases, where, the DMR
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FIGURE 7.13: Manhattan plots of six exemplary CpG-to-SNP correlations of a total
of 51 association tests. Each plot shows a complete genome association study for
the representative CpG methylation value of a single DMR on 600,000 SNPs. Each
point in each plot represents a single CpG-fo-SNP correlation with the x
coordinate as the genomic position and their coordinate of the Phred-scaled
p-value of the Spearman correlation. The test is performed on SNP genotypes and
methylation values of 1131 sample pairs from the Heinz-Nixdorf study. The
vertical dashed line in each plot shows the DMR position. Chromosomes are
alternately colored black and orange. The correlation peak, the lead SNP, is
directly adjacent to the CpG position and shows that there is almost one SNP
responsible for the methylation state of an entire region (the DMR).
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FIGURE 7.14: Six examples of the imputed regions. Each dot represents the same
information as in figure 7.13

chromosome and the lead SNP chromosome differ. In these cases, we can-
not find any evidence of misannotation or cross-hybridization of the array
probes. Besides, we find that these lead SNPs overlap with genes coding for
KRAB zinc finger transcription factors (ZNF573 for lead SNP of DMR9%4,
ZNF92 for lead SNP of DMR53). Extremely low p-values at ZNF573 and
ZNF92 indicate a trans-active effect .

Since our uniform SNP dataset M consists of only 600,000 SNPs due to the
merge process, we compensate for missing information by assigning the
dataset of SNPs as follows. For each CpG, a window is selected so that
all significantly correlated SNPs and the CpGs are in that window, with a
maximum window size of IMbp. We use impute2 (Howie et al., ) to
calculate genotype information from each SNP s ¢ M in this window. This

!gene superposition and interpretation by Bernhard Horsthemke and Elsa Leitao
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process makes use of SNP-to-SNP correlation information from HapMap to
estimate the most likely genotype of s. Manhattan plots of the imputed
regions (Figure 7.14) do not share a common pattern of significantly corre-
lated SNPs to the CpG.

TFBS In and Around the DMRs

We analyze whether lead SNPs and highly correlated SNPs (total n = 501)
can influence the binding sites for transcription factors (TFBS). The analysis
of SNP annotation data from the database HaploReg showed that 23% of
known protein binding events (Encode ChIPseq data, Landt et al., )
occur within our DMRs or <100 bp away (Fig. S14). The remaining events
occur over a region £57 kb away from the DMRs. The five best proteins
that bind to DMR or in close proximity (<100 bp) are CTCE, CMYC, CEBPB,
RAD21, and SMC3.

The TRANSFAC (Matys et al., ) Analysis showed that SNP regions are
enriched for CREB group, NF-1, Sp100, and CTCF binding motifs, and fur-
ther analysis of their HaploReg database notes revealed that most of them
are likely to change regulatory motifs.

7.6 Summary

This chapter mainly shows methods for the detection and analysis of novel
regions with common interindividual DNA methylation differences in hu-
man monocytes. Our study supports the observation that genetic variations
in cis can cause allelic DNA methylation differences. While some parts,
such as the detection of DMRs, require special treatment (i.e., the produc-
tion of synthetic methylomes), most annotations and discoveries are univer-
sally applicable to all DMR discoveries. Therefore, this chapter also serves
as a blueprint for future analyses where an automated pipeline performs
these or similar annotations. A graphical system (currently under develop-
ment) based on the Eagle structure can provide annotations to any given
or generated list of DMRs.
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Chapter 8

Conclusion

In this work, we presented methods to manage all phases of methylome
generation and analysis. In Chapter 2 we offer a way to improve sequenc-
ing protocols by sequencing subsamples and estimating the duplication
rate for samples with higher coverage, one of the most important qual-
ity parameters for NGS data. We explained the general approach of wild-
card and three-letter aligners for dealing with bisulfite converted sequenc-
ing data and presented in Chapter 3 camel, a resource-conserving tool for
performing methylation calls and downstream methylome analyses. In
Chapter 4 we have developed an alternative for the EM algorithm, the
iterated method of moments, which is capable of robustly processing data
points of 0 and 1 for the special case of beta distributions. This allows us
to adapt the parameters of beta mixture models to a distribution of mea-
sured methylation levels where these values are widespread. Chapter 5
provides two workflows, both based on the workflow management sys-
tem Snakemake. Ape can perform all necessary steps to call variants from
reads, that are located in specific target regions (e.g., the exome). The more
complex moquito handles WGBS data with an increased amount of data
that can even be sequenced across multiple tracks. Variants of ape can be
used by variant analysis systems, such as eagle, which we introduced in
Chapter 6. Finally, in Chapter 7 we provided a method to detect interindi-
vidual methylation between multiple donors, and used the methods of the
previous chapters to perform a downstream analysis of the found DMRs
and their variants.

8.1 Open Problems And Ideas

8.1.1 Duplication Detection

Neural networks are an alternative to the method presented for predict-
ing the duplication rate (Chapter 2). We can encode a document vector
and an upsampling rate as an input to get a single output value, which
should be possible with Multilayer Perceptron (MLP). If we use many lay-
ers for the network, we are in the area of deep learning (DL), which has
recently shown superior performance in several bioinformatics tasks such
as medical imaging (Suzuki, ), prediction of gene expression from his-
tone modifications (Singh et al., ) or sequence specificities of DNA and
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RNA binding proteins (Lanchantin et al., ). Training data can be ob-
tained by downsampling artificial or real data and different rates.

8.1.2 Remove Incompletly Converted Reads

A problem with WGBS are fragments that are not affected by bisulfite,
which causes noise and a tendency for increased methylation values. These
values can be identified by searching for unconverted cytosines outside the
CpG context, where cytosine is expected to be unmethylated. This in turn
can be implemented in the methylation level call, e.g. by camel. (Chap-
ter 3.2). Another way is to add one additional step after the read-alignment,
set the Quality-Control-fail (QC flag) flag in those that display such unex-
pectedly unconverted cytosines, and ignore the reads marked with this flag
when calling methylation. This approach is less complicated because the
reads of the same fragment are already paired. In both cases, any methy-
lated cytosine outside a CpG context on one of the two reads indicates con-
version problems. Also, sequencing errors can also lead to these cytosines.
This must be taken into account, for example by using the base quality.

8.1.3 DMR Detection

Many different approaches for DMRs detection have been developed:

* ODMR (Zhang et al., )

e pbumphunter (Jaffe et al., )

¢ bsmooth (Hansen et al., )

® CpG_MPs (Suetal., )

* MethylPurify (Zhengetal., )
e ComMet (Saito et al., )

¢ swDMR (Wang et al.,, )

® DSS-single (Wuetal, )

® GetisDMR (Wenetal., )

e MethylAction (Bhasin et al., )
* metilene (Jithlingetal,, )

We recently applied bsmooth and metilene to two different sperm
methylomes (unpublished) and found that the DMRs returned by both
tools did not overlap. We also discover that the regions identified by
bsmooth are smaller than those of metilene. Selected DMRs from both
sets could be verified experimentally, and finally, we assume that both
tools provide true positive and false negative results (low sensitivity). A
comparison of all available DMR detection tools to identify their specific
properties, e.g., DMR length, shapes or boundaries (see Chapter 3.3),
detection rate and p-values. It would be advantageous for such a study to
simulate DMRs of different length and shape between a variable number
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of methylomes. Previous work, e.g., (Wang et al,, ), implement a
simple DMR simulation based on a bimodal distribution and compare their
obtained regions with those of two other tools (ComMet and CpG_MPs).
Again, each of the three applied tools identifies regions with unique
properties and many of them are exclusive. A comprehensive and fair
study with all tools requires a realistic model. To simulate a methylome,
a simulator must take into account the following: CpG methylation dis-
tribution that can follow a 3-component beta distribution (see Chapter 7),
dependence on neighboring CpGs and noise from biological variance
and finite sample size (coverage). The idea is to use the high-quality
WGBS samples produced by DEEP to estimate all parameters of these
distributions. In a second step, we apply all available DMR detection
tools and create a common set of DMRs D and create a DMR simulation
model by estimating parameters such as the length and shape of all DMRs
captured. We then simulate biological replicas of any coverage, including
DMRs (with different parameters), to validate and compare the tools and
identify possible detection properties and problems.

Another idea is to train a convolutional neural network (CNN) to detect
differentially methylated CpGs. The network is trained either on CpGs that
are covered by D and receive a generalized method that covers all other ap-
proaches or on simulated DMRs to obtain an algorithm that is independent
of other tools. CNNs are specifically used to detect patterns in matrices,
such as images, and a similar approach has recently been used to identify
SNPs (Poplin et al., ). The basic idea is to decode all relevant informa-
tion, such as bases, distances, and neighborhood of each CpG, through nor-
malized matrices. A trained network can then recognize a DMC not only
from the CpG pileup but also from its context through a sliding window.
Continuous DMCs then build DMRs.

8.1.4 Methylation-to-SNP Correlation

Other studies may also be influenced by the p-values of the methylation
to SNP genotype Spearman correlations described in Chapter 7.3. We are
currently designing a database containing p-values for all 600,000 SNPs
and approximately 500,000 methylation levels of the 450k array and 1131
donors. The use of 32bit floats would result in 600, 000 - 500, 000 - 32 bit =
1.2 TB p-values. By calculating only correlations between methylation and
genotype probes of the same chromosome, we would drastically reduce
the number of p-values. We also miss interesting correlations where SNPs
influence the degree of methylation on different chromosomes. Another
possibility is to calculate all values but store only those below the general
GWAS threshold. In both cases, it is possible to store the homogeneous data
in hdf5. A graphical interface can then be used to enter DMRs and return
associated (ranges of) SNPs or vice versa. It may be necessary to include
an SNP imputation algorithm that covers all available SNPs. Furthermore,
we want to investigate whether correlated SNPs located on different chro-
mosomes are always located within regions associated with methylation
regulation.
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Chapter 9

Appendix

9.1 Contribution to co-authored articles

Results in this work were obtained in collaboration with other researchers.
As advisor Sven Rahmann supports in all phases of research.

Chapter 2 is based on my conference talk on the German Conference on Bioin-
formatics 2015 and is published as proceedings:

Christopher Schroder and Sven Rahmann (2015). “Efficient dupli-
cate rate estimation from subsamples of sequencing libraries”. Peer]
PrePrints. DOI:

I developed the family size reduction by hypergeometric distributions and
the core LP to estimate the supersample duplication rate and evaluation
and comparison to other tools. Sven Rahmann developed the extension for
estimating the 95% quantiles and the maximum k. All writings and figures
has been done by Sven Rahmnann and me.

The method parameter estimation of beta mixtures (Chapter 4) bases on

Christopher Schroder and Sven Rahmann (Aug. 2017). “A hybrid pa-
rameter estimation algorithm for beta mixtures and applications to
methylation state classification”. Algorithms for Molecular Biology 12, 21—
33. DOL:

and has been equally developed by Sven Rahmann and me. He performed
the parameter estimation evaluation and did most of the writings. I per-
formed the component estimation evaluation and the implementation of
the core algorithm and stop criterion and submitted it to Bioconda for

Bjorn Griining, Ryan Dale, Andreas Sjodin, Jillian Rowe, Brad A. Chap-
man, Christopher H. Tomkins-Tinch, Renan Valieris, The Bioconda
Team, and Johannes Koster (Oct. 2017). “Bioconda: A sustainable and
comprehensive software distribution for the life sciences”. bioRxiv,
207092. DOTI:

as part of the Bioconda Team.

I implemented the system core and most of the features of Eagle described
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https://doi.org/10.1186/s13015-017-0112-1
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in Chapter 6. Some graphical representations in Eagle were implemented
by Christoph Stahl and Sebastian Venier and structural variants as well as
loss of heterozygosity by Felix Molder. The purity calculation is based on
an implementation by Johannes Koster, who also contributed written mate-
rial, as well as Felix Molder and Till Hartmann. A publication of Eagle is
currently in revision with and the evaluation has been performed in com-
parison to results of

Alexander Schramm, Johannes Koster, Yassen Assenov, Kristina Al-
thoff, Martin Peifer, Ellen Mahlow, Andrea Odersky, Daniela Beisser,
Corinna Ernst, Anton G. Henssen, Harald Stephan, Christopher
Schroder, Lukas Heukamp, Anne Engesser, Yvonne Kahlert, Jessica
Theissen, Barbara Hero, Frederik Roels, Janine Altmuiiller, Peter Niirn-
berg, Kathy Astrahantseff, Christian Gloeckner, Katleen De Preter,
Christoph Plass, Sangkyun Lee, Holger N. Lode, Kai-Oliver Henrich,
Moritz Gartlgruber, Frank Speleman, Peter Schmezer, Frank Wester-
mann, Sven Rahmann, Matthias Fischer, Angelika Eggert, and Johannes
H. Schulte (Aug. 2015). “Mutational dynamics between primary and
relapse neuroblastomas”. eng. Nature Genetics 47.8, 872-877. DOTI:

where I analyzed the 450k methylation arrays.

I implemented both pipelines (ape and mosquito) described in Chapter 5
and I processed the exome data of

Matthias Begemann, Faisal I Rezwan, Jasmin Beygo, Louise E
Docherty, Julia Kolarova, Christopher Schroeder, Karin Buiting, Kamal
Chokkalingam, Franziska Degenhardt, Emma L Wakeling, Stephanie
Kleinle, Daniela Gonzalez Fassrainer, Barbara Oehl-Jaschkowitz, Claire
L S Turner, Michal Patalan, Maria Gizewska, Gerhard Binder, Can Thi
Bich Ngoc, Vu Chi Dung, Sarju G Mehta, Gareth Baynam, Julian P
Hamilton-Shield, Sara Aljareh, Oluwakemi Lokulo-Sodipe, Rachel Hor-
ton, Reiner Siebert, Miriam Elbracht, Isabel Karen Temple, Thomas Eg-
germann, and Deborah ] G Mackay (July 2018). “Maternal variants in
NLRP and other maternal effect proteins are associated with multilocus
imprinting disturbance in offspring”. Journal of Medical Genetics 55.7,
497-504. DOLI:

by Ape and provided them in Eagle.

Chapter 7 is based on the publication

Christopher Schroder, Elsa Leitdo, Stefan Wallner, Gerd Schmitz,
Ludger Klein-Hitpass, Anupam Sinha, Karl-Heinz Jockel, Stefanie
Heilmann-Heimbach, Per Hoffmann, Markus M. Nothen, Michael Stef-
fens, Peter Ebert, Sven Rahmann, and Bernhard Horsthemke (July
2017). “Regions of common inter-individual DNA methylation differ-
ences in human monocytes: genetic basis and potential function”. Epi-
genetics & Chromatin 10, 37-55. DOTI:
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which itself emerged from an observation in

Stefan Wallner, Christopher Schroder, Elsa Leitdao, Tea Berulava, Clau-
dia Haak, Daniela Beifser, Sven Rahmann, Andreas S. Richter, Thomas
Manke, Ulrike Bonisch, Laura Arrigoni, Sebastian Frohler, Filippos
Klironomos, Wei Chen, Nikolaus Rajewsky, Fabian Miiller, Peter Ebert,
Thomas Lengauer, Matthias Barann, Philip Rosenstiel, Gilles Gas-
paroni, Karl Nordstrom, Jorn Walter, Benedikt Brors, Gideon Zip-
prich, Barbel Felder, Ludger Klein-Hitpass, Corinna Attenberger, Gerd
Schmitz, and Bernhard Horsthemke (2016). “Epigenetic dynamics of
monocyte-to-macrophage differentiation”. ENG. Epigenetics & Chro-
matin 9, 33-50. DOIL:

I processed that methylation data via mosquito and performed the bioin-
formatic analysis for both publication.

The following publications did not contribute directly to this work, but they
did give me an insight into biological processes and helped me to expand
my bioinformatics skills.

Katrin Rademacher, Christopher Schroder, Deniz Kanber, Ludger
Klein-Hitpass, Stefan Wallner, Michael Zeschnigk, and Bernhard Hors-
themke (July 2014). “Evolutionary Origin and Methylation Status of
Human Intronic CpG Islands that Are Not Present in Mouse”. Genome
Biology and Evolution 6.7, 1579-1588. DOI:

Christopher Schroder, Nina Hesse, Johannes Koster, and Sven Rah-
mann (2016b). Methods for discovering differentially methylated regions from
whole genome bisulfite sequencing data (and keeping track of the process).
GMDS Workshop: From Biomedical Informatics to Medical Bioinfor-
matics and back HEC, Miinchen

Christopher Schroder, Johannes Koster, and Sven Rahmann (2016a). In-
teractivity vs. Reproducibility in High-Throughput Data Analysis. German
Bioinformatics Core Units Workshop, BIH, GCB Satellite, Berlin

Christopher Schroder and Sven Rahmann (2014). Efficient duplicate rate
estimation from subsamples of sequencing libraries. German Conference on
Bioinformatics, Dortmund

Nina Hesse, Christopher Schroder, and Sven Rahmann (2014). An op-
timization approach to detect differentially methylated regions from Whole
Genome Bisulfite Sequencing data. German Conference on Bioinformat-
ics, Dortmund

Leitdo Elsa, Stefan Wallner, Christopher Schroder, Gerd Schmitz,
and Bernhard Horsthemke (2014). Epigenetic dynamics of monocyte to
macrophage differentiation. Gesellschaft fiir Humangenetik, Liibeck
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9.2 Data

Data used in each chapters is available at the corresponding puplications.
The DMRs for the comparions in Section 3.6 has been made public under:


https://bitbucket.org/christopherschroeder/disseration_daten
https://bitbucket.org/christopherschroeder/disseration_daten
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