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Zusammenfassung

Die vorliegende Dissertation behandelt den Ein�uss neuer Physik auf die Messungen aktueller

Neutrino-Oszillations-Experimente. Insbesondere wird eine neue modellunabhängige Metho-

de zur Analyse der CP-Verletzung in Neutrino Oszillationen entwickelt, die auf Unitaritäts-

Argumenten beruht. Es wird gezeigt, dass aktuelle Experimente wie T2K oder NOvA in der

Lage sind, den Parameter-Bereich für viele Modelle stark einzuschränken. Durch Einbeziehen

der Materie-E�ekte in diese neue Methode ergeben sich zahlreiche Herausforderungen, die tief-

gehender behandelt werden. Außerdem wird der Ein�uss eines leichten sterilen Neutrinos auf

die Bestimmung der Massen-Hierarchie beim JUNO Experiment untersucht. Zusätzlich wird

das erste stringente Modell entwickelt, das alle aktuellen Anomalien im Neutrino Bereich er-

klären kann und gleichzeitig konsistent ist mit Messungen von atmosphärischen Neutrinos

und Neutrinos aus Beschleuniger-Experimenten.





Abstract

In this thesis we explore several new physics models and their implications on current neu-

trino oscillation experiments. In particular we develop a novel model-independent method to

analyze the CP violation in neutrino oscillations, based on the unitarity constraints for the lep-

tonic mixing matrix. We can show that current experiments like T2K or NOvA have su�cient

sensitivity to restrict new physics models signi�cantly. The inclusion of matter e�ects into

this new approach leads to new challenges, that are studied in more detail. Additionally we

analyzes the impact of a light sterile neutrino on the determination of the mass hierarchy at the

JUNO experiment. We also propose the �rst stringent model that can explain all current neu-

trino oscillation anomalies and is consistent with atmospheric and accelerator based neutrino

experiments.
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Part I.

Introduction
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1. Overview

This thesis is structured as follows. In part I we give an introduction to the current status

in neutrino physics including a brief historical overview and a conclusive introduction to the

Standard Model of particle physics (SM) with a focus on neutrino physics.

Part II is based on the work done in [1] and deals with a new proposed method to analyze

neutrino oscillations. We introduce a model independent method to describe neutrino oscilla-

tions, followed by analytic predictions for the newly introduced CP violating amplitudes and a

numerical analysis in Chapter including an analysis for di�erent experimental setups based on

the GLoBES package. We also includes matter e�ects into the new approach and a point out

the arising challenges.

In Part III the method of the JUNO experiment to determine the mass ordering is presented,

and we show the impact of a light sterile neutrino on this determination.

Part IV of this thesis is based on [2] and introduces a speci�c model with additional sterile

neutrinos and altered dispersion relations which can consequently explain all current experi-

mental neutrino anomalies.

In Part V we conclude with a short summary and an outlook for possible further studies.
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2. Historical Introduction

The history of neutrino physics begins with the measurement of the electron energy spectrum

in nuclear β-decay. The energy spectrum turned out to be continuous in contrast to the discrete

spectrum ofα and γ decays. In a simple 1→ 2 reaction, where the neutron decays into a proton

and an electron, a discrete spectrum is expected due to energy conservation and the huge mass

di�erence of proton and electron. The measurement of a continuous β decay spectrum could

not be explained in that framework and resulted in two di�erent theoretical approaches. Niels

Bohr stated the assumption that energy conservation does not hold in the β decay processes,

while Wolfgang Pauli introduced a neutral yet undiscovered particle.

In his famous letter from 1930 to the “Gruppe der Radioaktiven” in Tübingen Pauli �rst sug-

gested this light and weakly interacting particle (then called neutron). From today’s perspective

the prediction of a new particle seems rather straightforward compared to abolishing energy

conservation, but in 1930 Pauli was still very cautious about his claim, did not even publish his

idea but wrote in the aforementioned letter:

“Ich gebe zu, dass mein Ausweg vielleicht von vornherein wenig wahrscheinlich erscheinen mag,
weil man die Neutronen, wenn sie existieren, wohl längst gesehen hätte. Aber nur wer wagt,
gewinnt [. . . ] Darum soll man jeden Weg zur Rettung ernstlich diskutieren.” [3]

Pauli was aware that his newly introduced particle was not the most appealing due to the

lack of any experimental evidence. Since the neutrino had to be light compared to the electron,

electrically neutral and had to have a tiny interaction rate with normal matter, a direct detection

was experimentally challenging [4].

The experimental solution came up by using a �ssion reactor power plant instead of simple

radioactive materials. Due to the enormous number of decays in the power plant, the tiny

interaction rate is compensated by the number of produced antineutrinos. Those antineutrinos

were detected directly via an inverse β- decay in 1956 [5] and therefore provided evidence for

Pauli’s claim of a new neutral particle. The Nobel Prize was awarded to Frederick Reines for

this discovery almost 40 years later in 1995.

Using the Alternating Gradient Synchrotron in Brookhaven, it was possible to prove the

existence of a second �avor of neutrino. The synchrotron accelerated protons, which were

dumped into a target to produce pions, which in turn decayed into muons and neutrinos. It

was shown in [6], that these neutrinos did in turn produce only muons in the detector but no

electrons. Leon M. Lederman, Melvin Schwartz and Jack Steinberger won the Nobel prize for

the discovery of the muon neutrino in 1988.

Since the doublet structure of the leptons was established with the discovery of muon and

electron neutrino, it was expected that the tau lepton, also called tauon, has a corresponding
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partner - the tau neutrino - which was eventually discovered in 2000 by the DONUT collabora-

tion [7]. The collaboration also used a proton beam dump experiment like in the discovery of

the muon neutrino, but used a much higher proton energy of 600 GeV to produce Ds-mesons

instead of pions, which also decay into tauon and tau neutrino.

Apart from direct detection, the discovery of neutrino oscillations is a major breakthrough

in neutrino physics. This conversion from one neutrino �avor to another is evidence of non

zero masses of neutrinos and will be discussed in detail in chapter 3.2. The starting point for

discovering neutrino oscillations is the signi�cant de�cit of electron neutrinos coming from

the sun known as the solar neutrino problem: The Homestake experiment [8] was the �rst to

measure the neutrino �ux from the sun with an extremely low background in the Homestake

Gold Mine. Due to the chemical detection process of the transition from
37Cl to

37Ar induced

by the inverse beta decay, the experiment was only able to measure electron neutrinos. They

reported a de�cit of around a third with respect to the standard solar model during the runtime

of 24 years of measuring. A mistake in the solar model as well as experimental failures were

discussed as the source of this de�cit, but eventually both turned out to be correct and the

de�cit of electron neutrinos could be explained by the MSW-e�ect [9] based on non zero neu-

trino masses so that oscillations can occur [10]. This theoretical explanation was eventually

con�rmed by the SNO experiment[11] which was able to measure all three neutrino �avors.

Together with the Super-Kamiokande experiment measuring solar and atmospheric neutrinos,

the hypothesis of neutrino oscillations has been veri�ed, resulting in the Nobel Prize 2015 for

the heads of SNO and Super-Kamiokande, Arthur B. McDonald and Takaaki Kajita.

Neutrino oscillations were con�rmed by several other experiments with di�erent sources,

like nuclear reactors, accelerators or cosmic rays leading to atmospheric neutrinos and estab-

lished a picture of at least two non vanishing neutrino masses and large leptonic mixing angles

compared to the quark sector.

Apart from oscillation experiments, neutrinos and their properties are studied in experi-

ments searching for the absolute neutrino mass scale or neutrinoless double beta decay (see

also Section 3.3.1). Since neutrinos play a signi�cant role in the early universe, some properties

can also be deduced from cosmological observations e.g. of the cosmic microwave background

(CMB).

The history of neutrino physics shows a fruitful interplay among theorists and experimen-

talists. The combination of having tiny mass, being electrically neutral and interacting only

weakly with other particle makes it challenging to experimentally test theoretical hypothe-

ses. Nevertheless, as the past shows, growing experiments and technological progress made it

possible to discover all SM predictions so far.

Currently, apart from the CP violating Dirac phase and the two Majorana phases, the mass

ordering and absolute mass scale, and the octant of θ23, all parameters are well determined and

a lot of experiments are running, under construction or in planning to close these gaps. Nev-

ertheless, there are some open questions and several theoretical predictions from new physics

models concerning neutrino physics. In the tradition of Pauli, the founder of neutrino physics,
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it is the perfect �eld of research to consider new ideas, brave predictions and experimental

challenges, since “nur wer wagt, gewinnt.”
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3. Neutrino Oscillations as an Open
Window to Physics Beyond the Standard
Model

3.1. The Standard Model of Particle Physics

3.1.1. Definition of Fields and Forces

The SM of particle physics is a renormalizable quantum �eld theory that explains the funda-

mental particles as excitations of quantum �elds and the interactions, governed by the local

gauge group SU(3)C×SU(2)L×U(1)Y , which is broken down to the gauge group SU(3)C×
U(1)EM after electroweak (EW) symmetry breaking. While SU(3)C describes the strong in-

teraction or Quantum chromodynamics (QCD), SU(2)L×U(1)Y corresponds to the EW inter-

action, which is broken spontaneously via the Higgs mechanism to U(1)EM corresponding to

electromagnetic interaction, or Quantum electrodynamics (QED).

The fundamental constituents of matter are fermionic with spin
1
2 and are divided into the

two subgroups of quarks (Q, uR and dR) and leptons (L and `R), which each appear in three

so-called families:

Qi =

((
uL
dL

)
,

(
cL

sL

)
,

(
tL
bL

))
, (3.1)

Li =

((
νeL
eL

)
,

(
νµL

µL

)
,

(
ντL

τL

))
, (3.2)

uiR = (uR, cR, tR) , (3.3)

diR = (dR, sR, bR) , (3.4)

`iR = (eR, µR, τR) . (3.5)

The left handed �elds are combined in SU(2)-doublets. The representations and hypercharges

of the fermion �elds are shown in Table 3.1. We use Dirac spinors for the fermion �elds and

the subscripts L and R indicate the chirality with γ5ΨL = −ΨL and γ5ΨR = ΨR. While the

quarks are accommodated in triplets under SU(3)C and therefore interact via QCD, leptons

are uncharged under SU(3)C and do not participate in QCD.

In addition to the fermionic �elds, the bosonic spin-1 gauge �eldsBµ,W a
µ andGAµ arise from

the gauge groups U(1)Y , SU(2)L and SU(3)C, respectively. The superscript a runs over the 3
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Field SU(3)C SU(2)L Y

Q =

(
uL

dL

)
3 2 1

6

uR 3 1 2
3

dR 3 1 −1
3

L =

(
νL

`L

)
1 2 −1

2

`R 1 1 −1

Table 3.1.: Particle Content and their representations under the gauge groups SU(3)C and

SU(2)L, as well as the hypercharge Y .

generators of SU(2)L and A runs over the 8 generators of SU(3)C. The �eld strength tensors

are de�ned as

Bµν = ∂µB
ν − ∂νBµ

(3.6)

W a
µν = ∂µW

a
ν − ∂νW a

µ + g fabcSU(2)W
b
µW

c
ν , (3.7)

GAµν = ∂µG
A
ν − ∂νGAµ + gs f

ABC
SU(3)G

B
µG

C
ν , (3.8)

with the coupling constants g and gs, and the structure constants fabc de�ned via the commu-

tator

[ta, tb] = ifabctc, (3.9)

with the generators ta of the corresponding group.

The complete SM Lagrangian can be written as

LSM = Lkin + LEW + LQCD + LHiggs + LYukawa, (3.10)

where Lkin describes the kinetic part for the fermionic �elds, LEW the EW interaction, LQCD

the strong interaction, LHiggs the self interaction of the Higgs �eld and the interaction with the

gauge bosons and LYukawa includes the Higgs-fermion interaction resulting in the mass terms

after spontaneous symmetry breaking.

The QCD-Lagrangian reads

LQCD =
∑

Ψ={Q,u,d}

−iΨ̄gsG
a
µT

aγµΨ− 1

2
trGµνG

µν
, (3.11)

and will not be considered further in this work.
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The kinetic and the EW Lagrangian can be written as

Lkin + LEW =
∑

Ψ={Q,u,d,L,`}

iΨ̄ /DΨ− 1

4
BµνB

µν − 1

2
trWµνW

µν
, (3.12)

with the trace in the last term over the intrinsic indices a of W a
µν . The covariant derivative is

de�ned via

Dµ = ∂µ − igW a
µτ

a − ig′Y Bµ, (3.13)

with g′ being the coupling constant of U(1)Y , and Y being the hypercharge of the correspond-

ing �eld (see Tables 3.1) and τa = σa

2 as the generators of the SU(2)L and the Pauli matrices

σa.

Apart from masses, all interactions and the propagation of all �elds are covered within LEW

and LQCD. Dirac mass terms like

Lmass,e = meēLeR (3.14)

are not SU(2)L gauge invariant and therefore forbidden. The Higgs �eld H and the corre-

sponding Higgs sector LHiggs is needed to generate mass terms via the LYukawa terms. This

Higgs mechanism and the generation of masses and �avor is presented in the following section.

3.1.2. Mass Generation via Higgs Mechanism and Flavor Physics

The Higgs �eld H is a complex scalar SU(2)L doublet. The kinetic term for the Higgs boson

and its self-coupling is described via

LHiggs = (DµH)† (DµH) + µ2H†H − λ
(
H†H

)2

︸ ︷︷ ︸
VHiggs(H)

. (3.15)

Since the Higgs �eld is an SU(2)L doublet and has a hypercharge YH = 1
2 , the covariant

derivative reads

DµH = ∂µH − igW a
µτ

aH − 1

2
ig′BµH . (3.16)

Due to the Higgs potential VHiggs(H), the Higgs �eld acquires a vacuum expectation value

(VEV) v = µ√
λ

which breaks the EW symmetry. By expanding the Higgs �eld around the VEV

as

H =

(
0

v√
2

+ h√
2

)
, (3.17)
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the mass terms for the gauge bosons are generated via the covariant derivative

|DµH|2 = g2 v
2

8

[(
W 1
µ

)2
+
(
W 2
µ

)2
+

(
g′

g
Bµ −W 3

µ

)2
]

. (3.18)

We do not discuss the Higgs interactions with the real scalar h in this case, since we focus only

on the mass terms.

The �rst two terms in Equation (3.18) represent the masses for the charged bosons of weak

interaction W± = 1√
2

(
W 1
µ ∓ iW 2

µ

)
with masses mW = vg

2 .

Diagonalizing the third term via a rotation with the Weinberg-angle tan θW = g′

g yields the

mass eigenstates, the photon Aµ and the neutral boson of weak interaction Zµ:

Aµ = sin θWW
3
µ + cos θWBµ (3.19)

Zµ = cos θWW
3
µ − sin θWBµ (3.20)

This leads to a mass for the Z-boson of mZ = gv
2 cos θW

= mW
cos θW

and a vanishing mass for the

photon.

Using the de�nitions in Equation (3.20) for the neutral part of the covariant derivative

Dµ = ∂µ − ieAµ
(
T 3 + Y 1

)
− ieZµ

(
cot θWT

3 − tan θWY 1
)

, (3.21)

with e = g sin θW, reveals the de�nition of the electric charge Q = T 3 + Y .

The mass of fermionic �elds is generated by the gauge invariant Yukawa term

LYukawa = −Y d
ijQ̄

iHdjR − Y
u
ij Q̄

iH̃ujR − Y
`
ijL̄

iH̃`jR + h.c. (3.22)

with H̃ = iσ2H
∗

and the dimensionless 3× 3 Yukawa matrices Y d/u/`
.

This thesis deals mostly with leptons, nevertheless at �rst we demonstrate the mass gen-

eration in the quark sector and show afterwards the di�erences and challenges in the lepton

sector. After symmetry breaking the quark mass terms of LYukawa become

LQmass = − v√
2

[
d̄LYddR + ūLYuuR

]
+ h.c.. (3.23)

The Yukawa matrices can be diagonalized via

Yd = UdMdK
†
d, Yu = UuMuK

†
u, (3.24)

with the diagonal matrices Md/u and the unitary matrices Ud/u and Kd/u. Using this diago-

nalization and rede�ning the �elds via d′R = KddR, u′R = KuuR, d′L = UddL and u′L = UuuL

yields the Lagrangian in the mass basis

LQmass = −md
j d̄
′j
Ld
′j
R −m

u
j ū
′j
Lu
′j
R + h.c., (3.25)
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with the diagonal entries m
d/u
j = v√

2
M jj
d/u. In this basis the kinetic terms and the interaction

terms with the gauge bosons read

LQkin =
e

sin θW
ZµJ

Z
µ + eAµJ

µ,EM −md
j

(
d̄′jLd

′j
R + d̄′jRd

′j
L

)
−mu

j

(
ū′jLu

′j
R + ū′jRu

′j
L

)
+

e√
2 sin θW

[
W+
µ ū
′i
Lγ

µ (VCKM)ij d′jL +W−µ d̄
′i
Lγ

µ
(
V †CKM

)ij
u′jL

]
,

(3.26)

with the neutral currents JEM
µ =

∑
iQi

(
ψ̄iLγ

µψiL + ψ̄iRγ
µψiR

)
, J3

µ =
∑

i ψ̄
i
Lγ

µT 3ψiL and

JZµ = 1
cos θW

(
J3
µ − sin2 θWJ

EM
µ

)
. The neutral currents are not a�ected by the basis transfor-

mation performed, unlike the charged currents. Here, the unitary matrix mixing matrix

VCKM = U †uUd (3.27)

arises. In general VCKM is not restricted besides being unitary. This means that the mixing ma-

trix does not need to be diagonal and therefore can potentially lead to �avor changing charged

currents. If VCKM was the identity matrix, the so called �avor basis and the mass basis would

be the same and all families would be completely separated.

In general a unitary 3 × 3 matrix has 9 independent real parameters, three angles and six

phases. The number of phases can be reduced to one, since each quark �eld can be rede�ned

by an arbitrary U(1) symmetry transformation.

The procedure followed in the quark sector can also be performed in the lepton sector with

one important di�erence. Since there is no right handed neutrino νR in the SM, we only have

one Yukawa matrix Y` to be diagonalized:

Llepmass = − v√
2

¯̀
LY``R, (3.28)

Y` = U`M`K
†
` . (3.29)

Using a rede�nition analogously to the quark sector, `′L = U``L and `′R = K``R, and writing

the resulting kinetic leptonic Lagrangian in the mass basis leads to a diagonal structure in the

neutral currents as well. Furthermore, due to the lack of neutrino mass terms, the left handed

neutrino �eld can be rede�ned freely with an arbitrary transformation ν ′L = UννL. Setting

Uν = U`, all �avor changing charged currents are removed in the lepton sector, since the

resulting mixing matrix satis�es Vlepton = U †νU` = 1.

The essential result of this is that without a mass term in the neutrino sector, there are no

�avor changing charged currents in tree level processes in the lepton sector. In other words, if

there are no neutrino masses, the mass basis in the neutrino sector is not well de�ned and can

always be matched to the charged lepton mass basis.

In the next chapter we discuss the experimental evidence of neutrino oscillations and its

interpretation as a necessity of neutrino masses. The theoretical description of neutrino mass

generation is discussed in the succeeding chapter
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3.2. The Experimental Evidence of Neutrino Oscillations and its
Conclusions

The experimental discovery and direct detection of the neutrino was performed via inverse β
decay. The di�erent �avors of the neutrinos were determined by the produced charged lepton,

which in turn could be distinguished via the di�erent masses.

Neutrino oscillations were discovered by the SNO [11] and Super-Kamiokande [12]. Figure

3.1 shows the Feynman diagram for a neutrino �avor conversion. While the produced neutrino

�avor is determined by the charged lepton at the source, the charged lepton at the target deter-

mines the neutrino �avor after a travelling distance or baselength L. The de�cit of the initial

neutrino �avor at the target (disappearance) or an excess of one of the other �avors at the tar-

get (appearance) indicate a �avor conversion. This �avor conversion can only be explained by

d
u

e−

?

µ+

u d

W− νe νµ
W−

Figure 3.1.: Feynman diagram for antineutrino �avor conversion as measured e.g. in reactor

neutrino experiments (this and all following Feynman diagrams are generated with

TikZ-Feynman [13]).

introducing neutrino masses. If the neutrino mass basis and the charged lepton mass basis is

not the same, �avor changing charged currents naturally arise analogously to the quark sector.

For simplicity we introduce a right handed neutrino νR, which is a singlet under the SM and

therefore impossible to detect directly. With this νR, a mass term can be introduced like

Lνmass = − v√
2

[
¯̀
LY``R + ν̄LYννR

]
. (3.30)

The generation of such neutrino mass terms will be handled with more detail in Section 3.3.

Analogously to the quark sector, we transform the Yukawa matrices via a bi-unitary diagonal-

ization

Y` = U`M`K
†
` , Yν = UνMνK

†
ν , (3.31)
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with the diagonal matricesM`/ν and the unitary matrices U`/ν andK`/ν . Rede�ning the �elds

via `′R = Kd`R, ν ′R = KννR, `′L = U``L and ν ′L = UννL yields the Lagrangian in the mass

basis

Lνmass = −m`
j
¯̀′j
L`
′j
R −m

ν
j ν̄
′j
Lν
′j
R + h.c.. (3.32)

with the diagonal entries m
`/ν
j = v√

2
M jj
`/ν . Similar to the quark sector we can reformulate the

kinetic terms of the Lagrangian in the mass basis yielding

Lmass
kin =

e

sin θW
ZµJ

Z
µ + eAµJ

µ
EM −m

`
j

(
¯̀′j
L `
′j
R + ¯̀′j

R`
′j
L

)
−mν

j

(
ν̄ ′jL ν

′j
R + ν̄ ′jRν

′j
L

)
+

e√
2 sin θW

[
W+
µ ν̄
′i
Lγ

µ (U)ij `
′j
L +W−µ

¯̀′i
Lγ

µ
(
U†
)
ij
ν ′jL

]
,

(3.33)

Again, �avor changing charged currents are generated via the unitary mixing matrix

U = U †νU`, (3.34)

also known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) named after Pontecorvo who

predicted neutrino oscillations [14] and Maki, Nakagawa, and Sakata, who introduced this

matrix [15].

As we can see in (3.33), the neutral currents are independent of any choice of basis for the

leptons. The charged currents, on the other hand, depend on the choice of basis but only in

the combination of both transformations, U` and Uν (see Equation (3.34)). Therefore, we can

set without loss of generality U` = 1, so that Uν = U†. With this de�nition two distinct bases

for the neutrinos arise. The mass basis, in which the mass term for the neutrinos is diagonal

νi = δijν
′j

and the �avor basis, where U is absorbed so that the charged current becomes

diagonal, να = Uαjν
′j
L .

From here on, every time we use the Dirac notation for the neutrino states, Latin indices

indicate the mass basis, and Greek indices indicate the �avor basis. The transformation from

one basis to the other is performed with U.

|να〉 = (U)αi |νi〉 , |νi〉 =
(
U†
)
αi
|να〉 . (3.35)

Figure 3.2 shows the Feynman diagram for neutrino oscillations in the above introduced def-

inition. In contrast to Figure 3.1 here we focus on neutrino oscillations instead of antineutrino

oscillations. In the limit of small neutrino masses compared to the momentum, and the long

distance interaction, the propagator Sci (p, L) of a neutrino νi can be written as [16]

Sci (p, L) = i
/p

2p0
e
−i

m2
i−p

2

2|~p| L
. (3.36)
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u
d

`+α (q) `−β (k)

d u

W+ Uαi

νi(pn)

U∗βi W+

Figure 3.2.: Feynman diagram for general neutrino oscillations να → νβ .

With the help of the propagator it is straightforward to write out the amplitude of the pro-

cess, when the heavy gauge boson is integrated out, and summed over all three neutrino mass

eigenstates.

M = −i
G2
F

4p0

3∑
i=0

[
UαiU

∗
βie
−i

m2
i−p

2

2p0
L
j(2)
ρ ū(k)γρ

(
1− γ5

)
/pγ

µ
(
1− γ5

)
v(q)j(1)

µ

]
, (3.37)

where q and k are the momenta of the charged lepton at the source and at the target, re-

spectively, and j
(1)
µ and j

(2)
ρ correspond to the matrix elements of the charged weak hadronic

currents.

The resulting squared amplitude averaged over the polarizations of the incoming and summed

over the polarisations of the outgoing hadronic parts reads

〈
|M|2

〉
=

4G4
F

(p0)2W
(1)
µν A

µνρσW (2)
ρσ · Pνα→νβ , (3.38)

with

Aµνρσ =
1

64
tr
[
/pγ

µ
(
1− γ5

) (
/q −mα

)
γν
(
1− γ5

)
/pγ

σ
(
1− γ5

)
(/k +mβ) γρ

(
1− γ5

)]
,

(3.39)

and

W (1)
µν =

〈
j(1)
µ

(
j(1)
ν

)†〉
, W (2)

ρσ =

〈
j(2)
ρ

(
j(2)
σ

)†〉
. (3.40)

The angle brackets denote the averaging and summation of incoming and outgoing particle

polarisations. The �rst part in (3.38) can also be factorized. For more details see [16].
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In the following focus on the last part Pνα→νβ = Pαβ which we will call the neutrino oscil-

lation probability. This part is only dependent on the neutrino properties like mass and energy,

the leptonic mixing matrix U and the baselength L. Using the above de�nition leads to

Pνα→νβ =
3∑

k,j=1

(
U∗αkUβkUαjU

∗
βj · e−i

m2
k−m

2
j

2E
L

)
. (3.41)

This oscillation probability is the starting point of all further calculations in this thesis.

It is also possible to calculate the above oscillation probability with basic quantum mechan-

ics. The oscillation probability is then calculated via

Pνα→νβ = |〈νβ|να(L)〉|2 (3.42)

as the probability of a neutrino starting with the �avor α and travelling the distance L ending

up with the �avor β. The state |να(L)〉 is a linear superposition of the mass eigenstates |νi〉

|να〉 = (U)αi |νi〉 (3.43)

which are also the propagation eigenstates. The propagation of the mass eigenstates are deter-

mined by the plane wave solution

|νi(t)〉 = e−Eit−~pi~x |νi(0)〉

≈ e−i
m2
i

2E
L |νi(0)〉 .

(3.44)

where we used the ultrarelativistic limit of pi � mi and neglect common phases which do not

contribute to the oscillation probability. Note that here we use the oscillation distance L and

the travelling time t interchangeably due to a travelling speed close to light speed and the use

of natural units.

The oscillation probability now reads

Pαβ = Pνα→νβ = |〈νβ|να(L)〉|2 =

∣∣∣∣∣∣
3∑
j=1

U∗βjUαje
−i

m2
j

2E
L

∣∣∣∣∣∣
2

=

3∑
k,j=1

(
U∗αkUβkUαjU

∗
βj · e−i

m2
k−m

2
j

2E
L

)

= δαβ − 4
3∑
k>j

Re
(
U∗αkUβkUαjU

∗
βj

)
sin2

(
m2
k −m2

j

4E
L

)

+ 2
3∑
k>j

Im
(
U∗αkUβkUαjU

∗
βj

)
sin

(
m2
k −m2

j

4E
L

)
.

(3.45)

This basic neutrino oscillation probability shows some signi�cant features we want to high-

light:
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• The oscillation probability is solely dependent on the mass squared di�erences ∆m2
kj ≡

m2
k −m2

j and independent of the absolute mass scale as long as the kinematic approxi-

mations are valid.

• The dependence on
L
E is tested by various experiments with either variable baselength,

variable energy or both and among di�erent experiments. The oscillatory behaviour

with the di�erent frequencies ∆m2
kj gives rise to the name neutrino oscillations.

• The energy and baselength scale for experiments to detect neutrino oscillations is de-

termined by the mass squared di�erences: If
E
L � ∆m2

kj , the argument of sin becomes

small compared to 1 and therefore the oscillatory feature will vanish. If
E
L � ∆m2

kj ,

the argument becomes large compared to 1 and the oscillations will become too fast to

be resolved experimentally and the oscillation will be “averaged out” due to the limited

resolution of detectors in either E or L or both. Integrating over the bin width or spa-

tial expansion of the detector makes it is possible to approximate sin ∆m2
kj

L
4E ∼ 0 and

sin2 ∆m2
kj

L
4E ∼

1
2 .

The leptonic mixing matrixU can be parametrized in numerous ways. The standard parametriza-

tion reads

U = U12U13U23

=

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e−iδCP

0 1 0
−s13e+iδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


=

 c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

 ,

(3.46)

with sij ≡ sin θij and cij ≡ cos θij . The current global best �t values are shown in Table 3.2.

Note that we do not use historically introduced parameters like θatm, θsol, θreactor, ∆m2
atm or

∆m2
atm. The actual de�nition of these parameters are changing throughout the literature and

the above parametrization is more intuitive and clearer.

As mentioned before, the neutrino oscillation probability is only sensitive to mass squared

di�erences ∆m2
kj and not to the absolute mass values. In the standard three neutrino approach,

there are only three independent masses, and therefore only two independent mass squared

di�erences. As we will see later in III, the neutrino oscillation probability is only at higher

orders sensitive to the ordering of the neutrino masses. Without information about the relative

sign of ∆m2
31 or ∆m2

32 it is impossible to deduce whether m2
1 < m2

2 < m2
3, called normal

ordering (NO) or m2
3 < m2

1 < m2
2, called inverted ordering (IO). Current global �ts report

a preference for normal ordering at a signi�cance of more than 3σ [17–19]. The di�erent

possibilities of orderings also provide di�erent values for the parameters in the global �ts,
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which is also indicated in Table 3.2. We did not include a value for the Dirac phase δCP, since

there are only �rst indications for δCP 6= 0 at the 2σ level [82].

Parameter value

sin2 θ12 0.297
sin2 θ23 (NO) 0.437
sin2 θ23 (IO) 0.569
sin2 θ13 (NO) 0.0214
sin2 θ13 (IO) 0.0218
∆21[10−5

eV
2] 7.37

∆31[10−3
eV

2] (NO) 2.50
∆32[10−3

eV
2] (IO) −2.46

Table 3.2.: Standard parameters used in throughout this thesis, with di�erent values for normal

(NO) and inverted ordering (IO). Values taken from [20].

Figure 3.3 shows all di�erent probabilities Pαβ in dependence of
L
E . Due to the large dif-

ference between the two mass squared di�erences ∆m2
21 and ∆m2

31 one can clearly see the

di�erent regimes of the oscillation modes. For small values of
L
E , only the oscillation triggered

by ∆m2
31 is relevant and the oscillation frequency ∆m2

21 can be neglected, while for larger

values of
L
E , the oscillation is driven by ∆m2

21 and the fast oscillation over ∆m2
31 averages out.

3.3. Neutrino Mass Generation in the Standard Model and
Beyond

This section is based on the review articles [21] and [22]. Since neutrinos are the only elec-

trically neutral fermions in the SM, additionally to the common Dirac-mass term, a Majorana

term is also possible. The most general mass Lagrangian then reads

Lνmass = −mDνLνR︸ ︷︷ ︸
Dirac Mass Term

−MR
majνR (νR)C︸ ︷︷ ︸

Majorana Mass Term

+h.c. (3.47)

where the superscript C indicates the charge conjugation of the Dirac spinor de�ned as

ψC ≡ Cψ ≡ −iγ2ψ∗. (3.48)

To conserve electric charge, the Majorana mass term is only allowed if the Majorana condition

ψC = ψ (3.49)

is satis�ed. The Majorana condition is also often referred to as the particle being its own

antiparticle.
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Figure 3.3.: Neutrino oscillation probabilities for normal ordering and parameter values taken

from Table 3.2.

A possible Majorana term for the left handed neutrino ML
majνL (νL)C is not allowed in the

SM due to conservation of hypercharge.

Equation (3.47) also indicates that the mass eigenstates are linear combinations of the right

handed and left handed neutrinos. The mass eigenstates can be found by diagonalizing the

total mass matrix

M =

(
0 mD

mD MR
maj

)
. (3.50)

This also shows that the often used terms “heavy right handed neutrinos” or “light left handed

neutrinos” are not exact. Those terms are used in the case that mD �MR
maj so that the heavy

mass eigenstates are “mostly” right handed and the light eigenstates are “mostly” left-handed.

This will be handled in more detail in Section 3.3.2 about the Seesaw mechanism.

Due to the Majorana condition (3.49) a general neutrino Majorana term violates Lepton num-

ber. Lepton number is only an accidental symmetry in the SM and therefore in general not

guaranteed. Several Experiments are looking for signals of lepton number violation, for exam-

ple in the search for neutrinoless double beta decay.
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Another approach to generate a neutrino mass without specifying new particles in the UV-

completion is the introduction of an e�ective dimension 5 operator

LWeinberg = −Mij

(
L̄iH̃

)(
H̃L̄i

)†
, (3.51)

the so called Weinberg-Operator. This e�ective operator is generated for example by integrat-

ing out the right handed neutrino in Equation (3.47).

3.3.1. Implications of Majorana Mass

As already mentioned, a Majorana mass term breaks the accidental symmetry of lepton number

by two units. A process generated by this Majorana mass term is the neutrinoless double beta

decay, shown in Figure 3.4. Two electrons and no neutrinos are produced and therefore the

lepton number is not conserved. A detailed review about neutrinoless double beta decay can

be found in [23, 24]. In [25] and later in [26, 27] it is shown that a black box argument can be

made regarding this process: If one detects neutrinoless double beta decay, there is a nonzero

contribution to a Majorana mass term for neutrinos. This argument also holds “the other way”:

If a Majorana mass term for neutrinos exists, a neutrinoless double beta decay is, possible unless

speci�c parameter combinations are realized. The essential parameter involved in neutrinoless

u u
d d
d u

e

u u
d d
d u

e

W Uei

Mmaj

W Uei

Figure 3.4.: Feynman diagram for 0νββ-decay

double beta decay is the e�ective mass

mββ =

∣∣∣∣∣
3∑
i=1

eiξi
∣∣U2

ei

∣∣mi

∣∣∣∣∣ , (3.52)

where ξi are the so called Majorana phases. These phases arise, since the Majorana condition

(3.49) �xes the neutrino �elds, and a rede�nition by a U(1) symmetry transformation is not
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possible. Therefore, only three phases of the lepton mixing matrix can be absorbed in the

charged lepton �elds, and three phases are left, instead of only one in case of Dirac neutrinos.

The two additional phases are the Majorana phases, which a�ect neutrinoless double beta decay

but have no impact on neutrino oscillation processes.

As can be seen in Equation (3.52), due to the Majorana phases, it is possible, that parts of

the sum cancel, which is also shown in Figure 3.5. We use the current best �t values from

Table 3.2 and calculate the largest and smallest possible mass mββ dependent on the lightest

neutrino massmlightest. There is a signi�cant di�erence between the possible orderings, due to

the di�erent admixtures of νe in the di�erent mass eigenstates. For large mlightest, there is as

expected, no di�erence between the mass orderings. In the normal ordering a vanishing mββ

is possible for 2 · 10−3 eV . mlightest . 6 · 10−3 eV, since for these masses, it is possible with

signi�cant �ne tuning that the sum in (3.52) cancels out exactly. If this is the case, no neutrino-

less double beta decay will be measurable although there is a Majorana mass term. Measuring

the neutrinoless double beta decay and determining mββ can also be used to determine the

mass ordering.

Currently several experiments are searching for neutrinoless double beta decay, like CO-

BRA [28], CUORE [29], EXO-200 [30], GERDA [31], and KamLAND-Zen [32]. The process is

yet unobserved, but all experiments set lower bounds on the lifetime of the process. Theo-

retical calculations of the matrix elements depend on non trivial nuclear physics and di�erent

methods come to di�erent results. Therefore, the upper bounds for mββ are often presented

as an interval depending on the calculation method of the matrix elements. The strongest

bound is currently set by KamLAND-Zen with the isotope
136

XE to a 90% C.L. upper limit of

mββ < (61− 165) meV [33]. This upper limit is not far away from the interesting parameter

space, where normal and inverted ordering are distinguishable. The lightest neutrino mass

mlightest can be restricted by cosmological experiments, where an upper bound on the sum

of all neutrino masses mΣ = m1 + m2 + m3 can be extracted from the cosmic microwave

background. The Planck collaboration released the most current upper bounds in [34]. Since

the upper bound is highly dependent on the cosmological model and the actual analysis, we

only use the most conservative bound of mΣ < 0.54 eV at 95% C.L. This bound, converted

to a bound on mlightest, depends on the ordering, but the di�erence at current signi�cance is

negligible. Both bounds are shown in Figure 3.5.

One of the most appealing arguments for looking for neutrinoless double beta decay, and

therefore for a Majorana mass term, is the possibility of solving the longstanding cosmological

question of the origin of the baryon asymmetry of the universe, which cannot be explained in

the SM. A Majorana mass could ful�ll one of the Sakharov conditions [35] since a lepton num-

ber violating process could induce a lepton asymmetry which can be transferred to a baryon

asymmetry via SM sphaleron processes.
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10 4 10 3 10 2 10 1 100

mlightest
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100

m
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Figure 3.5.: Possible values for mββ depending on the lightest neutrino mass mlightest for nor-

mal ordering (NO) in blue and inverted ordering (IO) in orange. The horizontal

grey lines correspond to the bounds from KamLAND-Zen [33], while the dotted and

dashed lines correspond to di�erent theoretical calculations of the nuclear matrix

elements. The vertical solid line correspond to the most conservative cosmological

bound on mΣ from the Planck collaboration [34].

3.3.2. Beyond Standard Model Realization of Neutrino Masses

The already mentioned absence of neutrino masses in the SM is a theoretical issue which needs

explanation. Additionally the experimental values for the neutrino masses turn out to be orders

of magnitude smaller than all other fermionic particles. If the neutrino masses are also gener-

ated via the Higgs mechanism as a Dirac mass by introducing the undetectable right handed

�eld νR, this would yield a Yukawa coupling for the neutrinos of yν ∼ 10−13
compared to the

Yukawa coupling of the top quark of yt ∼ 1. Although possible, such a small coupling seems

unappealing. Therefore, lots of beyond standard model (BSM) approaches of neutrino mass

generation also try to explain the smallness of neutrino masses by the mass mechanism itself.

The most popular neutrino mass mechanisms are the so called Seesaw mechanisms [36–

40]. They provide a renormalizable tree-level realization of the non-renormalizable Weinberg

operator (3.51) by introducing new heavy particles. The three di�erent types, shown in Figure

3.6, di�er in the newly introduced particle. Type I introduces a right handed neutrino νR with
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a large Majorana mass, Type II and III each use a heavy SU(2)L triplet, the bosonic ∆0
for

type II and the fermionic Σ for type III.

For each type of Seesaw mechanism, the light neutrino masses can be determined by inte-

grating out the heavy particle and diagonalizing the resulting mass matrix. For Type I See-

saw the mass matrix is given by Equation (3.50) and diagonalization leads to light neutrino

masses of mν ∼ −mD

(
MR

Maj

)−1
mT
D . The Type II and III masses read mν ∼ λ∆Y∆

v2
u

M∆
and

mν ∼ −mDM
−1
ρ mT

D , respectively.

It can be seen that for all Seesaw mechanisms the light neutrino masses are suppressed by the

heavy masses of the newly introduced particles. Generating a neutrino mass in the eV-range

and using natural couplings and Dirac-masses at the EW-scale automatically leads to masses of

the heavy particles around the GUT-scale, which are undetectable by the Large Hadron Collider

(LHC). A rough estimate from basic principles in [41] gives an upper bound for the scale of

mMaj < O(1016) GeV. In contrast to the Seesaw-mechanisms, renormalizable realizations of

〈Φ〉 〈Φ〉

νL νR νR νL

(a) Type I

〈Φ〉 〈Φ〉

νL νL

∆0

(b) Type II

〈Φ〉 〈Φ〉

νL Σ Σ νL

(c) Type III

Figure 3.6.: Feynman diagrams for Seesaw Mechanism Type I, II and III.

(3.51) at loop-level generate the small neutrino masses via loop suppressions. The most famous

models are the Zee- [42, 43], the Zee-Babu- [44, 45] and the scotogenic [46] model. The Zee-

and Zee-Babu-model do not propose right handed neutrinos, but extend the scalar sector by

either an additional doublet Φ2 and a singly charged singlet h+
(Zee model) or two additional

singlets h+
and k++

(Zee-Babu model). The generation of the neutrino masses occur at one-

and two-loop level, respectively. The scotogenic model in contrast introduces right handed
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neutrinos with a large Majorana mass and an additional scalar doublet. The neutrino mass

is generated at one loop level and the new neutral scalar serves as a potential dark matter

candidate. The corresponding Feynman diagrams generating the neutrino masses are shown

in Figure 3.7. In general, the above mentioned neutrino mass models can explain the smallness

of the neutrino masses, but lack additional testable predictions. The newly introduced particles

are either too heavy or too weakly coupled to be tested at a current collider like the LHC. Most

mass generation mechanisms also predict a Majorana mass, but as shown in Section 3.3.1 a

null result for neutrinoless double beta decay does not rule out these models due to possible

cancellations of the Majorana phases.

Predictions for values or patterns in the leptonic mass or mixing matrix can only be made by

imposing additional constraints like �avor symmetries, which are covered in the next section.

3.3.3. Predictions for Leptonic Mixing via Discrete Symmetries and Texture
Zeros

In every mechanism generating fermionic masses, the speci�c entries in the mass matrices are

in general determined by free coupling parameters, e.g. the Yukawa couplings yΨ. Without

imposing restrictions on the speci�c coupling parameters the mass matrices are expected to

lack any structure. Looking at the experimentally determined values of the masses and mixing

matrices in the quark and lepton sector the naive expectations are not met [20]. While the

quark mixing matrix is almost diagonal and can be written in the Wolfenstein parametrization

with the Wolfenstein parameter λW ∼ 0.22 as

|VCKM| =

1− λ2
W
2 λW λ3

W

λW 1− λ2
W λ2

W

λ3
W λ2

W 1

+O(λ4
W) ≈

0.974 0.225 0.004
0.225 0.974 0.041
0.009 0.040 0.999

 , (3.53)

the leptonic mixing matrix does not show structure at the �rst glance

|VPMNS| ≈

0.829 0.539 0.146
0.490 0.576 0.654
0.268 0.614 0.742

 . (3.54)

A possible explanation for a structure among the di�erent generations arises from imposing a

horizontal �avor symmetry on the corresponding �elds. Starting with a �avor symmetry, most

generally an SU(3), all �elds are assigned to multiplet representations of this symmetry. Typ-

ically the structure is imposed by charging the di�erent generations di�erently. Additionally

so called �avon �elds are introduced, which are typically singlets under the SM-gauge group

but charged under the �avor symmetry.

Except for the Yukawa terms, all terms in the Lagrangian are automatically invariant un-

der the new �avor symmetry. To make Yukawa terms invariant under the �avor symmetry,

di�erent powers of the �avon �elds are needed. If the �avon �eld acquires a VEV, the �avor
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symmetry is broken, and the Yukawa terms for di�erent �elds are suppressed by di�erent pow-

ers of the VEV of the �avon according to their charges. A hierarchical structure in the Yukawa

matrix can therefore be imposed.

The more democratic structure in the leptonic sector cannot be explained by such an abelian

group. Before the measurement of θ13 a common approximation of the PMNS matrix was the

so called tri-bi-maximal mixing

V TBM =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 (3.55)

�rst proposed in [47] corresponding to sin θTBM
12 = 1√

3
, θTBM

23 = π
4 and θTBM

13 = 0. This

mixing matrix is automatically generated if the neutrino mass matrix in �avor basis takes the

form

Mν =

x y y
y x+ v y − v
y y − v x+ v

 (3.56)

Such a structure of the neutrino mass matrix can be generated e.g. by charging the neutrinos

under the discrete symmetry group A4, a subgroup of SU(3) [48]. Several other approaches

were proposed to generate this kind of structure, e.g. structure zeros, but all models had to be

extended due to the measurement of nonzero θ13.

In general �avor models predicting the structure of the mixing or mass matrix make precise

predictions that can be tested in experiments but all simple models fail to explain current data

and more general extensions usually lack predictability.

3.4. Experimental Hints for Neutrino-Physics Beyond Standard
Model

Apart from theoretically motivated models to explain either the neutrino mass generation itself

or the values of the masses and mixing parameters, there are currently several experimental

anomalies that cannot be explained by solely three massive neutrinos.

The LSND experiment was an accelerator based experiment and searched for ν̄µ → ν̄e os-

cillations, with a baselength of ∼ 30 m and neutrino energies between 20 and 60 MeV. Due to

the setup of the experiment it was sensitive to mass squared di�erences of ∆mSB ∼ 1eV2
. In

2001 the collaboration reported a signi�cant excess of electron events in the detector [49] and

interpreted this as an oscillation from muon antineutrinos into electron antineutrinos. Since at

this setup, oscillations with ∆m2
21 or ∆m2

31 are negligible, it can be interpreted as a third mass

squared di�erence, and therefore a hint for a fourth neutrino species. To further investigate



24 3. Neutrino Oscillations as an Open Window to Physics Beyond the Standard Model

this so called short baseline oscillation the experiments MiniBooNE and MicroBooNE has been

developed, which are also accelerator-based and sensitive to such mass squared di�erences.

Recent results by MiniBooNE also show a signi�cant excess which can be interpreted as such

oscillations [50]. We will focus on this result in Part IV.

In addition to the LSND experiment, the Gallium-anomaly also provide hints for a mass

squared di�erence of ∆mSB ∼ 1eV2
at around 2.7σ [51]. To test the solar neutrino exper-

iments GALLEX [52–54] and SAGE [55–58] arti�cial radioactive sources made of
51Cr and

37Ar have been placed into the detectors. The measured number of events turned out to be

signi�cantly lower than predicted. One possible explanation is that the electron antineutrinos,

produced in the radioactive decay of the sources, oscillated into another �avor.

A third hint for short baseline oscillation is the reactor anomaly [59], where the �ux of elec-

tron antineutrino from �ssion reactors show a de�cit of ∼ 5% compared to the predictions.

The Daya Bay collaboration claims to �nd a correlation between the di�erent fuel components

in the reactor and the �ux de�cit and suggests that the anomaly may be explained by an in-

correct calculation of the spectrum of
235U [60]. Nevertheless, this interpretation has been

contradicted by the global analysis in [61].

All anomalies combined seem to hint in the same direction of a fourth neutrino state. On the

other hand this simplest explanation is inconsistent with several other neutrino experiments

like atmospheric or accelerator based experiments. This issue is handled in more detail in Part

IV.

Additionally a fourth neutrino state is highly unmotivated from a theoretical point of view.

There is no evidence of a fourth charged lepton and therefore the fourth neutrino would not

�t in the doublet structure of the SM. Additionally, the precision measurement of the decay

width of the Z-boson [62] determines the number of neutrinos coupling to the Z to three and

excludes a light neutrino participating in the weak interaction. Therefore this additional fourth

neutrino has to be sterile.

Summarizing, theoretical and experimental approaches in neutrino physics currently pro-

vide lots of open questions for further research: On the one hand there is no experimental

evidence for theoretically well motivated mechanisms that could explain the origin of neu-

trino masses, on the other hand there is no theoretical approach to explain all current neutrino

data and anomalies.
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〈Φ1,2〉

〈Φ1,2〉

νL `L `R νL

h+ Φ+
2,1

(a) Zee model

〈Φ1,2〉 〈Φ1,2〉

νL `L `R `R `L νL

h+ h+

k++

(b) Zee-Babu model

〈Φ〉 〈Φ〉

νL N N νL

η0 η0

(c) Scotogenic model

Figure 3.7.: Feynman diagrams for di�erent models generating neutrino masses by loop e�ects

[13].
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Part II.

A Novel Approach to Analyze
Neutrino Oscillations in the Light of

New Physics
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4. Model Independent Description of
Neutrino Oscillations

In the beginning of neutrino oscillation physics approximations , e.g. a two neutrino scheme,

were used to simplify the analyses. Due to increasing number of neutrino experiments and their

increasing sensitivity, neutrino oscillation physics in recent years approaches the era of high

precision physics. Becoming more and more precise, more exact analytical formulations for the

oscillation probability are needed. For example the analysis in [63] from the T2K collaboration

uses the following probability for the neutrino and antineutrino channel

P (
(−)
νµ →

(−)
νe) ' sin2 θ23 sin2 2θ13 sin2 ∆m2

31L

4E
(+)

− sin 2θ12 sin 2θ23

2 sin θ13
sin

∆m2
21L

4E
sin2 2θ13 sin2 ∆m2

31L

4E
sin δCP + ... . (4.1)

Note the second term, which provides non-leading contribution to the oscillation probability,

but is sensitive to the CP phase δCP, whose measurement is one of the main goals of T2K. This

analysis adopts the three neutrino paradigm without any potential sources of new physics be-

yond the SM. Since there is no stringent evidence for BSM physics, the approach is of course

justi�ed and the �rst step to discover CP violation in neutrino oscillations. Nevertheless, sev-

eral authors already claimed that new physics models can introduce “fake” CP violation spoiling

an analysis based on the three neutrinos paradigm [64–68]. Such analyses are therefore highly

dependent on the speci�c underlying model.

Moreover, experiments like T2K or NOvA rely on parameter inputs from di�erent experi-

ments like reactor or atmospheric neutrino experiments. This ansatz can be made if no new

physics is involved, but it is not clear whether the measured parameters at di�erent experi-

ments coincide with each other when new physics is applied.

Taking above mentioned discussion into account, in this part of the thesis we introduce a

novel approach to analyze neutrino oscillations, which is independent of a speci�c model of

new physics and also independent of other experimental results. Due to the smaller number of

parameters we focus on CP violation in neutrino oscillations but the approach can in principle

also be extended to other neutrino experiments.

New physics can impact predictions of the SM in various ways. Here we focus solely on

implications, which manifest themselves in deviation from expectations in neutrino oscilla-
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tions. Therefore we start at the underlying Lagrangian responsible for neutrino oscillations,

the charged current interaction:

LCC ∝
∑

α∈{e,µ,τ}

∑
k=1

`αγ
µ(1− γ5)UαkνkW

−
µ + νkγ

µ(1− γ5)U∗αk`αW
+
µ (4.2)

The coupling of the charged leptons with the physical neutrino mass eigenstates is described

by the mixing matrix U and plays a signi�cant role in this part.

While the mixing matrix U in the SM is a 3×3 unitary mixing matrix, this assumption does

not hold for all BSM models. The unitarity of the mixing matrix can be violated in two di�erent

ways:

• direct unitarity violation is generated by introducing additional light sterile neutrinos.

The kinematically accessible neutrino mass eigenstates are more than three and the neu-

trinos can actually oscillate into these states. As a result, the enlarged mixing Nlight ×
Nlight is still unitary, but not the reduced 3× 3 mixing matrix.

• indirect unitarity violation is generated by additional heavy right handed neutrinos e.g.

in a Seesaw mechanism which are kinematically forbidden in typical energy ranges for

neutrino oscillations. Therefore the 3×3 mixing matrix is also not unitary, but additional

constraints are not obvious.

We assume in any case, that the complete high energy theory ful�lls basic quantum mechani-

cal principles. The low energy e�ective theory in contrast, might violate quantum mechanical

principles like a non-unitary mixing matrix, a non hermitian e�ective Hamiltonian or a �a-

vor basis, which is ill de�ned. Our approach is based on the search for these violations. The

neutrino mass eigenstates are still physically well de�ned and so

〈νi|νj〉 = δij (4.3)

holds, while the same is not true for the “�avor states” described by the interaction with the

charged leptons. The �avor states do not built up a complete eigenbasis. A transition from

the mass eigenbasis to the “�avor space” is generated by the (in general) non-unitary mixing

matrix U :

|να〉 = Uαi |νi〉 〈να| = 〈νi|U †αi (4.4)

⇒ 〈νβ|να〉 =
(
U †U

)
βα
6= δαβ (4.5)
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With this relation it is straightforward to deduce the neutrino oscillation probability analo-

gously to Section 3.2, but with the emphasis of not using unitarity implicitly.

Pνα→νβ =

Nlight∑
k,j

(U∗αkUβkUαjU
∗
βj)︸ ︷︷ ︸

zero distance e�ect

−4

Nlight∑
k>j

Re(U∗αkUβkUαjU
∗
βj)︸ ︷︷ ︸

Rkjαβ

sin2

(
∆m2

kjL

4E

)
(4.6)

+ 2

Nlight∑
k>j

Im(U∗αkUβkUαjU
∗
βj)︸ ︷︷ ︸

Akjαβ

sin

(
∆m2

kjL

2E

)
(4.7)

The �rst term reduces to δαβ in case of unitarity or direct unitarity violation due to basic uni-

tarity conditions. Since it is independent of baselength, it is often referred to as a zero distance

e�ect. We do not focus any further on this speci�c e�ect, since most experiments are not sen-

sitive to this, but it has to be taken into account as a �ux normalization e�ect independent of

the energy.

Most approaches for SM or BSM physics currently use speci�c parametrizations of the mix-

ing matrix U or use approximations suitable for speci�c experiments. We will be more general

and focus on the newly introduced parameters Akjαβ and Rkjαβ , describing CP conserving and

CP violating processes. These parameters are in fact observables and hence independent of

any parametrization, as already pointed out in [69, 70]. Nevertheless, there are strict and spe-

ci�c predictions for these parameters in case of the SM or direct unitarity violation. Analytic

predictions will be covered in the following section.
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5. Analytic Predictions for CP violating
Amplitudes

In Chapter 4 we introduced the CP conserving and the CP violating amplitudes

Rkjαβ = Re
(
U∗αkUβkUαjU

∗
βj

)
, (5.1)

Akjαβ = Im
(
U∗αkUβkUαjU

∗
βj

)
. (5.2)

From the de�nition it is easy to deduce some general relations among the amplitudes.

The CP conserving amplitudes are symmetric under interchange of indices

Rkjαβ = Rkjβα , (5.3)

Rkjαβ = Rjkαβ , (5.4)

while the CP violating amplitudes are anti-symmetric under interchange of indices

Akjαβ = −Akjβα , (5.5)

Akjαβ = −Ajkαβ . (5.6)

Consequently, the CP violating amplitudes vanish for two identical indices,

Akjαα = 0 , (5.7)

Akkαβ = 0 . (5.8)

These relations reduce the total number of possible amplitudes of anN×N mixing matrix from

N4
of CP violating andN4

of CP conserving amplitudes to only

(
N(N+1)

2

)2
CP conserving plus(

(N−1)N
2

)2
CP violating amplitudes. Note, that these relations are independent of whether the

mixing matrix U is unitary or not. They are simply deduced from the basic de�nition of the

amplitudes.

To determine further analytic relations among the amplitudes it is necessary to be more

model dependent. The most obvious approach is to assume a unitary mixing matrix, which

will be done in the following section.
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5.1. General Constraints due to Unitarity

If one considers the free low energy Hamiltonian to be hermitian, it is possible to diagonalize

it with a unitary matrix U . The unitary matrix U is considered to be anN×N matrix, without

specifyingN directly in this step. UsuallyN corresponds also to the number of light neutrinos

in this context. The basic condition for unitarity U−1 = U † can be rewritten as

UU † = 1 ,

⇒
∑
k

Uαk

(
U †
)
kβ

=
∑
k

UαkU
∗
βk = δαβ .

(5.9)

as well as

U †U = 1 ,

⇒
∑
α

(
U †
)
kα
Uαj =

∑
α

U∗αkUαj = δkj .
(5.10)

From these relations it is easy to see that the relation

N∑
α

Akjαβ =

N∑
α

Im
(
U∗αkUβkUαjU

∗
βj

)
= Im

(
N∑
α

(
U∗αkUαj

)
UβkU

∗
βj

)
= Im

(
δkjUβkU

∗
βj

)
= 0 ,

(5.11)

holds. Generalizing these constraints for each index and also to the CP conserving amplitudes

we end up with following relations:

N∑
α

Akjαβ = 0 ,

N∑
β

Akjαβ = 0 , (5.12)

N∑
k

Akjαβ = 0 ,

N∑
j

Akjαβ = 0 , (5.13)

N∑
α

Rkjαβ = δjk |Uβk|2 ,

N∑
β

Rkjαβ = δjk |Uαk|2 , (5.14)

N∑
k

Rkjαβ = δαβ |Uαj |2 ,

N∑
j

Rkjαβ = δαβ |Uαk|2 . (5.15)
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From these unitarity relations for amplitudes it is straightforward to calculate the speci�c re-

lations for a speci�c number of N . Keep in mind, that the relations are directly deduced from

unitarity of the mixing matrix and that they are exact.

5.2. Two Neutrinos

Since there is already evidence for three neutrinos, the two neutrino case is not realistic. Nev-

ertheless it is instructive to stress some details.

From Equations (5.12) and (5.13) it is easy to see that all Akjαβ vanish. Therefore no CP

violation can be measured in case of only two neutrinos and unitary mixing. This behavior

is well known and also corresponds to the missing CP phase in the typical parametrization.

Additionally, from Equations (5.14) and (5.15) all CP conserving amplitudes are determined by

only one free parameter corresponding to the single mixing angle in a two neutrino scheme.

5.3. Three Neutrinos

The �rst proof of only one independent CP violating amplitude in the case of three generations

has been presented in [71] by Jarlskog via the commutator of mass matrices in the quark sector.

We will come back to this method in Section 7.3. The method of invariant amplitudes also

provides a simple proof of a single uniform CP violating amplitude. Using Equations (5.12) and

(5.13) and implying the basic relations from Equations (5.5) and (5.6) directly leads to

A21
eµ = A32

eµ = −A31
eµ = −A21

eτ = −A32
eτ = A31

eτ = A21
µτ = A32

µτ = −A31
µτ . (5.16)

Apart from the sign, all amplitudes are the same.

This uniform CP violating amplitude corresponds to only one CP phase in a 3 × 3 unitary

matrix. A direct consequence from this is that the magnitude of CP violation is the same for all

neutrino oscillation channels and modes. A direct comparison between di�erent experiments

is therefore a stringent test of the three neutrino hypothesis. This relation is independent of

parametrization or actual mixing angles and has to be satis�ed regardless of speci�c values.

One test for this uniform CP violating amplitude is the famous CKM unitarity triangle in the

quark sector. Similar analyses have also been worked out in the lepton sector [72–77]. While

this provides a precise test for the unitarity of the 3×3 mixing matrix, the insights of unitarity

triangles are limited in cases where the triangle does not close. The source of unitarity violation

cannot be determined.

With this analysis we focus at sums and ratios of the CP amplitudes itself and show that the

emerging correlations depend on the speci�c BSM model and therefore provide a useful test

for new physics.
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5.4. Analytic Treatment of 3+1 ν

As mentioned before in Section 3.4 the introduction of a light sterile neutrino is motivated by

several experimental hints and currently under investigation. Albeit a light sterile neutrino

lacks theoretical motivation the tensions among di�erent experiments have to be taken seri-

ously. Therefore in this section we focus on adding exactly one light sterile neutrino to the

standard model content.

Considering an additional light sterile neutrino, the assumption of hermiticity of the free

Hamiltonian, results in unitarity of the 4 × 4 mixing matrix. Note especially that now the

3× 3 mixing matrix is not unitary anymore. The conclusions we draw in the previous section

do not hold anymore, so in general we have more CP violating amplitudes than just a single

one. By exploiting these relations in the context of the quark sector it has been shown for

four �avors that all amplitudes can be reduced to only three independent CP violating and six

CP conserving amplitudes [78]. In the following, we follow these arguments translated to the

notation commonly used in neutrino physics. All relations rely on [78] where these relations

have been proven for general unitary 4× 4 matrices.

In total there exist 4 × 4 × 4 × 4 = 256 (α, β ∈ {e, µ, τ, s} and k, j ∈ {1, 2, 3, 4}) di�erent

CP violating amplitudes Akjαβ = Im(U∗αkUβkUαjU
∗
βj). Due to the general relations (5.5) - (5.8)

it is su�cient to only consider Akjαβ where α < β and k > j, which reduces the number of

CP violating amplitudes to 36. These 36 amplitudes are not independent due to the unitarity

relations (5.12) and (5.13) and can be expressed via only nine amplitudes (see Appendix A).

Again, these nine amplitudes can be expressed by three remaining amplitudes via the following

expression 

A32
eµ

A43
eµ

A21
µτ

A43
µτ

A21
τs

A32
τs

 = M−1



R32
eµA21

eµ

R43
µτA43

τs

R21
µτA21

eµ

R32
τsA43

τs

(R32
ττ +R32

eµ)A32
µτ

(R33
µτ +R32

eµ)A32
µτ

 , (5.17)

with M−1
de�ned by the inverse of

M =



−(R22
eµ +R21

eµ) R22
eµ 0 0 0 0

0 R43
ττ 0 −(R43

ττ +R43
τs) 0 0

0 0 −(R21
µµ +R21

eµ) 0 R21
µµ 0

0 0 0 0 R33
τs −(R33

τs +R43
τs)

R32
ττ 0 0 0 0 −R32

µτ

0 0 −R33
µτ −R32

µτ 0 0

 .

(5.18)

The amplitudes Rkjαβ = Re(U∗αkUβkUαjU
∗
βj) correspond to the CP conserving amplitudes in

neutrino oscillations. These relations therefore provide a connection between the CP violating
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and the CP conserving processes.

To emphasize the di�erences between 3ν and 3 + 1ν we want to highlight the following rela-

tions:

A31
eµ = −A32

eµ +A43
eµ (5.19)

A21
eτ = −A32

µτ +A43
τs (5.20)

A31
eτ = −A32

eτ −A32
τs +A43

τs (5.21)

The relations reduce to the 3ν case, if no mixing with the sterile neutrino takes place, corre-

sponding to vanishing non diagonal elements in the fourth line and column ofU . Consequently,

all amplitudes vanish if α ∨ β = s or k ∨ j = 4. Due to the expected smallness of mixing with

sterile states, the deviations from uniform amplitudes in the 3× 3 sector could be treated in a

perturbative approach.

5.5. Two Sterile Neutrinos

In general this method can be extended for an arbitrary amount of additional light sterile neu-

trinos. Before starting rather annoying calculations one has to consider whether comparable

relations might be interesting at all.

The weak Eigenbasis is determined via the weak interaction with the charged leptons. Since

there are no additional generations of charged leptons, it is impossible to de�ne a weak Eigen-

basis in the sterile sector. The transformation from mass to weak Eigenbasis is determined via

the mixing matrix U

|να〉 = Uαi |νi〉 . (5.22)

Due to the arbitrariness in the sterile sector, one can always rotate the mixing matrix U in the

4-5 plane by an arbitrary angle θ45 without changing the physics. The unitarity conditions for

U then read for example

A21
eµ +A31

eµ +A41
eµ +A51

eµ = 0 (5.23)

Since all Akjαβ with α, β ∈ {e, µ, τ} and k, j ∈ {1, 2, 3} are invariant under a rotation in the

4-5 plane, we can deduce

A41
eµ(θ45) +A51

eµ(θ45) = A41
eµ(θ∗45) +A51

eµ(θ∗45) (5.24)

This sum of the additional amplitudes can be renamed so that the original unitarity relations

from the 3 + 1ν model emerge. This argument can be made for all other unitarity relations,

and by renaming the involved sums we end up at exactly the same relations as in the chapter

before.
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There are a few annotations to the above made argument. First of all, unless additional

interactions of the sterile neutrinos are found, it is impossible to di�erentiate between the

two di�erent sterile neutrino states. Therefore it is experimentally impossible to distinguish

P (νe → νs1) from P (νe → νs2) and therefore to distinguish e.g. the amplitudes A21
es1 and

A21
es2 where νs1 and νs2 indicate the two sterile states (not to confuse with the additional mass

eigenstates ν4 and ν5 which are actually well de�ned).

In contrast, it is generally possible to measure the di�erence between e.g. A41
eµ andA51

eµ if the

additional frequencies in the
L
E spectrum induced by the additional independent mass squared

di�erences ∆m2
41 and ∆m2

51 are determined. Currently some short baseline experiments are

taking data looking for such a direct proof of more than three light neutrino generations. In

this thesis we want to focus on the case where these additional frequencies do not show up in

the experiments. Most of the current experiments are not sensitive to additional frequencies

in the range of ∆m2 & 0.1 eV2
, due to the long distance between source and detector. In

such experiments the additional frequencies would be averaged out and the only measurable

amplitudes would beAkjαβ with α, β ∈ {e, µ, τ} and k, j ∈ {1, 2, 3}. In this case the amplitudes

A41
αβ and A51

αβ are only measurable in combination.

Focussing on only the amplitudes with α, β ∈ {e, µ, τ} and k, j ∈ {1, 2, 3} , there is no

di�erence between models with one additional light neutrino or more additional light neutri-

nos. The naively expected larger freedom for the amplitudes due to the higher number of free

parameters in the larger mixing matrix, is hidden in the sterile sector.

5.6. General Non-Unitarity-Approach

In general a non-unitary 3 × 3 matrix UNU can be described by a matrix product of a unitary

matrix Uunitary and a triangular matrix (1− α) (see for instance [79–81])

UNU = (1− α)Uunitary =

1− αee 0 0
αeµ 1− αµµ 0
ατe αµτ 1− αττ

Uunitary, (5.25)

where αee, αµµ and αττ are real and αeµ, ατe and αµτ are complex parameters. If all α vanish,

the resulting matrix is unitary. By varying the parameters α, it is possible to generate a general

non-unitary quadratic matrix. For suitable parameter combinations it is also possible with this

approach to mimic a mixing matrix from a 3+1 ν model, where also the above analytic relations

follow. We want to be most general and do not apply any restrictions on the parameters α and

therefore no general analytic predictions for the amplitudes can be made.

By applying total freedom on all parameters α it is possible to violate probability conser-

vation. In the case of direct unitarity violation mentioned above it was only possible that

probability seems to vanish in the 3× 3 region since the sterile state is not measurable. Simi-

lar e�ects can also happen in the general non-unitarity approach, where new e�ects like new

heavy neutrino states or non standard interactions at production or detection can be the cause
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of loss of probability. For suitable combinations of α it is also possible to seemingly generate

probability, if the inequality

∑
α∈{e,µ,τ}

∣∣∣(UNU )αj

∣∣∣2 > 1 holds. While by violating basic quan-

tum mechanical rules on this level, it might be possible to e�ectively generate such an e�ect

by rather speculative models like neutrino decay. Therefore, we distinguish between the two

di�erent cases of general non-unitarity, with and without possibility to e�ectively generate

probability.

Since general analytic relations are not deducible the following chapter follows a numerical

approach.
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6. Numerical Analysis

As pointed out in the previous chapter it is not possible to �nd analytic constraints for the

framework of general non-unitary mixing matrices. Therefore we focus in this chapter on a

numerical approach.

6.1. A Numerical Method to Predict Amplitudes

One of the basic goals for this new method to analyze neutrino oscillations is to achieve the

highest independence possible . Especially we want to establish a method to analyze experi-

mental data without using external data from di�erent experiments. For instance, the signi�-

cance of the determination of the CP phase δCP at T2K increases substantially by including the

measurements of the mixing angle θ13 from reactor experiments [82]. This method works �ne,

if both analyses use the same underlying model. But if T2K wants to look for the CP phases in

a 3 + 1 model, the results from reactor experiments have to be used with a lot of care.

For a model independent analysis it is also necessary to be as independent as possible from

assumptions made in previous analyses. If these analyses made intrinsic unknown assumptions

the new analysis can be corrupted and lead to incorrect results.

Without imposing any constraints on the elements of the mixing matrix we can achieve a

maximum of independence. Depending on the model, the absolute values of the linear indepen-

dent amplitudesAkjαβ are not bound and not correlated at all. Therefore it is impossible to �nd

constraints apart from the analytic constraints in case of direct unitarity violation presented in

the previous chapter.

Following this approach on the other hand, would totally ignore all previously made experi-

mental discoveries in the neutrino sector. Fortunately in [83] a global analysis for the elements

of the mixing matrix is performed without implying unitarity or a speci�c new physics model.

These bounds on elements of the mixing matrix play a central role in the numerical analysis.

|U |3×3
3σ =

0.76→ 0.85 0.50→ 0.60 0.13→ 0.16
0.21→ 0.54 0.42→ 0.70 0.61→ 0.79
0.18→ 0.58 0.38→ 0.72 0.40→ 0.78

 (6.1)

To �nd numerical relations among the in general independent amplitudes we perform the anal-

ysis based on the di�erent models. For each model we pick random numbers for all involved

parameters in the speci�c model, the SM parameters sin2 θ12, sin2 θ13, sin2 θ23, and δ31 are

drawn from a �at distribution in the range [0, 1] and [0, 2π], respectively.
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If the resulting mixing matrix U satisfy the bounds in Equation (6.1), the parameter combi-

nation is considered viable and for each viable parameter combination all accessible amplitudes

Akjαβ are calculated and extracted. For each model we extract 100, 000 viable combinations.

We compare six di�erent approaches of neutrino physics beyond the three neutrino paradigm:

(i) a 3 + 1ν model with a light sterile neutrino participating in the neutrino oscillations.

The additional angles sin2 θ41, sin2 θ42 and sin2 θ43, as well as the CP phases δ41 and δ43

are sampled from a �at distribution in the range [0, 1] and [0, 2π], respectively.

(ii) a 3 + 2ν model with two additional light sterile neutrinos similar to the case (i). The

additional angles and phases are drawn accordingly. The main reason is to check whether

the analytic prediction made in Section 5.5 that a 3 + nν model behaves like a 3 + 1ν
model holds in the numeric analysis.

(iii) a 3 + 1ν model with the best �t constraint from the recent analysis in [84] respecting

recent results from NEOS and DANSS collaborations. The extracted constraint on an

additional element of the mixing matrix reads

|Ue4| = 0.012± 0.003. (6.2)

(iv) the general non-unitarity approach introduced in Section 5.6 without any additional

bounds. The parameters are drawn from �at distribution in the range [0, 1] for the abso-

lute values and [0, 2π] for the phases of the o�-diagonal elements.

(v) the general non-unitarity approach introduced in Section 5.6 with the additional bound

of

∑
α∈{e,µ,τ} |Uαj |

2 ≤ 1 corresponding to no emergence of probability.

(vi) a non-unitarity approach according to (iv) and (v) but with additional constraints deter-

mined from rare decays and EW precision observables presented in [85], called minimal

unitarity violation (MUV),

αee <1.3 · 10−3, |αµe| <6.8 · 10−4,

αµµ <2.0 · 10−4, |ατe| <2.7 · 10−3, (6.3)

αττ <2.8 · 10−3, |ατµ| <1.2 · 10−3.

The absolute values of the parameters are drawn from a �at distribution in the range

corresponding to the above constraints. The phases of the o�-diagonal elements are

drawn analogously to (iv).

For all of the above models, we create a scatter plot of all viable combinations of the cor-

responding amplitudes. As an example, Figures 6.1 - 6.6 show the resulting scatter plots in

the

(
A21
eµ −A32

eµ

)
–

(
A31
eµ +A32

eµ

)
plane, as well as in the

(
A21
µτ/A32

µτ

)
–

(
A31
µτ/A32

µτ

)
plane. The

exact SM predictions are single points (0, 0) and (1,−1) in these plots, due to unitarity.
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As can clearly be seen there is a signi�cant di�erence among some of the scenarios. In

particular the analytic result from Section 5.5 can be con�rmed, since no di�erence between

the 3+1ν and the 3+2ν model can be observed. Therefore from here on, we neglect the special

case of the 3 + 2ν model. As expected the region of viable amplitudes for the NEOS/DANSS

case is smaller compared to the free 3 + 1ν model, due to the constraint on |Ue4|.

Figure 6.1.: Scatter plots of viable parameter combinations for the 3 + 1ν model. On the left

(right) the di�erences (ratios) of the three di�erent CP violating amplitudes in the

νe → νµ-channel (νµ → ντ - channel) are shown. The SM exact prediction is the

single point (0, 0) (left) and (1,−1) (right).

Figure 6.2.: Scatter plots of viable parameter combinations for the 3 + 2ν model. On the left

(right) the di�erences (ratios) of the three di�erent CP violating amplitudes in the

νe → νµ-channel (νµ → ντ - channel) are shown. The SM exact prediction is the

single point (0, 0) (left) and (1,−1) (right).
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Figure 6.3.: Scatter plots of viable parameter combinations for the NEOS/DANSS scenario. On

the left (right) the di�erences (ratios) of the three di�erent CP violating amplitudes

in the νe → νµ-channel (νµ → ντ - channel) are shown. The SM exact prediction is

the single point (0, 0) (left) and (1,−1) (right).

Figure 6.4.: Scatter plots of viable parameter combinations for the general non-unitary ap-

proach. On the left (right) the di�erences (ratios) of the three di�erent CP violating

amplitudes in the νe → νµ-channel (νµ → ντ - channel) are shown. The SM exact

prediction is the single point (0, 0) (left) and (1,−1) (right).
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Figure 6.5.: Scatter plots of viable parameter combinations for the bounded non-unitarity ap-

proach with

∑
i |Uij |

2 ≤ 1. On the left (right) the di�erences (ratios) of the three

di�erent CP violating amplitudes in the νe → νµ-channel (νµ → ντ - channel) are

shown. The SM exact prediction is the single point (0, 0) in this plane.

Figure 6.6.: Scatter plots of viable parameter combinations for the MUV approach with bounds

from EW precision measurements. Note that the scale is adjusted compared to the

other plots in 6.1 to 6.5 due to the strict constraints on the parameters. On the left

(right) the di�erences (ratios) of the three di�erent CP violating amplitudes in the

νe → νµ-channel (νµ → ντ - channel) are shown. The SM exact prediction is the

single point (0, 0) in this plane.

For a better comparison we calculate the kernel density estimations (KDE) from the above

scatter plots and show the 95% CL regions in Figures 6.7 and 6.8. As can be seen clearly for

the scenarios with additional light neutrinos and non-unitarity without constraints from EW

precision measurements, the corresponding parameter spaces allow for signi�cant deviation



42 6. Numerical Analysis

from the SM prediction of uniform CP violation. The MUV scenario albeit provides only small

allowed regions due to the strict constraints on the parameters.

The di�erence between the general non-unitary approach and the approach with bounded

matrix elements via

∑
i |Uij |

2 ≤ 1 is not extreme. Due to the constraints in Equation (6.1),

there are not many viable parameter combinations, where the condition

∑
i |Uij |

2 ≤ 1 is not

ful�lled. Nevertheless, current uncorrelated bounds on the matrix elements still do not rule

out emergence of probability yet.

The main result from the numerical analysis is the huge di�erences of the viable parameter

spaces for the general non-unitary approach and the scenario of additional light sterile neu-

trinos. Since the direct unitarity violation due to light sterile neutrinos still imply unitarity

of the (3 + Nlight) × (3 + Nlight) mixing matrix, the viable parameter space is signi�cantly

smaller compared to the general non-unitary or indirect unitarity violation approach, where

these restrictions are not present. Also there are large areas in the general non-unitary ap-

proach, which do not align with the additional light neutrino scenario.

In conclusion, it becomes obvious that there is plenty of room for new physics models, not

only to rule out the SM prediction of uniform CP violation, but also to di�erentiate among

direct and indirect unitarity violation for suitable parameter combinations. On the other hand

a determination of a unique CP violating amplitude would be in agreement with both, the three

neutrino model but also with speci�c parameter combinations of the new physics models and

none of these models could be rejected completely.

In the next section we show, that current experiments are sensitive enough to actually dis-

criminate between di�erent models with this novel approach.

6.2. Analysis with GLoBES

To demonstrate the potential of this newly introduced approach, we perform a pseudo data

analysis with the General Long Baseline Experiment Simulator (GLoBES) [86–88]. The Sim-

ulation calculates the cross sections based on [89, 90] and we use the pre-built experimental

setups for T2K, based on [91, 92] and NOvA, based on [93, 94]. With the GLoBES package

we are able to simulate data at T2K or NOvA with the previously introduced approach. We

assume rather extreme values as “true” input parameters in the general non-unitary approach

as presented in Table 6.1. The resulting mixing matrix reads

U true
3×3 =

 0.85 0.56 0.07 + 0.11i
−0.14 + 0.35i 0.63 + 0.23i 0.69 + 0.06i
−0.14− 0.19i −0.29− 0.35i 0.41− 0.28i

 , (6.4)

ful�lling the bounds set by Equation (6.1).

The probability engine in the GLoBES program is modi�ed to suit the proposed approach at

this stage, for example the matter e�ect is turned o� by hand. With these inputs we generate
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Figure 6.7.: Kernel density estimates for the di�erent scenarios: 3+1ν in red, 3+1ν with bounds

from NEOS/DANSS in blue, general non-unitarity in orange, non-unitarity with

the bound

∑
i |Uij |

2 ≤ 1 in green and minimal unitarity violation in purple. The

colored areas correspond to the 95% CL of the KDE. The SM prediction corresponds

to the point at (0, 0). Due to the strong constraints for MUV, the viable region is

extremely small and deviations from the three neutrino predictions will be hard to

measure. Shown are the di�erences of the three di�erent CP violating amplitudes

in the νe → νµ-channel.

pseudo data, that would resemble the data measured by T2K or NOvA, if the parameters in

nature actually have the above shown values.

In the following analyses all neutrino masses are �xed to the current best �t values from

Table 3.2 and are not marginalized. Additionally, we restrict ourselves to normal ordering.

This generated pseudo data is then analyzed by the inbuilt SM �t and by a �t to the param-

eters in the novel model independent approach. The SM �t leads to an extremely large value

for the χ2
at the best �t point of χ2

best �t
/dof = 367, which would automatically lead to the

conclusion that the three neutrino SM model cannot be used to explain the generated pseudo

data. This result is expected, since the mixing matrix we used is highly non-unitary.

The analysis, in case of the general approach, is performed by scanning over all values ofA21
eµ,

A31
eµ and A32

eµ in the region [−1; 1]. We marginalize all other CP violating and CP conserving

amplitudes, that are contributing to the oscillation probabilities of the considered experiments.
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Figure 6.8.: Kernel density estimates for the di�erent scenarios: 3+1ν in red, 3+1ν with bounds

from NEOS/DANSS in blue, general non-unitarity in orange, non-unitarity with

the bound

∑
i |Uij |

2 ≤ 1 in green and minimal unitarity violation in purple. The

colored areas correspond to the 95% CL of the KDE. The SM prediction corresponds

to the point at (0, 0). Due to the strong constraints for MUV, the viable region is

extremely small and deviations from the three neutrino predictions will be hard to

measure. Shown are the ratios of the three di�erent CP violating amplitudes in the

νµ → ντ -channel.

Figures 6.9 and 6.10 show the χ2
regions corresponding to 68%, 95% and 99% con�dence

level intervals in the corresponding plane with the KDE plots from the previous chapter in the

background.

The analyses of both experiments show the signi�cant feature of a band, restricting the sum

A31
eµ+A32

eµ but not restrictingA21
eµ−A32

eµ at all. This e�ect can be explained by the setup of the

experiments. Both, T2K and NOvA aim to measure CP violation in the SM case and therefore

have a baselength and energy combination suitable for measuring the oscillation driven by

the large mass squared di�erences ∆m2
32 and ∆m2

31. Therefore it is possible to determine

the corresponding amplitudes. The term in the oscillation probability driven by the smaller

mass squared di�erence ∆m2
21 can be approximated to zero for these setups, and therefore the

amplitude A21
eµ cannot be restricted much by T2K and NOvA.
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Parameter value Parameter value

sin2 θtrue
12 0.3054 abs(αtrue

eµ ) −0.4481

sin2 θtrue
23 0.5876 abs(αtrue

eτ ) −0.5017
sin2 θtrue

13 0.0166 abs(αtrue
µτ ) −0.3435

δtrue
13 5.2809 arg(αtrue

eµ ) 4.0291

αtrue
ee −0.0238 arg(αtrue

eτ ) 0.9736
αtrue
µµ 0.0644 arg(αtrue

µτ ) 2.1732

αtrue
ττ 0.6215

Table 6.1.: Input parameters for the GLoBES analysis in the general non-unitary approach.

While both analyses share similar features, there is a huge di�erence between the T2K and

NOvA analysis. While T2K does not restrict the viable parameter space, since they all lie in

the 68% con�dence level region (see Figure 6.9, NOvA is able not only to exclude the SM but

also to distinguish between direct and indirect unitarity violation. At the best �t point, the

analyses leads to χ2
BF = 0.105 which indicates over�tting due to the large amount of free

parameters in the proposed approach. For the actual true input values used to generate the

data, the di�erence to χ2
BF is determined to ∆χ2

true = 1.5. The SM can be excluded due to

the large value of ∆χ2
SM = 31.5. The signi�cantly better sensitivity of NOvA compared to

T2K can be explained by the general setups of these experiments. Both experiments are o�-

Axis accelerator experiments, which results in a narrow energy spectrum for both experiments.

While both experiments are designed to measure the oscillation driven by ∆m2
31, the location

of the peak energy di�ers. At T2K, the peak energy is designed to be near the �rst oscillation

maximum [95], where

∆m2
31L

T2K

4ET2K
peak

≈ π

2
. (6.5)

Comparing this to Equation (4.7), leads to small value for sin

(
∆m2

31L
T2K

2ET2K
peak

)
≈ sin(π) = 0

governing the impact of the CP violating amplitudes. On the other hand, the peak energy and

baselength at NOvA is designed as [96]

∆m2
31L

NOvA

4ENOvA
peak

≈ 1.1, (6.6)

leading to a large value of sin

(
∆m2

31L
NOvA

2ENOvA
peak

)
≈ sin(2.2) = 0.8. Therefore the contribution of

the CP violating amplitudes to the probability is signi�cantly higher at NOvA, resulting in a

higher sensitivity to A31
eµ +A32

eµ for NOvA compared to T2K.

For a further restrictions of these amplitudes, other experiments are necessary. We concen-

trate on accelerator experiments, since they are the only experiments providing both neutrino
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Figure 6.9.: Con�dence level intervals for the new proposed method to analyze T2K data gen-

erated with the input values indicated by the red dot. The GLoBES-package is used

to generate the pseudo data and calculate the χ2
-values.

and antineutrinos with the source under human control. To be sensitive to A21
eµ, the oscilla-

tion driven by ∆m2
21 has to contribute signi�cantly to the oscillation probability. Therefore,

either the energy or the baseline has to be adjusted. The energy is di�cult to adjust, due to

the production process from Pion decays. Therefore we arti�cially create an experiment in the

GLoBES framework with the same speci�cs as T2K but enlarged baseline by the factor of 17,

corresponding to a maximization of the oscillation driven by ∆m2
21. The running time is also

adjusted accordingly by a factor of 172
, which is of course unrealistic, but necessary to get the

desired number of events in the detector, since the �ux in the detector scales with
1
L2 . We are

aware of the problems due to running time and logistics of this setup, but want to emphasize

this as a proof of concept. The resulting con�dence levels for the analysis can be seen in Fig-

ure 6.11. The SM prediction can be excluded, and, comparable to the NOvA analysis, also a

large part of the viable parameter space for direct unitarity violation. Combining both anal-
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Figure 6.10.: Con�dence level intervals for the new proposed method to analyze NOvA data

generated with the input values indicated by the red dot. The GLoBES-package is

used to generate the pseudo data and calculate the χ2
-values.

ysis, NOvA and T2K with longer baseline, can therefore restrict the CP violating amplitudes

consequently.
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Figure 6.11.: Con�dence level intervals for the new proposed method to analyze T2K-like data

generated with the input values indicated by the red dot. In contrast to Figure 6.9,

the baseline is expanded by a factor of 17 and the running time by a factor of 172

to be sensitive to A21
eµ. For details see the text. The GLoBES-package is used to

generate the pseudo data and calculate the χ2
-values.
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7. Ma�er E�ects

7.1. Introduction

The method introduced in the previous chapter investigates CP violation of neutrino oscil-

lations in vacuum. Current oscillation experiments, which are sensitive enough to measure

a (possible) CP violation usually use long baselines. Therefore the neutrinos travel through

Earth’s matter and interact weakly with the constituents, also a�ecting the e�ective mixing

matrix and therefore the CP violating amplitudes. The analytic relations presented in Sec-

tion 5 still hold for a speci�c experiment and energy. The constraints presented in Section 6

on the other hand are based on vacuum values for all mixing parameters and therefore these

constraints do not apply anymore, once matter e�ects are taken into account.

In this Section we examine how matter e�ects impact the previously introduced novel method.

7.2. Oscilllation Probabilities in Ma�er or Other Additional
Potentials

The e�ect of matter on neutrino oscillations with unitarity violation has been studied previ-

ously in [97]. We follow the general approach and apply the formulation to our method.

In any model of BSM physics, only light neutrinos, active and sterile, participate in the actual

oscillation. Therefore the resulting Hamiltonian in �avor space reads

Hn×n
F lav =

1

2E
Un×nMn×nU

†
n×n +

(
Un×nU

†
n×n

)
V
(
Un×nU

†
n×n

)
, (7.1)

where n is the number of light neutrinos. Again, the impact of, for example, heavy neutrino

states is indirectly taken care of in the non-unitarity of the n× n mixing matrices.

In case of only direct unitarity violation the mixing matrixUn×n is unitary andUn×nU
†
n×n =

1n×n holds.
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The Potential V for matter e�ects, e.g. in the earths mantle, can be described as

V =


VCC + VNC 0 0 · · ·

0 VNC 0 · · ·
0 0 VNC · · ·
.
.
.

.

.

.

.

.

. 0

 (7.2)

VCC =
√

2GFNe, VNC = −
√

2

2
GFNn (7.3)

with the Fermi constant GF and the electron- (neutron-) density Ne(n). The charged current

interaction with the electron is described by VCC , while the neutral current interaction with

protons neutrons and electrons is described by VNC . In SM approaches with three light active

neutrinos the neutral current potential is often neglected because it is proportional to the unit

matrix and is therefore not measurable. By introducing direct or indirect unitarity violation

the neutral current cannot be neglected anymore and has to be taken into account

For antineutrinos the e�ective potential �ips its sign, resulting in an intrinsic CP violation

due to the matter e�ect. The potential V can also be generalized for BSM e�ects like non

standard interactions (NSI) during propagation (see [98] for a review). Nevertheless we suppose

the potential is given in �avor space.

Following the standard approach with the Hamiltonian in the �avor eigenbasis leads to

i
d

dt
|να〉 =

1

2E
(Un×nMn×nU

†
n×n) |να〉+

(
Un×nU

†
n×n

)
V
(
Un×nU

†
n×n

)
|να〉

=
1

2E

n∑
i,j,β

(Un)αi(Mn)ij(U
†
n)jβ |νβ〉+

∑
βρσ

(UnU
†
n)αρ(V )ρσ(UnU

†
n)σβ |νβ〉

=
1

2E

∑
β

(Kn)αβ |νβ〉 .

(7.4)

To calculate the transition probability it is necessary to diagonalize the non-diagonal n × n
matrixKn. If at least one heavy neutrino is involved,Kn is not even hermitian . Especially, the

transformation to the vacuum mass eigenbasis does not diagonalize this Hamiltonian anymore,

and therefore the propagation eigenstates do not match the vacuum mass eigenstates.

To �nd the eigenspace in matter we, have to diagonalize the matrix K . We use an invertible

matrix S, which rotates K into the new propagation eigenspace. These propagation eigen-

states are denoted by a capital Latin letter as |νJ〉. The new e�ective masses are given as the

eigenvalues of K , or the diagonal entries DJ of D = S−1KS, which leads to the Schrödinger

equation in propagation eigenspace

i
d

dt
|νJ〉 =

1

2E
DJ |νJ〉 (7.5)
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So far neither U nor S are assumed to be unitary. If U is unitary and the e�ective potential is

hermitian, the new mixing matrix S will be unitary as well. Since we found an eigenspace of

the Hamiltonian, we can follow the usual way to calculate the oscillation probability:

Pνα→νβ = |〈νβ|να(L)〉|2 =

∣∣∣∣∣∣
∑
I,J

〈νJ |S∗βJSαI |νI(t)〉

∣∣∣∣∣∣
2

=
∑
J,K

S∗βJSαJSβKS
∗
αK · e

(
+i

∆DKJ
2E

L
)

,

(7.6)

with ∆DKJ = DK − DJ . This probability can be rewritten to a more common form for

neutrino oscillations

Pνα→νβ = P0 − 4
∑
K>J

RKJαβ sin2

(
∆DKJ

4E
L

)
+ 2

∑
K>J

AKJαβ sin

(
∆DKJ

2E
L

)
(7.7)

P0 =
∑
K,J

(
S∗αKSβKSαJS

∗
βJ

)
(7.8)

RKJαβ = Re
[
S∗αKSβKSαJS

∗
βJ

]
(7.9)

AKJαβ = Im
[
S∗αKSβKSαJS

∗
βJ

]
, (7.10)

where P0 denotes the zero-distance e�ect which only arises in case of indirect non-unitarity.

The limit of vanishing e�ective potential can be obtained by setting the matrix V to zero. In

that case the mass basis corresponds to the propagation basis and the transformation matrix S
is equal to the vacuum mixing matrix U . Having that in mind, the corresponding amplitudes

R andA can be reduced to the vacuum case and the oscillation probability reduces to the well

known vacuum case, as expected.

For large potentials, i.e. high densities or high energies in matter, the �rst term in Equation

(7.1) is negligible and the transformation matrix S reads

SHigh Energy =
(
UU †

)
. (7.11)

In case of only direct unitarity violation S becomes the unit matrix and the electron neutrino

is completely decoupled.

The derivations above hold for neutrinos and antineutrinos separately. Nevertheless, due

to the possibility of non-unitarity of U , the diagonalization performed in Equation (7.5) for

neutrinos does not match the diagonalization for antineutrinos.
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HMass 6= HMass (7.12)

HMass =
1

2E

[
M + (U)−1 V

(
U †
)−1

]
(7.13)

HMass =
1

2E

[
M + (U∗)−1 V

(
(U∗)†

)−1
]

=
1

2E

[
M + (U∗)−1 V

(
UT
)−1
]

︸ ︷︷ ︸
K

(7.14)

Only if V = V and U is real, both Hamiltonians match and the same diagonalization S can

be used for neutrino and antineutrino and the same eigenvaluesD arise. In this case, it follows

that neutrino and antineutrino behave exactly the same and no CP violation is observable.

For complex values in U , neither S nor D match for the neutrino and antineutrino cases.

Moreover, the potential V does not have to be the same for neutrino and antineutrino, for ex-

ample in the case of matter e�ects in earth or sun. The diagonalization of HMass is performed

analogously to the neutrino case with the invertible matrix S and the diagonal matrix D sat-

isfying D = S
−1
KS. Therefore, the rather simple calculation for CP violating amplitudes in

vacuum becomes signi�cantly more complex:

Pνα→νβ − Pνα→νβ =P0 − P0

− 4
∑
K>J

(
RKJαβ sin2

(
δDKJ

4E
L

)
−RKJαβ sin2

(
δDKJ

4E
L

))

+ 2
∑
K>J

(
AKJαβ sin

(
δDKJ

2E
L

)
−AKJαβ sin

(
δDKJ

2E
L

))
,

(7.15)

with the de�nition for the antineutrino parts as

P0 =
∑
K,J

(
S
∗
αKSβKSαJS

∗
βJ

)
(7.16)

RKJαβ = Re
[
S
∗
αKSβKSαJS

∗
βJ

]
(7.17)

AKJαβ = Im
[
S
∗
αKSβKSαJS

∗
βJ

]
(7.18)

δDKJ = DKK −DJJ , (7.19)

similar to the neutrino case. The energy spectrum of the CP violation Pνα→νβ−Pνα→νβ di�ers

signi�cantly from the vacuum case. For non-unitary U , we expect six (instead of three) terms

proportional to sin
(
δDKJ

2E L
)

and six (instead of zero) terms proportional to sin2
(
δDKJ

4E L
)

.
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Investigating the di�erences of probabilities from neutrino and antineutrino in vacuum had

the advantage of cancelling real parts of U and the sin2
terms. Since these terms do not cancel

anymore due to di�erent D and di�erent R, an exclusive focus at CP violating amplitudes is

not adequate.

To conclude we want to highlight three main di�erences between vacuum oscillations and

oscillations with an e�ective potential induced e.g. by matter e�ects.

• the amplitudes and mass squared di�erences are in general energy dependent. Due to the

di�erent energy dependence of the mass term and the potential in the Hamiltonian, the

diagonalization di�ers for di�erent energies. Therefore there are no uniform amplitudes

and mass squared di�erences for the whole energy spectrum of an experiment.

• the diagonalization for the neutrino and antineutrino Hamiltonian is di�erent and there-

fore an intrinsic CP violation. A measured di�erence in the probabilities of neutrinos and

antineutrinos is not necessarily a proof of CP violation on the fundamental level.

• the amplitudes are not independent of the vacuum values of the mass squared di�erences

or the mass ordering anymore.

7.3. Commutator of Mass Matrices Applied to Non-Unitarity

The aforementioned energy dependence of the amplitudes and the e�ective mass squared dif-

ferences in case of matter e�ects has already been studied analytically in [71, 99–102]. In

contrast to this work those analyses focus on the three neutrino case and unitary mixing. A

relation between the amplitudes, e�ective mass squared di�erences depending on the energy

and e�ective potential has been found. This kind of relation would make it possible to use the

above introduced general approach also in the context of matter e�ects to deduce the vacuum

values for the amplitudes and mass squared di�erences from the measured ones and compare

them among di�erent experiments. We follow the approach in the above publications without

assuming unitarity of the 3× 3 mixing matrix U3×3.

The already introduced Jarlskog invariant J was originally determined in the quark sector

by the commutator of the up type and the down type mass matrices since the commutator

quanti�es the alignment of both bases. Transferred to the lepton sector, we de�ne the Jarlskog

invariant with the charged lepton mass matrix M` with eigenvalues {me,mµ,mτ} and the

neutrino mass matrix Mν with eigenvalues {m1,m2,m3} via the determinant of the commu-

tator

det
[
M`M

†
` ,MνM

†
ν

]
= 2iJvM`

vMν , (7.20)

with vM`
=
(
m2
e −m2

µ

) (
m2
µ −m2

τ

) (
m2
τ −m2

e

)
and vMν =

(
m2

1 −m2
2

) (
m2

2 −m2
3

) (
m2

3 −m2
1

)
and the Jarlskog invariant

J = Im
(
U∗αkUβkUαjU

∗
βj

)
. (7.21)
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This de�nition holds as long as unitarity of the 3 × 3 mixing matrix is imposed. On the one

hand, the commutator is not de�ned, if we want to add an additional light neutrino due to the

di�erent dimensions of the mass matrices. On the other hand, by using a generalized non-

unitary 3× 3 leptonic mixing matrix, the determinant does not factorize anymore

det
[
M`M

†
` ,MνM

†
ν

]
=vMl

·

∑
i,j,k

m2
im

2
jm

2
k ·
(
UeiU

∗
µiUµjU

∗
τjUτkU

∗
ek − UeiU∗τiUµjU∗ejUτkU∗µk

)
=vMl

·

∑
i 6=j

2i ·m4
im

2
j

(
|Uµi|2Aijeτ − |Uei|

2Aijµτ − |Uτi|
2Aijeµ

)

+m2
1m

2
2m

2
3

∑
i 6=j 6=k 6=i

(
UeiU

∗
µiUµjU

∗
τjUτkU

∗
ek − UeiU∗τiUµjU∗ejUτkU∗µk

) .

(7.22)

As expected, the commutator becomes much more complicated, due to non-unitarity, but nev-

ertheless we follow the arguments to �nd out whether relations between the vacuum and mat-

ter can be deduced.

Without loss of generality we start in the �avor basis, which means we set the mass matrix

of the charged leptons to be diagonal i.e. M` = diag{me,mµ,mτ}. In this basis, the mass

matrix for the neutrinos can be deduced from the free Hamiltonian

H3×3
vac =

1

2E
U diag{m2

1,m
2
2,m

2
3}U †, (7.23)

while the e�ective Hamiltonian in matter reads

H3×3
eff =

1

2E
U diag{m2

1,m
2
2,m

2
3}U † +

(
UU †

)
V
(
UU †

)
=

1

2E
M eff
ν

(
M eff
ν

)†
.

(7.24)

with the potential V and the mixing matrix U being the generally non-unitary 3 × 3 mixing

matrix parametrized by

U = (1− α)︸ ︷︷ ︸
A

Uunitary =

1− α11 0 0
α21 1− α22 0
α31 α32 1− α33

Uunitary. (7.25)

With this parametrization ofU it is possible to generate any 3×3 matrix by a unitary matrix U
and the non-unitary term A = (1− α), similar to the approach of general unitarity violation

in Section 6.
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The e�ective potential V itself is, in case of matter e�ects, diagonal in �avor space:

V =

Vcc + Vnc 0 0
0 Vnc 0
0 0 Vnc

 (7.26)

Vcc =
√

2GFNe, Vnc = −
√

2

2
GFNn (7.27)

This leads to a general diagonal term in the e�ective Hamiltonian in case U is unitary, and a

non-diagonal term in case U is not.

The commutator now reads

[
M`M

†
` ,M

eff
ν

(
M eff
ν

)†]
=
[
M`M

†
` , U diag{m2

1,m
2
2,m

2
3}U † + 2E ·

(
UU †

)
V
(
UU †

)]
=
[
M`M

†
` ,M

vac
ν (Mvac

ν )†
]

+ 2E ·
[
M`M

†
` ,
(
AA†

)
V
(
AA†

)]
(7.28)

For AA† = 1 and a diagonal potential V , one can relate the e�ective masses and mixing

parameters to the vacuum ones via Equation (7.20), reproducing the Naumov relation [103]

Jδm2
21δm

2
31δm

2
32 = J̃δm̃2

21δm̃
2
31δm̃

2
32, (7.29)

which is the basic result of the above mentioned papers.

For general non-unitarity the term

(
AA†

)
V
(
AA†

)
is not diagonal in �avor space and gener-

ates additional terms in the relation. The resulting system of nonlinear equation is not solvable

in all generality. A further analytical study of the parameters in matter has not been performed,

although for speci�c parameter setups it might be possible to calculate the dependencies of the

masses and mixing parameters.

7.4. Numerical Analysis of T-Violation in the presence of Ma�er
E�ects

One of the main features of the new approach to analyze CP violation in vacuum neutrino oscil-

lation introduced in Section 4 was that all CP conserving amplitudes cancel. This cancellation

reduces the number of free parameters signi�cantly and clear predictions can be made. As
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shown in the previous section, this is not possible anymore, once matter e�ects are involved.

A possible way out is focussing on T violating instead of CP violating processes, which read

Pνα→νβ − Pνβ→να =P 0
αβ − P 0

βα

− 4
3∑

K>J

(
RKJαβ sin2

(
δDKJ

4E
L

)
−RKJβα sin2

(
δDKJ

4E
L

))

+ 2
3∑

K>J

(
AKJαβ sin

(
δDKJ

2E
L

)
−AKJβα sin

(
δDKJ

2E
L

))

= + 4
3∑

K>J

(
AKJαβ sin

(
δDKJ

2E
L

))
(7.30)

Note that the di�erence between T violation and CP violation in the presence of matter e�ects

is not a violation of the CPT theorem. Since the considered matter in earth or sun is made

almost purely out of matter and not antimatter, the background itself already violates CP and

this extrinsic CP violation generates the di�erence between CP and T violation. The CPT

conservation becomes obvious comparing the probabilities Pνα→νβ in matter and Pνβ→να in

antimatter, which is experimentally impossible. In the vacuum case, CPT is conserved and

therefore the T violation and the CP violation is equal, which can also be seen in Equation

(7.30). While the CP violating oscillations become signi�cantly more complex if matter e�ects

are taken into account (see Equation (7.15)), the T violating processes preserve the cancellation

of the real amplitudes. Therefore a focus on the amplitudes AKJαβ is possible, but due to the

energy dependence of AKJαβ and δDKJ , a more careful analysis is needed.

While being theoretically simpler, the T violation (7.30) is experimentally challenging. An

analysis would require sources, that produce neutrinos with di�erent �avors with comparable

energies at su�cient rates which is hard to realize due to the huge di�erences in the masses

of the charged leptons. Additionally, a complete model independent analysis requires a �t of

the amplitudes for each energy bin separately. This �t is only possible if the probabilities are

measured at su�ciently many di�erent base lengths, corresponding to multiple detectors with

a high spatial resolution at di�erent distances from the source.

To analyze the imaginary amplitudes Akjαβ in greater detail, one has to examine the e�ect

of the matter potential further. Due to the di�erent potentials for νe and νµ/τ , the possibility

of resonant mixing arises. For neutrinos, the electron neutrino becomes e�ectively heavier

for larger energies, while the muon and tau neutrino become lighter, due to the di�erent pre-

factor in the potential. With this behaviour also the mixing with the mass eigenstates changes.

For large energies, the electron neutrino decouples completely from the other two and the

heaviest propagation eigenstates corresponds to the electron neutrino. Depending on the mass

ordering this results in di�erent possibilities of resonant mixing. At the resonance, the mixing

is maximal, i.e. the o�-diagonal elements of the mixing matrix become large, which causes

large values for the amplitude Akjαβ with νk and νj as the corresponding resonant propagation
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eigenstates. Figures 7.1 and 7.2 show the energy dependence of the mass eigenvalues and

the corresponding amplitudes Akjeµ between 10 MeV and 100 GeV, for normal and inverted

ordering and for neutrinos and antineutrinos. To demonstrate the e�ect, we used vacuum

mixing values with large unitarity violation, but still satisfying the bounds in Equations (6.1).

The electron density is set to the value of the earth mantleNmantle
e ∼ 2.2cm−3NA withNA the

Avorgadro number. In all cases the lightest neutrino mass is set to zero, and the dashed lines

in the plots correspond to negative values for the e�ective masses m2
j . For di�erent setups,

di�erent possibilities of resonant mixing occur, which also results in di�erent behavior of the

amplitudes.
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Figure 7.1.: Energy dependence of imaginary amplitudes of one speci�c setting for neutrinos

with normal (left) and inverted ordering (right). The squared masses are shown as

m2
1 in blue, m2

2 in orange and m2
3 in green. The dashed line for m2

3 for inverted

ordering corresponds to negative values of the squared e�ective mass.

Figures 7.3 and 7.4 show the dependence of energy of the amplitudes over an energy range

from 10 MeV to 100 GeV for di�erent vacuum parameter combinations in the

(
A21
eµ −A32

eµ

)
–(

A31
eµ +A32

eµ

)
plane. Again, the vacuum values satisfy the constraints given in Equation (6.1).

For large energies all parameter combinations show the same behaviour. As expected for large

energies, no oscillation will be measurable since the �avor states correspond to the propaga-

tion eigenstates. This translates to all amplitudes approaching zero and the point (0, 0) in the

considered plane.

The di�erent possibilities of resonant mixing result in di�erent general features. If there

is no resonant behavior (neutrinos with inverted ordering, and antineutrinos with normal or-
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Figure 7.2.: Energy dependence of imaginary amplitudes of one speci�c setting for antineutri-

nos with normal (left) and inverted ordering (right). The squared masses are shown

as m2
1 in blue, m2

2 in orange and m2
3 in green. The dashed line for m2

1 for normal

ordering corresponds to negative values of the squared e�ective mass.

dering), all amplitudes slowly converge to zero for large energies. With resonant mixing the

corresponding amplitude (A32
eµ for neutrinos with normal ordering, and A31

eµ for antineutrinos

with inverted ordering) approach large absolute values before reaching zero eventually. While

this resonant enhancement for neutrinos with normal ordering or antineutrinos with inverted

ordering depends on the speci�c parameter combinations, the possibility of enlarged unitarity

violation due to the matter e�ect is an important feature.

In general, the experimental determination of the energy dependent amplitudes Akjαβ with

included matter e�ect is not trivial and out of reach of current experimental setups as described

above. Nevertheless, due to the possibility of resonant enhancement at speci�c energies, it may

be possible to detect unitarity violation more easily than in the vacuum case.
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Figure 7.3.: Energy dependence of nine di�erent parameter settings in the(
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eµ

)
–

(
A31
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)
plane for neutrinos with normal (top) and in-

verted ordering (bottom).
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)
plane for antineutrinos with normal (top) and

inverted ordering (bottom).
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8. Summary

In this part we have introduced a new model independent method to investigate CP violation

in neutrino oscillations. Due to the high sensitivity of current neutrino oscillation experiments

it is possible to compare these experiments in an independent way without implying a speci�c

model or parameters determined by other experiments. Our method relies on the observable

CP violating amplitudes Akjαβ instead of speci�c parametrizations.

We have shown that there is a generic di�erence between the minimal model of three light

active neutrinos and extensions like additional light sterile neutrinos or non-unitarity mixing

due to heavy neutrinos or non standard interactions. Speci�cally the strong prediction of a

uniform value for all amplitudes (the Jarlskog invariant) in the minimal three neutrino case,

does not hold for any extension of a unitary 3× 3 mixing matrix.

For direct unitarity violation we have deduced analytic relations among the amplitudes for

the 3 + 1ν case and have also shown, that the addition of even more light sterile states can

always be reduced to the special 3 + 1ν case.

To compare direct and indirect unitarity violation, we have performed an extensive numer-

ical analysis, where possible combinations of di�erent amplitudes has been calculated based

on bounds for the elements of the mixing matrix without implying unitarity. We have shown

that the viable combinations of amplitudes di�er signi�cantly for di�erent sources of unitarity

violation.

With the help of the GLoBES package we have simulated the current experiments T2K and

NOvA looking for CP violation in neutrino oscillations. The simulated pseudo data has been

generated by the assumption of extreme but still allowed unitarity violation. Analyzing this

generated pseudo data by the newly introduced method has led to the possibility of not only

excluding the minimal three neutrino case but also direct unitarity violation as the source.

With this proof of concept we are con�dent that this newly introduced method is a powerful

tool to investigate CP violation in neutrino oscillations.

To also include matter e�ects we have shown the di�culties arising due to the di�erent

e�ect on neutrinos and antineutrinos. Due to the energy dependent e�ective potential, also

the CP violating amplitudes become dependent on the mass squared di�erences and the en-

ergy. Without implying any model dependent relations, this leads to a huge number of free

parameters. We have investigated the approach of commutators of the mass matrices with the

aim to �nd a generalized version of the Naumov relation, which has failed in all generality.

An extensive reduction of free parameters can be made by focusing on T violation instead

of CP violation. Albeit being experimentally more challenging, theoretical predictions can be



62 8. Summary

made, and we have shown the energy dependence of the CP violating amplitudes for di�erent

parameter combinations.

To summarize, the newly introduced method provides a powerful model independent tool to

analyze neutrino oscillations already with current experiments. With the presented approach

it is not only possible to reject the standard three neutrino hypothesis but also to determine the

source of the new e�ects for speci�c parameter combinations. The inclusion of matter e�ects

leads to challenges for the method and opens a path for further investigation.
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Part III.

Impact of Light Sterile Neutrinos on
Determination of the Mass Ordering

at Juno
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9. Determination of the Mass Ordering at
JUNO in the 3ν Case

As pointed out in Section 3.2 one of the yet undetermined properties in the neutrino sector is the

mass ordering of the three mass eigenstatesm2
1,m2

2 andm2
3. While each mixing angle and mass

squared di�erence can be in the leading term of oscillation probabilities at suitable baselength

and energy, the ordering has always only a sub-leading contribution. Oscillation experiments

therefore need a high sensitivity to determine the mass ordering. The JUNO experiment is a

reactor based experiment designed especially for this determination. Sensitivity studies have

shown that JUNO can achieve a median sensitivity of ∼ 3σ after six years of running time.

[128]

In this part we will shortly review the signi�cant features of JUNO and its searches and

show afterwards whether a light sterile neutrino can impact the search so that a simple three

neutrino analysis leads to a wrong determination of the mass ordering. The JUNO experiment

is measuring the survival probability of electron antineutrinos (νe):

P(νe→νe) = 1− 4

N∑
i<j

|Uei|2|Uej |2 sin2 Fij , with

{
Fij ≡ ∆2

mijL
4E ,

∆2
mij ≡ m2

j −m2
i ,

(9.1)

with N being the total number of light neutrinos (active or sterile) involved in the neutrino

oscillation processes and the mixing matrix U is a N ×N unitary matrix.

The analysis in [128] relies on the standard case withN = 3. The mass ordering is only a sub-

leading e�ect in the probability and cannot be seen directly in the above form. The following

parametrizations and rede�nitions are used to highlight the impact of the mass ordering: We

use the standard parametrization from Equation (3.46) so that

Ue1 = c12c13, Ue2 = s12c13, Ue3 = ŝ∗13, (9.2)

where ŝij ≡ sije
iδij

and sij ≡ sin θij , cij ≡ cos θij with the mixing angles θij and the CP-

phases δij .
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We also de�ne F∗ ≡ ∆m2
∗L

4E with ∆m2
∗ ≡ ∆m2

31 + ∆m2
32. The survival probability follows

as

P 3ν
(νe→νe) =1− 4|Ue1|2|Ue2|2 sin2 F21 − 4|Ue1|2|Ue3|2 sin2 F31

− 4|Ue2|2|Ue3|2 sin2 F32

=1− c4
13 sin2 2θ12 sin2 F21 − sin2 2θ13

(
c2

12 sin2 F31 + s2
12 sin2 F32

)
=1− c4

13 sin2 2θ12 − sin2 2θ13 + sin2 2θ13 cosF∗ cosF21

+ sin2 2θ13 sinF∗ cos 2θ12 sinF21.

(9.3)

The impact of the mass ordering becomes visible in Equation (9.3): Normal ordering (NO) (i.e.

m3 > m2 > m1) results in ∆∗ > 0, while inverse ordering (IO) (i.e. m2 > m1 > m3) results

in ∆2
m∗ < 0. Therefore, all terms in (9.3) which are proportional to cosF∗ are not sensitive to

the mass ordering, but the terms proportional to sinF∗ are. So only the last term is responsible

for JUNO being sensitive to the mass ordering. Note, that this e�ect is a non-leading e�ect and

a high energy resolutions and high statistics is necessary to determine the mass ordering.

The di�erence between the two mass orderings can be seen in Figure 9.1 where we used the

values for the mixing parameters from Table 3.2 and a CP phase of δCP = 0. As can be clearly

seen, the di�erent mass orderings result in a shift of the fast oscillating mode. Due to a high

energy resolution and a peak in the energy spectrum at 3 − 5 MeV, JUNO is able to measure

this shift and therefore determine the mass hierarchy.
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Figure 9.1.: Electron antineutrino survival probability at relevant energies for JUNO for normal

ordering (red) and inverted ordering (black).
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10. Addition of one Light Sterile Neutrino

The 3 + 1ν case can now be examined by a analogue treatment. With the corresponding

elements of the mixing angles and a rede�nition of the new mass square di�erences ∆m′2∗ ≡
∆m2

41 + ∆m2
42 and accordingly F ′∗ = ∆m′2∗ L

4E the survival probability can be written as

P 4ν
(νe→νe) = 1− 4|Ve1|2|Ve2|2 sin2 F21 − 4|Ve1|2|Ve3|2 sin2 F31 − 4|Ve2|2|Ve3|2 sin2 F32︸ ︷︷ ︸

standard terms

−4|Ve1|2|Ve4|2 sin2 F41 − 4|Ve2|2|Ve4|2 sin2 F42 − 4|Ve3|2|Ve4|2 sin2 F43︸ ︷︷ ︸
light sterile terms

=1− c4
13c

4
14 sin2 2θ12 − c4

14 sin2 2θ13 − c2
13 sin2 2θ14 − s2

13 sin2 2θ14.

+ c4
14 sin2 2θ13 cosF∗ cosF21 + c2

13 sin2 2θ14 cosF ′∗ cosF21

+ s2
13 sin2 2θ14 cosF ′∗ cosF∗

−
(
c4

14 sin2 2θ13 sinF∗ + c2
13 sin2 2θ14 sinF ′∗

)
cos 2θ12 sinF21

+ s2
13 sin2 2θ14 sinF ′∗ sinF∗.

(10.1)

Again, the term sinF∗ is sensitive to the mass hierarchy. In contrast to the simple 3ν case, in

the 3 + 1ν case, there arises an additional term proportional to sinF ′∗ which can in principle

cancel out the standard term.

For a suitable parameter combination, it is possible that the additional term not only cancels

out the standard term but generates a term that can spoil the mass hierarchy. This is the case

if

2 · c4
14 sin2 2θ13 sinF∗ = −c2

13 sin2 2θ14 sinF ′∗. (10.2)

Note that this relation can in principle be ful�lled with numerous parameter combinations

and depends on the energy due F∗ and F ′∗. Nevertheless, JUNO does not measure this term

separately but can only deduce the complete survival probability (10.1), which we focus on in

the following.

To show the actual impact of such a light sterile neutrino, we show in Figure 10.1 the survival

probability (10.1) in the energy region JUNO is sensitive to. We used di�erent values for the

mixing parameters of the fourth neutrino. For the standard mixing parameters, we used the

best �t values shown in Table 3.2. It can be easily seen, that the actual impact of the light sterile

neutrino is highly dependent on the mixing angle and the mass squared di�erence.
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To investigate whether a misinterpretation of the mass ordering is possible in case of one

additional light sterile neutrino, we de�ne the quantity

Q(E) =

∣∣∣∣∣PNO/IO
4ν (E)− P IO/NO

3ν (E)

P
NO/IO
4ν (E)

∣∣∣∣∣ (10.3)

to measure the deviation of the survival probability with one additional sterile neutrino (P4ν )

from the survival probability without any additional light sterile neutrino (P3ν ) calculated by

Equation (10.1) for opposite orderings of the three neutrinos ν1, ν2 and ν3. This quantity ob-

viously depends on ∆m2
41, θ14 and the energy. Figures 10.2 and 10.3 show Q as scans over

the mixing parameters for di�erent combination of the orderings. For speci�c energies, it is

possible to �nd speci�c combinations of θ14 and ∆m2
41 so that the relative deviation Q be-

comes small (. 5%). A naive guess could be, that if θ14 becomes closer to 0, also Q becomes

negligible due to decoupling of the sterile state. However this e�ect can be observed, even for

sin2(2θ14 = 10−3
, the deviation due to the additional sterile state is signi�cant and expected to

be measurable by JUNO. The minima in parameter space are indicated by the dark blue region

and have a not trivial shape depending on the energy. In general these region also do not align

for di�erent energies, as expected due to Equation (10.2).

Due to the broad energy spectrum at JUNO, it is possible to test the hypothesis of a speci�c

mass ordering at di�erent energies at the same time. A weighted analysis with the actual

spectrum at JUNO is not done here due to lack of insight into the speci�cs of the experiment.

Therefore we simply calculate the averaged value of Q(E) for Nbins = 200 equal sized bins in

the energy region from 1.8 MeV to 8.0 MeV, matching the analysis in [128] as

Q =
1

Nbins

Nbins∑
i

Q(Ei), (10.4)

with the energy Ei of the i-th bin.

Since the speci�cs of the used reactors and detectors are not publicly available, it is not

possible to deduce whether JUNO can resolve the di�erence between 3ν and 3+1ν for param-

eter combinations where Q is large. Nevertheless, if there are parameter combinations of θ14

and ∆m2
41 where Q s negligible, JUNO is not able to measure any deviation to a supposed 3ν

analysis, and therefore might claim a wrong mass hierarchy without being able to notice.

Figures 10.5 and 10.4 show the two di�erent possibilities of combination of the mass or-

derings for Q. The averaged deviation is for all parameter combinations at least 3% and for

a huge parameter space even signi�cantly bigger. We therefore suspect that JUNO is able to

detect these deviations.
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Figure 10.1.: Survival probability P(νe→νe) for four neutrinos with di�erent values of

sin2 (2θ14) and ∆m2
41 in the relevant energy region for Juno and for di�erent

orderings for the standard neutrinos (NO in green, IO in blue). For comparison

also the probabilities for 3 neutrinos are shown (NO in red and IO in black).
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Figure 10.2.: Relative di�erenceQ(E) of the survival probability de�ned by Equation (10.3) for

di�erent energies dependent on the mixing angle sin2 2θ14 and the mass squared

di�erence ∆m2
41. The three neutrino probability is based on normal ordering,

while the four neutrino probability is based on inverted ordering. The dark regions

indicate parameter combinations where there is no di�erence between the two

considered probabilities.
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Figure 10.3.: Relative di�erence of the survival probability de�ned by Equation (10.3) for dif-

ferent energies dependent on the mixing angle sin2 2θ14 and the mass squared

di�erence ∆m2
41. The three neutrino probability is based on inverted ordering,

while the four neutrino probability is based on normal ordering. The dark regions

indicate parameter combinations where there is no di�erence between the two

considered probabilities.
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Figure 10.4.: Contours of the averaged relative di�erence Q of the survival probability de�ned

by Equation (10.4) dependent on the mixing angle sin2 2θ14 and the mass squared

di�erence ∆m2
41. The three neutrino probability is based on normal ordering,

while the four neutrino probability is based on inverted ordering. For all consid-

ered parameter combinations, the averaged relative di�erence is larger than 3%.
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Figure 10.5.: Contours of averaged relative di�erence Q of the survival probability de�ned by

Equation (10.4) dependent on the mixing angle sin2 2θ14 and the mass squared

di�erence ∆m2
41. The three neutrino probability is based on inverted ordering,

while the four neutrino probability is based on normal ordering. For all considered

parameter combinations, the averaged relative di�erence is larger than 3%.
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11. Summary

To summarize, we have shown that it is theoretically possible that an additional light sterile

neutrino can spoil the determination of the mass ordering at the reactor neutrino experiment

JUNO. Due to interference of the terms sensitive to the mass ordering, the additional terms

caused by the light sterile neutrino can lead to cancellations. This observation has raised the

suspicion whether a 3 + 1ν model can fake the signal of a 3ν model with the opposite mass

ordering and therefore lead to a false conclusion by the JUNO collaboration.

We have demonstrated that this cancellation is indeed possible for speci�c energy values.

The relative di�erence between the survival probability of 3 + 1ν and 3ν can become negligi-

ble for speci�c parameter combinations. Nevertheless, the energy dependence of the survival

probabilities is non-trivial and therefore, for each such parameter combination the di�erence

in the survival probability can also become large at other energies. Due to the broad energy

spectrum and the high energy resolution of JUNO there is no combination for θ14 and ∆m2
41

where the 3 + 1ν probability fakes a 3ν probability with the opposite mass ordering over the

complete energy spectrum. A quantitative determination whether the e�ect of the additional

sterile neutrino is in fact measurable by JUNO has not been done due to the limited information

publicly available about the experiment.
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Part IV.

A Stringent Model to Explain All
Current Anomalies in Neutrino

Oscillation Data
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12. Introduction to Conflicting Appearance
and Disappearance Data

In this part we examine a new model of neutrino oscillations with sterile neutrinos and altered

dispersion relations to explain all currently con�icting oscillation data thoroughly. To our

knowledge this model is the �rst and only model based purely on oscillation e�ects which

achieves this task [2].

In this chapter we introduce the current problems of con�icting experimental data, before

we show in chapter 13 how simple models fail and eventually in chapter 14 we develop a

complete model explaining all current anomalies in neutrino oscillations without spoiling data

from di�erent experiments.

As already mentioned in Section 3.4 anomalies in neutrino oscillations are a long stand-

ing issue. The excess reported by LSND [49], the de�cit in reactor �ux [59], and the de�cit

in Gallium based experiments [51] can all be explained by a short baseline oscillation corre-

sponding to a third mass squared di�erence ∆mSB ∼ 1eV2
. Nevertheless, the sterile neutrino

hypothesis had a statistically low signi�cance, lacks of theoretical motivation, is in con�ict

with cosmological data[34] and other oscillation experiments in global �ts [104].

To further investigate the LSND anomaly, the MiniBooNE experiment searched for

(−)
ν µ →

(−)
ν e transitions at a di�erent baseline and energy as LSND, but the setup corresponded to the

same mass squared di�erence of O(1)eV2
. The collaboration recently reported a 4.8σ excess

in the low energy region compared to the standard three neutrino hypothesis [50], and com-

bined with the LSND results, the signi�cance rise to 6.1σ for new physics beyond the Standard

Model. This anomaly therefore cannot be interpreted as a statistical �uctuation but has to be

systematic. It is still possible that this excess stems from an underestimation of the background

or a wrong analysis. Several other explanations for the MiniBooNE data has been proposed

[105–110] but none of them are able to explain all anomalies. Nevertheless until the follow up

experiment MicroBooNE is able to clarify the controversy, we take these results seriously and

examine weather this excess might be explained by new oscillation physics corresponding to

a new sterile neutrino state.

While all these anomalies hint into the same direction, experiments like atmospheric neu-

trino experiments [111, 112] or accelerator experiments [113–115] are searching for νµ disap-

pearance at these neutrino mass squared di�erence scales and do not show any deviation from

the standard three neutrino model. These experiments provide high statistics and constrain the

simplest additional sterile neutrino hypothesis consequently. The global �t in [104] excludes

the simplest 3 + 1ν model at the 4.7σ level.
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Experiment E L channel ∆m2
SB

LSND ∼ 20− 60 MeV ∼ 30 m
(−)
ν µ →

(−)
ν e 3

MiniBooNE ∼ 0.2− 3 GeV ∼ 541 m
(−)
ν µ →

(−)
ν e 3

Gallium ∼ 400− 800 keV ∼ 2 m
−
νe →

−
νe 3

Reactor ∼ 1− 6 MeV ∼ 10− 100 m
−
νe →

−
νe 3

MINOS (acc) ∼ 7 GeV ∼ 735 km
(−)
ν µ →

(−)
ν µ 7

atmospheric ∼ 0.6− 100 GeV ∼ 15− 13, 000 km
(−)
ν µ →

(−)
ν µ 7

Table 12.1.: Current status of con�icting neutrino data. The last column indicates whether an

additional sterile neutrino is favored (3) or in con�ict (7) with current data.

A summary of the current con�icting neutrino data is shown in Table 12.1. Since all experi-

ments measure di�erent channels, it needs a closer look why these experiments are excluding

each other in the most simple 3 + 1ν model:

As already pointed out in section 3.2, the transition probability of neutrinos from one active

�avor α to another �avor β can be written as

Pνα→νβ =δαβ − 4

Nlight∑
k>j

Re(U∗αkUβkUαjU
∗
βj) sin2

(
∆m2

kjL

4E

)

+ 2

Nlight∑
k>j

Im(U∗αkUβkUαjU
∗
βj) sin

(
∆m2

kjL

2E

)
, (12.1)

with Nlight being the total number of active and sterile light neutrinos, U the Nlight × Nlight

mixing-matrix. Here we focus solely on BSM extensions with light sterile neutrinos which

makes U unitary. We also neglect possible CP violation due to simplicity which is justi�ed by

MiniBooNE data showing almost the same e�ect in neutrino and antineutrino data. Therefore

we consider only real elements of the mixing matrix U, so the last term in Eq. (12.1) vanishes.

The proposed additional mass-squared di�erence ∆m2
SB

is in the ∼ 1 eV
2
-region and the

mass-squared di�erences ∆m2
21, ∆m2

31 and ∆m2
32 are experimentally tested to be orders of

magnitude smaller (see Table 3.2). Therefore it is possible to neglect ∆m2
21, ∆m2

31 and ∆m2
32
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at suitable baselength and energies. A common approximation for the transition probability

from one active �avor to another at those values of
L
E reads

Pνα→νβ ≈δαβ − 4

3∑
j

Re(U∗α4Uβ4UαjU
∗
βj) sin2

(
∆m2

4jL

4E

)

=δαβ − 4 sin2

(
∆m2

SBL

4E

) 3∑
j

Uα4Uβ4UαjUβj︸ ︷︷ ︸
− 1

4
sin2 2θαβ , for α 6=β

.

(12.2)

Here we used the unitarity of U, speci�cally

∑3
j UαjUβj = −Uα4Uβ4 + δαβ . This form

resembles a simple two neutrino model with an appearance angle sin2 2θαβ = 4|Uα4|2|Uβ4|2
and a disappearance angle sin2 2θαα = 4|Uα4|2(1−|Uα4|2), which makes it possible to analyze

phenomena of the simplest 3 + 1ν model as a basic two neutrino model.

The appearance experiments LSND and MiniBooNE show an excess in the

(−)
ν µ →

(−)
ν e tran-

sition, and therefore demand a large value of sin2 2θµe to explain their data. On the other hand,

the

(−)
ν µ disappearance experiments do not show a signi�cant de�cit at this oscillation mode.

This leads to a small value of sin2 2θµµ = 4 |Uµ4|2(1− |Uµ4|2) ' 4 |Uµ4|2 for |Uµ4|2 small.

Comparing the di�erent amplitude we end up with the following relationship

sin2 2θµe = 4 |Uµ4|2|Ue4|2 =
1

4
(sin2 2θµµ + 4 |Uµµ|4)(sin2 2θee + 4 |Uee|4)

' 1

4
sin2 2θµµ sin2 2θee.

(12.3)

Since the inequality sin2 θαβ < 1 holds for all α, β, both disappearance angles for νe and
νµ have to be large, to accomplish a signi�cant appearance probability. Therefore appearance

experiments and disappearance experiments contradict each other in the simplest 3+1ν model.

This problem is well known and exhibits the basic problem of current short baseline results. It

is shown, that it even persists in models adopting more than one additional sterile state [116].

The above relationship holds as long as one considers the elements of the mixing matrix to

be constant. If this condition is given up and the elements are allowed to become energy or

baseline dependent (as is the case for CP-violating matter vs. antimatter e�ects), this tension

can in principle be avoided.

As shown in Table 12.1 the relevant experiments are indeed all sensitive to a mass-squared

di�erence of∼ 1 eV2
due to similar values of

L
E , but they operate on di�erent energy and base-

length scales and so an altered dispersion relation (see the following chapter) could be useful

to resolve the above mentioned problem. In this case the energy dependence has to be fairly

strong, since the energy regime for MiniBooNE almost overlaps with the low-energy range of

atmospheric neutrino experiments.
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In summary, to relieve the tension between appearance and disappearance experiments, a

model is required which allows for a small |Uµ4|2 at high energies (GeV) and a su�ciently

large |Ue4|2|Uµ4|2 at low energies (MeV).
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13. Altered Dispersion Relations for a
Single Sterile Neutrino

E�ective potentials in the Hamiltonian in �avor space can generate additional terms in the

usual relation between energy E and momentum ~p, so that the normal dispersion relation

E2 = |~p|2 + m2
is altered. One typical example for such altered dispersion relation (ADR)

is the matter e�ect already covered in Section 7. As mentioned in that section, the matter

e�ect di�ers for neutrino and antineutrino due to the earth consisting solely of matter. Since

MiniBooNE reports anomalies in neutrino and antineutrino mode and such a large signal would

require unusually large couplings to matter, the typical matter e�ect cannot provide a solution

of the anomaly. Inspired by matter e�ects we develop a di�erent formalism to explain the

anomaly. Note, that we do not take the standard matter e�ect into account, since the impact is

expected to be small.

One scenario which can be applied to neutrinos and antineutrinos in the same way allows

a Lorentz violation of the sterile neutrino. Since Lorentz violation is based on the spacetime

itself, there is no di�erence between particles and antiparticles. In [117, 118] a model is pro-

posed, which adopts one additional sterile neutrino taking a shortcut via an asymmetrically

warped extra dimension [119–121] (see also [122–125]). In a semi-classical picture, the sterile

neutrino oscillates on its geodesic in the warped bulk surrounding the brane, and thereby a

running time di�erence is generated between active and sterile neutrinos. This running time

di�erence manifests itself as an additional negative potential in the Hamiltonian proportional

to the relative time di�erence
δt
t =: ε, the so-called shortcut parameter (always entering the

Hamiltonian as multiplied by the energy E). Although the semi-classical picture may not be

truly accurate, its predictions regarding the form of the potential are correct to leading order

in the shortcut parameter [126].

The resulting Hamiltonian in �avor space can be written as

H(F) =
1

2E
U


m2

1 0 0 0
0 m2

2 0 0
0 0 m2

3 0
0 0 0 m2

4

U† − E


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ε

 (13.1)
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Using the aforementioned approximation m2
1 = m2

2 = m2
3 = 0 and m2

4 = ∆m2
SB leads to

H(F) ≈

 V
0
0
0

0 0 0 1


 1

2E


1 0 0 0
0 1 0 0
0 0

R340 0




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ∆m2

SB




1 0 0 0
0 1 0 0
0 0

RT340 0



−Eε


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



 V†

0
0
0

0 0 0 1

 ,

(13.2)

with the energy E, shortcut parameter ε, and

U =

 V
0
0
0

0 0 0 1

×


1 0 0 0
0 1 0 0
0 0

R340 0

 , (13.3)

being the full 4 × 4 unitary mixing matrix. Here, V is the unitary 3 × 3 mixing matrix cor-

responding to the standard UPMNS and R34 is the rotation in the 3 − 4 plane generating the

sterile admixture of mass eigenstate ν3 with the mixing angle θ34:

R34 =

(
cos θ34 sin θ34

− sin θ34 cos θ34

)
. (13.4)

As already calculated in [118], the eigenvalues of the Hamiltonian become

λ1 = 0, λ2 = 0,

λ± =
∆m2

SB

4E

1− cos 2θ34

(
E

ER

)2

±

√√√√sin2 2θ34 + cos2 2θ34

[
1−

(
E

ER

)2
]2
 ,

(13.5)

with the resonance energy

ER =

√
∆m2

SB cos 2θ34

2ε
. (13.6)

Below we follow the arguments given by [118] with one exception regarding the reasoning

why the probability Pνα→να , with α being an active �avor, should vanish. One has

Pνα→να = 1− 4U2
α3·
[
sin2

(
L(λ+ − λ−)

2

)
sin2 θ̃ cos2 θ̃ U2

α3

+ sin2

(
L(λ+)

2

)
sin2 θ̃

(
1− U2

α3

)
+ sin2

(
L(λ−)

2

)
cos2 θ̃

(
1− U2

α3

)]
.

(13.7)
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Here, θ̃ denotes the e�ective mixing angle de�ned via

sin2 2θ̃ =
sin2 2θ34

sin2 2θ34 +
(

cos 2θ34 − 2E2ε
∆m2

SB

)2 . (13.8)

According to [118], while sin2 θ̃ does not vanish, the eigenvalue λ+ vanishes and therefore

Pνα→να should vanish as well. Technically, this is a correct statement which applies as long

as one considers only a single experiment with a �xed base-length L. However, various ex-

periments now observe neutrinos in a wide energy range above the resonance. For example,

for atmospheric experiments not only the energy becomes larger than the energies at LSND or

MiniBooNE, but also the base-length can be as large as 15,000 km, which results in a value of

L
E which is up to 4 magnitudes larger than the one probed in MiniBooNE.

Therefore, the relevant quantities to be examined are the mass-squared eigenvalues rather

than the Hamiltonian eigenvalues. The mass-squared eigenvalues are

m2
± = 2E · λ± , (13.9)

which give rise to the oscillatory term sin2
(
m2
±
L

2E

)
in the probability in Eq. (13.7). Adopting

this more familiar form we continue to analyze the oscillations of atmospheric neutrinos. While

it is true that λ+ ∝ 1/E becomes zero for energies much larger thanER,m2
+ as de�ned herein

does not:

lim
E→∞

m2
+ = ∆m2

SB ·
1− cos 2θ34

2
. (13.10)

Note that, although the e�ective mass-squared eigenvaluem2
+ can become small for extremely

small mixing angles θ34, it is still governed by the vacuum mass squared di�erence to the 4th

eigenvalue, in this case ∆m2
SB. This value is still large compared to the standard mass squared

di�erences. Therefore, even above the resonance there is still a non-vanishing oscillation mode,

which becomes accessible experimentally if the oscillation length is large enough. Such is the

case for atmospheric and astrophysical neutrinos.

For a better understanding we plot the e�ective masses for this scenario in Fig. 13.1. As can

be seen in Fig. 13.1, at the resonance a level crossing occurs and the Hamiltonian eigenstates

swap their �avor content. While the predominantly sterile state decouples above the resonance,

the now heavier predominantly active state approaches a constant value that due to the level

crossing gap is di�erent from its initial value. This behaviour implies a large e�ective ∆m2
13

that gives rise to large and fast active-to-sterile oscillations, e.g. in atmospheric neutrinos.

This argument can be generalized to mixing with θ14, θ24, or a combination of the two. Also,

the case where all standard mass-squared di�erences do not vanish can be treated accordingly.

For illustration, we show the probabilities at di�erent experiments and di�erent settings in

Appendix B.
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Figure 13.1.: E�ective mass-squareds as a function of the energyE in the 3+1ν model including

an e�ective potential due to sterile neutrino shortcuts.

Although the sterile neutrino decouples from the active ones above the resonance, the im-

pact on the disappearance experiments is signi�cant. In any possible mixing pattern the atmo-

spheric experiments or MINOS should notice a deviation from the standard three neutrino case

(especially for longer baselines such as the MINOS far detector, or upward going atmospheric

neutrinos). One could possibly argue that MINOS might miss the deviation from standard 3

neutrino case due to its narrow energy spectrum at around 7 GeV (see Figures B.4, B.8 and

B.12), but atmospheric experiments like IceCube or SuperKamiokaNDE or KM3NeT have not

only high statistics but also a wide energy spectrum and high resolution for the azimuth angle

and the energy (see Figures B.3, B.7 and B.11). Therefore, these experiments should be highly

sensitive to this signi�cant deviation. Atmospheric neutrino experiments also tested the
L
E -

dependence of the oscillation probability, �nding no observable deviations from the 3ν case. A

simple 3+1ν model even with an altered dispersion relation for the sterile neutrino is therefore

ruled out by current data.
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14. A Realistic 3+3 Model

14.1. 3 + 3ν with a Common Sterile Neutrino Potential

The emergence of a large mass-squared di�erence in the energy regime far above the reso-

nance described above can be avoided by adding three sterile neutrinos instead of a single

sterile neutrino. In the following we assume that each sterile state mixes with exactly one

of the predominantly active mass eigenstates, respectively. Therefore all mass eigenstates be-

come a�ected by the common sterile potential. If all sterile neutrinos are a�ected by the same

potentials, the mass di�erences among the predominantly active states will not be altered even

though their masses change as the E-dependent potential and mixing change. This mecha-

nism removes the ‘unwanted’ mass di�erence which spoiled atmospheric neutrino oscillations

in the 3 + 1ν case.

The resulting 6× 6 mixing matrix is parametrized as

U6×6 = U23U13U12U14U25U36 . (14.1)

The vacuum masses read

∆m2
41 = ∆m2

SB , (14.2)

∆m2
51 = ∆m2

SB + ∆m2
21 → ∆m2

52 = ∆m2
SB , (14.3)

∆m2
61 = ∆m2

SB + ∆m2
31 → ∆m2

63 = ∆m2
SB . (14.4)

Assuming universal shortcut parameters (ε) for the three sterile neutrinos the e�ective poten-

tial becomes

Veff =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 εE 0 0
0 0 0 0 εE 0
0 0 0 0 0 εE

 . (14.5)

Every mass eigenstate ν1,2,3 has its own sterile state admixture. Therefore, the results from

[118] remain applicable. The resulting mass eigenvalues are denoted bym2
1±,m2

2±,m2
3±, which
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correspond to the m2
± mass eigenstates in the previous section. Considering also the non-

vanishing small masses m2
1, m2

2 and m2
3, the eigenvalues read

m2
1± =

m2
1 +m2

4

2
−

∆m2
SB

2

×

cos 2θ14

(
E

ER,1

)2

∓

√√√√sin2 2θ14 + cos2 2θ14

[
1−

(
E

ER,1

)2
]2
 ,

(14.6)

m2
2± =

m2
2 +m2

5

2
−

∆m2
SB

2

×

cos 2θ25

(
E

ER,2

)2

∓

√√√√sin2 2θ25 + cos2 2θ25

[
1−

(
E

ER,2

)2
]2
 ,

(14.7)

m2
3± =

m2
3 +m2

6

2
−

∆m2
SB

2

×

cos 2θ36

(
E

ER,3

)2

∓

√√√√sin2 2θ36 + cos2 2θ36

[
1−

(
E

ER,3

)2
]2
 ,

(14.8)

with the corresponding resonance energies

ER,1 =

√
∆m2

SB cos 2θ14

2ε
, ER,2 =

√
∆m2

SB cos 2θ25

2ε
, ER,3 =

√
∆m2

SB cos 2θ36

2ε
.

(14.9)

All mass-squareds m2
i− approach minus in�nity and decouple in the limit E � ER,i. The

mass-squared eigenvalues of interest are again m2
i+, whose values in the limit E � ER,i are

lim
E→∞

m2
1+ =

1

2

(
m2

1 +m2
4 + ∆m2

SB · cos 2θ14

)
, (14.10)

lim
E→∞

m2
2+ =

1

2

(
m2

2 +m2
5 + ∆m2

SB · cos 2θ25

)
, (14.11)

lim
E→∞

m2
3+ =

1

2

(
m2

3 +m2
6 + ∆m2

SB · cos 2θ36

)
, (14.12)

while the relevant mass-squared di�erences far above the resonance become

m2
2+ −m2

1+ = ∆m2
21 +

∆m2
SB

2
(cos 2θ14 − cos 2θ25) , (14.13)

m2
3+ −m2

1+ = ∆m2
31 +

∆m2
SB

2
(cos 2θ14 − cos 2θ36) , (14.14)

m2
3+ −m2

2+ = ∆m2
32 +

∆m2
SB

2
(cos 2θ25 − cos 2θ36) ’ (14.15)
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If these mass-squared di�erences are all assumed to lie in the same region as the mass-squared

di�erence in the 3 + 1ν case, a corresponding oscillation should be measurable in atmospheric

neutrino experiments. Such an “extra" oscillation is not seen.

The only way to avoid the generation of such a mass-squared di�erence, is by imposing a

common mixing in addition to the common potential, i.e. by setting all new mixing angles to

the same value: θ14 = θ25 = θ36 ≡ θ. In this case the second terms in Equations (14.13)-

(14.15) vanish for all mass-squared di�erences, and one ends up with the same mass-squared

di�erences as in a standard three neutrino scenario (see Fig. 14.1). Consequently, it is possible to

avoid the constraints by atmospheric neutrino experiments. However, as long as the resonance

energies for the three sterile neutrinos are assumed to be universal, a new problem arises in

the form of a vanishing amplitude for the MiniBooNE experiment in the resonant region.

Figure 14.1.: Schematic overview of mass eigenstates and their �avor content depending on the

Energy E.

At MiniBooNE or LSND the oscillation probability is governed by the terms where the mass-

squared di�erence is in the ∆m2
SB region. These are the mass-squared di�erences (∆m̃2

41,

∆m̃2
42, ∆m̃2

43), (∆m̃2
51, ∆m̃2

52, ∆m̃2
53), and (∆m̃2

61, ∆m̃2
62, ∆m̃2

63). Approximating these e�ec-
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tive mass squared di�erences to be equal to ∆mSB The transition probability can be factorized

as:

Pνµ→νe ∼ −4 sin2

(
∆m2

SB

L

2E

) ∑
j=1,2,3

ŨµjŨej

  ∑
j=4,5,6

ŨµjŨej

 , (14.16)

where Ũ and ∆m̃2
ij indicate the e�ective mixing matrix and e�ective mass squared di�erences

diagonalizing the e�ective Hamiltonian with the additional potential. For simplicity, we de�ne

the mixing matrix as

Ũ6×6 = (Ũ23Ũ13Ũ12)︸ ︷︷ ︸
Ũ0

(Ũ14Ũ25Ũ36)

= Ũ0 ·



cθ̃ 0 0 sθ̃ 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−sθ̃ 0 0 cθ̃ 0 0

0 0 0 0 1 0
0 0 0 0 0 1





1 0 0 0 0 0
0 cθ̃ 0 0 sθ̃ 0
0 0 1 0 0 0
0 0 0 1 0 0
0 −sθ̃ 0 0 cθ̃ 0
0 0 0 0 0 1





1 0 0 0 0 0
0 1 0 0 0 0
0 0 cθ̃ 0 0 sθ̃
0 0 0 1 0 0
0 0 0 0 1 0
0 0 −sθ̃ 0 0 cθ̃


= Ũ0 ·

(
cθ̃ · 13×3 sθ̃ · 13×3

−sθ̃ · 13×3 cθ̃ · 13×3

)
.

(14.17)

Democratic mixing in vacuum with θ and the same potential for each sterile state also leads to

a common e�ective mixing angle θ̃ = θ̃14 = θ̃25 = θ̃36. Since Ũ0 only describes a rotation in

the upper left corner, it can be written as

Ũ0 =

(
Ã3×3 03×3

03×3 13×3

)
. (14.18)

Any submatrix formed from rotations alone is orthogonal, and therefore unitary. So the sub-

matrix Ã3×3 is unitary. The Equations (14.17) (14.18) lead to the full mixing matrix

Ũ6×6 =

(
cθ · Ã3×3 sθ · Ã3×3

−sθ · 13×3 cθ · 13×3

)
. (14.19)

The oscillation probabilities for LSND and MiniBooNE then reads

Pνµ→νe ∼− 4 sin2

(
∆m2

SB

L

2E

)
×

×
(
Ũµ1Ũe1 + Ũµ2Ũe2 + Ũµ3Ũe3

)(
Ũµ4Ũe4 + Ũµ5Ũe5 + Ũµ6Ũe6

)
. (14.20)
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Since the submatrix Ã3×3 itself is unitary and the unitarity conditions

∑6
k ŨµkŨek = 0 as

well as

∑3
k ÃµkÃek = 0 hold, it is readily seen that both brackets have to vanish when all new

mixing angles θij are the same. Consequently, a 3+3ν model with three additional sterile neu-

trinos and a common resonance energy also fails. On the one hand it is indeed possible to avoid

the constraints from atmospheric neutrinos above the resonance, if all three sterile neutrinos

mix with the same mixing angle. This democratic mixing removes the additional mass-squared

di�erences in the considered region and thereby immunizes the model against constraints from

high energy atmospheric neutrinos. On the other hand, however, the democratic mixing simul-

taneously implies a vanishing transition amplitude for

(−)
ν µ →

(−)
ν e oscillations at MiniBooNE

or LSND and consequently invalidates the desired main feature of the model. As we show

next, the issue can be resolved by assigning di�erent resonance energies to the di�erent sterile

neutrinos.

14.2. Di�erent E�ective Potentials for Di�erent Sterile
Neutrinos

14.2.1. Treatment of Short Baseline and Atmospheric/Accelerator
Experiments

From the previous discussion it becomes clear that both the low energy limit E → 0 and the

high energy limit E → ∞ are independent of the speci�c values of the e�ective potentials of

the di�erent sterile neutrinos. What matters is only that the energy is well below or well above

the respective resonance energy. However, there exists the possibility of assigning di�erent

resonance energies to the sterile neutrinos (e.g. by tying each sterile neutrino to its own extra

dimension). The potentials for the neutrinos do not necessarily have to be the same for each

sterile neutrino. If the e�ective potentials di�er, we still expect a resonant behavior around

the resonance energy also for

(−)
ν µ →

(−)
ν e transitions: In the intermediate energy region the

arguments made in the previous chapter no longer hold since the e�ective mixing angles di�er

for the di�erent sterile neutrinos as a consequence of to the di�erent e�ective potentials. As

long as the vacuum mixing angle is the same for all sterile neutrinos, we nevertheless end up

with the aforementioned low and high energy behavior.

According to the current best-�t reported by MiniBooNE, we adopt the new mass-squared

di�erence to be ∆m2
LSND

= ∆m2
41 = 1.59 eV

2
, the vacuum mixing angle to sin2 θ ∼ 0.0063
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and the shortcut parameter to ε = 5 · 10−17
, resulting in a resonance energy of roughly ER ∼

120 MeV. The e�ective potential with di�erent shortcut parameters can be written as

Veff =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 εE 0 0
0 0 0 0 κ · εE 0
0 0 0 0 0 ξ · εE

 . (14.21)

Due to the larger e�ective potential for the sterile states νs,2 and νs,3 states, the resonance

energy becomes smaller and the decoupling of these states happens at lower energies. We

chose a rather large factor of κ = ξ = 100 to generate a resonance not only at MiniBooNE but

also at LSND in the energy region of ∼ 20 − 50 GeV to explain also the excess reported for

LSND [49].

In the numerical analysis we adopt the best-�t values from [20] for the standard 3ν mixing

angles and mass-squared di�erences, and assume normal ordering and vanishing CP violation.

We also neglect matter e�ects, since they do not solve the problem we intend to address. Such

matter e�ects are known to exist, and they make a signi�cant di�erence in the few GeV realm,

but the sterile neutrino is already completely decoupled above the highest ER ∝ 1/
√
ε, due

to the ADR potential. The best-�t values for the SM parameters are taken from Table 3.2. Nu-

merical calculations for the oscillation probabilities are shown in Figures 14.2 - 14.6 and the

e�ective squared masses are shown in Fig. 14.7. As can clearly be seen, we can achieve

resonant behavior in the

(−)
ν µ →

(−)
ν e channel at MiniBooNE with no signi�cant deviation from

three neutrino mixing in atmospheric data: The oscillations amplitudes for

(−)
ν µ →

(−)
ν e/τ at

MiniBooNE (Fig. 14.2 (a)/(c)) feature the same resonance pattern. One observes a resonant

enhancement of the transition probability in the sub ∼ 120 MeV region, combined with a sup-

pression in the energy region above∼ 120 MeV. The latter behavior results from the decoupling

of the sterile neutrinos, as can be seen in the oscillations amplitudes for the individual sterile

�avors,

(−)
ν µ →

(−)
ν s1,2,3 (Fig. 14.4 (d)-(f)). The disappearance oscillation probability

(−)
ν µ →

(−)
ν µ

at MiniBooNE (Fig. 14.2 (b)) exhibits a characteristic behavior at the resonance, since the tran-

sition into sterile neutrinos dominates in this energy region. A measurement of the survival

probability

(−)
ν µ →

(−)
ν µ at energies at MiniBooNE could thus provide a good test for this model:

a depletion of the survival probability signi�cantly higher than the transition to

(−)
ν e or

(−)
ν τ ,

would be a clear sign for a transition into sterile neutrinos (i.e. Pνµ→νs 6= 0).

Taking a look at atmospheric experiments in Fig. 14.5, one can observe that in the realm

E > GeV, the predictions of this model are exactly the same as in the standard 3ν paradigm,

due to the complete decoupling of the sterile states above the highest ER ∼ 120 MeV. This de-

coupling leads to perfect satisfaction of the current �ts at these kind of experiments, in contrast

to the standard 3+1ν models. A discussion of the sub-GeV region is presented in section 14.2.3.
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The same high energy properties as in atmospheric experiments can also be found at MINOS,

where one can see the same strong convergence to the 3ν probabilities. MINOS, however, has

a neutrino beam with a distinct peak energy at about 7 GeV, and so is blind to the low energy

e�ects to be discussed in Sec. 14.2.3.

14.2.2. Behavior Below the Resonance

Although the transition

(−)
ν µ →

(−)
ν e/τ vanishes far below the resonance,

(−)
ν µ →

(−)
ν s1,2,3

does not vanish due to the vacuum mixing. The same is also true for

(−)
ν e →

(−)
ν s1,2,3 and

(−)
ν τ →

(−)
ν s1,2,3, which is particularly interesting for reactor experiments, which usually oper-

ate in the MeV-region, since this model predicts a deviation in the ν̄e → ν̄e channel. A good

approximation for

(−)
ν e →

(−)
ν e in the low energy region well below the resonances is given by

(compare Eq. (14.20)):

Pνe→νe ∼1− 4 sin2

(
∆m2

SB

L

2E

)(
U2
e1 + U2

e2 + U2
e3

) (
U2
e4 + U2

e5 + U2
e6

)
=1− 4 sin2

(
∆m2

SB

L

2E

)
cos2 θ sin2 θ

=1− sin2

(
∆m2

SB

L

2E

)
sin2 2θ , (14.22)

where again the unitarity conditions are used. This expression resembles a simple 3 + 1ν
model for disappearance experiments in the low energy region, which is actually favored by

the Reactor- or Gallium anomalies.

14.2.3. Open �estions

As can be seen in Fig. 14.5, the proposed model resembles three neutrino oscillations far above

the resonance (in this case above the GeV region). However, due to the desired resonance at

around 120 MeV for explaining the MiniBooNE data, this resonance will also have impact on

the sub-GeV neutrinos at atmospheric experiments. The corresponding oscillations in this en-

ergy region are plotted in Fig. 14.8. As expected, the model predicts a signi�cant deviation from

the simple three neutrino model. Nevertheless, without access to the actual data it is hard to

judge whether these oscillation patterns are excluded by current experiments. Previous anal-

yses [111, 112] searched for sterile neutrinos without altered dispersion relations. Oscillation

probabilities within the standard 3 neutrino scenario for the range of these searches are also

shown in Fig. 14.8 for comparison. While the di�erence to the probability for the proposed

model is obvious, exclusion limits in the literature cannot be adopted for the present case. To

either exclude or con�rm the model proposed in this article, we recommend a reanalysis of the

current sub-GeV data in atmospheric experiments.
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In addition, this model can be constrained by cosmology which is addressed in [2] based on

previous calculations in [117, 125, 127].
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Figure 14.2.: Probabilities Pµe and Pµµ at MiniBooNE for di�erent scenarios: The standard

three neutrino case (black), the proposed scenario with three additional light ster-

ile neutrinos, democratic mixing and e�ective potential due to shortcut e�ects

(red), a scenario with three light sterile neutrinos and democratic mixing without

e�ective potential (blue), and a simple 4ν scenario with one additional light sterile

neutrino (green).
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Figure 14.3.: Probabilities Pµτ and Pµs1 at MiniBooNE for di�erent scenarios: The standard

three neutrino case (black), the proposed scenario with three additional light ster-

ile neutrinos, democratic mixing and e�ective potential due to shortcut e�ects

(red), a scenario with three light sterile neutrinos and democratic mixing without

e�ective potential (blue), and a simple 4ν scenario with one additional light sterile

neutrino (green).
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Figure 14.4.: Probabilities Pµs2 and Pµs3 at MiniBooNE for di�erent scenarios: The standard

three neutrino case (black), the proposed scenario with three additional light ster-

ile neutrinos, democratic mixing and e�ective potential due to shortcut e�ects

(red), a scenario with three light sterile neutrinos and democratic mixing without

e�ective potential (blue), and a simple 4ν scenario with one additional light sterile

neutrino (green).
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Figure 14.5.: Di�erent Probabilities at atmospheric neutrino experiments for di�erent scenar-

ios: The standard three neutrino case (black), the proposed scenario with three

additional light sterile neutrinos, democratic mixing and e�ective potential due

to shortcut e�ects (red), a scenario with three light sterile neutrinos and demo-

cratic mixing without e�ective potential (blue), and a simple 4ν scenario with one

additional light sterile neutrino (green)
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Figure 14.6.: Di�erent Probabilities at MINOS for di�erent scenarios: The standard three neu-

trino case (black), the proposed scenario with three additional light sterile neu-

trinos, democratic mixing and e�ective potential due to shortcut e�ects (red), a

scenario with three light sterile neutrinos and democratic mixing without e�ec-

tive potential (blue), and a simple 4ν scenario with one additional light sterile

neutrino (green). The vertical line indicates the peak energy in the spectrum.
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Figure 14.8.: Di�erent Probabilities at atmospheric neutrino experiments: The standard three

neutrino case (black), the proposed scenario with three additional light sterile neu-

trinos, democratic mixing and e�ective potential due to shortcut e�ects (red) and

a scenario with three light sterile neutrinos and democratic mixing without e�ec-

tive potential (blue). In contrast to Figure 14.5 here we highlight the Sub-GeV to

10 GeV region.
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15. Summary

In this part we have examined in detail the recently reported MiniBooNE anomaly and the

discrepancies with other high sensitivity atmospheric and accelerator based neutrino experi-

ments. We have shown that the simplest 3 + 1ν model fails to explain all current data, and

also an additional e�ective potential is not su�cient to explain the high experimental data at

experiments with higher energy than MiniBooNE.

Eventually we have developed a 3 + 3ν framework with an altered dispersion relation that

indeed is able to explain not only the MiniBooNE anomaly but also the LSND, reactor and

Gallium anomaly while not being in con�ict with atmospheric or accelerator neutrino exper-

iments. To our best knowledge this is the �rst framework which successfully can explain all

current neutrino oscillation data.

The altered dispersion relation in the presented framework can be caused by shortcuts of

the extra sterile neutrinos via extra-dimensions as pointed out in [126], but it is also possible

to generate a similar e�ect by other new physics involved. The key feature in this approach

is the democratic vacuum mixing of each of the three sterile states with one of the predom-

inantly active mass eigenstate and the equality of the corresponding mass di�erence ∆m2
41,

∆m2
52 and ∆m2

63. This setup leads directly to to the possibility of describing the oscillation

phenomena of disappearing experiments like reactor experiments or GALLEX and SAGE in the

low energy region with an e�ective 1 + 1ν model, explaining the reactor and Gallium anoma-

lies. Simultaneously, in the high energy region of atmospheric and accelerator experiments,

the sterile neutrinos a�ected by the altered dispersion relation decouple completely without

changing the standard mass squared di�erences or mixing angles among the active neutrinos,

resembling the standard 3ν model.

In intermediate energy regions the altered dispersion relations cause level crossings among

the active and sterile states, implying resonance energies. Due to di�erent e�ective potentials

for the di�erent sterile states, also the resonance energies di�er. Therefore, despite democratic

vacuum mixing, the transition probability Pνµ→νe can be enhanced, explaining the resonant

feature in MiniBooNE data. The second resonance energy causes the excess in the LSND ex-

periment. Currently the MiniBooNE collaboration is working on a �t of the proposed model

to their current data.

Albeit being speculative and inevitably introducing new parameters via the sterile neutrino

sector, the proposed approach is capable of solving all current neutrino anomalies at once.

While it is possible that these anomalies are due to our limited understanding of experimental

backgrounds, the proposed data by the MicroBooNE experiment will clarify this issue at least
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for the MiniBooNE data. Additionally, the presented framework is testable by the MicroBooNE

and ICARUS experiments and may reveal itself also in sub-GeV atmospheric neutrino data.
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Part V.

Conclusion
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16. Conclusion and Outlook

In this thesis we have addressed several issues in neutrino oscillation physics. After reviewing

the current status of the standard model and the derivation of neutrino oscillations in part I,

we have developed a new method to analyze the CP violation in neutrino oscillations in part

II. Since current experiments have reached the sensitivity to measure CP violation generated

by the CP phase in the leptonic mixing matrix, we have investigated the e�ect of new physics

models on these measurements. The new model independent approach is not bound to unitar-

ity of the 3×3 leptonic mixing matrix and therefore more general than the standard approach.

We have focussed on the observable CP violating amplitudesAkjαβ and have determined speci�c

analytic relations among them. We have stressed, that in the standard three neutrino scheme

a uniform value of all amplitudes Akjαβ is predicted, and that any deviation from that will be a

sign for new physics. With the presented numerical analysis it is also possible to discriminate

between di�erent sources of new physics, i.e. direct or indirect unitarity violation. With the

help of the GLoBES package we have performed di�erent analyses for the accelerator exper-

iments T2K and NOvA. We have assumed a large unitarity violation to generate the data and

analyzed it within this approach. We have shown that NOvA can constrain the combination

A31
eµ + A32

eµ signi�cantly and, for suitable parameter settings, may exclude the standard pre-

diction of a uniform amplitude as well as direct unitarity violation. Due to the di�erent setup,

T2K is not able to determine this combination. We have also shown, that by using a similar

experiment with larger baseline, so that the oscillation driven by ∆m2
21 can be measured, it

is be possible to determine the value of the amplitude A21
eµ. We have also analyzed the role

of matter e�ects and have discussed the challenges arising due to the di�erent potentials for

neutrinos and antineutrinos. The matter e�ect not only leads to energy dependent amplitudes,

but also to a non-cancellation of di�erent terms in the probabilities. We have investigated the

energy dependence of the amplitudes and provide perspectives for further research. If current

experiments come to contradicting conclusions concerning CP violation, we are con�dent, that

the proposed model independent method will provide a powerful tool to determine the source

of this e�ect.

In part III we have investigated the impact of a light sterile neutrino on the determination

of the mass ordering at the reactor experiment JUNO. The additional light sterile neutrino

generates additional terms in the oscillation probability that in�uence the sensitivity to the

mass ordering. For speci�c energies it is possible, that the additional terms not only cancel the

standard terms sensitive to mass ordering but mimics a term with the opposite mass ordering.

This e�ect requires speci�c parameter settings which di�er depending on the energy. Since the

JUNO experiment has a broad energy spectrum and a high energy resolution we have deduced,
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that there is no combination of the mixing angle θ14 and the mass squared di�erence ∆m2
41

that can fake a false mass ordering without generally being detectable by JUNO.

In Part IV we have examined the long existing short baseline anomalies and the currently

reported results of a low-energy excess in the MiniBooNE data. It is well known that the

simplest explanation for these anomalies, the addition of a single sterile neutrino, is not in

agreement with the negative results of accelerator and atmospheric neutrino experiments. We

have shown that this disagreement can not be solved by adding an e�ective MSW-like poten-

tial for the sterile state, since it induces additional oscillations in the high energy region. Based

on these �ndings we have developed a model with three additional sterile neutrinos each mix-

ing exclusively with one of the predominantly active mass eigenstates. The angles generating

this mixing have same value and the new mass eigenstates are separated from the correspond-

ing predominantly active mass eigenstates by same mass squared di�erence. If the additional

sterile states experience an e�ective potential, e.g. by extradimensional shortcuts, the sterile

states will completely decouple in the high energy limit and the standard three neutrino oscil-

lation is regained, explaining data from atmospheric and accelerator experiments. In the very

low energy region, the disappearance probability mimics a 1 + 1 neutrino scenario, which is

favored by the Gallium- and reactor anomalies. In the intermediate energy region, at LSND

and MiniBooNE, resonant ampli�cation of the oscillation probability can explain the reported

excess of electron neutrino events. The resonances are generated by di�erent e�ective poten-

tials for the di�erent sterile states. Currently, the MiniBooNE collaboration is working on a �t

of this model to their data. This model can be falsi�ed by investigating the low energy data

of atmospheric experiments, since the resonances generating the excess at MiniBooNE, also

impacts the disappearance probability in this energy region. The upcoming data release of

MicroBooNE will also be a test for the MiniBooNE anomaly and for this model as well.

In general current neutrino oscillation experiments will provide a signi�cant increase in data

and therefore new possibilities to search for new physics. With the work done in this thesis

we provide new testable models and new tools to examine these data.
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Part VI.

Appendix



104

A. Analytic relations of CP violating
amplitudes

The following analytic relations have been taken from [78] and translated into the notations

used for this paper. All 36 amplitudes can be reduced to a linear combination of the nine

amplitudes A21
eµ, A32

eµ, A43
eµ, A21

µτ , A32
µτ , A43

µτ , A21
τs, A32

τs and A43
τs.

A31
eµ = −A32

eµ +A43
eµ,

A41
eµ = −A21

eµ +A32
eµ −A43

eµ,

A42
eµ = A21

eµ −A32
eµ,

A21
eτ = −A21

µτ +A21
τs,

A31
eτ = A32

µτ −A43
µτ −A32

τs +A43
τs,

A41
eτ = A21

µτ −A32
µτ +A43

µτ −A21
τs +A32

τs −A43
τs,

A32
eτ = −A32

µτ +A32
τs,

A42
eτ = −A21

µτ +A32
µτ +A21

τs −A32
τs,

A43
eτ = −A43

µτ +A43
τs,

A21
es = −A21

eµ +A21
µτ −A21

τs,

A31
es = A32

eµ −A43
eµ −A32

µτ +A43
µτ +A32

τs −A43
τs,

A41
es = A21

eµ −A32
eµ +A43

eµ −A21
µτ +A32

µτ −A43
µτ +A21

τs −A32
τs +A43

τs,

A32
es = −A32

eµ +A32
µτ −A32

τs,

A42
es = −A21

eµ +A32
eµ +A21

µτ −A32
µτ −A21

τs +A32
τs

A43
es = −A43

eτ +A43
µτ −A43

τs,

A31
µτ = −A32

µτ +A43
µτ ,

A41
µτ = −A21

µτ +A32
µτ −A43

µτ ,

A42
µτ = A21

µτ −A32
µτ ,

A21
µs = A21

eµ −A21
µτ ,

A31
µs = −A32

eµ +A43
eµ +A32

µτ −A43
µτ ,

A41
µs = −A21

eµ +A32
eµ −A43

eµ +A21
µτ −A32

µτ +A43
µτ ,

A32
µs = A32

eµ −A32
µτ ,

A42
µs = A21

eµ −A32
eµ −A21

µτ +A32
µτ ,

A43
µs = A43

eµ −A43
µτ ,

A31
τs = −A32

τs +A43
τs,

A41
τs = −A21

τs +A32
τs −A43

τs,

A42
τs = A21

τs −A32
τs.
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B. Probabilities for 3 + 1ν with Altered
Dispersion Relation.

For illustration we show di�erent probabilities at di�erent energies and baselines in the model

with altered dispersion relation and one additional sterile neutrino explained in Section 13.

We consider di�erent mixing schemes of the sterile neutrino, either only via the mixing

angle θ14 (Figures B.1-B.4), θ24 (Figures B.5-B.8) or θ34 (Figures B.9-B.12).

The considered experimental setups correspond to MiniBooNE (Figures B.1, B.2, B.5, B.6, B.9

and B.10), atmospheric neutrino oscillation experiments (Figures B.3, B.7 and B.11) and the ac-

celerator experiment MINOS (Figures B.4, B.8 and B.12). While the probabilities at MiniBooNE

show a signi�cant resonant feature as reported by the collaboration, the deviations at atmo-

spheric and accelerator experiments are large compared to the three neutrino case for each

mixing.
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Figure B.1.: Probabilities at Pµe and Pµµ MiniBoone for only θ14-mixing
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Figure B.2.: Probabilities at Pµτ and Pµs MiniBoone for only θ14-mixing



108 B. Probabilities for 3 + 1ν with Altered Dispersion Relation.

2×10
4

4×10
4

6×10
4

8×10
4 10

5

E in MeV

0.85

0.90

0.95

1.00

PΜΜ

Probabilities � Atmospheric Experiments

Dm
2

SB=1.59 , sin
2Θ14 =0.0472, Ε=5. ´ 10

-17
, L=15 km

3Ν

4Ν & shortcut

4Ν w�o shortcut

(a) Downward going neutrinos

2×10
4

4×10
4

6×10
4

8×10
4 10

5

E in MeV

0.2

0.4

0.6

0.8

1.0

PΜΜ

Probabilities � Atmospheric Experiments

Dm
2

SB=1.59 , sin
2Θ14 =0.0472, Ε=5. ´ 10

-17
, L=13000 km

3Ν

4Ν & shortcut

4Ν w�o shortcut

(b) Upward going neutrinos

Figure B.3.: Probability Pµµ at atmospheric neutrino experiments for downward and upward

going neutrinos for only θ14-mixing
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Figure B.4.: Probability Pµµ at MINOS for only θ14-mixing, the vertical line indicates the peak

energy in the spectrum.
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Figure B.5.: Probabilities at Pµe and Pµµ MiniBoone for only θ24-mixing



111

50 100 500 1000 5000

E in MeV

0.0002

0.0004

0.0006

0.0008

0.0010

PΜΤ

Probabilities � MiniBooNE

with Dm
2

SB=1.59 , sin
2Θ24 =0.0472, Ε=5. ´ 10

-17

3Ν

4Ν & shortcut

4Ν w�o shortcut

(a) Pνµ→ντ

50 100 500 1000 5000

E in MeV

0.02

0.04

0.06

0.08

0.10

PΜs

Probabilities � MiniBooNE

with Dm
2

SB=1.59 , sin
2Θ24 =0.0472, Ε=5. ´ 10

-17

3Ν

4Ν & shortcut

4Ν w�o shortcut

(b) Pνµ→νs

Figure B.6.: Probabilities at Pµτ and Pµs MiniBoone for only θ24-mixing
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Figure B.7.: Probability Pµµ at atmospheric neutrino experiments for downward and upward

going neutrinos for only θ24-mixing
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Figure B.8.: Probability Pµµ at MINOS for only θ24-mixing, the vertical line indicates the peak

energy in the spectrum.



114 B. Probabilities for 3 + 1ν with Altered Dispersion Relation.

50 100 500 1000 5000

E in MeV

0.001

0.002

0.003

0.004

0.005

0.006

PΜe

Probabilities � MiniBooNE

with Dm
2

SB=1.59 , sin
2Θ34 =0.0472, Ε=5. ´ 10

-17

3Ν

4Ν & shortcut

4Ν w�o shortcut

(a) Pνµ→νe

50 100 500 1000 5000

E in MeV

0.85

0.90

0.95

1.00

PΜΜ

Probabilities � MiniBooNE

with Dm
2

SB=1.59 , sin
2Θ34 =0.0472, Ε=5. ´ 10

-17

3Ν

4Ν & shortcut

4Ν w�o shortcut

(b) Pνµ→νµ

Figure B.9.: Probabilities at Pµe and Pµµ MiniBoone for only θ34-mixing



115

50 100 500 1000 5000

E in MeV

0.0002

0.0004

0.0006

0.0008

0.0010

PΜΤ

Probabilities � MiniBooNE

with Dm
2

SB=1.59 , sin
2Θ34 =0.0472, Ε=5. ´ 10

-17

3Ν

4Ν & shortcut

4Ν w�o shortcut

(a) Pνµ→ντ

50 100 500 1000 5000

E in MeV

0.02

0.04

0.06

0.08

0.10

PΜs

Probabilities � MiniBooNE

with Dm
2

SB=1.59 , sin
2Θ34 =0.0472, Ε=5. ´ 10

-17

3Ν

4Ν & shortcut

4Ν w�o shortcut

(b) Pνµ→νs

Figure B.10.: Probabilities at Pµτ and Pµs MiniBoone for only θ34-mixing



116 B. Probabilities for 3 + 1ν with Altered Dispersion Relation.

2×10
4

4×10
4

6×10
4

8×10
4 10

5

E in MeV

0.85

0.90

0.95

1.00

PΜΜ

Probabilities � Atmospheric Experiments

Dm
2

SB=1.59 , sin
2Θ34 =0.0472, Ε=5. ´ 10

-17
, L=15 km

3Ν

4Ν & shortcut

4Ν w�o shortcut

(a) Downward going neutrinos

2×10
4

4×10
4

6×10
4

8×10
4 10

5

E in MeV

0.2

0.4

0.6

0.8

1.0

PΜΜ

Probabilities � Atmospheric Experiments

Dm
2

SB=1.59 , sin
2Θ34 =0.0472, Ε=5. ´ 10

-17
, L=13000 km

3Ν

4Ν & shortcut

4Ν w�o shortcut

(b) Upward going neutrinos

Figure B.11.: Probability Pµµ at atmospheric neutrino experiments for downward and upward

going neutrinos for only θ34-mixing



117

2×10
4

4×10
4

E in MeV

0.85

0.90

0.95

1.00

PΜΜ

Probabilities � MINOS NearDetector

Dm
2

SB=1.59 , sin
2Θ34 =0.0472, Ε=5. ´ 10

-17
, L=1.04 km

3Ν

4Ν & shortcut

4Ν w�o shortcut

(a) Near Detector

2×10
4

4×10
4

E in MeV

0.2

0.4

0.6

0.8

1.0

PΜΜ

Probabilities � MINOS NearDetector

Dm
2

SB=1.59 , sin
2Θ34 =0.0472, Ε=5. ´ 10

-17
, L=735. km

3Ν

4Ν & shortcut

4Ν w�o shortcut

(b) Far Detector

Figure B.12.: Probability Pµµ at MINOS for only θ34-mixing, the vertical line indicates the peak

energy in the spectrum.



118

Bibliography

[1] Heinrich Päs and Philipp Sicking. “Discriminating sterile neutrinos and unitarity vi-

olation with CP invariants”. In: Phys. Rev. D95.7 (2017), p. 075004. doi: 10.1103/
PhysRevD.95.075004. arXiv: 1611.08450 [hep-ph].

[2] Dominik Döring et al. “Sterile Neutrinos with Altered Dispersion Relations as an Expla-

nation for the MiniBooNE, LSND, Gallium and Reactor Anomalies”. In: (2018). arXiv:

1808.07460 [hep-ph].

[3] W. Pauli. “Dear radioactive ladies and gentlemen”. In: Phys. Today 31N9 (1978), p. 27.

[4] Wolfgang Pauli. Fünf Arbeiten Zum Ausschliessungsprinzip Und Zum Neutrino. (Ger-
man) [Five works on the Exclusion Principle and the neutrino]. German. Vol. 27. Texte

zur Forschung. Wissenschaftliche Buchgesellschaft, 1977, p. 121. isbn: 3-534-06733-9.

[5] C. L. Cowan et al. “Detection of the free neutrino: A Con�rmation”. In: Science 124

(1956), pp. 103–104. doi: 10.1126/science.124.3212.103.

[6] G. Danby et al. “Observation of High-Energy Neutrino Reactions and the Existence

of Two Kinds of Neutrinos”. In: Phys. Rev. Lett. 9 (1962), pp. 36–44. doi: 10.1103/
PhysRevLett.9.36.

[7] K. Kodama et al. “Observation of tau neutrino interactions”. In: Phys. Lett. B504 (2001),

pp. 218–224. doi: 10.1016/S0370-2693(01)00307-0. arXiv: hep-ex/
0012035 [hep-ex].

[8] B. T. Cleveland et al. “Measurement of the solar electron neutrino �ux with the Home-

stake chlorine detector”. In: Astrophys. J. 496 (1998), pp. 505–526. doi: 10.1086/
305343.

[9] S. P. Mikheev and A. Yu. Smirnov. “Resonant ampli�cation of neutrino oscillations in

matter and solar neutrino spectroscopy”. In: Nuovo Cim. C9 (1986), pp. 17–26. doi: 10.
1007/BF02508049.

[10] L. Wolfenstein. “Neutrino Oscillations in Matter”. In: Phys. Rev. D17 (1978). [,294(1977)],

pp. 2369–2374. doi: 10.1103/PhysRevD.17.2369.

[11] Q. R. Ahmad et al. “Direct evidence for neutrino �avor transformation from neutral

current interactions in the Sudbury Neutrino Observatory”. In: Phys. Rev. Lett. 89 (2002),

p. 011301. doi: 10.1103/PhysRevLett.89.011301. arXiv: nucl-ex/
0204008 [nucl-ex].

http://dx.doi.org/10.1103/PhysRevD.95.075004
http://dx.doi.org/10.1103/PhysRevD.95.075004
http://arxiv.org/abs/1611.08450
http://arxiv.org/abs/1808.07460
http://dx.doi.org/10.1126/science.124.3212.103
http://dx.doi.org/10.1103/PhysRevLett.9.36
http://dx.doi.org/10.1103/PhysRevLett.9.36
http://dx.doi.org/10.1016/S0370-2693(01)00307-0
http://arxiv.org/abs/hep-ex/0012035
http://arxiv.org/abs/hep-ex/0012035
http://dx.doi.org/10.1086/305343
http://dx.doi.org/10.1086/305343
http://dx.doi.org/10.1007/BF02508049
http://dx.doi.org/10.1007/BF02508049
http://dx.doi.org/10.1103/PhysRevD.17.2369
http://dx.doi.org/10.1103/PhysRevLett.89.011301
http://arxiv.org/abs/nucl-ex/0204008
http://arxiv.org/abs/nucl-ex/0204008


Bibliography 119

[12] Y. Fukuda et al. “Evidence for oscillation of atmospheric neutrinos”. In: Phys. Rev. Lett.
81 (1998), pp. 1562–1567. doi: 10.1103/PhysRevLett.81.1562. arXiv: hep-
ex/9807003 [hep-ex].

[13] Joshua Ellis. “TikZ-Feynman: Feynman diagrams with TikZ”. In: Comput. Phys. Com-
mun. 210 (2017), pp. 103–123. doi: 10.1016/j.cpc.2016.08.019. arXiv:

1601.05437 [hep-ph].

[14] B. Pontecorvo. “Inverse beta processes and nonconservation of lepton charge”. In: Sov.
Phys. JETP 7 (1958). [Zh. Eksp. Teor. Fiz.34,247(1957)], pp. 172–173.

[15] Ziro Maki, Masami Nakagawa, and Shoichi Sakata. “Remarks on the uni�ed model of

elementary particles”. In: Prog. Theor. Phys. 28 (1962). [,34(1962)], pp. 870–880. doi: 10.
1143/PTP.28.870.

[16] Vadim O. Egorov and Igor P. Volobuev. “Neutrino oscillation processes in a quantum-

�eld-theoretical approach”. In: Phys. Rev. D97.9 (2018), p. 093002. doi: 10.1103/
PhysRevD.97.093002. arXiv: 1709.09915 [hep-ph].

[17] P. F. de Salas et al. “Status of neutrino oscillations 2018: 3σ hint for normal mass or-

dering and improved CP sensitivity”. In: Phys. Lett. B782 (2018), pp. 633–640. doi: 10.
1016/j.physletb.2018.06.019. arXiv: 1708.01186 [hep-ph].

[18] P. F. De Salas et al. “Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status

and Future Prospects”. In: (2018). doi: 10.3389/fspas.2018.00036. arXiv:

1806.11051 [hep-ph].

[19] F. Capozzi et al. “Current unknowns in the three neutrino framework”. In: Prog. Part.
Nucl. Phys. 102 (2018), pp. 48–72. doi: 10.1016/j.ppnp.2018.05.005. arXiv:

1804.09678 [hep-ph].

[20] C. Patrignani et al. “Review of Particle Physics”. In: Chin. Phys. C40.10 (2016), p. 100001.

doi: 10.1088/1674-1137/40/10/100001.

[21] André de Gouvêa. “Neutrino Mass Models”. In: Ann. Rev. Nucl. Part. Sci. 66 (2016),

pp. 197–217. doi: 10.1146/annurev-nucl-102115-044600.

[22] S. F. King. “Neutrino mass models”. In: Rept. Prog. Phys. 67 (2004), pp. 107–158. doi:

10.1088/0034-4885/67/2/R01. arXiv: hep-ph/0310204 [hep-ph].

[23] Heinrich Päs and Werner Rodejohann. “Neutrinoless Double Beta Decay”. In: New J.
Phys. 17.11 (2015), p. 115010. doi: 10.1088/1367-2630/17/11/115010.

arXiv: 1507.00170 [hep-ph].

[24] Stefano Dell’Oro et al. “Neutrinoless double beta decay: 2015 review”. In: Adv. High
Energy Phys. 2016 (2016), p. 2162659. doi: 10.1155/2016/2162659. arXiv:

1601.07512 [hep-ph].

http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://arxiv.org/abs/hep-ex/9807003
http://arxiv.org/abs/hep-ex/9807003
http://dx.doi.org/10.1016/j.cpc.2016.08.019
http://arxiv.org/abs/1601.05437
http://dx.doi.org/10.1143/PTP.28.870
http://dx.doi.org/10.1143/PTP.28.870
http://dx.doi.org/10.1103/PhysRevD.97.093002
http://dx.doi.org/10.1103/PhysRevD.97.093002
http://arxiv.org/abs/1709.09915
http://dx.doi.org/10.1016/j.physletb.2018.06.019
http://dx.doi.org/10.1016/j.physletb.2018.06.019
http://arxiv.org/abs/1708.01186
http://dx.doi.org/10.3389/fspas.2018.00036
http://arxiv.org/abs/1806.11051
http://dx.doi.org/10.1016/j.ppnp.2018.05.005
http://arxiv.org/abs/1804.09678
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1146/annurev-nucl-102115-044600
http://dx.doi.org/10.1088/0034-4885/67/2/R01
http://arxiv.org/abs/hep-ph/0310204
http://dx.doi.org/10.1088/1367-2630/17/11/115010
http://arxiv.org/abs/1507.00170
http://dx.doi.org/10.1155/2016/2162659
http://arxiv.org/abs/1601.07512


120 Bibliography

[25] J. Schechter and J. W. F. Valle. “Neutrinoless Double beta Decay in SU(2) x U(1) The-

ories”. In: Phys. Rev. D25 (1982). [,289(1981)], p. 2951. doi: 10.1103/PhysRevD.
25.2951.

[26] Jose F. Nieves. “Dirac and Pseudodirac Neutrinos and Neutrinoless Double Beta Decay”.

In: Phys. Lett. 147B (1984), pp. 375–379. doi: 10.1016/0370-2693(84)90136-
9.

[27] Eiichi Takasugi. “Can the Neutrinoless Double Beta Decay Take Place in the Case of

Dirac Neutrinos?” In: Phys. Lett. 149B (1984), pp. 372–376. doi: 10.1016/0370-
2693(84)90426-X.

[28] T. Bloxham et al. “First results on double beta decay modes of Cd, Te and Zn isotopes

with the COBRA experiment”. In: Phys. Rev. C76 (2007), p. 025501. doi: 10.1103/
PhysRevC.76.025501. arXiv: 0707.2756 [nucl-ex].

[29] K. Alfonso et al. “Search for Neutrinoless Double-Beta Decay of
130

Te with CUORE-0”.

In: Phys. Rev. Lett. 115.10 (2015), p. 102502. doi: 10.1103/PhysRevLett.115.
102502. arXiv: 1504.02454 [nucl-ex].

[30] M. Auger et al. “Search for Neutrinoless Double-Beta Decay in
136

Xe with EXO-200”.

In: Phys. Rev. Lett. 109 (2012), p. 032505. doi: 10.1103/PhysRevLett.109.
032505. arXiv: 1205.5608 [hep-ex].

[31] M. Agostini et al. “Improved Limit on Neutrinoless Double-β Decay of
76

Ge from GERDA

Phase II”. In: Phys. Rev. Lett. 120.13 (2018), p. 132503. doi:10.1103/PhysRevLett.
120.132503. arXiv: 1803.11100 [nucl-ex].

[32] A. Gando et al. “Limit on Neutrinoless ββ Decay of
136

Xe from the First Phase of

KamLAND-Zen and Comparison with the Positive Claim in
76

Ge”. In: Phys. Rev. Lett.
110.6 (2013), p. 062502. doi: 10.1103/PhysRevLett.110.062502. arXiv:

1211.3863 [hep-ex].

[33] A. Gando et al. “Search for Majorana Neutrinos near the Inverted Mass Hierarchy Re-

gion with KamLAND-Zen”. In: Phys. Rev. Lett. 117.8 (2016). [Addendum: Phys. Rev.

Lett.117,no.10,109903(2016)], p. 082503. doi: 10.1103/PhysRevLett.117.
109903,10.1103/PhysRevLett.117.082503. arXiv: 1605.02889
[hep-ex].

[34] N. Aghanim et al. “Planck 2018 results. VI. Cosmological parameters”. In: (2018). arXiv:

1807.06209 [astro-ph.CO].

[35] A. D. Sakharov. “Violation of CP Invariance, C asymmetry, and baryon asymmetry of

the universe”. In: Pisma Zh. Eksp. Teor. Fiz. 5 (1967). [Usp. Fiz. Nauk161,no.5,61(1991)],

pp. 32–35. doi: 10.1070/PU1991v034n05ABEH002497.

[36] Peter Minkowski. “µ → eγ at a Rate of One Out of 109
Muon Decays?” In: Phys. Lett.

67B (1977), pp. 421–428. doi: 10.1016/0370-2693(77)90435-X.

http://dx.doi.org/10.1103/PhysRevD.25.2951
http://dx.doi.org/10.1103/PhysRevD.25.2951
http://dx.doi.org/10.1016/0370-2693(84)90136-9
http://dx.doi.org/10.1016/0370-2693(84)90136-9
http://dx.doi.org/10.1016/0370-2693(84)90426-X
http://dx.doi.org/10.1016/0370-2693(84)90426-X
http://dx.doi.org/10.1103/PhysRevC.76.025501
http://dx.doi.org/10.1103/PhysRevC.76.025501
http://arxiv.org/abs/0707.2756
http://dx.doi.org/10.1103/PhysRevLett.115.102502
http://dx.doi.org/10.1103/PhysRevLett.115.102502
http://arxiv.org/abs/1504.02454
http://dx.doi.org/10.1103/PhysRevLett.109.032505
http://dx.doi.org/10.1103/PhysRevLett.109.032505
http://arxiv.org/abs/1205.5608
http://dx.doi.org/10.1103/PhysRevLett.120.132503
http://dx.doi.org/10.1103/PhysRevLett.120.132503
http://arxiv.org/abs/1803.11100
http://dx.doi.org/10.1103/PhysRevLett.110.062502
http://arxiv.org/abs/1211.3863
http://dx.doi.org/10.1103/PhysRevLett.117.109903, 10.1103/PhysRevLett.117.082503
http://dx.doi.org/10.1103/PhysRevLett.117.109903, 10.1103/PhysRevLett.117.082503
http://arxiv.org/abs/1605.02889
http://arxiv.org/abs/1605.02889
http://arxiv.org/abs/1807.06209
http://dx.doi.org/10.1070/PU1991v034n05ABEH002497
http://dx.doi.org/10.1016/0370-2693(77)90435-X


Bibliography 121

[37] Rabindra N. Mohapatra and Goran Senjanovic. “Neutrino Mass and Spontaneous Par-

ity Violation”. In: Phys. Rev. Lett. 44 (1980). [,231(1979)], p. 912. doi: 10 . 1103 /
PhysRevLett.44.912.

[38] Tsutomu Yanagida. “Horizontal Symmetry and Masses of Neutrinos”. In: Prog. Theor.
Phys. 64 (1980), p. 1103. doi: 10.1143/PTP.64.1103.

[39] Murray Gell-Mann, Pierre Ramond, and Richard Slansky. “Complex Spinors and Uni�ed

Theories”. In: Conf. Proc. C790927 (1979), pp. 315–321. arXiv: 1306.4669 [hep-
th].

[40] Ernest Ma. “Pathways to naturally small neutrino masses”. In: Phys. Rev. Lett. 81 (1998),

pp. 1171–1174. doi: 10.1103/PhysRevLett.81.1171. arXiv: hep-ph/
9805219 [hep-ph].

[41] F. Maltoni, J. M. Niczyporuk, and S. Willenbrock. “Upper bound on the scale of Majorana

neutrino mass generation”. In: Phys. Rev. Lett. 86 (2001), pp. 212–215. doi: 10.1103/
PhysRevLett.86.212. arXiv: hep-ph/0006358 [hep-ph].

[42] A. Zee. “A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscilla-

tion”. In: Phys. Lett. 93B (1980). [Erratum: Phys. Lett.95B,461(1980)], p. 389. doi: 10.
1016/0370-2693(80)90349-4,10.1016/0370-2693(80)90193-8.

[43] Lincoln Wolfenstein. “A Theoretical Pattern for Neutrino Oscillations”. In: Nucl. Phys.
B175 (1980), pp. 93–96. doi: 10.1016/0550-3213(80)90004-8.

[44] A. Zee. “Quantum Numbers of Majorana Neutrino Masses”. In: Nucl. Phys. B264 (1986),

pp. 99–110. doi: 10.1016/0550-3213(86)90475-X.

[45] K. S. Babu. “Model of ’Calculable’ Majorana Neutrino Masses”. In: Phys. Lett. B203

(1988), pp. 132–136. doi: 10.1016/0370-2693(88)91584-5.

[46] Ernest Ma. “Veri�able radiative seesaw mechanism of neutrino mass and dark matter”.

In: Phys. Rev. D73 (2006), p. 077301. doi: 10.1103/PhysRevD.73.077301.

arXiv: hep-ph/0601225 [hep-ph].

[47] P. F. Harrison, D. H. Perkins, and W. G. Scott. “Tri-bimaximal mixing and the neu-

trino oscillation data”. In: Phys. Lett. B530 (2002), p. 167. doi: 10.1016/S0370-
2693(02)01336-9. arXiv: hep-ph/0202074 [hep-ph].

[48] Guido Altarelli and Ferruccio Feruglio. “Discrete Flavor Symmetries and Models of

Neutrino Mixing”. In: Rev. Mod. Phys. 82 (2010), pp. 2701–2729. doi: 10 . 1103 /
RevModPhys.82.2701. arXiv: 1002.0211 [hep-ph].

[49] A. Aguilar-Arevalo et al. “Evidence for neutrino oscillations from the observation of

anti-neutrino(electron) appearance in a anti-neutrino(muon) beam”. In: Phys. Rev. D64

(2001), p. 112007. doi: 10.1103/PhysRevD.64.112007. arXiv: hep-ex/
0104049 [hep-ex].

http://dx.doi.org/10.1103/PhysRevLett.44.912
http://dx.doi.org/10.1103/PhysRevLett.44.912
http://dx.doi.org/10.1143/PTP.64.1103
http://arxiv.org/abs/1306.4669
http://arxiv.org/abs/1306.4669
http://dx.doi.org/10.1103/PhysRevLett.81.1171
http://arxiv.org/abs/hep-ph/9805219
http://arxiv.org/abs/hep-ph/9805219
http://dx.doi.org/10.1103/PhysRevLett.86.212
http://dx.doi.org/10.1103/PhysRevLett.86.212
http://arxiv.org/abs/hep-ph/0006358
http://dx.doi.org/10.1016/0370-2693(80)90349-4, 10.1016/0370-2693(80)90193-8
http://dx.doi.org/10.1016/0370-2693(80)90349-4, 10.1016/0370-2693(80)90193-8
http://dx.doi.org/10.1016/0550-3213(80)90004-8
http://dx.doi.org/10.1016/0550-3213(86)90475-X
http://dx.doi.org/10.1016/0370-2693(88)91584-5
http://dx.doi.org/10.1103/PhysRevD.73.077301
http://arxiv.org/abs/hep-ph/0601225
http://dx.doi.org/10.1016/S0370-2693(02)01336-9
http://dx.doi.org/10.1016/S0370-2693(02)01336-9
http://arxiv.org/abs/hep-ph/0202074
http://dx.doi.org/10.1103/RevModPhys.82.2701
http://dx.doi.org/10.1103/RevModPhys.82.2701
http://arxiv.org/abs/1002.0211
http://dx.doi.org/10.1103/PhysRevD.64.112007
http://arxiv.org/abs/hep-ex/0104049
http://arxiv.org/abs/hep-ex/0104049


122 Bibliography

[50] A. A. Aguilar-Arevalo et al. “Observation of a Signi�cant Excess of Electron-Like Events

in the MiniBooNE Short-Baseline Neutrino Experiment”. In: (2018). arXiv: 1805 .
12028 [hep-ex].

[51] Carlo Giunti and Marco Laveder. “Statistical Signi�cance of the Gallium Anomaly”. In:

Phys. Rev. C83 (2011), p. 065504. doi: 10.1103/PhysRevC.83.065504. arXiv:

1006.3244 [hep-ph].

[52] P. Anselmann et al. “First results from the Cr-51 neutrino source experiment with the

GALLEX detector”. In: Phys. Lett. B342 (1995), pp. 440–450. doi: 10.1016/0370-
2693(94)01586-2.

[53] W. Hampel et al. “Final results of the Cr-51 neutrino source experiments in GALLEX”.

In: Phys. Lett.B420 (1998), pp. 114–126. doi:10.1016/S0370-2693(97)01562-
1.

[54] F. Kaether et al. “Reanalysis of the GALLEX solar neutrino �ux and source experiments”.

In: Phys. Lett. B685 (2010), pp. 47–54. doi: 10.1016/j.physletb.2010.01.
030. arXiv: 1001.2731 [hep-ex].

[55] Dzh.N. Abdurashitov et al. “The Russian-American gallium experiment (SAGE) Cr neu-

trino source measurement”. In: Phys. Rev. Lett. 77 (1996), pp. 4708–4711. doi: 10.
1103/PhysRevLett.77.4708.

[56] J. N. Abdurashitov et al. “Measurement of the response of the Russian-American gallium

experiment to neutrinos from a Cr-51 source”. In: Phys. Rev. C59 (1999), pp. 2246–2263.

doi: 10.1103/PhysRevC.59.2246. arXiv: hep-ph/9803418 [hep-ph].

[57] J. N. Abdurashitov et al. “Measurement of the response of a Ga solar neutrino exper-

iment to neutrinos from an Ar-37 source”. In: Phys. Rev. C73 (2006), p. 045805. doi:

10.1103/PhysRevC.73.045805. arXiv: nucl-ex/0512041 [nucl-
ex].

[58] J. N. Abdurashitov et al. “Measurement of the solar neutrino capture rate with gal-

lium metal. III: Results for the 2002–2007 data-taking period”. In: Phys. Rev. C80 (2009),

p. 015807. doi:10.1103/PhysRevC.80.015807. arXiv:0901.2200[nucl-
ex].

[59] G. Mention et al. “The Reactor Antineutrino Anomaly”. In: Phys. Rev.D83 (2011), p. 073006.

doi: 10.1103/PhysRevD.83.073006. arXiv: 1101.2755 [hep-ex].

[60] F. P. An et al. “Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay”.

In: Phys. Rev. Lett. 118.25 (2017), p. 251801. doi: 10.1103/PhysRevLett.118.
251801. arXiv: 1704.01082 [hep-ex].

[61] Mona Dentler et al. “Sterile neutrinos or �ux uncertainties? — Status of the reactor anti-

neutrino anomaly”. In: JHEP 11 (2017), p. 099. doi:10.1007/JHEP11(2017)099.

arXiv: 1709.04294 [hep-ph].

http://arxiv.org/abs/1805.12028
http://arxiv.org/abs/1805.12028
http://dx.doi.org/10.1103/PhysRevC.83.065504
http://arxiv.org/abs/1006.3244
http://dx.doi.org/10.1016/0370-2693(94)01586-2
http://dx.doi.org/10.1016/0370-2693(94)01586-2
http://dx.doi.org/10.1016/S0370-2693(97)01562-1
http://dx.doi.org/10.1016/S0370-2693(97)01562-1
http://dx.doi.org/10.1016/j.physletb.2010.01.030
http://dx.doi.org/10.1016/j.physletb.2010.01.030
http://arxiv.org/abs/1001.2731
http://dx.doi.org/10.1103/PhysRevLett.77.4708
http://dx.doi.org/10.1103/PhysRevLett.77.4708
http://dx.doi.org/10.1103/PhysRevC.59.2246
http://arxiv.org/abs/hep-ph/9803418
http://dx.doi.org/10.1103/PhysRevC.73.045805
http://arxiv.org/abs/nucl-ex/0512041
http://arxiv.org/abs/nucl-ex/0512041
http://dx.doi.org/10.1103/PhysRevC.80.015807
http://arxiv.org/abs/0901.2200
http://arxiv.org/abs/0901.2200
http://dx.doi.org/10.1103/PhysRevD.83.073006
http://arxiv.org/abs/1101.2755
http://dx.doi.org/10.1103/PhysRevLett.118.251801
http://dx.doi.org/10.1103/PhysRevLett.118.251801
http://arxiv.org/abs/1704.01082
http://dx.doi.org/10.1007/JHEP11(2017)099
http://arxiv.org/abs/1709.04294


Bibliography 123

[62] S. Schael et al. “Precision electroweak measurements on the Z resonance”. In: Phys.
Rept. 427 (2006), pp. 257–454. doi: 10.1016/j.physrep.2005.12.006.

arXiv: hep-ex/0509008 [hep-ex].

[63] K. Abe et al. “Combined Analysis of Neutrino and Antineutrino Oscillations at T2K”.

In: Phys. Rev. Lett. 118.15 (2017), p. 151801. doi: 10.1103/PhysRevLett.118.
151801. arXiv: 1701.00432 [hep-ex].

[64] Srubabati Goswami and Toshihiko Ota. “Testing non-unitarity of neutrino mixing ma-

trices at neutrino factories”. In: Phys. Rev. D78 (2008), p. 033012. doi: 10.1103/
PhysRevD.78.033012. arXiv: 0802.1434 [hep-ph].

[65] O. G. Miranda, M. Tortola, and J. W. F. Valle. “New ambiguity in probing CP violation

in neutrino oscillations”. In: Phys. Rev. Lett. 117.6 (2016), p. 061804. doi: 10.1103/
PhysRevLett.117.061804. arXiv: 1604.05690 [hep-ph].

[66] Shao-Feng Ge et al. “Measuring the Leptonic CP Phase in Neutrino Oscillations with

Non-Unitary Mixing”. In: (2016). arXiv: 1605.01670 [hep-ph].

[67] André de Gouvêa and Kevin J. Kelly. “False Signals of CP-Invariance Violation at DUNE”.

In: (2016). arXiv: 1605.09376 [hep-ph].

[68] Debajyoti Dutta and Pomita Ghoshal. “Probing CP violation with T2K, NOνA and

DUNE in the presence of non-unitarity”. In: JHEP 09 (2016), p. 110. doi: 10.1007/
JHEP09(2016)110. arXiv: 1607.02500 [hep-ph].

[69] Thomas J. Weiler and D. J. Wagner. “Invariant box parameterization of neutrino oscil-

lations”. In: AIP Conf. Proc. 444 (1998), pp. 46–58. doi: 10.1063/1.56585. arXiv:

hep-ph/9806490 [hep-ph].

[70] D. J. Wagner and Thomas J. Weiler. “Boxing with neutrino oscillations”. In: Phys. Rev.
D59 (1999), p. 113007. doi: 10.1103/PhysRevD.59.113007. arXiv: hep-
ph/9801327 [hep-ph].

[71] C. Jarlskog. “Commutator of the Quark Mass Matrices in the Standard Electroweak

Model and a Measure of Maximal CP Violation”. In: Phys. Rev. Lett. 55 (1985), p. 1039.

doi: 10.1103/PhysRevLett.55.1039.

[72] Y. Farzan and A. Yu. Smirnov. “Leptonic unitarity triangle and CP violation”. In: Phys.
Rev. D65 (2002), p. 113001. doi: 10.1103/PhysRevD.65.113001. arXiv: hep-
ph/0201105 [hep-ph].

[73] Zhi-zhong Xing and He Zhang. “Reconstruction of the neutrino mixing matrix and lep-

tonic unitarity triangles from long-baseline neutrino oscillations”. In: Phys. Lett. B618

(2005), pp. 131–140. doi: 10.1016/j.physletb.2005.05.016. arXiv: hep-
ph/0503118 [hep-ph].

http://dx.doi.org/10.1016/j.physrep.2005.12.006
http://arxiv.org/abs/hep-ex/0509008
http://dx.doi.org/10.1103/PhysRevLett.118.151801
http://dx.doi.org/10.1103/PhysRevLett.118.151801
http://arxiv.org/abs/1701.00432
http://dx.doi.org/10.1103/PhysRevD.78.033012
http://dx.doi.org/10.1103/PhysRevD.78.033012
http://arxiv.org/abs/0802.1434
http://dx.doi.org/10.1103/PhysRevLett.117.061804
http://dx.doi.org/10.1103/PhysRevLett.117.061804
http://arxiv.org/abs/1604.05690
http://arxiv.org/abs/1605.01670
http://arxiv.org/abs/1605.09376
http://dx.doi.org/10.1007/JHEP09(2016)110
http://dx.doi.org/10.1007/JHEP09(2016)110
http://arxiv.org/abs/1607.02500
http://dx.doi.org/10.1063/1.56585
http://arxiv.org/abs/hep-ph/9806490
http://dx.doi.org/10.1103/PhysRevD.59.113007
http://arxiv.org/abs/hep-ph/9801327
http://arxiv.org/abs/hep-ph/9801327
http://dx.doi.org/10.1103/PhysRevLett.55.1039
http://dx.doi.org/10.1103/PhysRevD.65.113001
http://arxiv.org/abs/hep-ph/0201105
http://arxiv.org/abs/hep-ph/0201105
http://dx.doi.org/10.1016/j.physletb.2005.05.016
http://arxiv.org/abs/hep-ph/0503118
http://arxiv.org/abs/hep-ph/0503118


124 Bibliography

[74] James D. Bjorken, P. F. Harrison, and W. G. Scott. “Simpli�ed unitarity triangles for the

lepton sector”. In: Phys. Rev. D74 (2006), p. 073012. doi: 10.1103/PhysRevD.74.
073012. arXiv: hep-ph/0511201 [hep-ph].

[75] Zhi-Zhong Xing. “Implications of the Daya Bay observation of θ13 on the leptonic �avor

mixing structure and CP violation”. In: Chin. Phys. C36 (2012), pp. 281–297. doi: 10.
1088/1674-1137/36/4/L01. arXiv: 1203.1672 [hep-ph].

[76] Hong-Jian He and Xun-Jie Xu. “Connecting Leptonic Unitarity Triangle to Neutrino

Oscillation”. In: Phys. Rev. D89.7 (2014), p. 073002. doi: 10.1103/PhysRevD.89.
073002. arXiv: 1311.4496 [hep-ph].

[77] Hong-Jian He and Xun-Jie Xu. “Connecting Leptonic Unitarity Triangle to Neutrino

Oscillation with CP Violation in Vacuum and in Matter”. In: (2016). arXiv: 1606.
04054 [hep-ph].

[78] T. Suzuki. “Some formulas for invariant phases of unitary matrices by Jarlskog”. In:

Journal of Mathematical Physics 50.12 (Dec. 2009), pp. 123526–123526. doi: 10.1063/
1.3272544. arXiv: 0907.2353 [math-ph].

[79] F. J. Escrihuela et al. “On the description of nonunitary neutrino mixing”. In: Phys.
Rev. D92.5 (2015). [Erratum: Phys. Rev.D93,no.11,119905(2016)], p. 053009. doi: 10.
1103/PhysRevD.93.119905,10.1103/PhysRevD.92.053009. arXiv:

1503.08879 [hep-ph].

[80] E. Fernandez-Martinez et al. “CP-violation from non-unitary leptonic mixing”. In: Phys.
Lett. B649 (2007), pp. 427–435. doi: 10.1016/j.physletb.2007.03.069.

arXiv: hep-ph/0703098 [hep-ph].

[81] S. Antusch et al. “Unitarity of the Leptonic Mixing Matrix”. In: JHEP 10 (2006), p. 084.

doi: 10.1088/1126-6708/2006/10/084. arXiv: hep-ph/0607020
[hep-ph].

[82] K. Abe et al. “Search for CP Violation in Neutrino and Antineutrino Oscillations by the

T2K Experiment with 2.2 × 1021
Protons on Target”. In: Phys. Rev. Lett. 121.17 (2018),

p. 171802. doi: 10.1103/PhysRevLett.121.171802. arXiv: 1807.07891
[hep-ex].

[83] Stephen Parke and Mark Ross-Lonergan. “Unitarity and the three �avor neutrino mix-

ing matrix”. In: Phys. Rev. D93.11 (2016), p. 113009. doi: 10.1103/PhysRevD.93.
113009. arXiv: 1508.05095 [hep-ph].

[84] S. Gariazzo et al. “Model-independent ν̄e short-baseline oscillations from reactor spec-

tral ratios”. In: Phys. Lett. B782 (2018), pp. 13–21. doi: 10.1016/j.physletb.
2018.04.057. arXiv: 1801.06467 [hep-ph].

[85] Mattias Blennow et al. “Non-Unitarity, sterile neutrinos, and Non-Standard neutrino

Interactions”. In: (2016). arXiv: 1609.08637 [hep-ph].

http://dx.doi.org/10.1103/PhysRevD.74.073012
http://dx.doi.org/10.1103/PhysRevD.74.073012
http://arxiv.org/abs/hep-ph/0511201
http://dx.doi.org/10.1088/1674-1137/36/4/L01
http://dx.doi.org/10.1088/1674-1137/36/4/L01
http://arxiv.org/abs/1203.1672
http://dx.doi.org/10.1103/PhysRevD.89.073002
http://dx.doi.org/10.1103/PhysRevD.89.073002
http://arxiv.org/abs/1311.4496
http://arxiv.org/abs/1606.04054
http://arxiv.org/abs/1606.04054
http://dx.doi.org/10.1063/1.3272544
http://dx.doi.org/10.1063/1.3272544
http://arxiv.org/abs/0907.2353
http://dx.doi.org/10.1103/PhysRevD.93.119905, 10.1103/PhysRevD.92.053009
http://dx.doi.org/10.1103/PhysRevD.93.119905, 10.1103/PhysRevD.92.053009
http://arxiv.org/abs/1503.08879
http://dx.doi.org/10.1016/j.physletb.2007.03.069
http://arxiv.org/abs/hep-ph/0703098
http://dx.doi.org/10.1088/1126-6708/2006/10/084
http://arxiv.org/abs/hep-ph/0607020
http://arxiv.org/abs/hep-ph/0607020
http://dx.doi.org/10.1103/PhysRevLett.121.171802
http://arxiv.org/abs/1807.07891
http://arxiv.org/abs/1807.07891
http://dx.doi.org/10.1103/PhysRevD.93.113009
http://dx.doi.org/10.1103/PhysRevD.93.113009
http://arxiv.org/abs/1508.05095
http://dx.doi.org/10.1016/j.physletb.2018.04.057
http://dx.doi.org/10.1016/j.physletb.2018.04.057
http://arxiv.org/abs/1801.06467
http://arxiv.org/abs/1609.08637


Bibliography 125

[86] Patrick Huber et al. “New features in the simulation of neutrino oscillation experi-

ments with GLoBES 3.0: General Long Baseline Experiment Simulator”. In: Comput.
Phys. Commun. 177 (2007), pp. 432–438. doi: 10.1016/j.cpc.2007.05.004.

arXiv: hep-ph/0701187 [hep-ph].

[87] Patrick Huber, M. Lindner, and W. Winter. “Simulation of long-baseline neutrino oscil-

lation experiments with GLoBES (General Long Baseline Experiment Simulator)”. In:

Comput. Phys. Commun. 167 (2005), p. 195. doi:10.1016/j.cpc.2005.01.003.

arXiv: hep-ph/0407333 [hep-ph].

[88] Patrick Huber, Manfred Lindner, and Walter Winter. “Superbeams versus neutrino fac-

tories”. In: Nucl. Phys. B645 (2002), pp. 3–48. eprint: hep-ph/0204352.

[89] Mark D. Messier. “Evidence for neutrino mass from observations of atmospheric neu-

trinos with Super-Kamiokande”. In: (). UMI-99-23965.

[90] E. A. Paschos and J. Y. Yu. “Neutrino interactions in oscillation experiments”. In: Phys.
Rev. D65 (2002), p. 033002. eprint: hep-ph/0107261.

[91] Y. Itow et al. “The JHF-Kamioka neutrino project”. In: (2001). eprint:hep-ex/0106019.

[92] Masaki Ishitsuka et al. “Resolving neutrino mass hierarchy and CP degeneracy by two

identical detectors with di�erent baselines”. In: Phys. Rev. D72 (2005), p. 033003. eprint:

hep-ph/0504026.

[93] I. Ambats et al. “NOvA proposal to build a 30-kiloton o�-axis detector to study neutrino

oscillations in the Fermilab NuMI beamline”. In: (2004). eprint: hep-ex/0503053.

[94] T. Yang and S. Woijcicki. “Study of physics sensitivity of νmu disappearance in a totally

active version of NoVA detector”. In: (2004). eprint: Off-Axis-Note-SIM-30.

[95] K. Abe et al. “T2K neutrino �ux prediction”. In: Phys. Rev. D87.1 (2013). [Addendum:

Phys. Rev.D87,no.1,019902(2013)], p. 012001. doi: 10 . 1103 / PhysRevD . 87 .
012001,10.1103/PhysRevD.87.019902. arXiv: 1211.0469 [hep-
ex].

[96] M. D. Messier. “First neutrino oscillation measurements in NOvA”. In: Nucl. Phys. B908

(2016), pp. 151–160. doi: 10.1016/j.nuclphysb.2016.04.027.

[97] F. J. Escrihuela et al. “Probing CP violation with non-unitary mixing in long-baseline

neutrino oscillation experiments: DUNE as a case study”. In: New J. Phys. 19.9 (2017),

p. 093005. doi: 10.1088/1367-2630/aa79ec. arXiv: 1612.07377 [hep-
ph].

[98] O. G. Miranda and H. Nunokawa. “Non standard neutrino interactions: current status

and future prospects”. In: New J. Phys. 17.9 (2015), p. 095002. doi: 10.1088/1367-
2630/17/9/095002. arXiv: 1505.06254 [hep-ph].

http://dx.doi.org/10.1016/j.cpc.2007.05.004
http://arxiv.org/abs/hep-ph/0701187
http://dx.doi.org/10.1016/j.cpc.2005.01.003
http://arxiv.org/abs/hep-ph/0407333
hep-ph/0204352
hep-ph/0107261
hep-ex/0106019
hep-ph/0504026
hep-ex/0503053
Off-Axis-Note-SIM-30
http://dx.doi.org/10.1103/PhysRevD.87.012001, 10.1103/PhysRevD.87.019902
http://dx.doi.org/10.1103/PhysRevD.87.012001, 10.1103/PhysRevD.87.019902
http://arxiv.org/abs/1211.0469
http://arxiv.org/abs/1211.0469
http://dx.doi.org/10.1016/j.nuclphysb.2016.04.027
http://dx.doi.org/10.1088/1367-2630/aa79ec
http://arxiv.org/abs/1612.07377
http://arxiv.org/abs/1612.07377
http://dx.doi.org/10.1088/1367-2630/17/9/095002
http://dx.doi.org/10.1088/1367-2630/17/9/095002
http://arxiv.org/abs/1505.06254


126 Bibliography

[99] C. Jarlskog. “A Basis Independent Formulation of the Connection Between Quark Mass

Matrices, CP Violation and Experiment”. In: Z. Phys. C29 (1985), pp. 491–497. doi: 10.
1007/BF01565198.

[100] P. F. Harrison and W. G. Scott. “CP and T violation in neutrino oscillations and invari-

ance of Jarlskog’s determinant to matter e�ects”. In: Phys. Lett. B476 (2000), pp. 349–

355. doi: 10.1016/S0370-2693(00)00153-2. arXiv: hep-ph/9912435
[hep-ph].

[101] Zhi-zhong Xing. “Commutators of lepton mass matrices, CP violation, and matter ef-

fects in-medium baseline neutrino experiments”. In: Phys. Rev. D63 (2001), p. 073012.

doi: 10.1103/PhysRevD.63.073012. arXiv: hep-ph/0009294 [hep-
ph].

[102] C. Jarlskog. “Invariants of lepton mass matrices and CP and T violation in neutrino

oscillations”. In: Phys. Lett. B609 (2005), pp. 323–329. doi:10.1016/j.physletb.
2005.01.057. arXiv: hep-ph/0412288 [hep-ph].

[103] Vadim A. Naumov. “Three neutrino oscillations in matter, CP violation and topological

phases”. In: Int. J. Mod. Phys.D1 (1992), pp. 379–399. doi:10.1142/S0218271892000203.

[104] Mona Dentler et al. “Updated Global Analysis of Neutrino Oscillations in the Presence

of eV-Scale Sterile Neutrinos”. In: JHEP 08 (2018), p. 010. doi:10.1007/JHEP08(2018)
010. arXiv: 1803.10661 [hep-ph].

[105] S. N. Gninenko. “The MiniBooNE anomaly and heavy neutrino decay”. In: Phys. Rev.
Lett. 103 (2009), p. 241802. doi: 10.1103/PhysRevLett.103.241802. arXiv:

0902.3802 [hep-ph].

[106] Peter Ballett, Silvia Pascoli, and Mark Ross-Lonergan. “U(1)’ mediated decays of heavy

sterile neutrinos in MiniBooNE”. In: (2018). arXiv: 1808.02915 [hep-ph].

[107] Enrico Bertuzzo et al. “Neutrino Masses and Mixings Dynamically Generated by a Light

Dark Sector”. In: (2018). arXiv: 1808.02500 [hep-ph].

[108] Enrico Bertuzzo et al. “Dark Neutrino Portal to Explain MiniBooNE excess”. In: Phys.
Rev. Lett. 121.24 (2018), p. 241801. doi: 10.1103/PhysRevLett.121.241801.

arXiv: 1807.09877 [hep-ph].

[109] Gabriel Magill et al. “Dipole portal to heavy neutral leptons”. In: Phys. Rev. D98.11

(2018), p. 115015. doi: 10.1103/PhysRevD.98.115015. arXiv: 1803.03262
[hep-ph].

[110] Jiajun Liao, Danny Marfatia, and Kerry Whisnant. “MiniBooNE, MINOS+ and IceCube

data imply a baroque neutrino sector”. In: (2018). arXiv: 1810.01000 [hep-ph].

[111] M. G. Aartsen et al. “Searches for Sterile Neutrinos with the IceCube Detector”. In: Phys.
Rev. Lett. 117.7 (2016), p. 071801. doi: 10.1103/PhysRevLett.117.071801.

arXiv: 1605.01990 [hep-ex].

http://dx.doi.org/10.1007/BF01565198
http://dx.doi.org/10.1007/BF01565198
http://dx.doi.org/10.1016/S0370-2693(00)00153-2
http://arxiv.org/abs/hep-ph/9912435
http://arxiv.org/abs/hep-ph/9912435
http://dx.doi.org/10.1103/PhysRevD.63.073012
http://arxiv.org/abs/hep-ph/0009294
http://arxiv.org/abs/hep-ph/0009294
http://dx.doi.org/10.1016/j.physletb.2005.01.057
http://dx.doi.org/10.1016/j.physletb.2005.01.057
http://arxiv.org/abs/hep-ph/0412288
http://dx.doi.org/10.1142/S0218271892000203
http://dx.doi.org/10.1007/JHEP08(2018)010
http://dx.doi.org/10.1007/JHEP08(2018)010
http://arxiv.org/abs/1803.10661
http://dx.doi.org/10.1103/PhysRevLett.103.241802
http://arxiv.org/abs/0902.3802
http://arxiv.org/abs/1808.02915
http://arxiv.org/abs/1808.02500
http://dx.doi.org/10.1103/PhysRevLett.121.241801
http://arxiv.org/abs/1807.09877
http://dx.doi.org/10.1103/PhysRevD.98.115015
http://arxiv.org/abs/1803.03262
http://arxiv.org/abs/1803.03262
http://arxiv.org/abs/1810.01000
http://dx.doi.org/10.1103/PhysRevLett.117.071801
http://arxiv.org/abs/1605.01990


Bibliography 127

[112] K. Abe et al. “Limits on sterile neutrino mixing using atmospheric neutrinos in Super-

Kamiokande”. In: Phys. Rev. D91 (2015), p. 052019. doi: 10.1103/PhysRevD.91.
052019. arXiv: 1410.2008 [hep-ex].

[113] K. Abe et al. “Search for short baseline νe disappearance with the T2K near detector”.

In: Phys. Rev. D91 (2015), p. 051102. doi: 10.1103/PhysRevD.91.051102.

arXiv: 1410.8811 [hep-ex].

[114] P. Adamson et al. “Search for sterile neutrinos in MINOS and MINOS+ using a two-

detector �t”. In: Submitted to: Phys. Rev. Lett. (2017). arXiv: 1710.06488 [hep-
ex].

[115] P. Adamson et al. “Search for active-sterile neutrino mixing using neutral-current inter-

actions in NOvA”. In: Phys. Rev. D96.7 (2017), p. 072006. doi: 10.1103/PhysRevD.
96.072006. arXiv: 1706.04592 [hep-ex].

[116] C. Giunti and E. M. Zavanin. “Appearance–disappearance relation in 3 + Ns short-

baseline neutrino oscillations”. In: Mod. Phys. Lett. A31.01 (2015), p. 1650003. doi: 10.
1142/S0217732316500036. arXiv: 1508.03172 [hep-ph].

[117] Heinrich Päs, Sandip Pakvasa, and Thomas J. Weiler. “Sterile-active neutrino oscilla-

tions and shortcuts in the extra dimension”. In: Phys. Rev. D72 (2005), p. 095017. doi:

10.1103/PhysRevD.72.095017. arXiv: hep-ph/0504096 [hep-ph].

[118] D. Marfatia et al. “A model of superluminal neutrinos”. In: Phys. Lett. B707 (2012),

pp. 553–557. doi:10.1016/j.physletb.2012.01.028. arXiv:1112.0527
[hep-ph].

[119] Daniel J. H. Chung and Katherine Freese. “Cosmological challenges in theories with ex-

tra dimensions and remarks on the horizon problem”. In: Phys. Rev.D61 (2000), p. 023511.

doi: 10.1103/PhysRevD.61.023511. arXiv: hep-ph/9906542 [hep-
ph].

[120] Daniel J. H. Chung and Katherine Freese. “Can geodesics in extra dimensions solve the

cosmological horizon problem?” In: Phys. Rev. D62 (2000), p. 063513. doi: 10.1103/
PhysRevD.62.063513. arXiv: hep-ph/9910235 [hep-ph].

[121] Csaba Csaki, Joshua Erlich, and Christophe Grojean. “Gravitational Lorentz violations

and adjustment of the cosmological constant in asymmetrically warped space-times”.

In: Nucl. Phys. B604 (2001), pp. 312–342. doi: 10 . 1016 / S0550 - 3213(01 )
00175-4. arXiv: hep-th/0012143 [hep-th].

[122] Sebastian Hollenberg and Heinrich Päs. “Resonant active-sterile neutrino mixing in

the presence of matter potentials and altered dispersion relations”. In: (2009). arXiv:

0904.2167 [hep-ph].

[123] Sebastian Hollenberg et al. “Baseline-dependent neutrino oscillations with extra-dimensional

shortcuts”. In: Phys. Rev. D80 (2009), p. 093005. doi: 10.1103/PhysRevD.80.
093005. arXiv: 0906.0150 [hep-ph].

http://dx.doi.org/10.1103/PhysRevD.91.052019
http://dx.doi.org/10.1103/PhysRevD.91.052019
http://arxiv.org/abs/1410.2008
http://dx.doi.org/10.1103/PhysRevD.91.051102
http://arxiv.org/abs/1410.8811
http://arxiv.org/abs/1710.06488
http://arxiv.org/abs/1710.06488
http://dx.doi.org/10.1103/PhysRevD.96.072006
http://dx.doi.org/10.1103/PhysRevD.96.072006
http://arxiv.org/abs/1706.04592
http://dx.doi.org/10.1142/S0217732316500036
http://dx.doi.org/10.1142/S0217732316500036
http://arxiv.org/abs/1508.03172
http://dx.doi.org/10.1103/PhysRevD.72.095017
http://arxiv.org/abs/hep-ph/0504096
http://dx.doi.org/10.1016/j.physletb.2012.01.028
http://arxiv.org/abs/1112.0527
http://arxiv.org/abs/1112.0527
http://dx.doi.org/10.1103/PhysRevD.61.023511
http://arxiv.org/abs/hep-ph/9906542
http://arxiv.org/abs/hep-ph/9906542
http://dx.doi.org/10.1103/PhysRevD.62.063513
http://dx.doi.org/10.1103/PhysRevD.62.063513
http://arxiv.org/abs/hep-ph/9910235
http://dx.doi.org/10.1016/S0550-3213(01)00175-4
http://dx.doi.org/10.1016/S0550-3213(01)00175-4
http://arxiv.org/abs/hep-th/0012143
http://arxiv.org/abs/0904.2167
http://dx.doi.org/10.1103/PhysRevD.80.093005
http://dx.doi.org/10.1103/PhysRevD.80.093005
http://arxiv.org/abs/0906.0150


128 Bibliography

[124] Elke Aeikens et al. “Flavor ratios of extragalactic neutrinos and neutrino shortcuts in

extra dimensions”. In: JCAP 1510.10 (2015), p. 005. doi: 10.1088/1475-7516/
2015/10/005. arXiv: 1410.0408 [hep-ph].

[125] Elke Aeikens et al. “Suppression of cosmological sterile neutrino production by al-

tered dispersion relations”. In: Phys. Rev. D94.11 (2016), p. 113010. doi: 10.1103/
PhysRevD.94.113010. arXiv: 1606.06695 [hep-ph].

[126] Dominik Döring and Heinrich Päs. “Sterile Neutrino Shortcuts in Asymmetrically Warped

Extra Dimensions”. In: (2018). arXiv: 1808.07734 [hep-ph].

[127] Dukjae Jang, Motohiko Kusakabe, and Myung-Ki Cheoun. “E�ects of sterile neutri-

nos and an extra dimension on big bang nucleosynthesis”. In: Phys. Rev. D97.4 (2018),

p. 043005. doi: 10 . 1103 / PhysRevD . 97 . 043005. arXiv: 1611 . 04472
[nucl-th].

[128] Fengpeng An et al. “Neutrino Physics with JUNO”. In: J. Phys. G43.3 (2016), p. 030401.

doi:10.1088/0954-3899/43/3/030401. arXiv:1507.05613[physics.ins-
det].

http://dx.doi.org/10.1088/1475-7516/2015/10/005
http://dx.doi.org/10.1088/1475-7516/2015/10/005
http://arxiv.org/abs/1410.0408
http://dx.doi.org/10.1103/PhysRevD.94.113010
http://dx.doi.org/10.1103/PhysRevD.94.113010
http://arxiv.org/abs/1606.06695
http://arxiv.org/abs/1808.07734
http://dx.doi.org/10.1103/PhysRevD.97.043005
http://arxiv.org/abs/1611.04472
http://arxiv.org/abs/1611.04472
http://dx.doi.org/10.1088/0954-3899/43/3/030401
http://arxiv.org/abs/1507.05613
http://arxiv.org/abs/1507.05613


Eidessta�liche Versicherung

Ich versichere hiermit an Eides statt, dass ich die vorliegende Masterarbeit mit dem Titel „Sear-

ches for New Physics with Neutrino Oscillations in the High Precision Era” selbständig und oh-

ne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die angegebenen Quellen

und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich gemacht. Die Arbeit

hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Ort, Datum Unterschrift

Belehrung

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betre�ende Regelung einer

Hochschulprüfungsordnung verstößt handelt ordnungswidrig. Die Ordnungswidrigkeit kann

mit einer Geldbuße von bis zu 50000.00e geahndet werden. Zuständige Verwaltungsbehörde

für die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der

Technischen Universität Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegen-

den Täuschungsversuches kann der Prü�ing zudem exmatrikuliert werden (§ 63 Abs. 5 Hoch-

schulgesetz – HG – ).

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3 Jah-

ren oder mit Geldstrafe bestraft.

Die Technische Universität Dortmund wird ggf. elektronische Vergleichswerkzeuge (wie z.B.

die Software „turnitin“) zur Überprüfung von Ordnungswidrigkeiten in Prüfungsverfahren

nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen.

Ort, Datum Unterschrift


	Danksagungen
	Publications
	Introduction
	Overview
	Historical Introduction
	Neutrino Oscillations as an Open Window to Physics Beyond the Standard Model
	The Standard Model of Particle Physics
	Definition of Fields and Forces
	Mass Generation via Higgs Mechanism and Flavor Physics

	The Experimental Evidence of Neutrino Oscillations and its Conclusions
	Neutrino Mass Generation in the Standard Model and Beyond
	Implications of Majorana Mass
	Beyond Standard Model Realization of Neutrino Masses
	Predictions for Leptonic Mixing via Discrete Symmetries and Texture Zeros

	Experimental Hints for Neutrino-Physics Beyond Standard Model


	A Novel Approach to Analyze Neutrino Oscillations in the Light of New Physics
	Model Independent Description of Neutrino Oscillations
	Analytic Predictions for CP violating Amplitudes
	General Constraints due to Unitarity
	Two Neutrinos
	Three Neutrinos
	Analytic Treatment of 3+1 
	Two Sterile Neutrinos
	General Non-Unitarity-Approach

	Numerical Analysis
	A Numerical Method to Predict Amplitudes
	Analysis with GLoBES

	Matter Effects
	Introduction
	Oscilllation Probabilities in Matter or Other Additional Potentials
	Commutator of Mass Matrices Applied to Non-Unitarity
	Numerical Analysis of T-Violation in the presence of Matter Effects

	Summary

	Impact of Light Sterile Neutrinos on Determination of the Mass Ordering at Juno
	Determination of the Mass Ordering at JUNO in the 3 Case
	Addition of one Light Sterile Neutrino
	Summary

	A Stringent Model to Explain All Current Anomalies in Neutrino Oscillation Data
	Introduction to Conflicting Appearance and Disappearance Data
	Altered Dispersion Relations for a Single Sterile Neutrino
	A Realistic 3+3 Model
	3+3  with a Common Sterile Neutrino Potential
	Different Effective Potentials for Different Sterile Neutrinos
	Treatment of Short Baseline and Atmospheric/Accelerator Experiments
	Behavior Below the Resonance
	Open Questions


	Summary

	Conclusion
	Conclusion and Outlook

	Appendix
	Analytic relations of CP violating amplitudes
	Probabilities for 3+1 with Altered Dispersion Relation.
	Bibliography


