
Estimation of Stopping Times for

Some Stopped Random Processes

Dissertation
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

Der Fakultät für Mathematik

der Technischen Universität Dortmund

vorgelegt von

M.Sc.-Wirt.-Math. Viktor Schulmann

im Februar 2019



Dissertation

Estimation of Stopping Times for Some Stopped Random Processes

Fakultät für Mathematik

Technische Universität Dortmund

Erstgutachter: Prof. Dr. Michael Voit

Zweitgutachterin: Prof. Dr. Jeannette Woerner

Tag der mündlichen Prüfung: 09.05.2019
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CHAPTER 1

Introduction

Consider the following problem from physics: A radiation source is placed at
the center of a screen (see Figure 1). At certain time intervals the source releases
particles. These move around the screen following a path of some known random
process (Yt)t≥0 without interacting with each other and without us being able to
observe their movement until they die after some random time T . During its
death a particle leaves a mark such that we can measure the distance X = ||YT ||2
it traveled from the source during its lifetime. Based on these observed distances
we wish to infer the life span T of a particle or, in particular, the density fT of T .

Figure 1. Four particles are released from the source and travel
distances X1, X2, X3, X4 before expiring.
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2 1. INTRODUCTION

This statistical problem is inspired by the so-called Skorokhod embedding pro-
blem or Skorokhod stopping problem named after the Ukrainian mathematician
who first stated and solved it in [34] (English translation [35]). Originally it con-
sists of representing a given centered distribution with finite second moment as
the law of Brownian motion at a chosen integrable stopping time. A number of
reformulations and different solutions was presented by several authors since Sko-
rokhod’s publication in 1961 (see [28] for an overview). In [6] Belomestny and
Schoenmakers considered “the so-called statistical Skorokhod embedding problem
of recovering the distribution on an independent random time T based on i.i.d.
sample from [a one-dimensional Brownian motion at time T ]”. In [7] Belomestny
and Schoenmakers extended this problem by replacing Brownian motion with a
one-dimensional Lévy process. We profit from their work and firstly generalize
their results concerning Brownian motion to self-similar processes. We particu-
larly focus on Bessel processes. As a consequence, we extend results from [6]
to multi-dimensional Brownian motion. This is accomplished by considering the
two-norm of the multi-dimensional Brownian motion, thus reducing the problem
to the case of a Bessel process which is a one-dimensional process and can be
treated similarly to the case of one-dimensional Brownian motion. Secondly, we
consider the class of so-called Sturm-Liouville processes which will be introduced
properly in Chapter 4. These processes generalize the concept of Bessel processes
and often arise as a norm of other multi-dimensional processes. This makes them
perfect candidates for the role of the process (||Yt||2)t≥0 from our physics example
above which describes the distance of a particle to the source at time t. Moreover,
they exhibit a similar structure to Lévy processes, so we can build on the results
available for this case.
We classify the inference on T as an inverse problem or, more specifically, a pa-
rameter identification problem, which is described by Engl, Hanke and Neubauer
in [16] as “the identification of physical parameters from observations of the evo-
lution of the system”. The authors of [16] warn us that inverse problems often
“do not fulfill Hadamard’s definition of well-posedness, i.e., for [them] one of the
following properties does not hold:

(H1) For all admissible data, a solution exists.
(H2) For all admissible data, the solution is unique.
(H3) The solution depends continuously on the data.”

This definition goes back to [21]. It is not precise and has to be adjusted to a
given situation. While (H1) proves unproblematic for us, (H2) is a major concern
and will require the additional assumption of stochastic independence of Y and T .
Property (H3) corresponds to the boundedness of an estimator we construct for fT .
For all admissible data boundedness is not guaranteed but it can be installed by a
regularization procedure. This regularization creates a trade-off between accuracy
and stability in our estimation method. More specifically, we can either construct
an estimator with a small bias or with a small variance but not both. A sensible
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compromise will be introduced.
More specifically, inference on fT can be classified as a problem of non-parametric
estimation, which according to Tsybakov (see [37]) “consists in estimation, from
observations, of an unknown function belonging to a sufficiently large class of
functions.” Tsybakov sees the focus of non-parametric estimation in the following
four topics:

(1) methods of construction of the estimators,
(2) statistical properties of the estimators (convergence, rates of convergence),
(3) study of optimality of the estimators,
(4) adaptive estimation.

In the preliminary Chapter 2 we introduce the so-called Mellin transform which
is our main tool throughout this thesis. Using this transform we cover topic (1).
See Section 3.2 for the case of self-similar processes and Section 5.1 for the case
of Sturm-Liouville processes. Topic (2) for these two cases is discussed in Sections
3.3-3.6 and Section 5.2 respectively. See Sections 3.7 and 5.3 for the particular
case of Bessel processes. Section 3.10 provides two other brief examples for the
self-similar case. Furthermore, we show asymptotic normality of the estimator
constructed in Section 3.7 for the Bessel case. Topic (3) is content of Chapter 6.
Topic (4) is addressed only briefly within Sections 3.9 and 5.3 when we implement
the estimators for the Bessel case based on different approaches with the free
software environment for statistics R.





CHAPTER 2

Preliminaries

2.1. Complex Random Variable: Expected Value, Covariance,
Variance

We expect the reader to be familiar with the notion of expected value, covari-
ance and variance of real random variables on the level of [5, §3]. Here we present
a way to generalize these notions to variables assuming complex values. In this
endeavor we roughly follow the outline in [2] until Lemmas 2.1.8 and 2.1.10, where
two more intricate but well-known (see for instance [6]) facts are shown. The
complex generalization will be needed later, when we construct estimators that
are complex random variables and investigate their properties. Basic concepts
regarding the set of complex numbers are assumed to be known.

Definition 2.1.1. Let (Ω,A, P ) be a probability space. We call X : Ω→ C a
complex random variable, if X = Re(X) + i Im(X), where Re(X) and Im(X) are
real random variables.

We will define the expected value of a complex variable X with an operator on
the complex vector space given by

L2
C

:= L2
C
(Ω,A, P ) := {X|X is a complex random variable with E[|X|2] <∞},

where E denotes the expectation operator of a real random variable. Since

E[|X|2] = E[Re(X)2 + Im(X)2],

L2
C

can be characterized as the vector space of complex random variables with
square-integrable real and imaginary parts.

Definition 2.1.2. The expectation of a complex random variable X is an ope-
rator E : L2

C
→ C defined by

E[X] := E[Re(X)] + iE[Im(X)].

The value of E[X] is called expected value (or mean) of X.

Note that we use E both as the symbol for the expected value operator of a
real and complex random variable. Next we define the covariance of two complex
random variables.

5



6 2. PRELIMINARIES

Definition 2.1.3. Let X and Y be complex random variables. The covariance
operator of X and Y , Cov : L2

C
× L2

C
→ C, is defined by

Cov[X, Y ] = E
[
(X − E[X])(Y − E[Y ])

]
.

The value of Cov[X, Y ] is called covariance of X and Y (order matters here).

In the special case where X = Y the covariance operator is called the variance
operator. This leads to the following definition.

Definition 2.1.4. Let X be a complex random variable. The variance operator
of X, Var : L2

C
→ R+, is defined by

Var[X] = Cov[X,X]

= E
[
(X − E[X])(X − E[X])

]
.

The value of Var[X] is called variance of X.

Theorems 2.1.5, 2.1.6 and 2.1.7 about expectation, covariance and variance are
immediate consequences of the definitions above or each other.

Theorem 2.1.5. Let X, Y ∈ L2
C

and c, d ∈ C. Then we have

(i) E[cX + d] = cE[X] + d;
(ii) E[X + Y ] = E[X] + E[Y ];

(iii) E[X] = E[X].

Theorem 2.1.5 means that the expectation operator is a linear operator on L2
C
.

Theorem 2.1.6. Let X, Y, Z ∈ L2
C

and c1, c2, d1, d2 ∈ C. Then we have

(i) Cov[X, Y ] = E[XY ]− E[X]E[Y ];

(ii) Cov[X, Y ] = Cov[Y,X];
(iii) Cov[X, Y + Z] = Cov[X, Y ] + Cov[X,Z];
(iv) Cov[c1X + d1, c2Y + d2] = c1c2 Cov[X, Y ].

According to 2.1.6 the covariance operator is a conjugate bilinear operator on
L2
C
× L2

C
.

Theorem 2.1.7. Let X, Y ∈ L2
C

and c, d ∈ C. Then we have

(i) Var[X] = E[XX]− E[X]E[X] = Var[Re(X)] + Var[Im(X)];
(ii) Var[cX + d] = ccVar[X];

(iii) Var[X + Y ] = Var[X] + Var[Y ] + 2 Re(Cov[X, Y ]).

Later we will deal with estimators that are complex random variables. In this
context the following lemma will be useful as we will derive error bounds for those
estimators.
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Lemma 2.1.8. Let a, b ∈ R with a < b and let (Xt)t∈(a,b) ⊂ L2
C

be a family of
complex random variables on a probability space (Ω,A, P ) such that the mappings
X(ω) : (0,∞) → C, t 7→ Xt(ω) are continuous for all ω ∈ Ω. If, in addition, the
mapping

X : Ω× (a, b)→ C, (ω, t) 7→ Xt(ω)

is bounded, then

Var

[∫ b

a

Xtdt

]
≤
[∫ b

a

√
Var[Xt]dt

]2

.

Remark 2.1.9. In this thesis, by dt we always mean integration with respect to
the Lebesgue measure on R, where complex integrands are treated by splitting them
in their real and imaginary parts as we have done for the expectation operator.
This means ∫ b

a

Xtdt :=

∫ b

a

Re(Xt)dt+ i

∫ b

a

Im(Xt)dt.

Note further that X(ω) is continuous and bounded for all ω ∈ Ω by assumption.
This implies that X(ω) is Riemann integrable for all ω ∈ Ω with respect to t. By

[14, Satz 6.1] we may then interpret
∫ b
a
Xtdt as a complex Riemann integral and

compute it by using the Riemann sum

(2.1.1)

∫ b

a

Xtdt = lim
n→∞

n∑
k=1

b− a
n

Xa+(b−a)k/n.

This representation as a sum will be useful in the following proof of Lemma 2.1.8
as it allows an estimation with the Minkowski inequality.

Proof of Lemma 2.1.8. At first let E[Xt] = 0 for all t ∈ (a, b). Then by
Fubini’s theorem (which is applicable because Xt is bounded) we get

E

[∫ b

a

Xtdt

]
= E

[∫ b

a

Re(Xt)dt

]
+ iE

[∫ b

a

Im(Xt)dt

]
=

∫ b

a

E[Re(Xt)]dt+ i

∫ b

a

E[Im(Xt)]dt

= 0.

In combination with Theorem 2.1.7(i) this yields

(2.1.2) Var

[∫ b

a

Xtdt

]
= E

[∣∣∣∣∫ b

a

Xtdt

∣∣∣∣2
]
.

Next we write the integral with respect to t in (2.1.2) as the Riemann sum (2.1.1)
as announced in the remark before this proof. After doing so we use Fatou’s lemma
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to obtain

Var

[∫ b

a

Xtdt

]
= E

∣∣∣∣∣ lim
n→∞

n∑
k=1

b− a
n

Xa+(b−a)k/n

∣∣∣∣∣
2


≤ lim
n→∞

E

∣∣∣∣∣
n∑
k=1

b− a
n

Xa+(b−a)k/n

∣∣∣∣∣
2
 .

Note that
√

E[| · |2] is a norm on L2
C
. So Minkowski inequality leads to

Var

[∫ b

a

Xtdt

]
≤ lim

n→∞

(
n∑
k=1

b− a
n

√
E
[
|Xa+(b−a)k/n|2

])2

=

(∫ b

a

√
Var[Xt]dt

)2

.

Now let E[Xt] ∈ C for all t ∈ (a, b). Then it follows from the already shown case,
that

Var

[∫ b

a

Xt − E[Xt] dt

]
≤
[∫ b

a

√
Var[Xt − E[Xt]]dt

]2

.

As a consequence, the claim is shown considering the linearity of the integral and
the fact Var[Y − c] = Var[Y ] for all Y ∈ L2

C
, c ∈ C (see Theorem 2.1.7(ii)). �

The next lemma will reappear in Section 3.8 as we will compute the variance
of a complex random variable (that is itself an integral) by Definition 2.1.4.

Lemma 2.1.10. Let a, b, c, d ∈ R with a < b and c < d and let (Xt)t∈(a,b),
(Ys)s∈(c,d) ⊂ L2

C
be families of complex random variables on a probability space

(Ω,A, P ) such that the mappings X(ω) : (a, b) → C, t 7→ Xt(ω) and Y (ω) :
(c, d)→ C, s 7→ Ys(ω) are continuous for all ω ∈ Ω. If, in addition, the mappings

X : Ω× (a, b)→ C, (ω, t) 7→ Xt(ω) and Y : Ω× (c, d)→ C, (ω, s) 7→ Ys(ω)

are bounded, then

Cov

[∫ b

a

Xtdt,

∫ d

c

Ysds

]
=

∫ b

a

∫ d

c

Cov [Xt, Ys] dtds.

Proof. Denote I(Y ) :=
∫ d
c
Ysds and consider the special case where E[Xt] = 0

and E[Ys] = 0 for all t ∈ (a, b) and s ∈ (c, d). Firstly, extract the integral with
respect to t from the covariance. This is possible by Definition 2.1.3, linearity of



2.2. MELLIN TRANSFORM 9

the expectation operator and Fubini’s theorem. In fact,

Cov

[∫ b

a

Xtdt,

∫ d

c

Ysds

]
= E

[(∫ b

a

Xtdt

)
I(Y )

]
= E

[(∫ b

a

Re(Xt)dt+ i

∫ b

a

Im(Xt)dt

)
I(Y )

]
= E

[∫ b

a

Re(Xt)I(Y )dt

]
+ iE

[∫ b

a

Im(Xt)I(Y )dt

]
=

∫ b

a

E
[
XtI(Y )

]
dt

=

∫ b

a

Cov
[
Xt, I(Y )

]
dt.

Secondly, the integral with respect to s is extracted from the covariance in the
analogous way (taking into consideration Theorem 2.1.5(iii)).
Now turn to the general case where we may have E[Xt] 6= 0 or E[Ys] 6= 0 for some
t ∈ (a, b) or s ∈ (c, d). Here, according to the already shown special case and
Theorem 2.1.6(iv), we have

Cov

[∫ b

a

Xtdt,

∫ d

c

Ysds

]
= Cov

[∫ b

a

Xtdt− E[

∫ b

a

Xtdt],

∫ d

c

Ysds− E[

∫ d

c

Ysds]

]
= Cov

[∫ b

a

(Xt − E[Xt])dt,

∫ d

c

(Ys − E[Ys]ds)

]
=

∫ b

a

∫ d

c

Cov [Xt − E[Xt], Ys − E[Ys]] dtds

=

∫ b

a

∫ d

c

Cov [Xt, Ys] dtds,

which concludes the proof. �

2.2. Mellin Transform

In this section we introduce the Mellin transform and list some of its properties.
This integral transform will be our main tool in estimation procedures of the next
chapters. We roughly follow the outline in [12], which is our general reference for
Mellin transforms.

Definition 2.2.1. For c ∈ R define the space

Mc :=

{
f : R+ → C

∣∣∣∣∫ ∞
0

|f(x)|xc−1dx <∞
}
.
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The associated norm on Mc is given by

||f ||Mc :=

∫ ∞
0

|f(u)|uc−1du.

Moreover, for a, b ∈ R, a < b define the spaces

M(a,b) :=
⋂

c∈(a,b)

Mc, M[a,b] :=
⋂

c∈[a,b]

Mc.

If f is the density function of an R+-valued random variable, then we have at
least f ∈M1. If X is an R+-valued random variable with density f ∈M(a,b), then
we shall also write X ∈M(a,b).
The following lemma gives an easy to check sufficient condition for f ∈M(a,b).

Lemma 2.2.2. Let a, b ∈ R with a < b. If f : R+ → R is locally integrable on
R+ with

f(x) =

{
O(x−a), for x→ 0
O(x−b), for x→∞ ,

then f ∈M(a,b) holds.

Proof. Elementary calculus; see [40, page 203]. �

Definition 2.2.3. For f ∈M(a,b), s ∈ C with Re(s) ∈ (a, b) define

M[f ](s) :=

∞∫
0

f(x)xs−1dx

the Mellin transform of f in s.
If f is the density function of a random variable X, then we call

M[X](s) := E[Xs−1] =M[f ](s)

the Mellin transform of X.

If f ∈M(a,b) holds, then M[f ](s) is well defined and holomorphic on the strip
{s ∈ C|Re(s) ∈ (a, b)} according to [12]. The following facts hold for the Mellin
transform. See for example [12] again for the proof.

Theorem 2.2.4. Let a, b ∈ R with a < b and f, g ∈M(a,b). Then we have

(i) f + g ∈M(a,b) and

M[f + g](s) =M[f ](s) +M[g](s)

for all s ∈ C with Re(s) ∈ (a, b);
(ii) λf ∈M(a,b) and

M[λf ](s) = λM[f ](s)

for all λ ∈ C, s ∈ C with Re(s) ∈ (a, b);
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(iii) Define fλ(x) := f(λx) for x, λ ≥ 0. Then fλ ∈M(a,b) and

M[fλ](s) = λ−sM[f ](s)

for all s ∈ C with Re(s) ∈ (a, b);
(iv) Define fλ(x) := xλf(x) for λ ∈ C, x ≥ 0. Then fλ ∈ M(a−Re(λ),b−Re(λ))

and
M[fλ](s) =M[f ](s+ λ)

for all s ∈ C with Re(s) ∈ (a− Re(λ), b− Re(λ));
(v) Define fλ(x) := f(xλ) for λ, x ≥ 0. Then fλ ∈M(λa,λb) and

M[fλ](s) = λ−1M[f ](λ−1s)

for all s ∈ C with Re(s) ∈ (λa, λb);
(vi) Define fλ(x) := f(x−λ) for λ, x ≥ 0. Then fλ ∈M(−λb,−λa) and

M[fλ](s) = λ−1M[f ](−λ−1s)

for all s ∈ C with Re(s) ∈ (−λa,−λb).

Let us now look at some examples of Mellin transforms.

Example 2.2.5. (i) Consider f : R+ → R, f(x) = e−x. The Mellin
transform M[f ] of f is given by the Gamma function:

Γ(s) =

∞∫
0

e−xxs−1dx for s ∈ C with Re(s) > 0.

See Section 2.4 for further discussion of the Gamma function.
(ii) Consider gamma densities

f(x) =
rσ

Γ(σ)
xσ−1e−rx

for x, σ, r > 0. We have

M[f ](s) =
r1−s

Γ(σ)
Γ(s+ σ − 1).

for all s ∈ C with Re(s− σ + 1) > 0.

Proof. The change of variables y = rx gives

M[f ](s) =

∫ ∞
0

xs−1 rσ

Γ(σ)
xσ−1e−rxdx

=
r−s+1

Γ(σ)

∫ ∞
0

ys+σ−2e−ydy

=
r1−s

Γ(σ)
Γ(s+ σ − 1)

for all s ∈ C with Re(s− σ + 1) > 0. �
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(iii) Consider for t > 0, d ≥ 1 the densities

ft(x) =
21− d

2 t−
d
2

Γ (d/2)
xd−1e−

x2

2t , x > 0.

The associated distributions will reappear in the next chapter as marginal
densities of a Bessel process. For t = d−1 [23] refers to these distributions
as the d-dimensional Rayleigh distributions. For Re(s) > 1− d we have

M[f1](s) =
1

Γ (d/2)
Γ

(
s+ d− 1

2

)
2
s−1
2 .

Proof. This follows easily from Theorem 2.2.4. In fact,

M[f1](s) =M
[

1

Γ (d/2)
21− d

2xd−1e−
x2

2

]
(s)

=
1

Γ (d/2)
21− d

2M
[
e−

x2

2

]
(s+ d− 1)

=
1

2Γ (d/2)
21− d

2M
[
e−

x
2

](s+ d− 1

2

)
=

1

2Γ (d/2)
21− d

2

(
1

2

)− s+d−1
2

M
[
e−x
](s+ d− 1

2

)
=

1

Γ (d/2)
Γ

(
s+ d− 1

2

)
2
s−1
2

for Re(s) > 1− d. �

Remark 2.2.6. There is a close connection between the Mellin transform and
the Fourier transform

F [f ](u) :=

∫ ∞
−∞

f(y)eiuydy, u ∈ R

of an integrable function f : R→ C. Setting s = σ+ it and applying the change of
variables x := ey yield

M[f ](s) =

∫ ∞
−∞

f(ey)eσyeitydy = F [g](t),

F [f ](u) =

∫ ∞
0

f(log(x))xiu−1dx =M[h](iu),

where g(x) = eσxf(ex) for x ∈ R and h(x) = f(log(x)) for x > 0. Hence, the
Mellin transform allows a representation as a Fourier transform, and vice versa.

Similar to the multiplicative behavior of the classical Fourier transform with
respect to sums of independent random variables, the Mellin transform behaves
multiplicatively with respect to products of independent random variables. More
precisely we have:
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Theorem 2.2.7. Let X and Y be independent R+-valued random variables with
densities fX ∈ M(a,b) and fY ∈ M(c,d), and Mellin transforms M[X] and M[Y ]
for a < b, c < d, (a, b) ∩ (c, d) 6= ∅.
Then the density fXY of XY satisfies fXY ∈M(a,b)∩(c,d), and

M[XY ](s) =M[X](s)M[Y ](s)

for all s ∈ C with Re(s) ∈ (a, b) ∩ (c, d).

Proof. This follows from independence of X and Y , and the definition of
Mellin transform. �

In the setting of Theorem 2.2.7 it is easy to see that fXY is identical to

(2.2.1) (fX � fY )(s) :=

∫ ∞
0

fX

( s
x

)
fY (x)

1

x
dx

for all s ∈ C with Re(s) ∈ (a, b) ∩ (c, d). The function fX � fY is called Mellin
convolution of fX and fY . Theorem 2.2.7 implies

M[fX � fY ](s) =M[fX ](s)M[fY ](s)

for all s ∈ C with Re(s) ∈ (a, b) ∩ (c, d).
For a, b ∈ R with a < b denote by H(a, b) the space of holomorphic functions
on {s ∈ C|Re(s) ∈ (a, b)}. The mapping M : M(a,b) → H(a, b), f 7→ M[f ] is
injective (see [12, Corollary 5]). Given the Mellin transform of a function f we
can reconstruct f via the following theorem.

Theorem 2.2.8. For a, b ∈ R with a < b let f ∈M(a,b). If∫ ∞
−∞
|M[f ](γ + iv)|dv <∞

for all γ ∈ (a, b), then the inversion formula

f(x) =
1

2π

∞∫
−∞

M[f ](γ + iv)x−γ−ivdv

holds almost everywhere for x ∈ R+ and all γ ∈ (a, b). If f is continuous on R+,
then this equation is true for all x ∈ R+.

Proof. See [12]. �

Another important result in the theory of Mellin transforms is the Parseval
formula for Mellin tranforms. It goes as follows:

Theorem 2.2.9. Suppose that f : R+ → R and g : R+ → R are measurable
functions such that ∫ ∞

0

f(x)g(x)dx
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exists. Suppose further that M[f ](1 − ·) and M[g](·) are holomorphic on some
vertical strip S := {z ∈ C|a < Re(z) < b} for a, b ∈ R. If there is a γ ∈ (a, b) such
that ∫ ∞

−∞
|M[f ](1− γ − is)|ds <∞ and

∫ ∞
0

xγ−1|g(x)|dx <∞,

then this γ satisfies∫ ∞
0

f(x)g(x)dx =
1

2πi

∫ γ+i∞

γ−i∞
M[f ](1− s)M[g](s)ds.

Proof. See [9, page 108]. �

Let us now discuss the Mellin transform from the statistical point of view. Gi-
ven i.i.d. samples of a random variable, its Mellin transform can be approximated
by its so-called empirical Mellin transform.

Definition 2.2.10. For a, b ∈ R with a < b let Y ∈ M(a,b) and X1, ..., Xn be
i.i.d. samples of Y . We call

Mn[Y ](s) :=
1

n

n∑
k=1

Xs−1
k ,

where a < Re(s) < b, the empirical Mellin transform of Y .

We have the following fact about the complex conjugate of an (empirical) Mellin
transform.

Lemma 2.2.11. For a, b with a < b let Y ∈ M(a,b) a random variable and
X1, ..., Xn be i.i.d. samples of Y . We have

(i) M[Y ](s) =M[Y ](s̄) and

(ii) Mn[Y ](s) =Mn[Y ](s̄)

for all s ∈ C with a < Re(s) < b.

Proof. Claim (i) follows immediately from Definition 2.2.3 and Theorem
2.1.5(iii). Claim (ii) is obvious with Definition 2.2.10. �

The facts in Lemma 2.2.12 about the empirical Mellin transform follow from
linearity of the expected value and calculation rules for the variance (Theorems
2.1.5 and 2.1.7).

Lemma 2.2.12. For a, b ∈ R with a < b let Y ∈M(a,b) and X1, ..., Xn be i.i.d.
samples of Y . Then the empirical Mellin transform Mn[Y ] of Y satisfies

(i) E [Mn[Y ](s)] =M[Y ](s) and
(ii) Var [Mn[Y ](s)] = 1

n
Var [Y s−1]

for all n ∈ N and all s ∈ C with a < Re(s) < b.

Lemma 2.2.12 shows thatMn[Y ](s) is an unbiased estimator forM[Y ](s) and
its variance converges to 0 for n→∞, if Var [Y s−1] <∞ is assumed. SoMn[Y ](s)
is also weakly consistent for M[Y ](s) in this case.



2.4. GAMMA FUNCTION 15

2.3. Notation for Asymptotic Analysis

Let f and g be either sequences of real numbers or complex-valued functions of
real numbers, and a ∈ R∪{∞}. For the sake of brevity we introduce the notation

(2.3.1) f(x) . g(x) for x→ a,

if f = O(g) in the Landau notation, that is

(2.3.2) lim sup
x→a

|f(x)|
|g(x)|

<∞.

If f and g are functions of real numbers and a ∈ R, then (2.3.2) is equivalent to
the statement

∃C > 0 ∃ε > 0 such that ∀x ∈ R with |x− a| < ε : |f(x)| ≤ C|g(x)|.
And if a =∞, then (2.3.2) is equivalent to

∃C > 0 ∃x0 ∈ R such that ∀x > x0 : |f(x)| ≤ C|g(x)|.
We write

f(x) ∼ g(x) for x→ a,

if f(x) . g(x) and g(x) . f(x) for x→ a.
Using the notation from (2.3.1) allows us to omit constants and lower order terms
that are often irrelevant when we investigate the asymptotic behavior of a function.

2.4. Gamma Function

As we have seen from Example 2.2.5 the Gamma function often appears in the
Mellin transform of a function that has an exponential expression in it. Thus, it
deserves closer attention. We will see in Lemma 3.5.2 from Section 3.3 that the
asymptotic behavior of a Mellin transform determines the quality of the estimators
we consider there. Hence, the asymptotic behavior of the Gamma function is of
a special interest to us. We refer the reader to [3] for a thorough study on this
subject. Here we only state some facts that are relevant to us.
We define the Gamma function by

(2.4.1) Γ(s) :=

∫ ∞
0

ts−1e−tdt

for all s ∈ C with Re(s) > 0. According to the remark below Definition 2.2.3, as
the Mellin transform of the exponential function, Gamma function is holomorphic
for all s ∈ C with Re(s) > 0.
With Lemmas 2.4.1 and 2.4.2 we present versions of the well-known Stirling for-
mula for the Gamma function of real arguments,

Γ(x) ∼
√

2πxx−1/2e−x for x ∈ R, x→∞.
Lemma 2.4.1 describes the behavior of the Gamma function when the absolute
value of its complex argument is large.
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Lemma 2.4.1. For δ > 0 and | arg(s)| ≤ π − δ,

Γ(s) ∼
√

2πss−1/2e−s

for |s| → ∞. Complex power is defined by ss−1/2 := e(s−1/2) log(s) and the value of
log(s) is the branch with log(s) real when s is real and positive.

Proof. See [3, Corollary 1.4.3]. �

Lemma 2.4.2 describes the behavior of the Gamma function when the real part
of its argument is fixed and the imaginary part is large.

Lemma 2.4.2. Let a, b ∈ R with 0 ≤ a < b. For all α ∈ [a, b] we have

|Γ(α + iβ)| =
√

2π|β|α−1/2e−|β|π/2(1 +O(1/|β|))

for |β| → ∞. The constant implied by O depends only on a and b.

Proof. See [3, Corollary 1.4.4]. �

The following lemma is an immediate consequence of Lemma 2.4.2.

Lemma 2.4.3. For all α ∈ R there are C1, C2 ≥ 0 such that

C1|β|α−1/2e−|β|π/2 ≤ |Γ(α + iβ)| ≤ C2|β|α−1/2e−|β|π/2

for all |β| ≥ 2.

From Lemma 2.4.3 we can derive the behavior of integrals of the Gamma
function with respect to its imaginary part. In fact, we have

Lemma 2.4.4. (i) For all α ∈ (0, 1/2), δ > 0 and U > 2 there is a
C(α, δ) > 0 such that

U∫
−U

1

|Γ(α + iv)|δ
dv ≤ C(α, δ)U (1/2−α)δeUπδ/2

(ii) For all α ≥ 1/2, δ > 0 and U > 2 there are C1(α, δ) and C2(α, δ) > 0
such that

U∫
−U

1

|Γ(α + iv)|δ
dv ≤ C1(α, δ) + C2(α, δ)eUπδ/2

Proof. (i) By Lemma 2.4.3 there is a Cα > 0 such that for all |v| ≥ 2 we have

Cα|v|(α−1/2)δe−|v|πδ/2 ≤ |Γ(α + iv)|δ.
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Define C1 :=
∫ 2

−2
1

|Γ(α+iv)|δ dv (which is finite, because Γ(α + iv) is nonzero and

continuous in v). Hence,

U∫
−U

1

|Γ(α + iv)|δ
dv = C1 +

∫
{2<|v|<U}

1

|Γ(α + iv)|δ
dv

≤ C1 + Cα

∫
{2<|v|<U}

|v|(1/2−α)δe|v|πδ/2dv

≤ C1 + 2CαU
(1/2−α)δ

∫ U

2

evπδ/2dv

= C1 + 4Cα(πδ)−1U (1/2−α)δ(eUπδ/2 − eπδ)
≤ C(α, δ)U (1/2−α)δeUπδ/2

for C(α, δ) := max{2C1, 8Cα(πδ)−1}.
(ii) By Lemma 2.4.3 there is a Cα > 0 such that for all |v| ≥ 2 we have

Cα|v|(α−1/2)δe−|v|πδ/2 ≤ |Γ(α + iv)|δ.

Define C1(α, δ) :=
∫ 2

−2
1

|Γ(α+iv)|δ dv (which is finite). Hence,

U∫
−U

1

|Γ(α + iv)|δ
dv = C1(α, δ) +

∫
{2<|v|<U}

1

|Γ(α + iv)|δ
dv

≤ C1(α, δ) + Cα

∫
{2<|v|<U}

|v|(1/2−α)δe|v|πδ/2dv

≤ C1(α, δ) + 2Cα

∫ U

2

evπδ/2dv

= C1(α, δ) + 4Cα(πδ)−1(eUπδ/2 − eπδ)
≤ C1(α, δ) + C2(α, δ)eUπδ/2

with C2(α, δ) := 4Cα(πδ)−1. �





CHAPTER 3

Estimation for Self-Similar Processes

Self-similar processes are stochastic processes that are invariant in distribution
under suitable scaling of time and space. These processes also arise naturally in
the analysis of random phenomena (in time) exhibiting certain forms of long-range
dependence (see [15]). Applications are found in statistical physics (see [33]). See
[24] for a study of general self-similar processes from a probabilistic point of view.
An important example of such processes is the fractional Brownian motion which
is a Gaussian self-similar process. See for instance [8] for a thorough study of
these processes. Non-Gaussian self-similar processes include Bessel processes (see
Section 3.7, one-dimensional Dunkl processes (see [13]), the Rosenblatt process,
SαS Lévy motion, linear fractional stable motion, log-fractional stable motion and
the Telecom prosess (see [29] and [36]).

Definition 3.0.1. A real-valued stochastic process (Yt)t≥0 is called self-similar
with scaling parameter H, if

(3.0.1) (Yat)t≥0
d
= (aHYt)t≥0 for all a > 0.

Here,
d
= denotes identity of all finite dimensional distributions.

The following properties of self-similar processes are well-known.

Theorem 3.0.2. Let (Yt)t≥0 be self-similar with scaling parameter H. Then
we have

(i) Y0 = 0 almost surely;
(ii) H is unique. Moreover, if (Yt)t≥0 is a stochastic process such that for all

a > 0 there is ba > 0 with (Yat)t≥0
d
= (baYt)t≥0, then necessarily ba = aH

for a unique H > 0;
(iii) For all a > 0, t ≥ 0,

(3.0.2) Yat
d
= aHYt.

Here,
d
= denotes identity in law of two random variables.

See for example [24] or [15] for proofs of these facts.

3.1. The Setting

Let Y = (Yt)t≥0 be a known self-similar process with a scaling parameter H
and càdlàg paths. Let T ≥ 0 be a stopping time with density fT independent

19
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of Y . When we talk about stopping times in this thesis, we refer to a random
variable. The name “stopping time” is motivated by our interpretation of T as the
time where Y “stops”, it is not related to any particular filtration. The aim of this
chapter is to estimate fT non-parametrically based on i.i.d. samples X1, . . . , Xn of
YT .
This was done by Belomestny and Schoenmakers in [6] for the case where Y is a
one-dimensional Brownian motion. We modify their approach in order to present
a consistent estimate for the case where Y is a general self-similar process.
Before we begin to tackle this problem, let us specify our setting with a remark
about the underlying probability space. It will remain valid throughout the thesis,
not only for the self-similar case.

Remark 3.1.1. Let Y and T be realized on a canonical product space, mea-
ning that Yt : Ω1 → R for t ∈ R+ and T : Ω2 → R+ are random variables living
on probability spaces (Ω1,A1, P1) and (Ω2,A2, P2), respectively. Then Yt and T
can also be interpreted as variables on the product of the two probability spaces,
denoted by (Ω,A, P ) := (Ω1 × Ω2,A1 ⊗ A2, P1 ⊗ P2), via (ω1, ω2) 7→ Yt(ω1) and
(ω1, ω2) 7→ T (ω2), respectively. The mapping YT : Ω→ R, (ω1, ω2) 7→ YT (ω2)(ω1) is
measurable, because Y has càdlàg paths (cf. [5, Lemma 49.11]).

The estimation procedure is based on the fact that the property (3.0.2) still
holds for a self-similar process, if we replace numbers t ≥ 0 with stopping times
T ≥ 0 independent of Y . In fact:

Lemma 3.1.2. Let Y = (Yt)t≥0 be a real valued self-similar process with scaling
parameter H and càdlàg paths. If T ≥ 0 is a stopping time independent of Y , then

THY1
d
= YT .

Proof. We show the identity in law by comparing the Fourier transforms of
the two variables. Using Fubini’s theorem and self-similarity of Y we get

E[eisYT ] =

∫ (∫
eisYT (ω2)

(ω1)dP1(ω1)

)
dP2(ω2)

=

∫ (∫
eisT (ω2)HY1(ω1)dP1(ω1)

)
dP2(ω2)

= E[eisT
HY1 ]

for all s ∈ R and thereby the claim. �

The density of the random variable YT can be calculated via the following
lemma.

Lemma 3.1.3. Let (Yt)t≥0 be a real-valued random process with càdlàg paths
and marginal densities gt, t ≥ 0. Suppose that t 7→ gt(x) is continuous for all
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x ∈ R. If T ≥ 0 is a stopping time with density fT and independent of (Yt)t≥0,
then the density of YT is given by

pT (y) =

∫ ∞
0

gz(y)fT (z)dz, y ∈ R.

Proof. Using the notation introduced in Remark 3.1.1 and Fubini’s theorem
we can write

P (YT ∈ A) =

∫
1A(ω)dPYT (ω)

=

∫∫
1A(YT (ω2)(ω1))dP1(ω1)dP2(ω2)

=

∫ ∞
0

∫
1A(y)gT (ω2)(y)dydP2(ω2)

=

∫
A

∫ ∞
0

gz(y)fT (z)dzdy

for any Borel set A, which implies the claim. �

3.2. Construction of an Estimator for Self-Similar Processes

Given the setting presented in Section 3.1 we can now proceed to construct an
estimator for the density of a stopping time T ≥ 0 based on samples X1, ..., Xn

of YT , where Y = (Yt)t≥0 is a known self-similar process with scaling parameter
H > 0 and càdlàg paths.
Due to Lemma 3.1.2 we have

(3.2.1) THY1
d
= YT .

We take the absolute value on both sides and assume that T ∈ M(a,b) with
0 ≤ a < b and |Y1| ∈ M(0,∞), so we can apply the Mellin transform on both si-
des of (3.2.1). These assumptions yield

M[|YT |](s) =M[TH ](s)M[|Y1|](s)
=M[T ] (Hs−H + 1)M[|Y1|](s)

for max{0, a+H−1
H
} < Re(s) < b+H−1

H
. Setting z := Hs −H + 1 we conclude that

for max{1−H, a} < Re(z) < b we have

(3.2.2) M[T ](z) =
M[|YT |]( z+H−1

H
)

M[|Y1|]( z+H−1
H

)
.

Provided that the Mellin inversion formula (Lemma 2.2.8) is applicable to T , we
may write

(3.2.3) fT (x) =
1

2πi

γ+i∞∫
γ−i∞

M[T ](z)x−zdz =
1

2π

∞∫
−∞

M[T ](γ + iv)x−γ−ivdv



22 3. ESTIMATION FOR SELF-SIMILAR PROCESSES

for a < γ < b. Combining (3.2.2) and (3.2.3) we obtain the representation

(3.2.4) fT (x) =
1

2π

∞∫
−∞

M[|YT |](γ+H−1+iv
H

)

M[|Y1|](γ+H−1+iv
H

)
x−γ−ivdv

for max{1−H, a} < γ < b. In order to obtain an estimator of fT based on (3.2.4)
we would like to substitute M[|YT |] by its empirical counterpart

(3.2.5) Mn[|YT |](s) =
1

n

n∑
k=1

|Xk|s−1,

where a < Re(s) < b and X1, ..., Xn are i.i.d. samples of YT (see Definition 2.2.10).
However, this substitution may prevent the integral in (3.2.4) from converging.
Thus, we introduce a sequence (hn)n∈N with hn ∈ R+ for all n ∈ N and hn → 0 in
order to regularize our estimator. In view of (3.2.4) and (3.2.5) define

(3.2.6) f̂n(x) :=
1

2π

1
hn∫

− 1
hn

Mn[|YT |](γ+H−1+iv
H

)

M[|Y1|](γ+H−1+iv
H

)
x−γ−iv dv

for x > 0 and max{1−H, a} < γ < b as an estimator for fT . In contrast to (3.2.4),
the definition in (3.2.6) depends on γ. That is, for each admissible γ we obtain a
different estimator. The appropriate choice of γ will become apparent at the end
of Section 3.7.
The right hand side of (3.2.6) can be rewritten as

f̂n(x) :=
1

π

∫
K(hnv)

Mn[|YT |](γ+H−1+iv
H

)

M[|Y1|](γ+H−1+iv
H

)
x−γ−iv dv,

where K(v) := 1
2
1[−1,1](v) is called rectangular kernel and hn is called bandwidth

of f̂n. A simple generalization of (3.2.6) can be obtained by considering a general
kernel, that is any integrable function K : R→ R satisfying

∫
K(u)du = 1. Some

classical examples of kernels are given in [37, page 3]. In this thesis we will only
consider the rectangular kernel, because it already leads to a rate-optimal estimator
(see Chapter 6) among other properties discussed below.

Remark 3.2.1. Despite the presence of a complex integral in (3.2.6) f̂n(x) can
only assume real values. That is because the integration interval is symmetrical
and so Lemma 2.2.11 implies

f̂n(x) =
1

2π

1
hn∫

− 1
hn

Mn[|YT |](γ+H−1−iv
H

)

M[|Y1|](γ+H−1−iv
H

)
x−γ+iv dv = f̂n(x).
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Consistency and other desirable properties of the estimator (3.2.6) are not
obvious and will be the subject of our study for the following sections in this
chapter.

3.3. Convergence Analysis

According to [37, page 4] the mean squared risk is a basic measure of the

accuracy of an estimator f̂n(x) for a function fT : R+ → R. It (the risk) is defined
for a fixed point x ∈ R by

(3.3.1) MSE := MSE(x) := E[|f̂n(x)− fT (x)|2].

For estimators considered in this thesis we will obtain error bounds of the form

(3.3.2) MSE(x) . x−2γψn

for some sequences (ψn)n∈N with ψn → 0 for n→∞ and where γ ∈ R+ is a constant
appearing in (3.2.6) and may be chosen freely from some interval depending on
the setting. We define the (weighted) mean squared risk via

(3.3.3) MSEγ := MSEγ(x) := x2γ MSE(x).

Using this quantity (3.3.2) is equivalent to

MSEγ(x) . ψn.

Upper bounds on MSEγ(x) that we may find do not provide upper bounds on
MSE(x) for x ∈ (0, 1). Nevertheless, since MSE(x) ≤ MSEγ(x) for x ≥ 1, an
upper bound on MSEγ is also an upper bound on MSE in this case. In fact,
simulations in Section 3.9 indicate that our estimation method performs poorly
for small x. This issue could be a subject for further studies, but we will not
address it further in this thesis.

Definition 3.3.1. We call an estimator f̂n of a function f : R+ → R consis-
tent, if its MSE(x) converges to 0 for n→∞ and all x > 0.

The mean squared error of an estimator f̂n can be decomposed in the following
way. By Theorem 2.1.7(i),

(3.3.4) MSEγ = |bγ(x)|2 + σ2
γ(x)

for all x ∈ R+, where

bγ(x) := xγ(fT (x)− E[f̂n(x)]),

which we call (weighted) bias of f̂n and

σ2
γ(x) := x2γ Var[f̂n(x)],

which we call (weighted) variance of f̂n. During a convergence analysis it is often
useful to consider the bias and the variance of an estimator separately.
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3.4. Classes C and D

In non-parametric estimation it is usual to assume that fT belongs to some
“massive” class of densities (see [37, page 1]), for example the class of all continuous
functions or all square integrable functions. Here, we consider the following two
classes suggested in [6].

Definition 3.4.1. For β, L > 0 and γ ∈ R with a < γ < b define classes of
functions

(i) C(β, L, γ) :=
{
f ∈Mγ

∣∣∫ eβ|v| |M[f ](γ + iv)| dv ≤ L
}

and

(ii) D(β, L, γ) :=
{
f ∈Mγ

∣∣∫ (1 + |v|β) |M[f ](γ + iv)| dv ≤ L
}

.

For a random variable X with density f ∈ C(β, L, γ) or f ∈ D(β, L, γ) we will
also write X ∈ C(β, L, γ) or X ∈ D(β, L, γ), respectively.

Remark 3.4.2. Since x+1 ≤ ex for all x ∈ R, we have C(β, L, γ) ⊆ D(β, L, γ)
for all β, L > 0 and γ ∈ R.

It turns out that classes C(β, L, γ) and D(β, L, γ) are quite large and contain
functions with different degrees of smoothness (see [7]). We will make this state-
ment precise in Corollary 3.4.6. But first let us describe the connection between
the degree of smoothness of a function and the rate of decay of its Mellin trans-
form.
Recall the notation

M(a,b) :=

{
f : R+ → R

∣∣∣∣∫ ∞
0

|f(t)tz−1|dt <∞ for all Re(z) ∈ (a, b)

}
from Definition 2.2.1.

Lemma 3.4.3. Let a, b ∈ R with a < b.

(i) If f ∈M(a,b) is locally integrable, then

M[f ](γ + iv) = o(1) for v → ±∞
uniformly with respect to γ in every closed subinterval of (a, b).

(ii) If f ∈ M(a,b) is β times continuously differentiable (β ∈ N) with β-th

derivative f (β) ∈M(a,b), then

M[f ](γ + iv) = o(|v|−β) for v → ±∞
uniformly with respect to γ in every closed subinterval of (a, b).

(iii) Let f : C→ C be analytical on the cone

Sβ := {z ∈ C : 0 < |z| <∞, | arg(z)| ≤ β} with 0 < β < π

and further suppose that the restriction f |R+ of f to R+ is real-valued. If
f(x) = O(x−a) for x → 0 in Sβ and f(x) = O(x−b) for |x| → ∞ in Sβ,
then

M[f |R+ ](γ + iv) = O(e−β|v|) for v → ±∞
uniformly with respect to γ in every closed subinterval of (a, b).
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Proof. For claims (i) and (ii) see [19, Proposition 3 and 5]. The proof is
based on the representation of the Mellin transform as a Fourier transform (see
Remark 2.2.6) and the Lemma of Riemann-Lebesgue. Additionally, for (ii) the
rule

M[f (β)](s) = (−1)βsβM[f ](s)

is used.
For (iii) we roughly follow the sketch of the proof in [19, Proposition 5]. Note that
f |R+ ∈M(a,b) by Theorem 2.2.2. Since f is analytical on Sβ, we can compute the
Mellin trasform of f |R+ using Cauchy’s integral theorem in the following way:

(3.4.1) M[f |R+ ](z) =

∫ ∞
0

f(t)tz−1dt = lim
R→∞

∫ Reiβ

0

f(t)tz−1dt+

∫
KR

f(t)tz−1dt,

where KR denotes the arc between Reiβ and R parametrized by t 7→ Re−it,
t ∈ (−β, 0). By denoting z = γ + iv we obtain

|tz−1| = |t|−1|t|γe−v arg(t) ≤ eπ|γ|/2|t|γ−1 =: Cz|t|γ−1

for Re(t) > 0. Let R be so large that |f(Reiθ)| ≤ R−b almost everywhere. It then
holds at KR that

(3.4.2) |IR| :=
∣∣∣∣∫
KR

f(t)tz−1dt

∣∣∣∣ = R

∣∣∣∣∫ 0

−β
f(Reiθ)(Reiθ)

z−1
dt

∣∣∣∣ ≤ CzβR
γ−b.

So IR converges to 0 as R→∞ because γ < b. Thus, (3.4.1) and (3.4.2) yield

M[f |R+ ](z) =

∫ eiβ∞

0

f(t)tz−1dt.

By applying the change of variables t = ρeiβ we obtain

M[f |R+ ](z) = eiβz
∫ ∞

0

f(ρeiβ)ρz−1dρ,

which yields

|M[f |R+ ](γ + iv)| ≤ e−βv
∫ ∞

0

∣∣f(ρeiβ)ργ−1
∣∣ dρ,

where the integral converges by f(x) = O(x−a) for x→ 0 in Sβ and f(x) = O(x−b)
for |x| → ∞ in Sβ. �

Next, let us establish a connection between elements of C(β, L, γ) and the rate
of decay of their Mellin transform.

Lemma 3.4.4. For a, b ∈ R with a < b let f ∈M(a,b) and γ ∈ (a, b).

(i) If f ∈ C(β, L, γ) for some L > 0, then

M[f ](γ + iv) = O(e−β|v|)

almost everywhere for v → ±∞ for all β > 0;
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(ii) If

M[f ](γ + iv) = O(e−β|v|)

almost everywhere for v → ±∞ and some β > 0, then f ∈ C(β′, L, γ) for
all β′ < β and some L > 0.

Moreover, if f ∈ C(β, L, γ) or M[f ](γ + iv) = O(e−β|v|) almost everywhere for
v → ±∞, then we also have

(3.4.3)

∫ ∞
−∞
|M[f ](γ + iv)|dv <∞,

i.e. the Mellin inversion formula (Theorem 2.2.8) is valid for f .

Proof. Let β, L > 0 with
∫
eβ|v| |M[f ](γ + iv)| dv ≤ L. Then

eβ|v| |M[f ](γ + iv)| → 0 almost everywhere for v → ±∞,

and thus (i) is shown.
Now let M[f ](γ + iv) = O(e−β|v|) almost everywhere for v → ±∞. This means,
there are C, v0 > 0 such that for all |v| ≥ v0 we have

|M[f ](γ + iv)| ≤ Ce−β|v|.

Choose any β′ with 0 < β′ < β and define I :=
v0∫
−v0

eβ|v| |M[f ](γ + iv)| dv. Note

that 0 < I < ∞, since M[f ](γ + iv) is continuous in v for all γ ∈ (a, b). So we
can conclude∫

eβ
′|v| |M[f ](γ + iv)| dv = I +

∫
{|v|≥v0}

eβ
′|v| |M[f ](γ + iv)| dv

≤ I + C

∫
{|v|≥v0}

e(β′−β)|v|dv

= I +
C

β − β′
(e(β′−β)v0 + e(β−β′)v0) =: L.

Finally we have (3.4.3), because by defining

I ′ :=
v0∫
−v0
|M[f ](γ + iv)| dv <∞ we obtain∫

|M[f ](γ + iv)| dv ≤ I ′ + C

∫
{|v|≥v0}

e−β
′|v|dv,

which is finite and thus yields the desired result. �

The analogous statement to Lemma 3.4.4 for the class D(β, L, γ) goes as fol-
lows.

Lemma 3.4.5. For a, b ∈ R with a < b let f ∈M(a,b) and γ ∈ (a, b).
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(i) If f ∈ D(β, L, γ) for some L > 0, then

M[f ](γ + iv) = O(|v|−β)

almost everywhere for v → ±∞ and
∫∞
−∞ |M[f ](γ + iv)|dv <∞;

(ii) If there is a β > 1 and a γ ∈ (a, b) with

M[f ](γ + iv) = O(|v|−β)

almost everywhere for v → ±∞ and
∫∞
−∞ |M[f ](γ + iv)|dv < ∞, then

f ∈ D(β′, γ, L) for all β′ ∈ (0, β − 1) and some L > 0.

Proof. Let β, L > 0 with
∫

(1 + |v|β) |M[f ](γ + iv)| dv ≤ L. Then

(1 + |v|β) |M[f ](γ + iv)| → 0 for v → ±∞,

and thus (i) is shown.
Now let M[f ](γ + iv) = O(|v|−β) almost everywhere for v → ±∞ and
J :=

∫
|M[f ](γ + iv)| dv. This means, there are C, v0 > 0 such that for all |v| ≥ v0

we have
|M[f ](γ + iv)| ≤ C|v|−β.

Choose any β′ with 0 < β′ < β− 1 and define I :=
v0∫
−v0

(1 + |v|β) |M[f ](γ + iv)| dv.

Note that 0 < I < ∞, since M[f ](γ + iv) is continuous in v for all γ ∈ (a, b).
Hence,∫

(1 + |v|β′) |M[f ](γ + iv)| dv ≤
∫
|M[f ](γ + iv)| dv + I + C

∫
{|v|≥v0}

|v|β′−βdv

= J + I + 2C

∞∫
v0

vβ
′−βdv

= J + I +
2Cvβ

′−β+1
0

β − β′ + 1
=: L,

which concludes our proof. �

Summing up all lemmas of this section we obtain simple sufficient criteria
which imply that a density belongs to the class C(β, L, γ) or D(β, L, γ) without
computing the Mellin transform.

Corollary 3.4.6. Let a, b, γ ∈ R with a < γ < b.

(i) Let f ∈ M(a,b). If f is β times continuously differentiable (β ∈ N \ {1})
with f (β) ∈M(a,b), then

f ∈ D(β′, γ, L)

for all β′ < β − 1 and some L > 0.
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(ii) Let f : C→ C be analytical on the sector

Sβ := {z ∈ C : 0 < |z| <∞, | arg(z)| ≤ β} with 0 < β < π

and further suppose that the restriction f |R+ of f to R+ is real-valued. If
f(x) = O(x−a) as x→ 0 in Sβ and f(x) = O(x−b) as |x| → ∞ in Sβ for
some a < b, then

f |R+ ∈ C(β′, L, γ)

for all β′ < β, all γ ∈ (a, b) and some L > 0.

Proof. Claim (i) follows from Lemmas 3.4.3(ii) and 3.4.5(ii). To show (ii)
apply Lemmas 3.4.3(iii) and 3.4.4(ii). �

With the help of Corollary 3.4.6 it is easy to see that the class C(β, L, γ) is fairly
large and includes such well-known families of distributions as Gamma, Weibull,
Beta, log-normal, inverse Gaussian and F for suitable β, L, γ. By Remark 3.4.2,
the class D(β, L, γ) also contains these distributions.

Example 3.4.7. Consider the Gamma density

fσ(x) =
xσ−1e−x

Γ(σ)
, x ≥ 0

with parameter σ ≥ 0 and define f̃σ : {z ∈ C|Re(z) > 0} → C, z 7→ zσ−1e−z

Γ(σ)
.

Then f̃σ is analytical in its domain. We have f̃σ(z) = O(z−a) as z → 0 for all
a ≥ max{0, 1 − σ} and further f(z) = O(z−b) as |z| → ∞ in {z ∈ C|Re(z) ≥ 0}
for all b > 0. Moreover, f̃σ|R+ = fσ. Corollary 3.4.6 implies fσ ∈ C(β, L, γ) for all
β ∈ (0, π/2), all γ > max{0, 1− σ} and some L > 0.

3.5. Upper Bounds on the Bias

In this section we show upper bounds on the bias of the previously constructed
estimator (3.2.6). Together with a bound on the variance we use it in Sections 3.7
and 3.10 to show consistency of the estimator (3.2.6) for the classes discussed in
the previous section.

Lemma 3.5.1. Let Y = (Yt)t≥0 be a self-similar process with scaling parameter
H and càdlàg paths. Let T ≥ 0 be a stopping time with density fT independent of
Y . Suppose T ∈M(a,b) with 0 ≤ a < b and |Y1| ∈M(0,∞) and consider

f̂n(x) =
1

2π

∫ 1
hn

− 1
hn

Mn[|YT |](γ+H−1+iv
H

)

M[|Y1|](γ+H−1+iv
H

)
x−γ−iv dv

from (3.2.6) for x > 0 and max{1−H, a} < γ < b as an estimator for fT . For
all n ∈ N we have
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(3.5.1) xγ(fT (x)− E[f̂n(x)]) ≤ 1

2π

∫
{|v|> 1

hn
}
|M[T ](γ + iv)| dv.

for all x > 0.

Proof. Let x > 0. By definition (3.2.6),

E[f̂n(x)] = E

[
1

2π

∫ 1
hn

− 1
hn

Mn[|YT |](γ+H−1+iv
H

)

M[|Y1|](γ+H−1+iv
H

)
x−γ−iv dv

]
.

The integrand here is a continuous function in v, so its absolute value is bounded
on the integration interval. This allows us to interchange the order of integration
with Fubini’s theorem to get

E[f̂n(x)] =
1

2π

∫ 1
hn

− 1
hn

E
[
Mn[|YT |](γ+H−1+iv

H
)
]

M[|Y1|](γ+H−1+iv
H

)
x−γ−iv dv.

Considering Lemma 2.2.12 and (3.2.2) we see that

E[f̂n(x)] =
1

2π

∫ 1
hn

− 1
hn

M[|YT |](γ+H−1+iv
H

)

M[|Y1|](γ+H−1+iv
H

)
x−γ−iv dv

=
1

2π

∫ 1
hn

− 1
hn

M[T ](γ + iv)x−γ−ivdv.(3.5.2)

We combine Theorem 2.2.8 with (3.5.2) to get

fT (x)− E[f̂n(x)] =
1

2π

∫
{|v|> 1

hn
}

M[T ](γ + iv)x−γ−ivdv(3.5.3)

and after taking the absolute value on the right hand side of (3.5.3) and ap-
plying the triangle inequality we see

fT (x)− E[f̂n(x)] ≤ x−γ

2π

∫
{|v|> 1

hn
}

|M[T ](γ + iv)| dv,

which is our claim. �

Assuming now that fT belongs to one of the two classes introduced in Section
3.4 we can give a further bound on the bias of f̂n.
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Lemma 3.5.2. (i) If T ∈ C(β, L, γ) for some β, L > 0 and γ ∈ (a, b) with
γ > 1−H, then

(3.5.4) xγ E[fT (x)− f̂n(x)] ≤ L

2π
e−β/hn

for all x > 0.
(ii) If T ∈ D(β, L, γ) for some β, L > 0 and γ ∈ (a, b) with γ > 1−H, then

(3.5.5) xγ E[fT (x)− f̂n(x)] ≤ L

2π
hβn

for all x > 0.

Proof. (i) Lemma 3.5.1 implies

xγ(fT (x)− E[f̂n(x)]) ≤ 1

2π

∫
{|v|> 1

hn
}

|M[T ](γ + iv)| dv

=
e−β/hn

2π

∫
{|v|> 1

hn
}

eβ/hn |M[T ](γ + iv)| dv

≤ e−β/hn

2π

∫
{|v|> 1

hn
}

eβ|v| |M[T ](γ + iv)| dv

≤ L
e−β/hn

2π

for all x > 0.

(ii) We have

xγ(fT (x)− E[f̂n(x)]) ≤ 1

2π

∫
{|v|> 1

hn
}

|M[T ](γ + iv)| dv

=
hβn
2π

∫
{|v|> 1

hn
}

h−βn |M[T ](γ + iv)| dv

≤ hβn
2π

∫
{|v|> 1

hn
}

|v|β |M[T ](γ + iv)| dv

≤ L
hβn
2π
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for all x > 0, which is our claim. �

It turns out that the bound in Lemma 3.5.2 depends on the rate of decay of the
Mellin transform of T , which in turn is tied to the smoothness of fT (cf. Section
3.4): The more smoothness we impose on fT , the faster M[T ] decays and the
better the performance of the estimator (3.2.6).

3.6. Upper Bounds on the Variance

Having established an upper bound on the bias of f̂n, we now shall do the same
for the variance of our estimator.

Lemma 3.6.1. Let Y = (Yt)t≥0 be a self-similar process with scaling parameter
H and càdlàg paths. Let T ≥ 0 be a stopping time independent of Y with density
fT . Suppose T ∈M(a,b) with 0 ≤ a < b and |Y1| ∈M(0,∞). Consider

f̂n(x) =
1

2π

1
hn∫

− 1
hn

Mn[|YT |](γ+H−1+iv
H

)

M[|Y1|](γ+H−1+iv
H

)
x−γ−iv dv

from (3.2.6) for x > 0 and max{1−H, a} < γ < b as an estimator for fT . We
have

Var[xγ f̂n(x)] ≤ M[|Y1|]((2γ − 2)/H + 1)M[T ](2γ − 1)

4π2n

×

 1/hn∫
−1/hn

1

|M[|Y1|](γ+H−1+iv
H

)|
dv


2

for all n ∈ N and all x > 0.

Proof. Let x > 0, n ∈ N. Then we have
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Var[xγ f̂n(x)] = Var

 1

2π

1
hn∫

− 1
hn

Mn[|YT |](γ+H−1+iv
H

)

M[|Y1|](γ+H−1+iv
H

)
x−iv dv


≤ 1

4π2

 1/hn∫
−1/hn

√√√√Var

[
Mn[|YT |](γ+H−1+iv

H
)

M[|Y1|](γ+H−1+iv
H

)
x−iv

]
dv


2

=
1

4π2

 1/hn∫
−1/hn

√
Var

[
Mn[|YT |](γ+H−1+iv

H
)
]

|M[|Y1|](γ+H−1+iv
H

)|
dv


2

=
1

4π2n


1/hn∫

−1/hn

√
Var

[
|YT |

γ−1+iv
H

]
|M[|Y1|](γ+H−1+iv

H
)|
dv


2

.(3.6.1)

Here we used Lemma 2.1.8 for the “≤”-sign, Lemma 2.1.7 for the second
“=”-sign and Lemma 2.2.12 for the last “=”-sign. In order to get a bound on

Var
[
|YT |

γ−1+iv
H

]
we apply Fubini’s theorem and the self-similarity of Y to get

Var
[
|YT |

γ−1+iv
H

]
≤ E[(|YT |)(2γ−2)/H ]

=

∫ ∞
0

E[(|Yt|)(2γ−2)/H ]fT (t)dt

= E[(|Y1|)(2γ−2)/H ]

∫ ∞
0

t2γ−2fT (t)dt

=M[|Y1|]((2γ − 2)/H + 1)M[T ](2γ − 1),

which (together with (3.6.1)) gives the desired bound on Var[xγ f̂n(x)]. �

3.7. Application to Bessel Processes

To make further statements we need to specify Y in the general setting of
section 3.1, where Y was only supposed to be a known self-similar process with
càdlàg paths. In this section we choose Y to be a Bessel process BES = (BESt)t≥0

starting in 0 with dimension d ≥ 1. Throughout this thesis non-integer d are
allowed. Note that the case d = 1 leads to the absolute value of the one-dimensional
Brownian motion and was already considered in [6]. We refer the reader to [31] for
detailed information about Bessel processes. Here we shall only state some basic
properties.
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Definition 3.7.1. A Bessel process with dimension d ≥ 1 started in x ≥ 0 is
a Markov process with the semi-group (Pt)t≥0 of Markov kernels on R+ defined by

Pt(x,B) :=

∫
B

pt(x, y)dy for all B ∈ B(R+), x ∈ R+, t ≥ 0,

where

(3.7.1) pt(x, y) =
1

t

(y
x

)d/2−1

y exp

(
−x

2 + y2

2t

)
Id/2−1

(xy
t

)
for x, t > 0

and

Iν(x) =
∞∑
k=0

1

k!Γ(ν + k + 1)

(x
2

)2k+ν

for ν ≥ −1, x > 0

is a modified Bessel function.

See for instance [31] for the proof of the fact that (Pt)t≥0 indeed constitutes a
semi-group. The following well-known properties of Bessel processes allow us to
construct the estimator (3.2.6).

Theorem 3.7.2. Let BES = (BESt)t≥0 be a Bessel process with dimension
d ≥ 1 started in 0.

(i) The density of BESt is given by:

ft(y) =
21− d

2 t−
d
2

Γ (d/2)
yd−1e−

y2

2t , y ≥ 0.

(This follows from (3.7.1) with x→ 0, see [31, page 446])
(ii) BES is self-similar with scaling parameter H = 1

2
(see [31, page 446]).

(iii) BES is a Feller process with continuous paths (see [31, page 446]).
(iv) In Example 2.2.5 we calculated for Re(s) ≥ 1− d:

M[BES1](s) =
1

Γ (d/2)
Γ

(
s+ d− 1

2

)
2
s−1
2 .

(v) BES can be realized as the Euclidean norm of a d-dimensional Brownian
motion, if d ∈ N (see [31, page 446]).

Looking at (3.2.6) we use Theorem 3.7.2 and obtain

f̂n(x) =
1

2π

1
hn∫

− 1
hn

Mn[|BEST |](γ+1/2−1+iv
1/2

)

M[|BES1|](γ+1/2−1+iv
1/2

)
x−γ−iv dv

=
1

2π

1
hn∫

− 1
hn

Γ
(
d
2

)
1
n

∑n
k=1X

2(γ−1+iv)
k

Γ
(
γ + d

2
− 1 + iv

)
2γ−1+iv

x−γ−iv dv(3.7.2)
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as an estimator for the density fT (x) of a stopping time T ≥ 0 for x > 0 and
max{1/2, a} < γ < b, where a, b are such that T ∈ M(a,b) and X1, ..., Xn are
independent samples of BEST . With our major result Theorem 3.7.3 we shall
derive the convergence rates for (3.7.2). Recall the weighted mean squared risk

MSEγ(x) = x2γ E[|fT (x)− f̂n(x)|2]

from the introduction to Section 3.3.

Theorem 3.7.3. Let BES = (BESt)t≥0 be a Bessel process with dimension
d ∈ R, d ≥ 1. Let T ≥ 0 be a stopping time with density fT independent of BES.
Suppose T ∈M(a,b) with 0 ≤ a < b and consider

f̂n(x) =
1

2π

1
hn∫

− 1
hn

Γ
(
d
2

)
1
n

∑n
k=1X

2(γ−1+iv)
k

Γ
(
γ + d

2
− 1 + iv

)
2γ−1+iv

x−γ−iv dv

for x > 0 and max{1/2, a} < γ < b from (3.7.2) as an estimator for fT .

(i) If T ∈ C(β, L, γ) for some β, L > 0 and γ ∈ (a, b) with 2γ− 1 ∈ (a, b) and
γ > (4− d)/4, then

(3.7.3) MSEγ(x) ≤ CL,d,γ

(
1

n
eπ/hn + e−2β/hn

)
holds for all x > 0 and some positive constant CL,d,γ (given by (3.7.11) in
the proof) depending only on L, γ, d as well as T . Moreover, taking

hn =
π + 2β

log n

in (3.7.3), one has the polynomial convergence rate√
MSEγ(x) . n

−β
π+2β , n→∞

for all x > 0.
(ii) If T ∈ D(β, L, γ) for some β, L > 0 and γ ∈ (a, b) with 2γ − 1 ∈ (a, b)

and γ > (4− d)/4, then for all x > 0:

(3.7.4) MSEγ(x) ≤ CL,d,γ

(
1

n
eπ/hn + h2β

n

)
with the same constant CL,d,γ as in (i). Choosing

hn =
π

log n− 2β log log n

in (3.7.3) yields the logarithmic convergence rate√
MSEγ(x) . (log n)−β, n→∞

for all x > 0.
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Proof. Let x > 0. By (3.3.4),

(3.7.5) MSEγ(x) = Var[xγ f̂n(x)] +
(
xγ E[(fT (x)− f̂n(x))]

)2

.

For the variance we can achieve the same bound in parts (i) and (ii) of the claim.
The bias needs to be treated separately.
We use the upper bound on variance obtained in Lemma 3.6.1 with H = 1/2 to
get

Var[xγ f̂n(x)] ≤ C0(γ, d)

4π2n

 1/hn∫
−1/hn

1

|M[BES1](2γ − 1 + 2iv)|
dv


2

,(3.7.6)

where

C0(γ, d) :=M[BES1](4γ − 3)M[T ](2γ − 1).

Since we already calculated

(3.7.7) M[BES1](s) =
1

Γ (d/2)
Γ

(
s+ d− 1

2

)
2
s−1
2

for Re(s) ≥ 0 in Example 2.2.5, we can write

C0(γ, d) =
1

Γ (d/2)
Γ

(
d

2
+ 2γ − 2

)
22γ−2M[T ](2γ − 1)

and see that is C0(γ, d) finite by the assumption γ ≥ (4− d)/4 and 2γ− 1 ∈ (a, b).
We continue inequality (3.7.6) by firstly plugging in (3.7.7) and secondly applying
Lemma 2.4.4(ii) (with δ = 1, U = 1/hn and α = γ − 1 + d

2
there):

Var[xγ f̂n(x)] ≤ C0(γ, d)

4π2n

 1/hn∫
−1/hn

Γ
(
d
2

)
|Γ
(
γ − 1 + d

2
+ iv

)
2γ−1+iv|

dv


2

≤
C0(γ, d)Γ

(
d
2

)2

π222γn

 1/hn∫
−1/hn

1

|Γ
(
γ − 1 + d

2
+ iv

)
|
dv


2

≤
C0(γ, d)Γ

(
d
2

)2

π222γn
(C1(d, γ) + C2e

π
2hn )2(3.7.8)

for some positive constants C1(d, γ) and C2 obtainable from the proof of Lemma
2.4.4(ii).
Now we prove part (i) of the claim. Let T ∈ C(β, L, γ). We plug in (3.7.8) and
(3.5.4) from Lemma 3.5.2(i) into (3.7.5) to obtain

(3.7.9) MSEγ(x) ≤
C0(γ, d)Γ

(
d
2

)2

π222γn
(C1(d, γ) + C2e

π
2hn )2 + L2 e

−2β/hn

4π2
.
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Inequality (3.7.9) can be simplified via following technical Lemma.

Lemma 3.7.4. Let a, b, c, d > 0 and (xn)n∈N, (yn)n∈N sequences of positive
numbers. If xn →∞ for n→∞, then we have

a

n
(b+ cxn)2 + dyn ≤ max{a(b+ c)2, d}(x2

n/n+ yn)

for all n ≥ n0 for some n0 ∈ N.

Proof. Choose n0 such that xn ≥ 1 for all n ≥ n0. Then we have
a

n
(b+ cxn)2 + dyn =

a

n
(b/xn + c)2x2

n + dyn

≤ a(b+ c)2x2
n/n+ dyn

≤ max{a(b+ c)2, d}(x2
n/n+ yn)

for all n ≥ n0. �

Continuing with the proof of Theorem 3.7.3 we choose xn = e
π

2hn , yn = e−2β/hn ,

a =
C0(γ,d)Γ( d2)

2

π222γ
, b = C1(d, γ), c = C2 and d = L2

4π2 in Lemma 3.7.4. Recall that
hn → 0 so that xn →∞ for n→∞. Then (3.7.9) implies

(3.7.10) MSEγ(x) ≤ CL,d,γ

(
1

n
eπ/hn + e−2β/hn

)
for all n greater than some n0 ∈ N and

CL,d,γ := max

{
C0(γ, d)Γ

(
d
2

)2
(C1(d, γ) + C2)2

π222γ
,
L2

4π2

}

= max

{
2γ−1

π2
Γ

(
d

2

)
Γ

(
2γ +

d

2
− 2

)
M[T ](2γ − 1)(C1(d, γ) + C2)2,

L2

4π2

}
.

(3.7.11)

Looking at (3.7.10) choose hn in such a way that 1
n
eπ/hn = e−2β/hn . This is accom-

plished by the choice hn = π+2β
logn

, which yields

CL,d,γ

(
1

n
eπ/hn + e−2β/hn

)
= CL,d,γ

(
1

n
exp

(
π log n

π + 2β

)
+ exp

(
−2β log n

π + 2β

))
= CL,d,γ

(
n

π
π+2β

−1 + n
−2β
π+2β

)
= 2CL,d,γn

− 2β
π+2β ,

and allows us to conclude that for n→∞:√
MSEγ(x) ≤

√
2CL,d,γn

− 2β
π+2β . n

−β
π+2β .

This concludes the proof of part (i) of the claim. We next turn to (ii).
For T ∈ D(β, L, γ) we obtain the same bound on the variance as previously. For
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the bias we take the bound obtained in Lemma 3.5.2(ii). Plugging these bounds
into (3.7.5) gives

MSEγ(x) ≤ C0(γ, d)2−d−γ

π2Γ
(
d
2

)2
n

(C1(d, γ) + C2e
π

2hn )2 +

(
L

2π
hβn

)2

≤ CL,d,γ

(
1

n
eπ/hn + h2β

n

)

with the same constant CL,d,γ as in (i) and Lemma 3.7.4 as justification for the
second inequality sign. Next choose hn such that 1

n
eπ/hn = h2β

n , that is to say
hn = π

logn−2β log logn
, which gives

1

n
eπ/hn + h2β

n =
exp(log n− 2β log log n)

n
+

π2β

(log n− 2β log log n)2β

= log−2β n+ π2β (log n− 2β log log n)−2β .

Hence, we conclude that

√
MSEγ(x) ≤

√
CL,d,γ

(
log−2β n+ π2β (log n− 2β log log n)−2β

)
. (log n)−β

for n→∞. �

In Section 3.4 we showed that the class C(β, L, γ) (and therefore D(β, L, γ))
includes such well-known families of distributions as Gamma, Weibull, Beta, log-
normal, inverse Gaussian, F for all β ∈ (0, π/2). So, if T belongs to one of those
families, we have (a, b) = (0,∞) in Theorem 3.7.3 and the statement is true for
any γ > max{1/2, (4− d)/4}. If d ≥ 2, then we only require γ > 1/2.
The influence of the choice parameter γ in inequalities (3.7.3) and (3.7.4) is am-
biguous. Note that MSEγ(x) is decreasing in γ for x ∈ (0, 1) and increasing in
γ for x > 1. Based on this fact alone, we would choose a small γ whenever we
want to estimate fT near the origin, and we would choose a large γ whenever we
want to estimate fT for arguments greater 1. This observation about γ does not
depend on the setting of this section and can be made whenever we consider error
bounds with respect to MSEγ. The influence of γ on the constant CL,d,γ is not
determinable because the latter depends on the unknown stopping time T (see
(3.7.11)).
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3.8. Asymptotic Normality, Unbiasedness and Variance in Context of
Bessel Processes

Note that estimator (3.7.2) can be written as

(3.8.1) f̂n(x) =
1

n

n∑
k=1

Zn,k,

with

(3.8.2) Zn,k :=
Γ
(
d
2

)
π

1
hn∫

− 1
hn

X
2(γ−1+iv)
k

Γ (γ + d/2− 1 + iv) 2γ+iv
x−γ−iv dv

for x > 0, d ≥ 1, hn > 0 with hn → 0 and γ ∈ (a, b), where a, b ∈ R are such that

T ∈ M(a,b) and X1, ..., Xn are independent samples of BEST . Since f̂n is a sum
of independent identically distributed random variables, we can show that (under

mild assumptions on fT ) f̂n is asymptotically normal, that is for some positive
sequence (νn)n∈N

√
nν−1/2

n (f̂n(x)− E[f̂n(x)])

converges in distribution to the standard normal distribution for all x > 0.
We begin by investigating the absolute moments of Zn,1.

Lemma 3.8.1. Let fT ∈ M(a,b) for some 0 ≤ a < b and (hn)n∈N ⊂ R+ with
hn → 0 as n→∞. If there is a γ ∈ (a, b) such that 2γ − 1 ∈ (a, b), γ > (4− d)/4
and (γ − 1)j + 1 ∈ (a, b), then the j-th absolute moment of Zn,1 (see (3.8.2)) is
asymptotically bounded by

(3.8.3) E[|Zn,1|j] .

{
h
γ+d/2−3/2
n eπj/(2hn), if γ + d/2− 3/2 < 0

eπj/(2hn), if γ + d/2− 3/2 ≥ 0

as n → ∞ for all j ∈ R+. The constant implied by . may depend on j, d and γ.
Note that Zn,1 depends on hn, d and γ. In particular, we claim that all absolute
moments of Zn,1 exist for all n ∈ N greater than some n0 ∈ N.

For the special case (a, b) = (0, 1) and d = j = 1 this result is mentioned in [6,
Proof of Proposition 4.1] but without an extensive proof, which we provide here.

Proof. Case 1: γ + d/2 − 3/2 ≥ 0. Using Jensen inequality for the first
inequality sign, Lemma 2.4.4(ii) for the second and the fact

M[X1](s) =M[T ]((s+ 1)/2)M[BES1](s)
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(cf. (3.2.2) with H = 1/2, Y = BES) for the last equality sign we estimate

E[|Zn,1|j] = E


∣∣∣∣∣∣∣∣
Γ
(
d
2

)
π

1
hn∫

− 1
hn

X
2(γ−1+iv)
1

Γ (γ + d/2− 1 + iv) 2γ+iv
x−γ−iv dv

∣∣∣∣∣∣∣∣
j

≤
Γ
(
d
2

)j
(2γπxγ)j

E[X
2(γ−1)j
1 ]

1
hn∫

− 1
hn

1

|Γ (γ + d/2− 1 + iv)|j
dv

≤
Γ
(
d
2

)j
(2γπxγ)j

M[X1](2(γ − 1)j + 1)(Cγ,d,j + Cje
πj/(2hn))

=
Γ
(
d
2

)j
(2γπxγ)j

M[T ]((γ − 1)j + 1)M[BES1](2(γ − 1)j + 1)

× (Cγ,d,j + Cje
πj/(2hn)),

where Cγ,d,j and Cj are some positive constants from Lemma 2.4.4. This implies
the claim since the appearing Mellin transforms are finite by assumptions on γ.
Case 2: γ + d/2− 3/2 < 0. We obtain

E[|Zn,1|j] ≤
Γ
(
d
2

)j
(2γπxγ)j

M[T ]((γ − 1)j + 1)M[BES1](2(γ − 1)j + 1)

× Cjhγ+d/2−3/2
n eπj/(2hn)

with the same arguments as in case 1. The only difference is that we apply Lemma
2.4.4(i) instead of Lemma 2.4.4(ii). Hence, (3.8.11) holds in this case as well. �

Suppose d ≥ 2 in Lemma 3.8.1. Then the assumption γ > (4 − d)/4 is re-
dundant. Moreover, γ + d/2 − 3/2 ≥ 0 holds and we always have the smaller
bound

(3.8.4) E[|Zn,1|j] . eπj/(2hn).

for n→∞.
The following lemma is only an auxiliary result used in the proof of Theorem 3.8.3,
which will the main result of this section.

Lemma 3.8.2. Let hn → 0 for n → ∞ and ρn := h−αn , where 0 < α < 1/2.
Then

(1/hn − s) log(1/hn − s)− (1/hn − r) log(1/hn − r)− (r − s) = (r − s) log(1/hn)

+O(ρ2
nhn)

for all 0 < r, s < ρn and n→∞.
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Proof. In the Taylor expansion

x log(x) = a log(a) + (log(a) + 1)(x− a) +
1

2a
(x− a)2 −

∫ x

a

(x− t)2

6t2
dt

for x, a > 0 choose a = 1/hn, and x = 1/hn − s or x = 1/hn − r respectively. For
both choices the remainder is of order O(h2

nρ
3
n) and we get

(1/hn − s) log(1/hn − s)− (1/hn − r) log(1/hn − r)− (r − s)
= (r − s) log(1/hn) + hns

2/2− hnr2/2 +O(h2
nρ

3
n)

= (r − s) log(1/hn) +O(ρ2
nhn).

This concludes the proof. �

We are now ready to prove the main result of this section.

Theorem 3.8.3. Let fT ∈ M(a,b) for some 0 ≤ a < b. Suppose there is a
γ ∈ (a, b) such that 2γ − 1 ∈ (a, b), γ > (4− d)/4 and (δ + 2)γ − δ − 1 ∈ (a, b) for
some δ > 0 and

(3.8.5)

∞∫
−∞

|M[T ](2γ − 1 + iv)|dv <∞.

If we choose hn ∼ log−1(n) in (3.7.2) then we have

(3.8.6)
√
nν−1/2

n (f̂n(x)− E[f̂n(x)])
d→ N (0, 1)

for all x > 0, where

(3.8.7) νn =
cΓ
(
d
2

)
2π3x2γ

h2γ−d+3
n e

π
hn log−2(1/hn)(1 + o(1))

with

(3.8.8) c = (π/2)Γ(2γ + (d− 4)/2)M[T ](2γ − 1) > 0.

Let us make a few remarks before we present the proof. As we mentioned in
the end of Section 3.7, we can often assume (a, b) = (0,∞) so that the choice of γ
is only restricted by γ > max{1/2, (4 − d)/4}. If (a, b) = (0,∞), then a suitable
δ can always be found, for instance, any δ > 2γ/(1 − γ) is valid. If additionally
d ≥ 2, then the statement is true for all γ > 1/2.
The choice hn ∼ log−1(n) may not be the only possible one. Other choices may
also yield (3.8.6) (perhaps even with a better convergence rate (see Theorem 3.8.5),
but we are not aware of them.

Proof of Theorem 3.8.3. We roughly imitate the proof of an analogous
result for the special case d = 1, (a, b) = (0, 1) found in [6]. In distinction from [6]
we do not restrict ourselves to the case x = 1 in the proof and provide the specific
form of νn for all x > 0.
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Throughout this proof we use brief notations like {u ≥ r} and {|u − v| ≤ r}
for the respective sets {u ∈ R|u ≥ r} and {(u, v) ∈ R2||u − v| ≤ r} (r ∈ R), and
similar ones. Symbols 1u≥r and 1|u−v|≤r denote the indicator functions of such sets.

The sequence (Zn,k)k∈N is square-integrable (see Lemma 3.8.1) and i.i.d. for
all n ∈ N. So it suffices to show the Lyapunov condition, i.e. for a δ > 0:

(3.8.9) lim
n→∞

E[|Zn,1 − E[Zn,1]|2+δ]

nδ/2(Var[Zn,1])1+δ/2
= 0.

By [5, page 239] the claim (3.8.6) follows from (3.8.9) with νn = Var[Zn,1].

Let x > 0. Note that

E[Zn,1]→ fT (x), n→∞

by monotone convergence and (3.2.4) (if we choose H = 1/2 and Y = BES there).
So, (3.8.9) holds if we can prove, that Var[Zn,1]→∞ and

(3.8.10) lim
n→∞

E[|Zn,1|2+δ]

nδ/2(Var[Zn,1])1+δ/2
= 0.

In any case of Lemma 3.8.1 (for j = δ + 2) we have

(3.8.11) E[|Zn,1|2+δ] . h−cn e
π(2+δ)/(2hn)

as n→∞ for all δ ∈ R+ and some c > 0.
Now we investigate the asymptotic behavior of Var[Zn,1]. Looking at (3.8.2) we
use Definition 2.1.4, pull out constants and integral signs using Lemmas 2.1.6 and
2.1.10 and then calculate the covariance by the rule Cov[X, Y ] = E[XY ]− E[X]E[Y ]
(Lemma 2.1.6) to obtain
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Var[Zn,1] = Cov[Zn,1, Zn,1]

=
Γ
(
d
2

)2

π2

1
hn∫

− 1
hn

1
hn∫

− 1
hn

Cov[X2γ−1+iv
1 , X2γ−1+iu

1 ]dvdu

(2x)2γ+i(v−u)Γ (γ + d/2− 1 + iv) Γ (γ + d/2− 1− iu)

=
Γ
(
d
2

)2

π2

1
hn∫

− 1
hn

1
hn∫

− 1
hn

E[X
4γ−4+2i(v−u)
1 ]dvdu

(2x)2γ+i(v−u)Γ (γ + d/2− 1 + iv) Γ (γ + d/2− 1− iu)

−
Γ
(
d
2

)2

π2

1
hn∫

− 1
hn

1
hn∫

− 1
hn

(2x)−2γ−i(v−u) E[X2γ−2+2iv
1 ] E[X2γ−2−2iu

1 ]dvdu

Γ (γ + d/2− 1 + iv) Γ (γ + d/2− 1− iu)

=
Γ
(
d
2

)2

π2

1
hn∫

− 1
hn

1
hn∫

− 1
hn

M[X1](4γ + 2i(v − u)− 3)dvdu

(2x)2γ+i(v−u)Γ (γ + d/2− 1 + iv) Γ (γ + d/2− 1− iu)

−
Γ
(
d
2

)2

π2

∣∣∣∣∣∣∣∣
1
hn∫

− 1
hn

M[X1](2γ − 1 + 2iv)

(2x)γ+ivΓ (γ + d/2− 1 + iv)
dv

∣∣∣∣∣∣∣∣
2

=: R1 −R2.

By Example 2.2.5(iii) we can estimate

R2 ≤
1

π2x2γ


1
hn∫

− 1
hn

|M[T ](γ + iv)| dv


2

< C <∞

for some C > 0 and further

R1 =
Γ
(
d
2

)
2π2x2γ

1
hn∫

− 1
hn

1
hn∫

− 1
hn

M[T ](2γ − 1 + i(v − u))Γ (2γ − 2 + d/2 + i(v − u))

xi(v−u)Γ (γ + d/2− 1 + iv) Γ (γ + d/2− 1− iu)
dvdu.

Our strategy now is to decompose the double integral defining R1 into pieces
that are easy to estimate. To that end let ρn := h−αn , where 0 < α < 1/2 and
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define

I1
n,ρn :=

1
hn∫

− 1
hn

1
hn∫

− 1
hn

1|v−u|≥ρn
M[T ](2γ − 1 + i(v − u))Γ

(
2γ − 2 + d

2
+ i(v − u)

)
xi(v−u)Γ

(
γ + d−2

2
+ iv

)
Γ
(
γ + d−2

2
− iu

) dvdu.

By Lemma 2.4.3 there are C1, C2 > 0 such that

|Γ (γ + d/2− 1 + iv)| ≥ C11|v|≤2 + C21|v|>2|v|γ−1+(d−1)/2e−π|v|/2

|Γ (γ + d/2− 1− iu)| ≥ C11|u|≤2 + C21|u|>2|u|γ−1+(d−1)/2e−π|u|/2

and K1, K2 > 0 such that

Γ (2γ − 2 + d/2 + i(v − u)) ≤ K11|v−u|≤2 +K21|v−u|>2|v − u|2(γ−1)+ d−1
2 e−π|v−u|/2.

With the help of these inequalities we deduce

|I1
n,ρn| .

1
hn∫

− 1
hn

1
hn∫

− 1
hn

1|v−u|≥ρn|v − u|2(γ−1)+ d−1
2 e−

π
2
|v−u||M[T ](2γ − 1 + i(v − u))|dvdu

(1|v|≤2 + 1|v|>2|v|γ−1+ d−1
2 e−

π
2
|v|)(1|u|≤2 + 1|u|>2|u|γ−1+ d−1

2 e−
π
2
|u|)

≤ h
−2|γ−1|− d−1

2
n e−πρn/2

1
hn∫

− 1
hn

1
hn∫

− 1
hn

|M[T ](2γ − 1 + i(v − u))|

×
(

1 + |u||γ−1|+ d−1
2 e

π
2
|u| + |v||γ−1|+ d−1

2 e
π
2
|v| + |vu||γ−1|+ d−1

2 e
π
2

(|v|+|u|)
)
dvdu

≤ h
−2|γ−1|− d−1

2
n e−πρn/2(1 + 2h

−|γ−1|− d−1
2

n eπ/(2hn) + h−2|γ−1|−(d−1)
n eπ/hn)

×

1
hn∫

− 1
hn

∫
|M[T ](2γ − 1 + iv)|dvdu

. h−3|γ−1|−d+2
n eπ( 1

2hn
− ρn

2
) + h−4|γ−1|−(3d−5)/2

n eπ( 1
hn
− ρn

2
)

for n→∞. (Note (3.8.5) for the last .-sign. Also note that appearing additive
constants are negligible, because the last expression diverges to infinity.) Similarly,
we estimate
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1
hn∫

− 1
hn

1
hn∫

− 1
hn

1|u|≤ 1
hn
−ρn1|v−u|≥ρn

M[T ](2γ − 1 + i(v − u))Γ
(
2γ + d−4

2
+ i(v − u)

)
xi(v−u)Γ

(
γ + d−2

2
+ iv

)
Γ
(
γ + d−2

2
− iu

) dvdu

. h
−2|γ−1|− d−1

2
n e−πρn/2

∫ 1
hn

− 1
hn

∫ 1
hn

− 1
hn

1|u|≤ 1
hn
−ρn|M[T ](2γ − 1 + i(v − u))|

×
(

1 + |u||γ−1|+ d−1
2 eπ|u|/2 + |v||γ−1|+ d−1

2 eπ|v|/2 + |vu||γ−1|+ d−1
2 eπ(|v|+|u|)/2

)
dvdu

≤ h
−2|γ−1|− d−1

2
n e−πρn/2(1 + h

−|γ−1|− d−1
2

n eπ/(2hn) + h
−|γ−1|− d−1

2
n eπ/(2hn−ρn)

+ h−2|γ−1|−(d−1)
n eπ/hn)

∫ 1
hn

− 1
hn

∫
R

|M[T ](2γ − 1 + iv)|dvdu

. h−3|γ−1|−d+2
n eπ( 1

2hn
− ρn

2
) + h−3|γ−1|−d+2

n eπ( 1
2hn
−ρn) + h−4|γ−1|−(3d−5)/2

n eπ( 1
hn
− 3ρn

2
)

. h−ln e
π( 1
hn
−ρn)

(3.8.12)

for some l ≥ 0. By interchanging the roles of v and u in the last inequality chain,

1
hn∫

− 1
hn

1
hn∫

− 1
hn

1|v|≤ 1
hn
−ρn1|v−u|≥ρn

M[T ](2γ − 1 + i(v − u))Γ
(
2γ + d−4

2
+ i(v − u)

)
xi(v−u)Γ

(
γ + d−2

2
+ iv

)
Γ
(
γ + d−2

2
− iu

) dvdu

. h−ln e
π( 1
hn
−ρn).

(3.8.13)

Combine (3.8.12) and (3.8.13) to obtain

I2
n,ρn :=

∫ 1
hn

− 1
hn

∫ 1
hn

− 1
hn

1|v−u|≤ρn
M[T ](2γ − 1 + i(v − u))Γ

(
2γ + d−4

2
+ i(v − u)

)
xi(v−u)Γ

(
γ + d−2

2
+ iv

)
Γ
(
γ + d−2

2
− iu

) dvdu

.
∫ 1

hn

− 1
hn

∫ 1
hn

− 1
hn

1|v|≥ 1
hn
−ρn1|u|≥ 1

hn
−ρn1|v−u|≤ρn

×
M[T ](2γ − 1 + i(v − u))Γ

(
2γ + d−4

2
+ i(v − u)

)
xi(v−u)Γ

(
γ + d−2

2
+ iv

)
Γ
(
γ + d−2

2
− iu

) dvdu+O(h−ln e
π( 1
hn
−ρn))

=: I3
n,ρn +O(h−ln e

π( 1
hn
−ρn)).
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Next, we examine the asymptotic behavior of the integral I3
n,ρn . To this end, we

take advantage of Stirling’s formula (Lemma 2.4.1)

Γ

(
γ +

d− 2

2
+ iv

)
=

(
γ +

d− 2

2
+ iv

)γ+ d−3
2

+iv

e−γ−
d−2
2
−iv
√

2π(1 +O(v−1))

for v →∞. Consider the integrand of I3
n,ρn . In the denominator it holds by means

of the identity log(iv) = log(v) + iπ
2

that

Γ(γ + d/2− 1 + iv)Γ(γ + d/2− 1− iu)

= 2π exp(iv log v − iu log u− i(v − u))

× exp

(
−π

2
(u+ v) +

(
γ +

d− 3

2

)
(log(v) + log(u))

)
(1 +O(v−1) +O(u−1))

for u, v →∞. On the set{
|u| ≥ 1

hn
− ρn

}
∩
{
|v| ≥ 1

hn
− ρn

}
∩ {|v − u| ≤ ρn} ∩ {v ≥ 0, u ≥ 0}

we define u = 1/hn − r, v = 1/hn − s with 0 < r, s < ρn, |r − s| < ρn to obtain

Γ(γ + d/2− 1 + iv)Γ(γ + d/2− 1− iu)

= 2π exp(i(1/hn − s) log(1/hn − s)− i(1/hn − r) log(1/hn − r)− i(r − s))
× h−2γ−d+3

n e−π/hneπ(r+s)/2(1 +O(hn))(1 +O(ρnhn) +O(ρ2
nhn))γ+(d−3)/2.

Note that due to the choice of ρn, we have ρnhn → 0 and ρ2
nhn → 0. Using Lemma

3.8.2 we derive

Γ (γ + d/2− 1 + iv) Γ (γ + d/2− 1− iu) = 2πh−2γ−d+3
n exp(i(r − s) log(1/hn))

× e−π/hneπ(r+s)/2(1 +O(ρ2
nhn)).

Analogously, on the set{
|u| ≥ 1

hn
− ρn

}
∩
{
|v| ≥ 1

hn
− ρn

}
∩ {|v − u| ≤ ρn} ∩ {v ≤ 0, u ≤ 0}

we define u = −1/hn + r, v = −1/hn + s with 0 < r, s < ρn, |r− s| < ρn to obtain

Γ (γ + d/2− 1 + iv) Γ (γ + d/2− 1− iu) = 2πh−2γ−d+3
n exp(−i(r − s) log(1/hn))

× e−π/hneπ(r+s)/2(1 +O(ρ2
nhn)).
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Hence, I3
n,ρn can be decomposed as follows:

I3
n,ρn =

h2γ+d−3
n

2π
exp(π/hn)

∫ ρn

0

∫ ρn

0

1{|r−s|≤ρn}x
i(s−r)

× exp(−π(r + s)/2)Γ(2γ + (d− 4)/2 + i(r − s))
×M[T ](2γ − 1 + i(r − s)) exp(i(s− r) log(1/hn))(1 +O(ρ2

nhn))−1drds

=
h2γ+d−3
n

2π
exp(π/hn){Re[I4

n,ρn ] +O(ρ2
nhn)]},

where

I4
n,ρn :=

∫ ρn

0

∫ ρn

0

1{|r−s|≤ρn} exp(−π(r + s)/2)Γ(2γ + (d− 4)/2 + i(r − s))

×M[T ](2γ − 1 + i(r − s)) exp(i(s− r) log(1/hn))xi(r−s)drds

=

∫ ρn

0

e−πvRn(v)dv

with
(3.8.14)

Rn(v) :=

ρn−v∫
0

e−πu/2xiuΓ(2γ+(d−4)/2+iu)M[T ](2γ−1+iu) exp(iu log(1/hn))du.

The Fourier type integral in (3.8.14) allows a series representation via the following
lemma:

Lemma 3.8.4. Let α < β. If f : (α, β) → C is N times continuously differen-
tiable (N ∈ N), then we have the expansion∫ β

α

f(u)eixudu = BN(x)− AN(x) + o(x−N)

for x→∞, where

AN(x) =
N−1∑
n=0

in−1f (n)(α)x−n−1eixα

BN(x) =
N−1∑
n=0

in−1f (n)(β)x−n−1eixβ.

Proof. Repeated integration by parts, see [17, page 47]. �

Coming back to (3.8.14), we choose

f(u) := e−πu/2xiuΓ(2γ + (d− 4)/2 + iu)M[T ](2γ − 1 + iu)
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and N = 2 in Lemma 3.8.4 to get

Rn(v) = if(0) log−1(1/hn) + f ′(0) log−2(1/hn) +O(log−3(1/hn))

= iΓ

(
2γ +

d− 4

2

)
M[T ](2γ − 1) log−1(1/hn)

− d

du
[e−πu/2xiuΓ

(
2γ +

d− 4

2
+ iu

)
M[T ](2γ − 1 + iu)]

∣∣∣∣
u=0

log−2(1/hn)

+O(log−3(1/hn))

uniformly in v. Note that

M[T ](2γ − 1 + iu)

and

d

du
M[T ](2γ − 1 + iu) = iM[log(·)fT (·)](2γ − 1 + iu)

vanish for u→∞ by Lemma 3.4.3. Likewise do

Γ(2γ + (d− 4)/2 + iu) and d
du

Γ(2γ + (d− 4)/2 + iu)

for u → ∞ by Lemma 2.4.3. So, the term B2 in Lemma 3.8.4 is at most of order
O(e−π(ρn−v)/2) and is negligible compared to O(log−3(1/hn)). Thus,

Re[I4
n,ρn ] = (c log−2(1/hn) +O(log−3(1/hn)))(1/π − e−πρn/π)

=
c

π
log−2(1/hn) +O(log−3(1/hn))

holds with

c := − Re

[
d

du
e−πu/2xiuΓ(2γ + (d− 4)/2 + iu)

∣∣∣∣
u=0

]
= − Re[−π/2Γ(2γ + (d− 4)/2 + iu)M[T ](2γ − 1)

+ ix−1Γ(2γ + (d− 4)/2)M[T ](2γ − 1)

+ iΓ(2γ + (d− 4)/2)ψ(2γ + (d− 4)/2)M[T ](2γ − 1)

+ iΓ(2γ + (d− 4)/2)M[log(·)fT (·)](2γ − 1)]

=
π

2
Γ(2γ + (d− 4)/2)M[T ](2γ − 1),

where ψ(s) = Γ′(s)/Γ(s) for Re(s) > 0 is the digamma-function. So, we have
c > 0, ifM[T ](2γ− 1) is positive, which is true for all nonnegative stopping times
except for T = 0 or T = ∞ almost surely, which is not allowed, because T has a
Lebesgue density.
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Summing up the auxiliary quantities introduced above we get

Var[Zn,1] = R1 −R2

=
Γ
(
d
2

)
2π2x2γ

(I1
n,ρn + I2

n,ρn) +O(1)

=
Γ
(
d
2

)
2π2x2γ

(I3
n,ρn +O(h−ln e

π( 1
hn
−ρn))) +O(1)

=
Γ
(
d
2

)
2π2x2γ

(h2γ−d+3
n e

π
hn {Re[I4

n,ρn ] +O(ρ2
nhn)}+O(h−ln e

π( 1
hn
−ρn))) +O(1)

=
Γ
(
d
2

)
2π2x2γ

[
h2γ−d+3
n e

π
hn { c

π
log−2(1/hn) +O(log−3(1/hn)) +O(ρ2

nhn)}

+ O(h−ln e
π( 1
hn
−ρn))

]
+O(1)

and thus,

(3.8.15) Var[Zn,1] =
cΓ
(
d
2

)
2π3x2γ

h2γ−d+3
n e

π
hn log−2(1/hn)(1 + o(1))

for n→∞. Combining (3.8.15) and (3.8.11) we finally get

E[|Zn,1|2+δ]

nδ/2(Var[Zn,1])1+δ/2
.

h−cn e
π(2+δ)/(2hn)

nδ/2(h2γ+d−3
n log−2(1/hn) exp(π/hn))1+δ/2

=
h−cn

nδ/2(h2γ+d−3
n log−2(1/hn))1+δ/2

→ 0

for n → ∞, if we choose hn ∼ log−1(n). So the Lyapunov condition is satisfied
and the claim follows using (3.8.15). �

Incidentally, we proved that under assumptions of Theorem 3.8.3,

(3.8.16) Var[f̂n(x)] = Var[Zn,1]
1

n
=
cΓ
(
d
2

)
2π3x2γ

h2γ−d+3
n e

π
hn log−2(1/hn)(1 + o(1))

1

n
.

Recall that in the proof of Theorem 3.7.3 we only showed (see (3.7.8))

Var[f̂n(x)] ≤
C0(γ, d)Γ

(
d
2

)2

π222γx2γ
(C1(d, γ) + C2e

π
2hn )2 1

n

for some constants C0, C1, C2. With (3.8.16) we now have an even better bound

on the variance of f̂n(x).
Since all moments of Zn,k exist by Lemma 3.8.1, it is possible to give a Berry-
Esseen type error estimate for the convergence in (3.8.6). This is a new result
even for dimension d = 1.
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Theorem 3.8.5. Let fT ∈ M(a,b) for some 0 ≤ a < b. Suppose there is a
γ ∈ (a, b) such that 2γ − 1 ∈ (a, b), γ > (4− d)/4, 3γ − 2 ∈ (a, b) and

(3.8.17)

∞∫
−∞

|M[T ](2γ − 1 + iv)|dv <∞.

Fix some x > 0. Denote by Fn the distribution function of
√
nν−1/2

n (f̂n(x)− E[f̂n(x)])

(where f̂n(x) is defined by (3.7.2) and νn = nVar[f̂n(x)] is given by (3.8.7)) and by
Φ the distribution function of the standard normal distribution. Define the distance

ρn := sup
y∈R
|Fn(y)− Φ(y)|.

If we choose hn ∼ log−1(n) in (3.7.2) then we have

(3.8.18) ρn .

{
n−1/2(log n)4γ−d+3 log3(log(n)), if γ + d/2− 3/2 < 0

n−1/2(log n)3(2γ−d+3)/2 log3(log(n)), if γ + d/2− 3/2 ≥ 0

for n→∞.

Proof. Let x > 0 and n ∈ N. Consider the representation (3.8.1) of f̂n(x) as
mean of independently identically distributed variables Zn,1, ..., Zn,n. Berry-Esseen
Theorem (see [20, Korollar 4.2.15]) states

(3.8.19) ρn ≤
6 E[|Zn,1 − E[Zn,1]|3]

(Var[Zn,1])3/2n1/2
.

First, apply Minkowski inequality, then triangle inequality and finally Lyapunov
inequality to obtain

E[|Zn,1 − E[Zn,1]|3] ≤ ((E[|Zn,1|3])1/3 + |E[Zn,1]|)3

≤ ((E[|Zn,1|3])1/3 + E[|Zn,1|])3

≤ (2(E[|Zn,1|3])1/3)3

. E[|Zn,1|3]

for n→∞. Then we choose j = 3 in Lemma 3.8.1 to get

(3.8.20) E[|Zn,1 − E[Zn,1]|3] .

{
h
γ+d/2−3/2
n e3π/(2hn), if γ + d/2− 3/2 < 0

e3π/(2hn), if γ + d/2− 3/2 ≥ 0

for n → ∞. During the proof of Theorem 3.8.3 we already showed that under
assumptions on γ above,

(3.8.21) nVar[Zn,1] = νn =
cΓ
(
d
2

)
2π3x2γ

h2γ−d+3
n e

π
hn log−2(1/hn)(1 + o(1))
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for some c > 0. Now plug (3.8.20) and (3.8.21) in (3.8.19). Then choose

hn ∼ log−1(n)

. This leads to two cases:
Case 1: γ + d/2− 3/2 < 0. We have

ρn .
h
γ+d/2−3/2
n e3π/(2hn)

(h2γ−d+3
n e

π
hn log−2(1/hn)(1 + o(1)))3/2n1/2

=
(log n)γ+d/2−3/2n3π/2

(log n)3(−2γ+d−3)/2n3π/2 log−3(log(n))(1 + o(1))3/2n1/2

. n−1/2(log n)4γ−d+3 log3(log(n))

for n→∞.
Case 2: γ + d/2− 3/2 ≥ 0. We have

ρn .
e3π/(2hn)

(h2γ−d+3
n e

π
hn log−2(1/hn)(1 + o(1)))3/2n1/2

=
n3π/2

(log n)3(−2γ+d−3)/2n3π/2 log−3(log(n))(1 + o(1))3/2n1/2

. n−1/2(log n)3(2γ−d+3)/2 log3(log(n))

for n→∞. This concludes the proof. �

We do not know if the rates in (3.8.18) are optimal. Different choices of hn and
different estimates in the proof may yield smaller bounds. Note that the signs of
the powers 4γ − d+ 3 and 3(2γ − d+ 3)/2 in (3.8.18) are ambiguous and depend
on the relative positions of γ and d. However, if d ≥ 2 then we only have the case
γ + d/2− 3/2 ≥ 0 and the power of the logarithm is positive.
In order to achieve a high convergence rate we would choose γ as small as possible
(under the given restrictions in Theorem 3.8.3). However, a small γ may result in

a large variance of f̂n because the influence of γ is ambiguous there (see (3.8.7)).

3.9. Simulation Study

In this Section we test our estimator (3.7.2) with some simulated data. Consi-
der a Bessel process with dimension d = 5 and a Gamma(2, 1) distributed stopping
time T , i.e. T has the density

f(x) = xe−x, x ≥ 0.

We write the estimator (3.7.2) as a function of 1/hn:

f̂ [1/hn](x) := f̂n(x) =
1

2π

1
hn∫

− 1
hn

Γ
(
d
2

)
1
n

∑n
k=1X

2(γ−1+iv)
k

Γ
(
γ + d

2
− 1 + iv

)
2γ−1+iv

x−γ−iv dv
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Next we choose γ = 0.7. The question of the appropriate choice for the cut-off
parameter 1/hn arises here. From Theorem 3.7.3 we know

(3.9.1) 1/hn = log(n)/(π + 2β)

to be the optimal choice for densities from class C(β, L, γ). But β is unknown in
practice. Corollary 3.4.6(ii) suggests that often β ∈ (0, π). Thus, we can guess
from (3.9.1) that some 1/hn ∈ (0.7, 2.2) would be a good choice for n = 1000.

Next, we compute f̂ [1/hn](x) for n = 1000 and different values of the cut-off
parameter 1/hn. On the left-hand side of Figure 2 we can see the loss

(3.9.2) sup
x∈R+

{|f̂ [1/hn](x)− fT (x)|}

approximated by

sup
x∈{0.1,0.11,...,9.99,10}

{|f̂ [1/hn](x)− fT (x)|}

as a function of 1/hn with minimum at 1/h?n ≈ 2.7. Denote

f on(x) := f̂ [1/h?n](x).

Since f on contains information about the unknown fT , it is not an estimator. We
call it an oracle for fT . “This is the “best forecast” of [fT ], which is, howe-
ver, inaccessible: in order to construct it, we would need an “oracle” that knows
[fT ]”([37, page 60]). We call 1/h?n the oracle choice of 1/hn.
Figure 2 demonstrates that an appropriate choice of 1/hn is crucial for the per-

formance of f̂n, but for practical reasons we wish to assume as little as possible
about the unknown density fT . Hence, we propose a data driven choice of 1/hn
based on the quasi-optimality approach proposed in [4]. The same was done in [6]
for the case d = 1. We will show that it leads to reasonable results in our model
as well. The implementation goes as follows.
Firstly, we choose a sequence of bandwidths 1/h1

n, ..., 1/h
N
n and calculate estima-

tors f̂ [1/h1
n](x), ..., f̂ [1/hNn ](x). Secondly, we determine l? = arg min

l=1,...,N
d(l) with

d(l) : =

∫ ∞
0

|f [1/hl+1
n ](x)− f [1/hln](x)|dx

≈
90∑
i=0

|f [1/hl+1
n ](0.1 + 0.01i)− f [1/hln](0.1 + 0.01i)|.

Denote the adaptive estimator constructed in this way by

f̃n := f [1/hl
?

n ].

Note that we avoid the evaluation of f̂n(x) for x ∈ (0, 0.1) since the calculation is
very unstable there. We also forego evaluation for x > 10 which is reasonable in
the case of a Gamma-distributed stopping time. (We have f̂n(x) ≈ 0 for x > 10.)
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Figure 2. Left: the loss supx∈R+
{|f̂ [1/hn](x)−fT (x)|} as a function of the cut-off

parameter 1/hn. Right: objective function d(l) as a function of 1/hln.

This needs to be adjusted if T is known to likely assume values greater 10. Other
loss functions may also be considered instead of (3.9.2) and d(l).
Based on our guess 1/hn ∈ (0.7, 2.2) from above, we take 1/hln = 0.1 × l for
l = 1, ..., 50 for our simulation study. Right-hand side of Figure 2 shows the ob-
jective function d(l) to assume its minimum at 1/hln ≈ 2.5.

In order to test the performance of f̃n we let it compete against the oracle f on
associated with the oracle choice 1/h?n of 1/hn. We compute each estimate based
on 100 independent samples of BEST of size n ∈ {1000, 5000, 10000, 50000}. On
the left-hand side of Figure 3 we see the box-plot of the loss

sup
x∈R+

{|f on(x)− fT (x)|} ≈ sup
x∈{0.1,0.11,...,9.99,10}

{|f on(x)− fT (x)|}

produced by f on and on the right-hand side the corresponding loss

sup
x∈R+

{|f̃n(x)− fT (x)|} ≈ sup
x∈{0.1,0.11,...,9.99,10}

{|f̃n(x)− fT (x)|}

associated with the adaptive estimator. A comparison of the two suggests that
the performance of f̃n is acceptable in this setting.
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Figure 3. Left: box plots of the loss supx∈R+
{|f on(x)−fT (x)|} for different sample

sizes. Right: box plots of the loss supx∈R+
{|f̃n(x) − fT (x)|} for different sample

sizes.

Let us now demonstrate the performance of our adaptive estimator for diffe-
rent distributions of T . As examples we consider Exponential, Gamma, Inverse-
Gaussian, Weibull, Log-Normal, and F distributions. To construct the estimate
(3.7.2) we choose d = 5, γ = 0.7, and 1/hn = 1/hl

?

n . Figure 4 shows the densities
of the six distributions and their 50 respective estimates based on 50 independent
samples of BEST of size n = 500.
We can see that the error is particularly large in the neighborhood of 0. That is
because our estimator is not defined in 0 and lim

x→0
f̂n(x) does not exist for fixed n.

Note also that the variance of our estimator is large for small x (see (3.8.21)).

3.10. Some Other Self-Similar Processes

After we have extensively discussed the properties of the estimator constructed
in Section 3.2 in the context of Bessel processes, we now turn to other examples
of processes that allow the estimation procedure of Section 3.2.

3.10.1. Normally Distributed Processes. Let Y = (Yt)t≥0 be a self-similar
process with scaling parameter H > 0, càdlàg paths and Y1 standard normally
distributed. As an example consider a fractional Brownian motion mentioned in
the beginning of Chapter 3. By [8], this is a self-similar Gaussian process that
admits a version whose sample paths are càdlàg. Let T ≥ 0 be a stopping time
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Figure 4. Estimated densities (red) and their 50 respective esti-
mates (grey) for the sample size n = 1000

with density fT independent of Y . We wish to estimate fT non-parametrically
based on i.i.d. samples X1, . . . , Xn of YT .

Remark 3.10.1. We can easily generalize the setting above to the case where
Y1 ∼ N (0, σ2) with σ2 > 0 by considering the process (Ỹt)t≥0 := (Yt/σ)t≥0 (that
is again self-similar with scaling parameter H) and modifying our observations to

X̃i := Xi/σ with the result X̃i
d
= ỸT for i = 1, ..., n.

Taking d = 1 in Example 2.2.5 gives

M[|Y1|](s) =
1√
π

Γ
(s

2

)
2
s+1
2 , Re(s) > 0.

Thus, estimator (3.2.6) assumes the form

(3.10.1) f̂n(x) =
1

2
√
π

1
hn∫

− 1
hn

1
n

∑n
k=1X

(γ−1+iv)/H
k

Γ
(
γ+H−1+iv

2H

)
2
γ+2H−1+iv

2H

x−γ−iv dv

for x > 0 and max{1 − H, a} < γ < b. We can prove a convergence result for
this estimator, similar to Theorem 3.7.3. Recall that in this thesis we consider
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convergence with respect to the weighted mean squared risk

MSEγ(x) = x2γ E[|fT (x)− f̂n(x)|2]

from the introduction to Section 3.3.

Theorem 3.10.2. Let fT ∈M(a,b) for some 0 ≤ a < b.

(i) If T ∈ C(β, L, γ) for some β, L > 0 and γ ∈ (max{a, 1−H, 3/4}, b), then

(3.10.2) MSEγ(x) .

{
1
n
eπ/(2Hhn) + e−2β/hn , if γ ≥ 1

1
n
h

(γ−1)/H
n eπ/(2Hhn) + e−2β/hn , if γ < 1

for n→∞ and all x > 0. If

(3.10.3) hn =

{
π+4Hβ
2H logn

, if γ ≥ 1
π+4Hβ

2H logn−2(γ−1) log logn
, if γ < 1

,

then we obtain the polynomial convergence rate

(3.10.4)
√

MSEγ(x) .

{
n−

2Hβ
π+4Hβ , if γ ≥ 1

n−
2Hβ

π+4Hβ (log n)
(1−γ)2β
π+4Hβ , if γ < 1

for n→∞ and all x > 0.
(ii) If T ∈ D(β, L, γ) for some β, L > 0 and γ ∈ (max{a, 1−H, 3/4}, b), then

(3.10.5) MSEγ(x) .

{
1
n
eπ/(2Hhn) + h2β

n , if γ ≥ 1
1
n
h

(γ−1)/H
n eπ/(2Hhn) + h2β

n , if γ < 1

for n→∞ and all x > 0. If

(3.10.6) hn =

{
π/(2H)

logn−2β log logn
, if γ ≥ 1

π/(2H)
logn−(2β+(γ−1)/H) log logn

, if γ < 1
,

then we obtain the logarithmic convergence rate

(3.10.7)
√

MSEγ(x) . (log n)−β

for n→∞ and all x > 0.

Proof. (i) Let T ∈ C(β, L, γ). The upper bound on variance from Lemma
3.6.1 leads to

Var[xγ f̂n(x)] ≤ C0(γ,H)

4π2n

 1/hn∫
−1/hn

1

|M[|Y1|]((γ +H − 1 + iv)/H)|
dv


2

,(3.10.8)
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where

C0(γ,H) :=M[|Y1|](4γ − 3)M[T ](2γ − 1)

=
1√
π

Γ

(
4γ − 3

2

)
22γ−1M[T ](2γ − 1)

is finite by the assumption γ ≥ 3/4.
From (3.10.8) and Lemma 2.4.4 it follows that

Var[xγ f̂n(x)] ≤ C0(γ,H)

4πn

 1/hn∫
−1/hn

∣∣∣∣∣ 1

Γ
(
γ+H−1

2H
+ i v

2H

)2−
γ+2H−1

2H
−i v

2H

∣∣∣∣∣dv


2

≤ C0(γ,H)H2

π2
γ+2H−1

2H n

 1/(2Hhn)∫
−1/(2Hhn)

∣∣∣∣∣ 1

Γ
(
γ+H−1

2H
+ iv

)∣∣∣∣∣ dv


2

≤ C0(γ,H)H2

π2
γ+2H−1

2H n
×

{
(C1(γ,H) + C2e

π
4Hhn )2, if γ ≥ 1

C2
1 (2Hhn)

γ−1
H e

π
2Hhn , if γ < 1

.

Combining this bound on the variance with the bound on the bias from Lemma
3.5.2(i) we obtain (3.10.2). Plugging (3.10.3) into (3.10.2) gives the rate (3.10.4).
(ii) For T ∈ D(β, L, γ) we obtain the same bound on the variance as in (i). For
the bias we take the bound obtained in Lemma 3.5.2(ii). Adding bias and variance
gives (3.10.5). Plugging (3.10.6) into (3.10.5) gives the rate (3.10.7). �

Taking H = 1/2 in Theorem 3.10.2 we obtain the same rates as for Bessel
processes (see Theorem 3.7.3). For smaller H the rate is worse and for greater H
it is better. Note that we work with observations of |YT | rather than YT . In Chapter
6 we will show that the rates (3.10.4) and (3.10.7) are optimal for H ∈ (0, 2) in
a sense to be specified there, but only if |YT | is observed. We do not know if the
rates can be improved by observing YT directly or for H ≥ 2.

3.10.2. Gamma Distributed Processes. Let Y = (Yt)t≥0 be a self-similar
process with scaling parameter H > 0, càdlàg paths and Y1 Gamma-distributed
with shape parameter σ > 0 and rate parameter r = 1, i.e Y1 has Lebesgue density

(3.10.9) f1(x) =
xσ−1e−x

Γ(σ)
, x ≥ 0.

Let T ≥ 0 be a stopping time with density fT independent of Y . Again, the aim
is to estimate fT non-parametrically based on i.i.d. samples X1, . . . , Xn of YT .

Remark 3.10.3. We can easily generalize the setting above to the case, where
Y1 is Gamma-distributed with shape parameter σ > 0 and rate parameter r > 0,



3.10. SOME OTHER SELF-SIMILAR PROCESSES 57

i.e. Y1 has density

(3.10.10) f1(x) =
rσ

Γ(σ)
xσ−1e−rx, x ≥ 0.

We can reduce this model to the previous case r = 1 by considering the process
(Ỹt)t≥0 := (rYt)t≥0 and modifying our observations to X̃i := rXi with the result

that X̃i
d
= ỸT for i = 1, ..., n.

As an example consider the so-called square of a Bessel process with dimension
d starting at 0. This is a self-similar R+-valued process with scaling parameter
H = 1 and continuous paths. It is equal in distribution to the square of a Bessel
process with dimension d starting at 0. See [31, Chapter XI, §1] for further details
about these processes. If we choose r = 1/2 and σ = d/2 for d ≥ 1, then the
density of a squared Bessel process with dimension d at time t = 1 is given by
(3.10.10).
Let us present the estimation procedure. From Example 2.2.5 we have

M[|Y1|](s) =
Γ(s+ σ − 1)

Γ(σ)
Re(s) > σ − 1.

Thus, estimator (3.2.6) takes the form

(3.10.11) f̂n(x) =
Γ(σ)

2π

1
hn∫

− 1
hn

1
n

∑n
k=1 X

(γ−1+iv)/H
k

Γ
(
σH+γ−1+iv

H

) x−γ−iv dv

for x > 0 and max{1 − σH, a} < γ < b. We can prove a convergence result for
this estimator, that is similar to Theorems 3.7.3 and 3.10.2.

Theorem 3.10.4. Let fT ∈M(a,b) for some 0 ≤ a < b.

(i) If T ∈ C(β, L, γ) for some β, L > 0 and γ ∈ (max{a, 1− σH, 1− σ/4}, b)
with 2γ − 1 ∈ (a, b), then

(3.10.12) MSEγ(x) .

{
1
n
e

π
Hhn + e−2β/hn , if γ ≥ 1− σH +H/2

1
n
h

2(γ+σH−1)
H

−1
n e

π
Hhn + e−2β/hn , if γ < 1− σH +H/2

for n→∞ and all x > 0. We choose

(3.10.13) hn =

{π/H+2β
logn

, if γ ≥ 1− σH +H/2
π/H+2β

logn−(1− 2(γ+σH−1)
H ) log logn

, if γ < 1− σH +H/2

to obtain the rate
(3.10.14)√

MSEγ(x) .

{
n−

β
π/H+2β , if γ ≥ 1− σH +H/2

n−
β

π/H+2β (log n)−
β

π/H+2β ( 2(γ+σH−1)
H

−1), if γ < 1− σH +H/2
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for n→∞ and all x > 0.
(ii) If T ∈ D(β, L, γ) for some β, L > 0 and γ ∈ (max{a, 1− σH, 1− σ/4}, b)

with 2γ − 1 ∈ (a, b), then

(3.10.15) MSEγ(x) .

{
1
n
e

π
Hhn + h2β

n , if γ ≥ 1− σH +H/2

1
n
h

2(γ+σH−1)
H

−1
n e

π
Hhn + h2β

n , if γ < 1− σH +H/2

for n→∞ and all x > 0. Choosing

(3.10.16) hn =

{
π/H

logn−2β log logn
, if γ ≥ 1− σH +H/2
π/H

logn−(2β+1−2(γ+σH−1)/H) log logn
, if γ < 1− σH +H/2

yields the rate

(3.10.17)
√

MSEγ(x) . (log n)−β

for n→∞ and all x > 0.

Proof. (i) Let T ∈ C(β, L, γ). The upper bound on variance from Lemmas
3.6.1 and 2.4.4 give

Var[xγ f̂n(x)] ≤ C0(γ,H, σ)Γ2(σ)

4π2n

 1/hn∫
−1/hn

∣∣∣∣∣ 1

Γ
(
γ+H−1+iv

H
+ σ − 1

)∣∣∣∣∣dv


2

≤ C0(γ,H, σ)H2Γ2(σ)

4π2n

 1/(Hhn)∫
−1/(Hhn)

∣∣∣∣∣ 1

Γ
(
γ+σH−1

H
+ iv

)∣∣∣∣∣ dv


2

.

{
1
n
e

π
Hhn , if γ ≥ 1− σH +H/2

1
n
h

2(γ+σH−1)
H

−1
n e

π
Hhn , if γ < 1− σH +H/2

,

where

C0(γ,H, σ) :=
Γ(4γ + σ − 4)

Γ(σ)
M[T ](2γ − 1)

is finite by the assumption γ ≥ 1− σ/4 and 2γ − 1 ∈ (a, b).
Combining this bound on the variance with the bound on the bias from Lemma
3.5.2(i) we obtain (3.10.12). And plugging (3.10.13) into (3.10.12) gives the rate
(3.10.14).
(ii) For T ∈ D(β, L, γ) we obtain the same bound on the variance as in (i). For
the bias we take the bound obtained in Lemma 3.5.2(ii). Adding bias and variance
gives (3.10.15). And plugging (3.10.16) into (3.10.15) gives the rate (3.10.17). �

In Chapter 6 we will discuss optimality of the rates (3.10.14) and (3.10.17).
As in Theorem 3.10.2 we see again that greater scaling parameters H yield better
convergence rates (at least for stopping times in C(β, L, γ)). Comparing the rate
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n−
β

π/H+2β in (3.10.14) with n−
β

π/(2H)+2β which is our result for norms of normally
distributed processes in an analogous setting (see Theorem 3.10.2) we observe that
the rate achieved for norms of Gaussian processes is the better one.





CHAPTER 4

Processes Associated with a Convolution Semi-group

In this chapter we generalize the problem of estimating a stopping time ba-
sed on observations of a stopped random process to the case of Lévy processes on
noncompact Sturm-Liouville hypergroups. These processes include the already dis-
cussed Bessel processes, but do not coincide with classical Lévy processes. Instead,
all of the above are special cases of so-called Lévy processes on commutative hy-
pergroups. A classical Lévy process with state space Rd (d ∈ N) is characterized
by its stationary independent increments. If we try to generalize this notion to
processes on a hypergroup K as their state space, we encounter a problem. As
the difference of two elements of K is generally not defined, it is unclear how to
interpret an increment Xt − Xs for s < t of a random process X = (Xt)t≥0 with
state space K. To overcome this problem we use the characterization of a Lévy
process via its associated convolution semi-group (with respect to the convolution
“∗” associated with K), i.e. we describe X as a time-homogeneous Markov process
with transition probabilities

(4.0.1) P (Xt ∈ A|Xs = x) = (µt−s ∗ δx)(A)

for t < s, x ∈ K, Borel sets A ⊆ K and some family of probability measures
(µt)t≥0 on K.
Throughout this chapter we roughly follow the outlines in [10] and [30] to provide
a basic understanding of hypergroups and the processes associated with them.

4.1. Introduction to Hypergroups

We refer the reader to [10] or [22] for a thorough introduction into the topic
of this section. Here we only summarize definitions and facts necessary for our
purposes.
A hypergroup (K, ∗) consists of a locally compact Hausdorff space K and a map
∗ : Mb(K) × Mb(K) → Mb(K) that is bilinear and associative on the Banach
space Mb(K) of all bounded regular Borel measures on K satisfying the following
conditions

(i) For all x, y ∈ K we have δx ∗ δy ∈M1(K) and supp(δx ∗ δy) is compact;
(ii) The mapping K×K →M1(K), (x, y) 7→ δx∗δy is continuous with respect

to the weak topology on M1(K);

61
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(iii) The mapping (x, y) 7→ supp(δx ∗ δy) is continuous from K × K into the
space of compact subsets of K with respect to the Michael topology (cf.
[10, Section 1.1] and [26]);

(iv) There exists a (necessarily unique) neutral element e ∈ K such that
δe ∗ δx = δx ∗ δe = δx for all x ∈ K;

(v) There exists a (necessarily unique) involution (a homeomorphism x 7→ x−

of K onto itself with the property (x−)− = x for all x ∈ K) such that
(δx ∗ δy)− = δy− ∗ δx− for all x, y ∈ K where µ− denotes the image of µ
under involution;

(vi) For x, y ∈ K, e ∈ supp(δx ∗ δy) if and only if x = y−.

Once the convolution of two point measures is established the convolution of ar-
bitrary measures µ, ν ∈Mb(K) is necessarily given by

(4.1.1) (µ ∗ ν)(A) =

∫∫∫
1A(z) d(δx ∗ δy)(z)dµ(x)dν(y)

for A ∈ B(K) and integration with respect to µ ∗ ν is determined as∫
K

f(z) d(µ ∗ ν)(z) =

∫∫∫
f(z) d(δx ∗ δy)(z)dµ(x)dν(y)

for f ∈ Cc(K). We call (K, ∗) commutative, if ∗ is commutative. (K, ∗) is called
hermitian, if x− = x for all x ∈ K. We often denote a hypergroup (K, ∗) briefly
by K.

Definition 4.1.1. Let (K, ∗) be a commutative hypergroup.

(i) A nontrivial measure ω on K is called Haar measure if δx ∗ ω = ω for all
x ∈ K.

(ii) The dual space K̂ of K is defined by

K̂ := {α ∈ Cb(K)|α 6≡ 0, α(x ∗ y−) = α(x)α(y) for all x, y ∈ K},

where Cb(K) is the class of continuous bounded functions K → C, α(y)
denotes the complex conjugate of α(y) and

α(x ∗ y−) :=

∫
K

α(z)d(δx ∗ δy−)(z).

(iii) The Fourier transforms of f ∈ L1(K,ω) and µ ∈Mb(K) are given by

f̂(α) :=
∫
K
α(x)f(x)dω(x) and µ̂(α) :=

∫
K
ᾱdµ

for α ∈ K̂. If a random variable X has distribution µ, we will denote its
Fourier transform by Fr[X] := µ̂.

K̂ is endowed with the topology of uniform convergence on compact sets and
it is a locally compact Hausdorff space with respect to this topology. There is a

unique measure π on K̂ such that the Fourier transform on L1(K,ω) ∩ L2(K,ω)

extends uniquely to an isometric isomorphism between L2(K,ω) and L2(K̂, π).
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In particular, the Fourier transform is unique for bounded measures. We call π

Plancherel measure. Notice that supp(π) is sometimes a proper subset of K̂. See
[10] for proofs of the facts in this paragraph.

Theorem 4.1.2. If (K, ∗) is a commutative hypergroup, then

(̂µ ∗ ν)(α) = µ̂(α)ν̂(α)

for all µ, ν ∈Mb(K) and α ∈ K̂.

Proof. Let α ∈ K̂. For µ, ν ∈Mb(K)

(̂µ ∗ ν)(α) =

∫
K

ᾱ(z) d(µ ∗ ν)(z)

=

∫
K

∫
K

∫
K

ᾱ(z) d(δx ∗ δy)(z)dµ(x)dν(y)

=

∫
K

ᾱ(x) dµ(x)

∫
K

ᾱ(y) dν(y)

= µ̂(α)ν̂(α),

which shows that the Fourier transform is multiplicative. �

Let us consider some examples of hypergroups.

Example 4.1.3. Every locally compact group (G, ·) is a hypergroup where the
convolution is defined by

(µ ∗ ν)(A) :=

∫∫
1A(x · y)dµ(x)dν(y)

for µ, ν ∈M b(G) and any Borel set A.

Example 4.1.4. Consider the group (R+, ·) with the canonical topology of open
sets on R+ and multiplication of real numbers as group operation. Define the
convolution ∗ := � by

(µ� ν)(A) =

∫∫
1A(xy)dµ(x)dν(y)

for µ, ν ∈ Mb(R+), A ∈ B(R+). The operation � is called Mellin convolution (cf.
[12]). The pair (R+,�) constitutes a commutative hypergroup with the following
(easy to check) properties:

(i) The Haar measure is given by ω := 1
t
dt, where dt represents the Lebesgue

measure on R+;
(ii) The dual space is identifiable with

R̂+ := {ϕα|α ∈ iR},
where ϕα : R+ → C, ϕα(x) = x−α;
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(iii) The Fourier transforms of f ∈ L1(R+,
1
t
dt) and µ ∈ Mb(R+) are given by

their Mellin transforms

f̂(α) =
∫
R+
xα−1f(x)dx and µ̂(α) :=

∫
R+
xαdµ(x).

See Section 2.2 for further details about Mellin transforms.

We are now ready to introduce the notion of a Lévy process that is associated
with a convolution semi-group on a hypergroup.

4.2. Lévy Processes on Commutative Hypergroups

Lévy processes on commutative hypergroups constitute a large class of proces-
ses including classical Lévy processes as described for example in [32] as well as
Bessel processes.

Definition 4.2.1. Let (µt)t≥0 be a family of probability measures on a hyper-
group K.

(i) (µt)t≥0 is called a convolution semi-group on K, if µs ∗ µt = µs+t for all
s, t ≥ 0 with µ0 = δε, and if µt → δε weakly as t→ 0.

(ii) K-valued Markov process Y = (Yt)t≥0 is called a Lévy process on K asso-
ciated with (µt)t≥0, if its transition probabilities satisfy

P (Xt ∈ A|Xs = x) = (µt−s ∗ δx)(A)

for all 0 ≤ s ≤ t, x ∈ K and A ∈ B(K).

By Lemma 4.1.2 and the uniqueness of the Fourier transform, the condition
µs ∗ µt = µs+t is equivalent to µ̂sµ̂t = µ̂s+t for all s, t ≥ 0.
In the following we use the term classical Lévy process for processes associated
with a classical convolution semi-group on R

d (in the sense of [32]). By Lévy
processes we always mean the general concept of Definition 4.2.1. By [30] such
processes are Feller processes and admit an equivalent càdlàg version. Thus, in the
following we can assume without loss of generality that a Lévy process Y = (Yt)t≥0

on a hypergroup (K, ∗) has càdlàg paths. And so it is feasible to consider YT for a
random time T as a random variable and do statistics based on observations of it.
A convolution semi-group (and the associated Lévy process) on a given hypergroup
can be characterized by its negative definite function. There are various definitions
of this concept (cf. [11]) of which we will provide two.

Definition 4.2.2. A locally bounded measurable function ψ : K̂ → C is cal-
led strongly negative definite, if ψ(1K) ≥ 0 and if there is a µt ∈ Mb(K) with

exp(−tψ) = µ̂t for all t > 0. We denote the class of these functions by N
(s)
B (K̂).

For the second definition denote the class of compactly supported measures on

K̂ byMc(K̂) and the class of compactly supported continuous functions on K̂ by

Cc(K̂).
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Definition 4.2.3. Let T2 := {cδ1K + gπ ∈ Mc(K̂)|c ∈ C, g ∈ Cc(K̂)}. A

continuous function ψ : K̂ → C is called weakly negative definite, if

(i) For all µ ∈ T2 with µ̌ ≥ 0 and µ̌(e) = 0 we have
∫
K̂
ψdµ ≤ 0;

(ii) ψ(1K) ≥ 0 and ψ(ᾱ) = ψ(α) hold for all α ∈ K̂.

We denote the class of these functions by N
(w)
T2

(K̂).

By [11] we have N
(s)
B (K̂) ⊆ N

(w)
T2

(K̂) but the two classes coincide if their
elements are restricted to supp(π). That is to say the following:

Theorem 4.2.4. If (µt)t≥0 is a convolution semi-group on (K, ∗), then there

is a unique ψ ∈ N (s)
B (K̂) with µ̂t = e−tψ for all t > 0. Conversely, if we have a

ψ ∈ N (w)
T2

(K̂), then there is a unique convolution semi-group (µt)t≥0 on (K, ∗) with

µ̂t
∣∣
supp(π)

= e−tψ
∣∣
supp(π)

for all t > 0.

Theorem 4.2.4 is called Schoenberg correspondence (cf. [10] and [11]). It shows
a one-to-one correspondence between negative definite functions and a convolution
semi-groups. It was first established by [38, Theorem 3.7].

4.3. Noncompact Sturm-Liouville Hypergroups

In this section we consider Lévy processes that are associated with a hypergroup
structure on K = R+. All known examples of commutative hypergroups on R+

allow a representation as a so-called Sturm-Liouville hypergroup (see [10, page
201]). We will refer to Lévy processes associated to these hypergroups as Sturm-
Liouville processes. Every Sturm-Liouville hypergroup is characterized by a so-
called Sturm-Liouville function, that is a continuous mapping A : R+ → R which
is differentiable and strictly positive on (0,∞).
For a Sturm-Liouville function A we define the Sturm-Liouville operator L on
C2((0,∞)) by

Lf := LAf := −f ′′ − A′

A
f ′.

Using these notations we adopt the following definition from [41]:

Definition 4.3.1. Let (R+, ∗) be a hypergroup with

supp(δx ∗ δy) = [|x− y|, x+ y] for x, y ∈ R+.

It will be called Sturm-Liouville hypergroup if for every f ∈ C∞(R+) the function
uf ∈ C∞(R+ × R+) defined by

uf (x, y) :=

∫
R+

fd(δx ∗ δy) x, y ∈ R+

is two times differentiable and satisfies the partial differential equation

Lxuf (x, y) = Lyuf (x, y), ux(0, y) = 0 for x, y > 0,
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where the indexes refer to parital derivatives with respect to the respective indexes.

For the following suppose that A allows the representation

(4.3.1)
A′

A
(x) =

α0

x
+ α1(x)

for all x in a neighborhood of 0, where α0 ∈ R+ and α1 : R+ → R are such that

(SL1) one of the following statements is true:
(SL1.1) α0 > 0 and α1 ∈ C∞(R), where α1 is an odd function (this implies

A(0) = 0);
(SL1.2) α0 = 0 and α1 ∈ C1(R+) (this implies A(0) > 0).

We assume further that A is such that

(SL2) there is a β ∈ C1(R+) such that β(0) ≥ 0, A′

A
− β is nonnegative and

decreasing on (0,∞), and q := 1
2
β′ − 1

4
β2 + A′

2A
β is decreasing on (0,∞).

If µ(Ω) ≤ 1 for a measure µ on a measurable space (Ω,A), then we call µ
subprobability measure. The following properties of Sturm-Liouville hypergroups
are well-known, for example from [10].

Theorem 4.3.2. Let (R+, ∗(A)) be a noncompact Sturm-Liouville hypergroup.
Assume additionally (4.3.1) and (SL2). Then

(i) The limit

ρ :=
1

2
lim
x→∞

A′

A
(x)

exists and is a nonnegative real number. ρ is called index of (R+, ∗(A));
(ii) A′

A
≥ 0 holds on (0,∞);

(iii) The dual space of (R+, ∗(A)) consists of real-valued functions ϕλ
(λ ∈ R+ ∪ i[0, ρ]), where ϕλ is the unique solution of the initial value pro-
blem

LAϕλ = (λ2 + ρ2)ϕλ, ϕλ(0) = 1, ϕ′λ(0) = 0;

This implies that the Fourier transform associated with (R+, ∗(A)) is given
by

µ̂(λ) :=

∫
R+

ϕλ(x) dµ(x)

for µ ∈Mb(R+);
(iv) For all λ ∈ R+ ∪ i(0, ρ] we have ||ϕλ||∞ ≤ 1;
(v) (R+, ∗(A)) allows a Laplace representation, i.e. for all x ∈ R+ there is a

subprobability measure τx on [−x, x] such that for all λ ∈ C

ϕλ(x) =

x∫
−x

cos(λt) dτx(t).

If ρ = 0, then τx is a probability measure.
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If a random variable X has distribution µ, then we denote the Fourier transform
of X by Fr[X] := µ̂.
Before we give some examples of noncompact Sturm-Liouville hypergroups, we
need to introduce some special functions.

Definition 4.3.3. Let α > 1/2. Denote by Jα the Bessel function of the first
kind, defined by

Jα(x) :=
∞∑
k=0

(−1)k

k!Γ(k + α + 1)

(x
2

)2k+α

, x > 0.

The modified Bessel function Λα : R+ → R is defined by

(4.3.2) Λα(x) :=

{
2αΓ(α + 1)x−αJα(x), for x > 0

1 (= lim
x→0

Λα(x)), for x = 0
.

Both functions Jα and Λα are well-known in the literature. See, for example,
[1, Chapter 9] or [18] for their analytical properties.

Let us now list some examples of noncompact Sturm-Liouville hypergroups.

Example 4.3.4. (i) Bessel-Kingman hypergroups (see [10] and [23]) with

A(x) := x2α−1, x ∈ R+

for some α > −1/2.
For point measures δx and δy with x, y ∈ R+ convolution is defined by

(δx ∗α δy)(A) :=
Γ(α + 1)√
πΓ(α + 1/2)

∫ π

0

1A(
√
x2 + y2 − 2xy cos(t)) sin2α(t)dt

for A ∈ B(R+). For µ, ν ∈Mb(R+) convolution is defined by (4.1.1).
The dual space is given by {ϕλ|λ ≥ 0}, where ϕλ(x) := Λα(λx) for x ≥ 0.
The Fourier transform on a Bessel-Kingman hypergroup of µ ∈ Mb(R+)
is given by

µ̂(λ) =

∫
R+

Λα(λx)dµ(x).

(ii) Jacobi hypergroups, where

A(x) := sinh2α+1(x) cosh2β+1(x)

for all x ∈ R+ and some α ≥ β > −1
2
.

(iii) Square hypergroup, where

A(x) := (1 + x)2

for all x ∈ R+.
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(iv) Two point support hypergroups, where

A(x) := a cosh2(bx)

for all x ∈ R+ and some a > 0, b ≥ 0.

The next Theorem is an analogue to the Lévy-Khinchin formula for classical
convolution groups.

Theorem 4.3.5. Let (µt)t≥0 a convolution semi-group on a noncompact Sturm-
Liouville hypergroup. Then the Fourier transform of µt is given for all t ≥ 0, u > 0
by

(4.3.3) µ̂t(u) = exp(−tψ(u)),

where

(4.3.4) ψ(λ) = ψ(0) + c(λ2 + ρ2) +

∫
R+\{0}

(1− ϕλ(x)) dν(x)

with a unique constant c ≥ 0 and a Lévy measure ν (i.e. ν is a measure on R+

which satisfies ν({0}) = 0 and
∫
R+

max{1, x2}dν(x) < ∞). We call the couple

(c, ν) the characteristic of (µt)t≥0 (or of a Lévy process associated with (µt)t≥0).

Proof. By Theorem 4.2.4 ψ is the unique strongly negative definite function
associated with (µt)t≥0. And by [11] ψ allows the representation above. �

Remark 4.3.6. If ρ = 0, then we have ψ(0) = 0. That is because Theorem
4.3.2(iii) implies φiρ = 1 (cf. [10, page 223]) and therefore,

exp(−ψ(0)) = µ̂1(0) =

∫
R+

φ0(x)dµ1(x) = µ1(R+) = 1,

which implies the claim.

Lemma 4.3.7. Let ρ = 0. If
∫∞

1
xdν(x) <∞, then ψ is continuously differen-

tiable and the derivative is given by

ψ′(λ) = 2cλ−
∫

R+\{0}

d

dλ
ϕλ(x) dν(x).

Proof. The claim follows from (4.3.4) by interchanging differentiation with
integration. This interchange is valid by dominated convergence (see [14, page
148]). In order to apply that, note that the derivative d

dλ
ϕλ exists by Theorem

4.3.2 on R+. Moreover, it follows (considering Theorem 4.3.2) that∣∣∣∣ ddλ(1− ϕλ(x))

∣∣∣∣ =

∣∣∣∣∣∣ ddλ
x∫

−x

cos(λt)dτx(t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x∫

−x

t sin(λt)dτx(t)

∣∣∣∣∣∣ ≤
{
x2, x ≤ 1

x, x > 1

for all λ, x ∈ R+, where τx is some probability measure. This gives us an integrable
bound with respect to ν. �
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4.4. Lévy Processes with Spherical Symmetry

In this section we discuss the class of multi-dimensional spherically symmetric
Lévy processes. These processes are particularly suitable to describe the movement
of particles in the experiment described in the introduction. Particles in that ex-
periment move around “freely”, that is without any preference for direction, since
there is no external force (like gravitation) driving them to one side. This property
can be made mathematically precise by the concept of spherical symmetry. Let
us first discuss the spherical symmetry of a random vector. For this we follow the
outlines in [23] and [25].

For the following definition denote by SO(d) the set of orthogonal Rd×d-matrices
with determinant 1 (that is the set of matrices that act as a rotation).

Definition 4.4.1. Let µ ∈ M1(Rd), d ∈ N. We call µ spherically symmetric
(or say µ has spherical symmetry or µ is rotationally invariant), if we have

µ(A) = µ(O(A))

for all A ∈ B(Rd) and O ∈ SO(d). A random vector X = (X1, ..., Xd) is called
spherically symmetric, if its distribution is spherically symmetric.

The distribution of a spherically symmetric vector X = (X1, ..., Xd) is deter-
mined by that of its length

|X| =

(
d∑
i=1

X2
i

)1/2

.

In particular the characteristic function of X is given by

(4.4.1) F [X](t) = E[ei<t,X>] = E[Λα(|t||X|)],

where t = (t1, ..., td) ∈ Rd, α = d/2 − 1 and Λα is defined by (4.3.2). The proof
of this fact can be found in [25]. In view of (4.4.1) Lord points out in [25] that
while investigating spherically symmetric random vectors it is often sufficient to
work with their lengths.
Let us now transfer the concept of spherical symmetry to classical Lévy processes.
We call a classical d-dimensional Lévy process Y = (Yt)t≥0 with the associated
convolution semi-group (µt)t≥0 spherically symmetric, if µt has spherical symmetry
for each t ≥ 0. By (4.4.1), such a process satisfies
(4.4.2)

E[Λα(|r||Ys+t|)] = F [Ys+t](r) = F [Ys](r)F [Yt](r) = E[Λα(|r||Ys|)Λα(|r||Yt|)]

for all s, t ≥ 0, r ∈ Rd and α = d/2 − 1. Denote by |µt| the image measure of µt
under the Euclidean norm (t ≥ 0). Identity (4.4.2) implies

|̂µs+t|(r) = |̂µs|(r)|̂µt|(r), s, t, r ∈ R+,
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where |̂µt|(r) =
∫
R+

Λα(rx)d|µt|(x) is the Fourier transform of |µt| associated

with the Bessel-Kingman hypergroup (see Example 4.3.4(i)), i.e. (|µt|)t≥0 is a
convolution semi-group on the Bessel-Kingman hypergroup. Hence, the process
||Y ||2 := (||Yt||2)t≥0 is a Lévy process on the Bessel-Kingmann hypergroup asso-
ciated with (|µt|)t≥0. Thus, in order to perform statistical inference for classical
d-dimensional spherically symmetric Lévy processes it is sufficient to work with
their lengths. This provides us the key to solving multi-dimensional problems like
the one described in the introduction.



CHAPTER 5

Estimation for Lévy Processes on Sturm-Liouville
Hypergroups

Let (µt)t≥0 be a convolution semi-group associated with a strongly negative

definite function ψ ∈ N (s)
B (K̂) on a noncompact Sturm-Liouville hypergroup with

index ρ = 0. Consider the Lévy process Y = (Yt)t>0 associated with (µt)t≥0 in the
sense of Definition 4.2.1. We assume that ψ (and consequently the distribution
of Y ) is known explicitly by its characterizing parameters c and ν (cf. Theorem
4.3.5). Our goal is to estimate the density fT of a nonnegative stopping time
T independent of Y based on i.i.d. observations X1, ..., Xn of YT . This can be
achieved in a similar way to the case of classical Lévy processes described in [7].

5.1. Construction of the Estimator

Our approach is based on the following basic fact which connects the Fourier
transform Fr of a random variable X with its classical Laplace transform

L[X](t) := E[e−tX ], t ∈ R.

Lemma 5.1.1. Given the setting above we have

Fr[YT ](λ) = L[T ](ψ(λ))

for all λ ∈ R+.

Proof. Let T be a random variable on a probability space (Ω1,A1, P1) and Y
a process on (Ω2,A2, P2). (cf. Remark 3.1.1). Denote by P the product measure
of P1 and P2. Then Theorem 4.2.4 and Fubini’s theorem imply

Fr[YT ](λ) =

∫
K

ϕλ(x)dP YT (x)

=

∫
Ω2

∫
Ω1

ϕλ(YT (ω2)(ω1))dP1(ω1)dP2(ω2)

=

∫
Ω2

Fr[YT (ω2)](λ)dP2(ω2)

=

∫
Ω2

e−T (ω2)ψ(λ)dP2(ω2)

= L[T ](ψ(λ))

71
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for all λ ∈ R+, where ϕλ are the functions which constitute the dual space of R+

(see Theorem 4.3.2(iii)). �

In order to construct an estimator for fT we consider the Mellin transform of
the Laplace transform M[L[T ]] of T . The following lemma describes how this
object is related to the Mellin transform of T . This relation is well-known (see,
for instance, [27, page 3]).

Lemma 5.1.2. Let fT ∈M(0,1). Then we have

M[L[T ]](z) =M[T ](1− z) · Γ(z)

for all 0 < Re(z) < 1.

Proof. Let 0 < Re(z) < 1. By fT ∈M(0,1) we have

E

 ∞∫
0

|uz−1e−uT | du

 = E[|T (1−z)−1|]
∞∫

0

|xz−1e−x| dx <∞,

which allows us to interchange the order of integration in (5.1.1) by Fubini’s the-
orem. With the change of variables x := uT in (5.1.2) it follows that

M[L[T ]](z) =

∞∫
0

uz−1 E[e−uT ] du

= E

 ∞∫
0

uz−1e−uT du

(5.1.1)

= E

 1

T

∞∫
0

( x
T

)z−1

e−x dx

(5.1.2)

= E[T (1−z)−1]

∞∫
0

xz−1e−x dx

=M[T ](1− z) · Γ(z),

which is our claim.
�

Another representation of M[L[T ]] is given by

Theorem 5.1.3. Let (Yt)t≥0 be a Sturm-Liouville process associated with a
strongly negative definite function ψ and characteristic (c, ν). If

∫∞
1
xdν(x) < ∞
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and lim
u→∞

ψ(u) =∞, then

M[L[T ]](z) =

∞∫
0

ψ(λ)z−1Fr[YT ](λ)ψ′(λ) dλ

for 0 < Re(z) < 1.

Proof. The function uz−1L[T ](u) is continuous in u on (0,∞) and ψ is conti-
nuously differentiable on (0,∞) by Lemma 4.3.7. Hence, by the change of variables
u := ψ(λ), we have

M[L[T ]](z) =

∞∫
0

uz−1L[T ](u)du

=

∞∫
0

ψ(λ)z−1L[T ](ψ(λ))ψ′(λ) dλ.(5.1.3)

Note that ψ(∞) = ∞ by assumption and ψ(0) = 0 by Remark 4.3.6. (So the
integration interval does not change after the change of variables.) The identity
(5.1.3) implies the assertion considering L[T ](ψ(λ)) = Fr[YT ](λ) for all λ ≥ 0 by
Lemma 5.1.1. �

The assumption lim
u→∞

ψ(u) =∞ in Theorem 5.1.3 is satisfied if we have c > 0.

Provided the requirements of Lemmas 5.1.2 and 5.1.3 are met, we have

(5.1.4) M[T ](z) =
M[L[T ]](1− z)

Γ(1− z)
=

∫∞
0
ψ(λ)−zFr[YT ](λ)ψ′(λ) dλ

Γ(1− z)

for 0 < Re(z) < 1. By Mellin inversion this implies

(5.1.5) fT (x) =
1

2π

∫ ∞
−∞

∫∞
0
ψ(λ)−γ−ivFr[YT ](λ)ψ′(λ) dλ

Γ(1− γ − iv)
x−γ−iv dv.

Using the approximation

Fr[YT ](λ) = E[ϕλ(YT )] ≈ 1

n

n∑
k=1

ϕλ(Xk)

we define for 1
2
< γ < 1:

(5.1.6) f̂n(x) :=
1

2π

∫ Un

−Un

∫ An
0

ψ(λ)−γ−ivψ′(λ) 1
n

∑n
k=1 ϕλ(Xk) dλ

Γ(1− γ − iv)
x−γ−iv dv

as an estimator for the density of a stopping time T ≥ 0 based on samples
X1, ..., Xn of YT . (Un)n∈N and (An)n∈N are regularizing sequences to be chosen
later such that An, Un →∞ for n→∞. They (the sequences) make sure that the
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integrals defining f̂n(x) converge. The real-valued functions ϕλ which define the
dual space of the underlying Sturm-Liouville hypergroup are determined by the
initial value problem in Theorem 4.3.2(iii). We assume that they are either known
explicitly (like in our example in Section 5.3) or can be calculated numerically.

5.2. Convergence

The goal of this section is to show consistency of estimator (5.1.6), and to
derive its convergence rate. The main result will be presented in Theorem 5.2.6.
Before we can prove that, we need a number of auxiliary results.

We begin by showing an asymptotic bound on the Fourier transform of a Sturm-
Liouville process stopped at a random time.

Lemma 5.2.1. Let (Yt)t≥0 be a Sturm-Liouville process with associated strongly
negative definite function ψ and characteristic (c, ν), c > 0. If fT is essentially
bounded, then

|Fr[YT ](λ)| . λ−2

holds for λ→∞.

Proof. Lemma 5.1.1 implies

|Fr[YT ](λ)| = |L[T ](ψ(λ))| =
∣∣∣∣∫ ∞

0

e−ψ(λ)tfT (t)dt

∣∣∣∣ .
Let B > 0 such that fT ≤ B almost everywhere. By Lemma 5.2.2 we have
ψ(λ) & λ2 for λ→∞. Hence, we conclude that

|Fr[YT ](λ)| ≤ B

∣∣∣∣∫ ∞
0

e−ψ(λ)tdt

∣∣∣∣ = B |ψ(λ)|−1 . λ−2

for λ→∞. �

Next, we investigate the asymptotic behavior of the strongly negative definite
function of a given Sturm-Liouville process.

Lemma 5.2.2. Let (Yt)t≥0 be a Sturm-Liouville process with associated strongly
negative definite function ψ and characteristic (c, ν). Suppose

∫∞
0
x2 dν(x) < ∞

and c > 0. Then it follows that

(i) ψ(λ) & λ2 and |ψ′(λ)| . λ for λ→∞;
(ii) ψ(λ) & λ2 and |ψ′(λ)| . λ for λ→ 0.

Proof. Theorem (4.3.5) yields

ψ(λ) = cλ2 +

∫
(0,∞)

(1− ϕλ(x)) dν(x) & λ2(5.2.1)
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for λ→∞ and λ→ 0, because the value of the integral in (5.2.1) is positive.
For the derivative we use the Laplace representation (see Theorem 4.3.2(v))

(5.2.2) ϕλ(x) =

∫ x

−x
cos(λt) dτx(t).

with some probability measure τx. Lemma 4.3.7 and (5.2.2) imply

|ψ′(λ)| =
∣∣∣∣2cλ− ∫

(0,∞)

d

dλ
ϕλ(t) dν(x)

∣∣∣∣
≤ 2cλ+

∫
(0,∞)

x∫
−x

|t sin(λt)| dτx(t)dν(x)

≤ 2cλ+ λ

∫
(0,∞)

x∫
−x

t2 dτx(t)dν(x)

≤ 2cλ+ λ

∫
(0,∞)

x2 dν(x).

Thus |ψ′(λ)| . λ for λ→∞ and λ→ 0. �

In the next step we consider an integral similar to the inner integral in (5.1.6).
It will be used later to derive a bound on the variance of (5.1.6).

Lemma 5.2.3. Let (Yt)t≥0 be a Sturm-Liouville process with associated strongly
negative definite function ψ and characteristic (c, ν). Suppose

∫∞
0
x2dν(x) <∞

and c > 0. If (An)n∈N is a sequence with An →∞ for n→∞, then we have∫ An

1

|ψ(λ)|−γ|ψ′(λ)| dλ . A2(1−γ)
n

for n→∞ for all γ ∈ (1/2, 1).

Proof. By Lemma 5.2.2(ii) there are C ≥ 0, λ0 ≤ 1 such that

|ψ(λ)|−γ|ψ′(λ)| ≤ Cλ1−2γ

for all λ ≤ λ0. Hence,∫ 1

0

|ψ(λ)|−γ|ψ′(λ)| dλ =

∫ λ0

0

|ψ(λ)|−γ|ψ′(λ)| dλ+

∫ 1

λ0

|ψ(λ)|−γ|ψ′(λ)| dλ

≤ C

∫ 1

λ0

λ1−2γ dλ+ (1− λ0) sup
λ∈[0,λ0]

{|ψ(λ)|−γ|ψ′(λ)|}

=
C

2(1− γ)
(1− λ2(1−γ)

0 ) + (1− λ0) sup
λ∈[0,λ0]

{|ψ(λ)|−γ|ψ′(λ)|}

< C1(5.2.3)
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holds for some C1 > 0.
By Lemma 5.2.2(i) there are K ≥ 0, λ1 ≥ 1 such that for all λ ≥ λ1 we have:

|ψ(λ)|−γ|ψ′(λ)| ≤ Kλ1−2γ.

Choose n0 ∈ N such that An ≥ λ1 for all n ≥ n0. Then we have∫ An

1

|ψ(λ)|−γ|ψ′(λ)| dλ =

∫ λ1

1

|ψ(λ)|−γ|ψ′(λ)| dλ+

∫ An

λ1

|ψ(λ)|−γ|ψ′(λ)| dλ

≤ (λ1 − 1) sup
λ∈[1,λ1]

{|ψ(λ)|−γ|ψ′(λ)|}+K

∫ An

λ1

λ1−2γ dλ

.
1

2(1− γ)
(A2(1−γ)

n − λ2(1−γ)
1 )

. A2(1−γ)
n(5.2.4)

for n → ∞ and γ ∈ (1/2, 1). A combination of (5.2.3) and (5.2.4) yields the
claim. �

Next, denote the inner integral of (5.1.6) without the Σ-sign and 1/n by

Φn(z,Xk) :=

∫ An

0

[ψ(λ)]z−1ϕλ(Xk)ψ
′(λ) dλ

with z = 1− γ− iv and k = 1, ..., n. In the following lemma we consider the mean
and the variance of these random variables.

Lemma 5.2.4. If (An)n∈N is a sequence satisfying An →∞ for n→∞, then

(i) E [Φn(z,X1)] =
∫ An

0
[ψ(λ)]z−1Fr[X1](λ)ψ′(λ) dλ and

(ii)
√

Var [Φn(z,X1)] ≤
∫ An

0
|ψ(λ)|Re(z)−1|ψ′(λ)|

√
Var[eiλX1 ] dλ

for all n ∈ N and Re(z) ∈ (0, 1).

Proof. Let n ∈ N and Re(z) ∈ (0, 1).
(i) Fubini’s theorem and Lemma 5.1.1 yield

E [Φn(z,X1)] = E

[∫ An

0

[ψ(λ)]z−1ϕλ(X1)ψ′(λ) dλ

]
=

∫ An

0

[ψ(λ)]z−1 E[ϕλ(X1)]ψ′(λ) dλ

=

∫ An

0

[ψ(λ)]z−1Fr[X1](λ)ψ′(λ) dλ.
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(ii) By means of Lemmas 2.1.8 and 2.1.7 we have

√
Var [Φn(z,X1)] =

√
Var

[∫ An

0

[ψ(λ)]z−1ϕλ(X1)ψ′(λ) dλ

]
≤
∫ An

0

√
Var [[ψ(λ)]z−1ϕλ(Xk)ψ′(λ)] dλ

=

∫ An

0

|ψ(λ)|Re(z)−1|ψ′(λ)|
√

Var[ϕλ(X1)] dλ.

Thus both claims are shown. �

For the final lemma before our main result we consider an object which is
associated with the bias of estimator (5.1.6). Denote it by

In :=
1

2π

∫ Un

−Un

∫∞
An

[ψ(λ)]−γ−ivFr[YT ](λ)ψ′(λ) dλ

Γ(1− γ − iv)
x−γ−iv dv.

The following lemma provides an upper bound on this expression.

Lemma 5.2.5. Let (Yt)t≥0 be a Sturm-Liouville process with associated strongly
negative definite function ψ and characteristic (c, ν). Suppose that

∫
0
∞x2dν(x) <

∞ and c > 0. Let (Un)n∈N and (An)n∈N be sequences with An, Un →∞ for n→∞.
If fT is essentially bounded, then for all x > 0 we have

In . x−γU
γ−1/2
n eUnπ/2A−2γ

n

as n→∞.

Proof. Triangle inequality implies:

|In| ≤
x−γ

2π

∫ Un

−Un

∫∞
An
|ψ(λ)|−γ|Fr[YT ](λ)||ψ′(λ)| dλ

|Γ(1− γ − iv)|
dv.

According to Lemma 5.2.2 we have |ψ(λ)| & λ2 and |ψ′(λ)| . λ for λ→∞. Thus

In . x−γ
∫ Un

−Un

∫∞
An
λ−2γ+1|Fr[YT ](λ)| dλ
|Γ(1− γ − iv)|

dv, n→∞

= x−γ
∫ Un

−Un

1

|Γ(1− γ − iv)|
dv

∫ ∞
An

λ−2γ+1|Fr[YT ](λ)| dλ.(5.2.5)

Lemma 2.4.4 provides an estimate for the first integral in (5.2.5) and Lemma 5.2.1
for the second one. Overall,

In . x−γUγ−1/2
n eUnπ/2

∫ ∞
An

λ−2γ−1 dλ = x−γUγ−1/2
n eUnπ/2A−2γ

n .

is true for γ ∈ (1/2, 1) and n→∞. This concludes the proof. �
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Now we have all the auxiliary results that we need in order to give some con-
vergence rates of estimator (5.1.6). Recall the classes of functions

C(β, L, γ) =

{
f ∈Mγ

∣∣∣∣∫ eβ|v| |M[f ](γ + iv)| dv ≤ L

}
and

D(β, L, γ) =

{
f ∈Mγ

∣∣∣∣∫ (1 + |v|β) |M[f ](γ + iv)| dv ≤ L

}
for β, L > 0 and γ ∈ R from Section 3.4 and the weighted mean squared risk

MSEγ(x) = x2γ E[|fT (x)− f̂n(x)|2].

If the density of the estimated stopping time is in the class C(β, L, γ) for suitable
β, L, γ, then we have the following convergence result.

Theorem 5.2.6. Let (Yt)t≥0 be a Sturm-Liouville process with characteristic
(c, ν). Suppose that

∫
0
∞x2dν(x) < ∞ and c > 0. Let T ≥ 0 be a stopping

time independent of (Yt)t≥0 with an essentially bounded density fT . Moreover let
fT ∈ C(β, L, γ) for some γ ∈ (1/2, 1), β > 0 and L > 0. If we choose

An = n1/4 and Un =
γ

2β + π
log n− 2γ − 1

2β + π
log log n

in (5.1.6), then we get the convergence rate

(5.2.6)
√

MSEγ(x) . n−
βγ

2β+π (log n)β
2γ−1
2β+π

for all x > 0 and n→∞.

Proof. Let x > 0. For the bias of f̂n we have

|E[f̂n(x)]− fT (x)| =

∣∣∣∣∣ 1

2π

∫ Un

−Un

∫ An
0

[ψ(λ)]−γ−ivFr[YT ](λ)ψ′(λ) dλ

Γ(1− γ − iv)
x−γ−iv dv

− 1

2π

∫ ∞
−∞
M[T ](γ + iv)x−γ−ivdv

∣∣∣∣
≤ 1

2π

∣∣∣∣∣
∫ Un

−Un

∫∞
An

[ψ(λ)]−γ−ivFr[YT ](λ)ψ′(λ) dλ

Γ(1− γ − iv)
x−γ−iv dv

∣∣∣∣∣
+
x−γ

2π

∫
{|v|>Un}

|M[T ](γ + iv)|dv

=: (∗)1 + (∗)2

by Lemma 5.2.4, the Mellin inversion formula and (5.1.4). In Lemma 5.2.5 we
already showed

(∗)1 . x−γUγ−1/2
n eUnπ/2A−2γ

n
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for n→∞. And from fT ∈ C(β, L, γ) we get

(∗)2 ≤
x−γ

2π
e−βUn

∫
{|v|>Un}

|M[T ](γ + iv)|eβ|v|dv ≤ x−γL

2π
e−βUn .

For the variance of estimator (5.1.6) we conclude by means of Lemma 2.1.8, that

Var[f̂n(x)] = Var

[
1

2πn

n∑
k=1

∫ Un

−Un

Φn(1− γ − iv,Xk)

Γ(1− γ − iv)
x−γ−iv dv

]

=
1

(2π)2n
Var

[∫ Un

−Un

Φn(1− γ − iv,X1)

Γ(1− γ − iv)
x−γ−ivdv

]

≤ 1

(2π)2n

[∫ Un

−Un

√
Var

[
Φn(1− γ − iv,X1)

Γ(1− γ − iv)
x−γ−iv

]
dv

]2

=
1

(2π)2n
x−2γ

[∫ Un

−Un

√
Var [Φn(1− γ − iv,X1)]

|Γ(1− γ − iv)|
dv

]2

.

Lemmas 5.2.4 and 2.4.4 imply (Note that
√

Var[ϕλ(X1)] ≤ 1 because ‖ϕλ‖∞ = 1)

Var[f̂n(x)] ≤ x−2γ

(2π)2n

(∫ Un

−Un

∫ An
0
|ψ(λ)|−γ|ψ′(λ)|

√
Var[ϕλ(X1)] dλ

|Γ(1− γ − iv)|
dv

)2

≤ x−2γ

π2n

(
CUγ−1/2

n eUnπ/2
∫ An

0

|ψ(λ)|−γ|ψ′(λ)| dλ
)2

As a consequence of Lemma 5.2.3 it follows that

(5.2.7) x2γ Var[f̂n(x)] .
1

n

(
Uγ−1/2
n eUnπ/2A2(1−γ)

n

)2
, n→∞.

Combining estimates for the terms (∗)1, (∗)2 and (5.2.7) yields√
MSEγ(x) =

√
x2γ Var[f̂n(x)] + (xγ(E[f̂n(x)]− fT (x)))2

≤
√
x2γ Var[f̂n(x)] + (xγ((∗)1 + (∗)2))2

≤ xγ
√

Var[f̂n(x)] + xγ((∗)1 + (∗)2)

.
1√
n
Uγ−1/2
n eUnπ/2A2(1−γ)

n + e−βUn + Uγ−1/2
n eUnπ/2A−2γ

n .

By choosing

An = n1/4 and Un =
γ

2β + π
log n− 2γ − 1

2β + π
log log n
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we get √
MSEγ(x) . Uγ−1/2

n eUnπ/2
(

1√
n
A2(1−γ)
n + A−2γ

n

)
+ e−βUn

. (log n)γ−1/2
(
n

γ
2β+π (log n)

1−2γ
2β+π

)π/2
(n

1
2

(1−γ)− 1
2 + n−

1
2
γ)

+
(
n

γ
2β+π (log n)

1−2γ
2β+π

)−β
= n

γ
2β+π

π
2
− γ

2 (log n)
1−2γ
2β+π

π
2

+γ− 1
2 + n−

βγ
2β+π (log n)β

2γ−1
2β+π

. n−
βγ

2β+π (log n)β
2γ−1
2β+π ,

which is the claimed order of convergence. �

Remark 5.2.7. By letting γ → 1 in (5.2.6) we obtain the convergence rate

n−
β

2β+π log
β

2β+π n. This is the same rate (up to a logarithmic factor) we derived
for Bessel processes in Theorem 3.7.3(i). In Chapter 6 we show that this rate is
optimal for Bessel processes. Since the class of Sturm-Liouville processes contains

Bessel processes (see Section 5.3), it follows that n−
β

2β+π is the optimal rate here
as well.

Next, let the density of the estimated stopping time be in the class D(β, L, γ)
for suitable β, L, γ. Then the following convergence result holds.

Theorem 5.2.8. Let (Yt)t≥0 be a Sturm-Liouville process with characteristic
(c, ν). Suppose that

∫
0
∞x2dν(x) < ∞ and c > 0. Let T ≥ 0 be a stopping

time independent of (Yt)t≥0 with an essentially bounded density fT . Moreover let
fT ∈ D(β, L, γ) for some γ ∈ (1/2, 1), β > 0 and L > 0. If we choose

An = n1/4 and Un =
γ

π
log n− 2β + 2γ − 1

π
log log n

in (5.1.6), then we get the convergence rate

(5.2.8)
√

MSEγ(x) . (log n)−β

for all x > 0 and n→∞.

Proof. Let x > 0. This proof is analogue to the one of Theorem 5.2.6 save
for the estimation of the term (∗)2. Here, from fT ∈ D(β, L, γ) it follows that

(∗)2 ≤
x−γ

2π(1 + Uβ
n )

∫
{|v|>Un}

|M[T ](γ + iv)|(1 + |v|β)dv ≤ x−γL

2π(1 + Uβ
n )
.
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For the error term in question this leads to√
MSEγ(x) ≤ xγ

√
Var[f̂n(x)] + xγ((∗)1 + (∗)2)

. Uγ−1/2
n eUnπ/2

(
1√
n
A2(1−γ)
n + A−2γ

n

)
+ U−βn .

The choices

An = n1/4 and Un =
γ

π
log n− 2β + 2γ − 1

π
log log n

yield √
MSEγ(x) . (log n)γ−1/2

(
n
γ
π (log n)

1−2β−2γ
π

)π/2
n−

γ
2 + (log n)−β

. (log n)−β,

which is the claimed order of convergence in this case. �

Again, we were able to recover the rate (log n)−β that we also had for Bessel
processes in an analogous setting (see Theorem 3.7.3(ii)). Whether this rate is
optimal for D(β, L, γ) remains an open question due to reasons described in the
end of Chapter 6.

5.3. Application to a Bessel Process

As a comparison to Section 3.9 consider again a Gamma(2, 1) distributed stop-
ping time T , i.e. T has the density

f(x) = xe−x, x ≥ 0.

As mentioned in [10], [23] and [18], every Bessel process with dimension d has a
representation as a Lévy process on a Bessel-Kingman hypergroup (R+, ∗α) with
index α = d/2− 1 ≥ −1/2 (cf. Example 4.3.4(i)). To be more precise consider the
Rayleigh convolution semi-group (µt)t≥0 on a Bessel-Kingman hypergroup defined
by µt := ρ 1√

2t
for all t ≥ 0, where ρb are given for all b ≥ 0 by their Lebesgue

densities

fb(x) :=
2b2α+2x2α+2

Γ(α + 1)
e−b

2x2

for all x ∈ R+.
A Lévy process on (R+, ∗α) associated with (µt)t≥0 is equivalent to a Bessel process
of dimension d := 2α+2 as introduced in Section 3.7 (see [18, page 52] for a proof).
The Fourier transform on a Bessel-Kingman hypergroup of a probability measure
µ is given by

µ̂(λ) =

∫
R+

Λα(λx)dµ(x).
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It is easy to see (using the definition of Jα) that the modified Bessel function Λα

introduced in Definition 4.3.3 allows the series representation

(5.3.1) Λα(x) =
∞∑
k=0

(−1)kΓ(α + 1)

22kk!Γ(α + k + 1)
x2k, x ≥ 0.

Moreover, by [39, page 48] we also have the representation

(5.3.2) Λα(x) =
2Γ(α + 1)

πΓ(α + 1/2)

∫ 1

0

cos(xy)(1− y2)α−1/2 dy, x ≥ 0.

The associated strongly negative definite function ψ allows the representation

ψ(λ) = cλ2 +

∫
R+

(1− Λα(λx))dν(x), λ ≥ 0

with c ≥ 0 and a Lévy measure ν.
Taking c = 1/2, ν = 0 yields the strongly negative definite function corresponding
to a Bessel process of dimension d = 2α + 2 (cf. [18, page 58]). Applying these
facts to our estimator (5.1.6) gives

(5.3.3) f̂n(x) =
1

2π

∫ Un

−Un

∫ An
0

(
λ2

2

)−γ−iv
λφn(λ) dλ

Γ(1− γ − iv)
x−γ−iv dv,

with φn(λ) := 1
n

∑n
k=1 Λα(λXk) and γ ∈ (1/2, 1) as an estimator for the density of

a stopping time T ≥ 0 based on samples X1, ..., Xn of BEST . In order to compute
the inner integral numerically we use

Lemma 5.3.1. In the setting above we have for γ ∈ (0, 1) the decomposition

∫ An

0

(
λ2

2

)−γ−iv
λφn(λ) dλ =

∫ An

0

(
λ2

2

)−γ−iv
λ[φn(λ)− e−mnλ2/2] dλ

(5.3.4)

+mγ−1+iv
n Γ(1− γ − iv) +O(mγ−1

n e−mnA
2
n/2),

where mn := 1
2n(1+α)

∑n
k=1X

2
k . Moreover,

(5.3.5) mn → E[T ]
E[Y 2

1 ]

2(1 + α)
= 2

holds almost surely for n→∞ and

(5.3.6) φn(λ)− e−mnλ2/2 = O(λ4)

for λ→ 0.
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Proof. We have∫ An

0

(
λ2

2

)−γ−iv
λe−mnλ

2/2 dλ = mγ−1+iv
n Γ(1− γ − iv)−

∫ ∞
A2
n/2

λ−γ−ive−mnλdλ

= mγ−1+iv
n Γ(1− γ − iv) +O(mγ−1

n exp−A2
n/2),

which implies (5.3.4). Convergence in (5.3.5) follows from the law of large numbers
and Lemma 3.1.2. The asymptotic relation (5.3.6) is a consequence of (5.3.1) and
the exponential series. �

The asymptotic relation (5.3.6) guarantees that the integrand on the right-
hand side of (5.3.4) has no singularity in 0 (unlike the left-hand side). This lack
of singularities makes the whole computation much more stable. A similar decom-
position is used in [7] to compute estimates in the case of a classical Lévy process.

In order to compare the performance of this estimator to the one discussed in
section 3.9 we choose γ = 0.7 and α = 3/2 (which is equivalent to d = 5). Note
that

Λ3/2(x) =
3 sin(x)− 3x cos(x)

x3

for x ∈ R+.
Choose An = n1/4 in accordance with Theorem 5.2.6. We employ the adaptive
procedure described in Section 3.9 to find a suitable choice for the cut off para-

meter Un, that is to say we calculate estimators f
(1)
n , ..., f

(40)
n from 5.3.3 using the

decomposition (5.3.4) and replacing Un with U l
n = 0.1 × l for l = 1, ..., 40 and

determine l? = argminld(l) with

d(l) =

∫ ∞
0

|f (l+1)
n (x)− f (l)

n (x)|dx ≈
90∑
i=0

|f (l+1)
n (0.1 + 0.01i)− f (l)

n (0.1 + 0.01i)|.

f
(l?)
n is our estimator of fT . We then calculate f

(l?)
n one hundred times based on

different samples of size n = 1000 each. Left-hand side of Figure 5 shows the
Gamma(2,1) density and its 100 estimators. Right-hand side of Figure 5 depicts
the box-plot of the loss

sup
x∈R+

{|f (l?)
n (x)− fT (x)|} ≈ sup

x∈{0.1,0.11,...,9.99,10}
{|f (l?)

n (x)− fT (x)|}.

Note that estimation near 0 is difficult for the same reasons that we mentioned
at the end of Section 3.9.
We can now compare the performance of this estimation procedure with the one
based on self-similarity (see Section 3.9). When we consider Figure 4 (top right)
and the associated Figure 5, it is difficult to see a difference. A comparison of
the box plots of the loss (Figure 3 (right) and Figure 5) reveals that estimation
based on self-similarity performs better: We have a greater median loss of circa
0.14 from the hypergroup approach against 0.11 from the self-similarity approach
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Figure 5. Left: Estimated Gamma density (red) and 100 independent copies

of f
(l?)
n (grey) for the sample size n = 1000. Right: box plot of the loss

supx∈R+
{|f (l?)

n (x)− fT (x)}.

with a wider range (loss of up to circa 0.49 against 0.28). This difference can (at
least in part) be explained by the numerical difficulties discussed in this section
and does not devalue the general ideas of Section 5.1.



CHAPTER 6

Optimality

So far we only established upper bounds on the risk
√

MSEγ(x) defined by
(3.3.3). The question arises whether theses bounds can be improved. To answer
this we introduce the notion of optimal rate of convergence roughly following the
outline of [37, Chapter 2]. Application of this theory to our setting reveals that
the upper bounds provided above are optimal in the sense described below. A
similar optimality result was obtained in [6] for the case where a one-dimensional
Brownian motion is observed. We will build on their work to obtain analogous
results for observation types considered in this thesis.

6.1. Minimax Risk

Let Θ be a non-parametric class of functions containing the function f we wish
to estimate. In this thesis Θ = C(β, L, γ) or Θ = D(β, L, γ) (see Section 3.4).
Consider the distance

(6.1.1) d(f, g) := dx(f, g) := xγ|f(x)− g(x)|

for f, g ∈ Θ and some fixed x, γ > 0. The performance of an estimator f̂n of f is
measured by the maximum risk of this estimator on Θ:

r(f̂n) := sup
f∈Θ

E[d2(f̂n, f)] = sup
f∈Θ

MSEγ .

In Sections 3.7 and 3.10 we established upper bounds on r(f̂n), that is, inequalities
of the form

sup
f∈Θ

E[d2(f̂n, f)] ≤ Cψ2
n

for different estimators f̂n, some positive sequences ψn with ψn → 0 for n → ∞
and some constants C <∞. The aim of this section is to complement these upper
bounds by the corresponding lower bounds

sup
f∈Θ

E[d2(f̂n, f)] ≥ cψ2
n

(for sufficiently large n) for all estimators f̂n (that is, all measurable functions of
our observations X1, ..., Xn) and some positive constant c. To this end, it is useful
to define the minimax risk associated with the distance d:

R?
n := inf

f̂n

sup
f∈Θ

E[d2(f̂n, f)],

85
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where the infimum is over all estimators. The upper bounds established in Sections
3.7 and 3.10 imply that there exists a constant C <∞ such that

(6.1.2) lim sup
n→∞

ψ−2
n R?

n ≤ C

for a sequence ψn with ψn → 0 as n→∞. The corresponding lower bounds claim
that there exists a constant c > 0 such that

(6.1.3) lim inf
n→∞

ψ−2
n R?

n ≥ c

holds for the same sequence (ψn)n∈N.

Definition 6.1.1. A positive sequence (ψn)n∈N is called an optimal rate of
convergence of estimators on (Θ, d) if (6.1.2) and (6.1.3) hold. An estimator f ?n
satisfying

sup
f∈Θ

E[d2(f ?n, f)] ≤ C ′ψ2
n,

where (ψn)n∈N is the optimal rate of convergence and C ′ < ∞ is a constant, is
called a rate optimal estimator on (Θ, d).

Optimal rates of convergence are defined within a multiplicative constant. In
fact, if ψn is an optimal rate of convergence, then any sequence ψ′n satisfying

0 < lim inf
n→∞

(ψn/ψ
′
n) ≤ lim sup

n→∞
(ψn/ψ

′
n) <∞

is also called an optimal rate of convergence.

6.2. Reduction to two Hypotheses

The following argument is useful in obtaining lower bounds on R?
n. By Markov

inequality,

E[ψ−2
n d2(f̂n, f)] = x2γE[ψ−2

n |f̂n(x)− f(x)|2]

≥ x2γP (|f̂n(x)− f(x)| ≥ ψn)

for all x > 0. Since x2γ > 0 for all x, γ > 0 and since the optimal rate ψn is
unique up to a multiplicative constant, instead of searching for a lower bound
on the minimax risk R?

n, it is sufficient to find a lower bound on the minimax
probabilities of the form

inf
f̂n

sup
f∈Θ

P (|f̂n(x)− f(x)| ≥ εψn)

for some ε > 0.
To find a lower bound on the minimax probabilities note that

(6.2.1) inf
f̂n

sup
f∈Θ

P (|f̂n(x)− f(x)| ≥ εψn) ≥ inf
f̂n

max
f∈{fn,0,fn,1}

P (|f̂n(x)− f(x)| ≥ εψn)

holds for any fn,0, fn,1 ∈ Θ, n ∈ N, ε > 0. Later we will choose fn,0 and fn,1 in an
appropriate way and call them hypotheses. We call a test any measurable function
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Ψ : (X1, ..., Xn)(Ω)→ {0, 1}, where X1, ..., Xn are the observations in the model.
Suppose that fn,0 and fn,1 can be chosen such that for some x, ε > 0

(6.2.2) |fn,0(x)− fn,1(x)| ≥ 2εψn

for all n large enough. By the triangle inequality,

(6.2.3) |fn,k(x)− fn,j(x)| ≤ |f̂n(x)− fn,k(x)|+ |f̂n(x)− fn,j(x)|

for j, k = 0, 1 and any estimator f̂n. Using (6.2.2) and then (6.2.3) we obtain

P (|f̂n(x)− fn,j(x)| ≥ εψn) ≥ P (2|f̂n(x)− fn,j(x)| ≥ min
k 6=j
|fn,k(x)− fn,j(x)|)

≥ P (|f̂n(x)− fn,j(x)| ≥ min
k 6=j
|f̂n(x)− fn,k(x)|)

= P (arg min
k=0,1

|f̂n(x)− fn,k(x)| 6= j)

for j = 0, 1. In other words

(6.2.4) P (|f̂n(x)− fn,j(x)| ≥ εψn) ≥ P (Ψ? 6= j), j = 0, 1,

where Ψ? = arg min
k=0,1

|f̂n(x)−fn,k(x)| is the minimum distance test. It follows from

(6.2.1) and (6.2.4) that if we can construct hypotheses fn,0 and fn,1 satisfying
(6.2.2), then

inf
f̂n

sup
f∈Θ

P (|f̂n(x)− f(x)| ≥ εψn) ≥ inf
f̂n

max
f∈{fn,0,fn,1}

P (|f̂n(x)− f(x)| ≥ εψn) ≥ pe,

where
pe := inf

Ψ
max
j=0,1

P (Ψ 6= j)

and infΨ denotes the infimum over all tests in a model with n observation. For
the sake of brevity we omit that pe depends on n. The quantity pe is called the
minimax probability of error for the problem of testing two hypotheses fn,0 and
fn,1. Summing up this section we just proved the following theorem.

Theorem 6.2.1. Let Θ be a parameter class of real valued functions, x > 0
and dx as in (6.1.1). Let f̂n be an estimator for f ∈ Θ satisfying (6.1.2) for some
sequence (ψn)n∈N. If there are two hypotheses fn,0, fn,1 ∈ Θ such that for some
ε > 0 we have

(6.2.5) dx(fn,0, fn,1) ≥ 2εψn

for all n large enough and if

(6.2.6) pe ≥ c′

holds for some c′ > 0 independent of n, then (ψn)n∈N is the optimal rate of con-
vergence for (Θ, dx).

Tsybakov provides various lower bounds for pe in [37] that can be used to show
(6.2.6). The following is of interest to us.
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Theorem 6.2.2. Let Θ be a parameter class and n ∈ N. Let qn,j be the common
density of n observations associated with parameter fn,j ∈ Θ, j = 0, 1. If

(6.2.7) χ2(qn,1, qn,0) :=

∫
(qn,1(x)− qn,0(x))2

qn,0(x)
dx ≤ α

for some α <∞ (independent of n), then

pe ≥ max

{
exp(−α)

4
,
1−

√
α/2

2

}
for all n large enough. (Recall that pe depends on n.)

Proof. See [37, Theorem 2.2(iii)]. �

In our model of a stopped process Y (see Section 3.1) we consider a class of
densities of stopping times as Θ. For two stopping times T0 and T1 the densities
qn,0 and qn,1 from Theorem 6.2.2 correspond to the distributions of (X1

1 , ..., X
1
n)

and (X2
1 , ..., X

2
n) respectively, where Xj

i ∼ |YTj | (j = 0, 1, i = 1, ..., n). We already
mentioned at the end of Subsection 3.10.1 that we can only show optimality if the
sign of our observations is unknown. This is, of course, not an issue for Bessel and
squared Bessel processes which are nonnegative.
χ2(·, ·) is called χ2-divergence. If p is the density of a product measure P =

⊗n
i=1 Pi

with marginal densities pi and if q is the density of a product measure Q =
⊗n

i=1Qi

with marginal densities qi, then

χ2(p, q) =
n∏
i=1

(1 + χ2(pi, qi))− 1

(cf. [37, page 86]). Since we have i.i.d. observations in our models, in order to
check (6.2.7) it is sufficient to show

(6.2.8) (1 + χ2(p1,n, p0,n))n − 1 ≤ α

for some α <∞ (independent of n), where pj,n is the density of one of n observa-
tions of |YTj | (j = 0, 1).

6.3. Optimality for the Class C

In order to show that the rates obtained in Theorems 3.7.3(i), 3.10.2(i) and
3.10.4(i) are optimal in the minimax sense we need to construct hypotheses fn,0
and fn,1 as in Theorem 6.2.1. For this purpose we can follow the construction in
[7], where optimality is shown for the model, where the absolute value of a one-
dimensional Brownian motion is observed.
Define for ν > 1 and M > 0 two auxiliary functions

q(x) =
ν sin(π/ν)

π

1

1 + xν
, x ≥ 0
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and

ρM(x) =
1√
2π
e− log2(x)/2 sin(M log(x))

x
, x ≥ 0.

The following lemma provides some properties of the functions q and ρM .

Lemma 6.3.1. The function q is a probability density on R+ with the Mellin
transform

(6.3.1) M[q](z) =
sin(π/ν)

sin(πz/ν)
, 0 < Re(z) < ν.

The Mellin transform of the function ρM is given by

(6.3.2) M[ρM ](z) =
e(z−1+iM)2/2 − e(z−1−iM)2/2

2i
, z ∈ C.

Proof. The formula forM[q](z) can be found in [27]. Representation (6.3.2)
follows by the change of variables y = log(x) and completing the square. See also
[7, Lemma 6.2] for more details. �

Set now for any M > 0 and some δ > 0,

(6.3.3) f0,M(x) := q(x), f1,M(x) := q(x) + δ(q � ρM)(x),

for x ≥ 0, where q�ρM stands for the Mellin convolution of q and ρM (see (2.2.1)).
If we choose M appropriately depending on n (see below), then f0,M and f1,M are
the two hypotheses which we need in order do apply Theorem 6.2.1. The following
lemma will help us verify condition (6.2.5).

Lemma 6.3.2. For any M > 0 and some δ > 0 not depending on M the
function f1,M is a probability density satisfying

sup
x≥0
|f0,M(x)− f1,M(x)| & exp(−Mπ/ν), M →∞.

Moreover, f0,M and f1,M are in C(β, L, γ) for all 0 < β < π/ν and γ > 0 with L
depending on γ.

Proof. See [7, Lemma 6.3]. �

Looking further towards applying Theorem 6.2.1 let us consider the densities
pM,0 and pM,1 of an observation associated with the hypotheses f0,M and f1,M ,
respectively. This step is somewhat different from [7], because we consider a
different model. At this point we have to differentiate between the models we
discussed so far.
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6.3.1. Observation of a Bessel Process. In this subsection we prove that

the rate n
−β
π+2β from Theorem 3.7.3(i) is optimal for (C(β, L, γ), dx) in the sense of

Definition 6.1.1 for all β ∈ (0, π), γ > 0 with L depending on γ. By Remark 5.2.7
this implies that the rate in Theorem 5.2.6(i) is also optimal.
Let T0,M and T1,M be two random variables with respective densities f0,M and f1,M

given by (6.3.3). The density of the random variable BESTi,M , i = 0, 1 is obtained
via Lemma 3.1.3 from the density of BESt (given in Lemma 3.7.2(i)). We have

pi,M(x) =
21− d

2

Γ (d/2)
xd−1

∫ ∞
0

λ−d/2e−
x2

2λ fi,M(λ)dλ, x > 0, d ≥ 1, i = 0, 1.

For the Mellin transform of pi,M we use self-similarity of BES and 3.7.2(iv) to get

M[pi,M ](s) =M[BES1](s)M[Ti,M ]((s+ 1)/2)

=
1

Γ (d/2)
Γ

(
s+ d− 1

2

)
2
s+1
2 M[fi,M ]((s+ 1)/2), i = 0, 1(6.3.4)

for Re(s) > 1− d and Re(s) ∈ (−1, 2ν + 1).

Lemma 6.3.3. The χ2-distance between the densities p0,M and p1,M fulfills

χ2(p1,M , p0,M) .Mν+d−2e−Mπ(1+2/ν)

for M →∞ and all d ≥ 1, ν > 1.

Proof. This proof is similar to the one of [7, Lemma 6.4], where the special
case d = 1 is treated.

Step 1. We show

(6.3.5) p0,M(x) & x−2ν+1, x→∞

for d ≥ 1, ν > 1.

To this end define cν,d := 21−
d
2

Γ(d/2)
ν sin(π/ν)

π
and perform the change of variables y = 1/λ

in the second equality sign of the following calculation and z = y x
2

2
in the sixth to
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obtain

p0,M(x) = cν,dx
d−1

∞∫
0

λ−d/2e−
x2

2λ
1

1 + λν
dλ

= cν,dx
d−1

∞∫
0

yd/2e−y
x2

2
1

y2(1 + y−ν)
dy

= cν,dx
d−1

∞∫
0

e−y
x2

2
yν+d/2−2

yν + 1
dy

= cν,dx
d−1

∞∫
0

e−y
x2

2 yν+d/2−2

(
1− yν

yν + 1

)
dy

= cν,dx
d−1

 ∞∫
0

e−y
x2

2 yν+d/2−2dy −R


= cν,dx

d−1

2ν+d/2−1x−2ν−d

∞∫
0

e−zzν+d/2−2dz −R


= cν,d

(
Γ(ν + d/2− 1)2ν+d/2−1x−2ν+1 − xd−1R

)
(6.3.6)

for d ≥ 1, ν > 1 with

R :=

∞∫
0

e−y
x2

2
y2ν+d/2−2

yν + 1
dy.

Now we investigate the asymptotic behavior of R. It is easy to see with elementary

calculus that yν−1/2

1+yν
≤ 1 for all y > 0, ν > 1. Thus,

R =

∞∫
0

e−y
x2

2 yν+d/2−3/2 y
ν−1/2

yν + 1
dy

≤
∞∫

0

e−y
x2

2 yν+d/2−3/2dy

= 2ν+d/2Γ(ν + d/2− 1/2)x−2ν−d+1.

This means R = O(x−2ν−d+1) for x → ∞. Together with (6.3.6) this implies
(6.3.5).
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Step 2. We show

(6.3.7)

∞∫
0

xa(p1,M(x)− p0,M(x))2dx .M
2d+a−3

2 e−Mπ(1+2/ν)

for M →∞ all d, ν > 1, a ∈ {0, 2ν − 1}.
Due to Theorems 2.2.4(i), 2.2.4(ii), (6.3.4) and (6.3.3) we have

M[p1,M − p0,M ](s) =
1

Γ (d/2)
Γ

(
s+ d− 1

2

)
2
s+1
2 M[f1,M − f0,M ]((s+ 1)/2)

=
δ

Γ (d/2)
Γ

(
s+ d− 1

2

)
2
s+1
2 M[q � ρM ]((s+ 1)/2)(6.3.8)

for Re(s) ∈ (0, 2ν + 1). Choose

f(x) := xa(p1,M(x)− p0,M(x)) and g(x) := p1,M(x)− p0,M(x)

in Theorem 2.2.9, then apply Theorem 2.2.4(iv) and (6.3.8) to get

∞∫
0

xa(p0,M(x)− p1,M(x))2dx

=
1

2πi

γ+i∞∫
γ−i∞

M[p1,M − p0,M ](z)M[p1,M − p0,M ](1 + a− z)dz

=
δ22

3+a
2

πiΓ (d/2)2

γ+i∞∫
γ−i∞

Γ

(
z + d− 1

2

)
M[q � ρM ]

(
z + 1

2

)
(6.3.9)

× Γ

(
a+ d− z

2

)
M[q � ρM ]

(
2 + a− z

2

)
dz

for γ ∈ (0, 1) in the case a = 0 and for γ ∈ (1, 2ν) in the case a = 2ν − 1, where
M[q � ρM ] =M[q]M[ρM ]. Due to (6.3.2), we can estimate

(6.3.10) |M[ρM ](u+ iv)| ≤ e
(u−1)2

2
ϕ(v +M) + ϕ(v −M)

2

with ϕ(v) = e−
v2

2 . Due to (6.3.1) and the simple inequality

| sin(x+ iy)|−1 ≤ 2e−|y|

for x ≥ π/6, y ∈ R we have

(6.3.11) |M[q](u+ iv)| = | sin(π/ν)|
| sin(πu/ν + iπv/ν)|

≤ ce−π|v|/ν
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for all v ∈ R and some constant c depending on u and ν. Next, use Lemma 2.4.3 in
(6.3.9) to estimate the gamma terms, then plug in (6.3.10) and (6.3.11) to obtain∫ ∞

0

xa(p1,M(x)− p0,M(x))2dx

.
∫

{|v|≥2}

∣∣∣∣Γ(d+ γ − 1 + iv

2

)
M[q � ρM ]

(
γ + 1 + iv

2

)

× Γ

(
a+ d− γ − iv

2

)
M[q � ρM ]

(
a− γ + 2− iv

2

)∣∣∣∣ dv + S0

.
∫

{|v|≥2}

|v|
d+γ−2

2 e−|v|π/4
∣∣∣∣M[q � ρM ]

(
γ + 1 + iv

2

)∣∣∣∣
× |v|

a+d−γ−1
2 e−|v|π/4

∣∣∣∣M[q � ρM ]

(
a− γ + 2− iv

2

)∣∣∣∣ dv + S0

.
∫

{|v|≥2}

|v|
2d+a−3

2 e−|v|π/2−|v|π/ν(e−(v/2+M)2/2 + e−(v/2−M)2/2)2dv + S0

. |2M |
2d+a−3

2 e−|2M |π/2−|2M |π/ν + S0

. M
2d+a−3

2 e−Mπ(1+2/ν) + S0(6.3.12)

for M →∞ with

S0 :=

∫
{|v|≤2}

∣∣∣∣Γ(d+ γ − 1 + iv

2

)
M[q � ρM ]

(
γ + 1 + iv

2

)

× Γ

(
a+ d− γ − iv

2

)
M[q � ρM ]

(
a− γ + 2− iv

2

)∣∣∣∣ dv.
S0 turns out to be asymptotically negligible. To see this note that the gamma
terms are maximal in v = 0. Hence, (6.3.10) and (6.3.11) imply

S0 .

2∫
−2

∣∣∣∣M[q � ρM ]

(
γ + 1 + iv

2

)
M[q � ρM ]

(
a− γ + 2− iv

2

)∣∣∣∣ dv
.

2∫
−2

(e−(v/2+M)2/2 + e−(v/2−M)2/2)2 dv

≤ 4(e−(1+M)2/2 + e−(−1−M)2/2)2

. e−M
2
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for M →∞. Thus, (6.3.12) implies (6.3.7).

Step 3. Now we show the claim. By (6.3.5) there is x0 > 0 such that

p0,M(x) ≥ Cx−2ν+1

holds for all x ≥ x0 and some C > 0. Since p0,M(x) ≥ c on [0, x0] for some c > 0,
we can estimate

χ2(p1,M , p0,M) =

∫ ∞
0

(pM,1(x)− pM,0(x))2

pM,0(x)
dx

≤ c

x0∫
0

(pM,1(x)− pM,0(x))2dx+ C

∞∫
x0

x2ν−1(pM,1(x)− pM,0(x))2dx

≤ c

∞∫
0

(pM,1(x)− pM,0(x))2dx+ C

∞∫
0

x2ν−1(pM,1(x)− pM,0(x))2dx.

Finally, (6.3.7) implies

χ2(p1,M , p0,M) .M
2d−3

2 e−Mπ(1+2/ν) +Mν+d−2e−Mπ(1+2/ν),

where Mν+d−2e−Mπ(1+2/ν) is the dominating term for M →∞. This completes the
proof. �

Let us now discuss why the rate n
−β
π+2β from Theorem 3.7.3(i) is optimal for the

class C(β, L, γ). Lemma 6.3.3 shows that

(1 +χ2(p1,M , p0,M))M − 1 . (1 +Mν+d−2e−Mπ(1+2/ν))M − 1 . (1 +M−1)M − 1 ≤ α

for M →∞, all d ≥ 1, ν > 1 and some α <∞. So, we have (6.2.8) and Theorem
6.2.2 implies pe ≥ e−α/4 > 0. Hence, condition (6.2.6) from Theorem 6.2.1 is
satisfied. Choose

M =
1

π(1 + 2/ν)
log(n).

In order to check (6.2.5), apply Lemma 6.3.2 to get

dx(fM,0, fM,1) = |fM,0(x)− fM,1(x)|
& exp(−Mπ/ν)

= exp

(
− 1

2 + ν
log(n)

)
= n−

π/ν
π+2π/ν

for some x > 0 and all ν > 1. Now set β = π/ν for ν > 1. Theorem 6.2.1 implies

that n−
β

π+2β is the optimal rate for C(β, L, γ) for all β ∈ (0, π), γ > 0 with L
depending on γ.
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6.3.2. Observation of a Self-Similar Gaussian Process. In this sub-
section we prove that the rate n

−2Hβ
π+4Hβ from Theorem 3.10.2(i) is optimal for

(C(β, γ, L), dx) in the sense of Definition 6.1.1 for all β ∈ (0, π), γ > 0 with L
depending on γ. Our strategy here is the same as in Subsection 6.3.1. In fact,
there we considered an arbitrary dimension d ≥ 1 and H = 1/2. Here we consider
a scaling parameter H ∈ (0, 2) and d = 1.
Let T0,M and T1,M be two random variables with densities f0,M and f1,M given by
(6.3.3) respectively. Let (Yt)t≥0 be as in Subsection 3.10.1, that is a R-valued self-
similar process with scaling factor H ∈ (0, 2), càdlàg paths and standard normally
distributed at time 1. Hence, the marginal densities of (|Yt|)t≥0 are given by

ft(x) =
2

tH
√

2π
e−

x2

2t2H , x > 0.

By Lemma 3.1.3, the density of |YTi,M |, i = 0, 1 is then given by

pi,M(x) =
2√
2π

∫ ∞
0

λ−He−
x2

2λ2H fi,M(λ)dλ, x > 0, H ∈ (0, 2), i = 0, 1.

For the Mellin transform of pi,M we get

M[pi,M ](s) =M[|Y1|](s)M[Ti,M ](Hs−H + 1)

=
2s/2√

2π
Γ
(s

2

)
M[fi,M ](Hs−H + 1), i = 0, 1(6.3.13)

for Re(s) > 0 and Re(s) ∈ (H−1
H
, H+ν

H
).

Lemma 6.3.4. The χ2-distance between the densities p0,M and p1,M fulfills

χ2(p1,M , p0,M) .M
ν−1
2H e−Mπ(1/(2H)+2/ν)

for M →∞ and all H ∈ (0, 2), ν > 1.

Proof. This proof is again similar to the one of [7, Lemma 6.4], where the
special case H = 1/2 is treated.

Step 1. We show

(6.3.14) p0,M(x) & x
1−ν−H
H , x→∞.

To this end we perform the change of variables y = λ−2H in the second equality
sign of the following calculation and z = y x

2

2
in the sixth to obtain
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p0,M(x) =
2√
2π

ν sin(π/ν)

π

∞∫
0

λ−He−
x2

2λ2H
1

1 + λν
dλ

=
1

H
√

2π

ν sin(π/ν)

π

∞∫
0

y−
H+1
2H e−y

x2

2
1

1 + y−
ν
2H

dy

=
1

H
√

2π

ν sin(π/ν)

π

∞∫
0

y
ν−H−1

2H e−y
x2

2
1

y
ν
2H + 1

dy

=
1

H
√

2π

ν sin(π/ν)

π

∞∫
0

y
ν−H−1

2H e−y
x2

2

(
1− y

ν
2H

y
ν
2H + 1

)
dy

=
1

H
√

2π

ν sin(π/ν)

π

 ∞∫
0

y
ν−H−1

2H e−y
x2

2 dy −R


=

1

H
√

2π

ν sin(π/ν)

π

2
ν+H−1

2H x
−2ν−2H+2

2H

∞∫
0

z
ν+H−1

2H e−zdz −R


=

1

H
√

2π

ν sin(π/ν)

π

(
Γ

(
ν +H − 1

2H

)
2
ν+H−1

2H x
1−ν−H
H −R

)
,(6.3.15)

where

R :=

∫ ∞
0

y
ν−H−1

2H e−y
x2

2
y

ν
2H

y
ν
2H + 1

dy.

We need to show that R tends to zero faster than x
1−ν−H
H for x→∞. Elemen-

tary calculus shows that y
ν
2H
− 1
H

y
ν
2H +1

≤ 1 for all y > 0, H ∈ (0, 2), ν > 1. Hence,

R =

∫ ∞
0

y
ν+H−1

2H e−y
x2

2
y

ν
2H
− 1
H

y
ν
2H + 1

dy

≤
∫ ∞

0

y
ν+H−1

2H e−y
x2

2 dy

= 2
ν+3H−1

2H Γ

(
ν + 3H − 1

2H

)
x
−ν−3H+1

H .

This means R = O(x
1−ν−H
H

−2), x → ∞. Together with (6.3.15) this implies
(6.3.14).
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Step 2. We show

(6.3.16)

∞∫
0

xa(p1,M(x)− p0,M(x))2dx .M
a−1
2 e−Mπ(1/(2H)+2/ν)

for M →∞ and all ν > 1, H ∈ (0, 2), a ∈ {0, ν+H−1
H
}.

Due to Theorem 2.2.4(i), (2.2.4)(ii), (6.3.13) and (6.3.3) we have

M[p1,M − p0,M ](s) =
2s/2√

2π
Γ
(s

2

)
M[f1,M − f0,M ](Hs−H + 1)

=
δ2s/2√

2π
Γ
(s

2

)
M[q � ρM ](Hs−H + 1)(6.3.17)

for Re(s) ∈ (0,∞) ∩ (H−1
H
, H+ν

H
).

Now choose f(x) := xa(p1,M(x)− p0,M(x)) and g(x) := p1,M(x)− p0,M(x) in The-
orem 2.2.9, then apply Theorem 2.2.4iv) and (6.3.17) to get

∞∫
0

xa(p0,M(x)− p1,M(x))2dx

=
1

2πi

γ+i∞∫
γ−i∞

M[p1,M − p0,M ](z)M[p1,M − p0,M ](1− z + a)dz

=
δ22

a+1
2

(2π)2i

γ+i∞∫
γ−i∞

Γ
(z

2

)
M[q � ρM ] (Hz −H + 1)(6.3.18)

× Γ

(
1− z + a

2

)
M[q � ρM ] (1 +Ha−Hz) dz

for γ ∈ (0, a+ 1) ∩ (H−1
H
, H+ν

H
) ∩ (1+Ha−ν

H
, 1+Ha

H
), where

M[q � ρM ] =M[q]M[ρM ].

It is straightforward to check that a suitable γ can be found for all parameters as in
(6.3.16). This is, where we require the constraint H < 2. Otherwise we would get a
problem in the case a = 0, where we require H−1

H
< 1

H
, which is only true for H < 2.

Next, use Lemma 2.4.3 in (6.3.18) to estimate the gamma terms, then plug in
(6.3.10) and (6.3.11) to obtain
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∫ ∞
0

xa(p1,M(x)− p0,M(x))2dx

.
∫

{|v|≥2}

∣∣∣Γ(γ
2

+
v

2
i
)
M[q � ρM ] (Hγ −H + 1−Hvi)

× Γ

(
1− γ + a

2
− v

2
i

)
M[q � ρM ] (1 +Ha−Hγ −Hvi)

∣∣∣∣ dv + S0

.
∫

{|v|≥2}

|v|
γ−1
H e−|v|π/4 |M[q � ρM ] (1 + iHv)|

× |v|
a−γ
H e−|v|π/4 |M[q � ρM ] (1 +Ha−H − iHv)| dv + S0

.
∫

{|v|≥2}

|v|
a−1
H e−|v|π/2−2H|v|π/ν(e−(Hv+M)2/2 + e−(Hv−M)2/2)2dv + S0

. |M/H|
a−1
2 e−Mπ/(2H)−2Mπ/ν + S0

. M
a−1
2 e−Mπ(1/(2H)+2/ν) + S0(6.3.19)

for M →∞, where

S0 :=

∫
{|v|≤2}

∣∣∣Γ(γ
2

+
v

2
i
)
M[q � ρM ] (Hγ −H + 1−Hvi)

× Γ

(
1− γ + a

2
− v

2
i

)
M[q � ρM ] (1 +Ha−Hγ −Hvi)

∣∣∣∣ dv.
S0 is asymptotically negligible. To see this note that the gamma terms are maximal
in v = 0. Hence, due to (6.3.10) and (6.3.11),

S0 .

2∫
−2

|M[q � ρM ] (Hγ −H + 1−Hvi)M[q � ρM ] (1 +Ha−Hγ −Hvi)| dv

.

2∫
−2

(e−(Hv+M)2/2 + e−(Hv−M)2/2)2 dv

≤ 4(e−(2H+M)2/2 + e−(−2H−M)2/2)2

. e−M
2

for M →∞. Thus, (6.3.19) implies (6.3.16).
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Step 3. Now we show the claim. By (6.3.14) there is x0 > 0 such that

p0,M(x) ≥ Cx
1−ν−H
H

for all x ≥ x0 and some C > 0. Since p0,M(x) ≥ c on [0, x0] for some c > 0,

χ2(p1,M , p0,M) =

∫ ∞
0

(pM,1(x)− pM,0(x))2

pM,0(x)
dx

≤ c

x0∫
0

(pM,1(x)− pM,0(x))2dx+ C

∞∫
x0

x
ν+H−1
H (pM,1(x)− pM,0(x))2dx

≤ c

∞∫
0

(pM,1(x)− pM,0(x))2dx+ C

∞∫
0

x
ν+H−1
H (pM,1(x)− pM,0(x))2dx.

Finally, (6.3.16) implies

χ2(p1,M , p0,M) .M−1/2e−Mπ(1/(2H)+2/ν) +M
ν−1
2H e−Mπ(1/(2H)+2/ν),

where M
ν−1
2H e−Mπ(1/(2H)+2/ν) is the dominating term for M → ∞. This com-

pletes the proof. �

Let us now discuss why the rate n−
2Hβ

π+4Hβ from Theorem 3.10.2(i) is optimal for
the class C(β, γ, L). Lemma 6.3.4 shows that

(1+χ2(p1,M , p0,M))M−1 . (1+M
ν−1
2H e−Mπ(1/(2H)+2/ν))M−1 . (1+M−1)M−1 ≤ α

for M → ∞, all d ≥ 1, H ∈ (0, 2) and some α < ∞. So, we have (6.2.8) and
Theorem 6.2.2 implies pe ≥ e−α/4 > 0. Hence, condition (6.2.6) from Theorem
6.2.1 is satisfied. Choose

M =
1

π(1/2H + 2/ν)
log(n).

In order to check (6.2.5) apply Lemma 6.3.2 to get

dx(fM,0, fM,1) = |fM,0(x)− fM,1(x)|
& exp(−Mπ/ν)

= exp

(
− 1

ν(1/(2H) + 2/ν)
log(n)

)
= n−

2Hπ/ν
π+4Hπ/ν
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for some x > 0 and all ν > 1. Now set β = π/ν (ν > 1). Theorem 6.2.1

implies that n−
β

π+2β is the optimal rate for C(β, γ, L) up to a logarithmic factor for
all β ∈ (0, π), γ > 0 with L depending on γ.

6.3.3. Observation of a Squared Bessel Process. In this subsection we

prove that the rate n−
β

π/H+2β from Theorem 3.10.4(i) is optimal for (C(β, γ, L), dx)
in the sense of Definition 6.1.1 for all β ∈ (0, π), γ > 0 with L depending on γ.
Our strategy here is the same as in Subsections 6.3.1 and 6.3.2.
Let T0,M and T1,M be two random variables with densities f0,M and f1,M given by
(6.3.3) respectively. Let (Yt)t≥0 be as in Subsection 3.10.2, that is a R+-valued self-
similar process with scaling factorH ∈ (0, 2), càdlàg paths and Gamma-distributed
with shape parameter σ > max{0, 1− 1/H} and rate parameter r = 1 at time 1.
Hence, the marginal densities of (Yt)t≥0 are given by

ft(x) =
1

tHσΓ(σ)
xσ−1e−

x

tH , x > 0.

By Lemma 3.1.3, the density of YTi,M , i = 0, 1 is then given by

pi,M(x) =
1

Γ(σ)
xσ−1

∫ ∞
0

λ−Hσe−
x

λH fi,M(λ)dλ, x,H, σ > 0, i = 0, 1.

For the Mellin transform of pi,M we get

M[pi,M ](s) =M[Y1](s)M[Ti,M ](Hs−H + 1)

=
Γ(s+ σ − 1)

Γ(σ)
M[fi,M ](Hs−H + 1), i = 0, 1(6.3.20)

for Re(s) > 1− σ and Re(s) ∈ (H−1
H
, ν+H−1

H
).

Lemma 6.3.5. The χ2-distance between the densities p0,M and p1,M fulfills

χ2(p1,M , p0,M) .M2σ−2+ ν+H−1
H e−Mπ(1/H+2/ν)

for M →∞ and all H ∈ (0, 2) with H < 1
1−σ and ν > 1.

Proof. Step 1. We show

(6.3.21) p0,M(x) & x1/H−ν/H−1, x→∞.

To this end define cν,H,σ := 1
Γ(σ)

ν sin(π/ν)
π

and perform the change of variables

y = λ−H in the second equality sign of the following calculation and z = yx in
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the sixth to obtain

p0,M(x) = cν,H,σx
σ−1

∫ ∞
0

λ−Hσe−
x

λH
1

1 + λν
dλ

=
cν,H,σ
H

xσ−1

∫ ∞
0

yσ−1−1/He−yx
1

1 + y−ν/H
dy

=
cν,H,σ
H

xσ−1

∫ ∞
0

yσ−1−1/H+ν/He−yx
1

1 + yν/H
dy

=
cν,H,σ
H

xσ−1

∫ ∞
0

yσ−1−1/H+ν/He−yx
(

1− yν/H

yν/H + 1

)
dy

=
cν,H,σ
H

xσ−1

(∫ ∞
0

yσ−1−1/H+ν/He−yxdy −R
)

=
cν,H,σ
H

xσ−1

(
x−σ+1/H−ν/H

∫ ∞
0

zσ−1−1/H+ν/He−zdz −R
)

=
cν,H,σ
H

(
Γ (σ − 1/H + ν/H)x1/H−ν/H−1 − xσ−1R

)
,(6.3.22)

where

R :=

∫ ∞
0

yσ−1−1/H+ν/He−yx
yν/H

yν/H + 1
dy.

We need to show that xσ−1R tends faster to zero than x1/H−ν/H−1 for x → ∞.
Elementary calculus shows that yν/H−2/H

yν/H+1
≤ 1 for all y > 0, H ∈ (0, 2), ν > 1.

Thus,

R =

∫ ∞
0

yσ−1+1/H+ν/He−yx
yν/H−2/H

yν/H + 1
dy

≤
∫ ∞

0

yσ−1+1/H+ν/He−yxdy

= Γ (σ + 1/H + ν/H)x−σ−1/H−ν/H .

This means xσ−1R = O(x−1/H−ν/H−1), x→∞. Together with (6.3.22) this implies
(6.3.21).
Step 2. We show

(6.3.23)

∫ ∞
0

xa(p1,M(x)− p0,M(x))2dx .M2σ+a−2e−Mπ(1/H+2/ν)

for M →∞ and all ν > 1, H ∈ (0, 2), σ > max{0, 1− 1/H} and a ∈ {0,−1/H +
ν/H + 1}.
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Due to Theorem 2.2.4(i), (2.2.4)(ii), (6.3.20) and (6.3.3) we have

M[p1,M − p0,M ](s) =
Γ(s+ σ − 1)

Γ(σ)
M[f1,M − f0,M ](Hs−H + 1)

=
δΓ(s+ σ − 1)

Γ(σ)
M[q � ρM ](Hs−H + 1)(6.3.24)

for Re(s) ∈ (1− σ,∞) ∩ (H−1
H
, ν+H−1

H
).

Choose f(x) := xa(p1,M(x) − p0,M(x)) and g(x) := p1,M(x) − p0,M(x) in Theorem
2.2.9, then apply Theorem 2.2.4iv) and (6.3.24) to get∫ ∞

0

xa(p0,M(x)− p1,M(x))2dx

=
1

2πi

∫ γ+i∞

γ−i∞
M[p1,M − p0,M ](z)M[p1,M − p0,M ](1− z + a)dz

=
δ2

2πΓ(σ)2i

∫ γ+i∞

γ−i∞
Γ (z + σ − 1)M[q � ρM ] (Hz −H + 1)(6.3.25)

× Γ (a+ σ − z)M[q � ρM ] (1 +Ha−Hz) dz

for γ ∈ (1 − σ, a + σ) ∩ (H−1
H
, ν+H−1

H
) ∩ (1+Ha−ν

H
, Ha+1

H
). It is straightforward to

show that a suitable γ exists, provided H < 2 and H < 1
1−σ . If we have σ > 1

2
,

then H < 1
1−σ is obsolete.

Next, use Lemma 2.4.3 in (6.3.25) to estimate the gamma terms, then plug in
(6.3.10) and (6.3.11) to obtain∫ ∞

0

xa(p1,M(x)− p0,M(x))2dx

.
∫

{|v|≥2}

|Γ (γ + σ − 1 + iv)M[q � ρM ] (Hγ −H + 1 +Hvi)

× Γ (a+ σ − γ − iv)M[q � ρM ] (Ha−Hγ + 1−Hvi)| dv + S0

.
∫

{|v|≥2}

|v|γ+σ−3/2e−|v|π/2 |M[q � ρM ] (Hγ −H + 1 +Hvi)|

× |v|a+σ−γ−1/2e−|v|π/2 |M[q � ρM ] (Ha−Hγ + 1−Hvi)| dv + S0

.
∫

{|v|≥2}

|v|2σ+a−2e−|v|π−2H|v|π/ν(e−(Hv+M)2/2 + e−(Hv−M)2/2)2dv + S0

. |M/H|2σ+a−2e−Mπ/H−2Mπ/ν + S0

. M2σ+a−2e−Mπ(1/H+2/ν) + S0(6.3.26)
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for M →∞, where

S0 :=

∫
{|v|≤2}

|Γ (γ + σ − 1 + iv)M[q � ρM ] (Hγ −H + 1 +Hvi)

× Γ (a+ σ − γ − iv)M[q � ρM ] (Ha−Hγ + 1−Hvi)| dv.

S0 turns out to be asymptotically negligible. To see this note that the gamma
terms are maximal in v = 0. Hence, due to (6.3.10) and (6.3.11),

S0 .

2∫
−2

|M[q � ρM ] (Hγ −H + 1 +Hvi)M[q � ρM ] (Ha−Hγ + 1−Hvi)| dv

.

2∫
−2

(e−(Hv+M)2/2 + e−(Hv−M)2/2)2 dv

≤ 4(e−(2H+M)2/2 + e−(−2H−M)2/2)2

. e−M
2

for M →∞. Thus, (6.3.12) implies (6.3.7).
Step 3. Now we show the claim. By (6.3.21) there is x0 > 0 such that

p0,M(x) ≥ Cx
1−ν−H
H

for all x ≥ x0 and some C > 0. Since p0,M(x) ≥ c on [0, x0] for some c > 0,

χ2(p1,M , p0,M) =

∫ ∞
0

(pM,1(x)− pM,0(x))2

pM,0(x)
dx

≤ c

x0∫
0

(pM,1(x)− pM,0(x))2dx+ C

∞∫
x0

x
ν+H−1
H (pM,1(x)− pM,0(x))2dx

≤ c

∞∫
0

(pM,1(x)− pM,0(x))2dx+ C

∞∫
0

x
ν+H−1
H (pM,1(x)− pM,0(x))2dx.

Finally, (6.3.23) implies

χ2(p1,M , p0,M) .M2σ−2e−Mπ(1/H+2/ν) +M2σ−2+ ν+H−1
H e−Mπ(1/H+2/ν),

where M2σ−2+ ν+H−1
H e−Mπ(1/H+2/ν) is the dominating term for M →∞. This com-

pletes the proof. �
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Let us now discuss why the rate n−
β

π/H+2β from Theorem 3.10.4(i) is optimal
for the class C(β, γ, L). Lemma 6.3.4 shows that

(1 + χ2(p1,M , p0,M))M − 1 . (1 +M2σ−2+ ν+H−1
H e−Mπ(1/H+2/ν))M − 1

. (1 +M−1)M − 1

≤ α

for M → ∞, all d ≥ 1, H ∈ (0, 2) and some α < ∞. So, we have (6.2.8) and
Theorem 6.2.2 implies pe ≥ e−α/4 > 0. Hence, condition (6.2.6) from Theorem
6.2.1 is satisfied. Choose

M =
1

π(1/H + 2/ν)
log(n).

In order to check (6.2.5) apply Lemma 6.3.2 to get

dx(fM,0, fM,1) = |fM,0(x)− fM,1(x)|
& exp(−Mπ/ν)

= exp

(
− 1

ν(1/H + 2/ν)
log(n)

)
= n−

π/nu
π/H+2π/ν

for some x > 0 and all ν > 1. Now set β = π/ν (ν > 1). Theorem 6.2.1 implies

that n−
β

π/H+2β is the optimal rate for C(β, γ, L) up to a logarithmic factor for all
β ∈ (0, π), γ > 0 with L depending on γ.

6.4. Optimality for the Class D

It remains an open question whether the rate (log n)−β appearing in Theorems
3.7.3(ii), 3.10.2(ii), 3.10.4(ii) and 5.2.8 is optimal for the class D(β, L, γ). In order
to prove optimality in the same fashion as we did for C(β, L, γ) we would need
to find hypotheses qn,0 and qn,1 in D(β, L, γ) satisfying the conditions of Theorem
6.2.1. For the case of an observed Bessel processes with dimension d = 1 the
authors of [7] suggest the following construct which, even after a thorough con-
templation, we find incomprehensible:
Define for any ν > 1 and M > 0,

q(x) := [2Γ(ν)]−1 ×

{
logν−1(1/x), 0 ≤ x ≤ 1

x−2 logν−1(x), x > 1

and

ρM(x) :=
1

2π
e−

log2(x)
2

sin(M log(x))

x log(x)
, x ≥ 0.

Set now for any M > 0 and some δ > 0,

q0,M(x) := q(x), q1,M(x) := (1− δζM)q(x) + δ(q � ρM)(x),
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where q � ρM is defined by (2.2.1) and

ζM =
1√
2π

∫ M

−M
e−

x2

2 dx.

M and ν are later chosen depending on n and β respectively. For instance, the
following (see [7, Lemma 6.6]) is claimed using these definitions:

Lemma 6.4.1. For any M > 0 and some δ > 0 not depending on M , the
function q1,M is a probability density satisfying

(6.4.1) sup
x∈(1−%,1+%)

|q0,M(x)−q1,M(x)| = | cos(πν/2)|M−ν+1+O(M−ν), M →∞,

where % > 0 is a fixed number.

In fact,

|q0,M(x)− q1,M(x)| = | − δζMq(x) + δ(q � ρM)(x)|
and (q� ρM)(x) is shown in [7, Proof of Lemma 6.6] to behave like the right hand
side of (6.4.1). But clearly, we have

δζMq(x) ≥ C > 0

for some C > 0, all M > 0 and all x 6= 1. Thus, (6.4.1) is unclear.
The search for other hypotheses and a proof of optimality for D(β, L, γ) should

be the focus of a further investigation.





APPENDIX

R Source Code

Below we implement the adaptive estimators presented in Sections 3.9 and 5.3
using the freeware R version 3.4.2 (2017-09-28). We need the packages “pracma”,
“sfsmisc” and “SuppDists”.

Estimator for Bessel Processes Based on Self-Similarity

(With Oracle Cut-Off Parameter, See Section 3.9)

sup.dist <- function(x1, x2) {max(abs(x1-x2))}

l1.dist<- function(f1,f2){sum(abs(f1-f2))/0.1}

d <- 5

gamma <- 0.7

h_n <- seq(0.1,4,0.1)

n <- 1000

minloss2<- matrix(10,nrow=100,ncol=4)

arg<- seq(-4,4,0.001)

schaetervonxh<-matrix(0,nrow = 100,ncol = length(h_n))

#Simulate Observations

BeobT <- rgamma(n,shape=2, scale = 1) #Here T Gamma distributed

BeobBES1 <- sqrt(rchisq(n,d))

BeobX<- sqrt(BeobT)*BeobBES1

integrand <- function(v){sum(BeobX^(2*(gamma+1i*v-1)))

/gammaz(gamma+d/2-1+1i*v)/2^(gamma+1i*v) }

integrand<-Vectorize(integrand)

integrand.werte<- integrand(arg)

schaetzerspec <- function(x,h){

integrand1 <-{Re(integrand.werte*x^(-gamma-1i*arg) )}

ans<-gamma(d/2)/(pi*n)* integrate.xy(arg,integrand1,-h,h)

return(ans)

}

#schaetzerspec(x,h) returns the estimated density with cut-off

parameter h in x.
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Estimator for Bessel Processes Based on Self-Similarity

(With Adaptive Cut-Off Parameter, See Section 3.9)

sup.dist <- function(x1, x2) {max(abs(x1-x2))}

l1.dist<- function(f1,f2){sum(abs(f1-f2))/0.1}

n<-1000

d <- 5

gamma <- 0.7

h_n <- seq(0.1,4,0.1)

minloss2<- matrix(10,nrow=100,ncol=4)

loss2<-rep(10,(length(h_n)-1))

arg<- seq(-4,4,0.001) #arguments for the integrand

schaetervonxh<-matrix(0,nrow = 100,ncol = length(h_n))

#Simulate observations of T

BeobT <- rexp(n,1) #Here T exponentially distributed

#Simulate observations of BES_1 and BES_T

BeobBES1 <- sqrt(rchisq(n,d))

BeobX<- sqrt(BeobT)*BeobBES1

integrand <- function(v) {sum(BeobX^(2*(gamma+1i*v-1)))

/gammaz(gamma+d/2-1+1i*v)/2^(gamma+1i*v) }

integrand<-Vectorize(integrand)

integrand.werte<- integrand(arg)

schaetzerspec <- function(x,h){

integrand1 <-{Re(integrand.werte*x^(-gamma-1i*arg) )}

ans<-gamma(d/2)/(pi*n)* integrate.xy(arg,integrand1,-h,h)

return(ans)

}

chippy<-Vectorize(schaetzerspec)

for (j in 1:length(h_n)) {

schaetervonxh[,j]<- chippy(0.1*(1:100),h_n[j])

}

for (j in 1:(length(h_n)-1)) {

loss2[j]<- l1.dist(schaetervonxh[,j+1],schaetervonxh[,j] )

}

#schaetervonxh[,which.min(loss2)] returns the estimated density

evaluated in 0.1*(1:100)
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Estimator for Bessel Processes Based on Hypergroup Theory

(with Adaptive Cut-Off Parameter, See Section 5.3)

Lambda <- function(x){

return((3*sin(x) - 3*x*cos(x))/x^3)

}

Lambda<-Vectorize(Lambda,vectorize.args = "x")

l1.dist<- function(f1,f2){integrate.xy(x,abs(f1-f2),0.1,10)}

alpha <- 3/2

gamma <- 0.7

n <- 1000

x<- 0.1*(1:100)

A_n <- n^(1/4)

U_n <- seq(0.1,4,0.1)

loss2vonU<-rep(10,length(U_n)-1)

schaetzervonxU<-matrix(0,nrow=100,ncol=length(U_n))

arg<- seq(-4,4,0.01)

for (k in 1:100) {

#Simulate observations of T

BeobT <- rgamma(n,shape=2, scale = 1) #Here T Gamma distributed

BeobBES1 <- sqrt(rchisq(n,d))

BeobX<- sqrt(BeobT)*BeobBES1

m_n<- sum(BeobX^2)/n/(1+alpha)/2 #approximately-equal 2d

inneresintegral <- function(v){

integrand1re <-

function(lambda){Re((lambda^2/2)^(-gamma-1i*v)*lambda*(1/n* sum(

Lambda(lambda*BeobX) ) -exp(-m_n*(lambda^2/2)) ))}

integrand1re <- Vectorize( integrand1re,vectorize.args = "lambda")

integrand1im <-

function(lambda){Im((lambda^2/2)^(-gamma-1i*v)*lambda*(1/n* sum(

Lambda(lambda*BeobX) ) -exp(-m_n*(lambda^2/2)) ))}

integrand1im <- Vectorize( integrand1im,vectorize.args = "lambda")

ans<-(integrate(integrand1re,0,A_n)$value

+1i*integrate(integrand1im,0,A_n)$value +

gammaz(1-gamma-1i*v)*m_n^(gamma-1+1i*v))/gammaz(1-gamma-1i*v)

return(ans)

}

inneresintegral<-Vectorize(inneresintegral) #ingegrand from -4 to 4

outerint.werte<- inneresintegral(arg)
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schaetzerallg <- function(s,U){

integrandre<-Re(outerint.werte*s^(-gamma-1i*arg))

ans<-1/(2*pi)* (integrate.xy(arg,integrandre,-U,U))

return(ans)

}

#schaetzerallg(s,U) returns the estimated density in s for a given

cut-off parameter U

chippy<-Vectorize(schaetzerallg,vectorize.args = "s")

for (j in 1:length(U_n)) {

schaetzervonxU[,j]<- chippy(x,U_n[j])

}

for (l in 1:(length(U_n)-1)) {

loss2vonU[l]<- l1.dist(schaetzervonxU[,l+1],schaetzervonxU[,l])

}

#schaetzervonxU[,which.min(loss2vonU)] returns the estimated density

evaluated in 0.1*(1:100)
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·− involution in a hypergroup

· complex conjugate
d
= equality in law for random variables; equality of all finite-

dimensional distributions for processes

., &, ∼ asymptotically less/greater/equivalent (see Section 2.3)

1A characteristic function of the set A, i.e. 1A(x) :=

{
1, x ∈ A
0, x /∈ A

B Borel σ-algebra on R

B(K) Borel σ-algebra on the locally compact space K

Cb(K) space of continuous bounded functions f : K → C

Cc(K) space of continuous functions f : K → C with compact sup-
port

Ck(K) space of k-times continuously differentiable functions f :K→ C

(k ∈ N)

δx point measure in x

e neutral element of a hypergroup

F [f ](y) :=
∫∞
−∞ f(u)eiuydu classical Fourier transform of a function f

F [X](y) := E[eiXy] classical Fourier transform of a random variable X

µ̂ hypergroup Fourier transform of a measure µ

Fr[X] hypergroup Fourier transform of a random variable X

K locally compact Hausdorff space

K̂ dual space of a commutative hypergroup K, see Definition
4.1.1

i.i.d. independently identically distributed

L[X](t) := E[e−tX ] the Laplace transform of a random variable X.

Lp(K,ω) space of functions f : K → C with finite p-norm with respect
to ω

L2
C

= {X|X is a complex random variable with E[|X|2] < ∞}
(see Section 2.1)

M1(K) space of probability measures on K
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Mb(K) space of bounded regular Borel measures on K

M(a,b) space of functions with well defined Mellin transform (cf. De-
finition 2.2.1)

M[f ](s) :=
∞∫
0

f(x)xs−1dx Mellin transform of a function f

M[X](s) := E[Xs−1] Mellin transform of a random variable X

N set of natural numbers

N0 := N ∪ {0}
N (µ, σ2) Normal distribution with mean µ ∈ R and variance σ2 > 0

ω Haar measure

π Plancherel measure

R+ = [0,∞), set of nonnegative real numbers

N
(s)
B (K̂), N

(w)
T2

(K̂) classes of negative definite functions on K, see Definitions
4.2.2 and 4.2.3

supp(·) support of a measure
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[32] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advan-

ced Mathematics. Cambridge University Press, 1999.
[33] Y. Sinai. Self-similar probability distributions. Theory of Probability and Its Applications,

21(1):64–80, 1976.
[34] A. Skorokhod. Issledovaniya po teorii sluchainykh protsessov (Stokhasticheskie differentsial-

nye uravneniya i predelnye teoremy dlya protsessov Markova). 1961.
[35] A. Skorokhod. Studies in the Theory of Random Processes. Addison-Wesley Publishing Com-

pany, 1965.
[36] M. Taqqu. Weak convergence to fractional Brownian motion and the Rosenblatt process.

Probability Theory and Related Fields, 31:287–302, 1975.
[37] A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2008.
[38] M. Voit. Positive and negative definite functions on the dual space of a commutative hyper-

group. Analysis, 9(4):371–388, 1989.
[39] G. Watson. A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library.

Cambridge University Press, 1995.
[40] A. Zayed. Handbook of Function and Generalized Function Transformations. Applied mat-

hematics. Taylor and Francis, 1996.
[41] H. Zeuner. One-dimensional hypergroups. Advances in Mathematics, 76(1):1 – 18, 1989.


	Acknowledgments
	Chapter 1. Introduction
	Chapter 2. Preliminaries
	Chapter 3. Estimation for Self-Similar Processes
	Chapter 4. Processes Associated with a Convolution Semi-group
	Chapter 5. Estimation for Lévy Processes on Sturm-Liouville Hypergroups
	Chapter 6. Optimality
	R Source Code
	List of Symbols
	Bibliography

