
ALGORITHMIC ASPECTS
OF TYPE-BASED PROGRAM SYNTHESIS

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

ANDREJ DUDENHEFNER

Dortmund

2019

Tag der mündlichen Prüfung: 24. Juni 2019
Dekan: Prof. Dr.-Ing. Gernot A. Fink
Gutachter:

Prof. Dr. Jakob Rehof (TU Dortmund University, Germany),
Prof. Dr. Hab. Paweł Urzyczyn (University of Warsaw, Poland)

Abstract

In the area of type-based program synthesis, inhabitant search in typed calculi
can be utilized to enumerate programs that satisfy a specification given as a type.
In particular, the decision problem of inhabitation (given a type environment Γ
and a type τ , is there a term M such that M can be assigned the type τ
in Γ?) corresponds to existence of a program (term M) that satisfies the given
specification (type τ) under additional assumptions (type environment Γ).

Since the untyped λ-calculus is a Turing complete functional programming
language, inhabitation in typed λ-calculi can be seen as program synthesis from
scratch. Complementarily, inhabitation in combinatory logic can be seen as
domain-specific program synthesis. Specifically, we may choose a computation-
ally weak basis (set of combinators) containing a selection of domain-specific
components from which the synthesized program is composed.

Varying the type language allows us to express different properties of synthe-
sized results. While simple types can express higher-order functional dependen-
cies, intersection types can express higher-order tabular dependencies.

Further restrictions on inhabitant search, such as principality and relevance
restrictions, yield inhabitants that are more closely tied to given specifications.
Alternatively, dimension, rank, order, and arity restrictions provide means to
control the complexity of inhabitant search.

This work provides an overview over selected results in type-based program
synthesis varying the term language (λ-terms and combinatory terms) as well as
the type language (simple types and intersection types). Additionally further
type-theoretic restrictions (principality, dimension, rank, order, and arity) are
considered.

For λ-calculus we depict PSpace-completeness of principal inhabitation
in the simply typed λ-calculus, undecidability of inhabitation in λ-calculus
with intersection types, and undecidability of inhabitation in λ-calculus with
intersection types in bounded dimension.

For combinatory logic we depict undecidability of inhabitation in subintu-
itionistic combinatory logic, (o+ 2)-ExpTime-completeness of inhabitation in
combinatory logic with intersection types with instantiation of bounded order o,
and ExpTime-hardness of intersection type unification.

Additionally, we provide an overview over the implementation of the inhabi-
tant search algorithm (CL)S-F# for combinatory logic with intersection types.
Finally, we evaluate (CL)S-F# in functional program synthesis, object-oriented
program synthesis, and process synthesis scenarios.

i

Preface
This work provides an overview over a selection of the author’s contributions
in type-based program synthesis during his time between January 2014 and
April 2019 as a PhD student under the supervision of Prof. Dr. Jakob Rehof at
TU Dortmund University, Germany. Most of the presented results are published
and are referenced accordingly. Since a mere collection of already published
results would waste the reader’s time, this work tries to paint a coherent picture
focusing on motivation, interrelations, and positioning of the individual results
in type-based program synthesis. Additional examples (which often are not part
of the corresponding publications due to space limits) are provided to convey
a better intuitive understanding of the technical results. Whenever a detailed
proof of a contribution is already published (or formalized in a proof assistant),
it is not repeated in this work in detail but instead explained at a higher level.

Acknowledgments
First and foremost, I am grateful for the helpful guidance and supervision of
Jakob Rehof during my enlightening journey through type theory. During my
time as a graduate student I did not have any strong feelings regarding type
theory up until I visited Jakob’s lecture on the Curry-Howard isomorphism. It
sparked my interest not only in typed calculi, but also in the foundations of logic
itself. Jakob’s ability to ask intriguing research question and immediately point
to relevant existing work has proven both a source of inspiration and a valuable
resource. Overall, I am glad to have had Jakob as my adviser.

Many thanks go to Paweł Urzyczyn, whose ingenious contributions in typed
λ-calculus and typed combinatory logic paved my journey through type theory.
During the time as a PhD student I have spent countless hours trying to develop
a deeper understanding of his sophisticated automata-based proofs. After all,
“its all in the proof”.

I want to extend my thanks to Ugo De’Liguoro and Simona Ronchi Della
Rocca who in personal discussions provided deep insights into the intersection
type discipline, that has been at the core of my research.

Finally, I want to thank my parents as well as my colleagues Boris Düdder
and Jan Bessai for their support during my time in Dortmund.

ii

Contents

1 Introduction 1

2 Lambda-Calculus 5
2.1 Simply Typed Lambda-Calculus 7

2.1.1 Subformula Calculus . 10
2.1.2 Principal Inhabitation Upper Bound 14
2.1.3 Principal Inhabitation Lower Bound 16

2.2 Strict Intersection Type System 18
2.2.1 Simple Semi-Thue Systems 21
2.2.2 Reduction from Rewriting to Inhabitation 22

2.3 Dimensionally Bounded Intersection Type System 26
2.3.1 One-Dimensional Fragment 30
2.3.2 Relevant Restriction and Compactness 32
2.3.3 Inhabitation in Bounded Dimension 37
2.3.4 Typability, Type Checking, and Bases 39
2.3.5 Non-idempotent Restriction 41

3 Combinatory Logic 43
3.1 Simply Typed Combinatory Logic 45

3.1.1 Hilbert-Style Calculus . 47
3.1.2 Recognizing Axiomatizations of α→ β → α 48
3.1.3 Recognizing Axiomatizations of α→ α 53
3.1.4 Recognizing Axiomatizations of α→ β → β 54

3.2 Combinatory Logic with Intersection Types 56
3.2.1 Inhabitation with Bounded Order and Arity 60
3.2.2 Combinatory Logic without Intersection Introduction . . 65

3.3 Intersection Type Subtyping . 66
3.3.1 Deciding Intersection Type Subtyping in Quadratic Time 67
3.3.2 Intractability of Intersection Type Matching 70
3.3.3 Intersection Type Unification ExpTime-hardness 72

4 (CL)S-F# 77
4.1 (CL)S-F# Theoretical Foundation 79
4.2 Implementation and Techniques 82

4.2.1 Simplified Types . 83
4.2.2 Simplified Type Subtyping 84
4.2.3 Partial Evaluation . 86
4.2.4 Sideways Information Passing 87

iii

4.2.5 Inhabitant Search Interface 89
4.2.6 Inhabitant Search Implementation 90

4.3 Evaluation . 92
4.3.1 Service Composition . 93
4.3.2 Mixin Composition . 95
4.3.3 Process Synthesis . 97
4.3.4 Two Counter Automaton Simulation 98
4.3.5 Labyrinth Exploration . 101

5 Conclusion 103

iv

Chapter 1

Introduction

Combinatory logic, pioneered by Moses Schönfinkel in 1920s, and λ-calculus,
developed by Alonzo Church in 1930s, both predate Turing machines as Tur-
ing complete computation formalisms. From a modern perspective, both can
be considered minimalistic functional programming languages (of course, the
development has been vice versa). Between 1930s and 1940s, typed variants of
both combinatory logic and λ-calculus were developed by Haskell Curry and
Alonzo Church based on the notion of type theories used by Bertrand Russel
in 1900s. Later, Haskell Curry and William Alvin Howard discovered that the
simply typed λ-calculus corresponds to the implicational fragment of intuitionis-
tic propositional logic. This correspondence intimately ties together logic and
computation, extending far beyond intuitionistic propositional logic.

In this work we view combinatory logic and λ-calculus as clean room environ-
ments to study type-based functional program synthesis, inspecting properties
of different type systems. A type system consists of a term language (here either
combinatory terms or λ-terms), a type language (here either simple types or
intersection types), and type rules to assign types to terms in type environments
(here sets of pairs of term variable and type). Assignment of a type τ to a
term M in the type environment Γ in a type system (`) is denoted by the
judgement Γ ` M : τ . Key to type-based program synthesis is the decision
problem of inhabitation (given a type environment Γ and a type τ , is there
a term M such that Γ ` M : τ is derivable?). In particular, τ corresponds
to a desired program specification and Γ contains additional domain-specific
assumptions while M corresponds to the synthesized program satisfying the
desired specification. As we will see throughout this work, intersection types
provide a concise specification language for higher-order tabular dependencies,
and are of interest in realistic synthesis scenarios.

There is a wide spectrum of expressiveness of type-based synthesis for
λ-calculus (Table 1.1) and combinatory logic (Table 1.2) depending on the
chosen type system (and possibly a restriction). This is reflected in varying
complexity of the underlying decision problem of inhabitation.

1

The following Table 1.1 provides an overview over complexity of inhabitation
in various typed λ-calculi.

Table 1.1: Complexity of Inhabitation in Typed λ-Calculi
Type Language Problem Complexity
Simple Types Inhabitation PSpace-complete [62, 65]

Simple Types Principal Inhabitation PSpace-complete [37]
(Section 2.1)

Simple Types Relevant Inhabitation 2-ExpTime-complete [57]

Simple Types Principal, Relevant
Inhabitation

unknown
(Section 2.1)

Intersection Types Inhabitation in rank ≥ 3 undecidable [66]
(Section 2.2)

Intersection Types Inhabitation in rank 2 ExpSpace-complete [66]
Intersection Types Principal Inhabitation in PTime [39]
Explicit
Intersection Types Inhabitation ExpSpace-complete [56]

Non-idempotent
Intersection Types Inhabitation NP-complete [16, 34]

Intersection Types Inhabitation in
bounded set-dimension

undecidable [34]
(Section 2.3.3)

Intersection Types One-dimensional
Inhabitation

conjectured NP-complete
(Section 2.3.1)

Intersection Types Inhabitation in
fixed set-dimension

conjectured undecidable
(Section 2.3.3)

Intersection Types Inhabitation in boun-
ded multiset-dimension

ExpSpace-complete [34]

Inhabitation in typed λ-calculi can be used for program synthesis from scratch.
Most notably, the restriction to principal inhabitants (the given type is, in a
sense, most general for the constructed inhabitant) is of interest to strengthen
the correspondence between the specification and the synthesized program. For
simple types principality does not influence the complexity of inhabitation.
Surprisingly, for intersection types the complexity of inhabitation changes from
undecidable to PTime, if principality is required. Unfortunately, this jump in
complexity implies a disproportionate increase in specification size.

Alternatively, the rank (functional nesting of intersection) restriction can be
considered. However, the jump from rank 2 (ExpSpace-complete) to rank 3
(undecidable) makes rank not well-suited as a practical control parameter.

Recently, dimensional restrictions of intersection typed λ-calculi have been
considered. The dimension can be understood as the number of distinct “features”
necessary to describe each part of a program, and is therefore a very practi-
cal measure. While also exposing decidable flavors, inhabitation in bounded
dimension appears promising for type-based synthesis from scratch.

2

Complementarily, the following Table 1.2 provides an overview over complex-
ity of inhabitation in various typed typed combinatory logics.

Table 1.2: Complexity of Inhabitation in Typed Combinatory Logics
Type Language Problem Complexity
Simple Types SK-Inhabitation PSpace-complete [62]
Simple Types BCIW-Inhabitation 2-ExpTime-complete [57]
Simple Types Relativized Inhabitation undecidable [50]

Simple Types Relativized, Principal
Inhabitation

undecidable [35]
(Section 3.1)

Simple Types Relativized Inhabitation
below α→ β → α

undecidable [12]
(Section 3.1)

Simple Types Relativized Inhabitation
below α→ β → β

in PTime [35]
(Section 3.1)

Intersection Types SK-Inhabitation undecidable [66, 27]
Explicit
Intersection Types SK-Inhabitation ExpSpace-complete

[56, 27]
Monomorphic
Intersection Types Relativized Inhabitation ExpTime-complete [55]

Intersection Types
with Constants

Relativized Inhabitation
in level k

(k + 2)-ExpTime-
complete [55]

Intersection Types
with Constants

Relativized Inhabitation
in order o and arity a

(o+ 2)-ExpTime-complete
(Section 3.2.1)

Intersection Types
with Constants

Relativized Inhabitation
in order o and arity a w/o
Intersection Introduction

conjectured
(o+ 1)-ExpTime-complete
(Section 3.2.2)

Inhabitation in combinatory logic with fixed bases is comparable to inhabita-
tion in λ-calculi due to corresponding interpretation theorems. For type-based
synthesis that include domain-specific knowledge relativized inhabitation in com-
binatory logic (the basis is part of the input and represents domain-specific
components) is particularly useful. Differently from λ-calculus, relativized in-
habitation is undecidable in combinatory logic even for simple types (also under
principal and subintuitionistic restrictions). However, in practice (see Chapter 4
for an evaluation) bases are tailored to specific domains of interest and exhibit
tractable inhabitant search.

3

Thesis Outline
This work as a whole is divided into three parts.

The first part (Chapter 2) focuses on typed λ-calculi. First, Section 2.1
outlines the contribution showing that principal inhabitation in the simply
typed λ-calculus is PSpace-complete [37]. The upper bound (Section 2.1.2) is
shown algorithmically and the lower bound (Section 2.1.3) is shown by adapting
Urzyczyn’s construction [65] to encompass principality. Second, Section 2.2
describes the proof and formalization in the Coq proof assistant of undecidability
of intersection type inhabitation based on [40]. Specifically, an undecidable word
problem in simple semi-Thue systems is reduced to intersection type inhabitation
(Section 2.2.2) referring to formalization of soundness and completeness [31].
Third, Section 2.3 gives an overview over the line of work covering key decision
problems (such as inhabitation, typability, type checking) in dimensionally
bounded λ-calculi with intersection types [34, 38, 39].

The second part (Chapter 3) focuses on typed combinatory logic. First,
Section 3.1 outlines the contribution showing that inhabitation in the simply
typed combinatory logic (even under several restrictions for considered type
environments) is undecidable [35]. For this purpose, it is shown that recognizing
principal axiomatizations of α→ β → α is undecidable (Section 3.1.2). Comple-
mentarily, it is shown that recognizing principal axiomatizations of α→ β → β
is decidable in linear time (Section 3.1.4). Second, Section 3.2 inspects combina-
tory logic with intersection types where instantiation is bounded by functional
order o ≥ 1 and functional arity a. Specifically, inhabitation in this type system
is shown to be (o+ 2)-ExpTime-complete (Section 3.2.1). Third, Section 3.3 in-
spects complexity of three problems associated with intersection type subtyping.
In particular, an algorithm to decide intersection type subtyping in quadratic
time is given in Section 3.3.1, fixed parameter intractability of intersection type
matching wrt. the number of type variables [33] is outlines in Section 3.3.2, and
an ExpTime lower bound for intersection type unification [33] is described in
Section 3.3.3.

The third part (Chapter 4) gives an overview over the implementation
of an inhabitant search algorithm (CL)S-F# [32] for combinatory logic with
intersection types with constructors. First, Section 4.1 outlines the theoretical
foundation of (CL)S-F#. Second, Section 4.2 provides an overview over the
inhabitant search interface (Section 4.2.5) and implementation (Section 4.2.6) of
(CL)S-F#. Third, Section 4.3 contains an evaluation of (CL)S-F# in context of
functional program synthesis (Section 4.3.1), object-oriented program synthesis
(Section 4.3.2), and process synthesis (Section 4.3.3). Additionally, scalability of
(CL)S-F# in deterministic (Section 4.3.4) and non-deterministic (Section 4.3.5)
scenarios is inspected.

4

Chapter 2

Lambda-Calculus

The untyped λ-calculus can be seen as a Turing complete (by the Church-Turing
Thesis) functional programming language. In fact, invented by Alonzo Church
(Turing’s doctoral advisor) in the 1930s, it predates Turing machines as a model
of computation.

Since λ-terms (Definition 1) provide an elegant way to present functional
programs, λ-calculus is well suited to study functional program synthesis.
Definition 1 (λ-Terms).

M,N ::= x | (λx.M) | (M N) where x, y, z range over term variables

Adopting the notation of [61], we omit superfluous parentheses, treat
application as left-associative, and group consecutive abstractions, i.e.
λxyz.x y z = (λx.(λy.(λz.((x y) z)))). We denote by FV(M) the set of all free
variables in M and by M [x := N] the substitution of the free variable x in M
by N . We assume the standard Barendregt hygiene condition that all bound
variables have fresh names and free variables are not captured by substitution.

We denote by →β (β-reduction) the contextual closure of the relation
((λx.M)N) →β M [x := N], and by �β the reflexive transitive closure of →β .
We call a λ-term of the shape ((λx.M)N) a redex and say a λ-term N is in
β-normal form, if N does not contain a redex.

All type systems considered in this chapter will have the λ-terms as their
term language. We will use type judgements of the shape Γ ` M : τ consist-
ing of the type environment Γ, the subject M , and the assigned type τ ∈ T
in the type system ` for some type language T. Type environments Γ are
finite sets {x1 : σ1, . . . , xn : σn} of type assumptions x : σ where x is a term
variable and σ ∈ T is the corresponding assigned type. Additionally, we de-
mand that xi for i = 1 . . . n are distinct, thus allowing us to treat Γ as a func-
tion Γ(xi) = σi for i = 1 . . . n with domain dom(Γ) = {x1, . . . , xn} and codomain
ran(Γ) = {σ1, . . . , σn}. We write D .Γ `M : τ , if the type judgement Γ `M : τ
can be derived in the type system ` by the derivation D. In particular, D is
a finite tree having Γ ` M : τ as its root and rules of ` as edges. Whenever
the specific derivation is immaterial, we write just Γ `M : τ stating that there
exists a corresponding derivation.

If Γ ` M : τ is derivable, we call M an inhabitant of τ in Γ and say τ is
inhabited in Γ. In this work, the most important decision problem for a type
system ` is the inhabitation problem Γ ` ? : τ (Problem 1).

5

Problem 1 (Inhabitation, Γ ` ? : τ). Given a type environment Γ and a type τ ,
is there a λ-term M such that Γ `M : τ is derivable?

In the Context of Synthesis

The inhabitation problem Γ ` ? : τ in typed λ-calculi can be considered as
program synthesis from scratch. Types assume the role of specifications,
where Γ represents a collection of existing components specified by their
assigned types, and τ represents the desired features of the synthesized re-
sult. Therefore, algorithms that decide Γ ` ? : τ by explicitly constructing
inhabitants are at the core of type-based synthesis.

There are several key properties for a type system ` based on λ-calculus that
will be of significance throughout this work: subject reduction (Definition 2), and
normalization (Definition 3). Subject reduction describes type stability under
computation. Normalization describes termination of typable terms.

Definition 2 (Subject Reduction). We say a type system ` has the subject
reduction property, if Γ `M : τ and M →β N imply Γ ` N : τ .

Definition 3 (Normalization). We say a type system ` has the normalization
property, if Γ `M : τ implies Γ ` N : τ for some β-normal form N such that
M �β N .

If ` has the subject reduction and normalization properties, then Γ `M : τ
implies Γ ` N : τ for some β-normal form N . This means that in order to decide
Γ ` ? : τ it suffices to consider only β-normal forms N as potential subjects.

Chapter Outline In this chapter we inspect properties of three distinct type
systems having λ-terms as their term language.

First, in Section 2.1 we consider the simply typed λ-calculus [45] where types
coincide with propositional implicational formulae. We show that principal
inhabitation (given a simple type, is there a λ-term in β-normal form having the
given type as its principal type?) in this type system is PSpace-complete [37].

Second, in Section 2.2 we consider the Coppo-Dezani-Venneri intersection type
assignment system [24] (also known as the strict intersection type system [68])
where a λ-term can be assigned an intersection of two types, if it can be assigned
both types individually. We outline a formalized (in the Coq proof assistant)
proof that inhabitation in this type system is undecidable [40].

Third, in Section 2.3 we inspect bounded-dimensional fragments of the strict
intersection type system [34, 38]. We show that even in bounded dimension
inhabitation is undecidable [34]. Additionally, we outline the notion of bases
that is related to the notion of principality in bounded dimension [39]. Since for
any given λ-term the corresponding basis is unique, finite, and computable, it
can be used for problems related to type inference.

6

2.1 Simply Typed Lambda-Calculus
The type language of simple types (Definition 4) coincides with propositional im-
plicational formulae (the type constructor → corresponds to logical implication),
and is the type language of the simply typed λ-calculus [45] (Definition 5).

Definition 4 (Simple Types, T→).

T→ 3 σ, τ ::= α | σ → τ where α, β, γ range over type variables V

Definition 5 (Simply Typed λ-calculus).

(Ax)Γ, x : σ `λ(→) x : σ
Γ, x : σ `λ(→) M : τ

(→I)Γ `λ(→) λx.M : σ → τ

Γ `λ(→) M : σ → τ Γ `λ(→) N : σ
(→E)Γ `λ(→) M N : τ

Under the Curry-Howard-Isomorphism [61], if Γ `λ(→) M : τ is derivable,
then the λ-term M corresponds to the proof of τ in the implicational fragment of
intuitionistic propositional logic under assumptions ran(Γ). Conversely, if τ can
be proven under assumptions {σ1, . . . , σn}, then there exists a type environment Γ
and a λ-term M such that ran(Γ) = {σ1, . . . , σn} and Γ `λ(→) M : τ is derivable.
Therefore, inhabitation in the simply typed λ-calculus corresponds to provability
in intuitionistic propositional implicational logic and is PSpace-complete [62].
Additionally, the simply typed λ-calculus is a pivotal element in the framework
of Barendregt’s λ-cube [2] constituting a common core of richer type systems.

In the Context of Synthesis

The simply typed λ-calculus can be considered a minimalistic monomor-
phic functional programming language. For example, it can be used to
encode natural numbers by Church-numerals to cover the class of the
so-called extended polynomials [59].

In the simply typed λ-calculus each typable λ-term M has a unique (up to
type variable renaming) principal type (Definition 6) that under type substitutions
captures any other type assignable to M [45, Theorem 3A6].

Definition 6 (Principal Type). We say that τ is a principal type of M ,
if ∅ `λ(→) M : τ and for all types σ such that ∅ `λ(→) M : σ there exists a
substitution S such that S(τ) = σ.

Let us extend the notion of inhabitants using the notion of principality in
the following Definition 7.

Definition 7 (Normal Principal Inhabitant, [45, Definition 8A11]). We say that
a λ-term M in β-normal form is a normal principal inhabitant of τ , if τ is the
principal type of M .

7

In the Context of Synthesis

Principal inhabitants can be thought of as satisfying the given specification
(their type) in the most accurate way (Example 1). Any non-principal
inhabitant of a given type can be assigned a strictly more general type,
namely its principal type.
Normal principal inhabitants are not guaranteed to exists (Example 2),
even if the given type is inhabited. In this case, the given specification
should be reassessed.

Example 1. Both M1 = λx.x and M2 = λxy.x y are inhabitants
of τ = (α → β) → α → β. However, only M2 is the normal principal in-
habitant of τ . The principal type of M1 is α→ α.

Example 2. Although type τ = α → α → α is inhabited by λxy.x, τ has no
corresponding normal principal inhabitant.

Hindley posed the question whether normal principal inhabitants can be
counted algorithmically [45, Problem 8D10 (i)], which was answered positively by
Broda and Damas [14]. However, the question of complexity to decide principal
inhabitation (Problem 2), i.e. whether the set of normal principal inhabitants is
empty, remained open.

Problem 2 (Principal Inhabitation). Given a simple type τ , does there exist a
λ-term M in β-normal form such that τ is the principal type of M?

In the Context of Synthesis

Using simple types, we can specify some meaningful properties of corre-
sponding normal principal inhabitants, e.g. that a λ-term is a signum
function for Church-numerals (Example 3).

Example 3. Let

τ0 = α0 → β0 → β0

τ1 = (α1 → β1)→ (α1 → β1)
σ =

(
γ → (α2 → β2)→ (α2 → β2)

)
→ (α3 → β3 → β3)→ δ

and observe that

• τ0 has exactly the Church-numeral zero, i.e. λfx.x, as its normal principal
inhabitant

• τ1 has exactly the Church-numeral one, i.e. λfx.f x, as its normal principal
inhabitant

• a unifier of σ and τ0 maps δ to instances of τ0, and a unifier of σ and τ1
maps δ to instances of τ1

• the normal principal inhabitant of σ → δ is λn.n (λfx.f x) (λfx.x),
i.e. the signum function for Church-numerals that maps zero to zero,
and any non-zero number to one

8

There are several aspects of principal inhabitation that sharply distinguish it
from inhabitation.

First, if Γ `λ(→) M : τ is derivable, then for some N there is a derivation
of Γ `λ(→) N : τ that does not contain judgements Γ1 `λ(→) N1 : τ1 and
Γ2 `λ(→) N2 : τ2 such that Γ1 = Γ2, τ1 = τ2, and N1 , N2. For principal
inhabitation this does not hold (Example 4).

Example 4. Let τ = (α → α) → α → α. The normal principal inhabitants
of τ are exactly the Church numerals greater or equal to two, i.e. λf.λx.f (f x),
λf.λx.f (f (f x)), . . . The corresponding type derivations necessarily assign the
type α to the terms x, f x and f (f x) in identical type environments.

Second, term variables with identical types are interchangeable in the simple
type system. However, this may violate principality (Example 5).

Example 5. Let τ = (α→ α→ α)→ α→ α→ α, M = λfxy.f (f x y) (f y x),
Mx = λfxy.f (f x x) (f x x), and My = λfxy.f (f y y) (f y y). Each M ,
Mx and My is an inhabitant of τ . However, only M of the three is a normal
principal inhabitant of τ .

Section Outline The remainder of this section outlines the contribution
showing that principal inhabitation is PSpace-complete [37]. First, a calculus
capturing necessary identifications in a type derivation is presented in Section
2.1.1 from which a characterization of principality is derived (Theorem 1). The
upper bound (Section 2.1.2) is shown algorithmically and the lower bound
(Section 2.1.3) is shown by adapting Urzyczyn’s construction [65] to encompass
principality.

Authorship Statement Since contributions presented in this section are part
of joint work [37], this mandatory paragraph lists the following contributions
attributed to the author.

• the subformula calculus (Definition 8)

• the characterization of principality (Theorem 1)

• principal inhabitation PSpace-completeness (Algorithm INH, Lemma 7,
and Lemma 8)

9

2.1.1 Subformula Calculus
To distinguish distinct subformula occurrences in a given type τ , we use paths π
in the syntax tree of τ , which are defined as follows

π ∈ {1, 2}∗

We denote the empty sequence by ε. Since paths are character sequences, we
use abbreviations such as π2n for the path π followed by n twos. We access a
subformula at path π in a given type τ by τ(π), defined as

τ(ε) = τ (σ → τ)(1π) = σ(π) (σ → τ)(2π) = τ(π)

The above definition implies that we use types as functions from the set of
their paths to their subformulae. In particular, dom(τ) is the set of paths
in τ and ran(τ) is the set of subformulae in τ . Similarly to the simply typed
λ-calculus, we define path environments ∆ = {x1 : π1, . . . , xn : πn}, where
dom(∆) = {x1, . . . , xn}. For a relation R on paths, the calculus (`R) is given
by rules (→RI) and (→RE) in the following Definition 8.

Definition 8 (Calculus `R).

∆, x : π1 `R M : π2 (→RI)∆ `R λx.M : π

π2n R π′ ∆, x : π `R Mi : π2i−11 for i = 1 . . . n (→RE)
∆, x : π `R xM1 . . .Mn : π′

We call conditions of the form π R π′ side conditions. The above calculus (`R),
similarly to the calculus TApln in [13], captures as side conditions identities
imposed by the typed term. In contrast to TApln it does not contain or require
actual type information. Additionally, for any closed λ-termM in β-normal form
there exists a relation R such that ∅ `R M : ε is derivable. In particular, this is
true for terms that are not typable in the simply typed λ-calculus (Example 6).

Example 6. Let M = λx.x x and R = {(12, 2), (1, 11)}. The term M does not
contain free variables and is in β-normal form. We have

12 R 2
1 R 11 (→RE)

{x : 1} `R x : 11
(→RE)

{x : 1} `R xx : 2
(→RI)∅ `R M : ε

However, M is not typable in the simply typed λ-calculus.

Intuitively, a (`R)-derivation contains as side conditions necessary equality
constraints on subformulae that are required to type a given term M . We are
interested in the least relation R such that ∅ `R M : ε.

Definition 9 (RM). Given a closed λ-term M in β-normal form, let RM be a
minimal (wrt. inclusion) equivalence relation such that ∅ `RM M : ε.

10

Most importantly, RM exists and is unique (Lemma 1). Given a relation R
let us denote the symmetric, transitive closure of R by R��.

Lemma 1. Given a closed λ-term M in β-normal form there exists exactly one
minimal (wrt. inclusion) equivalence relation RM such that ∅ `RM M : ε.

Proof. Side conditions in (`R) are uniquely defined by the concluding judgement.
Therefore, let R′ be the unique set of side conditions to derive ∅ `R M : ε
for some R. Take RM = (R′)��. Since (`R) is monotonous in R, we have
∅ `RM M : ε. Since for any R a derivation of ∅ `R M : ε would require R′ ⊆ R,
we have that RM is minimal and unique. �

Note that in [37] we also take the reflexive closure. However, this is not
necessary and potentially confusing later on. By a variance (even/odd number of
ones) argument, we have πRπ′ only if π , π′. Taking the symmetric transitive
closure we obtain πR��π and π′R��π′.

Example 7. We have Rλx.λy.x = {(1, 22)}�� = {(1, 22), (22, 1), (1, 1), (22, 22)}
and Rλx.λy.y = {(21, 22)}�� = {(21, 22), (22, 21), (21, 21), (22, 22)}. The domain
of Rλx.λy.x (resp. Rλx.λy.y) does not contain the path 21 (resp. 1) which would
correspond to the type of y (resp. x).

Although in general we cannot identify term variables having the same types
without changing side conditions, we may identify term variables in the path
environment that are bound to same paths (Example 8).

Example 8. Consider M = λf.f (λx.f (λy.y)) and M ′ = λf.f (λx.f (λy.x)).
Both M and M ′ are normal principal inhabitants of ((α → α) → α) → α.
Let ∆ = {f : 1, x : 111, y : 111}. The only difference between the derivation of
∅ `RM M : ε and a derivation of ∅ `RM′ M

′ : ε is the leaf judgement. For the
former it is ∆ `RM y : 112 and for the latter ∆ `RM′ x : 112. Since the rest of
the derivations is identical, x and y are interchangeable and we have RM = RM ′ .

The equivalence relation RM intuitively captures equality constraints on
subformulae imposed by a given term M . Complementarily, given a type τ , we
are interested in equality constraints on subformulae satisfied by τ . To capture
such constraints we define the relation Rτ (Definition 10).

Definition 10 (Rτ). Given a type τ we define the relation Rτ on paths in
dom(τ) as Rτ = {(π, π′) | π , π′ ∧ τ(π) = τ(π′) ∈ V}��.

The condition π , π′ in the definition of Rτ excludes singular occurrences of
type variables in τ from the domain of Rτ while the subsequent closure ensures
reflexivity. This is illustrated in the following Example 9.

Example 9. We have Ra→b→a = {(1, 22)}�� = {(1, 22), (22, 1), (1, 1), (22, 22)}
and Ra→b→b = {(21, 22)}�� = {(21, 22), (22, 21), (21, 21), (22, 22)}. Similarly to
Example 7 the domain of Ra→b→a (resp. Ra→b→b) does not contain the path 21
(resp. 1).

Let us denote by Long(τ) the set of so-called η-long β-normal inhabi-
tants of τ [45, Definition 8A7] (cf. [37, Definition 6]) that capture maximally
η-expanded inhabitants.

11

The relationship between principality and equality of RM and Rτ (Example 7
and Example 9) is systematic. In particular, we have the following necessary
condition (Lemma 2) for principal inhabitation.

Lemma 2 ([37, Lemma 27]). Given a type τ let M ∈ Long(τ). If τ is the
principal type of M , then Rτ = RM .

Unfortunately, the converse of the above Lemma 2 is not true as illustrated
in the following Example 10.

Example 10. Consider M = λx.λy.x and τ = α → (β → γ) → α. We have
RM = {(1, 22)}�� = Rτ . However, τ has no normal principal inhabitant.

One could follow the approach of [13] of marking necessary arrows in deriva-
tions (requiring further interplay between terms, derivations, and types) to close
the gap exposed in the above Example 10. At first sight, taking arrow subformu-
lae in derivations into account appears inevitable. Surprisingly, this is not the
case. Certain types such as α → (β → γ) → α that have no normal principal
inhabitants have a simple syntactic characterization. Strikingly, formulated as a
necessary (and easy to verify) condition (Definition 11) we are able to close the
mentioned gap without additional constraints on terms or derivations.

Definition 11 (Agreeable, [37, (?)]). We say τ is agreeable, if

∀π ∈ dom(τ).(τ(π2) ∈ V⇒ (π2, π2) ∈ Rτ)

A type τ is agreeable, if τ has no subformula σ → α, where α occurs exactly
once as a subformula of τ , regardless of whether the occurrence is positive or
negative. This coincides with the first property in [15, Proposition 4.3] and is a
necessary condition for principal inhabitation (Lemma 3).

Lemma 3. If τ is not agreeable, then τ has no normal principal inhabitant.

Proof. (Sketch) If τ is not agreeable, then there exists a path π ∈ dom(τ) such
that τ(π2) ∈ V and (π2, π2) < Rτ . Assume τ has a normal principal inhabitant
M ∈ Long(τ) (cf. [45, Lemma 8A11.2]). By Lemma [37, Lemma 25] there exists
a derivation D . ∅ `Rτ M : ε. Since (π2, π2) < Rτ the derivation D contains
no judgement of the shape ∆ `Rτ N : π2 for some path environment ∆ and
term N . Therefore, replacing paths by corresponding subformulae in τ , there
exists a derivation D′ . ∅ `λ(→) M : τ such that α does not occur as an assigned
type in D′, where τ(π) = σ → α for some type σ. We can use the technique of
subformula filtration [37, Definition 11] to replace the type σ → α by a single
type variable [37, Lemma 12]. As a result the type τ is not the principal type
of M [37, Lemma 14], which is a contradiction. �

In the Context of Synthesis

If τ is not agreeable, then it specifies a functional property that cannot
be satisfied by any λ-term in β-normal form.

12

Considering only agreeable types, we can formulate a sufficient condition
(Lemma 4) for principal inhabitation.

Lemma 4. Given an agreeable type τ let M ∈ Long(τ). If Rτ = RM , then τ is
the principal type of M .

Proof. Assume M has a strictly more general principal type τ ′. Fix the substi-
tution S such that S(τ ′) = τ . Since generalization does not affect η-longness we
have M ∈ Long(τ ′). Therefore, by Lemma 2 we have RM = Rτ ′ . We show that
Rτ , Rτ ′ , therefore Rτ , RM .

Case S : V→ V: There exist π, π′ such that τ(π) = τ(π′) ∈ V and
τ ′(π) , τ ′(π′). Therefore, (π, π′) ∈ Rτ but (π, π′) < Rτ ′ .

Case S(α) = σ1 → . . .→ σn → β for some n > 0 and α ∈ ran(τ ′) ∩ V:
Fix any path π ∈ dom(τ ′) such that τ ′(π) = α. Since τ(π2n) = β, n > 0,
and τ is agreeable, we have (π2n, π2n) ∈ Rτ . However, τ ′(π2n) is undefined,
therefore (π2n, π2n) < Rτ ′ . �

In sum, the equality RM = Rτ characterizes principality in the sense of the
following Theorem 1.

Theorem 1 ([37, Theorem 32]). Given an agreeable type τ and a λ-term M
such that M ∈ Long(τ) we have that τ is the principal type of M iff RM = Rτ .

Proof. “=⇒”“=⇒”“=⇒” by Lemma 2. “⇐=”“⇐=”“⇐=” by Lemma 4. �

Bearing resemblance to the characterization in [13, Proposition 17], the above
characterization in Theorem 1 has two benefits. First, it does not require marking
of arrows in derivations. Second, it is factored into RM (uniquely defined by M)
and Rτ (uniquely defined by τ). Since the size of Rτ is polynomial in the size
of τ , we only require polynomial space for principal inhabitation in the following
Section 2.1.2.

In the Context of Synthesis

The above Theorem 1 shows that a long normal principal inhabitant M
of τ satisfies functional dependencies collected in RM which are exactly
those collected in the corresponding specification Rτ .

13

2.1.2 Principal Inhabitation Upper Bound
In this section we present a polynomial space algorithm to decide principal
inhabitation [37, Section 5]. Given a type τ , the idea behind the following
Algorithm INH to decide principal inhabitation (Problem 2) is as follows. Start
by verifying that τ is agreeable. Continue with the auxiliary Algorithm AUX to
construct a relation R corresponding to RM for some long normal inhabitant M
(which is not constructed explicitly). Last, verify that RM = Rτ .

Algorithm 1 Algorithm INH deciding existence of normal principal inhabitants
1: Input: simple type τ
2: Output: accept iff there exists a normal principal inhabitant of τ
3: if ¬

(
∀π ∈ dom(τ).(τ(π2) ∈ V⇒ (π2, π2) ∈ Rτ)

)
then

4: fail
5: end if
6: R := AUX(τ, ∅, ε, ∅)
7: if R = Rτ then
8: accept
9: else

10: fail
11: end if

Algorithm 2 Non-deterministic Algorithm AUX
1: Input: simple type τ , set of paths P , path π, relation on paths R
2: Output: updated relation on paths R
3: if τ(π) = σ → τ then
4: return AUX(τ, P ∪ {π1}, π2, R)
5: else if τ(π) = α for some α ∈ V then
6: choose π′ ∈ P such that τ(π′2n) = α for some n ≥ 0
7: R := (R ∪ {(π′2n, π)})��
8: for i = 1 to n do
9: R := AUX(τ, P, π′2i−11, R)

10: end for
11: end if
12: return R

Let us illustrate a run of the Algorithm INH (including recursive calls to
Algorithm AUX) in the following Example 11.

Example 11. Let τ = ((α → α) → α) → α and consider INH(τ). Since τ is
agreeable, the condition in line 3 does not trigger a failure.

• Proceed with AUX(τ, ∅, ε, ∅), which corresponds to inhabitant search of
τ(ε) = τ .

• Since τ(ε) is an arrow type, take the first branch (line 4). This induces a
potential inhabitant of the shape λf.N for a fresh f and some λ-term N .
Proceed with AUX(τ, {1}, 2, ∅), which corresponds to the search for N of
type τ(2) = a in the type environment {f : τ(1) = (α→ α)→ α}.

14

• Since τ(2) = α = τ(12), take the second branch (lines 6–10) choosing the
path 1 ∈ P . This induces N = f L for some λ-term L.
Proceed with AUX(τ, {1}, 11, {(12, 2)}��), searching for L of type
τ(11) = a→ a in the type environment {f : τ(1) = (α→ α)→ α}.

• Since τ(11) = α→ α is an arrow type, take the first branch, i.e. L = λx.L′

for a fresh x and some λ-term L′.
Proceed with AUX(τ, {1, 111}, 112, {(12, 2)}��), searching for L′ of type
τ(112) = α in the type environment
{f : τ(1) = (α→ α)→ α, x : τ(111) = α}.

• Since τ(112) = α, take the second branch. There are two options. The first
option is to choose the path 111, since τ(112) = τ(111). In this case, AUX
would return control to INH with the result R = {(12, 2), (111, 112)}�� and
INH would fail. The corresponding run of INH would induce the inhabitant
λf.f (λx.x), which is not a normal principal inhabitant of τ . The second
option is to choose the path 1 since τ(112) = τ(12) and proceed with
AUX(τ, {1, 111}, 11, {(12, 2), (12, 112)}��). Choose the second option.

• Again, τ(11) = α→ α is an arrow type, take the first branch and proceed
with AUX(τ, {1, 111}, 112, {(12, 2), (12, 112)}��).

• Again, τ(112) = α, take the second branch, choosing the path 111. After
AUX returns R = {(12, 2), (12, 112), (111, 112)}�� to INH, INH accepts.
The corresponding run of INH induces the normal principal inhabitant
λf.f (λx.f (λy.x)) (Example 8) of τ .

The normal principal inhabitant of τ is not constructed explicitly by Algorithm
INH due to polynomial space restriction. However, Algorithm AUX can be easily
modified to compute the inhabitant corresponding to the constructed relation R.

In the Context of Synthesis

Algorithm INH verifies that the given specification τ is agreeable and
uses Algorithm AUX to satisfy the required specification given by τ
(specifically, Rτ). The recursively constructed relation R collects all
functional dependencies satisfied by the term structure of the potential
inhabitant.

Lemma 5 (Soundness of INH). Given a type τ , if Algorithm 1 accepts, then
there exists a normal principal inhabitant of τ .

Proof. A successful run of Algorithm 1 induces a derivation of ∅ `RM M : ε for
some λ-term M . In particular, line 4 in Algorithm AUX induces a λ-abstraction
and lines 6–10 in Algorithm AUX induce an application with head variable of
type τ(π′) and n arguments. It suffices to take the variable that is bound to π′
and in M is abstracted outermost. Line 3 in in Algorithm INH ensures that τ
is agreeable and line 7 ensures that RM = Rτ . By Theorem 1 the term M is a
normal principal inhabitant of τ . �

15

Lemma 6 (Completeness of INH). Given a type τ , if there exists a normal
principal inhabitant of τ , then there exists an accepting run of Algorithm 1
requiring at most polynomial space in the size of τ .
Proof. Assume that τ has a normal principal inhabitant M . By Theorem 1
we have that τ is agreeable and there exists a normal principal inhabitant
M ′ ∈ Long(τ) such that D . ∅ `RM′ M

′ : ε and RM ′ = Rτ . By induction on D
there exists an accepting run R of Algorithm INH such that for each judgement
∆ `RM′ L : π in D the run R invokes AUX(τ, ran(∆), π,R) where R ⊆ RM ′ .
Therefore, for each side condition π′ RM ′ π′′ in D the corresponding invocation
of AUX in line 7 ensures π′ R π′′. Overall, by Theorem 1 we have Rτ = RM ′ = R
and INH accepts.

Polynomial Space Requirement Arguments τ , P ⊆ dom(τ), π ∈ dom(τ),
and R ⊆ dom(τ)2 are polynomial in the size of τ . Since the above run R is
accepting and there are no side-effects, there exists an accepting run R′ that has
no invocations of AUX with identical parameters along the recursive branches
of AUX. Since P and R are non-decreasing along the recursive branches of AUX,
the invocation stack of AUX in R′ is of polynomial depth in size of τ . �

Lemma 7 ([37, Lemma 38]). Principal inhabitation (Problem 2) is in PSpace.
Proof. By Lemma 5, Lemma 6 and the identity PSpace=NPSpace. �

2.1.3 Principal Inhabitation Lower Bound
In this section we illustrate a PSpace lower bound for principal inhabitation [37,
Section 6]. Unfortunately, the standard reduction [65] from quantified Boolean
formulae to inhabitation in the simply typed λ-calculus does not carry over
immediately (Example 12).
Example 12. Consider the formula ϕ = ∃p.ψ, where ψ = p ∨ ¬p. By the
construction in [65] the formula ϕ is true iff the type τ = ((αp → αψ) →
αϕ) → ((α¬p → αψ) → αϕ) → (αp → αψ) → (α¬p → αψ) → αϕ is inhabited
in the simply typed λ-calculus. The only long normal inhabitants of τ are
λx1.λx2.λy1.λy2.x1 (λz.y1 z) and λx1.λx2.λy1.λy2.x2 (λz.y2 z) for both of which
τ is not principal. In fact, there is no normal principal inhabitant of τ .

The inherent issue with the standard approach is that existential quantifiers
and disjunctions may introduce unnecessary subformulae. This issue is solved
by introducing additional subformulae that do not affect inhabitation.
Lemma 8. [37, Lemma 42] Principal inhabitation (Problem 2) is PSpace-hard.

Given a type τ , let us illustrate the construction of τ∗ [37, Section 6] such
that τ is inhabited iff τ∗ is principally inhabited. We reexamine in the following
Example 13 the principally not inhabited type from the previous Example 12.
Example 13. Let

τ = ((αp → αψ)→ αϕ)→ ((α¬p → αψ)→ αϕ)→
(αp → αψ)→ (α¬p → αψ)→ αϕ

σyx =αx → αy → αy where x, y ∈ {p,¬p, ψ, ϕ}
τ∗ = ((αp → α¬p → αψ → αϕ → αϕ)→ αϕ → αϕ)→

σϕp → σϕ¬p → σϕψ → σpϕ → σ¬pϕ → σψϕ → σϕϕ → (αϕ → αϕ)→ τ

16

The type τ∗ is principally inhabited by the following λ-term M

M =λzxϕpx
ϕ
¬px

ϕ
ψx

p
ϕx
¬p
ϕ xψϕx

ϕ
ϕxw1w2w3w4.x (z F (xN)) where

N =w1 (λz.w3 z) such that {w1 : (αp → αψ)→ αϕ, w2 : (α¬p → αψ)→ αϕ,

w3 : αp → αψ, w4 : α¬p → αψ} ` N : αϕ is derivable
F =λypy¬pyψyϕ.x

ϕ
ϕ F1 (xϕϕ Fp (xϕϕ F¬p (xϕϕ Fψ (xϕϕG1 (xϕϕG2 G3,4)))))

F1 =x (x (xϕϕ (x yϕ) (x yϕ))) ensuring x : αϕ → αϕ, x
ϕ
ϕ : σϕϕ , yϕ : αϕ

Fp =xϕp (xpϕ yϕ (xpϕ yϕ yp)) yϕ ensuring xϕp : σϕp , xpϕ : σpϕ, yp : αp
F¬p =xϕ¬p (x¬pϕ yϕ (x¬pϕ yϕ y¬p)) yϕ ensuring xϕ¬p : σϕ¬p, x¬pϕ : σ¬pϕ , y¬p : α¬p
Fψ =xϕψ (xψϕ yϕ (xψϕ yϕ yψ)) yϕ ensuring xϕψ : σϕψ, x

ψ
ϕ : σψϕ , yψ : αψ

G1 =w1 (λr.xψϕ (xϕp r yϕ) yψ) ensuring w1 : (αp → αψ)→ αϕ

G2 =w2 (λr.xψϕ (xϕ¬p r yϕ) yψ) ensuring w2 : (α¬p → αψ)→ αϕ

G3,4 =xϕψ (w3 yp) (xϕψ (w4 y¬p) yϕ) ensuring w3 : αp → αψ, w4 : α¬p → αψ

In the above construction the term F is used solely to ensure that all equalities
on atomic subformulae (cf. Rτ∗) are established (cf. RM). In particular,
G1, G2, G3,4 establish the structure of the original premises of τ , including those
which are not used to type N . Since additional premises in τ∗ are intuitionistic
theorems, if τ∗ is inhabited, then so is τ .

Arguably, in the above example τ is of low functional order, and the illustrated
technique might not work for arbitrary types. However, the construction in [65]
shows that in order to reduce satisfiability of quantified Boolean formulae to
simple type inhabitation, types of shape similar to Example 13 are sufficient [37,
Problem 2].

Concluding Remarks
We believe that the described characterization of principality (Theorem 1)
is of general interest because it separates conditions satisfied by terms from
conditions required by types. Additionally, the described subformula calculus is
not restricted to simply typed terms and can be used to inspect the structure of
any λ-term in β-normal form. Therefore, there may be a deeper connection to
intersection type systems (for an overview see [68]).

The lower bound construction implying PSpace-hardness of principal in-
habitation may be useful to inspect principal inhabitation in the simply typed
λI-calculus for which inhabitation is 2-ExpTime-complete [57].

Using quantified Boolean formulae allows us to bound the functional order
of types that suffice for the lower bound construction. Possibly, the lower bound
construction can be adapted to reduce simple type inhabitation to principal
inhabitation directly.

17

2.2 Strict Intersection Type System
The Coppo-Dezani type assignment system [23], initiating the line of work
known today as the intersection type discipline (for an overview see [4, Part 3]
and [68]), can be considered the first intersection type system. Most importantly,
in the Coppo-Dezani type assignment system each λ-term in β-normal form is
typable, and typability characterizes exactly the strongly normalizing terms in
the λI-calculus.

The Coppo-Dezani-Venneri type assignment system [25] (also presented as the
strict intersection type system [68]) extends the Coppo-Dezani type assignment
system by the universal type ω. Since any λ-term is typable by ω, this type
system is closed under β-expansion. This allows to assign exactly the same
types to β-equal λ-terms and inspect normalization properties (for an overview
see [42]).

Later, the Barendregt-Coppo-Dezani type assignment system [3] (commonly
referred to as the intersection type system) simplified type syntax, added an
intersection type subtyping relation, and provided a natural filter model.

Our presentation follows the original intuition of Coppo and Dezani [23]. In
particular, the type language of intersection types (Definition 12) extends simple
types by allowing sets of types as premises of the arrow type constructor. We
use the naming conventions introduced by van Bakel [68] distinguishing strict
types and intersection types.

Definition 12 (Strict Types, T∩! , and Intersection Types, T∩{!}).

T∩! 3 φ, ψ ::= α | σ → φ (strict types)
T∩{!} 3 σ, τ ::= {φ1, . . . , φn} where n ≥ 0 (intersection types)

where α ranges over type variables V

We abbreviate the empty intersection type by ω ∈ T∩{!}. The above stratifica-
tion of intersection types, compared to Barendregt-Coppo-Dezani presentation [3],
naturally normalizes the presentation in the sense of [48].

Historically (for an overview see [68]) an intersection type {φ1, . . . , φn} is
written as φ1∩ . . .∩φn together with a remark that ∩ is treated as an associative,
commutative, and idempotent type constructor. Arguably, the ∩ type constructor
is more natural considering semantics of intersection types (especially in presence
of union types). However, in this work we use intersection types in the original
sense of Coppo and Dezani [23] as sets. Therefore, we use a similar presentation
relying on inherent properties of sets, disambiguating strict types and singleton
intersection types.

Modern presentations [17] also tend to distinguish so-called set types (our
presentation above) and multiset types (premises of → are multisets, i.e. idem-
potency of ∩ is dropped).

Having the type ω at our disposal, we consider type environments to be total
functions from term variables into intersection types that are almost everywhere ω
except their finite domain, i.e. x ∈ dom(Γ) iff Γ(x) , ω. This implies x < dom(Γ)
iff Γ = Γ, x : ω.

The rules of the strict intersection type system [68, Definition 5.1] (corre-
sponding to the Coppo-Dezani-Venneri type assignment system [25]) are given
in the following Definition 13.

18

Definition 13 (Strict Intersection Type System [68, Definition 5.1], `λ(∩)).
Γ, x : σ `λ(∩) M : φ

(→I)Γ `λ(∩) λx.M : σ → φ

Γ `λ(∩) M : σ → φ Γ `λ(∩) N : σ
(→E)Γ `λ(∩) M N : φ

φ ∈ σ (∩E)Γ, x : σ `λ(∩) x : φ
Γ `λ(∩) M : φ1 . . . Γ `λ(∩) M : φn (∩I)

Γ `λ(∩) M : {φ1, . . . , φn}

Example 14. While the λ-term λx.x x is not typable in the simply typed
λ-calculus, it can be assigned the type {{α} → β, α} → β in the strict in-
tersection type system as follows. Let Γ = {x : {{α} → β, α}}. We have

{α} → β ∈ {{α} → β, α}
(∩E)

Γ `λ(∩) x : {α} → β

α ∈ {{α} → β, α}
(∩E)Γ `λ(∩) x : α

(∩I)
Γ `λ(∩) x : {α}

(→E)Γ `λ(∩) xx : β
(→I)

∅ `λ(∩) λx.x x : {{α} → β, α} → β

In the Context of Synthesis

Intersection types constitute a particularly interesting specification lan-
guage for type-based code synthesis that can express higher-order tabular
functional dependencies [54]. The universal type ω is useful to describe
underspecified pieces of code.

Both [66] and [36] inspect inhabitation in intersection type systems without
the type ω. Unfortunately, the strict intersection type system is not a conservative
extension of the Coppo-Dezani type assignment system (Example 15). Therefore,
it requires some work, in particular regarding a formalization in a proof assistant,
to adapt existing results.

Example 15. Let Ω = (λx.x x) (λx.x x) and M = (λxy.y) Ω. We have that
∅ `λ(∩) M : α→ α. However, since Ω is not typable in the Coppo-Dezani type
assignment system, neither is M .

In this section we adapt the simplified proof from [40] to the strict system.
Most importantly, we incorporate the type ω into the formalization [31] in the
Coq1 proof assistant of soundness and completeness of the underlying reduction.

In [31] the strict intersection type system (Definition 13) is formalized in
StrictDerivation.v as the mutual inductive type
Inductive strict_derivation : environment → term → formula → Prop
with strict_derivation_cap : environment → term → formula’ → Prop

having as type constructors exactly the above typing rules. Since the rules
(∩E), (→E), and (→I) assign strict types (formula) and the rule (∩I) assigns
intersection types (formula’), the above formalization is split accordingly into
two inductive types.

1https://coq.inria.fr/

19

https://coq.inria.fr/

The formalization uses lists as type environments instead of sets, which is
immaterial because the typing system enjoys weakening (and permutation) of
type environments as shown in
Theorem strict_weakening : ∀ (Γ Γ’: environment) (M: term) (t: formula),

strict_derivation Γ M t → well_formed_environment Γ’ →
(∀ (p : label ∗ formula’), In p Γ → In p Γ’) →
strict_derivation Γ’ M t.

After Leivant [49] we define the rank of a type (rules are given in descending
priority).

Definition 14 (Rank).
rank(τ) = 0 if τ is a simple type,

and otherwise
rank(σ → φ) = max{1 + rank(σ), rank(φ)}

rank({φ1, . . . , φn}) = max{1, rank(φ1), . . . , rank(φn)}

Let us focus our attention on the following intersection type inhabitation
problem (Problem 3).

Problem 3 (Intersection Type Inhabitation, Γ `λ(∩)? : τ). Given a type environ-
ment Γ and an intersection type τ , is there a λ-term M such that the judgement
Γ `λ(∩) M : τ is derivable?

A thorough analysis of intersection type inhabitation showing its unde-
cidability at rank 3 was done by Urzyczyn [66] and later simplified [36] and
formalized [40] in the Coq proof assistant. This section outlines a proof of unde-
cidability of inhabitation in the Coppo-Dezani-Venneri type assignment system.
The proof is by reduction from a word problem for simple semi-Thue systems.
Additionally, we outline the formalization [31] of soundness and completeness of
the reduction in the Coq proof assistant considering the universal type ω.

Section Outline The remainder of this section outlines the proof and for-
malization of undecidability of intersection type inhabitation based on [40].
Section 2.2.1 recapitulates the notion of simple semi-Thue systems along with a
particular undecidable word problem for such systems. This word problem is re-
duced to intersection type inhabitation in Section 2.2.2 referring to formalization
of soundness and completeness in the Coq proof assistant.

Authorship Statement Since contributions presented in this section are part
of joint work [40], this mandatory paragraph lists the following contributions
attributed to the author.

• reduction from simple semi-Thue rewriting to intersection type inhabita-
tion (Section 2.2.2) based on [66] including soundness (Theorem 3) and
completeness (Theorem 4) proofs

• formalization of soundness and completeness results in the Coq proof
assistant

20

2.2.1 Simple Semi-Thue Systems
In this section we recapitulate the notion of simple semi-Thue systems which are
closely related to Turing machines, albeit much simpler to handle. Additionally,
we refer to a particular undecidable word problem in such systems, which will
be reduced to intersection type inhabitation in Section 2.2.2 (a similar problem
is used in [66] as a starting point).

Definition 15 (Semi-Thue System). A semi-Thue system R over an alphabet Σ
is a finite set of rules of shape v → w where v, w ∈ Σ∗. The relation → is
extended to →R⊆ Σ∗ × Σ∗ by tvu →R twu, if v → w where t, u ∈ Σ∗. The
relation �R is the reflexive, transitive closure of →R.

Definition 16 (Simple Semi-Thue System). A semi-Thue system R over an
alphabet Σ, where each rule has the form ab→ cd for some a, b, c, d ∈ Σ, is called
a simple semi-Thue system.

The simple semi-Thue System rewriting relation is formalized in SSTS. v as
the inductive type
Inductive rewrites_to (rs : list rule) : list nat → list nat → Prop

where words are represented by lists of natural numbers. Let us abbreviate
a . . . a ∈ Σn by an.

Problem 4 (0? �R 1?). Given a simple semi-Thue system R over an alphabet Σ
such that 0, 1 ∈ Σ, is there an n ∈ N with n > 0 such that 0n �R 1n?

Accordingly, the above decision problem is formalized in SSTS. v as
∃ (m : nat), rewrites_to rs (repeat 0 (1+m)) (repeat 1 (1+m))

where repeat a (1+m) is a list of a’s of length 1+m.

Example 16. Let R = {00 → 11, 11 → 00, 01 → 10, 10 → 01} be a simple
semi-Thue system over the alphabet Σ = {0, 1}. Since R preserves binary parity
we have 0n �R 1n iff n is even.

Lemma 9 ([40, Lemma 3.3]). 0? �R 1? (Problem 4) is undecidable.

Intuitively, simple semi-Thue systems are expressive enough to represent
Turing machine computation. The main observation is that a Turing machine
configuration (q, i, t) (where q is the current state, i is the current head position,
and t is the current tape) can be represented by a word t1 . . . ti−1〈q, ti〉ti+1 . . . t|t|
over an extended alphabet including pairs of states and symbols. Accordingly, a
transition would affect exactly two neighboring symbols.

21

2.2.2 Reduction from Rewriting to Inhabitation
In this section we reduce simple semi-Thue system rewriting 0? �R 1? (Prob-
lem 4) to intersection type inhabitation Γ `λ(∩) ? : τ (Problem 3) showing
undecidability of the latter (Theorem 2).

Theorem 2. Intersection type inhabitation (Problem 3) is undecidable.

For the remainder of this section, let us fix a simple semi-Thue system R
over the alphabet Σ ⊆ V such that 0, 1 ∈ Σ and N, •, ∗,#, $, l, r ∈ V \ Σ.

We define the following types of rank at most 2 and the type environment ΓN,
providing some intuition for their intended use.

σN = {{#, $} → N}
initializes the first word to #$

σ∗ =
{{
{•} → ∗

}
→ ∗,

{
{l} → ∗

}
→ #,

{
{r} → #, {•} → $

}
→ $

}
expands the word ∗ . . . ∗#$ to ∗ . . . ∗ ∗#$

σ0 =
{
{0} → ∗, {0} → #, {1} → $

}
ends the expansion phase by rewriting ∗ . . . ∗#$ to 0 . . . 001

σ1 = {1}
accepts the word 1 . . . 1

σab→cd =
{
{l} → {c} → a, {r} → {d} → b

}
∪
{
{•} → {e} → e | e ∈ Σ

}
rewrites the word vabw to vcdw

ΓN = {xN : σN, x∗ : σ∗, x0 : σ0, x1 : σ1} ∪ {xab→cd : σab→cd | ab→ cd ∈ R}

The above definitions are formalized in Encoding.v. In particular, ΓN corresponds
to the environment Γ_init ++ Γ_step rs.

We will show that ΓN `λ(∩) ? : N is equivalent to 0? �R 1?, which is
formalized [31] in MainResult.v as

Theorem correctness : ∀ (rs : list rule),
(∃ (m : nat), rewrites_to rs (repeat 0 (1+m)) (repeat 1 (1+m))) ↔
(∃ (N : term), normal_form N ∧

strict_derivation (Γ_init ++ Γ_step rs) N (atom triangle)).

Similarly to the Coppo-Dezani type assignment system, it suffices to restrict
inhabitants to β-normal forms [67, Theorem 2.15]. Since ΓN does not contain
an occurrence of ω, the results from [40] remain applicable, albeit with a more
intricate case analysis (cf. [31]).

As observed by Urzyczyn in [66], intersection type inhabitation amounts to
solving a set of “parallel” judgement constraints

Γ1 `λ(∩) M : φ1, . . . ,Γn `λ(∩) M : φn with dom(Γi) = dom(Γj) for 1 ≤ i, j ≤ n

If we are able to establish a linear order on such parallel constraints, we can
represent a word v = a1 . . . an by derived types φ1, . . . , φn and transition rules
by assumptions in Γ1, . . . ,Γn (leading to the idea of bus machines in [66]). In
presence of intersection introduction, we are able to extend the current word
(leading to the idea of expanding tape machines in [66]).

22

First, we establish a linear order on parallel judgements in order to encode a
word. For this purpose (and differently from [66]), we define the following types
and the family of type environments Γni

σji =


{l} if i = j

{r} if i = j + 1
{•} otherwise

Γni = {yj : σji | 1 ≤ j < n} for 1 ≤ i

By construction, the following Lemma 10 lets us locate “neighboring” judge-
ments Γnj and Γnj+1.

Lemma 10. Γnn+1 `λ(∩) yj : • iff Γnj `λ(∩) yj : l and Γnj+1 `λ(∩) yj : r and
Γni `λ(∩) yj : • for i < j or i > j + 1.

Before we proceed to soundness and completeness of the reduction, let us
illustrate in the following Example 17 in which way 0? �R 1? corresponds to
ΓN `λ(∩) ? : N.

Example 17. Let R = {00 → 1a, a0 → 1b, b0 → 11} be a simple semi-Thue
system over the alphabet Σ = {0, 1, a, b}. We have 04 �R 14 because

0000→R 1a00→R 11b0→R 1111

Let

N = x00→1a y1 N
′ N ′ = xa0→1b y2 N

′′ N ′′ = xb0→11 y3 x1

M = xN (x∗ (λy1.x∗ (λy2.x∗ (λy3.x0 N))))
Γi = ΓN ∪ Γ4

i for i = 1 . . . 5

We have
Γ1 `λ(∩) x1 : 1 Γ2 `λ(∩) x1 : 1 Γ3 `λ(∩) x1 : 1 Γ4 `λ(∩) x1 : 1 Γ5 `λ(∩) x1 : 1
Γ1 `λ(∩) N ′′ : 1 Γ2 `λ(∩) N ′′ : 1 Γ3 `λ(∩) N ′′ : b Γ4 `λ(∩) N ′′ : 0 Γ5 `λ(∩) N ′′ : 1
Γ1 `λ(∩) N ′ : 1 Γ2 `λ(∩) N ′ : a Γ3 `λ(∩) N ′ : 0 Γ4 `λ(∩) N ′ : 0 Γ5 `λ(∩) N ′ : 1
Γ1 `λ(∩) N : 0 Γ2 `λ(∩) N : 0 Γ3 `λ(∩) N : 0 Γ4 `λ(∩) N : 0 Γ5 `λ(∩) N : 1
Γ1 `λ(∩) x0 N : ∗ Γ2 `λ(∩) x0 N : ∗ Γ3 `λ(∩) x0 N : ∗ Γ4 `λ(∩) x0 N : # Γ5 `λ(∩) x0 N : $
ΓN `λ(∩) M : N

Read from bottom to top, after the initial expansion to ∗ ∗ ∗#$ the assigned
types are initialized to 00001 and replaced step by step according to R. The term
variables y1, y2, y3 are used to locate particular rewriting steps.

23

Soundness

In this paragraph we outline the proof that ΓN `λ(∩) ? : N implies 0? �R 1?.
The following Lemma 11 shows that, once particular parallel constraints are

established for a word v, we obtain v �R 1 . . . 1.

Lemma 11. Let v = a1 . . . an ∈ Σn where n > 0, and let Γi = ΓN ∪ Γni for
1 ≤ i. If there exists a term N such that Γi `λ(∩) N : ai for 1 ≤ i ≤ n and
Γn+1 `λ(∩) N : 1, then v �R 1n.

Proof. Induction on the size of N in β-normal form (cf. [40, Lemma 4.3]). �

The formalization of the above argumentation is found in Soundness.v as
Lemma soundness_step.

It remains to show that the above parallel constraints are necessarily met.
The following Lemma 12 shows that parallel constraints required in the above
Lemma 11 are necessarily established.

Lemma 12. If there exists n > 0 and a term N such that ΓN ∪ Γni `λ(∩) N : ∗
for 1 ≤ i < n, ΓN ∪ Γnn `λ(∩) N : #, and ΓN ∪ Γnn+1 `λ(∩) N : $, then there
exists an n′ > 0 and N ′ such that ΓN ∪ Γn′i `λ(∩) N

′ : 0 for i = 1 . . . n′, and
ΓN ∪ Γn′n′+1 `λ(∩) N

′ : 1.

Proof. Induction on the size of N in β-normal form (cf. [40, Lemma 4.4]). �

The formalization of the above argumentation is found in Soundness.v as
Lemma soundness_expand.

Using the above results we can show soundness of the described reduction in
the following Theorem 3.

Theorem 3. If ΓN `λ(∩) N : N, then there exists an n > 0 such that 0n �R 1n.

Proof. Wlog. N is in β-normal form. Since N appears only in σN in the type
environment, we have N = xN M such that ΓN `λ(∩) M : # and ΓN `λ(∩) M : $.
Since Γ1

1 = Γ1
2 = ∅, we have ΓN ∪ Γ1

1 `λ(∩) M : # and ΓN ∪ Γ1
2 `λ(∩) M : $.

Therefore, by Lemma 12, there exists an n′ > 0 and N ′ such that
ΓN ∪ Γn′i `λ(∩) N

′ : 0 for i = 1 . . . n′, and ΓN ∪ Γn′n′+1 `λ(∩) N
′ : 1. There-

fore, by Lemma 11, we obtain 0n′ �R 1n′ . �

The above argumentation is formalized in Soundness.v as Lemma soundness.

Completeness

In this paragraph we observe that a positive answer to 0? �R 1? implies a
positive answer to ΓN `λ(∩) ? : N. Since any derivation in the Coppo-Dezani type
assignment system directly translates to a derivation in the strict intersection
type system, we obtain the following Theorem 4 as an immediate consequence
of [40, Lemma 4.6].

Theorem 4. If there exists an n > 0 such that 0n �R 1n, then there exists a
term N such that ΓN `λ(∩) N : N.

The proof of the above Theorem 4 is formalized in Completeness.v as
Lemma completeness and is identical to the formalization of [40, Lemma 4.6].

24

Complementary to Example 17 we would like to visualize the construction
diagrammatically. The expansion phase introduces neighbor information as
types of yi splitting the last constraint containing the symbol $. Afterwards the
word representation is initialized as 0 . . . 0. The last constraint containing the
symbol 1 does not have neighbor information, remaining unchanged.

xN (_) : N

x∗ (_) : # $

λy1.(_) : l→ ∗ r → # • → $

x∗ (_) : ∗ # $

λy2.(_) : • → ∗ l→ ∗ r → # • → $

x∗ (_) : ∗ ∗ # $

.

x0 (_) : ∗ . . . ∗ # $

N : 0 . . . 0 0 1

y1 : l y1 : r y1 : •

y2 : • y2 : l y2 : r y2 : •

Second, once expanded, the rewriting happens as follows ending in the
representation of the word 1 . . . 1 typed by x1.

xab→cd yj (_) : a1 . . . aj−1 a b aj+1 . . . an 1

N [x1] : a1 . . . aj−1 c d aj+1 . . . an 1

. .

x1 : 1 . . . 1 1 1 1 . . . 1 1

Concluding Remarks
With some additional work, the Turing machine halting problem can be reduced
to intersection type inhabitation directly [36] using the techniques outlined in
this work and the encoding remarked in Section 2.2.1. The main advantage of
the presented reduction in comparison to [66] is that it concisely encodes local
computation without introducing additional machinery (such as expanding tape
machines). This simplifies formalization of the reduction in a proof assistant.
Additionally, this demonstrates techniques (such as parallel constraint ordering)
and can be used to specify local computation at the level of types that can be
used for type-based synthesis.

25

2.3 Dimensionally Bounded Intersection Type
System

Since key decision problems (such as inhabitation) are undecidable in the Coppo-
Dezani-Venneri type assignment system (cf. Section 2.2), it is natural to ask
whether there are meaningful restrictions of the full system that exhibit decidable
properties. In this section we give an overview over the line of work regarding so-
called bounded-dimensional restrictions of intersection type systems [34, 38, 39],
for which some key decision problems are decidable.

In the Context of Synthesis

A better understanding of decidable restrictions of intersection type
systems leads to new algorithmic perspectives to parameterize inhabitant
search, thus improving practical implementations.

As in Section 2.2, we use the strict intersection type system (Definition 13)
for which the type language is stratified into strict types T∩! 3 φ, ψ ::= α | σ → φ
and intersection types σ, τ ::= {φ1, . . . , φn} where n ≥ 0 (Definition 12).

Before we consider restrictions, let us introduce elaborations (Definition 17)
as λ-terms in which every subterm is annotated by some intersection type. We
refer to the individual annotations as decorations. Erasing decorations in a given
elaboration P using d·e (Definition 18) results in a λ-term M = dPe, and we
say that P elaborates M . We abbreviate by 0M the unique elaboration of M in
which every decoration is the empty intersection ω.

Definition 17 (Elaborations).

P,Q,R ::= x〈τ〉 | (λx.P)〈τ〉 | (P Q)〈τ〉

In the Context of Synthesis

Statically typed programming languages often embed type annotations
into program text to guide the type checker. Elaborations extend λ-terms
providing this capability.

Definition 18 (Erasure, d·e).

dx〈τ〉e = x d(λx.P)〈τ〉e = λx.dPe d(P Q)〈τ〉e = dPe dQe

We write P : τ if the outermost decoration of P is τ . Elaborations of the same
term can be combined using point-wise set union on decorations (Definition 19).
Whenever we refer to P tQ, the condition dPe = dQe is implicitly enforced.

Definition 19 (Elaboration Union, t).

x〈σ〉 t x〈τ〉 = x〈σ ∪ τ〉
(λx.P)〈σ〉 t (λx.Q)〈τ〉 = (λx.P tQ)〈σ ∪ τ〉
(P Q)〈σ〉 t (P′ Q′)〈τ〉 = ((P tP′) (Q tQ′))〈σ ∪ τ〉

26

Clearly, t is associative, commutative, and idempotent, and for any elabora-
tion P we have 0dPe tP = P.

Using the above notions we define the elaborated strict intersection type
system (Definition 20) using decorations to keep track of all types assigned to
particular subterms (cf. [34, Section 3.1]).

Definition 20 (Elaborated Strict Intersection Type System, `〈λ〉(∩)).

φ ∈ σ (∩E〈S〉)Γ, x : σ `〈λ〉(∩) x〈{φ}〉 : φ

Γ `〈λ〉(∩) P : σ → φ Γ `〈λ〉(∩) Q : σ
(→E〈S〉)Γ `〈λ〉(∩) (P Q)〈{φ}〉 : φ

Γ, x : σ `〈λ〉(∩) P : φ
(→I〈S〉)Γ `〈λ〉(∩) (λx.P)〈{σ → φ}〉 : σ → φ

Γ `〈λ〉(∩) Pi : φi dPie = M (i = 1 . . . n, n ≥ 0)
(∩I〈S〉)Γ `〈λ〉(∩) 0M tP1 t . . . tPn : {φ1, . . . , φn}

Observe that the type system in [34, Section 3.1] does not include ω, therefore
the rule (∩I〈S〉) is restricted to n ≥ 1, corresponding to the original Coppo-Dezani
type asignment system [23].

Erasing all decorations in a (`〈λ〉(∩))-derivation results in a (`λ(∩))-derivation
and vice versa (Lemma 13).

Lemma 13. Γ `λ(∩) M : τ iff there exists an elaboration P such that dPe = M
and Γ `〈λ〉(∩) P : τ

We say an elaboration P is well-typed if Γ `〈λ〉(∩) P : τ for some type
environment Γ and some intersection type τ .

Example 18. Let P = (λx.x〈{α, β}〉)〈{{α} → α, {β} → β}〉 = 0λx.x tP1 tP2,
where P1 = (λx.x〈{α}〉)〈{{α} → α}〉 and P2 = (λx.x〈{β}〉)〈{{β} → β}〉. The
elaboration P is well-typed because we can derive

α ∈ {α}
(∩E〈S〉){x : {α}} `〈λ〉(∩) x〈{α}〉 : α
(→I〈S〉)∅ `〈λ〉(∩) P1 : {α} → α

β ∈ {β}
(∩E〈S〉){x : {β}} `〈λ〉(∩) x〈{β}〉 : β
(→I〈S〉)∅ `〈λ〉(∩) P2 : {β} → β

(∩I〈S〉)∅ `〈λ〉(∩) 0λx.x tP1 tP2 : {{α} → α, {β} → β}

Cardinalities of individual decorations indicate how many distinct types are
assigned to corresponding subterms anywhere in the derivation. Let us define
the max-norm (Definition 21) of an elaboration as the maximal cardinality of its
decorations.

Definition 21 (Max-Norm, ‖·‖).

‖x〈τ〉‖ = |τ |
‖(λx.P)〈τ〉‖ = max{|τ |, ‖P‖}
‖(P Q)〈τ〉‖ = max{|τ |, ‖P‖, ‖Q‖}

27

Intuitively, the max-norm captures the “amount of intersection introduc-
tion” used to type the term. In the above Example 18 we can observe that
‖(λx.x〈{α, β}〉)〈{{α} → α, {β} → β}〉‖ = 2, which reflects the fact that inter-
section introduction has been used at least once. Additionally, the max-norm
satisfies the following properties, making it a suitable measure.

‖P tQ‖ ≤ ‖P‖+ ‖Q‖ (triangle inequality)
‖P‖ ≥ 0 (non-negativity)
‖P‖ = 0 implies P = 0dPe

In the Context of Synthesis

The max-norm of an elaboration measures the number of distinct features
of the corresponding program (and its subprograms).

Restricting the max-norm provides a meaningful way to bound the system.

Definition 22 (Bounded-dimensional Strict Intersection Type System, `d). We
write Γ `d M : τ if there exists an elaboration P such that Γ `〈λ〉(∩) P : τ ,
dPe = M , and ‖P‖ ≤ d.

We call the parameter d the dimension of (`d). As an immediate consequence
of Lemma 13, any (`λ(∩))-derivation is captured in some dimension (Corollary 1).

Corollary 1. Γ `λ(∩) M : τ iff Γ `d M : τ for some d ≥ 0.

In the Context of Synthesis

The dimensional bound limits the number of distinct features (or, layers
of refinement) that are considered simultaneously.

Capturing arbitrary large fragments of the full system, each dimensionally
restricted fragment is, by itself, a meaningful type system satisfying subject
reduction (Theorem 5).

Lemma 14 (Substitutivity under Non-Increasing Max-Norm).
If Γ, x : σ `〈λ〉(∩) P : τ and Γ `〈λ〉(∩) Q : σ, then there exists an elaboration R
such that Γ `〈λ〉(∩) R : τ , dRe = dPe[x := dQe], and ‖R‖ ≤ max{‖P‖, ‖Q‖}.

Proof. (Sketch) First, we show that Γ `d Q : σ1 ∪ . . . ∪ σl can be decomposed
into Γ `d Q1 : σ1, . . . ,Γ `d Ql : σl such that Q = Q1 t . . . tQl (similar to [34,
Lemma 15]). The claim is obtained by showing that if Γ, x : σ `d P : τ such that
x〈σ1〉, . . . , x〈σl〉 are occurrences of x in P, then replacing the occurrences x〈σi〉
in P by Qi for i = 1 . . . l results in the elaboration R with Γ `d R : τ (similar
to [34, Lemma 16]). �

Theorem 5 (Subject Reduction in Bounded Dimension [34, Theorem 19]2).
If Γ `d M : τ and M →β N , then Γ `d N : τ .

Proof. (Sketch) Contextual closure of Lemma 14. �

2The proof in [34] can be extended to encompass ω.

28

In the Context of Synthesis

Satisfying the subject reduction property, bounded-dimensional fragments
constitute well-defined typed programming languages. In bounded dimen-
sion the type system can express interaction of feature vectors limited in
size by the dimension.

Section Outline The remainder of this section outlines the line of work
covering key decision problems (such as inhabitation, typability, type checking)
in dimensionally bounded type systems [34, 38, 39].

First, the one-dimensional fragment is considered in Section 2.3.1 for which
inhabitation is decidable and type checking is conjectured to be in NP.

In Section 2.3.2 the elaborated, relevant restriction of the strict intersection
type system is described accompanied by the notion of elaboration compactness,
which can be considered a stronger notion of irredundancy than relevance.

Sections 2.3.3 and 2.3.4 give an overview over the properties of inhabitation,
typability, and type checking in bounded dimension.

Section 2.3.5 briefly sketches a variant of the notion of dimension in which
intersection is non-idempotent and inhabitation is decidable.

Authorship Statement Since contributions presented in this section are
part of joint work [34, 38, 39], this mandatory paragraph lists the following
contributions attributed to the author.

• the relevant elaborated system, R (Definition 25)

• relevant filtrations (Definition 28) and associated properties required for
basis construction

• analysis of upper and lower bounds of typability and type checking in
bounded-dimension (Section 2.3.4) and non-idempotent dimension (Sec-
tion 2.3.5)

29

2.3.1 One-Dimensional Fragment
The one-dimensional restriction (`1) of the strict intersection type system dis-
allows any meaningful use of the intersection introduction rule (∩I〈S〉). Such a
restriction has been considered under the name explicit intersection [56] and has
several key properties.

Unsurprisingly, any simply typed λ-termM can be assigned the corresponding
strict type in (`1). Therefore, from the perspective of reduction complexity,
λ-terms typable in (`1) may give rise to β-reduction sequences of non-elementary
length (Example 19).

Example 19. Let c2 = λfx.f (f x), I = λx.x, and Mn = c2 . . . c2︸ ︷︷ ︸
n times

I I.

We have ∅ `1 Mn : {α → α} for all n ≥ 0, and Mn �β I (I (. . . (I︸ ︷︷ ︸
m times

I) . . .)) �β I

where m is non-elementary in n.

Under closer inspection of principal type schemes [24, Definition 8], any
λ-term (resp. approximant in the sense of [1]) in β-normal (resp. β⊥-normal)
form can be assigned its principal type in (`1) (Example 20).

Example 20. Let φ =
{
{α} → β, α

}
→ β, which is the principal type of λx.x x

(cf. [68, Definition 10.6]), and let P =
(
λx.(x〈{{α} → β}〉 x〈{α}〉)〈{β}〉

)
〈{φ}〉.

We have ∅ `〈λ〉(∩) P : {φ}, dPe = λx.x x, and ‖P‖ = 1. Therefore, we have
∅ `1 λx.x x : {φ}.

In the Context of Synthesis

In the one-dimensional fragment of the strict intersection type system
any normal form has a meaningful specification (its principal type).

Types that can be assigned in (`1) are bounded neither by rank (Example 21)
nor by cardinality of occurring intersection types (Example 22).

Example 21. Let φ0 =
{
{α} → β, α

}
→ β and φn+1 =

{
{φn} → γn} → γn

for n ≥ 0. Let M0 = λx.x x and Mn+1 = λyn.yn Mn for n ≥ 0. Inductively, we
have ∅ `1 Mn : {φn} while φn is of rank 2n+ 2 for n ≥ 0.

Example 22. Let φ0 = α0 and φn+1 = αn → αn+1 for n ≥ 0. Let M0 = x and
Mn+1 = x Mn for n ≥ 0. Inductively, we have
∅ `1 λx.Mn : {{φ0, . . . , φn} → φn} while |{φ0, . . . , φn}| = n+ 1 for n ≥ 0.

Inhabitation in the corresponding explicit intersection type system without
subtyping is, similarly to the simply typed system, PSpace-complete [56]. Since
the empty intersection type ω can be assigned to any λ-term, typability in
bounded dimension is trivial. If ω is excluded, then typability in (`1) is in
PSpace [38]. Since the lower bound construction uses the fixed dimension of
four [38, Proposition 20], one-dimensional typability (without ω) may be of lower
complexity.

The complexity of type checking in (`1) (Problem 5) appears to be not yet
studied. We conjecture that type checking in (`1) is NP-complete (Conjecture 1).

30

Problem 5 (One-dimensional Type Checking). Given a type environment Γ, a
λ-term M and an intersection type τ , does Γ `1 M : τ hold?

Conjecture 1. One-dimensional type checking (Problem 5) is NP-complete.

Our reasoning is as follows. The NP lower bound follows analogically to the
construction in the proof of [38, Proposition 29] by reduction from monotone
one-in-three-3SAT. As for the NP upper bound, we expect the approach in [38,
Algorithm S] to be applicable in order to non-deterministically reduce type
checking to syntactic unification. Complexity in higher dimension arises from
decomposing elaborations in order to invert the intersection introduction rule.
In (`1) this is not required because decorations are of cardinality at most 1.

In the Context of Synthesis

The one-dimensional fragment of the strict intersection type system is, due
to its expressiveness and decidability of the corresponding inhabitation
problem, an interesting candidate for practical type-based synthesis from
scratch. Additionally, normal principal inhabitants can be reconstructed
from their corresponding principal type [39, Theorem 6.5] in dimension
one.

31

2.3.2 Relevant Restriction and Compactness
Relevance is a broadly studied concept in logic (resp. type theory) by which
a proof (resp. type derivation) is required to contain only those assumptions
that are relevant to reach its conclusion. For example, in the simply typed
λ-calculus we can derive ∅ `λ(→) λyx.x : β → α → α although the particular
type assumption y : β is not relevant to type λx.x. In fact, we even have to
assign some particular type to y. Having the universal intersection type ω at our
disposal which inherently carries no particular type information, i.e. Γ(y) = ω
implies y < dom(Γ), we can derive ∅ `λ(∩) λyx.x : ω → {α} → α. Still, (`λ(∩))
admits weakening, i.e. Γ `λ(∩) M : τ and Γ ⊆ Γ′ imply Γ′ `λ(∩) M : τ , which
admits unnecessary assumptions.

The relevant intersection type system (Definition 23) is designed to capture
exactly the relevant assumptions. Let us define the union3 of type environments
pointwise, i.e. (Γ1 ∪ Γ2)(x) = Γ1(x) ∪ Γ2(x).

Definition 23 (Relevant Intersection Type System [68, Definition 10.1], `R).

(Ax){
x : {φ}

}
`R x : φ

Γ1 `R M : σ → φ Γ2 `R N : σ (→E)Γ1 ∪ Γ2 `R M N : φ

Γ, x : σ `R M : φ (→I)Γ `R λx.M : σ → φ

Γ1 `R M : φ1 . . . Γn `R M : φn (∩I)
Γ1 ∪ . . . ∪ Γn `R M : {φ1, . . . , φn}

Observe that the rule (→I) includes the case x < dom(Γ) in which we have
Γ = Γ, x : ω.

Example 23. We have ∅ `R λyx.x : ω → {α} → α, observing that ∅ = ∅, y : ω,
by the following derivation

(Ax)
{x : {α}} `R x : α

(→I)
∅ `R λx.x : {α} → α

(→I)
∅ `R λyx.x : ω → {α} → α

However, ∅ 6`R λyx.x : {β} → {α} → α because the type assumption y : {β}
is not used.

The above relevant intersection type system enjoys subject reduction (conse-
quence of [68, Lemma 10.2]) and can be considered the core of the most prominent
intersection type assignment systems (e.g. the Barendregt-Coppo-Dezani type
assignment system [3], cf. [68, Section 6.2 and Theorem 10.5]). Accordingly, it
is directly related to the strict intersection type system (Definition 13) via the
essential subtyping relation (Definition 24).

Definition 24 (Essential Subtyping [68, Definition 4.1 (iii)], ≤E). The relation
≤E is the least pre-order on T∩{!} satisfying

{φ1, . . . , φn} ≤E {φi} for i ∈ {1, . . . , n}
τ ≤E {φi} for i = 1 . . . n implies τ ≤E {φ1, . . . , φn}
τ ≤E σ and {φ} ≤E {ψ} implies {σ → φ} ≤E {τ → ψ}

3If we would have used the ∩ type constructor, we would rather define intersections of type
environments [68, Definition 3.5]. This however is confusing (and sometimes ambiguous) if
type environments (and/or intersections) are treated as sets.

32

We extend ≤E pointwise to type environments. Clearly, any derivable relevant
judgement can also be derived in the strict intersection type system. The converse
requires weakening the assumptions and strengthening the derived type using ≤E

(Lemma 15).

Lemma 15. If Γ `λ(∩) M : τ , then there exists a type environment Γ′ and a
type τ ′ such that Γ′ `R M : τ ′, Γ ≤E Γ′, and τ ′ ≤E τ .

Proof. (Sketch) Derivations in (`λ(∩)) are conservative wrt. the so-called essential
intersection type system [68, Definition 4.3]. We obtain the result by [68,
Theorem 10.5]. �

Similarly to the elaborated strict intersection type system (Definition 20)
we could extend the above Definition 23 to elaborations (cf. [39, Figure 1]).
However, a relevant derivation captures as type assumption x : σ in the type
environment exactly the strict types φ ∈ σ occurring as

{
x : {φ}

}
`R x : φ in the

derivation. Therefore, the type σ coincides with the set of strict types appearing
in decorations of x in the elaboration. In fact, for a relevant system, elaborations
contain sufficient information to reconstruct the corresponding type environment.
We use this observation in Definition 25 to give a more concise presentation of
an elaborated relevant strict intersection type system as the set R of relevant
elaborations.

Let us denote by T (P) the union of all decorations in P, and by Tx(P) the
union of all decorations of occurrences of the free variable x in P

T (P) = {φ ∈ T∩! | φ ∈ τ for some decoration τ in P}
Tx(P) = {φ ∈ T∩! | φ ∈ τ for some subterm x〈τ〉 in P} where x ∈ FV(P)

Definition 25 (Relevant Elaborations, R).

(AxR)
x〈{φ}〉 ∈ R

P ∈ R P : {φ}
(→IR)

(λx.P)〈{Tx(P)→ φ}〉 ∈ R

P ∈ R P : {σ → φ} Q ∈ R Q : σ
(→ER)

(P Q)〈{φ}〉 ∈ R

Pi ∈ R Pi : {φi} dPie = M (i = 1 . . . n, n ≥ 0)
(∩IR)0M tP1 t . . . tPn ∈ R

Observe that for any termM using the rule (∩IR) and n = 0 we have 0M ∈ R.
We denote by ΓP the type environment defined by collecting decorations of

corresponding free variables in a given elaboration P

ΓP = {x : Tx(P) | x ∈ FV(dPe)}

As indicated above, we can reconstruct from a given elaboration in R the
corresponding relevant type environment (Lemma 16). Conversely, any relevant
derivation corresponds to some elaboration in R (Lemma 16).

Lemma 16. Γ `R M : τ iff there exists an elaboration P ∈ R such that ΓP = Γ,
dPe = M , and P : τ .

33

The following Example 24 shows a non-relevant elaboration that would
otherwise be well-typed. Complementarily, Example 25 shows a corresponding
relevant elaboration.

Example 24. Let φ = {β} → β, P =
(
λx.(λy.y〈{β}〉)〈{φ}〉

)
〈{{α} → φ}〉,

Q = z〈{α}〉, and R = (P Q)〈{φ}〉. In a non-relevant setting, the elabora-
tion R is well-typed. However, R < R since in the abstraction x is assigned a
non-empty intersection type {α}, which is not used in P.

Example 25. Let φ = {β} → β, P =
(
λx.(λy.y〈{β}〉)〈{φ}〉

)
〈{ω → φ}〉,

Q = z〈ω〉, R = (P Q)〈{φ}〉. We have R ∈ R and ΓR `R dRe : {φ} where
ΓR = {z : ω} = ∅ and dRe = (λxy.y) z.

In the Context of Synthesis

Since relevance ensures that any unused assumption is typed by ω, any ar-
gument that is decorated by ω in a relevant elaboration can be considered
dead code.

Compactness and Filtrations

Somewhat surprisingly, relevant typing still may contain superfluous type infor-
mation (Example 26).

Example 26. Let φ = {α} → α. We have ∅ `R λx.x : {φ} → φ, and accordingly
P = (λx.x〈{φ}〉)〈{{φ} → φ}〉 ∈ R. However, φ contains unnecessary structure
for the particular type derivation. Accordingly, the strict type α is not decorating
in P.

Inspecting a relevant elaboration P ∈ R such that P : τ , one can observe
that if a strict subformula of τ is not decorating in P, then its structure is not
necessary for the particular derivation. Let us say that an elaboration P is tight,
if T (P) is closed under strict subformulae (Definition 26). If the elaboration is
relevant and tight, then we call it compact (Definition 27).

Definition 26 (Tightness). We say P is tight, if for all φ ∈ T (P) and all ψ
that are strict subformulae of φ we have ψ ∈ T (P).

Definition 27 (Compactness). We say P is compact, if P ∈ R and P is tight.

Relevance and tightness are orthogonal notions (Examples 26, 27, 28, and 29).

Example 27. Let φ = {α} → {β} → α. We have ∅ `λ(∩) λxy.x : φ. Accord-
ingly for P =

(
λx.(λy.x〈{α}〉)〈{{β} → α}〉

)
〈{φ}〉) we have ∅ `〈λ〉(∩) P : φ. The

elaboration P is not relevant (the assumption β is not required), and not tight
(the strict subformula β is not decorating).

Example 28. We have ∅ `R λx.x : {α} → α. Accordingly, for the elabora-
tion P = (λx.x〈{α}〉)〈{{α} → α}〉 we have that P is both relevant and tight.
Therefore, P is compact.

Example 29. Let φ = {α} → {α} → α. We have ∅ `λ(∩) λxy.x : φ. Accord-
ingly for P =

(
λx.(λy.x〈{α}〉)〈{{α} → α}〉

)
〈{φ}〉) we have ∅ `〈λ〉(∩) P : φ. The

elaboration P is not relevant (the second assumption α is not required), however
it is tight (all strict subformulae {α, {α} → α, φ} are decorating).

34

In the Context of Synthesis

Compact, well-typed elaborations constitute pieces of code that are
annotated by exactly their specification.

The most important feature of a tight elaboration P of a λ-term M is that
the cardinality of (arbitrary nested) intersection types is bounded by the number
of decorating types. Simultaneously, the number of decorating types is directly
limited by the size of M and the max-norm of P. This allows us (Section 2.3.4)
to decide typability and type checking in bounded dimension.

A particularly important instrument developed throughout the line of work
of [34, 38, 39] is the notion of filtrations. Intuitively, for a set X ⊆ T∩! of strict
types the filtration FX removes subformulae of its input type that are, in a
sense, not supported by X. In practice, X is chosen to be the set of decorating
types of a given elaboration in order to establish tightness.
Definition 28 (Relevant Filtration FX). Let X ⊆ T∩! be a set of strict types.
We define the filtration FX : T∩! → T∩! (and tacitly lift it to T∩{!}) by

FX(β) = β

FX(σ → ψ) =
{

FX(σ)→ FX(ψ) if σ ∪ {σ → ψ,ψ} ⊆ X
ασ→ψ otherwise

FX({φ1, . . . , φn}) = {FX(φ1), . . . ,FX(φn)}

We define FX(P) pointwise on decorations and FX(Γ) pointwise on type
environments. Let us revisit Example 26 applying a filtration in the following
Example 30.
Example 30. Let φ = {α} → α, P = (λx.x〈{φ}〉)〈{{φ} → φ}〉 ∈ R, and
X = T (P) = {φ, {φ} → φ}. We have

FX(P) = (λx.x〈{αφ}〉)〈{{αφ} → αφ}〉 ∈ R

Observe that FX(P) is compact (tight and relevant), FX(P) has the same max-
norm as P, and the strict substitution S(αφ) = φ reverts the filtration, i.e.
S(FX(P)) = P.

The properties in the above Example 30 are systematic. In particular,
filtrations preserve relevance (Lemma 17), ensure tightness (Lemma 18), and do
not increase norm (Lemma 19).
Lemma 17 ([39, Lemma 5.15]). For P ∈ R we have FT (P)(P) ∈ R.
Proof. We show a stronger claim by induction on derivation depth:
for any X ⊇ T (P) we have FX(P) ∈ R.
Case (AxR): We have P = x〈{φ}〉, therefore FX(P) = x〈{FX(φ)}〉 ∈ R.

Case (→IR): We have P = (λx.Q)〈{Tx(Q)→ ψ]}〉 such that Q ∈ R and
Q : {ψ}. Observing that {Tx(Q) → ψ,ψ} ∪ Tx(Q) ⊆ T (P) ⊆ X, we
have

FX(P) = (λx.FX(Q))〈{FX(Tx(Q))→ FX(ψ)}〉
Since FX(Tx(Q)) = Tx(FX(Q)), and FX(Q) ∈ R due to the induction
hypothesis, we obtain FX(P) ∈ R by rule (→IR).

35

Case (→ER): We have P = (Q R)〈{ψ}〉 such that Q,R ∈ R, Q : {σ → ψ} and
R : σ for some σ. Observing that σ ∪ {σ → ψ,ψ} ⊆ T (P) ⊆ X, we have

FX(P) = (FX(Q) FX(R))〈{FX(ψ)}〉

with FX(Q) : {FX(σ)→ FX(ψ)} and FX(R) : FX(σ). By the induction
hypothesis FX(Q),FX(R) ∈ R, therefore FX(P) ∈ R by rule (→ER).

Case (∩IR): We have P = 0M t
⊔n
i=1 Pi such that Pi ∈ R and Pi : {ψi}

for i = 1 . . . n. Since filtration is applied pointwise, we have FX(P) =
FX(0M t

⊔n
i=1 Pi) = 0M t

⊔n
i=1 FX(Pi) and FX(Pi) : {FX(ψi)} for

i = 1 . . . n. By the induction hypothesis FX(Pi) ∈ R for i = 1 . . . n,
therefore FX(P) ∈ R by rule (∩IR). �

Although the above proof of Lemma 17 is by routine induction on derivation
depth, it underlines why exactly the particular definition of filtration is used for
the relevant system. The results in [38, 37, 39] all use slightly different notions
of filtrations to take into account the different properties of the underlying type
system in each case.

Lemma 18 ([39, Lemma 5.16]). For P ∈ R the elaboration FT (P)(P) is tight.

Lemma 19 ([39, Lemma 5.17]). For P ∈ R we have ‖FT (P)(P)‖ ≤ ‖P‖.

Combining the above Lemmas 17, 18, and 19 in the following Corollary 2
establishes compactness under non-increasing norm.

Corollary 2. For P ∈ R the elaboration FT (P)(P) is compact and we have
‖FT (P)(P)‖ ≤ ‖P‖.

A key property that was first observed in [39] is that a filtration may be
reversed by a single strict substitution (Lemma 20).

Lemma 20 ([39, Lemma 5.19]). For P ∈ R, there exists a strict substitution S
such that S(FT (P)(P)) = P.

Proof. (Sketch) Let {αφ1 , . . . , αφm} be the additional type variables introduced
in FT (P)(P). Define S(αφi) = φi for i = 1 . . .m. For φ ∈ T (P) one shows
S(FT (P)(φ)) = φ by induction in the size of the syntax tree of φ. �

Using filtrations allows us to focus on compact elaborations (e.g. for type
inference) for which type structure is bounded by dimension and term size.
Conveniently, any relevant elaboration can be constructed from a compact one
by means of a single strict substitution. We will use this property in Section 2.3.4
to inspect decidability of type checking in bounded dimension.

In the Context of Synthesis

Applying a filtration to a program containing specification annotations
may result in a more concise specification of the underlying functionality.
Although principal type information can be considered the most concise
specification, it may be difficult to compute.

36

2.3.3 Inhabitation in Bounded Dimension
Since bounded dimensional fragments restrict the “amount of intersection intro-
duction”, one could hope that inhabitation in bounded dimension (Problem 6)
would be decidable. Unfortunately, it is not (Theorem 6).

Problem 6 (Bounded-dimensional Inhabitation, Γ `d ? : τ). Given a type
environment Γ, an intersection type τ and a dimensional parameter d, is there a
λ-term M such that Γ `d M : τ holds?

Theorem 6 (cf. [34, Theorem 28]). Bounded-dimensional inhabitation (Prob-
lem 6) is undecidable.

Proof. (Sketch) Inspecting the proof of undecidability of intersection type in-
habitation in Section 2.2.2 reveals that only subformulae of the given type
environment Γ and input type τ are assigned to subterms of the inhabitant (cf.
subformula property [3, Lemma 4.5]). Therefore, the maximal cardinality of
any decoration in the elaboration (hence, its max-norm) of the inhabitant is
bounded by the number of subformulae in the input. Choosing the dimensional
parameter accordingly, we can adjust the proof of Theorem 2 in the bounded
dimensional setting. �

In the Context of Synthesis

Unfortunately, bounding the number of considered orthogonal features
does not immediately result in a tractable synthesis approach.

In [34] the corresponding undecidability result is obtained directly from
normalization and subformula properties. However, in the presence of the empty
intersection type ω, we do not necessarily have the normalization property
(Example 31).

Example 31. Let Ω = (λx.x x) (λx.x x) and M = x Ω. Although M cannot be
reduced to a β-normal form, we have {x : ω → α} `1 M : α.

As observed in Section 2.3.1, inhabitation in (`1) is decidable. This raises the
(open) question of decidability of inhabitation in (`d) for fixed d (Problem 7). We
conjecture that there exists d > 1 such that inhabitation in (`d) is undecidable
(Conjecture 2).

Problem 7 (Fixed-dimensional Inhabitation). Let d ≥ 0. Given a type environ-
ment Γ and an intersection type τ , is there a λ-term M such that Γ `d M : τ
holds?

Conjecture 2. There exists d > 1 such that fixed-dimensional inhabitation
(Problem 7) is undecidable.

Our reasoning is as follows. Using techniques from Section 2.2.2 we might
represent a universal Turing machine as a type environment Γ. If we are able to
represent inputs for that Turing machine as a type τ without arbitrarily increasing
dimension necessary to decide inhabitation, then a similar argumentation as
in Section 2.2.2 might apply. This seems feasible because of the apparent
connection between the number of distinct types on the right-hand sides of

37

parallel constraints (not the actual number of constraints, cf. Example 17) and
the dimension of the inhabitant. The fixed dimension d would be dictated by the
size of the universal Turing machine as well as the dimensional increase required
to represent arbitrary inputs.

Let us conclude this section by observing that principal inhabitation (given a
type environment Γ and an intersection type τ , does there exist a
λ⊥-term M in β⊥-normal form such that (Γ, τ) is the principal pair of M
in the sense of [24]?) is decidable in polynomial time [39, Theorem 6.5]. Sur-
prising at first glance, this fact is due to severe restrictions on the structure of
types that are principally inhabited (cf. weakly balanced [39, Definition 6.1]),
allowing for a direct inversion of the principal pair generation procedure [24].
The following Examples 32 and 33 illustrate that the restricted shape of principal
types dictates the structure of the corresponding λ-term.

Example 32. Let φ = {{α} → β, {β} → γ} → {α} → γ. Each type variable
occurs in φ at most once positively and at most once negatively (cf. weakly
balanced [39, Definition 6.1]). The only λ-term in β-normal form typed by {φ}
is its principal inhabitant, the second Church-numeral, λfx.f (f x). Since prin-
cipal type derivations do not require intersection introduction, we also have
∅ `1 λfx.f (f x) : {φ}.

Example 33. Let φ = {α} → α and ψ = {φ} → φ. Although the intersection
type {ψ} is inhabited by any Church-numeral, it is not principally inhabited by
a λ-term in β-normal form because the type variable α occurs more than two
times in ψ (cf. [24, Definition 8]).

In the Context of Synthesis

Polynomial time decidability of principal inhabitation hints at the fact
that principal types precisely (in fact, uniquely) specify their correspond-
ing principal inhabitant. As a result, principal types do not alleviate
description complexity of desired inhabitants.

Despite its restrictive nature, principal inhabitation can be combined with a
type inference algorithm [39, Algorithm 2] in order to construct approximants of a
given λ-term which is not necessarily in β-normal form. In fact, any approximant
of a given term can be discovered using this approach in suitable dimension [39,
Theorem 7.6]. Let us illustrate this approach in the following Example 34.

Example 34. Let M = λxy.x y x, N = λx.x x, φ = {α} → ω → β, and
τ = {{φ, α} → β}. In dimension one we may infer [39, Algorithm 2] that
∅ `1 M N : τ . In fact, M N �β λy.y y N which has F = λy.y y⊥ as a direct
approximant. Additionally, τ is principally inhabited by F . Therefore, F can
be constructed from τ by [39, Algorithm 1]. As a result, we discovered an
approximant of the λ-term (M N) using type inference in bounded dimension
combined with principal inhabitation.

38

2.3.4 Typability, Type Checking, and Bases
As observed in the previous Section 2.3.3, even in bounded dimension inhabitation
is undecidable. Interestingly, the dual problem of typability (Problem 8) behaves
differently in bounded dimension. Of course, having the intersection type ω
at our disposal, any λ-term can be typed by ω in dimension zero. We could
disallow ω, which results in an elaborated variant of the original Coppo-Dezani
type assignment system [23]. Typability under this restriction is PSpace-
complete [38, Theorem 25]. The upper bound is shown algorithmically by a
non-deterministic reduction to a type unification problem on type constraints.
The lower bound is shown by observing that the standard reduction from
quantified Boolean formula satisfiability can be performed in dimension four.

Problem 8 (Bounded-dimensional Typability, ? `d M : ?). Given a dimensional
parameter d and a λ-term M , is there a type environment Γ and an intersection
type τ such that Γ `d M : τ holds?

Compared to the simply typed λ-calculus, intersection type assignment sys-
tems have a more intricate theory of principality [24]. In particular, it involves
considering the set of approximants of a given term in order to construct a
principal pair from which all typings of the given term can be reached using
chains of certain operations (type expansions, liftings, and substitutions). The
operation of type expansion, that imitates intersection introduction, is particu-
larly complex (for a survey see [19]). However, if we are interested in typings
of a term in bounded dimension, we do not need the full power of type expan-
sions. In fact, the theory of principality in bounded dimension can be presented
algebraically in terms of computable bases of an abstract vector space (more
precisely, semimodule) [39]. In particular, given a λ-term M and a dimension
parameter d we can algorithmically construct [39, Theorem 7.4] a unique modulo
renaming, finite basis BM,d ⊆ T∩! such that the strict span of BM,d contains
exactly those strict types that can be relevantly assigned toM in dimension d [39,
Theorem 5.20 (1)]. A strict span of a set of strict types contains exactly all strict
instances of those types [39, Definition 4.8]. Additionally, the span of BM,d,
where intersection plays the role of vector addition, contains all types that can
be relevantly assigned to M in dimension d [39, Theorem 5.20 (2)].

In the Context of Synthesis

The finite basis for a given program in a given dimension, similar to a
principal type, contains necessary information to obtain any strict type
relevantly assignable to the given program in the given dimension.
In contrast to a principal type, the basis can be constructed algorith-
mically for a program which is not in normal form. Additionally, types
are obtained by means of substitution and do not require (chains of)
expansions.

39

Let us compare the notion of principality and the notion of basis in the
following Example 35. Intuitively, the basis spans bounded dimensional typings
of a term without using type expansion.

Example 35. Let M = λx.x x, and

φ = {{α} → β, α} → β

ψ = {{α, β} → γ, α, β} → γ

τ = {{ω → ξ3} → ξ3, {{ξ1, ξ2} → ξ3, ξ1, ξ2} → ξ3} for some ξ1, ξ2, ξ3 ∈ T∩!

We have ∅ `R M : φ, ∅ `R M : ψ, ∅ `R M : τ , and ∅ `2 M : τ .
The strict type φ is the principal type of M in the sense of [24]. In order to

obtain τ from the principal type φ, we require two type expansions followed by a
lifting and a substitution.

In dimension 2 the basis of M is BM, 2 = {ψ}. The type τ is obtained by the
linear combination τ = S(ψ) ∩ T (ψ) where S = {α 7→ ω, β 7→ ω, γ 7→ ξ3} and
T = {α 7→ ξ1, β 7→ ξ2, γ 7→ ξ3}.

Spanning assignable types of a given λ-term M by linear combinations of
basis types can be seen as a generalization of principality in the simply typed
λ-calculus where the basis consist exactly of the principal type of M that can
be scaled by instantiation.

We would like to conclude this section with a conjecture that type checking
in bounded dimension is decidable (Conjecture 3) because for a given term its
basis is finite and computable.

Problem 9 (Bounded-dimensional Type Checking, Γ `d M : τ?). Given a
dimensional parameter d, a type environment Γ, a λ-term M , and an intersection
type τ does Γ `d M : τ hold?

Conjecture 3. Bounded-dimensional type checking (Problem 9) is decidable.

Our argument is as follows. Let us first consider the strict scenario, i.e.
Γ `d M : {ψ}. If Γ = {x1 : σ1, . . . , xn : σn}, let N = λx1 . . . xn.M . It
suffices to decide whether ∅ `d N : {σ1 → . . . → σn → ψ} holds. Using
the basis construction theorem [39, Theorem 7.4] and Algorithm S (N, d) [39,
Algorithm 2] we can compute the finite basis BN,d spanning types of N . Using
Lemma 15, it suffices to decide whether there exists a φ ∈ BN,d such that
S(φ) ≤E σ1 → . . .→ σn → ψ for some strict substitution S. This corresponds
to essential intersection type matching and, conceivably, is decidable (cf. [28]).
However, the type structure and subtyping rules studied in [28] slightly differ
from ≤E. Next, let us consider the general case, i.e. Γ `d M : τ . Unfortunately,
it does not suffice to verify that Γ `d M : φi holds for i = 1 . . .m where
τ = {φ1, . . . , φm} because, introducing an intersection, the required dimension
may increase. Therefore, we have to follow a different approach. Similarly to
the strict case, we can use Algorithm S (N, d) [39, Algorithm 2] to inspect all
compact elaborations of N in dimension d. Using intersection type matching,
invertibility and monotonicity of filtrations (Lemma 20 and Corollary 2) we may
discover a compact filtration that, possibly weakened wrt. ≤E, witnesses the
checked type.

40

2.3.5 Non-idempotent Restriction
Restricting intersection types to be non-idempotent, i.e. multisets, is a common
approach to characterize quantitative features of λ-terms [47, 18], and is closely
related to linear logic [26]. For example, in systemM of [16] the second Church-
numeral c2 = λfx.f (f x) can be typed by [[α] → α, [α] → α] → [α] → α,
where [·] denotes a multiset. Since the term variable f appears twice in c2, it
has to assume two copies of the type [α]→ α. This approach considers types as
resources that are consumed upon using corresponding assumptions.

Interestingly, non-idempotent intersection type systems have a decidable
inhabitation problem [16] because the type, due to linearity, restricts the size
of subterms of inhabitants. Still, non-idempotent intersection type systems
characterize normalization properties of λ-terms (for an overview see [18]).
Therefore, typability is undecidable, even under this restriction.

In the remainder of this paragraph we outline a different, non-linear use of
non-idempotent intersection types, namely in the case of bounded dimension.
Compared to the mentioned non-idempotent intersection type systems, the
quantitative nature of multisets is not used to impose linearity, but instead
the dimensional bound. Intuitively, the former approach uses non-idempotency
to count the number of times term variables are used in the term. The latter
approach uses non-idempotency to count how many times individual subterms are
typed (possibly by the same type). As in the idempotent scenario, intersection
introduction (as opposed to terms or types) is treated as a resource.

In the following Examples 36 and 37 we use the strict intersection type system
(Definition 13) to provide an intuition for the notion of multiset dimension.

Example 36. Let c2 = λfx.f (f x), φ = {α} → α, Γ = {f : {φ}, x : {α}}, and
consider the following derivation

φ ∈ Γ(f)
(∩E)Γ `λ(∩) f : φ

φ ∈ Γ(f)
(∩E)Γ `λ(∩) f : φ

α ∈ Γ(x)
(∩E)Γ `λ(∩) x : α
(∩I)

Γ `λ(∩) x : {α}
(→E)Γ `λ(∩) f x : α

(∩I)
Γ `λ(∩) f x : {α}

(→E)
Γ `λ(∩) f (f x) : α

(→I)
{f : {φ}} `λ(∩) λx.f (f x) : {α} → α

(→I)
∅ `λ(∩) λfx.f (f x) : {φ} → {α} → α

In the above derivation each subterm of c2 is typed exactly once (the in-
tersection introduction rule is used only to embed strict types into intersection
types). Therefore, c2 can be typed by [[α]→ α]→ [α]→ α in bounded multiset
dimension 1.

Example 37. Let c2 = λfx.f (f x), φ = {α, β} → α, ψ = {α, β} → β,
Γ = {f : {φ, ψ}, x : {α, β}}, and consider the following derivation

φ ∈ Γ(f)
(∩E)Γ `λ(∩) f : φ

D1 . Γ `λ(∩) f x : α D2 . Γ `λ(∩) f x : β
(∩I)

Γ `λ(∩) f x : {α, β}
(→E)

Γ `λ(∩) f (f x) : α
(→I)

{f : {φ, ψ}} `λ(∩) λx.f (f x) : {α, β} → α
(→I)

∅ `λ(∩) λfx.f (f x) : {φ, ψ} → {α, β} → α

41

where the derivation D1 is

φ ∈ Γ(f)
(∩E)Γ `λ(∩) f : φ

α ∈ Γ(x)
(∩E)Γ `λ(∩) x : α

β ∈ Γ(x)
(∩E)Γ `λ(∩) x : β
(∩I)

Γ `λ(∩) x : {α, β}
(→E)Γ `λ(∩) f x : α

and the derivation D2 is analogous to D1 using ψ instead of φ. Although
the term variable x appears only once in c2, it is typed by each α and by β in
each D1 and in D2. Therefore, a multiset dimension of at least 4 is required to
type c2 by [[α, β]→ α, [α, β]→ β]→ [α, β, α, β]→ α.

The multiset-dimensional type system is introduced in [34, Section 3.2]
and enjoys the subject reduction property [34, Theorem 18]. Surprisingly,
despite its non-linearity inhabitation in the bounded dimensional non-idempotent
system is decidable, and ExpSpace-complete. The upper bound is shown
algorithmically [34, Proposition 32]. More precisely, while dimension in the
idempotent setting bounds the number of distinct types any subterm is assigned
in a type derivation, non-idempotent dimension bounds the number of times any
subterm is typed (possibly by the same type) in a type derivation. Therefore,
we can bound the number of parallel judgment constraints (in the sense of [66])
that need to be considered during an inhabitant search, leading to a termination
argument. The lower bound is shown by observing that the ExpSpace-complete
decision problem of rank 2 intersection type inhabitation [66, Theorem 9] requires
at most linear non-idempotent dimension. This observation not only establishes
the lower bound, but shows that wrt. inhabitation the notion of bounded
non-idempotent dimension vastly generalizes the rank 2 restriction.

Type checking in bounded non-idempotent dimension is NP-hard (even in
fixed dimension 1) [38, Proposition 29] and typability is in NP [38, Proposition 32].
The former result is shown by reduction from monotone one-in-three-3SAT. The
latter result is shown algorithmically by adapting the typability algorithm from
the idempotent setting.

Concluding Remarks
Bounded-dimensional intersection type systems provide a way to systematically
restrict and approximate their corresponding unbounded counterpart. While key
decision problems such as inhabitation, typability and type checking are undecid-
able in most intersection type systems, some are decidable in bounded dimension.
Most importantly, the theory of intersection type principality is algebraically
accessible in bounded dimension by means of finite bases (not involving type
expansions). Additionally, bounded dimensional non-idempotent intersection
type calculi provide a further restriction (and enjoy decidable inhabitation) while
not imposing linearity on typed terms.

Areas of general interest with currently open research questions include
semantics as well as reduction complexity of bounded-dimensional fragments.

42

Chapter 3

Combinatory Logic

Combinatory logic, pioneered by Moses Schönfinkel in 1920s [58], only allows
terms to consist of applications of select combinators (Schönfinkel’s Bausteine).
Depending on the choice of allowed combinators (the basis), combinatory logic
is as expressive as the λ-calculus. However, in context of program synthesis we
are also interested in less expressive bases that exactly cover the given domain
of interest.

For a more unified syntax, we call λ-terms without abstractions combinatory
terms (Definition 29), denoted by F,G,H. We call term variables x appearing
in combinatory terms combinators.

Definition 29 (Combinatory Terms). F,G ::= x | (F G)

Clearly, combinatory terms are of shape (x F1 . . . Fn) for some n ≥ 0. To
mitigate extensive use of parentheses in combinatory terms we use the left-
associative pipe metaoperator � defined as F � G = (G F). For example,
G3 (G2 (G1 F)) = F � G1 � G2 � G3. The size of a combinatory term is the
number of leaves in its syntax tree (Definition 30).

Definition 30 (Size). size(x) = 1 and size(F G) = size(F) + size(G).

Since their initial appearance in Schönfinkel’s seminal paper [58], particular
combinators such as S or K are associated with specific notions of combinatory
term reduction. This allows to construct a model of computation (without
using abstraction) equivalent in expressiveness to the λ-calculus. Additionally,
combinators may be equipped with type schemes in order to construct type
systems that expose similar features (e.g. the Curry-Howard isomorphism) as
typed λ-calculi [61].

In this chapter we focus our attention on inhabitation in typed combinatory
logic (given a set of typed combinators and a type, is there a combinatory term
that can be a assigned the given type?). Specifically, we neither fix any particular
basis nor impose any particular notion of combinatory term reduction. Relying
on combinatory terms (Definition 29) as the term language we will vary the
type language (simple types in Section 3.1 and intersection types in Section 3.2)
together with corresponding typing rules.

43

In the Context of Synthesis

Typed combinators represent existing library components that expose
properties specified by their types. Simple types can be used to specify
(higher-order) functional dependencies whereas intersection types can en-
code (higher-order) tabular specification wrt. multiple feature dimensions.
A positive answer to an inhabitation query Γ ` ? : τ is a combinatory
term F such that Γ ` F : τ is derivable in the underlying type sys-
tem. The term F represents the synthesized program that satisfies the
specification represented by τ .

Chapter Outline In this chapter we inspect properties of two distinct type
systems having combinatory terms as their term language.

First, in Section 3.1 we consider the simply typed combinatory logic. We show
that inhabitation (given a simple type τ and a simple type environment Γ, is there
a combinatory term typable by τ in Γ?) in this type system is undecidable [35].
Additionally, we inspect inhabitation in the simply typed combinatory logic
considering a restricted class of type environments. We show that inhabitation
is undecidable even considering type environments containing types that are
derivable from the axiom α→ β → α in a Hilbert-style calculus, and types that
are principal for some λ-terms in β-normal form.

Second, in Section 3.2 we consider bounded combinatory logic with intersec-
tion types [30] where type instantiation is bounded by some syntactic measure.
We show that inhabitation in combinatory logic with intersection types where
instantiation is bounded by the functional order o and functional arity a is
(o+ 2)-ExpTime complete.

Third, in Section 3.3 we inspect properties of intersection type subtyping [3]
used in combinatory logic with intersection types, showing three results. First,
it is decidable in quadratic time whether two given types are in a subtyping
relation. Second, the corresponding matching problem (one of the given types
may be instantiated) is not fixed-parameter tractable in the number of type
variables [33]. Third, the corresponding unification problem (both given types
may be instantiated) is ExpTime-hard [33].

44

3.1 Simply Typed Combinatory Logic
Simple types (Definition 4) serve as the type language of simply typed combinatory
logic (`C(→)) for which the rules (Ax) and (→E) are given in the following
Definition 31.

Definition 31 (Simply Typed Combinatory Logic (`C(→))).

S is a substitution (Ax)
Γ, x : σ `C(→) x : S(σ)

Γ `C(→) F : σ → τ Γ `C(→) G : σ
(→E)Γ `C(→) F G : τ

Observe that the above definition is relativized to arbitrary type environments
(or, bases) Γ whereas the term “simply typed combinatory logic” commonly
refers to a fixed basis containing the combinators K of type α→ β → α and S of
type (α→ β → γ)→ (α→ β)→ α→ γ. We will use subintuitionistic bases to
inspect decidability of inhabitation “below” S and K in terms of derivability.

Naturally, we have the following generation lemma (Lemma 21).

Lemma 21. If Γ `C(→) x F1 . . . Fn : τ , then there exists a substitution S such
that S(Γ(x)) = σ1 → . . . → σn → τ for some n ∈ N, σ1, . . . , σn ∈ T→ and
Γ `C(→) Fi : σi holds for i = 1 . . . n.

The decision problem of inhabitation in (`C(→)) (Problem 10), abbreviated
by Γ `C(→) ? : τ , is whether there exists a combinatory term typable by a given
type τ in the given type environment Γ.

Problem 10 (Inhabitation in (`C(→)), Γ `C(→) ? : τ). Given a type environment Γ
and a type τ , is there a combinatory term F such that Γ `C(→) F : τ is derivable?

Example 38. Let σ = (α → β → γ) → (α → β) → α → γ, τ = α → β → α,
ρ1 = α→ (α→ α)→ α, ρ2 = α→ α→ α, and Γ = {S : σ,K : τ}. The question
Γ `C(→) ? : α→ α has the combinatory term S K K as a positive answer, shown
by the following derivation

D . Γ `C(→) S K : ρ2 → α→ α

{β 7→ α}
(Ax)Γ `C(→) K : ρ2 (→E)Γ `C(→) S K K : α→ α

where the derivation D is

{β 7→ α→ α, γ 7→ α}
(Ax)Γ `C(→) S : ρ1 → ρ2 → α→ α

{β 7→ α→ α}
(Ax)Γ `C(→) K : ρ1 (→E)Γ `C(→) S K : ρ2 → α→ α

In the Context of Synthesis

The above Example 38 shows that the black-box library components S
and K specified functionally by their assigned types can be applicatively
composed to satisfy the functional specification α→ α.

45

Section Outline The remainder of this section outlines the contribution
showing that inhabitation in the simply typed combinatory logic (even under
several restrictions for considered type environments) is undecidable [35]. To start
with, the Hilbert-style calculus, that is related to the simply typed combinatory
logic via the Curry-Howard correspondence, is introduced in Section 3.1.1. Next,
the problem of recognizing principal axiomatizations of formulae derivable from
each of the axioms α→ β → α (Section 3.1.2), α→ α (Section 3.1.3), α→ β → β
(Section 3.1.4) is investigated via inhabitation in the simply typed combinatory
logic. As a result, recognizing principal axiomatizations of α→ β → α is shown
to be undecidable (Theorem 7). Complementarily, it is shown that recognizing
principal axiomatizations of α → α (resp. α → β → β) is decidable in linear
time (Theorem 8 (resp. Theorem 9)).

Authorship Statement Since contributions presented in this section are part
of joint work [35], this mandatory paragraph lists the following contributions
attributed to the author.

• reduction from the Post correspondence problem to inhabitation in the
simply typed combinatory logic

• formalization of the reduction in the Lean proof assistant

• decidability of recognizing axiomatizations of α→ α (resp. α→ β → β)

46

3.1.1 Hilbert-Style Calculus
Let us identify propositional implicational axioms (sometimes called formulae)
with simple types (T→, Definition 4) and denote finite sets of axioms by ∆. The
rules (Ax) and (→E) of the Hilbert-style calculus (`H) are given in the following
Definition 32, which is in direct Curry-Howard correspondence with (`C(→)).

Definition 32 (Hilbert-Style Calculus (`H)).
S is a substitution (Ax)

∆, σ `H S(σ)
∆ `H σ → τ ∆ `H σ (→E)∆ `H τ

The set of derivable formulae is denoted by [∆]H = {τ ∈ T→ | ∆ `H τ}. We
say ∆1 axiomatizes [∆2]H if [∆1]H = [∆2]H. Clearly, [∆1]H = [∆2]H iff ∆1 `H τ
for all τ ∈ ∆2 and ∆2 `H σ for all σ ∈ ∆1. For brevity, we say ∆ axiomatizes σ
if [∆]H = [{σ}]H.

Example 39. For ∆ = {α→ β → α, (α→ β → γ)→ (α→ β)→ α→ γ} the
set of formulae [∆]H contains exactly the intuitionistic propositional implicational
theorems.

We say that an axiom σ is principal if there exists a λ-term M in β-normal
form such that σ is the principal type of M in the simply typed λ-calculus.
Principality of axioms is decidable [15] and PSpace-complete (Section 2.1).

In the Context of Synthesis

Axioms that are not principal, e.g. α → α → α, could be considered
“artificial” since they have no “naturally” associated implementation.

Derivability in the Hilbert-style calculus is equivalent to inhabitation in the
simply typed combinatory logic (Lemma 22).

Lemma 22. We have τ ∈ [{σ1, . . . , σn}]H iff the inhabitation problem instance
{x1 : σ1, . . . , xn : σn} `C(→)? : τ has a solution.

In the Context of Synthesis

Derivability in Hilbert-style calculi from principal axioms is directly re-
lated to program synthesis from a collection of existing program pieces
(principal inhabitants of the given axioms). The derived formula corre-
sponds to desired properties of the synthesized result.

The problem of derivability in the Hilbert-style calculus was posed by Tarski
in 1946 and has subsequently been studied by several authors including Linial and
Post [50] in 1949 who have shown undecidability of the problem of recognizing
axiomatizations of classical propositional logic. Zolin [70] provides a good
overview of further developments regarding this problem.

47

3.1.2 Recognizing Axiomatizations of α→ β → α

In this section we give an overview over the proof in [35] showing that recognizing
principal axiomatizations of the Hilbert-style calculus containing only the axiom
α→ β → α is undecidable (Theorem 7). Via the Curry-Howard correspondence
this result translates to the area of composition synthesis (Corollary 3).

If one is not interested in principality of axioms, then this result follows
directly from the recent work by Bokov [12].

Theorem 7. Given principal axioms σ1, . . . , σn such that {α→ β → α} `H σi
for i = 1 . . . n, it is undecidable whether {σ1, . . . , σn} `H α→ β → α.

Corollary 3. Given λ-terms M1, . . . ,Mn in β-normal form with principal types
σ1, . . . , σn in the simply typed λ-calculus such that {α → β → α} `H σi for
i = 1 . . . n, it is undecidable whether there is an applicative composition of
M1, . . . ,Mn typable by α→ β → α.

In the Context of Synthesis

In the above Corollary 3 the types σ1, . . . , σn are natural specifications
of associated terms M1, . . . ,Mn and α→ β → α is a goal specification.
Deriving α→ β → α from σ1, . . . , σn naturally corresponds to finding a
composition of given terms satisfying the goal specification.

Theorem 7 is proven by reduction from the Post correspondence problem
(Problem 11), which is known for its simplicity and undecidability [53].

Post Correspondence Problem

Problem 11 (Post Correspondence Problem, PCP). Given pairs of words
(v1, w1), . . . , (vk, wk) over the alphabet {a, b} such that vi , ε , wi for i = 1 . . . k
(where ε is the empty word), is there an index sequence i1, . . . , in for some n > 0
such that vi1vi2 . . . vin = wi1wi2 . . . win?

Lemma 23 ([53]). The Post correspondence problem (Problem 11) is undecid-
able.

Corollary 4. Given pairs of words (v1, w1), . . . , (vk, wk) over the alphabet {a, b}
such that ε , vi , wi , ε for i = 1 . . . k it is undecidable whether there exists an
index sequence i1, . . . , in such that v1vi1vi2 . . . vin = w1wi1wi2 . . . win .

Usually, the Post correspondence problem is approached constructively, i.e.
start with some given pair of words, then iteratively append corresponding
suffixes, and finally test for equality. The approach taken here is, in a sense,
“deconstructive”. In particular, we start from an arbitrary pair of equal words,
then iteratively remove corresponding suffixes, and finally test whether the
resulting pair is given. While the former approach requires an equality test for
arbitrarily large structures as the final operation, the final operation of the latter
approach can be bounded. The following Definition 33 and Lemma 24 capture
the outlined iterative deconstruction.

48

Definition 33. Given a set PCP = {(v1, w1), . . . , (vk, wk)} of pairs of words
over the alphabet {a, b} we define for n ≥ 0 the set PCPn of pairs of words as

PCP0 = {(v, v) | v ∈ {a, b}∗}
PCPn+1 = {(v, w) | ∃i ∈ {1, . . . , k}.(vvi, wwi) ∈ PCPn}

Lemma 24. Let n ≥ 0 and v, w ∈ {a, b}∗. We have
vvi1vi2 . . . vin = wwi1wi2 . . . win for some index sequence i1, . . . , in iff
(v, w) ∈ PCPn.

Proof. Routine induction on n. �

In sum, it is undecidable whether the prefix (v1, w1) is in PCPn for some n ≥ 0
(Corollary 5).

Corollary 5. Given a set PCP = {(v1, w1), . . . , (vk, wk)} of pairs of words over
the alphabet {a, b} such that ε , vi , wi , ε for i = 1 . . . k it is undecidable
whether there exists an n ≥ 0 such that (v1, w1) ∈ PCPn.

Example 40. Let PCP = {(v1, w1), (v2, w2), (v3, w3)} where v1 = a,
w1 = ab, v2 = baa, w2 = a, v3 = a, w3 = aa. For the index sequence i1 = 1,
i2 = 2, i3 = 3 we have vi1vi2vi3 = abaaa = wi1wi2wi3 .

Complementarily, we have (abaaa, abaaa) ∈ PCP0, (abaa, aba) ∈ PCP1, and
(v1, w1) = (a, ab) ∈ PCP2.

Proof of Theorem 7

We will show undecidability of recognizing principal axiomatizations of the
formula α→ β → α by reduction from the Post correspondence problem using
Corollary 5.

Let us fix PCP = {(v1, w1), . . . , (vk, wk)} pairs of words over the alpha-
bet {a, b} such that ε , vi , wi , ε for i = 1 . . . k. Our goal is to construct
principal axioms σ1, . . . , σl such that {α → β → α} `H σi for i = 1 . . . l and
{σ1, . . . , σl} `H α→ β → α is equivalent to (v1, w1) ∈ PCPn for some n ≥ 0. In
this subsection we outline the construction of axioms σ1, . . . , σl. Principality of
σ1, . . . , σl is addressed in [35, Section 3] using the Haskell1 programming lan-
guage. Additionally, the reduction is formalized using the Lean2 proof assistant
and is part of the main contribution in [35].

We need to represent words, pairs and suffixing. Let us fix a unique type
variable •. For a word v ∈ {a, b}∗ we define its representation as [v] = • · v
where the operation · is defined as

σ · ε = σ σ · wa = (• → •)→ (σ · w) σ · wb = (• → • → •)→ (σ · w)

We represent a pair of types σ, τ as

〈σ, τ〉 = (• → • → •)→ (σ → τ → •)→ (• → σ)→ (• → τ)→ • → • → •

The formula [v] contains only • as atoms. Additionally, we have [v] ·w = [vw],
and representations of two distinct words are not unifiable (Lemma 25).

1https://www.haskell.org/
2https://leanprover.github.io/

49

https://www.haskell.org/
https://leanprover.github.io/

Lemma 25 ([35, Lemma 19]). Let v, w ∈ {a, b}∗. If [v] and [w] are unifiable,
then v = w.

Additionally, for any types σ, τ we have that 〈σ, τ〉 is derivable from
α→ β → α (Lemma 27).

Lemma 26. Let σ, τ be types. If {α→ β → α} `H τ ,
then {α→ β → α} `H σ → τ .

Proof. Use the rule (→E) with the premises {α→ β → α} `H τ → σ → τ and
{α→ β → α} `H τ . �

Lemma 27. Let σ, τ be types. We have {α→ β → α} `H 〈σ, τ〉.

Proof. By iterative application of Lemma 26 starting with the judgement
{α→ β → α} `H • → • → •. �

Finally, we define a type environment Γ of k + 2 combinators typed by
principal axioms

Γ ={x : 〈α, α〉, z : 〈[v1], [w1]〉 → • → α→ •}
∪ {yi : 〈α · vi, β · wi〉 → 〈α, β〉 | 1 ≤ i ≤ k}

In the Context of Synthesis

The above collection of components Γ specifies at the level of types the
construction of the sets PCPi for i ≥ 0. The component x constructs
arbitrary pairs of equal elements, and the components yi remove suffixes
(vi, wi) of a given pair of words for i = 1 . . . k. Therefore, typable
applicative compositions x � yi1 � yi2 � . . . � yin construct elements of
PCPn for n ≥ 0.

Due to Lemma 27, each axiom in dΓe is derivable from α→ β → α.
Having established all prerequisite definitions, we now proceed with our main

reduction. The following Lemma 28 establishes a connection between elements
(v, w) ∈ PCPn and inhabitants of 〈[v], [w]〉.

Lemma 28. Let S be a substitution and let v, w ∈ {a, b}∗.
If Γ `C(→) x � yi1 � yi2 � . . . � yin : S(〈[v], [w]〉) for some index sequence i1 . . . in,
then (v, w) ∈ PCPn.
Proof. Induction on n.

Basis Step: Γ `C(→) x : S(〈[v], [w]〉) implies S([v]) = S([w]). By Lemma 25 we
obtain v = w.

Inductive Step: Assume Γ `C(→) x � yi1 � yi2 � . . . � yin � yl : S(〈[v], [w]〉) for
some index sequence i1, . . . , in, l. We necessarily have
Γ `C(→) yl : σ → S(〈[v], [w]〉) and Γ `C(→) x � yi1 � yi2 � . . . � yin : σ for
some type σ. Additionally, σ → S(〈[v], [w]〉) = T (〈α · vl, β · wl〉 → 〈α, β〉)
for some substitution T , which implies S([v]) = T (α), S([w]) = T (β) and
S(•) = T (•). Therefore, T (α · vl) = S([vvl]) and T (β · wl) = S([wwl]). As
a result, we have σ = T (〈α · vl, β · wl〉) = S(〈[vvl], [wwl]〉).
By the induction hypothesis (vvl, wwl) ∈ PCPn, which implies
(v, w) ∈ PCPn+1. �

50

Let us define n ∈ N ∪ {∞} as either the minimal size of a combinatory term
typable in Γ by σ → σ → σ or as ∞ if no such term exists.

n = min{size(F) | Γ `C(→) F : σ → σ → σ for some type σ}

Intuitively, a “small”, i.e. of size less than n, derivation of an instance of
〈[v1], [w1]〉 contains no derivation of an instance of • → • → •. Due to our pair
encoding, which has as its first argument the type • → • → •, we are able to
severely restrict the shape of the minimal derivation of 〈[v1], [w1]〉 (Lemma 29).

Lemma 29 ([35, Lemma 23]). If Γ `C(→) F : S(〈σ, τ〉) for some substitution S
such that size(F) < n, then F = x � yi1 � . . . � yim for some (possibly empty)
index sequence i1, . . . , im.

By an exhaustive case analysis, for which the pedantic supervision of a proof
assistant shows its strength, we have that if α→ β → α is derivable, then there
is a small derivation of an instance of 〈[v1], [w1]〉 (Lemma 30).

Lemma 30 ([35, Lemma 24]). If dΓe `H α→ β → α, then
Γ `C(→) F : S(〈[v1], [w1]〉) for some substitution S and combinatory term F such
that size(F) < n.

By construction, elements (v, w) ∈ PCPn are associated with terms of type
〈[v], [w]〉 (Lemma 31).

Lemma 31 ([35, Lemma 25]). Let v, w ∈ {a, b}∗. If (v, w) ∈ PCPn, then
Γ `C(→) x � yi1 � yi2 � . . . � yin : 〈[v], [w]〉 for some index sequence i1 . . . in.

Finally, we obtain the following key Lemma 32 which relates membership
of (v1, w1) in some PCPn and derivability of α→ β → α from the axioms dΓe
concluding the proof of Theorem 7.

Lemma 32. We have dΓe `H α→ β → α iff (v1, w1) ∈ PCPn for some n ≥ 0.

Proof. =⇒=⇒=⇒: Assume dΓe `H α → β → α. By Lemma 30 we have
Γ `C(→) F : S(〈[v1], [w1]〉) for some substitution S and combinatory term F
with size(F) < n. By Lemma 29 we have F = x � yi1 � yi2 � . . . � yin for some
index sequence i1 . . . in. Finally, by Lemma 28 we have (v1, w1) ∈ PCPn.
⇐=⇐=⇐=: Assume (v1, w1) ∈ PCPn. By Lemma 31 we have Γ `C(→) F : 〈[v1], [w1]〉

for some term F . Using an appropriate substitution, we obtain
Γ `C(→) z F : α→ β → α. �

In sum, Theorem 7 is shown applying the above Lemma 32 to the construction
in Corollary 4. For formal proofs of the above Lemmas in the Lean proof assistant
see [35].

51

It is noteworthy that the condition {α → β → α} `H σi for i = 1 . . . n in
Theorem 7 is decidable in linear time [35, Section 3]. The key observation is that
any formula derivable from α → β → α is a prefixed instance of α → β → α
(Lemma 33). This contrasts PSpace-completeness of intuitionistic implicational
provability [62] and undecidability of relativized derivability in logic fragments
“weaker” that α→ β → α (Theorem 7).

Lemma 33 ([35, Lemma 27]).
[{α→ β → α}]H = {σ1 → . . .→ σn → τ → σn | n ≥ 1 and σ1, . . . , σn, τ ∈ T→}

Proof. (Sketch)

⊇⊇⊇: n-fold use of Lemma 26 starting with {α→ β → α} `H σn → τ → σn.

⊆⊆⊆: Assume {x : α → β → α} `C(→) F : σ such that size(F) is minimal. The
claim is shown by induction on size(F) using (Lemma 21). �

It remains open, whether there is a fixed principal basis derivable from the
axiom α → β → α that exposes an undecidable derivability problem (Conjec-
ture 4).

Conjecture 4. There exist principal axioms σ1, . . . , σn such that we have
{α → β → α} `H σi for i = 1 . . . n and it is undecidable whether
{σ1, . . . , σn} `H τ holds given a formula τ .

Our reasoning is as follows. It is possible to axiomatize arbitrary PCP
instances using “weak”, principal axioms. We may consider a particular PCP
instance that encodes an universal Turing machine. The claim may be shown by
representing Turing machine inputs via the given type τ .

In the Context of Synthesis

In the above reasoning the library components would correspond to
building blocks of an universal Turing machine specified by simple types.
We conjecture that typable applicative compositions of those components
would correspond to (partial) runs of this machine.

52

3.1.3 Recognizing Axiomatizations of α→ α

In this section, we record that axiomatizations of the Hilbert-style calculus
containing only the axiom α → α are recognizable in linear time. The key
observation is that one cannot meaningfully compose axioms that are instances
of α → α. Therefore, the only derivable formulae are instances of the given
axioms (Lemma 34).

Lemma 34 ([35, Lemma 28]). Given σ1, . . . , σn ∈ T→ we have

[{σ1 → σ1, . . . , σn → σn}]H =
n⋃
i=1
{S(σi → σi) | S is a substitution}

Proof. (Sketch)

⊇⊇⊇: holds by instantiation of σi → σi for i = 1 . . . n.

⊆⊆⊆: Let Γ = {x1 : σ1 → σ1, . . . , xn : σn → σn}. Assume Γ `C(→) F : σ such that
size(F) is minimal. The claim is shown by case analysis using (Lemma 21)
and minimality of size(F). �

Corollary 6. [{α→ α}]H = {τ → τ | τ ∈ T→}.

Lemma 35. If [∆]H = [{α→ α}]H, then β → β ∈ ∆ for some β ∈ V.

Proof. Since [{α→ α}]H ⊇ [∆]H implies [{α→ α}]H ⊇ ∆ we have
∆ = {σ1 → σ1, . . . , σn → σn} for some σ1, . . . , σn ∈ T→ by Corollary 6. By
Lemma 34 we obtain [∆]H =

⋃n
i=1{S(σi → σi) | S is a substitution}. Due to

[{α→ α}]H ⊆ [∆]H we obtain α→ α = S(σi → σi) for some i ∈ {1, . . . , n} and
some substitution S, which holds iff σi → σi = β → β for some β ∈ V. �

Corollary 7. We have [∆]H = [{α→ α}]H iff ∆ ⊆ {σ → σ | σ ∈ T→} and
β → β ∈ ∆ for some β ∈ V.

As a result of Corollary 7, recognizing axiomatizations of α→ α is decidable
in linear time.

Theorem 8. Given principal axioms σ1, . . . , σn such that {α → α} `H σi for
i = 1 . . . n, it is decidable in linear time whether {σ1, . . . , σn} `H α→ α.

53

3.1.4 Recognizing Axiomatizations of α→ β → β

In this section, we extend linear time recognizability to axiomatizations of the
Hilbert-style calculus containing only the axiom α→ β → β. This is surprising
in light of Theorem 7 showing undecidability in case of α→ β → α. However,
similarly to α→ α, meaningful logical compositions of instances of α→ β → β
are limited (Lemma 36).

Lemma 36 ([35, Lemma 32]).
[{α→ β → β}]H = {σ → τ → τ | σ, τ ∈ T→} ∪ {τ → τ | τ ∈ T→}

Proof. (Sketch)

⊇⊇⊇: Instantiation resp. derivability of α→ α.

⊆⊆⊆: Assume {x : α → β → β} `C(→) F : σ such that size(F) is minimal. The
claim is shown by case analysis using (Lemma 21) and minimality of
size(F). �

Using the above Lemma 36, we can characterize axiomatizations of
α→ β → β syntactically (Lemma 37).

Lemma 37. We have [∆]H = [{α→ β → β}]H iff γ → δ → δ ∈ ∆ for some
γ, δ ∈ V and ∆ ⊆ {σ → τ → τ | σ, τ ∈ T→} ∪ {τ → τ | τ ∈ T→}.

Proof. ⇐=⇐=⇐=: σ → τ → τ and τ → τ are derivable from γ → δ → δ for any
σ, τ ∈ T→.

=⇒=⇒=⇒: Due to [{α→ β → β}]H ⊇ ∆ by Lemma 36 we have that
∆ ⊆ {σ → τ → τ | σ, τ ∈ T→} ∪ {τ → τ | τ ∈ T→}. From
[{α→ β → β}]H ⊆ [∆]H we obtain ∆ `H α→ β → β. By case analysis (similar
to the proof of Lemma 36) the minimal derivation of ∆ `H α → β → β is an
instantiation of some σ → τ → τ ∈ ∆, i.e. α → β → β = S(σ → τ → τ) for
some substitution S. Therefore, σ → τ → τ = γ → δ → δ for some γ, δ ∈ V. �

As a result of the above Lemma 37, recognizing axiomatizations of
α→ β → β is decidable in linear time.

Theorem 9. Given principal axioms σ1, . . . , σn such that {α→ β → β} `H σi
for i = 1 . . . n, it is decidable in linear time whether {σ1, . . . , σn} `H α→ β → β.

One reason why recognizing axiomatizations of α → α and α → β → β is
trivial is that the set of minimal proofs in the corresponding calculi is finite,
which is not the case for α→ β → α.

In the Context of Synthesis

Contrarily to α→ β → α, formulae “below” α→ β → β (or, α→ α) do
not seem to constitute an expressive specification language.

54

Concluding Remarks
The presented construction has two distinct benefits compared to the reduction
from the halting problem for two-counter automata to inhabitation in simply
typed combinatory logic in [54] with regard to composition synthesis. First, we
use simple types as the underlying type language whereas in [54] the construction
additionally requires type constants that are not subject to parametricity. Second,
the restriction to principal axioms directly establishes a relationship to code
fragments whereas in [54] the axioms are not intuitionistic theorems.

Considering axiomatizations that are principal provides an additional twist to
the Curry-Howard isomorphism. In particular, it is insightful to inspect compo-
sitions of principal inhabitants of axioms σ1, . . . , σl constructed in Section 3.1.2.
On the one hand, for particular PCP instances solvability is derived from the
axioms σ1, . . . , σl logically. On the other hand, in [35, Section 3] the constructed
λ-term (actually, Haskell program) not only corresponds to the proof that a given
PCP instance is solvable, but actually constructs the solution computationally.
However, it is unclear whether this phenomenon is systematic or coincidental.

One of the main contributions in [35] is the formalization of the reduction
using the Lean proof assistant under the banner of “type theory inside type
theory”. We hope that this reduction can be embedded in the larger framework of
computational reductions in Coq [41] already containing a collection of formalized
reductions that are used in undecidability results.

It remains open whether, similarly to [60], there is a fixed principal basis
“below” α→ β → α that exposes an undecidable derivability problem. If so, it
would be interesting to inspect the principal inhabitants of the basis axioms.

55

3.2 Combinatory Logic with Intersection Types
As we have seen in Section 3.1, even in simple types, inhabitation in combinatory
logic is undecidable. This remains true [27], even for the fixed type environment
of S, K with corresponding types, if we use intersection types as the underlying
type language and add corresponding intersection introduction and elimination
rules. Therefore, several restrictions of combinatory logic with intersection types
have been considered [55, 30]. One such restriction is the bounded combinatory
logic [30] in which instantiation is restricted to types having a certain level.
The level of a type is the depth of its syntax tree wrt. the arrow type con-
structor. If type instantiation is restricted to level at most k, then the decision
problem of type inhabitation in combinatory logic with intersection types is
(k + 2)-ExpTime-complete [30].

In this section we refine the notion of level into the combination of functional
order and functional arity. As a result, we obtain a fine grained analysis of
inhabitation complexity showing that functional order (and not functional arity)
contributes to the iterated exponential complexity.

Intersection types with constants T∩C0
(Definition 34) serve as the type lan-

guage of bounded combinatory logic.

Definition 34 (Intersection Types with Constants, T∩C0
).

T∩C0
3 σ, τ ::= α | a | ω | σ → τ | σ ∩ τ

where α ranges over type variables V and
a ranges over type constants C0

As is usual, → associates to the right, and ∩ binds more strongly than →. A
type σ ∩ τ is said to have σ and τ as components.

Types in T∩C0
differ from types in T∩{!} in three aspects. First, T∩C0

encompasses
type constants a motivated by existence of certain primitive types that are
not subject to parametricity in existing programming languages. Second, the
special constant ω represents the universal type and corresponds to the empty
intersection in T∩{!}. Third, T∩C0

does not stratify types by allowing intersections
on the right-hand side of the arrow. This allows for an exponentially more
concise presentation of types as we introduce the intersection type subtyping
(Definition 35) relation.

Definition 35 (Intersection Type Subtyping [3], ≤). The relation ≤ is the least
preorder (reflexive and transitive relation) over T∩C0

such that

σ ≤ ω, ω ≤ ω → ω, σ ∩ τ ≤ σ, σ ∩ τ ≤ τ,
(σ → τ1) ∩ (σ → τ2) ≤ σ → τ1 ∩ τ2,

if σ ≤ τ1 and σ ≤ τ2 then σ ≤ τ1 ∩ τ2,

if σ2 ≤ σ1 and τ1 ≤ τ2 then σ1 → τ1 ≤ σ2 → τ2

Type equality, written σ = τ , holds when σ ≤ τ and τ ≤ σ hold, thereby
making ≤ a partial order over T∩C0

. To avoid confusion, we use ≡ for syntactic
identity. Observe that in [3] types do not include type constants. Since subtyping
does not distinguish between type constants and type variables, we can treat them
uniformly. Under above type equality intersection is associative, commutative and

56

idempotent. Therefore, we write
⋂n
i=1 σi for corresponding nested intersections,

and for ω if n = 0.
Combinatory logic with intersection types (Definition 36) is an extension

of simply typed combinatory logic (Definition 31) while combinatory terms
(Definition 29) remain the underlying term language. The additional rules (∩I)
and (≤) serve as introduction and elimination rules for the intersection type
constructor.

Definition 36 (Combinatory Logic with Intersection Types, `C(∩)).

S is a substitution (Ax)
Γ, x : σ `C(∩) x : S(σ)

Γ `C(∩) F : σ → τ Γ `C(∩) G : σ
(→E)Γ `C(∩) F G : τ

Γ `C(∩) F : σ Γ `C(∩) F : τ
(∩I)Γ `C(∩) F : σ ∩ τ

Γ `C(∩) F : σ σ ≤ τ
(≤)Γ `C(∩) F : τ

In the Context of Synthesis

Similarly to program synthesis in typed λ-calculi (Chapter 2), intersection
types provide a richer specification language in comparison to simple
types. Conceivably, the intersection type specification of an universal
Turing machine M could be

τ ≡ TuringMachine ∩ (TuringMachine→ String→ Integer→ Bool)

Using intersection type subtyping we can derive

{M : τ} `C(∩) M : TuringMachine and
{M : τ} `C(∩) M : TuringMachine→ String→ Integer→ Bool

Therefore, {M : τ} states two properties. First, M is itself a Turing
machine. Second, given a Turing machine, an input string, and some
number of steps, M returns either true of false (for example depending
on the simulated behavior for the given input after the given number of
steps). Such a specification is neither in scope of simple types nor do the
two intersection components refine (in the sense of [52]) a simple type.

Similarly to the simply typed scenario, combinatory logic with intersection
types where the type environment contains correspondingly typed S and K
combinators is directly related to λ-calculus with intersection types [27], in
particular the Barendregt-Coppo-Dezani type assignment system [3], for which
inhabitation is undecidable [66].

In search of fragments exposing decidable inhabitation we explore restrictions
of (`C(∩)). In the following, we restrict instantiation wrt. functional order
(Definition 38) and functional arity (Definition 39). The notions of order and
arity refine the notion of level (Definition 37) by inspecting nesting of the arrow
type constructor to the left and to the right separately.

57

Definition 37 (Level).

level(α) = level(a) = level(ω) = 0
level(σ → τ) = max(1 + level(σ), 1 + level(τ))
level(σ ∩ τ) = max(level(σ), level(τ))

Definition 38 (Order).

order(α) = order(a) = order(ω) = 0
order(σ → τ) = max(1 + order(σ), order(τ))
order(σ ∩ τ) = max(order(σ), order(τ))

Definition 39 (Arity).

arity(α) = arity(a) = arity(ω) = 0
arity(σ → τ) = max(arity(σ), 1 + arity(τ))
arity(σ ∩ τ) = max(arity(σ), arity(τ))

The notion of order and arity is tacitly extended to substitutions as follows

order(S) = max{order(S(α)) | α ∈ V} arity(S) = max{arity(S(α)) | α ∈ V}

The rules of bounded combinatory logic (`(o,a)) (cf. [30, Figure 1]) are given
in the following Definition 40 where the parameter o limits instantiation order
and the parameter a limits instantiation arity.

Definition 40 (Bounded Combinatory Logic, `(o,a)).

S is a substitution order(S) ≤ o arity(S) ≤ a
(Ax)

Γ, x : σ `(o,a) x : S(σ)
Γ `(o,a) F : σ → τ Γ `(o,a) G : σ

(→E)Γ `(o,a) F G : τ
Γ `(o,a) F : σ Γ `(o,a) F : τ

(∩I)Γ `(o,a) F : σ ∩ τ
Γ `(o,a) F : σ σ ≤ τ

(≤)Γ `(o,a) F : τ

Naturally, the decision problem of inhabitation in (`(o,a)) (Problem 12)
amounts to existence of a combinatory term typable by the given type in the
given environment under order and arity restrictions.

Problem 12 (Inhabitation in (`(o,a)), Γ `(o,a)? : τ). Let o and a be two natural
numbers. Given a type environment Γ and a type τ , is there a combinatory
term F such that Γ `(o,a) F : τ is derivable?

Example 41. Let o = a = 0, and

σ ≡ (0→ 1) ∩ (1→ 0)
τ ≡ (0→ 0) ∩ (1→ 1)
ρ0 ≡ (0→ 1)→ (1→ 0)→ (0→ 0)
ρ1 ≡ (1→ 0)→ (0→ 1)→ (1→ 1)
Γ = {s : σ, b : (β → γ)→ (α→ β)→ α→ γ}

58

The question Γ `(o,a)? : τ has the combinatory term b s s as a positive answer,
shown by the following derivation

D . Γ `(o,a) b : σ → σ → τ
(Ax)Γ `(o,a) s : σ
(→E)Γ `(o,a) b s : σ → τ

(Ax)Γ `(o,a) s : σ
(→E)Γ `(o,a) b s s : τ

where the derivation D is given by

{α 7→ 0, β 7→ 1, γ 7→ 0}
(Ax)Γ `(o,a) b : ρ0

{α 7→ 1, β 7→ 0, γ 7→ 1}
(Ax)Γ `(o,a) b : ρ1 (∩I)Γ `(o,a) b : ρ0 ∩ ρ1 (?)

(≤)Γ `(o,a) b : σ → σ → τ

and (?) is the side condition ρ0 ∩ ρ1 ≤ σ → σ → τ .

In the Context of Synthesis

In the above Example 41 the type σ (resp. τ) specifies the behavior of
the successor (resp. identity) function in a binary field. Complementary,
the schematic specification (β → γ) → (α → β) → α → γ describes
the behavior of functional composition that can be instantiated to ρ0
and ρ1 using substitutions of order and arity 0. Therefore, the question
Γ `(o,a)? : τ corresponds to a search for compositions of the binary
successor function that result in the binary identity function.

Section Outline The remainder of this section inspects combinatory logic
with intersection types where instantiation is bounded by functional order o
and functional arity a ≥ 1. Specifically, in Section 3.2.1 inhabitation in this
type system is shown to be (o + 2)-ExpTime-complete. The upper bound
(Theorem 10) is shown by adapting the alternating decision procedure from [30].
The lower bound (Theorem 11) is shown by observing that the reduction from
alternating space Turing machines in [30] already shows the stronger result.
Additionally, in Section 3.2.2 we consider bounded combinatory logic without
the intersection introduction rule for which inhabitation is conjectured to be of
lower complexity.

Authorship Statement The inspection of inhabitation complexity in the
combinatory logic with intersection types where instantiation is bounded by
functional order and functional arity is attributed to the author, and is not part
of previously published work.

59

3.2.1 Inhabitation with Bounded Order and Arity
Inhabitation in bounded combinatory logic with instantiation restricted to level
at most k is known to be (k + 2)-ExpTime-complete [30, Theorem 24].

In this section we refine this result showing that iterated exponential com-
plexity depends on functional order and not functional arity. In particular, we
show that inhabitation in (`(o,a)) (Problem 12) is in (o+ 2)-ExpTime, and it is
(o+ 2)-ExpTime-hard even for the fixed functional arity of 1.

Let expk : N→ N be the iterated exponential function, defined as

exp0(n) = n expk+1(n) = 2expk(n)

We will use the following inequality in order to simplify terms containing
iterated exponentiation.

Lemma 38. For k ≥ 0, m ≥ 1, and n ≥ 2 we have

m · expk+1(n) ≤ expk+1(n+ m

2k)

Proof. Induction on k using the inequality y + 1 ≤ 2y for y ∈ N. �

Restricting intersection types syntactically it is wrong to assume that inter-
section type equality (defined via subtyping) preserves syntax-oriented measures.
However, intersection type subtyping is non-structural (see also Section 3.3.3)
and generally does neither preserve functional order nor functional arity (Exam-
ple 42).

Example 42. Let σ ≡ ω → α and τ ≡ σ ∩ ((α → α → α) → α). Since
α → α → α ≤ ω we have σ ≤ (α → α → α) → α. Therefore, we have σ = τ .
However, order(σ) = 1 , 2 = order(τ) and arity(σ) = 1 , 2 = arity(τ).

Fortunately, the notion of organized types (Definition 42), which is based on
a notion of paths (Definition 41), respects order and arity (Lemma 40) under
type organization (Lemma 39).

Definition 41 (Paths, P∩C0
). P∩C0

3 π ::= α | a | σ → π

Definition 42 (Organized Type). We say a type σ ∈ T∩C0
is organized, if

σ ≡
⋂n
i=1 πi for some n ≥ 0 and paths π1 . . . πn.

Lemma 39 (Type Organization [30, Lemma 1]). For any type σ ∈ T∩C0
, an

organized type σ ∈ T∩C0
such that σ = σ can be computed in polynomial time by

α ≡ α a ≡ a ω ≡ ω σ ∩ τ ≡ σ ∩ τ σ → τ ≡
⋂
i∈I

(σ → πi) where τ ≡
⋂
i∈I

πi

Lemma 40. For any type σ ∈ T∩C0
we have order(σ) = order(σ) and

arity(σ) = arity(σ).

60

Upper Bound

The exact methodology based on the alternating decision procedure in [30,
Section 3] applies for the refined analysis. The only difference is that the
alternating (k + 1)-ExpSpace inhabitation Algorithm [30, Figure 2] has to
consider the set of substitutions of bounded order and arity (instead of bounded
level). Analogous to [30, Lemma 13], we need to inspect the number and size
of types over n constants and variables having bounded order and arity. Since
order and arity are preserved by type organization (Lemma 40), it suffices to
consider only organized types.

Let A ⊆ C0 ∪ V be a non-empty, finite set of atoms. We are interested in
in the number and size of types σ ∈ T∩(A,o,a) where σ is organized, σ contains
constants and variables from A, order(σ) ≤ o, and arity(σ) ≤ a. In particular,
we have

T∩(A,o,a) = {
⋂
π∈P

π | P ⊆ P∩(A,o,a)} ⊆ T
∩
C0

P∩(A,o,a) = {σ1 → . . .→ σl → ε | ε ∈ A, l ≤ a, σi ∈ T∩(A,o−1,a+1−i) for i = 1 . . . l}
⊆ P∩C0

First, we show that the cardinality of T∩(A,o,a) modulo subtyping equality is
bounded by an (o+ 1)-times iterated exponential (Lemma 41).

Lemma 41. |T∩(A,o,a)| ≤ expo+1((a+ 3)(|A|+ 2)).

Proof. For brevity, let m = |A|. For o = 0 or a = 0 the set T∩(A,o,a) contains only
intersections of atoms. Therefore, we have

|T∩(A,o,a)| = |{
⋂
ε∈P

ε | P ⊆ A}| = 2m ≤ expo+1((a+ 3)(m+ 2))

Additionally, for o ≥ 1 and a ≥ 1 we have

|P∩(A,o,a)| ≤
a∑
l=0
|A| · |T∩(A,o−1,a)|

l ≤ 2m|T∩(A,o−1,a)|
a (?)

For o, a ≥ 1 we show by induction on o the following stronger claim

|T∩(A,o,a)| ≤ expo+1((a+ 1)m+
o−2∑
i=0

a+m

2i)

Basis Step (o = 1):

T∩(A,1,a)| = |{
⋂
π∈P

π | P ⊆ P∩(A,1,a)}|
(?)
≤ exp1(2m|T∩(A,0,a)|

a)

≤ exp1(2m(2m)a) = exp2(ma+ log2(2m)) ≤ exp2((a+ 1)m)

61

Inductive Step:

|T∩(A,o+1,a)| = |{
⋂
π∈P

π | P ⊆ P∩(A,o+1,a)}|
(?)
≤ exp1(2m|T∩(A,o,a)|

a)

IH
≤ exp1(2m(expo+1((a+ 1)m+

o−2∑
i=0

a+m

2i))a)

= exp1(2m(exp1(a expo((a+ 1)m+
o−2∑
i=0

a+m

2i)))

Lem. 38
≤ expo+2((a+ 1)m+

o−2∑
i=0

a+m

2i + a

2o−1 + 2m
2o)

= expo+2((a+ 1)m+
o−1∑
i=0

a+m

2i)

Overall, we obtain

|T∩(A,o,a)| ≤ expo+1((a+ 1)m+
o−2∑
i=0

a+m

2i)

≤ expo+1((a+ 1)m+ 2(a+m)) ≤ expo+1((a+ 3)(m+ 2)) �

Next, we are interested in the size of types in T∩(A,o,a). Let |τ | denote the
number of nodes in the syntax tree of τ , and let size(o, a) denote the maximal
size of minimal representations (under subtype equality) of types with bounded
order o and bounded arity a over atoms A

size(o, a) = max{min{|τ | | τ = σ} | σ ∈ T∩(A,o,a)}

The following Lemma 42 shows that size(o, a) is bounded by an o-times iterated
exponential.

Lemma 42. size(o, a) ≤ expo((a+ 3)(|A|+ 3)).

Proof. For brevity, let m = |A|. For o = 0 or a = 0 the set T∩(A,o,a) contains only
intersections of atoms. Therefore, size(0, a) = size(o, 0) ≤ 2m.

For o, a ≥ 1 we proceed by induction on o. By construction we have

size(o, a) ≤ |P∩(A,o,a)| · (a(size(o− 1, a) + 1) + 1)
≤ 2m|T∩(A,o−1,a)|

a · a(size(o− 1, a) + 2)

Additionally, we have log2(n+ 1) ≤ n for n ∈ N.

Basis Step (o = 1):

size(1, a) ≤ 2m|T∩(A,0,a)|
a · a(size(0, a) + 2) = 2m2am · a(2m+ 2)

= exp1(am+ log2(2am(2(m+ 1)))) ≤ exp1((a+ 3)(m+ 3))

62

Inductive Step:

size(o+ 1, a) ≤ 2m|T∩(A,o,a)|
a · a(size(o, a) + 2)

IH
≤ 2am|T∩(A,o,a)|

a(expo((a+ 3)(m+ 3)) + 2)
≤ |T∩(A,o,a)|

a(expo+1(a+ 2 +m+ 2 + 1 + 1 + a+ (m− 1)))
Lem. 41
≤

(
(expo+1((a+ 3)(m+ 2)))a

)2

≤ expo+1((a+ 3)(m+ 2) + a+ 1)
≤ expo+1((a+ 3)(m+ 3)) �

Finally, we can follow the proof of [30, Theorem 14] bounding inhabitant
search space (Theorem 10).

Theorem 10. Inhabitation in (`(o,a)) (Problem 12) is in (o+ 2)-ExpTime.

Proof. More precisely, inhabitation in (`(o,a)) is in DTime(expo+2(p(a, n))) for
some bivariate polynomial p. We use the alternating inhabitation procedure [30,
Figure 2] adjusting the number (Lemma 41) and size (Lemma 42) of types
modulo subtyping bounded by order and arity. The result follows analogously
to the proof of [30, Theorem 14] by the following relationships

ASpace(f(n)) = DTime(2O(f(n)))
DTime(2O(expm(f(n)))) ⊆ DTime(expm+1(O(f(n)))) �

Let us conclude the upper bound discussion with a more high-level argument.
In [55] it is shown that inhabitation in combinatory logic with intersection types
without instantiation is ExpTime-complete. We can internalize instantiation in
bounded combinatory logic by a priori intersecting all instances (finite in size
by Lemma 41 and Lemma 42) of types containing type variables. Therefore, by
blowing up the input we end up in a decidable, non-schematic scenario.

63

Lower Bound

The lower bound construction for inhabitation in level-bounded combinatory
logic [30, Section 5] directly reduces alternating space Turing machine computa-
tion to inhabitant search. Upon closer inspection, this construction is adequate
to show that inhabitation in (`(o,1)) (Problem 12) is (o+ 2)-ExpTime-hard. Key
to the reduction are the following three aspects, which we examine in detail.

First, an encoding of quaternary predicates F (τ1, τ2, τ3, τ4) which ensures
that only predicate arguments are in range of level-bounded substitutions and
not predicate expressions themselves.

F [1] ≡ F F [i+1] ≡ F [i] → F Ωτ ≡ (τ → τ)→ τ → τ

F (τ1, τ2, τ3, τ4) ≡ (((F [k] → Ωτ1)→ Ωτ2)→ Ωτ3)→ Ωτ4

Since level(F (τ1, τ2, τ3, τ4)) ≥ order(F (τ1, τ2, τ3, τ4)) > k, the same argument
holds in the setting of bounded order.

Second, a number encoding 〈n〉 that respects the level (in our case order and
arity) bound to address individual cells of the Turing machine tape.

N0 = {
n⋂
i=1

(bi)i | bi ∈ {0, 1}} where 0i, 1i ∈ C0 for i = 1 . . . n

Nj+1 = {
⋂
σ∈Nj

(σ → bσ) | bσ ∈ {0, 1} for σ ∈ Nj}

~

n⋂
i=1

(bi)i�0 =
n∑
i=1

bi2i−1 ~
⋂
σ∈Nj

(σ → bσ)�j+1 =
∑
σ∈Nj

bσ2~σ�j

For each i ∈ {0, . . . , expk+1(n)− 1} there is a unique σ ∈ Nj such that ~σ�k = i.
Defining 〈i〉k ≡ σ we have level(〈i〉k) = order(〈i〉k) = k and arity(〈i〉k) ≤ 1.
Therefore, under the order of o and arity of 1 restriction, we may instantiate
type variables by tape addresses covering (o+ 1)-iterated exponential space.

Third, Turing machine configuration (state p, tape content v, head position h)
representation based on an intersection of instances of the type Cell(α, β, γ, δ),
where α is substituted by vi ∈ C0, β is substituted by q ∈ C0, γ is substituted
by 〈h〉k ∈ Nk, and δ is substituted by 〈i〉k ∈ Nk. According to the above above
number encoding analysis, the more restricted bound of order o = k and arity 1
suffices to represent Turing machine configurations.

Overall, we observe that [30, Section 5] shows (o+ 2)-ExpTime-hardness of
inhabitation in (`(o,1)), and, a fortiori in (`(o,a)) for a ≥ 1 (Theorem 11).

Theorem 11. Inhabitation in (`(o,a)) (Problem 12) is (o+ 2)-ExpTime-hard
for a ≥ 1.

Clearly, for a = 0 the above lower bound construction cannot hold because
types of arity 0 are necessarily of order 0. By Theorem 10, inhabitation in (`(0,0))
is in 2-ExpTime.

64

3.2.2 Combinatory Logic without Intersection Introduc-
tion

In some practical scenarios the intersection introduction rule is not necessary.
Therefore, complexity of inhabitation in the fragment of (`(o,a)) (Definition 40)
without the rule (∩I) is of interest. Upon closer examination, the methodology
in [30] can be adapted to show (o+ 1)-ExpTime completeness for this fragment
(Conjecture 5).

Conjecture 5. Inhabitation in (`(o,a)) for arity a ≥ 1 without the (∩I) rule is
(o+ 1)-ExpTime-complete .

Our reasoning is as follows. For an upper bound, we may use a similar
alternating space procedure with the restriction that only one instance (instead
of intersection of arbitrary many) of combinators typings needs to be chosen.
This directly reduces the iterated exponential space requirements exactly by one
exponential iteration.

For a lower bound, instead of relying on intersection introduction to capture
contents of tape cells, we may represent the whole tape content using the iterated
exponential number encoding.

Although the corresponding complexity proofs are similar, the question
regarding a direct translation between (`(o,a)) and (`(o+1,a)) without the rule (∩I)
remains open.

Concluding Remarks
Viewing inhabitant search as execution semantics of a logic programming lan-
guage, it is essential to know its exact expressiveness in terms of complexity.
However, in practice even for functional order of zero inhabitation in bounded
combinatory logic is intractable due to its 2-ExpTime-hardness. Therefore,
practical implementations (cf. Chapter 4) rely on different and often incomplete
(wrt. particular complexity) restrictions.

We consider it worthwhile to explore novel restrictions of combinatory logic
with intersection types that treat intersection introduction as a resource similarly
to bounded dimensional calculi (Section 2.3). Interestingly, disallowing inter-
section introduction, which is the most extreme manifestation of this approach,
appears to be of well-defined complexity under the order and arity restriction.

65

3.3 Intersection Type Subtyping
Intersection type subtyping (Definition 35) is an important component in inter-
section typed λ-calculi [3] as well as intersection typed combinatory logic [27].
Since it is also a key component in bounded combinatory logic (Definition 40,
rule (≤)), results on decidability of the subtyping relation (Problem 13) and
associated algorithmics are collected in this section.

Problem 13. (Intersection Type Subtyping, σ ≤ τ?) Given σ, τ ∈ T∩C0
, does

σ ≤ τ hold?

In the Context of Synthesis

Intersection type subtyping can be understood as specification specializa-
tion. For example, the component cl2fh in [54] that converts real valued
temperature from degree Celsius to degree Fahrenheit can be specified by
the type τ ≡ (Real→ Real)∩(Celsius→ Fahrenheit). By intersection
type subtyping we have τ ≤ (Real ∩ Celsius)→ (Real ∩ Fahrenheit).
Therefore, we may also use the component cl2fh at its more special
specification.

Intersection type subtyping (Problem 13) is known to be decidable [44] via a
normalization argument (that may incur an exponential blow-up). A polynomial
time decision procedure based on type normalization (Definition 39) with a
quartic upper bound is developed in [55]. Alternatively, a polynomial time
decision procedure based on rewriting with a quintic upper bound is given
in [63].

Since combinatory logic is per se schematic, we are also interested in matching,
satisfiability and unification problems that arise from allowing instantiation of
type variables in intersection type subtyping. We hope that a better algorithmic
understanding of intersection type subtyping and related problems has a direct
impact on type-based synthesis.

Section Outline The remainder of this section inspects complexity of three
problems associated with intersection type subtyping.

First, in Section 3.3.1 an algorithm to decide intersection type subtyping
in quadratic time (Theorem 12) is given. Second, in Section 3.3.2 we outline
fixed-parameter intractability of intersection type matching wrt. the number
of type variables (Theorem 13). Third, in Section 3.3.3 we show an ExpTime
lower bound for intersection type unification (Theorem 14) by reduction from
two player tiling games.

Authorship Statement Since contributions presented in this section are part
of joint work [33], this mandatory paragraph lists the following contributions
attributed to the author.

• quadratic time upper bound to decide intersection type subtyping

• fixed-parameter intractability of intersection type matching

• ExpTime lower bound for intersection type unification

66

3.3.1 Deciding Intersection Type Subtyping in Quadratic
Time

Common to previous approaches [44, 55, 63] to decide intersection type sub-
typing (Problem 13) is that they rely on (partial) normalization, and therefore
have to address a potentially exponential number of sub-instances either by
memoization [55] or dynamic programming [63].

In this paragraph we describe a different algorithmic approach to decide
subtyping with a quadratic upper bound. We show that direct implementation
of the so-called beta-soundness property (Lemma 43, inspected in detail in [3,
Lemma 2.4.2]) does not incur an exponential number of recursive calls.

Lemma 43 (Beta-Soundness [3, Lemma 2.4.2]).
Given σ =

⋂
i∈I

(σi → τi) ∩
⋂
j∈J

aj ∩
⋂
k∈K

αk, we have

(i) If σ ≤ a for some a ∈ C0, then a ≡ aj for some j ∈ J .

(ii) If σ ≤ α for some α ∈ V, then α ≡ αk for some k ∈ K.

(iii) If σ ≤ σ′ → τ ′ , ω for some σ′, τ ′ ∈ T∩C0
, then I ′ = {i ∈ I | σ′ ≤ σi} , ∅

and
⋂
i∈I′

τi ≤ τ ′.

Corollary 8. Given a path π ∈ P and types σ, τ , we have σ ∩ τ ≤ π iff σ ≤ π
or τ ≤ π.

We give the following Algorithm SUB to decide intersection type subtyping.

Algorithm 3 Recursive Algorithm SUB deciding σ ≤ τ
1: Input: intersection types σ, τ ∈ T∩C0
2: Output: true iff σ ≤ τ
3: if τ ≡ ω or σ ≡ α ≡ τ or σ ≡ a ≡ τ then
4: return true
5: else if τ ≡ τ1 ∩ τ2 then
6: if SUB(σ, τ1) and SUB(σ, τ2) then
7: return true
8: end if
9: else if σ ≡ σ1 ∩ σ2 and (τ ≡ α or τ ≡ a) then
10: if SUB(σ1, τ) or SUB(σ2, τ) then
11: return true
12: end if
13: else if τ ≡ τ1 → τ2 then
14: if SUB(AUX(σ, τ1), τ2) then
15: return true
16: end if
17: end if
18: return false

67

Algorithm 4 Recursive Algorithm AUX auxiliary to SUB (Algorithm 3)
1: Input: intersection types σ, τ ∈ T∩C0
2: Output: intersection of targets of arrows σ1 → σ2 in σ such that τ ≤ σ1
3: if σ ≡ σ1 → σ2 then
4: if SUB(τ, σ1) then
5: return σ2
6: end if
7: else if σ ≡ σ1 ∩ σ2 then
8: return AUX(σ1, τ) ∩ AUX(σ2, τ)
9: end if
10: return ω

Algorithm SUB is correct (Lemma 44) and terminates in quadratic time
(Lemma 45).

Lemma 44. Algorithm SUB(σ, τ) (Algorithm 3) returns true iff σ ≤ τ holds.

Proof. Algorithm SUB(σ, τ) directly implements beta-soundness (Lemma 43)
where the auxiliary Algorithm AUX collects arrow targets indexed in the set I ′
(Lemma 43 (iii)). Additionally the principle σ ≤ τ1 ∩ τ2 iff σ ≤ τ1 and σ ≤ τ2
is used in lines 5–8. The only case which is not covered by Lemma 43 (iii) is
τ ≡ τ1 → τ2 = ω. In this case we have τ2 = ω, therefore SUB(AUX(σ, τ1), τ2)
also correctly succeeds regardless of the type AUX(σ, τ1). �

Lemma 45. Algorithm SUB(σ, τ) (Algorithm 3) terminates in time O(|σ||τ |).

Proof. Let T (σ, τ) be the running time of SUB(σ, τ) and T ′(σ, τ) the running
time of AUX(σ, τ). Let a ∈ N be total amount of constant running time of
computation anywhere in SUB and AUX. We show T (σ, τ) ≤ a|σ||τ | = O(|σ||τ |)
and T ′(σ, τ) ≤ a|σ||τ | = O(|σ||τ |) by induction on |σ|+ |τ |.

Basis Step: For σ, τ ∈ {ω} ∪ C0 ∪ V we have
T (σ, τ) = O(1) and T ′(σ, τ) = O(1). Therefore, T (σ, τ) ≤ a ≤ a|σ||τ | and
T ′(σ, τ) ≤ a ≤ a|σ||τ |.

Inductive Step T ′(σ, τ):

Case σ ≡ σ1 → σ2: We have T ′(σ, τ) = O(1) + T (τ, σ1), therefore

T ′(σ, τ)
(IH)
≤ a+ a|τ ||σ1| ≤ a+ a(|σ| − 1)|τ | ≤ a|σ||τ |

Case σ ≡ σ1 ∩ σ2: We have T ′(σ, τ) = O(1) + T ′(σ1, τ) + T ′(σ2, τ), therefore

T ′(σ, τ)
(IH)
≤ a+ a|σ1||τ |+ a|σ2||τ | = a+ a(|σ| − 1)|τ | ≤ a|σ||τ |

Otherwise: We have T ′(σ, τ) = O(1), therefore T ′(σ, τ) ≤ a ≤ a|σ||τ |.

Inductive Step T (σ, τ):

Case τ ≡ τ1 ∩ τ2: We have T (σ, τ) = O(1) + T (σ, τ1) + T (σ, τ2), therefore

T (σ, τ)
(IH)
≤ a+ a|σ||τ1|+ a|σ||τ2| = a+ a|σ|(|τ | − 1) ≤ a|σ||τ |

68

Case σ ≡ σ1 ∩ σ2, τ ∈ C0 ∪ V: We have T (σ, τ) = O(1) + T (σ1, τ) + T (σ2, τ),
therefore

T (σ, τ)
(IH)
≤ a+ a|σ1||τ |+ a|σ2||τ | = a+ a(|σ| − 1)|τ | ≤ a|σ||τ |

Case τ ≡ τ1 → τ2: By routine induction we have |AUX(σ, τ1)| ≤ |σ|. Addition-
ally, T (σ, τ) = O(1) + T ′(σ, τ1) + T (AUX(σ, τ1), τ2), therefore

T (σ, τ)
(IH)
≤ a+ a|σ||τ1|+ a|AUX(σ, τ1)||τ2|
≤ a+ a|σ||τ1|+ a|σ||τ2| = a+ a|σ|(|τ | − 1) ≤ a|σ||τ |

Otherwise: We have T (σ, τ) = O(1), therefore T (σ, τ) ≤ a ≤ a|σ||τ |. �

Overall, Algorithm SUB can be used to decide intersection type subtyping in
quadratic time (Theorem 12).

Theorem 12. Intersection type subtyping σ ≤ τ? (Problem 13) is decidable in
time O(|σ||τ |).

Proof. By Lemma 44 and Lemma 45. �

A similar argument to the above that formally proves (in the Coq proof
assistant) a quadratic upper bound on the number of recursive calls to decide
intersection type subtyping is given in [11].

It remains an open problem whether intersection type subtyping is PTime-
complete (Conjecture 6). Intuitively, beta-soundness (Lemma 43 (iii)) could
enable sharing in the sense of Boolean circuits for a lower bound. This intuition
is strengthened by the fact that type normalization, i.e. recursive organization,
eliminates sharing incurring an exponential blow-up.

Conjecture 6. Intersection type subtyping σ ≤ τ? (Problem 13) is PTime-
complete.

Since intersection type subtyping is related to intuitionistic linear logic
((corresponds to → and & corresponds to ∩)3 as well as minimal relevant
logic [69, Section 3], further study could provide insights into complexity of
provability in these logic fragments.

3Communicated by Olivier Laurent to the author in 2015.

69

3.3.2 Intractability of Intersection Type Matching
Intersection type matching occurs naturally during inhabitant search in inter-
section type systems and is known to be NP-complete [28]. We strengthen this
result by showing that the problem remains NP-hard even when restricted to
the fixed-parameter case where only a single type variable and only a single
constant is used in the input.

For τ ∈ T∩C0
let var(τ) ⊆ V denote the set of type variables occurring in τ .

Problem 14 (Intersection Type Matching). Given a set of constraints
{σ1 ≤̇ τ1, . . . , σn ≤̇ τn}, where for each i ∈ {1, . . . , n} we have var(σi) = ∅ or
var(τi) = ∅, is there a substitution S : V → T∩C0

such that S(σi) ≤ S(τi) for
i = 1 . . . n?

We say that a substitution S satisfies {σ1 ≤̇ τ1, . . . , σn ≤̇ τn} if S(σi) ≤ S(τi)
for i = 1 . . . n.

In the Context of Synthesis

Commonly, library components are combinators with schematic type
specification, e.g. b : (β → γ) → (α → β) → α → γ in Example 41,
whereas user input is specific, e.g. 0→ 0.
Matching (parts of) specification against the user input corre-
sponds to solving an intersection type matching problem instance,
e.g. α→ γ ≤̇ 0→ 0.

Any matching constraint set {σ1 ≤̇ τ1, . . . , σn ≤̇ τn} can be reduced to a single
matching constraint σ ≤̇ τ with var(σ) = ∅ by fixing a type constant • ∈ C0,
defining for i = 1 . . . n

(σ′i, τ ′i) =
{

(σi → •, τi → •) if var(σi) = ∅
(τi, σi) if var(τi) = ∅

and taking σ ≡ σ′1 → . . . → σ′n → •, τ ≡ τ ′1 → . . . → τ ′n → •. We have that
var(σ) = ∅. By Lemma 43, for any substitution S we have S(σ) ≤ S(τ) iff
S(σi) ≤ S(τi) for i = 1 . . . n. Therefore, matching is NP-complete even when
restricted to single constraints.

In [28] the lower bound for intersection type matching is shown by reduction
from 3SAT and requires two type variables αx, α¬x for each propositional vari-
able x. Since 3SAT, parameterized by the number of propositional variables,
is fixed-parameter tractable, it is natural to ask whether the same holds for
matching parameterized by the number of type variables. Unfortunately, this is
not the case (Theorem 13).

70

Theorem 13 ([33, Lemma 5]). Intersection type matching (Problem 14) is
NP-hard even if only a single type variable and a single type constant is used.

Proof. (Sketch) Fix a 3SAT instance F containing clauses (L1 ∨ L2 ∨ L3) ∈ F
over propositional variables V where Li is either x or ¬x for some x ∈ V .
We reduce satisfiability of F to matching with one type variable α. First, we
fix a set of type constants B = V ∪ {¬x | x ∈ V } and the type constant •.
Let σx ≡

⋂
(B \ {¬x}) and σ¬x ≡

⋂
(B \ {x}) for x ∈ V . Let the set CF contain

the following constraints

for x ∈ V (consistency) :
((σ¬x → •)→ (¬x→ •)) ∩ ((σx → •)→ (x→ •)) ≤̇ (α→ •)→ (α→ •)

for (L1 ∨ L2 ∨ L3) ∈ F (validity) :
(L1 → •) ∩ (L2 → •) ∩ (L3 → •) ≤̇ α→ •

If F is satisfied by a valuation v, then the substitution α 7→
⋂

v(x)=1
x ∩

⋂
v(x)=0

¬x

satisfies CF .
If CF is satisfied by a substitution S, by the consistency constraints we have
either σ¬x ≤ S(α) ≤ ¬x or σx ≤ S(α) ≤ x for x ∈ V . A valuation v constructed
according to these cases satisfies each clause in F by the validity constraints.

Instead of using constants {a1, . . . , ak, •}, encode [ai] = • → . . .→ • →︸ ︷︷ ︸
i times

• for

i = 1 . . . k. Using this technique, a single type constant • is sufficient. �

Combining the above Theorem 13 with results in [28] we conclude that neither
restricting substitution domain to S : {α} → T∩C0

nor restricting substitution
codomain to S : V→ C0 reduces the complexity of intersection type matching.

71

3.3.3 Intersection Type Unification ExpTime-hardness
Compared to intersection type matching (Problem 14), intersection type satisfia-
bility (Problem 15), short for intersection type subtyping constraint satisfiability,
does not restrict occurrences of type variables in constraints. Similarly, intersec-
tion type unification (Problem 16) is formulated wrt. type equality.

Problem 15 (Intersection Type Satisfiability). Given a set of constraints
{σ1 ≤̇ τ1, . . . , σn ≤̇ τn}, is there a substitution S : V→ T∩C0

such that
S(σi) ≤ S(τi) for i = 1 . . . n?

Problem 16 (Intersection Type Unification). Given a set of constraints
{σ1 � τ1, . . . , σn � τn}, is there a substitution S : V→ T∩C0

such that
S(σi) = S(τi) for i = 1 . . . n?

In the Context of Synthesis

Intersection type satisfiability arises naturally whenever two schematic
component specifications are examined wrt. composability. For example,
some component x : α → α serving as an argument of some other
component y : (β → b→ a)→ a may lead to the question of satisfiability
of α → α ≤̇ β → b → a. A negative answer would imply that the
component y cannot be applied to x regardless of user queries. However,
in this case a positive answer α, β 7→ b→ a implies that

{x : α→ α, y : (β → b→ a)→ a} `C(∩) y x : a

For any σ, τ ∈ T∩C0
and any substitution S we have

S(σ) ≤ S(τ) ⇐⇒ S(σ) ∩ S(τ) = S(σ)

Therefore, satisfiability and unification are equivalent. Similarly to matching,
restricting satisfiability (resp. unification) to single constraints does not change
its complexity.

Intersection type unification is non-structural in the sense that types with
highly different syntax trees may be related (Example 43). Additionally, neither
excluding ω from solutions nor restricting substitution codomain to paths over-
comes this obstacle (Example 43). This impedes usual approaches to unification
via an occurs-check.

Example 43. The satisfiability constraint α ≤̇ α → a (resp. unification con-
straint α � α ∩ (α→ a)) is solved by any of the following substitutions

• S1(α) = ω → a
showing that non-structural constraints may be solved

• S2(α) = a ∩ (a→ a)
showing that non-structural constraints may be solved without ω

• S3(α) = ((a ∩ (a→ a))→ a)→ a
showing that non-structural constraints may be solved using a single path

72

Interestingly, in the above Example 43 any substitution S solving the con-
straint α ≤̇ α→ a induces a typing of the λ-term λxS(α).xS(α→a) xS(α) by using
intersection type subtyping. Again, this underlines the non-structural nature of
the subtyping relation.

Similarly to matching, satisfiability (resp. unification) problems arise natu-
rally in combinatory logic derivations (Example 44).

Example 44. Let Γ = {x : (σ → τ) → a, y : α → α} such that
α < var(σ → τ). In this scenario, type-checking Γ `C(∩) x y : a is equiva-
lent to solving the satisfiability problem instance α→ α ≤̇ σ → τ , or equivalently,
the unification problem instance σ ∩ τ � σ, because we need to find substitutions
S, S1, . . . , Sn for some n ∈ N such that

n⋂
i=1

Si(α→ α) ≤ S(σ → τ)

Lem. 43⇐⇒ S(σ) ≤
⋂
i∈I

Si(α) and
⋂
i∈I

Si(α) ≤ S(τ) for some I ⊆ {1, . . . , n}

⇐⇒ S(α→ α) ≤ S(σ → τ) setting S(α) =
⋂
i∈I

Si(α)

In the Context of Synthesis

Unification problem instances in inhabitant search arise in the presence
of cut types. In this case schematic subformulae are not matched against
specific user input but need to be unified with schematic specifications of
other components.

In addition to the previously illustrated non-structurality of unification, the
following Example 45 shows that unification is not finitary, i.e. unification
problem instances may have infinitely many most general unifiers.

Example 45. Consider the unification constraint a → a → (β ∩ b) � β ∩ α
and some solution S. We have S(β) = a → a →

⋂
i∈I

πi such that for all i ∈ I

either πi = b or πi = a → a → πj for some j ∈ I. Therefore, S(β) (and
consequently S(α)) contains paths that may be arbitrary long, end in the constant
b, and have an even number of “a”s as arguments. As a result, solutions to the
above constraint cannot be built by specialization from a finite set of unifiers.

The only hitherto known non-trivial lower bound for intersection type uni-
fication is ExpTime [33, Theorem 1] by reduction from existence of winning
strategies in two-player tiling games, which we will outline in more detail in the
remainder of this section.

73

Tiling games

We briefly describe a special kind of domino tiling game [21], referred to as two-
player spiral tiling game, for which the problem of existence of winning strategies
is ExpTime-complete. This problem will be used to prove our ExpTime-lower
bound for intersection type unification.

Definition 43 (Tiling System). A tiling system is a tuple (D,H, V, b̄, t̄, n),
where

• D is a finite set of tiles (also called dominoes)

• H,V ⊆ D ×D are horizontal and vertical constraints

• b̄, t̄ ∈ Dn are n-tuples of tiles

• n is a unary encoded natural number

Definition 44 (Spiral Tiling). Given a tiling system (D,H, V, b̄, t̄, n), a spiral
tiling is a sequence d1 . . . dm ∈ Dm for some m ∈ N such that

• b̄ = d1 . . . dn (correct prefix)

• t̄ = dm−n+1 . . . dm (correct suffix)

• (di, di+1) ∈ H for 1 ≤ i ≤ m− 1 (horizontal constraints)

• (di, di+n) ∈ V for 1 ≤ i ≤ m− n (vertical constraints)

Given a tiling system (D,H, V, b̄, t̄, n), a two-player spiral tiling game is played
by Constructor and Spoiler. The game starts with the sequence b̄. Each player
adds a copy of a tile to the end of the current sequence taking turns starting
with Constructor. While Constructor tries to construct a spiral tiling, Spoiler
tries to prevent it. Constructor wins if Spoiler makes an illegal move (with
respect to H or V), or when a correct spiral tiling is completed. Constructor
has winning strategy, if he can win regardless of what Spoiler does. To decide
whether a winning strategy exists is ExpTime-complete (Lemma 46).

Lemma 46 ([33, Lemma 8]). The decision problem whether Constructor has a
winning strategy in a given two-player spiral tiling game is ExpTime-complete.

In [21] instead of spiral tilings so-called corridor tilings are considered. The
difference between a corridor tiling and a spiral tiling is the lack of individual
rows. While a tile at the beginning of a row of a corridor is not constrained by
the previous tile, in a spiral tiling each new tile is constrained by the previous
one. Additionally, any corridor tiling contains l · n tiles for some l; a spiral tiling
does not obey this restriction. To clarify aspects of winning strategies in spiral
tiling games, consider the following Example 46 and Example 47.

Example 46. Consider the tiling system D = {a, b}, H = {(a, b), (b, a), (b, b)},
V = D2, b̄ = aaa, t̄ = bbb and n = 3. Constructor does not have a winning
strategy in the corresponding two-player spiral tiling game. During the game
on Spoiler’s turn there are two possibilities. In case the current sequence ends
in a, Spoiler is forced/allowed to append b, which does not result in the suffix bbb.
Regardless of Constructor’s next tile the suffix is not bbb. In case the current
sequence ends in b, Spoiler is allowed to append a and, similarly, Constructor is
not able to produce a spiral tiling.

74

Example 47. Consider the tiling system D = {a, b}, H = D2,
V = D2 \ {(b, a)}, b̄ = aaaaa, t̄ = bbbbb and n = 5. Constructor has a
winning strategy in the corresponding two-player spiral tiling game by always
appending b. Due to V , if the current sequence has the tile b at position i, then
it will have the tile b at any later position i + 5j for j ∈ N. Therefore, after
the first nine turns of the game all positions 1 + 5j, 3 + 5j, 5 + 5j, 7 + 5j and
9 + 5j for j ∈ N will have the tile b regardless of Spoiler’s moves. Since those
positions will form a suffix bbbbb after 9 turns, Constructor is able to produce a
spiral tiling.

Unification ExpTime Lower Bound

Let us outline the reduction from spiral tiling games to the intersection type
satisfiability problem.

Let T = (D,H, V, b̄ = b1 . . . bn, t̄ = t1 . . . tn, n) be a tiling system.
Wlog. (bi, bi+1) ∈ H and (ti, ti+1) ∈ H for 1 ≤ 1 < n, otherwise the given prefix
b̄ or the given suffix t̄ would already violate constraints on consecutive tiles. We
fix the set of type constants D ∪̇{•} ⊆ C0 and variables {α} ∪ {βd | d ∈ D} ⊆ V
and construct the following set of constraints CT :

(i) σH⊥ ∩ σV⊥ ∩ σt ∩
⋂
d∈D

βd ≤̇ σb ∩
⋂

d′∈D

⋂
d∈D

(d′ → d→ βd) (Game moves)

(ii)
⋂

(d′,d)∈H
(d→ d′ → α) ≤̇

⋂
d∈D

(d→ βd) (d respects H)

(iii)
⋂

(d′,d)∈V
(d→ ω → . . .→ ω →︸ ︷︷ ︸

n−1 times

d′ → α) ≤̇
⋂
d∈D

(d→ βd) (d respects V)

where

σb ≡ bn → . . .→ b1 → • (Initial state)
σt ≡ (tn → . . .→ t1 → α) ∩ (ω → tn → . . .→ t1 → α) (Final states)

σH⊥ ≡
⋂

(d,d′)∈D×D\H

(d′ → d→ α) (d′ violates H)

σV⊥ ≡
⋂

(d,d′)∈D×D\V

(d′ → ω → . . .→ ω →︸ ︷︷ ︸
n−1 times

d→ α) (d′ violates V)

Let us provide some intuition for the above construction. A sequence d1 . . . dl
of tiles is represented by the type dl → . . . → d1 → •. By Lemma 43
we have that

⋂
i∈I(dili → . . . → di1 → •) ≤ dl → . . . → d1 → • implies

di1 . . . d
i
li

= d1 . . . dl for some i ∈ I. Therefore, the above constraints for certain
solutions correspond to set inclusion constraints on tile sequences.

The rhs of (i) is an intersection of representations of sequences which Con-
structor may face. For all such sequences he needs to find a suitable move by
choosing a path on the lhs of (i). He can either state that the Spoiler’s last
move violates H (resp. V) choosing σH⊥ (resp. σV⊥), or that the game is finished
choosing σt, or he can pick his next move d ∈ D choosing βd. Intuitively, βd
captures all sequences in which Constructor decides to place d next. Accord-
ingly, on the rhs of (i) in the type d′ → d → βd the tile d′ is not constrained
(Spoiler may add any tile d′) while the tile d is constrained to the index of βd,

75

i.e. Constructor’s previous choice. Therefore, by picking a move d Constructor
faces sequences that arise from the previous sequence extended by d and each
possible d′. Constraints (ii) and (iii) ensure that whenever Constructor chooses
to add d ∈ D choosing βd he has to respect H and V .

As a result, if Constructor has a winning strategy for the two-player spiral
tiling game in T , then we can construct a solution for CT substituting βd by
an intersection of representations of sequences in which Constructor decides to
place d [33, Lemma 9]. Conversely, if the constraint system CT is satisfiable,
then we can use Corollary 8 to guide Constructor’s choices resulting in a winning
strategy [33, Lemma 10]. In sum, we obtain an ExpTime lower bound for
satisfiability and unification (Theorem 14, Corollary 9).
Theorem 14 ([33, Theorem 1]). The intersection type satisfiability problem
(Problem 15) is ExpTime-hard.
Corollary 9. The intersection type unification problem (Problem 16) is
ExpTime-hard.

Let us conclude this section with observations regarding restrictions of in-
tersection type unification. First, unification remains ExpTime-hard even in
presence of only one type constant [33, Corollary 2]. Second, removing ω from
the type language has no impact on the presented ExpTime lower bound [33,
Theorem 2]. Third, restricting the codomain of substitutions to rank 1 types
(intersections of simple types) does not change the ExpTime lower bound con-
struction [33, Corollary 3]. In fact, the main proof in [33, Theorem 1] uses rank 1
types. Since rank 1 subtyping behaves similarly to set inclusion, we conjecture
that the rank 1 intersection type unification problem is decidable (Conjecture 7).
Problem 17 (Rank 1 Intersection Type Unification). Given a set of constraints
{σ1 � τ1, . . . , σn � τn}, is there a substitution S : V→ T∩C0

such that
rank(S(α)) ≤ 1 for each α ∈ V and S(σi) = S(τi) for i = 1 . . . n?
Conjecture 7. The rank 1 intersection type unification problem (Problem 17)
is decidable.

Our reasoning is that rank 1 unification can be reduced to set constraints
with projections and cardinalities in finite sets [33, Section 6]. The closest known
result is that satisfiability of set constraints with projections in infinite sets is
in NExpTime [20]. Reasonably, techniques from set constraint solving may be
applicable to rank 1 unification.

Concluding Remarks
Of the three considered decision problems (subtyping, matching, and unification)
in this section, only for intersection type matching we have tight upper and lower
bounds on complexity. Although it is reasonable to think that intersection type
subtyping can encode sharing (in terms of Boolean circuits) and may therefore
be PTime-complete any efforts done by the author to show a tight lower bound
were unsuccessful. For intersection type unification, both a tree automaton
approach to attempt a proof of decidability (similarly to set constraints [20]), or
an approach that uses variance wrt. the arrow type constructor to represent two
counters of a Minsky machine to attempt a proof of undecidability (similarly
to second-order subtyping [64]) seem reasonable. It remains an open problem
whether intersection type unification is decidable.

76

Chapter 4

(CL)S-F#

Chapter 2 outlines the methodology of synthesis from scratch driven by in-
habitant search in typed λ-calculi. In particular, types correspond to desired
functional specification and inhabitants correspond to synthesized programs.
Complementarily, Chapter 3 outlines the methodology of synthesis from a given
collection of existing components driven by relativized inhabitant search in
typed combinatory logic. In this scenario, component behavior is specified by
corresponding typed combinators and synthesized programs are restricted to
applicative compositions of given components. We believe that the latter ap-
proach is applicable in realistic scenarios because it is aligned towards embedding
domain-specific knowledge in a modular fashion.

The seminal paper [54] by Rehof conveys a vision that relativized inhabitation
in combinatory logic with intersection types may be a practical approach for
component-based synthesis. Specifically, intersection types are used to alle-
viate “specification complexity” providing a theoretical foundation to extend
native type specification with domain-specific information (so-called semantic
types). The idea of composition synthesis based on combinatory logic in [54] has
been prototypically implemented under the name (CL)S (Combinatory Logic
Synthesizer [9]) in the C# programming language.

Subsequently, two lines of work followed the prototypic C# implementation.
First, the (CL)S-Scala framework [6] aims to provide a mature user interface
including initial component specification by Scala1 metaprograms and a web-
based synthesis algorithm interface. The theoretical foundation behind (CL)S-
Scala is a restricted form of bounded combinatory logic [30] where substitution
codomain has to be listed explicitly by the user and intersection introduction may
be performed only at the top level. The most prominent use of (CL)S-Scala is a
broad evaluation of synthesis approaches to develop a product line of Solitaire
games [43].

The second line of work inspired by [9] is the (CL)S-F# inhabitant search
algorithm [32] (written in the F# programming language2) that is presented in
this chapter in more detail.

The motivating idea behind (CL)S-F# is that inhabitant search in typed
combinatory logic can be seen as execution of a logic program given by type

1https://scala-lang.org/
2https://fsharp.org/

77

https://scala-lang.org/
https://fsharp.org/

assumptions. Therefore, instead of implementing the naive algorithm, (CL)S-F#
applies methods known from logic program evaluation such as partial evalu-
ation [46] and sideways information passing [5]. We argue that any scalable
approach needs to rely on such techniques because, even at level 0, the search
space in bounded combinatory logic [30] grows doubly-exponentially. Overall,
(CL)S-F# is developed as a testing ground for inhabitant search techniques
rather than a complete synthesis framework.

Chapter Outline In this chapter we present and evaluate the (CL)S-F#
inhabitant search algorithm [32].

In Section 4.1 we outline combinatory logic with intersection types with
constructors, which is the theoretical foundation of (CL)S-F#.

Section 4.2 provides an overview over the inhabitant search interface (Sec-
tion 4.2.5) and implementation (Section 4.2.6) of (CL)S-F#. Additionally, we
describe the realization of key techniques such as partial evaluation (Section 4.2.3)
and sideways information passing (Section 4.2.4), known in the area of logic
program evaluation, in (CL)S-F#.

In Section 4.3 we evaluate (CL)S-F# in context of functional program synthe-
sis (Section 4.3.1), object-oriented program synthesis (Section 4.3.2), and process
synthesis (Section 4.3.3). Additionally, we inspect scalability of (CL)S-F# in de-
terministic (Section 4.3.4) as well as non-deterministic (Section 4.3.5) scenarios.

78

4.1 (CL)S-F# Theoretical Foundation
This section provides an overview over the theoretical foundation of the (CL)S-F#
implementation [32].

Combinatory terms (Definition 29) serve as the term language of (CL)S-F#.
The type language of (CL)S-F# is intersection types with constructors T∩C
(Definition 45) which extends intersection types with constants T∩C0

(Definition 34)
by covariant, distributing constructors of arbitrary arity.

Definition 45 (Intersection Types with Constructors, T∩C).

T∩C 3 σ, τ ::= α | ω | σ → τ | σ ∩ τ | c(τ1, . . . , τarity(c))
where α ranges over type variables V and

c ranges over type constructors C
each associated with a particular arity(c)

We write Cn for the set of type constructors of arity n. In case of nullary
type constructors we omit the parentheses, i.e. we write c for c(), essentially
treating nullary type constructors as type constants. Covariance and distribu-
tion properties of type constructors are captured by extended subtyping rules
(Definition 46).

Definition 46 (Intersection Type with Constructors Subtyping, ≤). Given a
partial order ≤C⊆

⋃∞
n=0(Cn ×Cn) that respects constructor arity, the relation ≤

is the least preorder over T∩C such that

σ ≤ ω, ω ≤ ω → ω, σ ∩ τ ≤ σ, σ ∩ τ ≤ τ,
(σ → τ1) ∩ (σ → τ2) ≤ σ → τ1 ∩ τ2,

if σ ≤ τ1 and σ ≤ τ2 then σ ≤ τ1 ∩ τ2,

if σ2 ≤ σ1 and τ1 ≤ τ2 then σ1 → τ1 ≤ σ2 → τ2

c(σ1, . . . , σn) ∩ c(τ1, . . . , τn) ≤ c(σ1 ∩ τ1, . . . , σn ∩ τn)
if c ≤C d and σi ≤ τi for i = 1 . . . n then c(σ1, . . . , σn) ≤ d(τ1, . . . , τn)

Similarly to notation in Section 3.2, we use ≡ for syntactic identity and write
σ = τ when σ ≤ τ and τ ≤ σ, making ≤ a partial order.

The last two rules in above Definition 46 are motivated by practical use
cases as shown in the following Example 48, Example 49, and Example 50. In
particular, we can represent taxonomic domain knowledge by ≤C and embed
this knowledge into intersection type subtyping.

Example 48. Let Int, Real ∈ C0 and List, Seq ∈ C1 such that Int ≤C Real
(integers can be treated as real numbers) and List ≤C Seq (lists can be treated
as sequences).

We have that List(Int) ≤ Seq(Real), which describes that a list of integers
can be treated as a sequence of real numbers.

Example 49. Let Real, Celsius ∈ C0 and List ∈ C1.
We have that List(Real) ∩ List(Celsius) = List(Real ∩ Celsius), i.e. if

something is a list of real numbers and simultaneously a list of temperature
measurements in degree Celsius, then each element of that list is a real number
providing a temperature measurement in degree Celsius (and vice versa).

79

Example 50. Let Real ∈ C0 and Pair ∈ C2.
We have that Pair(Real, Real) ≤ Pair(Real, ω) ≤ Pair(ω, ω), i.e. a pair of

real numbers can be treated as a pair, where we know that the first entry is a real
number, or alternatively it can be treated as just a pair.

Overall, intersection types with constructors have proved useful to represent
a variety of features that may be included in type languages. Those features
include product types [54], modal types used for staged composition synthesis [29],
record types used for mixin composition synthesis [7], and generics used in object-
oriented code [8].

The typing rules underlying the (CL)S-F# implementation (Definition 47)
correspond to combinatory logic with intersection types (Definition 36), where
we use the above Definition 46 of intersection type subtyping.

Definition 47 (Combinatory Logic with Intersection Types with Constructors,
`C(C)).

S is a substitution (Ax)
Γ, x : σ `C(C) x : S(σ)

Γ `C(C) F : σ → τ Γ `C(C) G : σ
(→E)Γ `C(C) F G : τ

Γ `C(C) F : σ Γ `C(C) F : τ
(∩I)Γ `C(C) F : σ ∩ τ

Γ `C(C) F : σ σ ≤ τ
(≤)Γ `C(C) F : τ

(CL)S-F# by design does not introduce restrictions such as level or explicit
codomains (so-called kinding) of substitutions. The guiding principle behind
this decision is to shift the burden of inhabitant search to the implementation
(relying on techniques from logic program evaluation) away from explicit user
specification. Of course, inhabitation (Problem 18) in such an expressive calculus
is undecidable (Theorem 15). Therefore, the actual implementation has to rely on
sound but incomplete (i.e. potentially non-terminating) methods. Nevertheless,
as we will see in Section 4.3, empiric evaluation shows that oftentimes the
incomplete approach succeeds whereas the complete implementation requires an
unreasonable amount of time.

Problem 18 (Inhabitation in (`C(C)), Γ `C(C)? : τ). Given a type environment Γ
and a type τ , is there a combinatory term F such that Γ `C(C) F : τ is derivable?

Theorem 15. Inhabitation in (`C(C)) (Problem 18) is undecidable.

Proof. The claim follows from undecidability of inhabitation in λ-calculus with
intersection types [66] in its combinatory logic equivalen [27] using the fixed
basis

Γ = {S : (α1 → β → γ)→ (α2 → β)→ (α1 ∩ α2)→ γ,K : α→ β → α} �

In practice, given a type environment Γ and a type τ we are not only interested
in whether there exist combinatory terms F such that Γ `C(C) F : τ holds, but
want to know F . Additionally, there may be multiple such combinatory terms,
in which case we are interested in the whole (possibly infinite) solution space
of Γ `C(C)? : τ . Similarly to [55, Corollary 11], if the considered substitution
space is finite, then the solution space of Γ `C(C)? : τ constitutes a regular tree
language [22] (Example 51).

80

Example 51. Let 0, Nat ∈ C0, S ∈ C1, and
Γ = {z : 0 ∩ Nat, s : (Nat→ Nat) ∩ (α→ S(α))}

The solution space of Γ `C(C)? : Nat is a regular tree language {z, s(z), s(s(z)), ...}
given by the following tree grammar with the starting symbol Nat

Nat −→ z | s(Nat)
The solution space of Γ `C(C)? : S(S(0)) is a finite tree language {s(s(z))} given
by the following tree grammar with the starting symbol 0

0 −→ z

S(0) −→ s(0)
S(S(0)) −→ s(S(0))

In the above Example 51 codomains of substitutions for the type variable α
are not a priori bounded. However, the space of substitutions that are of
relevance to determine the solutions space (even though it might be infinite)
of the given queries is finite. Additionally, the above Example 51 provides an
intuition that types are well-suited as non-terminals in tree grammars describing
sets of inhabitants (generated by the corresponding type as starting symbol).

Since beta-soundness (Lemma 43) is essential to decide intersection type
subtyping in quadratic time (Section 3.3.1), it is extended to type constructors
(Lemma 47).
Lemma 47 (Extended Beta-Soundness).
Given σ =

⋂
i∈I

(σi → τi) ∩
⋂
j∈J

cj(σj1, . . . , σ
j
arity(cj)) ∩

⋂
k∈K

αk, we have

(i) If σ ≤ c(σ1, . . . , σn) for some c ∈ Cn, then J ′ = {j ∈ J | cj ≤C c} , ∅ and⋂
j∈J′

σji ≤ σi for i = 1 . . . n.

(ii) If σ ≤ α for some α ∈ V, then α ≡ αk for some k ∈ K.

(iii) If σ ≤ σ′ → τ ′ , ω for some σ′, τ ′ ∈ T∩C , then I ′ = {i ∈ I | σ′ ≤ σi} , ∅
and

⋂
i∈I′

τi ≤ τ ′.

Proof. (Sketch) Analogous to the proof of Lemma 43 where (i) is proven similarly
to (iii) because of corresponding distribution properties. �

Additionally, the notion of paths and type organization is extended to type
constructors as follows. Let us for c ∈ Cn and i ∈ {1, . . . , n} write c(i := τ) for
c(σ1, . . . , σn) where σi ≡ τ , and σj ≡ ω for j = 1 . . . (i− 1) and j = (i+ 1) . . . n.
In case c ∈ C0, we write c(0 := ω) for c().
Definition 48 (Paths, P∩C). P∩C 3 π ::= α | σ → π | c(i := ω) | c(i := π)

where c ∈ Cn and i ∈ {1, . . . , n− 1} ∪ {n}.
Lemma 48 (Type Organization). For any type σ ∈ T∩C , an organized type
σ ∈ T∩C such that σ = σ can be computed in polynomial time by

α ≡ α ω ≡ ω σ ∩ τ ≡ σ ∩ τ σ → τ ≡
⋂
i∈I

(σ → πi) where τ ≡
⋂
i∈I

πi

c(σ1, . . . , σn) = c(n := ω) ∩
n⋂
j=1

⋂
i∈Ij

πji where σj ≡
⋂
i∈Ij

πji for j = 1 . . . n

81

4.2 Implementation and Techniques
This section gives an overview over algorithms realized as parts of (CL)S-F# [32].
It references implementations of key algorithms for intersection types, deciding
intersection type subtyping, matching, and semi-deciding satisfiability. Since
inhabitant search can be seen as evaluation of a logic programming language,
techniques such as partial evaluation and sideways information passing constitute
a fundamental part of (CL)S-F# and are outlined in this section.

(CL)S-F# is considered a testing ground for inhabitant search techniques
rather than a complete synthesis framework. Therefore, this section aims to
convey successful key ideas, and does not provide a full user documentation. For
a developer documentation see [32]. For a comprehensive, user-oriented synthesis
framework, the reader is referred to (CL)S-Scala [6].

Section Outline Section 4.2.1 describes the implementation of intersection
types together with references to (semi) decision procedures for intersection
type subtyping, matching and satisfiability. Partial evaluation in the context of
inhabitant search is described in Section 4.2.3, and sideways information passing
is described in Section 4.2.4. Finally, the inhabitant search interface is illustrated
in Section 4.2.5 and its implementation is illustrated in Section 4.2.6.

82

4.2.1 Simplified Types
Intersection types with constructors T∩C (Definition 45), which constitute the
type language of (CL)S-F#, are implemented in Type. fs as
type IntersectionType =

| Var of ID
| Arrow of IntersectionType ∗ IntersectionType
| Constructor of ID ∗ IntersectionType list
| Intersect of Set<IntersectionType>

where type ID = string is implemented in ID. fs.
The above implementation borrows two key aspects from modern intersection

type presentations (cf. Definition 12). First, intersection has arbitrary arity
and is definitionally treated as a set (modulo associativity, commutativity and
idempotence) instead of relying on subtyping. Second, the universal type ω is
presented as the empty intersection.

Although a stratification into strict types and intersection types (Definition 12)
did not prove to be practical due to a potentially exponential blowup, several
aspects of the stratified presentation are enforced algorithmically. In particular,
Intersect constructors are never nested and the target of the Arrow constructor is
never an empty intersection. We call types respecting those restrictions simplified
types. Two simplified types that are equal modulo associativity, commutativity
and idempotence of intersection are treated as syntactically equal. Additionally,
the only simplified type equal to the universal type ω is the empty intersection.
Although not changing the theoretical complexity, simplified types have proven
effective in practice.

Example 52. The type c(ω)→ (α ∩ β) is implemented in (CL)S-F# as
Arrow(Constructor("c", [Intersect(Set. empty)]),

Intersect(Set. ofList [Var "alpha"; Var "beta"]))

or alternatively as
Arrow(Constructor("c", [Intersect(Set. empty)]),

Intersect(Set. ofList [Var "beta"; Var "alpha"]))

while those two implementations are simplified types and are treated as syntacti-
cally equal.

83

4.2.2 Simplified Type Subtyping
The three main problems related to intersection type subtyping are deciding the
subtyping predicate, intersection type matching and intersection type satisfiability
(cf. Section 3.3).

Subtyping A quadratic time algorithm to decide subtyping for intersection
types with constructors is implemented in Subtyping.fs as
isSimplifiedSubType (isAtomicSubtype : ID → ID → bool) :

IntersectionType → IntersectionType → bool

As discussed in Section 4.2.1 this implementation is correct for simplified types.
The argument isAtomicSubtype captures the atomic subtyping predicate ≤C.
The implementation corresponds to Algorithm SUB with the addition of type
constructors and is based on the extended beta soundness property (Lemma 47).

Matching An exponential time algorithm to decide matching for intersection
types with constructors is implemented in Matching.fs as
isMatchable (isAtomicSubtype : ID → ID → bool)

(constraints : seq<IntersectionType ∗ IntersectionType>) : bool

Again, the argument isAtomicSubtype is the atomic subtyping predicate ≤C, and
the argument constraints is a sequence of pairs of simplified types such that at
most one type per pair contains type variables.

The implementation relies on the following auxiliary method
enumerateMaximalBasicConstraintSystems (isAtomicSubtype : ID → ID → bool) :
seq<IntersectionType * IntersectionType> → seq<BasicConstraintSystem>

which extends [28, Match] in two aspects. In practice, we are not just interested in
a yes/no answer, but in so-called basic constraints (Definition 49) that concisely
bound solutions wrt. individual variables.

Definition 49 (Basic Constraint [28, Definition 2]). We call σ ≤̇ τ a basic
constraint, if σ is a type variable and var(τ) = ∅, or τ is a type variable and
var(σ) = ∅.

The method enumerateMaximalBasicConstraintSystems is used to enumerate
consistent (in the sense of [28]) basis constraint sets that are equivalent to the
input (non-basic) constraints. This allows a further inspection on lower and
upper bounds of solutions (Example 53).

Example 53. Consider the constraint a→ ω → (a∩ b) ≤̇ α→ β → α, which by
co-/contravariance of the arrow type constructor is equivalent to the set of basic
constraints {α ≤̇ a, β ≤̇ ω, a ∩ b ≤̇ α}. The basic constraint β ≤̇ ω is trivially
satisfied. The only solutions for a ∩ b ≤̇ α ≤̇ a are S1 such that S1(α) = a and
S2 such that S2(α) = a ∩ b.

As outlined in Section 3.3.2, matching problem instances arise when specific
user input such as a→ ω → (a∩b) is matched against schematic specification such
as α→ β → α in the above Example 53. Using basic constraint sets generated
by enumerateMaximalBasicConstraintSystems we may narrow down substitution
codomains useful for the inhabitant search algorithm without additional user
specification (for example as variable kinding annotations).

84

Satisfiability A semi-algorithm to decide satisfiability for intersection types
with constructors is implemented in Satisfiability.fs as
enumerateSatisfyingSubstitutions (isAtomicSubtype : ID → ID → bool)

(substitutableVariables : Map<ID, Variance>)
(constraints : seq<IntersectionType ∗ IntersectionType>)

: seq<Substitution>

In addition to the atomic subtype predicate ≤C a sequence of simplified type con-
straints, the above implementation takes type variable variance as the argument
substitutableVariables. This additional information is useful to guide solution
enumeration with respect to intended use of occurring variables (Example 54).

Example 54. Let Γ ⊇ {B : (β → γ) → (α → β) → α → γ, I : δ → δ}. Let
us inspect inhabitants that use B for function composition with identity, i.e.
inhabitants that have (B IF) as a subterm for some combinatory term F . For
that reason, we may consider the satisfiability constraint δ → δ ≤̇ β → γ which
is equivalent to β ≤̇ δ ≤̇ γ. Additionally, we need to derive Γ `C(C) F : S(α→ β)
for substitutions S that solve β ≤̇ δ ≤̇ γ. Observe that β appears positively in
α → β and is otherwise only constrained by β ≤̇ δ ≤̇ γ. Therefore, we do not
lose solutions choosing substitutions for β (and δ) as large as possible wrt. ≤.

Decidability of intersection type satisfiability is unknown, and we yet have
little understanding of algorithms for this decision problem. Therefore, the
implementation of the method enumerateSatisfyingSubstitutions is rudimentary
and relies on similar methodology as enumerateMaximalBasicConstraintSystems.

85

4.2.3 Partial Evaluation
Viewing inhabitant search as execution of a logic program given by a collection
of typed combinators, it is natural to consider evaluation techniques known in
the area of logic and functional programming. In this section we consider the
technique of partial evaluation [46] to improve inhabitant search.

A partial evaluator [46] (or, program specializer) for a programming language,
given a program p and a partial input v, constructs a specialized program pv
such that for all inputs w we have ~p�(v, w) = ~pv�(w), where ~_� denotes the
functional interpretation of programs. A practical example for partial evaluation
is regular expression recognition. As soon as a particular regular expression is
fixed, a faster, specialized recognizer can be generated.

In the setting of Γ `C(C)? : τ , the type environment Γ corresponds to the
program p, the type τ corresponds to v and w, and inhabitant search corresponds
to the interpretation ~_�.

There are two key aspects of successful partial evaluation in our setting. First,
identifying where partial information becomes available. Second, generating
a better program based on the partial information. At first sight, it may not
appear to be a common scenario where parts of the goal type τ are known a
priori. However, inhabitant search algorithms (cf. [54, Figure 5]) commonly
generate recursive subgoals based on combinator argument types which may
contain partially known information regardless of user input. For such subgoals
inhabitant search may be specialized (Example 55).

Example 55. Let Γ = {x : (α → a) → b, y : (b ∩ β) → a}. During inhabitant
search we may consider applying the combinator y to one argument leading to a
recursive subgoal Γ `C(C)? : b ∩ τ , where τ is an instance of β. In this case we
know the partial input b (while τ may vary) and can restrict inhabitant search
to consider only Γb = {x : (α→ a)→ b}, excluding the combinator y, for such
subgoals. Of course, y may need to be included again at a later point.

The above Example 55 provides two insights. First, if the (sub)goal type
is partially known, then we may determine a subset of the type environment Γ
relevant for that subgoal. Second, inspecting the type environment Γ we may
consider combinator argument types (which may be partially known) as potential
subgoals and specialize Γ excluding any combinators not relevant in presence of
the partially known information.

This technique is successful for type environments that encode automata-like
behavior with low fan-out (Section 4.3.4). Since the encoded transition relation
is “local”, and at each step most of the type environment is not relevant.

The implementation of the outlined partial evaluation approach is found in
InhabitationUtil.fs in the method preprocessEnvironment

preprocessEnvironment (atomicSubtypes : ID → ID → bool)
(environment : Environment) : EnvironmentEntry list

where the record EnvironmentEntry contains in the field RelevantEnvironments
for each potential argument of the corresponding combinator a subset of the
current type environment that is relevant for that argument based on partial
information. Whether a combinator is relevant for some argument is decided by
the method isPossiblySatisfiable implemented in Orthogonality.fs.

86

4.2.4 Sideways Information Passing
By similar motivation as in Section 4.2.3, in this section we discuss sideways
information passing [5] known from logic programming language evaluation.

In logic programming, there are two kinds of information passing [5]. First,
unification with the current goal propagates variable instantiation from the rule
head to the rule body. Second, by evaluating a partially defined predicate inside
the rule body, new variable instantiations may arise. Those new instantiations
are passed sideways to an other predicate inside the rule body.

In the remainder of this section we illustrate both kinds of information passing
in context of inhabitant search.

For the remainder of this section, let 0, • ∈ C0, num, s ∈ C1, isSucc ∈ C2,
and

Γ = {z : num(0),
s : num(α)→ isSucc(α→ •, s(α)),
n : isSucc(β → •, γ)→ num(β)→ num(γ)}

Intuitively, the above type environment Γ describes natural numbers with the
predicate num such that num(0), num(s(0)), . . . are inhabited, and the predicate
isSucc such that isSucc(0 → •, s(0)), isSucc(s(0) → •, s(s(0))), . . . are
inhabited. The combinator z states that 0 is a natural number; the combinator s
states that the successor of a natural number α is s(α); the combinator n states
that if γ is a successor of a natural number β, then γ is a natural number.

The following Example 56 illustrates the first kind of information passing.

Example 56. Consider the instance Γ `C(C)? : num(s(s(0))) of the inhabitation
problem. The only combinator that (applied to some arguments) is typable by
num(s(s(0))) is n applied to two arguments. Therefore, we are interested in
substitutions S1, . . . , Sm such that

m⋂
i=1

Si(isSucc(β → •, γ)→ num(β)→ num(γ)) ≤ σ1 → σ2 → num(s(s(0)))

where the types σ1, σ2 are inhabited in Γ. By Lemma 47, one substitution is
sufficient, leading to the following set of constraints

{δ1 ≤̇ isSucc(β → •, γ), δ2 ≤̇ num(β), num(γ) ≤̇ num(s(s(0)))}

where instances of δ1 (resp. δ2) correspond to types σ1 (resp. σ2). Due to the
typing rule (≤) we are interested in the largest possible instances of δ1 (and
therefore γ) and δ2 wrt. subtyping (cf. Example 54). Since we are free to choose
the maximal solution γ 7→ s(s(0)), we do not lose inhabitants by specializing the
type of n to

isSucc(β → •, s(s(0)))→ num(β)→ num(s(s(0)))

Overall, information is passed from the right-hand side of the arrow type con-
structor to a recursive subgoal on the left-hand side.

In the above Example 56 the type variable β constitutes a cut-type in
isSucc(β → •, s(s(0))) → num(β) → num(s(s(0))) because it appears only in

87

argument positions. In the worst case scenario, the correct instantiation of β
is arbitrary, leading to an intractable search space. However, in the scenario
at hand we can use the second kind of information passing to instantiate β as
illustrated by the following Example 57
Example 57. We are interested in types σ such that both the type num(σ) and
the type isSucc(σ → •, s(s(0))) are inhabited in Γ. Necessarily, inhabitants of
the type isSucc(σ → •, s(s(0))) in Γ are of shape (s F) for some combinatory
term F such that

m⋂
i=1

Si(isSucc(α→ •, s(α))) ≤ isSucc(σ → •, s(s(0)))

for some substitutions S1, . . . , Sm and Γ `C(C) F :
m⋂
i=1

Si(num(α)).

By Lemma 47, one substitution S is sufficient. Therefore, after simpli-
fication, we are interested in solutions of the satisfiability problem instance
{β ≤̇ α, α ≤̇ s(0)} where β represents σ. By a variance argument (cf. Exam-
ple 56) it suffices to consider the largest solution wrt. intersection type subtyping,
i.e. S(α) = S(β) = s(0).

As a result, by inspection of inhabitants of the type isSucc(σ → •, s(s(0)))
we obtain restrictions on the shape of σ, and information is passed sideways to
the argument num(σ), reducing search space.

Complementary to Example 57 (passing information from the type envi-
ronment sideways via an argument), the following Example 58 demonstrates a
different sideways information passing technique that utilizes intersection type
matching within a type to restrict search space.
Example 58. Let a, b, c, • ∈ C0, and

Γ = {x : a→ •, y : b→ •, z : (a→ •) ∩ (α→ •)→ (b→ •) ∩ (α→ •)→ c}

Inhabitants of the type c in Γ are necessarily of shape (z F G) for some
combinatory terms F and G. Since the type variable α appears only in argument
positions in the type of z, an inhabitant search procedure has to guess a correct
instantiation. Inspecting the arguments individually (cf. Example 57), the
substitutions S1(α) = a and S2(α) = b appear relevant. However, for both
substitutions only one of the two argument types of z is inhabited.

Observe that for any type σ, due to intersection type subtyping, any inhabitant
of (a→ •) ∩ (σ → •) (resp. (a→ •) ∩ (σ → •)) is also an inhabitant of a→ •
(resp. b → •). Therefore, if the instance {α → • ≤̇ a → •, α → • ≤̇ b → •}
of the intersection type matching problem has any solution, then there exists a
substitution for α such that the subformulae α→ • are immaterial for inhabitant
search. In fact, the above set of constraints is solved by α 7→ a ∩ b.

Overall, by intersection type matching we know that there exists a single
substitution S that subsumes the solution space and eliminates the type variable α.
This is effective in combination with other information passing techniques that
provide partial information.

Overall Examples 56–58 illustrate effective use of intersection type matching
and unification to realize information passing techniques known from logic
program evaluation. Unfortunately, decidability of intersection type unification
is still an open problem.

88

4.2.5 Inhabitant Search Interface
In this section we give an overview over the inhabitant search interface of
(CL)S-F#. Overall, (CL)S-F# inhabitant search is divided in three phases:
type environment initialization, tree grammar construction and inhabitant con-
struction. Key for the first two phases of inhabitant search is the following
method
getAllInhabitants (maxTreeDepth : int) (logger : ILogger)

(atomicSubtypes : ID → ID → bool) (environment : Environment)
: (IntersectionType → TreeGrammar)

implemented in Inhabitation.fs where
type ILogger = int → Lazy<string> → unit
type Environment = list<ID ∗ IntersectionType>
type TreeGrammar = Map<IntersectionType, Set<CombinatorExpression>>
type CombinatorExpression = (ID ∗ IntersectionType list)

The arguments maxTreeDepth and logger are of bookkeeping nature (to restrict
stack memory use and provide a side-effect for logging evens in explored subgoals).
The argument atomicSubtypes is used to pass the atomic subtyping predicate ≤C.
Finally, given the argument environment, which corresponds to the type envi-
ronment Γ (implemented as a list of pairs containing combinator name and
assigned type), we obtain a function of type IntersectionType → TreeGrammar
mapping a given type τ to the solution space of Γ `C(C)? : τ (implemented as a
possibly empty normalized regular tree grammar [22, Proposition 2.1.4]). As
exemplified in Section 4.1, types constitute non-terminals of the computed tree
grammar. The tree language generated from each non-terminal σ corresponds
to combinatory terms typable by σ in the type environment Γ.

Actual inhabitants are computed in the third phase from a tree grammar by
the method listMinimalCombinatorTerms implemented in CombinatorTerm.fs

listMinimalCombinatorTerms (numberOfTerms : int) (grammar : TreeGrammar)
(nonTerminal : IntersectionType) : list<CombinatorTerm>

The above method listMinimalCombinatorTerms constructs a list of length at
most numberOfTerms containing minimal (wrt. number of nodes in the syntax
tree) combinatory terms derivable from the symbol nonTerminal in the grammar
grammar. The constructed list of combinatory terms is considered the result for
the query Γ `C(C)? : τ in (CL)S-F#.

89

4.2.6 Inhabitant Search Implementation
While Section 4.2.5 describes the developer interface to inhabitant search exposed
by (CL)S-F#, this section outlines the basic structure of the implementation of
that interface.

As described in Section 4.2.5, (CL)S-F# inhabitant search is divided in three
phases.

In the first phase, the method getAllInhabitants, which is implemented in
Inhabitation.fs, given some bookkeeping parameters and a type environment Γ
results in a function that maps a goal type τ to a tree grammar presentation
of inhabitants of τ in Γ. Figure 4.1 outlines the structure of this initialization
procedure, that includes an inspection of the given type environment according to
partial evaluation techniques described in Section 4.2.3. In particular, arguments
of type assumptions are associated with relevant entries of the given type
environment. The implementation can be found in InhabitationUtil.fs as the
method preprocessEnvironment. Most importantly, initialization is done once,
and is independent from the goal type. This allows to reuse the initialized
method for multiple queries sharing the same type environment. For example,
this is useful to enumerate multiple products of a product line that share a
common code base (type environment) but differ in specification (goal type).

Figure 4.1: Initialize Inhabitant Search

The second phase is based on the method returned by getAllInhabitants
that maps a given goal type τ to a tree grammar presentation of inhabitants of τ
in the previously fixed type environment Γ. Figure 4.2 outlines the structure
of this procedure (presented iteratively). The key component to inhabitant
search is, similarly to the alternating decision procedure in [54, Figure 5], the
coverage of paths (Definition 48) in the organized (Lemma 48) presentation of
the current goal type. Instead of a priori fixing a substitution space, (CL)S-F#

90

narrows it step by step using methods described in Section 4.2.4. The non-
deterministic choice of relevant paths is abstracted via the minimal (wrt. set
inclusion) set cover problem. Specifically, a path π of a goal type is covered
by some combinator type ρ, if S(ρ) ≤ π for some substitution S. Therefore,
covering all paths of a given goal type τ corresponds to

m⋂
i=1

Si(ρ) ≤ τ . Naturally,

considering only minimal covers is sufficient. Although Figure 4.2 outlines the
algorithm iteratively, the actual implementation is (mutually) recursive and
manages the queue implicitly in the invocation stack.

Figure 4.2: Inhabitant Search

The final phase of inhabitant search is to enumerate particular inhabitants
presented via a tree grammar. The used approach is based on dynamic pro-
gramming, computing for every non-terminal (intersection type) the k minimal
(wrt. nodes in the syntax tree) trees (combinatory terms). It is a single loop
that computes larger (minimal) trees from smaller (minimal) ones, and termi-
nates when the currently computed k minimal trees for all non-terminals do
not change. The implementation is located in CombinatorTerm.fs as the method
listMinimalCombinatorTerms.

91

4.3 Evaluation
This section provides an overview over several key examples studied during the
development of (CL)S-F#, each accompanied by a performance evaluation3. All
described examples (among others) are implemented and documented in the
cls−fsharp−experiments project [32]. The choice of examples is motivated by
two factors. First, the presented examples give a broad overview over modeling
features that (CL)S-F# supports. Second, the presented examples in their
generality are either infeasible or do not scale well using previous combinatory
logic synthesis implementations.

Section Outline First, in Section 4.3.1 a service composition example [54,
Section 4.3] is examined. This example uses the universal type ω as a “don’t
care” placeholder, and relies on generally formulated component specification.
Due to the general specification, type variable instantiation cannot be bounded a
priori. Therefore, this example is among the most difficult ones for combinatory
logic synthesis implementations.

Second, in Section 4.3.2 we shift our focus to an object-oriented scenario
of [7]. The examples presented in Section 4.3.2 illustrate the use of covariant
distributing constructors to represent and manipulate object-oriented programs.

Third, in Section 4.3.3 a product line scenario is described encompassing robot
control programs that are automatically synthesized, deployed, and executed [10].
While the example in Section 4.3.3 is larger than the previous ones, it also
includes taxonomically structured domain knowledge (specified by the atomic
subtype predicate) and relies on metaprogramming (specified by modal types)
to compose process fragments.

Fourth, in Section 4.3.4 we examine in a deterministic automation simulation
scenario scaling properties of (CL)S-F#. The examples in Section 4.3.4 illus-
trate inhabitant search scaling, reaching inhabitants that contain thousands of
combinators.

Fifth, complementary to the deterministic scenario in Section 4.3.4, in Sec-
tion 4.3.5 we examine scaling properties of (CL)S-F# in a non-deterministic
path finding scenario.

3Intel Core i7–4790 CPU, 8.00 GB RAM

92

4.3.1 Service Composition
In his visionary proposal [54], Rehof illustrates (among other examples) combi-
natory logic synthesis in the setting of service composition [54, Section 4.3]. This
example stands out due to its use of mostly generally specified components, such
as functional composition of type (α→ β)→ (β → γ)→ α→ γ. Traditionally,
such general specification poses a difficulty for inhabitant search. Additionally,
the example uses the universal type ω as a “don’t care” placeholder. Since any
previous (CL)S implementation failed to master this particular example in its
general form, solving it has been the main motivation behind (CL)S-F#.

In the following, we provide an overview over the service composition example
from [54, Section 4.3] and its evaluation in (CL)S-F#.
Let Int, Bool, Filter, Sorted, TopSorted, TotalOrder, PartialOrder, Task,
SessionID, UserID, TID, Result ∈ C0, Graph, [·] ∈ C1, and

Γ = {F : ([α]→ (α→ Bool)→ [α]) ∩ Filter,

S : (([α]→ (α→ Bool)→ [α]) ∩ Filter)
→
(
((α→ α→ Bool)→ [α]→ [α])
∩ (TotalOrder→ ω → Sorted)
∩ (PartialOrder→ ω → TopSorted)

)
,

G : Graph(α)→ ((α→ α→ Bool) ∩ PartialOrder),
N : Graph(α)→ [α],
◦ : (α→ β)→ (β → γ)→ α→ γ,

� : (α→ β → γ)→ (α→ β)→ α→ γ,

Connect : Int ∩ SessionID,

ReqTransaction : (Int ∩ UserID)→ (Int ∩ SessionID)
→ ([Task] ∩ TopSorted)→ (Int ∩ TID),

EndTransaction : (Int ∩ TID)→ (Int ∩ [Result]),
MyID : Int ∩ UserID,

GetTasks : Graph(Task)}

Intuitively, the combinator F implements a list filter function parameterized
over a predicate; the combinator S implements a list sorting function parame-
terized over a total order (or, alternatively, a partial order); the combinator G
constructs a partial order from a graph; and the combinator N linearizes a graph.
The combinators ◦ and � are generic function composition and application in
context. The combinators Connect,ReqTransaction,EndTransaction,MyID, and
GetTasks are protocol specific combinators to manage users, sessions and tasks.

In [54, Section 4.3] the query

Γ `C(C)? : [Int ∩ Result]

is answered positively by the combinatory term

((ReqTransactionMyIDConnect) ◦ ((G ◦ (SF)) �N) ◦EndTransaction)GetTasks

Interestingly, the above combinatory term is not found by (CL)S-F# because
in the original example in [54, Section 4.3] there appears to be a mixup in use of

93

the combinator ◦. An inhabitant found by (CL)S-F# in 2.1 seconds is

((((G◦(SF))�N)◦(ReqTransactionMyIDConnect))◦EndTransaction)GetTasks

Alternatively, (CL)S-F# suggests the following solution that does not contain
any generic combinators, and is easier to verify by hand

EndTransaction (ReqTransactionMyIDConnectM)
where M = SF (GGetTasks) (NGetTasks)

The combinator GetTasks appears twice in the above inhabitant (in contrast
to the previous one). This could be a problem in a real world scenario, where
resources are linear or bound to side effects.

After removing the combinator GetTasks from Γ and adjusting the goal type
to be Graph(Task) → [Int ∩ Result], (CL)S-F# discovers in 2.2 seconds the
inhabitant

(((G ◦ (SF)) �N) ◦ (ReqTransactionMyIDConnect)) ◦ EndTransaction

which is, in spirit, the favored solution.
The above queries are implemented in ServiceComposition.fs.
Overall, combining inhabitant search strategies described in Section 4.2

(CL)S-F# is able to positively answer queries that contain generic higher-order
functional specification that (even for humans) require a non-trivial amount of
work. It is important to point out that (CL)S-F# does not require the user to
restrict substitutions of individual type variables (e.g. specifying that some vari-
able can only be substituted by either Graph(Task) or [Task]). Therefore, correct
type variable instantiation in the above examples is discovered autonomously by
the inhabitant search procedure.

94

4.3.2 Mixin Composition
Combinatory logic synthesis is successfully used in [7] in an object-oriented
setting. In particular, mixins (functions from classes to classes) are exposed as
typed combinators and composed functionally. In this section we examine two
key examples from [7]. Whereas the first example [7, Section 5.2] uses types
derived in the λ-calculus with records directly, the second example [7, Section 5.3]
enriches the specification with semantic information. Most importantly, record
types coincide with distributing covariant type constructors, and are therefore
easily represented in (CL)S-F#.

In the first part of this section, let us consider the type constructors Int,
Bool ∈ C0, 〈·〉, get, set, succ, succ2, compare ∈ C1, and the type environment

Γ = {Num : Int→ 〈get(Int) ∩ set(Int→ Int) ∩ succ(Int)〉,
Comparable :

(
(Int→ 〈get(Int)〉)
→ (Int→ 〈compare(〈get(Int)〉 → Bool〉)

)
∩ σget ∩ σset ∩ σsucc ∩ σsucc2,

Succ2 :
(
(Int→ 〈succ(Int)〉)→ (Int→ 〈succ2(Int)〉)

)
∩ σget ∩ σset ∩ σsucc ∩ σcompare}

where σv = (Int→ 〈v(αv)〉)→ (Int→ 〈v(αv)〉).
Intuitively, Num is a class encapsulating a number and has methods to get,

set and increment that number. Comparable (resp. Succ2) is a mixins that
may add the method compare (resp. succ2) to a given class that has a get
(resp. succ) method.

In [7, Section 5.2] the query

Γ `C(C)? : Int→ 〈succ(Int) ∩ compare(〈get(Int)〉 → Bool) ∩ succ2(Int)〉

is answered positively by the combinatory term Succ2 (ComparableNum).
The above query (together with other examples used in [7]) is implemented

in RecordCalculus.fs and is answered correctly in 0.1 seconds by (CL)S-F#.
Although the above query appears simplistic, it relies on (alongside records)
a difficult to bound search space. In particular, applying Succ2 requires to
instantiate the type variable αcompare in σcompare by the type 〈get(Int)〉 → Bool,
which emerges only after having applied the combinator Comparable. Therefore,
it is not advisable to bound variable instantiation a priori. Information passing
techniques (Section 4.2.4) are useful in this scenario.

In the second part of this section, let us consider the type constructors
String, plain, time ∈ C0, 〈·〉, get, enc, sign ∈ C1, and the type environment

Γ = {Reader : String→ 〈get(String ∩ plain)〉,
Enc : (String→ 〈get(String ∩ α)〉)

→ (String→ 〈get(String ∩ enc(α))〉),
Sign : (String→ 〈get(String ∩ α)〉)

→ (String→ 〈get(String ∩ α ∩ sign(α))〉),
Time : (String→ 〈get(String ∩ α)〉)

→ (String→ 〈get(String ∩ α ∩ time)〉)}

95

Intuitively, Reader is a class encapsulating plain text. Enc, Sign, and Time
are mixins that encrypt, sign and add a time stamp to the contents of a given
class. Type constructors plain, time, enc, sign are added to the specification
to expose the intuitive meaning of individual mixins, which otherwise would be
typed identically, to inhabitant search.

In [7, Section 5.3] the query

Γ `C(C)? : String→ 〈get(String ∩ enc(plain ∩ time ∩ sign(plain ∩ time)))〉

is answered positively by the combinatory term Enc(Sign(Time(Reader))).
The above query (together with other examples used in [7]) is implemented

in RecordCalculus.fs and is answered correctly in 0.2 seconds by (CL)S-F#.
Similarly to the previous example, the type variable α is used to carry

emergent semantic information as arbitrary nested intersections of types, and
instances of α cannot be bounded a priori. Again, information passing techniques
(Section 4.2.4) are essential in this scenario.

96

4.3.3 Process Synthesis
Combinatory logic synthesis has been successfully applied to compose BPMN4

processes [10] that can be automatically deployed and executed on LEGO
Mindstorms NXT robots. In [10] a product line of robot control programs is
developed that considers distinguished physical features of a robot (i.e. varying
sensor equipment). As a result, synthesized robot control programs are tailored
for specific robot configurations.

From the theoretical perspective, examples in [10] differ from previous ones
in the following two aspects.

First, examples in [10] include taxonomically structured domain knowledge
(e.g. a car-robot is a wheeled robot), that has to be taken into account during
inhabitant search. This aspect is covered by the user defined atomic subtype
predicate ≤C in (CL)S-F# (cf. Section 4.2.2).

Second, examples in [10] use modal types �τ that carry the meaning of
“code of type τ”. This allows to include metaprograms that compose program
text. Since properties of the modal type constructor �, that are relevant for
the particular example, coincide with covariant distributing unary constructors,
(CL)S-F# is capable of representing such types.

The main contribution of [10] is an empiric evaluation of combinatory logic
synthesis in a realistic scenario. Therefore, presenting the examples in full is
out of proportion in this work. The type environment Γ in the main example
in [10, Section 3] contains around 40 combinators exposing process fragments
and process composition methods for a product line encompassing around 50
different robot control programs. For example, Γ contains the combinator

taskToSubProc : �(task ∩ α)→ �(subproc ∩ α)

that represents a metaprogram which transforms program text of a BPMN
process task (with some additional properties α) into program text of a BPMN
subprocess (preserving the properties α). BPMN itself has no means to perform
such a transformation, therefore metaprogramming is required.

The main example in [10, Section 3] contains the following query

Γ `C(C)? :�(proc ∩ car ∩ followsLine ∩ twoLightSensors ∩ stopsOnTouch)
∩ robotProgram

Answering the above query and executing the resulting metaprogram produces
a deployable BPMN process (around 200 lines of code) for a car-robot which
follows a line using two light sensors and stops when touched.

The full query is implemented in ProcessSynthesis.fs in (CL)S-F# and is
answered correctly in 0.8 seconds. Compared to Section 4.3.1 and Section 4.3.2,
while the given type environment is larger, component specification is more
restricted and variable instantiation is atomic by design. Therefore, search
strategies described in Section 4.2 (with the exception of partial evaluation) are
unnecessary in this scenario.

4http://www.bpmn.org/

97

http://www.bpmn.org/

4.3.4 Two Counter Automaton Simulation
In order to illustrate expressiveness of combinatory logic synthesis, Rehof in [54,
Section 2.3] provides a reduction from the (undecidable) two counter automa-
ton halting problem to inhabitation in the simply typed combinatory logic
(cf. Section 3.1). Two counter automata extend finite state automata by two
counters containing natural numbers, where state transition is performed while
incrementing or decrementing a counter, or testing whether it is zero.

At first glance, simulation of two counter automata by inhabitant search
is mostly of theoretical interest. However, two counter automata concisely
encompass features (such as state, locality, and natural number arithmetic) that
are frequently encountered in real world scenarios. Additionally, even for simple
problems, such as checking parity of a binary representation of a natural number
(Figure 4.3), two counter automata tend be large and computationally inefficient.
Therefore, two counter automata are suitable to explore scaling of (CL)S-F#
with larger queries.

For the following example we use the two counter automaton given in Fig-
ure 4.3, where the counters are named c and d. The automaton accepts, if the
number of ones in the binary representation of the input number initially stored
in the counter c is even.

In the type environment Γ, that represents the automaton, each state transi-
tion is represented by a combinator. For example, the transition from state p
to state p1 decrementing the counter c in Figure 4.3 is represented by the
combinator

DEC_c_p_p1 : (c(α)→ d(β)→ p1)→ (c(s(α))→ d(β)→ p)

where p, p1 ∈ C0 and c, d, s ∈ C1.
Intuitively, inhabitant search simulates a transition

(c = α+ 1, d = β, state = p) 7→ (c = α, d = β, state = p1)

of the automaton by searching an inhabitant for (c(α)→ d(β)→ p1) in order
to find an inhabitant for (c(s(α))→ d(β)→ p). Accordingly, the representation
of final state of the automaton is as follows

FIN_twoCounter_accept : (c(α)→ d(β)→ twoCounter_accept)

The full encoding of the automaton in Figure 4.3 contains 57 combinators
and is implemented in TwoCounterAutomaton.fs. One example query for the input
number 3 (or (11)2 in binary, having an even number of ones) is

Γ `C(C)? : c(s(s(s(s(s(s(s(zero))))))))→ d(zero)→ p

In the above query the counter c is initialized5 to 3 + 2|‘11‘| = 7 and d to 0. It is
positively answered by (CL)S-F# in 0.1 seconds resulting in a combinatory term
of size (number of nodes in the syntax tree) 59 corresponding to the particular
accepting run of the automaton.

5The encoding includes an additional leading one in the binary representation.

98

Figure 4.3: Two Counter Automaton Checking Binary Parity

p

p1

c--

twoCounter_accept

c == 0

p2

c > 0

p3

c++

md1p

c > 0

p4

c == 0md2p

c--

p5

c == 0

p6

c > 0

md4p

c > 0

md3p

c == 0

md5p

c-- c++

d++

cp1p_0

c > 0

cp2p_0

c == 0c--

d == 0

cp3p_0

d > 0

cp4p_0

d--

c++

cp1p_1

c > 0

cp2p_1

c == 0 c--

cp3p_1

d > 0

q

d == 0

cp4p_1

d--

q1

c--

c++

twoCounter_fail

c == 0

q2

c > 0

q3

c++

md1q

c > 0

q4

c == 0md2q

c--

q5

c == 0

q6

c > 0

md4q

c > 0

md3q

c == 0

md5q

c-- c++

d++

cp1q_0

c > 0

cp2q_0

c == 0 c--

d == 0

cp3q_0

d > 0

cp4q_0

d--

c++

cp1q_1

c > 0

cp2q_1

c == 0c--

d == 0

cp3q_1

d > 0

cp4q_1

d--

c++

c = input+2^|input|, d = 0

99

The following Table 4.1 contains detailed information on queries that simulate
runs of the described automaton with increasing input size in (CL)S-F#. The
column “input” contains binary representations of the input number, the column
“goal type size” contains the number of nodes in the syntax tree of the corre-
sponding goal type, the column “inhabitant size” contains the number of nodes
in the syntax tree of the corresponding inhabitant (length of the corresponding
run of the automaton), and the column “time in seconds” contains the time
required to find an inhabitant. The last row of Table 4.1 contains an input which
the automaton does not accept. Accordingly, (CL)S-F# signals that there is no
inhabitant for the given goal type.

Table 4.1: Two Counter Automaton Simulation
input goal type size inhabitant size time in seconds
(11)2 14 59 0.1
(1001)2 32 217 0.2
(10111)2 68 506 0.4
(101011)2 124 961 0.9
(1010011)2 236 1864 2.8
(10100011)2 460 3663 11.7
(100100011)2 912 7286 62.5
(100000011)2 904 – 53.8

Table 4.1 shows that (CL)S-F# scales well (polynomially in the size of the
unary encoded input), successfully finding inhabitants that are beyond human
ability to compose by hand. This example (similarly to Section 4.3.1) requires all
evaluation techniques described in Section 4.2. Since natural numbers are unary
encoded, (CL)S-F# needs to find type variable substitutions with codomains
containing types with hundreds of nodes in their syntax trees. Additionally, due
to the locality of the transition function, partial evaluation (Section 4.2.3) is
useful.

The described scenario exhibits similar properties to stateful factory plan-
ning [51], in which labeled transition systems describe processes associated with
factory planning. A comprehensive evaluation of combinatory logic synthesis
in this scenario will be part of a future PhD thesis by Jan Winkels. During
implementation of real-world scenarios the ability of (CL)S-F# to inspect rep-
resentations of automata-like structures helped to discover problems that were
previously overlooked6 in [51].

6Communicated by Jan Winkels to the author in 2019.

100

4.3.5 Labyrinth Exploration
Complementary to deterministic automaton simulation in Section 4.3.4, this
section contains a scalability evaluation of non-deterministic state exploration
simulated by inhabitant search in (CL)S-F#. Specifically, in this section we
evaluate queries corresponding to path finding problems in a labyrinth.

At any position in a grid-like bird-view labyrinth a choice is made whether
to go up, down, left, or right (if the corresponding path is available). Starting
by example, consider the following 3× 3 labyrinth (Figure 4.4) with a top-left
starting position and bottom-right goal position.

Figure 4.4: Example Labyrinth

The shortest path from start to goal is “down, right, right, down”. This
scenario is represented as an instance of the inhabitation problem as follows.

Let zero ∈ C0, s ∈ C1, pos, free ∈ C2, and

Γ = {Left : pos(α, s(β))→ free(α, β)→ pos(α, β),
Right : pos(α, β)→ free(α, s(β))→ pos(α, s(β)),
Up : pos(s(α), β)→ free(α, β)→ pos(α, β),
Down : pos(α, β)→ free(s(α), β)→ pos(s(α), β),
Start : pos(zero, zero),
isFree(0,0) : free(zero, zero),
isFree(0,2) : free(zero, s(s(zero))),
isFree(1,0) : free(s(zero), zero),
isFree(1,1) : free(s(zero), s(zero)),
isFree(1,2) : free(s(zero), s(s(zero))),
isFree(2,0) : free(s(s(zero)), zero),
isFree(2,2) : free(s(s(zero)), s(s(zero)))}

Intuitively, pos(x, y) represents the current position at coordinates (x, y), and
free(x, y) signals that position at coordinates (x, y) is accessible. Therefore,
combinators Left,Right,Up,Down provide means to transition to an accessible
neighboring position. The combinator Start provides a starting position, and
combinators isFree(x,y) signal that position (x, y) is accessible.

101

The query
Γ `C(C)? : pos(s(s(zero)), s(s(zero)))

is answered positively by (CL)S-F# in 0.2 seconds resulting in the inhabitant

Down (Right (Right (Down Start isFree(1,0)) isFree(1,1)) isFree(1,2)) isFree(2,2)

where both the directions “down, right, right, down” taken as well as visited
positions “(1, 0), (1, 1), (1, 2), (2, 2)” are exposed.

In the remainder of this section we systematically increase problem size,
generating labyrinths in LabyrinthExploration.fs, and solving the corresponding
path finding problem (top left to bottom right) using inhabitant search. The
evaluation results are collected in the following Table 4.2, where the column
“environment size” (resp. “inhabitant size”) contains the size of the corresponding
type environment (resp. constructed inhabitant), and the column “time in
seconds” contains the time required to find an inhabitant. The row 24 × 24
describes a labyrinth that has no solution.

Table 4.2: Labyrinth Exploration
labyrinth size environment size inhabitant size time in seconds
3× 3 12 9 0.2
8× 8 54 29 0.4
12× 12 115 45 0.9
16× 16 199 61 2.2
20× 20 305 77 5.4
24× 24 442 – 0.2
28× 28 608 109 27.9
32× 32 784 129 51.7

The above Table 4.2 exposes three facts. First, (CL)S-F# is able to han-
dle non-deterministic problems represented by type environments containing
hundreds of combinators. Second, (CL)S-F# does not scale perfectly, showing
exponential increase in running time, whereas polynomial increase could have
been expected. Third, if a problem instance has no solution (row 24× 24), then
(CL)S-F# signals this fact using very little time. The last two points are due to
the design choice of (CL)S-F# to first compute the entire solution space as a tree
grammar. In particular, the space of all (even looping) solutions is computed,
before the shortest solution is presented. In unsolvable cases (row 24 × 24)
this is very fast, in other cases the full solution space exploration exponentially
increases the amount of computation.

Concluding Remarks
Overall, Section 4.3 provides an overview over (CL)S-F# performance in vary-
ing scenarios, most of which were infeasible using previous combinatory logic
synthesis implementations. The presented examples cover many modeling fea-
tures, including general component specification, record types, modal types,
taxonomically structured domain knowledge, and natural number arithmetic.
Additionally, (CL)S-F# is shown to scale adequately in automata-like scenarios,
reaching inhabitants containing thousands of combinators.

102

Chapter 5

Conclusion

This work puts selected type-theoretic results in context of type-based program
synthesis. We considered typed λ-calculi for program synthesis from scratch
and typed combinatory logic for domain-specific program synthesis. Types
(specifically, simple types and intersection types) assume the role of program
specifications while constructive inhabitant search corresponds to program syn-
thesis. Additionally, we inspected two classes of restrictions for inhabitant search.
Restrictions (such as principality and relevance) for which constructed inhab-
itants are more closely tied to given specifications, and restrictions (such as
dimension, rank, order, and arity) that make inhabitant search more tractable.

Considering λ-terms as functional programs, we have seen that principal
inhabitation in simple types is of equal complexity (PSpace) as its non-principal
counterpart. When using intersection types as specification language, we observed
that the rank restriction does not provide a suitable bounding mechanism,
making an “infinite” jump in complexity from rank 2 to rank 3. Orthogonally,
the dimensional restriction appears to be of practical relevance, capturing vector
spaces of program features. Unfortunately, the set-dimensional restriction does
not lead to a decidable inhabitation question, and complexity of inhabitation in
fixed dimensions remains unknown.

Considering combinatory terms as programs (resp. metaprograms), rela-
tivized inhabitation in combinatory logic with intersection types is suited for
domain-specific program synthesis. In particular, bases can be tailored to specific
domains of interest, containing domain-specific components from which programs
are synthesized. Although relativized inhabitation in combinatory logic is unde-
cidable even in simple types (as we have seen, even in subintuitionistic scenarios),
order and arity restrictions provide a way to gradually scale the complexity of
inhabitant search.

By empiric evaluation of the (CL)S-F# inhabitant search algorithm, we
have seen that program synthesis based on combinatory logic with intersection
types with constructors can tractably capture functional program synthesis,
object-oriented program synthesis and process synthesis scenarios. For a better
grasp of underlying information passing methods (in the sense of logic program
evaluation), further inspection of the intersection type unification problem, for
which decidability is unknown, is of interest.

103

104

Bibliography

[1] H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. Studies
in Logic and the Foundations of Mathematics, 2nd Edition. Elsevier Science
Publishers, 1984.

[2] H. P. Barendregt. Introduction to Generalized Type Systems. Journal of
Functional Programming, 1(2):125–154, 1991.

[3] H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A Filter Lambda
Model and the Completeness of Type Assignment. Journal of Symbolic
Logic, 48(4):931–940, 1983.

[4] H. P. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with
Types. Perspectives in Logic. Cambridge University Press, 2013.

[5] C. Beeri and R. Ramakrishnan. On the Power of Magic. Journal of Logic
Programming, 10(3&4):255–299, 1991.

[6] J. Bessai. The Combinatory Logic Synthesizer (CL)S Framework in Scala.
https://github.com/combinators/cls-scala. Accessed: 2019-02-25.

[7] J. Bessai, T. Chen, A. Dudenhefner, B. Düdder, U. de’Liguoro, and J. Rehof.
Mixin Composition Synthesis Based on Intersection Types. Logical Methods
in Computer Science, 14(1), 2018.

[8] J. Bessai, B. Düdder, A. Dudenhefer, and M. Martens. Delegation-based
Mixin Composition Synthesis. In ITRS 2014, Intersection Types and Related
Systems, Proceedings, LNCS. Springer, 2014.

[9] J. Bessai, A. Dudenhefner, B. Düdder, M. Martens, and J. Rehof. Combina-
tory Logic Synthesizer. In ISoLA 2014, Leveraging Applications of Formal
Methods, Verification and Validation, Proceedings, pages 26–40, 2014.

[10] J. Bessai, A. Dudenhefner, B. Düdder, M. Martens, and J. Rehof. Combina-
tory Process Synthesis. In ISoLA 2016, Leveraging Applications of Formal
Methods, Verification and Validation, Proceedings, pages 266–281, 2016.

[11] J. Bessai, J. Rehof, and B. Düdder. Fast Verified BCD Subtyping. 2018.

[12] G. V. Bokov. Undecidable Problems for Propositional Calculi with Implica-
tion. Logic Journal of the IGPL, 24(5):792–806, 2016.

[13] S. Broda and L. Damas. Counting a Type’s Principal Inhabitants. In TLCA
1999, Typed Lambda Calculi and Applications, Proceedings, pages 69–82,
1999.

105

https://github.com/combinators/cls-scala

[14] S. Broda and L. Damas. Counting a Type’s (Principal) Inhabitants. Fun-
damenta Informaticae, 45(1-2):33–51, 2001.

[15] S. Broda and L. Damas. On Long Normal Inhabitants of a Type. Journal
of Logic and Computation, 15(3):353–390, 2005.

[16] A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca. The Inhabitation
Problem for Non-idempotent Intersection Types. In TCS 2014, Theoretical
Computer Science, Proceedings, pages 341–354, 2014.

[17] A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca. Inhabitation for
Non-idempotent Intersection Types. Logical Methods in Computer Science,
14(3), 2018.

[18] A. Bucciarelli, D. Kesner, and D. Ventura. Non-idempotent Intersection
Types for the lambda-Calculus. Logic Journal of the IGPL, 25(4):431–464,
2017.

[19] S. Carlier and J. B. Wells. Expansion: the Crucial Mechanism for Type
Inference with Intersection Types: A Survey and Explanation. Electronic
Notes in Theoretical Computer Science, 136:173–202, 2005.

[20] W. Charatonik and L. Pacholski. Set Constraints with Projections are
in NExpTime. In 35th Annual Symposium on Foundations of Computer
Science, pages 642–653. IEEE, 1994.

[21] B. S. Chlebus. Domino-tiling Games. Journal of Computer and System
Sciences, 32(3):374–392, 1986.

[22] H. Comon. Tree Automata Techniques and Applications. http://www.
grappa.univ-lille3.fr/tata/, 1997.

[23] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Func-
tionality Theory for the λ-Calculus. Notre Dame Journal of Formal Logic,
21(4):685–693, 1980.

[24] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal Type Schemes
and lambda-Calculus Semantics, pages 480–490. Accademic Press, London,
1980.

[25] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional Characters
of Solvable Terms. Mathematical Logic Quarterly, 27(2-6):45–58, 1981.

[26] D. de Carvalho. Execution Time of λ-Terms via Denotational Semantics
and Intersection Types. Mathematical Structures in Computer Science,
28(7):1169–1203, 2018.

[27] M. Dezani-Ciancaglini and J. R. Hindley. Intersection Types for Combina-
tory Logic. Theoretical Computer Science, 100(2):303–324, 1992.

[28] B. Düdder, M. Martens, and J. Rehof. Intersection Type Matching with Sub-
typing. In TLCA 2013, Typed Lambda Calculi and Applications, Proceedings,
pages 125–139, 2013.

106

http://www.grappa.univ-lille3.fr/tata/
http://www.grappa.univ-lille3.fr/tata/

[29] B. Düdder, M. Martens, and J. Rehof. Staged Composition Synthesis. In
ESOP 2014, European Symposium on Programming, Proceedings, pages
67–86, 2014.

[30] B. Düdder, M. Martens, J. Rehof, and P. Urzyczyn. Bounded Combinatory
Logic. In CSL 2012, Computer Science Logic, Proceedings, pages 243–258,
2012.

[31] A. Dudenhefner. Reduction from Simple semi-Thue System Rewriting
to Inhabitation in the Coppo-Dezani Type Assignment System. https:
//github.com/mrhaandi/lambda-cap/tree/cdv. Accessed: 2019-02-20.

[32] A. Dudenhefner. The Combinatory Logic Synthesizer (CL)S Framework in
F#. https://github.com/mrhaandi/cls-fsharp. Accessed: 2019-03-20.

[33] A. Dudenhefner, M. Martens, and J. Rehof. The Algebraic Intersection
Type Unification Problem. Logical Methods in Computer Science, 13(3),
2017.

[34] A. Dudenhefner and J. Rehof. Intersection Type Calculi of Bounded Dimen-
sion. In POPL 2017, Principles of Programming Languages, Proceedings,
pages 653–665, 2017.

[35] A. Dudenhefner and J. Rehof. Lower End of the Linial-Post Spectrum. In
TYPES 2017, Types for Proofs and Programs, Proceedings, pages 2:1–2:15,
2017.

[36] A. Dudenhefner and J. Rehof. Rank 3 Inhabitation of Intersection Types
Revisited (Extended Version). CoRR, abs/1705.06070, 2017.

[37] A. Dudenhefner and J. Rehof. The Complexity of Principal Inhabitation. In
FSCD 2017, Formal Structures for Computation and Deduction, Proceedings,
pages 15:1–15:14, 2017.

[38] A. Dudenhefner and J. Rehof. Typability in Bounded Dimension. In LICS
2017, Logic in Computer Science, Proceedings, pages 1–12, 2017.

[39] A. Dudenhefner and J. Rehof. Principality and Approximation under
Dimensional Bound. PACMPL, 3(POPL):8:1–8:29, 2019.

[40] A. Dudenhefner and J. Rehof. Undecidability of Intersection Type Inhabita-
tion at Rank 3 and its Formalization. Fundamenta Informaticae, accepted,
to appear, 2019.

[41] Y. Forster, E. Heiter, and G. Smolka. Verification of PCP-Related Com-
putational Reductions in Coq. In ITP 2018, Interactive Theorem Proving,
Proceedings, pages 253–269, 2018.

[42] S. Ghilezan. Strong Normalization and Typability with Intersection Types.
Notre Dame Journal of Formal Logic, 37(1):44–52, 1996.

[43] G. T. Heineman, J. Bessai, B. Düdder, and J. Rehof. A Long and Winding
Road Towards Modular Synthesis. In ISoLA 2016, Leveraging Applications
of Formal Methods, Verification and Validation, Proceedings, pages 303–317,
2016.

107

https://github.com/mrhaandi/lambda-cap/tree/cdv
https://github.com/mrhaandi/lambda-cap/tree/cdv
https://github.com/mrhaandi/cls-fsharp

[44] J. R. Hindley. The Simple Semantics for Coppo-Dezani-Sallé Types. In
International Symposium on Programming, volume 137 of LNCS, pages
212–226. Springer, 1982.

[45] J. R. Hindley. Basic Simple Type Theory. Vol. 42, Cambridge University
Press, 2008.

[46] N. D. Jones. An Introduction to Partial Evaluation. ACM Computing
Surveys, 28(3):480–503, 1996.

[47] D. Kesner and D. Ventura. Quantitative Types for the Linear Substitution
Calculus. In TCS 2014, Theoretical Computer Science, Proceedings, pages
296–310, 2014.

[48] T. Kurata and M. Takahashi. Decidable Properties of Intersection Type Sys-
tems. In TLCA 1995, Typed Lambda Calculi and Applications, Proceedings,
volume 902 of LNCS, pages 297–311. Springer, 1995.

[49] D. Leivant. Polymorphic Type Inference. In POPL 1983, Principles of
Programming Languages, Proceedings, pages 88–98, 1983.

[50] S. Linial and E. L. Post. Recursive Unsolvability of the Deducibility, Tarski’s
Completeness and Independence of Axioms Problems of Propositional Cal-
culus. Bulletin of the American Mathematical Society, 55:50, 1949.

[51] J. C. Nocker. Zustandsbasierte Fabrikplanung. PhD thesis, RWTH Aachen,
Apprimus Verlag, Steinbachstr. 25, 52074 Aachen, 2 2012.

[52] F. Pfenning. Refinement Types for Logical Frameworks. In Types for Proofs
and Programs, Proceedings, pages 285–299, 1993.

[53] E. L. Post. A Variant of a Recursively Unsolvable Problem. Bulletin of the
American Mathematical Society, 52(4):264–268, 1946.

[54] J. Rehof. Towards Combinatory Logic Synthesis. In BEAT 2013, Behavioural
Types, Proceedings. ACM, 2013.

[55] J. Rehof and P. Urzyczyn. Finite Combinatory Logic with Intersection
Types. In TLCA 2011, Typed Lambda Calculi and Applications, Proceedings,
volume 6690 of LNCS, pages 169–183. Springer, 2011.

[56] J. Rehof and P. Urzyczyn. The Complexity of Inhabitation with Explicit
Intersection. In Logic and Program Semantics - Essays Dedicated to Dexter
Kozen on the Occasion of His 60th Birthday, pages 256–270, 2012.

[57] S. Schmitz. Implicational Relevance Logic is 2-ExpTime-Complete. Journal
of Symbolic Logic, 81(2):641–661, 2016.

[58] M. Schönfinkel. Über die Bausteine der mathematischen Logik. Mathema-
tische Annalen, 92(3-4):305–316, 1924.

[59] H. Schwichtenberg. Definierbare Funktionen im lambda-Kalkül mit Typen.
Archiv für mathematische Logik und Grundlagenforschung, pages 113–114,
1976.

108

[60] W. E. Singletary. Many-one Degrees Associated with Partial Propositional
Calculi. Notre Dame Journal of Formal Logic, XV(2):335–343, 1974.

[61] M. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism,
volume 149 of Studies in Logic and the Foundations of Mathematics. Elsevier,
2006.

[62] R. Statman. Intuitionistic Propositional Logic is Polynomial-space Complete.
Theoretical Computer Science, 9:67–72, 1979.

[63] R. Statman. A Finite Model Property for Intersection Types. In ITRS
2014, Intersection Types and Related Systems, Proceedings, LNCS, pages
1–9, 2015.

[64] J. Tiuryn and P. Urzyczyn. The Subtyping Problem for Second-Order Types
is Undecidable. Information and Computation, 179(1):1–18, 2002.

[65] P. Urzyczyn. Inhabitation in Typed Lambda-Calculi (A Syntactic Approach).
In TLCA 1997, Typed Lambda Calculi and Applications, Proceedings, volume
1210 of LNCS, pages 373–389. Springer, 1997.

[66] P. Urzyczyn. Inhabitation of Low-Rank Intersection Types. In TLCA 2009,
Typed Lambda Calculi and Applications, Proceedings, volume 5608 of LNCS,
pages 356–370. Springer, 2009.

[67] S. van Bakel. Complete Restrictions of the Intersection Type Discipline.
Theoretical Computer Science, 102(1):135–163, 1992.

[68] S. van Bakel. Strict Intersection Types for the Lambda Calculus. ACM
Computing Surveys, 43(3), 2011.

[69] B. Venneri. Intersection Types as Logical Formulae. Journal of Logic and
Computation, 4(2):109–124, 1994.

[70] E. Zolin. Undecidability of the Problem of Recognizing Axiomatizations of
Superintuitionistic Propositional Calculi. Studia Logica, 102(5):1021–1039,
2014.

109

	Introduction
	Lambda-Calculus
	Simply Typed Lambda-Calculus
	Subformula Calculus
	Principal Inhabitation Upper Bound
	Principal Inhabitation Lower Bound

	Strict Intersection Type System
	Simple Semi-Thue Systems
	Reduction from Rewriting to Inhabitation

	Dimensionally Bounded Intersection Type System
	One-Dimensional Fragment
	Relevant Restriction and Compactness
	Inhabitation in Bounded Dimension
	Typability, Type Checking, and Bases
	Non-idempotent Restriction

	Combinatory Logic
	Simply Typed Combinatory Logic
	Hilbert-Style Calculus
	Recognizing Axiomatizations of a -> b -> a
	Recognizing Axiomatizations of a -> a
	Recognizing Axiomatizations of a -> b -> b

	Combinatory Logic with Intersection Types
	Inhabitation with Bounded Order and Arity
	Combinatory Logic without Intersection Introduction

	Intersection Type Subtyping
	Deciding Intersection Type Subtyping in Quadratic Time
	Intractability of Intersection Type Matching
	Intersection Type Unification ExpTime-hardness

	(CL)S-F#
	(CL)S-F# Theoretical Foundation
	Implementation and Techniques
	Simplified Types
	Simplified Type Subtyping
	Partial Evaluation
	Sideways Information Passing
	Inhabitant Search Interface
	Inhabitant Search Implementation

	Evaluation
	Service Composition
	Mixin Composition
	Process Synthesis
	Two Counter Automaton Simulation
	Labyrinth Exploration

	Conclusion

