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Abstract: The calculation of the fiber orientation of short fiber-reinforced plastics with the
Fokker-Planck equation requires a considerable numerical effort, which is practically not feasible
for injection molding simulations. Therefore, only the fiber orientation tensors are determined,
i.e., by the Folgar-Tucker equation, which requires much less computational effort. However, spatial
fiber orientation must be reconstructed from the fiber orientation tensors in advance for structural
simulations. In this contribution, two reconstruction methods were investigated and evaluated using
generated test scenarios and experimentally measured fiber orientation. The reconstruction methods
include spherical harmonics up to the 8th order and the method of maximum entropy, with which
a Bingham distribution is reconstructed. It is shown that the quality of the reconstruction depends
massively on the original fiber orientation to be reconstructed. If the original distribution can be
regarded as a Bingham distribution in good approximation, the method of maximum entropy is
superior to spherical harmonics. If there is no Bingham distribution, spherical harmonics is more
suitable due to its greater flexibility, but only if sufficiently high orders of the fiber orientation tensor
can be determined exactly.

Keywords: maximum entropy; spherical harmonics; fiber orientation; ODF; reconstruction;
injection molding

1. Introduction

Short fiber-reinforced plastics are ideal materials for high-performance lightweight applications.
This usually requires a very accurate numerical determination of the mechanical stresses by structural
simulations during the engineering process of technical products. This can be a major challenge:
If short glass fiber reinforced thermoplastics are processed by injection molding or other primary
forming processes, there is a direct correlation between the resulting mechanical properties of the
material and the manufacturing process. This is caused by locally different microstructures, since the
spatial orientation of the short fibers of the composite material varies at each point of the molded
part depending on the flow conditions over time during the manufacturing process. Therefore, it is
obvious to describe the mechanical behavior of the component as a function of the fiber orientation.
Consequently, the more precisely the fiber orientation can be modelled, the more precisely the
mechanical design of the molded part can be performed.

In injection molding simulation, the mathematical description of the fiber orientation is significantly
simplified due to the very high numerical effort required otherwise. Reconstruction methods are used
to recover the original fiber orientation in a post-processing step from the orientation tensor. In this
paper, the performance of two reconstruction methods was compared and analyzed. The reconstruction
methods involved the spherical harmonics and the maximum entropy method. The analysis was
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performed as follows: Test scenarios were developed, and the fiber orientation was calculated using
both reconstruction methods. A subsequent comparison between reconstructed and original fiber
orientation shows the quality of the reconstruction as well as its calculation effort. The developed test
scenarios allowed the comparison of the two reconstruction methods for a much larger spectrum of
different fiber orientation compared to experimental tests of injection molded specimens. Furthermore,
it is possible to evaluate the reconstruction methods independently from any process simulation.

The aim of this paper was to show the advantages and disadvantages of the individual
reconstruction methods.

2. Fiber Orientation

The orientation of a single fiber in space can be given as a direction vector p in spherical coordinates
on the unit sphere S (see Figure 1). Here, the angle 0 is defined as between 0 and 77, and ¢ between -7t
and .

sin @ cos ®
P =|sin@®sind

cos @

Figure 1. Orientation of single fiber in spherical coordinates.

The change of the orientation p of a fiber in a fluid—fiber suspension of velocity # can be modeled
basically with Jeffrey’s equation [1]. Jeffrey describes the movement of ellipsoidal particles in a viscous
fluid under the condition of a laminar flow. For a Newtonian fluid without externally applied moments,
the change of the orientation p is:

p=-wp+Alep-—c:(pep)pl, @

The vorticity tensor w is calculated by:

1 T

w = E(Vu ~Vu), )
and the strain rate tensor ¢ with: 1

_ Yo T

e = 2(Vu + Vu). 3)
The constant: ,
a;—1

= 7 4
a2 +1 @

is the fiber geometry factor, which is determined by the fiber aspect ratio a, = é of fiber length I and fiber
diameter d. In a simple shear flow, the solution of the Jeffrey equation is periodic in time. This means
that after some time, a single fiber rotates back to its initial position. Jeffrey’s equation is a useful model
for the calculation of fiber orientation in the case of a thin suspension [2]. Thin means in this case that
the fibers can statistically rotate undisturbed in the suspension. For suspensions with higher fiber
concentrations as typically occur in technical relevant short-fiber reinforced plastics, fiber interaction
plays an important role. Hence, Jeffery’s equation alone is not applicable here. The suspensions can be
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classified according to the fiber volume content vr and the aspect ratio a, [2]. The classification is listed
in Table 1.

Table 1. Classification of fluid—fiber suspensions.

Regime Volume Fraction: vr
; 1
Dilute UF< 2
Semi-Dilute % <?f< al,
T
Concentrated ul > U
3

In technical applications, typically, there are between 2000 and 20,000 fibers per cubic millimeter,
depending on the fiber volume content. Therefore, a deterministic consideration of the fiber orientation
of each individual fiber is not feasible due to this large number, and a statistical analysis is carried
out accordingly. The fiber orientation density function (ODF) i (p) is defined for all fibers in the unit
sphere. It indicates the probability of a fiber pointing in a certain direction p. The ODF is periodic,
ie, P(p) = Y(nmp), n € N applies. Furthermore, a normalization condition is given by:

2n m

P = 9§¢(®, D)dS = ffl[i(@,q)) sin @dOdP = 1 ®)
S 0 0

The statistical consideration of the fiber orientation allows the use of the so-called Fokker-Plank
equation for the calculation. The Fokker-Planck equation generally describes the change of a distribution
function of fluctuating macroscopic variables [3]. The first application of the Fokker-Planck equation
was to calculate the Brownian motion [4]. In its simplest, one-dimensional form, the Fokker-Plank
equation is given by:

DW (x) + ﬁD(z) (x)|W. (6)
ox?

W _|_ 9
at | ox

W is a distribution function, depending on a variable x. The variable D) is called the drift part
and D® the diffusion part. Both the drift and diffusion part can be determined on the basis of the
microscopic behavior or derived from the statistical behavior on the macroscopic level. In the context
of fiber orientation, the drift part corresponds to the part induced by hydrodynamic forces, and the
diffusion part corresponds to the fiber interaction. To calculate the ODF, Jeffrey’s equation can be used
for the drift part of the Fokker-Plank equation. For the diffusion part, an approach for fiber interaction
with:

D, = Cil2el, @)

is used. The Fokker-Planck equation for an ODF ) (p) therefore results in:

‘;—‘f = -V:(py) + D, V. )

Solving the Fokker—Plank equation within the framework of an injection molding simulation is
numerically very costly, since the differential equation has to be solved in 3D space on the unit sphere S.
One possibility to reduce the computational effort is to decompose the ODF into moments of spherical
harmonics. These moments are also known as fiber orientation tensors:

2n m

aN = Ajjkimn... = f f PipjPkPiPmpPnp.. P (O, @) sin OdOIP. 9)
00



J. Compos. Sci. 2019, 3, 67 4 of 22

Folgar and Tucker apply the decomposition to the Fokker—Planck equation [5]. For the second-order
fiber orientation tensor, the resulting equation reads:
all,"
a_t] - _%(a)ik'akj - uik'a)kj) + %[5ik'akj + aj-ex) — 2€klai]’kl] (10)
+2Dr(6ij - 3011‘]').

It should be noticed that the second-order orientation tensor depends on the fourth-order fiber
orientation tensor 4;j5;. Analogously, the fourth-order fiber orientation tensor can be calculated with:
;1
o = —(Qim Gk — Bijkm @) + A[Sim‘amjkl + Qjm Eml — 2€mn11ijklmn] (11)
+Dr(—200ijkl + 2(aij0 + aixdj1 + adjx + a0y + a0 + akzéz’j)-

Hereby, a dependency on the fiber orientation tensor of the next higher even-order a;j,, has
to be considered. In order to solve the Folgar—Tucker equation, it is necessary to calculate the fiber
orientation tensor of the next higher even order using an approximation. So-called closures offer
the possibility for this purpose. Due to the fact that higher-order tensors contain, in principle, more
information than lower-order tensors, a closure can only be based on assumptions. A list, including
references, for further information of known closures for the fourth-order tensor is given in Table 2 and
for the sixth order in Table 3.

Table 2. List of closures for fourth-order fiber orientation tensor.

Closure Name Reference

Linear [6,7]

Quadratic [7-9]

Hybrid [7,10]
Exact [11]

Fast Exact (FEC) [11,12]
Bingham [13]

Orthotropic [10,14]
Natural [15]
Neural Network (NNET) [16]
Neural Network Orthotropic (NNORT) [17]
Quad R [18]
Hinch and Leal W1 (isotropic) [19]
Hinch and Leal S2 (strong flow) [19]
Hinch and Leal HL1 [18]
Hinch and Leal HL2 [18]
Hinch and Leal HL1Q [18]
Invariant Based optimal fitting (IOBF) [20]

Table 3. List of closures for sixth-order fiber orientation tensor.

Closure Name Reference

Linear [7]
Quadratic [7,21]

Hybrid [7]

Invariant Based [22]

The large number of closures developed and discussed in the literature shows that it is not evident
to develop a comprehensive closure that is both numerically efficient and satisfactorily accurate.
Commercial injection molding simulation programs usually use the hybrid or orthotropic closures for
the fourth-order tensor [23,24], although it can be shown that more accurate closures exist [10].
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Not only is the accuracy of the closures discussed in the literature, but also the results of process
simulations are a subject of many research projects. However, the second- and the fourth-order fiber
orientation tensors are often used as the evaluation parameter and not the ODF—for example, in the
work on the influence of fiber interaction [10,25], or for the processing of long fibers [26]. Even in the
work by Férec et al. [27], in which the Fokker-Planck equation is solved, the fiber orientation tensors
and not the ODF were used as evaluation criteria. Russel et al. investigated the prediction of the fiber
orientation tensor in fused filament fabrication [28], while Kuhn et al. in compression molding of
long fibers.

However, the design process of components often requires the use of the ODF ¢(p) and
not only the fiber orientation tensors, i.e., structural simulations by the finite element method,
generating a representative volume element (RVE) or calculating the effective stiffness C,r; using
a two-step homogenization [29]:

Cor = P CpIv(p)ip (12)

Miiller and Bohlke showed that the two-stage tensor is not sufficient to describe a microstructure
in order to determine effective composite properties with sufficient accuracy [30]. Therefore, it is
absolutely necessary to investigate the quality of the reconstruction methods of an ODF on the basis of
a fiber orientation tensor.

Due to the necessary knowledge of the ODF, a reconstruction problem arises, how an ODF can be
derived from the fiber orientation tensor. This problem is ruled by the fact that the reconstruction of the
ODF from the fiber orientation tensors is not unambiguous, as Figure 2 illustrates. It shows two different
ODFs: on the one hand, an ODF with planar isotropy, and on the other hand, one with unidirectional
distribution of two equal maximas. The red color on the shown unit spheres indicates a high fiber probability
density. The second-order fiber orientation tensors belonging to these two different ODFs are identical.
This example explains that by knowing exclusively the fiber orientation tensor, there can be no unambiguous
reconstruction of the ODFE. Mathematically speaking, the reconstruction problem is ill-posed.

ODF with unidirectional distribution with two

equal maxima ODF with planar isotropy

aiy 0.5
az2| = (0.5
ass 0.0

|

ambiguous ODF

Figure 2. Two different orientation density functions (ODFs) (left: unidirectional with two maximas, right:
planar isotropy) with the same fiber orientation tensor to illustrate the ambiguity of the reconstruction.
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3. Icosphere

A discretization of the unit sphere is necessary in order to represent the ODF numerically.
Equidistant angular steps of ® and @ in a polar coordinate system can be used in principle but are
rather ineffective. Because of the inadequate spatial distribution of the resulting grid points on the
surface of the unit sphere using equidistant angular steps, the density of the grid points at the poles is
considerably higher than at the equatorial plane. Accordingly, depending on the choice of the angular
steps, both the computational effort is too high and/or the resolution at the equatorial plane is too low.

Weber et al. used an improved formulation of the unit sphere using equidistant angular steps
in the pole direction and azimuth angular steps as a function of the pole angle. This results in a surface
grid with almost identical surface areas [31]. However, the shapes of the surface areas are very different
at the equatorial plane and the poles.

Another simple method to create a unit sphere with approximately the same density of grid points is
to create an icosphere. The starting point of this method is a regular icosahedron, which is represented by
the following 12 points:

(-1 t 0) (0 -1 ) (t 0 -1)
(1t 0) (0 1 t) (t 0 1)
(-1 —t 0) (0 -1 —t) (=t 0 -1)
(1 -t 0) (0 1  —t) (=t 0 1)

with t = #ﬁ The convex hull of the point cloud is the regular icosahedron. The convex hull

consists of 20 triangles of equal size. To refine the regular icosahedron to the icosphere, each of the
triangles is divided into 4 smaller triangles. For this purpose, the center of each edge of the triangles is
calculated and projected onto the surface of the unit sphere. This procedure can be repeated as often as
needed. In this paper, the center points of the surfaces were used as grid points for the evaluation of 1.
Therefore, the number of grid points ng,;; is equal to the number of triangles. Figure 3 shows the
evolution of the icosphere with increasing refinement level ref. A refinement level of ref = 5 with
a total of 20,480 grid points was used entirely in this work.

ref =0 ref =1 ref =5
Ngrig = 20 Ngrig = 80 Ngrig = 20,480

Figure 3. Evolution of icosphere with refinement level 0, 1, and 5. The color represents the relative area
of the triangles.

4. Reconstruction Methods

The two reconstruction methods considered in this contribution are described shortly in the
following section. They are, on the one hand, the spherical harmonics and, on the other hand,
the method of maximum entropy.

4.1. Spherical Harmonics

Spherical harmonics is based on the description of fiber orientation as a Laplace series or
a generalized Fourier series [2]. Each twice-integrable function can be represented on the unit sphere
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surface as a series representation of tensors. The series can be carried out up to order N. Due to the
symmetry of i(p), only even-order tensors are used here. In the following, the equations for the
reconstruction {y by spherical harmonics are listed, and a general derivation of the equation can be
found in [2,32]. The reconstruction of the fiber orientation is determined by the sum of the moments:

N

In(O,@) = )" w(©,). (13)

1=0

The general definition for the moments a;(p) is:

m@ﬁﬁ:i?ﬂ&@) (14)
with:
5ﬂ@¢y—@—%@&w%m®nmm®§w@¢wﬂw@mmm@ﬁ
+1P"(cos ®) sin(m®) §1)(®, D) P} (cos ©) sin(mP)dS |, v
and: S
Py = () ZEL I Ly ey D) 6

The integrals occurring in Equation (15) for the calculation of )"(®, ®) are replaced by the
corresponding entries of the fiber orientation tensors of Equation (9).

4.2. Method of Maximum Entropy

Mathematically, the problem of the reconstruction of an ODF based on fiber orientation tensors
is ill-posed, since there is no unique solution (see Figure 2). One way to find a unique solution to
an ill-posed problem is to use the maximum entropy method. This method provides the solution
that is coherent with the known information and has the highest entropy. The maximum entropy
approach can be successfully applied to many ill-posed problems, such as spectral analysis or image
restoration [33]. In the framework of the reconstruction of orientation tensors in order to consider
anisotropic mechanical properties of short-fiber reinforced plastics, the maximum entropy approach
is already applied in commercial software [34]. A summary and overview of the maximum entropy
method is provided by Wu [33].

In the context of fiber orientation, entropy is the deviation of the ODF. Analogous to Shannon’s
definition in [35] the mathematically definition of the entropy is:

S=—-QyInyds. (17)
}

Therefore, a unidirectional fiber distribution has an entropy of S = 0. Applying the maximum
entropy method to the reconstruction problem results with the finding of the ODF that has a maximum
scatter of the orientation distribution function for a given fiber orientation tensor. This idea is supported
by the findings of Hine et al. [36]. They confirmed on the basis of experimental measurements that
real microstructures of injection molded or extruded samples exhibit a maximum entropy of fiber
orientation. In addition, Miiller [37] showed already in his work that if real microstructures show
a fiber orientation with maximum scattering of fiber distribution function, the method of maximum
entropy method is suitable for determining the linear elastic composite properties.
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The distribution function reconstructed in this investigation is a Bingham distribution, which corresponds
to a normal distribution on the unit sphere surface [38]. The Bingham distribution is accordingly r-periodic.
In principle, other distribution functions could also be used with this method. A bivariate Bingham distribution
is defined with [39]:

F(X) = e+, (18)

To create a Bingham distribution, the expected value t and the covariance ¥ = (a, ) is required.
The modification of the Bingham distribution is done by formulating a minimization problem. In the
context of this investigation, the second-order fiber orientation tensor is used for the minimization
problem. This means that the Bingham distribution is modified in such a way that the second-order
fiber orientation tensor calculated of the modified distribution corresponds to the given second-order
fiber orientation tensor. The minimization problem of the reconstruction with the maximum entropy
method is defined by:

2
f(x) = (dpw; — ax)” + (diywi - ayy) + (dpw; —a2)?, (19)

Zwi—l— . (20)

Here, w; is the probability with which a fiber points in the corresponding direction p,. This direction
is the normal direction of the icosphere-triangle with the index i. The probability is calculated by the
Bingham distribution given by:

with the constraint:

w; = Jelidita), 1)

Ji is the area of the icosphere-triangle, and x; to x4 are the coefficients of the Bingham distribution
Furthermore, there is:
—2
d; i = Pi]‘/ (22)

with p;; as the components of the midpoint of the icosphere-triangle, which is rotated into the principal
axis of the expected value. The rotation can be performed with a scalar product of a corresponding
rotation matrix R:

7 =Rp. (23)

The minimization problem can be solved by any suitable numerical method if it is able to fulfill
the constraint. One such method is sequential least square programming (SLSQP) [40]. In addition,
it was examined whether the constraint can be replaced by a simple normalization of ¢ at the end of
the numerical minimization. This would have the advantage that faster numerical methods can be
used. Here, the conjugate gradient (CG) algorithm of Polak and Ribiere was applied [41]. Within the
framework of this work, both numerical methods were carried out to an accuracy of the result of 10718,
This means that the abort criterion of the numerical methods is satisfied if f(x) is smaller than the
required accuracy.

5. Evaluation

The reconstruction methods were evaluated by comparing the results in terms of accuracy
and computational effort. The basis for the investigation was provided by various test scenarios,
whose creation is explained in more detail in the following section. One test scenario is an explicitly
given initial ODEF. This initial ODF was used to estimate the fiber orientation tensors, which were
used as inputs for the reconstruction methods. With this approach, it is possible to compare the
reconstructed ODFs against each other as well as against the initial ODFE. Both the accuracy of the
reconstruction and the numerical effort, measured by the required computing time, were compared.
The spectral decomposition was repeated for the steps [ = 2 to ] = 8. In addition, the higher-order
tensors were calculated once from the initial ODF and once by closures from the lower-order tensors.
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Table 4 gives an overview of the reconstruction methods used and their variants. The fiber orientation
tensors used for the reconstruction are indicated. In the following, the methods are only indicated by
their abbreviations. ME stands for maximum entropy and SH for spherical harmonics. The number
after SH indicates the maximum order N used for the reconstruction. The abbreviation HY at the end
stands for the use of the hybrid closure of the highest tensor, and HYHY for the consecutive use of the
hybrid closure.

Table 4. List of used reconstruction methods and their input.

A

Method Abbreviation P ap ag ag ag
Method of Maximum Entropy ME f(a) f@W)

Spherical Harmonics (2nd order) SH2 f(az) f)
Spherical Harmonics (4th order) SH4 f (a2, ag) f (¥) f (¥)
Spherical Harmonics (6th order) SH6 flap, ay, ag) f(W) fW) fW)
Spherical Harmonics (8th order) SHS fla, ag,a6,08)  f(¥) fW) fW) f(¥)
Spherical Harmonics (4th order, A dy = f(a2)

with hybrid closure) SHAHY flay, &) @) Hybrid Closure
Spherical Harmonics (6th order, R s = f(az,dg)

with hybrid closure) SHoHY flay, a1, d) fw) f@) Hybrid Closure

Spherical Harmonics (6th order,

. . A A ﬁ4 = f(az) ﬁé = f(tlz, ﬁ4)
with hybrid closure for 4th and SH6HYHY flaz, g, dg) f@) Hybrid Closure  Hybrid Closure
6th order tensor)

5.1. Tests Scenarios

Two different test variants of the test scenarios were considered. On the one hand, a fiber
orientation was created on the basis of a Bingham distribution and, on the other hand, measured fiber
orientation from the literature was used.

The idea of fiber orientation with a Bingham distribution is based on the solution of the
Fokker-Plank equation. Chaubal and Leal limited the flow conditions at which a Bingham distribution
of the Fokker—Planck equation can be expected [13]. To create a Bingham distribution, the expected
value p and the covariance X are required. The expected value specifies the position of the maximum
of the distribution. The covariance, on the other hand, determines the scattering width of the
distribution. The expected value p was exemplarily chosen to be on the equatorial plane with
w= %(T(, 7). The covariance was varied in order to create the different test scenarios. The variation
was chosen in such a way that the fiber orientation corresponds to unidirectional, orthotropic with
respect to the equatorial and meridian plane, and quasi-isotropic conditions. For this purpose,  and
(see Equation (17)) were independently varied in 20 logarithmically equidistant steps from 10~* to 10*
resulting in a total of 400 individual test scenarios.

5.2. Evaluation Criteria

For the complete evaluation of the reconstruction methods, a measure of the similarity of two
probability distributions P and Q is required. For that, the sum of the squared errors between initial
and computed ODF can be considered by:

E2 = I " (P-Q)~ (24)

o0

A further measure for evaluation is the Kullback-Leibner distance [42]:

Dy(P|IQ) =D(P11Q)+D(QIIP), (25)
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which can be calculated by the Kullback-Leibner divergence:

” p(x)
DPIQ) = [ pl-togEla. 26

A Kullback-Leibner distance of D(P || Q) = 0 means that both probability distributions are
identical. However, the greater the value of the Kullback-Leibner distance is, the more different the
probability distributions are.

Some examples of comparisons between ODFs should illustrate the difference of the evaluation
criteria. Table 5 shows a total of 5 ODFs. Each of the 5 ODFs is compared with the first ODF ),
and the evaluation criteria are determined. This shows that the integral error E is by definition largest
if the expected value is not identical (y1) and the distributions do not overlap. The Kullback-Leibner
distance in this case is 0 because the distribution is the same. The Kullback-Leibner distance, on the
other hand, is largest in the case of ¢;. Thus, the Kullback-Leibner distance gives a more useful
estimation with regard to the shape of the ODF.

Table 5. Comparison of ODFs (with 1) for the illustration of evaluation criteria.

o (Reference) Y1 P2 P3 Py
D =0.0 D =0.0 D = 0.346 D = 2767 D =4.461
E=0.0 E =0.159 E = 0.079 E = 0.081 E =0.112

5.3. Numerical Results for Bingham Distributions

First, some selected test scenarios were evaluated in order to demonstrate the principal differences
between the reconstruction methods. A total of five different test scenarios are presented as examples.
Each of these five test scenarios represents a qualitatively different challenge for the reconstruction
methods. The test scenarios include two unidirectional fiber orientations, the first with nearly perfect
orientation and the second with a somewhat more scattered fiber alignment. Furthermore, two fiber
orientations with different scattering widths in azimuth and polar directions were selected. Finally,
a planar—isotropic fiber orientation was chosen. In the following figures for the individual test scenarios,
the probability of a fiber pointing in one direction is represented by color: A value of 0 corresponds to
the color blue, while the maximum value is always colored red.

The first test scenario of a unidirectional distribution is shown in Figure 4 in combination with
its reconstructions. It is easy to recognize that the ME method reconstructs an ODF that is almost
identical to the initial ODF. The methods SH2 to SHS, on the other hand, reconstruct an ODF with
a much broader distribution and a less pronounced secondary maximum. The broader distribution
is due to the used moments, which are unsuitable to approximate a unidirectional fiber distribution.
The reconstruction using the closures does not provide any further information, since the hybrid closure
is exact for unidirectional distributions. Thus, the reconstructions SH4HY, SH6HY, and SH6HYHY are
identical to SH4 and SH6, respectively.

The next test scenario is given in Figure 5 with a distribution that is similar to the first test scenario,
but with a broader scattering width. The reconstruction using ME provides again an almost identical
ODF compared with the initial ODE. The reconstructions SH2 and SH4 show again a larger scattering
than the initial ODF. Only for SH6 and SHS are the moments sufficient to reproduce the distribution
close enough. Like in the first test scenario, secondary maxima are also recognizable by all spherical
harmonic reconstructions except SH2. The SH4HY and SH6HY reconstructions are very similar to
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the SH4 and SH6 reconstructions, as the hybrid closure is performing well in this case. By contrast,
the reconstruction SH6HYHY differs strongly from the test scenario. Both the scattering range and
the secondary maximum are much more pronounced. In addition, the expected value is distributed
symmetrically to two points in relation to the expected value of the test scenario. The consecutive
application of hybrid closure is therefore not suitable in this case.

Data of Initial ODF Initial ODF

a 10* masx

B 10*
Ay 0
Qaz; 1
ass 0 0

Reconstruction
ME SH4HY SH6HY SH6HYHY

D =10"7 D =5.370 D = 4944 D = 4944

SH2 SH4 SHeé SHS

D =6.042 D =5.370 D = 4944 D = 4.649

Figure 4. Top: Initial ODF and data of first test case. Bottom: Reconstruction of test case with the
different reconstruction methods.
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Data of Initial ODF Initial ODF

a 11.288 max

B 29.763
aiy 0.06
Qaz2 0.69
Qss 0.25 0

Reconstruction
ME SH4HY SH6HY SH6HYHY

D =0.015 D =0.718 D =0.364 D = 2117

SH2 SH4 SH6 SHS

&y &

D =2.330 D =0.639 D = 0.459 D =0.340

Figure 5. Top: Initial ODF and data of second test case. Bottom: Reconstruction of test case with the
different reconstruction methods.

Figure 6 represents the next test scenario in comparison to the corresponding reconstructions.
The ODF of this test scenario is characterized by a sharply limited distribution in the meridian plane,
where the value at the pole positions is zero. The ME again provides the best reconstruction, where only
the values of the ODF from pole to equator are slightly different. The sharp definition of the initial
ODF at the poles of this test scenario is reconstructed more diffusely. The reconstructions SH2 to
SHBS deliver, as expected, a too-broad ODF due to the too-few moments of spectral approximation.
The secondary maxima are more pronounced in this test scenario than in the previous ones. In this
test scenario, the effect of using the hybrid closure to calculate the higher tensors is particularly
interesting. The reconstruction SH4HY shows two equal maxima, which are symmetrically arranged
to the equatorial plane. Nevertheless, the Kullback-Leibner distance with D = 3.150 is approximately
equal to the Kullback-Leibner distance of the reconstruction SH4. The reconstruction SH4HY illustrates
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the problems of using closures. Assumptions or, generally speaking, the applicability of a closure,
cannot be supposed to be true in a reconstruction problem, since no information about the original
ODF is known. Accordingly, the use of closures can be doubtful for the reconstruction, although higher
moments are used which should be beneficial for sharply limited ODFs.

Initial Data of ODF Initial ODF
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Figure 6. Top: Initial ODF and data of third test case. Bottom: Reconstruction of test case with the
different reconstruction methods.

The fourth test scenario is shown in Figure 7. The distribution is relatively broad in the meridian
plane as well as over the circumference. At the poles, however, an extremely sharp border results
from the fact that the even distribution on the meridian planes is diminishing as they are getting
closer to each other. In contrast to the previous test procedures, the ME method appears not to be
the best solution, as it does not provide sharp distribution at the poles. In the reconstructions SH4
to SHS, several maxima can be observed, which merge more and more together as the number of
moments increases.



J. Compos. Sci. 2019, 3, 67 14 of 22

Initial Data of ODF Inital ODF
a 1.626 max
B 0.012
iy 0.24
a2 0.43
as; 0.33 0
Reconstruction
ME SH4HY SH6HY SH6HYHY

D =0.032 D =0.034 D =0.073 D =0.093

SH2 SH4 SHe SHS

D =0.032 D =0.013 D =0.007 D =0.004

Figure 7. Top: Initial ODF and data of fourth test case. Bottom: Reconstruction of test case with the
different reconstruction methods.

The last example of test scenarios shows a relatively broad, almost circumferential distribution on
the equatorial plane (see Figure 8). The reconstruction using ME is exact. Once again, the reconstruction
using hybrid closure is questionable. Several maxima occur in the reconstructions SH4HY, SH6HY,
and SH6HYHY and are much more pronounced than in the previous test scenarios. Furthermore,
the Kullback-Leibner distance is significantly worse compared to the reconstructions SH4 and SH6.
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Figure 8. Initial ODF and data of fifth test case. Bottom: Reconstruction of test case with the different
reconstruction methods.

In the following, all test scenarios for the evaluation of the reconstruction methods are compared
against each other. First, the methods SH2 to SHS8 are analyzed. The Kullback-Leibner distance
as a function of the logarithmically covariances ¢ and 0 is shown in Figure 9. The value of the
Kullback-Leibner distance is represented by a color. The figure shows that the reconstruction
methods SH2 to SHS are qualitatively very similar. In the range of nearly unidirectional initial fiber
orientation, the Kullback-Leibner distance is large, whereas in the range of isotropic initial fiber
orientation, the Kullback-Leibner distance is nearly zero. As the number of moments increases,
the Kullback-Leibner distance becomes smaller, but still not significant.
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Figure 9. Color plot of the Kullback-Leibner distance in dependency of covariance (SH2, SH4, SH6,
and SHS).

The reconstructions SH4HY, SH6HY, and SH6HYHY, shown in Figure 10, differ essentially from
SH4 and SH6 in cases where one of the covariances is small and the other large. In these cases,
the Kullback-Leibner distance is either greater or smaller. Especially in SH6HYHY reconstructions,
both cases occur simultaneously. The evaluation of the Kullback-Leibner distance in SH4HY, SH6HY,
and SH6HYHY is no longer symmetrical to the bisector. An exact explanation of the differences with
hybrid closure is therefore accordingly difficult. It is known that the hybrid closure overestimates the
fiber alignment. This is counteracted by a too-low order of moment used. The shown comparison is
designed in such a way that the methods SH2 to SHS get the exact tensors of higher order and should
therefore have a lower Kullback-Leibner distance. The supposed improvement of the Kullback-Leibner
distance using the hybrid closure is therefore not to be regarded as an improvement as such, but rather
as more or less random, as the overprediction of alignment equalizes the too-low order of moments.

The reconstruction with ME shows a consistently low Kullback-Leibner distance. This proves
that the maximum entropy method is capable of reconstructing a distribution function so far as all
information is contained in the fiber orientation tensor. This is the case in the example of the Bingham
distribution chosen here, since the expected value is clearly determined by the eigenvectors of the
second-order fiber orientation tensor, and the scatter can be determined from the eigenvalues.
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Figure 10. Color plot of the Kullback-Leibner distance in dependency of covariance (SH4HY, SH6HY,
SH6HYHY, and ME).

In the context of a reconstruction problem, the quality of the reconstruction as well as the computing
time is of interest. Figure 11 shows the time required to perform a reconstruction. The indicated
time refers exclusively to the reconstruction, i.e., the calculation of the fiber orientation tensors of
the initial ODF is not considered. The performed benchmark is implemented in the programming
language Python, whereby each reconstruction method is vectorized and sped up as far as possible.
The benchmark is performed on an AMD Ryzen 7 1800X system (Advanced Micro Devices, Inc.,
Santa Clara, CA, USA). Asalready mentioned, the influence of the numerical method of the ME method
on the required computing time is analyzed. Note that due to the specified tolerance, the reconstruction
is identical for both numerical methods.

In Figure 11, the time is given relative to ME SLQP, which on average takes 1.29 s. It turns out that
the SH2 method is the fastest. SH4 to SHS8 are about 30% slower, although interestingly, there is no
significant difference between SH4, SH6, and SH8. The ME method with the CG algorithm is about
65% slower than the SH2 method. With the SLSQP algorithm, the ME method is considerably slower
than with the CG algorithm.
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Figure 11. Overview of average computational time of the reconstruction methods.

5.4. Numerical Results for Measured Data

In addition to the synthetic benchmarks in Section 5.3, measured fiber orientation was used for
comparison. These data originate exclusively from the literature.

The first set of data was taken from [7] and is shown in Figure 12 together with the reconstructions.
The methods SH2 to SH8 can reconstruct the data relatively well, whereby the absolute height at the
expected value is clearly underestimated, especially for SH2 and SH4. The scatter of the reconstructions
is wider than the original ODF. The reason for that was already discussed for the Bingham test
scenarios: The number of moments used is too low to be able to represent the peak. The reconstructions
based on the hybrid closure again show a completely different behavior. Several maximum values
are reconstructed, as well as a shift of the expected value. The ME method reconstructs the ODF
relatively well, although with a too-low probability density around the maximum of the initial ODF
and a too-wide scattering, especially at —30° and +50°.
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Figure 12. Measured and reconstructed ODFs from [7].

The second set of data was taken from [43]. The fiber orientation was measured by uComputer
Tomography (uCT) of injection molded samples. Subsequently, the ODF was subdivided into shell
and core layers, with the shell layer used here. In this dataset, the peak at 90° is particularly interesting
in respect of to what extent it can be reconstructed (see Figure 13). In the area around the expected
value, the behavior is basically similar to that of the first set of data. The methods SH2 to SH8 and
ME underestimate the absolute value at the expected value. With SH2 and ME, the reconstructed
probability at £50° is again too high, and the peak at 90° cannot be reconstructed. Here, only the
methods SH4, SH6, and SH8 can generate something that is similar to a second peak. The reconstruction
methods with hybrid closure reconstruct several maxima symmetrically to the expected value again.
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Figure 13. Measured and reconstructed ODFs from [43].

The third ODF was taken out of Lenke [44]. In this case, however, the direct numerical values
of the nCT-experimentally-measured ODF were not used, but a probability density function that
represents the measured data in an extremely good approximation. The probability density function is

described in Lenke’s work by:
ho

h2_h2 ’
\/1 - L2 cos?(0)

1

h(o) =

(27)

The reconstruction of the methods is exactly analogous to the previous examples. Figure 14 shows
the results. The methods SH2 to SH8 become better with each increasing moment to reconstruct the
ODF. Here, an oscillation is very noticeable apart from the expected value. The reconstructions with
hybrid closures generate several maxima again. In addition to that, it becomes evident that the ME
method does not work well enough here, because the original ODF is not a Bingham distribution.
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Figure 14. Measured and reconstructed ODFs from [44].
6. Conclusions

The aim of this work was to compare and evaluate existing reconstruction methods of a fiber orientation
distribution based on fiber orientation tensors. The evaluation was based on the Kullback-Leibner distance
as well as on a direct qualitative comparison of the obtained distributions.
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In a first step, initial ODFs were generated and the related fiber orientation tensors were determined.
Using reconstruction methods, the approximated ODF was calculated on the basis of the fiber orientation
tensors. The initial ODFs generated were of a Bingham distribution type, and experimentally measured
data from the literature were also used.

None of the investigated reconstruction methods can be considered as the best in general. Although
the maximum entropy method impressively shows that a certain distribution can be reconstructed
almost identically, this is only if the distribution type is of the same type. The Bingham distribution
chosen in this paper was practically reconstructed one-to-one by the maximum entropy method. In the
reconstruction of the measured data, however, the weakness of the maximum entropy method becomes
apparent: Distributions different from a Bingham distribution or outliers cannot be reconstructed.
This is a strength of the spectral harmonics approximations, which in principle could represent any
distribution function. Nevertheless, this reconstruction method cannot be considered ideal either,
since the moments in particular must be correspondingly high in order to be able to map certain
distribution functions. It has been shown that even with the fiber orientation tensor of the eighth order
included, sharply limited distributions cannot be reconstructed. Moreover, these high moments are
usually not available in process simulations. Although closures offer the possibility of higher moments,
however, the problem here are the closures themselves, since assumptions have to be made about the
distribution function.

With the mentioned advantages and disadvantages of both reconstruction methods, it can be
concluded that in the case of the reconstruction of an ODF only on the basis of a second-order fiber
orientation tensor without any further information about the ODF, the maximum entropy method
seems to be on average the best choice. This is evident from the following two reasons: Firstly,
the assumption of maximum entropy is a physical approach, which Hine et al. [36] can largely confirm
with experimentally measured fiber orientations. Secondly, the reconstructions in this contribution
show that the errors of the maximum entropy method are much smaller than those of the frequently
used SH4HY method (spherical harmonics, 4th order, with hybrid closure).
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