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Abstract: The possibility of producing profiles directly by hot extrusion of aluminum chips, normally
considered as scrap, is a promising alternative to the energy-intensive remelting process. It has to be
taken into account that the mechanical properties depend on the quality of the weld seams between
the chips, which arise during the extrusion process. To estimate the influence of the weld seams,
quasistatic and cyclic investigations were performed on chip-based profiles and finally compared with
cast-based extruded profiles. In order to gain comprehensive information about the fatigue progress,
different measurement techniques like alternating current potential drop (ACPD)-technique, hysteresis
measurements, and temperature measurements were used during the fatigue tests. The weld seams
and voids were investigated using computed tomography and metallographic techniques. Results
show that quasistatic properties of chip-based specimens are only reduced by about 5%, whereas
the lifetime is reduced by about a decade. The development of the fatigue cracks, which propagate
between the chip boundaries, was characterized by an intermittent testing strategy, where an initiation
of two separate cracks was observed.

Keywords: hot extrusion; fatigue development; aluminum chip solid state recycling; intermittent
computed tomography; alternating current potential drop (ACPD)

1. Introduction

Because of the increasing scarcity of resources, demands with regard to lightweight construction
have significantly increased in recent years [1]. In this context, aluminum is particularly suitable because
of the excellent strength-to-weight ratio and is becoming more and more popular in lightweight-relevant
fields such as the automotive and aerospace industries [2]. A disadvantage is the energy-intensive
production of primary aluminum compared to other construction metals [3,4]. With a requirement
of about 200 GJ per ton, the production of primary aluminum is one of the most energy-intensive
production processes [3] and thus exceeds steel production by a factor of ten [4]. To reduce this large
amount of energy, more use is being made of secondary aluminum. Conventionally, the aluminum
is melted for recycling [5]. A promising alternative with significantly lower energy consumption is
solid state recycling by hot extrusion, in which aluminum scrap can be formed directly into profiles.
Compared to the remelting process, direct recycling enables a reduction of energy up to 31% [6].
The use of such scrap like chips additionally has the distinct advantage of a reduced price compared
to raw aluminum as well as a less material loss due to the high demand of oxides on the surface of
the chips [6]. Stern developed the procedure in 1944 [7], albeit the process has only been intensively
studied in the last two decades [8–10].
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Regarding the mechanical properties of chip-based profiles, it is questionable to what extent the
profiles produced by this way meet the requirements in terms of strength and durability. As previous
studies show [11,12], the mechanical properties of chip-based profiles depend on the quality of the
weld seams occurring between the chips during the extrusion process. The bond strength of the
welded aluminum chips mainly depends on time of the contact of the chips and the temperature, as
diffusion was found out to play a significant role in the bonding mechanism [12]. On the one hand,
the oxide layers have to be broken up in order to enable a direct metal-to-metal contact. On the other
hand, the distance where the surfaces are in contact has to be long enough in order to transfer enough
energy for the diffusion process, which will be strongly activated by high pressure and temperature.
As Cooper and Allwood [13] showed, the influence of the temperature cannot only be explained by
the influence on the flow stress of the aluminum, but also the high dependence of the diffusion on
the temperature. Because of this, below room temperature process time does not have a significant
influence on the bond strength, as diffusion is not prevalent for such temperatures [13].

In the case of a hot extrusion process parameters such as shear stress, pressure, and local strain
during the extrusion are critical for a sufficient break-up of the oxide layers and therefore a satisfactory
diffusion and welding process [11,12,14]. These parameters can be adjusted by process parameters,
especially the extrusion ratio, the ram speed, and the die design [11].

Most known methods to achieve the required process parameters are attributed to the SPD
(severe plastic deformation) method [15], which realizes the break-up of the oxides via high local
strains and high hydrostatic pressures. While hot extrusion process has often been used to realize the
high local strain [11,14,16], other methods have also been investigated such as friction stir extrusion
processes [17,18], which have undergone a change in microstructure and hot and cold cracking.
Approaches using a compression process at room temperature [9,19] did not lead to success because
the shearing forces were too low. Instead, an additional forming process, such as a rolling process [20]
was necessary. To significantly increase the local strains, ECAP (equal channel angular pressing)
processes were also used which significantly increase the ductility of the resulting profiles and cause
grain refining [21]. However, a disadvantage is a more complex process control and significantly
increased forces.

Previous investigations [11,12] particularly address the quasistatic properties of chip-based
profiles. First investigations regarding cyclic properties [22,23] show a crack propagation along the
chip boundaries so that these act as weak links. This leads to a reduction of the lifetime up to a factor of
ten [22,23]. A summary of studies regarding different methods of solid state recycling is given by [21],
whereby [15] summarizes recent results of mechanical investigations as well as influencing parameters.

The aim of this study is therefore to investigate the mechanisms that lead to the reduced lifetime
observed in [22]. In this context, quasistatic and cyclic investigations are used to identify the possible
parameters influencing the mechanical properties of extruded chip-based profiles. The focus lies on
constant amplitude tests, with stress amplitudes, estimated by load increase tests, which are described
in [24]. All specimens were analyzed by X-ray computed tomography (CT) before the tests in order to be
able to detect possible influences of defects like pores and delaminations on the mechanical properties.

In order to draw conclusions on the damage development under constant as well as variable
amplitude load, supportive measurands, such as the plastic strain amplitude, the change in temperature
and the change in alternating current (AC) potential were used. In this context, the alternating current
potential drop (ACPD)-technology is the most comprehensive, as it depends on the temperature,
the geometry of the specimen, the microstructure, and the defect structure [24,25]. Based on the
measured material response, time-dependent microstructural processes that lead to fatigue fracture
can be followed.

In order to be able to comprehensively analyze the development of damage during cyclic loading,
intermittent fatigue tests were carried out. Therefore, fatigue tests were interrupted at certain numbers
of cycles with specific material reactions and characterized by computed tomography in order to
determine the crack propagation.
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2. Experimental Methodology

2.1. Material and Process Route

In order to characterize the quasistatic and cyclic behavior of directly recycled profiles, chips made
of EN AW6060 aluminum alloy were used as a basis for the experiments. The chemical composition
was determined by Otto Fuchs Dülken GmbH (Viersen, Germany) by X-ray fluorescence analysis (XRF)
and is given in Table 1. The values determined are within the specified limits according to standard
(DIN EN 573-3).

Table 1. Chemical analysis of AW6060 aluminum cast alloy (wt.%).

Ref. Si Fe Mn Mg Zn Ti Al

DIN EN 573-3 0.3–0.6 0.1–0.3 <0.1 0.35–0.6 <0.15 <0.1 Bal.
XRF 0.4 0.21 0.04 0.42 0.01 0.01 Bal.

In this study, the usability of chips for extrusion and the effects on the mechanical properties
of chip-based specimens were investigated and compared with conventional cast-based material.
To this end, the cast-based and chip-based material were hot extruded with the same flat-face die for
comparison purposes. The process route for the production of the chip-based profiles consists of four
stages and is shown in Figure 1.
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Figure 1. Schematic representation of the extrusion process steps: Machining of the chips (a),
pre-compaction (b), heat treatment (c), hot extrusion (d).

To produce the extruded profiles, the chips were first produced using AW6060 cast bars by
a machining process at the Institute of Machining Technology (ISF) at TU Dortmund University.
The geometry of the chips was modified based on relevant research work of Haase et al. [14] and
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Güley et al. [11] in such a way that they can be expected to have best welding properties resulting in
best mechanical properties. The spirally shaped chips have a length of lc = 11.0 ± 1.7 mm, a width of
wc = 7.6 ± 1.2 mm, and a thickness of tc = 1.1 ± 0.4 mm [14]. For the machining of the chips, a cutting
insert made by Sandvik (VBMT 160404-UR4225) was used and the chips were produced using a cutting
speed of vc = 400 m/min, a feed rate of fc = 0.4 mm, and a cutting depth of ap = 2.25 mm [14].

To ensure enhanced chip surfaces, the chips were cleaned from machining lubricant as well as
contaminants and dried after production. In order to ensure satisfactory welding of the chips in the
extrusion process, the chips were pre-compacted by a single stroke process at room temperature, using
a compaction force of F = 500 kN. Finally, the compacted blocks, with a mass of mB = 550 g, a length of
lB = 92 mm, a diameter of dB = 60 mm, and a relative density of 78% were homogenized for 6 h at 550 ◦C,
preheated to reduce the necessary extrusion force and then extruded. In order to ensure comparable
circumstances, the cast-based material underwent the same heat treatment (homogenization) and the
same extrusion parameters as the chip-based billets.

The individual extrusion process parameters were also investigated in detail in [11,14] and
optimized with regard to the resulting properties of the extruded profiles. Therefore, the blocks were
heated up to a temperature of TB = 550 ◦C and were extruded with a ram speed of ve = 1 mm/s using a
Collin LPA250t hydraulic extrusion press with a maximum ram force of 2.5 MN. The tool was heated
up to a temperature of TT = 450 ◦C. The flat-face die used for the extrusion process had a diameter of
dd = 12 mm which results in an extrusion ratio of Rp = 30.25. The extrusion ratio is defined as the
quotient between the diameter of the billet (dB = 66 mm) and the diameter of the resulting profile
(dd = 12 mm). The extruded profiles were cooled by compressed air after leaving the die.

2.2. Metallography

In order to be able to correlate the microstructure with the mechanical properties, a more precise
knowledge of the chip orientation and the grain structure, which directly affects the strength according
to the Hall-Petch relationship [26], is of importance. Therefore, cast-based and chip-based profiles
were cut and cold-embedded perpendicular to the extrusion direction. The profiles were then ground
and polished up to a grit size of 0.1 µm using SiO2 polishing suspension. The microstructure
was characterized on cross-sections by means of an electrolytic etching according to Barker [27].
Fluorophosphoric acid (35%) was used as an electrolyte at a flow rate of 12 L/min. On the profile, poled
as the anode, a layer applied by the etching process which enables the detection of the grain orientation.
The etching was carried out for 90 s at a DC voltage of 20 V using an electrolytic etching device (Struers
LectroPol-5, Willich, Germany). The subsequent microstructural characterization under polarized
light was carried out on a light microscope (Zeiss Axio Imager M1m, Jena, Germany). Subsequently,
the grain size was determined by the linear intercept method.

2.3. Fractography

In order to be able to characterize in particular the deformation and crack propagation behavior
of the specimens, the fracture surfaces of the tested specimens were examined in a scanning electron
microscope (SEM) (Tescan Mira 3 XMU, Brno, Czech Republic). For a comprehensive characterization
of the fracture surfaces, both the information of the element-sensitive backscattered electron detector
and the secondary electron detector suitable for topological information were evaluated. Previously,
the fracture surfaces were cleaned in an ethanol-filled ultrasonic bath. The investigations were intended
to detect stress-dependent changes in the type, shape, and size of cracks and to determine differences
in the fatigue behavior between the cast- and chip-based specimens. For the chip-based specimens,
knowledge about the preferred crack propagation direction and the role of the welded chips in the
fatigue process, as well as their interaction, was gained.
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2.4. Mechanical Testing

2.4.1. Tensile Tests

All tensile tests were carried out strain-controlled according to DIN EN ISO 6892-1 at room
temperature on a universal testing machine (Instron 3369, High Wycombe, UK) equipped with a load
cell with a maximum force of 50 kN. After the machining process, the specimens had a roughness
of Rz = 25 µm in the gage length area. Before the tests, the gage length areas of the specimens were
ground by means of abrasive paper and then polished using polishing paste.

For strain measurement, a tactile extensometer (Instron type 2630-106) with a gage length of
25 mm and a maximum extension of +50%, −10% was used. The specimen geometry, according to
DIN 50125 (tensile test DIN 50125-A 7 × 35) is shown in Figure 2b. The tests were carried out using a
strain rate of 0.00025 s−1 in the elastic and 0.001 s−1 in the elastic-plastic range. The transition to the
elastic-plastic range was assumed when exceeding a normal stress of 50 MPa.
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Figure 2. Experimental setup for fatigue experiments (a), specimen geometry for quasistatic (b),
and fatigue (c) tests, all units in mm.

2.4.2. Fatigue Tests

Various fatigue tests were carried out in order to determine the load-dependent deformation
and damage behavior. Therefore, continuous load increase tests were carried out, described in [24] as
a basis to estimate suitable stress amplitudes for the constant amplitude tests. The geometry of the
specimens used for this purpose is shown schematically in Figure 2c. All fatigue tests were carried out
on a servohydraulic testing machine (Instron 8872) with a load cell with 10 kN load capacity. The tests
were performed without superimposed mean stress with a stress ratio of R = −1, a test frequency of
f = 10 Hz, and a sinusoidal load–time curve. Specimens, which exceeded Nl = 2 × 106 load cycles were
defined as run outs.

In order to follow the material reactions, the characteristics of the stress–strain hysteresis were
detected by means of a tactile extensometer (Instron type 2620-603, l0 = 10 mm), the change in electrical
resistance by using ACPD (alternating current potential drop) technique, as well as the deformation and
damage induced change in temperature by means of thermocouples. In addition to the thermocouple
attached to the specimen, the ambient temperature was recorded by three thermocouples placed at
different areas in the vicinity of the specimen. As a variable room temperature, which is included
in the calculation of the temperature changes of the specimen, the mean value of the temperature
measurements of these three additional thermocouples was used. To measure the microstructure
sensitive change in AC (alternating current) potential, Matelect CGM-5 system (Harefield, UK) was



Materials 2019, 12, 2372 6 of 17

used. The electrical contacts were spot welded to the specimens, while the poles of the current
introduction and the poles of the measurement of the potential were welded each crosswise to reduce
interference effects. The current was kept constant at a value of I = 1.7 A, with a signal gain of 90 dB.
The frequency fAC was found out to be optimal at a value of fAC = 0.3 kHz. The experimental setup is
shown in Figure 2a.

2.5. Computed Tomography-Based Defect Analyses

For the analyses of the internal defect structure as well as the defect development of the cast- and
chip-based specimens under cyclic loading, computed tomography (CT) examinations were performed
using Nikon XT H 160 X-ray computed tomography scanner (Leuven, Belgium). In order to correlate
the defect characteristics as well as the defect distribution with the quasistatic and cyclic properties,
all specimens were examined by CT before testing. The volume reconstructions and defect analyses
of the CT scans were realized using VGStudio Max 2.2 software. To ensure the comparability of the
results of the defect analyses, all specimens were investigated with the same scanning parameters.
The parameters which were found to be optimal with regard to the expected image quality are
summarized in Table 2.

Table 2. Parameters and settings of computed tomography (CT) examinations for measurements in the
gage length area of tensile and fatigue specimens.

Exposure Time Number of Frames Beam Intensity Beam Current Beam Power Resolution

250 ms 8 135 kV 98 µA 13.2 W 13.5 µm

In addition to the defect analyses, investigations of the damage development of the extruded
chip-based specimens were tracked intermittently. For this purpose, a chip-based specimen was loaded
with a certain number of load cycles and then analyzed by CT. Doing so, changes in the internal defect
structure, as well as preferred crack initiation sites and propagation direction, were characterized.
The fatigue test was each interrupted when significant changes in the material reactions occurred.

3. Results and Discussion

3.1. Metallographic Investigations

After barker etching, the cross-section of the cast-based profile (Figure 3a,b) shows an
inhomogeneous grain size distribution in radial direction. In the marginal areas of the cast-based
profile significantly smaller grains can be recognized, whereas the grains in the middle of the profile
are much larger. Overall, the grains in all areas show a round and uniform shape.
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The optical micrograph of the longitudinal section (Figure 3c) also shows the described
inhomogeneity with respect to the grain size distribution and a round shape. The mean grain size in the
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center of the profile was determined by means of the linear intercept method to be 380 ± 58 µm and
82 ± 37 µm in the marginal area.

Figure 4 shows the images of the Barker-etched chip-based profile. The individual chips are
oriented similar, indicated by the same color in polarized light. Solely in the outer area at a diameter
>8 mm very different orientations can be identified. Unlike the corresponding images of the cast-based
profile (Figure 3), the grains are much more pronounced and separated from each other by clear,
black interfaces, so that it can be determined that these are the interfaces of the welded chips.Materials 2019, 12, x FOR PEER REVIEW 8 of 17 
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For the grain structure in the chip-based profile, three different zones can be distinguished
(Figure 4a). The first innermost zone is characterized by a different orientation of the individual chips.
The grain boundaries correspond to the chip boundaries so that every chip contains a new grain and
the grain visibility is high. Since the local strain of the chips in the center of the extrusion ram is low
compared to the outer areas, the oxide break-up is insufficient, despite of the high pressure in this area
during the extrusion process. This first zone is followed by a second zone in which a large number
of very small, differently oriented grains can be detected in the individual chips. In the outermost
zone, areas of the same grain orientation also run across the chip boundaries. This can be explained
due to the process-related heat input. According to Güley et al. [11], during the extrusion process,
areas of huge temperature differences can be identified in extruded profiles. Particularly in the outer
areas, high energy inputs with associated temperature increases can be observed due to the frictional
conditions prevailing on the die and in the dead metal zone [28]. As a result, these temperature
increases lead to local exceedances of the recrystallization temperature and thus to the formation of
new grains. Additionally, the local shear stress is high enough to enable recrystallization beyond chip
boundaries and therefore sufficient welding of the chips, despite the local pressure decreases to zero in
these regions [12]. Because of the subsequent cooling with compressed air, the cooling rates in the
outer profile areas are higher. According to Liang et al. [29] higher cooling rates lead to the formation
of smaller grains due to the high undercooling achieved.

The elongated grains in the chip-based profile are a result of incomplete recrystallization.
Compared to the cast-based material the input of process heat is decreased because the chips are not
welded at all. For this reason, the recrystallization temperature in the middle of the profile is not
exceeded. In outer areas, the temperature then exceeds the recrystallization temperature, resulting in
the formation of sub-grain boundaries within the individual chips. In areas further out, the temperature
is then sufficiently high to exceed the recrystallization temperature and thus to cause the formation of
new grains, even beyond the chip boundaries.

As already stated, Güley et al. [11] identified two critical parameters influencing the welding
process of the chips. The first parameter regards to a critical shear stress above which the encasing
oxide layers break down and enable metal-to-metal contact in consequence. As the second parameter, a
critical path length is defined, which is understood as a minimum length of the contact of the surface of
the chip surfaces in the process which is necessary to allow sufficient welding. Only if both conditions
are met sufficient, a successful welding process can be achieved during the extrusion process. At least
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the parameter of the critical shear stress is directly influenced by the extrusion ratio. Thus, with a
larger extrusion ratio, the effective shear stress is increased [14,15]. Because of the friction in the contact
area between the profile and the die, the shear stress is significantly higher in the outer regions of
the profile than in the central regions. For flat face dies, Haase et al. [14] were able to show that chip
delamination phenomenon occurs at a lower extrusion ratio than 17.4. For the chip-based profiles,
the extrusion ratio of Rp = 30.25 appears to be sufficient for adequate welding of the chips. Apparently,
because of the effective shear stresses in the outer regions of the chip-based profile there is sufficient
welding, which is why no delaminations can be found in these regions. Starting from a critical radius,
the influence of the friction between the material and the die has then dropped to such an extent that
sufficiently high shear stresses can no longer act to break up the oxide layers, resulting in the observed
high visibility of the chips.

3.2. Results of Tensile Tests

The results of the tensile tests, summarized in Table 3, clearly show differences between cast-
and chip-based specimens. While the tensile tests performed on cast-based specimens show a lower
scattering, the chip-based specimens differ more in the results with regard to ultimate tensile strength
and yield strength. The cast-based specimens have both a higher ultimate tensile strength and a higher
elongation at break than the chip-based specimens. On the other hand, the cast-based specimens
show lower values for the yield strength than the chip-based specimens. The lower ultimate tensile
strength of the chip-based specimens can be explained by the insufficient quality of the weld seams.
In ddition to the reduction of the strength caused by the weld seams, the defects in the specimens in
the form of delaminations also reduce the strength due to their notch effect. In general, there are clear
differences between the defect sizes in the chip-based specimens which explain the higher scattering of
the quasistatic properties.

Table 3. Material characteristics obtained from tensile tests.

Characteristic Value Cast-Based Chip-Based

0.2%-yield strength σy,0.2 (MPa) 45.9 ± 0.5 54.1 ± 5.4
Ultimate tensile strength σUTS (MPa) 140.5 ± 1.7 133.3 ± 5.8

Elongation at break εf (%) 26.6 ± 2.9 18.2 ± 0.6

The higher 0.2%-yield strength can be explained by the hardening characteristic of the material.
Many investigations indicate a pronounced cyclic hardening of AW6060 [30,31]. Thus, when extruding
the cast-based material already at the beginning of the extrusion process a material cohesion is given
so that no additional deformations of the material are required. Regarding the chip-based material,
on the other hand, material cohesion has to be created by local forming of the chips. In this way,
the chip-based material has already experienced a significantly higher deformation and thus strain
hardening compared to the cast-based material after the extrusion.

In order to investigate the damage mechanisms in case of tensile load, CT analyses of the specimens
tested in tensile test were performed. The parameters of the tensile tests were chosen based on the
force drop in such a way that the specimens do not fail completely during the test.

The volume reconstruction of a cast-based specimen tested in the tensile test (Figure 5) shows a
significant constriction of the specimen just before the fracture. The diameter of the specimen has been
reduced in this range from initially d = 7 mm to a value of d = 2.5 mm.

The volume reconstruction of a chip-based specimen (Figure 6) also shows a significant constriction.
The diameter is reduced to a value of d = 2.7 mm. Furthermore, cracks are already visible. These
propagate between individual chips and effect a separation of the material in the plane of the smallest
cross-section. The cracks are rather short and located in the lower left area of the cross-section.
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3.3. Results of Fatigue Tests

Figure 7 shows the results of the load increase test (LIT) for the cast-based specimen as well as the
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Based on the material response caused by the continuously increasing stress amplitude, the fatigue
strength, as stated in [24], can be well estimated. For this purpose, the analysis of the change in
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AC potential fits best, as it is the most comprehensive measurement technique. The AC potential is
influenced by the temperature, the geometry of the specimen (e.g., changed because of cyclic creep),
and especially the microstructure and therefore takes fatigue relevant mechanisms like dislocation
accumulation and crack propagation into account [24]. As a result, the course of AC potential
follows the courses of the temperature as well as the plastic strain amplitude and additionally takes
microstructural changes into account, which cannot be indicated by the temperature or the plastic
strain amplitude.

For the cast-based specimen two different regions of linear increase, after a short phase of initial
rise of the AC potential, can be distinguished, whereby the slope changes at a stress amplitude
of σa = 93 MPa. Based on the material response, the fatigue strength can be estimated at about
σa,e = 93 MPa. It can be assumed that, above σa,e, damage-relevant processes occur in the material,
which effect the changes in the material response. The results fit well to the S-N-curve (Figure 10b),
where a run out occurred in a constant amplitude test (CAT) at a stress amplitude of σa = 90 MPa.

For the chip-based specimen an initial decrease of ∆UAC can be observed until σa = 35 MPa is
reached due to a compaction of the weld seams presumably. In the stress amplitude region between
σa = 35 and 63 MPa, the change in AC potential shows a plateau phase, followed by an exponential
increase. Analogously to the cast-based specimen the fatigue strength can be estimated at the end of the
first linear region at a stress amplitude of about σa,e = 63 MPa. At a stress amplitude of σa = 115 MPa,
a change in the slope can be observed in the course of the plastic strain amplitude as well as in the
change of the AC potential. This is due to the initiation of a second main crack on the opposite side of
the first crack, which can be observed by intermittent fatigue tests for most of the chip-based specimens
(Figure 9). The yield strength fits well to the stress amplitude of the first increases of the plastic strain
amplitude (Table 2). The drastic increase of all measurands for the cast-based and the chip-based
specimen at the end of the tests indicates the final crack propagation stage.

Based on the results of the LIT, suitable stress amplitudes for constant amplitude tests for the
chip-based material were chosen. As the fatigue strength was estimated to be about 63 MPa, for reaching
the high cycle fatigue (HCF)-region a stress amplitude of σa = 80 MPa was chosen. For reaching the
low cycle fatigue (LCF)-region, a stress amplitude near the stress amplitude at break for the LIT was
chosen (σa = 120 MPa).

In the constant amplitude test with a stress amplitude of σa = 120 MPa, a significant cyclic
hardening phenomenon, accompanied by a drop in the plastic strain amplitude as well as in the
temperature can be recognized for the cast-based specimen (Figure 8) after an initial strong softening
in the first ten cycles. In the beginning, the drop in the plastic strain amplitude runs exponentially and
after about N = 5000, becomes linear. The total mean strain increases very rapidly in the first N = 50
load cycles due to a different cyclic hardening behavior in tension and compression direction.
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With a number of cycles of about N = 32,000, the material starts cyclic softening, becoming
exponentially until break. At the same time, an increase in the temperature is observed. The change in
AC potential increases abruptly at the beginning of the test by about ∆UAC = 0.015 V. Subsequently,
this rises to a number of cycles of about N = 40,000 initially linear and then exponentially up to the
number of cycles to failure Nf = 47,487.

The constant amplitude test of the chip-based specimen tested at the identical stress amplitude of
σa = 120 MPa (Figure 8) shows a comparable qualitative course for the three measured measurement
techniques considered. The failure occurred at a number of cycles of Nf = 24,180. At the beginning of
the test, a strong cyclic hardening occurs up to a number of cycles of about N = 7000 detectable by a
decrease of the plastic strain amplitude. Associated with this, there is a slight drop in the temperature
within the first 1500 load cycles. The change in AC potential shows an even shorter reaction to the
cyclic hardening with decreasing decay within the first 100 load cycles.

Subsequent to the descending course of the measured quantities, a cyclic softening of the material
occurs, which is accompanied by a linear increase of all the measured quantities considered, until these
change into an exponential rise until the break. The temperature measurement reacts at the earliest
(from about N = 20,000) with a transition to the exponential increase, while the change in AC potential
increases exponentially at the latest (from about N = 24,000).

The total mean strain clearly increases in the first N = 50 load cycles to a value of σm,t = 0.32%.
After a phase of approximately constant course, this starts to increase linearly from a number of cycles
of about N = 8000 linearly to a value of about σm,t = 0.37% until transition into an exponential increase
at a number of cycles of about N = 22,000.

An intermittent CAT was performed at a stress amplitude of σa = 110 MPa on a chip-based
specimen. CT investigations of the crack progress were performed after a certain number of load cycles.
The volume reconstructions (top view) and the corresponding cross-sectional images are shown in
Figure 9. In the initial state, a tubular defect due to a delamination between the chips is evident. This is
because of insufficient break-up of the oxide layers due to low local strain in the innermost regions
of the profile. Thereby, in micrographs chip boundaries are visible (Figure 4). The tubular defect is
located in the clamping areas and in the conically extending transition area toward the gage length
area. Because of the geometry of the specimen, the gage length area is located within this tubular
defect, so that the test area is defect-free except of small, isolated delaminations between the chips.
After N = 5000 load cycles, crack initiation and propagation can be recognized in the upper region of
the specimen. Crack initiation site is the area where the tubular defect cuts the surface because of the
conical shape of the specimen. After N = 11,000 load cycles, the described crack grows to a projected
length of about 1.5 mm in the cross-section. Further crack initiation can already be recognized on the
opposite side. With an applied number of cycles of N = 17,000 this second crack grows to a projected
length of about 6 mm. In turn, the tubular defect acts as the initiation site. After N = 19,500 load cycles
both cracks merge into a crack parallel to the loading direction along the chip boundaries.

The course of the change in AC potential (constant amplitude test, Figure 8) correlates well to
the results of the crack propagation behavior in the intermittent fatigue test (Figure 9). From the
point of discontinuity and the subsequent change of the slope, it is believed that the second crack
of the chip-based specimen occurs on the opposite side of the first crack, which leads to an overlap
of the crack growth rates and therefore to an increase in the slope. As can be ascertained in the
intermittent experiments, crack propagation occurs already after N = 5000 load cycles. Accordingly,
crack propagation already occurs at the beginning of the test, since the crack initiation phase occurring
in the cast-based specimen is eliminated.

The occurring damage is correspondingly expressed in the progressive course of the change in
AC potential. However, crack propagation along the grain boundaries can also be recognized for
the cast-based specimens on the basis of the fractographic images (Figure 11), although the grain
boundaries do not act as crack initiation sites.
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In order to compare the change in AC potential, the curves of the cast- and chip-based specimens
in CAT at σa = 120 MPa are shown in Figure 10a. For better comparability, both axes are normalized.
While the cast-based specimen shows a constant course over a longer period of time, for the chip-based
specimen a linear increase from the beginning can be recognized. The slope of this linear curve
increases from about 0.3 Nf. This can be explained with the initiation of the second crack so that both
crack propagation rates summarize. The increase of UAC cannot be explained by the temperature
change (Figure 8), since the temperature change is not significant and also does not show a second
linear increase with a change of the slope. Analogously, the increase can also not be explained by the
total mean strain (Figure 8). Thus it can be clearly seen that an increase of the total mean strain by
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∆σm,t = 0.32% causes a change in UAC of only ∆UAC = 0.01 V. Accordingly, the subsequent increasing
total mean strain by ∆σm,t = 0.05% cannot explain the subsequent large change of the AC potential of
∆UAC = 0.04 V until the beginning of the exponential increase. Since the two influencing variables of
the geometry change and the temperature change can be excluded in this way, the only reason for the
change in AC potential is the microstructure, especially crack propagation.
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On the other hand, it remains unclear why the change in AC potential over a long period of time
is linear, since, according to the Paris law [32], an increasing crack rate and thus a progressive increase
should be expected. One possible explanation is given by the fiber bridging model [33]. The basis is a
barrier effect of individual chip boundaries. These can act as barriers to crack propagation, so that
crack propagation is prevented due to the chip boundaries. An identical phenomenon of the linear
increase for fiber-based material was found in [33]. Therefore, crack propagation cannot be described
using the Paris law.

Fatigue progression begins very early, as crack propagation in the intermittent fatigue test (Figure 9)
shows, allowing crack growth after only N = 5000 load cycles. As already described, because of the
seam welds present in the chip-based specimens, a crack initiation phase is eliminated, so that it
comes directly to the crack propagation phase. In this case, the crack is apparently deflected along the
individual chips. After a certain number of cycles, a second crack occurs on the opposite side due to
the increase of the stress by the reduced residual area.

Based on the S-N curve (Figure 10), clear stress-dependent differences in the lifetimes of both
types of specimens can be recognized. The chip-based specimens show significantly reduced lifetimes
compared to the cast-based specimens. While the difference in the HCF-region is about a decade, the
differences in the LCF-region are significantly lower. The outlier at σa = 110 MPa for the cast-based
specimens is a result of porosity, which can be clarified by means of computed tomography. Overall,
the scattering in the cast-based specimens is low. However, lifetime scattering for the chip-based
specimens can be correlated with the observed variations in defect sizes.

3.4. Results of Fractography

The SEM-images of the cast-based specimens failed in the fatigue test (σa = 120 MPa) (Figure 11)
show two characteristic areas of fatigue fracture and overload fracture which is typical for cyclically
tested specimens [34,35]. The fatigue fracture area has a smooth surface covered by striations
(Figure 11b). The striations increase in size toward the area of overload fracture. The fatigue crack
seems to propagate along the individual grains and thus inter-crystalline. Distinct cracks can be seen
between the individual grains, while the surfaces of the grains partly show striations (Figure 11c).
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The overload fracture shows a strong ductile deformation. Overall, the fracture mechanism resembles
the cup-cone fracture mechanism described in the literature for tensile testing [35]. Preferred crack
locations or crack initiation sites cannot be identified.
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Figure 11. Scanning electron micrographs of a cast-based specimen tested in a constant amplitude test
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Figure 12 shows the SEM-images of a chip-based specimen (σa = 120 MPa). Compared to
the cast-based specimen (Figure 11) a completely different failure mechanism can be recognized.
Analogously to the cast-based specimen, two areas of different shape are apparent. There is the
overload area with local separation of the individual chips (Figure 12a). This is particularly pronounced
in the central regions of the material, while the outer edge regions appear crack-free in large parts.
Visible in this context is the significantly reduced chip width in the peripheral areas.
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In the fatigue fracture area, the chips seem hardly detached compared to the overload fracture
area. Similar to the cast-based specimen (Figure 11), individual cracks propagate along the grain
boundaries. Considering the individual chips with higher magnification in the first area (Figure 12c),
local areas with a ductile honeycomb fracture can be recognized on almost all chip surfaces.

4. Conclusions and Outlook

Within the scope of this work, investigations were carried out with the aim of the mechanical
characterization of directly recycled, hot extruded chip-based profiles. The following may be concluded:

(1) The microstructure of chip-based profiles is characterized by three different areas, which originate
due to different recrystallization zones.

(2) While micrographs of chip-based profile did not show a delamination between the single chips,
it was found that there is a critical diameter where the combination of the necessary properties of
high strain and pressure is considered too low to lead to a sufficient welding, which leads to crack
initiation, as shown by intermittent test strategy. Therefore, the initiation of the two separate
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cracks was observed. Because of the insufficient welding of the chips, the cracks propagate
between the chip boundaries.

(3) The weld seams occurring between the chips have a significant influence on the mechanical
properties of the resulting profiles. While the quasistatic properties are only slightly reduced by
about 5%, the insufficient welded chips in the innermost area of the profile lead to a reduction of
the load dependent fatigue life up to one decade.

(4) The load increase test procedure is well suited in order to estimate the fatigue strength with only
one specimen.

(5) As the weld seams act as crack initiators, crack propagation phase begins very early for
chip-based specimens.

In further studies, concepts of the finite element method will be used to verify by simulation,
to what extent the assumption of stress concentration on the opposite side of the first crack is
justified. Additionally, the fiber-bridging model will be applied in order to simulate the effects of
the chip boundaries on the crack propagation behavior. The findings will then be used to develop a
comprehensive material model for chip-based extrusion profiles.
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