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ABSTRACT

The method that is proposed in this thesis makes document images
searchable with minimum manual effort. This works in the query-by-
example scenario where the user selects an exemplary occurrence of
the query word in a document image. Afterwards, an entire collection
of document images is searched automatically. The major challenge
is to detect relevant words and to sort them according to similarity to
the query. However, recognizing text in historic document images can
be considered as extremely challenging. Different historic document
collections have highly irregular visual appearances due to non-stan-
dardized layouts or the large variabilities in handwritten script. An
automatic text recognizer requires huge amounts of annotated sam-
ples from the collection that are usually not directly available.

In order to search document images with just a single example of
the query word, the information that is available about the problem
domain is integrated at various levels. Bag-of-features are a powerful
image representation that can be adapted to the data automatically.
The query word is represented with a hidden Markov model. This
statistical sequence model is very suitable for the sequential structure
of text. An important assumption is that the visual variability of the
text within a single collection is limited. For example, this is typically
the case if the documents have been written by only a few writers.
Furthermore, the proposed method requires only minimal heuristic
assumptions about the visual appearance of text. This is achieved by
processing document images as a whole without requiring a given
segmentation of the images on word level or on line level. The detec-
tion of potentially relevant document regions is based on similarity
to the query. It is not required to recognize words in general. Word
size variabilities can be handled by the hidden Markov model. In or-
der to make the computationally costly application of the sequence
model feasible in practice, regions are retrieved according to approxi-
mate similarity with an efficient model decoding algorithm. Since the
approximate approach retrieves regions with high recall, re-ranking
these regions with the sequence model leads to highly accurate word
spotting results. In addition, the method can be extended to textual
queries, i.e., query-by-string, if annotated samples become available.

The method is evaluated on five benchmark datasets. In the seg-
mentation-free query-by-example scenario where no annotated sam-
ple set is available, the method outperforms all other methods that
have been evaluated on any of these five benchmarks. If only a small
dataset of annotated samples is available, the performance in the
query-by-string scenario is competitive with the state-of-the-art.
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Xtk
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Or
O[I]

Tlq

Xii

Set of non-negative integers.

Set of rational numbers.

Set of real numbers.

A set.

Cardinality of the set O.

Scalar value.

Quantitative value.

Value in image pixels (Fraktur symbol).

Value in image pixels referring to width.

Value in image pixels referring to height.

Value in image pixels referring to horizontal direction.
Value in image pixels referring to vertical direction.
Value that is specific to a qualifier (Fraktur subscript).
Value that is specific to a qualifier (text subscript).
Matrix with element at row-index n and column-index t.
Transpose of a matrix such that [u, " = [u.,].
Column vector.

Transpose of vector x, i.e., a row vector.

Element at index k of vector x.

Vector at index t.

Element at index k of vector x,.

Sequence, e.g., of vectors: (x,,...,X1).

Sequence at row-index 1 and column-index .
Subsequence at index (1, 1), conditioned on qualifier q.
Vector at row-index | and column-index t.

Element at index k of vector x.".

Factorial of x, i.e., x! = [[{_; 1, if x € N~ anc11 or=1.
p-norm of vector x, i.e., [|x||, = <ZE:_01 IXKIP) ’ x €RP.
Integer part of x such that x —1 < [x] < x,x € R.

A function.

Probability mass function or probability density function.
Discrete random variable.

Set of elementary events for the random variable M.



INTRODUCTION

Searching document collections for occurrences of query words au-
tomatically is important for the analysis and interpretation of their
contents. It is a widely used standard-functionality for digital docu-
ments containing machine-readable text. Unfortunately, this function-
ality is not directly available for document images. In order to be pro-
cessed with automatic search queries in the same way, it would be re-
quired to transcribe the document images into machine-readable tex-
tual representations first. This can be difficult for non-standardized
documents and is, therefore, costly and error-prone in these cases.
Different non-standardized document collections are highly variable
in their visual appearance and cannot be automatically transcribed
with off-the-shelf optical character recognition software. Setting up
a full transcription recognizer requires huge amounts of annotated
sample data that is representative for the application domain. Such
an annotated sample set typically consists of machine-readable tran-
scriptions of document images on line level. For non-standardized
documents this is not directly available. Obtaining such a sample set
partly solves the original problem which diminishes the benefit of
applying full transcription recognizers.

Word spotting methods allow for searching document images with-
out requiring a full transcription. Especially for handwritten and his-
toric documents this is most relevant. Their otherwise manual explo-
ration is a laborious and time consuming effort. In contrast to search-
ing in machine-readable textual representations for occurrences of
query words, word spotting searches document images based on vi-
sual appearance. This makes word spotting a specialized image re-
trieval technique with a number of desirable properties:

e Word spotting is very flexible with respect to its applicability
in practice. It makes the most out of its given scenario, even if
just the document images without any additional annotations
are available. One focus of this thesis are segmentation-free ap-
proaches that process entire document images without requir-
ing a given segmentation on word or line level.

* Word spotting is robust with respect to retrieval errors. Search
results are typically presented to the user in a list ranked ac-
cording to similarity to the query. As long as the relevant re-
sults are among the top results they are still useful to the user.
The method presented in this thesis achieves highly accurate re-
trieval results. In the scenario where no annotated sample set is
available, state-of-the-art methods are largely outperformed.
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¢ Word spotting is fast. This is achieved by computing index rep-
resentations for document images. Through the index, the com-
putational effort can be reduced at query time. In this thesis, a
two-stage method is proposed. Potentially relevant document
image regions are detected fast and analyzed in more detail af-
terwards.

* Words can be queried in different input modalities depending
on the requirements of the users. Each modality has its ad-
vantages and disadvantages. In this thesis, word image queries
and textual queries are considered. These are the most relevant
query modalities in practice.

This is achieved by using bag-of-features with hidden Markov models
in an integrated word spotting framework. The bag-of-features (BoF) is
an image representation that can automatically be adapted to the vi-
sual characteristics of an image dataset [OD11]. This makes BoF very
suitable for historic document collections that have very diverse vi-
sual appearances. The hidden Markov model (HMM) is a statistical se-
quence model, which allows for modelling the length variabilities that
are typically found in handwritten texts [PFog]. It is used for repre-
senting the query. In order to search documents, it is not required to
split the document images in word segments or in line segments first.
Therefore, the method is classified as segmentation-free. Along with
these aspects that are important for the applicability in practice, dif-
ferent possibilities for integrating BoF in the statistical HMM process
will be discussed in this thesis.

The rest of this chapter is structured as follows. Section 1.1 moti-
vates word spotting and its common applications. Word spotting is
presented in the context of document analysis showing how it is able
to bridge the gap between manual document image exploration and
manual or automatic analysis based on full document image tran-
scriptions. The architecture of a typical word spotting system and its
most common variants are introduced in Section 1.2. In this regard,
Section 1.3 puts this thesis in context with word spotting approaches
in general and highlights its specific contributions to the field. The
introduction concludes with an outline of the structure of the thesis
in Section 1.4.

1.1 MOTIVATION

Word spotting is part of the document analysis research area. A ma-
jor objective in document analysis is to support work on document
images with methods for automatic information extraction. In this re-
gard, many methods deal with text. Given a document image, an
ideal result would be a full text transcription along with annota-
tions of the exact occurrences of characters and words. For standard-
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ized documents considerable progress towards this objective has been
made in recent years. Optical character recognition software achieves
high recognition rates for high quality printed documents [Smio7].
This is mainly due to the limited variability in the visual appear-
ance of modern fonts, high quality output of modern printers and
scanners and standardized document layouts. However, as soon as
the variability increases, results deteriorate. This is especially prob-
lematic for handwritten and historic documents, cf. [LRF+12]. The
visual appearance of handwritten script is extremely writer depen-
dent. Historic documents contain degradations that are due to aging,
storage or low quality of ink and paper. The practical consequence is
that, compared to the possibilities available for modern documents,
the possibilities for automatically analyzing handwritten and historic
documents are rather limited. For this reason, the continuously grow-
ing digital archives of historic document images are not as accessi-
ble as modern documents. Considering that these digital document
archives are becoming widely available through the Internet, cf. e.g.,
[Balos], this aspect becomes even more important.

The work of these digital libraries is extremely relevant. They pre-
serve mankind’s cultural heritage and make it available to the public.
History repeats itself and one can only learn for the future when
being aware of what happened in the past. Through digital archives
history becomes vivid and is likely to reach a much broader audience
besides the expert community. An example is the Library of Congress
in Washington, DC, USA. Various historic document collections are
directly accessible online’.

Towards supporting historic document image exploration with au-
tomatic methods, word spotting plays a crucial role. In order to rec-
ognize or retrieve text, annotated sample data is required in any case.
This is generally a problem, as annotated sample data is hard to ob-
tain. It usually has to be created manually. Methods requiring large
amounts of annotated data, like full transcription recognizers, have
another disadvantage in this regard. Historic document collections
are very particular in their visual appearance. Unlike for modern doc-
uments, an annotated sample set for one document collection might
not be usable for creating a recognizer for another historic document
collection. The manual annotation has to be started over and over
again. If a lot of effort has to be put in the manual transcription be-
fore methods for automatic processing become available, it might be
more efficient to directly organize the manual transcription of the
entire document collection [CT14].

Word spotting offers a compromise where the requirements with
respect to annotated samples are very flexible. The possibilities go
from word spotting systems working with synthesized annotated
samples, thus, avoiding any manual labeling effort, over systems that

1 https://www.loc.gov/collections/, accessed on July 13, 2019.
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just require a single annotated sample of the query word to models
that have to be estimated with large volumes of annotated word im-
ages. If word spotting is based on a single annotated example of the
query word, document images with similar visual appearance can be
searched. If more annotated samples are available, these can be used
for improving retrieval performance. However, this assumes that the
annotated samples are representative for the text in the document im-
ages. This is a challenge for synthesizing sample data, in particular.

Besides these prerequisites, the input and output of a word spotting
system offer advantages to users. While searching in a transcript lim-
its the input to textual queries, word spotting allows for a full band-
width of modalities, including text, word images, speech [RAT+15b]
or handwriting [WRF16; SRF17]. The latter can, for example, be use-
ful for documents written in non-standard scripts, cf. [BHM16].

In a similar manner, the output of a word spotting system offers a
lot more flexibility in contrast to the explicit transcription provided
by a recognizer. By acknowledging that an automatic system will typ-
ically not be able to produce perfect results, the user can interactively
be integrated in the document analysis process [RL14]. This makes
word spotting robust with respect to retrieval performance. While
errors in full transcriptions diminish the value of the overall result
considerably, errors in retrieval systems mainly affect the ranking of
the retrieval list. As long as the relevant results are among the top re-
sults, the user decides what is correct. In case of historic documents
there is a further aspect that has to be taken into account. Different
historians might interpret the same passage in a document very dif-
ferently. This also means that there might not be a single “perfect”
transcription. Word spotting leaves the interpretation to the experts
and helps with finding document regions that are potentially relevant
to the query. Therefore, the capabilities and limitations of word spot-
ting methods are transparent. This increases the acceptance of the
experts. It has to be noted that in the age of the Internet users are
generally very familiar with the benefits of retrieval search engines.

Finally, word spotting can also be seen as a useful tool for obtaining
a full transcription recognizer. Due to the advantages discussed above,
a word spotting system can be applied on the document images even
at a stage where no annotations are available at all. By collecting
the retrieval results, an annotated sample set can be built. With this
growing sample set the word spotting system can be refined until a
sufficient number of high quality annotations is available. This can be
the basis for estimating a full transcription recognizer, thus, allowing
for a smooth transition from searching to transcribing.
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Figure 1: Word spotting system overview. On the left two different modali-
ties for the same query word place are shown. The search result
is shown on the right. The only relevant region in the document
image section shown in this example has been highlighted with
an orange frame. In the ranked retrieval list it appears first. It is
followed by document image regions in descending order of simi-
larity to the query. Document images, that are shown in this figure
and in the following figures, originate from the George Washington
papers [Was54], unless noted otherwise.

1.2 WORD SPOTTING

The input of a word spotting system consists of document images
and a query. The output is a list of document image regions that is
typically ranked according to similarity to the query. Figure 1 shows
the overall process with two query modalities. In the query-by-example
scenario, the query is given as an exemplary occurrence of the query
word. This means that the user has to locate and select an instance of
the query. In the query-by-string scenario, the user can enter a textual
query on a keyboard. Figure 1 shows a result where the only relevant
region in the document image section is highlighted and appears in
the ranked retrieval list first.

Consequently, the basic structure of a word spotting system fol-
lows the structure of an information retrieval system. Initially, a data-
base of document images is given. For making the document images
searchable, image regions are represented in terms of features. In this
regard, features are numerical representations that contain informa-
tion which is relevant for word image retrieval. Whether the query is
given by-example or by-string, a query model is obtained that can be
evaluated with the image representations from the document image
database. For query-by-example, it can be sufficient to model visual
appearance on word level. Modelling visual appearances of charac-
ters is an approach for the query-by-string scenario. Scores that repre-
sent similarities between the query and the document image regions
are used for generating the ranked retrieval list.

For detecting relevant document image regions, it is helpful if words
can be identified in the document prior to retrieval. This is usually
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the case for printed modern documents. Texts printed in standard-
ized fonts can heuristically be segmented into words in many cases.
For example, based on the assumption that gaps between words are
larger than gaps between characters within words. However, particu-
larly for handwritten and historic documents this often fails. In these
cases, the visual variability of text can be substantial even for a single
writer. If the entire retrieval pipeline is built on segmented regions,
segmentation errors will also lead to errors in the retrieval result.

Segmentation-free methods approach this challenge in an integrated
manner. Potentially relevant document image regions are obtained
within the word spotting process, depending on similarity to the query.
Thus, the regions should cover the relevant occurrences of the query
in the document images, but they do not have to correspond to word
segments in general. In contrast, segmentation-based methods assume
a given segmentation of the document into words. Document image
regions are usually defined as rectangular bounding boxes.

The development of segmentation-free word spotting methods has
mainly been influenced by techniques that have been successful for
handwriting recognition and computer vision. With respect to doc-
ument image representations, methods from computer vision have
a strong influence. In order to cope with the great variability found
in natural scene images, feature representations that are automatically
adaptable to the problem domain have been very successful. For this
purpose, sample data from the problem domain is required. Further-
more, it is important whether the data is also annotated with respect
to the classes that the samples are associated with. A powerful image
representation that does not require annotations is the bag-of-features
(BoF) [OD11]. In computer vision, it has been successfully applied to
object [CDF+o04] and scene categorization [FPos] as well as large scale
image retrieval [SZo3]. The last scenario is particularly related since
efficient retrieval is approached by indexing BoF representations. For
these reasons, BoF is also suitable for word spotting in historic doc-
ument images. In this scenario, large archives have to be searched,
characteristics of different document collections are very diverse and
hardly any annotated samples are available [SJ12; RRL+14; RAT+15a].
If large amounts of annotations are available, convolutional neural net-
works (CNNs) strongly improve recognition and retrieval performance,
e.g., for object recognition [CSV+14] and word spotting [SF16].

In the field of handwriting recognition, statistical sequence models,
like hidden Markov models (HMMs) [PFog; KDN13] or recurrent neu-
ral networks [FU15], are the predominant methods. They are well
suited for modeling the sequential structure of text. Furthermore, they
can handle the great variability in human writing. By representing
a line image as a sequence of feature vectors, each element of the se-
quence can be associated with different classes, e.g., characters. In this
way, recognition and segmentation of the text line are solved jointly.
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This has also been successfully applied for spotting words within
text lines [FKF+12; FFM+12]. Furthermore, HMMs offer great flexibil-
ity with respect to the amount of annotated sample data which is re-
quired for model estimation. In the semi-continuous HMM framework,
features are modeled with a single probabilistic mixture model which
is shared among all HMM states. In this way, the mixture model can
be estimated without annotated data, i.e., in an unsupervised manner.
HMM state-dependent parameters can be estimated from few anno-
tated samples [PFo5]. A single annotated sample can be sufficient in
order to estimate a query word HMM for word spotting [RPogb].

1.3 CONTRIBUTIONS

The main contributions of this thesis are an integration of BoF rep-
resentations and HMMs as well as their efficient application to seg-
mentation-free query-by-example and query-by-string word spotting.
A first approach in this direction was made in the Diploma thesis
[Rot11] where an integration of BoF sequences and HMMs was intro-
duced for handwriting recognition. The most important results from
[Rot11] have been published in [RVF12]. Building on this work, the
application of BoF-HMMs to a different challenging application domain
and an extensive study of BoF output models for HMMs are presented
here. The methods are evaluated on established word spotting bench-
marks. Figure 2 shows a schematic visualization of the word spotting
system and highlights the different contributions.

The methods presented in this thesis have partially been published
at scientific conferences of the document analysis community. In the
following, the contributions are discussed in the context of these pub-
lications. The research has been carried out in the pattern recognition
group at TU Dortmund University under the supervision of Prof. Dr.-
Ing. Gernot A. Fink. In the early stages, the application of BoF-HMMs
in a patch-based word spotting framework has been supported by Dr.
Marcal Rusifnol. Based on the HMM toolkit ESMERALDA [FPo8] and
the computer vision toolkit VLFeat [VFo8], the author of this thesis
implemented the word spotting method in Python and C++ and per-
formed all the word spotting experiments unless noted otherwise. In
addition to these basic contributions, important methodological con-
tributions will be outlined along with the corresponding publications.

BoF-HMMs have been presented for segmentation-free query-by-ex-
ample word spotting for the first time in [RRF13]. Incorporating ideas
from [RVF12] and [RAT+11], BoF-HMMs have been used for modeling
query word images. The visual similarity of the query with docu-
ment image regions has been evaluated in a patch-based framework.
Highly accurate word spotting results could be achieved. Only a sin-
gle exemplary word image of the query was available for model es-
timation. Despite the high computational complexity of HMM decod-
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Figure 2: Schematic visualization of the word spotting system presented
in this thesis. Input and output nodes are shown in gray with
rounded corners. Following the arrows from the input nodes, the
output node can be reached. The main contributions are indicated
with different colors. Brown refers to HMM modeling. Green refers
to text and line hypotheses generation. Orange refers to the out-
put model integration of HMMs and BoF sequences obtained from
line hypotheses. This association between the green line hypothe-
ses node and the orange output modeling node is indicated by a
dotted line. Blue refers to contributions that are specific to segmen-
tation-free decoding in the two-stage patch-based framework.

ing, their applicability in a patch-based segmentation-free framework
was shown. In Figure 2, this is denoted as a query-by-example sce-
nario that makes use of BoF-HMMs and ends in a fine analysis of the
document image. Important contributions in [RRF13] are the dynamic
adaptation of the patch sampling rate as well as the incorporation of
BoF vectors at the left-side context and the right-side context of the
query word image.

Query-by-example word spotting with BoF-HMMs has successfully
been applied to document collections with very different characteris-
tics, such as printed Bengal documents [RFB+13], historic postcards
written in German Kurrent [FRG14] and rendered images of 3D cu-
neiform tablets [RFM+15]. The rendered cuneiform images were pro-
vided by the co-author Denis Fisseler. The author of this thesis con-
tributed to the definition of the word spotting benchmarks in all three
publications.

In order to improve the applicability of the word spotting method
in large scale scenarios, a two-stage extension has been proposed
in [RRL+14]. For rapidly searching high volumes of document im-
ages, it is important to build index structures allowing for retrieving
potentially relevant document image regions instantly. In the patch-
based framework, HMM scores need to be computed for each patch
independently such that the application of indexing strategies is not
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straight forward. In [RRL+14], a method for indexing document im-
age regions based on their BoF representations along with a voting ap-
proach for ranking these regions according to similarity to the query
has been presented for segmentation-free word spotting. In combina-
tion with BoF-HMMs, potentially relevant document image regions can
be retrieved fast and then refined with the more accurate statistical
sequence model. Since both stages operate on the same features, im-
age regions that have been discarded in the first stage are unlikely
to obtain good similarity scores in the second stage. In Figure 2, the
first stage is denoted as coarse analysis. The arrow to fine analysis in-
dicates that both analysis stages are intended to be used jointly. The
most important contributions in [RRL+14] are the voting algorithm
in the coarse analysis stage and the integration of both stages in the
same patch-based decoding framework, which have been developed
under the guidance of Dr. Margal Rusifiol and Prof. Dr. Josep Lladés.

If annotated sample data is available, this allows for supporting
query-by-string. HMM character models can be estimated and com-
bined dynamically for creating query models. In [RF15], the first
patch-based method for segmentation-free query-by-string word spot-
ting was proposed. The analysis patch size has been generated from
character size estimates. In addition to achieving competitive retrieval
results, the robustness of the method was demonstrated with respect
to limiting the amount of annotated sample data. Figure 2 shows
that the two-stage segmentation-free framework is independent of
the query modality. In both cases, BoF-HMM query models can be used.
The most important contribution in [RF15] is the use of a large inven-
tory of context-dependent character models with limited annotated
training material.

In [RF16], different approaches for modeling BoF in the statistical
HMM process have been discussed in the context of text categoriza-
tion, handwriting recognition and word spotting. In this regard, two
methods for integrating BoF and HMMs were evaluated. The pseudo-
discrete approach, presented in [RVF12], has been compared with
a mixture model from probabilistic text clustering [Elko6]. A distin-
guishing property of the two models is their capability of represent-
ing BoF representations. In contrast to the pseudo-discrete model, the
mixture model from probabilistic text clustering is very suitable for
the characteristics of the BoF representations in the given scenario.
This was demonstrated in the evaluation of [RF16]. Although the
pseudo-discrete model suffers from the possibility of degenerated
cases, it showed very good generalization capabilities for word spot-
ting. In Figure 2, the output model is shown as the element bridging
the HMMs and the sequences of BoF representations. Important contri-
butions in [RF16] are the analysis of degenerated cases of the pseudo-
discrete model and the selection of the probabilistic mixture model
from [Elko6] for the application in the given scenario.

9
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Furthermore, considerable advancements of these methods are pre-
sented in this thesis. This is possible through the incorporation of
text hypotheses. Text hypotheses are obtained with a method that
has been presented for word hypothesis generation in [RSR+17]. In-
spired by maximally stable extremal regions [MCU+o04], the author of
this thesis proposed a method for hypothesis generation based on
text detector scores and word detector scores. The co-authors Sebas-
tian Sudholt and Eugen Rusakov contributed CNNs for computing
word detection scores. Sebastian Sudholt also contributed the CNNs
for representing word hypotheses with pyramidal histogram of charac-
ters (PHOC) attributes, i.e., the PHOCNET. While the author of this the-
sis largely contributed to the design of the segmentation-free word
spotting systemm, the system implementation and execution of experi-
ments has been carried out by co-author Matthias Kasperidus.

Using text hypotheses, a generalization of the indexing strategy to
features that are modeled with semi-continuous (SC) HMMs is proposed
in this thesis. For this purpose, line hypotheses are derived from text
hypotheses. For all line hypotheses, BoF sequences are extracted and
mixture component probabilities are stored in a look-up table. For coarse
analysis, potentially relevant document regions are obtained by in-
verting this index. Their similarity to the query is computed with a
probabilistic voting scheme. For fine analysis, an extended patch-de-
coding strategy is proposed that allows for localizing words highly ac-
curately. The extended strategy includes alignments of patches with a
background model, whitespace models and the query model. The ex-
tended patch-decoding strategy allows for improving word spotting
performance considerably. Furthermore, the patch coordinates can be
snapped to text hypothesis coordinates in their local neighborhood.

All of these contributions are evaluated in an integrated framework.
The possibilities for supporting historic document exploration are
demonstrated. In comparison to segmentation-free query-by-example
word spotting methods that do not require annotated samples besides
the query word image, state-of-the-art results are outperformed by a
large margin on five datasets of historic document images. Regarding
the applicability in practice, the most important contribution is that
only a single meta parameter requires an adjustment for applying
the proposed method to a new document collection. This parameter
can be estimated from the document images automatically. Therefore,
the method is perfectly suited for historic document collections that
are still unexplored or where transcriptions and annotations are not
available in machine-readable form.

1.4 STRUCTURE

The thesis is structured as follows. Chapter 2 presents the pattern
recognition methods which are the foundation for segmentation-free
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word spotting with BoF-HMMs. Chapter 3 discusses related word spot-
ting methods, focussing on the recent state-of-the-art as well as the
techniques that have been influential for the development of the meth-
ods presented in this thesis. The proposed word spotting method is
presented in Chapter 4. The contributions that are highlighted in Sec-
tion 1.3 are explained in detail and discussed in a comprehensive eval-
uation in Chapter 5. The proposed method is differentiated from the
state-of-the-art, showing limitations and advantages. A conclusion is
drawn in Chapter 6.

Supplemental material is provided in three appendices. Appendix A
adds experimental evaluations of BoF output models. Formal deriva-
tions for the BoF output model that has been proposed in [Elko6] are
presented in Appendix B. Finally, a comprehensive categorization of
word spotting methods can be found in Appendix C.

11
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Word spotting with BoF-HMMs is mostly based on methods from au-
tomatic image retrieval and handwriting recognition. An important
property that these methods share is that they do not require large
amounts of annotated samples. Heuristic methods are not estimated
from sample data. They are successful due to their expert design.
Unsupervised methods are estimated from sample data without re-
quiring annotations. Their purpose is to group features according
to higher level components. Supervised methods require annotated
samples for model estimation. In combination with the unsupervised
models, the annotations allow for associating the higher level compo-
nents with semantic units, i.e., classes. The supervised method, that
is presented here, can be estimated from a single annotated sample.

Furthermore, the parameterization of these methods is robust such
that they work in different application scenarios and on different
datasets without requiring extensive manual parameter tuning. The
concepts and methods that will be introduced in the following demon-
strated these characteristics in the application to different pattern
recognition tasks:

* Regions-of-interest (Rols) are required in order to focus the anal-
ysis on potentially relevant image areas. The maximally stable
extremal region (MSER) detector is a heuristic method that has
been applied in different computer vision tasks including text
detection in natural scene images (Section 2.1).

¢ In the context of image retrieval, the computation of visual sim-
ilarities is based on low-level image representations. The scale
invariant feature transform (SIFT) descriptor is among the most
widely used heuristic features in computer vision (Section 2.2).

* Based on low-level features, the bag-of-features (BoF) is a famous
mid-level feature representation. Its ability for unsupervised
adaptation to the problem domain made it a standard repre-
sentation for image retrieval (Section 2.3).

* Mixture models represent the feature vector distribution based
on a given number of probabilistic mixture component distri-
butions. After unsupervised model estimation, the components
represent typical feature vector variations. The multinomial mix-
ture model has been used for text classification with bag-of-words
as well as for clustering images according to visual similarity. It
is a foundation for modeling BoF with HMMs (Section 2.4).

13



14

FUNDAMENTALS

* Hidden Markov models (HMMs) allow for modeling the sequences
of feature vectors that are typical for given classes, e.g., char-
acters and words. Probabilistic mixture models are required
for this purpose. If all mixture models in an HMM share the
same components and only differ in the mixture proportions,
the HMM is called semi-continuous (SC). SC-HMMs allow for esti-
mating a model from only a single sample (Section 2.5).

Consequently, word spotting with BoF-HMMs follows a classic pattern
recognition pipeline. Rols are represented with sequences of BoF fea-
ture vectors and an HMM models the sequence of BoF vectors that is
typical for the query word. Since BoF-HMMs operate in the segmenta-
tion-free scenario, it is important to note that Rols represent alterna-
tives to each other and not a segmentation of the document image into
lines or words.

2.1 MAXIMALLY STABLE EXTREMAL REGIONS

Maximally stable extremal regions (MSER) is a method for detecting high-
contrast regions based on image intensity values [MCU+o4]. It has
been proposed in the context of obtaining point-wise correspondences
between images which show the same scene from different view-
points [MCU+o04]. Based on these correspondences, the viewpoint
transformation can be derived. Finally, this allows for a 3D recon-
struction of the scene. The detected image regions are matched with
each other in order to obtain correspondences. For this purpose, the
regions should have distinguishable visual properties such that they
can be detected reliably and repeatably from different view points
and under different illumination. The most important assumption in
the MSER method is that such regions are extremal.

Extremal regions (ERs) are defined such that all pixels within the re-
gion have an intensity value that is larger (or smaller) than the inten-
sity values of the pixels in the outer region boundary. If the intensity
values within the region are larger than the intensity values in the
outer boundary, the region is referred to as maximal intensity region.
Otherwise, i.e., if the intensity values within the region are smaller
than the intensity values in the outer boundary, the region is referred
to as minimal intensity region. In order to limit the number of detec-
tions, an ER has to be maximally stable. Informally this means that
the intensity difference of the extremal region with respect to its outer
boundary should be large.

The key idea for computing ERs is to threshold, cf. [GWoz, p. 77], an
image at all intensity levels. For 8 bit intensity values this produces
256 binary images. Binary images are obtained such that all pixels
with an intensity value below the given threshold are set to zero and
to one otherwise. Thus, fewer pixels are set to zero for lower threshold
values than for higher threshold values. Afterwards, connected compo-
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Figure 3: Maximally stable extremal regions are detected in an ER tree. For
this purpose the figure shows a conceptual visualization of a few
ERs which have been extracted from a small section of a document
image at three binarization thresholds. The tree root is indicated
as a gray dot. The ERs are minimal intensity regions such that they
represent the pen-stroke which typically has a dark visual appear-
ance. The concept of maximal stability is indicated by the MSER

which is highlighted in red. For the three binarization thresholds
it changes minimally with respect to the ERs on the same tree path.
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nents (CCs) are extracted from all binary images. For minimal intensity
regions, a CC is a subset of pixels with value zero that are connected
through their 8-neighborhood of surrounding pixels, cf. [GWo2, Sec.
2.5.2]. These CCs are extremal because all intensity values within a CC
are smaller than the intensity values surrounding the CC. Therefore,
CCs can only grow from lower to higher thresholds. This way, a re-
lation is defined among CCs over different thresholds which globally
results in a tree, see Figure 3. The criterion for maximal stability is de-
fined along any path from any tree leave to the tree root. For a given
path, the relative change in the number of pixels in a CC is computed
as a function of the tree level. An MSER is detected for each CC on any
path where the function reaches a local minimum. The sensitivity of
the detector can be controlled through the CCs which are incorporated
for computing the relative CC change at a tree level. Instead of consid-
ering CCs at the tree level below and above the given level, i.e., with
an offset of one, the offset can be increased for making the detector
less sensitive. Figure 3 shows a conceptual visualization of an ER tree
for a small section of a document image.

Apart from detecting regions for obtaining point-wise correspon-
dences, selecting ERs according to maximal stability is a heuristic that
has also been applied to text detection in natural scene images, cf. e.g.,
[DBWo8]. However, the vast majority of MSER detections in a natural
scene image will not be containing text and has to be filtered in a post
processing step, e.g., by using a classifier. For this reason, it is more
efficient to directly integrate the classifier in the region generation
process, resulting in category-specific extremal regions [MZos]. The key
idea is to represent each ER from the ER tree with a numerical feature
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representation. Based on the classification result, an ER is accepted
or rejected as a detection. This way, the heuristic maximal stability
criterion can be replaced with a decision of a learned classifier. Most
importantly, this implies that annotated samples are available for esti-
mating the classifier. A combination of both approaches is presented
in [NM16]. Instead of accepting or rejecting ERs directly, the maximal
stability criterion is applied on the classifier scores. In comparison
to the direct classification approach, this mostly avoids redundant
detections. It is important to note that the detected text regions do
not necessarily correspond to words and have to be grouped by their
distances. This is an important aspect in the context of document im-
ages. Since these images mostly contain text, the challenge is to detect
accurate word boundaries rather than appearances of text in general.

2.2 SCALE INVARIANT FEATURE TRANSFORM

Scale invariant feature transform (SIFT) is a method for extracting lo-
cal image features [Lowog]. For this purpose, it consist of an interest
point detector and an interest point descriptor. The descriptor is a fea-
ture vector that represents the local image neighborhood around the
interest point. It has been proposed for obtaining point-wise corre-
spondences in images, e.g., for object recognition [Lowo4]. The main
objective is that the descriptors should be invariant to typical image
transformations, most importantly rotation and scale. For example,
this means that corresponding descriptors which have been extracted
from the same object in different rotations should be similar in the
descriptor vector-space although their visual appearance differs due
to the rotation. The SIFT method achieves this by using the detector
and the descriptor in an integrated manner such that the information
obtained in the detector stage is used in the descriptor stage. Interest
points are also referred to as keypoints.

For detection, the image is represented with a difference-of-Gaus-
sian scale space. In the first step, a Gaussian scale space is obtained by
filtering the image with Gaussian kernels of increasing variance. The
process simulates the change in image details if an object is captured
at different distances to the camera. The difference-of-Gaussian scale
space is obtained by subtracting filtered images which are adjacent
in the Gaussian scale space. Essentially, this approximates a second-
order derivative filter which extracts contour information at different
frequency bands. Candidate locations are local extrema in the differ-
ence-of-Gaussian scale space. Candidates that are directly located on
image edges are suppressed since they are unlikely to be detected re-
peatably across image transformations. For all remaining candidates,
the scale parameter is set to the scale at which it has been detected
within the scale space. In addition, orientation parameters are com-
puted with respect to the scales of the candidates. Gradient orienta-
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Figure 4: SIFT descriptor. The figure shows a single SIFT descriptor that has
been extracted in a section of a document image. The descriptor
consists of 4 x 4 cells, which are indicated in blue. Each cell is rep-
resented with a gradient orientation histogram. The 8 histogram
orientations, corresponding to [0,45, 90, ...,315] degrees, are indi-
cated with blue lines within the cells. The lengths of the lines corre-
spond to the weighted and accumulated gradient magnitudes, i.e.,
the histogram values. In the application to a document image, the
descriptor represents image areas with high contrast, i.e., mostly
the pen-stroke. It should be noted that the descriptor is larger than
in pratice in order to allow for a better visualization.

tions and gradient magnitudes are precomputed for each image from
the Gaussian scale space for this purpose. The orientations in the lo-
cal neighborhood of a candidate location and its scale are obtained
with a 36-bin orientation histogram. For this purpose, gradient orien-
tations are quantized and their magnitudes are accumulated to the
corresponding histogram bin. Magnitudes are weighted according to
their distance to the candidate location with a Gaussian. The detector
extracts interest points for all dominant orientations at all candidate
locations. Histogram orientations are considered as dominant if their
histogram value is within 80% of the maximum histogram value. In-
terest points are represented with location, scale and orientation.

In the descriptor stage, the local neighborhood of each interest
point is represented with a numerical feature vector. A descriptor
consists of 16 histograms of 8 orientations. The histograms are com-
puted for 4 x 4 cells around the interest point location, resulting in
a 128 dimensional descriptor vector. The cells and the histograms for
a single descriptor are shown in Figure 4. Precomputed gradients
are obtained according to the scale of the interest point in order to
achieve scale invariance. Gradient orientations are rotated according
to the interest point orientation in order to achieve rotation invari-
ance. Gradient magnitudes are weighted by a Gaussian according to
their distance to the interest point locations in analogy to the ori-
entation assignment in the detector stage. Afterwards, the weighted
magnitudes are accumulated in the corresponding histogram bins.
An interpolation scheme avoids quantization artifacts. Invariance to
linear contrast changes is achieved by normalizing the descriptor vec-
tor to unit length. By clipping the normalized descriptor values at 0.2
and renormalizing to unit length, the descriptor becomes invariant to
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non-linear contrast changes to some extent. Clipping high values em-
phasizes the histogram distributions. Large histogram values would
dominate the descriptor otherwise. Furthermore, the descriptor is in-
variant to changes in illumination since gradients are image intensity
differences and, therefore, independent of absolute intensity values.

An approach to template-based object recognition with SIFT fea-
tures and the generalized Hough transform [Bal81] has been presented
in [Lowo4]. The basic ideas for this method are important in the coarse
analysis stage for word spotting with BoF-HMMs.

The generalized Hough transform matches local features with re-
spect to a reference point. The reference point is specific to an object
that should be detected. For this purpose, the parametric relations be-
tween the local features from the template and the reference point in
the template are computed. For each local feature from a test image,
the most similar local feature from the template image is obtained.
For each pair of matching features, the same parametric transforma-
tion that relates a local feature from the template with the reference
point is applied to the parameters of the corresponding local feature
in the test image. Finally, each feature in the test image votes for the
parameters that have been obtained through the corresponding trans-
formation. A large number of features that is consistent with an object
hypothesis results in a large number of votes for the global parameter
values of the hypothesis. The similarity of the matching features can
be considered in the voting process, cf. [Bal81].

If the generalized Hough transform is applied to SIFT features, the
parameter-space is 4-dimensional, i.e., two dimensions for the image
location, scale and orientation. SIFT features are matched according to
the Euclidean distances of their descriptor vectors. In order to better
understand the parameter transformation, the SIFT feature parameters
can be considered as a vector starting at the feature location that is
scaled and oriented according to the parameter values. The parametric
transformation rotates and stretches the vector such that it points to
the reference point. A larger number of matching features in the test
image that correspond to the features in the template will vote for
similar parameter values, i.e., the hypothesized pose of the object. The
parameter voting space is quantized in order to avoid ambiguities.

Apart from the successful application in various computer vision
tasks, the SIFT descriptor has properties that are making it suitable
for the application in historic document images. The orientation his-
tograms abstract from the shape of the script such that the descriptor
is invariant to small writing style variabilities. Invariance to contrast
changes is helpful in order to cope with typical artifacts in historic
documents, like fading ink.
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The bag-of-features (BoF) is a powerful feature vector representation
for image regions, cf. [OD11]. It is based on a statistic of local-fea-
ture frequencies. The BoF representation has been proposed for image
retrieval [SZo3]. The key idea was to apply automatic text retrieval
concepts to images. A basic information retrieval concept is the vec-
tor space model [BR11, Sec. 3.2.6]. Items from a database as well as
the query are represented as points in the same vector space for this
purpose. Retrieval can be accomplished by computing similarities be-
tween the query and all database items and ranking the items accord-
ingly. Apart from a suitable similarity measure, the numerical vector
representation is very important.

In order to represent textual documents of variable length in the
same vector space, the bag-of-words (Bow) is a standard approach. The
vector space can be defined by the most frequent words, so-called
terms, such that each term corresponds to a dimension in the vector
space. Usually this excludes stop words, like the, at or on, which pro-
vide no semantic information. Further, the terms are reduced to their
word stems in order to achieve invariance with respect to grammati-
cal variants. A textual document can then be represented as a point
in the vector space by counting the number of term occurrences, i.e.,
the representation is a histogram. It should be noted that many vector
components are usually zero depending on the number of terms and
the length of a textual document.

BoW can be generalized to BoF in order to represent images in the
same way. Therefore, a counterpart to a word in a textual document
has to be defined for an image. Since a word can be seen as a local
text feature, local image descriptors have similar properties which
makes them suitable for this purpose. For obtaining local image fea-
tures, principally any region detector can be used, like SIFT or MSER,
cf. [OD11]. However, better results can be achieved if local features
are extracted in a regular grid, cf. e.g., [CLV+11]. This is due to the
heuristic assumptions in the detection processes. For feature descrip-
tion, the SIFT descriptor has been most successful [OD11] and is con-
sidered as a standard descriptor for BoF applications [CLV+11]. Fig-
ure 5 shows an application of BoF to a document image, including a
dense grid of SIFT descriptors.

After the image descriptor has been established as a counterpart
of a word in a textual document, typical local image descriptors have
to be obtained in order to define the vector space. Computing these
features that are typical for the problem domain is an unsupervised
learning task. For this purpose, a model is required which usually
consists of model parameters and meta parameters. The model parame-
ters are analytically inferred from sample data. The meta parameters
are heuristically optimized with respect to a performance measure
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Figure 5: BoF representations. The figure visualizes an application to docu-
ment images. The visual vocabulary is obtained by clustering local
image descriptors from an image dataset. The descriptors are ex-
tracted in a dense grid such that they cover the image uniformly.
They are indicated in blue and consist of 4 x 4 cells, like SIFT. In the
figure, descriptors do not overlap for a better visualization. The vi-
sual vocabulary consists of visual words which correspond to the
cluster centroids. Five visual words are indicated in different col-
ors. In order to represent a document image region, each descrip-
tor is quantized with respect to the visual words from the visual
vocabulary. The quantization result is exemplarily shown with dif-
ferently colored descriptor center points. The color indicates the
visual word. It can be noted how visually similar pen-strokes are
covered with visually similar color patterns. Region representa-
tions are given by histograms of visual word frequencies.

that depends on the final application. In an unsupervised learning
scenario, the model parameters are estimated without annotations. The
model estimation process is generally referred to as training.

A standard method for computing typical image descriptors is
Lloyd’s algorithm, cf. [GG92, Sec. 11.3], using Euclidean distances.
Given a dataset of sample descriptors, the algorithm randomly ini-
tializes a codebook of typical descriptors. Generally, the elements of
a codebook are called codewords. In the context of Lloyd’s algorithm,
the codewords are more specifically referred to as centroids. The num-
ber of centroids defines the dimensionality of the vector space and is
a meta parameter. The codebook contains the model parameters. All
descriptors are quantized with respect to the centroids according to
smallest Euclidean distance. Afterwards, the centroids are updated
such that they minimize the average distance to all descriptors that
have been assigned to them during quantization. For Euclidean dis-
tances, this is achieved by computing the mean of the corresponding
descriptor vectors. The process of quantization and codebook update
is iterated until the average quantization error converges. The average
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quantization error is the average distance between descriptors and
corresponding centroids over the entire dataset. Since the centroids
are the prototypical image descriptors they are referred to as visual
words and the codebook is referred to as visual vocabulary. Figure 5
shows an exemplary clustering result for a two-dimensional dataset.

In order to obtain a BoF image representation, descriptors are ex-
tracted and quantized with respect to the visual words. In analogy
to Bow, a histogram of visual word frequencies is computed. There-
fore, the bag-of-features is an orderless representation which abstracts
from the spatial occurrence of the visual words. Figure 5 shows the
quantization result for a section of a document image.

An important difference between Bow and BoF is the expressiveness
of the features, i.e., words and visual words. While the occurrence of
particular words is usually sufficient in order to categorize a textual
document, the appearance of visual words across categories can be
expected to be much more diverse. For this reason, the spatial location
of visual words is of high importance, cf. [CLV+11]. In contrast, the
particular order of words in a textual document is not modeled in the
standard representations, cf. [BR11, Chap. 3].

A successful approach for incorporating spatial information in BoF
representations is the spatial pyramid [LSPo6]. In addition to comput-
ing the visual word histogram over the entire image region only, the
region is subdivided in a pyramidal fashion following a quad tree
structure. Such a representation contains L levels with 22! cells per
level where 1 € {0,1,...,L — 1}. Afterwards, visual word histograms
are obtained for all cells before they are concatenated. This results in
aD= Z{_:_o] 22V dimensional spatial pyramid vector where V is the
size of visual vocabulary. Different weighting schemes have been pro-
posed in order to normalize the numbers of visual words per cell that
is decreasing if the pyramid level increases, e.g., cell representations
are normalized with the T-norm [CLV+11].

For word spotting, the spatial pyramid plays an important role in
order to represent word images. It can be adapted for modeling the
sequential structure of text. For this purpose, the quadtree structure is
replaced with a temporal structure [RAT+11; SF17]. At the same time
the specificity of the representation can be controlled through the
number of cells. This allows for coping with word size variabilities.

2.4 MULTINOMIAL MIXTURE MODEL

The multinomial mixture model can represent a statistical distribu-
tion of BoF vectors. Due to this reason, it can be seen as a foundation
for modeling BoF vectors in the statistical HMM process. After a brief
introduction to statistical modeling with multinomial distributions,
the multinomial mixture model will be presented.
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Modeling Bow representations with multinomial distributions is a
standard approach for text classification [BR11, Sec. 8.4.4]. For each
text category, a model is estimated such that it maximizes the prob-
ability for generating the samples of the corresponding class. An un-
known sample can be classified according to the model that generates
the sample with maximum posterior probability. The concept is called
Bayesian inference and follows from Bayes” theorem, cf. [Biso6, p. 22]
and [DHSoo, Sec. 2.1].

For this purpose, the samples are referred to as observations. The
model that generated the sample cannot be observed but has to be
inferred. The generation of an observation is represented on the right-
hand side of Equation 1.

prior x likelihood
evidence

posterior = (1)
First, the class is selected according to a distribution of prior prob-
abilities. Then, the sample is generated according to a distribution
which is conditioned on the class model, i.e., the likelihood. According
to Bayes’ theorem, the product of the prior and the likelihood is pro-
portional to the posterior probability for the class model conditioned
on the sample. The evidence represents the sample distribution and is,
therefore, independent of the class. It is a normalization factor which
is required for computing a posterior probability but can be neglected
for obtaining the class with maximum posterior probability.

Generally, the posterior denotes a probability after making the ob-
servation, i.e., after the sample has been generated. The prior denotes
a probability which is independent of any observation, i.e., before the
sample is generated. If the classes are represented by discrete multi-
nomial distributions, the likelihood is a conditional probability for the
sample. It is conditioned on a class model. The concept is not specific
to multinomial distributions but applies to any model which is suit-
able for representing the data, e.g., continuous Gaussian distributions.

The main idea for modeling the generation of Bow vectors with
multinomial distributions is to model the generation of each Bow
vector component individually. This way, the model resembles the
BoW vector computation. In analogy, multinomial distributions can
be used for modeling BoF, e.g., for image classification [CDF+o4].

In order to model the generation of a BoF vector x € ]N\;O, N = |x]|,
visual words are independently drawn according to the visual word
probabilities p = (p(V=0),...,p(V=V—1))" where V is the size
of the visual vocabulary. For this purpose, V is a discrete random
variable over the event space Q, ={0,...,V —1}. Thus, the parameter
vector p of a multinomial distribution can be used as a class model.
Equation 2 shows the probability mass function of the multinomial
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distribution. It consists of the multinomial coefficient and a product
over visual word probabilities.

p(xlp) = ” H1 Hp (2)

"vO

The product models a joint probability that weights visual word prob-
abilities p(V = v) according to the absolute visual word frequency
Xy € IN>( in the exponent. Thus, the higher the frequency the more
the overall product is influenced by the respective visual word prob-
ability. In case of x,, = 0, visual word probability p(V = v) will not be
considered in the product.

The generation of BoF vector x can be understood with an urn
scheme. In this scheme an urn is filled with balls of V different colors
where each color corresponds to a visual word. The proportion of dif-
ferently colored balls is defined by p(V = v) for all v € Q. A single
visual word is generated by drawing a ball from the urn, noting its
color and returning the ball back into the urn. The process is repeated
N times. According to the urn scheme, the product in Equation 2 is
normalized by the multinomial coefficient. It specifies the number of
ways to draw N visual words such that each visual word v € Qy is
drawn x, times.

This model is sufficient as long as a single class is typically rep-
resented by BoF vectors with similar visual word frequencies. Other-
wise, the model will generalize too much and not be specific to the
samples of the class anymore. A solution to this problem are mixture
models, cf. [Biso6, Chap. 9]. For this purpose, a mixture of multino-
mial distributions © = {(cy, px) |0 < k < M} is defined by M mixture
components with visual word probabilities px and mixture weights

k = 0 with Z]’i}] cx = 1. The mixture weights define the relative
proportions of components in the mixture. Formally, the weights are
prior component probabilities ¢, = p(M = k), i.e., probabilities for
the components which are independent of the sample. For this pur-
pose, the probability for a mixture component is represented by a
discrete random variable M over the event space QO =1{0,...,M —1}
The probability mass function for the multinomial mixture model is
defined in Equation 3.

p(x|©) = Z c p(x|Pi) (3)

The number of mixture components M is a meta parameter. The
higher the number of components, the more specific are the visual
word configurations that are represented by the individual compo-
nents. Figure 6 visualizes a multinomial mixture model with two
components in a visual word simplex with three visual words. Com-
ponent k = 0 represents BoF vectors where mostly the blue visual
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co, = 0.6
fl c=04

Figure 6: Simplex visualization of the multinomial mixture model. BoF can
be visualized in a simplex according to relative visual word fre-
quencies. The simplex vertices are labeled with visual words as
indicated by the blue, green and pink descriptors. A point in the
simplex refers to a BoF representation. The relative distance of the
point to each visual-word vertex is anti-proportional to the rela-
tive frequency of the corresponding visual word in the BoF. For
example, the simplex center point refers to the BoF with uniform
visual word frequencies. The probability mass in the simplex, i.e.,
probability for the corresponding BoF vectors, is modeled by the
multinomial mixture distribution as indicated with blue to red col-
ors in the logarithmic domain. The colors have been scaled to the
corresponding minimum and maximum probabilities. Diamond
markers indicate the mixture component parameters py, i.e., vi-
sual word probabilities for each component k € {0,1}. Mixture
component weights cy are specified next to the simplex.

word followed by the pink visual word have high frequencies. Com-
ponent k = 1 represents BoF vectors where the green visual word has
high frequencies and the other visual words have low frequencies.
Given a dataset of annotated samples, the training of a multinomial
mixture model can be performed according to the maximum likelihood
criterion with the expectation maximization (EM) algorithm, cf. [Biso6,
Sec. 9.3]. The main idea for this estimation is to optimize the incom-
plete data log-likelihood function. It expresses the probability for generat-
ing the samples of a class given the model in the logarithmic domain.
However, the maximum likelihood optimization, which is based on
differentiating the likelihood function with respect to the model pa-
rameters, cannot be performed directly. This is due to the mixture
model in which a sample can be generated by any mixture compo-
nent according to the posterior probability for the component given
the sample. Initially, these posteriors are unknown. This is the reason
for referring to the likelihood function as incomplete. By treating the
posteriors as hidden variables in the optimization process, the complete
data log-likelihood can be obtained. It contains estimates for the com-
ponent posteriors that are computed from a given model. The process
of computing these estimates is referred to as the expectation step and
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is directly based on Bayes’ theorem. Equation 4 defines the posterior
for mixture component k conditioned on sample x.

ck p(x|px)
le\i? capxlipl)

pM =k|x,0) = (4)

The denominator corresponds the sample distribution, i.e., the evi-
dence, cf. Equation 1, and is represented by the mixture model as
defined in Equation 3.

Afterwards, the maximum likelihood optimization of the model pa-
rameters can be performed. This is referred to as the maximization step.
For each component, the visual word probabilities are estimated as
weighted relative visual frequencies where the weights for all samples
are computed in the expectation step according to Equation 4. It is
important to note that the visual word probabilities must not be zero,
cf. Equation 2. This can be ensured by smoothing the visual word
probability distributions with a uniform distribution [MNg8, Equ. 6],
i.e., so-called Laplace smoothing. A detailed discussion of multinomial
mixture models for Bow representations can be found in [NMT+oo0].
The derivation of the maximum likelihood parameter estimation for
a multinomial distribution is presented in [Biso6, Sec. 2.2].

The expectation and maximization steps are iterated until the com-
plete data log-likelihood converges. Most importantly, it can be shown
that optimizing the complete data log-likelihood also optimizes the
incomplete data log-likelihood, cf. [Biso6, Sec. 9.4]. The mixture model
for the first iteration is initialized randomly. It should be noted that
the optimization is performed in the logarithmic domain in order to
simplify the derivations and for numeric stability. The logarithm of
the objective function does not change the optimization result since
the logarithm function grows strictly monotonically.

For modeling BoF image representations, an assumption of the multi-
nomial model is that BoF vectors x are not sparse. This is due to the
product of probabilities p(V = v) in Equation 2 which implies that
p(V=v) > 0forallv e Qy. However, in the context of word spotting,
BoF representations are typically very sparse due to the use of large
visual vocabularies and small document image regions that contain
comparably few visual words. In addition to the sparsity, the use of
Equation 2 in a mixture model makes the violation of the condition
even more severe. This is because multinomial mixture components
specialize on modeling only certain visual word configurations.

For coping with these challenges, different heuristics have been
evaluated in the context of text classification [RST+o03]. However, a
more systematic approach is proposed in [MKEo5] by using Dirich-
let compound multinomial distributions. For this reason, the multi-
nomial mixture model can be seen as an important foundation for
the mixture models that will be discussed in Section 4.4. The EM al-
gorithm is conceptually the same for all of these models and differs
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mostly in the maximization step. The multinomial mixture model will
be used as a reference in the evaluation of probabilistic BoF models
for the HMM integration in Section 5.3.4. The corresponding parame-
ter evaluation can be found in Section A.1.

2.5 HIDDEN MARKOV MODELS

Hidden Markov models (HMMs) are statistical sequence models that
have been used in various recognition tasks where the representa-
tion of sequential data is required, cf. [Fin14, Chap. 2]. In particular,
this includes handwriting recognition where sequences of feature vec-
tors are extracted from line images or word images within so-called
frames. Recognition is based on a set of elementary modeling units. In
the context of handwriting recognition, these elementary units usu-
ally correspond to characters. Thus, the elementary modeling units
are referred to as character HMMs in this case.

Character models can be concatenated in order to obtain a word
model. Models that consist of other models, i.e., models that are not
elementary, are referred to as compound HMMs, cf. [Fin14, Sec. 8.3].
The units can be chosen according to the needs of the application, i.e.,
character-level units or word-level units, cf. [PFog].

HMMs represent the sequences of feature vectors that are typical
for the corresponding units. Provided that the features represent the
visual appearance of the pen-stroke in a frame, a character HMM rep-
resents which features are typical for consecutive sections, like the
beginning, middle and end of the corresponding character. In order
to do so, HMMs consist of states and each state is associated with a sta-
tistical distribution over the feature vector space, cf. [Fin1i4, Sec. 5.1]
and Figure 7. For discrete feature spaces, the probability mass func-
tion has high probability for feature vectors that are typical in the
corresponding state. An example for a probability mass function that
represents a distribution of BoF vectors has been shown in Figure 6.
The model that is used in order to represent these distributions is re-
ferred to as the output model [Fin14, Sec. 5.1]. The choice of a suitable
output model for representing BoF vectors is an important aspect in
the presentation and evaluation of BoF-HMMs (Chapter 4 and 5).

In order to represent typical sequences of feature vectors, HMMs use
a generative statistical approach, cf. [Fin14, Chap. 5]. In this genera-
tive process, one state generates a feature vector at each point in time.
In analogy to the generative statistical model that has been presented
in Section 2.4, the state sequence that generated the observed feature
vector sequence most likely, must be inferred. In order to recognize
text in a line image, the observation sequence is obtained by feature
extraction. Afterwords, the hidden state sequence is inferred that gen-
erated the observation sequence most likely. Since the states are asso-
ciated with the elementary modeling units, e.g., character HMMs, this



2.5 HIDDEN MARKOV MODELS

4jj

Q . Q :
j RN j+2

N

bj(xt)

(XO/* s Xt '/fo'l)

Figure 7: Hidden Markov model. The figure shows three states of an HMM.
Transition probabilities and output probabilities are indicated for
state j. State transitions are organized in a linear topology allow-
ing for self-transitions and transitions to the next state. For state j,
these are denoted as aj; and a; ;1. The output probability b;(x+)
denotes the probability for generating feature vector x; in state j.
Feature vector x is part of the observed feature vector sequence
(x0,...,XT_1). Probabilistic inference is the task of computing the
formerly hidden state sequence that generated the observation se-
quence most likely.

corresponds to recognition. Furthermore, the spatial location of each
observation, i.e., each feature vector, in the text line is know. Thus,
along with the recognition, HMMs implicitly infer a segmentation.

It can be noted, that recognition on character level is much less
constrained than recognition on word level. Word HMMs can only
be defined with a lexicon. Thus, the number of possible character
sequences is reduced substantially. Further context information can
be incorporated with a language model (LM). A word-level language
model represents word sequence probabilities. Word sequences of
length n are called n-grams. HMMs allow for a direct integration of a
bigram LM by incorporating the word sequence probabilities at tran-
sitions between words, cf. [Fin14, Chap. 12]. This combination of sta-
tistical character models and statistical word models illustrates, how
HMMs support the integration of context information at various levels.

The statistical HMM process is modeled with a generative finite state
machine, see Figure 7. The finite state machine represents a discrete
stochastic process which models the generation of a feature vector
sequence in two stages. For generating a feature vector at time t €
{0,..., T—1}, the active state, i.e., the generating state, is determined in
the first stage. Probabilistically this is modeled by a random variable
8¢ over the event space Qs = {0,...,S — 1} where S is the number
of states in the HMM. The behavior of the process is controlled by
discrete distributions of start probabilities and transition probabilities.
The start probabilities are denoted as vector @ = (7, ..., ms_1)" with
m; = p(8o = j) for all j € Qs. The transition probabilities ai; =
P(8t =j[8¢—1 =1) are organized in matrix [ai;] with (i,j) € Qg x Qs.
Furthermore, the probability for a state at time t only depends on the
preceding state at time t — 1. Generally, any limitation of the temporal
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context is known as Markov property, cf. [Fini4, p. 72]. If the temporal
context is limited to a single state, the stochastic process is referred to
as a first-order Markov process. The limitation is essential for efficient
inference and model estimation. Figure 7 shows three states of an
HMM. Transition probabilities are indicated for state j. State j will be
assumed to be the active state in the following.

After state j is selected in the first stage, the generation of feature
vector x¢ is modeled in the second stage. For this purpose, a proba-
bility distribution over the feature space is represented by bj(x¢) =
p(x¢|8¢ = j). This output probability distribution depends only on
the active state and is independent of any preceding states or preced-
ing feature vectors. This is known as output independence assumption,
cf. [Fin14, p. 72]. The output model has to be chosen according to
the characteristics of the feature space. If the output model uses con-
tinuous probability density functions’, the HMMs are referred to as
continuous HMMs. Figure 7 shows a sequence of feature vectors and
indicates the generation of feature vector x; in state j.

A popular choice for the output model is the multivariate Gaussian
mixture model (GMM) [Fin14, Sec. 5.2]. Multivariate Gaussian distribu-
tions are continuous probability density functions that allow for rep-
resenting the feature space effectively. This is due to a requirement of
the features that should be discriminative for different shapes of the
pen-stroke. Thus for a shape, the Gaussian distribution models the
typical feature vector and the typical variation with respect to this
feature vector in the feature space [PFog]. However, a single Gaus-
sian per state is insufficient, since a single class, e.g., a character, will
typically be represented by different pen-stroke shapes. Mixture mod-
els allow for modeling the high intra-class variability of handwritten
script, cf. Section 2.4.

While a GMM per state allows for a very accurate representation of
the data, the number of model parameters grows considerably with
every state, cf. [Fin14, Sec. 9.2]. For example, this is influenced by the
dimensionality of the feature space and the number of mixture com-
ponents. Since HMMs correspond to classes and have to be estimated
from annotated training data, this can be a problem. The number of
model parameters and the number of training samples that are re-
quired for estimating these parameters are directly related, cf. [Fini4,
p- 153]. A common possibility for reducing the number of model pa-
rameters is mixture tying, cf. [Fin14, Sec. 9.2.3]. For this purpose, only
the mixture weights are specific to the states and the mixture compo-
nents are shared by all states. HMMs with shared mixture components
are referred to as semi-continuous (SC) HMMs. Equation 5 shows that
the mixture weights cj are state-dependent. This is indicated by in-
dex j. The mixture component distribution is conditioned on mixture

The distinction between probabilities and densities will only be made explicit if this
is important in the context of the presented aspect.
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component index k. For this purpose, the probability for a mixture
component at time t is represented by the random variable M, over
the event space (),.. The mixture component distributions are inde-
pendent of state j. The HMM is denoted by A and is fully defined by
the number of states and their indices, start probabilities, transition
probabilities and the parameters for the output probability distribu-
tions.
M—1
bi(xe) = D cjep(xe| Me =k, A) (5)
k=0
The key idea for recognition with HMMs is to decode the hidden
state sequence that generated the observed feature vector sequence
most likely. Since the states are associated with the HMMs, a sequence
of semantic units is obtained. This corresponds to a joint computation
of recognition and segmentation.
Given a feature vector sequence O = (xp,...,x7_1) and HMM A,
the probability for a specific state sequence S = (so,...,sT—1) with
st € Qs is defined in Equation 6.

p(O,S[A)
p(O[A)

The joint probability p(O, S|A) can simply be computed by multiply-
ing the start probability, transition probabilities and output probabil-
ities along the state sequence. However, the naive computation of the
total output probability p(O |A), according to p(O|A) =Y s p(O, S|A),
requires to marginalize over all possible state sequences, cf. [Fini4,
Sec. 5.5.1]. This is computationally infeasible because the exhaustive
search does not take advantage of the model assumptions.

An efficient approach for computing p(O |A) exploits the indepen-
dence assumptions of the HMM. The forward algorithm, cf. [Fin14, Sec.
5.5.2], recursively computes the probability for generating the feature
vector sequence until time t along any state sequence that reaches
state i at time t. By storing the partial results in the forward variables
o (1), the independence assumptions allow for reusing the partial re-
sults from the recursion step at time t in the next recursion step at
time t + 1. For the probability of generating the remaining feature
vectors until the end of the feature vector sequence along any state
sequence that starts in state j at time t, backward variables (3¢(j) can
be obtained in analogy. The total output probability represents the
probability of generating the feature vector sequence along any state
sequence in the HMM and can be computed either with the forward
algorithm or with the backward algorithm. For this purpose, the for-
ward variables obtained in the last recursion step are accumulated
over all states. The computation with the backward algorithm works
in analogy, cf. [Fin14, Fig. 5.6]. Apart from the possibility to efficiently
compute the total output probability, the forward algorithm and the
backward algorithm are the foundation for efficient model estimation.

p(SI1O,A) = (6)
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In contrast to computing the fotal probability for generating a fea-
ture vector sequence along any state sequence, the Viterbi algorithm
computes the optimal probability for generating a feature vector se-
quence along the optimal state sequence, cf. [Fin14, Sec. 5.6.1]. Pro-
vided that S* is the state sequence that generates features vector se-
quence O with maximum probability, the Viterbi algorithm computes
$* as shown in Equation 7 and 8.

S$* =argmaxp(S|O,A) (7)
S

=argmaxp(O, S|A) (8)
S

For this purpose, the Viterbi algorithm maximizes p(O, S|A) over all
state sequences, see Equation 8. This is sufficient, since the denom-
inator in Equation 6 is independent of S. Therefore, S* is the state
sequence with maximum posterior probability.

With respect to model estimation, the Baum-Welch algorithm is an
EM algorithm that is widely applied for this purpose, [Fini4, Sec.
5.7.4]. The forward and backward variables play a crucial role for
computing posterior probabilities in the expectation step. The max-
imum likelihood criterion is based on the total output probability
P(OJA). For optimizing the model parameters, the associations be-
tween the training samples and the states as well as the mixture
components are missing. In the semi-continuous scenario, the asso-
ciations are represented by state posteriors p(8¢ = i| O, A), transition
posteriors p(8¢ = 1,8¢4+1 = j| O, A), state-dependent mixture compo-
nent posteriors p(8¢ = i, My = k| O,A) and state-independent mix-
ture component posteriors p(M = k| O, A).

Given these posteriors from the expectation step, updates for state-
dependent parameters are obtained in the maximization step. This
includes start probabilities [Fin14, Equ. 5.18], transition probabilities
[Fin14, Equ. 5.17] and mixture weights [Fin14, Equ. 5.21]. In the semi-
continuous scenario the mixture components are state-independent
and updated according to [Fini4, Equ. 5.25 and 5.26]. With respect
to the updates for the transition probabilities it should be noted that
the non-zero probabilities are defined by the model topology. The
topology is a meta parameter. For handwriting recognition, the lin-
ear and Bakis topologies are most common. The linear topology only
allows self transitions and transitions to the next state, see Figure 7.
The Bakis topology extends the linear topology with skip transitions.
Other important meta parameters are the number of states in an HMM
and the number of shared mixture components.

The iterative procedure of expectation and maximization steps re-
quires an initial model. For this purpose, the flat start is a common
approach. In the semi-continuous scenario, the initial GMM can be ob-
tained from the training data in an unsupervised manner with the
corresponding EM algorithm, cf. [Fin14, Sec. 4.4.2]. The state-depen-
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dent parameters are initialized uniformly. The Baum-Welch algorithm
terminates after a defined number of iterations or when the relative
change of the total output probability falls below a threshold.

Word spotting with HMMs is essentially based on Equation 6. Given
a feature vector sequence that has been extracted from a line image,
the idea is to compute a posterior probability for any state sequence
that contains the query word. For this purpose, a query model is re-
quired that represents the occurrence of the query in a text line. In
this regard, compare the numerator of Equation 6 which represents
the output probability along a single state sequence. The posterior
is obtained after normalizing with the total output probability. Com-
pare the denominator of Equation 6. Since the total output probability
can be expressed as marginalization over all possible state sequences,
this can be seen as the output probability with respect to any possible
transcription of the text line. The posterior probability is high if the
numerator and the denominator are similar. This is the case if the
total probability in the denominator is dominated by the same state
sequences that are represented by the numerator, i.e., state sequences
that contain the query word. Therefore, the denominator is essentially
a recognition model, the so-called filler model, and the word spotting
performance is bounded by the recognition performance.

If annotated training material is available for estimating the filler
model, HMMs allow for computing the similarity score for the query
and the corresponding segmentation of the text line jointly. For word
spotting this is a powerful property that sets them apart from meth-
ods that are based on holistic representations of potential word seg-
ments. Relevant words that are not represented by these segments
will not be part of the retrieval list.

If no annotated training dataset from the problem domain is avail-
able, SC-HMMs have been used for segmentation-based query-by-ex-
ample word spotting [RPogb] as well as segmentation-based query-
by-string word spotting [RP12b]. The shared mixture model in ScC-
HMMs can be estimated in an unsupervised manner. The remaining
model parameters can be estimated independently and from very few
annotated samples [PFo5]. Only the query word image has been used
for this purpose in [RPogb]. Synthetically generated annotated sam-
ples have been used in [RP12b]. In both cases, the filler model is ap-
proximated by the distribution of the feature vectors. This distribu-
tion is represented by the shared mixture model.
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WORD SPOTTING

Word spotting provides the possibility to search document images
automatically. Locating words is one of the most important function-
alities for working with larger document collections. This is especially
interesting in cases in which it is hard to create an accurate transcrip-
tion automatically. Therefore, word spotting has become popular for
supporting the analysis of handwritten and historic documents, cf.
Chapter 1.

For this purpose, the user provides a query and the word spot-
ting system retrieves document image regions according to similarity
to the query without transcribing the documents first. Consequently,
any word spotting system consists of methods for:

* extracting relevant document image regions (Section 3.1),
* representing document image regions numerically (Section 3.2),

* computing similarities with respect to the query based on nu-
merical representations (Section 3.3).

If region extraction is closely integrated with the document image rep-
resentation and retrieval, all three aspects constitute a word spotting
method. Otherwise, a word spotting method consists of a numeric
feature representation and retrieval.

In the following, word spotting methods will be presented in this
context. The presentation is concluded with a discussion (Section 3.4)
which compares methods with respect to their applicability in prac-
tice. Methodological aspects for segmentation-free retrieval as well as
HMMs are addressed in detail. This allows for distinguishing the prop-
erties of the methods and setting the methods apart from BoF-HMMs
that are proposed for word spotting in Chapter 4. A comprehensive
list of word spotting methods including a categorization with respect
to word spotting scenarios and methodology can be found in Ap-
pendix C.

3.1 DOCUMENT IMAGE REGIONS

For spotting the query word in a document image, plausible docu-
ment image regions must be obtained. These regions are processed
during retrieval and are the basis for creating a ranked retrieval list.
Word spotting methods can be grouped in the categories word-level,
line-level and document-level according to the regions required by the
method. Figure 8 shows examples for regions given as word and line
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Figure 8: Document image regions. The top row shows document regions
that have been obtained by heuristic segmentation on word-level
and on line-level. Word spotting systems rank these regions ac-
cording to similarity to the query. In contrast, the bottom row ex-
emplarily indicates region hypotheses that do not represent final
segmentations. They are shown semi-transparently for this reason.
The word spotting system selects and ranks hypotheses according
to relevancy with the query. Word-level hypotheses are extracted
from the document image while patch-based hypotheses are uni-
formly sized and densely sampled over the document image.

segments as well as word- and patch-based hypotheses for word spot-
ting on document level. The examples illustrate that hypotheses pro-
vide competing alternatives for potentially relevant document image
regions. The segmentation of the document image in relevant and
non-relevant regions is performed during retrieval while taking the
query into account. Therefore, it is not important to identify only cor-
rect word image regions, but it is important that the word image
regions that are relevant to the query are among the proposed hy-
potheses. Under the assumption that relevant regions will be more
similar to the query than irrelevant regions, the large majority of
irrelevant regions can be filtered out with non-maximum suppression
(NMS). Among overlapping regions, the filter only keeps the region
with highest similarity, for this purpose [NGo6].

In contrast to document region hypotheses, word or line segments
are given to the word spotting method beforehand. During retrieval
this reduces the search space considerably. However, a method for
reliably extracting the segments is required.

Properties and requirements for word and line segmentation are
discussed in Section 3.1.1. Afterwards, different strategies for gener-
ating document-level region hypotheses are presented in Section 3.1.2
and Section 3.1.3.
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3.1.1  Word and line segments

Word spotting methods that operate on word-level require a given seg-
mentation of the document image into words. Since this segmentation
is considered as correct and all further operations are based upon
it, these methods are referred to as segmentation-based. The main
limitation is the requirement to provide the segmentation prior to
retrieval. Errors in the segmentation will directly lead to errors in
the retrieval result. These methods are, therefore, primarily success-
ful in word spotting scenarios where the segmentation is trivial, e.g.,
due to regular character spacing, cf. e.g., [KH93; Hulgg]. In order
to be applied in more difficult scenarios, like historic and handwrit-
ten documents, extensive manual parameter tuning is required, cf.
e.g., [MHR96]. Word segmentation methods that are particularly sen-
sitive to the chosen parameters are based on projection profiles or
connected components (CCs), cf. [Kis14]. More advanced methods are
based on scale space representations [MRo5] and CNNs [WB15]. The
latter method is interesting because it aims at learning the visual ap-
pearance of words without using a model for distinguishing different
word classes. While this avoids the problem of explicit word recogni-
tion, the method still relies on the presence of discriminative charac-
teristics in the document collection, like typical word and line spac-
ings. In historic and handwritten documents this can be problematic
due to the highly irregular visual appearance of text. Word spotting
on word-level usually works by matching the numeric feature repre-
sentations of the word segments against the numeric feature repre-
sentation of the query. Word segments are ranked accordingly and
presented to the user in a retrieval list, cf. e.g., [RMo7].

Word spotting methods that operate on line-level only require a
given segmentation of the document image into lines. Since the chal-
lenges in line segmentation are a subset of the challenges in word seg-
mentation, line segmentation can be considered as simpler. The main
challenges lie in handling skewed and touching text lines. Touching
text lines pose a severe problem since the exact text line boundaries
are very hard to define in this case. As for word segmentation, most
line segmentation methods are based on projection profiles and CCs.
In order to spot words in a text line, the line is represented as a se-
quence of feature vectors. The query is searched within this sequence,
cf. Section 3.3.2. Due to this treatment, many different segmentations
for locating the query word are considered and evaluated against
each other. An explicit segmentation of the text line into words is
avoided. Line-based word spotting methods are segmentation-free
on line-level for these reasons, cf. e.g., [KAA+00; FKF+12; FFM+12].
Word spotting on line-level often works by ranking entire text lines
according to relevance to the query [FKF+12]. In addition, it is also
possible to present the estimated query word locations to the user.
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3.1.2  Patch hypotheses

Patch hypotheses are mostly dependent on the query word. The patch
geometry, e.g., width and height, is derived from the geometry of the
query bounding box, cf. e.g., [GPog; ZT13; AGF+14b; KKG15; GV15a;
RAT+15a]. The patch positions are either uniformly distributed in the
entire document image, cf. [AGF+14b; RAT+15a], within text areas, cf.
[GPog], or located in document image regions that are visually similar
to the query, cf. [ZT13; KKG15; GV15a]. Patch-based approaches are
typically applied in query-by-example scenarios, cf. [RAT+15a]. If the
query is given as string, character size estimates are required, cf. e.g.,
[GV15al.

The first approach towards segmentation-free word spotting on
document level has been presented in [KGGogy]. In their two-stage
method, potentially relevant document image regions are identified
first and processed in more detail afterwards. The first stage consists
of computing the normalized cross-correlation of different examples
of the query word with the document images. Normalized cross-cor-
relation makes template matching more robust against intensity and
contrast variations, cf. [KGGgy, Appx. A]. In the second stage, binary
word images are heuristically segmented from the document image
regions around the top correlation peaks. These word images are fi-
nally evaluated against the query word templates. The first stage can
be considered as a precursor of patch-based word spotting. The nor-
malized cross-correlation results in a patch-based framework where
the patch size is equal to the template size and a query template is
matched at every document image position. However, the detected
interest points are only used as a starting point for performing word
image segmentation.

The first patch-based segmentation-free method has been presented
in [GPog]. Patches are matched with an exemplary query word tem-
plate, yielding a score at every patch position. The patches have the
same size as the template. Locally best matching patches are retrieved,
i.e., out of competing patches a patch is selected with NMS. The ap-
proach is related to the first stage in [KGG97]. An important differ-
ence is the retrieval of patches, instead of interest points, according
to NMS.

The patch-based framework presented in [GPog] has essentially
been used in many segmentation-free query-by-example word spot-
ting methods, cf. e.g., [AGF+14b; RDE+14; RAT+15a; GV15b; RKE16].
With respect to the architecture of a patch-based framework, an im-
portant aspect concerns the patch geometry. Since patch-based meth-
ods generally assume limited word size variability, accurate detec-
tions are easier to achieve if the patches have a similar geometry as
the query, e.g., [AGF+14b; GV15b; RKE16]. However, using patch ge-
ometries that are adapted to the query comes at the cost of higher
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computational efforts at query time. For example, in [RAT+15a] only
four different patch sizes are considered that can be entirely precom-
puted for efficient retrieval. At query time the patch size is chosen
that is closest to the size of the query word image. The query-by-
example methods presented in [AGF+14b; GV15b] and [RKE16] use
patches of the same size as the query. The high computational efforts
are addressed by using data structures allowing for computing patch
representations efficiently at query time, cf. Section 3.3.

The final category of patch-based methods is inspired from ob-
ject detection with keypoint matching, cf. [Lowo4]. The basic idea in
the query-by-example scenarios considered in [ZT13; KKG15; HF16;
ZPG1y] is to match local image descriptors from the query word im-
age with local image descriptors in the document images. Hypotheses
for possible query word locations are document image regions that
contain a sufficient number of matching keypoints [ZT13; KKG1s5;
HF16] or match with a reference keypoint from the query [ZPG17].
Besides analyzing the local neighborhood of individual, matching
keypoints [ZT13; KKG15; ZPG17y], sets of candidate keypoints can
be selected with densely sampled patches [HF16]. The patch geome-
try depends on the query size and can be transformed according to
matching keypoint configurations [KKG15; HF16].

3.1.3  Word hypotheses

Word hypotheses are document image regions that are likely to con-
tain words. Words are detected in the document images indepen-
dently of the query. Detectors are either defined heuristically, cf. e.g.,
[LLEo7; KWD14; GV17; GV18], or estimated from sample data as pre-
sented in [WLB1y; RSR+17]. The bounding box geometry, e.g., width
and height, of a word hypothesis is either based on the detector result
[KWD14] or based on further analysis of the query.

The first attempts towards segmentation-free word spotting based
on word hypotheses have been made in [KAA+oo0]. In the query-by-
example scenario, word starting and word ending positions are de-
tected within given text line images. Hypotheses are derived by com-
bining these start-end positions with each other. In order to limit
the search space, additional constraints are applied. These depend on
heuristics that have to comply with the query template, i.e., width,
gap statistics and ink-background transitions. Overlapping hypothe-
ses are suppressed according to similarity to the query with NMS.

In [LBEo5; LLEoy] this idea is extended to document-level query-
by-example word spotting. The approach is based on small regions-of-
interest (Rols), also referred to as zones-of-interest, that are detected in
the query image and so-called guides that are detected in the doc-
ument images. Guides in the document images are considered as
possible word starting positions. Rols are matched with document im-
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age regions according to their spatial relation with the possible word
starting positions. Competing hypotheses are evaluated against each
other, cf. [KAA+o0], and suppressed with NMS.

Another possibility for generating text hypotheses are CCs [KWD14;
RLF15; GV17; GV18; RSR+17; WLB17]. Hypotheses are created either
by grouping CCs in a given binary document image [KWD14; RLF15;
GV1y; GV18] or by computing different binary images in which CCs
correspond to parts of words, to words or to combinations of (parts
of) words [RSR+17; WLB17]. An important assumption of the meth-
ods presented in [KWD14; GV17; GV18] is that words do not touch.
Otherwise multiple words will be represented in a single hypothesis
and cannot be detected individually.

The approach in [KWD14] aims at being as simplistic as possible.
Hypotheses are defined by grouping CCs according to their size and
distances to each other. For this purpose, a number of thresholds
must be defined. In contrast, the graph-based method in [RLF15]
is considerably more complex. Document images are binarized and
skeletonized, cf. [Gat14, pp. 75—77]. From the skeletonized CCs, graphs
are constructed by splitting the CCs in convex CCs. These are quan-
tized with respect to a grapheme codebook that is estimated in an
unsupervised manner. Each resulting grapheme is represented as a
graph vertex. Vertices of adjacent graphemes in the document image
are connected with edges. With subgraph matching between query
and document image representations, different convex CC combina-
tions are considered. This costly procedure is robust with respect to
touching words.

The approaches presented in [RSR+17; WLB17] use models for word
hypothesis extraction that are estimated from sample data in a su-
pervised manner. In [RSR+17] hypotheses are based on local word
detector scores. By using an adaptation of the maximally stable ex-
tremal regions detector [MCU+o04], word hypotheses are given as ERs.
Essentially, these ERs correspond to CCs in binary detector score maps
that are obtained at different thresholds, cf. Section 4.2.1. Word detec-
tor scores are computed with CNNs. Similarly, the document images
are binarized at different thresholds in [WLB17]. After morphologi-
cal pen stroke dilation with different structuring elements, CCs corre-
spond to word hypotheses. Hypotheses are classified into words and
non-words with a CNN. The approach has originally been presented
for word segmentation [WB15]. In [WLB17] these hypotheses are re-
ferred to as dilated text proposals. They are used in order to comple-
ment hypotheses generated by a region proposal network [RHG+15].
Both methods [RSR+17; WLB17] are robust with respect to touching
words. This is due to their models that are estimated from annotated
sample data and their consideration of multiple binarization thresh-
olds in the CC extraction.
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3.2 DOCUMENT IMAGE REPRESENTATIONS

For computing similarities between document image regions and the
query, numerical feature representations are required. Together with
the measure used for computing similarity to the query, these are
characteristic for a word spotting method. In the following, document
image representations will be presented in this context. The focus will
be on their prerequisites and properties. Their capability to discrimi-
nate between relevant and non-relevant words as well as to generalize
with respect to words that are relevant to the query will be discussed.

Feature representations for word spotting are strongly inspired
from handwriting recognition and computer vision. Typically, fea-
tures are based on the pen stroke (Section 3.2.1), on the appearance
of the document image (Section 3.2.2) or features are learned accord-
ing to semantic properties (Section 3.2.3). Examples for the different
approaches can be found in Figure 9 to 11. It is important to note
that features are computed for larger document image sections, as
shown in the figures. Then, they are aggregated in order to represent
document image regions, cf. Section 3.1. For representing a region
holistically, a single feature vector is extracted. Features are extracted
frame-wise in order to obtain a sequence of feature vectors or at in-
terest points in order to obtain a set of local image features.

3.2.1 Pen-stroke features

Pen-stroke features encode the geometric shape of the writing. For
this purpose, structural properties of the pen stroke are considered or
pen-stroke pixels are encoded directly, cf. [TG14; FB14]. While these
features have been studied and optimized extensively, it is essential
that the pen stroke can be identified reliably. In order to do so, the
document images have to be binarized or skeletonized, cf. [Gat14, pp.
75—77]. The pen-stroke contour in a section of a historic document
image is shown in Figure 9. Typically, this can be achieved in modern
document scenarios where the document images have high contrast.
Due to the usually high sensitivity to even small variations of the pen
stroke, these features require writing style normalization, like slant,
skew or size, cf. [Gat14, pp. 112-122] and [FB14, pp. 397-398].
Inspired from speech and handwriting recognition, models using
sequences of pen-stroke features have a long tradition. Commonly,
features are extracted from single-column frames in the word- or
text-line image. Popular features are the upper and lower contour of
the pen stroke and statistics of the pen-stroke pixel distribution, like
the number of foreground-background transitions. These features are
used with HMMs and dynamic time warping (DTW). They can be found
in the first approaches to word spotting [CWBg3; KAg4; KAA+00;
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Figure 9: Feature extraction with shape context. The figure shows the con-
tour of the pen stroke that has been obtained after binarization and
edge filtering. Shape context descriptors are obtained at interest
points along the contour. They capture the local pen-stroke pixel
distribution by counting pen-stroke pixels in a radial grid of bins
around the descriptor center. In the figure, a single descriptor is
shown in blue, also cf. [RL14]. Document regions are represented
with sets of shape context descriptors either directly or using them
in a BoF framework, cf. Figure 5.

RMo3] up to recent developments [TVR+16; MRR+16] including re-
current neural networks [FEM+12].

Apart from sequence models, many word spotting methods use
holistic representations. With respect to a method’s ability to discrim-
inate and generalize, this has an important aspect. Statistical sequence
models largely influence the specificity in the retrieval process with
the chosen model architecture. However, if a document image region
is represented holistically, i.e., with a single feature vector, retrieval
becomes a simple nearest neighbor search. Thus, the feature repre-
sentation mainly controls the specificity.

In order to obtain a holistic representation from the well-estab-
lished sequential features, frequency-domain transformations, like dis-
crete Fourier transform, cf. [GWo2, Chap. 4.2], can be performed
[KGGgy; RLMo3]. Lower-order frequency coefficients are used as fea-
ture vector. This approach has been successful for historic handwrit-
ten documents [KGG97; RLMo3]. The generalization capabilities can
be controlled through the number of coefficients.

More advanced representations are built on histograms. The main
idea is to count discrete features. The features can either be counted
in a grid of cells or in an entire document image region, see Fig-
ure 9. Histograms for different cells are concatenated. Therefore, the
dimensionality of the feature vector does not depend on the size of
the region, but only on the number of cells and on the number of
histogram bins. The ability to chose suitable features and use them in
an uniform framework, makes histogram representations extremely
versatile and popular.

Popular representations that use histograms of pen-stroke features
include the Loci descriptor, cf. [FLF11], the blurred shape model de-
scriptor, cf. [FFF+11], and shape context, cf. [LSoy]. The shape context
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Figure 10: Feature extraction with gradient histograms. In the figure, gradi-
ent orientation histograms are arranged in a regular grid. The
strengths of the different histogram orientations are indicated
with gray to blue colors. The features represent the image texture
and no binarization is required. They are robust with respect to
contrast variations to a large extent, cf. [AFV13]. Representations
are obtained by concatenating histograms in document image re-
gions. For normalization, histograms are arranged in blocks in
order to take the local document image context into account.

and blurred shape model descriptors count pen-stroke pixels within
grids of cells. These grids need to have high resolution for obtaining
a sufficiently specific representation, see Figure 9. The Loci descriptor,
in contrast, is given by a single histogram of Locu codes [Glu67]. Each
Locu encodes the number of foreground-background transitions in
given directions starting from a reference point in the word image.
Due to many different possible Locu codes, the Loci descriptor is suf-
ficiently specific without subdividing a word image in a gird of cells.

3.2.2  Appearance features

Appearance features are designed for encoding entire document im-
age regions and not only the pen-stroke specifically. Therefore, it is not
necessary to detect the pen-stroke in the document image with bina-
rization or skeletonization. This makes these representations more
robust for applications in historic document images. Small variations
of the visual pen-stroke appearance will result in small variations of
the feature vector. In contrast, pen-stroke features can change rapidly
if a small variation of the visual pen-stroke appearance changes the
pen-stroke detection result.

The first word spotting method that was only based on appear-
ance features has been presented in [RFRo3]. Local image patches are
extracted at Harris corner points [HS88] and their pixel intensity val-
ues are matched with sum of squared differences, cf. [Sze11, Sec. 8.1].
Although this representation does not represent the pen-stroke ex-
plicitly, it is very sensitive to variabilities in the document image, like
background artifacts.

Appearance features that are more robust in this regard are based
on gradient histograms, see Figure 10. The main idea is to quantize ori-

41



42

WORD SPOTTING

entations in gradient images. Within cell structures in document im-
age regions, gradient magnitudes are accumulated in corresponding
orientation bins. After histogram normalization, the representations
are robust with respect to small document image brightness and con-
trast variations. The pen-stroke will dominate the orientations cap-
tured in the histogram as long as the gradients that are corresponding
to pen-stroke edge-pixels have a larger magnitude than the gradients
in the background. Furthermore, the representation is robust against
varying pen-stroke width to a large extent.

The methods presented in [RPo8a; TTog] use gradient histograms
for obtaining sequential feature representations. The local gradient his-
tograms presented in [RPo8a] are SIFT [Lowo4] inspired. An important
result is how to align the frame with respect to the text in a word
or line image. Fitting the frame to the text area increases retrieval
performance considerably. In contrast, the study in [TTog] is closely
inspired by histograms of oriented gradients (HoG) [DTos]. The differ-
ences mainly lie in the structural parameters, such as cell layout or
histogram normalization.

HoG are also widely used for holistic representations. Particularly in
the context of segmentation-free word spotting, different approaches
exist for achieving accurate retrieval results while keeping the com-
putational complexity at query time low.

For retrieval based on word hypotheses, a holistic representation
is considered in [KWD14]. HoG and local binary pattern, cf. [AHP06],
descriptors are computed for the hypothesized document image re-
gions initially. In order to improve the generalization capabilities, a
random projection technique is applied. The process consists of two
steps. In the first step, descriptors are linearly projected onto ran-
domly selected prototype vectors. In the second step, the final feature
representation is obtained by performing max-pooling of the projec-
tion coefficients with respect to a random partition of the projection-
coefficient vector-space. Thus, for each subset in the random partition,
a single value is obtained that is maximal compared to the values of
the other vector components in the same subset. Therefore, the di-
mensionality of the final feature representation is equal to the num-
ber of subsets. It is important to note that the prototype vectors as
well as the random partition are defined once and are used for all re-
gion and query representations. The prototype vectors are randomly
drawn from the word hypothesis descriptors and the subsets in the
random partition are sized uniformly. Based on this compact repre-
sentation, distance-based retrieval can be performed. The method is
inspired from face recognition [LLM+13]. This also explains the use of
local binary pattern descriptors which have shown good performance
in this domain.

For patch-based retrieval [AGF+14b; RKE16], it is possible to com-
pute only HoG cells, instead of entire region descriptors, in the docu-
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ment image initially. Groups of cells are dynamically combined in or-
der to represent different patch hypotheses at query time. Although
this is fast on the one hand, the hypothesis representations do not
change smoothly for overlapping document image regions on the
other hand. This can be problematic for selecting the most relevant
hypotheses in the segmentation-free scenario. In [AGF+14b] this is ad-
dressed within query model estimation. The exemplary query word
image is augmented with translated instances of itself. This is also
confirmed experimentally for distance-based retrieval in [RKE16].

A solution to this problem are BoF representations, see Figure 5.
By using SIFT features in a BoF framework, the positive properties of
orientation histograms can be exploited. Problems for segmentation-
free processing can be avoided at the same time. This is achieved by
adding an additional layer in the modeling hierarchy, i.e., histograms
of quantized SIFT descriptors. These histograms are computed on a
coarser level than the gradient-orientation histograms and, therefore,
change smoothly for overlapping regions. Furthermore, the general-
ization capabilities can be improved.

While the general applicability of BoF representations for word spot-
ting has been investigated in [ADo7], the benefits for segmentation-
free processing have been presented in [RAT+11] first. For this pur-
pose, patch-hypotheses are represented with temporal adaptations of
spatial pyramids which add spatial information in writing direction.
These are embedded in a latent semantic indexing subspace [DDF+90]
in order to obtain more compact representations with increased gen-
eralization capabilities. Essentially, the subspace encodes feature co-
occurrences which allows for better handling of redundancies and
ambiguities in the original feature space.

Another powerful BoF extension is the Fisher vector [PSM1o]. Fisher
vectors are based on a stochastic visual vocabulary, given as a GMM. A
document image region is represented by the log-likelihood gradient
vector of the GMM parameters with respect to the SIFT features in this
region. Therefore, the Fisher vector encodes how the model would
have to change in order to optimally represent the SIFT features. If
the SIFT descriptors are augmented with their relative position coor-
dinates in the document image, Fisher vectors also encode spatial
information, cf. [SPC12; GRF13].

The superiority of Fisher vectors over HoG descriptors is demon-
strated in [AGF+14b]. However, due to the high computational de-
mands these representations are mainly suitable for segmentation-
based scenarios [AGF+14a] or for re-ranking [AGF+14b].

3.2.3 Semantic features

Semantic features are obtained by transforming document region rep-
resentations such that they contain class information of the problem
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Figure 11: Feature extraction with CNNs. The figure shows the basic CNN
building blocks and indicates how the input image is processed.
Deep architectures are obtained by stacking convolutional and
pooling layers consecutively. In order to predict a semantic repre-
sentation for a given input image, a classifier is used that typically
consists of three fully connected layers. If the output of the last
fully connected layer is not directly suitable for retrieval, the re-
gion representations are obtained from one of the previous layers.

domain. Document image regions are represented as pixel intensi-
ties or with appearance-based features. Class information is learned
on character, word or attribute level. For this purpose, training exam-
ples are required that are annotated accordingly. Attribute represen-
tations characterize a document image region with respect to different
properties. This sets them apart from character-level and word-level
representations that are specific to a single semantic unit. Attribute
representations are learned from word-level annotations.

Sample data that is annotated on character level is either used in
query-by-string scenarios where the visual variability in the docu-
ment images is very limited, cf. [ETF+o4; CZFo6; CBGog; LOL+09], or
it is automatically generated with an existing recognizer, cf. [[VZ14;
TCH+15]. An early approach using semantic features has been pre-
sented in [CZFo6]. Using manually annotated character templates,
a class-discriminant subspace is estimated with linear discriminant
analysis, cf. [DHSoo, Sec. 3.8.3]. Similarly, local image descriptors
have been linearly embedded such that semantic descriptor corre-
spondences are reflected by their distances in the subspace [SRF15].
The training dataset consists of corresponding and non-correspond-
ing descriptor pairs. It is automatically obtained from annotated word
images. Descriptor relations are based on their distance in descriptor
space and their relative spatial locations within the word images. For
query-by-example word spotting, these features can be used within
spatial pyramid BoF representations.

Furthermore, features for query-by-example word spotting that are
learned on character level and on word level, are computed with
CNNs [SK15; SRG16], see Figure 11. These CNNs use classification lay-
ers which assign a single class label to a given input. In order to use
such networks for retrieval, a common approach is to discard one
or more fully-connected classification layers of the CNN. Document
region representations are based on the output of the network. In
[SK15] the last fully-connected layer is removed. For fixed-sized in-
put word images, the output is directly used as a feature vector. In
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[SRG16] all fully-connected classification layers are discarded and a
fixed-size representation is aggregated from the convolutional filter
activations of the last convolution layer. This allows for more flexibil-
ity with respect to the input size of the word images. However, both
representations have been estimated for classification and not for re-
trieval. This is where attribute representations have a considerable
advantage.

The main idea of attribute representations is to define a string em-
bedding for word labels and to learn a transformation of word images
into the same attribute vector space, cf. [ART+13; AGF+14a; WB16;
SF16]. Afterwards, the attribute vector is used as a feature vector and
query-by-example and query-by-string can be performed in analogy
to each other. Attribute representations for word spotting are typi-
cally based on character and n-gram frequencies [ART+13] or char-
acter and n-gram occurrences [AGF+14a; WB16]. In this regard, the
most popular string embedding is the pyramidal histogram of characters
(PHOC) [AGF+14a]. The binary embedding indicates presence and ab-
sence of characters in spatial sections of the string in a pyramidal
fashion. Texts are, therefore, characterized by presence of characters
on different spatial resolutions. Attributes become gradually more
specific from lower to higher spatial resolution. This allows for mod-
eling explicitly what different classes have in common. Similar words,
e.g., office and officer, will have similar attribute representations. This
is an advantage for learning from annotated sample data because the
learning process is guided by expert design. For example, it does not
have to be derived fully automatically that the distinguishing prop-
erty between office and officer is a single character. This is the most
important difference to learning word-level representations.

Approaches for transforming word images into attribute space in-
clude latent semantic indexing [ART+13], support vector machines (SVMs)
[AGF+14a] and CNNs [WB16; SF16]. The most common method is
to treat the transformation as multi-label classification, cf. [BWG1o0].
This requires the string embedding to be binary, as is the PHOC. Each
attribute is considered as a separate class and is individually pre-
dicted with an ensemble of SVMs [AGF+14a] or with a CNN, i.e., the
PHOCNET [SF16]. The CNN approach has the advantage that all at-
tributes are predicted with a single classifier. This allows for sharing
information between the different classes. In contrast, the SVMs are
estimated individually. Furthermore, the CNN has a deep structure,
which is trained in an end-to-end manner. The SVMs only correspond
to the last neural network layer and require a given feature represen-
tation, like the Fisher vector, cf. [AGF+14a].
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3.3 RETRIEVAL

Once numerical representations have been obtained, document im-
age regions are analyzed according to similarity to the query. Mainly,
two different approaches can be identified. Feature matching is di-
rectly based on similarity of the query and document region repre-
sentations (Section 3.3.1). In contrast, model-based approaches define
a structure on top of the feature space (Section 3.3.2). The model de-
scribes the query on a more general level, typically in terms of char-
acter classes or word classes. For this reason, it can be seen as an ab-
straction from the numerical representations. Model parameters are
usually estimated from a larger number of annotated samples and
similarity is computed with respect to the query model. In this regard,
statistical sequence models, particularly HMMs, are most popular.

Finally, efficiency is an aspect that is important for all word spot-
ting systems (Section 3.3.3). In order to achieve fast retrieval times, the
number of document image regions and the complexity of computing
similarity are important. A common strategy is to index region rep-
resentations and retrieve relevant regions according to approximate
similarity measures. Based on these candidates, the sorted retrieval
list is obtained after re-ranking with more accurate methods.

3.3.1 Feature-based similarity

Retrieval becomes a nearest neighbor search, if the query is repre-
sented such that it can directly be compared with document regions
in the same feature space, as shown in Figure 12. The query can be
considered as a template and document image regions are sorted ac-
cording to similarity to the query. While query-by-example scenarios
can be addressed naturally in this manner, a possibility to support
query-by-string in the same way is to synthesize a query template
image [MMSo3; LOL+09; LFG12]. Unfortunately, this limits the ap-
plication domain to scenarios with only small visual variability in
the document images. A more suitable alternative has been provided
with semantic attribute representations, cf. Section 3.2.3.

For word spotting with feature-based similarity, it is important to
choose a suitable similarity measure. Distances can be interpreted as
negative similarities and can, therefore, be used analogously. Within
lower dimensional feature spaces, measures are often based on Eu-
clidean distance, e.g., [RMo3; RFRo3; GPog; FFF+11; FLF11; ZT13;
KWD14]. Within higher dimensional spaces, Euclidean distance is
not discriminative, cf. [NSo6; PSM1o0]. This is due to the squared differ-
ence of vector components which emphasizes vector components with
large differences. For high dimensional and histogram-like represen-
tations, similarity measures that take the histogram distribution into
account have been successful, e.g., [ZSHo3; ADoy; RL14; AGF+14a;
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Figure 12: Feature-based similarity. The figure shows a query word image
and document image regions that are represented in the same
vector space. The holistic features encode visual appearance such
that visual similarity corresponds to similarity in the vector space.
For this purpose, the figure shows histogram representations for
the word images. The similarity between two vectors is computed
by their angle as indicated in blue, i.e., cosine similarity. Cosine
similarity is independent of the vector lengths and emphasizes
the distributions of values in the vectors.

SF15; RKE16; GV1y7; WLB17; RSR+17]. Measuring the angle between
two vectors with cosine similarity, cf. [BR11, Sec. 3.2.6], is the most
common approach in this regard. For this purpose, the similarities of
R document image regions with respect to the query are stored in vec-
tor v € RR. The holistic feature representation of the query is denoted
as x4 € RP and the holistic feature presentation of the document im-
age region with index r € {0, ..., R — 1} is denoted as x, € RP where
D is the dimensionality of the feature vector space. Equation g defines
the cosine similarity for each component of the vector v. In the seg-
mentation-based scenario, the ranked retrieval list is obtained as the
sequence of document regions sorted according to the corresponding
similarity values. In the segmentation-free scenario, only the regions
with the highest similarity values among overlapping regions are se-
lected for the retrieval list, i.e., NMS. The concept of retrieval with
cosine similarity is visualized in Figure 12.
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Cosine similarity is obtained as the scalar product of the unit-length
normalized vectors. Sorting document regions by minimal Euclidean
distances of the corresponding unit-length normalized vectors, re-
sults in a ranking that is equivalent to the ranking that is obtained
with cosine similarity. This is exploited in [ART+15].

Apart from measuring similarity between holistic document region
representations, different approaches have been investigated for com-
puting similarities based on local features. This way, the dynamic
properties of handwritten script can be modeled in the matching pro-
cess. The first method in this direction has been presented in [KHg3].
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In the printed modern document scenario, the similarity between two
binarized word images is based on the Euclidean distance map, cf.
[Dan8o], of their XOR image. For every matching pen-stroke pixel in-
dicated in the XOR image, the Euclidean distance map assigns the
minimum distance to a non-differing pixel. By accumulating all mini-
mum distances, a similarity score for the two word images is obtained.
This score is less influenced by single outlier pixels than larger differ-
ing pixel blobs in the XOR image. For this purpose, it is crucial that
word images are pairwise aligned.

The method has been extended to handwritten historic documents
in [MHRo96]. This was achieved by increasing the robustness in the
matching process. Instead of a single, fixed alignment, a more sophis-
ticated strategy including baseline estimates as well as different hor-
izontal and vertical alignments are evaluated. For two word images,
the best Euclidean distance map score that can be achieved with any
alignment is considered. The method was the first to perform word
spotting on handwritten and historic documents.

In order to increase robustness, more complex matching schemes
have been used with local features. A simple example in this regard
is dynamic time warping (DTW), cf. [SC78]. Similarity is based on an op-
timal alignment of two sequences of feature vectors [KAA+oo; RMo3;
TNKos; TTog]. The features can be considered as local, because they
are extracted frame-wise in writing direction, cf. Section 3.2. State-of-
the-art results in the segmentation-based query-by-example scenario
where no annotated training dataset is available have been reported
with a DTW variant in [RLS+18]. Word images are divided in a se-
quence of overlapping zones. Each zone is represented with a de-
scriptor that is based on discrete Fourier transform coefficients, cf.
[GWoz2, Chap. 4.2], of orientation histograms. In order to compute
the similarity of two word images, the dynamic programming match-
ing-algorithm incorporates the spatial consistency of the zones.

A further degree-of-freedom is added if local features are extracted
at interest points. In graph-based approaches the pen-stroke is rep-
resented with vertices and edges. Vertices are associated with local
feature representations of the pen-stroke and edges define relations
between them. For query-by-example word spotting the query word
graph is matched with graph structures in the document images
[KGGo7; How13; WEG+14a; RLF15; SFR18b].

In a similar manner, local image features from the document im-
ages can be matched with local image features in the query word
template. The spatial consistency of matching features is used as a
similarity measure in [RFRo3; ZT13; KKG15; HF16]. Alternatively, the
cumulative distance [LLEo7] or average distance [ZPG1y] of features
that have been matched in a cohesive elastic manner can be consid-
ered. Spatial consistency is enforced by restricting matches to local
neighborhoods around reference points in the document images, e.g.,
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based on Rols and guides in [LLEo7]. In [ZPG17] the objective is to
be robust with respect to word size variability. After detecting poten-
tial query word center keypoints in the document image, keypoints
in the local neighborhoods are projected in size normalized coordi-
nate systems that are relative to the center points. Keypoints from the
query are projected in a coordinate system that is relative to the corre-
sponding center keypoint in the query word image as well. Matches
between keypoints from the query and the documents are only con-
sidered for computing similarity scores if they are spatially consistent
within the normalized coordinate systems. It should be noted that
both approaches in [LLEoy] and [ZPG17] heavily depend on manual
parameter tuning.

Keypoint-based approaches establish the relation of local features
in the query word image and local features in the document image
directly. Spatial consistency measures are based on corresponding fea-
tures. Graph-based methods obtain a relationship between features
in their local neighborhoods first. Thus, graph-based methods can di-
rectly exploit these spatial relations in the matching algorithms, e.g.,
with graph edit distance, cf. [RBog], as in [WEG+14a; RLF15; SFR18b].

3.3.2 Model-based similarity

In order to perform word spotting with query models, the similarities
of document region representations with respect to the query model
are computed. For this purpose, the query can be modeled on word
level or on character level. Word-level approaches are based on SVMs,
e.g., [PRog; AGF+14b], or statistical models, e.g., [RLMo3], including
HMMs [RP12a; TVR+16]. Character-level approaches are mostly based
on sequence models, such as HMMs [CWBg3; CZFo6; FKF+12], recur-
rent neural networks [FFM+12; SGL+16] or hybrids of HMMs and neu-
ral networks [TCH+15; BMC+15]. A common property of these meth-
ods is that all the models can, or have to, be estimated from multiple
annotated training examples. Due to their flexibility with respect to
the required amount of annotated training material, SYMs and HMMs
are particularly relevant. Furthermore, both models have been used
for segmentation-free word spotting.

An SVM defines a hyperplane that separates document region rep-
resentations into relevant and non-relevant with respect to the query
[PRog; AGF+14b]. Accordingly, it is estimated from multiple relevant
and non-relevant examples. Distances to the hyperplane are inter-
preted as similarity scores in order to obtain the ranked retrieval list. In
[PRo9], class information is modeled on word level which limits the
user to a predefined lexicon of query words. In contrast, [AGF+14b]
considers a query-by-example scenario where no annotated training
material besides the query word image is provided. For estimating
the SVM, non-relevant examples are randomly sampled from the doc-
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ument collection. Multiple examples that are relevant to the query are
obtained by translating the query word region, cf. Section 3.2.2. Fur-
thermore, this so-called exemplar SvM [MGE11] can be re-estimated
after query expansion [AGF+14b], also cf. [BR11, Chap. 5].

Since SVM-hyperplanes separate the feature space they are referred
to as discriminative approaches. Statistical approaches model the gen-
eration of feature vectors using statistical distributions over the docu-
ment-region feature-space. Thus, retrieval is based on the probability
of generating the document-region features with the query model. For
this purpose, the common approach is Bayes’ theorem, cf. Equation 1.
The likelihood of the features conditioned on the query, is normalized
with the evidence. The likelihood is weighted with a prior for the query
word. Typically, the prior is assumed to be represented by an uniform
distribution and is, therefore, neglected. The likelihood is represented
by the query model. The evidence represents the distribution of the
features in the feature vector space without being conditioned on any
specific class model. Since the logarithm of this odds ratio is consid-
ered in practice, this form of normalization is referred to as log-odds
scoring [BHKg7]. Disregarding the prior, Equation 10 expresses the
score for the query with respect to a document region in terms of
Equation 1.

log posterior ~ log likelihood — log evidence (10)

In contrast to the evidence, the likelihood is conditioned on the query.
Thus, the evidence should theoretically be greater than the likelihood
or equal to the likelihood. Consequently, the highest similarity value
in the logarithmic domain is theoretically zero. The score is an ap-
proximation of the query posterior probability.

In practice, modelling the evidence is a major challenge because
it has to represent the semantic structure over the entire feature vec-
tor space. In [RLMo3], this is achieved by limiting the queries to a
lexicon. The evidence is modeled as the total probability of the likeli-
hoods over all word classes. The quality of a score depends on how
well the corresponding document region is represented by any of the
class models. The restriction to a lexicon is avoided in [RPo8b] by
representing the evidence as a GMM over the feature vector space. Un-
fortunately, this results in a model that is unspecific to the semantic
structure of the problem domain. Semantic information is only in-
corporated in the query model which causes difficulties for scoring
document regions that are not represented well by the query model.

The most common statistical method for query-by-string word spot-
ting are HMMs. A widely noticed approach is to model the occurrence
of the query word in a text line [FKF+12]. Figure 13 visualizes the
overall process. Given a document image, the segmented text line im-
ages, cf. Section 3.1.1, are normalized and represented with sequences
of feature vectors, cf. Section 3.2.1. Within the statistical approach, the
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Figure 13: HMM-based word spotting system. For decoding a text line, the
probability of generating the sequence of feature vectors with the
query HMM versus generating the sequence with the filler HMM
is considered. Start and end nodes are shown in gray. The other
circles denote character models, where Sp stands for space. Mod-
els representing sequences of characters are shown with ellipses.
Arrows indicate possible transitions between models. The orange
box in the bottom right visualizes the most plausible decoding
result for the query place.

likelihood is represented by an HMM query model and the evidence is
modeled by the so-called filler model, cf. Equation 10. The filler mod-
els an arbitrary sequence of characters. The query model is a compound
HMM which consists of three different models. The query word is mod-
eled by concatenating the corresponding character HMMs. Equation 11
shows an example for the query word place.

Alplace) = A(p) o A(1) o A(a) o A(c) o Ale) (11)

The space model and the filler model represent the context of the
query word within the text line. The structure of the compound query
model defines transitions between the models such that it models ap-
pearances of the query word at the beginning, at the end or in the
middle of the text line. Though the space model is also included
in the filler model, its explicit occurrence in the compound query
model helps to recognize if shorter words are appearing within longer
words. In the following, the compound query HMM will be denoted as
A¢ and the filler HMM will be denoted as A;.

A probabilistic score that is based on an approximation of the query
posterior probability given the feature vector sequence of the text line
is obtained from the quotient of the compound query model score
and filler model score, cf. [FKF+12]. For this purpose, L line images
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are represented with feature vector sequences O with index 1 €
{0,...,L —1}. For each line image, the similarity score is stored in
vector v € Rl as shown in Equation 12.

fq p(oml S;k |)\(?)

p(07,S712) 2

V1 =
For the line image with index 1, the likelihood is approximated with
the optimal output probability p(O"Y, S;|A,) for the feature vector
sequence O and the optimal state sequence S; obtained for the
compound query HMM A¢. In analogy, the evidence is approximated
with the optimal output probability for the feature vector sequence
O™ and the optimal state sequence S} obtained for the filler HMM
A;. Due to the varying length of the query word detections, the odds
ratio is finally normalized with the length fq of the most likely occur-
rence of the query within the feature vector sequence. After normal-
ization, the score is the geometric mean over the approximated state
sequence probability that corresponds to the query word, according
to the alignment obtained for model A,.

However, this approach for scoring text lines according to relevancy
with the query is not without problems. Although no explicit tran-
scription of the text line has to be provided, the quality of the score
depends on the recognition result that is computed in the filler model.
As formally shown in [PTV15a], the query model score can be inter-
preted as a score for a word-level transcription result that contains
the query word and the filler model score can be interpreted as a
score for any word sequence. Consequently, transcription errors will
result in smaller differences between query model scores and filler
model scores, even though the query word might not have been spot-
ted correctly. This produces false positives. Empirically, the effect can
be confirmed in different HMM-based word spotting approaches that
have increased recognition capabilities through integration of a bi-
gram language model (LM) [FFB+13], higher order n-gram LMs [TPV15;
TPV16] and lexicon-based recognition [PTV14; TVR+16].

Word spotting that is based on word-level recognition with HMMs
has been approached with word graphs [PTV14; TVR+16]. Word graphs
represent the most plausible transcriptions of a text line on word level.
Word segmentation hypotheses are organized in a directed acyclic
graph for this purpose. Each node is labeled with a frame position in
the feature vector sequence of the text line image. Each edge is labeled
with a word and a score indicating if the word occurs within the asso-
ciated positions in the feature vector sequence. The scores are referred
to as edge posteriors and are obtained using forward and backward vari-
ables in analogy to state transition posterior probabilities in the Baum-
Welch algorithm, cf. [Fin14, Sec. 5.7.4]. Frame-level query posterior
probabilities are computed by accumulating edge posterior probabil-
ities according to the following two conditions. All edge posterior
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probabilities are taken into account that are labeled with the query
word. The frame positions, which are associated with these edges,
have to enclose the frame position for the frame-level query posterior
probability considered. The similarity score for the text line is given
by the maximum frame-level query posterior probability within the
text line. Word graphs have the drawback that they restrict the user
to query words from a predefined lexicon.

Query-by-string methods addressing this limitation have been pre-
sented in [PTV14] and [TPV16]. In order to spot query words that
are not part of the word graph, a fallback to a character-based filler
approach is used in [PTV14]. Similar to the word graph, a charac-
ter lattice represents possible transcription hypotheses of the text line
on character level [TV13]. Since the filler score is independent of the
query word, it is obtained as the maximum score of all complete paths
in the character lattice. This corresponds to the score of the optimal
transcription of the text line image. The query model score is obtained
as the maximum score for a path containing the query character se-
quence. The text line is ranked based on the log-odds scores for the
query word model and the filler model. Word graph and character lat-
tice scores are combined following a backing-off strategy. This refers
to the fallback from a specialized to a more general model, also cf.
[Fin14, Sec. 6.5.5].

In [TPV16] frame-level character sequence posterior probabilities
are computed for line images in close analogy to the computation of
frame-level word posterior probabilities in word graphs. For this pur-
pose, a character lattice is computed first. Sequence posterior prob-
abilities are obtained based on edge posteriors which represent the
probability for characters in the given section of the feature vector se-
quence. These character sequence probabilities are also referred to as
posteriorgrams, cf. [HSWog]. For ranking line images according to rele-
vancy with the query, posteriorgrams are normalized with respect to
query length.

The difference of the word graph and posteriorgram approaches in
comparison to a character filler approach is that query posterior prob-
abilities are not based on the optimal but the total output probability
of possible text line transcriptions, cf. [TVR+16; TPV16]. As formally
derived for the character filler approach [PTV15a], using the log-odds
of optimal output probabilities can be seen as an approximation to
using the log-odds of total output probabilities. Regarding retrieval
performance, word graphs benefit from the lexicon. By integrating a
language model, results can be improved even further [TVR+16]. A
direct comparison is possible between character filler and posterior-
gram approaches. As can be seen in the results reported in [PTV15a]
and [TPV16], results consistently improve with higher order LMs. In
this regard, improvements are considerably better if scores are based
on the total output probability.
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With respect to query-by-example word spotting a method based
on word graphs was presented in [VTP15]. The formal derivation of
their method boils down to performing an n-best word-level recogni-
tion of the example image. According to the recognition probabilities,
the n-best results are then used as queries for decoding the word
graphs of all line images in the document collection. In this scenario
the user is not limited to a given lexicon of query words anymore.
However, retrieval can be expected to fail if the query word image is
not at least similar to any of the words in the lexicon.

Finally, HMMs have also been used for query-by-example word spot-
ting scenarios where no annotated training material but only the ex-
emplary occurrence of the query word is given. In order to estimate a
query word HMM from a single example, a semi-continuous (SC) model
is used in [RPogb]. The shared GMM is estimated in an unsupervised
manner and only the state-dependent mixture and transition proba-
bilities are estimated at query time. Since no annotated training sam-
ples are available for estimating a filler model, the GMM is used as a
so-called universal background model [RPo8b] for HMM score normaliza-
tion. Word region hypotheses are ranked according to the log-odds
scores of the query model and the background model, cf. Equation 10.

A possibility to avoid score normalization for SC-HMMs has been
proposed in [RP12a]. In contrast to [RPogb], not only the query word
but each word image region is modeled with an HMM. Similarity be-
tween the query word HMM and the word region HMMs is then mea-
sured by DTW between state-dependent mixture model weights. This
is possible due to the shared GMM in the SC setting. Similarity be-
tween mixture weight vectors is based on the discrete Bhattacharyya
coefficient [Bhag3], cf. [CRMoo], which measures the similarity of two
discrete probability distributions.

3.3.3 Efficiency

In practice, word spotting systems have to search large collections
of document images. In order to guarantee fast retrieval times, op-
erations that are independent of the query are performed initially.
At query time, this indexed information is accessed efficiently, thus,
reducing the computational effort required for obtaining potentially
relevant document image regions. Data structures that integrate well
with the document region representations are essential for this pur-
pose. The set of candidate regions can be ranked according to similar-
ity measures that are adjusted to these data structures [LSo7; AGF+12;
RAT+15a; RKE16; TPV15; TVR+16]. Since this adjustment often re-
sults in approximate similarities, additional re-ranking can improve
retrieval results considerably [S]12; AGF+14b; RLF15; GV15a; SFR18b].
It has to be noted that the methods [KWD14; WLB17; GV17; RSR+17]
address the efficiency aspect by keeping the number of word hy-
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Figure 14: Document region indexing. The process of retrieving regions
through an IFs is visualized. Document image regions are rep-
resented in terms of codewords. Here, the codewords are shown
as visual words that are used in BoF representations, cf. Figure 5.
Five visual words are indicated within the inverted index. Associ-
ations between codewords and document image regions are ex-
emplarily indicated with arrows. In order to retrieve regions that
are relevant with respect to a query, the codewords that are asso-
ciated with the query are used for look-ups in the inverted index.
In the figure, this is indicated for the red visual word.

potheses low in their segmentation-free application scenario, cf. Sec-
tion 3.1.3. In order to improve scalability, indexing strategies for word
hypothesis representations could be applied in analogy to [SJ12] or
[RDE+14; AGF+14Db].

Using index structures in order to solely reduce the number of re-
gion candidates offers the best possibilities for making a trade-off
between efficiency and accuracy. In this scenario word spotting is
performed in a two-stage process. In the first stage the objective is
to optimize precision and recall. Precision is important in order to
obtain short retrieval lists. In addition, recall is important in order
to obtain retrieval lists that include the relevant regions at the same
time. Computationally expensive methods for optimizing the ranking
in the resulting retrieval list are applied in the second stage. There-
fore, retrieval lists are mostly affected by reduced recall. A trade-off
between efficiency and recall has to be made by selecting the number
of re-ranked regions, cf. e.g., [AGF+14b]. In contrast, methods that
do not perform re-ranking have to find a trade-off between efficiency
and retrieval performance in general. Approximate similarity mea-
sures tend to affect recall as well as precision at different recall levels
in a similar manner [RAT+15a].

The most common data structure for efficient retrieval is the inver-
ted file structure (IFS), cf. [BR11, Chap. 9.2]. Figure 14 visualizes the
concept. The basic idea is to represent document image regions with
a codebook of feature codewords. Typically, the codebook is either
defined heuristically [LSoy; FLF11; GV15a; RLF15; GV18] or obtained
automatically through clustering [SJ12]. The inverted index contains
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an entry for each codeword and stores links to the associated docu-
ment image regions. Once the codewords have been obtained for the
query, the index allows for fast look-ups. The purpose of the IFs is
to retrieve as few document regions including mostly all document
regions that are relevant to the query. The successful application de-
pends on the average number of IFS entries per codeword. For ex-
ample, if a codeword is relevant to many document image regions,
all of these regions will have to be processed after the look-up for
this codeword. Different strategies can be followed for combining the
results of multiple IFS look-ups, cf. [BR11, Sec. 9.2.3]. The union of
retrieved regions is considered in order to emphasize recall whereas
the intersection of retrieved regions emphasizes precision. Further, it
is possible to obtain a (top-n) ranked retrieval list by encoding non-bi-
nary relevance information for regions with respect to the codewords
in the IFS [S]12; GV15a], cf. [BR11, Sec. 9.2.4].

Codebooks used in inverted indices are based on shape context
[LSo7] and Loci [FLF11] descriptors, binary attribute representations
[RLF15; GV15a; GV18] or BoF [S]12], cf. Section 3.2. Index codewords
for the local descriptors are implicitly defined by enumerating over
all possible descriptor instances. For attribute representations, the at-
tributes can also be used as index codewords in analogy to using vi-
sual words as index codewords for BoF representations, see Figure 14.

An interesting IFS application is presented in [LSo7]. By indexing
shape context descriptors, the IFS is used for efficient feature match-
ing. Shape context descriptors from the query vote for word images
in which they are occurring. Votes are accumulated and used as sim-
ilarity measure. In [RLF15] an approximate similarity measure for
subgraph matching is based on the same idea. The voting scheme
perfectly integrates with the IFS. At query time, it reduces the compu-
tational effort to simple additions. This is extremely efficient assum-
ing that there exist only few IFS entries for the codewords which are
obtained for the query.

The most widely and successfully used approximate similarity mea-
sure for word spotting is based on product quantization (PQ) [JDS11].
It has been applied to segmentation-free word spotting [AGF+12;
AGF+14b; RAT+15a; RKE16] and is capable of handling large amounts
of region representations that are obtained in patch-based approaches,
cf. Section 3.1.2. The key idea is to compress document region repre-
sentations by quantization. In order to achieve high accuracy despite
the compression, the quantization error has to be as small as possible.
This can be optimized with large codebooks. For example, in order
to encode a vector with a 64-bit centroid index, k = 2°% centroids
are required. However, estimating codebooks at this size is compu-
tationally demanding and requires a multiple of k samples [JDS11].
PQ addresses this problem by quantizing disjoint sets of feature vec-
tor components independently. These are given as a partition of all
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components of the feature vector space. Afterwards, a vector is en-
coded by concatenating the centroid indices obtained by the so-called
sub-quantizers. This encoding as well as the global codebook are im-
plicitly defined as elements of the Cartesian product of sub-quantizer
centroid indices and sub-quantizer codebooks, respectively. The ap-
proach is referred to as product quantization for this reason. As a result
a global codebook of size 2°* can be obtained with 8 sub-quantizers
using codebooks of size 256 each [JDS11], for example.

While compression is useful for storing large amounts of document
image representations in memory, retrieval speed can be improved
by computing approximate distances based on the centroids that are
associated with the query representation and the region representa-
tions. For this purpose, precomputed look-up tables contain pairwise
distances of the centroids for each sub-quantizer. Afterwards, the sim-
ilarity measure is simply based on accumulating distances obtained
from the look-up tables.

Assuming that only few sub-quantizers are required, computational
complexity is linear in the number of document image regions. In or-
der to avoid an exhaustive search, a two-stage integration with an
IFS for indexing large databases is proposed in [JDS11]. While this
approach has not been investigated for word spotting, yet, a pyra-
midal matching scheme is applied with the same motivation in the
patch-based segmentation-free scenario considered in [RKE16]. The
pyramid is based on a Gaussian scale space, representing document
images from coarse to fine details, cf. [Lowog]. PQ compressed fea-
tures are extracted at each scale and used for representing patches
in analogy to [AGF+12; AGF+14b]. In the pyramid, the number of
patches increases from coarse to fine scales. The document image
area of a single patch on a coarse scale is represented by multiple
overlapping patches on a finer scale. After matching the query on
coarse scales, candidate patches are passed on to finer scales and the
overall search space is reduced.

The indexing strategies that have been presented so far have pri-
marily been used for word spotting with feature-based similarity
measures, cf. Section 3.3.1. Model-based approaches are not as well es-
tablished in this regard. One exception is the exemplar SVM [AGF+12;
AGF+14b]. After model estimation, the weight vector is used for re-
trieving document image regions according to approximate similarity
with PQ. The only other exceptions are the word graph [TVR+16] and
the character lattice [TV13; TPV15; TPV16] approaches that address
the efficiency aspect for HMMs.

A common property of the word graph and the character lattice, cf.
Section 3.3.2, is that they model n-best recognition results in a graph
structure. Therefore, the recognition result is completely independent
of the query word and can be precomputed for each text line image.
The retrieval time depends on the complexity of the graph since all
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edges that are relevant for the query have to be searched. The com-
plexity of the graph is controlled during text line decoding. The more
transcription hypotheses are modeled in the graph the higher is its
complexity.

3.4 DISCUSSION

Word spotting systems allow for accessing document collections rap-
idly, thus, avoiding tedious manual exploration. However, this is only
possible if they do not require a lot of manual preparation in order to
work with a new dataset. This manual effort typically lies in the par-
tial annotation of the dataset and in the meta parameter fine-tuning.
It has to be noted that expert knowledge regarding the interpretation
of document images as well as the interpretation of meta parameters
is mandatory for this purpose. In the worst case, even the design of
novel methods might be required, e.g., for document image segmen-
tation, cf. Section 3.1.1, or for pen-stroke features, cf. Section 3.2.1,
that are adjusted to the special dataset characteristics.

Fine-tuning meta parameters in order to optimize retrieval accu-
racy is beneficial for any word spotting method. The sensitivity of
different meta parameters often depends on the number of model pa-
rameters that can be estimated from training data automatically. If
a meta parameter is very sensitive, it has to be adjusted with care
because it will greatly influence the overall system performance. Un-
fortunately, the complexity increases with the number of model pa-
rameters and more and more training data is required. In this regard
it is important if the training data has to be annotated and on which
level the annotations are required. For example, creating line-level an-
notations is considerable less manual effort than annotating on word
level. Representations that can be estimated without annotated data
in an unsupervised manner, e.g., BoF, are particularly interesting in
this regard.

In summary, the ideal word spotting method should minimize the
manual effort by minimizing the number of sensitive meta parame-
ters and the number of annotated training samples. In addition, it
has to be accurate and fast at the same time. Due to the fact that all
these requirements are hard to meet jointly, methods make trade-offs.
For example, if the number of annotated training samples should
be low, i.e., down to a single sample in query-by-example scenarios,
heuristics are applied in order to generalize to unseen occurrences of
the query word and in order to discriminate word instances that are
visually similar but irrelevant to the query. However, due to the lim-
ited evidence, the ability to discriminate will decrease as the general-
ization capability increases and vice versa. Furthermore, the manual
effort of locating an occurrence of an infrequent query word can be
substantial in query-by-example scenarios. If more annotated training
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material is available, this effort can be avoided with query-by-string.
In general, also retrieval performance will improve due to the im-
proved generalization and discrimination capabilities of the models.

A comprehensive list of word spotting methods and a categoriza-
tion with respect to their characteristic can be found in Appendix C.
In the remainder of this section, methods will be compared with re-
spect to selected aspects. The methods are either segmentation-free
on document level (Section 3.4.1) or based on HMMs (Section 3.4.2).
This is due to the following desirable properties which can be derived
from the requirements that have been discussed above.

Under the heuristic assumptions for word hypothesis generation,
segmentation-free methods do not have to be adapted in order to be
applied to a new dataset, cf. Section 3.1. As these hypotheses repre-
sent alternatives to each other, word hypothesis generation does not
include as many heuristic assumptions as segmentation. Therefore, it
can be expected to be more robust.

If a segmentation on line level can be obtained reliably, HMMs are
the most prominently used sequence models for word spotting, cf.
Section 3.3.2. Sequence models have the advantage that the segmen-
tation within the text line is implicit. It is based on aligning frame rep-
resentations with the models. Given a line segmentation, approaches
for defining and representing frames can be expected to be more ro-
bust than approaches for word hypothesis generation. Furthermore,
HMMs offer great flexibility with respect to the required amount of an-
notated training examples. This sets them apart from recurrent neural
networks and CNNs where large amounts of annotated samples are
mandatory for model estimation.

3.4.1 Word spotting on document level

Table 1 shows an overview of word spotting methods that are seg-
mentation-free on document level. The methods are characterized
with respect to how region hypotheses are generated, how the large
numbers of hypotheses are processed efficiently and how hypotheses
are selected among competing hypotheses. Besides the method used for
ranking the hypotheses according to similarity to the query, cf. Sec-
tion 3.2 and Section 3.3, these are the aspects that are characteristic
for segmentation-free word spotting. Furthermore, the prerequisites
and limitations of the methods can be identified.

Approaches for generating hypotheses are based on patches or on
text detection. Patch-based approaches are denoted with dense patches
and descriptor matches in Table 1. All other generation approaches rely
on text detection. CC prototypes are obtained through clustering. De-
tector-based approaches have the advantage that they are robust with
respect to word size variabilities. Patch-based approaches have advan-
tages if words are touching. The latter is particularly problematic if
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CCs are used as text detection result. The only method that is able
to cope with touching words and bases hypothesis generation solely
on CCs is presented in [RLF15]. This is achieved by CC splitting and
subgraph matching which is a considerable computational effort. Hy-
potheses generated with the region proposal network [WLB17] are po-
tentially able to handle touching words as well. In contrast to [RLF15],
large amounts of annotated training samples are required.

For efficient retrieval in the segmentation-free scenario, word region
hypotheses extraction, local feature matching, inverted indices and ap-
proximate similarity, e.g., based on PQ, are most popular. By comput-
ing representations prior to retrieval, the computational complexity
is reduced at query time. Word regions have the advantage that the
search space is reduced to the relevant document image areas. How-
ever, if relevant word regions are not among the hypotheses, limita-
tions as in the segmentation-based scenario apply, cf. Section 3.1.1. In
a similar manner, local features are typically detected in text regions.
In contrast to the word region approach, it is not required to detect
word boundaries. However, in order to detect local features reliably
and reproducibly in document images, large numbers of keypoints
must be extracted, e.g., [HF16]. Afterwards, a large number of poten-
tial matches between the features from the query and the features
from the document images have to be analyzed, e.g., [ZPG17].

Word region and feature matching approaches aim at keeping the
number of region candidates low. In contrast, IFS and PQ are most
suitable for selecting potentially relevant regions from a large num-
ber of region candidates. PQ can be seen as a generalization of the
IFS-based voting scheme for computing approximate similarities be-
tween high-dimensional vectors. Given the sub-quantizer codewords
that the query and the document regions are represented with, look-
up tables store pairwise distances between codewords for each sub-
quantizer. The look-up tables can be seen as inverted indices. The
approximate distance between two vectors is given by accumulating
the precomputed distances between the two codewords obtained for
each sub-quantizer. This can be seen as a voting scheme that is based
on IFS look-ups. Consequently, the IFS voting scheme can directly be
applied if the feature representation is suitable. This avoids the addi-
tional effort of estimating sub-quantizers. It can even be more accu-
rate since it builds on codeword representations that are part of the
original feature design. Furthermore, it can also be faster since not all
regions have to be processed necessarily. However, it has to be noted
that for applications of IFS and PQ considerable improvements can
be achieved with re-ranking. This is due to the mostly approximate
similarity obtained in the voting schemes.

Finally, almost all methods select regions for the retrieval list with
NMS. This has the advantage that the regions do not overlap and are,
therefore, independent to each other as in the segmentation-based
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scenario. In Table 1 only four methods do not select regions with
NMS. Most notably, alternative approaches are followed in [HF16] and
[ZPG17]. In [HF16], keypoints belonging to a keypoint configuration
that matches with the query are removed. Thus, a specific keypoint in
the document image can only be used for retrieving a single region.
In [ZPG17], overlapping regions are merged instead of selecting only
the one with the highest similarity score.

3.4.2  Word spotting with hidden Markov models

Table 2 shows an overview of HMM-based word spotting methods.
The characteristic properties are the output model, the approach to
retrieval and score normalization. These properties allow conclusions
regarding the visual variability that can be modeled as well as the
prerequisites such as a lexicon or the amount of annotated training
data that is required.

An interesting aspect of word spotting with HMMs is that probabilis-
tic scores can be obtained for potentially relevant document image re-
gions. This is due to the stochastic approach of HMMs and sets them
apart from most word spotting methods that only allow for obtain-
ing a ranking. Probabilistic scores can be useful if retrieval results are
processed by another automatic system. For users, similarity visual-
izations, e.g., using color coding, can be improved. However, apart
from the query model, the stochastic distribution of text, i.e., the filler
model, has to be estimated in order to obtain the posterior probability
of the query. Although this does not involve a transcription explicitly,
an n-best transcription is performed implicitly. Therefore, the filler
can be considered as a full recognition model which is not easy to
obtain in all word spotting scenarios. Table 2 shows methods that
make trade-offs from filler models that are based on full recognizers
including LMs over a background model that solely approximates the
statistical feature distribution to an approach that takes advantage of
the sequential modeling but avoids score normalization altogether.

Output models that have been used for word spotting with HMMs
are largely based on Gaussian distributions. A single density per state
has been sufficient for the printed document scenarios considered
in [CWBo93; ETF+04]. For handwritten documents, GMMs have been
used. For query-by-example word spotting where no further training
material is available, SC-HMMs have the advantage that the GMM can
be estimated in an unsupervised manner from the feature vectors in
the document images. Afterwards, the single example is only used
for estimating transition and mixture probabilities [RPogb; RP12a].
The approach has also been extended to query-by-string where the
query word model is estimated from multiple synthetically generated
query word samples in the same manner [RP12b]. The gap between
the synthetic fonts and the handwritten word images is bridged by
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always using the original GMM which represents the feature vector
distribution of the handwritten word images. In cases where large
amounts of annotated training data are available, a GMM using di-
agonal covariance matrices is estimated per state. This increases the
number of free parameters which can lead to more powerful models,
e.g., [FFB+13; TVR+16]. A noteworthy approach that is not based on
Gaussians is the deep belief network integration in [TCH+15]. The
deep belief network predicts character posterior probabilities which
are decoded with an HMM. However, frame-level annotations are re-
quired for training the deep neural network.

For retrieval with HMMs, mainly three different approaches can be
identified. In the traditional query-filler ratio scoring, see Figure 13,
the odds of the optimal path probabilities (Viterbi algorithm) for the
query and the filler models is used, e.g., [FKF+12]. This can be con-
sidered as an approximation of the posterior probability of the query
given the document image region [PTV1is5a]. The methodologically
sound approach is to predict the query posterior probability with the
total probability of any path that is relevant for the query (forward-
backward algorithm). Similar to the computation of state posterior
probabilities, cf. [Fin14, Equ. 5.14], the probability for any transcrip-
tion that contains the query word is normalized with the probability
for any transcription of the document region. Thus, the quality of
the query posterior probability directly depends on the quality of the
recognition. It should be noted that the recognition result is repre-
sented by the filler model in the query-filler ratio approach.

Finally, it is also possible to avoid scoring by considering the rele-
vance of a document image region as a two class recognition problem.
The probabilities for transitioning into the query or the filler model
have to be adjusted to the users needs, e.g., in order to favor preci-
sion or recall, cf. [TCH+15]. Therefore, a ranked retrieval list is only
obtained after multiple recognitions with varying transition probabil-
ities. Only the approach presented in [RP12a] goes even further and
bases retrieval on DTW distances of state mixture weights. This way,
different HMM models can be compared directly. In contrast to the
other HMM-based methods, it is required that an HMM is estimated
for each document image region.

Closely related to the retrieval approach is score normalization. For
the majority of the methods in Table 2, normalization depends on
the filler model. It indicates the complexity and the structure of the
recognition model. In this regard the LM integration is particularly im-
portant, because it allows for the best retrieval performance that can
be achieved with HMM-based methods. Higher order n-grams (n > 2)
allow for considerable improvements if the query posterior is based
on the total output probabilities [TVR+16; TPV16].



Method

Hypotheses

Efficiency

Selection

Keyword signature matching [KGGogy]
Cohesive elastic matching [LLEoy; LOL+09]
Connected components [MCog]
Patch-based matching [GPog]

Heat kernel signatures [ZT13]

Inkball models [How13], cf. [PZG+14]
Random projections [KWD14]

Exemplar svM [AGF+14b]

Spatial pyramid hashing [RDE+14]
Graph embedding and indexing [RLF15]
Spatial pyramid indexing [RAT+15a]

Attribute SVMs [GV15a], cf. [GV15b; GV18]

Feature matching [KKG15; ZPG17]

Relaxed feature matching [HF16]
Scale-space pyramid [RKE16]

Region proposal network [WLB17]

R-PHOC [GV17]
Word hypotheses [RSR+17]

Dense patches

Word starting points
CC prototypes
Dense patches
Descriptor matches
Dense patches

CC grouping

Dense patches
Dense patches

CC prototype graph

Dense patches

CCs and patches

Descriptor matches

Dense patches

Dense patches

CNN region proposals and

CC group classification
CC group classification

ERs on detector scores

Frequency domain
Local features
Word regions

Text area detection
Local features
None

Word regions

PQ codebook
Probabilistic hashing
IFS on subgraphs
PQ codebook

IFS on CCs and integral
histogram

Local features

Local features

Pyramidal refinement
Word regions

Word regions

Word regions

n-best patch scores

NMS of word starting point scores
All cC prototype matches

NMS of patch scores

NMS of descriptor sequence scores
NMS on patch scores

NMS of CC group scores

NMS of patch scores

NMS of patch scores

NMS of subgraph similarity scores
NMS of patch scores

NMS of patch scores

NMS [KKG15] or merging [ZPG17]
of spatial consistency scores

Spatially consistent matches
NMS of patch scores

NMS of region scores

NMS of region scores

NMS of region scores

Table 1: Segmentation-free word spotting methods overview. The table shows properties that are characteristic for methods that do not require any

document image segmentation on word- or line-level.
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Method

Output model

Retrieval

Score normalization

Character HMMs [CWBg3]
Pseudo 2D-HMMs [KAg4]

Generalized HMMs [ETF+o04], cf. [CZFo6]

SC-HMMs [RPogb]
Synthetic queries and sC-HMMs [RP12b]

Model-based sequence similarity [RP12a]

Character HMMs [FKF+12]

Character lattice [TV13]

Character HMMs and bigrams [FFB+13]
HMM n-gram-character lattice [TPV15]

Deep HMM [TCH+15]
HMM word graphs [TVR+16; VIP15]

HMM n-gram-character lattice [TPV16]

Gaussian (whitespace GMM)
Discrete (pixel probabilities)

Gaussian,
variable frame width

Shared GMM
Shared GMM

Shared GMM
(no covariance)

GMM (no covariance)
GMM (no covariance)
GMM (no covariance)

GMM (no covariance)

Deep belief network
GMM (no covariance)

GMM (no covariance)

Query-filler ratio

Queryfiller ratio
Query-filler recognition

Query—-GMM ratio
Query—-GMM ratio

DTW on HMM state
mixture weights

Query-filler ratio
Query-filler ratio
Query-filler ratio

Query-filler ratio
Query-filler recognition

Word posterior
probabilities
Character sequence
posterior probabilities

Sub-character filler
Word filler

Context-dependent character filler,
query-filler transition probabilities

Universal background model

Universal background model
Warping path length

Character filler, query length
Character filler, query length
Character-LM filler, query length
Character-LM filler, query length

Character filler, query-filler
transition probabilities

LM word graph

LM character lattice, query length

Table 2: HMM-based word spotting methods overview. The table shows properties that are important for word spotting with HMMs.
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SEGMENTATION-FREE WORD SPOTTING WITH
BAG-OF-FEATURES HIDDEN MARKOV MODELS

The proposed word spotting method retrieves document image re-
gions according to similarity to a query word image or a query string.
No segmentation of the document image into lines or words is re-
quired. Document images are processed in an effort to minimize as-
sumptions about the visual appearance of script. Since the required
amount of training annotations should be low at the same time, con-
straints aim to be as general as possible. This is achieved by:

* detecting query words in a patch-based framework that inte-
grates aspects from retrieval based on line segments and text
hypotheses (Section 4.2),

* using BoF representations that are automatically adapted to the
visual characteristics of the document images (Section 4.3),

* modeling BoF in the HMM process such that the statistical prop-
erties of the BoF representations are considered (Section 4.4),

* modeling the query with HMMs in order to take the sequential
structure of text into account (Section 4.5),

¢ performing retrieval with two decoding stages that are fully in-
tegrated with each other in order to obtain accurate results fast
(Section 4.6).

The most important assumptions for word spotting with BoF-HMMs
are related to the document layout and the visual variability of the
text. For document region extraction and processing, it is required
that the text has a horizontal orientation. Otherwise, the text orien-
tation has to be normalized first. It is, specifically, not a restriction if
words are touching. Furthermore, length variabilities can be handled
to a large extent.

With respect to the visual variability of the text, the amount of
annotated samples that are available for query model estimation is
crucial. Relevant words that are visually dissimilar to the training
samples, will not be retrieved with high accuracy. However, due to
the statistical sequence model, this can be compensated if only parts
of words are not well represented by the model. This is particularly
important for the query-by-example scenario where only a single an-
notated sample of the query word is provided.

In the following, the architecture of the overall word spotting sys-
tem will be outlined (Section 4.1). This way, the methodological con-
tributions can be presented in relation to each other.
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4.1 ARCHITECTURE

The proposed word spotting system includes methods for generating
document region hypotheses, their representation, query modeling
and retrieval. The different components are integrated closely. This
allows for addressing query-by-example and query-by-string word
spotting as well as two different decoding strategies in the same
methodological framework. Semi-continuous HMMs are considered
for this purpose. This makes the output model largely independent of
the HMM states allowing for great flexibility with respect to model es-
timation, model decoding and caching. Figure 15 shows a schematic
overview. The figure caption explains the relations between the com-
ponents.

In order to retrieve document regions efficiently, it is important
to cache representations that are independent of the query. For this
purpose, text detection is performed on the document images. Based
on text detector scores, text hypotheses are computed. Afterwards, text
hypotheses are combined in order to define line hypotheses. For text
detection, the proposed method does not rely on a single gray-level
intensity binarization threshold. This makes the application under
different document image conditions more robust.

For each line hypothesis, a sequence of BoF vectors is extracted.
Different mixture models are considered for modeling BoF sequences
as outputs of the HMM probabilistically. Since the mixture-component
posterior-probabilities are independent of the query, they are stored
in a mixture component index.

The key idea for addressing both query-by-example and query-by-
string in a unified word spotting framework, is to obtain a query word
HMM in both scenarios. Afterwards, retrieval is always performed in
the same manner. For query-by-string, character HMMs are estimated
based on word- or line-level annotations. For query-by-example, the
query word model is estimated from a single exemplary word image.
In both cases the output model is not adapted in the semi-continu-
ous (SC) HMM estimation. This makes the estimation in the query-
by-example scenario feasible. Furthermore, query size estimates are
required for patch-based decoding. While the patch size is given by
the exemplary word image for query-by-example, character sizes are
estimated based on the training annotations for query-by-string.

Retrieval is performed in two different decoding stages. This allows
for a trade-off between efficiency and accuracy. In the first decoding
stage, a coarse search is based on probabilistic mixture component vot-
ing. Mixture components with non-zero probability in the query word
model vote for cells in the document images in which the same mix-
ture components have non-zero probability. The voting mass is the
joint probability for the mixture component in the query word model
and the mixture component in the document image cell. By following
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Figure 15: Word spotting system architecture. The figure shows a schematic
visualization. The components are categorized into input and out-
put (gray), region hypotheses (green), HMM modeling (brown), BoF—
HMM integration (orange) and HMM-based retrieval (blue), cf. Fig-
ure 2. Arrows indicate the processing direction. The left side of
the figure shows the inputs and document region hypotheses.
The right side of the figure visualizes the output, query model-
ing as well as query model decoding. Two decoding stages can
be identified. For this purpose, two vertical processing paths are
shown by arrows that go from HMM modeling nodes (brown) to
HMM decoding nodes (blue) to the output (gray). The results from
the first decoding stage can be used in the second decoding stage.
The node arrangement indicates which components are shared
between the stages and which components are specific to one of
the stages. BoF sequence extraction is shown with dashed lines.
Dashed lines connect nodes that define document regions (on the
left) with nodes that use BoF sequences (on the right). Document
regions are defined by hypotheses as well as user inputs, e.g.,
word-level annotations or a query word image.
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an Hough-style voting approach, the HMM state structure is consid-
ered. Relevant cells in the document images can rapidly be obtained
through an inverted mixture component index. Based on the accumu-
lated voting mass in each cell, potentially relevant document image
patches are retrieved. Thus, the approach performs a coarse analysis
that allows for fast detection based on approximate similarity scores.

The second decoding stage performs a fine analysis of the patches
that have been identified in the first stage. For this purpose, a patch
is represented with a compound query HMM. The compound HMM
consists of a background model and whitespace models as well as the
query word model. The whitespace models represent the left-side and
right-side context of the query word within a patch. The background
model represents arbitrary document image contents.

Using the Viterbi algorithm, similarity scores are based on the opti-
mal output probability for generating the BoF sequences of the corre-
sponding patches with the query model. Given the optimal alignment
of a BoF vector sequence with the compound query HMM, the simi-
larity score for a patch is obtained as the length-normalized partial
output probability for the query word model. It is important to note
that this does not correspond to a query posterior approximation. The
scores represent the probabilities for the observations along a specific
path in the query word HMM. Therefore, the challenge of estimating a
high-quality filler model can be avoided. The background model and
whitespace models are important in order to allow for coping with
word size variabilities in the patch-based framework. The alignment
of the BoF sequence with the models of the compound HMM allows
for a detailed localization of the query word within a patch.

Whitespace model estimation requires whitespace region hypothe-
ses. Whitespace hypotheses are obtained from text hypotheses in a bot-
tom-up manner in the query-by-example scenario. In the query-by-
string scenario, whitespace regions are obtained in analogy but based
on training annotations. Finally, the spotted locations can be refined
even further by taking text hypotheses into account.

The close integration of the two decoding stages allows for a very
good trade-off because the models complement each other with re-
spect to efficiency and accuracy. By sharing the feature representation
and considering the same query model as well as its structure, the
first stage achieves high recall at high speed while the second stage
computes accurate rankings for selected document image regions.

4.2 DOCUMENT IMAGE REGIONS

Document regions are used in order to define the search context for
spotting words in document images, estimate whitespace HMMs and
to refine the localization of spotted words. Accordingly, three types of
region hypotheses can be distinguished. Text hypotheses are derived
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from text detector scores and represent mostly text components (Sec-
tion 4.2.1). Line hypotheses are based on text hypotheses and repre-
sent possible line regions in document images (Section 4.2.2). Whites-
pace hypotheses are obtained with a voting scheme that is based
on text hypotheses. They mostly represent document-background re-
gions that are located to the left and to the right of words (Sec-
tion 4.2.3).

4.2.1  Text hypotheses

Text hypotheses represent text components in document images and
are the basis for all region-based operations. An important require-
ment for text hypotheses is that for each word and each of its bounds
(left, right, upper, lower), there exists at least one text hypothesis with
a similar bound.

It is important to note, that detecting all word bounds accurately
is hard to achieve for handwritten document images and for historic
handwritten document images in particular. These documents con-
tain hundreds of words and, consequently, hundreds of hypotheses
are required. Furthermore, the hypotheses have to be highly accu-
rate. The size of words is usually small in comparison to the size of
document images. Thus, a mismatch that is marginal with respect
to the size of a document image is substantial with respect to the
size of a word. This is a fundamental difference to object detection
in natural scene images where typically fewer and larger objects are
considered, e.g., [EEV+15]. Furthermore, the task of text detection in
natural scene images is not comparable to the detection of words in
a document image. In natural scene images the challenge is rather to
differentiate text and background and not the differentiation of words
in close proximity that might be touching each other, e.g., [NM16].
For this reason, object detection approaches from computer vision are
mostly unsuitable. For example, a region proposal network alone has
not been sufficient for word hypotheses generation [WLB17]. Word
region proposals had to be augmented with dilated text proposals
[WB15] in order to achieve high recall.

The proposed method takes the above mentioned challenges into
account without requiring any annotated training material. For this
purpose, the maximally stable extremal region (MSER) method [MCU+o04]
is adapted, cf. Section 2.1. The most important difference of the pro-
posed method in comparison to MSER is that the ER tree is not based
on thresholding image intensities but text detector score values. Text
detector scores are expected to change smoothly. Therefore, the num-
ber of extracted regions can mainly be controlled by the number
of thresholds. In contrast, MSER uses all possible intensity values as
thresholds. The number of regions is controlled heuristically by se-
lecting only the maximally stable ERs.
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Figure 16: Text hypotheses generation. Text detector scores are computed with
SIFT contrast scores in a dense grid. This is indicated by a single SIFT
descriptor (blue) shown in an edge image of a document section.
The resulting text score map is shown in blue to red colors. Blue
indicates low contrast and red indicates high contrast in the local
image neighborhood. Text hypotheses are obtained from an ER tree
by thresholding text scores at different levels. Three levels, from
the tree leaves towards the tree root, are exemplarily indicated
with green to red colors. Text hypotheses typically cover parts
of characters, parts of words, words, groups of words and also
background clutter.

The main assumption is that text areas in document images have
higher contrast than background areas. Consequently, text areas can
be detected by measuring contrast. In order to be robust with respect
to noise and touching ascenders and descenders in adjacent text lines,
contrast is measured in a local image neighborhood, see Figure 16.
This leads to smooth contrast variations between words, even if words
are touching. Contrast scores are based on accumulated gradient mag-
nitudes. Technically, they are computed as SIFT contrast normalization
scores that are obtained for SIFT descriptors in a dense grid. The grid
resolution equals to the resolution of the dense descriptor grid used
for extracting BoF representations (cf. Section 4.3).

Text hypotheses are obtained from the ER tree according to the fol-
lowing conditions. All ERs are considered as potential text regions
except for tree leaves and regions with implausible heights (see be-
low). The number of thresholds controls the number of regions in
the ER tree and, therefore, the resolution at which local text detector
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score changes are detected. Threshold values are evenly spaced over
the interval of minimum and maximum text score values. Figure 16
visualizes the concept. The color-coded text hypotheses indicate the
structure of the tree for a larger document image section. Tree leaves
are discarded because they can be considered as clutter. Thus, hy-
potheses are created for all ERs with child nodes. This can be seen
as a heuristic for minimal stability. Implausible region heights are fil-
tered based on lower and upper quantiles, i.e., 0.1 and 0.999, of a
Weibull distribution, cf. [FEH+11, Chap. 46]. The distribution is esti-
mated such that all potential text region heights are generated with
maximum likelihood. The use of a Weibull distribution is motivated
by its successful application to outlier detection, cf. e.g., [SRM+11].
Filtering helps to suppress text hypotheses that represent background
clutter. The quantile values of 0.1 and 0.999 are chosen in order to de-
fine an interval that is sufficiently large such that most of the text
components are represented by text hypotheses. The proposed word
spotting method is robust against background clutter to a large extent.
Similarly, the number of thresholds in the ER tree is a meta parameter
that has to be high enough in order to capture text in low-contrast
document image regions, see Section 5.3.2.

4.2.2  Line hypotheses

Line hypotheses are document regions that are bounded by the doc-
ument in horizontal direction and that are bounded by text compo-
nents in vertical direction. Line hypotheses guide the patch-based
decoding process in order to analyze document image regions that
contain text with a height that is similar to the height of the decoding
patch. Document region representations can be precomputed because
line hypotheses are independent of a particular query.

The line hypotheses generation process is based on text hypotheses.
Text hypotheses mostly represent parts-of-characters, characters and
groups-of-characters but also background clutter. In order to obtain
an accurate line hypothesis for each word, it is necessary to consider
combinations of text hypotheses. In contrast to the generation of word
hypotheses, combinations only have to be considered in a single di-
mension, i.e., in vertical direction. Figure 17 shows an overview of the
hypothesis generation process.

For each text hypothesis a set of line hypotheses is generated. For
this purpose, the active text hypothesis defines a search context in
the document image. Horizontally, the search context includes the
entire document width. Vertically, the search context encloses the up-
per and lower bound of the active text hypothesis. While the upper
bound of all line hypotheses, generated in the current set, is the upper
bound of the search context, the lower bounds are given by the lower
bounds of all text hypotheses within the search context. The search
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Figure 17: Line hypotheses generation. A set of line hypotheses is generated
for each text hypothesis. In the figure, an exemplary text hypoth-
esis is shown in green. Its upper and lower bounds define the
line-hypothesis generation-context, as indicated by the image area
that is not grayed out. The upper bound of the text hypothesis
defines the upper bound of all line hypotheses that are generated
within this context. The lower bounds are defined by the lower
bounds of all text hypotheses within the context, including the
current text hypothesis. A few line hypotheses are shown with red
overlays on the right.

context could be increased in order to generate line hypotheses that
are higher than the active text component. However, this is not re-
quired assuming there exists at least one text hypothesis spanning
over the entire height of the largest word in the line. After process-
ing all text hypotheses, line hypotheses are grouped according to line
height. Line hypothesis positions and heights are quantized accord-
ing to the dense descriptor grid coordinates (cf. Section 4.3).

In order to be robust with respect to word height variability, line
positions for each height are augmented with positions of similar line
heights. Line heights are considered as similar to a given height h if
they are in the interval [0.5h, 2h]. In order to analyze the local neigh-
borhood of potentially relevant text components in the patch-based
decoding framework, line hypothesis positions are extended in the
local neighborhood with a morphological filter. For this purpose, a
one-dimensional binary mask is representing the current line position
configuration for each line height. Additional hypotheses are gener-
ated based on a one-dimensional binary dilation operation, cf. [GWoz2,
Sec. 9.2.1], that is applied to each binary line position mask. The size
of the structuring element is given by the (rounded up) quotient of
the line height and the vertical patch sampling step. According to the
patch sampling step, a larger patch evaluation context will be consid-
ered for higher lines than for smaller lines.

4.2.3  Whitespace hypotheses

Whitespace hypotheses represent document background regions that
are mostly located to the left and to the right of words. They are
required in order to estimate whitespace HMMs. Whitespace HMMs
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Figure 18: Whitespace hypotheses are generated by a voting scheme. Each
text hypothesis votes for the document image regions to the left
and to the right of its bounding box (+1). Furthermore, it votes
against its bounding box region (-2). Votes are accumulated per
pixel. In the figure, these regions are indicated in orange and blue.
Voting results are obtained separately for whitespace regions ori-
ented to the left and to the right. The accumulator values can
be negative (blue colors), zero (gray) and positive (orange colors).
Whitespace hypotheses are represented as region bounding boxes.
They are obtained after thresholding at zero followed by a con-
nected component analysis of the binary scores.

are used in the patch-based Viterbi decoding framework and allow
for detecting words more accurately. Better similarity scores can be
obtained for the patches due to the more detailed modelling.

For the query-by-example scenario, only a single annotated exam-
ple and no other annotated training material is available. In this sce-
nario, whitespace hypotheses are obtained with a voting scheme that
is based on text hypotheses. Alternatively, the voting scheme can also
be applied with word-level bounding box annotations if these are
available. Figure 18 shows an overview of the process. It is important
to note that whitespace hypotheses should only represent the immedi-
ate context of words and that it is not required to detect all relevant
whitespace occurrences in the documents.

In order to obtain whitespace hypotheses from text components in
a bottom-up manner, a procedure is required that is robust with re-
spect to the text hypotheses. Text hypotheses mostly represent text on
different levels, i.e., parts-of-character, parts-of-words or even parts-
of-multiple-words. For this purpose, an important assumption is that
the document regions to the left and to the right of text hypotheses
are more likely to contain whitespace than the inner area of the text
hypothesis regions. This is modeled in a per-pixel voting scheme. An
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accumulator matrix is initialized with zeros and each matrix element
corresponds to a pixel in the document image. Afterwards, each text
hypothesis votes against its inner bounding box area and for the doc-
ument image regions to the left and to the right. Inner regions are
down-voted by -2 and potential whitespace regions are up-voted by
+1. The whitespace voting area is defined such that the local image de-
scriptors, used for representing the image regions, overlap at most 0%
and up to 25% with the corresponding text hypothesis. After all text
hypotheses have voted, document regions with positive accumulator
values are considered as whitespace hypotheses. Bounding boxes are
obtained after thresholding the accumulator matrix at zero and per-
forming a connected component analysis.

The choice of the voting weights is heuristic. Since words are typ-
ically represented by multiple text hypotheses, the area to the left
and to the right of a text hypotheses does not necessarily correspond
to whitespace. With the proposed procedure, it requires two positive
votes in order to compensate for a negative vote. Thus, false positives
are avoided at the cost of missing a substantial number of whitespace
regions. Due to the overall high number of true positives, this is not
a limitation for whitespace HMM estimation, see Section 5.3.7.

Finally, it has to be noted that left-side and right-side whitespace
hypotheses are estimated separately. This allows for obtaining more
specific query models. Within Viterbi alignment, query-word-starting
and query-word-ending positions can be decoded more accurately.
Generally, this assumption is motivated by related HMM-based word
spotting methods. It was shown that word spotting performance im-
proves with the specificity of the filler model that is used for modeling
the context of a query word in the text line [PTV15a].

4.3 DOCUMENT REGION REPRESENTATION

Document image regions are represented with sequences of BoF vec-
tors. Regions are either given by manual bounding box annotations,
e.g., in the query-by-example scenario, or regions are based on hy-
potheses, i.e., whitespace hypotheses and line hypotheses.

BoF have shown excellent performance in word spotting applica-
tions, e.g., [ART+15]. By extracting BoF sequences in writing direction,
the sequential characteristic of text is preserved. An important design
choice regards the local image descriptor in the BoF. For word spot-
ting, the SIFT descriptor [Lowo4] has become the de-facto standard.
Even though this descriptor is not specifically designed for document
images, it captures discriminative properties of the pen stroke due to
its use of gradient histograms. Furthermore, the descriptor can easily
be replaced if a more suitable representation is available. In any case,
BoF are adapted to the problem domain since they are based upon
visual words, i.e., prototypical descriptors.
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Figure 19: Based on a dense grid of quantized image descriptors, cf. Figure 5,
a sequence of BoF representations is generated for a document
region. In the figure, a section of a line hypothesis is indicated for
this purpose. Visual words from the visual vocabulary are shown
on the left. Within the document image, descriptor center points
are shown as colored dots. The color indicates the quantization
result. In this example, the grid sampling step is larger than in
practice for a better visualization. Given the document region, the
sequence of BoF representations is obtained by sliding a window
over the grid columns in writing direction. A BoF is created at
each window position. Visual words in the gray shaded areas are
omitted because the corresponding descriptors overlap with the
upper and lower region bounds. The sequence of BoF histograms
is shown on the right. Histogram-bar colors correspond to the
visual-word colors.

Irrespective of the local image descriptor, BoF are histogram repre-
sentations. This is an advantage for patch-based decoding since BoF
change smoothly for overlapping image regions. The effect is most
important for patches that overlap vertically. Horizontal overlap is
modeled within different HMM states. Smoothly changing representa-
tions allow for better localizations [RKE16].

Figure 19 shows an overview of the BoF sequence generation pro-
cess for a document region. Document images are represented with
a dense grid of local image descriptors. Descriptors are localized by
their center points and the descriptor vectors are quantized with re-
spect to a visual vocabulary. The descriptor size and orientation are
uniform. Rotation invariance, cf. [Lowo4], is not a desirable property
since the pen-stroke orientation is an important discriminative char-
acteristic. For a region, only those descriptors are considered that do
not overlap with the upper and lower region bounds. Thus, valid de-
scriptors only represent the document region and not its upper and
lower context. A minimum number of descriptors is assured by a
lower threshold. The sequence of BoF vectors is obtained by sliding a
window over the document region in writing direction. The window
is moved over all grid columns such that it covers exactly one column
at each position. BoF histograms are obtained from valid visual words.

The BoF representation at index t in a sequence is denoted as vector
x¢. The frequency of the visual word with index v € {0,...,V —1}
in x¢ is a scalar xty, i.e., Xt = (xt0,...,Xt,v_1) . Given a document
region, the dense grid of valid visual-word indices within the region
bounds is defined by the matrix [un¢] withuny €1{0,...,V—1}. The in-

75



76

SEGMENTATION-FREE WORD SPOTTING WITH BAG-OF-FEATURES HMMS

dices (n,t) €{0,...,N—1}x{0,...,T— 1} refer to rows and columns.
BoF vector X € ]Ngo can then be defined in terms of its vector compo-
nents in Equation 13. Function 6 : {0,...,V—1}x{0,...,V—-1} = {0, 1}
is used for counting visual words.

1 tunt=v

0 tunt#v

1
Xtv = ) S(un,v) with 8(uni,v) = (13)
n=0

Technically, BoF representations are very high dimensional and ex-
tremely sparse. Sparse vector representations are used in order to
store BoF sequences efficiently. It has to be noted that contrary to other
BoF applications in word spotting, e.g., [ART+15], descriptors are not
pruned based on document image contrast. This has the advantage
that it is not required to handle special cases, like windows without
visual words. On the other side, the number of descriptors is large
due to the typically high resolution of the descriptor grid.

The large number of descriptors leads to a high computational
effort if the visual vocabulary is computed with Lloyd’s algorithm
[Llo82]. Typically, this is addressed by clustering only a randomly se-
lected subset of all descriptors, cf. e.g., [ART+15]. However, in large
document collections only a small fraction of the total number of de-
scriptors is considered this way. In order to increase the reproducibil-
ity of the results, a strategy inspired by the k-means++ initialization
[AVo7] is followed. Initial centroids are computed with Lloyd’s algo-
rithm, which is applied on 2DV randomly sampled descriptors. D
denotes the descriptor dimensionality and 2 is a heuristic factor that
ensures a sufficient number of samples. Afterwards, MacQueen’s al-
gorithm [Mac67] clusters the entire set of descriptors. The algorithm
is suitable for this purpose because it iterates over the sample set
only once and updates the codebook with every sample. It converges
to an optimal codebook if the number of samples approaches infin-
ity and subsequent samples are statistically independent, cf. [Fini4,
p. 62]. After shuffling the descriptors, the algorithm offers a trade-off
between accuracy and efficiency in the given scenario.

The most important meta parameters are the dense grid sampling
step, the size of the descriptors and the size of the visual vocabulary,
see Section 5.3.3. The grid sampling step has a considerable effect
on accuracy and efficiency. The descriptor size largely controls the
generalization capabilities of the BoF representation.

4.4 BAG-OF-FEATURES OUTPUT MODELS

BoF sequences are modeled as observations in the statistical HMM
process with a probabilistic mixture model. The mixture model is
required for the SC-HMM integration. Due to the special characteris-
tics of BoF representations in this word spotting scenario, modeling
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BoF with a GMM directly is infeasible. BoF vectors are very high di-
mensional and extremely sparse since they are extracted from line
hypotheses. Thus, the robust estimation of GMM parameters is only
possible after dimensionality reduction, cf. [Fin14, Sec. 9.1]. Unfortu-
nately, it can be expected that dimensionality reduction results in a
sub-optimal solution. This is due to the large gap between the typical
BoF dimensionality (> 1000) and the typical feature vector dimension-
ality for GMM-HMM integrations (< 100). Empirically, this has been
confirmed for handwritten word recognition with SC-HMMs [RVF12].
In order to estimate the shared GMM, BoF representations have been
reduced from 2000 to 30 dimensions with principle component anal-
ysis, cf. [DHSoo, Sec. 3.8.1]. The approach has been outperformed by
a direct BoF-HMM integration (cf. Section 4.4.3). A similar result has
been obtained for segmentation-free query-by-example word spotting
with spatial pyramid matching [RAT+15a]. Dimensionality reduction
is performed with latent semantic indexing in order to improve the
generalization capabilities of the patch descriptors. However, a reduc-
tion to 64 dimensions produces results that are considerably worse
compared to the original descriptor. The effect can be observed for
vocabulary sizes of 2048 and above. It has to be noted that the dimen-
sionality of the descriptors is three times larger than the size of the
visual vocabulary due to the spatial pyramid configuration.

Mixture distributions that allow for modeling BoF directly, will be
discussed in the following (Section 4.4.1 to 4.4.3). The characteristics
and assumptions of the models will be compared and put in perspec-
tive with the requirements in the given scenario. For this purpose,
a mixture model ® = {(cx,0) |0 < k < M} is defined by M mix-
ture components with parameters ©y and their mixture weights cy.
The weights are prior component probabilities ¢, = p(M = k|O).
M is a meta parameter, see Section 5.3.4, and M is a random vari-
able that represents a discrete probability distribution over the event
space Q, = {0,...,M — 1}. Since different distributions of the mix-
ture components will be considered, component parameters ©y are
defined along with the component models in the following sections.
Therefore, the mixture model in Equation 14 is a generalization of the
mixture model that has been defined in Equation 3.

M—1

pxt|©®) = ) pM=k|O)p(x¢| M =k,0) (14)
k=0

Once the output model is chosen, it can be evaluated for all line
hypotheses. This is due to the independence of the output model and
the line hypotheses with respect to the query. The output model can
be integrated with the HMM by indexing mixture component proba-
bilities in a look-up table for each line hypothesis (Section 4.4.4).

Furthermore, the line hypotheses are used in order to obtain a train-
ing dataset for unsupervised estimation of the mixture models pre-
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Figure 20: Visual-word simplex visualization. On the left, the figure shows
a visualization of a statistical mixture distribution over the visual
word simplex with blue to red colors. Blue indicates low and red
indicates high probability. The white diamond markers indicate
model parameters, i.e., the expected values of the mixture com-
ponent distributions ©y with k € {0, 1}. On the right, the figure
shows BoF vectors that have been randomly sampled from the
mixture distribution as points in the simplex. It has to be noted,
that the sample distribution is discrete regardless of the visual
word frequency scaling. BoF vectors in the simplex are indicated
with blue dots. The relative amount of duplicates is indicated by
the size of the dots. Statistical distributions that will be visualized
in the following have been estimated with these samples.

sented in Section 4.4.1 and 4.4.2. For this purpose, BoF vectors are
extracted from all line hypotheses on all document images of a doc-
ument collection. The mixture model presented in Section 4.4.3 is di-
rectly based on visual words and does not require a model estimation
step that is based on line hypotheses.

Different distributions will be discussed based on a three-dimen-
sional toy example that resembles some of the characteristics of the
original BoF representations. This refers mostly to their discrete char-
acteristic and the presence of BoF vectors with visual word frequencies
that are zero. The three-dimensional example can be visualized in a 2-
simplex. Each of the vertices corresponds to a visual word. Figure 20
shows the source distribution and indicates a BoF sample set that has
been randomly drawn from this distribution. In the following, all mix-
ture models will be presented based on this toy example®.

The source distribution is a mixture of Dirichlet compound multi-
nomial (DCM) distributions and is theoretically suitable for modeling
high-dimensional and sparse BoF vectors [Elko6]. This is due to the
model’s capability of distributing the probability mass on the sur-
face of the simplex, i.e., edges in the three-dimensional example, see
Figure 20. A BoF is only located within the simplex if all visual words

1 The multinomial mixture model in Figure 6 is based on the toy example, too.
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have non-zero frequency. However, BoF that are high-dimensional and
sparse have only few non-zero entries. In the example in Figure 20,
BoF representations with non-zero frequencies for the blue and green
visual word are most likely (jointly and exclusively). The pink visual
word mostly occurs with high frequencies of the blue visual word.
This can be observed for the distribution of probability mass and for
the sampled BoF representations. Samples are drawn in three stages.
In the first stage, a mixture component is chosen according to the
components prior probabilities. In the last two stages the component
is evaluated. A multinomial distribution is drawn from a Dirichlet
distribution and the BoF is drawn from the multinomial distribution,
cf. Appendix B. The concentration parameters of the Dirichlet distri-
bution are chosen such that the probability mass of the DCM distri-
bution is mostly distributed on the edges. Each BoF vector contains
five visual words that are scaled to relative frequencies in order to be
visualized in the simplex.

4.4.1  Von Mises-Fisher

The von Mises-Fisher (vMF) distribution allows for probabilistic mod-
eling of directional data [BDG+o5]. It is relevant for word spotting
with BoF-HMMs due to the wide use of cosine similarity for matching
BoF representations in the literature, cf. Section 3.3.1. The distribution
models the generation of BoF vectors on the unit sphere, i.e., x; € RY,
|Ix¢]|, =1, and has properties that are similar to a multivariate Gaus-
sian distribution [BDG+o05]. The vMF probability density function is
defined by a mean direction p € RV, ||u||, = 1, concentration param-
eter k € R and for dimensionality V > 2, see Equation 15.

z—1
plxelu, k) = meK”T"t with z= % (15)
The concentration parameter controls by how much the density func-
tion focusses around p. Similar to a Gaussian, Equation 15 consists of
a normalization factor and an exponential term. Since ||u|, = T and
[x¢|l, =1, the exponent is the cosine similarity of p and x scaled by
k. The normalization factor includes I,_1(), i.e., the modified Bessel
function of the first kind and order z— 1. In order to improve numeric
stability, the density is computed in the logarithmic domain. I, 1 (k)
is approximated as suggested in [Elko6]>.

By using the vMF distribution as a model for the mixture compo-
nents in Equation 14, a vMF mixture model is obtained. The model
is estimated with an EM algorithm that is very similar to the EM al-
gorithm used for estimating a GMM, cf. [Fin1ig4, Sec. 4.4.2]. Given the
number of mixture components, the model is initialized with a vari-
ant of Lloyd’s algorithm. For this purpose, training samples are asso-

2 The approximation is based on a series expansion [OLB+10, Equ. 10.41.3].
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Figure 21: vMF mixture model visualization on the visual word simplex. The
figure shows results for two different model parameter estima-
tion strategies. On the left, concentration parameters are limited
to an upper bound that has been set heuristically. On the right,
concentration parameters have been estimated according to an ap-
proximate maximum likelihood criterion. In both visualizations,
probability density is indicated with blue to red colors in the log-
arithmic domain. It has to be noted that the colors are scaled to
the corresponding minimum and maximum values in both plots.
Mixture model components are weighted by cy and defined by
a tuple ©y = (uy, k) where k € {0, 1}. White diamond markers
show mean parameter vectors py that have been projected on the
simplex. Mixture weights cy and concentration parameters ky are
specified with each of the plots. The values have been rounded
for a qualitative interpretation. The k bound has been set to 10.

ciated with centroids according to largest cosine similarity. Centroids
are updated by the unit-length normalized sum of the samples that
they have been associated with. The normalization ensures that the
updated centroids lie on the unit sphere [BDG+o05, Equ. 2.4]. A for-
mal specification of the algorithm can be found in [BDG+o5, Alg. 3].
Based on the hard assignments of centroids and samples, a vMF mix-
ture component is initialized for every centroid. Mixture coefficients
cy are given by the relative number of samples that have been asso-
ciated with the centroids. The mean directions py are directly given
by the centroids. The concentration parameters ky are estimated from
the samples that have been associated with the centroids according to
[BDG+o5, Equ. 4.4].

Based on the initial parameters, the iterative model refinement is
continued with soft assignments in the EM algorithm. Instead of as-
sociating each sample with a single centroid, each sample is associ-
ated with all mixture components based on posterior probabilities
P(M =k|x¢,0) for all k € Qy,, cf. [BDG+o05, Equ. 3.7] and also Equa-
tion 4. For this reason, hard assignments can been seen as a special
case where a single component has probability one and the other com-
ponents have probability zero. The estimation of the posterior prob-
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abilities for the mixture components given a sample and the current
model, is computed in the expectation step.

Based on the updated associations, the model parameters are up-
dated within the maximization step. The updates are performed in
analogy to the estimation of initial parameters (see above). The impor-
tant difference is that all samples x will be considered for the update
of a single mixture component ) according to posterior probabilities
P(M = k|x¢, ©). The EM steps are iterated with each updated model.
It can be shown that the procedure improves the model such that the
probability of generating the sample set with the model improves or
stays equal. The formal specification of the EM algorithm for vMF mix-
ture models can be found in [BDG+o5, Alg. 1]. It also includes the
updates for the model parameters. It has to be noted that the estima-
tion of the concentration parameters ky is not without problems. This
is due to the maximum likelihood estimate for k which includes the
ratio of Bessel functions I,(k)/I,—1(k) [BDG+o05, Equ. 2.5]. Solving
the estimate for  analytically is impossible. For this reasons, differ-
ent approximations for k for high-dimensional data are discussed in
[BDG+o5]. However, these do not yield satisfactory results for the BoF
vectors in the given scenario. This is because ky is always estimated
to be substantially larger than the dimensionality of the BoF vectors
which leads to poor generalization capabilities. The problem can be
addressed by limiting ki to a maximum value that is set heuristically,
i.e., with a meta parameter, see Table 8 in Section 5.3.4.

Figure 21 shows visualizations of vMF mixture model estimates
based on the three-dimensional sample set presented in Figure 20.
Even for the toy example, the unbounded « estimates tend to overfit
the data and are very sensitive to the random initialization of Lloyd’s
algorithm. A possible explanation is the discrete characteristic of the
data where many samples occur multiple times. The vMF probability
density function is continuous. Figure 21 shows that the vMF mixture
component distributions are rotationally symmetric and differ in their
location and concentration.

4.4.2  Dirichlet compound multinomial

Inspired from short text modeling, e.g., bag-of-words (Bow) of Twitter
messages, Dirichlet compound multinomial (DCM) distributions can be
considered in order to model sparse BoF vectors that are distributed
on the surface of the simplex, cf. [MKEos5; Elko6]. This is possible
by using the conjugate prior of the multinomial distribution, i.e., the
Dirichlet distribution [Biso6, Sec. 2.2.1]. The Dirichlet distribution can
model the generation of multinomial parameters p, thus, it is defined
on the simplex. For this purpose, the Dirichlet distribution is param-
eterized with concentration parameters & € RY . In contrast to the
multinomial distribution, cf. Section 2.4, the Dirichlet distribution al-
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lows for distributing probability density on the edges of the simplex
if ®, < 1. However, since the Dirichlet distribution is continuous,
it is not suitable for modeling discrete data directly [MKEo5]. The
generation of sparse BoF vectors can be modeled if the Dirichlet dis-
tribution and the multinomial distribution are used in a compound
distribution as shown in Equation 16.

plxcla) = | plx:p)pip|aldp (16)
P

The Dirichlet probability density function p(p | &) represents a distri-
bution over probability distributions. In combination with the multi-
nomial probability mass function p(x. | p) this results in a distribution

over parameters. By integrating over all visual word probability vec-
tors p, the Dirichlet distribution models plausible visual word config-
urations. In the generative process this can be understood as an urn

model where the ball being drawn from the urn is not only returned

but a second ball with the same color is added as well. Therefore,
the visual word distribution sharpens with each visual word that is

generated for the BoF vector. This is known as Polya’s urn model, cf.
[JKBgy, Chap. 40].

In natural language processing, the DCM is used in order to model
word burstiness, i.e., if a word appears once it is likely to appear
again [MKEos5]. Thus, the DCM rather models word occurrences than
word frequencies.

When substituting the Dirichlet probability density function p(p | o)
and the multinomial probability mass function p(x¢ | p) in Equation 16,
the DCM probability mass function for x; € N\z/o is obtained3 in Equa-
tion 17. I'(-) is the Gamma function, i.e., a generalization of the facto-
rial function to real and complex values, cf. [OLB+10, Chap. 5].

V-1

! I I
P(Xt|0‘) — U/’it]H] (H(XHJ (Xtv+0(v)

T1Y=0 ot Pl [peell) L4 o)

(17)

In the context of a mixture model, 2MYV evaluations of Gamma func-
tions are required in the product. Since even a single evaluation of the
Gamma function can be considered as computationally expensive, the
application of the DCM is very time consuming if M and V are large
[Elko6]. Furthermore, the product over visual words v € Q. is mostly
evaluated for visual word frequencies that are zero.

For this a reason, an approximation of the DCM is proposed in
[Elko6] that is valid for sparse Bow representations. It is referred to
as EDCM distribution because it belongs to the exponential family. As-
suming that the sample vectors are sparse, probability mass is mostly
distributed on the surface of the simplex. Consequently, the concen-
tration parameters are small, i.e., mostly «, < 1. Based on this as-
sumption, a linear approximation of the ratio of Gamma functions, cf.

3 The derivation of Equation 17 can be found in Section B.1.
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Figure 22: Simplex visualization of the EDCM mixture model. Probability
mass is indicated with blue to red colors in the logarithmic do-
main. The colors have been scaled to the minimum and maxi-
mum probabilities. Diamond markers indicate visual word prob-
abilities for the mixture components Oy with k € {0,1}. The vi-
sual word probabilities are given by the multinomial parameters
which are represented by Dirichlet distributions in the EDCM mix-
ture components. The multinomial parameters py are obtained as
the expected values E—: of the Dirichlet distributions. sy = ||Bx||;
is referred to as the precision of an EDCM component distribu-
tion and measures its overall concentration, cf. Equation 19. EDCM
component precision values si and mixture weights cy are speci-
fied next to the simplex.

Equation 17, at &, = 0 is used. Equation 18 shows the approximation.
The linear approximation is formally explained in Section B.2.

r(Xtv + (Xv)

~T f >1, eNN 8
F(OC\;) (Xtv)(xv or Xty Xtv >0 (1 )

For x, = 0 the ratio evaluates to one and does not influence the prod-
uct in Equation 17. Thus, only the case x{, > 1 has to be considered.
Since x¢, € N> and I'(xy) = (x¢v —1)!, the factorial cancels out with
the factorial in the denominator of the multinomial coefficient if the
approximation in Equation 18 is substituted in Equation 17. The re-
sult is presented in Equation 19. A detailed derivation of Equation 19
can be found in Section B.2. In order to distinguish the EDCM from
the DCM, the EDCM concentration parameters are referred to as f3.

plx,p) = it TIBLL T g, (19)

[zt e TR+ ell) 2L

For BoF vector sequences, Equation 19 can be computed efficiently
by storing normalization factors in look-up tables. Due to the sparse
BoF-vector characteristic, the look-up tables are typically small. All
computations are performed in the logarithmic domain.

Figure 22 shows a visualization of an EDCM mixture model. Prob-
ability mass is distributed on the edges and vanishes towards the
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center of the simplex. This is due to the linear approximation in Equa-
tion 18. Probabilities are underestimated for BoF vectors that are not
sparse. The model’s suitability for representing the samples shown in
Figure 20 is, therefore, only limited.

The EDCM mixture model estimation closely follows the EM algo-
rithm described in [Elko6]. The model is initialized by fitting a single
EDCM distribution to the entire training dataset. M initial mixture
components Oy are obtained by adding random noise to the con-
centration parameters, i.e., Bk, < max(By + &, €,,) where € is ran-
dom variable representing a uniform distribution over the interval
[—0.05,0.05]. The lower bound €,, = 1072 is required in order to
ensure that none of the factors in Equation 19 becomes zero.

Based on an initial model, the posterior probabilities p(M = k|x¢, ©)
are computed for all k € Q,, in the expectation step [Elko6, Equ. 7]. It
has to be noted that a deterministic annealing procedure is applied in
order to be less sensitive to local optima [UNg8]. For this purpose,
the likelihoods p(x¢ |M = k, ©®) in the computation of the posteriors
are smoothed with temperature meta-parameter T € IN>1, cf. [Elko6].

DM = k|, 0) —  PO=KIO) VPl [M=kE)

S P M =110) /P M =1,0)
The root function changes the difference between low and high prob-
abilities. For high values of 1, samples with smaller likelihoods are
taken into account stronger than for smaller values of T. Consequently,
mixture components do not specialize on specific visual word config-
urations as much at high temperatures as at lower temperatures.

The update of the concentration parameters in the maximization
step is based on the partial derivatives of the EDCM log-likelihood
function, i.e., logp(x¢|p), see Equation 19. The partial derivate for
By is given in [Elko6, Equ. 5]. Together with the posteriors from the
expectation step, the complete-data log-likelihood is obtained. Deriv-
ing the complete-data log-likelihood for model parameters © yields
the parameter updates. Finally, it must be ensured that 3y, > 0 for all
k € Q) and v € Qy. For this purpose, the components are smoothed
by adding a small offset to all concentration parameters. The offset is
dynamic and depends on the smallest non-zero concentration vy that
has been estimated for each component [MKEo5]. The meta parame-
ter p € R~ with p < 1 adjusts the influence of the offset.

Biv — Brv +PYK Wwith vy = Iggl{ﬁkv | By > 0} (21)
veQy

The optimization is performed in a deterministic annealing proce-
dure where the EM algorithm is run until the complete-data log-like-
lihood convergences for a given temperature. The process is repeated
for each temperature in an annealing schedule. The model parameters
are refined from temperature to temperature. The annealing schedule
is defined heuristically, see Table 10 in Section 5.3.4. Typically, it starts
with a high temperature and finishes with temperature T = 1 [Elko6].
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4.4.3 Visual words

The output mixture models presented in in Section 4.4.1 and 4.4.2
model the generation of entire BoF vectors x¢. The visual words model
follows a different approach by modeling the BoF vectors in terms
of individual visual word occurrences. For this purpose, the mixture
model in Equation 14 is constrained to have exactly the same number
of mixture components as visual words. Thus, mixture components
directly refer to visual words. Component parameters ©, only en-
code the visual word index v. In analogy to random variable M that
represents a distribution over mixture component indices, random
variable V represents a distribution over visual word indices. For V
different visual words, the corresponding event space is denoted by
Qy =1{0,...,V —1}. By replacing random variable M with random
variable V in the mixture model in Equation 14, p(x|©) can be ex-
pressed by marginalizing over visual words, see Equation 22 and 23.

p(x¢ @) = V=v|0)px¢|V=v,0) (22)

\I\/]<

_¢

:Z (xt,V=v]0) (23)

In order to model individual visual word occurrences, the likelihoods
for vector x; must be replaced in Equation 22 and 23. For this purpose,
x¢ defines a distribution over visual words. Let X; be a multivariate
random variable that represents independently distributed discrete
random variables (Xto,..., X¢v_1 )" over the same event space Qy =
{0,...,N}. The events correspond to absolute visual word frequencies
Xtv, cf. Equation 13. Based on x¢, p(X¢, > 0|x¢) is the probability that
the absolute frequency of visual word v in BoF vector x; is greater than
zero. In Equation 24, the logical disjunction is considered in order to
model the probability for any visual words that are occurring in x¢
given the visual word probabilities that are represented by model ©.

pl V Xow>0[x,0 Zp =v|0)p(Xev > 0|V =v,x¢)
XwEXL
(24)
V-1
=) pXey>0V=v|x,0)  (25)
v=0

Equation 24 is obtained in analogy to Equation 22 by noticing that
V is statistically independent of BoF vector x; and Xy, is statistically
independent of model ©. Consequently, the joint probability p (X, >
0,V = v|x¢,®) can be interpreted as probability for visual word v in
model © and the occurrence of visual word v in BoF vector x¢. Due to
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the marginalization, the joint probabilities over all visual words are
taken into account.

Equation 25 is based on Equation 26 and 27 and follows from the
additivity of the probabilities for mutually exclusive events, cf. e.g.,
[DHSo0, Sec. A.4.1], here for any k € Oy and any 1 € Q, with k # L

P(Xix > 0A X >0,V =kAYV =1|x(,0) =0 (26)
Sp(Xp >0V >0,V =kVV=1|x,0) =

2!
p(xtk>O/V:k|xt/@)+p(xtl>O/V:l|xt/@) ( 7)

For this purpose, Equation 26 formalizes that the occurrence of visual
words k and 1 (with k # 1) is mutually exclusive under the assump-
tions of the visual-word model mixture. Therefore, the occurrence
probabilities for any of these visual words are additive as stated in
Equation 27. In order to prove the premise in Equation 26, it is suffi-
cient to show that p(V =k AV =1|0) = 0 with k # 1, see Equation 28
to 31.

P(V=kAV=1|0)=0 (28)

Sp{veQylv=kl Nn{veQy|lv=1}|0)=0 (29)
< p{kn{}|e)=0 (30)

&p0O) =0 (31)

The evaluation of P(\/xwe x, Xtv > 0]x¢, ©) is based on decompos-
ing the joint probability p(X¢, > 0,V = v|x,0) in Equation 25 as
shown in Equation 24. As a result, p(V = v|O) are model parameters
which are estimated from sample data. However, in contrast to the
mixture models presented in Section 4.4.1 and 4.4.2, the component
priors are not involved in the component parameter estimation. For
the visual-word mixture model, components p(X¢, > 0|V = v,x¢)
are directly computed from BoF vectors x;. For this reason, X, > 0
is conditioned on x{ but not on ©. Therefore, the observed BoF vector
Xt can be seen as parameterization of the discrete distributions that
are represented by Xy, > 0 for all v € Q. In Equation 32, probability
P(Xy > 0]V =v,x¢) is defined by the relative visual word frequency
for visual word v in BoF vector x.

(Xt > 01V = v,x¢) =
[xll;

(32)

The use of relative frequencies follows from the Laplace principle where
all events are assumed to be equally likely.

Equation 32 can be considered as a soft visual-word observation
model. Instead of modeling a single observation (with probability
one), the probability mass is distributed to all visual words that have
been observed in frame t. The principle can be exemplified in Equa-
tion 24 if the probability vector

§
(p(%i0 > 01V =0x0), 0, p(Xiy1 >0V =V=1,x))  (33)
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just has a single non-zero entry, i.e., if it models the observation of
a single visual word. In this case it simply selects the corresponding
probability p(V = v|0O) from model © and Equation 24 represents
only a discrete probability distribution. Due to the presence of multi-
ple observations in frame t with probabilities p(X¢, > 0|V = v,x¢),
the visual-word mixture model can be considered as pseudo-discrete.

Therefore, it is the soft observation model that extends the discrete
model to a hierarchical model with two stages, i.e., the visual-word
mixture model. The first stage generates a visual word index. The
second stage generates the binary BoF vector component that corre-
sponds to the visual word that was generated in the first stage, cf.
Equation 24. In terms of urn models, this can be understood as hav-
ing an urn for the visual words represented by model © and an urn
for the visual words represented by BoF vector x;. Both urns are de-
fined by proportions of visual words that are given by p(V = v|©O)
and p(Xy, > 0|V =v,x), respectively. Thus, p(X¢, >0,V =v|x¢, O)
is the probability for drawing a visual word with index v from the
first urn and also drawing a visual word with the same index from
the second urn. Hence, the first stage follows the urn scheme for a
categorical distribution and the second stage follows the urn scheme
for a Bernoulli distribution, cf. [Biso6, Sec. 2.1]. The categorical dis-
tribution can be seen as a special case of a multinomial distribution
with a single observation, cf. [Biso6, Sec. 2.2]. Therefore, the genera-
tive process models the generation of a single visual word and not
a bag-of-visual-words. Contrary to this model assumption, different vi-
sual words will typically be observed in a BoF vector. Thus, the visual-
word mixture model does not represent a conjunction of visual words,
as do multinomial models, but a disjunction of the visual words that
have been observed in the bag-of-visual-words.

In summary, the visual-word mixture model makes the following
assumptions that are not in accordance with the properties of BoF vec-
tors extracted from the document regions:

* BoF can be represented by a disjunction of visual words (Equa-
tion 25).

* Visual words are mutually exclusive (Equation 26).

* Visual words are equally likely (Equation 32).

For word spotting, these assumptions lead to very good generaliza-
tion capabilities. This is due to the abstraction from the actual BoF
vectors. By interpreting BoF vectors 