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A B S T R A C T

The method that is proposed in this thesis makes document images

searchable with minimum manual effort. This works in the query-by-

example scenario where the user selects an exemplary occurrence of

the query word in a document image. Afterwards, an entire collection

of document images is searched automatically. The major challenge

is to detect relevant words and to sort them according to similarity to

the query. However, recognizing text in historic document images can

be considered as extremely challenging. Different historic document

collections have highly irregular visual appearances due to non-stan-

dardized layouts or the large variabilities in handwritten script. An

automatic text recognizer requires huge amounts of annotated sam-

ples from the collection that are usually not directly available.

In order to search document images with just a single example of

the query word, the information that is available about the problem

domain is integrated at various levels. Bag-of-features are a powerful

image representation that can be adapted to the data automatically.

The query word is represented with a hidden Markov model. This

statistical sequence model is very suitable for the sequential structure

of text. An important assumption is that the visual variability of the

text within a single collection is limited. For example, this is typically

the case if the documents have been written by only a few writers.

Furthermore, the proposed method requires only minimal heuristic

assumptions about the visual appearance of text. This is achieved by

processing document images as a whole without requiring a given

segmentation of the images on word level or on line level. The detec-

tion of potentially relevant document regions is based on similarity

to the query. It is not required to recognize words in general. Word

size variabilities can be handled by the hidden Markov model. In or-

der to make the computationally costly application of the sequence

model feasible in practice, regions are retrieved according to approxi-

mate similarity with an efficient model decoding algorithm. Since the

approximate approach retrieves regions with high recall, re-ranking

these regions with the sequence model leads to highly accurate word

spotting results. In addition, the method can be extended to textual

queries, i.e., query-by-string, if annotated samples become available.

The method is evaluated on five benchmark datasets. In the seg-

mentation-free query-by-example scenario where no annotated sam-

ple set is available, the method outperforms all other methods that

have been evaluated on any of these five benchmarks. If only a small

dataset of annotated samples is available, the performance in the

query-by-string scenario is competitive with the state-of-the-art.
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1
I N T R O D U C T I O N

Searching document collections for occurrences of query words au-

tomatically is important for the analysis and interpretation of their

contents. It is a widely used standard-functionality for digital docu-

ments containing machine-readable text. Unfortunately, this function-

ality is not directly available for document images. In order to be pro-

cessed with automatic search queries in the same way, it would be re-

quired to transcribe the document images into machine-readable tex-

tual representations first. This can be difficult for non-standardized

documents and is, therefore, costly and error-prone in these cases.

Different non-standardized document collections are highly variable

in their visual appearance and cannot be automatically transcribed

with off-the-shelf optical character recognition software. Setting up

a full transcription recognizer requires huge amounts of annotated

sample data that is representative for the application domain. Such

an annotated sample set typically consists of machine-readable tran-

scriptions of document images on line level. For non-standardized

documents this is not directly available. Obtaining such a sample set

partly solves the original problem which diminishes the benefit of

applying full transcription recognizers.

Word spotting methods allow for searching document images with-

out requiring a full transcription. Especially for handwritten and his-

toric documents this is most relevant. Their otherwise manual explo-

ration is a laborious and time consuming effort. In contrast to search-

ing in machine-readable textual representations for occurrences of

query words, word spotting searches document images based on vi-

sual appearance. This makes word spotting a specialized image re-

trieval technique with a number of desirable properties:

• Word spotting is very flexible with respect to its applicability

in practice. It makes the most out of its given scenario, even if

just the document images without any additional annotations

are available. One focus of this thesis are segmentation-free ap-

proaches that process entire document images without requir-

ing a given segmentation on word or line level.

• Word spotting is robust with respect to retrieval errors. Search

results are typically presented to the user in a list ranked ac-

cording to similarity to the query. As long as the relevant re-

sults are among the top results they are still useful to the user.

The method presented in this thesis achieves highly accurate re-

trieval results. In the scenario where no annotated sample set is

available, state-of-the-art methods are largely outperformed.

1



2 introduction

• Word spotting is fast. This is achieved by computing index rep-

resentations for document images. Through the index, the com-

putational effort can be reduced at query time. In this thesis, a

two-stage method is proposed. Potentially relevant document

image regions are detected fast and analyzed in more detail af-

terwards.

• Words can be queried in different input modalities depending

on the requirements of the users. Each modality has its ad-

vantages and disadvantages. In this thesis, word image queries

and textual queries are considered. These are the most relevant

query modalities in practice.

This is achieved by using bag-of-features with hidden Markov models

in an integrated word spotting framework. The bag-of-features (BoF) is

an image representation that can automatically be adapted to the vi-

sual characteristics of an image dataset [OD11]. This makes BoF very

suitable for historic document collections that have very diverse vi-

sual appearances. The hidden Markov model (HMM) is a statistical se-

quence model, which allows for modelling the length variabilities that

are typically found in handwritten texts [PF09]. It is used for repre-

senting the query. In order to search documents, it is not required to

split the document images in word segments or in line segments first.

Therefore, the method is classified as segmentation-free. Along with

these aspects that are important for the applicability in practice, dif-

ferent possibilities for integrating BoF in the statistical HMM process

will be discussed in this thesis.

The rest of this chapter is structured as follows. Section 1.1 moti-

vates word spotting and its common applications. Word spotting is

presented in the context of document analysis showing how it is able

to bridge the gap between manual document image exploration and

manual or automatic analysis based on full document image tran-

scriptions. The architecture of a typical word spotting system and its

most common variants are introduced in Section 1.2. In this regard,

Section 1.3 puts this thesis in context with word spotting approaches

in general and highlights its specific contributions to the field. The

introduction concludes with an outline of the structure of the thesis

in Section 1.4.

1.1 motivation

Word spotting is part of the document analysis research area. A ma-

jor objective in document analysis is to support work on document

images with methods for automatic information extraction. In this re-

gard, many methods deal with text. Given a document image, an

ideal result would be a full text transcription along with annota-

tions of the exact occurrences of characters and words. For standard-
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ized documents considerable progress towards this objective has been

made in recent years. Optical character recognition software achieves

high recognition rates for high quality printed documents [Smi07].

This is mainly due to the limited variability in the visual appear-

ance of modern fonts, high quality output of modern printers and

scanners and standardized document layouts. However, as soon as

the variability increases, results deteriorate. This is especially prob-

lematic for handwritten and historic documents, cf. [LRF+12]. The

visual appearance of handwritten script is extremely writer depen-

dent. Historic documents contain degradations that are due to aging,

storage or low quality of ink and paper. The practical consequence is

that, compared to the possibilities available for modern documents,

the possibilities for automatically analyzing handwritten and historic

documents are rather limited. For this reason, the continuously grow-

ing digital archives of historic document images are not as accessi-

ble as modern documents. Considering that these digital document

archives are becoming widely available through the Internet, cf. e.g.,

[Bal05], this aspect becomes even more important.

The work of these digital libraries is extremely relevant. They pre-

serve mankind’s cultural heritage and make it available to the public.

History repeats itself and one can only learn for the future when

being aware of what happened in the past. Through digital archives

history becomes vivid and is likely to reach a much broader audience

besides the expert community. An example is the Library of Congress

in Washington, DC, USA. Various historic document collections are

directly accessible online1.

Towards supporting historic document image exploration with au-

tomatic methods, word spotting plays a crucial role. In order to rec-

ognize or retrieve text, annotated sample data is required in any case.

This is generally a problem, as annotated sample data is hard to ob-

tain. It usually has to be created manually. Methods requiring large

amounts of annotated data, like full transcription recognizers, have

another disadvantage in this regard. Historic document collections

are very particular in their visual appearance. Unlike for modern doc-

uments, an annotated sample set for one document collection might

not be usable for creating a recognizer for another historic document

collection. The manual annotation has to be started over and over

again. If a lot of effort has to be put in the manual transcription be-

fore methods for automatic processing become available, it might be

more efficient to directly organize the manual transcription of the

entire document collection [CT14].

Word spotting offers a compromise where the requirements with

respect to annotated samples are very flexible. The possibilities go

from word spotting systems working with synthesized annotated

samples, thus, avoiding any manual labeling effort, over systems that

1 https://www.loc.gov/collections/, accessed on July 13, 2019.

https://www.loc.gov/collections/
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just require a single annotated sample of the query word to models

that have to be estimated with large volumes of annotated word im-

ages. If word spotting is based on a single annotated example of the

query word, document images with similar visual appearance can be

searched. If more annotated samples are available, these can be used

for improving retrieval performance. However, this assumes that the

annotated samples are representative for the text in the document im-

ages. This is a challenge for synthesizing sample data, in particular.

Besides these prerequisites, the input and output of a word spotting

system offer advantages to users. While searching in a transcript lim-

its the input to textual queries, word spotting allows for a full band-

width of modalities, including text, word images, speech [RAT+15b]

or handwriting [WRF16; SRF17]. The latter can, for example, be use-

ful for documents written in non-standard scripts, cf. [BHM16].

In a similar manner, the output of a word spotting system offers a

lot more flexibility in contrast to the explicit transcription provided

by a recognizer. By acknowledging that an automatic system will typ-

ically not be able to produce perfect results, the user can interactively

be integrated in the document analysis process [RL14]. This makes

word spotting robust with respect to retrieval performance. While

errors in full transcriptions diminish the value of the overall result

considerably, errors in retrieval systems mainly affect the ranking of

the retrieval list. As long as the relevant results are among the top re-

sults, the user decides what is correct. In case of historic documents

there is a further aspect that has to be taken into account. Different

historians might interpret the same passage in a document very dif-

ferently. This also means that there might not be a single “perfect”

transcription. Word spotting leaves the interpretation to the experts

and helps with finding document regions that are potentially relevant

to the query. Therefore, the capabilities and limitations of word spot-

ting methods are transparent. This increases the acceptance of the

experts. It has to be noted that in the age of the Internet users are

generally very familiar with the benefits of retrieval search engines.

Finally, word spotting can also be seen as a useful tool for obtaining

a full transcription recognizer. Due to the advantages discussed above,

a word spotting system can be applied on the document images even

at a stage where no annotations are available at all. By collecting

the retrieval results, an annotated sample set can be built. With this

growing sample set the word spotting system can be refined until a

sufficient number of high quality annotations is available. This can be

the basis for estimating a full transcription recognizer, thus, allowing

for a smooth transition from searching to transcribing.
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place

Query-by-string

Query-by-example Document image section

...

Ranked retrieval list

Figure 1: Word spotting system overview. On the left two different modali-
ties for the same query word place are shown. The search result
is shown on the right. The only relevant region in the document
image section shown in this example has been highlighted with
an orange frame. In the ranked retrieval list it appears first. It is
followed by document image regions in descending order of simi-
larity to the query. Document images, that are shown in this figure
and in the following figures, originate from the George Washington
papers [Was54], unless noted otherwise.

1.2 word spotting

The input of a word spotting system consists of document images

and a query. The output is a list of document image regions that is

typically ranked according to similarity to the query. Figure 1 shows

the overall process with two query modalities. In the query-by-example

scenario, the query is given as an exemplary occurrence of the query

word. This means that the user has to locate and select an instance of

the query. In the query-by-string scenario, the user can enter a textual

query on a keyboard. Figure 1 shows a result where the only relevant

region in the document image section is highlighted and appears in

the ranked retrieval list first.

Consequently, the basic structure of a word spotting system fol-

lows the structure of an information retrieval system. Initially, a data-

base of document images is given. For making the document images

searchable, image regions are represented in terms of features. In this

regard, features are numerical representations that contain informa-

tion which is relevant for word image retrieval. Whether the query is

given by-example or by-string, a query model is obtained that can be

evaluated with the image representations from the document image

database. For query-by-example, it can be sufficient to model visual

appearance on word level. Modelling visual appearances of charac-

ters is an approach for the query-by-string scenario. Scores that repre-

sent similarities between the query and the document image regions

are used for generating the ranked retrieval list.

For detecting relevant document image regions, it is helpful if words

can be identified in the document prior to retrieval. This is usually
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the case for printed modern documents. Texts printed in standard-

ized fonts can heuristically be segmented into words in many cases.

For example, based on the assumption that gaps between words are

larger than gaps between characters within words. However, particu-

larly for handwritten and historic documents this often fails. In these

cases, the visual variability of text can be substantial even for a single

writer. If the entire retrieval pipeline is built on segmented regions,

segmentation errors will also lead to errors in the retrieval result.

Segmentation-free methods approach this challenge in an integrated

manner. Potentially relevant document image regions are obtained

within the word spotting process, depending on similarity to the query.

Thus, the regions should cover the relevant occurrences of the query

in the document images, but they do not have to correspond to word

segments in general. In contrast, segmentation-based methods assume

a given segmentation of the document into words. Document image

regions are usually defined as rectangular bounding boxes.

The development of segmentation-free word spotting methods has

mainly been influenced by techniques that have been successful for

handwriting recognition and computer vision. With respect to doc-

ument image representations, methods from computer vision have

a strong influence. In order to cope with the great variability found

in natural scene images, feature representations that are automatically

adaptable to the problem domain have been very successful. For this

purpose, sample data from the problem domain is required. Further-

more, it is important whether the data is also annotated with respect

to the classes that the samples are associated with. A powerful image

representation that does not require annotations is the bag-of-features

(BoF) [OD11]. In computer vision, it has been successfully applied to

object [CDF+04] and scene categorization [FP05] as well as large scale

image retrieval [SZ03]. The last scenario is particularly related since

efficient retrieval is approached by indexing BoF representations. For

these reasons, BoF is also suitable for word spotting in historic doc-

ument images. In this scenario, large archives have to be searched,

characteristics of different document collections are very diverse and

hardly any annotated samples are available [SJ12; RRL+14; RAT+15a].

If large amounts of annotations are available, convolutional neural net-

works (CNNs) strongly improve recognition and retrieval performance,

e.g., for object recognition [CSV+14] and word spotting [SF16].

In the field of handwriting recognition, statistical sequence models,

like hidden Markov models (HMMs) [PF09; KDN13] or recurrent neu-

ral networks [FU15], are the predominant methods. They are well

suited for modeling the sequential structure of text. Furthermore, they

can handle the great variability in human writing. By representing

a line image as a sequence of feature vectors, each element of the se-

quence can be associated with different classes, e.g., characters. In this

way, recognition and segmentation of the text line are solved jointly.
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This has also been successfully applied for spotting words within

text lines [FKF+12; FFM+12]. Furthermore, HMMs offer great flexibil-

ity with respect to the amount of annotated sample data which is re-

quired for model estimation. In the semi-continuous HMM framework,

features are modeled with a single probabilistic mixture model which

is shared among all HMM states. In this way, the mixture model can

be estimated without annotated data, i.e., in an unsupervised manner.

HMM state-dependent parameters can be estimated from few anno-

tated samples [PF05]. A single annotated sample can be sufficient in

order to estimate a query word HMM for word spotting [RP09b].

1.3 contributions

The main contributions of this thesis are an integration of BoF rep-

resentations and HMMs as well as their efficient application to seg-

mentation-free query-by-example and query-by-string word spotting.

A first approach in this direction was made in the Diploma thesis

[Rot11] where an integration of BoF sequences and HMMs was intro-

duced for handwriting recognition. The most important results from

[Rot11] have been published in [RVF12]. Building on this work, the

application of BoF-HMMs to a different challenging application domain

and an extensive study of BoF output models for HMMs are presented

here. The methods are evaluated on established word spotting bench-

marks. Figure 2 shows a schematic visualization of the word spotting

system and highlights the different contributions.

The methods presented in this thesis have partially been published

at scientific conferences of the document analysis community. In the

following, the contributions are discussed in the context of these pub-

lications. The research has been carried out in the pattern recognition

group at TU Dortmund University under the supervision of Prof. Dr.-

Ing. Gernot A. Fink. In the early stages, the application of BoF-HMMs

in a patch-based word spotting framework has been supported by Dr.

Marçal Rusiñol. Based on the HMM toolkit ESMERALDA [FP08] and

the computer vision toolkit VLFeat [VF08], the author of this thesis

implemented the word spotting method in Python and C++ and per-

formed all the word spotting experiments unless noted otherwise. In

addition to these basic contributions, important methodological con-

tributions will be outlined along with the corresponding publications.

BoF-HMMs have been presented for segmentation-free query-by-ex-

ample word spotting for the first time in [RRF13]. Incorporating ideas

from [RVF12] and [RAT+11], BoF-HMMs have been used for modeling

query word images. The visual similarity of the query with docu-

ment image regions has been evaluated in a patch-based framework.

Highly accurate word spotting results could be achieved. Only a sin-

gle exemplary word image of the query was available for model es-

timation. Despite the high computational complexity of HMM decod-
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HMM decoding

Ranked retrieval listDocument image

Inverted index

Mixture component index

BoF output mixture model
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example / string
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sequences

Figure 2: Schematic visualization of the word spotting system presented
in this thesis. Input and output nodes are shown in gray with
rounded corners. Following the arrows from the input nodes, the
output node can be reached. The main contributions are indicated
with different colors. Brown refers to HMM modeling. Green refers
to text and line hypotheses generation. Orange refers to the out-
put model integration of HMMs and BoF sequences obtained from
line hypotheses. This association between the green line hypothe-
ses node and the orange output modeling node is indicated by a
dotted line. Blue refers to contributions that are specific to segmen-
tation-free decoding in the two-stage patch-based framework.

ing, their applicability in a patch-based segmentation-free framework

was shown. In Figure 2, this is denoted as a query-by-example sce-

nario that makes use of BoF-HMMs and ends in a fine analysis of the

document image. Important contributions in [RRF13] are the dynamic

adaptation of the patch sampling rate as well as the incorporation of

BoF vectors at the left-side context and the right-side context of the

query word image.

Query-by-example word spotting with BoF-HMMs has successfully

been applied to document collections with very different characteris-

tics, such as printed Bengal documents [RFB+13], historic postcards

written in German Kurrent [FRG14] and rendered images of 3D cu-

neiform tablets [RFM+15]. The rendered cuneiform images were pro-

vided by the co-author Denis Fisseler. The author of this thesis con-

tributed to the definition of the word spotting benchmarks in all three

publications.

In order to improve the applicability of the word spotting method

in large scale scenarios, a two-stage extension has been proposed

in [RRL+14]. For rapidly searching high volumes of document im-

ages, it is important to build index structures allowing for retrieving

potentially relevant document image regions instantly. In the patch-

based framework, HMM scores need to be computed for each patch

independently such that the application of indexing strategies is not
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straight forward. In [RRL+14], a method for indexing document im-

age regions based on their BoF representations along with a voting ap-

proach for ranking these regions according to similarity to the query

has been presented for segmentation-free word spotting. In combina-

tion with BoF-HMMs, potentially relevant document image regions can

be retrieved fast and then refined with the more accurate statistical

sequence model. Since both stages operate on the same features, im-

age regions that have been discarded in the first stage are unlikely

to obtain good similarity scores in the second stage. In Figure 2, the

first stage is denoted as coarse analysis. The arrow to fine analysis in-

dicates that both analysis stages are intended to be used jointly. The

most important contributions in [RRL+14] are the voting algorithm

in the coarse analysis stage and the integration of both stages in the

same patch-based decoding framework, which have been developed

under the guidance of Dr. Marçal Rusiñol and Prof. Dr. Josep Lladós.

If annotated sample data is available, this allows for supporting

query-by-string. HMM character models can be estimated and com-

bined dynamically for creating query models. In [RF15], the first

patch-based method for segmentation-free query-by-string word spot-

ting was proposed. The analysis patch size has been generated from

character size estimates. In addition to achieving competitive retrieval

results, the robustness of the method was demonstrated with respect

to limiting the amount of annotated sample data. Figure 2 shows

that the two-stage segmentation-free framework is independent of

the query modality. In both cases, BoF-HMM query models can be used.

The most important contribution in [RF15] is the use of a large inven-

tory of context-dependent character models with limited annotated

training material.

In [RF16], different approaches for modeling BoF in the statistical

HMM process have been discussed in the context of text categoriza-

tion, handwriting recognition and word spotting. In this regard, two

methods for integrating BoF and HMMs were evaluated. The pseudo-

discrete approach, presented in [RVF12], has been compared with

a mixture model from probabilistic text clustering [Elk06]. A distin-

guishing property of the two models is their capability of represent-

ing BoF representations. In contrast to the pseudo-discrete model, the

mixture model from probabilistic text clustering is very suitable for

the characteristics of the BoF representations in the given scenario.

This was demonstrated in the evaluation of [RF16]. Although the

pseudo-discrete model suffers from the possibility of degenerated

cases, it showed very good generalization capabilities for word spot-

ting. In Figure 2, the output model is shown as the element bridging

the HMMs and the sequences of BoF representations. Important contri-

butions in [RF16] are the analysis of degenerated cases of the pseudo-

discrete model and the selection of the probabilistic mixture model

from [Elk06] for the application in the given scenario.
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Furthermore, considerable advancements of these methods are pre-

sented in this thesis. This is possible through the incorporation of

text hypotheses. Text hypotheses are obtained with a method that

has been presented for word hypothesis generation in [RSR+17]. In-

spired by maximally stable extremal regions [MCU+04], the author of

this thesis proposed a method for hypothesis generation based on

text detector scores and word detector scores. The co-authors Sebas-

tian Sudholt and Eugen Rusakov contributed CNNs for computing

word detection scores. Sebastian Sudholt also contributed the CNNs

for representing word hypotheses with pyramidal histogram of charac-

ters (PHOC) attributes, i.e., the PHOCnet. While the author of this the-

sis largely contributed to the design of the segmentation-free word

spotting system, the system implementation and execution of experi-

ments has been carried out by co-author Matthias Kasperidus.

Using text hypotheses, a generalization of the indexing strategy to

features that are modeled with semi-continuous (SC) HMMs is proposed

in this thesis. For this purpose, line hypotheses are derived from text

hypotheses. For all line hypotheses, BoF sequences are extracted and

mixture component probabilities are stored in a look-up table. For coarse

analysis, potentially relevant document regions are obtained by in-

verting this index. Their similarity to the query is computed with a

probabilistic voting scheme. For fine analysis, an extended patch-de-

coding strategy is proposed that allows for localizing words highly ac-

curately. The extended strategy includes alignments of patches with a

background model, whitespace models and the query model. The ex-

tended patch-decoding strategy allows for improving word spotting

performance considerably. Furthermore, the patch coordinates can be

snapped to text hypothesis coordinates in their local neighborhood.

All of these contributions are evaluated in an integrated framework.

The possibilities for supporting historic document exploration are

demonstrated. In comparison to segmentation-free query-by-example

word spotting methods that do not require annotated samples besides

the query word image, state-of-the-art results are outperformed by a

large margin on five datasets of historic document images. Regarding

the applicability in practice, the most important contribution is that

only a single meta parameter requires an adjustment for applying

the proposed method to a new document collection. This parameter

can be estimated from the document images automatically. Therefore,

the method is perfectly suited for historic document collections that

are still unexplored or where transcriptions and annotations are not

available in machine-readable form.

1.4 structure

The thesis is structured as follows. Chapter 2 presents the pattern

recognition methods which are the foundation for segmentation-free
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word spotting with BoF-HMMs. Chapter 3 discusses related word spot-

ting methods, focussing on the recent state-of-the-art as well as the

techniques that have been influential for the development of the meth-

ods presented in this thesis. The proposed word spotting method is

presented in Chapter 4. The contributions that are highlighted in Sec-

tion 1.3 are explained in detail and discussed in a comprehensive eval-

uation in Chapter 5. The proposed method is differentiated from the

state-of-the-art, showing limitations and advantages. A conclusion is

drawn in Chapter 6.

Supplemental material is provided in three appendices. Appendix A

adds experimental evaluations of BoF output models. Formal deriva-

tions for the BoF output model that has been proposed in [Elk06] are

presented in Appendix B. Finally, a comprehensive categorization of

word spotting methods can be found in Appendix C.





2
F U N D A M E N TA L S

Word spotting with BoF-HMMs is mostly based on methods from au-

tomatic image retrieval and handwriting recognition. An important

property that these methods share is that they do not require large

amounts of annotated samples. Heuristic methods are not estimated

from sample data. They are successful due to their expert design.

Unsupervised methods are estimated from sample data without re-

quiring annotations. Their purpose is to group features according

to higher level components. Supervised methods require annotated

samples for model estimation. In combination with the unsupervised

models, the annotations allow for associating the higher level compo-

nents with semantic units, i.e., classes. The supervised method, that

is presented here, can be estimated from a single annotated sample.

Furthermore, the parameterization of these methods is robust such

that they work in different application scenarios and on different

datasets without requiring extensive manual parameter tuning. The

concepts and methods that will be introduced in the following demon-

strated these characteristics in the application to different pattern

recognition tasks:

• Regions-of-interest (RoIs) are required in order to focus the anal-

ysis on potentially relevant image areas. The maximally stable

extremal region (MSER) detector is a heuristic method that has

been applied in different computer vision tasks including text

detection in natural scene images (Section 2.1).

• In the context of image retrieval, the computation of visual sim-

ilarities is based on low-level image representations. The scale

invariant feature transform (SIFT) descriptor is among the most

widely used heuristic features in computer vision (Section 2.2).

• Based on low-level features, the bag-of-features (BoF) is a famous

mid-level feature representation. Its ability for unsupervised

adaptation to the problem domain made it a standard repre-

sentation for image retrieval (Section 2.3).

• Mixture models represent the feature vector distribution based

on a given number of probabilistic mixture component distri-

butions. After unsupervised model estimation, the components

represent typical feature vector variations. The multinomial mix-

ture model has been used for text classification with bag-of-words

as well as for clustering images according to visual similarity. It

is a foundation for modeling BoF with HMMs (Section 2.4).

13
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• Hidden Markov models (HMMs) allow for modeling the sequences

of feature vectors that are typical for given classes, e.g., char-

acters and words. Probabilistic mixture models are required

for this purpose. If all mixture models in an HMM share the

same components and only differ in the mixture proportions,

the HMM is called semi-continuous (SC). SC-HMMs allow for esti-

mating a model from only a single sample (Section 2.5).

Consequently, word spotting with BoF-HMMs follows a classic pattern

recognition pipeline. RoIs are represented with sequences of BoF fea-

ture vectors and an HMM models the sequence of BoF vectors that is

typical for the query word. Since BoF-HMMs operate in the segmenta-

tion-free scenario, it is important to note that RoIs represent alterna-

tives to each other and not a segmentation of the document image into

lines or words.

2.1 maximally stable extremal regions

Maximally stable extremal regions (MSER) is a method for detecting high-

contrast regions based on image intensity values [MCU+04]. It has

been proposed in the context of obtaining point-wise correspondences

between images which show the same scene from different view-

points [MCU+04]. Based on these correspondences, the viewpoint

transformation can be derived. Finally, this allows for a 3D recon-

struction of the scene. The detected image regions are matched with

each other in order to obtain correspondences. For this purpose, the

regions should have distinguishable visual properties such that they

can be detected reliably and repeatably from different view points

and under different illumination. The most important assumption in

the MSER method is that such regions are extremal.

Extremal regions (ERs) are defined such that all pixels within the re-

gion have an intensity value that is larger (or smaller) than the inten-

sity values of the pixels in the outer region boundary. If the intensity

values within the region are larger than the intensity values in the

outer boundary, the region is referred to as maximal intensity region.

Otherwise, i.e., if the intensity values within the region are smaller

than the intensity values in the outer boundary, the region is referred

to as minimal intensity region. In order to limit the number of detec-

tions, an ER has to be maximally stable. Informally this means that

the intensity difference of the extremal region with respect to its outer

boundary should be large.

The key idea for computing ERs is to threshold, cf. [GW02, p. 77], an

image at all intensity levels. For 8 bit intensity values this produces

256 binary images. Binary images are obtained such that all pixels

with an intensity value below the given threshold are set to zero and

to one otherwise. Thus, fewer pixels are set to zero for lower threshold

values than for higher threshold values. Afterwards, connected compo-
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Figure 3: Maximally stable extremal regions are detected in an ER tree. For
this purpose the figure shows a conceptual visualization of a few
ERs which have been extracted from a small section of a document
image at three binarization thresholds. The tree root is indicated
as a gray dot. The ERs are minimal intensity regions such that they
represent the pen-stroke which typically has a dark visual appear-
ance. The concept of maximal stability is indicated by the MSER

which is highlighted in red. For the three binarization thresholds
it changes minimally with respect to the ERs on the same tree path.

nents (CCs) are extracted from all binary images. For minimal intensity

regions, a CC is a subset of pixels with value zero that are connected

through their 8-neighborhood of surrounding pixels, cf. [GW02, Sec.

2.5.2]. These CCs are extremal because all intensity values within a CC

are smaller than the intensity values surrounding the CC. Therefore,

CCs can only grow from lower to higher thresholds. This way, a re-

lation is defined among CCs over different thresholds which globally

results in a tree, see Figure 3. The criterion for maximal stability is de-

fined along any path from any tree leave to the tree root. For a given

path, the relative change in the number of pixels in a CC is computed

as a function of the tree level. An MSER is detected for each CC on any

path where the function reaches a local minimum. The sensitivity of

the detector can be controlled through the CCs which are incorporated

for computing the relative CC change at a tree level. Instead of consid-

ering CCs at the tree level below and above the given level, i.e., with

an offset of one, the offset can be increased for making the detector

less sensitive. Figure 3 shows a conceptual visualization of an ER tree

for a small section of a document image.

Apart from detecting regions for obtaining point-wise correspon-

dences, selecting ERs according to maximal stability is a heuristic that

has also been applied to text detection in natural scene images, cf. e.g.,

[DBW08]. However, the vast majority of MSER detections in a natural

scene image will not be containing text and has to be filtered in a post

processing step, e.g., by using a classifier. For this reason, it is more

efficient to directly integrate the classifier in the region generation

process, resulting in category-specific extremal regions [MZ05]. The key

idea is to represent each ER from the ER tree with a numerical feature
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representation. Based on the classification result, an ER is accepted

or rejected as a detection. This way, the heuristic maximal stability

criterion can be replaced with a decision of a learned classifier. Most

importantly, this implies that annotated samples are available for esti-

mating the classifier. A combination of both approaches is presented

in [NM16]. Instead of accepting or rejecting ERs directly, the maximal

stability criterion is applied on the classifier scores. In comparison

to the direct classification approach, this mostly avoids redundant

detections. It is important to note that the detected text regions do

not necessarily correspond to words and have to be grouped by their

distances. This is an important aspect in the context of document im-

ages. Since these images mostly contain text, the challenge is to detect

accurate word boundaries rather than appearances of text in general.

2.2 scale invariant feature transform

Scale invariant feature transform (SIFT) is a method for extracting lo-

cal image features [Low04]. For this purpose, it consist of an interest

point detector and an interest point descriptor. The descriptor is a fea-

ture vector that represents the local image neighborhood around the

interest point. It has been proposed for obtaining point-wise corre-

spondences in images, e.g., for object recognition [Low04]. The main

objective is that the descriptors should be invariant to typical image

transformations, most importantly rotation and scale. For example,

this means that corresponding descriptors which have been extracted

from the same object in different rotations should be similar in the

descriptor vector-space although their visual appearance differs due

to the rotation. The SIFT method achieves this by using the detector

and the descriptor in an integrated manner such that the information

obtained in the detector stage is used in the descriptor stage. Interest

points are also referred to as keypoints.

For detection, the image is represented with a difference-of-Gaus-

sian scale space. In the first step, a Gaussian scale space is obtained by

filtering the image with Gaussian kernels of increasing variance. The

process simulates the change in image details if an object is captured

at different distances to the camera. The difference-of-Gaussian scale

space is obtained by subtracting filtered images which are adjacent

in the Gaussian scale space. Essentially, this approximates a second-

order derivative filter which extracts contour information at different

frequency bands. Candidate locations are local extrema in the differ-

ence-of-Gaussian scale space. Candidates that are directly located on

image edges are suppressed since they are unlikely to be detected re-

peatably across image transformations. For all remaining candidates,

the scale parameter is set to the scale at which it has been detected

within the scale space. In addition, orientation parameters are com-

puted with respect to the scales of the candidates. Gradient orienta-
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Figure 4: SIFT descriptor. The figure shows a single SIFT descriptor that has
been extracted in a section of a document image. The descriptor
consists of 4× 4 cells, which are indicated in blue. Each cell is rep-
resented with a gradient orientation histogram. The 8 histogram
orientations, corresponding to [0, 45, 90, . . . , 315] degrees, are indi-
cated with blue lines within the cells. The lengths of the lines corre-
spond to the weighted and accumulated gradient magnitudes, i.e.,
the histogram values. In the application to a document image, the
descriptor represents image areas with high contrast, i.e., mostly
the pen-stroke. It should be noted that the descriptor is larger than
in pratice in order to allow for a better visualization.

tions and gradient magnitudes are precomputed for each image from

the Gaussian scale space for this purpose. The orientations in the lo-

cal neighborhood of a candidate location and its scale are obtained

with a 36-bin orientation histogram. For this purpose, gradient orien-

tations are quantized and their magnitudes are accumulated to the

corresponding histogram bin. Magnitudes are weighted according to

their distance to the candidate location with a Gaussian. The detector

extracts interest points for all dominant orientations at all candidate

locations. Histogram orientations are considered as dominant if their

histogram value is within 80% of the maximum histogram value. In-

terest points are represented with location, scale and orientation.

In the descriptor stage, the local neighborhood of each interest

point is represented with a numerical feature vector. A descriptor

consists of 16 histograms of 8 orientations. The histograms are com-

puted for 4× 4 cells around the interest point location, resulting in

a 128 dimensional descriptor vector. The cells and the histograms for

a single descriptor are shown in Figure 4. Precomputed gradients

are obtained according to the scale of the interest point in order to

achieve scale invariance. Gradient orientations are rotated according

to the interest point orientation in order to achieve rotation invari-

ance. Gradient magnitudes are weighted by a Gaussian according to

their distance to the interest point locations in analogy to the ori-

entation assignment in the detector stage. Afterwards, the weighted

magnitudes are accumulated in the corresponding histogram bins.

An interpolation scheme avoids quantization artifacts. Invariance to

linear contrast changes is achieved by normalizing the descriptor vec-

tor to unit length. By clipping the normalized descriptor values at 0.2

and renormalizing to unit length, the descriptor becomes invariant to
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non-linear contrast changes to some extent. Clipping high values em-

phasizes the histogram distributions. Large histogram values would

dominate the descriptor otherwise. Furthermore, the descriptor is in-

variant to changes in illumination since gradients are image intensity

differences and, therefore, independent of absolute intensity values.

An approach to template-based object recognition with SIFT fea-

tures and the generalized Hough transform [Bal81] has been presented

in [Low04]. The basic ideas for this method are important in the coarse

analysis stage for word spotting with BoF-HMMs.

The generalized Hough transform matches local features with re-

spect to a reference point. The reference point is specific to an object

that should be detected. For this purpose, the parametric relations be-

tween the local features from the template and the reference point in

the template are computed. For each local feature from a test image,

the most similar local feature from the template image is obtained.

For each pair of matching features, the same parametric transforma-

tion that relates a local feature from the template with the reference

point is applied to the parameters of the corresponding local feature

in the test image. Finally, each feature in the test image votes for the

parameters that have been obtained through the corresponding trans-

formation. A large number of features that is consistent with an object

hypothesis results in a large number of votes for the global parameter

values of the hypothesis. The similarity of the matching features can

be considered in the voting process, cf. [Bal81].

If the generalized Hough transform is applied to SIFT features, the

parameter-space is 4-dimensional, i.e., two dimensions for the image

location, scale and orientation. SIFT features are matched according to

the Euclidean distances of their descriptor vectors. In order to better

understand the parameter transformation, the SIFT feature parameters

can be considered as a vector starting at the feature location that is

scaled and oriented according to the parameter values. The parametric

transformation rotates and stretches the vector such that it points to

the reference point. A larger number of matching features in the test

image that correspond to the features in the template will vote for

similar parameter values, i.e., the hypothesized pose of the object. The

parameter voting space is quantized in order to avoid ambiguities.

Apart from the successful application in various computer vision

tasks, the SIFT descriptor has properties that are making it suitable

for the application in historic document images. The orientation his-

tograms abstract from the shape of the script such that the descriptor

is invariant to small writing style variabilities. Invariance to contrast

changes is helpful in order to cope with typical artifacts in historic

documents, like fading ink.
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2.3 bag-of-features

The bag-of-features (BoF) is a powerful feature vector representation

for image regions, cf. [OD11]. It is based on a statistic of local-fea-

ture frequencies. The BoF representation has been proposed for image

retrieval [SZ03]. The key idea was to apply automatic text retrieval

concepts to images. A basic information retrieval concept is the vec-

tor space model [BR11, Sec. 3.2.6]. Items from a database as well as

the query are represented as points in the same vector space for this

purpose. Retrieval can be accomplished by computing similarities be-

tween the query and all database items and ranking the items accord-

ingly. Apart from a suitable similarity measure, the numerical vector

representation is very important.

In order to represent textual documents of variable length in the

same vector space, the bag-of-words (BoW) is a standard approach. The

vector space can be defined by the most frequent words, so-called

terms, such that each term corresponds to a dimension in the vector

space. Usually this excludes stop words, like the, at or on, which pro-

vide no semantic information. Further, the terms are reduced to their

word stems in order to achieve invariance with respect to grammati-

cal variants. A textual document can then be represented as a point

in the vector space by counting the number of term occurrences, i.e.,

the representation is a histogram. It should be noted that many vector

components are usually zero depending on the number of terms and

the length of a textual document.

BoW can be generalized to BoF in order to represent images in the

same way. Therefore, a counterpart to a word in a textual document

has to be defined for an image. Since a word can be seen as a local

text feature, local image descriptors have similar properties which

makes them suitable for this purpose. For obtaining local image fea-

tures, principally any region detector can be used, like SIFT or MSER,

cf. [OD11]. However, better results can be achieved if local features

are extracted in a regular grid, cf. e.g., [CLV+11]. This is due to the

heuristic assumptions in the detection processes. For feature descrip-

tion, the SIFT descriptor has been most successful [OD11] and is con-

sidered as a standard descriptor for BoF applications [CLV+11]. Fig-

ure 5 shows an application of BoF to a document image, including a

dense grid of SIFT descriptors.

After the image descriptor has been established as a counterpart

of a word in a textual document, typical local image descriptors have

to be obtained in order to define the vector space. Computing these

features that are typical for the problem domain is an unsupervised

learning task. For this purpose, a model is required which usually

consists of model parameters and meta parameters. The model parame-

ters are analytically inferred from sample data. The meta parameters

are heuristically optimized with respect to a performance measure
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Figure 5: BoF representations. The figure visualizes an application to docu-
ment images. The visual vocabulary is obtained by clustering local
image descriptors from an image dataset. The descriptors are ex-
tracted in a dense grid such that they cover the image uniformly.
They are indicated in blue and consist of 4× 4 cells, like SIFT. In the
figure, descriptors do not overlap for a better visualization. The vi-
sual vocabulary consists of visual words which correspond to the
cluster centroids. Five visual words are indicated in different col-
ors. In order to represent a document image region, each descrip-
tor is quantized with respect to the visual words from the visual
vocabulary. The quantization result is exemplarily shown with dif-
ferently colored descriptor center points. The color indicates the
visual word. It can be noted how visually similar pen-strokes are
covered with visually similar color patterns. Region representa-
tions are given by histograms of visual word frequencies.

that depends on the final application. In an unsupervised learning

scenario, the model parameters are estimated without annotations. The

model estimation process is generally referred to as training.

A standard method for computing typical image descriptors is

Lloyd’s algorithm, cf. [GG92, Sec. 11.3], using Euclidean distances.

Given a dataset of sample descriptors, the algorithm randomly ini-

tializes a codebook of typical descriptors. Generally, the elements of

a codebook are called codewords. In the context of Lloyd’s algorithm,

the codewords are more specifically referred to as centroids. The num-

ber of centroids defines the dimensionality of the vector space and is

a meta parameter. The codebook contains the model parameters. All

descriptors are quantized with respect to the centroids according to

smallest Euclidean distance. Afterwards, the centroids are updated

such that they minimize the average distance to all descriptors that

have been assigned to them during quantization. For Euclidean dis-

tances, this is achieved by computing the mean of the corresponding

descriptor vectors. The process of quantization and codebook update

is iterated until the average quantization error converges. The average
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quantization error is the average distance between descriptors and

corresponding centroids over the entire dataset. Since the centroids

are the prototypical image descriptors they are referred to as visual

words and the codebook is referred to as visual vocabulary. Figure 5

shows an exemplary clustering result for a two-dimensional dataset.

In order to obtain a BoF image representation, descriptors are ex-

tracted and quantized with respect to the visual words. In analogy

to BoW, a histogram of visual word frequencies is computed. There-

fore, the bag-of-features is an orderless representation which abstracts

from the spatial occurrence of the visual words. Figure 5 shows the

quantization result for a section of a document image.

An important difference between BoW and BoF is the expressiveness

of the features, i.e., words and visual words. While the occurrence of

particular words is usually sufficient in order to categorize a textual

document, the appearance of visual words across categories can be

expected to be much more diverse. For this reason, the spatial location

of visual words is of high importance, cf. [CLV+11]. In contrast, the

particular order of words in a textual document is not modeled in the

standard representations, cf. [BR11, Chap. 3].

A successful approach for incorporating spatial information in BoF

representations is the spatial pyramid [LSP06]. In addition to comput-

ing the visual word histogram over the entire image region only, the

region is subdivided in a pyramidal fashion following a quad tree

structure. Such a representation contains L levels with 22l cells per

level where l ∈ {0, 1, . . . ,L− 1}. Afterwards, visual word histograms

are obtained for all cells before they are concatenated. This results in

a D =
∑L−1

l=0 2
2lV dimensional spatial pyramid vector where V is the

size of visual vocabulary. Different weighting schemes have been pro-

posed in order to normalize the numbers of visual words per cell that

is decreasing if the pyramid level increases, e.g., cell representations

are normalized with the 1-norm [CLV+11].

For word spotting, the spatial pyramid plays an important role in

order to represent word images. It can be adapted for modeling the

sequential structure of text. For this purpose, the quadtree structure is

replaced with a temporal structure [RAT+11; SF17]. At the same time

the specificity of the representation can be controlled through the

number of cells. This allows for coping with word size variabilities.

2.4 multinomial mixture model

The multinomial mixture model can represent a statistical distribu-

tion of BoF vectors. Due to this reason, it can be seen as a foundation

for modeling BoF vectors in the statistical HMM process. After a brief

introduction to statistical modeling with multinomial distributions,

the multinomial mixture model will be presented.
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Modeling BoW representations with multinomial distributions is a

standard approach for text classification [BR11, Sec. 8.4.4]. For each

text category, a model is estimated such that it maximizes the prob-

ability for generating the samples of the corresponding class. An un-

known sample can be classified according to the model that generates

the sample with maximum posterior probability. The concept is called

Bayesian inference and follows from Bayes’ theorem, cf. [Bis06, p. 22]

and [DHS00, Sec. 2.1].

For this purpose, the samples are referred to as observations. The

model that generated the sample cannot be observed but has to be

inferred. The generation of an observation is represented on the right-

hand side of Equation 1.

posterior =
prior× likelihood

evidence
(1)

First, the class is selected according to a distribution of prior prob-

abilities. Then, the sample is generated according to a distribution

which is conditioned on the class model, i.e., the likelihood. According

to Bayes’ theorem, the product of the prior and the likelihood is pro-

portional to the posterior probability for the class model conditioned

on the sample. The evidence represents the sample distribution and is,

therefore, independent of the class. It is a normalization factor which

is required for computing a posterior probability but can be neglected

for obtaining the class with maximum posterior probability.

Generally, the posterior denotes a probability after making the ob-

servation, i.e., after the sample has been generated. The prior denotes

a probability which is independent of any observation, i.e., before the

sample is generated. If the classes are represented by discrete multi-

nomial distributions, the likelihood is a conditional probability for the

sample. It is conditioned on a class model. The concept is not specific

to multinomial distributions but applies to any model which is suit-

able for representing the data, e.g., continuous Gaussian distributions.

The main idea for modeling the generation of BoW vectors with

multinomial distributions is to model the generation of each BoW

vector component individually. This way, the model resembles the

BoW vector computation. In analogy, multinomial distributions can

be used for modeling BoF, e.g., for image classification [CDF+04].

In order to model the generation of a BoF vector x ∈NV
>0, N = ‖x‖

1

visual words are independently drawn according to the visual word

probabilities p = (p(V = 0), . . . ,p(V = V − 1))⊤ where V is the size

of the visual vocabulary. For this purpose, V is a discrete random

variable over the event space ΩV = {0, . . . ,V − 1}. Thus, the parameter

vector p of a multinomial distribution can be used as a class model.

Equation 2 shows the probability mass function of the multinomial
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distribution. It consists of the multinomial coefficient and a product

over visual word probabilities.

p(x|p) =
‖x‖

1
!

∏V−1
v=0 xv!

V−1
∏

v=0

p(V = v)xv (2)

The product models a joint probability that weights visual word prob-

abilities p(V = v) according to the absolute visual word frequency

xv ∈ N>0 in the exponent. Thus, the higher the frequency the more

the overall product is influenced by the respective visual word prob-

ability. In case of xv = 0, visual word probability p(V = v) will not be

considered in the product.

The generation of BoF vector x can be understood with an urn

scheme. In this scheme an urn is filled with balls of V different colors

where each color corresponds to a visual word. The proportion of dif-

ferently colored balls is defined by p(V = v) for all v ∈ ΩV. A single

visual word is generated by drawing a ball from the urn, noting its

color and returning the ball back into the urn. The process is repeated

N times. According to the urn scheme, the product in Equation 2 is

normalized by the multinomial coefficient. It specifies the number of

ways to draw N visual words such that each visual word v ∈ ΩV is

drawn xv times.

This model is sufficient as long as a single class is typically rep-

resented by BoF vectors with similar visual word frequencies. Other-

wise, the model will generalize too much and not be specific to the

samples of the class anymore. A solution to this problem are mixture

models, cf. [Bis06, Chap. 9]. For this purpose, a mixture of multino-

mial distributions Θ = {(ck,pk) | 0 6 k < M} is defined by M mixture

components with visual word probabilities pk and mixture weights

ck > 0 with
∑M−1

k=0 ck = 1. The mixture weights define the relative

proportions of components in the mixture. Formally, the weights are

prior component probabilities ck = p(M = k), i.e., probabilities for

the components which are independent of the sample. For this pur-

pose, the probability for a mixture component is represented by a

discrete random variable M over the event space ΩM = {0, . . . ,M− 1}.

The probability mass function for the multinomial mixture model is

defined in Equation 3.

p(x |Θ) =

M−1
∑

k=0

ck p(x |pk) (3)

The number of mixture components M is a meta parameter. The

higher the number of components, the more specific are the visual

word configurations that are represented by the individual compo-

nents. Figure 6 visualizes a multinomial mixture model with two

components in a visual word simplex with three visual words. Com-

ponent k = 0 represents BoF vectors where mostly the blue visual
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Figure 6: Simplex visualization of the multinomial mixture model. BoF can
be visualized in a simplex according to relative visual word fre-
quencies. The simplex vertices are labeled with visual words as
indicated by the blue, green and pink descriptors. A point in the
simplex refers to a BoF representation. The relative distance of the
point to each visual-word vertex is anti-proportional to the rela-
tive frequency of the corresponding visual word in the BoF. For
example, the simplex center point refers to the BoF with uniform
visual word frequencies. The probability mass in the simplex, i.e.,
probability for the corresponding BoF vectors, is modeled by the
multinomial mixture distribution as indicated with blue to red col-
ors in the logarithmic domain. The colors have been scaled to the
corresponding minimum and maximum probabilities. Diamond
markers indicate the mixture component parameters pk, i.e., vi-
sual word probabilities for each component k ∈ {0, 1}. Mixture
component weights ck are specified next to the simplex.

word followed by the pink visual word have high frequencies. Com-

ponent k = 1 represents BoF vectors where the green visual word has

high frequencies and the other visual words have low frequencies.

Given a dataset of annotated samples, the training of a multinomial

mixture model can be performed according to the maximum likelihood

criterion with the expectation maximization (EM) algorithm, cf. [Bis06,

Sec. 9.3]. The main idea for this estimation is to optimize the incom-

plete data log-likelihood function. It expresses the probability for generat-

ing the samples of a class given the model in the logarithmic domain.

However, the maximum likelihood optimization, which is based on

differentiating the likelihood function with respect to the model pa-

rameters, cannot be performed directly. This is due to the mixture

model in which a sample can be generated by any mixture compo-

nent according to the posterior probability for the component given

the sample. Initially, these posteriors are unknown. This is the reason

for referring to the likelihood function as incomplete. By treating the

posteriors as hidden variables in the optimization process, the complete

data log-likelihood can be obtained. It contains estimates for the com-

ponent posteriors that are computed from a given model. The process

of computing these estimates is referred to as the expectation step and
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is directly based on Bayes’ theorem. Equation 4 defines the posterior

for mixture component k conditioned on sample x.

p(M = k | x,Θ) =
ck p(x |pk)

∑M−1
l=0 cl p(x |pl)

(4)

The denominator corresponds the sample distribution, i.e., the evi-

dence, cf. Equation 1, and is represented by the mixture model as

defined in Equation 3.

Afterwards, the maximum likelihood optimization of the model pa-

rameters can be performed. This is referred to as the maximization step.

For each component, the visual word probabilities are estimated as

weighted relative visual frequencies where the weights for all samples

are computed in the expectation step according to Equation 4. It is

important to note that the visual word probabilities must not be zero,

cf. Equation 2. This can be ensured by smoothing the visual word

probability distributions with a uniform distribution [MN98, Equ. 6],

i.e., so-called Laplace smoothing. A detailed discussion of multinomial

mixture models for BoW representations can be found in [NMT+00].

The derivation of the maximum likelihood parameter estimation for

a multinomial distribution is presented in [Bis06, Sec. 2.2].

The expectation and maximization steps are iterated until the com-

plete data log-likelihood converges. Most importantly, it can be shown

that optimizing the complete data log-likelihood also optimizes the

incomplete data log-likelihood, cf. [Bis06, Sec. 9.4]. The mixture model

for the first iteration is initialized randomly. It should be noted that

the optimization is performed in the logarithmic domain in order to

simplify the derivations and for numeric stability. The logarithm of

the objective function does not change the optimization result since

the logarithm function grows strictly monotonically.

For modeling BoF image representations, an assumption of the multi-

nomial model is that BoF vectors x are not sparse. This is due to the

product of probabilities p(V = v) in Equation 2 which implies that

p(V = v) > 0 for all v ∈ ΩV. However, in the context of word spotting,

BoF representations are typically very sparse due to the use of large

visual vocabularies and small document image regions that contain

comparably few visual words. In addition to the sparsity, the use of

Equation 2 in a mixture model makes the violation of the condition

even more severe. This is because multinomial mixture components

specialize on modeling only certain visual word configurations.

For coping with these challenges, different heuristics have been

evaluated in the context of text classification [RST+03]. However, a

more systematic approach is proposed in [MKE05] by using Dirich-

let compound multinomial distributions. For this reason, the multi-

nomial mixture model can be seen as an important foundation for

the mixture models that will be discussed in Section 4.4. The EM al-

gorithm is conceptually the same for all of these models and differs
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mostly in the maximization step. The multinomial mixture model will

be used as a reference in the evaluation of probabilistic BoF models

for the HMM integration in Section 5.3.4. The corresponding parame-

ter evaluation can be found in Section A.1.

2.5 hidden markov models

Hidden Markov models (HMMs) are statistical sequence models that

have been used in various recognition tasks where the representa-

tion of sequential data is required, cf. [Fin14, Chap. 2]. In particular,

this includes handwriting recognition where sequences of feature vec-

tors are extracted from line images or word images within so-called

frames. Recognition is based on a set of elementary modeling units. In

the context of handwriting recognition, these elementary units usu-

ally correspond to characters. Thus, the elementary modeling units

are referred to as character HMMs in this case.

Character models can be concatenated in order to obtain a word

model. Models that consist of other models, i.e., models that are not

elementary, are referred to as compound HMMs, cf. [Fin14, Sec. 8.3].

The units can be chosen according to the needs of the application, i.e.,

character-level units or word-level units, cf. [PF09].

HMMs represent the sequences of feature vectors that are typical

for the corresponding units. Provided that the features represent the

visual appearance of the pen-stroke in a frame, a character HMM rep-

resents which features are typical for consecutive sections, like the

beginning, middle and end of the corresponding character. In order

to do so, HMMs consist of states and each state is associated with a sta-

tistical distribution over the feature vector space, cf. [Fin14, Sec. 5.1]

and Figure 7. For discrete feature spaces, the probability mass func-

tion has high probability for feature vectors that are typical in the

corresponding state. An example for a probability mass function that

represents a distribution of BoF vectors has been shown in Figure 6.

The model that is used in order to represent these distributions is re-

ferred to as the output model [Fin14, Sec. 5.1]. The choice of a suitable

output model for representing BoF vectors is an important aspect in

the presentation and evaluation of BoF-HMMs (Chapter 4 and 5).

In order to represent typical sequences of feature vectors, HMMs use

a generative statistical approach, cf. [Fin14, Chap. 5]. In this genera-

tive process, one state generates a feature vector at each point in time.

In analogy to the generative statistical model that has been presented

in Section 2.4, the state sequence that generated the observed feature

vector sequence most likely, must be inferred. In order to recognize

text in a line image, the observation sequence is obtained by feature

extraction. Afterwords, the hidden state sequence is inferred that gen-

erated the observation sequence most likely. Since the states are asso-

ciated with the elementary modeling units, e.g., character HMMs, this
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(x0, . . . , xt, . . . , xT−1)
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bj(xt)

Figure 7: Hidden Markov model. The figure shows three states of an HMM.
Transition probabilities and output probabilities are indicated for
state j. State transitions are organized in a linear topology allow-
ing for self-transitions and transitions to the next state. For state j,
these are denoted as ajj and aj,j+1. The output probability bj(xt)
denotes the probability for generating feature vector xt in state j.
Feature vector xt is part of the observed feature vector sequence
(x0, . . . , xT−1). Probabilistic inference is the task of computing the
formerly hidden state sequence that generated the observation se-
quence most likely.

corresponds to recognition. Furthermore, the spatial location of each

observation, i.e., each feature vector, in the text line is know. Thus,

along with the recognition, HMMs implicitly infer a segmentation.

It can be noted, that recognition on character level is much less

constrained than recognition on word level. Word HMMs can only

be defined with a lexicon. Thus, the number of possible character

sequences is reduced substantially. Further context information can

be incorporated with a language model (LM). A word-level language

model represents word sequence probabilities. Word sequences of

length n are called n-grams. HMMs allow for a direct integration of a

bigram LM by incorporating the word sequence probabilities at tran-

sitions between words, cf. [Fin14, Chap. 12]. This combination of sta-

tistical character models and statistical word models illustrates, how

HMMs support the integration of context information at various levels.

The statistical HMM process is modeled with a generative finite state

machine, see Figure 7. The finite state machine represents a discrete

stochastic process which models the generation of a feature vector

sequence in two stages. For generating a feature vector at time t ∈

{0, . . . , T −1}, the active state, i.e., the generating state, is determined in

the first stage. Probabilistically this is modeled by a random variable

St over the event space ΩS = {0, . . . ,S − 1} where S is the number

of states in the HMM. The behavior of the process is controlled by

discrete distributions of start probabilities and transition probabilities.

The start probabilities are denoted as vector π = (π0, . . . ,πS−1)
⊤ with

πj = p(S0 = j) for all j ∈ ΩS. The transition probabilities aij =

p(St = j | St−1 = i) are organized in matrix [aij] with (i, j) ∈ ΩS ×ΩS.

Furthermore, the probability for a state at time t only depends on the

preceding state at time t− 1. Generally, any limitation of the temporal
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context is known as Markov property, cf. [Fin14, p. 72]. If the temporal

context is limited to a single state, the stochastic process is referred to

as a first-order Markov process. The limitation is essential for efficient

inference and model estimation. Figure 7 shows three states of an

HMM. Transition probabilities are indicated for state j. State j will be

assumed to be the active state in the following.

After state j is selected in the first stage, the generation of feature

vector xt is modeled in the second stage. For this purpose, a proba-

bility distribution over the feature space is represented by bj(xt) =

p(xt | St = j). This output probability distribution depends only on

the active state and is independent of any preceding states or preced-

ing feature vectors. This is known as output independence assumption,

cf. [Fin14, p. 72]. The output model has to be chosen according to

the characteristics of the feature space. If the output model uses con-

tinuous probability density functions1, the HMMs are referred to as

continuous HMMs. Figure 7 shows a sequence of feature vectors and

indicates the generation of feature vector xt in state j.

A popular choice for the output model is the multivariate Gaussian

mixture model (GMM) [Fin14, Sec. 5.2]. Multivariate Gaussian distribu-

tions are continuous probability density functions that allow for rep-

resenting the feature space effectively. This is due to a requirement of

the features that should be discriminative for different shapes of the

pen-stroke. Thus for a shape, the Gaussian distribution models the

typical feature vector and the typical variation with respect to this

feature vector in the feature space [PF09]. However, a single Gaus-

sian per state is insufficient, since a single class, e.g., a character, will

typically be represented by different pen-stroke shapes. Mixture mod-

els allow for modeling the high intra-class variability of handwritten

script, cf. Section 2.4.

While a GMM per state allows for a very accurate representation of

the data, the number of model parameters grows considerably with

every state, cf. [Fin14, Sec. 9.2]. For example, this is influenced by the

dimensionality of the feature space and the number of mixture com-

ponents. Since HMMs correspond to classes and have to be estimated

from annotated training data, this can be a problem. The number of

model parameters and the number of training samples that are re-

quired for estimating these parameters are directly related, cf. [Fin14,

p. 153]. A common possibility for reducing the number of model pa-

rameters is mixture tying, cf. [Fin14, Sec. 9.2.3]. For this purpose, only

the mixture weights are specific to the states and the mixture compo-

nents are shared by all states. HMMs with shared mixture components

are referred to as semi-continuous (SC) HMMs. Equation 5 shows that

the mixture weights cjk are state-dependent. This is indicated by in-

dex j. The mixture component distribution is conditioned on mixture

1 The distinction between probabilities and densities will only be made explicit if this

is important in the context of the presented aspect.
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component index k. For this purpose, the probability for a mixture

component at time t is represented by the random variable Mt over

the event space ΩM. The mixture component distributions are inde-

pendent of state j. The HMM is denoted by λ and is fully defined by

the number of states and their indices, start probabilities, transition

probabilities and the parameters for the output probability distribu-

tions.

bj(xt) =

M−1
∑

k=0

cjk p(xt |Mt = k, λ) (5)

The key idea for recognition with HMMs is to decode the hidden

state sequence that generated the observed feature vector sequence

most likely. Since the states are associated with the HMMs, a sequence

of semantic units is obtained. This corresponds to a joint computation

of recognition and segmentation.

Given a feature vector sequence O = (x0, . . . , xT−1) and HMM λ,

the probability for a specific state sequence S = (s0, . . . , sT−1) with

st ∈ ΩS is defined in Equation 6.

p(S |O, λ) =
p(O,S | λ)

p(O | λ)
(6)

The joint probability p(O,S | λ) can simply be computed by multiply-

ing the start probability, transition probabilities and output probabil-

ities along the state sequence. However, the naive computation of the

total output probability p(O | λ), according to p(O | λ) =
∑

S p(O,S | λ),

requires to marginalize over all possible state sequences, cf. [Fin14,

Sec. 5.5.1]. This is computationally infeasible because the exhaustive

search does not take advantage of the model assumptions.

An efficient approach for computing p(O | λ) exploits the indepen-

dence assumptions of the HMM. The forward algorithm, cf. [Fin14, Sec.

5.5.2], recursively computes the probability for generating the feature

vector sequence until time t along any state sequence that reaches

state i at time t. By storing the partial results in the forward variables

αt(i), the independence assumptions allow for reusing the partial re-

sults from the recursion step at time t in the next recursion step at

time t + 1. For the probability of generating the remaining feature

vectors until the end of the feature vector sequence along any state

sequence that starts in state j at time t, backward variables βt(j) can

be obtained in analogy. The total output probability represents the

probability of generating the feature vector sequence along any state

sequence in the HMM and can be computed either with the forward

algorithm or with the backward algorithm. For this purpose, the for-

ward variables obtained in the last recursion step are accumulated

over all states. The computation with the backward algorithm works

in analogy, cf. [Fin14, Fig. 5.6]. Apart from the possibility to efficiently

compute the total output probability, the forward algorithm and the

backward algorithm are the foundation for efficient model estimation.
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In contrast to computing the total probability for generating a fea-

ture vector sequence along any state sequence, the Viterbi algorithm

computes the optimal probability for generating a feature vector se-

quence along the optimal state sequence, cf. [Fin14, Sec. 5.6.1]. Pro-

vided that S∗ is the state sequence that generates features vector se-

quence O with maximum probability, the Viterbi algorithm computes

S∗ as shown in Equation 7 and 8.

S∗ = arg max
S

p(S |O, λ) (7)

= arg max
S

p(O,S | λ) (8)

For this purpose, the Viterbi algorithm maximizes p(O,S | λ) over all

state sequences, see Equation 8. This is sufficient, since the denom-

inator in Equation 6 is independent of S. Therefore, S∗ is the state

sequence with maximum posterior probability.

With respect to model estimation, the Baum-Welch algorithm is an

EM algorithm that is widely applied for this purpose, [Fin14, Sec.

5.7.4]. The forward and backward variables play a crucial role for

computing posterior probabilities in the expectation step. The max-

imum likelihood criterion is based on the total output probability

p(O | λ). For optimizing the model parameters, the associations be-

tween the training samples and the states as well as the mixture

components are missing. In the semi-continuous scenario, the asso-

ciations are represented by state posteriors p(St = i |O, λ), transition

posteriors p(St = i, St+1 = j |O, λ), state-dependent mixture compo-

nent posteriors p(St = i,Mt = k |O, λ) and state-independent mix-

ture component posteriors p(Mt = k |O, λ).

Given these posteriors from the expectation step, updates for state-

dependent parameters are obtained in the maximization step. This

includes start probabilities [Fin14, Equ. 5.18], transition probabilities

[Fin14, Equ. 5.17] and mixture weights [Fin14, Equ. 5.21]. In the semi-

continuous scenario the mixture components are state-independent

and updated according to [Fin14, Equ. 5.25 and 5.26]. With respect

to the updates for the transition probabilities it should be noted that

the non-zero probabilities are defined by the model topology. The

topology is a meta parameter. For handwriting recognition, the lin-

ear and Bakis topologies are most common. The linear topology only

allows self transitions and transitions to the next state, see Figure 7.

The Bakis topology extends the linear topology with skip transitions.

Other important meta parameters are the number of states in an HMM

and the number of shared mixture components.

The iterative procedure of expectation and maximization steps re-

quires an initial model. For this purpose, the flat start is a common

approach. In the semi-continuous scenario, the initial GMM can be ob-

tained from the training data in an unsupervised manner with the

corresponding EM algorithm, cf. [Fin14, Sec. 4.4.2]. The state-depen-
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dent parameters are initialized uniformly. The Baum-Welch algorithm

terminates after a defined number of iterations or when the relative

change of the total output probability falls below a threshold.

Word spotting with HMMs is essentially based on Equation 6. Given

a feature vector sequence that has been extracted from a line image,

the idea is to compute a posterior probability for any state sequence

that contains the query word. For this purpose, a query model is re-

quired that represents the occurrence of the query in a text line. In

this regard, compare the numerator of Equation 6 which represents

the output probability along a single state sequence. The posterior

is obtained after normalizing with the total output probability. Com-

pare the denominator of Equation 6. Since the total output probability

can be expressed as marginalization over all possible state sequences,

this can be seen as the output probability with respect to any possible

transcription of the text line. The posterior probability is high if the

numerator and the denominator are similar. This is the case if the

total probability in the denominator is dominated by the same state

sequences that are represented by the numerator, i.e., state sequences

that contain the query word. Therefore, the denominator is essentially

a recognition model, the so-called filler model, and the word spotting

performance is bounded by the recognition performance.

If annotated training material is available for estimating the filler

model, HMMs allow for computing the similarity score for the query

and the corresponding segmentation of the text line jointly. For word

spotting this is a powerful property that sets them apart from meth-

ods that are based on holistic representations of potential word seg-

ments. Relevant words that are not represented by these segments

will not be part of the retrieval list.

If no annotated training dataset from the problem domain is avail-

able, SC-HMMs have been used for segmentation-based query-by-ex-

ample word spotting [RP09b] as well as segmentation-based query-

by-string word spotting [RP12b]. The shared mixture model in SC-

HMMs can be estimated in an unsupervised manner. The remaining

model parameters can be estimated independently and from very few

annotated samples [PF05]. Only the query word image has been used

for this purpose in [RP09b]. Synthetically generated annotated sam-

ples have been used in [RP12b]. In both cases, the filler model is ap-

proximated by the distribution of the feature vectors. This distribu-

tion is represented by the shared mixture model.
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W O R D S P O T T I N G

Word spotting provides the possibility to search document images

automatically. Locating words is one of the most important function-

alities for working with larger document collections. This is especially

interesting in cases in which it is hard to create an accurate transcrip-

tion automatically. Therefore, word spotting has become popular for

supporting the analysis of handwritten and historic documents, cf.

Chapter 1.

For this purpose, the user provides a query and the word spot-

ting system retrieves document image regions according to similarity

to the query without transcribing the documents first. Consequently,

any word spotting system consists of methods for:

• extracting relevant document image regions (Section 3.1),

• representing document image regions numerically (Section 3.2),

• computing similarities with respect to the query based on nu-

merical representations (Section 3.3).

If region extraction is closely integrated with the document image rep-

resentation and retrieval, all three aspects constitute a word spotting

method. Otherwise, a word spotting method consists of a numeric

feature representation and retrieval.

In the following, word spotting methods will be presented in this

context. The presentation is concluded with a discussion (Section 3.4)

which compares methods with respect to their applicability in prac-

tice. Methodological aspects for segmentation-free retrieval as well as

HMMs are addressed in detail. This allows for distinguishing the prop-

erties of the methods and setting the methods apart from BoF-HMMs

that are proposed for word spotting in Chapter 4. A comprehensive

list of word spotting methods including a categorization with respect

to word spotting scenarios and methodology can be found in Ap-

pendix C.

3.1 document image regions

For spotting the query word in a document image, plausible docu-

ment image regions must be obtained. These regions are processed

during retrieval and are the basis for creating a ranked retrieval list.

Word spotting methods can be grouped in the categories word-level,

line-level and document-level according to the regions required by the

method. Figure 8 shows examples for regions given as word and line

33
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Word segmentation Line segmentation

Word hypotheses Patch hypotheses

Figure 8: Document image regions. The top row shows document regions
that have been obtained by heuristic segmentation on word-level
and on line-level. Word spotting systems rank these regions ac-
cording to similarity to the query. In contrast, the bottom row ex-
emplarily indicates region hypotheses that do not represent final
segmentations. They are shown semi-transparently for this reason.
The word spotting system selects and ranks hypotheses according
to relevancy with the query. Word-level hypotheses are extracted
from the document image while patch-based hypotheses are uni-
formly sized and densely sampled over the document image.

segments as well as word- and patch-based hypotheses for word spot-

ting on document level. The examples illustrate that hypotheses pro-

vide competing alternatives for potentially relevant document image

regions. The segmentation of the document image in relevant and

non-relevant regions is performed during retrieval while taking the

query into account. Therefore, it is not important to identify only cor-

rect word image regions, but it is important that the word image

regions that are relevant to the query are among the proposed hy-

potheses. Under the assumption that relevant regions will be more

similar to the query than irrelevant regions, the large majority of

irrelevant regions can be filtered out with non-maximum suppression

(NMS). Among overlapping regions, the filter only keeps the region

with highest similarity, for this purpose [NG06].

In contrast to document region hypotheses, word or line segments

are given to the word spotting method beforehand. During retrieval

this reduces the search space considerably. However, a method for

reliably extracting the segments is required.

Properties and requirements for word and line segmentation are

discussed in Section 3.1.1. Afterwards, different strategies for gener-

ating document-level region hypotheses are presented in Section 3.1.2

and Section 3.1.3.



3.1 document image regions 35

3.1.1 Word and line segments

Word spotting methods that operate on word-level require a given seg-

mentation of the document image into words. Since this segmentation

is considered as correct and all further operations are based upon

it, these methods are referred to as segmentation-based. The main

limitation is the requirement to provide the segmentation prior to

retrieval. Errors in the segmentation will directly lead to errors in

the retrieval result. These methods are, therefore, primarily success-

ful in word spotting scenarios where the segmentation is trivial, e.g.,

due to regular character spacing, cf. e.g., [KH93; Hul94]. In order

to be applied in more difficult scenarios, like historic and handwrit-

ten documents, extensive manual parameter tuning is required, cf.

e.g., [MHR96]. Word segmentation methods that are particularly sen-

sitive to the chosen parameters are based on projection profiles or

connected components (CCs), cf. [Kis14]. More advanced methods are

based on scale space representations [MR05] and CNNs [WB15]. The

latter method is interesting because it aims at learning the visual ap-

pearance of words without using a model for distinguishing different

word classes. While this avoids the problem of explicit word recogni-

tion, the method still relies on the presence of discriminative charac-

teristics in the document collection, like typical word and line spac-

ings. In historic and handwritten documents this can be problematic

due to the highly irregular visual appearance of text. Word spotting

on word-level usually works by matching the numeric feature repre-

sentations of the word segments against the numeric feature repre-

sentation of the query. Word segments are ranked accordingly and

presented to the user in a retrieval list, cf. e.g., [RM07].

Word spotting methods that operate on line-level only require a

given segmentation of the document image into lines. Since the chal-

lenges in line segmentation are a subset of the challenges in word seg-

mentation, line segmentation can be considered as simpler. The main

challenges lie in handling skewed and touching text lines. Touching

text lines pose a severe problem since the exact text line boundaries

are very hard to define in this case. As for word segmentation, most

line segmentation methods are based on projection profiles and CCs.

In order to spot words in a text line, the line is represented as a se-

quence of feature vectors. The query is searched within this sequence,

cf. Section 3.3.2. Due to this treatment, many different segmentations

for locating the query word are considered and evaluated against

each other. An explicit segmentation of the text line into words is

avoided. Line-based word spotting methods are segmentation-free

on line-level for these reasons, cf. e.g., [KAA+00; FKF+12; FFM+12].

Word spotting on line-level often works by ranking entire text lines

according to relevance to the query [FKF+12]. In addition, it is also

possible to present the estimated query word locations to the user.
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3.1.2 Patch hypotheses

Patch hypotheses are mostly dependent on the query word. The patch

geometry, e.g., width and height, is derived from the geometry of the

query bounding box, cf. e.g., [GP09; ZT13; AGF+14b; KKG15; GV15a;

RAT+15a]. The patch positions are either uniformly distributed in the

entire document image, cf. [AGF+14b; RAT+15a], within text areas, cf.

[GP09], or located in document image regions that are visually similar

to the query, cf. [ZT13; KKG15; GV15a]. Patch-based approaches are

typically applied in query-by-example scenarios, cf. [RAT+15a]. If the

query is given as string, character size estimates are required, cf. e.g.,

[GV15a].

The first approach towards segmentation-free word spotting on

document level has been presented in [KGG97]. In their two-stage

method, potentially relevant document image regions are identified

first and processed in more detail afterwards. The first stage consists

of computing the normalized cross-correlation of different examples

of the query word with the document images. Normalized cross-cor-

relation makes template matching more robust against intensity and

contrast variations, cf. [KGG97, Appx. A]. In the second stage, binary

word images are heuristically segmented from the document image

regions around the top correlation peaks. These word images are fi-

nally evaluated against the query word templates. The first stage can

be considered as a precursor of patch-based word spotting. The nor-

malized cross-correlation results in a patch-based framework where

the patch size is equal to the template size and a query template is

matched at every document image position. However, the detected

interest points are only used as a starting point for performing word

image segmentation.

The first patch-based segmentation-free method has been presented

in [GP09]. Patches are matched with an exemplary query word tem-

plate, yielding a score at every patch position. The patches have the

same size as the template. Locally best matching patches are retrieved,

i.e., out of competing patches a patch is selected with NMS. The ap-

proach is related to the first stage in [KGG97]. An important differ-

ence is the retrieval of patches, instead of interest points, according

to NMS.

The patch-based framework presented in [GP09] has essentially

been used in many segmentation-free query-by-example word spot-

ting methods, cf. e.g., [AGF+14b; RDE+14; RAT+15a; GV15b; RKE16].

With respect to the architecture of a patch-based framework, an im-

portant aspect concerns the patch geometry. Since patch-based meth-

ods generally assume limited word size variability, accurate detec-

tions are easier to achieve if the patches have a similar geometry as

the query, e.g., [AGF+14b; GV15b; RKE16]. However, using patch ge-

ometries that are adapted to the query comes at the cost of higher
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computational efforts at query time. For example, in [RAT+15a] only

four different patch sizes are considered that can be entirely precom-

puted for efficient retrieval. At query time the patch size is chosen

that is closest to the size of the query word image. The query-by-

example methods presented in [AGF+14b; GV15b] and [RKE16] use

patches of the same size as the query. The high computational efforts

are addressed by using data structures allowing for computing patch

representations efficiently at query time, cf. Section 3.3.

The final category of patch-based methods is inspired from ob-

ject detection with keypoint matching, cf. [Low04]. The basic idea in

the query-by-example scenarios considered in [ZT13; KKG15; HF16;

ZPG17] is to match local image descriptors from the query word im-

age with local image descriptors in the document images. Hypotheses

for possible query word locations are document image regions that

contain a sufficient number of matching keypoints [ZT13; KKG15;

HF16] or match with a reference keypoint from the query [ZPG17].

Besides analyzing the local neighborhood of individual, matching

keypoints [ZT13; KKG15; ZPG17], sets of candidate keypoints can

be selected with densely sampled patches [HF16]. The patch geome-

try depends on the query size and can be transformed according to

matching keypoint configurations [KKG15; HF16].

3.1.3 Word hypotheses

Word hypotheses are document image regions that are likely to con-

tain words. Words are detected in the document images indepen-

dently of the query. Detectors are either defined heuristically, cf. e.g.,

[LLE07; KWD14; GV17; GV18], or estimated from sample data as pre-

sented in [WLB17; RSR+17]. The bounding box geometry, e.g., width

and height, of a word hypothesis is either based on the detector result

[KWD14] or based on further analysis of the query.

The first attempts towards segmentation-free word spotting based

on word hypotheses have been made in [KAA+00]. In the query-by-

example scenario, word starting and word ending positions are de-

tected within given text line images. Hypotheses are derived by com-

bining these start–end positions with each other. In order to limit

the search space, additional constraints are applied. These depend on

heuristics that have to comply with the query template, i.e., width,

gap statistics and ink-background transitions. Overlapping hypothe-

ses are suppressed according to similarity to the query with NMS.

In [LBE05; LLE07] this idea is extended to document-level query-

by-example word spotting. The approach is based on small regions-of-

interest (RoIs), also referred to as zones-of-interest, that are detected in

the query image and so-called guides that are detected in the doc-

ument images. Guides in the document images are considered as

possible word starting positions. RoIs are matched with document im-
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age regions according to their spatial relation with the possible word

starting positions. Competing hypotheses are evaluated against each

other, cf. [KAA+00], and suppressed with NMS.

Another possibility for generating text hypotheses are CCs [KWD14;

RLF15; GV17; GV18; RSR+17; WLB17]. Hypotheses are created either

by grouping CCs in a given binary document image [KWD14; RLF15;

GV17; GV18] or by computing different binary images in which CCs

correspond to parts of words, to words or to combinations of (parts

of) words [RSR+17; WLB17]. An important assumption of the meth-

ods presented in [KWD14; GV17; GV18] is that words do not touch.

Otherwise multiple words will be represented in a single hypothesis

and cannot be detected individually.

The approach in [KWD14] aims at being as simplistic as possible.

Hypotheses are defined by grouping CCs according to their size and

distances to each other. For this purpose, a number of thresholds

must be defined. In contrast, the graph-based method in [RLF15]

is considerably more complex. Document images are binarized and

skeletonized, cf. [Gat14, pp. 75–77]. From the skeletonized CCs, graphs

are constructed by splitting the CCs in convex CCs. These are quan-

tized with respect to a grapheme codebook that is estimated in an

unsupervised manner. Each resulting grapheme is represented as a

graph vertex. Vertices of adjacent graphemes in the document image

are connected with edges. With subgraph matching between query

and document image representations, different convex CC combina-

tions are considered. This costly procedure is robust with respect to

touching words.

The approaches presented in [RSR+17; WLB17] use models for word

hypothesis extraction that are estimated from sample data in a su-

pervised manner. In [RSR+17] hypotheses are based on local word

detector scores. By using an adaptation of the maximally stable ex-

tremal regions detector [MCU+04], word hypotheses are given as ERs.

Essentially, these ERs correspond to CCs in binary detector score maps

that are obtained at different thresholds, cf. Section 4.2.1. Word detec-

tor scores are computed with CNNs. Similarly, the document images

are binarized at different thresholds in [WLB17]. After morphologi-

cal pen stroke dilation with different structuring elements, CCs corre-

spond to word hypotheses. Hypotheses are classified into words and

non-words with a CNN. The approach has originally been presented

for word segmentation [WB15]. In [WLB17] these hypotheses are re-

ferred to as dilated text proposals. They are used in order to comple-

ment hypotheses generated by a region proposal network [RHG+15].

Both methods [RSR+17; WLB17] are robust with respect to touching

words. This is due to their models that are estimated from annotated

sample data and their consideration of multiple binarization thresh-

olds in the CC extraction.
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3.2 document image representations

For computing similarities between document image regions and the

query, numerical feature representations are required. Together with

the measure used for computing similarity to the query, these are

characteristic for a word spotting method. In the following, document

image representations will be presented in this context. The focus will

be on their prerequisites and properties. Their capability to discrimi-

nate between relevant and non-relevant words as well as to generalize

with respect to words that are relevant to the query will be discussed.

Feature representations for word spotting are strongly inspired

from handwriting recognition and computer vision. Typically, fea-

tures are based on the pen stroke (Section 3.2.1), on the appearance

of the document image (Section 3.2.2) or features are learned accord-

ing to semantic properties (Section 3.2.3). Examples for the different

approaches can be found in Figure 9 to 11. It is important to note

that features are computed for larger document image sections, as

shown in the figures. Then, they are aggregated in order to represent

document image regions, cf. Section 3.1. For representing a region

holistically, a single feature vector is extracted. Features are extracted

frame-wise in order to obtain a sequence of feature vectors or at in-

terest points in order to obtain a set of local image features.

3.2.1 Pen-stroke features

Pen-stroke features encode the geometric shape of the writing. For

this purpose, structural properties of the pen stroke are considered or

pen-stroke pixels are encoded directly, cf. [TG14; FB14]. While these

features have been studied and optimized extensively, it is essential

that the pen stroke can be identified reliably. In order to do so, the

document images have to be binarized or skeletonized, cf. [Gat14, pp.

75–77]. The pen-stroke contour in a section of a historic document

image is shown in Figure 9. Typically, this can be achieved in modern

document scenarios where the document images have high contrast.

Due to the usually high sensitivity to even small variations of the pen

stroke, these features require writing style normalization, like slant,

skew or size, cf. [Gat14, pp. 112–122] and [FB14, pp. 397–398].

Inspired from speech and handwriting recognition, models using

sequences of pen-stroke features have a long tradition. Commonly,

features are extracted from single-column frames in the word- or

text-line image. Popular features are the upper and lower contour of

the pen stroke and statistics of the pen-stroke pixel distribution, like

the number of foreground-background transitions. These features are

used with HMMs and dynamic time warping (DTW). They can be found

in the first approaches to word spotting [CWB93; KA94; KAA+00;
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Figure 9: Feature extraction with shape context. The figure shows the con-
tour of the pen stroke that has been obtained after binarization and
edge filtering. Shape context descriptors are obtained at interest
points along the contour. They capture the local pen-stroke pixel
distribution by counting pen-stroke pixels in a radial grid of bins
around the descriptor center. In the figure, a single descriptor is
shown in blue, also cf. [RL14]. Document regions are represented
with sets of shape context descriptors either directly or using them
in a BoF framework, cf. Figure 5.

RM03] up to recent developments [TVR+16; MRR+16] including re-

current neural networks [FFM+12].

Apart from sequence models, many word spotting methods use

holistic representations. With respect to a method’s ability to discrim-

inate and generalize, this has an important aspect. Statistical sequence

models largely influence the specificity in the retrieval process with

the chosen model architecture. However, if a document image region

is represented holistically, i.e., with a single feature vector, retrieval

becomes a simple nearest neighbor search. Thus, the feature repre-

sentation mainly controls the specificity.

In order to obtain a holistic representation from the well-estab-

lished sequential features, frequency-domain transformations, like dis-

crete Fourier transform, cf. [GW02, Chap. 4.2], can be performed

[KGG97; RLM03]. Lower-order frequency coefficients are used as fea-

ture vector. This approach has been successful for historic handwrit-

ten documents [KGG97; RLM03]. The generalization capabilities can

be controlled through the number of coefficients.

More advanced representations are built on histograms. The main

idea is to count discrete features. The features can either be counted

in a grid of cells or in an entire document image region, see Fig-

ure 9. Histograms for different cells are concatenated. Therefore, the

dimensionality of the feature vector does not depend on the size of

the region, but only on the number of cells and on the number of

histogram bins. The ability to chose suitable features and use them in

an uniform framework, makes histogram representations extremely

versatile and popular.

Popular representations that use histograms of pen-stroke features

include the Loci descriptor, cf. [FLF11], the blurred shape model de-

scriptor, cf. [FFF+11], and shape context, cf. [LS07]. The shape context
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Figure 10: Feature extraction with gradient histograms. In the figure, gradi-
ent orientation histograms are arranged in a regular grid. The
strengths of the different histogram orientations are indicated
with gray to blue colors. The features represent the image texture
and no binarization is required. They are robust with respect to
contrast variations to a large extent, cf. [AFV13]. Representations
are obtained by concatenating histograms in document image re-
gions. For normalization, histograms are arranged in blocks in
order to take the local document image context into account.

and blurred shape model descriptors count pen-stroke pixels within

grids of cells. These grids need to have high resolution for obtaining

a sufficiently specific representation, see Figure 9. The Loci descriptor,

in contrast, is given by a single histogram of Locu codes [Glu67]. Each

Locu encodes the number of foreground-background transitions in

given directions starting from a reference point in the word image.

Due to many different possible Locu codes, the Loci descriptor is suf-

ficiently specific without subdividing a word image in a gird of cells.

3.2.2 Appearance features

Appearance features are designed for encoding entire document im-

age regions and not only the pen-stroke specifically. Therefore, it is not

necessary to detect the pen-stroke in the document image with bina-

rization or skeletonization. This makes these representations more

robust for applications in historic document images. Small variations

of the visual pen-stroke appearance will result in small variations of

the feature vector. In contrast, pen-stroke features can change rapidly

if a small variation of the visual pen-stroke appearance changes the

pen-stroke detection result.

The first word spotting method that was only based on appear-

ance features has been presented in [RFR03]. Local image patches are

extracted at Harris corner points [HS88] and their pixel intensity val-

ues are matched with sum of squared differences, cf. [Sze11, Sec. 8.1].

Although this representation does not represent the pen-stroke ex-

plicitly, it is very sensitive to variabilities in the document image, like

background artifacts.

Appearance features that are more robust in this regard are based

on gradient histograms, see Figure 10. The main idea is to quantize ori-
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entations in gradient images. Within cell structures in document im-

age regions, gradient magnitudes are accumulated in corresponding

orientation bins. After histogram normalization, the representations

are robust with respect to small document image brightness and con-

trast variations. The pen-stroke will dominate the orientations cap-

tured in the histogram as long as the gradients that are corresponding

to pen-stroke edge-pixels have a larger magnitude than the gradients

in the background. Furthermore, the representation is robust against

varying pen-stroke width to a large extent.

The methods presented in [RP08a; TT09] use gradient histograms

for obtaining sequential feature representations. The local gradient his-

tograms presented in [RP08a] are SIFT [Low04] inspired. An important

result is how to align the frame with respect to the text in a word

or line image. Fitting the frame to the text area increases retrieval

performance considerably. In contrast, the study in [TT09] is closely

inspired by histograms of oriented gradients (HoG) [DT05]. The differ-

ences mainly lie in the structural parameters, such as cell layout or

histogram normalization.

HoG are also widely used for holistic representations. Particularly in

the context of segmentation-free word spotting, different approaches

exist for achieving accurate retrieval results while keeping the com-

putational complexity at query time low.

For retrieval based on word hypotheses, a holistic representation

is considered in [KWD14]. HoG and local binary pattern, cf. [AHP06],

descriptors are computed for the hypothesized document image re-

gions initially. In order to improve the generalization capabilities, a

random projection technique is applied. The process consists of two

steps. In the first step, descriptors are linearly projected onto ran-

domly selected prototype vectors. In the second step, the final feature

representation is obtained by performing max-pooling of the projec-

tion coefficients with respect to a random partition of the projection-

coefficient vector-space. Thus, for each subset in the random partition,

a single value is obtained that is maximal compared to the values of

the other vector components in the same subset. Therefore, the di-

mensionality of the final feature representation is equal to the num-

ber of subsets. It is important to note that the prototype vectors as

well as the random partition are defined once and are used for all re-

gion and query representations. The prototype vectors are randomly

drawn from the word hypothesis descriptors and the subsets in the

random partition are sized uniformly. Based on this compact repre-

sentation, distance-based retrieval can be performed. The method is

inspired from face recognition [LLM+13]. This also explains the use of

local binary pattern descriptors which have shown good performance

in this domain.

For patch-based retrieval [AGF+14b; RKE16], it is possible to com-

pute only HoG cells, instead of entire region descriptors, in the docu-
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ment image initially. Groups of cells are dynamically combined in or-

der to represent different patch hypotheses at query time. Although

this is fast on the one hand, the hypothesis representations do not

change smoothly for overlapping document image regions on the

other hand. This can be problematic for selecting the most relevant

hypotheses in the segmentation-free scenario. In [AGF+14b] this is ad-

dressed within query model estimation. The exemplary query word

image is augmented with translated instances of itself. This is also

confirmed experimentally for distance-based retrieval in [RKE16].

A solution to this problem are BoF representations, see Figure 5.

By using SIFT features in a BoF framework, the positive properties of

orientation histograms can be exploited. Problems for segmentation-

free processing can be avoided at the same time. This is achieved by

adding an additional layer in the modeling hierarchy, i.e., histograms

of quantized SIFT descriptors. These histograms are computed on a

coarser level than the gradient-orientation histograms and, therefore,

change smoothly for overlapping regions. Furthermore, the general-

ization capabilities can be improved.

While the general applicability of BoF representations for word spot-

ting has been investigated in [AD07], the benefits for segmentation-

free processing have been presented in [RAT+11] first. For this pur-

pose, patch-hypotheses are represented with temporal adaptations of

spatial pyramids which add spatial information in writing direction.

These are embedded in a latent semantic indexing subspace [DDF+90]

in order to obtain more compact representations with increased gen-

eralization capabilities. Essentially, the subspace encodes feature co-

occurrences which allows for better handling of redundancies and

ambiguities in the original feature space.

Another powerful BoF extension is the Fisher vector [PSM10]. Fisher

vectors are based on a stochastic visual vocabulary, given as a GMM. A

document image region is represented by the log-likelihood gradient

vector of the GMM parameters with respect to the SIFT features in this

region. Therefore, the Fisher vector encodes how the model would

have to change in order to optimally represent the SIFT features. If

the SIFT descriptors are augmented with their relative position coor-

dinates in the document image, Fisher vectors also encode spatial

information, cf. [SPC12; GRF13].

The superiority of Fisher vectors over HoG descriptors is demon-

strated in [AGF+14b]. However, due to the high computational de-

mands these representations are mainly suitable for segmentation-

based scenarios [AGF+14a] or for re-ranking [AGF+14b].

3.2.3 Semantic features

Semantic features are obtained by transforming document region rep-

resentations such that they contain class information of the problem
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Figure 11: Feature extraction with CNNs. The figure shows the basic CNN

building blocks and indicates how the input image is processed.
Deep architectures are obtained by stacking convolutional and
pooling layers consecutively. In order to predict a semantic repre-
sentation for a given input image, a classifier is used that typically
consists of three fully connected layers. If the output of the last
fully connected layer is not directly suitable for retrieval, the re-
gion representations are obtained from one of the previous layers.

domain. Document image regions are represented as pixel intensi-

ties or with appearance-based features. Class information is learned

on character, word or attribute level. For this purpose, training exam-

ples are required that are annotated accordingly. Attribute represen-

tations characterize a document image region with respect to different

properties. This sets them apart from character-level and word-level

representations that are specific to a single semantic unit. Attribute

representations are learned from word-level annotations.

Sample data that is annotated on character level is either used in

query-by-string scenarios where the visual variability in the docu-

ment images is very limited, cf. [ETF+04; CZF06; CBG09; LOL+09], or

it is automatically generated with an existing recognizer, cf. [JVZ14;

TCH+15]. An early approach using semantic features has been pre-

sented in [CZF06]. Using manually annotated character templates,

a class-discriminant subspace is estimated with linear discriminant

analysis, cf. [DHS00, Sec. 3.8.3]. Similarly, local image descriptors

have been linearly embedded such that semantic descriptor corre-

spondences are reflected by their distances in the subspace [SRF15].

The training dataset consists of corresponding and non-correspond-

ing descriptor pairs. It is automatically obtained from annotated word

images. Descriptor relations are based on their distance in descriptor

space and their relative spatial locations within the word images. For

query-by-example word spotting, these features can be used within

spatial pyramid BoF representations.

Furthermore, features for query-by-example word spotting that are

learned on character level and on word level, are computed with

CNNs [SK15; SRG16], see Figure 11. These CNNs use classification lay-

ers which assign a single class label to a given input. In order to use

such networks for retrieval, a common approach is to discard one

or more fully-connected classification layers of the CNN. Document

region representations are based on the output of the network. In

[SK15] the last fully-connected layer is removed. For fixed-sized in-

put word images, the output is directly used as a feature vector. In
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[SRG16] all fully-connected classification layers are discarded and a

fixed-size representation is aggregated from the convolutional filter

activations of the last convolution layer. This allows for more flexibil-

ity with respect to the input size of the word images. However, both

representations have been estimated for classification and not for re-

trieval. This is where attribute representations have a considerable

advantage.

The main idea of attribute representations is to define a string em-

bedding for word labels and to learn a transformation of word images

into the same attribute vector space, cf. [ART+13; AGF+14a; WB16;

SF16]. Afterwards, the attribute vector is used as a feature vector and

query-by-example and query-by-string can be performed in analogy

to each other. Attribute representations for word spotting are typi-

cally based on character and n-gram frequencies [ART+13] or char-

acter and n-gram occurrences [AGF+14a; WB16]. In this regard, the

most popular string embedding is the pyramidal histogram of characters

(PHOC) [AGF+14a]. The binary embedding indicates presence and ab-

sence of characters in spatial sections of the string in a pyramidal

fashion. Texts are, therefore, characterized by presence of characters

on different spatial resolutions. Attributes become gradually more

specific from lower to higher spatial resolution. This allows for mod-

eling explicitly what different classes have in common. Similar words,

e.g., office and officer, will have similar attribute representations. This

is an advantage for learning from annotated sample data because the

learning process is guided by expert design. For example, it does not

have to be derived fully automatically that the distinguishing prop-

erty between office and officer is a single character. This is the most

important difference to learning word-level representations.

Approaches for transforming word images into attribute space in-

clude latent semantic indexing [ART+13], support vector machines (SVMs)

[AGF+14a] and CNNs [WB16; SF16]. The most common method is

to treat the transformation as multi-label classification, cf. [BWG10].

This requires the string embedding to be binary, as is the PHOC. Each

attribute is considered as a separate class and is individually pre-

dicted with an ensemble of SVMs [AGF+14a] or with a CNN, i.e., the

PHOCnet [SF16]. The CNN approach has the advantage that all at-

tributes are predicted with a single classifier. This allows for sharing

information between the different classes. In contrast, the SVMs are

estimated individually. Furthermore, the CNN has a deep structure,

which is trained in an end-to-end manner. The SVMs only correspond

to the last neural network layer and require a given feature represen-

tation, like the Fisher vector, cf. [AGF+14a].
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3.3 retrieval

Once numerical representations have been obtained, document im-

age regions are analyzed according to similarity to the query. Mainly,

two different approaches can be identified. Feature matching is di-

rectly based on similarity of the query and document region repre-

sentations (Section 3.3.1). In contrast, model-based approaches define

a structure on top of the feature space (Section 3.3.2). The model de-

scribes the query on a more general level, typically in terms of char-

acter classes or word classes. For this reason, it can be seen as an ab-

straction from the numerical representations. Model parameters are

usually estimated from a larger number of annotated samples and

similarity is computed with respect to the query model. In this regard,

statistical sequence models, particularly HMMs, are most popular.

Finally, efficiency is an aspect that is important for all word spot-

ting systems (Section 3.3.3). In order to achieve fast retrieval times, the

number of document image regions and the complexity of computing

similarity are important. A common strategy is to index region rep-

resentations and retrieve relevant regions according to approximate

similarity measures. Based on these candidates, the sorted retrieval

list is obtained after re-ranking with more accurate methods.

3.3.1 Feature-based similarity

Retrieval becomes a nearest neighbor search, if the query is repre-

sented such that it can directly be compared with document regions

in the same feature space, as shown in Figure 12. The query can be

considered as a template and document image regions are sorted ac-

cording to similarity to the query. While query-by-example scenarios

can be addressed naturally in this manner, a possibility to support

query-by-string in the same way is to synthesize a query template

image [MMS03; LOL+09; LFG12]. Unfortunately, this limits the ap-

plication domain to scenarios with only small visual variability in

the document images. A more suitable alternative has been provided

with semantic attribute representations, cf. Section 3.2.3.

For word spotting with feature-based similarity, it is important to

choose a suitable similarity measure. Distances can be interpreted as

negative similarities and can, therefore, be used analogously. Within

lower dimensional feature spaces, measures are often based on Eu-

clidean distance, e.g., [RM03; RFR03; GP09; FFF+11; FLF11; ZT13;

KWD14]. Within higher dimensional spaces, Euclidean distance is

not discriminative, cf. [NS06; PSM10]. This is due to the squared differ-

ence of vector components which emphasizes vector components with

large differences. For high dimensional and histogram-like represen-

tations, similarity measures that take the histogram distribution into

account have been successful, e.g., [ZSH03; AD07; RL14; AGF+14a;
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Vector spaceQuery Document regions

Figure 12: Feature-based similarity. The figure shows a query word image
and document image regions that are represented in the same
vector space. The holistic features encode visual appearance such
that visual similarity corresponds to similarity in the vector space.
For this purpose, the figure shows histogram representations for
the word images. The similarity between two vectors is computed
by their angle as indicated in blue, i.e., cosine similarity. Cosine
similarity is independent of the vector lengths and emphasizes
the distributions of values in the vectors.

SF15; RKE16; GV17; WLB17; RSR+17]. Measuring the angle between

two vectors with cosine similarity, cf. [BR11, Sec. 3.2.6], is the most

common approach in this regard. For this purpose, the similarities of

R document image regions with respect to the query are stored in vec-

tor ν ∈ RR. The holistic feature representation of the query is denoted

as xq ∈ RD and the holistic feature presentation of the document im-

age region with index r ∈ {0, . . . ,R− 1} is denoted as xr ∈ RD where

D is the dimensionality of the feature vector space. Equation 9 defines

the cosine similarity for each component of the vector ν. In the seg-

mentation-based scenario, the ranked retrieval list is obtained as the

sequence of document regions sorted according to the corresponding

similarity values. In the segmentation-free scenario, only the regions

with the highest similarity values among overlapping regions are se-

lected for the retrieval list, i.e., NMS. The concept of retrieval with

cosine similarity is visualized in Figure 12.

νr =
x⊤

q xr

‖xq‖2 ‖xr‖2
(9)

Cosine similarity is obtained as the scalar product of the unit-length

normalized vectors. Sorting document regions by minimal Euclidean

distances of the corresponding unit-length normalized vectors, re-

sults in a ranking that is equivalent to the ranking that is obtained

with cosine similarity. This is exploited in [ART+15].

Apart from measuring similarity between holistic document region

representations, different approaches have been investigated for com-

puting similarities based on local features. This way, the dynamic

properties of handwritten script can be modeled in the matching pro-

cess. The first method in this direction has been presented in [KH93].



48 word spotting

In the printed modern document scenario, the similarity between two

binarized word images is based on the Euclidean distance map, cf.

[Dan80], of their XOR image. For every matching pen-stroke pixel in-

dicated in the XOR image, the Euclidean distance map assigns the

minimum distance to a non-differing pixel. By accumulating all mini-

mum distances, a similarity score for the two word images is obtained.

This score is less influenced by single outlier pixels than larger differ-

ing pixel blobs in the XOR image. For this purpose, it is crucial that

word images are pairwise aligned.

The method has been extended to handwritten historic documents

in [MHR96]. This was achieved by increasing the robustness in the

matching process. Instead of a single, fixed alignment, a more sophis-

ticated strategy including baseline estimates as well as different hor-

izontal and vertical alignments are evaluated. For two word images,

the best Euclidean distance map score that can be achieved with any

alignment is considered. The method was the first to perform word

spotting on handwritten and historic documents.

In order to increase robustness, more complex matching schemes

have been used with local features. A simple example in this regard

is dynamic time warping (DTW), cf. [SC78]. Similarity is based on an op-

timal alignment of two sequences of feature vectors [KAA+00; RM03;

TNK05; TT09]. The features can be considered as local, because they

are extracted frame-wise in writing direction, cf. Section 3.2. State-of-

the-art results in the segmentation-based query-by-example scenario

where no annotated training dataset is available have been reported

with a DTW variant in [RLS+18]. Word images are divided in a se-

quence of overlapping zones. Each zone is represented with a de-

scriptor that is based on discrete Fourier transform coefficients, cf.

[GW02, Chap. 4.2], of orientation histograms. In order to compute

the similarity of two word images, the dynamic programming match-

ing-algorithm incorporates the spatial consistency of the zones.

A further degree-of-freedom is added if local features are extracted

at interest points. In graph-based approaches the pen-stroke is rep-

resented with vertices and edges. Vertices are associated with local

feature representations of the pen-stroke and edges define relations

between them. For query-by-example word spotting the query word

graph is matched with graph structures in the document images

[KGG97; How13; WEG+14a; RLF15; SFR18b].

In a similar manner, local image features from the document im-

ages can be matched with local image features in the query word

template. The spatial consistency of matching features is used as a

similarity measure in [RFR03; ZT13; KKG15; HF16]. Alternatively, the

cumulative distance [LLE07] or average distance [ZPG17] of features

that have been matched in a cohesive elastic manner can be consid-

ered. Spatial consistency is enforced by restricting matches to local

neighborhoods around reference points in the document images, e.g.,
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based on RoIs and guides in [LLE07]. In [ZPG17] the objective is to

be robust with respect to word size variability. After detecting poten-

tial query word center keypoints in the document image, keypoints

in the local neighborhoods are projected in size normalized coordi-

nate systems that are relative to the center points. Keypoints from the

query are projected in a coordinate system that is relative to the corre-

sponding center keypoint in the query word image as well. Matches

between keypoints from the query and the documents are only con-

sidered for computing similarity scores if they are spatially consistent

within the normalized coordinate systems. It should be noted that

both approaches in [LLE07] and [ZPG17] heavily depend on manual

parameter tuning.

Keypoint-based approaches establish the relation of local features

in the query word image and local features in the document image

directly. Spatial consistency measures are based on corresponding fea-

tures. Graph-based methods obtain a relationship between features

in their local neighborhoods first. Thus, graph-based methods can di-

rectly exploit these spatial relations in the matching algorithms, e.g.,

with graph edit distance, cf. [RB09], as in [WEG+14a; RLF15; SFR18b].

3.3.2 Model-based similarity

In order to perform word spotting with query models, the similarities

of document region representations with respect to the query model

are computed. For this purpose, the query can be modeled on word

level or on character level. Word-level approaches are based on SVMs,

e.g., [PR09; AGF+14b], or statistical models, e.g., [RLM03], including

HMMs [RP12a; TVR+16]. Character-level approaches are mostly based

on sequence models, such as HMMs [CWB93; CZF06; FKF+12], recur-

rent neural networks [FFM+12; SGL+16] or hybrids of HMMs and neu-

ral networks [TCH+15; BMC+15]. A common property of these meth-

ods is that all the models can, or have to, be estimated from multiple

annotated training examples. Due to their flexibility with respect to

the required amount of annotated training material, SVMs and HMMs

are particularly relevant. Furthermore, both models have been used

for segmentation-free word spotting.

An SVM defines a hyperplane that separates document region rep-

resentations into relevant and non-relevant with respect to the query

[PR09; AGF+14b]. Accordingly, it is estimated from multiple relevant

and non-relevant examples. Distances to the hyperplane are inter-

preted as similarity scores in order to obtain the ranked retrieval list. In

[PR09], class information is modeled on word level which limits the

user to a predefined lexicon of query words. In contrast, [AGF+14b]

considers a query-by-example scenario where no annotated training

material besides the query word image is provided. For estimating

the SVM, non-relevant examples are randomly sampled from the doc-
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ument collection. Multiple examples that are relevant to the query are

obtained by translating the query word region, cf. Section 3.2.2. Fur-

thermore, this so-called exemplar SVM [MGE11] can be re-estimated

after query expansion [AGF+14b], also cf. [BR11, Chap. 5].

Since SVM-hyperplanes separate the feature space they are referred

to as discriminative approaches. Statistical approaches model the gen-

eration of feature vectors using statistical distributions over the docu-

ment-region feature-space. Thus, retrieval is based on the probability

of generating the document-region features with the query model. For

this purpose, the common approach is Bayes’ theorem, cf. Equation 1.

The likelihood of the features conditioned on the query, is normalized

with the evidence. The likelihood is weighted with a prior for the query

word. Typically, the prior is assumed to be represented by an uniform

distribution and is, therefore, neglected. The likelihood is represented

by the query model. The evidence represents the distribution of the

features in the feature vector space without being conditioned on any

specific class model. Since the logarithm of this odds ratio is consid-

ered in practice, this form of normalization is referred to as log-odds

scoring [BHK97]. Disregarding the prior, Equation 10 expresses the

score for the query with respect to a document region in terms of

Equation 1.

log posterior ≈ log likelihood − log evidence (10)

In contrast to the evidence, the likelihood is conditioned on the query.

Thus, the evidence should theoretically be greater than the likelihood

or equal to the likelihood. Consequently, the highest similarity value

in the logarithmic domain is theoretically zero. The score is an ap-

proximation of the query posterior probability.

In practice, modelling the evidence is a major challenge because

it has to represent the semantic structure over the entire feature vec-

tor space. In [RLM03], this is achieved by limiting the queries to a

lexicon. The evidence is modeled as the total probability of the likeli-

hoods over all word classes. The quality of a score depends on how

well the corresponding document region is represented by any of the

class models. The restriction to a lexicon is avoided in [RP08b] by

representing the evidence as a GMM over the feature vector space. Un-

fortunately, this results in a model that is unspecific to the semantic

structure of the problem domain. Semantic information is only in-

corporated in the query model which causes difficulties for scoring

document regions that are not represented well by the query model.

The most common statistical method for query-by-string word spot-

ting are HMMs. A widely noticed approach is to model the occurrence

of the query word in a text line [FKF+12]. Figure 13 visualizes the

overall process. Given a document image, the segmented text line im-

ages, cf. Section 3.1.1, are normalized and represented with sequences

of feature vectors, cf. Section 3.2.1. Within the statistical approach, the
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Figure 13: HMM-based word spotting system. For decoding a text line, the
probability of generating the sequence of feature vectors with the
query HMM versus generating the sequence with the filler HMM

is considered. Start and end nodes are shown in gray. The other
circles denote character models, where Sp stands for space. Mod-
els representing sequences of characters are shown with ellipses.
Arrows indicate possible transitions between models. The orange
box in the bottom right visualizes the most plausible decoding
result for the query place.

likelihood is represented by an HMM query model and the evidence is

modeled by the so-called filler model, cf. Equation 10. The filler mod-

els an arbitrary sequence of characters. The query model is a compound

HMM which consists of three different models. The query word is mod-

eled by concatenating the corresponding character HMMs. Equation 11

shows an example for the query word place.

λ(place) = λ(p) ◦ λ(l) ◦ λ(a) ◦ λ(c) ◦ λ(e) (11)

The space model and the filler model represent the context of the

query word within the text line. The structure of the compound query

model defines transitions between the models such that it models ap-

pearances of the query word at the beginning, at the end or in the

middle of the text line. Though the space model is also included

in the filler model, its explicit occurrence in the compound query

model helps to recognize if shorter words are appearing within longer

words. In the following, the compound query HMM will be denoted as

λk and the filler HMM will be denoted as λf.

A probabilistic score that is based on an approximation of the query

posterior probability given the feature vector sequence of the text line

is obtained from the quotient of the compound query model score

and filler model score, cf. [FKF+12]. For this purpose, L line images
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are represented with feature vector sequences O[l] with index l ∈

{0, . . . ,L − 1}. For each line image, the similarity score is stored in

vector ν ∈ RL as shown in Equation 12.

νl =
F̂q

√
p
(
O[l],S∗

k | λk

)

p
(
O[l],S∗

f | λf

) (12)

For the line image with index l, the likelihood is approximated with

the optimal output probability p
(
O[l],S∗

k | λk

)
for the feature vector

sequence O[l] and the optimal state sequence S∗
k obtained for the

compound query HMM λk. In analogy, the evidence is approximated

with the optimal output probability for the feature vector sequence

O[l] and the optimal state sequence S∗
f obtained for the filler HMM

λf. Due to the varying length of the query word detections, the odds

ratio is finally normalized with the length F̂q of the most likely occur-

rence of the query within the feature vector sequence. After normal-

ization, the score is the geometric mean over the approximated state

sequence probability that corresponds to the query word, according

to the alignment obtained for model λk.

However, this approach for scoring text lines according to relevancy

with the query is not without problems. Although no explicit tran-

scription of the text line has to be provided, the quality of the score

depends on the recognition result that is computed in the filler model.

As formally shown in [PTV15a], the query model score can be inter-

preted as a score for a word-level transcription result that contains

the query word and the filler model score can be interpreted as a

score for any word sequence. Consequently, transcription errors will

result in smaller differences between query model scores and filler

model scores, even though the query word might not have been spot-

ted correctly. This produces false positives. Empirically, the effect can

be confirmed in different HMM-based word spotting approaches that

have increased recognition capabilities through integration of a bi-

gram language model (LM) [FFB+13], higher order n-gram LMs [TPV15;

TPV16] and lexicon-based recognition [PTV14; TVR+16].

Word spotting that is based on word-level recognition with HMMs

has been approached with word graphs [PTV14; TVR+16]. Word graphs

represent the most plausible transcriptions of a text line on word level.

Word segmentation hypotheses are organized in a directed acyclic

graph for this purpose. Each node is labeled with a frame position in

the feature vector sequence of the text line image. Each edge is labeled

with a word and a score indicating if the word occurs within the asso-

ciated positions in the feature vector sequence. The scores are referred

to as edge posteriors and are obtained using forward and backward vari-

ables in analogy to state transition posterior probabilities in the Baum-

Welch algorithm, cf. [Fin14, Sec. 5.7.4]. Frame-level query posterior

probabilities are computed by accumulating edge posterior probabil-

ities according to the following two conditions. All edge posterior
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probabilities are taken into account that are labeled with the query

word. The frame positions, which are associated with these edges,

have to enclose the frame position for the frame-level query posterior

probability considered. The similarity score for the text line is given

by the maximum frame-level query posterior probability within the

text line. Word graphs have the drawback that they restrict the user

to query words from a predefined lexicon.

Query-by-string methods addressing this limitation have been pre-

sented in [PTV14] and [TPV16]. In order to spot query words that

are not part of the word graph, a fallback to a character-based filler

approach is used in [PTV14]. Similar to the word graph, a charac-

ter lattice represents possible transcription hypotheses of the text line

on character level [TV13]. Since the filler score is independent of the

query word, it is obtained as the maximum score of all complete paths

in the character lattice. This corresponds to the score of the optimal

transcription of the text line image. The query model score is obtained

as the maximum score for a path containing the query character se-

quence. The text line is ranked based on the log-odds scores for the

query word model and the filler model. Word graph and character lat-

tice scores are combined following a backing-off strategy. This refers

to the fallback from a specialized to a more general model, also cf.

[Fin14, Sec. 6.5.5].

In [TPV16] frame-level character sequence posterior probabilities

are computed for line images in close analogy to the computation of

frame-level word posterior probabilities in word graphs. For this pur-

pose, a character lattice is computed first. Sequence posterior prob-

abilities are obtained based on edge posteriors which represent the

probability for characters in the given section of the feature vector se-

quence. These character sequence probabilities are also referred to as

posteriorgrams, cf. [HSW09]. For ranking line images according to rele-

vancy with the query, posteriorgrams are normalized with respect to

query length.

The difference of the word graph and posteriorgram approaches in

comparison to a character filler approach is that query posterior prob-

abilities are not based on the optimal but the total output probability

of possible text line transcriptions, cf. [TVR+16; TPV16]. As formally

derived for the character filler approach [PTV15a], using the log-odds

of optimal output probabilities can be seen as an approximation to

using the log-odds of total output probabilities. Regarding retrieval

performance, word graphs benefit from the lexicon. By integrating a

language model, results can be improved even further [TVR+16]. A

direct comparison is possible between character filler and posterior-

gram approaches. As can be seen in the results reported in [PTV15a]

and [TPV16], results consistently improve with higher order LMs. In

this regard, improvements are considerably better if scores are based

on the total output probability.
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With respect to query-by-example word spotting a method based

on word graphs was presented in [VTP15]. The formal derivation of

their method boils down to performing an n-best word-level recogni-

tion of the example image. According to the recognition probabilities,

the n-best results are then used as queries for decoding the word

graphs of all line images in the document collection. In this scenario

the user is not limited to a given lexicon of query words anymore.

However, retrieval can be expected to fail if the query word image is

not at least similar to any of the words in the lexicon.

Finally, HMMs have also been used for query-by-example word spot-

ting scenarios where no annotated training material but only the ex-

emplary occurrence of the query word is given. In order to estimate a

query word HMM from a single example, a semi-continuous (SC) model

is used in [RP09b]. The shared GMM is estimated in an unsupervised

manner and only the state-dependent mixture and transition proba-

bilities are estimated at query time. Since no annotated training sam-

ples are available for estimating a filler model, the GMM is used as a

so-called universal background model [RP08b] for HMM score normaliza-

tion. Word region hypotheses are ranked according to the log-odds

scores of the query model and the background model, cf. Equation 10.

A possibility to avoid score normalization for SC-HMMs has been

proposed in [RP12a]. In contrast to [RP09b], not only the query word

but each word image region is modeled with an HMM. Similarity be-

tween the query word HMM and the word region HMMs is then mea-

sured by DTW between state-dependent mixture model weights. This

is possible due to the shared GMM in the SC setting. Similarity be-

tween mixture weight vectors is based on the discrete Bhattacharyya

coefficient [Bha43], cf. [CRM00], which measures the similarity of two

discrete probability distributions.

3.3.3 Efficiency

In practice, word spotting systems have to search large collections

of document images. In order to guarantee fast retrieval times, op-

erations that are independent of the query are performed initially.

At query time, this indexed information is accessed efficiently, thus,

reducing the computational effort required for obtaining potentially

relevant document image regions. Data structures that integrate well

with the document region representations are essential for this pur-

pose. The set of candidate regions can be ranked according to similar-

ity measures that are adjusted to these data structures [LS07; AGF+12;

RAT+15a; RKE16; TPV15; TVR+16]. Since this adjustment often re-

sults in approximate similarities, additional re-ranking can improve

retrieval results considerably [SJ12; AGF+14b; RLF15; GV15a; SFR18b].

It has to be noted that the methods [KWD14; WLB17; GV17; RSR+17]

address the efficiency aspect by keeping the number of word hy-
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Figure 14: Document region indexing. The process of retrieving regions
through an IFS is visualized. Document image regions are rep-
resented in terms of codewords. Here, the codewords are shown
as visual words that are used in BoF representations, cf. Figure 5.
Five visual words are indicated within the inverted index. Associ-
ations between codewords and document image regions are ex-
emplarily indicated with arrows. In order to retrieve regions that
are relevant with respect to a query, the codewords that are asso-
ciated with the query are used for look-ups in the inverted index.
In the figure, this is indicated for the red visual word.

potheses low in their segmentation-free application scenario, cf. Sec-

tion 3.1.3. In order to improve scalability, indexing strategies for word

hypothesis representations could be applied in analogy to [SJ12] or

[RDE+14; AGF+14b].

Using index structures in order to solely reduce the number of re-

gion candidates offers the best possibilities for making a trade-off

between efficiency and accuracy. In this scenario word spotting is

performed in a two-stage process. In the first stage the objective is

to optimize precision and recall. Precision is important in order to

obtain short retrieval lists. In addition, recall is important in order

to obtain retrieval lists that include the relevant regions at the same

time. Computationally expensive methods for optimizing the ranking

in the resulting retrieval list are applied in the second stage. There-

fore, retrieval lists are mostly affected by reduced recall. A trade-off

between efficiency and recall has to be made by selecting the number

of re-ranked regions, cf. e.g., [AGF+14b]. In contrast, methods that

do not perform re-ranking have to find a trade-off between efficiency

and retrieval performance in general. Approximate similarity mea-

sures tend to affect recall as well as precision at different recall levels

in a similar manner [RAT+15a].

The most common data structure for efficient retrieval is the inver-

ted file structure (IFS), cf. [BR11, Chap. 9.2]. Figure 14 visualizes the

concept. The basic idea is to represent document image regions with

a codebook of feature codewords. Typically, the codebook is either

defined heuristically [LS07; FLF11; GV15a; RLF15; GV18] or obtained

automatically through clustering [SJ12]. The inverted index contains
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an entry for each codeword and stores links to the associated docu-

ment image regions. Once the codewords have been obtained for the

query, the index allows for fast look-ups. The purpose of the IFS is

to retrieve as few document regions including mostly all document

regions that are relevant to the query. The successful application de-

pends on the average number of IFS entries per codeword. For ex-

ample, if a codeword is relevant to many document image regions,

all of these regions will have to be processed after the look-up for

this codeword. Different strategies can be followed for combining the

results of multiple IFS look-ups, cf. [BR11, Sec. 9.2.3]. The union of

retrieved regions is considered in order to emphasize recall whereas

the intersection of retrieved regions emphasizes precision. Further, it

is possible to obtain a (top-n) ranked retrieval list by encoding non-bi-

nary relevance information for regions with respect to the codewords

in the IFS [SJ12; GV15a], cf. [BR11, Sec. 9.2.4].

Codebooks used in inverted indices are based on shape context

[LS07] and Loci [FLF11] descriptors, binary attribute representations

[RLF15; GV15a; GV18] or BoF [SJ12], cf. Section 3.2. Index codewords

for the local descriptors are implicitly defined by enumerating over

all possible descriptor instances. For attribute representations, the at-

tributes can also be used as index codewords in analogy to using vi-

sual words as index codewords for BoF representations, see Figure 14.

An interesting IFS application is presented in [LS07]. By indexing

shape context descriptors, the IFS is used for efficient feature match-

ing. Shape context descriptors from the query vote for word images

in which they are occurring. Votes are accumulated and used as sim-

ilarity measure. In [RLF15] an approximate similarity measure for

subgraph matching is based on the same idea. The voting scheme

perfectly integrates with the IFS. At query time, it reduces the compu-

tational effort to simple additions. This is extremely efficient assum-

ing that there exist only few IFS entries for the codewords which are

obtained for the query.

The most widely and successfully used approximate similarity mea-

sure for word spotting is based on product quantization (PQ) [JDS11].

It has been applied to segmentation-free word spotting [AGF+12;

AGF+14b; RAT+15a; RKE16] and is capable of handling large amounts

of region representations that are obtained in patch-based approaches,

cf. Section 3.1.2. The key idea is to compress document region repre-

sentations by quantization. In order to achieve high accuracy despite

the compression, the quantization error has to be as small as possible.

This can be optimized with large codebooks. For example, in order

to encode a vector with a 64-bit centroid index, k = 264 centroids

are required. However, estimating codebooks at this size is compu-

tationally demanding and requires a multiple of k samples [JDS11].

PQ addresses this problem by quantizing disjoint sets of feature vec-

tor components independently. These are given as a partition of all
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components of the feature vector space. Afterwards, a vector is en-

coded by concatenating the centroid indices obtained by the so-called

sub-quantizers. This encoding as well as the global codebook are im-

plicitly defined as elements of the Cartesian product of sub-quantizer

centroid indices and sub-quantizer codebooks, respectively. The ap-

proach is referred to as product quantization for this reason. As a result

a global codebook of size 264 can be obtained with 8 sub-quantizers

using codebooks of size 256 each [JDS11], for example.

While compression is useful for storing large amounts of document

image representations in memory, retrieval speed can be improved

by computing approximate distances based on the centroids that are

associated with the query representation and the region representa-

tions. For this purpose, precomputed look-up tables contain pairwise

distances of the centroids for each sub-quantizer. Afterwards, the sim-

ilarity measure is simply based on accumulating distances obtained

from the look-up tables.

Assuming that only few sub-quantizers are required, computational

complexity is linear in the number of document image regions. In or-

der to avoid an exhaustive search, a two-stage integration with an

IFS for indexing large databases is proposed in [JDS11]. While this

approach has not been investigated for word spotting, yet, a pyra-

midal matching scheme is applied with the same motivation in the

patch-based segmentation-free scenario considered in [RKE16]. The

pyramid is based on a Gaussian scale space, representing document

images from coarse to fine details, cf. [Low04]. PQ compressed fea-

tures are extracted at each scale and used for representing patches

in analogy to [AGF+12; AGF+14b]. In the pyramid, the number of

patches increases from coarse to fine scales. The document image

area of a single patch on a coarse scale is represented by multiple

overlapping patches on a finer scale. After matching the query on

coarse scales, candidate patches are passed on to finer scales and the

overall search space is reduced.

The indexing strategies that have been presented so far have pri-

marily been used for word spotting with feature-based similarity

measures, cf. Section 3.3.1. Model-based approaches are not as well es-

tablished in this regard. One exception is the exemplar SVM [AGF+12;

AGF+14b]. After model estimation, the weight vector is used for re-

trieving document image regions according to approximate similarity

with PQ. The only other exceptions are the word graph [TVR+16] and

the character lattice [TV13; TPV15; TPV16] approaches that address

the efficiency aspect for HMMs.

A common property of the word graph and the character lattice, cf.

Section 3.3.2, is that they model n-best recognition results in a graph

structure. Therefore, the recognition result is completely independent

of the query word and can be precomputed for each text line image.

The retrieval time depends on the complexity of the graph since all
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edges that are relevant for the query have to be searched. The com-

plexity of the graph is controlled during text line decoding. The more

transcription hypotheses are modeled in the graph the higher is its

complexity.

3.4 discussion

Word spotting systems allow for accessing document collections rap-

idly, thus, avoiding tedious manual exploration. However, this is only

possible if they do not require a lot of manual preparation in order to

work with a new dataset. This manual effort typically lies in the par-

tial annotation of the dataset and in the meta parameter fine-tuning.

It has to be noted that expert knowledge regarding the interpretation

of document images as well as the interpretation of meta parameters

is mandatory for this purpose. In the worst case, even the design of

novel methods might be required, e.g., for document image segmen-

tation, cf. Section 3.1.1, or for pen-stroke features, cf. Section 3.2.1,

that are adjusted to the special dataset characteristics.

Fine-tuning meta parameters in order to optimize retrieval accu-

racy is beneficial for any word spotting method. The sensitivity of

different meta parameters often depends on the number of model pa-

rameters that can be estimated from training data automatically. If

a meta parameter is very sensitive, it has to be adjusted with care

because it will greatly influence the overall system performance. Un-

fortunately, the complexity increases with the number of model pa-

rameters and more and more training data is required. In this regard

it is important if the training data has to be annotated and on which

level the annotations are required. For example, creating line-level an-

notations is considerable less manual effort than annotating on word

level. Representations that can be estimated without annotated data

in an unsupervised manner, e.g., BoF, are particularly interesting in

this regard.

In summary, the ideal word spotting method should minimize the

manual effort by minimizing the number of sensitive meta parame-

ters and the number of annotated training samples. In addition, it

has to be accurate and fast at the same time. Due to the fact that all

these requirements are hard to meet jointly, methods make trade-offs.

For example, if the number of annotated training samples should

be low, i.e., down to a single sample in query-by-example scenarios,

heuristics are applied in order to generalize to unseen occurrences of

the query word and in order to discriminate word instances that are

visually similar but irrelevant to the query. However, due to the lim-

ited evidence, the ability to discriminate will decrease as the general-

ization capability increases and vice versa. Furthermore, the manual

effort of locating an occurrence of an infrequent query word can be

substantial in query-by-example scenarios. If more annotated training
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material is available, this effort can be avoided with query-by-string.

In general, also retrieval performance will improve due to the im-

proved generalization and discrimination capabilities of the models.

A comprehensive list of word spotting methods and a categoriza-

tion with respect to their characteristic can be found in Appendix C.

In the remainder of this section, methods will be compared with re-

spect to selected aspects. The methods are either segmentation-free

on document level (Section 3.4.1) or based on HMMs (Section 3.4.2).

This is due to the following desirable properties which can be derived

from the requirements that have been discussed above.

Under the heuristic assumptions for word hypothesis generation,

segmentation-free methods do not have to be adapted in order to be

applied to a new dataset, cf. Section 3.1. As these hypotheses repre-

sent alternatives to each other, word hypothesis generation does not

include as many heuristic assumptions as segmentation. Therefore, it

can be expected to be more robust.

If a segmentation on line level can be obtained reliably, HMMs are

the most prominently used sequence models for word spotting, cf.

Section 3.3.2. Sequence models have the advantage that the segmen-

tation within the text line is implicit. It is based on aligning frame rep-

resentations with the models. Given a line segmentation, approaches

for defining and representing frames can be expected to be more ro-

bust than approaches for word hypothesis generation. Furthermore,

HMMs offer great flexibility with respect to the required amount of an-

notated training examples. This sets them apart from recurrent neural

networks and CNNs where large amounts of annotated samples are

mandatory for model estimation.

3.4.1 Word spotting on document level

Table 1 shows an overview of word spotting methods that are seg-

mentation-free on document level. The methods are characterized

with respect to how region hypotheses are generated, how the large

numbers of hypotheses are processed efficiently and how hypotheses

are selected among competing hypotheses. Besides the method used for

ranking the hypotheses according to similarity to the query, cf. Sec-

tion 3.2 and Section 3.3, these are the aspects that are characteristic

for segmentation-free word spotting. Furthermore, the prerequisites

and limitations of the methods can be identified.

Approaches for generating hypotheses are based on patches or on

text detection. Patch-based approaches are denoted with dense patches

and descriptor matches in Table 1. All other generation approaches rely

on text detection. CC prototypes are obtained through clustering. De-

tector-based approaches have the advantage that they are robust with

respect to word size variabilities. Patch-based approaches have advan-

tages if words are touching. The latter is particularly problematic if
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CCs are used as text detection result. The only method that is able

to cope with touching words and bases hypothesis generation solely

on CCs is presented in [RLF15]. This is achieved by CC splitting and

subgraph matching which is a considerable computational effort. Hy-

potheses generated with the region proposal network [WLB17] are po-

tentially able to handle touching words as well. In contrast to [RLF15],

large amounts of annotated training samples are required.

For efficient retrieval in the segmentation-free scenario, word region

hypotheses extraction, local feature matching, inverted indices and ap-

proximate similarity, e.g., based on PQ, are most popular. By comput-

ing representations prior to retrieval, the computational complexity

is reduced at query time. Word regions have the advantage that the

search space is reduced to the relevant document image areas. How-

ever, if relevant word regions are not among the hypotheses, limita-

tions as in the segmentation-based scenario apply, cf. Section 3.1.1. In

a similar manner, local features are typically detected in text regions.

In contrast to the word region approach, it is not required to detect

word boundaries. However, in order to detect local features reliably

and reproducibly in document images, large numbers of keypoints

must be extracted, e.g., [HF16]. Afterwards, a large number of poten-

tial matches between the features from the query and the features

from the document images have to be analyzed, e.g., [ZPG17].

Word region and feature matching approaches aim at keeping the

number of region candidates low. In contrast, IFS and PQ are most

suitable for selecting potentially relevant regions from a large num-

ber of region candidates. PQ can be seen as a generalization of the

IFS-based voting scheme for computing approximate similarities be-

tween high-dimensional vectors. Given the sub-quantizer codewords

that the query and the document regions are represented with, look-

up tables store pairwise distances between codewords for each sub-

quantizer. The look-up tables can be seen as inverted indices. The

approximate distance between two vectors is given by accumulating

the precomputed distances between the two codewords obtained for

each sub-quantizer. This can be seen as a voting scheme that is based

on IFS look-ups. Consequently, the IFS voting scheme can directly be

applied if the feature representation is suitable. This avoids the addi-

tional effort of estimating sub-quantizers. It can even be more accu-

rate since it builds on codeword representations that are part of the

original feature design. Furthermore, it can also be faster since not all

regions have to be processed necessarily. However, it has to be noted

that for applications of IFS and PQ considerable improvements can

be achieved with re-ranking. This is due to the mostly approximate

similarity obtained in the voting schemes.

Finally, almost all methods select regions for the retrieval list with

NMS. This has the advantage that the regions do not overlap and are,

therefore, independent to each other as in the segmentation-based
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scenario. In Table 1 only four methods do not select regions with

NMS. Most notably, alternative approaches are followed in [HF16] and

[ZPG17]. In [HF16], keypoints belonging to a keypoint configuration

that matches with the query are removed. Thus, a specific keypoint in

the document image can only be used for retrieving a single region.

In [ZPG17], overlapping regions are merged instead of selecting only

the one with the highest similarity score.

3.4.2 Word spotting with hidden Markov models

Table 2 shows an overview of HMM-based word spotting methods.

The characteristic properties are the output model, the approach to

retrieval and score normalization. These properties allow conclusions

regarding the visual variability that can be modeled as well as the

prerequisites such as a lexicon or the amount of annotated training

data that is required.

An interesting aspect of word spotting with HMMs is that probabilis-

tic scores can be obtained for potentially relevant document image re-

gions. This is due to the stochastic approach of HMMs and sets them

apart from most word spotting methods that only allow for obtain-

ing a ranking. Probabilistic scores can be useful if retrieval results are

processed by another automatic system. For users, similarity visual-

izations, e.g., using color coding, can be improved. However, apart

from the query model, the stochastic distribution of text, i.e., the filler

model, has to be estimated in order to obtain the posterior probability

of the query. Although this does not involve a transcription explicitly,

an n-best transcription is performed implicitly. Therefore, the filler

can be considered as a full recognition model which is not easy to

obtain in all word spotting scenarios. Table 2 shows methods that

make trade-offs from filler models that are based on full recognizers

including LMs over a background model that solely approximates the

statistical feature distribution to an approach that takes advantage of

the sequential modeling but avoids score normalization altogether.

Output models that have been used for word spotting with HMMs

are largely based on Gaussian distributions. A single density per state

has been sufficient for the printed document scenarios considered

in [CWB93; ETF+04]. For handwritten documents, GMMs have been

used. For query-by-example word spotting where no further training

material is available, SC-HMMs have the advantage that the GMM can

be estimated in an unsupervised manner from the feature vectors in

the document images. Afterwards, the single example is only used

for estimating transition and mixture probabilities [RP09b; RP12a].

The approach has also been extended to query-by-string where the

query word model is estimated from multiple synthetically generated

query word samples in the same manner [RP12b]. The gap between

the synthetic fonts and the handwritten word images is bridged by
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always using the original GMM which represents the feature vector

distribution of the handwritten word images. In cases where large

amounts of annotated training data are available, a GMM using di-

agonal covariance matrices is estimated per state. This increases the

number of free parameters which can lead to more powerful models,

e.g., [FFB+13; TVR+16]. A noteworthy approach that is not based on

Gaussians is the deep belief network integration in [TCH+15]. The

deep belief network predicts character posterior probabilities which

are decoded with an HMM. However, frame-level annotations are re-

quired for training the deep neural network.

For retrieval with HMMs, mainly three different approaches can be

identified. In the traditional query-filler ratio scoring, see Figure 13,

the odds of the optimal path probabilities (Viterbi algorithm) for the

query and the filler models is used, e.g., [FKF+12]. This can be con-

sidered as an approximation of the posterior probability of the query

given the document image region [PTV15a]. The methodologically

sound approach is to predict the query posterior probability with the

total probability of any path that is relevant for the query (forward-

backward algorithm). Similar to the computation of state posterior

probabilities, cf. [Fin14, Equ. 5.14], the probability for any transcrip-

tion that contains the query word is normalized with the probability

for any transcription of the document region. Thus, the quality of

the query posterior probability directly depends on the quality of the

recognition. It should be noted that the recognition result is repre-

sented by the filler model in the query-filler ratio approach.

Finally, it is also possible to avoid scoring by considering the rele-

vance of a document image region as a two class recognition problem.

The probabilities for transitioning into the query or the filler model

have to be adjusted to the users needs, e.g., in order to favor preci-

sion or recall, cf. [TCH+15]. Therefore, a ranked retrieval list is only

obtained after multiple recognitions with varying transition probabil-

ities. Only the approach presented in [RP12a] goes even further and

bases retrieval on DTW distances of state mixture weights. This way,

different HMM models can be compared directly. In contrast to the

other HMM-based methods, it is required that an HMM is estimated

for each document image region.

Closely related to the retrieval approach is score normalization. For

the majority of the methods in Table 2, normalization depends on

the filler model. It indicates the complexity and the structure of the

recognition model. In this regard the LM integration is particularly im-

portant, because it allows for the best retrieval performance that can

be achieved with HMM-based methods. Higher order n-grams (n > 2)

allow for considerable improvements if the query posterior is based

on the total output probabilities [TVR+16; TPV16].
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Method Hypotheses Efficiency Selection

Keyword signature matching [KGG97] Dense patches Frequency domain n-best patch scores

Cohesive elastic matching [LLE07; LOL+09] Word starting points Local features NMS of word starting point scores

Connected components [MC09] CC prototypes Word regions All CC prototype matches

Patch-based matching [GP09] Dense patches Text area detection NMS of patch scores

Heat kernel signatures [ZT13] Descriptor matches Local features NMS of descriptor sequence scores

Inkball models [How13], cf. [PZG+14] Dense patches None NMS on patch scores

Random projections [KWD14] CC grouping Word regions NMS of CC group scores

Exemplar SVM [AGF+14b] Dense patches PQ codebook NMS of patch scores

Spatial pyramid hashing [RDE+14] Dense patches Probabilistic hashing NMS of patch scores

Graph embedding and indexing [RLF15] CC prototype graph IFS on subgraphs NMS of subgraph similarity scores

Spatial pyramid indexing [RAT+15a] Dense patches PQ codebook NMS of patch scores

Attribute SVMs [GV15a], cf. [GV15b; GV18] CCs and patches
IFS on CCs and integral
histogram

NMS of patch scores

Feature matching [KKG15; ZPG17] Descriptor matches Local features
NMS [KKG15] or merging [ZPG17]
of spatial consistency scores

Relaxed feature matching [HF16] Dense patches Local features Spatially consistent matches

Scale-space pyramid [RKE16] Dense patches Pyramidal refinement NMS of patch scores

Region proposal network [WLB17]
CNN region proposals and
CC group classification

Word regions NMS of region scores

R-PHOC [GV17] CC group classification Word regions NMS of region scores

Word hypotheses [RSR+17] ERs on detector scores Word regions NMS of region scores

Table 1: Segmentation-free word spotting methods overview. The table shows properties that are characteristic for methods that do not require any
document image segmentation on word- or line-level.
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Method Output model Retrieval Score normalization

Character HMMs [CWB93] Gaussian (whitespace GMM) Query–filler ratio Sub-character filler

Pseudo 2D-HMMs [KA94] Discrete (pixel probabilities) Query–filler ratio Word filler

Generalized HMMs [ETF+04], cf. [CZF06]
Gaussian,
variable frame width

Query–filler recognition
Context-dependent character filler,
query–filler transition probabilities

SC-HMMs [RP09b] Shared GMM Query–GMM ratio Universal background model

Synthetic queries and SC-HMMs [RP12b] Shared GMM Query–GMM ratio Universal background model

Model-based sequence similarity [RP12a]
Shared GMM

(no covariance)
DTW on HMM state
mixture weights

Warping path length

Character HMMs [FKF+12] GMM (no covariance) Query–filler ratio Character filler, query length

Character lattice [TV13] GMM (no covariance) Query–filler ratio Character filler, query length

Character HMMs and bigrams [FFB+13] GMM (no covariance) Query–filler ratio Character-LM filler, query length

HMM n-gram-character lattice [TPV15] GMM (no covariance) Query–filler ratio Character-LM filler, query length

Deep HMM [TCH+15] Deep belief network Query–filler recognition
Character filler, query–filler
transition probabilities

HMM word graphs [TVR+16; VTP15] GMM (no covariance)
Word posterior
probabilities

LM word graph

HMM n-gram-character lattice [TPV16] GMM (no covariance)
Character sequence
posterior probabilities

LM character lattice, query length

Table 2: HMM-based word spotting methods overview. The table shows properties that are important for word spotting with HMMs.
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S E G M E N TAT I O N - F R E E W O R D S P O T T I N G W I T H

B A G - O F - F E AT U R E S H I D D E N M A R K O V M O D E L S

The proposed word spotting method retrieves document image re-

gions according to similarity to a query word image or a query string.

No segmentation of the document image into lines or words is re-

quired. Document images are processed in an effort to minimize as-

sumptions about the visual appearance of script. Since the required

amount of training annotations should be low at the same time, con-

straints aim to be as general as possible. This is achieved by:

• detecting query words in a patch-based framework that inte-

grates aspects from retrieval based on line segments and text

hypotheses (Section 4.2),

• using BoF representations that are automatically adapted to the

visual characteristics of the document images (Section 4.3),

• modeling BoF in the HMM process such that the statistical prop-

erties of the BoF representations are considered (Section 4.4),

• modeling the query with HMMs in order to take the sequential

structure of text into account (Section 4.5),

• performing retrieval with two decoding stages that are fully in-

tegrated with each other in order to obtain accurate results fast

(Section 4.6).

The most important assumptions for word spotting with BoF-HMMs

are related to the document layout and the visual variability of the

text. For document region extraction and processing, it is required

that the text has a horizontal orientation. Otherwise, the text orien-

tation has to be normalized first. It is, specifically, not a restriction if

words are touching. Furthermore, length variabilities can be handled

to a large extent.

With respect to the visual variability of the text, the amount of

annotated samples that are available for query model estimation is

crucial. Relevant words that are visually dissimilar to the training

samples, will not be retrieved with high accuracy. However, due to

the statistical sequence model, this can be compensated if only parts

of words are not well represented by the model. This is particularly

important for the query-by-example scenario where only a single an-

notated sample of the query word is provided.

In the following, the architecture of the overall word spotting sys-

tem will be outlined (Section 4.1). This way, the methodological con-

tributions can be presented in relation to each other.

65
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4.1 architecture

The proposed word spotting system includes methods for generating

document region hypotheses, their representation, query modeling

and retrieval. The different components are integrated closely. This

allows for addressing query-by-example and query-by-string word

spotting as well as two different decoding strategies in the same

methodological framework. Semi-continuous HMMs are considered

for this purpose. This makes the output model largely independent of

the HMM states allowing for great flexibility with respect to model es-

timation, model decoding and caching. Figure 15 shows a schematic

overview. The figure caption explains the relations between the com-

ponents.

In order to retrieve document regions efficiently, it is important

to cache representations that are independent of the query. For this

purpose, text detection is performed on the document images. Based

on text detector scores, text hypotheses are computed. Afterwards, text

hypotheses are combined in order to define line hypotheses. For text

detection, the proposed method does not rely on a single gray-level

intensity binarization threshold. This makes the application under

different document image conditions more robust.

For each line hypothesis, a sequence of BoF vectors is extracted.

Different mixture models are considered for modeling BoF sequences

as outputs of the HMM probabilistically. Since the mixture-component

posterior-probabilities are independent of the query, they are stored

in a mixture component index.

The key idea for addressing both query-by-example and query-by-

string in a unified word spotting framework, is to obtain a query word

HMM in both scenarios. Afterwards, retrieval is always performed in

the same manner. For query-by-string, character HMMs are estimated

based on word- or line-level annotations. For query-by-example, the

query word model is estimated from a single exemplary word image.

In both cases the output model is not adapted in the semi-continu-

ous (SC) HMM estimation. This makes the estimation in the query-

by-example scenario feasible. Furthermore, query size estimates are

required for patch-based decoding. While the patch size is given by

the exemplary word image for query-by-example, character sizes are

estimated based on the training annotations for query-by-string.

Retrieval is performed in two different decoding stages. This allows

for a trade-off between efficiency and accuracy. In the first decoding

stage, a coarse search is based on probabilistic mixture component vot-

ing. Mixture components with non-zero probability in the query word

model vote for cells in the document images in which the same mix-

ture components have non-zero probability. The voting mass is the

joint probability for the mixture component in the query word model

and the mixture component in the document image cell. By following



4.1 architecture 67

Mixture com-
ponent voting

Patch-based
Viterbi decoding

HMM decoding

Ranked retrieval listDocument image

Inverted index

Mixture component index

Visual words
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Figure 15: Word spotting system architecture. The figure shows a schematic
visualization. The components are categorized into input and out-
put (gray), region hypotheses (green), HMM modeling (brown), BoF–
HMM integration (orange) and HMM-based retrieval (blue), cf. Fig-
ure 2. Arrows indicate the processing direction. The left side of
the figure shows the inputs and document region hypotheses.
The right side of the figure visualizes the output, query model-
ing as well as query model decoding. Two decoding stages can
be identified. For this purpose, two vertical processing paths are
shown by arrows that go from HMM modeling nodes (brown) to
HMM decoding nodes (blue) to the output (gray). The results from
the first decoding stage can be used in the second decoding stage.
The node arrangement indicates which components are shared
between the stages and which components are specific to one of
the stages. BoF sequence extraction is shown with dashed lines.
Dashed lines connect nodes that define document regions (on the
left) with nodes that use BoF sequences (on the right). Document
regions are defined by hypotheses as well as user inputs, e.g.,
word-level annotations or a query word image.
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an Hough-style voting approach, the HMM state structure is consid-

ered. Relevant cells in the document images can rapidly be obtained

through an inverted mixture component index. Based on the accumu-

lated voting mass in each cell, potentially relevant document image

patches are retrieved. Thus, the approach performs a coarse analysis

that allows for fast detection based on approximate similarity scores.

The second decoding stage performs a fine analysis of the patches

that have been identified in the first stage. For this purpose, a patch

is represented with a compound query HMM. The compound HMM

consists of a background model and whitespace models as well as the

query word model. The whitespace models represent the left-side and

right-side context of the query word within a patch. The background

model represents arbitrary document image contents.

Using the Viterbi algorithm, similarity scores are based on the opti-

mal output probability for generating the BoF sequences of the corre-

sponding patches with the query model. Given the optimal alignment

of a BoF vector sequence with the compound query HMM, the simi-

larity score for a patch is obtained as the length-normalized partial

output probability for the query word model. It is important to note

that this does not correspond to a query posterior approximation. The

scores represent the probabilities for the observations along a specific

path in the query word HMM. Therefore, the challenge of estimating a

high-quality filler model can be avoided. The background model and

whitespace models are important in order to allow for coping with

word size variabilities in the patch-based framework. The alignment

of the BoF sequence with the models of the compound HMM allows

for a detailed localization of the query word within a patch.

Whitespace model estimation requires whitespace region hypothe-

ses. Whitespace hypotheses are obtained from text hypotheses in a bot-

tom-up manner in the query-by-example scenario. In the query-by-

string scenario, whitespace regions are obtained in analogy but based

on training annotations. Finally, the spotted locations can be refined

even further by taking text hypotheses into account.

The close integration of the two decoding stages allows for a very

good trade-off because the models complement each other with re-

spect to efficiency and accuracy. By sharing the feature representation

and considering the same query model as well as its structure, the

first stage achieves high recall at high speed while the second stage

computes accurate rankings for selected document image regions.

4.2 document image regions

Document regions are used in order to define the search context for

spotting words in document images, estimate whitespace HMMs and

to refine the localization of spotted words. Accordingly, three types of

region hypotheses can be distinguished. Text hypotheses are derived
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from text detector scores and represent mostly text components (Sec-

tion 4.2.1). Line hypotheses are based on text hypotheses and repre-

sent possible line regions in document images (Section 4.2.2). Whites-

pace hypotheses are obtained with a voting scheme that is based

on text hypotheses. They mostly represent document-background re-

gions that are located to the left and to the right of words (Sec-

tion 4.2.3).

4.2.1 Text hypotheses

Text hypotheses represent text components in document images and

are the basis for all region-based operations. An important require-

ment for text hypotheses is that for each word and each of its bounds

(left, right, upper, lower), there exists at least one text hypothesis with

a similar bound.

It is important to note, that detecting all word bounds accurately

is hard to achieve for handwritten document images and for historic

handwritten document images in particular. These documents con-

tain hundreds of words and, consequently, hundreds of hypotheses

are required. Furthermore, the hypotheses have to be highly accu-

rate. The size of words is usually small in comparison to the size of

document images. Thus, a mismatch that is marginal with respect

to the size of a document image is substantial with respect to the

size of a word. This is a fundamental difference to object detection

in natural scene images where typically fewer and larger objects are

considered, e.g., [EEV+15]. Furthermore, the task of text detection in

natural scene images is not comparable to the detection of words in

a document image. In natural scene images the challenge is rather to

differentiate text and background and not the differentiation of words

in close proximity that might be touching each other, e.g., [NM16].

For this reason, object detection approaches from computer vision are

mostly unsuitable. For example, a region proposal network alone has

not been sufficient for word hypotheses generation [WLB17]. Word

region proposals had to be augmented with dilated text proposals

[WB15] in order to achieve high recall.

The proposed method takes the above mentioned challenges into

account without requiring any annotated training material. For this

purpose, the maximally stable extremal region (MSER) method [MCU+04]

is adapted, cf. Section 2.1. The most important difference of the pro-

posed method in comparison to MSER is that the ER tree is not based

on thresholding image intensities but text detector score values. Text

detector scores are expected to change smoothly. Therefore, the num-

ber of extracted regions can mainly be controlled by the number

of thresholds. In contrast, MSER uses all possible intensity values as

thresholds. The number of regions is controlled heuristically by se-

lecting only the maximally stable ERs.
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Figure 16: Text hypotheses generation. Text detector scores are computed with
SIFT contrast scores in a dense grid. This is indicated by a single SIFT

descriptor (blue) shown in an edge image of a document section.
The resulting text score map is shown in blue to red colors. Blue
indicates low contrast and red indicates high contrast in the local
image neighborhood. Text hypotheses are obtained from an ER tree
by thresholding text scores at different levels. Three levels, from
the tree leaves towards the tree root, are exemplarily indicated
with green to red colors. Text hypotheses typically cover parts
of characters, parts of words, words, groups of words and also
background clutter.

The main assumption is that text areas in document images have

higher contrast than background areas. Consequently, text areas can

be detected by measuring contrast. In order to be robust with respect

to noise and touching ascenders and descenders in adjacent text lines,

contrast is measured in a local image neighborhood, see Figure 16.

This leads to smooth contrast variations between words, even if words

are touching. Contrast scores are based on accumulated gradient mag-

nitudes. Technically, they are computed as SIFT contrast normalization

scores that are obtained for SIFT descriptors in a dense grid. The grid

resolution equals to the resolution of the dense descriptor grid used

for extracting BoF representations (cf. Section 4.3).

Text hypotheses are obtained from the ER tree according to the fol-

lowing conditions. All ERs are considered as potential text regions

except for tree leaves and regions with implausible heights (see be-

low). The number of thresholds controls the number of regions in

the ER tree and, therefore, the resolution at which local text detector
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score changes are detected. Threshold values are evenly spaced over

the interval of minimum and maximum text score values. Figure 16

visualizes the concept. The color-coded text hypotheses indicate the

structure of the tree for a larger document image section. Tree leaves

are discarded because they can be considered as clutter. Thus, hy-

potheses are created for all ERs with child nodes. This can be seen

as a heuristic for minimal stability. Implausible region heights are fil-

tered based on lower and upper quantiles, i.e., 0.1 and 0.999, of a

Weibull distribution, cf. [FEH+11, Chap. 46]. The distribution is esti-

mated such that all potential text region heights are generated with

maximum likelihood. The use of a Weibull distribution is motivated

by its successful application to outlier detection, cf. e.g., [SRM+11].

Filtering helps to suppress text hypotheses that represent background

clutter. The quantile values of 0.1 and 0.999 are chosen in order to de-

fine an interval that is sufficiently large such that most of the text

components are represented by text hypotheses. The proposed word

spotting method is robust against background clutter to a large extent.

Similarly, the number of thresholds in the ER tree is a meta parameter

that has to be high enough in order to capture text in low-contrast

document image regions, see Section 5.3.2.

4.2.2 Line hypotheses

Line hypotheses are document regions that are bounded by the doc-

ument in horizontal direction and that are bounded by text compo-

nents in vertical direction. Line hypotheses guide the patch-based

decoding process in order to analyze document image regions that

contain text with a height that is similar to the height of the decoding

patch. Document region representations can be precomputed because

line hypotheses are independent of a particular query.

The line hypotheses generation process is based on text hypotheses.

Text hypotheses mostly represent parts-of-characters, characters and

groups-of-characters but also background clutter. In order to obtain

an accurate line hypothesis for each word, it is necessary to consider

combinations of text hypotheses. In contrast to the generation of word

hypotheses, combinations only have to be considered in a single di-

mension, i.e., in vertical direction. Figure 17 shows an overview of the

hypothesis generation process.

For each text hypothesis a set of line hypotheses is generated. For

this purpose, the active text hypothesis defines a search context in

the document image. Horizontally, the search context includes the

entire document width. Vertically, the search context encloses the up-

per and lower bound of the active text hypothesis. While the upper

bound of all line hypotheses, generated in the current set, is the upper

bound of the search context, the lower bounds are given by the lower

bounds of all text hypotheses within the search context. The search
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. . .

Line-hypothesis generation-context Line hypotheses

Figure 17: Line hypotheses generation. A set of line hypotheses is generated
for each text hypothesis. In the figure, an exemplary text hypoth-
esis is shown in green. Its upper and lower bounds define the
line-hypothesis generation-context, as indicated by the image area
that is not grayed out. The upper bound of the text hypothesis
defines the upper bound of all line hypotheses that are generated
within this context. The lower bounds are defined by the lower
bounds of all text hypotheses within the context, including the
current text hypothesis. A few line hypotheses are shown with red
overlays on the right.

context could be increased in order to generate line hypotheses that

are higher than the active text component. However, this is not re-

quired assuming there exists at least one text hypothesis spanning

over the entire height of the largest word in the line. After process-

ing all text hypotheses, line hypotheses are grouped according to line

height. Line hypothesis positions and heights are quantized accord-

ing to the dense descriptor grid coordinates (cf. Section 4.3).

In order to be robust with respect to word height variability, line

positions for each height are augmented with positions of similar line

heights. Line heights are considered as similar to a given height h if

they are in the interval [0.5h, 2h]. In order to analyze the local neigh-

borhood of potentially relevant text components in the patch-based

decoding framework, line hypothesis positions are extended in the

local neighborhood with a morphological filter. For this purpose, a

one-dimensional binary mask is representing the current line position

configuration for each line height. Additional hypotheses are gener-

ated based on a one-dimensional binary dilation operation, cf. [GW02,

Sec. 9.2.1], that is applied to each binary line position mask. The size

of the structuring element is given by the (rounded up) quotient of

the line height and the vertical patch sampling step. According to the

patch sampling step, a larger patch evaluation context will be consid-

ered for higher lines than for smaller lines.

4.2.3 Whitespace hypotheses

Whitespace hypotheses represent document background regions that

are mostly located to the left and to the right of words. They are

required in order to estimate whitespace HMMs. Whitespace HMMs
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Text hypothesis voting

Voting result (left) Voting result (right)

Whitespace hypotheses (left) Whitespace hypotheses (right)
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Figure 18: Whitespace hypotheses are generated by a voting scheme. Each
text hypothesis votes for the document image regions to the left
and to the right of its bounding box (+1). Furthermore, it votes
against its bounding box region (-2). Votes are accumulated per
pixel. In the figure, these regions are indicated in orange and blue.
Voting results are obtained separately for whitespace regions ori-
ented to the left and to the right. The accumulator values can
be negative (blue colors), zero (gray) and positive (orange colors).
Whitespace hypotheses are represented as region bounding boxes.
They are obtained after thresholding at zero followed by a con-
nected component analysis of the binary scores.

are used in the patch-based Viterbi decoding framework and allow

for detecting words more accurately. Better similarity scores can be

obtained for the patches due to the more detailed modelling.

For the query-by-example scenario, only a single annotated exam-

ple and no other annotated training material is available. In this sce-

nario, whitespace hypotheses are obtained with a voting scheme that

is based on text hypotheses. Alternatively, the voting scheme can also

be applied with word-level bounding box annotations if these are

available. Figure 18 shows an overview of the process. It is important

to note that whitespace hypotheses should only represent the immedi-

ate context of words and that it is not required to detect all relevant

whitespace occurrences in the documents.

In order to obtain whitespace hypotheses from text components in

a bottom-up manner, a procedure is required that is robust with re-

spect to the text hypotheses. Text hypotheses mostly represent text on

different levels, i.e., parts-of-character, parts-of-words or even parts-

of-multiple-words. For this purpose, an important assumption is that

the document regions to the left and to the right of text hypotheses

are more likely to contain whitespace than the inner area of the text

hypothesis regions. This is modeled in a per-pixel voting scheme. An
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accumulator matrix is initialized with zeros and each matrix element

corresponds to a pixel in the document image. Afterwards, each text

hypothesis votes against its inner bounding box area and for the doc-

ument image regions to the left and to the right. Inner regions are

down-voted by -2 and potential whitespace regions are up-voted by

+1. The whitespace voting area is defined such that the local image de-

scriptors, used for representing the image regions, overlap at most 0%

and up to 25% with the corresponding text hypothesis. After all text

hypotheses have voted, document regions with positive accumulator

values are considered as whitespace hypotheses. Bounding boxes are

obtained after thresholding the accumulator matrix at zero and per-

forming a connected component analysis.

The choice of the voting weights is heuristic. Since words are typ-

ically represented by multiple text hypotheses, the area to the left

and to the right of a text hypotheses does not necessarily correspond

to whitespace. With the proposed procedure, it requires two positive

votes in order to compensate for a negative vote. Thus, false positives

are avoided at the cost of missing a substantial number of whitespace

regions. Due to the overall high number of true positives, this is not

a limitation for whitespace HMM estimation, see Section 5.3.7.

Finally, it has to be noted that left-side and right-side whitespace

hypotheses are estimated separately. This allows for obtaining more

specific query models. Within Viterbi alignment, query-word-starting

and query-word-ending positions can be decoded more accurately.

Generally, this assumption is motivated by related HMM-based word

spotting methods. It was shown that word spotting performance im-

proves with the specificity of the filler model that is used for modeling

the context of a query word in the text line [PTV15a].

4.3 document region representation

Document image regions are represented with sequences of BoF vec-

tors. Regions are either given by manual bounding box annotations,

e.g., in the query-by-example scenario, or regions are based on hy-

potheses, i.e., whitespace hypotheses and line hypotheses.

BoF have shown excellent performance in word spotting applica-

tions, e.g., [ART+15]. By extracting BoF sequences in writing direction,

the sequential characteristic of text is preserved. An important design

choice regards the local image descriptor in the BoF. For word spot-

ting, the SIFT descriptor [Low04] has become the de-facto standard.

Even though this descriptor is not specifically designed for document

images, it captures discriminative properties of the pen stroke due to

its use of gradient histograms. Furthermore, the descriptor can easily

be replaced if a more suitable representation is available. In any case,

BoF are adapted to the problem domain since they are based upon

visual words, i.e., prototypical descriptors.
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Figure 19: Based on a dense grid of quantized image descriptors, cf. Figure 5,
a sequence of BoF representations is generated for a document
region. In the figure, a section of a line hypothesis is indicated for
this purpose. Visual words from the visual vocabulary are shown
on the left. Within the document image, descriptor center points
are shown as colored dots. The color indicates the quantization
result. In this example, the grid sampling step is larger than in
practice for a better visualization. Given the document region, the
sequence of BoF representations is obtained by sliding a window
over the grid columns in writing direction. A BoF is created at
each window position. Visual words in the gray shaded areas are
omitted because the corresponding descriptors overlap with the
upper and lower region bounds. The sequence of BoF histograms
is shown on the right. Histogram-bar colors correspond to the
visual-word colors.

Irrespective of the local image descriptor, BoF are histogram repre-

sentations. This is an advantage for patch-based decoding since BoF

change smoothly for overlapping image regions. The effect is most

important for patches that overlap vertically. Horizontal overlap is

modeled within different HMM states. Smoothly changing representa-

tions allow for better localizations [RKE16].

Figure 19 shows an overview of the BoF sequence generation pro-

cess for a document region. Document images are represented with

a dense grid of local image descriptors. Descriptors are localized by

their center points and the descriptor vectors are quantized with re-

spect to a visual vocabulary. The descriptor size and orientation are

uniform. Rotation invariance, cf. [Low04], is not a desirable property

since the pen-stroke orientation is an important discriminative char-

acteristic. For a region, only those descriptors are considered that do

not overlap with the upper and lower region bounds. Thus, valid de-

scriptors only represent the document region and not its upper and

lower context. A minimum number of descriptors is assured by a

lower threshold. The sequence of BoF vectors is obtained by sliding a

window over the document region in writing direction. The window

is moved over all grid columns such that it covers exactly one column

at each position. BoF histograms are obtained from valid visual words.

The BoF representation at index t in a sequence is denoted as vector

xt. The frequency of the visual word with index v ∈ {0, . . . ,V − 1}

in xt is a scalar xtv, i.e., xt = (xt0, . . . , xt,V−1)
⊤. Given a document

region, the dense grid of valid visual-word indices within the region

bounds is defined by the matrix [unt] with unt ∈ {0, . . . ,V−1}. The in-
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dices (n, t) ∈ {0, . . . ,N− 1}× {0, . . . , T − 1} refer to rows and columns.

BoF vector xt ∈NV
>0 can then be defined in terms of its vector compo-

nents in Equation 13. Function δ : {0, . . . ,V−1}× {0, . . . ,V−1}→ {0, 1}

is used for counting visual words.

xtv =

N−1
∑

n=0

δ(unt, v) with δ(unt, v) =







1 : unt = v

0 : unt 6= v
(13)

Technically, BoF representations are very high dimensional and ex-

tremely sparse. Sparse vector representations are used in order to

store BoF sequences efficiently. It has to be noted that contrary to other

BoF applications in word spotting, e.g., [ART+15], descriptors are not

pruned based on document image contrast. This has the advantage

that it is not required to handle special cases, like windows without

visual words. On the other side, the number of descriptors is large

due to the typically high resolution of the descriptor grid.

The large number of descriptors leads to a high computational

effort if the visual vocabulary is computed with Lloyd’s algorithm

[Llo82]. Typically, this is addressed by clustering only a randomly se-

lected subset of all descriptors, cf. e.g., [ART+15]. However, in large

document collections only a small fraction of the total number of de-

scriptors is considered this way. In order to increase the reproducibil-

ity of the results, a strategy inspired by the k-means++ initialization

[AV07] is followed. Initial centroids are computed with Lloyd’s algo-

rithm, which is applied on 2DV randomly sampled descriptors. D

denotes the descriptor dimensionality and 2 is a heuristic factor that

ensures a sufficient number of samples. Afterwards, MacQueen’s al-

gorithm [Mac67] clusters the entire set of descriptors. The algorithm

is suitable for this purpose because it iterates over the sample set

only once and updates the codebook with every sample. It converges

to an optimal codebook if the number of samples approaches infin-

ity and subsequent samples are statistically independent, cf. [Fin14,

p. 62]. After shuffling the descriptors, the algorithm offers a trade-off

between accuracy and efficiency in the given scenario.

The most important meta parameters are the dense grid sampling

step, the size of the descriptors and the size of the visual vocabulary,

see Section 5.3.3. The grid sampling step has a considerable effect

on accuracy and efficiency. The descriptor size largely controls the

generalization capabilities of the BoF representation.

4.4 bag-of-features output models

BoF sequences are modeled as observations in the statistical HMM

process with a probabilistic mixture model. The mixture model is

required for the SC-HMM integration. Due to the special characteris-

tics of BoF representations in this word spotting scenario, modeling
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BoF with a GMM directly is infeasible. BoF vectors are very high di-

mensional and extremely sparse since they are extracted from line

hypotheses. Thus, the robust estimation of GMM parameters is only

possible after dimensionality reduction, cf. [Fin14, Sec. 9.1]. Unfortu-

nately, it can be expected that dimensionality reduction results in a

sub-optimal solution. This is due to the large gap between the typical

BoF dimensionality (> 1000) and the typical feature vector dimension-

ality for GMM-HMM integrations (< 100). Empirically, this has been

confirmed for handwritten word recognition with SC-HMMs [RVF12].

In order to estimate the shared GMM, BoF representations have been

reduced from 2000 to 30 dimensions with principle component anal-

ysis, cf. [DHS00, Sec. 3.8.1]. The approach has been outperformed by

a direct BoF-HMM integration (cf. Section 4.4.3). A similar result has

been obtained for segmentation-free query-by-example word spotting

with spatial pyramid matching [RAT+15a]. Dimensionality reduction

is performed with latent semantic indexing in order to improve the

generalization capabilities of the patch descriptors. However, a reduc-

tion to 64 dimensions produces results that are considerably worse

compared to the original descriptor. The effect can be observed for

vocabulary sizes of 2048 and above. It has to be noted that the dimen-

sionality of the descriptors is three times larger than the size of the

visual vocabulary due to the spatial pyramid configuration.

Mixture distributions that allow for modeling BoF directly, will be

discussed in the following (Section 4.4.1 to 4.4.3). The characteristics

and assumptions of the models will be compared and put in perspec-

tive with the requirements in the given scenario. For this purpose,

a mixture model Θ = {(ck,Θk) | 0 6 k < M} is defined by M mix-

ture components with parameters Θk and their mixture weights ck.

The weights are prior component probabilities ck = p(M = k |Θ).

M is a meta parameter, see Section 5.3.4, and M is a random vari-

able that represents a discrete probability distribution over the event

space ΩM = {0, . . . ,M − 1}. Since different distributions of the mix-

ture components will be considered, component parameters Θk are

defined along with the component models in the following sections.

Therefore, the mixture model in Equation 14 is a generalization of the

mixture model that has been defined in Equation 3.

p(xt |Θ) =

M−1
∑

k=0

p(M = k |Θ)p(xt |M = k,Θ) (14)

Once the output model is chosen, it can be evaluated for all line

hypotheses. This is due to the independence of the output model and

the line hypotheses with respect to the query. The output model can

be integrated with the HMM by indexing mixture component proba-

bilities in a look-up table for each line hypothesis (Section 4.4.4).

Furthermore, the line hypotheses are used in order to obtain a train-

ing dataset for unsupervised estimation of the mixture models pre-
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Figure 20: Visual-word simplex visualization. On the left, the figure shows
a visualization of a statistical mixture distribution over the visual
word simplex with blue to red colors. Blue indicates low and red
indicates high probability. The white diamond markers indicate
model parameters, i.e., the expected values of the mixture com-
ponent distributions Θk with k ∈ {0, 1}. On the right, the figure
shows BoF vectors that have been randomly sampled from the
mixture distribution as points in the simplex. It has to be noted,
that the sample distribution is discrete regardless of the visual
word frequency scaling. BoF vectors in the simplex are indicated
with blue dots. The relative amount of duplicates is indicated by
the size of the dots. Statistical distributions that will be visualized
in the following have been estimated with these samples.

sented in Section 4.4.1 and 4.4.2. For this purpose, BoF vectors are

extracted from all line hypotheses on all document images of a doc-

ument collection. The mixture model presented in Section 4.4.3 is di-

rectly based on visual words and does not require a model estimation

step that is based on line hypotheses.

Different distributions will be discussed based on a three-dimen-

sional toy example that resembles some of the characteristics of the

original BoF representations. This refers mostly to their discrete char-

acteristic and the presence of BoF vectors with visual word frequencies

that are zero. The three-dimensional example can be visualized in a 2-

simplex. Each of the vertices corresponds to a visual word. Figure 20

shows the source distribution and indicates a BoF sample set that has

been randomly drawn from this distribution. In the following, all mix-

ture models will be presented based on this toy example1.

The source distribution is a mixture of Dirichlet compound multi-

nomial (DCM) distributions and is theoretically suitable for modeling

high-dimensional and sparse BoF vectors [Elk06]. This is due to the

model’s capability of distributing the probability mass on the sur-

face of the simplex, i.e., edges in the three-dimensional example, see

Figure 20. A BoF is only located within the simplex if all visual words

1 The multinomial mixture model in Figure 6 is based on the toy example, too.
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have non-zero frequency. However, BoF that are high-dimensional and

sparse have only few non-zero entries. In the example in Figure 20,

BoF representations with non-zero frequencies for the blue and green

visual word are most likely (jointly and exclusively). The pink visual

word mostly occurs with high frequencies of the blue visual word.

This can be observed for the distribution of probability mass and for

the sampled BoF representations. Samples are drawn in three stages.

In the first stage, a mixture component is chosen according to the

components prior probabilities. In the last two stages the component

is evaluated. A multinomial distribution is drawn from a Dirichlet

distribution and the BoF is drawn from the multinomial distribution,

cf. Appendix B. The concentration parameters of the Dirichlet distri-

bution are chosen such that the probability mass of the DCM distri-

bution is mostly distributed on the edges. Each BoF vector contains

five visual words that are scaled to relative frequencies in order to be

visualized in the simplex.

4.4.1 Von Mises-Fisher

The von Mises-Fisher (vMF) distribution allows for probabilistic mod-

eling of directional data [BDG+05]. It is relevant for word spotting

with BoF-HMMs due to the wide use of cosine similarity for matching

BoF representations in the literature, cf. Section 3.3.1. The distribution

models the generation of BoF vectors on the unit sphere, i.e., xt ∈ RV ,

‖xt‖2 = 1, and has properties that are similar to a multivariate Gaus-

sian distribution [BDG+05]. The vMF probability density function is

defined by a mean direction µ ∈ RV , ‖µ‖
2
= 1, concentration param-

eter κ ∈ R>0 and for dimensionality V > 2, see Equation 15.

p(xt |µ, κ) =
κz−1

(2π)zIz−1(κ)
eκµ

⊤xt with z =
V

2
(15)

The concentration parameter controls by how much the density func-

tion focusses around µ. Similar to a Gaussian, Equation 15 consists of

a normalization factor and an exponential term. Since ‖µ‖
2
= 1 and

‖xt‖2 = 1, the exponent is the cosine similarity of µ and xt scaled by

κ. The normalization factor includes Iz−1(·), i.e., the modified Bessel

function of the first kind and order z− 1. In order to improve numeric

stability, the density is computed in the logarithmic domain. Iz−1(κ)

is approximated as suggested in [Elk06]2.

By using the vMF distribution as a model for the mixture compo-

nents in Equation 14, a vMF mixture model is obtained. The model

is estimated with an EM algorithm that is very similar to the EM al-

gorithm used for estimating a GMM, cf. [Fin14, Sec. 4.4.2]. Given the

number of mixture components, the model is initialized with a vari-

ant of Lloyd’s algorithm. For this purpose, training samples are asso-

2 The approximation is based on a series expansion [OLB+10, Equ. 10.41.3].
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Figure 21: vMF mixture model visualization on the visual word simplex. The
figure shows results for two different model parameter estima-
tion strategies. On the left, concentration parameters are limited
to an upper bound that has been set heuristically. On the right,
concentration parameters have been estimated according to an ap-
proximate maximum likelihood criterion. In both visualizations,
probability density is indicated with blue to red colors in the log-
arithmic domain. It has to be noted that the colors are scaled to
the corresponding minimum and maximum values in both plots.
Mixture model components are weighted by ck and defined by
a tuple Θk = (µk, κk) where k ∈ {0, 1}. White diamond markers
show mean parameter vectors µk that have been projected on the
simplex. Mixture weights ck and concentration parameters κk are
specified with each of the plots. The values have been rounded
for a qualitative interpretation. The κ bound has been set to 10.

ciated with centroids according to largest cosine similarity. Centroids

are updated by the unit-length normalized sum of the samples that

they have been associated with. The normalization ensures that the

updated centroids lie on the unit sphere [BDG+05, Equ. 2.4]. A for-

mal specification of the algorithm can be found in [BDG+05, Alg. 3].

Based on the hard assignments of centroids and samples, a vMF mix-

ture component is initialized for every centroid. Mixture coefficients

ck are given by the relative number of samples that have been asso-

ciated with the centroids. The mean directions µk are directly given

by the centroids. The concentration parameters κk are estimated from

the samples that have been associated with the centroids according to

[BDG+05, Equ. 4.4].

Based on the initial parameters, the iterative model refinement is

continued with soft assignments in the EM algorithm. Instead of as-

sociating each sample with a single centroid, each sample is associ-

ated with all mixture components based on posterior probabilities

p(M = k | xt,Θ) for all k ∈ ΩM, cf. [BDG+05, Equ. 3.7] and also Equa-

tion 4. For this reason, hard assignments can been seen as a special

case where a single component has probability one and the other com-

ponents have probability zero. The estimation of the posterior prob-
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abilities for the mixture components given a sample and the current

model, is computed in the expectation step.

Based on the updated associations, the model parameters are up-

dated within the maximization step. The updates are performed in

analogy to the estimation of initial parameters (see above). The impor-

tant difference is that all samples xt will be considered for the update

of a single mixture component Θk according to posterior probabilities

p(M = k | xt,Θ). The EM steps are iterated with each updated model.

It can be shown that the procedure improves the model such that the

probability of generating the sample set with the model improves or

stays equal. The formal specification of the EM algorithm for vMF mix-

ture models can be found in [BDG+05, Alg. 1]. It also includes the

updates for the model parameters. It has to be noted that the estima-

tion of the concentration parameters κk is not without problems. This

is due to the maximum likelihood estimate for κ which includes the

ratio of Bessel functions Iz(κ)/Iz−1(κ) [BDG+05, Equ. 2.5]. Solving

the estimate for κ analytically is impossible. For this reasons, differ-

ent approximations for κ for high-dimensional data are discussed in

[BDG+05]. However, these do not yield satisfactory results for the BoF

vectors in the given scenario. This is because κk is always estimated

to be substantially larger than the dimensionality of the BoF vectors

which leads to poor generalization capabilities. The problem can be

addressed by limiting κk to a maximum value that is set heuristically,

i.e., with a meta parameter, see Table 8 in Section 5.3.4.

Figure 21 shows visualizations of vMF mixture model estimates

based on the three-dimensional sample set presented in Figure 20.

Even for the toy example, the unbounded κ estimates tend to overfit

the data and are very sensitive to the random initialization of Lloyd’s

algorithm. A possible explanation is the discrete characteristic of the

data where many samples occur multiple times. The vMF probability

density function is continuous. Figure 21 shows that the vMF mixture

component distributions are rotationally symmetric and differ in their

location and concentration.

4.4.2 Dirichlet compound multinomial

Inspired from short text modeling, e.g., bag-of-words (BoW) of Twitter

messages, Dirichlet compound multinomial (DCM) distributions can be

considered in order to model sparse BoF vectors that are distributed

on the surface of the simplex, cf. [MKE05; Elk06]. This is possible

by using the conjugate prior of the multinomial distribution, i.e., the

Dirichlet distribution [Bis06, Sec. 2.2.1]. The Dirichlet distribution can

model the generation of multinomial parameters p, thus, it is defined

on the simplex. For this purpose, the Dirichlet distribution is param-

eterized with concentration parameters α ∈ RV
>0. In contrast to the

multinomial distribution, cf. Section 2.4, the Dirichlet distribution al-
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lows for distributing probability density on the edges of the simplex

if αv ≪ 1. However, since the Dirichlet distribution is continuous,

it is not suitable for modeling discrete data directly [MKE05]. The

generation of sparse BoF vectors can be modeled if the Dirichlet dis-

tribution and the multinomial distribution are used in a compound

distribution as shown in Equation 16.

p(xt |α) =

∫

p

p(xt |p)p(p |α)dp (16)

The Dirichlet probability density function p(p |α) represents a distri-

bution over probability distributions. In combination with the multi-

nomial probability mass function p(xt |p) this results in a distribution

over parameters. By integrating over all visual word probability vec-

tors p, the Dirichlet distribution models plausible visual word config-

urations. In the generative process this can be understood as an urn

model where the ball being drawn from the urn is not only returned

but a second ball with the same color is added as well. Therefore,

the visual word distribution sharpens with each visual word that is

generated for the BoF vector. This is known as Polya’s urn model, cf.

[JKB97, Chap. 40].

In natural language processing, the DCM is used in order to model

word burstiness, i.e., if a word appears once it is likely to appear

again [MKE05]. Thus, the DCM rather models word occurrences than

word frequencies.

When substituting the Dirichlet probability density function p(p |α)

and the multinomial probability mass function p(xt |p) in Equation 16,

the DCM probability mass function for xt ∈NV
>0 is obtained3 in Equa-

tion 17. Γ(·) is the Gamma function, i.e., a generalization of the facto-

rial function to real and complex values, cf. [OLB+10, Chap. 5].

p(xt |α) =
‖xt‖1!

∏V−1
v=0 xtv!

Γ(‖α‖
1
)

Γ(‖α‖
1
+ ‖xt‖1)

V−1
∏

v=0

Γ(xtv +αv)

Γ(αv)
(17)

In the context of a mixture model, 2MV evaluations of Gamma func-

tions are required in the product. Since even a single evaluation of the

Gamma function can be considered as computationally expensive, the

application of the DCM is very time consuming if M and V are large

[Elk06]. Furthermore, the product over visual words v ∈ ΩV is mostly

evaluated for visual word frequencies that are zero.

For this a reason, an approximation of the DCM is proposed in

[Elk06] that is valid for sparse BoW representations. It is referred to

as EDCM distribution because it belongs to the exponential family. As-

suming that the sample vectors are sparse, probability mass is mostly

distributed on the surface of the simplex. Consequently, the concen-

tration parameters are small, i.e., mostly αv ≪ 1. Based on this as-

sumption, a linear approximation of the ratio of Gamma functions, cf.

3 The derivation of Equation 17 can be found in Section B.1.
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Θ0

Θ1

c1 = 0.2

s1 = 0.19

c0 = 0.8

s0 = 0.62

Figure 22: Simplex visualization of the EDCM mixture model. Probability
mass is indicated with blue to red colors in the logarithmic do-
main. The colors have been scaled to the minimum and maxi-
mum probabilities. Diamond markers indicate visual word prob-
abilities for the mixture components Θk with k ∈ {0, 1}. The vi-
sual word probabilities are given by the multinomial parameters
which are represented by Dirichlet distributions in the EDCM mix-
ture components. The multinomial parameters pk are obtained as

the expected values βk
sk

of the Dirichlet distributions. sk = ‖βk‖1
is referred to as the precision of an EDCM component distribu-
tion and measures its overall concentration, cf. Equation 19. EDCM

component precision values sk and mixture weights ck are speci-
fied next to the simplex.

Equation 17, at αv = 0 is used. Equation 18 shows the approximation.

The linear approximation is formally explained in Section B.2.

Γ(xtv +αv)

Γ(αv)
≈ Γ(xtv)αv for xtv > 1, xtv ∈N>0 (18)

For xtv = 0 the ratio evaluates to one and does not influence the prod-

uct in Equation 17. Thus, only the case xtv > 1 has to be considered.

Since xtv ∈N>0 and Γ(xtv) = (xtv−1)!, the factorial cancels out with

the factorial in the denominator of the multinomial coefficient if the

approximation in Equation 18 is substituted in Equation 17. The re-

sult is presented in Equation 19. A detailed derivation of Equation 19

can be found in Section B.2. In order to distinguish the EDCM from

the DCM, the EDCM concentration parameters are referred to as β.

p(xt |β) =
‖xt‖1!

∏

v:xtv>1 xtv

Γ(‖β‖
1
)

Γ(‖β‖
1
+ ‖xt‖1)

∏

v:xtv>1

βv (19)

For BoF vector sequences, Equation 19 can be computed efficiently

by storing normalization factors in look-up tables. Due to the sparse

BoF-vector characteristic, the look-up tables are typically small. All

computations are performed in the logarithmic domain.

Figure 22 shows a visualization of an EDCM mixture model. Prob-

ability mass is distributed on the edges and vanishes towards the



84 segmentation-free word spotting with bag-of-features hmms

center of the simplex. This is due to the linear approximation in Equa-

tion 18. Probabilities are underestimated for BoF vectors that are not

sparse. The model’s suitability for representing the samples shown in

Figure 20 is, therefore, only limited.

The EDCM mixture model estimation closely follows the EM algo-

rithm described in [Elk06]. The model is initialized by fitting a single

EDCM distribution to the entire training dataset. M initial mixture

components Θk are obtained by adding random noise to the con-

centration parameters, i.e., βkv ← max(βv + E, ǫlow) where E is ran-

dom variable representing a uniform distribution over the interval

[−0.05, 0.05]. The lower bound ǫlow = 10−12 is required in order to

ensure that none of the factors in Equation 19 becomes zero.

Based on an initial model, the posterior probabilities p(M = k | xt,Θ)

are computed for all k ∈ ΩM in the expectation step [Elk06, Equ. 7]. It

has to be noted that a deterministic annealing procedure is applied in

order to be less sensitive to local optima [UN98]. For this purpose,

the likelihoods p(xt |M = k,Θ) in the computation of the posteriors

are smoothed with temperature meta-parameter τ ∈N>1, cf. [Elk06].

p(M = k | xt,Θ) =
p(M = k |Θ) τ

√
p(xt |M = k,Θ)

∑M−1
l=0 p(M = l |Θ) τ

√
p(xt |M = l,Θ)

(20)

The root function changes the difference between low and high prob-

abilities. For high values of τ, samples with smaller likelihoods are

taken into account stronger than for smaller values of τ. Consequently,

mixture components do not specialize on specific visual word config-

urations as much at high temperatures as at lower temperatures.

The update of the concentration parameters in the maximization

step is based on the partial derivatives of the EDCM log-likelihood

function, i.e., logp(xt |β), see Equation 19. The partial derivate for

βv is given in [Elk06, Equ. 5]. Together with the posteriors from the

expectation step, the complete-data log-likelihood is obtained. Deriv-

ing the complete-data log-likelihood for model parameters Θ yields

the parameter updates. Finally, it must be ensured that βkv > 0 for all

k ∈ ΩM and v ∈ ΩV. For this purpose, the components are smoothed

by adding a small offset to all concentration parameters. The offset is

dynamic and depends on the smallest non-zero concentration γk that

has been estimated for each component [MKE05]. The meta parame-

ter ρ ∈ R>0 with ρ < 1 adjusts the influence of the offset.

βkv ← βkv + ργk with γk = min
v∈ΩV

{βkv |βkv > 0} (21)

The optimization is performed in a deterministic annealing proce-

dure where the EM algorithm is run until the complete-data log-like-

lihood convergences for a given temperature. The process is repeated

for each temperature in an annealing schedule. The model parameters

are refined from temperature to temperature. The annealing schedule

is defined heuristically, see Table 10 in Section 5.3.4. Typically, it starts

with a high temperature and finishes with temperature τ = 1 [Elk06].
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4.4.3 Visual words

The output mixture models presented in in Section 4.4.1 and 4.4.2

model the generation of entire BoF vectors xt. The visual words model

follows a different approach by modeling the BoF vectors in terms

of individual visual word occurrences. For this purpose, the mixture

model in Equation 14 is constrained to have exactly the same number

of mixture components as visual words. Thus, mixture components

directly refer to visual words. Component parameters Θv only en-

code the visual word index v. In analogy to random variable M that

represents a distribution over mixture component indices, random

variable V represents a distribution over visual word indices. For V

different visual words, the corresponding event space is denoted by

ΩV = {0, . . . ,V − 1}. By replacing random variable M with random

variable V in the mixture model in Equation 14, p(xt |Θ) can be ex-

pressed by marginalizing over visual words, see Equation 22 and 23.

p(xt |Θ) =

V−1
∑

v=0

p(V = v |Θ)p(xt | V = v,Θ) (22)

=

V−1
∑

v=0

p(xt,V = v |Θ) (23)

In order to model individual visual word occurrences, the likelihoods

for vector xt must be replaced in Equation 22 and 23. For this purpose,

xt defines a distribution over visual words. Let Xt be a multivariate

random variable that represents independently distributed discrete

random variables (Xt0, . . . ,Xt,V−1)
⊤ over the same event space ΩX =

{0, . . . ,N}. The events correspond to absolute visual word frequencies

xtv, cf. Equation 13. Based on xt, p(Xtv > 0 | xt) is the probability that

the absolute frequency of visual word v in BoF vector xt is greater than

zero. In Equation 24, the logical disjunction is considered in order to

model the probability for any visual words that are occurring in xt
given the visual word probabilities that are represented by model Θ.

p


 ∨

Xtv∈Xt

Xtv > 0

∣∣∣∣∣∣
xt,Θ


 =

V−1
∑

v=0

p(V = v |Θ)p(Xtv > 0 | V = v, xt)

(24)

=

V−1
∑

v=0

p(Xtv > 0,V = v | xt,Θ) (25)

Equation 24 is obtained in analogy to Equation 22 by noticing that

V is statistically independent of BoF vector xt and Xtv is statistically

independent of model Θ. Consequently, the joint probability p(Xtv >

0,V = v | xt,Θ) can be interpreted as probability for visual word v in

model Θ and the occurrence of visual word v in BoF vector xt. Due to
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the marginalization, the joint probabilities over all visual words are

taken into account.

Equation 25 is based on Equation 26 and 27 and follows from the

additivity of the probabilities for mutually exclusive events, cf. e.g.,

[DHS00, Sec. A.4.1], here for any k ∈ ΩV and any l ∈ ΩV with k 6= l.

p(Xtk > 0∧Xtl > 0,V = k∧V = l | xt,Θ) = 0 (26)

⇔ p(Xtk > 0∨Xtl > 0,V = k∨V = l | xt,Θ) =

p(Xtk > 0,V = k | xt,Θ) + p(Xtl > 0,V = l | xt,Θ)
(27)

For this purpose, Equation 26 formalizes that the occurrence of visual

words k and l (with k 6= l) is mutually exclusive under the assump-

tions of the visual-word model mixture. Therefore, the occurrence

probabilities for any of these visual words are additive as stated in

Equation 27. In order to prove the premise in Equation 26, it is suffi-

cient to show that p(V = k∧V = l |Θ) = 0with k 6= l, see Equation 28

to 31.

p(V = k∧V = l |Θ) = 0 (28)

⇔ p({v ∈ ΩV | v = k} ∩ {v ∈ ΩV | v = l} |Θ) = 0 (29)

⇔ p({k}∩ {l} |Θ) = 0 (30)

⇔ p(∅ |Θ) = 0 (31)

The evaluation of p(
∨

Xtv∈Xt
Xtv > 0 | xt,Θ) is based on decompos-

ing the joint probability p(Xtv > 0,V = v | xt,Θ) in Equation 25 as

shown in Equation 24. As a result, p(V = v |Θ) are model parameters

which are estimated from sample data. However, in contrast to the

mixture models presented in Section 4.4.1 and 4.4.2, the component

priors are not involved in the component parameter estimation. For

the visual-word mixture model, components p(Xtv > 0 | V = v, xt)

are directly computed from BoF vectors xt. For this reason, Xtv > 0

is conditioned on xt but not on Θ. Therefore, the observed BoF vector

xt can be seen as parameterization of the discrete distributions that

are represented by Xtv > 0 for all v ∈ ΩV. In Equation 32, probability

p(Xtv > 0 | V = v, xt) is defined by the relative visual word frequency

for visual word v in BoF vector xt.

p(Xtv > 0 | V = v, xt) =
xtv

‖xt‖1
(32)

The use of relative frequencies follows from the Laplace principle where

all events are assumed to be equally likely.

Equation 32 can be considered as a soft visual-word observation

model. Instead of modeling a single observation (with probability

one), the probability mass is distributed to all visual words that have

been observed in frame t. The principle can be exemplified in Equa-

tion 24 if the probability vector

(
p(Xt0 > 0 | V = 0, xt), . . . ,p(Xt,V−1 > 0 | V = V − 1, xt)

)⊤
(33)
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just has a single non-zero entry, i.e., if it models the observation of

a single visual word. In this case it simply selects the corresponding

probability p(V = v |Θ) from model Θ and Equation 24 represents

only a discrete probability distribution. Due to the presence of multi-

ple observations in frame t with probabilities p(Xtv > 0 | V = v, xt),

the visual-word mixture model can be considered as pseudo-discrete.

Therefore, it is the soft observation model that extends the discrete

model to a hierarchical model with two stages, i.e., the visual-word

mixture model. The first stage generates a visual word index. The

second stage generates the binary BoF vector component that corre-

sponds to the visual word that was generated in the first stage, cf.

Equation 24. In terms of urn models, this can be understood as hav-

ing an urn for the visual words represented by model Θ and an urn

for the visual words represented by BoF vector xt. Both urns are de-

fined by proportions of visual words that are given by p(V = v |Θ)

and p(Xtv > 0 | V = v, xt), respectively. Thus, p(Xtv > 0,V = v | xt,Θ)

is the probability for drawing a visual word with index v from the

first urn and also drawing a visual word with the same index from

the second urn. Hence, the first stage follows the urn scheme for a

categorical distribution and the second stage follows the urn scheme

for a Bernoulli distribution, cf. [Bis06, Sec. 2.1]. The categorical dis-

tribution can be seen as a special case of a multinomial distribution

with a single observation, cf. [Bis06, Sec. 2.2]. Therefore, the genera-

tive process models the generation of a single visual word and not

a bag-of-visual-words. Contrary to this model assumption, different vi-

sual words will typically be observed in a BoF vector. Thus, the visual-

word mixture model does not represent a conjunction of visual words,

as do multinomial models, but a disjunction of the visual words that

have been observed in the bag-of-visual-words.

In summary, the visual-word mixture model makes the following

assumptions that are not in accordance with the properties of BoF vec-

tors extracted from the document regions:

• BoF can be represented by a disjunction of visual words (Equa-

tion 25).

• Visual words are mutually exclusive (Equation 26).

• Visual words are equally likely (Equation 32).

For word spotting, these assumptions lead to very good generaliza-

tion capabilities. This is due to the abstraction from the actual BoF

vectors. By interpreting BoF vectors as distributions, probabilistic sim-

ilarity with respect to the model’s visual word distribution is com-

puted by cross-correlation. However, due to the strong abstraction,

the approach lacks robustness in special cases. A degenerated case

arises if visual words are non-discriminative. If non-discriminative vi-

sual words exist, these visual words occur in many frames and, there-

fore, also in the query model. Due to their mostly high probability in
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Figure 23: Simplex visualization of a visual-word mixture model. Simplex
vertices are labeled with visual words. This is indicated by Θv

where v ∈ {0, 1, 2} is the visual word index. The Θv labels are
shown next to the visual word descriptors that are colored in
blue, green and pink. The labels emphasize that mixture compo-
nents Θv correspond to visual words in the visual-word mixture
model. Probability mass is indicated with blue to red colors in
the logarithmic domain. The color range has been scaled to the
minimum and maximum probability in the simplex. The visual
word model Θ is indicated with a white diamond marker. The
model’s visual word probabilities cv = p(V = v,Θ) determine the
marker position on the simplex. The rounded visual word prob-
abilities are specified along with the plot. Labels Θv relate these
probabilities with visual word vertices.

the visual word distributions, they tend to dominate the probabilis-

tic similarity. Consequently, the model over-generalizes and looses its

ability to discriminate. In document images, non-discriminative vi-

sual words typically lie in regions with uniform image intensities. A

simple heuristic is to increase the descriptor size. Descriptors within

annotated document image regions are less likely to be non-discrimi-

native this way. For modeling BoW with multinomial models, the same

problem is typically addressed with stop word filtering [BR11, Sec.

6.6]. However, due to the specific modeling of visual word configu-

rations, multinomial approaches are more robust in this regard. This

aspect is also interesting for weighting visual word frequencies in

Equation 32. Instead of assuming an uniform visual word distribu-

tion, typical BoW weighting schemes can be applied, e.g., inverse doc-

ument frequency [BR11, Sec. 3.2.4]. However, as BoF vectors are very

sparse in this scenario, the visual word occurrence is more important

than (weighted) visual word frequency, see Table 12 in Section 5.3.4.

Further, a degenerated case arises if the model’s visual word distri-

bution p(V = v |Θ) is uniform. If all visual words are equally likely,

the model looses its ability to discriminate any BoF representations.

For word spotting, this case is, however, less relevant because query

word models tend to be very specific.



4.4 bag-of-features output models 89

Another important aspect concerns model estimation. The mixture

components in the visual-word mixture model directly correspond

to visual words. Therefore, only the visual vocabulary is required

and an additional EM-style estimation as for the mixture models in

Section 4.4.1 and 4.4.2 can be avoided.

Figure 23 shows a visualization of the visual-word mixture model

that has been estimated from the three-dimensional example pre-

sented in Figure 20. The distribution is entirely defined by the model’s

visual word proportions, i.e., cv = p(V = v |Θ). The probability mass

is distributed in form of a ramp that generalizes over specific visual

word configurations. It models which visual words have generally

been observed. The distribution reaches its extrema on the edges of

the simplex.

4.4.4 Hidden Markov model integration

The HMM integration of the BoF output models that have been pre-

sented in Section 4.4.1 to 4.4.3 follows the standard approach for

SC-HMMs, cf. [Fin14, Sec. 7.3]. Instead of using the mixture compo-

nent likelihoods p(xt |Mt = k, λ) directly, cf. Equation 5, the likeli-

hoods are replaced with approximations of mixture component poste-

riors p(Mt = k | xt, λ). Provided that HMM λ contains mixture com-

ponent parameters Θk for all k ∈ ΩM, the probability for generat-

ing BoF vector xt in state j according to the standard mixture model

integration is shown in Equation 34. Random variables St and Mt

are specific to time t in the statistical HMM process. They represent

distributions over the event spaces ΩS and ΩM, respectively. The set

ΩS = {0, . . . ,S− 1} contains HMM state indices.

bj(xt) =

M−1
∑

k=0

p(Mt = k | St = j, λ)p(xt |Mt = k, λ) (34)

The component posterior approximations are obtained in Equation 36

by dividing the likelihood p(xt |Mt = k, λ) through the evidence p(xt | λ),

see Equation 35. The evidence is approximated by marginalizing over

the mixture components of model Θ. This is an approximation be-

cause the mixture model represents the distribution of feature vectors

with a finite number of mixture components, cf. [Fin14, p. 139]. Fur-

thermore, the distribution of mixture component priors p(M = k |Θ)

is assumed to be uniform.

p(xt |Mt = k, λ)

p(xt | λ)
≈

p(xt |Mt = k, λ)
∑M−1

l=0 p(xt |Mt = l, λ)
(35)

≈ p(Mt = k | xt, λ) (36)

The output probability for feature vector xt in HMM state j that

uses component posterior approximations is denoted as b ′
j(xt), see
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Equation 37. Equation 37 is obtained by replacing the likelihoods

p(xt |Mt = k, λ) in Equation 34 with the component posteriors from

Equation 36. By using component posteriors, likelihoods are rescaled,

thus, normalizing their dynamic range. This has advantages for mul-

tiplying many and potentially very small values [Fin14, p. 133]. Due

to the different dynamic ranges of different output models, this nor-

malization also simplifies the integration of the different BoF output

models.

b ′
j(xt) =

M−1
∑

k=0

p(Mt = k | St = j, λ)p(Mt = k | xt, λ) (37)

In order to limit the number of non-zero component posteriors in

Equation 37, a beam pruning strategy, cf. [Fin14, Sec. 10.2.1], is applied

to the likelihoods in Equation 35. The basic idea is to define an in-

terval [zb, z] where z denotes the largest likelihood and b ∈ [0, 1] is

a meta parameter, the so-called beam factor. The interval is referred

to as the beam. Likelihoods that are not falling into the beam are set

to zero as shown in Equation 38. Typically, b is a very small number,

e.g., b = exp(−14), where exp(·) is the natural exponential function.

p(xt |Mt = k, λ)←







p(xt |Mt = k, λ) : p(xt |Mt = k, λ) > zb

0 : p(xt |Mt = k, λ) < zb

with z = max
l∈ΩM

p(xt |Mt = l, λ)

(38)

It should be noted that beam pruning is applied to all likelihoods in

the numerator and in the denominator of Equation 35. Beam pruning

leads to sparse probabilistic representations that are important for

efficient model decoding.

Furthermore, computing the sum of very small likelihoods in the

denominator of Equation 36 is not without problems. In practice, the

likelihoods are represented in the logarithmic domain. If the logarith-

mic values were simply transformed into the linear domain in order

to evaluate the sum, the summation of very small values would cause

numeric difficulties, cf. [Fin14, p. 135]. For this reason, all likelihoods

are scaled with the inverse of the largest likelihood before they are

transformed to the linear domain in Equation 39, cf. [Elk06, Equ. 7].

Since the operation is performed in the numerator and in the denom-

inator, the scaling does not change the ratio. It has to be noted that

the same procedure is applied during output model estimation (Sec-

tion 4.4.1 and 4.4.2) for the computation of posterior probabilities in

the expectation step, e.g., in Equation 20.

p(Mt = k | xt, λ) ≈
exp(logp(xt |Mt = k, λ) − z)

∑M−1
l=0 exp(logp(xt |Mt = l, λ) − z)

with z = max
l∈ΩM

logp(xt |Mt = l, λ)
(39)
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In case of the visual-word output model, cf. Section 4.4.3, the out-

put probibility b ′
j(xt) is defined in terms of visual words v ∈ ΩV

with ΩV = {0, . . . ,V − 1} as shown in Equation 40. Component pos-

teriors p(Mt = k | xt, λ) are replaced with visual word probabilities

p(Vt = v | xt, λ) for this purpose. The random variable Vt is specific

to time t and represents a distribution over the event space ΩV. The

state-dependent mixture weights directly correspond to state-depen-

dent visual word probabilities.

b ′
j(xt) =

V−1
∑

v=0

p(Vt = v | St = j, λ)p(Vt = v | xt, λ) (40)

The visual word probabilities p(Vt = v | xt, λ) are defined in Equa-

tion 41. The random variable Xtv represents a distribution over ab-

solute visual word frequencies. More specifically, Xtv > 0 represents

the occurrence of visual word v in BoF vector xt at time t.

p(Vt = v | xt, λ) =
p(Xtv > 0 | Vt = v, xt)

∑V−1
w=0 p(Xtw > 0 | Vt = w, xt)

(41)

= p(Xtv > 0 | Vt = v, xt) =
xtv

‖xt‖1
(42)

p(Xtv > 0 | Vt = v, xt) is equal to p(Vt = v | xt, λ) since the denomi-

nator in Equation 41 is equal to one. This is due to the definition of

p(Xtv > 0 | Vt = v, xt) in Equation 42. Consequently, it is not required

to improve the numeric stability as in Equation 36.

In the following, the BoF output model will generically be referred

to in the terminology of Equation 37. Component posterior proba-

bilities are denoted as mtk = p(Mt = k | xt, λ) and state-dependent

mixture component prior probabilities are denoted as cjk = p(Mt =

k|St = j, λ). Mixture component posteriors will be used in two differ-

ent scenarios. In the first scenario, posteriors mtk are computed for

specific document image regions in order to estimate HMM state-de-

pendent mixture components cjk. The number of BoF vectors within

these regions will generally be referred to as Tq where q is an identi-

fier for the region, thus 0 6 t < Tq. In the second scenario, mixture

component posteriors are computed for line hypotheses in order to

search occurrences of the query word. In this regard it is important

to refer to a specific line hypothesis l ∈ Λ where Λ is the set of line

position indices that have been obtained for a line height on a docu-

ment image. For this purpose, component posteriors are referred to

as m[l]

tk. BoF vectors extracted from line hypothesis l are referred to as

x[l]
t . The number of BoF vectors is the same for all line hypotheses in a

document and is referred to as Tl such that 0 6 t < Tl. In analogy to

q, l refers to line hypotheses in a document. Equation 43 defines the

output probability for BoF vector x[l]
t in state j in terms of cjk and m[l]

tk.

b ′
j (x

[l]
t ) =

M−1
∑

k=0

cjkm
[l]

tk (43)
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Figure 24: Mixture component indexing for decoding BoF vector sequences.
The figure visualizes the process from BoF sequence extraction to
BoF vector output modeling and indexing. For this purpose, a BoF

output model is shown on the right. The diamond markers re-
fer to the mixture components. The mixture component index is
shown on the left. The BoF vector x

[l]
t from line hypothesis l is

indicated as a white dot. It lies on the edge of the simplex due to
the vector’s sparsity. For HMM decoding, the BoF vector is repre-
sented by mixture component posteriors (m

[l]
t0, . . . ,m[l]

t,M−1)
⊤. The

relation between BoF vector x
[l]
t , the BoF output model and the en-

try in the look-up table is emphasized by arrows. The columns in
posterior probability matrix [mkt] mimic the sequential structure
of corresponding BoF vectors in the line hypothesis.

For searching words efficiently, it is essential to avoid computations

at query time. In the given scenario, the evaluation of the BoF output

model can be precomputed for all line hypotheses which are relevant

for a given query. This is a considerable advantage since the output

model evaluation takes a large amount of time in the entire HMM

decoding process [Fin14, Sec. 10.1]. This is particularly the case for

the models presented in Section 4.4.1 and 4.4.2.

For all line hypotheses l ∈ Λ, look-up tables store component pos-

teriors m[l]
t = (m[l]

t0, . . . ,m[l]

t,M−1)
⊤ with m[l]

tk > ǫlow for all k ∈ ΩM. This

is sufficient since only posteriors m[l]
t depend on the BoF vectors x[l]

t ,

cf. Equation 43. In order to limit the size of the look-up tables, sparse

representations are used that only store sufficiently large posterior

probabilities (ǫlow = 10−12). While the probabilistic representations of

the visual-word output model are intrinsically sparse, beam pruning

is required in order to enforce sparsity otherwise. The concept of in-

dexing component posteriors in a look-up table is visualized for a

section of a line hypothesis in Figure 24. The figure combines results

from the previous sections, i.e., a region hypothesis, the BoF sequence

and the BoF output model.
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Query word Space right

Background

Space left

Background

Figure 25: The query HMM is a compound HMM consisting of a model for the
query word and the context in which the query word is expected to
appear in the document image. Ellipses visualize the individual
HMMs. The arrows specify the structure of the compound HMM. In
this regard, gray dots indicate the start-node and the end-node.

4.5 query modeling

The query model is a compound HMM that consists of models for

the query word and the query word context. The query word can be

provided by-example (Section 4.5.2) or by-string (Section 4.5.3). The

context consists of a background model and whitespace models (Sec-

tion 4.5.4). The query word model and the whitespace models are

estimated from annotated document regions (Section 4.5.1). The back-

ground model is based on the mixture component prior distribution.

Figure 25 shows a schematic visualization of the compound query

HMM. The HMM is modeling expected occurrences of the query word

within a patch in the patch-based framework. Patches that are accu-

rately positioned over relevant words should receive higher similarity

scores than patches that overlap but are not centered over relevant

words. For this reason, the query word is enclosed by whitespace

models that are specific to the left and right side context, respectively.

In order to model arbitrary document image content that might be

occurring at the patch boundaries to the left and to the right, the

compound HMM contains a background model. It should be noted,

that the model design differs from traditional approaches to line-

based word spotting with HMMs where the context is optional, e.g.,

[FKF+12]. In these scenarios, the objective is to decode a single most

likely occurrence of the query word in a segmented text line which

might be located at the beginning or end of the line. Here, however,

the search space is not constrained to a single line but it encompasses

the entire document image. Similarity scores for several patches are

taken into account in order to decode an occurrence of the query

word.

4.5.1 Estimation

Model estimation follows the standard approach for HMMs with the

Baum-Welch algorithm, cf. [Fin14, Sec. 5.7.4]. This excludes the out-

put model which is independent of the query word. The output model

is estimated in an unsupervised manner as described in Section 4.4.1

to 4.4.3. For estimating the query model, the corresponding HMM is
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denoted as λ and has to be initialized. The initialization depends on

the characteristics of the models, i.e., word models (Section 4.5.2),

character models (Section 4.5.3) or context models (Section 4.5.4) and

will be addressed in the corresponding sections.

Based on the initialized model, state-dependent model parameters

are iteratively optimized. This includes transition probabilities and

most importantly mixture weights for the mixture components of the

output model. The state-independent parameters of the output model

are not subject to optimization during query model estimation. Start

probabilities are not modeled explicitly. The first state of any state

sequence always corresponds to the background model due to the

structure of the compound query HMM.

Given the BoF vector sequence O = (x0, . . . , xTq−1) of a single

annotated document image region, the BoF output model is evalu-

ated in order to obtain mixture component posterior probabilities

mtk > ǫlow for all k ∈ ΩM and for 0 6 t < Tq according to Equa-

tion 39 or 42. Very small posteriors (ǫlow = 10−12) are neglected in

order to be consistent with the line region representations, cf. Sec-

tion 4.4.4. Based on the current model λ, the updated model λ̂ con-

tains optimized state-dependent mixture-component prior-probabili-

ties ĉjk = p(Mt = k | St = j, λ̂).

ĉjk =

∑Tq−1

t=0 p(Mt = k, St = j |O, λ)
∑Tq−1

t=0 p(St = j |O, λ)
(44)

p(Mt = k, St = j |O, λ) =

∑S−1
i=0 αt−1(i)aijcjkmtkβt(j)

p(O | λ)
(45)

Equation 44 shows the standard approach to estimating state-depen-

dent mixture component priors [Fin14, Equ. 5.21]. In order to avoid

zero-probabilities, the estimates are limited to ǫlow = 10−12 such that

ĉjk ← max(ĉjk, ǫlow). For each state, the component priors are normal-

ized in order to ensure that they constitute a probability distribution,

i.e.,
∑M−1

k=0 cjk = 1 for all j ∈ ΩS.

The estimation is part of the maximization step of the Baum-Welch

algorithm, cf. [Fin14, Sec. 5.7.4]. It contains posterior probabilities

p(Mt = k, St = j |O, λ) which are obtained for all (j,k) ∈ ΩS ×ΩM

and all BoF vectors of the training dataset in the expectation step. The

posterior is defined in Equation 45 and represents the probability for

selecting mixture component k in state j in order to generate fea-

ture vector xt. For this purpose, the generation is represented in

the context of the total output probability such that the computation

in the numerator of Equation 45 is restricted to component k and

state j at time t, i.e., cjkmtk. The probability for transitioning from

the preceding state i at time t− 1 to state j at time t is denoted by

aij = p(St = j | St−1 = i, λ) for all i ∈ ΩS. The forward variable αt−1(i)

represents the total output probability until time t− 1 ending in state

i. The backward variable βt(j) represents the total output probability
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from time t+ 1 starting in state j at time t. The posterior is obtained

by dividing through the total output probability for generating the

entire feature vector sequence in the denominator.

The transition probabilities are independent of the output model.

Therefore, the standard estimates for discrete HMMs can be used, cf.

[Fin14, Equ. 5.17]. In case the HMM is estimated from more than a

single document region, the parameter estimation statistics, e.g., in

Equation 44, have to be accumulated over all BoF vectors from all

regions, cf. [Fin14, Sec. 5.7.7].

4.5.2 Word models

Word HMMs are used in the query-by-example scenario and repre-

sent individual word images. A word image is directly provided as

bounding box annotation by the user. The bounding box coordinates

are quantized with respect to the visual word gird. For representing

the document region with an HMM, the sequence of Tq BoF vectors

is extracted. As for the line hypotheses, descriptors are incorporated

that do not overlap with the top and bottom boundary of the word

region. However, descriptors that overlap to the left and to the right,

help to improve the specificity of the model. They represent the direct

word context which is important in order to distinguish occurrences

of short words from the occurrences of the same words as parts of

longer words. If the query word HMM is estimated from segmented

word images, no context information is available. Descriptors that

overlap with the word boundaries cannot be considered in this case.

Each BoF vector is represented in terms of the BoF output model

with mixture component posteriors. The number of HMM states S is

obtained as a percentage of the number of BoF vectors in the document

image region. The HMM uses a linear topology, thus, allowing for

transitions to the active state and to the next state, see Figure 26.

For initializing the query word HMM, the BoF vectors are linearly

aligned with the states [Fin14, Sec. 9.3]. For this purpose, the state

sequence S = (s0, . . . , sTq−1) denotes the initial alignment such that

st ∈ ΩS and 0 6 t < Tq. The state at index t is defined in Equation 46.

st =

⌊
t

Tq − 1
(S− 1) + 0.5

⌋
(46)

Given frame index t, Equation 46 computes the state st based on the

relative position of frame t in the feature vector sequence. Adding 0.5

and using the integer part of the result corresponds to rounding to

the nearest integer.

For each state, initial model parameter estimates are based on the

feature vectors that have been aligned with the corresponding state.

Essentially, this corresponds to Viterbi training, cf. [Fin14, Sec. 5.7.5].

The basic idea for Viterbi training is to use the optimal output proba-

bility p(O,S∗ | λ) as optimization criterion instead of the total output
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Figure 26: Query word HMM for query-by-example word spotting. The fig-
ure visualizes the process from the annotated query word region
to query word HMM estimation. For this purpose, the visualiza-
tion focusses on the BoF output model. The query word region is
shown with a red bounding box. BoF vectors xt with 0 6 t < Tq
are extracted and represented with mixture component posteriors
mtk > ǫlow for all k ∈ ΩM. For each state j ∈ ΩS, mixture compo-
nent priors (cj0, . . . , cj,M−1)

⊤ are estimated. These state-depen-
dent component probabilities are shown in matrix [ckj] such that
the matrix columns are aligned with the corresponding states.
Transition probabilities are neglected in the visualization.

probability p(O | λ) in the Baum-Welch algorithm. For this purpose,

an optimal state-based alignment S∗ is computed with the Viterbi

algorithm for a training vector sequence O, cf. Equation 8. For initial-

ization, a linear alignment is provided according to Equation 46.

State-dependent mixture component priors are initialized by av-

eraging the mixture component posteriors mtk that have been ob-

served in the corresponding states, see Equation 47. For this purpose,

δ : ΩS×ΩS → {0, 1} serves as a function that indicates whether frame

t from the training vector sequence has been aligned with state j that

is considered for parameter initialization.

ĉjk =

∑Tq−1

t=0 δ(st, j)mtk
∑Tq−1

t=0 δ(st, j)
with δ(st, j) =







1 : st = j

0 : st 6= j
(47)

A lower bound of ǫlow = 10−12 is applied to the estimates in the

same way as to the estimates obtained in Equation 44. The initializa-

tion of the transition probabilities follows the standard approach in

the Viterbi training [Fin14, Equ. 5.27]. The initialized model can be

refined with Baum-Welch training as described in Section 4.5.1. The

patch size, which is required in the patch-based decoding framework,
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is directly obtained from the query word bounding box. Figure 26

shows the process from BoF vector extraction to the query word HMM.

Estimating an SC-HMM from a single document image region is

only feasible because the output model parameters are not optimized

along with the state-dependent parameters, cf. [PF05]. For query-by-

example word spotting this approach has already been successfully

applied in [RP09b]. Given that the HMM has less states than the docu-

ment region has frames, the states model which mixture components

occur within which section of the BoF vector sequence. Therefore, the

query word HMM can be interpreted as a dynamic probabilistic ex-

tension of a spatial pyramid. Since the number of states defines the

specificity of this model, the percentage of BoF vectors (see above) is a

meta parameter that is very important for the word spotting accuracy

and the efficiency, see Section 5.3.5.

During Baum-Welch training the probability for generating the BoF

vector sequence with the HMM is optimized. Therefore, the state-de-

pendent mixture component priors cjk focus more and more on the

mixture components that the BoF vectors have in common. The dy-

namic spatial pyramid is becoming increasingly specific with each

Baum-Welch iteration. Although this effect is desired if a large num-

ber of training samples is available, an important question is whether

this also applies if the mixture component priors cjk are estimated

with the BoF vectors from a single document region.

4.5.3 Character models

In case that a larger dataset of annotated document regions is avail-

able, HMMs can be estimated on character level. Afterwards, queries

are given by-string and query word models are dynamically created

as compound HMMs based on the character models. In addition, the

decoding patch size is required in the patch-based framework.

For this purpose, the character models consist of an appearance

model, i.e., the character HMM, and a size model that represents the

expected width and height of the character. This is visualized in

Figure 27. Both models are estimated from annotated training sam-

ples. Character HMMs are optimized with the Baum-Welch algorithm.

Based on an uniform initialization, the training procedure is similar

to the typical strategy for HMM estimation in handwriting recognition

[PF09] and word spotting [FKF+12], cf. Section 4.5.1. It is adapted in

order to allow for an integration in a unified framework for query-by-

example and query-by-string word spotting, cf. Section 4.1.

For character model estimation, the elementary modeling units, the

number of states per model and the model topology must be defined,

see Section 5.3.6. The elementary units are based on the characters in

the annotation. For this purpose, models can be used that capture the

local character context. Given that the task is word spotting, this helps
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Figure 27: Character models for query-by-string word spotting are esti-
mated using annotated training samples. On the left, the figure
shows annotated word images. The estimation with annotations
on line level works in analogy. The annotated document regions
are represented with BoF vector sequences. Each character model
consist of an appearance model and a size model as shown on
the right side of the figure. The appearance is modeled with char-
acter HMMs. The distribution of mixture component priors is in-
dicated below the HMM states. The size model represents the ex-
pected character width and character height and is obtained with
a forced alignment of the training samples. It should be noted
that the model inventory is not limited to characters but context-
dependent models are used in addition.

to capture the visual appearance of parts-of-words. On feature level,

this is supported by descriptors that typically represent more than

a single character. The context-dependent models are inspired by tri-

phones from speech recognition, cf. [Fin14, Sec. 8.2.2]. For this purpose,

the model is defined by the characters appearing before and after the

character that is supposed to be modeled. For example, a query word

HMM for the query word place can be represented as a compound

HMM of context-dependent models as shown in Equation 48.

λ(place) =

λ(_/p/l) ◦ λ(p/l/a) ◦ λ(l/a/c) ◦ λ(a/c/e) ◦ λ(c/e/_)

(48)

The underscores in the first and last context-dependent model denote

the word beginning and word ending. These models represent spe-

cific characters in the context of whitespace and are different from the

whitespace models, cf. Section 4.5.4, which are obtained from whites-

pace hypotheses, cf. Section 4.2.3.

The context-dependent model inventory is derived from the train-

ing annotations. If context-dependent models are not available in

order to represent specific characters in a query, the corresponding

context-independent character models are used instead. The training

process consists of two steps, cf. [Fin14, Sec. 9.3]. Based on the uni-
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Figure 28: Query word model for query-by-string word spotting. Given a
query word, a query word HMM and the decoding patch size must
be obtained. Based on the character models, the query word HMM

is given as a compound of corresponding character HMMs. The
patch width is obtained by adding the individual character width
estimates. The patch height is obtained as the maximum height
estimate of the character models used in order to represent the
query. The figure shows this exemplarily for the query place.

form initialization, context-independent models with a fixed number of

states and a linear topology are estimated. Afterwards, these models

are used in order to segment the training data with a forced align-

ment4. Context-dependent models are estimated based on the seg-

mentation of the training data. The number of states per context-de-

pendent model is chosen such that the shortest segment in the train-

ing data that was aligned with the corresponding context-indepen-

dent model can still be generated. Therefore, the number of states

of the context-independent models is a lower bound for the length

of these segments. Using a Bakis topology, cf. [Fin14, Sec. 8.1], for

the context-dependent models increases the flexibility with respect

to the estimated number of states. Thus, the number of states of the

context-independent models is an important meta parameter. Dur-

ing Baum-Welch training, the parameters of the context-independent

models are tied to the parameters of the corresponding context-de-

pendent models, cf. [Fin14, p. 172]. As for query-by-example, only

the state-dependent parameters are subject to optimization.

The size model requires width and height estimates for every el-

ementary model. The width estimates are obtained with a forced

alignment of the training samples. For each elementary model, the av-

erage width is recorded. The height estimation requires more heuris-

tics. Provided that the annotations are given on word level, as shown

in Figure 27, all samples that are relevant for a particular model are

recorded. The height estimate is obtained at a lower percentile of the

word height distribution, see Section 5.3.6. As larger characters define

the height of the word bounding box, the estimate is less accurate for

small characters. The lower percentile is chosen in order to select a

small word height that still contains the character. In case the anno-

tations are given on line level, a forced alignment on word level is

required. Afterwards, word bounding box heights have to be refined,

e.g., using the region refinement approach presented in Section 4.6.5.

4 The alignment is referred to as forced because the model sequence is given during

Viterbi decoding and only the segmentation has to be derived.
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Once the character models are available, query word models can

be obtained dynamically. The patch size is derived by adding char-

acter width estimates of the elementary models that are relevant for

the query. The height is obtained as the maximum over the relevant

model height estimates. Similar to the query-by-example scenario, cf.

Section 4.5.2, the patch size is quantized such that width and height

are multiples of the visual-word grid sampling step. Figure 28 shows

an overview of the query word model definition.

The word spotting method presented in this chapter is primarily de-

signed for the query-by-example scenario where no annotated train-

ing samples are available besides the query word image. Therefore,

the support for query-by-string word spotting can be seen as an ex-

tension of this query-by-example scenario. The very large number of

context-dependent character models as well as the optimization of

only state-dependent parameters in the Baum-Welch training, require

that the visual variability in the document collection is limited.

4.5.4 Context models

The context of a query word in a patch is represented by whitespace

models as well as a background model, cf. Figure 25. The whites-

pace HMMs are estimated based on whitespace regions that have been

obtained for the left-side as well as the right-side context of text, cf.

Section 4.2.3. Since whitespace regions have a small width by design,

see Figure 18, the HMMs consist of a single state each. Otherwise, the

model configuration and estimation follows the procedure described

for the query word HMM, cf. Section 4.5.2.

The background model represents arbitrary document image con-

tent. It is a single-state HMM which models the distribution of mixture

components in the document collection, i.e., the background [RP08b].

It is given as distribution of mixture component priors p(M = k |Θ)

in the BoF output model Θ, cf. Section 4.4. The transition probabilities

are set heuristically such that any probability for transitioning out of

the background model is set to the floor probability ǫfloor = 10
−5. For

example, the self-transition probability and the probability for transi-

tioning to the next state are given by (1− ǫfloor, ǫfloor) in case of a linear

topology. Neither the whitespace HMMs nor the background model

require their own size estimates.

The context models are required for handling word size variabil-

ities and for decoding more accurate query word locations in the

patch-based framework (Section 4.6.2). The partial output probabili-

ties that are obtained for the context models are not considered for

the patch-similarity scores. The explicit modeling of whitespace in-

creases the specificity of the compound query HMM. This helps if the

whitespace HMMs represent the context of an instance of the query

word better than the background HMM, see Section 5.3.7.
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4.6 retrieval

Retrieval is performed in a patch-based framework. For this purpose,

patches are sampled from the document images (Section 4.6.1). Each

patch receives a score that indicates similarity to the query. In order

to reduce the computational complexity of evaluating a large number

of patches with the Viterbi algorithm (Section 4.6.2), a coarse and a

fine analysis stage is proposed. In the coarse stage, the BoF-HMM is

evaluated with a voting scheme that mimics Viterbi decoding (Sec-

tion 4.6.3). Only the document image regions that are potentially rel-

evant to the query are analyzed in the fine stage. The key idea for the

integration of the two stages is to re-rank all local optima identified

in the first stage (Section 4.6.4). This allows for a trade-off between re-

trieval accuracy and efficiency. Finally, the retrieved patches can be re-

fined by snapping patch coordinates to text hypotheses (Section 4.6.5).

This allows for highly accurate detections in the document images.

4.6.1 Patch sampling

Patches are sampled from document images in a regular grid. The

patch size is given by the query model. In order to limit the huge

amount of patches, the grid resolution is dynamically adapted to the

patch size in horizontal and vertical direction. Thus, more patches are

extracted for smaller query words than for larger query words.

In order to align the patches with the visual word grid, the patch

size has been quantized to a multiple of the visual-word grid sam-

pling step during query model estimation. Furthermore, patch repre-

sentations are based on line hypothesis representations (Section 4.6.2).

For this purpose, the patch height is quantized with respect to heights

of line hypotheses that have been extracted in the document image.

In the following, p, r, o, g, z and d refer to lengths in image pixels.

The subscripts w and h indicate width and height. The subscripts x and

y indicate horizontal and vertical direction. The following derivations

are specific to a given document and a given patch size. Illustrations

of the patch size and the patch sampling step can be found in Figure 29.

Provided that the quantized patch size is given by (pw, ph), the patch

sampling steps (rx, ry) are defined in Equation 49. Horizontal and ver-

tical offsets that have to be considered in order to exclude invalid

descriptors, cf. Section 4.5.2, are represented by (ow, oh). For a given

patch size, the offsets are chosen dynamically such that the adapta-

tion does not reduce the patch size below a minimum number of

visual-word grid rows and grid columns. The patch size (pw, ph) is

not increased in this way, i.e., ow > 0 and oh > 0, see Figure 29 (left).

The offsets are multiples of the visual-word grid sampling step.

The patch sampling steps are based on scaling the patch size by 1
υ .

The patch sampling rate υ ∈ N>0 is a meta parameter that has to be
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Patch size

pw−ow

pw

ph ph−oh

Patch sampling step

l

rx
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Figure 29: Patch sampling. On the left, the figure indicates patch dimen-
sions. The patch size (pw, ph) is obtained from the query word
model. For extracting the BoF vector sequence, the patch size is
reduced according to offsets (ow, oh) in order to exclude invalid
descriptors in the dense grid of visual words. Descriptors are in-
valid if they overlap with the patch boundaries. In the given ex-
ample, only those descriptors are excluded that overlap with the
upper and lower patch boundaries, i.e., ow = 0. On the right, the
figure illustrates the patch sampling step (rx, ry). In the example,
the sampling steps are larger than in practice for a better visual-
ization. Patches are regularly sampled as indicated by the dense
grid. Patches will be processed if there exists a line hypothesis
with a line height that corresponds to the patch height. A single
line hypothesis with index l is indicated due to this reason.

sufficiently large, e.g., υ > 4, cf. Table 18 in Section 5.3.8. In order to

ensure that the patch positions are aligned with the visual word grid,

function q : Z ×N>0 → N>0 quantizes the horizontal and vertical

sampling steps, see Equation 49. The minimum sampling step is the

visual-word grid sampling step g. The mod operator computes the

remainder of the integer division between the operands.

rx = q

(⌊
pw − ow
υ

⌋
, g

)
, ry = q

(⌊
ph − oh
υ

⌋
, g

)

with q(z, g) = max(z − (z mod g), g)

(49)

The individual sampling steps allow for sampling as many patches as

are required in order to achieve accurate detections in each direction.

With this trade-off, the number of possible patch positions can be

reduced substantially compared to a full search, i.e., from the order

of hundred thousands to the order of ten thousands.

In order to specify the number of patches, the document dimen-

sions are required. Width and height are given by (dw, dh) where dw
and dh are obtained based on the difference of the maximum and

minimum visual word image coordinates in horizontal and vertical

directions. Then, the number of patches in horizontal and vertical di-

rections are given in Equation 50, provided that dw > (pw − ow) and

dh > (ph − oh).

R =

⌊
dw − (pw − ow)

rx

⌋
+ 1 , Q =

⌊
dh − (ph − oh)

ry

⌋
+ 1 (50)

Patches are sampled from the document such that all patches lie

within the document boundaries.
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4.6.2 Viterbi decoding

The basic idea for searching document images with the compound

query HMM, see Section 4.5, is to represent patches with sequences of

BoF vectors. Viterbi decoding yields the optimal probability for gen-

erating the sequences with the HMM. In order to improve retrieval

speed, the evaluation of the BoF output model is precomputed and

stored in look-up tables for line hypotheses.

For each document, line hypothesis positions are grouped accord-

ing to line hypothesis heights in an index, cf. Section 4.2.2. Since the

patch height has been quantized to the index heights, line hypotheses

are obtained that fit the decoding patch height. Based on this set Λ

of relevant line hypothesis positions, the regular grid of patches is

filtered such that only those patches will be processed that lie within

line hypotheses that are relevant for the patch height.

In the Viterbi algorithm, the output probabilities b ′
j

(
x[l]

t

)
= c⊤

j m[l]
t

are required, cf. Equation 43. For line hypothesis l, the mixture com-

ponent posteriors m[l]
t can efficiently be obtained from the mixture

component index, cf. Figure 24. The state-dependent vector of mix-

ture component priors cj is given by the model.

A patch representation is defined as a subsequence of the corre-

sponding line representation. Provided that line l is represented with

vectors x[l]
t with 0 6 t < Tl, then a patch with F BoF vectors is defined

with sub-indices t+ f with 0 6 t 6 Tl − F where F 6 Tl and 0 6 f < F.

Based on offset t and patch sequence index f, the corresponding mix-

ture component posterior vector m[l]

t+f is retrieved from the look-up

table. Equation 51 defines the number of BoF vectors per line and per

patch, also cf. Section 4.6.1.

Tl =
dw
g

+ 1 , F =
pw − ow

g
+ 1 (51)

Figure 30 visualizes the concept. For this purpose, it is indicated

that patches are sampled from the document. For each patch position,

the BoF vector sequence is obtained from the look-up table. This is

shown for the patch in line hypothesis l at BoF vector index t.

For a given patch size, patches are arranged in a regular Q×R grid,

also see Figure 29 (right), where Q is the number of rows and R is the

number of columns, as defined in Equation 50. Individual patches can

be addressed with tuple (q, r) ∈ {0, . . . ,Q − 1} × {0, . . . ,R − 1}. Cor-

responding lines can be addressed based on the patch row indices

l ∈ ∆ with ∆ = Λ ∩ {0, . . . ,Q− 1}. For a patch column index r, the

BoF vector offset t in the line hypothesis is computed with function

g : {0, . . . ,R− 1} → {0, . . . , Tl − F} based on the patch sampling step

rx and the visual-word grid sampling step g. Equation 52 defines the

sequence of F BoF vectors O[l]
r for patch (l, r).

O[l]
r =

(
x[l]

g(r)+0, . . . , x[l]

g(r)+F−1

)
with g(r) = r

rx
g

(52)
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Patch decoding
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Figure 30: Patch-based decoding of the compound query HMM. The fig-
ure shows how the patch-based framework is integrated with
line hypotheses. For this purpose, sequential patch representa-
tions are obtained as subsequences of the line representations
as indicated by offset t and patch index f within line hypothe-
sis l. Mixture component posterior probability vectors m

[l]
t+f =

(m
[l]
t+f,0, . . . ,m[l]

t+f,M−1)
⊤ can directly be obtained from the mixture

component index. Given the state-dependent mixture component
prior vectors cj = (cj0, . . . , cj,M−1)

⊤ of the compound query

HMM, the output probability b ′
j

(
x
[l]
t+f

)
= c⊤

j m
[l]
t+f is computed

with a scalar product. This is indicated by the arrow with the
two square markers. Further, the vector m

[l]
t+f is highlighted by a

red frame. The arrow is reaching from HMM state j towards the
visual word simplex in order to emphasize that the output prob-
ability depends on the distribution represented by the BoF output
model.

The Viterbi algorithm computes p(O[l]
r ,S[l]∗

r | λ), i.e., the optimal out-

put probability for BoF vector sequence O[l]
r and the optimal state se-

quence S[l]∗
r . For this purpose, the beam search algorithm [Fin14, Sec.

10.2.1] is applied with a negative-logarithmic beam offset of 200 and

a floor probability [Fin14, Sec. 7.2] of ǫfloor = 10−5 for any output

probability, i.e., b ′
j

(
x[l]

t

)
← max

(
b ′

j

(
x[l]

t

)
, ǫfloor

)
. The beam parameter

is chosen such that an optimal output probability can be computed

for most of the patches. Since the probabilities along state sequences

are based on the product of output probabilities, the lower bound en-

sures that paths are not excluded due to individually occurring very

small output probabilities.

Based on the optimal alignment S[l]∗
r , the optimal output probabil-

ity p
(
O[l]

r ,S[l]∗
r | λ

)
can be expressed in terms of the individual align-
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ments with the states of the models in the compound query HMM,

cf. Figure 25. For this purpose, Equation 53 defines subsequences of

BoF vectors and states. The notation for a sequence at row index l

and column index r, i.e., O[l]
r , is extended such that the column in-

dex r can be conditioned on the subsequence for the corresponding

models of the compound HMM. The subsequence that corresponds to

models which are representing the left side context in a patch, i.e., left

side background and left side whitespace, is denoted as u. In analogy,

the right side context is denoted as v. The subsequence that has been

aligned with the query word HMM is denoted as q. The definition of

the subsequences is based on the estimated frame offset f̂q for the

query word model and the estimated number of frames F̂q, that have

been aligned with the query word model within a patch.

O[l]

r |u =
(
x[l]

g(r)+0, . . . , x[l]

g(r)+f̂q−1

)
,

O[l]

r |q =
(
x[l]

g(r)+f̂q
, . . . , x[l]

g(r)+f̂q+F̂q−1

)
,

O[l]

r |v =
(
x[l]

g(r)+f̂q+F̂q
, . . . , x[l]

g(r)+F−1

)
,

S[l]∗

r |u =
(
s
[l]∗

g(r)+0, . . . , s[l]∗
g(r)+f̂q−1

)

S[l]∗

r |q =
(
s
[l]∗

g(r)+f̂q
, . . . , s[l]∗

g(r)+f̂q+F̂q−1

)

S[l]∗

r |v =
(
s
[l]∗

g(r)+f̂q+F̂q
, . . . , s[l]∗g(r)+F−1

)

(53)

Due to the independence assumptions in the HMM5, p
(
O[l]

r ,S[l]∗
r | λ

)

can be expressed in terms of the partial alignments of the BoF vector

sequence with the states in the compound query HMM as shown in

Equation 54. The partial output probability for the query word model

is obtained in Equation 55. Equation 55 is equivalent to Equation 54.

Therefore, the ratio in Equation 55 does not correspond to a filler-

score normalization. The denominator does not represent the entire

observation sequence O[l]
r .

p
(
O[l]

r ,S[l]∗
r | λ

)
= p

(
O[l]

r |u,S[l]∗

r |u | λ
)
p
(
O[l]

r |q,S
[l]∗

r |q | λ
)
p
(
O[l]

r |v,S
[l]∗

r |v | λ
)

(54)

⇔ p
(
O[l]

r |q,S
[l]∗

r |q | λ
)
=

p
(
O[l]

r ,S[l]∗
r | λ

)

p
(
O[l]

r |u,S[l]∗

r |u | λ
)
p
(
O[l]

r |v,S
[l]∗

r |v | λ
) (55)

Since the partial output probabilities depend on the number of frames

F̂q that have been aligned with the query word model, the patch

scores are obtained after length-normalization, see Equation 56.

The patch similarity scores are stored in the Q × R matrix [νqr].

Equation 56 defines the similarity score for the patch at row index q

and column index r. The length-normalization is performed by the

geometric mean because the output probability over a sequence of

observations and states is represented as a product. Thus, the patch

similarity score corresponds to the average output probability for the

path through the query word model. Patches that are not processed

with the Viterbi algorithm as well as patches that do not obtain a

5 Provided that transition probabilities between the context HMMs and the query word

HMM are neglected.
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Patch similarity scores Patch-based alignment

Figure 31: Patch-based retrieval for query place, cf. Figure 26. On the left,
the figure shows patch similarity scores for a section of a doc-
ument image. Each patch center is indicated as a rectangular
cell. The cell color visualizes the similarity to the query from
blue to red in the logarithmic domain. The cell width and cell
height correspond to the patch sampling rates. On the right, the
figure shows the patch that corresponds to the strongest local
optimum within the patch similarity scores. The patch size has
been increased by 50%, in order to align the BoF vectors with the
background (gray), whitespace (white) and query (red) models. The
flexibility of the approach is emphasized by the differently sized
background and whitespace regions to the left and to the right of
the query word.

similarity score due to beam pruning are assigned the floor proba-

bility ǫfloor = 10−5. The floor probability is the same as for output

probabilities in the Viterbi algorithm and can, therefore, be used as a

lower bound after length-normalization of the patch scores. The lower

bound for any patch score is required in order to be able to represent

patch similarity scores in the logarithmic domain.

νqr =







max
(

F̂q

√
p
(
O[q]

r |q,S
[q]∗

r |q | λ
)
, ǫfloor

)
: q ∈ Λ

ǫfloor : q /∈ Λ
(56)

The computational effort for computing matrix [νqr] depends on the

number of patches and the computational complexity of the Viterbi

algorithm. Provided that F is the number of BoF vectors in a patch,

S is the number of states in the query model and M is the num-

ber of mixture components in the BoF output model, the complexity

for evaluating a single patch is O(FMS2). By exploiting the model

topology in the beam search algorithm, cf. [Fin14, Sec. 10.2.1], and by

exploiting the sparsity of mixture component posterior vectors m[l]
t ,

cf. Section 4.4.4, the computational complexity reduces to O(FM̂Ŝ2)

where M̂ ≪ M and Ŝ 6 3 for a Bakis topology or Ŝ 6 2 for a linear

topology. Provided that L = |∆| line hypothesis have to be considered

for the evaluation of an entire document image and R patches are

extracted per line, the computational complexity for obtaining matrix

[νqr] is O(LRFM̂Ŝ2).

Figure 31 (left) visualizes patch scores for a section of a document

image in the logarithmic domain. Due to the high overlap of neighbor-

ing patches, the score distribution is relatively smooth. Consequently,
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the similarity scores start raising as soon as patches start to overlap

with document image regions that are visually similar to the query.

The similarity scores reach local maxima for the patches that are cen-

tered over document image regions that are most similar to the query.

This effect is exploited for retrieving relevant patches with non-max-

imum suppression (NMS). Since the patch scores are stored in the matrix

[νqr], locally optimal scores can be obtained after applying a max-

imum rank-order filter, cf. [GW02, p. 124]. All scores that did not

change after the filter operation are locally optimal. The size of the

local neighborhood is defined by the size of the maximum-filter mask.

For each patch, the overlapping patches can be determined based on

the patch size and the patch sampling steps. Given that υ patches are

sampled in horizontal direction within the bounds of a patch, υ− 1

patches have their left corners and υ− 1 patches have their right cor-

ners within these bounds. Based on this observation, the filter mask

has width 2υ− 1. Equation 57 specifies the size of the mask in hori-

zontal and vertical direction with respect to matrix [νqr]. The number

of rows is given by Gy and Gx denotes the number of columns.

Gx =

⌊
pw − ow

rx

⌋
2− 1 , Gy =

⌊
ph − oh

ry

⌋
2− 1 (57)

Gy and Gx are not expressed in terms of υ directly due to possible

quantization artifacts, cf. Equation 49. Figure 31 (right) shows a sin-

gle patch which corresponds to the local optimum with the highest

similarity score.

An important assumption of patch-based word spotting systems is

that the patch size is similar to the size of words that are relevant to

the query. However, in documents with larger word size variability

this can be a considerable limitation. Due to the dynamic probabilis-

tic properties of the compound query HMM, word size variability can

be handled better than in patch-based approaches using holistic rep-

resentations. The estimated bounds of the query word within a patch

are directly given by the partial BoF vector sequence O[q]

r |q that has been

aligned with the states of the query word model. In order to improve

the flexibility with respect to occurrences of the query that are larger

than the patch size, the patch width can be increased according to

pw ← pw +ψpw with meta parameter ψ ∈ R>0. The sampling steps in

Equation 49 are adapted accordingly. Figure 31 (right) indicates the

alignment of the patch with background, whitespace and query word

models. The patch size has been increased by 50%, i.e., ψ = 0.5.

The improved word size flexibility comes at the cost of reduced

specificity of the scores in the patch score matrix [νqr]. The Viterbi

algorithm computes the optimal path for aligning the states in the

compound query HMM with the frames in a patch. In this regard, the

number of states of the context models is fixed and the number of

states in the query word model depends on the expected width of

the query word. Therefore, the number of possibilities for aligning
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the query word model with a subsequence of frames depends on the

difference between the number of frames in a patch and the number

of states in the query word HMM. If the difference is small, the patches

are mostly represented by the query word model which makes the

scores very specific. If the difference grows, the Viterbi algorithm has

more possibilities for computing an alignment for the query word

model. The more possibilities for obtaining the path with maximum

output probability are available, the less specific will the similarity

scores be with respect to the spatial location of the patches in the

document image. Therefore, the resolution of the similarity scores

decreases with increasing values of ψ. This is particularly important

for retrieving occurrences of the query that are not represented well

by the query word model.

Furthermore, it should be noted that the patch similarity scores also

represent the probabilities of the observations. In contrast, a query

posterior is conditioned on the observations due to the filler normal-

ization [PTV15a]. Observations that are likely obtain higher proba-

bilities than unlikely observation. Therefore, the filler normalization

can be seen as a writing style normalization. However, if only very

limited amounts of annotated samples are available, the generaliza-

tion over very different writing styles is not the targeted scenario. For

this reason, the normalization with a filler model or a background

model is ommited in favor of better retrieval accuracy for spotting

within document collections with limited writing style variability, see

Section 3.3.2 and Table 19 in Section 5.3.8.

4.6.3 Mixture component voting

Computing similarity scores in a patch-based framework with the

Viterbi algorithm is only feasible due to patch sampling and mix-

ture component indexing based on line hypotheses. However, in real

world scenarios where users expect retrieval results instantly, this is

insufficient. The computational complexity O(LRFM̂Ŝ2) is still domi-

nated by the large number of patches per document image, i.e., typi-

cally LR > 10, 000. Principally, this is a challenge for any patch-based

word spotting system. In this regard, the major difference between

HMMs and holistic representations is that the HMM query model is

not indexable with standard approaches, cf. Section 3.3.3.

Mixture component voting allows for obtaining potentially relevant

patches without evaluating each patch individually. The approach is in-

spired by the application of the generalized Hough transform [Bal81] to

object detection with SIFT descriptors [Low04, Sec. 7]. For this pur-

pose, local features from the model are matched with local features

from the document image. The model defines a reference point in or-

der to obtain a relative displacement for each match. The matching

features vote for an object hypothesis by increasing an accumulator in
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Figure 32: Mixture component voting. The figure shows how BoF vectors
are indexed with respect to mixture components in an IFS. A
Hough-style voting scheme allows for retrieving document re-
gions rapidly that are potentially relevant to the query. For this
purpose, component posteriors m[l]

tk are computed for BoF vectors
x
[l]
t where l and t denote line and frame indices. The frame posi-

tion at index t is indicated in gray and the frame center is shown
as a black dot. For each mixture component, the index stores tu-
ples

(
m

[l]
tk, (l, t)

)
with m[l]

tk > ǫlow for all frames. The voting pro-
cess is indicated for HMM state j. For each component k with
cjk > ǫlow, all relevant frames are retrieved from the index. The
figure shows a single match for state j and frame (l, t). The vot-
ing mass is added to elements in Q× R matrix [ν̄qr]. Each matrix
element corresponds to an accumulator cell in the document im-
age. Cells correspond to patches and their size equals to the patch
sampling steps (rx, ry). They are visualized in a regular grid over
the document image. It can be seen that the center-coordinate of
frame (l, t) is located in cell (l, r− 1). However, in the given ex-
ample the voting mass cjkm

[l]
tk is accumulated in cell (l, r), which

is highlighted in red. This is due to frame voting-offset d(j) which
incorporates the sequential HMM structure. The computation of
the voting-offset uses the patch width pw − ow and the number
of HMM states S. The entire width is subdivided in S sections of
uniform size s. The offset is based on the displacement between
section centers and the patch reference point at the horizontal
patch center. The horizontal patch center is indicated in red with
two vertical marks. Numerically, the reference point is referred
to as f which corresponds to the distance between the horizontal
patch center and either of the horizontal patch bounds as shown
for the right bound in the figure. For state j, the displacement
with respect to the reference point in image pixels is indicated
as gd(j). The frame index t + d(j) must be transformed to cell
column index r according to r = g⋆(t+ d(j)), see Equation 65.
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the Hough voting space. The voting space is represented by a regular

grid of accumulator cells over the image. In this voting process, the

cell coordinates are obtained based on the coordinates of the match-

ing features in the document image and their relative displacement.

The key idea for integrating mixture component voting in the patch-

based framework is that each accumulator cell directly corresponds

to a patch. The accumulator cells do not overlap and the cell size

is defined by the patch sampling steps, see Section 4.6.1. Figure 32

shows a schematic visualization of the entire mixture component vot-

ing approach. The visualization of the BoF vector sequence in line hy-

pothesis l, the BoF output model and the query word HMM are known

from the previous figures. The visualization of the accumulator cells

and the cell size (rx, ry) corresponds to the visualization of the patch

sampling steps in Figure 29. The figure caption provides a summary

of the method. The details will be presented in the following.

Mixture component voting is performed with the query word HMM

from the compound query HMM. The context HMMs are not used in

the process. Given the query word model, mixture components with

prior probabilities cjk for all j ∈ ΩS and all k ∈ ΩM are considered

as local features. The features are local since they are specific to state

j in the state sequence of the query word model. In the same way,

mixture components from the document image are represented with

mixture component posteriors m[l]

tk for all l ∈ ∆ with 0 6 t < Tl. These

can be considered as local features as well because they are specific

to line l and frame t. The key idea is to match all state-dependent

prior probabilities with all posteriors in the document image for all

components k ∈ ΩM. Instead of a binary match indicator, matches are

soft. This is represented by the voting mass in Equation 58.

cjkm
[l]

tk = p(Mt = k | St = j, λ)p(Mt = k | x
[l]
t , λ) (58)

The voting mass is the joint probability for mixture component k

given BoF vector x[l]
t and mixture component k given state j in model

λ. Thus, the voting mass is zero if any of the probabilities is zero. The

local features can be considered as non-matching in this case.

Matches can be retrieved rapidly by extending mixture component

look-up tables, cf. Figure 24, with inverted indices. For this purpose

the IFS is defined as Υ in Equation 59. For each mixture component

k ∈ ΩM, Υk stores line-frame indices (l, t) of all frames in all line

hypotheses that are represented with a non-zero posterior probability

(ǫlow = 10−12), see Equation 60. Further, the posteriors are stored

along with the indices as weights.

Υ =
{

Υk | 0 6 k < M
}

(59)

Υk =
{(
m

[l]

tk, (l, t)
)
| ∀(l, t) ∈ ∆× {0, . . . , Tl − 1} : m

[l]

tk > ǫlow

}

(60)

Figure 32 shows a single IFS entry for component posterior m[l]

tk of BoF

vector x[l]
t which has been extracted from frame t in line l.



4.6 retrieval 111

For each match, the relative displacement with respect to a refer-

ence point in the query word model is required. The displacement is

based on the patch width, the number of HMM states and the index of

the corresponding HMM state. The HMM states represent the visual ap-

pearance of the query word in horizontal direction. The spatial extent

of each state with respect to the patch width can be approximated

with s for any state, see Equation 61, where pw −ow is the patch width

and S is the number of HMM states. Thus, the patch is subdivided in

S sections of uniform width s. The reference point f is the horizontal

patch center.

s =
pw − ow
S

, f =
pw − ow
2

(61)

Equation 62 defines the relative horizontal displacement between a

state j and the reference point in terms of frame indices. The result

of function d(j) is referred to as the voting-offset. Mapping from state

indices to frame indices is convenient for the integration of the IFS

and the voting space in the voting algorithm (see below).

The definition of function d(j) in Equation 62 is based on the dis-

placement in image pixels between the section that corresponds to

state j and the reference point. Since the reference point is the patch

center, the displacement is defined with respect to the section centers.

The left bound of the section that corresponds to state j is given by js.

The horizontal section center is obtained after adding s
2 . The differ-

ence with respect to f results in the displacement in image coordinates

such that a positive displacement is obtained for states representing

the beginning of the query word and a negative displacement is ob-

tained for states representing the end of the query word. Thus, the

displacement is relative with respect to the reference point.

d :

{

0, . . . ,S− 1

}

→

{

−

⌊
Tl

2

⌋
, . . . ,

⌊
Tl

2

⌋}
, d(j) =

⌊
f −
(
j s + s

2

)

g

⌋

(62)

Function d(j) maps a state index to a horizontal displacement in

terms of frame positions by dividing by grid sampling step g. Con-

sequently, the co-domain is bounded based on the number of frames

Tl in a line. Figure 32 visualizes the horizontal displacement in im-

age pixels gd(j) for state j. This involves the voting-offset d(j) which is

used in the voting algorithm. In this regard, the application of d(j) is

shown in the voting space.

The Hough voting space over a document image is quantized in

accumulator cells of width and height (rx, ry) such that the center-co-

ordinates of the cells are aligned with the center-coordinates of the

patches, cf. Section 4.6.1. Since the cell size equals to the patch sam-

pling step, the cells are non-overlapping and there exists exactly one

cell per patch. This correspondence allows for obtaining similarity
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scores for patches based on the accumulated voting scores of the cells.

In the same way as Viterbi-based patch scores are stored in Q×R ma-

trix [νqr], cf. Equation 56, votes are accumulated in matrix [ν̄qr]. The

accumulator values are initialized to ǫfloor, see Equation 63. The floor

probability ǫfloor = 10−5 is used in analogy to Equation 56. Figure 32

shows the voting space as a regular grid of cells over the document

image.

The voting algorithm can be defined for non-zero state-dependent

prior probabilities cjk > ǫlow for all j ∈ ΩS and all k ∈ ΩM from

the query word HMM. All corresponding non-zero mixture posteri-

ors in a document image, i.e., ∀
(
m

[l]

tk, (l, t)
)
∈ Υk, are retrieved from

the IFS. Each element votes for a patch by adding the voting mass

cjkm
[l]

tk to the accumulator in the voting space. The corresponding ac-

cumulator-cell index is determined based on line-frame index (l, t)

and voting-offset d(j), see Equation 64. Index l is a valid patch row

index since l ∈ ∆ ⊆ {0, . . . ,Q− 1}. Frame index t+ d(j) is mapped to

the corresponding patch column index by function g⋆(t+ d(j)), see

Equation 65.

ν̄qr = ǫfloor ∀(q, r) ∈ {0, . . . ,Q− 1}× {0, . . . ,R− 1} (63)

∀(j,k) ∈ ΩS ×ΩM : cjk > ǫlow, ∀
(
m

[l]

tk, (l, t)
)
∈ Υk .

ν̄l,g⋆(t+d(j)) ← ν̄l,g⋆(t+d(j)) + cjkm
[l]

tk

(64)

Function g⋆(t) is related to the inverse of function g(r), cf. Equa-

tion 52. The difference lies in the domain definitions which is im-

portant for handling document boundaries. In this regard it has to be

noted that an accumulator is only increased in Equation 64, if t+d(j)

is in the domain of function g⋆. This handling of document bound-

aries is required because patches are entirely located within a docu-

ment. Thus, frame indices outside the domain would not be mapped

to a valid patch column index. Further, g⋆(t) rounds down in order

to map a range of frame indices to a single patch column index.

g⋆ :

{

0, . . . , Tl −

⌈
F

2

⌉
− 1

}

→

{

0, . . . ,R− 1

}

, g⋆(t) =

⌊
t
g

rx

⌋

(65)

The mixture component voting algorithm can be interpreted as a

coarse evaluation of output probabilities b ′
j

(
x[l]

t

)
. For each state and

each BoF vector, the output probabilities are computed component-

wise and added to the cell that corresponds to the patch at line l ∈ ∆

and frame t+ d(j), if t+ d(j) can be mapped to a valid patch column

index. Assuming that the query word HMM has just a single state, the

voting scores correspond to the HMM output probabilities. For multi-

ple states, the sums are extended to output probabilities for frames in

the horizontal neighborhood that vote for the same cell. The voting-

offset reflects the model structure due to its dependence on state j.

The output probability for any BoF vector in a cell, i.e., vectors that are
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consistent with the sequential model structure, is considered. Simi-

larity scores [ν̄qr] are, therefore, sensitive to individual, high output

probabilities. This leads to high recall at the cost of a high false posi-

tive rate.

Figure 32 indicates the voting process for state-dependent com-

ponent prior cjk and component posterior m[l]

tk which is obtained

through the IFS. The voting mass is accumulated in cell (l, r) that con-

tains frame t + d(j). Figure 33 (top, left) visualizes patch similarity

scores for a section of a document image in the logarithmic domain.

Patches can be retrieved according to similarity to the query word

HMM after applying an NMS filter to the matrix [ν̄qr], see Figure 33

(top, right). The size of the filter mask is based on the patch size, cf.

Equation 57, as for patch-based retrieval in Section 4.6.2.

The computational complexity isO(SM̂HMMM̂IFS) according to Equa-

tion 64. In this regard, S is the number of HMM states, M̂HMM is the

expected number of non-zero state-dependent component priors per

state and M̂IFS is the expected number of IFS entries per component.

In comparison to the computational complexity for Viterbi decoding,

it is important to note that the computational complexity for mixture

component voting is independent of the number of patches. This is a

considerable advantage for providing retrieval results fast. However,

this requires that at least the look-up table and the corresponding in-

verted index, which is required for processing the current query, can

be stored in memory.

Memory requirements mostly depend on the number of line hy-

potheses, the number of frames per line and the expected number

of mixture components per frame. Provided that the look-up tables

and the IFS are stored independently, a factor of two has to be incor-

porated for sparse representations in the look-up tables. A factor of

three is incorporated for the IFS in order to store posteriors and line-

frame indices. Therefore, the memory complexity per line-height and

document is 2 ·O(LTlM̂) + 3 ·O(LTlM̂) = 5 ·O(LTlM̂).

In case a very large volume of fast disk storage is available, indices

can be loaded from a hard drive dynamically at query time. It should

be noted that this can dominate retrieval times of the mixture com-

ponent voting approach severely. The delay can be considered as less

critical if patches are re-ranked with Viterbi decoding. This is due to

the overall increased computational complexity.

4.6.4 Two-stage integration

The patch-based Viterbi decoding approach computes accurate re-

trieval results at the cost of low computational efficiency, cf. Sec-

tion 4.6.2. The mixture component voting approach computes retrieval

results efficiently at the cost of accuracy, cf. Section 4.6.3. However, ac-

curacy is mostly affected with respect to the ranking of the retrieval
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Mixture component voting

Re-ranking with Viterbi decoding

Figure 33: Two-stage integration. The figure shows patch-based similarity
scores in the logarithmic domain for mixture component voting
(top left) and re-ranking with the Viterbi algorithm (bottom left).
For this purpose, a local neighborhood of 5× 5 patches is consid-
ered. Patch similarity scores are indicated with blue to red colors.
The corresponding regions that have been retrieved after NMS are
show on the right. The soft NMS scheme has been applied for re-
trieving patches after mixture component voting (top right). After
re-ranking, the horizontal localization of the query word has been
improved (bottom right). It can be seen how the regions have dif-
ferent width which is due to decoding the most likely occurrence
of the query word in each patch.

list. Recall, i.e., the completeness of the retrieval list with respect to

relevant results, is not affected as much. Since both approaches are

built on the same patch-based framework, cf. Section 4.6.1, they can

directly be integrated in a two-stage method, also see Section 5.3.9.

The two-stage integration is achieved by obtaining potentially rel-

evant patches with mixture component voting and re-ranking these

patches with the Viterbi algorithm. In order to benefit from Viterbi

decoding the most, re-ranking is applied to the top-200 patches per

document and not only to the top results in the retrieval list, e.g., as

in [AGF+14b]. Re-ranking a high number of patches per document de-

creases the risk of suppressing relevant patches that did not obtain a

high similarity score in the first decoding stage. The number 200 is

a heuristic upper bound for the expected number of relevant patches

per document.

Since mixture component voting is sensitive to document image

regions that are partially similar to the query word, an extension

to patch-based NMS is proposed. This is required, since these high-

ranked patches might occur in close proximity to each other, cf. Fig-

ure 33, and only the patch with the best score will be considered. The

naive solution is to reduce the size of the maximum filter mask in
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Equation 57. However, this increases the number of patches that have

to be re-ranked considerably. In order to compromise between the

number of patches and re-ranking mostly all relevant patches, simi-

larity scores [ν̄qr] are smoothed with a discrete anisotropic Gaussian

filter, cf. [GSW03], before applying NMS. The key idea for this soft NMS

is that the filter mask for the Gaussian is larger than the mask for the

maximum filter. For this purpose, Equation 57 is extended with pa-

rameter ζ ∈ {1, 2} as shown in Equation 66. The size of the Gaussian

filter is obtained with ζ = 2 which corresponds to the spatial extent

of a patch. The size for the maximum filter is obtained with ζ = 1,

thus, patches are allowed to overlap up to 50% with a higher ranked

patch without being suppressed.

Gx =

⌊
pw − ow

rx

⌋
ζ− 1 , Gy =

⌊
ph − oh

ry

⌋
ζ− 1 (66)

The application of the Gaussian emphasizes document regions where

many patches have high similarity scores, while document image re-

gions with just few high-ranked patches are weighted down. The

number of local optima is reduced due to the large filter mask. Soft

NMS makes NMS filtering sensitive to the similarity score distribution

and allows to detect strong local optima in close proximity to each

other while weak local optima in close proximity to a strong local

optimum will be suppressed, cf. Table 22 and 23 in Section 5.3.9.

As long as the vertical positioning of patches that have been re-

trieved with mixture component voting is accurate, small displace-

ments in horizontal direction can be compensated with Viterbi-based

decoding. This is due to the compound structure of the query HMM

that allows for inferring the most likely occurrence of the query word

within the patch. Achieving accurate vertical localization is easier than

achieving accurate horizontal localization, because distinguishing ad-

jacent lines is easier than distinguishing adjacent words.

Further improvements can be achieved if more than just a single

locally optimal patch is re-ranked with the Viterbi algorithm. For this

purpose, the locally optimal patches are indicated as ones in a binary

Q×Rmatrix. Using a binary dilation operation, cf. [GW02, Sec. 9.2.1],

the ones can be extended into the local neighborhood according to

a structuring element. Afterwards, NMS is applied to the re-ranked

patches with ζ = 2 in order to only retrieve patches that do not over-

lap with each other. Provided that P patches are selected for re-rank-

ing with the Viterbi algorithm, the computational complexity for two-

stage decoding with BoF-HMMs is O(SM̂HMMM̂IFS + PFM̂Ŝ
2). Due to

soft NMS and depending on the size of the re-ranking mask, P ≪ LR

where LR is the number of patches in the patch-based framework, cf.

Section 4.6.2. Thus, with respect to computational efficiency the two-

stage decoding approach can be seen as a trade-off that makes highly

accurate decoding with the Viterbi algorithm feasible.
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In order to obtain document image regions for the retrieval list,

the indices for locally optimal patches in the matrix [νqr] are trans-

formed to image coordinates based on the patch sampling steps and

the image coordinate offsets. The offsets are defined by the patch

with minimum image coordinates on the document image. The patch

height is given by ph. The width is based on the BoF vector indices that

are associated with the states from the query word HMM in the com-

pound query model. Figure 33 visualizes the two-stage integration

from patches retrieved with mixture component voting to regions re-

trieved after re-ranking with Viterbi-based query word decoding.

It can be noted that Viterbi decoding produces very similar scores

for patches that horizontally overlap with document image regions

that are visually similar to the query. This is due to the scores that

represent the most likely occurrence of the query within the patch

and not the entire patch. Retrieval with NMS is only unambiguous if

the maximum patch score within the maximum filter mask is unique.

Redundant detections can be avoided by applying soft NMS to patch

score matrix [νqr]. In contrast to the application to matrix [ν̄qr], the

Gaussian filter is considerably smaller, i.e., the same size as the dila-

tion filter mask.

The meta parameters affecting the two-stage decoding process in-

clude the visual-word grid sampling step g, the number of mixture

components M in the BoF output model and the number of HMM

states S in the query model, cf. Section 5.3.9. The patch sampling rate

υ, introduced in Section 4.6.1, needs to be sufficiently high such that

there exist patches that are approximately vertically centered over

the words in the document image. In horizontal direction the sam-

pling rate is not as important since the location of the query word

within the patch is inferred with patch-based Viterbi decoding. For

this purpose, the patch width is extended according to ψ such that

also larger occurrences of the query word can be detected, cf. Sec-

tion 5.3.8. The probability threshold ǫlow is required for keeping rep-

resentations sparse, thus, avoiding very small probabilities that affect

the computations only marginally. Threshold ǫfloor is mostly impor-

tant during Viterbi decoding. Otherwise, it is useful for visualizing

scores in the logarithmic domain. This way, users obtain a more de-

tailed impression of similarity in addition to the order of regions in

the retrieval list, cf. Figure 31 and also 33.

4.6.5 Region snapping

Setting the patch size implies an assumption about the size of words

that are relevant to the query. While word spotting is most accurate

if the assumption is valid, good generalization capabilities of the BoF

representations allow for detecting words that are smaller as well as

larger than the patch size. However, the localization of the relevant
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Text hypothesis selection Snapped region

Figure 34: Region snapping. The figure visualizes the refinement of regions
that are obtained after patch-based Viterbi decoding. Region
bounds are snapped to text hypothesis bounds for this purpose.
On the left, region p is shown in red. Text hypotheses that are
relevant for snapping are completely localized within the search
area with size (aw, ah), which is shown as a white overlay centered
around p. Each bound of region p is snapped to the correspond-
ing bound of a relevant text hypothesis. The bound selection is
based on a size similarity indicator and a proximity indicator.
For a visualization of the indicators, text hypothesis t is shown
in green. Size similarity is indicated by labeling width pw and
height ph of region p as well as width tw and height th of text hy-
pothesis t. Bound proximity is indicated by distance d between
the y-coordinates of the lower-right corners of p and t. It is im-
portant to note that the lower bound of p will only be snapped to
the lower bound of a relevant text hypothesis. On the right, the
result after region snapping is shown. The region fits the word
boundary tightly.

document image regions cannot be expected to be as accurate any-

more. Due to Viterbi-based decoding of the query word within the

patch, this is much more critical in vertical direction than in horizon-

tal direction. If the word spotting application requires regions that fit

the relevant words tightly, the regions obtained after Viterbi decoding

can be snapped to text hypotheses, cf. Section 4.2.1.

For this purpose, the region that should be refined will be denoted

as p in the following. Region p defines a search space in the docu-

ment image in order to obtain text hypotheses that are relevant for

snapping. Provided that pv is the width after Viterbi decoding and

ph is the patch height, the search space is a rectangular area centered

around p with width and height (aw, ah) as defined in Equation 67.

aw = pv + ηsize ph and ah = ph + ηsize ph (67)

Thus, the size of this search area is relative to the patch height scaled

by parameter ηsize ∈ R>0. In order to retrieve hypotheses fast, the

upper-left and lower-right corners of all text hypotheses are indexed

with respect to their (x, y) coordinates, cf. [ZE02]. For each coordi-

nate, the index contains a list of coordinate values sorted in ascend-

ing order. Search intervals for x and y coordinates are defined by the

upper-left and lower-right corners of the search area. Text hypothe-
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ses that have their upper-left or lower-right corners within the search

intervals for the corresponding coordinates are retrieved efficiently

with binary searches. Text hypotheses that are relevant for snapping

have all corner coordinates within the search intervals. Figure 34 (left)

shows region p that is to be snapped to text hypotheses. It is cen-

tered in the search area which is used to obtain text hypotheses for

snapping.

Each bound, i.e., left, right, top and bottom, of region p is snapped

to the corresponding bound of a relevant text hypothesis. Correspond-

ing means that, for example, the left bound of region p is only snapped

to a left bound of a text hypothesis. It is important to note that each

bound may be snapped to a bound of a different hypothesis. The

text hypothesis bounds are selected based on a size similarity indi-

cator and a bound proximity indicator. While the size indicators are

computed for relevant hypothesis, the proximity indicators are com-

puted for relevant hypothesis bounds. Both indicators have to be rep-

resented in the same value range such that they can be incorporated

in a single value measure.

Since text hypotheses are based on contrast, cf. Section 4.2.1, they

might represent arbitrary text components and also background clut-

ter. Therefore, text hypotheses that represent (parts of) the query

word should have a width that is similar to pv or a height that is sim-

ilar to ph or both. In order to measure size similarity, relative width

and height differences are recorded separately. Similarity values are

scaled differences between 0 and 1 such that the largest width differ-

ence and the largest height difference are represented by similarity

value 0. For each relevant text hypothesis a single size similarity indi-

cator is obtained as the maximum of the width and height similarity

values. The size similarity indicator will be denoted as ϕsize ∈ [0, 1].

Figure 34 (left) shows text hypothesis t. The size similarity criterion

is indicated by labeling width and height of region p and text hypoth-

esis t.

Proximity indicators are computed for each bound of region p with

respect to all corresponding bounds of relevant text hypotheses. The

four bounds are represented by the (x, y) coordinates of the upper-left

corner and the (x, y) coordinates of the lower-right corner. For each of

the four coordinates, the distances between the coordinate value for

region p and the values of corresponding coordinates for all relevant

text hypotheses are computed. The proximity indicators are scaled

distances such that the smallest distance has the largest proximity

value 1 and the largest distance is represented by 0. The proximity

indicator will be denoted as ϕprox ∈ [0, 1]. Figure 34 (left) indicates

distance d between the lower-right y-coordinates of region p and text

hypothesis t.

Based on size indicator ϕsize that is obtained for each relevant text

hypothesis and proximity indicator ϕprox that is obtained for each rel-



4.7 summary 119

evant hypothesis bound, a joint indicator is computed. The joint indi-

cator is used in order to select the text hypothesis bounds that the re-

gion bounds will be snapped to. For this purpose, the F-score between

ϕsize and ϕprox is considered. In order to parameterize the measure

with respect to the influence of the indicators, the generalized Fηweight
-

score, cf. [BR11, p. 328], is defined in Equation 68. For ηweight < 1,

meta parameter ηweight ∈ R>0 emphasizes ϕprox. For ηweight > 1, ηweight

emphasizes ϕsize, see Section 5.3.10.

Fηweight
= (1+ η2weight)

ϕproxϕsize

η2weightϕprox +ϕsize

(68)

Essentially, the Fηweight
-score is a generalized form of the harmonic

mean between two numbers. In the given scenario the measure is

useful because it is dominated by the smaller of the two values. This

is due to the product in the numerator of Equation 68. Thus, text

hypothesis bounds are preferred that have high indicator values for

proximity and size. After a hypothesis bound has been selected for

each region bound, region p can be refined to new coordinates as

shown for the occurrence of query word place in Figure 34 (right).

The meta parameter ηsize, which controls the size (aw, ah) of the

search area around p, and the meta parameter ηweight have to be ad-

justed according to the expected size variability of the words in the

document. If the size variability is large, ηsize has to be adjusted ac-

cording to the maximally expected deviation, e.g., ηsize = 1 covers

word occurrences that are three times as high as the patch height, see

Equation 67. Furthermore, size indicator ϕsize becomes more impor-

tant with increasing values of ηsize. This is due to the increasing influ-

ence of background clutter and text components that are not part of

the query word. The influence of ϕsize can be adjusted with ηweight.

4.7 summary

Segmentation-free word spotting with BoF-HMMs allows for support-

ing the analysis of document images in order to explore a docu-

ment collection. This is achieved by combining different information

sources that are available during the exploration process.

Starting with the document images, BoF representations are adapted

to the document collection in an unsupervised manner. These pow-

erful representations allow for high word spotting accuracy even if

only a single annotated example is available in the query-by-exam-

ple scenario. Given an exemplary occurrence of the query word, the

document region is represented with a sequence of BoF vectors. Simi-

larity is based on an optimal alignment of the sequence with the com-

pound query model. This is particularly important for coping with

typical writing variabilities. The BoF-HMM can be seen as a dynamic

probabilistic extension of a spatial pyramid.
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Different approaches for modeling BoF representations in the sto-

chastic HMM process have been presented:

• The vMF mixture model is suitable for representing directional

data. It is relevant due to the wide use of cosine similarity with

BoF representations.

• The EDCM mixture model is suitable for representing sparse and

high dimensional BoW vectors and has been used for document

clustering and classification. It is relevant due to the similar

characteristics of BoF vectors in the given scenario.

• The visual words mixture model interprets BoF vectors as distri-

butions over visual words. Therefore, it models the occurrence

of individual visual words instead of the occurrence of a BoF

vector. It is relevant because the relaxed modeling allows for

very good generalization capabilities for word spotting.

In addition to the visual appearance of the query word, its size is

used for defining the patch size in the patch-based framework. Al-

though size is an important indicator for spotting words, word size

variabilities cannot be handled well if the patch size is fixed for a

query. Extending the search to different patch sizes per query quickly

becomes infeasible due to the large number of patches [RAT+15a].

By integrating the patch-based framework with text hypotheses,

the presented approach combines advantages of word spotting meth-

ods that are either based on patches, line segments or word regions.

For this purpose, text hypotheses are used in order to obtain line

hypotheses and whitespace hypotheses in a bottom-up manner. By

using ERs for text detection, the dependence on a single binarization

threshold is avoided. This improves the robustness for processing

document images with degradations such as varying contrast. Line

region representations can be precomputed since they are indepen-

dent of the query. The number of possible line regions is considerably

lower than the number of possible patches. If patches are decoded

within the line hypotheses, the search can be constrained to docu-

ment image regions that contain text hypotheses with a height that

is similar to the height of the query. Even more importantly, the ap-

proach is related to HMM-based word spotting on line level. Instead of

modelling the occurrence of the query in a line, the approach models

the occurrence of the query in a patch. For this purpose, the context

is represented with a background HMM that represents the statisti-

cal feature distribution as well as whitespace HMMs. The patch width

is adapted to the potential width of the query. The patch similarity

score is given by the geometric mean of the partial path probability

that has been aligned with the query word model. This way, word

size variabilities can be handled while the scores are specific to the

spatial patch locations at the same time. If the localization of the po-

tentially relevant words needs to be refined further, regions can be
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snapped to text hypotheses. For these reasons, the presented method

has advantageous properties of:

• patch-based approaches, because it uses size information and

refines patches based on similarity with the query,

• line-based approaches, because it decodes the most likely occur-

rence of the query within a patch with a sequence model,

• approaches using word regions, because text, line and whites-

pace hypotheses are obtained independently of the query.

Furthermore, any annotated document regions that become avail-

able during the exploration of a document collection, can directly

be incorporated within model estimation. In this regard, HMMs offer

the advantage that regions do not have to be annotated at the level

of the elementary modeling units. Therefore, the extension to query-

by-string is possible with standard approaches while the decoding

framework remains the same as for query-by-example word spotting.

This allows for an easy transition from query-by-example to query-by-

string without changing the word spotting method in general. How-

ever, using the same decoding framework for query-by-example and

query-by-string requires that the characteristics of the document col-

lection are similar in both cases. This refers to the visual variability in

the appearance of text.

• The use of a patch-based framework restricts the search to a

single patch height.

• The output probability represents the visual appearance of the

document image regions and not a query posterior probability.

• The output model is not optimized jointly with the HMM.

These aspects cannot be considered as limitations if only a single word

image is available for model estimation. However, due to these as-

pects, the writing style variability that BoF-HMMs can cope with will

be limited with respect to the writing style variability that might

be covered in a large dataset of annotated training samples. There-

fore, query-by-string word spotting is intended as an extension to the

query-by-example scenario where no annotated training material is

available besides the query word image.

Finally, computational efficiency is an aspect that all segmentation-

free word spotting methods are concerned with. Standard indexing

approaches and approximate similarity measures are not directly ap-

plicable to HMMs. For HMM-based word spotting, graph representa-

tions have been used in order to retrieve words from precomputed

n-best recognition results fast. Mixture component voting is rather

inspired from feature matching approaches that are efficient due to

indexing with inverted indices. Since BoF-HMMs are semi-continuous
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Table 3: BoF-HMM characteristics

Characteristic BoF-HMM

Output model BoF mixture model

Retrieval Partial output probability

Score normalization Query length

Segmentation None

Hypotheses
Line hypotheses, patches and
mixture component voting

Efficiency
Mixture component voting
based on IFS

Selection NMS of patch similarity scores

Refinement
Patch-based alignment and
region snapping

(SC-HMMs), the output model is independent of the query model and

can be precomputed for all frames in all line hypotheses. Frames are

represented by mixture components. By indexing the frames accord-

ing to mixture component indices, the frames that are relevant for the

query model can be retrieved rapidly through an IFS. Mixture com-

ponent voting considers the sequential state structure of the query

word HMM. Matching components vote with respect to a reference

point which is defined with respect to the query word model. The

accumulator cells in the voting space represent sums for the evalu-

ation of the mixture model under the voting scheme. This way, the

method is sensitive to document regions that are visually similar to

the query, allowing for high recall at the cost of reduced precision.

This is compensated by re-ranking patches with the computationally

more expensive Viterbi decoding.

Table 3 summarizes the important characteristics of the proposed

method. This also includes the aspects that have been discussed with

respect to segmentation-free word spotting (Table 1) and HMM-based

word spotting (Table 2) in Section 3.4. The comparison of the three

tables highlights the novelties of word spotting with BoF-HMMs:

• No other HMM-based word spotting method has been applied

on document-level without a segmentation on word-level or on

line-level.

• The study of the BoF output models for SC-HMMs is new.

• Decoding the most likely occurrence of the query within a patch

is new.

• The mixture component voting algorithm for SC-HMMs is new.

That these novelties also lead to outstanding word spotting perfor-

mance will be evaluated in Chapter 5.
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Segmentation-free word spotting with BoF-HMMs is evaluated on dif-

ferent word spotting benchmarks in order to analyze the components

of the method in detail. Furthermore, the method’s performance is

compared to the performance of related methods from the literature.

For this purpose, the following sections present:

• performance measures for the quantitative analysis of word spot-

ting methods which will be used in the word spotting bench-

marks (Section 5.1),

• benchmark datasets of handwritten historic document images

including evaluation protocols for query-by-example and query-

by-string word spotting (Section 5.2),

• a detailed optimization of the meta parameters that shows how

the different components of the method affect retrieval perfor-

mance and computational efficiency (Section 5.3),

• a comparison to a baseline method which uses a temporal adap-

tation of a spatial pyramid in a patch-based word spotting frame-

work. A comparison to the related methods from the literature

shows that the proposed method outperforms all other methods

by a large margin in the query-by-example scenario where no

annotated training material is available besides the query word

image (Section 5.4).

Retrieval efficiency is evaluated in terms of computational complexity

and memory requirements. Runtime measurements are performed

in order to demonstrate the applicability in practice. For this pur-

pose, the word spotting method is implemented in an integrated soft-

ware framework in Python. Runtime critical components are imple-

mented in C++. The most important software libraries include the

HMM toolkit ESMERALDA [FP08] and the computer vision toolkit

VLFeat [VF08].

In order to demonstrate the applicability of the method to different

datasets, query-by-example results are reported for five benchmarks

that have been used in the word spotting community before. Query-

by-string performance is reported for three benchmarks that are de-

fined on datasets which are used in the query-by-example scenario as

well. Furthermore, the applicability of the method to different scripts

is demonstrated on one out of these three datasets. The documents in

this dataset are written in German Kurrent script while the documents

from all other datasets are written in English Latin script.

123
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5.1 performance measures

The evaluation of segmentation-free word spotting with BoF-HMMs,

see Chapter 4, is based on a qualitative and a quantitative analysis.

The qualitative analysis gives an impression of the performance by

considering individual example cases. The quantitative analysis mea-

sures the average case performance by considering a larger number of

examples. Since the impression that is received in the qualitative anal-

ysis is strongly dependent on the selection of the example cases, a

comparison between different systems, i.e., different methods or dif-

ferent meta parameterizations of the same method, should be made

with quantitative performance measures. In order to draw conclusions

that lead to optimal performance in practice, it is required that the di-

versity of the examples in the quantitative analysis is representative for

the real world scenario. For the quantitative evaluation of BoF-HMMs

for segmentation-free word spotting, a single value measure is used

(Section 5.1.1). Whether the performance difference, that is observed

between different method parameterizations, can be considered as

significant is measured with a statistical test (Section 5.1.2).

5.1.1 Mean average precision

The quantitative analysis of a word spotting method typically mea-

sures if all occurrences of the query word are present in the retrieval

list as well as the order of the relevant detections in the list. The most

common measure which incorporates both of these criteria into a sin-

gle value is the average precision. The mean average precision (mAP)

is obtained as the mean of the average precision values for a set of

queries, cf. [BR11, Sec. 4.3.2]. For this purpose, the set of queries and

an annotated set of document images is required. For an evaluation

on word-level, the annotations consist of bounding boxes and labels

which indicate each occurrence of a word from the query set, cf. Sec-

tion 5.2.

Given a query, a segmentation-free word spotting system automat-

ically detects potentially relevant document regions and ranks these

regions in a retrieval list. In order to measure the performance, the

relevance of these regions must be determined. In the segmentation-

free scenario, an element is considered as relevant if the detected doc-

ument image region overlaps with a relevant bounding box from the

dataset annotations by more than a given threshold, see Figure 35. A

bounding box annotation is relevant to the query if it is labeled with

the query word.

For this purpose, the retrieval list with K elements is given as an

answer set Φ = {Φk | 0 6 k < K} where Φk denotes the set of im-

age pixels of the document region at retrieval list index k. In analogy,

the set of R document image regions that are relevant to the corre-
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Figure 35: Intersection over union (IoU). The detected region is shown with
a red frame and a region from the dataset annotations is shown
with a black frame. The intersection of the regions is shown in
green. The union of the regions includes the areas shown in green,
red and gray. The IoU is the fraction of the sizes of the intersection
area and the union area. A detection from the retrieval list is
considered as relevant with respect to the query if the IoU exceeds
a given threshold.

sponding query for all document images in the dataset is given by

Ψ = {Ψr | 0 6 r < R}. Thus, according to the dataset annotations, R

is the total number of relevant regions for the query in the dataset.

The relevance of the detected document image region at retrieval list

index k can then be expressed by function ϕ : {0, . . . ,K− 1}→ {0, 1} as

defined in Equation 69. The overlap threshold ι is based on the inter-

section over union (IoU) of two document image regions, cf. Figure 35,

typically ι = 0.5, cf. e.g., [PZG+16; GSG+17].

ϕ(k) =







1 : ∃Ψr ∈ Ψ :
|Φk∩Ψr|

|Φk∪Ψr|
> ι

0 : otherwise
(69)

Based on the relevance function ϕ(k) the average precision can

be defined. The average precision corresponds to the area under the

precision-recall curve. Precision is the proportion of relevant and non-

relevant elements in the retrieval list. Recall is the proportion of rel-

evant elements in the retrieval list and the total number of relevant

elements in the dataset. The key idea for evaluating the ranking of

relevant elements in the retrieval list is to consider the precision for

different recall levels. This incorporates the ranking since different re-

call levels are obtained for different lengths of the retrieval list. For

this purpose, Equation 70 defines precision π : {1, . . . ,K} → [0, 1] and

recall ρ : {1, . . . ,K} → [0, 1] as functions of the number of top-n ele-

ments of the retrieval list, cf. [PTV15b].

π(n) =

∑n−1
k=0 ϕ(k)

n
, ρ(n) =

∑n−1
k=0 ϕ(k)

R
(70)

It can be noted that for increasing lengths n of the retrieval list, ρ(n)

changes with every additional relevant element. Since the average pre-

cision (AP) averages precision values at different recall levels, Equa-

tion 71 defines AP such that the precision at list length n = k+ 1 is

incorporated at every relevant element with index k, thus, whenever
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the recall changes. By normalizing the sum with R, i.e., with the total

number of relevant elements in the dataset, all relevant elements that

are not included in the retrieval list contribute to the average with pre-

cision zero. In Equation 71, it should be noted that π(n) is a function

of the list length and ϕ(k) is a function of the list index.

AP =
1

R

K−1
∑

k=0

π(k+ 1)ϕ(k) (71)

Thus, average precision measures the ranking and the completeness of

the retrieval list with respect to relevant occurrences of the query

word. Both criteria are important for using word spotting in practice.

Within an evaluation over a larger set of queries, the average preci-

sion values APq obtained for each query q are averaged according to

Equation 72 resulting in mean average precision (mAP).

mAP =
1

Q

Q−1
∑

q=0

APq (72)

In addition to evaluating word spotting performance with a single

value measure, the interpolated precision-recall curve, cf. [BR11, Sec.

4.3.1], allows for analyzing the precision at different recall levels specif-

ically. The interpolation is required in order to compute a single preci-

sion-recall curve for a larger set of queries. The interpolated precision

π : {0.0, 0.1, . . . , 1.0} → [0, 1] allows for obtaining precision values at

11 standardized recall levels, cf. [BR11, p. 137], which are specified by

the domain of function π(l). The maximum interpolation over all larger

recall values, as shown in Equation 73, is useful in order to allow for

an interpolated recall level 0.0 [BR11, p. 136]. The mean interpolated

precision-recall curve mIP(l) over all queries is obtained in analogy to

Equation 72.

mIP(l) =
1

Q

Q−1
∑

q=0

πq(l), π(l) = max
m:l6ρ(m)

π(m) (73)

The maximum interpolation can also be used for defining average

interpolated precision (AIP), cf. [PTV15b]. AIP can be seen as an approx-

imation of the area under the interpolated precision-recall curve. For

this purpose, function π̃ : {1, . . . ,K}→ [0, 1] is defined in Equation 74.

In contrast to function π(l), the function domain is based on the length

of the retrieval list and not on the recall level. The recall levels result

from the retrieval list directly, as for AP in Equation 71. In analogy to

the mAP, the mAPip is defined in Equation 75.

AIP =
1

R

K−1
∑

k=0

π̃(k+ 1)ϕ(k), π̃(n) = max
m:ρ(n)6ρ(m)

π(m) (74)

mAPip =
1

Q

Q−1
∑

q=0

AIPq (75)
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In the following, mAP will be the main performance measure. The

mIP curve will be used in order to analyze precision at different re-

call levels. This is useful for distinguishing the performance at the

beginning or at the end of the retrieval list. Finally, mAPip is required

for comparing performance with other methods from the literature.

It should be noted that the difference between mAP and mAPip is typi-

cally small and mAP 6 mAPip.

5.1.2 Permutation test

For a comparison of two systems, the mAP is evaluated for both sys-

tems on the same benchmark, i.e., using the same set of queries, the

same document images and the same evaluation protocol, cf. Sec-

tion 5.2. However, since the mAP is an average case performance mea-

sure, it is unclear whether the difference in the average case is due

to large differences in the performance of few queries or if the dif-

ferences can be observed for the majority of the queries. In the latter

case, the difference is more likely to be due to the characteristics of

the systems rather than due to the characteristics of the benchmark.

In order to support this interpretation of the results, significance tests

help with a statistical analysis of the differences.

The permutation test, cf. [ET98, Chap. 15], is a significance test

which is suitable for the analysis of retrieval systems [SAC07] and

has also been used for analyzing word spotting performance [SF18].

In [SAC07], the permutation test was compared to different signifi-

cance tests that can be used for measuring the mAP difference of two

information retrieval systems. Among these tests is the paired t-test

which is generally common for testing the difference of means, cf.

[Coh95, Sec. 4.4]. The permutation test and the paired t-test showed

similar performance in the experiments in [SAC07]. Nevertheless, the

permutation test is preferred since it is non-parametric and avoids

the assumptions that come along with parametric models, such as

the normal distribution which is involved in the t-test. This makes

the permutation test more robust with respect to outliers, especially

if the number of samples is small [SAC07], also cf. [Coh95, Sec. 5.5].

According to the motivation for applying a significance test in the

following, such a scenario can be considered as very important.

The permutation test requires a test statistic, a null hypothesis and

a significance level. Provided that the performance measure is mAP,

the test statistic for a two-sided test is given by the absolute difference

of the means of the average precision values obtained for the two

word spotting systems [SAC07], as defined in Equation 77.

The null hypothesis is that the systems are identical. No other as-

sumptions are required, e.g., about the distribution of the test statistic.

If the null hypothesis is true, it is assumed that the absolute difference

of the means is not representative for the typical absolute difference
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of the average precisions of the queries. In practice this means that

the two word spotting systems do not behave significantly differently

for the benchmark considered. Consequently, the difference in mAP

is not suitable for drawing any definitive conclusions with respect to

the performances on the benchmark. For example, whether to choose

one meta parameter configuration over the other.

The significance level is directly given as the probability for obtain-

ing an absolute mAP difference that is greater than or equal to the

observed absolute mAP difference under the null hypothesis. Intuitively,

the test estimates how likely the absolute difference between the mAP

values is under the assumption that the two systems are identical.

This probability is known as the p-value. If the p-value falls below (or

is equal to) a threshold, typically α = 0.05, the null hypothesis is re-

jected and it is assumed that the benchmark results differ significantly.

The smaller the value of α the less likely are false positives where the

null hypothesis is rejected although it is actually true.

In order to test the null hypothesis, it is assumed that all 2Q average

precision values that have been obtained for Q queries and two word

spotting systems, could also have been computed by a single system

[SAC07]. For this purpose, the values of the two systems are written

in a vector a ∈ R2Q where AP0q denotes an average precision value

of the first system and AP1q denotes an average precision value of the

second system for q ∈ {0, . . . ,Q− 1} as shown in Equation 76.

a = (AP00, . . . , AP0,Q−1, AP10, . . . , AP1,Q−1)
⊤ (76)

Based on vector a, the absolute mAP difference that has originally

been observed between the two systems can be computed with func-

tion dmAP : R2Q → R>0, see Equation 77. This is the test statistic.

dmAP(a) =

∣∣∣∣∣∣
1

Q

Q−1
∑

r=0

ar −
1

Q

2Q−1
∑

s=Q

as

∣∣∣∣∣∣
(77)

Under the null hypothesis and since the mean of the average preci-

sions is considered in the test statistic, the values in the first half of

vector a can arbitrarily be exchanged with the values in the second

half of vector a [ET98, Sec. 15.2]. If the absolute mAP differences ob-

tained for the permuted versions of a will typically be smaller than

the absolute difference for the original vector a, this is an indication

that the majority of the query results for the two systems are typically

different to each other. Exchanging numbers from two sequences with

very different means will make the means more similar. Furthermore,

the larger the absolute mAP difference for the original vector a, the

less likely it is to obtain even lager absolute mAP differences if values

are exchanged between the sequences.

Statistically this is modelled with the help of set P which contains(
2Q
Q

)
permutations of vector a [ET98, p. 208]. The number of permu-
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tations considered is the number of possibilities for drawing Q ele-

ments from a without replacement while the order of the elements in

a is disregarded. According to the null hypothesis, all permutations

are equally likely [SAC07]. Consequently, the p-value can be com-

puted as the proportion of permutations aperm ∈ P with an absolute

mAP difference dmAP(aperm) which is greater than or equal to the orig-

inal absolute mAP difference and the total number of permutations

[ET98, p. 208], as shown in Equation 78.

p =

∣∣{aperm ∈ P |dmAP(a) 6 dmAP(aperm)
}∣∣

∣∣P
∣∣ (78)

Due to the large size of P, the exact p-value will be approximated in

practice. For this purpose, only a random subset P ′ ⊂ P is consid-

ered. The computational effort and the accuracy of the estimate p̂ can

be controlled through the size of the subset. A measure for the accu-

racy is based on the variance of the estimator [ET98, pp. 208–210].

Provided that B =
∣∣P ′
∣∣ denotes the size of the subset and consid-

ering the estimator p̂ as a random variable, B · p̂ follows a binomial

distribution with B independent experiments and success probability

p, [ET98, p. 208]. In this regard, it is important to note that the success

probability of the binomial distribution is the exact p-value. This can

be seen when substituting P ′ for P in order to obtain the definition

of p̂ in Equation 78. The size of the set in the numerator still depends

on the exact success probability since the success for the elements in

P only depends on the original absolute mAP difference dmAP(a) and

not on the other permutations. Based on the definition of the expected

value E
[
Bp̂
]
= Bp and the variance Var

[
Bp̂
]
= Bp(1− p) of the bino-

mial distribution, cf. [Bis06, Sec. 2.1], the variance of the estimator

Var
[
p̂
]

is derived in Equation 79 and 80.

Var
[
Bp̂
]
= E

[
(Bp̂)2

]
− E
[
Bp̂
]2

= B2E
[
p̂2
]
−
(
BE
[
p̂
])2

= B2Var
[
p̂
] (79)

⇔ Var
[
p̂
]
=

Var
[
Bp̂
]

B2
(80)

Equation 79 follows from the properties of the expected value, cf.

[DHS00, Sec. A.4.2]. After substituting the definition of the variance

for a binomial distribution in Equation 80, the number of permuta-

tions which is required for a given accuracy of the estimated p-value

is obtained in Equation 81.

Var
[
p̂
]
=
p(1− p)

B
⇔ B =

p(1− p)

Var
[
p̂
] (81)

Since the exact p-value is unknown in practice, a worst case estimate

for the number of permutations is computed for p = 0.5. Following

[SF18], a highly accurate estimator with a variance of Var
[
p̂
]
6 10−6,

or a standard deviation of σp̂ 6 0.001, is obtained for B = 250, 000

random permutations.
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(a) G. Washington (gw20) (b) Bentham 2014 (bt50) (c) Bentham 2015 (bt70)

(d) Konzilsprotokolle

(kp20)

(e) Botany (bo20)

Figure 36: Benchmark datasets. The George Washington dataset (a) is widely
used in the word spotting community. The visual variability
in the 20 document images in the benchmark is limited. Two
document collections of the Bentham dataset, (b) and (c), have
been considered in the word spotting competitions at the ICFHR
2014 and ICDAR 2015. Both collections exhibit large word size
and writing style variabilities. The 2014 benchmark contains 50

pages and the 2015 benchmark contains 70 pages. The Konzilspro-
tokolle (d) and Botany (e) datasets have been used for the word
spotting competition at the ICFHR 2016. Each benchmark con-
tains 20 pages. While the writing style in the Konzilsprotokolle
benchmark is rather homogeneous, the document images from
the Botany benchmark contain the largest writing style variabili-
ties among the benchmarks considered.

5.2 benchmark datasets

Word spotting benchmarks are defined by a set of document images, a

set of annotated document regions including occurrences of the query

words and an evaluation protocol. The evaluation protocol describes

which query words are searched on which document images and how

the quantitative performance is measured, cf. Section 5.1.

The targeted scenario for the word spotting method presented in

Chapter 4 is the exploration of a document collection where no or

only little annotated training material is available. This is a typical

scenario for historians that start to explore a document collection. In

order to simulate the exploration process, a set of document images

for searching query words is defined. The occurrence of each query

word is annotated for the quantitative evaluation. These queries are

given by a set of query word images for the query-by-example sce-

nario. The query-by-string scenario requires a set of training annota-

tions and a list of query strings. The characteristics of the document
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images and the selection of queries and annotations is crucial for the

word spotting performance that will be measured. For this reason, a

quantitative performance measure can only be interpreted in compar-

ison to other methods, or to parameterizations of the same method,

that have been evaluated on the same benchmark. Thus, benchmark

datasets should have been considered in the word spotting literature

before. The benchmarks that will be presented in Section 5.2.1 to 5.2.3

have been selected according to both criteria, i.e., relevance with re-

spect to the targeted scenario and utilization in the word spotting

community. Figure 36 shows an overview of the five datasets.

5.2.1 George Washington letters

The George Washington dataset is the most widely used benchmark

dataset for evaluating word spotting methods, cf. [GSG+17]. The doc-

ument images originate from the George Washington papers collection

at the Library of Congress, Washington DC, USA [Was54]. The entire

collection contains over 65,000 documents and is divided into 9 se-

ries. The document images in the word spotting benchmark come

from Series 2, Letterbooks 1754 to 1799: Letterbook 1. The letterbooks

contain copies of Washington’s mail and have been written by George

Washington and his secretaries in the 18th century. Letterbook 1 is not

an original but a later re-copy of Washington’s correspondences, cf.

[SF18]. Thus, the writing style in the document images from the

benchmark is very homogeneous. Small document image sections

from this dataset have been used throughout the previous chapters.

A larger document section is shown in Figure 36a.

In the context of word spotting, the George Washington letters have

been described in [KLP01] for the first time. Twenty document images

along with 4,860 bounding box annotations on word level have been

used in [LRM04] and are available at the University of Massachusetts1.

The protocol that will be used for evaluating segmentation-free query-

by-example word spotting without annotated training material has

been described in [RAT+11]. All annotations are converted to lower-

case characters and all punctuation marks are removed. Each of the

4,860 word image regions is used as a query and all occurrences of

the query are searched on all 20 pages. Therefore, the query image

region will typically be the first element in the retrieval list.

For evaluating the query-by-string word spotting performance on

the George Washington dataset, a cross validation is performed in

analogy to [ART+13]. For this purpose, the 20 document images are

split in four cross-validation folds of five pages such that the first fold

contains the pages one to five, the second fold contains the pages six

to ten and so on. For each fold, the query set is given by the words

1 http://ciir.cs.umass.edu/downloads/old/data_sets.html, accessed on July 13,

2019.

http://ciir.cs.umass.edu/downloads/old/data_sets.html
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Figure 37: Word frequencies by length in the George Washington dataset.
The histogram is computed over all 4,860 word instances in the
dataset. The word frequencies correspond to the query word fre-
quencies in the query-by-example scenario.

that are occurring at least once in any of the five pages in the fold.

This results in 435, 424, 521 and 431 query words for the four folds.

The lexicon over all 20 pages contains 1,124 words. The 15 pages that

are not among the five pages in a fold constitute the training set of

the fold. The training sets for the four folds contain 3,639, 3,677, 3,568

and 3,696 word-level annotations. In the segmentation-free scenario

considered in the following, the five document images in a fold are

searched for the occurrences of the query words. The quantitative

results are given as the weighted average of the results obtained for

each fold where the weight is the relative number of queries per fold.

A variant of this cross-validation is considered in order to analyze

the required amount of training annotations. For this purpose, only

five pages are used in a training set and the remaining 15 pages are

used for retrieval. In analogy to the 15-5 cross-validation, this 5-15

cross-validation uses 1,221, 1,183, 1,292 and 1,164 word-level training

annotations per fold. The numbers of query words per fold are 965,

961, 846 and 965.

In the query-by-example scenario and in the query-by-string sce-

nario, a detection is considered as relevant if it overlaps with a bound-

ing box which is annotated with the query word by more than 50%

IoU (ι = 0.5). The main performance measure is mAP, cf. Section 5.1.1.
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The major challenges for segmentation-free word spotting on the

George Washington benchmark are considerable contrast variations

of the pen stroke, cf. Figure 36a, and short words in the query sets.

The contrast variations are most problematic for methods that rely

on binarization. The short query words are a challenge in general.

The histogram in Figure 37 shows that over 60% of the words have

four characters or less. Particularly in the segmentation-free scenario,

spotting short words is more difficult than spotting longer words due

to the reduced specificity of the query word model. The shorter the

word, the more likely is the occurrence of the word within a longer

word. Such occurrences lead to image regions that are visually sim-

ilar to the query. At the same time these regions are irrelevant to

the query according to the evaluation protocol. Short words are also

harder to detect according to the relevance criterion, cf. Equation 69.

Since IoU is a relative measure, the detection overlap tolerance in abso-

lute image pixels shrinks with the size of the word. In this regard, it

is also problematic that the bounding box annotations in the George

Washington benchmark are inaccurate. Particularly the small words

are arbitrarily padded with document image background.

It can be questioned whether the use of a larger number of very

short query words such as a, in, the, them etc., so-called stop words,

simulates a realistic word spotting scenario. However, it avoids an

arbitrary query word selection and leads to a large number of queries

in total. The George Washington benchmark will be denoted as gw20.

5.2.2 Jeremy Bentham manuscripts

The Bentham manuscripts have been used in the word spotting com-

petitions [PZG+14; PTV15b] at the Int. Conference on Frontiers in Hand-

writing Recognition (ICFHR) 2014 and the Int. Conference on Document

Analysis and Recognition (ICDAR) 2015. The document images origi-

nate from the University College London, UK [LM81]. The manuscripts

contain works on law and moral philosophy and have been analyzed

in the context of the project Transcribe Bentham where over 19,000 doc-

ument images have been transcribed [CGS+18]. The documents con-

sidered in the competitions were written by Jeremy Bentham and his

secretaries during a period of 60 years at the end of the 18th and the

beginning of the 19th century, cf. [PZG+14]. The writing style varies

considerably. However, the writing style does not change from page

to page. Instead, larger groups of pages can be identified where the

writing style within the groups is rather homogeneous. Hence, both

benchmarks can be considered as challenging but suitable for the

query-by-example scenario where no training annotations are avail-

able. Figure 36b and Figure 36c show sections of document images

used in the 2014 and 2015 competitions. The word images in Figure 38

give an impression of the writing style variability.
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(a) Bentham 2014 (bt50) (b) Bentham 2015 (bt70)

Figure 38: Query word images from the Bentham manuscripts. The word
images give an impression of the writing style variability for
the words character (a) and Forgery (b). The examples have been
used in the 2014 and 2015 word spotting competitions [PZG+14;
PTV15b].

It is important to note that the results which are reported in the

competitions are based on non-standard relevance criteria in the seg-

mentation-free scenario in order to emphasize the detection qualities

of the methods. However, in [ZPG17] the corresponding results have

been re-evaluated2 with the standard IoU measure, cf. Equation 69,

where the IoU threshold is ι = 0.5 and the main performance mea-

sure is mAP. For this reason, the following evaluations for the Ben-

tham 2014 dataset in Section 5.3 will use the evaluation protocol

from [ZPG17]. A comparison to the original Bentham 2014 competi-

tion results [PZG+14] as well as the original Bentham 2015 competi-

tion [PTV15b] results can be found in Section 5.4.4 along with the

comparisons to the corresponding results from [ZPG17].

The segmentation-free query-by-example benchmark that was de-

fined for the 2014 competition3 contains 50 document images and

290 query word images. All query words have at least seven charac-

ters and appear at least five times in the dataset [PZG+14]. Since the

query word images have been cropped from the 50 document images,

the query word region can be detected and will typically be the first

result in the retrieval list. Three query word images that show the

word character can be seen in Figure 38a.

The segmentation-free query-by-example benchmark that was de-

fined for the 2015 competition4 contains 70 document images and

1,421 query word images. Figure 38b visualizes examples for the

query word Forgery. The 1,421 query word images show 234 differ-

ent query words. These words have six to 15 characters and appear at

2 The re-evaluation was possible because the authors of [ZPG17] were involved in the

organization of both competitions and had access to the original submissions.
3 http://vc.ee.duth.gr/H-KWS2014/, accessed on July 13, 2019.
4 http://transcriptorium.eu/~icdar15kws/, accessed on July 13, 2019.

http://vc.ee.duth.gr/H-KWS2014/
http://transcriptorium.eu/~icdar15kws/
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least four times in the document images. Appearances of the query

words with upper and lower case characters are not distinguished

in the benchmark annotations. It is important to note that the query

word images have been extracted from a dedicated set of document

images that are not included in the 70 document images. Further

query set statistics can be found in [PTV15b].

The major challenges for segmentation-free query-by-example word

spotting in the Bentham manuscripts include writing style variabili-

ties as well as word size variabilities. The generalization across dif-

ferent writing styles based on a single example of the query word

is particularly difficult. The word size variabilities pose a challenge

with respect to the IoU relevance criterion which requires highly accu-

rate detections. This is especially problematic for patch-based meth-

ods that rely on the size of the query word image. The Bentham 2014

benchmark will be denoted as bt50 and the Bentham 2015 benchmark

will be denoted as bt70.

5.2.3 Konzilsprotokolle and Botany

The Konzilsprotokolle and Botany benchmarks have been used in the

word spotting competition [PZG+16] at the Int. Conference on Frontiers

in Handwriting Recognition (ICFHR) 2016. Both benchmarks have been

prepared in the European project READ 5 and will be used in order

to evaluate segmentation-free query-by-example and query-by-string

word spotting.

The Konzilsprotokolle collection contains around 18,000 documents

and is archived at the University of Greifswald 6, Germany. The docu-

ment images contain notes of formal meetings that have been written

in the 18th century. In contrast to all other datasets presented in Sec-

tion 5.2, the script is German Kurrent instead of English Latin. The

writing style in the document images of the benchmark can be con-

sidered as rather homogeneous. Thus, the benchmark is suitable for

the targeted scenario where no or only limited amounts of annotated

training samples are available. Figure 36d shows a section of a docu-

ment image from the Konzilsprotokolle benchmark. The word images

in Figure 39a give an impression of the writing style variability.

The Botany in British India collection is hosted at the British Library 7,

London, UK. The collection contains manuscripts on various botani-

cal topics that have been written in the 19th century. The characteris-

tics of the documents are very diverse. The document images in the

benchmark contain several different writing styles and the script has

a very unique visual appearance in most of the document images. For

5 http://read.transkribus.eu, accessed on July 13, 2019.
6 http://www.digitale-bibliothek-mv.de/viewer/, accessed on July 13, 2019.
7 https://www.bl.uk/collection-guides/botany-in-british-india, accessed on

July 13, 2019.

http://read.transkribus.eu
http://www.digitale-bibliothek-mv.de/viewer/
https://www.bl.uk/collection-guides/botany-in-british-india
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(a) Konzilsprotokolle (kp20) (b) Botany (bo20)

Figure 39: Query word images from the Konzilsprotokolle and Botany
datasets. The examples give an impression of the writing style
variability for the words Herrn (a) and plants (b). Both datasets
have been used in the 2016 word spotting competition [PZG+16].

these reasons, the dataset characteristics are unsuitable for the targeted

scenario where the annotated sample data is scarce. The benchmark is

included in order to demonstrate the limitations of the method that

has been proposed in Chapter 4. Furthermore, the consideration of

the benchmark allows for a comparison with the same methods that

have been evaluated on the Konzilsprotokolle benchmark. A section

of a document image from the Botany benchmark is shown in Fig-

ure 36e. The word images in Figure 39b illustrate the large word size

variability and writing style variability.

The main objective of the 2016 competition8 is the evaluation of

word spotting methods on different scripts and an analysis with re-

spect to the required amounts of training data [PZG+16]. For this pur-

pose, the competition defines benchmarks on the two collections such

that each benchmark dataset contains 20 document images. In the

segmentation-free scenario, the competition reports results for two

different annotation set sizes. The training sets for the Konzilspro-

tokolle dataset contain 1,849 and 16,919 word-level annotations. The

training sets for the Botany dataset contain 1,684 and 21,981 word-

level annotations. Generally, the training annotations are obtained

from a dedicated set of document images. For both benchmarks, this

means that the documents in the training sets and the correspond-

ing 20 documents, which are used for word spotting, are disjoint.

The same sets of training annotations are available for query-by-ex-

ample and query-by-string. The query sets contain query words with

at least three appearances in the corresponding 20 pages. The query

lengths vary from two to 14 characters. The majority of the words has

8 https://www.prhlt.upv.es/contests/icfhr2016-kws, accessed on July 13, 2019.

https://www.prhlt.upv.es/contests/icfhr2016-kws
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five characters or more. Further statistics on word occurrences and

queries can be found in [PZG+16].

For the query-by-example scenario, query word images are pro-

vided that have been cropped from the corresponding 20 pages. There-

fore, the average precisions are typically biased by the occurrence of

the query word regions at the top of the retrieval lists as in the gw20

and bt50 benchmarks. The query set for the Konzilsprotokolle data-

set contains 200 query word images and the query set for the Botany

dataset contains 150 query word images. Examples for query word

images are shown in Figure 39. It is important to note that for eval-

uating query-by-example word spotting with BoF-HMMs, no training

annotations will be used. For the query-by-string scenario, the query

sets are given as the lexica of the query word image transcriptions

from the corresponding query-by-example benchmarks. This makes

two sets of 101 queries for the query-by-string benchmarks on the

datasets. The relevance criterion is always IoU with an overlap thresh-

old of ι = 0.5. The main performance measure is mAPip.

The major challenges that are specific to the Konzilsprotokolle data-

set are the characteristics of Kurrent script. The ascenders and descen-

ders in Kurrent are typically so long that they reach into the adjacent

text lines. This leads to touching pen-strokes of different words and

is particularly problematic for word spotting methods that rely on

connected components. Furthermore, the visual appearances of some

Kurrent characters are very similar, e.g., the Kurrent character shapes

for c, e, n, m, r, u and w, cf. [Aug96]. In this way, also the visual appear-

ances of different words tend to be more similar to each other than in

Latin script. Figure 39a illustrates similar character shapes within the

word Herrn. The German word Herrn translates to Mister in English.

The most important challenge that is specific to the Botany dataset

is the very large visual variability of the text in the document images.

Challenges that apply to both datasets are document degradations,

like ink bleeding through paper, and the selection of the query sets.

The query sets contain words that are orthographically very similar

to each other, such as Inspection, Inspector or three, trees. The Konzil-

sprotokolle benchmark will be denoted as kp20 and the Botany bench-

mark will be denoted as bo20.

5.3 optimization

The optimization of BoF-HMMs for segmentation-free word spotting is

focussed on the query-by-example scenario where no annotated train-

ing material is available. Query-by-string word spotting is intended

as an extension to this scenario. In order to allow for a seamless in-

tegration, it is required that query-by-string word spotting is com-

patible with the query-by-example configuration. Most importantly,

this refers to line region representations as these can be precomputed.
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The patch-based decoding framework should be compatible in order

to limit the complexity of the approach. The more meta parameters

require an adjustment for a new scenario or dataset, the less robust is

the approach with respect to the risk of an inadequate configuration.

In the following, the objective is to analyze the effect of differ-

ent parameterizations and architectural design choices to the per-

formance of the method. For this purpose, experiments will be per-

formed on the gw20 benchmarks for query-by-example and query-by-

string word spotting as well as on the bt50 query-by-example bench-

mark. The datasets have been chosen due to their different character-

istics, cf. Section 5.2. Most importantly, the gw20 benchmark contains

a large number of queries, cf. Section 5.1, and the bt50 benchmark is

challenging with respect to the writing style variability. In analogy to

the structure of Chapter 4, the evaluation includes:

• text hypotheses (Section 5.3.2),

• BoF representations (Section 5.3.3),

• output models (Section 5.3.4),

• word models (Section 5.3.5),

• character models (Section 5.3.6),

• context models (Section 5.3.7),

• patch-based retrieval (Section 5.3.8),

• retrieval efficiency (Section 5.3.9) and

• region snapping (Section 5.3.10).

In order to analyze the effect of individual adjustments, all evalua-

tions are based on an optimized query-by-example configuration (Sec-

tion 5.3.1). Only a single meta parameter is changed at a time. Meta

parameters that do no affect the optimized query-by-example con-

figuration directly, are evaluated in the context of the corresponding

methodological variant. For example, this applies to the meta param-

eters of the different BoF output models or the meta parameters for

query-by-string word spotting. Representations that depend on a ran-

dom initialization are obtained once and reused for all experiments.

The influence of random initializations is discussed along with the

corresponding representations.

Within each of the following tables, a single configuration is se-

lected as the reference configuration either due to its performance or

due to its computational efficiency. The difference between the perfor-

mance achieved by the reference configuration and the performance

achieved by a modified configuration is analyzed with a permutation

test, see Section 5.1.2. In the following tables, this is indicated by print-

ing the mAP performances in different fonts. The performance of the
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Table 4: Optimized BoF-HMM query-by-example configuration

Meta parameter Value

ER thresholds 12

ER descriptor size 16

SIFT descriptor size 32 (bt50) or 48 (gw20)

Grid sampling step (g) 3

Vocabulary size (V) 4096

Mixture model Visual words

Term weighting Frequency

HMM states ⌊0.7 Tq⌋

HMM topology Linear

Baum-Welch iterations 0

Patch sampling rate (υ) 8

Patch width expansion (ψ) 0.5

Re-ranking mask 3× 3

Region snapping area (ηsize) 1.0

Region snapping weight (ηweight) 0.1

reference configuration is printed in a bold font. The performances

for configurations that are significantly different (p̂ 6 0.05) in compar-

ison to the reference configuration are printed in an italic font. The

results for all other experiments are printed in a regular font. All

performance measurements are rounded to one decimal place.

5.3.1 Query-by-example configuration

In the targeted scenario, historians start to explore a collection of doc-

ument images with query-by-example word spotting. In this explo-

ration process, it is essential to keep the adjustments that are required

for working with a new dataset to a minimum. All experiments on all

dataset are based on the same optimized query-by-example configura-

tion for this reason, see Table 4. The characteristic property of this op-

timized configuration is that none of the parameterizations considered

in the targeted scenario, achieves a performance which is significantly

better (p̂ 6 0.05) than the performance achieved by the optimized con-

figuration. Only a single meta parameter, i.e., the SIFT descriptor size,

requires dataset specific adjustments. This is a very important result

for the applicability of the method in practice.

The configuration in Table 4 has been obtained within an informal

optimization. The following evaluation will confirm this optimization

on the gw20 dataset and on the bt50 dataset. The optimized query-by-
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Table 5: Text hypotheses evaluation

ER thresholds ER descriptor size
gw20

mAP [%]

bt50

mAP [%]

4 16 74.5 38.5

12 16 75.1 56.9

20 16 75.1 57.0

12 8 75.1 56.7

12 32 75.2 55.1

example configuration achieves 75.1% mAP on gw20 and 56.9% mAP

on bt50. In the following tables, the optimized query-by-example con-

figuration is selected as the reference configuration unless the table

presents an evaluation of a methodological variant, such as different

BoF output models or query-by-string word spotting.

It is important to note that no quantitative evaluation of region

snapping (Section 4.6.5) is performed on gw20 due to the inaccurate

bounding box annotations. Region snapping leads to document im-

age regions that enclose the retrieved text components tightly. There-

fore, relevant detections will regularly be considered as irrelevant

with 50% IoU. Instead, the application of region snapping on the gw20

dataset will be demonstrated in a qualitative evaluation.

In a similar manner, the minimum number of visual words per

frame for excluding invalid descriptors that overlap with the vertical

region bounds (Section 4.5.2 and 4.6.1) can only be evaluated on the

gw20 benchmark. All other benchmarks do not define query image

regions on the document images but as independent query word im-

ages. Thus, there are no invalid descriptors in the latter case and it is

also impossible to incorporate descriptors that represent the horizon-

tal context (Section 4.5.2).

5.3.2 Text hypotheses

Text hypotheses are required in order to extract line hypotheses, esti-

mate whitespace regions and for snapping potentially relevant docu-

ment image regions to text components, cf. Section 4.2. Table 5 shows

how different parameterizations for generating text hypotheses affect

the word spotting performance. In this regard it is important to note

that the experiments on the gw20 benchmark do not incorporate re-

gion snapping. Therefore, text hypotheses have a greater influence on

the bt50 benchmark than on the gw20 benchmark.

The most sensitive meta parameter for generating text hypotheses

is the number of ER thresholds which controls the resolution of the

extremal region (ER) tree. The higher the number of thresholds, the
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more variants of potential text components are extracted. Another

meta parameter is the size of the descriptors that are used in order to

obtain local contrast information. The ER descriptor size refers to the

edge length in image pixels of the square descriptor area. The larger

the descriptors, the smoother is the resulting text score map. The

smoother the text score map, the less details in the document image

are incorporated. This reduces the number of small hypotheses and

allows to distinguish pen-strokes in the text core area and between

adjacent text lines, i.e., ascenders and descenders.

For segmentation-free word spotting with BoF-HMMs, it is impor-

tant that mostly all text components are represented by at least a sin-

gle text hypothesis. This is achieved if the number of ER thresholds

is sufficiently high. Table 5 shows that the mAP drops significantly

(p̂ 6 0.05) if only 4 threshold values are used on the bt50 dataset.

This is due to a substantial number of document images with rela-

tively low image contrast. The small performance reduction on the

gw20 dataset is not significant (p̂ > 0.05). Apart from local contrast

variations, the pen-stroke has typically a strong contrast. The local

contrast variations on gw20 are not as critical for extracting line hy-

potheses. Line hypotheses are obtained for all text hypotheses such

that a missed text component can be compensated by a text compo-

nent with a similar height in the same line.

With respect to the ER descriptor size, high retrieval performance is

measured on both benchmarks for a value of 16 pixels. The parameter

can be considered as very robust because it does not influence the

mAP significantly (p̂ > 0.05) for the different descriptor size values

that are evaluated in Table 5.

5.3.3 Bag-of-features representations

BoF sequences are used in order to represent document image regions,

such as query word regions and line hypotheses, cf. Section 4.3. The

BoF representations are extracted from the columns of a dense grid of

visual words. Visual words are computed by quantizing SIFT descrip-

tors with respect to a codebook, i.e., the visual vocabulary. Three meta

parameters are important for defining this process. The SIFT descriptor

size specifies the edge length of the square document image area that

is represented by each descriptor. The influence of different descrip-

tor sizes is presented in Table 6. The grid sampling step specifies the

distance of the SIFT descriptor center points in horizontal and vertical

direction. The vocabulary size defines the number of visual words in

the codebook. Both parameters are evaluated in Table 7.

The size of the SIFT descriptors is the most sensitive and, therefore,

also most important meta parameter for segmentation-free word spot-

ting with BoF-HMMs. This is due to the fact that the SIFT descriptors

represent the visual image features. Essentially, these features are the
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Table 6: BoF descriptor size evaluation

SIFT descriptor size
gw20

mAP [%]

bt50

mAP [%]

16 64.5 46.6

24 71.0 54.5

32 73.7 56.9

40 75.0 53.7

48 75.1 49.7

56 73.9 44.9

basis for computing visual similarities. The ability of the method to

generalize from the estimated visual appearance of the query to the

visual appearance of document regions that are relevant to the query,

largely depends on the specificity of the descriptors. The generaliza-

tion capability improves if the specificity is reduced. However, if the

specificity is reduced, the model also loses its capability to distinguish

relevant document regions from irrelevant regions.

The descriptor size influences the specificity the most. The smaller

the represented document image area, the less specific is the area to

a potentially relevant instance of a word. While very small descrip-

tors rather represent parts of characters, larger descriptors represent

groups of characters. It is more likely to find a visually similar part of

a character in a different relevant (or irrelevant) context than to find

a visually similar group of characters in a different relevant (or irrel-

evant) context. Figure 40 illustrates this behavior for three different

SIFT descriptor sizes on gw20. The mean interpolated precision-recall

curves show that the smaller descriptors are not sufficiently specific.

This is indicated by the growing differences of the curves until recall

level 50%. Thus, visually similar instances of the query do not obtain

high similarity scores. The mIP at recall level zero is high for all curves

due to the inclusion of the query word region in the retrieval list. In

general, this behavior leads to different local optima for different de-

scriptor size values on different benchmarks.

Table 6 shows that the locally optimal result for gw20 is achieved

with a descriptor size of 48 pixels while the locally optimal result for

the bt50 benchmark is achieved with a descriptor size of 32 pixels.

If the performance of these two descriptor sizes is compared on the

gw20 benchmark only, the best performance of 75.1% mAP is signif-

icantly better (p̂ 6 0.05) than the 73.7% mAP achieved with the pa-

rameter value 32. The effect can be observed in analogy on the bt50

benchmark. This sets the descriptor size apart from all other meta

parameters considered in this chapter. In practice, finding an optimal

SIFT descriptor size requires a validation set of annotated samples that

is representative for the corresponding document collection. Since the
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Figure 40: SIFT descriptor size evaluation on gw20.

document images in the bt50 and bt70 benchmarks originate from

the same document collection, the bt50 benchmark can be seen as a

validation set for bt70. However, in the targeted scenario where histo-

rians start the exploration of a document collection, such a validation

set will typically not be available. Since the descriptor size is related

to the typical size of the text in the document images, an estimate of

the height of the text core area, cf. [FB14, Fig. 12.3], can be used as an

estimate for the descriptor size, see Section 5.4.1.

Table 7 presents the evaluation for the grid sampling step and the

vocabulary size. The evaluation of both parameters is consistent with

the results that have been reported on BoF image representations in

the word spotting literature, cf. e.g., [ART+15].

The descriptor sampling step in the dense grid has a large influence

on the performance. The performance differences between sampling

steps of 3 and 5 pixels are significant (p̂ 6 0.05) on both benchmarks.

However, it has to be noted that a higher grid resolution comes at the

cost of reduced efficiency. While a grid step of 5 pixels results in an

average of 651× 400 grid rows and grid columns on the gw20 dataset,

a grid step of 3 pixels leads to an average grid resolution of 1084× 667

over the 20 document images. This grid resolution is already demand-

ing with respect to computational efficiency and memory efficiency.

An even smaller grid step can be considered as infeasible for these

reasons. For example, a grid step of 1 pixel leads to an average res-

olution of 3251× 1999 on the gw20 dataset. The average resolutions

for the different grid steps on the bt50 dataset are similar to the cor-

responding resolutions on gw20.

Less critical with respect to the performance is the vocabulary size.

The larger the number of visual words, the smaller is the quantiza-

tion error, cf. Section 2.3, and the higher is the specificity of the visual
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Table 7: BoF representation evaluation

Grid sampling step
g

Vocabulary size
V

gw20

mAP [%]

bt50

mAP [%]

3 4096 75.1 56.9

5 4096 73.0 51.1

3 512 68.0 53.6

3 1024 71.0 56.0

3 2048 73.5 57.3

3 6144 75.5 55.9

3 8192 75.5 55.4

words with respect to the SIFT descriptors in the document images.

The experiments on the gw20 dataset show that high performance is

achieved with large vocabulary sizes. The mAP starts to converge at

4096 visual words. While the smaller vocabulary sizes perform signif-

icantly worse (p̂ 6 0.05), larger vocabularies do not lead to significant

improvements (p̂ > 0.05). This can be explained with the relatively

homogeneous visual appearance of the text in the document images

on gw20. Due to the writing style variabilities in the bt50 dataset, the

behavior cannot be observed in the same way. On the bt50 bench-

mark, the highest mAP is obtained for 2048 visual words. However, it

is important to note that none of the differences to the 56.9% mAP of

the reference configuration in Table 7 are significant (p̂ > 0.05). Since

document collections with limited visual variability are the targeted

application domain for the proposed method, a visual vocabulary

with 4096 visual words can be considered as a robust parameteriza-

tion.

An interesting question concerns the influence of the randomiza-

tion in the visual vocabulary estimation. This refers to the random

subset of SIFT descriptors used for Lloyd’s algorithm, the random

selection of initial centroids for Lloyd’s algorithm and the random

shuffling that is required for clustering all descriptors from all doc-

ument images with MacQueen’s k-means algorithm, cf. Section 4.3.

Experiments on gw20 show that the influence of the randomization

on the mAP is marginal. The results for ten independent clusterings

that do not include the visual vocabulary of the reference experiment,

achieve a mean of 75.2% mAP and a standard deviation of 0.1% mAP.

The observed minimum and maximum values are 75.1% mAP and

75.3% mAP. The high robustness can be explained with the very large

number of over 14 million clustered descriptors on the gw20 dataset.

For comparison, over 34 million descriptors are clustered on the bt50

dataset.
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5.3.4 Bag-of-features output models

BoF output models are required for modeling the generation of BoF

vectors in the statistical HMM process. In this regard, three approaches

have been presented in Section 4.4. The von Mises-Fisher (vMF) mix-

ture model and the exponential Dirichlet compound multinomial (EDCM)

mixture model, cf. Section 4.4.1 and 4.4.2, are estimated from BoF vec-

tors in an unsupervised manner. For this purpose, BoF vectors are

extracted from all line hypotheses at all line heights that have been

obtained based on the text hypotheses in the document images, cf.

Section 4.2.2. This results in 507,290 BoF vectors on the gw20 dataset

and 1,040,826 BoF vectors on the bt50 dataset. The third model, i.e.,

the visual-word mixture model, is directly based on BoF vectors and

does not require another estimation step, cf. Section 4.4.3. It is used in

the optimized query-by-example configuration, see Table 4. In the fol-

lowing, the meta parameters of the output models will be discussed.

It is important to note that the reference configurations for the vMF

and EDCM models are selected from the corresponding vMF and EDCM

parameterizations. These parameterizations are specified in the vMF

mixture model evaluation and in the EDCM mixture model evaluation.

Finally, all output models will be compared with each other.

vMF mixture model

Table 8 and 9 show the evaluation of the vMF mixture model. In or-

der to obtain an initial model, M BoF vectors are randomly drawn

from the sample set. Afterwards, the spherical version of the Lloyd

algorithm is run for ten iterations. Based on the resulting codebook,

the initial vMF mixture model is obtained. An important aspect in the

estimation of a vMF mixture model on high dimensional input data

is the estimation of the concentration parameters κk with k ∈ ΩM, cf.

[BDG+05]. Even for the toy example in Figure 20, the mixture model

shown in Figure 21 does not generalize well. For the high dimensional

and sparse BoF vectors considered in Section 4.3, the concentration

parameters of the individual mixture components quickly approach

infinity while training with the EM algorithm. Due to this reason, the

performance achieved with different strategies for obtaining concen-

tration parameters is presented in Table 8.

In the unbounded estimation strategy, the training is directly termi-

nated after obtaining the initial model. In this case, the κ estimates are

based on the BoF vectors that have been assigned to the centroids in

Lloyd’s algorithm. For example, after the initialization on gw20, the

mean over 512 estimated κ values is 2816 with a standard deviation

of 5240. This indicates that the model is already degenerated. Also

Table 8 shows that the mAP achieved with the unbounded estimation is

significantly worse (p̂ 6 0.05) than the performance achieved with the

vMF reference configuration on both benchmarks.
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Table 8: vMF concentration parameter

Concentration
max κ

Beam width
− logb

gw20

mAP [%]

bt50

mAP [%]

unbounded 14 64.4 37.5

128 14 66.9 41.5

64 7 68.6 45.8

32 7 71.1 50.2

16 3 71.6 50.6

8 1 70.3 49.5

16 5 72.9 45.1

16 1 67.9 43.9

Since the concentration parameters are largely over-estimated, a

simple approach is to limit the κ values to an upper bound heuristi-

cally during EM training, cf. Section 4.4.1. The EM algorithm is run for

ten iterations or until the relative improvement of the complete data

log-likelihood is smaller than 10−3, cf. [Fin14, p. 67]. Table 8 shows

how the mAP values increase with smaller limits for κ until the per-

formance reaches a local optimum. The performance differences are

mostly significant (p̂ 6 0.05, indicated with an italic font in Table 8). If

the limit for κ decreases, the mixture distribution gets smoother and

smoother. This has two negative side effects. The first side effect is

the growing number of non-zero mixture components per frame M̂,

as explained in Section 4.6.2. In order to make the application of the

vMF mixture model feasible, the beam pruning meta parameter has

to be adjusted for every parameterization, cf. Equation 38. Table 8

shows the required adjustments for the beam in the negative logarith-

mic domain, i.e., the so-called beam width, cf. [Fin14, p. 187]. The vMF

reference configuration uses a κ limit of 16 with a beam width of 3.

In this case, the average number of non-zero mixture components per

frame for word spotting on the gw20 benchmark is 34. If the beam

width is increased to 5, the average number of components per frame

is already 120. Only 4 non-zero components per frame are obtained

in average for a beam width of 1. In this regard, the second side ef-

fect can be observed. Table 8 shows that the performance on the bt50

benchmark is significantly worse (p̂ 6 0.05) with a beam width of 5

in comparison to the performance achieved with a beam width of 3.

This can be explained with an over-generalization of the model. Out

of 512 mixture components, 167 non-zero components per frame can

be observed in average on the bt50 dataset with a beam width of 5.

It is important to note that none of the performance differences in

Table 8 are due to different random initializations. For each of the two

benchmarks, a single codebook has been estimated with the spherical
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Table 9: vMF mixture model

Mixture components
M

Vocabulary size
V

gw20

mAP [%]

bt50

mAP [%]

256 4096 71.2 48.9

512 4096 71.6 50.6

1024 4096 70.8 50.3

512 2048 69.7 50.3

512 8192 71.9 47.9

version of Lloyd’s algorithm. The EM algorithm is always based on the

same initial codebook from the corresponding benchmark dataset.

Table 9 shows the effect for different numbers of mixture compo-

nents and different vocabulary sizes. The performance that is mea-

sured for the different parameterizations is consistent on both bench-

marks. On gw20, only a single parameterization achieves a perfor-

mance that is significantly worse (p̂ 6 0.05) than the performance of

the corresponding vMF reference configuration. All results are based

on different initial spherical Lloyd codebooks. Therefore, a perfor-

mance deviation can be expected which is due to the random initial-

ization. Due to the considerable performance difference to the refer-

ence configuration that uses the visual-word mixture model, cf. e.g.,

Table 6, this deviation can be neglected. The influence of the SIFT de-

scriptor size is consistent with the results that have been obtained for

the visual-word mixture model, see Table 6. The results are reported

in Table 45 which can be found in Section A.2.

EDCM mixture model

The evaluation of the EDCM mixture model is presented in Table 10

and 11. Table 10 shows different parameterizations for the estimation

of the model. Table 11 shows the evaluation for different numbers of

mixture components and different sizes of the visual vocabulary.

The estimation with an EM algorithm requires an initial model. The

initial model is obtained by estimating a single EDCM distribution

from the entire dataset in a first step. Afterwards, M random de-

viations of this distribution constitute the initial mixture model, cf.

Section 4.4.2. Within each deterministic annealing phase (see below),

the EM algorithm is run for at most ten iterations or until the com-

plete data log-likelihood converges, cf. [Fin14, p. 67], i.e., the relative

improvement is smaller than 10−3. In order to make the estimation

robust, the use of two heuristics is proposed in [MKE05] and [Elk06].

For scenarios where the mixture model is evaluated on data that was

unknown during training, smoothing of the concentration parame-

ters is proposed in [MKE05]. This way, a degeneration of the model is
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Table 10: EDCM estimation parameters

Smoothing
ρ

Det. annealing
(τ0, . . . , τn)

gw20

mAP [%]

bt50

mAP [%]

0 (2, 1) 70.9 50.4

0.01 (2, 1) 70.1 50.8

1 (2, 1) 69.7 50.0

0.01 (5, 2, 1) 69.1 51.1

0.01 1 70.5 50.8

precluded that could theoretically occur due to a factor of zero in the

product in the EDCM probability mass function, see Equation 19. The

application of the smoothing factor is shown in Equation 21. In the

proposed method, this could be relevant when document images are

added for word spotting that have not been available during model

estimation. Therefore, the EDCM mixture model uses a smoothing fac-

tor of ρ = 0.01 in the EDCM reference configuration as proposed in

[MKE05]. However, since this scenario does not apply to the gw20

or the bt50 benchmark, no significant differences (p̂ > 0.05) can be

observed for different values of this factor. In a similar manner, no

significant performance differences (p̂ > 0.05) can be observed with

the deterministic annealing strategy [UN98] which is used in [Elk06],

cf. Equation 20. A scenario where deterministic annealing is required

for estimating an EDCM mixture model, is the small training dataset

of just 400 bag-of-words (BoW) representations in [Elk06]. In compari-

son, over 500,000 BoF vectors are used for training on gw20 and over

one million BoF vectors are used for training on bt50. The EDCM refer-

ence configuration in Table 10 uses deterministic annealing because

it does not affect the performance significantly but has the potential

of making the estimation of the mixture model more robust.

The robustness of the model is also demonstrated in Table 11. Ex-

cept for the 128 mixture components and 1024 visual word configura-

tions on the gw20 benchmark (p̂ 6 0.05), none of the other measured

performances differs significantly (p̂ > 0.05) from the EDCM reference

configuration. Since all models in Table 10 and 11 have been obtained

with different random initializations, this shows that the model opti-

mization is largely independent of its starting point. Significant influ-

ences on the performance with the EDCM mixture model can mostly

be observed for different descriptor sizes, see Table 46 in Section A.2.

The descriptor size evaluation is consistent with the results that have

been obtained for the other output models, cf. Table 6 and Table 45.

With respect to the approximation of the Dirichlet compound multino-

mial (DCM) distribution through the EDCM distribution, cf. Section 4.4.2

and see Section B.2, the considered scenario is perfectly suitable. For

word spotting on the gw20 benchmark, the BoF vectors contain only
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Table 11: EDCM mixture model

Mixture components
M

Vocabulary size
V

gw20

mAP [%]

bt50

mAP [%]

128 4096 67.1 51.7

256 4096 69.9 50.6

512 4096 70.1 50.8

1024 4096 69.9 48.6

512 1024 68.8 51.2

512 2048 70.2 50.7

512 8192 69.5 48.9

16 (quantized) descriptors per frame in average. The number of differ-

ent visual words per frame is in average 10. In the same way, the mean

concentration in the mixture model of the EDCM reference configura-

tion is 0.01 with a standard deviation of 0.05. The average number

of descriptors per frame for word spotting on the bt50 benchmark is

17 where 13 different visual words per frame occur in average. The

mean and standard deviation of the concentration parameters in the

EDCM reference configuration for the bt50 dataset is 0.01 and 0.06.

For comparison, in [Elk06] the approximation is considered as very

accurate with an average concentration parameter value of 0.06.

The negative logarithmic beam width during mixture model es-

timation and model decoding is 14. This leads to an average of 9

non-zero EDCM components per frame on the gw20 benchmark and

an average of 13 non-zero EDCM components per frame on the bt50

benchmark. All EDCM related statistics on gw20 and bt50 refer to 512

mixture components and 4096 visual words in the EDCM reference

configuration. With respect to the number of visual words per frame,

it is important to recall that the reference configuration uses a grid

sampling step of 3.

Visual-word mixture model

The visual-word mixture model is used in the optimized query-by-

example configuration which has been presented in Table 4. Since this

model is directly based on BoF representations, cf. Section 4.4.3, all

related meta parameters have already been discussed in Section 5.3.3.

The visual-word mixture model represents the generation of a sin-

gle visual word. However, a bag-of-visual-words, i.e., multiple visual

words, have been observed. Therefore, the model can be considered

as pseudo-discrete. For this purpose, a BoF vector is understood as an

estimate for the visual word probabilities given the corresponding

frame. Following the Laplace principle, all visual words are assumed

to be equally likely and the visual word probability estimates for
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Table 12: Visual-word mixture model

Term weighting
gw20

mAP [%]

bt50

mAP [%]

Frequency 75.1 56.9

Frequency × p(V = v |Θ)−1 74.9 57.0

Binary 75.1 56.9

the frame are obtained as relative visual word frequencies, see Equa-

tion 32. In the following, the choice of using relative frequencies will

be discussed.

For representing texts with BoW, relative frequencies are a standard

approach to term weighting, cf. [BR11, Sec. 3.2.3], and estimating

term probabilities, cf. [RST+03]. However, in BoW applications to re-

trieval and classification, an important assumption is that the terms

are discriminative for the classes considered, e.g., documents that are

relevant and documents that are non-relevant with respect to a query.

A common heuristic is to emphasize the terms that are overall infre-

quent, since these terms are assumed to be more specific and carry

more information than the terms that are overall frequent. In this

spirit, the overall frequent terms are also more likely to have high fre-

quency in a BoW representation. Term weighting schemes make use of

this heuristic by combining the relative term weights with the inverse

document frequency of the corresponding terms, resulting in term-fre-

quency inverse-document-frequency weighting [BR11, Sec. 3.2.4] for

example. In a similar manner, all terms can be considered as equally

important regardless of their frequency in the so-called boolean model,

cf. [BR11, Sec. 3.2.2]. For this purpose, a term is represented by either

zero or one, depending on its occurrence in a document.

Inspired by these approaches, Table 12 shows different methods

for representing visual word frequencies. The inverse document fre-

quency is interesting because it has already been used for word spot-

ting with spatial pyramid representations in [RAT+15a]. For this pur-

pose, the inverse visual word probabilities are used as an approxima-

tion of the inverse frame frequencies. Finally, the boolean approach is

interesting because the considered BoF representations are extremely

sparse and, therefore, already similar to the characteristics of the

boolean term representations. The visual word frequency representa-

tions are directly applied on the BoF vectors. The weighting schemes

are used in the numerator and denominator of Equation 32, see Sec-

tion 4.4.3.

The results in Table 12 show that there are only marginal differ-

ences (p̂ > 0.05) between the frequency representations for word spot-

ting with BoF-HMMs on the gw20 and the bt50 benchmarks. Therefore,

the use of relative frequencies can be seen as a design choice that nat-
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Table 13: Output model comparison

Output mixture model
gw20

mAP [%]

bt50

mAP [%]

Visual words 75.1 56.9

vMF 71.6 50.6

EDCM 70.1 50.8

Multinomial 68.1 49.5

urally arises from probabilistic BoW and BoF models that have been

used in the literature, e.g., [RST+03; CDF+04]. The behavior can be

explained with the large number of visual words and the comparably

very small number of descriptors per frame. This is consistent with

the assumptions of the visual-word mixture model. The occurrence of

individual visual words in the query model and in the frames is most

important.

Output model comparison

The three output models that have been evaluated so far have been

considered due to their very different characteristics. Table 13 shows a

comparison of the models on the gw20 and the bt50 benchmarks. Ad-

ditionally, the multinomial mixture model is added to the comparison

as a reference. The multinomial mixture model has been discussed in

Section 2.4. Table 13 shows that the visual-word mixture model signif-

icantly outperforms (p̂ 6 0.05) the other models on the benchmarks

considered. Thus, the visual-word mixture model achieves the best

trade-off between generalization capabilities and specificity for the

query HMM.

The consideration of the vMF mixture model is inspired by the wide

use of cosine similarity for word spotting. However, the necessity of

adjusting the concentration parameters manually is more than sub-

optimal. Since it is infeasible to adjust the concentration parameters

for the mixture components individually, a global limitation for the

automatic estimates is used. This value has a strong effect on word

spotting performance and computational efficiency.

The EDCM mixture model is perfectly suited for the characteristics

of the BoF representations. The EDCM distribution is an approximation

of the Dirichlet compound multinomial (DCM) distribution that is specif-

ically designed for high dimensional and sparse BoW vectors [Elk06].

While the suitability for sparse data is a characteristic of the DCM

model, the main advantage of the approximation through the EDCM

model is the considerable simplification of the DCM model for this sce-

nario, see Appendix B. Since the DCM model extends the multinomial

model, an important question is whether this extension is beneficial

for segmentation-free word spotting with BoF-HMMs.
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Visual-word mixture model EDCM mixture model

Figure 41: Comparison of the patch-similarity scores for the visual-word
mixture model and the EDCM mixture model. The colors repre-
sent the geometric mean of the output probabilities for the frames
that were aligned with the query word HMM in the logarithmic do-
main. Blue corresponds to low similarity and red corresponds to
high similarity. The colors in the two images correspond to each
other.

Table 13 shows the results for both mixture models. The EDCM mix-

ture model achieves higher mAP values on both benchmarks. This

indicates that the EDCM model is better suited for representing the

sparse BoF vectors than the multinomial model. It should be noted

that the absolute difference of 2% mAP on gw20 is significant (p̂ 6 0.05).

In contrast, the absolute difference of 1.3% mAP on bt50 is not signif-

icant (p̂ > 0.05). The estimation and evaluation of the multinomial

mixture model follows the same procedure that is used for the EDCM

mixture model. The probability mass functions and the maximum

likelihood estimates for the maximization step in the EM algorithm

are adapted, cf. [NMT+00]. Further, the visual word probability dis-

tributions of the mixture components have to be smoothed in order to

avoid zero probabilities, see Section A.1. The visual word probability

distributions are interpolated with the visual word prior probability

distribution, i.e., the background model, for this purpose. Section A.1

also presents an evaluation of the multinomial mixture model. The

results are consistent with the results that have been presented for

the EDCM mixture model in Table 10 and 11.

Another important question that concerns the EDCM mixture model

is the significant performance difference in comparison to the visual-

word mixture model. This can be explained with the better general-

ization capabilities of the visual-word model. An EDCM mixture com-

ponent represents the generation of the entire BoF vector. In contrast,

the generation of just a single visual word is represented by the vi-

sual-word mixture model. Intuitively, it is more likely to find individ-

ual occurrences of visual words in the document images (disjunction)

than configurations of multiple visual words in the document images

(conjunction), cf. Section 4.4.3. The visual-word mixture model mostly

achieves its specificity by using sufficiently specific image descriptors.

For example, on gw20 the standard deviation for the mAP measure-

ments of the six descriptors sizes is 3.7% with the visual-word mix-

ture model and only 2.3% with the EDCM mixture model, cf. Table 6
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Figure 42: Mean interpolated precision-recall curves for the visual-word
mixture model and the EDCM mixture model on gw20.

and Table 46 in Section A.2. Apart from the descriptor size, also the

vocabulary size and the number of mixture components influence

the generalization capabilities of the EDCM mixture model. Table 11

shows that a reduction of these parameter values does not achieve

any significant improvements.

In order to investigate the differences between the EDCM and the vi-

sual-word models further, a qualitative analysis of the patch similar-

ity scores is shown in Figure 41. The similarity scores obtained with

the EDCM mixture model are considerable more specific to the query

word model than the scores obtained with the visual-word model.

For a quantitative analysis of the two models, Figure 42 shows the

mean interpolated precision recall curves on the gw20 benchmark.

This allows for comparing mIP measurements at different recall levels.

The EDCM mixture model is consistently outperformed.

The analysis of the mean recall over all queries allows for an inter-

pretation of the specificity of the models. For each query, the recall is

computed for the entire retrieval list. The recall for the top-n elements

is defined in Equation 70. The visual-word mixture model achieves a

mean recall of 89.7% and the EDCM mixture model achieves a mean

recall of 85.8%. This significant (p̂ 6 0.05) absolute difference of 3.9%

shows that the EDCM model does not generalize as well as the vi-

sual-word mixture model. In comparison, the over-generalizing visual-

word mixture model with a SIFT descriptor size of 24, see Figure 40,

achieves a mean recall of 88.8% which is significantly better (p̂ 6 0.05)

than the mean recall with the EDCM mixture model.

The significance test for the difference of mean recall values is per-

formed with the permutation test, see Section 5.1.2. For this purpose,

the test statistic, cf. Equation 77, uses the absolute difference of mean

recall values instead of the absolute difference of mAP values.
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Table 14: Query word HMM meta parameters

States
⌊ · Tq⌋

Iterations Topology gw20

mAP [%]

bt50

mAP [%]

0.5 0 Linear 74.5 54.2

0.7 0 Linear 75.1 56.9

0.9 0 Linear 72.8 53.0

0.7 3 Linear 74.6 54.0

0.7 5 Linear 73.8 51.5

1.0 0 Bakis 74.1 56.2

5.3.5 Word models

The query HMM is a compound model which consists of the query

word HMM as well as the whitespace HMMs and the background HMM,

cf. Section 4.5. In the query-by-example scenario, the query word

HMM is given by a word model that represents the visual appearance

of the query image region. In the following, the evaluation of these

word models will be presented. The evaluation of the context models

will be presented in Section 5.3.7. All experiments are based on the

optimized query-by-example configuration which is summarized in

Table 4 in Section 5.3.1.

The most important meta parameters for the query word HMM in-

clude the number of HMM states and the number of Baum-Welch

training iterations for estimating the model. Since the query word

HMM represents just a single document image region in the query-

by-example scenario, the training process reduces to the estimation

of transition probabilities and mixture component weights, cf. Sec-

tion 4.5.2. Most importantly, the output model is not considered in

this regard but estimated in an unsupervised manner, see Section 5.3.4.

The number of states is given as a percentage of the length Tq of the

BoF vector sequence that is extracted from the query word region. The

model is initialized based on a linear alignment of these BoF vectors

with the states, see Equation 47 in Section 4.5.2. The topology of the

model is linear. Based on the initialization, the model can be refined

in an iterative manner.

Table 14 shows the effect of the relative number of states, the num-

ber of training iterations and the model topology on the gw20 and the

bt50 benchmarks. The locally optimal scaling factor for the number of

states is 0.7 in both cases. The number of states influences the speci-

ficity of the models. The higher the relative scaling factor, the less

flexible is the model with respect to spotting instances of the query

word that have a smaller width than the query word image. The num-

ber of states is a lower bound for the number of observations, here
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BoF vectors, that can be generated by a model with a linear topology.

The lower the relative scaling factor, the less specific is the model

with respect to the query word image, thus, the model over-general-

izes. Table 14 shows that there is no benefit (p̂ > 0.05) in increasing

the flexibility with a Bakis topology. Again, the relative scaling factor

specifies the minimum number of observations that can be generated

with the model. The factor is 1.0 for the Bakis experiment in Table 14.

However, the model can be traversed with at least 50% of the states,

due to the possibility to skip every second state. Thus, the specificity

of the model with respect to the query word image can be reduced

dynamically.

Furthermore, an interesting behavior can be observed for the num-

ber of training iterations in Table 14. In comparison to the perfor-

mance of the reference configuration (printed in a bold font in Ta-

ble 14), the measured performance is lower at three training itera-

tions and significantly worse (p̂ 6 0.05) at five iterations on both

benchmarks. While optimizing the total output probability, the Baum-

Welch algorithm focusses on the mixture components, here visual

words, that most of the BoF vectors have in common according to

their probabilistic alignment with the states. However, with just a sin-

gle sequence there is no guarantee that these are the components that

are relevant for spotting the query word.

Model estimation is based on the BoF vectors that are extracted from

the query word image. In practice, the query word image is given as

a region in a document image. Therefore, it is possible to exploit the

context of the query in the document. Since the query is given as a

bounding box, the context can be classified into horizontal and verti-

cal. The vertical context is located above and below the query word

region. The horizontal context is located to the left and to the right of

the query word region. Intuitively, the vertical context should not be

represented in the query word model. The content of the adjacent text

lines is not relevant for the query. However, the context to the left and

right which is typically whitespace, i.e., document image background,

can increase the specificity of the query word model considerably. In

this regard it is important to note, that this whitespace context is rep-

resented by the query word model itself while the whitespace HMMs,

see Section 4.5.4, are part of the context representation that is required

for localizing the query within a patch, also compare Section 5.3.7.

Provided that a document image region is represented with a se-

quence of BoF vectors, the influence of the horizontal and vertical

context can be controlled by excluding descriptors that overlap with

the corresponding region boundaries. These descriptors are referred

to as invalid in Section 4.3, 4.5.2 and 4.6.1. Table 15 shows the mea-

sured performance for pruning only descriptors that overlap with the

horizontal boundaries, pruning only descriptors that overlap with the

vertical boundaries and pruning descriptors that overlap with the hor-
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Table 15: Pruning of invalid descriptors

Pruning Min. descriptors
gw20

mAP [%]

Horizontal 15 65.1

Vertical 15 75.1

Horizontal or vertical 15 66.6

Vertical 1 72.1

None − 73.2

izontal or vertical boundaries. The results on the gw20 benchmark con-

firm the expected behavior. It is interesting to note that the results

differ from the reference configuration significantly (p̂ 6 0.05). The

absolute differences are considerable, i.e., 10.0% mAP and 8.5% mAP.

These large differences can be explained with the characteristics of the

gw20 benchmark. Figure 37 shows that over 60% of the queries have

four characters or less. Thus, the overall performance is dominated by

short query words. Since query word models for short words are nat-

urally less specific than the models for long words, short words ben-

efit from the incorporation of horizontal context the most. Figure 43

shows mAP values per query length for the vertical descriptor prun-

ing strategy and the horizontal or vertical descriptor pruning strategy.

It can be seen that the performances differ the most for short queries.

The descriptor pruning experiments are only performed on gw20. On

all other benchmarks the queries are given as individual word images

which corresponds to the horizontal or vertical pruning strategy.

Due to its importance, the effect of vertical pruning is further ana-

lyzed in Table 15. A corner case arises if the descriptor size is larger

than the height of the query word region. In order to prevent the

exclusion of all descriptors, descriptors are only pruned up to a min-

imum number of descriptors per BoF vector, cf. Section 4.6.1. In com-

parison to the reference value of a minimum of 15 descriptors, Ta-

ble 15 also shows the results for a minimum of a single descriptor.

Furthermore, none refers to the configuration in which no pruning is

performed, neither in horizontal nor in vertical direction. Both results

are significantly worse (p̂ 6 0.05) in comparison to the performance of

the reference configuration on gw20.

It is important to note that the corner case, in which the descriptor

size is larger than the width or height of the query region, can also

occur on the other benchmarks in which the queries are provided as

individual word images. In order to obtain at least a single BoF vector

and at least a single descriptor per BoF vector, the descriptor size is

dynamically adapted to the minimum of the query image width and

the query image height in this case.
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Figure 43: Effect of descriptor pruning for different query word lengths on
the gw20 benchmark. It is important to note that only very few
queries contribute to the mAP values for the query words with 13,
14 and 15 characters. In particular, the gw20 dataset contains only
a single word with 14 characters, cf. Figure 37.

5.3.6 Character models

Character models allow for defining the query word model based

on textual input, cf. Section 4.5.3. For this purpose, the query word

HMM is dynamically created according to the characters in the query.

The patch size is obtained based on the width and height estimates

of the character models. In order to do so, a dataset with annotated

training samples is required. In this regard it is important to note

that the measured performance for all query-by-string experiments

cannot be compared to the performance of the query-by-example ex-

periments even though the benchmarks might be defined on the same

document images. The following parameter evaluation is performed

on the gw20 query-by-string benchmark that uses the 15-5 cross-val-

idation, see Section 5.2.1. The method configuration is based on the

same meta parameters that are used in the optimized query-by-exam-

ple configuration, see Table 4. Meta parameters that are required for

query-by-string word spotting are evaluated in Table 16.
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Table 16: Query-by-string meta parameters

Context Topology
Min.

states
Height

percentile
gw20

mAP [%]

Independent Bakis 6 20 69.5

Dependent Bakis 6 20 83.3

Independent Linear 6 20 70.1

Dependent Linear 6 20 82.0

Dependent Bakis 3 20 79.1

Dependent Bakis 9 20 82.9

Dependent Bakis 6 5 82.4

Dependent Bakis 6 50 81.1

Character models are obtained for each character that occurs in

the training dataset. After the uniform initialization of the character

HMMs, the training procedure consists of two stages. Table 16 shows

the performances that are measured for the model obtained after the

second stage. Except for the number of states, the meta parameters in

Table 16 only affect the second training stage.

In the first stage, context independent models are estimated with

the Baum-Welch algorithm until convergence, here for seven itera-

tions. In this stage, the models always use a linear topology. The

number of states per model is a meta parameter, cf. Table 16. In order

to perform the initialization of the second estimation stage, the train-

ing data is automatically annotated on character level. The model

obtained in the first stage is used for this purpose. Based on this an-

notation, the minimum number of BoF vectors that have been aligned

with each model is recorded. The number of states for the models of

the second stage is equal to this recorded number if the models use

a linear topology. Greater flexibility is achieved with a Bakis topol-

ogy. Due to the possibility to skip single states, the number of states

per model is up to 50% higher than the minimum number of BoF vec-

tors that have been aligned with each model. It is important to note

that the number of states for the models of the first stage is a lower

bound for the minimum number of BoF vectors that can be aligned

with a model. Based on the initial alignment, the models are initial-

ized according to Equation 47 in Section 4.5.2. As in the first stage,

the Baum-Welch algorithm is iterated for seven times. Table 16 shows

that 6 states per model in the first stage, i.e., the minimum number of

states per model in the second stage, achieve a locally optimal perfor-

mance. Using a Bakis topology in the second stage results in a higher

mAP than using a linear topology. The absolute improvement of 1.3%

mAP is not significant (p̂ > 0.05).
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The choice between context-dependent and context-independent

models in the second stage has the biggest performance impact (p̂ 6

0.05). This is due to number of context-dependent models which is

considerably larger than the number of context-independent models,

in average 36 context-independent models in comparison to an aver-

age of 1,706 context-dependent models for the four training datasets

in the 15-5 cross-validation of the gw20 query-by-string benchmark.

This means that there are substantially more model parameters that

have to be estimated. The estimation of such a large model inven-

tory is only feasible with semi-continuous HMMs. In the application

considered, the mixture model is not optimized along with the state-

dependent parameters.

The width estimate that is required for each character model is

given as the average width obtained after aligning the character mod-

els with the training data. The height estimate is based on the height

distribution of the bounding boxes that are annotated with the corre-

sponding characters. In order to be robust with respect to very small

heights, the height estimate is obtained at a lower percentile of the

distribution. Table 16 shows that a local optimum is obtained at 20%.

5.3.7 Context models

Context models are required for localizing the query in a patch more

accurately. For this purpose, a background HMM represents arbitrary

document image content and whitespace HMMs represent the left-side

and right-side context of the text in the document images, see Sec-

tion 4.5.4. In the compound query HMM, the context models surround

the query word HMM, see Figure 25 in Section 4.5. For word spotting,

it is important that the patch similarity scores are solely based on the

query word HMM. The other models are not specific to the query and

would, therefore, dominate the geometric mean of output probabili-

ties, cf. Section 4.6.2.

The context models are used with the query word HMM irrespective

of the query modality. The following evaluation is performed in the

query-by-example scenario where no additional annotated training

material is available besides the query word image since this is the

targeted scenario of the proposed method. The experiments are based

on the optimized query-by-example meta parameters, cf. Table 4.

Table 17 shows the influence of the context models for represent-

ing a BoF vector sequence from a patch. If no context models are used,

the patches are represented only with the query word HMM. Thus,

within a patch the query word cannot be localized. The patch-similar-

ity score represents the entire patch and the decoding framework can,

therefore, be considered as static.

One of the most important results in this evaluation is that the word

spotting performance achieved with the static patch decoding frame-
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Table 17: Context model evaluation

Context models
Iterations

whitespace models
gw20

mAP [%]

bt50

mAP [%]

None − 71.4 52.3

Background − 74.3 56.3

Background, whitespace 0 75.1 56.9

Background, whitespace 3 75.2 57.0

Background, whitespace 5 75.2 57.0

work is significantly worse (p̂ 6 0.05) than the performance of the refer-

ence configuration that uses the dynamic patch decoding framework

(printed in a bold font in Table 17). The dynamic decoding framework

achieves significantly better results because the similarity scores only

represents the most likely occurrence of the query within the patch.

Thus, the dynamic decoding framework can be seen as an adaptation

of HMM-based word spotting on line level. Instead of representing

the context of the query with a character-level recognition model, i.e.,

the filler model, the context models in the proposed method take

advantage of the information that is available despite the lack of an

annotated training dataset. The background HMM is defined by the

output mixture model which is estimated in an unsupervised man-

ner. The whitespace HMMs are based on whitespace hypotheses that

are obtained in a bottom-up manner from text hypotheses.

Given the benefits of dynamic patch decoding, the influence of the

different context models can be analyzed. For this purpose, Table 17

shows the results for an experiment where no whitespace models

are used but only the background HMM. It is interesting to note that

the performances are not significantly worse (p̂ > 0.05) than the per-

formances of the reference configuration on both benchmarks. Thus,

the possibility for dynamic patch decoding is more important than the

particular modeling of the context. The use of whitespace HMMs is im-

portant if the whitespace models represent the immediate context of

a relevant occurrence of the query word better than the generic back-

ground model. The partial observation sequence, that is aligned with

the states of the query word HMM, depends on the optimal path for

the entire observation sequence which is computed with the Viterbi

algorithm. This makes the similarity score more specific since the sim-

ilarity score is based on the partial output probabilities for the BoF

vectors that have been aligned with the query word model.

While the background HMM is directly defined by the mixture com-

ponent prior probabilities, the whitespace HMMs are estimated in anal-

ogy to the query word HMM for query-by-example or query-by-string,

depending on the word spotting scenario. In this regard an inter-

esting observation was made with respect to the number of Baum-
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Left-side whitespace model Right-side whitespace model

Figure 44: Comparison of the patch-similarity scores for the whitespace
models that represent the left-side context and the right-side con-
text of text in the document images. The similarity scores are ob-
tained by sliding a patch over the dense grid of visual words. For
each patch position, the similarity is based on the optimal out-
put probability for the BoF vector sequence from the patch. The
patch width and the patch height are given by the average width
and the average height of the corresponding left-side or right-side
whitespace regions. The colors visualize similarity scores in the
logarithmic domain and correspond to the same values as in Fig-
ure 41. Blue refers to low similarity and yellow towards orange
refers to high similarity with respect to the whitespace models.

Welch iterations in the query-by-example scenario, cf. Table 14. While

it is reasonable to omit Baum-Welch training for estimating the query

word HMM with just a single example, this approach cannot be moti-

vated for the estimation of whitespace models in the same way. For

this reason, a parameter evaluation for the number of training itera-

tions is shown in Table 17. Since the performance differences are only

marginal (p̂ > 0.05), the estimation of whitespace models can be per-

formed in analogy to the query word models. This way, an additional

meta parameter can be avoided.

A qualitative impression of the whitespace models is given in Fig-

ure 44. The figure shows patch-similarity scores for whitespace spot-

ting. The whitespace HMMs are used as query models in a static

patch-based decoding framework for this purpose. The patch sizes

are given by the average size of the left-side whitespace hypotheses

and the average size of the right-side whitespace hypotheses. Fig-

ure 44 shows that the document regions that achieve high similarity

scores are mostly similar in comparison between the left-side and

right-side models.

5.3.8 Patch-based retrieval

Word spotting with BoF-HMMs is based on a dense patch retrieval

framework. The patch positions are aligned with the dense grid of

visual words, cf. Section 4.6.1. For each patch, the similarity with

respect to the query word model can be obtained with the Viterbi

algorithm. However, the evaluation with the Viterbi algorithm for all

possible patch positions is computationally infeasible. Patches that
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Table 18: Patch-based decoding

Patch sampling rate
υ

Patch width expansion
ψ

gw20

mAP [%]

bt50

mAP [%]

2 0.5 65.0 51.2

4 0.5 74.3 56.5

8 0.5 75.1 56.9

16 0.5 74.5 56.4

8 0.0 67.7 49.0

8 1.0 73.6 53.7

are potentially relevant with respect to the query can be obtained

efficiently with mixture component voting, cf. Section 4.6.3. For this

purpose, the mixture component voting scheme is based on the same

patch-framework which is used for Viterbi decoding. The patch res-

olution depends on the patch size and on the sampling rate meta pa-

rameter υ, see Equation 49 in Section 4.6.1. In order to increase the

method’s robustness with respect to word size variabilities, the query

word context, cf. Section 4.5.4, is taken into account in order to model

the appearance of the query word within a patch. The patch width,

which is obtained from the query word model, is increased according

to the patch width expansion factor ψ for this purpose, cf. Figure 31 in

Section 4.6.2. Table 18 shows the evaluation of the patch sampling rate

and the patch width expansion meta parameters. A qualitative im-

pression of the resulting patch similarity scores is given in Figure 45.

The patch retrieval framework is independent of the query modality.

The following results are obtained for the query-by-example scenario.

The patch sampling rate controls the patch resolution in the patch-

framework. More patches are sampled for smaller query words than

for larger query words due to the dependence on the patch size. For

accurate detections it is important that for each instance of the query

word in a document image, there exists a patch that is centered over

the corresponding document image region. In this regard the hori-

zontal positioning of the patch is less important as the vertical posi-

tioning. As long as the patch encloses the instance of the query word,

the accurate start and end positions within the patch are determined

with the Viterbi algorithm on frame level. If the patches are inaccu-

rately positioned in vertical direction, the upper or lower context of

the query word instance is included in the BoF sequence representa-

tion. It has already been shown that this affects the performance sig-

nificantly, cf. Table 15. The evaluation of the sampling rate in Table 18

confirms this behavior. On both benchmarks considered, only the per-

formance for the sampling rate υ = 2 is significantly worse (p̂ 6 0.05)

than the performance of the reference configuration which uses the

locally optimal sampling rate υ = 8. Figure 45a illustrates the patch
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υ = 2 υ = 16

(a) Patch sampling rate

ψ = 0.0 ψ = 1.0

(b) Patch width expansion

Figure 45: Patch-based decoding. The patch similarity scores illustrate the
effect of different parameterizations. The patch sampling rate (a)
controls the patch resolution. The patch width expansion (b) is
important for coping with word size variabilities. The larger the
expansion factor, the less specific are the similarity scores with
respect to the patch positions. The colors represent patch similar-
ities in the logarithmic domain and correspond to the same val-
ues across all images (including the similarity scores in Figure 41

and 44). Blue corresponds to low similarity and red corresponds
to high similarity with respect to the query word model.

similarity scores for two different sampling rates. It can be seen that

the patch resolution obtained for υ = 2 is very coarse.

The patch width expansion is required for dynamic patch decoding,

also cf. Section 5.3.7. The larger the expansion factor the larger is the

word size variability that can potentially be handled. However, at the

same time, the similarity scores also become less specific to the posi-

tion of the corresponding patch in the document image. Further, the

capability to generalize across large word size variabilities is inher-

ently limited if the query word model is estimated from just a single

example. Table 18 shows that a locally optimal trade-off is found for

ψ = 0.5 for the gw20 benchmark and the bt50 benchmark. The per-

formance differences are mostly significant (p̂ 6 0.05, indicated with

an italic font in Table 18). An impression of the effect on the patch

similarity scores for two different patch width expansion factors is

given in Figure 45b. The influence on the specificity can be observed

for high similarity scores as well as for low similarity scores.

Finally, an architectural design choice is analyzed in Table 19. Com-

puting the patch similarity with the partial output probabilities for the

BoF vectors that are generated with the query word HMM most likely,

is motivated by the limited visual variability that the method can
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Table 19: Score normalization

Similarity scores
gw20

mAP [%]

bt50

mAP [%]

Partial output probability 75.1 56.9

Background model normalization 73.5 53.9

cope with in the target scenario. The limitation is due to the lack of

an annotated training dataset for query-by-example word spotting, cf.

Section 4.6.2.

Alternative approaches for obtaining similarity scores for word

spotting with HMMs have been proposed in [RP09b] and [FKF+12].

Both approaches are based on approximating the posterior probabil-

ity for the query word (log-odds scoring). The probability for the

query model is normalized for this purpose, cf. Equation 10 in Sec-

tion 3.3.2. The difference between the two approaches is that a char-

acter-level recognition model, i.e., a filler model, is used for score

normalization in [FKF+12] whereas a background model is used for

score normalization in [RP09b]. The background model is used due

to the lack of annotated training data. Since only a segmentation-

based scenario is considered in [RP09b], a background model normal-

ization for the segmentation-free, patch-based decoding framework,

cf. Section 4.6.2, is obtained by combining both normalization ap-

proaches, see Table 19. For this purpose, the filler model normaliza-

tion is adapted such that the recognition model is replaced with the

background model, cf. Equation 12 in Section 3.3.2.

The background model normalization makes the patch similarity

scores independent of the typical visual appearance of the document

images. However, this also causes problems if irrelevant document

image regions are represented with similarly low scores by the query

word model and the background model. The score normalization em-

phasizes these regions which leads to false positives. Table 19 shows

that using the partial output probability, as proposed in Section 4.6.2,

is significantly better (p̂ 6 0.05) than using the background model

normalization on the gw20 benchmark. The improvement of 3% mAP

over the background model normalization on the bt50 benchmark is

not significant (p̂ > 0.05).

5.3.9 Retrieval efficiency

Efficiency is achieved by decoding in two stages, see Section 4.6.4.

Mixture component voting, cf. Section 4.6.3, retrieves potentially rele-

vant regions at high recall and with high computational efficiency. Viterbi

decoding allows for re-ranking and refining these regions with high

average precision at the cost of high computational complexity. Since both
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Table 20: Viterbi-decoding efficiency (second stage only)

Patch framework
gw20

LR

bt50

LR

Regular 71,502 34,880

Line hypotheses 68,335 29,178

Table 21: Viterbi-decoding performance (second stage only)

Patch framework
gw20

mAP [%]

bt50

mAP [%]

Regular 75.4 57.7

Line hypotheses 75.4 57.6

decoding stages are using the same model and the same patch-based

framework, the parameter configurations that have been evaluated in

the previous sections mostly affect both decoding stages. Exceptions

are the meta parameters that are specific to methodologies which are

only required for decoding with the Viterbi algorithm, like the ap-

plication of context models and score normalization. Architectural

design choices that are required for the two-stage integration will

be evaluated with respect to accuracy and computational efficiency

in this section. For this purpose, the influence of line hypotheses and

soft non-maximum suppression (NMS) will be discussed. Finally, the de-

coding stages will be evaluated individually and jointly in order to

analyze the two-stage integration. The experiments are based on the

optimized query-by-example configuration, cf. Table 4.

All of these design choices have in common that they affect the

number of patches P that have to be processed in the second decoding

stage. If relevant patches are excluded in the first stage, there is no

chance for compensation in the second stage. Thus, a trade-off with

respect to accuracy and computational complexity must be found.

Line hypotheses

Mixture component voting is based on indexing frame representa-

tions from line hypotheses. Given the height of the query, line hy-

potheses reduce the search space in comparison to the number of

dense patches that are regularly sampled from the entire document,

see Table 20. The generation of line hypotheses is designed such that

many overlapping line hypotheses are generated for each text hypothe-

sis with a height which is similar to the query height, cf. Section 4.2.2

and 4.6.1. This way, the average number of patches LR can be reduced

by 4.4% on the gw20 benchmark and by 16.3% on the bt50 benchmark.

Table 20 shows the average number of patches for Viterbi decoding
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using a regular grid of dense patches over the entire document and

the patch framework that samples patches from line hypotheses. It

is important to note that using line hypotheses does not affect re-

trieval performance as shown in Table 21. The differences between

relative reduction of the numbers of patches on gw20 (4.4%) and on

bt50 (16.3%) can be explained with the writing which is less dense

on bt50. This means that the distances between adjacent text lines are

typically larger in the bt50 documents than in the gw20 documents.

Since mixture component voting is based on line hypotheses, the

effect of using line hypotheses is not directly evaluated in the two-

stage decoding framework. Nevertheless, the results from Table 20

and 21 are still relevant for two-stage decoding. They show that the

document regions which are excluded due to the line hypotheses do

typically not contain any occurrences of the query word. Furthermore,

excluding regions from the first stage will typically reduce the num-

ber of re-ranked patches in the second stage. This is due to the selec-

tion of locally optimal patches in the first stage which also produces

detections in document regions that would not have been represented

by line hypotheses.

Soft NMS

The selection of locally optimal patches in the first stage influences

retrieval performance and computational efficiency. Mixture compo-

nent voting is very sensitive to any document image regions that are

visually similar to the query which leads to false positives. Therefore,

the size of the neighborhood for selecting locally optimal patches is

important. A large neighborhood leads to fewer detections in the first

stage but increases the risk of suppressing relevant patches. Due to

the sensitivity of the mixture component voting approach, a region

which is only partially similar to the query can still obtain a high sim-

ilarity score, e.g., due to individual characters.

In Section 4.6.4 this challenge has been addressed with soft NMS.

The key idea is to smooth the mixture component voting scores with

a Gaussian before applying a maximum filter that is smaller than the

Gaussian filter for NMS, cf. Equation 66 in Section 4.6.4. Strong local

optima in close proximity to each other are more likely to be detected

with a small maximum filter mask. The Gaussian is applied in order

to decrease the number of patches that are detected in the first stage

and have to be processed in the second stage. Table 22 and 23 show

the effect of soft NMS after the first decoding stage in order to achieve

the two-stage integration. The meta parameter ζ controls the filter

size. In this regard, ζ = 2 results in a filter that corresponds to the

patch size. Applying NMS with a maximum filter with ζ = 2 does not

allow for overlapping patches. Patches are allowed to overlap up to

50% with a maximum filter that uses ζ = 1.
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Table 22: Soft NMS efficiency

Maximum filter size
ζ

Gaussian filter size
ζ

gw20

P

bt50

P

1 2 1,667 821

1 − 4,804 2,106

2 − 1,614 735

Table 23: Soft NMS performance

Maximum filter size
ζ

Gaussian filter size
ζ

gw20

mAP [%]

bt50

mAP [%]

1 2 75.1 56.9

1 − 74.9 55.9

2 − 73.7 54.6

Table 22 shows the average numbers of patches P that have to be re-

ranked with the Viterbi algorithm for different NMS configurations on

the gw20 and the bt50 benchmarks. It can been seen that the number

of patches that have to be re-ranked with soft NMS (first row) is only

marginally larger than using NMS with a large maximum filter (ζ =

2). In comparison, the number of patches that have to be re-ranked

with a small maximum filter (ζ = 1) is considerably larger. At the

same time, soft NMS achieves the highest retrieval performance as

shown in Table 23. On gw20 the performance is even significantly better

(p̂ 6 0.05) than using (hard) NMS with a maximum filter with ζ = 2.

It is important to note that the results reported in Table 22 and 23

are obtained with the optimized query-by-example configuration that

uses a 3× 3 re-ranking mask. Thus, the number of patches in Table 22,

i.e., patches that have to be re-ranked, is around nine times larger than

the number of patches that are detected in the first stage. For example,

186 patches are retrieved in the first stage on the gw20 benchmark in

average.

Two-stage integration

The integration of the two decoding stages is based on re-ranking

potentially relevant patches from the first stage in the second stage.

Therefore, the computational complexity for the two-stage integra-

tion can be obtained by combining the computational complexity of

mixture component voting in the first stage with the computational

complexity of Viterbi decoding in the second stage as shown below,

cf. Section 4.6.4.

O(SM̂HMMM̂IFS + PFM̂Ŝ
2)
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Table 24: Average complexity measures

Measure gw20 bt50

HMM states per query word model (S) 44 50

Mixture components per HMM state (M̂HMM) 14 18

Mixture components per IFS entry (M̂IFS) 2,210 1,536

Re-ranked patches per document (P) 1,667 821

Frames per patch (F) 97 113

Mixture components per frame (M̂) 10 13

Possible transitions per HMM state (Ŝ) 2 2

Dense patches per document (LR) 68,335 29,178

Line hypotheses per line height (L) 949 713

Frames per line hypothesis (Tl) 667 611

The first part of the sum describes the complexity of mixture com-

ponent voting while the second part refers to the application of the

Viterbi algorithm to P patches. If the two decoding stages are applied

on entire documents individually, the computational complexity for

mixture component voting is O(SM̂HMMM̂IFS) and the computational

complexity for Viterbi decoding is O(LRFM̂Ŝ2). In order to evalu-

ate the average computational complexity for word spotting on the

gw20 benchmark and the bt50 benchmark, the average complexity

measures for the optimized query-by-example configuration on both

benchmarks are summarized in Table 24. The values are obtained by

averaging over all queries in the corresponding benchmarks.

Table 24 shows that the results for the two benchmarks are consis-

tent with each other. For two-stage decoding, the average number of

entries in the inverted file structure (M̂IFS) and the average number

of patches for re-ranking (P) are the dominating values. It should be

noted, that the number of patches for re-ranking is more important

since the complexity for Viterbi decoding is influenced by four fac-

tors whereas the complexity for mixture component voting is only

influenced by three factors. However, the values are orders of mag-

nitudes smaller than the average number of dense patches (LR) that

is dominating the computational complexity for Viterbi decoding on

the entire document image.

In order to assess the decoding approaches in general, the com-

putational complexity alone is insufficient. Since the different meth-

ods produce different retrieval results, the retrieval performance has

to be considered as well. For this purpose, Figure 46 plots the aver-

age computational complexity against the mAP for different decoding

strategies on the gw20 benchmark. These strategies include the two

decoding stages individually (denoted as IFS and VT) and their integra-

tions (denoted as IFS-VT) where different sizes of the re-ranking mask
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Figure 46: Average computational complexity versus retrieval performance
on the gw20 benchmark. The markers indicate complexity and
mAP for different BoF-HMM retrieval configurations. The first de-
coding stage is denoted as IFS and the second decoding stage is
denoted as VT. The size of the re-ranking mask is specified if the
two stages are applied jointly. It is important to note that the min-
imum and maximum values are adapted to the values of the data
points on both axes. The average complexity values are shown in
the logarithmic domain.

are used. It can be seen that mixture component voting achieves the

lowest computational complexity along with the lowest mAP. The ben-

efits of using Viterbi decoding in the second stage are considerable

(IFS-VT 1 × 1). The increase in the computational complexity comes

with a large improvement of the retrieval performance. Further, the

mAP increases with a 3× 3 re-ranking mask, which corresponds to

the optimized query-by-example configuration. Afterwards, the im-

provements are only marginal. It is important to note that the average

computational complexity increases considerably with each of these

decoding methods. One of the most important results is that the ref-

erence configuration (IFS-VT 3× 3) comes very close to the mAP of the

brute-force search with the Viterbi algorithm (VT) while the computa-

tional complexity is orders of magnitudes smaller.

The advantage of evaluating retrieval efficiency in terms of com-

putational complexity is that the measurement is independent of the

implementation, programming language and hardware. The disad-

vantage is that the absolute complexity values are hard to interpret

alone but have to be interpreted in comparison to each other. In order

to allow for an easier assessment of the applicability in practice, the

retrieval efficiency is also measured in average milliseconds (ms) per

query and document as shown for the gw20 and the bt50 benchmarks

in Table 25. For this purpose, it is assumed that the line representa-

tions and the corresponding inverted indices are stored in memory.
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Table 25: Two-stage decoding efficiency (query per page)

Method Re-ranking mask
gw20

time [ms]

bt50

time [ms]

Mixture voting (IFS) − 24 19

Viterbi decoding (VT) − 17,886 14,075

Two-stage (IFS-VT) 1× 1 477 293

Two-stage (IFS-VT) 3× 3 939 717

Two-stage (IFS-VT) 5× 5 1,908 1,542

Table 26: Two-stage decoding performance

Method Re-ranking mask
gw20

mAP [%]

bt50

mAP [%]

Mixture voting (IFS) − 64.1 34.1

Viterbi decoding (VT) − 75.4 57.6

Two-stage (IFS-VT) 1× 1 74.1 55.2

Two-stage (IFS-VT) 3× 3 75.1 56.9

Two-stage (IFS-VT) 5× 5 75.4 57.3

Mixture component voting is implemented in C++, the Viterbi algo-

rithm is implemented in the HMM toolkit ESMERALDA in C and the

application of both components for segmentation-free word spotting

is implemented in Python. The processor is an Intel(R) Xeon(R) CPU

E5-2650 v4 @ 2.20GHz.

The average retrieval times in Table 25 are approximately consistent

with the average computational complexities reported in Figure 46.

The large differences between mixture component voting and two-

stage decoding with a 1× 1 re-ranking mask can be explained with

the different execution times achieved in C++ and Python. While the

retrieval times for two-stage decoding can be considered as demand-

ing, retrieval times for processing all patches with Viterbi decoding

can be considered as infeasible.

In contrast to the retrieval times, the query estimation time does not

scale with the number of documents. On the gw20 benchmark, the

average time for obtaining the query model is 202 milliseconds. Thus,

overall, the time can be neglected.

It is important that the retrieval times in Table 25 are recorded for

processing a single document image by using a single thread in a

single process. However, the time for searching an entire document

collection can be improved if more than one document image is pro-

cessed in parallel which is directly possible with modern multi-core

CPUs. For example, the specified workstation CPU has 12 physical

cores. Thus, 10 pages can be processed in parallel without affecting
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the individual retrieval times. Regarding the query-per-page retrieval

times in Table 25, it should be noted that the CPU is intended for

parallel processing rather than for running few processes with high

speed.

In addition to the performance values in Figure 46, the mAP values

for the different decoding methods on the gw20 and the bt50 bench-

marks are presented in Table 26. An expected result is that mixture

component voting performs significantly worse (p̂ 6 0.05) than the

reference configuration (printed in a bold font) on both benchmarks.

However, the improvement achieved with a 3 × 3 re-ranking mask

over the performance achieved with a 1× 1 re-ranking mask is not sig-

nificant (p̂ > 0.05). Therefore, the two-stage integration with a 1× 1

re-ranking mask achieves the best trade-off between computational

efficiency and retrieval performance. The reference configuration em-

phasizes retrieval performance.

Since retrieval in the two-stage process is based on the results in the

first stage and the two-stage integration (IFS-VT 3× 3) achieves similar

results as processing the entire documents with Viterbi decoding (VT),

mostly all relevant document regions that can be detected with the

brute-force search (VT) can also be detected with mixture component

voting (IFS). Thus, the first stage performs retrieval with high speed

and high recall. The mean recall for the complete retrieval lists on

gw20 is 88.7% with mixture component voting alone and 89.7% with

the two-stage integration (IFS-VT 3× 3). The difference shows that even

patches which are positioned inaccurately in the first stage, can still

be refined successfully in the second stage.

Finally, the memory requirements for storing line representations

and inverted indices have to be analyzed. As presented at the end

of Section 4.6.3, the memory complexity is 5 · O(LTlM̂). Given the

average complexity measures in Table 24, the average memory re-

quirement per document image and line height can be computed for

the optimized query-by-example configuration. Assuming that each

number is represented with 32 bit, storing the line representation and

the inverted index requires an average of 121 megabytes on gw20 and

an average of 108 megabytes on bt50 per line height and document.

Since the average number of different line heights per document is 55

on gw20 and 45 on bt50, several terabyte of disk space with very high

read-speed are required in order to store all precomputed document

representations for a large document collection of several hundred

pages. Given that many line heights will never be used for word spot-

ting at all, a simple approach that will not affect retrieval performance

is to compute line representations on demand.

Table 27 shows the average processing times for computing line

representations with the visual-word mixture model and the inverted

index for the line hypotheses of a single line height per document.

The visual-word mixture model requires the computation of a his-
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Table 27: Representation efficiency (line height per page)

Method
gw20

time [ms]

bt50

time [ms]

Visual-word mixture model 1,123 986

IFS indexing 259 229

togram for each frame in all line hypotheses. The inverted index is

built by iterating over all non-zero mixture components in all frames

while recording the spatial frame coordinates as well as the mixture

component probabilities in the IFS entries for the corresponding mix-

ture components. The processing times are obtained under the same

prerequisites as the processing times in Table 25. The algorithms are

implemented in C++ and are run in a single thread. If line represen-

tations and inverted indices are computed on demand, the average

time for searching a document image is obtained by adding the pro-

cessing time for the corresponding decoding method in Table 25 and

the processing times in Table 27. It should be noted that the on-de-

mand computation can be considered as computationally infeasible

for any other mixture model than the visual-word mixture model.

In comparison, the evaluation of the EDCM mixture model with 512

mixture components takes in average 35 seconds per line height and

document on gw20. This processing time also includes the time which

is required for computing BoF representations for each frame.

5.3.10 Region snapping

Region snapping is applied in cases where highly accurate detections

are required, cf. Section 4.6.5. The document regions obtained after

Viterbi decoding are refined for this purpose. In order to do so, these

spotted region bounds are snapped to the bounds of text hypothe-

ses. Text hypotheses are extracted from the document images in a

bottom-up manner and are, therefore, independent of the query, see

Section 4.2.1. Since text hypotheses can represent arbitrary parts of

text and also background clutter, the spotted region is not snapped to

a single text hypothesis but each region boundary (left, right, top, bot-

tom) is snapped to a corresponding region boundary of any suitable

text hypothesis. The selection of suitable hypotheses is performed ac-

cording to different criteria which will be evaluated in the following.

The experiments are based on the optimized query-by-example con-

figuration, cf. Table 4. Quantitative results are reported for the bt50

benchmark in Table 28. In this regard the high detection accuracy is

demonstrated by adapting the relevance criterion in the evaluation

protocol, cf. Section 5.1.1. In addition to reporting results for 50% IoU

(ι = 0.5), results are also reported for 70% IoU (ι = 0.7). Only a quali-
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Table 28: Region snapping

Region snapping area
ηsize

Region snapping weight
ηweight

bt50

mAP [%]

ι = 0.5

bt50

mAP [%]

ι = 0.7

− − 56.4 46.2

0.0 0.1 39.1 21.6

1.0 0.1 56.9 52.7

2.0 0.1 57.2 53.1

1.0 0.0 56.8 53.0

1.0 0.5 56.4 51.3

1.0 1.0 56.3 51.2

tative evaluation is performed on gw20, see Figure 47. This is due to

inaccurate bounding box annotations of the benchmark.

Table 28 shows the results for the region snapping area meta param-

eter and the region snapping weight meta parameter. Depending on

the height of the spotted region, the snapping area parameter is a

factor that defines the document image context for selecting suitable

hypotheses. The bounds that the region will be snapped to are de-

termined according to a distance criterion and a size criterion. The

snapping weight parameter controls the influence of both criteria in

the joint indicator. Table 28 shows that region snapping does gen-

erally not make a significant difference (p̂ > 0.05) for 50% IoU on the

bt50 benchmark. However, an important result is that the absolute dif-

ference of 6.5% mAP between the performance with region snapping

(reference configuration, printed in a bold font) and without region

snapping is significant (p̂ 6 0.05) for 70% IoU. With respect to the ef-

fect of the meta parameters, the only parameterization that achieves

a significantly worse result than the reference configuration is obtained

for the region snapping area with ηsize = 0.0. This is due to the limited

flexibility if only text hypotheses are selected that are located within

the region that was obtained with Viterbi decoding.

However, the parameter evaluation for bt50 is not necessarily rep-

resentative. Since the text hypotheses are not selected according to

similarity to the query, the performance strongly depends on the

characteristics of the text in the document images. The results for

the parameterizations reported in Table 28 can be explained with the

typically large spacing between the text lines in the bt50 dataset.

The qualitative evaluation on gw20 demonstrates the challenges for

a writing style which is more dense. Figure 47a shows that the size

of the snapping area can have unwanted effects if the area is either

too small or too large. With respect to the region snapping weight,

Figure 47b shows that the aspect ratio of the snapped regions is more

uniform if the influence of the size criterion becomes stronger. This
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ηsize = 0.0 ηsize = 2.0

(a) Region snapping area

ηweight = 0.1 ηweight = 0.5

(b) Region snapping weight

Figure 47: Region snapping. The figure shows a qualitative parameter eval-
uation on the gw20 benchmark. Only a single parameter is
changed at a time. The reference configuration is the same as
in Table 28, i.e., ηsize = 1.0 and ηweight = 0.1. The region snapping
area (a) defines the size of the context for selecting text hypothe-
ses. The region snapping weight (b) controls the emphasis of the
text hypothesis size criterion. The colored rectangles indicate the
snapped regions. Regions that are filled in red are relevant accord-
ing to the 50% IoU measure which is used in the gw20 evaluation.

can be an advantage for being robust with respect to text hypothe-

ses that represent background clutter but can be a disadvantage for

detecting long ascenders and descenders accurately, cf. Figure 47b.

The parameterization for the reference configuration, i.e., ηsize = 1.0

and ηweight = 0.1, emphasizes the distance criterion since the snapped

region will typically be more similar to the region that has been re-

trieved with the Viterbi algorithm. This region is more likely to be rel-

evant to the query than the regions in the local neighborhood. Since

these regions have been suppressed with NMS they are less similar

with respect to the query model.

5.4 results

The results for segmentation-free word spotting with BoF-HMMs are

presented on five benchmark datasets, see Section 5.2. For this pur-

pose, the meta parameters are chosen according to the evaluations

in Section 5.3, cf. Table 4. The only parameter that requires dataset

specific adjustments is the SIFT descriptor size, see Section 5.3.3. A

method for obtaining a size estimate is based on the typical height of

the text core area. This automatic estimate is used in order to apply

BoF-HMMs to an unknown dataset (Section 5.4.1).
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Based on the optimized query-by-example configuration, the focus

is to compare the performance achieved with the BoF-HMM to the

performance achieved by a baseline method and to the performance

achieved by related methods from the literature. The baseline method

allows for comparing BoF-HMMs to a different model without chang-

ing the underlying features and the patch-based decoding framework

(Section 5.4.2). The comparison to related methods from the literature

is possible due to the use of established word spotting benchmarks.

The George Washington (gw20) dataset allows for comparing word

spotting performance in the query-by-example scenario and in the

query-by-string scenario (Section 5.4.3). Furthermore, the keyword

spotting competitions attracted a lot of attention in the word spotting

community and allow for comparing performance with many word

spotting methods. The Jeremy Bentham manuscripts have been con-

sidered in the 2014 competition (bt50) and in the 2015 competition

(bt70). Word spotting performance will be compared in the query-

by-example scenario (Section 5.4.4). Query-by-example and query-by-

string benchmarks from the 2016 competition are considered for the

comparison on the Konzilsprotokolle (kp20) dataset and on the Botany

(bo20) dataset (Section 5.4.5).

The differences between the BoF-HMM performance and the perfor-

mance of the baseline method are analyzed with permutation tests

(p̂ 6 0.05), see Section 5.1.2. Permutation tests cannot be applied for

analyzing performance differences with related methods. The indi-

vidual query result are unavailable for these methods. Apart from the

quantitative evaluation, an impression of the BoF-HMM performance

will be given in a qualitative evaluation. The top-ten retrieval results

for a query word image are shown for each dataset.

5.4.1 Descriptor size estimation

Obtaining a locally optimal SIFT descriptor size requires an annotated

validation set that is representative for the corresponding document

collection. The gw20 benchmark and the bt50 benchmark have been

used for this purpose in Section 5.3. Since the bt70 dataset belongs

to the same document collection as the bt50 dataset, the evaluation

on bt50 can be considered as representative for bt70. The scenario

in which no annotated validation set is available will be simulated

for the kp20 and the bo20 benchmarks. This can be seen as the typi-

cal scenario when a collection of document images is explored with

automatic methods for the first time. In order to make BoF-HMMs di-

rectly applicable in this targeted scenario, an automatic estimation of

the SIFT descriptor size is required. Since the descriptor size is related

to the typical text height, an estimate of the typical height of the text

core area can be used. For this purpose, it is assumed that the text is

mostly written in lines. In a text line, the core area is the zone where
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Table 29: Text core height estimation

Percentile
qprofile

gw20

height

bt50

height

bt70

height

kp20

height

bo20

height

20 22 34 33 52 53

25 24 35 35 59 55

30 26 35 35 66 53

Table 30: SIFT descriptor size estimates

Estimate gw20 bt50 bt70 kp20 bo20

Text core height 24 34.7 34.3 59 53.7

Descriptor size 24 32 32 56 56

most character cores are located, i.e., above the character descenders

and below the character ascenders, cf. [FB14, Fig. 12.3]. The descriptor

size refers to the edge length of the square descriptor area in image

pixels.

The height estimate is based on horizontal projection-profiles, cf.

[Kis14]. A projection-profile is computed for each gray-scale docu-

ment image. Provided that the pen-stroke is represented with low

image intensity values, text lines will be represented as valleys and

document background regions will be represented as elevations in

the projection-profile. A simple approach to text line detection is to

threshold the projection-profile at a lower percentile qprofile of the dis-

tribution of projection-profile values. The height estimate for each

detection is given by the run-length of projection-profile values that

fall below the threshold obtained at percentile qprofile. It is important

to note that the estimated heights strongly depend on the chosen per-

centile. For this reason, the global height estimate is obtained at an

upper percentile qheight = 100− qprofile of the estimated text height dis-

tribution of the height estimates across all documents. Choosing per-

centile qheight in dependence of qprofile leads to a larger global height

estimate if the height distribution is dominated by smaller heights

and a smaller global height estimate if the height distribution is dom-

inated by larger heights.

Table 29 presents the global height estimates for all benchmarks

considered. The evaluation of three different percentiles shows that

the estimation leads mostly to stable results. The largest deviations

can be observed for the kp20 benchmark which is due to the frequent

and typically long ascenders and descenders in German Kurrent. For

each benchmark, the descriptor size estimate is obtained by round-

ing the average of the three height estimates to any of the descriptor

sizes {16, 24, 32, . . . }, as shown in Table 30. It can be noted that the de-

scriptor size is underestimated on gw20 in comparison to the locally
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optimal descriptor size 48 that has been determined in Table 6. This is

due to the low visual variability in the gw20 document images that al-

lows for performance improvements with larger and, therefore, more

specific descriptors as explained in Section 5.3.3. Since the gw20 data-

set has been used for optimizing meta parameters in Section 5.3, also

the following results on gw20 are obtained with the locally optimal de-

scriptor size. As expected, the document images in the bt50 and bt70

benchmarks have characteristics which are very similar to each other.

The descriptor size estimates are consistent with the locally optimal

descriptor size that was obtained for the bt50 benchmark. Results on

the kp20 and bo20 datasets are obtained with the estimated descriptor

size 56, see Table 30. An evaluation of the descriptor sizes for bt70,

kp20 and bo20 can be found in Table 48 in Section A.2.

5.4.2 Baseline method

Representing a word image with a BoF-HMM can be seen as a dy-

namic probabilistic extension of a spatial pyramid, see Section 5.3.5.

The baseline method is based on a spatial pyramid and uses a tem-

poral cell structure that resembles the temporal modeling structure

of the BoF-HMM. For this purpose, the baseline method uses the same

descriptors, the same visual vocabulary, the same patch sizes and

the same patch sampling steps which are used for segmentation-free

word spotting with the optimized BoF-HMM query-by-example config-

uration. The query word image and all patches are represented with

the temporal spatial-pyramid adaptation. Similarity of the patch rep-

resentations with respect to the query word representation is com-

puted with cosine similarity, cf. Section 3.3.1. In analogy to word

spotting with BoF-HMMs, cf. Section 4.6.4, the patch score matrix is

smoothed with an anisotropic Gaussian that corresponds to the size

of the query word image, cf. [RAT+15a]. Locally most similar patches

are retrieved with NMS such that the retrieved patches do not overlap

with each other. Patches are retrieved directly without an additional

patch refinement step.

While the patch-based framework of the baseline method corre-

sponds to the patch-based framework that is used for word spotting

with BoF-HMMs, an important question is how to adapt the spatial

pyramid to the characteristics of text. Two spatial pyramid extensions

which have a large impact on word spotting performance [ART+15]

are evaluated in Table 31. The cell configuration controls the temporal

resolution of the representation and the power normalization controls

the influence of large vector components. Since the baseline method is

intended as a reference for word spotting performance, computational

efficiency is not a major consideration. Therefore, the evaluation is

performed on the bt50 benchmark which contains only a relatively

small number of queries, see Section 5.2.2.
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Table 31: Baseline method optimization

Cell configuration
Power normalization

α

bt50

mAP [%]

(1× 1, 1× 2) 0.35 39.3

(1× 4) 0.35 45.6

(1× 4) 0.1 45.6

(1× 4) 1.0 41.0

The segmentation-free approach for the baseline method is mostly

inspired by the patch-based word spotting method that was presented

in [RAT+15a]. Document image regions are represented with a tem-

poral pyramid with a global cell on the first level and two cells that

split the region into left and right on the second level. However, follow-

ing the results in [ART+13; ART+15] and also [SF17], a larger number

of cells leads to a better temporal resolution and better word spot-

ting performance. Table 31 shows an evaluation where the pyramidal

cell configuration used in [RAT+15a] is compared to a temporal cell

configuration with just a single level but four consecutive cells. The

design is inspired by the BoF-HMM that also does not use a pyramidal

structure but represents the temporal structure with states. Table 31

shows that the temporal cell structure significantly outperforms the

pyramidal cell structure on the bt50 query-by-example benchmark.

According to the results in [ART+15], it can be expected that increas-

ing the number of cells beyond four, will also increase the word spot-

ting performance. However, increasing the number of cells has a sub-

stantial impact on the dimensionality of the holistic representation.

With the visual vocabulary from the optimized BoF-HMM configura-

tion, each patch is represented with a 4 · 4096 = 16, 384 dimensional

vector. Provided that 29,178 patches per page have to be processed for

word spotting on bt50 in average, see Table 24 in Section 5.3.9, this

dimensionality can already be considered as extremely demanding.

Another spatial pyramid extension which has been applied to word

spotting is power normalization [ART+13; ART+15]. Provided that

all vector components are non-negative, the key idea is to normalize

each vector component with a power normalization exponent α with

0 < α < 1. Power normalization is disabled for α = 1. Due to the char-

acteristics of the root functions which are represented by the power

of α, large absolute frequencies in the spatial pyramid are discounted

more than small absolute frequencies. This has a positive effect since

high individual frequencies tend to dominate the similarity measure.

For example, in BoW representations this is typically addressed with

stop word filtering or inverse-document-frequency term weighting,

cf. [BR11, Sec. 3.2]. For word spotting with spatial pyramid represen-

tations, power normalization can lead to performance improvements
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Retrieval listQuery

Figure 48: Qualitative result on the gw20 benchmark. The retrieval list is
showing the top-ten results. The list is organized in two rows
such that the top-five results are in the first row and similarity
decreases from left to right. Detections that are considered as rel-
evant are shown with a green frame, an irrelevant detection is
shown with a red frame.

without increasing the computational complexity [ART+15]. Table 31

confirms this observation for the normalization exponent that was

used in [ART+15]. Power normalization with α = 0.35 improves word

spotting performance on bt50 significantly (p̂ 6 0.05).

In the following, the baseline method will be evaluated for all

query-by-example benchmarks considered. The comparison of the

baseline method to segmentation-free word spotting with BoF-HMMs

allows to assess the benefit of patch-based decoding with the Viterbi

algorithm. In this regard, the most important distinguishing charac-

teristic is the possibility to infer the most likely occurrence of the

query word within a patch.

5.4.3 George Washington letters

The George Washington letters are widely used for evaluating word

spotting performance, cf. [GSG+17]. The gw20 benchmark, see Sec-

tion 5.2.1, defines a protocol for evaluating segmentation-free word

spotting on document level on the 20 pages. The benchmark has been

used for meta-parameter optimization in Section 5.3.

Figure 48 shows a qualitative result for the query word image

which has been used in order to illustrate word spotting methods

throughout the previous chapters. The result gives an impression of

the relatively homogeneous visual appearance of text in the gw20

dataset. This makes the gw20 document images highly suitable for

query-by-example word spotting without annotated training material.

The only irrelevant detection in the top-ten results is an occurrence of

the word plan which is quite similar to the query word image.

Table 32 shows the quantitative comparison to related methods

from the literature which follow the same evaluation protocol for seg-

mentation-free query-by-example word spotting. Besides the word

spotting performance, average retrieval times for processing a single

query on a single document image are provided. The results show

that the optimized BoF-HMM configuration, i.e., the two-stage integra-

tion with a 3× 3 re-ranking mask, outperforms all related methods
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Table 32: Query-by-example results on George Washington

Method
query/page

time [ms]

gw20

mAP [%]

Baseline > 60,000 70.2

BoF-HMM (IFS) 1,406 64.1

BoF-HMM (IFS-VT 1× 1) 1,859 74.1

BoF-HMM (IFS-VT 3× 3) 2,321 75.1

BoF-HMM (VT) 19,268 75.4

Spatial pyramid indexing [RAT+15a] 3 61.4

Exemplar SVM [AGF+14b] 86 59.1

Scale-space pyramid [RKE16] 115 56.0

Random projections [KWD14] 80 50.1

in terms of word spotting performance by a large margin. Due to the

small word size variability in the gw20 dataset, all related methods

but one are built on patch-based frameworks with a fixed patch geom-

etry. The exemplar SVM [AGF+14b] and the scale-space pyramid [RKE16]

use an individual patch size for each query while the spatial pyramid

indexing method [RAT+15a] uses one out of four different patch sizes

for each query. Only the random projections method [KWD14] uses

word hypotheses. For this purpose, the document images have to be

binarized which is one possible explanation for the low performance

of the method. The comparison between the baseline method and

the best BoF-HMM configuration shows that patch decoding with the

Viterbi algorithm offers advantages over a static patch retrieval frame-

work. The difference is significant (p̂ 6 0.05).

The average retrieval times show that the high word spotting per-

formance of the BoF-HMM comes at the cost of computational effi-

ciency. The retrieval times for the BoF-HMM and the baseline method

have been recorded under the same hardware and implementation

prerequisites as in Section 5.3.9. In order to show results for a sce-

nario with a common memory setup, e.g., 16 gigabyte RAM, the re-

trieval times refer to a configuration where line representations and

inverted indices are not cached but computed on demand. Retrieval

times refer to processing within a single thread in a single process.

The parallelization capabilities of the CPU are not taken advantage

of. The results in Table 32 can be seen a worst case estimate for this

reason. Based on the results in Table 25 in Section 5.3.9, the best case

estimate for the optimized BoF-HMM configuration on the specified

CPU9 is around 100 milliseconds (ms) per query and page. The esti-

mate is obtained assuming that line representations and inverted in-

dices can instantly be loaded in memory and 10 document images are

9 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
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Table 33: Query-by-string results on George Washington

Method Regions
Annotations
words in avg.

gw20

mAP [%]

BoF-HMM Mixture voting 1,215 72.4

BoF-HMM Mixture voting 3,645 83.3

Region prop. net. [WLB17] Word hypotheses 3,645 91.0

PHOCnet [RSR+17] Word hypotheses 3,645 84.6

Region prop. net. [WLB17] Word hypotheses 1,215 73.8

processed in parallel. If only the parallelization capabilities are taken

into consideration but all line representations and inverted indices

are computed on demand, average retrieval times of around 140 ms

(IFS), 190 ms (IFS-VT 1× 1) and 230 ms (IFS-VT 3× 3) per query and page

are suitable for searching larger document collections. An important

result is that the two-stage integration makes the application of the

BoF-HMM feasible, even if a CPU with less than 12 cores is used for

parallel processing. It should be noted that the retrieval times for the

related approaches could be improved with parallelization as well.

In [AGF+14b] computational efficiency is achieved by compressing

features with product quantization (PQ), see Section 3.3.3. The same ap-

proach is extended with a multi-scale search-space refinement strat-

egy in [RKE16]. In addition to feature compression, PQ allows for

even faster retrieval times by computing approximate patch-similarity

scores [RAT+15a]. This is achieved by precomputing similarities be-

tween the sub-quantizer codewords [JDS11], also see Section 3.4.1,

and storing them in a look-up table. The random projections method

[KWD14] is computationally efficient due to the number of word hy-

potheses per page which is small in comparison to the number of

possible patches per page. Word hypothesis representations are com-

pressed through randomized projections and randomized max pool-

ing. Finally, it has to be noted that the retrieval times reported for

the baseline method are not obtained per query but for all queries

that share the same retrieval patch size, see Table 32. Therefore, the

processing time of one minute per query and page is a lower estimate.

The results for segmentation-free query-by-string word spotting on

document level are compared with two state-of-the-art methods in Ta-

ble 33. These methods have been evaluated with the same evaluation

protocols as the BoF-HMM, see Section 5.2.1. The 15-5 cross validation

defines four cross-validation folds such that each training set contains

15 document images with 3,645 annotated word images in average as

shown in Table 33. The 5-15 cross-validation is used in order to eval-

uate the performance with limited training data. The training sets

contain five document images with 1,215 annotated word images in

average.



182 evaluation

Both of the two methods considered in the comparison [WLB17;

RSR+17] use attribute embeddings, such as pyramidal histogram of char-

acters (PHOC), in order to represent the query word and word hypothe-

ses. The attribute vector for the word hypotheses is predicted with a

CNN, see Section 3.2.3. The most important difference between both

methods is the generation of the word hypotheses, cf. Section 3.1.3.

The region proposal network [WLB17] generates word hypothe-

ses with 15 different aspect ratios and sizes, also cf. [RHG+15]. Each

hypothesis is represented with bounding box coordinates, a wordness

score and the attribute embedding vector which serve as a basis for

end-to-end training. However, the recall achieved with these region

proposals can still be improved by adding so-called dilated text propos-

als [WLB17]. Dilated text proposals are obtained by generating text

hypotheses based on connected components and classifying them ac-

cording to word and non-word with a CNN. The dilation of the text

proposals is an adaptation of the method to the annotations in the

gw20 benchmark which are arbitrarily padded with document image

background [WLB17].

The method presented in [RSR+17] uses the PHOCnet and is in-

spired by the region-based CNN [GDD+16] framework where the region

proposal generation is independent of the region representation. The

word hypothesis generation is based on the same method that has

been presented for generating text hypotheses in Section 4.2.1. The

major difference is the use of learned word detection scores which are

used in addition to the SIFT contrast scores. The result in Table 33 is

obtained by combining contrast scores with attribute activation scores.

A dense grid of scores in a document image is given by the attribute

activations with maximum value for each attribute vector in the out-

put feature map of a fully convolutional PHOCnet [RSR+17].

Table 33 shows that both methods outperform the BoF-HMM in the

segmentation-free query-by-string scenario on gw20. However, the

BoF-HMM achieves similar performance as the PHOCnet with the 15-

5 cross-validation and similar performance as the region proposal

network with the 5-15 cross-validation that limits the amount of an-

notated training data. A possible explanation for the performance

differences of all three methods is the different degree of training

visual representations and semantic representations in an end-to-end

fashion. The region proposal network achieves the highest integration

and is, therefore, also sensitive to the amount of annotated training

samples. Training the region proposal network with only 1,215 sam-

ples has only been possible by adapting a network which has been

pretrained on a large corpus of synthetically generated data [WLB17].

In contrast, the BoF-HMM is mainly intended for the query-by-exam-

ple scenario where the query word model is estimated from just a

single sample.
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(a) Bentham 2014 (bt50)

Retrieval listQuery

(b) Bentham 2015 (bt70)

Figure 49: Qualitative results on the Bentham manuscripts. The top-ten re-
trieval lists are shown for an exemplary query of the bt50 bench-
mark (a) and of the bt70 benchmark (b). The retrieval lists are or-
ganized in two rows where the top-five results are shown in the
first row and the similarity with respect to the query decreases
from left to right. Relevance of the detections according to the
benchmark annotations is indicated with green and red frames.

5.4.4 Jeremy Bentham manuscripts

The Bentham manuscripts have been used in the keyword spotting

competitions at the conferences of the document analysis community

in the year 2014 [PZG+14] and in the year 2015 [PTV15b], see Sec-

tion 5.2.2. The evaluation protocols which have been used in these

competitions put an emphasis on detection accuracy. In addition to

a comparison according to these original protocols, a comparison to

related methods will be given according to the standard 50% IoU rel-

evance criterion, as defined in Section 5.1.

Figure 49 shows qualitative results on the two benchmarks. The

results give an impression of the dataset characteristics. These can

be considered as a challenge. The BoF-HMM has to generalize across

writing styles based on a single example of the query. This capability

is illustrated for the relevant detection at retrieval list position five

for the example on bt50, see Figure 49a. The instance of the query

word has a very different visual appearance than the query word

image. The detection at retrieval list position six is considered as ir-

relevant because the query is only appearing within a longer word.

The irrelevant detections for both queries share visual features with

the corresponding query word images. Furthermore, the detection of

word boundaries is very accurate due to region snapping, particularly

in Figure 49b. The large word size variability can be noted.

Table 34 to Table 37 show the comparison of the BoF-HMM with

the baseline method and related methods from the literature. The

results for the related methods in Table 34 and 36 are published in

[ZPG17]. The results for the related methods in Table 35 are published
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Table 34: Query-by-example results on Bentham 2014

Method Regions
bt50

mAP [%]

Baseline Dense patches 45.6

BoF-HMM Mixture voting 56.9

Local feature matching [ZPG17] Descriptor matches 51.7

Random projections [KWD14] Word hypotheses 42.3

Inkball models [How13] Dense patches 40.9

Cohesive elastic matching [PDF+14] Word starting positions 39.7

Cohesive elastic matching [LOL+09] Word starting positions 22.1

in [VTP15], cf. [PZG+14], and the results for the related methods in Ta-

ble 37 can be found in [PTV15b]. The BoF-HMM configuration has been

optimized for the bt50 benchmark in Section 5.3. The emphasis in the

competitions is generally on word spotting performance rather than

on computational efficiency. The optimized BoF-HMM configuration

has a similar emphasis with the 3× 3 re-ranking mask which is used

in the two-stage integration. From all methods in the comparison on

bt50 and bt70, only the method presented in [VTP15] uses annotated

training material besides the query word image, cf. Table 35.

Table 34 shows the results for segmentation-free word spotting on

the bt50 dataset with a 50% IoU relevance criterion. Besides the BoF-

HMM, only the local feature matching method [ZPG17] achieves a mAP

higher than 50%. This method is designed for handling larger word

size variabilities which fits with the characteristics of the Bentham

manuscripts. The method works in two stages. Potential occurrences

of the query word are detected in a first stage based on descriptor

matches between the query word image and the document images.

In the second stage, the matching process is refined with respect to

differently sized contexts around the potential query word detections

from the first stage. Within such a context the spatial locations of

the descriptors are size normalized with respect to the correspond-

ing detection points. Given the size-normalized descriptor locations

in the query word image, a similarity score for each detection point

and context is obtained by considering only those descriptor matches

that are spatially consistent in the size-normalized coordinate sys-

tems, cf. Section 3.3.1. Due to the spacious writing style in the Ben-

tham manuscripts, it is unlikely that the search contexts interfere with

adjacent text lines. This characteristic is also beneficial for comput-

ing word hypotheses in the random projections method [KWD14]. The

inkball model [How13] is inspired by deformable part-based models

for object detection [FGM+10]. By computing the costs for generating

pen-strokes with the model, document image regions that are visu-

ally similar to the query can be detected in a patch-based framework.
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Table 35: Query-by-example results on Bentham 2014 (original)

Method Annotations
bt50

mAP [%]

ιA = 0.7

Baseline 1 word 41.7

BoF-HMM 1 word 54.9

HMM word graphs and LM [VTP15] 8,019 lines 71.5

Random projections [KWD14] 1 word 41.9

Inkball models [How13] 1 word 37.2

Cohesive elastic matching [PDF+14] 1 word 34.7

Cohesive elastic matching [LOL+09] 1 word 20.9

Inkball models are also created for the most similar patches which

are then verified against the query word image. The cohesive elastic

matching [LOL+09] method uses an approach to local feature match-

ing which is similar to the approach in [ZPG17]. Given the relative

positions of local features in the query word image with respect to the

query word starting point, only those features are considered for the

matching process that are spatially consistent with word starting posi-

tions that have been detected in the document image, cf. Section 3.3.1.

The large performance difference for two applications of cohesive elas-

tic matching in [LOL+09] and [PDF+14], see Table 34, is an example

for the potentially strong influence of manual meta-parameter tuning.

In this regard, the robustness of BoF-HMMs has been demonstrated in

Section 5.3. Only the adaptation of a single meta parameter, i.e., the

SIFT descriptor size, leads to significantly different word spotting re-

sults on two datasets with very different characteristics, see Table 6

in Section 5.3.3. Besides the random projections method, all of the ap-

proaches in Table 34 can be considered as computationally expensive.

Table 35 presents the results that have been obtained with the rele-

vance measure that has originally been used in the 2014 competition.

In contrast to intersection over union, the intersection between two

regions is not normalized with the union of the two regions but only

with the area of the relevant region from the benchmark annotations.

This is indicated as ιA in Table 35. It should be noted that this gives

an advantage to methods that tend to detect larger regions in contrast

to methods that detect regions which fit the detected word instances

tightly. In accordance with [PZG+14], the results have been obtained

with a 70% relevance threshold.

The results in Table 35 are consistent with the results in Table 34.

Furthermore, a comparison with an HMM-based query-by-example

method [VTP15] is presented. Given a lexicon, the method computes

a word graph for all text line images. The line images are automati-

cally segmented from the document images. Based on an n-best recog-
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Table 36: Query-by-example results on Bentham 2015

Method Regions
bt70

mAP [%]

Baseline Dense patches 30.4

BoF-HMM Mixture voting 39.4

Local feature matching [ZPG17] Descriptor matches 32.6

Spatial pyramid matching [SF15] Word segmentation 29.3

Spatial pyramid matching [ART+13] Dense patches 11.6

nition of the query word image, the joint probability of possible tran-

scriptions of the query word image and the occurrence of the recog-

nized words in the text line can be obtained, cf. Section 3.3.2. The

high word spotting performance comes at the cost of a large train-

ing corpus which is annotated at line level. A large text corpus for

estimating a language model (LM) is required in addition. The dataset

for HMM training originates from the Bentham manuscripts. The data-

set for training the LM contains texts from the Bentham manuscripts

along with other text corpora [VTP15]. It is important to note that

these requirements are hardly met in a word spotting scenario where

an unknown document collection should be explored. Thus, the word

graph method is intended for a different scenario than the scenario

targeted by the other approaches in Table 34 and 35. Among these

methods, the BoF-HMM clearly achieves the highest performance.

Table 36 shows the results for segmentation-free query-by-exam-

ple word spotting on the bt70 dataset with a 50% IoU relevance cri-

terion. Besides the local feature matching [ZPG17] method, all other

related methods, including the baseline method, are based on spatial

pyramids. While all of the spatial pyramid adaptations are very high-

dimensional, the major difference between the methods lies in the

computation of region hypotheses in the document images. The most

effective approach is used for spatial pyramid matching [SF15] where

words are automatically segmented from document images based on

a connected components analysis. The spacious writing in the Ben-

tham manuscripts makes the heuristic segmentation feasible while

the number of segments is limited. This is advantageous for handling

the 49, 152-dimensional representations. The spatial pyramid matching

[ART+13], cf. [PTV15b], approach goes even further by concatenating

spatial pyramid representations for four different descriptor sizes. In

the patch-based framework, only a limited number of different patch

sizes can be handled due to the 172, 032-dimensional representations.

In contrast, the baseline method uses an individual patch size for each

query. Each patch is represented with a 16, 384-dimensional vector. Ta-

ble 36 shows that the BoF-HMM outperforms all of these methods by a

large margin.
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Table 37: Query-by-example results on Bentham 2015 (original)

Method Regions
bt70

mAPip [%]

ι = 0.7

Baseline Dense patches 23.5

BoF-HMM Mixture voting 37.4

Spatial pyramid matching [SF15] Word segmentation 27.6

Patch-based matching [GP09] Dense patches 10.2

Spatial pyramid matching [ART+13] Dense patches 8.5

The results in Table 37 are obtained with a 70% IoU relevance thresh-

old in accordance with evaluation protocol in the 2015 competition. In

comparison to the results in Table 36 (50% IoU), the performance drop

of the BoF-HMM is small in comparison to the performance drop of the

baseline method. This emphasizes the importance of refining patches

with Viterbi decoding and region snapping. The difference of mAP

and mAPip is 0.4% for the BoF-HMM.

The patch-based matching [GP09] method uses an individual patch

size per query and performs template matching based on image in-

tensity values. The results for the spatial pyramid matching methods

[SF15; ART+13] are consistent with Table 36.

The results on the bt50 and bt70 datasets demonstrate the word

spotting capabilities of the BoF-HMM in a very challenging word spot-

ting scenario. The BoF-HMM outperforms all methods besides the HMM

word graphs. However, instead of a single annotated sample for model

estimation, large training corpora for HMM training and LM training

are required. The word graphs are based on a lexicon which is repre-

sentative for the words appearing in the Bentham manuscripts. While

the BoF-HMM meta-parameters have been subject to optimization on

bt50, no further optimization has been performed for bt70. In com-

parison to the baseline method, the benefits of patch refinement with

Viterbi decoding and region snapping are particularly distinctive. All

differences are significant (p̂ 6 0.05). With a 70% relevance threshold,

the relative improvements over the baseline method of 31.7% (13.2%

absolute) on bt50 and 59.1% (13.9% absolute) on bt70 can be seen as

major advancements. BoF-HMMs are orders of magnitudes more effi-

cient than the baseline method.

5.4.5 Konzilsprotokolle and Botany

The Konzilsprotokolle dataset and the Botany dataset have been used

in the 2016 keyword spotting competition [PZG+16]. The focus of the

competition was to analyze how word spotting methods make use

of different amounts of annotated training material. For this purpose,
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Retrieval listQuery

(a) Konzilsprotokolle (kp20)

Retrieval listQuery

(b) Botany (bo20)

Figure 50: Qualitative query-by-example results on the Konzilsprotokolle
and Botany datasets. The top-ten retrieval results are shown for a
query on the kp20 benchmark (a) and for a query on the bo20

benchmark (b). The retrieval lists are organized in two rows
where the top-five detections are shown in the first row and sim-
ilarity with respect to query decreases from left to right. Corre-
sponding to the benchmark annotations, the relevance of the de-
tections is indicated with green and red frames.

differently sized training sets are available for the query-by-example

and query-by-string benchmarks on both datasets, see Section 5.2.3.

Word spotting with BoF-HMMs is based on the optimized configura-

tion that has been obtained for bt50 in Section 5.3, see Table 4. Only

the SIFT descriptor size is specifically adapted according to the esti-

mated descriptor size in Section 5.4.1, see Table 30.

Figure 50 shows qualitative results for query-by-example word spot-

ting on both datasets. The retrieval list for kp20 is highly accurate.

Only a single instance of the query word is considered as irrelevant.

This is due to an insufficient IoU for a detection that is principally

correct. A descender from the line above does not allow for finding

an accurately positioned bounding box with region snapping. In ad-

dition, it can be noted that a similar descender is also present in the

query word image. The qualitative result for query-by-example word

spotting on bo20 shows that the BoF-HMM does not generalize across

different writing styles sufficiently but is more sensitive to the writ-

ing style in the query word image. An impression of the writing style

variability for the query word is given in Figure 39b in Section 5.2.3.

Furthermore, it can be seen that three detections among the top-five

results show the query but are considered as irrelevant. The detection

at retrieval list position two shows the query as part of another word.

The regions at list positions three and four are considered as irrele-

vant because a decoration at the top left of the first character in each

detection is not fully detected.
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Table 38: Query-by-example results on Konzilsprotokolle

Method Regions
Annotations

words

kp20

mAPip [%]

Baseline Dense patches 1 72.9

BoF-HMM Mixture voting 1 79.3

PHOCnet [RSR+17] Word hypotheses 16,920 91.1

Rand. projections [KWD14] Word hypotheses 1 61.8

PHOCnet [SF16] Dense patches 1,850 52.2

Attribute SVMs [GV15b] Dense patches 16,920 0.0

Table 39: Query-by-example results on Botany

Method Regions
Annotations

words

bo20

mAPip [%]

Baseline Dense patches 1 44.6

BoF-HMM Mixture voting 1 47.3

PHOCnet [RSR+17] Word hypotheses 21,982 74.5

Rand. projections [KWD14] Word hypotheses 1 37.5

PHOCnet [SF16] Dense patches 1,685 15.9

Attribute SVMs [GV15b] Dense patches 21,982 0.4

The quantitative evaluation for segmentation-free query-by-exam-

ple and query-by-string word spotting uses the mAPip measure with

a 50% IoU relevance criterion on both datasets. The results of the re-

lated methods have been published in [PZG+16] and [RSR+17]. Ta-

ble 38 and 39 show the results in the query-by-example scenario.

Along with the performance, the number of annotated samples and

the method for obtaining regions are provided. Since the query word

image is considered as an annotated sample, the number of word

annotations is one for methods that do not use the training sets. In

consistence with the results on gw20 and bt50, the random projections

[KWD14] method is clearly outperformed. As for the query-by-exam-

ple benchmarks on all other datasets, the BoF-HMM outperforms the

baseline method. In this regard, the difference on bo20 is not signifi-

cant (p̂ > 0.05). This can be explained with the large visual variability

and the small number of queries on bo20. The low performance of

the attribute SVMs [GV15b] is most likely due to the application of the

method rather than due to a principle problem.

An interesting observation can be made with respect to the perfor-

mance of two different applications of the PHOCnet. The PHOCnet

application [SF16] uses a patch-based framework with six different

patch sizes and the smallest of the training sets. Despite the use of
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Table 40: Query-by-string results on Konzilsprotokolle

Method Regions
Annotations

words

kp20

mAPip [%]

BoF-HMM Mixture voting 1,849 73.4

BoF-HMM Mixture voting 16,919 74.5

PHOCnet [RSR+17] Word hypotheses 16,919 89.9

PHOCnet [SF16] Dense patches 1,849 48.4

Table 41: Query-by-string results on Botany

Method Regions
Annotations

words

bo20

mAPip [%]

BoF-HMM Mixture voting 1,684 7.1

BoF-HMM Mixture voting 21,981 22.7

PHOCnet [RSR+17] Word hypotheses 21,981 78.8

PHOCnet [SF16] Dense patches 1,684 11.8

an annotated training set, the PHOCnet application [SF16] is outper-

formed by the BoF-HMM, the baseline method and the random projec-

tions [KWD14] method on both benchmarks. However, in contrast to

the PHOCnet, these methods just use a single annotated example for

word spotting. A possible explanation is that the patch-based frame-

work with only six patch sizes will typically not generate very ac-

curate detections. Another explanation is the small training set that

might not be sufficient for training the deep neural network. In com-

parison, the PHOCnet with word hypotheses and the largest training

set [RSR+17] achieves the highest performance that has been reported

for segmentation-free word spotting on these benchmarks.

Finally, the results for segmentation-free query-by-string word spot-

ting on the kp20 and bo20 datasets are reported in Table 40 and 41.

The BoF-HMM configurations are directly based upon the correspond-

ing query-by-example configurations. The query-by-string meta-pa-

rameters have been optimized on the gw20 dataset, see Section 5.3.6.

Table 40 and 41 show that the query-by-string performance of the

BoF-HMM is very robust if the visual variability in the document im-

ages is limited. However, in comparison to the PHOCnet with word

hypotheses [RSR+17] the BoF-HMM is clearly outperformed. The large

increase of the training set on kp20 is not reflected in the word spot-

ting performance. Similarly, the results on bo20 show that the high

performance of the BoF-HMM for query-by-example word spotting

with just a single example comes at the cost of limited learning ca-

pabilities if the visual variability in the document images is large.
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Segmentation-free word spotting with BoF-HMMs makes document im-

ages searchable with minimum manual effort. The user is supported

directly after acquiring a collection of document images. The methods

that have been presented in the previous chapters allow for prepar-

ing the collection for word spotting fully automatically. Most impor-

tantly, no annotated sample data has to be provided. This works in the

query-by-example scenario where the user selects a single example of

the query word. Document image regions are retrieved according to

visual similarity to the query word image and are presented to the

user in a ranked retrieval list. The information that is available about

the problem domain is integrated at various levels within this pro-

cess. Highly accurate results can be achieved despite the lack of an

annotated training dataset. The computation of the retrieval results is

fast by searching with the BoF-HMM in two decoding stages.

• The only meta parameter that is sensitive to the visual character-

istics of the document collection is the SIFT descriptor size. An

automatic size estimate is based on an estimate of the typical text

core height.

• BoF document image representations are automatically adapted

to the visual characteristics of the document collection. The

BoF meta parameters are robust since the representations are

learned from sample data in an unsupervised manner.

• Text, line and whitespace hypotheses are extracted in a bottom-

up manner. They indicate the presence of the corresponding doc-

ument contents. Text hypotheses can be considered as alterna-

tives to each other and do not represent a segmentation of the

document image. This also applies to line hypotheses.

• Patch-based decoding is performed in line hypotheses that are

relevant to the query due to similar height. The patch width is

relative to the query width. Due to the sequential modeling in

the HMM, the text orientation must be approximately horizontal.

• Patch similarity scores are computed with the query HMM. The

query HMM is a compound of context HMMs and the query

word HMM. While the context models are estimated in an un-

supervised manner, the query word model is estimated from

the query word image. Computational efficiency is achieved by

decoding the compound query HMM only in document image

regions that share visual features with the query word model.

191
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Consequently, the proposed method exploits the characteristic of

document images on a very general level. The most important as-

sumption is that the text has a sequential structure and an approxi-

mately horizontal orientation. In the same way as text hypotheses in-

dicate the presence of text, line hypotheses indicate document regions

that contain text which is similarly high as the query. Essentially, line

hypotheses prune the dense grid of patches. Based on text hypothe-

ses, the line hypotheses are obtained for potential text heights. In ad-

dition to the horizontal orientation of text, further assumptions about

the text layout are only required for the descriptor size estimation.

The text core height estimation assumes that the document images

contain mostly text and that the text is mostly written in horizontal

lines. In case these assumptions are violated, the descriptor size has

to be optimized experimentally or with expert knowledge. The typ-

ical text core height is a good estimate for the edge length of the

square descriptor area if the visual variability in the document im-

ages is high. If the visual variability is low, better performance can be

achieved with larger descriptors.

If only a single example is available for query model estimation, an

inherent characteristic is that only those instances of the query word

can be detected that are written in a similar style as the query word

image. The ability to cope with these visual variabilities depends on

the generalization capabilities of a method. This is an important fac-

tor for the word spotting performance. The qualitative results in Fig-

ure 48, 49 and 50 give an impression of the generalization capabilities

of the BoF-HMM. Assuming that no annotated training dataset is avail-

able, BoF-HMMs outperform all other query-by-example methods that

have been evaluated on any of the five benchmarks considered. Ta-

ble 42 shows a summary of the query-by-example results that have

been presented in Section 5.4. The results of the related methods can

be found in [RKE16] for gw20, in [ZPG17] for bt50 and bt70 as well

as [RSR+17; PZG+16] for kp20 and bo20. In comparison to the best re-

sults that have been reported in the literature, the BoF-HMM achieves

relative mAP improvements of 22.3% (13.7% absolute) [RAT+15a] on

gw20, 10.1% (5.2% absolute) [ZPG17] on bt50, 20.9% (6.8% absolute)

[ZPG17] on bt70, 28.3% (17.5% absolute) [KWD14] on kp20 and 26.1%

(9.8% absolute) [KWD14] on bo20.

A comprehensive list of segmentation-free word spotting methods

from the literature can be found in Table 1 in Section 3.4. The BoF-

HMM has been compared to seven out of 13 methods in Table 1 that

do not use an annotated training dataset. The improvements can be

considered as major advancements with respect to the current state-

of-the-art in segmentation-free query-by-example word spotting with

just a single annotated example, also cf. Table 49 in Appendix C.

With respect to the query-by-example results on kp20 and bo20,

the BoF-HMM gets only outperformed by the PHOCnet that uses word
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Table 42: Query-by-example results summary

Method
gw20

mAP [%]

bt50

mAP [%]

bt70

mAP [%]

kp20

mAPip [%]

bo20

mAPip [%]

Baseline 70.2 45.6 30.4 72.9 44.6

BoF-HMM 75.1 56.9 39.4 79.3 47.3

Spatial pyramid
indexing [RAT+15a]

61.4 – – – –

Exemplar SVM

[AGF+14b]
59.1 – – – –

Scale-space pyramid
[RKE16]

56.0 – – – –

Local feature
matching [ZPG17]

– 51.7 32.6 – –

Random projections
[KWD14]

50.1 42.3 – 61.8 37.5

Inkball models
[How13]

– 40.9 – – –

Cohesive elastic
matching [PDF+14]

– 39.7 – – –

Cohesive elastic
matching [LOL+09]

– 22.1 – – –

Spatial pyramid
matching [SF15]

– – 29.3 – –

Spatial pyramid
matching [ART+13]

– – 11.6 – –

PHOCnet [RSR+17] (*) – – – 91.1 74.5

PHOCnet [SF16] (*) – – – 52.2 15.9

Attribute SVMs

[GV15b] (*)
– – – 0.0 0.4

(*) Requires an annotated training dataset.

hypotheses [RSR+17] and a training dataset with 16,919 word-level

annotations on kp20 and 21,981 word-level annotations on bo20, in

addition to the query word image. The relative mAP improvements

over the BoF-HMM of 14.9% (11.8% absolute) on kp20 and 57.5% (27.2%

absolute) on bo20 can be explained with the use of just a single anno-

tated example for estimating the BoF-HMM. Given the largely reduced

manual effort if no annotated training dataset is required, the perfor-

mance improvement on kp20 can be considered as limited. However,

the large performance improvement on bo20 shows that a training

dataset is required for coping with the large visual variabilities in the

bo20 benchmark dataset. The methods that require annotated train-

ing data are listed at the bottom of Table 42.

The PHOCnet with word hypotheses [RSR+17] outperforms the

BoF-HMM for query-by-string word spotting on kp20 similarly as in
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the query-by-example scenario. The performance difference on bo20

is even larger than in the query-by-example scenario due to the in-

creased challenge of the bo20 query-by-string benchmark. However, if

training data is limited, query-by-string word spotting with BoF-HMMs

has shown a performance that is competitive with the region proposal

network [WLB17] on the gw20 5-15 cross-validation, see Section 5.2.1.

This shows that word spotting with BoF-HMMs in the query-by-string

scenario is suited for extending the query-by-example scenario where

no annotated training dataset is available. While performing query-

by-example word spotting, the user can give relevance feedback with

respect to the document regions in the retrieval list. While the collec-

tion of annotated samples grows, the character models can iteratively

be re-estimated. In this way, the system can even ask for examples

that are relevant for character classes which are not represented well

in the training dataset.

The BoF-HMM can be compared to two different applications of the

PHOCnet in the segmentation-free scenario on kp20 and bo20. This

is interesting because of the typically high PHOCnet performance

[SF18]. The BoF-HMM clearly outperforms the PHOCnet that uses a

patch-based framework with six different patch sizes [SF16; PZG+16]

on the query-by-example and query-by-string benchmarks. Besides

the small training dataset that can be a reason for reduced perfor-

mance, the reduced detection accuracy in the patch-based framework

is likely to affect performance severely. This can also be observed if

the performance of the baseline method, cf. Section 5.4.2, is compared

to the performance of spatial pyramid matching [RAT+15a], cf. re-

sults for gw20 and bt70 in Table 42. By using an individual patch

size per query, the baseline method clearly achieves the better perfor-

mance even though the models are similar. The comparison between

the baseline method and the BoF-HMM confirms the importance of de-

coding the most likely occurrence of the query within a patch. This

most distinguishing property between the two approaches leads to con-

sistently better performance on all query-by-example benchmarks, see

Table 42. The performance differences are significant (p̂ 6 0.05) ex-

cept for the bo20 benchmark. This can be explained with the large

visual variability on bo20 which generally limits the applicability of

methods that do not use an annotated training dataset.

The following important architectural design choices for segmen-

tation-free word spotting with BoF-HMMs have been confirmed in the

parameter optimization on the gw20 and bt50 benchmarks:

• The use of line hypotheses reduces the search space without af-

fecting retrieval performance.

• The visual-word mixture model outperforms three other mixture

models that are relevant for representing BoF vectors.
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• Decoding the most likely occurrence of the query within a patch is

better than using a static patch-decoding framework.

• Ranking document regions according to the output probability is

better than approximating the query posterior probability with

the background model.

• Mixture component voting makes the application of the compu-

tationally expensive Viterbi decoding feasible in practice. Word

spotting performance is affected only marginally.

• Region snapping allows for highly accurate detections by refin-

ing the detected region bounds with the text hypotheses bounds.

The choice of the BoF output model was an important question in

this thesis. The visual-word mixture model is motivated by interpret-

ing the relative visual word frequencies in a BoF vector as discrete

probability distribution. In the generative approach, this corresponds

to the generation of a single visual word. Although this model as-

sumption is clearly violated, the suitability of the method was demon-

strated in an extensive evaluation and comparison with three other

output models. All of these models are better suited with respect to

their model assumptions. However, the visual-word mixture model

outperforms these models significantly (p̂ 6 0.05) on two query-

by-example word spotting benchmarks where no annotated training

data is available. The behavior can be explained with the better gener-

alization capabilities of the visual words model in this scenario. High

similarity can already be measured if individual visual words from the

query model are observed in the BoF vectors in the document images.

In contrast, the other approaches model configurations of multiple

visual words.

With respect to retrieval efficiency, the direct application of Viterbi

decoding in a patch-based framework can be considered as infeasi-

ble in practice. This is due to the large number of patches and the

computational complexity of the Viterbi algorithm. The application

of mixture component voting in the two-stage decoding process is

essential for this reason. Assuming a common memory and disk con-

figuration, average processing times of 230 milliseconds per query

and page can be achieved if 10 pages are processed in parallel on

the Intel(R) Xeon(R) multicore CPU used in the evaluation, cf. Sec-

tion 5.4.3. In practice, the hardware requirements grow with the re-

quired processing speed. However, in case that larger collections with

several hundred handwritten documents have to be searched, it can

be doubted if the visual variability in the document images is gen-

erally limited as required in the targeted query-by-example scenario.

In order to improve the user experience, the processing order of the

document images can be sorted according to writing style similarity

with respect to the query. This way, the user can be presented with
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the most promising results first. Furthermore, the applicability of the

method to the document collection gets more transparent to the user.

Writing style similarity could, for example, be measured based on

holistic BoF representations of the document images and a holistic BoF

representation of the query word.

In this thesis, a method for segmentation-free word spotting has

been proposed that largely outperforms the state-of-the-art in the

query-by-example scenario where no annotated training data is avail-

able. An extension to query-by-string word spotting is possible. The

evaluations have shown that it is important to address region detec-

tion and region retrieval jointly. Computing word hypotheses partly

requires to recognize different words. Considering the complexity of

this task with hundred thousands of different word classes, it can

be expected that this will hardly be a solution that works in gen-

eral. Patch-based frameworks do not have such requirements since

retrieval is directly based on similarity to the query. However, static

patch geometries are not sufficient for handling word size variabili-

ties. The proposed method addresses these challenges by a new com-

bination of the different region detection approaches with Viterbi de-

coding. The computational effort is limited with a new voting-based

decoding algorithm for semi-continuous HMMs. These methodologi-

cal contributions go far beyond the state-of-the-art which is demon-

strated by the outstanding word spotting performance in the targeted

scenario.

The future relevance of the contributions to segmentation-free word

spotting are motivated from a methodological point-of-view and a prac-

tical point-of-view.

With respect to the methodological point-of-view, the contributions

highlight the importance of sequence models for handling segmenta-

tion and recognition jointly. Possible extensions of the method could

address the limitations for learning from a larger number of anno-

tated samples. The main research questions are how to train the BoF

output model and the HMM in an end-to-end manner and how to de-

code the most likely occurrence of the query in a patch not only in

horizontal but also in vertical direction. Decoding could be based on

the output of a fully convolutional neural network in order to take

advantage of the high CNN word spotting performance.

With respect to the practical point-of-view, the proposed method

constitutes a complete word spotting system. Since no manual prepa-

ration of the document images is required, the system is highly in-

teresting for exploring newly acquired document collections. The as-

sumptions about the visual appearance of text in the document im-

ages are kept to a minimum. The system does not make any final

decisions but leaves the interpretation of the results to the user. Schol-

ars in the humanities can be supported with a state-of-the-art system

for searching document images automatically.
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In addition to the evaluation that has been presented in Chapter 5,

experiments that analyze the behavior of the bag-of-features (BoF) out-

put models will be presented in the following. These experiments are

intended as supplemental results. They confirm the argumentation in

Section 5.3.4. This is achieved by presenting an evaluation of the multi-

nomial mixture model (Section A.1) that has been used as a reference for

a statistical BoF model. Furthermore, the effect of different descriptor

sizes on different BoF output models is analyzed (Section A.2). Unless

otherwise noted, performance is measured with mAP and a 50% in-

tersection over union (IoU) relevance criterion, cf. Section 5.1.1. Within

each of the following tables, the significance of the performance differ-

ences is analyzed with permutation tests (p̂ 6 0.05), cf. Section 5.1.2.

The reference result is indicated with a bold font. Results that differ

from the reference result significantly are indicated with an italic font.

a.1 multinomial mixture model

The multinomial mixture model has been presented in Section 2.4.

The experiments that will be presented in this section show how

different parameterizations of the multinomial mixture model affect

the word spotting performance. This justifies the performance that is

specified for the multinomial model in Table 13 in Section 5.3.4. The

experiments are performed in analogy to the experiments that have

been shown for the EDCM mixture model in the same section.

Table 43 presents an evaluation of the parameters that are used

for the mixture model estimation with the EM algorithm. An evalua-

tion of the number of mixture components and the number of visual

words is presented in Table 44. For this purpose, the experiments are

performed on the gw20 and the bt50 query-by-example benchmarks,

see Section 5.2. The training sets are given by all BoF vectors that are

extracted from all line hypotheses. The line hypotheses are obtained

from the document images of the corresponding benchmark.

The key idea for representing the probability of a BoF vector with

the multinomial distribution is to model the joint occurrence of all

visual words in the BoF vector as a product of visual word probabil-

ities p(V = v) where V is a random variable over the event space

ΩV = {0, . . . ,V − 1}, cf. Equation 2 in Section 2.4. If multinomial distri-

butions are used as mixture components in a mixture model, the vi-

sual word probabilities are specific to the mixture component k ∈ ΩM

with ΩM = {0, . . . ,M− 1}. Thus, the probability for visual word v in

197
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Table 43: Multinomial estimation parameters

Smoothing
α

Det. annealing
(τ0, . . . , τn)

gw20

mAP [%]

bt50

mAP [%]

0.5 (2, 1) 67.3 50.0

10−5 (2, 1) 68.1 49.5

10−10 (2, 1) 68.2 49.4

10−5 (5, 2, 1) 67.3 49.5

10−5 1 68.6 48.7

Table 44: Multinomial mixture model

Mixture components
M

Vocabulary size
V

gw20

mAP [%]

bt50

mAP [%]

256 4096 67.2 50.1

512 4096 68.1 49.5

1024 4096 67.9 48.0

512 2048 67.2 49.1

512 8192 67.2 49.6

component k can be denoted as p(V = v |M = k) where M is a ran-

dom variable over the event space ΩM. These probabilities are the

model parameters of the multinomial mixture model that are estimated

from sample data in an unsupervised manner. Due to the product

of probabilities in the multinomial distribution, it must be ensured

that none of the probability estimates is zero. The estimates will be

zero for all visual words that cannot be observed in the sample data,

because the estimation is based on relative visual word frequencies.

In a mixture model with a larger number of mixture components

and BoF vectors that contain only few non-zero entries, most of the

visual words will not be observed for most of the mixture compo-

nents, see Section 2.4. Provided that all visual words have non-zero

frequency in the training dataset, then p(V = v) > 0, ∀v ∈ ΩV. Zero

probabilities in the more specific component-dependent distributions

p(V = v |M = k) can be avoided by interpolating with the more gen-

eral background distribution as shown in Equation 82.

p(V = v |M = k)← (1−α)p(V = v |M = k) +αp(V = v) (82)

The influence of the background distribution is controlled by interpo-

lation factor α, cf. [MKM07]. In order to increase the robustness of the

model estimation process with respect to the random initialization, de-

terministic annealing can be applied in analogy to the estimation of the

EDCM model [UN98; Elk06], cf. Equation 20 in Section 4.4.2. The key

idea of deterministic annealing is to smooth the mixture component
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Table 45: vMF descriptor size evaluation

SIFT descriptor size
gw20

mAP [%]

bt50

mAP [%]

16 57.6 38.0

24 66.2 48.6

32 69.6 50.6

40 71.1 47.4

48 71.6 42.3

56 70.1 35.5

Table 46: EDCM descriptor size evaluation

SIFT descriptor size
gw20

mAP [%]

bt50

mAP [%]

16 63.4 43.2

24 66.7 48.0

32 69.0 50.8

40 70.2 49.5

48 70.1 45.0

56 68.0 39.7

posterior probability distributions that are obtained in the expectation

step of the EM algorithm. Table 43 shows that none of the parameter-

izations have a significant effect on gw20 or bt50 (p̂ > 0.05). Further,

none of the different numbers of mixture components or visual words

have a significant effect on any of the two benchmarks as shown in

Table 44. These results are consistent with the results for the EDCM

mixture model, see Table 10 and 11 in Section 5.3.4, and can be ex-

plained with the large training dataset of BoF vectors.

a.2 descriptor size evaluation

The size of the SIFT descriptors in the BoF representations is the most

important parameter for word spotting with BoF-HMMs. Since the de-

scriptor size optimization strongly depends on the individual charac-

teristics of a document collection, it is unclear how different descrip-

tor sizes affect the performance with different BoF output models.

For this purpose, Table 45, 46 and 47 present the word spotting per-

formance for different descriptor sizes for the vMF mixture model, the

EDCM mixture model and the multinomial mixture model. In analogy

to the descriptor size evaluation of the visual-word mixture model,

see Table 6 in Section 5.3.3, the experiments are performed on the

query-by-example benchmarks of the gw20 and bt50 datasets.
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Table 47: Multinomial model descriptor size evaluation

SIFT descriptor size
gw20

mAP [%]

bt50

mAP [%]

16 63.0 43.3

24 67.1 47.8

32 67.1 49.5

40 68.4 47.0

48 68.1 43.8

56 65.6 38.9

Table 48: BoF descriptor size evaluation

SIFT descriptor size
bt70

mAP [%]

kp20

mAPip [%]

bo20

mAPip [%]

16 34.5 52.3 37.6

24 39.3 66.8 44.6

32 39.4 72.7 47.7

40 35.6 77.5 48.4

48 31.0 78.5 48.6

56 26.7 79.3 47.3

64 22.4 77.9 44.4

The tables show that the results are mostly consistent across all BoF

output models and for both benchmarks. In this regard, results are

considered as consistent if the performance differences that are mea-

sured for different descriptor sizes are significantly different (p̂ 6 0.05,

italic font in the tables) with respect to the reference configuration

(bold font in the tables) for different BoF output models. In compar-

ison with Table 6, this justifies the use of the visual-word mixture

model in the optimized BoF-HMM configuration. The word spotting

performances obtained for the parameter variations of the vMF, EDCM

and multinomial mixture models are not better than the word spot-

ting performance measured for the visual-word mixture model, see

Table 13 in Section 5.3.4.

Finally, Table 48 shows the descriptor size evaluation for the query-

by-example benchmarks that have been considered in addition to

gw20 and bt50 in Section 5.4. It is important to note that these results

have not been used for selecting the descriptor size for the comparison

with the results from the literature. Instead, the results are provided

in order to allow to assess the quality of the descriptor size estimation

in Section 5.4.1. In comparison to Table 30, Table 48 shows that the

locally optimal descriptor size diverges from the estimated descriptor

size only on bo20. The difference is not significant (p̂ > 0.05).
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D I R I C H L E T C O M P O U N D M U LT I N O M I A L

D I S T R I B U T I O N

The Dirichlet compound multinomial (DCM) distribution has been stud-

ied for classifying [MKE05] and clustering [Elk06] digital texts that

are represented as bag-of-words (BoW). An important characteristic in

this scenario is that the vocabulary size of the BoW representations is

large and the texts are short. This leads to very sparse BoW representa-

tions. For this reason, the characteristics of these BoW representations

are comparable to the characteristics of the bag-of-features (BoF) repre-

sentations as presented in Section 4.4.

For representing the data with a mixture model, the DCM distribu-

tion has advantages over the multinomial distribution. If the multino-

mial mixture components are estimated from sparse BoF vectors, each

component models only few visual words, see Section 2.4. In order

to avoid visual-word probability estimates that are zero, the visual-

word probability distributions of all mixture components have to be

smoothed, for example through interpolation with a more general

distribution, see Section A.1.

In contrast to the multinomial distribution, the sparsity of the rep-

resentation is already incorporated in the model assumption of the

DCM distribution. This is achieved in a hierarchical approach where a

Dirichlet distribution models the generation of multinomial parame-

ters first. Afterwards, the generation of the BoF representation is mod-

eled by the multinomial distribution. Therefore, the Dirichlet distribu-

tion can be understood as a topic model. It represents the likelihood

of multinomial parameters which represent the probability for visual

words in the visual vocabulary. The continuous distribution of multi-

nomial parameter vectors, which is modeled by the Dirichlet distri-

bution, allows for generating parameter vectors with arbitrary small

visual word probabilities. This model assumption of the Dirichlet dis-

tribution is the main advantage in comparison to estimating visual

word probabilities from discrete data directly.

In the following, the derivation of the DCM distribution from the

Dirichlet distribution and from the multinomial distribution will be

presented (Section B.1). In order to make the DCM distribution bet-

ter applicable in practice, an adaptation that exploits the sparsity of

the BoW vectors has been proposed in [Elk06]. The approximation

involved in the so-called exponential Dirichlet compound multinomial

(EDCM) model is derived (Section B.2). The purpose is to formally de-

scribe the model assumptions that are implied if the EDCM mixture

model is used as an output model in the given scenario.

201
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b.1 derivation

The derivation of the DCM distribution is based on [MKE05] and in

particular on [FKG10, Sec. 1.4]. The following presentation is more

elaborate than the individual presentations in the literature.

In order to derive the DCM probability mass function, the Dirichlet

probability density function p(p|α) and the multinomial probability

mass function p(x|p) are defined in Equation 83 and 84. The concen-

tration parameters of the Dirichlet distribution are denoted as vector

α ∈ RV
>0 and the visual word probabilities for the multinomial distri-

bution are given by parameter vector p = (p(V = 0), . . . ,p(V = V − 1))⊤

for a random variable V over the event space ΩV = {0, . . . ,V − 1}. The

BoF vector with absolute term frequencies for a visual vocabulary of

size V is denoted by x ∈NV
>0.

p(p|α) =
Γ(‖α‖

1
)

∏V−1
v=0 Γ(αv)

V−1
∏

v=0

p(V = v)αv−1 (83)

p(x|p) =
‖x‖

1
!

∏V−1
v=0 xv!

V−1
∏

v=0

p(V = v)xv (84)

The DCM probability mass function p(x |α) is then based on Equa-

tion 85. The compound is obtained by integrating over all multino-

mial parameter vectors p. Substituting the definitions of p(p|α) and

p(x|p) leads to Equation 86. Given the definition of p(p|α) and p(x|p),

it can be noted that the normalization factors are independent of the

integration variable p. Furthermore, the products over V visual words

can be combined. Equation 87 is obtained by rearranging the factors

in Equation 86 accordingly.

p(x |α) =

∫

p

p(x |p)p(p |α)dp (85)

=

∫

p

‖x‖
1
!

∏V−1
v=0 xv!

V−1
∏

v=0

p(V = v)xv

Γ(‖α‖
1
)

∏V−1
v=0 Γ(αv)

V−1
∏

v=0

p(V = v)αv−1dp

(86)

=
‖x‖

1
!

∏V−1
v=0 xv!

Γ(‖α‖
1
)

∏V−1
v=0 Γ(αv)

∫

p

V−1
∏

v=0

p(V = v)xv+αv−1dp

(87)

It can be noted that the product over visual words in the integral

in Equation 87 corresponds to the product over visual words in the

Dirichlet probability density function in Equation 83 with concentra-

tion parameters x+α. In order to obtain an integral over the Dirichlet

probability density function p(p | x + α), the missing normalization
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factor is incorporated in Equation 88. This is achieved by multiplying

with the corresponding normalization factor in the integral and mul-

tiplying with the inverse of the normalization factor in front of the

integral. Since the integral
∫

p p(p | x+α)dp = 1 by the definition of a

probability density function, the left-hand side of Equation 88 is equal

to the inverse of the normalization factor of the Dirichlet probability

density function p(p | x+α), see Equation 89.

∫

p

V−1
∏

v=0

p(V = v)xv+αv−1dp =

∏V−1
v=0 Γ(αv + xv)

Γ(‖α‖
1
+ ‖x‖

1
)

(
∫

p

Γ(‖α‖
1
+ ‖x‖

1
)

∏V−1
v=0 Γ(αv + xv)

V−1
∏

v=0

p(V = v)xv+αv−1dp

)

(88)

=

∏V−1
v=0 Γ(αv + xv)

Γ(‖α‖
1
+ ‖x‖

1
)

(89)

Equation 90 is obtained after substituting Equation 89 in Equation 87.

By rearranging the denominators from Equation 90 to 91, the defini-

tion of the DCM probability mass function is obtained in Equation 92.

p(x |α) =
‖x‖

1
!

∏V−1
v=0 xv!

Γ(‖α‖
1
)

∏V−1
v=0 Γ(αv)

∏V−1
v=0 Γ(αv + xv)

Γ(‖α‖
1
+ ‖x‖

1
)

(90)

=
‖x‖

1
!

∏V−1
v=0 xv!

Γ(‖α‖
1
)

Γ(‖α‖
1
+ ‖x‖

1
)

∏V−1
v=0 Γ(αv + xv)
∏V−1

v=0 Γ(αv)
(91)

=
‖x‖

1
!

∏V−1
v=0 xv!

Γ(‖α‖
1
)

Γ(‖α‖
1
+ ‖x‖

1
)

V−1
∏

v=0

Γ(xv +αv)

Γ(αv)
(92)

b.2 approximation

Due the computational cost of estimating and evaluating DCM mix-

ture models, a DCM adaptation for very sparse BoW vectors has been

proposed in [Elk06]. The following presentation goes beyond the ex-

planations in [Elk06] and provides additional details with respect to

the approximation involved for obtaining the EDCM model.

The first step towards a more efficient definition of the DCM proba-

bility mass function is to limit the evaluation to visual words that are

non-zero as shown in Equation 93. The products over visual words

are limited to the non-zero entries in BoF vector x for this purpose.

The simplification is possible since 0! = 1 and Γ(αv)
Γ(αv)

= 1, respectively.

p(x |α) =
‖x‖

1
!

∏

v:xv>1 xv!

Γ(‖α‖
1
)

Γ(‖α‖
1
+ ‖x‖

1
)

∏

v:xv>1

Γ(xv +αv)

Γ(αv)
(93)

Further simplifications are possible through a linear approximation

of the so-called Pochhammer symbol, cf. [OLB+10, Sec. 5.2]. The ap-
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proximation has to be considered for xv > 1 due to the application in

Equation 93 and is shown in Equation 94.

Γ(xv +αv)

Γ(αv)
≈ Γ(xv)αv for xv > 1, xv ∈N>0 (94)

In order to show that Γ(xv)αv is a linear approximation as a func-

tion of αv of the Pochhammer symbol for xv > 1, it will be shown

that Γ(xv)αv is tangential to Γ(xv+αv)
Γ(αv)

in αv = 0. Therefore, the deriva-

tive of the Pochhammer symbol with respect to αv has to be Γ(xv) for

αv = 0. For this purpose, it is helpful to note that the Pochhammer

symbol can be expressed as a product for xv > 1 as shown in Equa-

tion 95.

Γ(xv +αv)

Γ(αv)
=

xv−1
∏

k=0

(αv + k) for xv > 1, xv ∈N>0 (95)

The derivative of Γ(xv+αv)
Γ(αv)

in αv = 0 is defined in Equation 96. With

the help of Equation 95, it can be seen that the Pochhammer symbol

for αv = 0 equals to zero which results in Equation 97. This is due

to the product that includes the factor k = 0. By extracting the factor

(αv + k) for k = 0 in Equation 98, the product over absolute visual

word frequencies is defined from k = 1 to xv− 1. This allows to cancel

out αv in the fraction of Equation 98 which leads to Equation 99. By

considering the limit αv → 0 in Equation 100 and applying the defi-

nition of the factorial (xv − 1)! in Equation 101, the final result Γ(xv)

is obtained with the help of the definition of the Gamma function for

integers, cf. [OLB+10, Equ. 5.4.1], in Equation 102.

lim
αv→0

Γ(xv+αv)
Γ(αv)

−
Γ(xv+0)

Γ(0)

αv − 0
= lim

αv→0

∏xv−1
k=0 (αv + k) −

∏xv−1
k=0 k

αv − 0

(96)

= lim
αv→0

∏xv−1
k=0 (αv + k)

αv
(97)

= lim
αv→0

αv

∏xv−1
k=1 (αv + k)

αv
(98)

= lim
αv→0

xv−1
∏

k=1

(αv + k) (99)

=

xv−1
∏

k=1

k (100)

= (xv − 1)! (101)

= Γ(xv) (102)

Therefore, Γ(xv)αv is a linear approximation of the Pochhammer sym-

bol in αv = 0 with xv > 1, xv ∈ N>0. The approximation is accurate
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for small αv and small xv. For example, the BoF vectors in the gw20

document images, cf. Section 5.2.1, contain 10 visual words with non-

zero frequency in average. Within these non-zero visual words, the

average visual word frequency is 1.6. The mean estimated concentra-

tion parameter value over 512 mixture components and 4096 visual

words is 0.01, cf. Section 5.3.4. According to Equation 94, the error

induced by the linear approximation of the Pochhammer symbol is

6.3 · 10−5 in average on gw20.

In order to obtain the EDCM probability mass function with the lin-

ear approximation of the Pochhammer symbol, Γ(xv)αv is substituted

for the Pochhammer symbol in Equation 93 according to Equation 94.

The result is shown in Equation 103. It has to be noted that the param-

eter vector is referred to as β in order to distinguish the adaptation

from the original DCM probability mass function. In Equation 104, the

Gamma function Γ(xv) for integer xv is expressed as a factorial. This

factorial cancels out with the factorial in the denominator of the first

normalization factor in Equation 104. The final result for the EDCM

probability mass function is shown in Equation 105.

p(x |β) =
‖x‖

1
!

∏

v:xv>1 xv!

Γ(‖β‖
1
)

Γ(‖β‖
1
+ ‖x‖

1
)

∏

v:xv>1

Γ(xv)βv (103)

=
‖x‖

1
!

∏

v:xv>1 xv!

Γ(‖β‖
1
)

Γ(‖β‖
1
+ ‖x‖

1
)

∏

v:xv>1

(xv − 1)!βv (104)

=
‖x‖

1
!

∏

v:xv>1 xv

Γ(‖β‖
1
)

Γ(‖β‖
1
+ ‖x‖

1
)

∏

v:xv>1

βv (105)
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Table 49 presents a comprehensive overview of methods for word

spotting in document images. The selection and organization of the

methods is mainly performed according to the methodological nov-

elty at the time of their publication. The methods are briefly charac-

terized with respect to different properties. This allows for identify-

ing word spotting literature which is relevant for different retrieval

scenarios. Methods that have already been applied under the given

conditions and constrains can be identified. Furthermore, the number

of methods that are using certain techniques indicates whether a tech-

nique is robust. For example, in the sense that a method has been in-

dependently applied by different researchers and works on different

datasets. Finally, the development of the field of word spotting can be

retraced. From the first approaches that have been presented in 1993

to the current state-of-the-art in 2018, influential trends can be found.

In the early methods these are mostly inspired from word spotting

in speech signals. Later, the inspiration is rather found in computer

vision. However, since the application domain is document images,

the influence of various document analysis topics, from handwriting

recognition to writer identification, is ever present.

Table 49 contains the columns Year, Method, Query, Style, Annota-

tion, Segmentation, Features and Characteristics. The Year shows when

a method has been presented first. This is important as the most rele-

vant publication that is referenced in the Method column might have

been published at a later time. If this is the case, the original pub-

lication can be found within the Characteristics column, also along

with other related methods. There, the main contributions are briefly

described and can be distinguished. In contrast, the title, listed in

the Method column, focusses on the major contribution and aims at

characterizing an approach as a whole. A very important aspect of a

word spotting method are the image features that are being consid-

ered. Mainly, these fall into one of the categories pen-stroke features

and appearance features and are listed in the column Features, cf. Sec-

tion 3.2. As the column focusses on the image features, the semantic

representations, cf. Section 3.2.3, are indicated by the use of a string/-

word embedding under Method or Characteristics. Methods that use

semantic representations are built upon spatial pyramid, Fisher vec-

tor or CNN image features.

The remaining columns describe the scenario in which the word

spotting methods have been applied. The query modalities are catego-

rized in example, word, string, speech and online handwriting, cf. Sec-
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tion 1.2 and Section 3.3. The category word refers to the scenario

where word models are estimated from a given training dataset. There-

fore, query words are restricted to a lexicon, cf. Section 3.3.2. Within

the column Style the text style in the documents is specified. The sce-

narios printed, single writer and multi writer are distinguished. They

indicate the expected visual variability for which the methods have

been designed. The higher the visual variability, the more annotated

training material is required. These annotations can be given on differ-

ent levels from synthetic over query, line to word and character. The or-

der reflects the manual effort. No manual annotations are required if

the training data is generated synthetically. However, the synthesized

data still needs to have similar characteristics as the text in the doc-

ument images. Query refers to the query-by-example scenario where

only a single exemplary occurrence of the query word is provided

by the user. Character-level annotations usually have to be obtained

with an existing recognizer or the visual variability in the document

images must be very limited. For example, only a single template per

character is needed in printed document scenarios. Finally, the col-

umn Segmentation indicates if the word spotting method requires a

given segmentation of the document images. For this purpose, seg-

mentation levels are given as none, line, word and character. Methods

for word and line segmentation are discussed in Section 3.1.1. If no

segmentation is required the methods work with patch or word re-

gion hypotheses, cf. Section 3.1.2 and Section 3.1.3.

The most important trends and developments that can be identified

in Table 49, refer to the word spotting scenario as well as the methods.

Until the year 2013, methods have been specifically addressing one

query modality. Query-by-example always referred to the scenario

where only the single annotated instance of the query word is given.

Consequently, it was applied on documents with very limited visual

variability. If training material was considered, it was used to estimate

word or character models. With the recent popularity of attribute rep-

resentation and CNNs this distinction became less important. These

methods are supporting multiple and also non-standard modalities.

For the first time, query-by-example benefits from annotated train-

ing material without recognizing the example first. Consequently, the

visual variability in the documents considered increases over time.

Regarding the methods, an interesting development can be found

in the features. Over time, pen-stroke representations have been re-

placed with appearance features. Using supervised learning, these

are the basis for obtaining semantic representations. The most impor-

tant distinction in the retrieval methods can be made between holistic

and sequence-based approaches. While more holistic approaches can

be found in total, sequence-based methods have been continuously

considered as well. They are the only possibility for training models

with line-level annotations.
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Year Method Query Style Annotation Segmentation Features Characteristics

1993
XOR, distance maps
[KH93]

Example Printed Query Word
Binary
intensities

Indexing, improving optical
character recognition

1993 Character HMMs [CWB93] String Printed Word Word Geometric
Sub-character filler model
approach, cf. [RP90]

1994 Pseudo 2D-HMMs [KA94] Word Printed Word Word
Binary
intensities

Models sequence of binary 2D
pixel values

1994
Word sequence indexing
[Hul94]

Example Printed Query Word Number of CCs Voting scheme for feature matches

1996
XOR, distance maps
[MHR96]

Example Single Query Word
Binary
intensities

Applies [KH93] to historic
handwritten documents

1997
Keyword signature
matching [KGG97]

Word Multi Word None Geometric
Matching with holistic and graph
representations

2000
Line-oriented DTW

[KAA+00]
Word Multi Word Line Geometric

Word candidates,
non-maximum-suppression

2003
Keypoint matching
[RFR03]

Example Single Query Word Image patches
Spatial distribution of
corresponding keypoints

2003 DTW [RM03] Example Single Query Word Geometric
Cmp. of word image matching
methods, [RM07] for indexing

2003
Probabilistic retrieval
[RLM03]

Words Single Word Word
Geometric
(discrete)

Statistical model for feature-word
co-occurrences

. . . continued
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. . . continued

Year Method Query Style Annotation Segmentation Features Characteristics

2003
Gradient-based binary
features [ZSH03]

Example Multi Query Word
Gradients,
geometric

Features from handwriting
identification

2003
Synthetic queries and CCs

[MMS03]
String Printed Synthetic Char.

Binary
intensities

CC-prototype indexing and
matching

2004 Generalized HMMs [CZF06] String Single Char. Line
Discriminative
subspace

Variable frame width in statistical
process, cf. [ETF+04]

2005
Boosted decision trees
[HRM05]

Words Single Word Word
Gray-level
intensities

Statistical model [RLM03] based on
AdaBoost scores

2005 Eigenspace DTW [TNK05] Example Single Query Line
Intensity
subspace

Patch-based DTW matching

2005
Cohesive elastic matching
[LLE07]

Example Single Query None Gradients
Guides and RoIs for reducing search
space [LBE05; PDF+14]

2007
Shape signature indexing
[LS07]

Example Printed Query Word Shape context
Document indexing based on
shape context codewords

2007
Character probabilities
[CBG09], cf. [CG07]

String Multi Char. Line Gabor wavelets
SVM-based character hypothesis
classification

2007 BoF [AD07] Example Single Query Word BoF
Based on SIFT, similarity with
Kullback-Leibler divergence

2008
Local gradient histograms
[RP08a]

Word Multi Word Word
Local gradient
histograms

Matching with HMMs and DTW,
SIFT-like features, cf. [TT09]

. . . continued
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Year Method Query Style Annotation Segmentation Features Characteristics

2008 Monk system [ZSH08]
Example
Word

Single
Query
Word

Line
Visual cortex
model

Bootstrapping recognition system
with HMMs and SVMs

2009 Fisher kernels [PR09] Word Multi Word Word
Local gradient
histograms

Features: generative, retrieval:
discriminative

2009 SC-HMMs [RP09b] Word Multi Word Line
Local gradient
histograms

Word hypotheses, HMM score
normalization [RP08b]

2009
Multi-level classifiers and
clustering [MC09]

Example Single Query None Geometric
Pen stroke classifiers and CC

prototype matching

2009
Patch-based template
matching [GP09]

Example Printed Query None
Binary
intensities

Block-wise pixel densities, template
augmentation

2009 Slit-style HoG [TT09] Example Single Query Line HoG
HoG adaption for line-based DTW,
i.e., sub-sequence matching

2009
Cohesive elastic matching
[LOL+09]

String Printed Char. None Gradients
Query model generated from
character templates, cf. [LLE07]

2009
Model-based sequence
similarity [RP12a]

Example Multi Query Word
Local gradient
histograms

DTW of SC-HMM state-dependent
mixture probabilities [RPL+09]

2009
Synthetic data and
SC-HMMs [RP12b]

String Multi Synthetic Word
Local gradient
histograms

SC-HMM estimated from real and
synthetic data [RP09a]

2010 Character HMMs [FKF+12] String Multi Line Line Geometric
Models query in text line, filler
model [FKF+10]

. . . continued
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. . . continued

Year Method Query Style Annotation Segmentation Features Characteristics

2010
Recurrent neural networks
[FFM+12]

String Multi Line Line Geometric
Decodes character posterior
probabilities in text line [FFB10]

2011
Deformable blurred shape
model [FFF+11]

Example Single Query Word
Blurred shape
model

Symbol recognition model
adaptation to word spotting

2011
Pseudo-structural
descriptor [FLF11]

Example Single Query Word Loci
Indexable geometric descriptor
from character recognition

2011
Spatial pyramid indexing
[RAT+15a]

Example Single Query None
Spatial
pyramid

Subspace-embedding [RAT+11],
indexing with PQ, cf. [RDE+14]

2012 IFS indexing [SJ12] Example Printed Query Word BoF
Visual word indexing, spatial
consistency re-ranking

2012
Indexing and SVM

refinement [AFF+12]
Word Single Word Word Loci, HoG

Loci-indexing, patch-based RoI

refinement with SVM

2012 Exemplar SVM [AGF+14b] Example Single Query None HoG
PQ patch indexing [AGF+12],
re-ranking, query expansion

2012
User feedback integration
[RL14]

Example Single Query Word
Spatial
pyramid

Query fusion and relevance
feedback [RL12]

2012
Synthetic grapheme
queries [LFG12]

String Single Word Word Geometric Grapheme prototype matching

2013
Heat kernel signatures
[ZT13]

Example Single Query None Heat diffusion
Optimal sequence of matched
descriptors (query, document)

. . . continued
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Year Method Query Style Annotation Segmentation Features Characteristics

2013 Inkball models [How13] Example Single Query Word Geometric
Similarity between deformable
part-based word models

2013
HMM character lattice
[TV13]

String Multi Line Line Geometric
HMM score decoding with character
lattice

2013
Character HMMs and
n-grams [FFB+13]

String Multi Line Line Geometric
Language model re-scoring based
on [FKF+12]

2013 Deformable HoG [AFV13] Example Single Query Word
Deformable
HoG

HoG cells are adapted to script in
word image

2013
Common subspace
[ART+13; RAT+15b]

String
Speech

Single Word Word
Spatial
pyramid

Subspace models cross-domain
feature correlations

2013
Contextual [FML+13;
FMF+14]

Example Multi Query Word
Loci, Shape
context

Query modeled within its context
in the document

2013 Attribute SVMs [AGF+14a]
Example
String

Multi Word Word Fisher vector
PHOC subspace of visual and
textual features [AGF+13; SGL+15]

2013 BoF-HMMs [RRF13] Example Single Query None BoF
Patch-based, BoF-HMM estimated
from single example

2014
HMM word graphs
[TVR+16]

Word Multi Line Line Geometric
Query posterior with word graphs
[PTV14], symbol spotting [CTV18]

2014
Random projections
[KWD14]

Example Single Query None
HoG, local
binary pattern

Word regions embedded in
randomized vector space

. . . continued
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. . . continued

Year Method Query Style Annotation Segmentation Features Characteristics

2014
Spatial pyramid hashing
[RDE+14]

Example Single Query None
Spatial
pyramid

Patches indexed with kernelized
probabilistic hashing

2014
Graph embedding
[WEG+14a]

Example Single Query Line Shape context
Coarse-to-fine, DTW based on
graph edit distance [WEG+14b]

2014
IFS indexing and BoF-HMMs

[RRL+14]
Example Single Query None BoF

Visual word indexing, region
voting, BoF-HMM re-ranking

2015
Graph embedding and
indexing [RLF15]

Example Single Query None
Blurred shape
model

Graph indexing, graph edit
distance on subgraphs

2015
HMM n-gram-character
lattice [TPV15]

String Multi Line Line Geometric
Decodes sub-path in character
n-gram lattice [TV13; FFB+13]

2015 HMM word graphs [VTP15] Example Single Line Line
Moment-based
normalization

Query-by-example n-best deco-
ding on word graphs [PTV14]

2015
Attribute SVMs [GV15b;
GV15a]

Example
String

Multi Word None Fisher vector
Segmentation-free extensions of
[AGF+14a], PHOC indexing

2015
Distance learning [SRF15;
SF15; RSL+17]

Example Single Query Word
Spatial
pyramid

SIFT [SRF15] and word descriptor
[SF15; RSL+17] embedding

2015 Deep HMM [TCH+15] String Multi Line Line
Deep belief
network

Hybrid HMM with a deep neural
network output model

2015 CNN adaptation [SK15] Example Multi Word Word CNN
Pretrained-CNN adaptation for
feature extraction

. . . continued
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Year Method Query Style Annotation Segmentation Features Characteristics

2015
Feature matching [HF16],
cf. [KKG15]

Example Single Query None
Fourier
descriptor

Keypoint detection, matching and
inlier-outlier detection

2015 BoF-HMMs [RF15] String Single Word None BoF
Patch-based, patch geometry
estimated from sample data

2016
Scale-space pyramid
[RKE16]

Example Single Query None HoG
Pyramidal refinement, histogram
matching, PQ indexing

2016
Two-way Attribute SVMs

[WRF16]
O.-Hand-
writing

Single Word Word
Spatial
pyramid

Cross-domain PHOC embedding
(multi user)

2016
Flexible sequence matching
[MRR+16]

Example Single Query Line Geometric
DTW extension allowing skips in
target sequence

2016
Recurrent neural networks
[SGL+16]

String Single Line Line
Frequency
filters

Multi-word spotting based on
character probability decoding

2016
HMM n-gram-character
lattice [TPV16]

String Multi Line Line Geometric
Character sequence posteriors from
character lattice

2016
CNN hypercolumn features
[SRG16]

Example Single Query Word
Off-the-shelf
CNN

Word-level descriptor with
temporal CNN feature aggregation

2016 PHOCnet [SF16]
Example
String

Multi Word Word CNN
CNN-based PHOC embedding,
synthetic data [GSF18]

2016 Inkball models [BHM16] Example Single Query None Geometric
Matching in born-digital cuneiform
tablets, cf. [BM18b]

. . . continued
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Year Method Query Style Annotation Segmentation Features Characteristics

2016
CNNs and Attribute SVMs

[KDJ16]
Example
String

Multi Word Word CNN
CNN-features projected to
PHOC-space

2016
Siamese CNNs [ZPJ+16;
BAE18]

Example Single Word Word CNN
Distance learning with two-channel
CNNs

2016
triplet-CNN word
embedding [WB16]

Example
String

Multi Word Word CNN
triplet-CNN-based word embedding,
cf. Siamese CNN [BAE18]

2017
Recurrent neural network
[BHK+17]

String Multi Line Line CNN
Character sequence posteriors from
character lattice [TPV16]

2017 Feature matching [ZPG17] Example Single Query None
Gradient
histograms

Keypoint detection, matching,
spatial consistency, cf. [ZPG14]

2017
Region proposal network
[WLB17]

Example
String

Multi Word None CNN
End-to-end learning for region
hypotheses, word embeddings

2017 R-PHOC [GV17] Example Single Word None CNN
Region hypotheses based on
CC-grouping, PHOC embedding

2017
Levenshtein deep
embedding [GRK17]

String Single Word Word CNN
Learned string embedding for
word images

2017
Cross-domain
PHOCnet [SRF17]

O.-Hand-
writing

Multi Word Word CNN
Cross-domain PHOC embedding
with separate and a single CNN

2017 TPP-PHOCnet [SF18; SF17]
Example
String

Multi Word Word CNN
Temporal pooling, cf. [RSS+18],
embeddings, loss functions

. . . continued
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Year Method Query Style Annotation Segmentation Features Characteristics

2017 Word hypotheses [RSR+17]
Example
String

Multi Word None CNN
ER hypotheses on CNN word
detector scores, PHOC embedding

2018
Probabilistic indexing
[LPT+18]

String
Words

Multi Line Line CNN
Indexing pseudo words in
character lattice [BHK+17]

2018
Zone sequence matching
[RLS+18]

Example Single Query Word
Orientation
histograms

Sequence matching of temporal
zone descriptors (similar to DTW)

2018
Filters for graph-based
spotting [SFR18b; SFR18a]

Example Single Query Word
Binary
intensities

Fast rejection of graphs that are
dissimilar to the query graph

2018 Synthetic codebook [AR18] Example Single Query Word
Spatial
pyramid

Synthetically generated universal
BoF codebook

2018
Matching in 3D cuneiform
tablets [BM18a]

Example Single Query None
Holistic image
descriptors

Patch-based 2D-embedding of 3D
triangular meshes

2018
HWNet v2 PHOC embedding
[KDJ18]

Example
String

Multi Word Word CNN
ResNet with real and synthetic data,
cf. [DKM+18]

2018
Compact deep descriptors
[RSL+18]

Example Multi Word Word CNN
n-gram attributes and CNN zoning
features, cf. [SRG16]

2018
Direct attribute prediction
[RRM+18]

Example
String

Multi Word Word CNN
Probabilistic model for the
similarity of PHOC vectors

Table 49: Word spotting methods 1993–2018. The table shows different approaches and characterizes them with respect to selected properties.
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