
Asymptotic Class Numbers of Lattices

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

Der Fakultät für Mathematik der

Technischen Universität Dortmund
vorgelegt von

Timo Rosnau

im Juni 2019



Dissertation

Asymptotic Class Numbers of Lattices

Fakultät für Mathematik

Technische Universität Dortmund

Erstgutachter: Prof. Dr. Rudolf Scharlau

Zweitgutachter: Prof. Dr. Peter Zeiner

Tag der mündlichen Prüfung: 04.09.2019
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Introduction

In 1905, Minkowski has shown that most of the Z-lattices possess a trivial automorphism
group (see [Min05]). That is, if we fix the dimension and let an upper bound D on the
determinant detL of the lattices L tend towards infinity, the number of isomorphism classes
of lattices with trivial automorphism group grows with a higher order of magnitude of D
than the class number of lattices with non-trivial automorphism groups. These orders of
magnitude depend on the dimension n. Biermann established an analogous result for any
given genus of lattices of determinant at most D in his 1981 dissertation (see [Bie81]).

Roughly speaking, the number of isomorphism classes of lattices grows with the determi-
nant and the dimension. This growth, however, is not a strict one since the class number
heavily depends on the prime factorisation of the determinant. Thus, useful statements
can only be given for somehow averaged class numbers. The most natural approach is
considering the number of all isomorphism classes of lattices with a determinant smaller
than or equal to a given bound.

In this work we will determine the asymptotic growth of class numbers for two- and three-
dimensional lattices with a prescribed automorphism group. Hopefully, this may be a step
towards more general results.

The first chapter gives basic definitions. In particular, we describe the kind of classes of
lattices that we want to count. A connection to classes of integral (Gram) matrices which
are easier to enumerate than the lattices themselves is established.

In the second chapter we introduce several reduction theories and investigate their inter-
relations. If a reduction theory ensures that exactly one lattice of each isomorphism class
is reduced, it can be used as a tool for the determination of class numbers.

The third chapter contains the first principal part of this thesis: We develop formulas for the
asymptotic growth of class numbers of two-dimensional integral lattices. We count reduced
Gram matrices of determinant smaller than or equal to D that belong to a given geometric
type (rectangular, centered rectangular, rhombic, square, hexagonal). The biggest order of
magnitude with which the class number of one of these types grows is given by c ·D logD
where c is some constant. A theorem by Minkowski (Theorem 3.5) tells us that the number

of all two-dimensional lattices grows approximately like π
9
D

3
2 . Thus, this must also be the

first order term of growth of classes of oblique lattices. Nevertheless, we spend the rest
of the chapter with calculating their asymptotic growth in more detail, since we can use
these results for the calculations in the three-dimensional case.

In the second main part (chapter four) we consider three-dimensional lattices. In the cases
of higher symmetry, that is for automorphism groups of order 48 down to 8, we use a the-
orem of Delange (Theorem 4.2) to determine the terms of highest order of the asymptotic
growth. The application of this method becomes increasingly difficult for smaller auto-
morphism groups. We switch back to a more direct approach (counting Gram matrices)
and calculate class numbers of complete Bravais classes instead of single geometric types
to avoid these difficulties. For triclinic lattices (that is lattices with trivial automorphism

groups) the Theorem of Minkowski yields ζ(3)
24
D2 as growth rate. Larger automorphism

groups lead to a smaller growth rate (the biggest being c · D 3
2 in the monoclinic case of

groups of order four). For details see Table 4 which compiles the first order term of the
asymptotic growth of each of the 14 Bravais types.
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In the appendix we collect some information about the three-dimensional geometric types
for which the automorphism group has at least eight elements: graphical sketch of the
lattice, shortest vectors, reduced basis, Gram matrix, generators of the automorphism
group.

I would like to thank Rudolf Scharlau for the selection of the topic of and the supervision
of the work on this thesis.

I wish to acknowledge the extensive support of Peter Zeiner at Bielefeld University.

I am grateful to Michael Baake and the Faculty of Mathematics of Bielefeld University for
promoting my work with a research fellowship.
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1 Class Numbers of Lattices with Symmetries

Let K be an algebraic number field and V be a vector space over K with dimV = n.

Definition 1.1. An integral lattice with bilinear form is a pair (L, b) of a symmetric
bilinear form b : V ×V → K and a finitely generated submodule L of (V,+) whose elements
v, w ∈ L fulfil the integrity condition b(v, w) ∈ OK .

Abbreviatorily, we speak of (integral) lattices, if it is clear from the context which bilinear
form should be used.

Below, we only consider lattices of full rank, equivalently, L generates the vector space V .

Definition 1.2. A lattice basis consists of n vectors v1, . . . , vn ∈ V that generate the
lattice (L, b), that is, L = OKv1 + . . .+OKvn.

Given such a lattice basis we define the Gram matrix of the lattice with respect to this
basis by

B := (b(vi, vj))
n
i,j=1 ∈ OK

n×n.

Remarks 1.3. If OK is a principal ideal domain, then the class number of K is 1, and
thus every lattice has a basis.

For v, w ∈ V with coordinate vectors x, y ∈ Kn with respect to the lattice basis, we have
b(v, w) = xtBy.

Definition 1.4. The square class [detB] of detB in OK/(O×K)2 is called determinant
det(L, b) of the lattice.

Remark 1.5. If we fix the lattice, different lattice bases yield Gram matrices, whose
determinants belong to the same square class. To be specific, let S be the matrix of the
base change from (v1, . . . , vn) to another basis (w1, . . . , wn) and let B′ be the corresponding
Gram matrix, then

xtBy = b(v, w) = (Sx)tB′(Sy) = xt(StB′S)y.

Therefore, B = StB′S, which implies detB = detB′ · (detS)2. Since S describes the base
change between lattice bases, its entries are elements of OK . So detS ∈ O×K which implies
[detB] = [detB′], and hence the determinant of a lattice is well-defined.

Definition 1.6. For i = 1, 2 let (Li, bi) be lattices with bilinear forms. A linear trans-
formation F ∈ GL(V ) is called an isometry from (L1, b1) to (L2, b2) if F (L1) = L2

and b1 = b2 ◦ (F, F ), that is, F is a bijective mapping between the lattices with an
orthogonality property. Here, (F, F ) : V × V → V × V for v, w ∈ V is defined by
(F, F )(v, w) := (F (v), F (w)).

The lattices are isometric, in short (L1, b1) ∼= (L2, b2), if there is an isometry from L1 to
L2 (which is the case, if and only if there is a reverse isometry).

By [L, b] we denote the equivalence class of (L, b) with respect to this relation.

The group O(L, b) := {F ∈ GL(V ) | F (L) = L, b = b ◦ (F, F )} is called orthogonal
group or isometry group of the lattice.

Lemma 1.7. Isometric lattices possess the same determinant.
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Proof. Let F be given as in Definition 1.6 and let (v1, . . . , vn) be a lattice basis of L1. We
claim that (F (v1), . . . , F (vn)) is a lattice basis of L2. For x ∈ L2 we have F−1(x) ∈ L1,
hence there are αi ∈ OK , i = 1, . . . , n with F−1(x) =

∑n
i=1 αivi. The transformation F is

linear, therefore x =
∑n

i=1 αiF (vi). Thus, the vectors F (vi), i = 1, . . . , n generate L2.
Applying the orthogonality property of F on the basis vectors of L1 yields equality

of the Gram matrices of L1 and L2 with respect to the given bases. In particular, the
determinants are equal.

Lemma 1.8. If two lattices (Li, bi), i = 1, 2 are isometric, then their orthogonal groups
are conjugate in GL(V ). To be specific:

F : (L1, b1)
∼=−→ (L2, b2) is an isometry. ⇒ FO(L1, b1)F

−1 = O(L2, b2).

Proof. Let F be an isometry from L1 to L2 and let g ∈ O(L1, b1). From the definitions it
follows that

F (L1) = L2, b1 = b2 ◦ (F, F )

and

g(L1) = L1, b1 = b1 ◦ (g, g).

Since F is bijective, the first part implies b2 = b1 ◦ (F−1, F−1). The composition FgF−1 is
an element of the isometry group of the second lattice because of

FgF−1(L2) = Fg(L1) = F (L1) = L2

and

b2 ◦ (FgF−1, FgF−1) = b2 ◦ (F, F )︸ ︷︷ ︸
=b1

◦(g, g)

︸ ︷︷ ︸
=b1

◦(F−1, F−1) = b2.

It follows that FO(L1, b1)F
−1 ⊂ O(L2, b2). By symmetry reasons (use F−1 instead of F

as an isometry between the lattices) we even have equality.

We want to classify the lattices in V according to their symmetries.

Definition 1.9. We define two different class numbers for groups. Recall that V is a
vector space over an algebraic number field K with ring of integers OK .

1. Let G be a subgroup of GL(V ) and let d ∈ OK . We set

M̃G(d) := {[L, b] | (L, b) is a lattice in V with det(L, b) = [d] and G = O(L, b)} .

The cardinality h̃G(d) := |M̃G(d)| of this set of isometry classes of lattices is called
class number of G with respect to d.

2. Let L ⊆ V be a finitely generated, free OK-module and let G be a subgroup of
GL(L) := {F ∈ GL(V ) | F (L) = L}. We define

ML
G(d) := {[L, b] | (L, b) is a lattice in V with det(L, b) = [d] and G = O(L, b)} .

The Bravais class number of G with respect to d is the cardinality hLG(d) :=
|ML

G(d)| of this second set. It depends on a given L.
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We finally define the aggregated (Bravais) class numbers of the group G as functions
depending on an upper bound x for the determinant:

H̃G(x) :=
∑

1≤d≤x

h̃G(d) and HL
G(x) :=

∑
1≤d≤x

hLG(d).

Remark 1.10. For L fixed, we have ML
G(d) ⊆ M̃G(d) and hence hLG(d) ≤ h̃G(d).

Lemma 1.11. Let V be a K-space and let L,L1, L2 ⊆ V be finitely generated free modules
over OK.

a) If G1 and G2 are conjugate subgroups of GL(V ), then their class numbers coincide

for every d ∈ OK, that is, h̃G1(d) = h̃G2(d).

b) If there is S ∈ GL(V ) with G2 = SG1S
−1 and L2 = SL1, then hL1

G1
(d) = hL2

G2
(d) for

every d ∈ OK.

c) If G1 and G2 are conjugate subgroups of GL(L), then their Bravais class numbers
coincide for every d ∈ OK, that is, hLG1

(d) = hLG2
(d).

d) If G is a subgroup of GL(V ) and there is S ∈ GL(V ) with G = SGS−1 and L2 = SL1,
then hL1

G (d) = hL2
G (d).

Proof. a) We prove the equality of the class numbers by showing that the underlying

sets M̃i := M̃Gi(d), i = 1, 2 are identical.

Since G1 and G2 are conjugate, there is S ∈ GL(V ) with G2 = SG1S
−1. Let A ∈ M̃1

and (L, b) ∈ A with G1 = O(L, b). Apparently, the mapping

S : (L, b) −→ ( SL︸︷︷︸
L′:=

, b ◦ (S−1, S−1)︸ ︷︷ ︸
b′:=

)

is an isometry. In particular, we have A = [L, b] = [L′, b′]. Moreover, by Lemma 1.8
we have SO(L, b)S−1 = O(L′, b′) and thus

G2 = SG1S
−1 = SO(L, b)S−1 = O(L′, b′).

The determinants of both lattices L and L′ are equal to [d]. (For L′, this follows from

Lemma 1.7.) Therefore, A is also an element of M̃2. As in the proof of Lemma 1.8

the converse inclusion M̃2 ⊂ M̃1 follows by symmetry reasons.

b) The proof of a) can be adapted. We choose A ∈ ML1
G1

(d) and (L1, b1) ∈ A with
G1 = O(L1, b1). If we define b2 := b1 ◦ (S−1, S−1), then S : (L1, b1) −→ (L2, b2) is an
isometry.

c) This is a special case of b).

d) This is another, even more obvious special case of b).
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Example 1.12. Let K := Q, V := Q2, L := Z2 and d = 8. Moreover, let

G1 :=

〈(
−1 0
0 −1

)
,

(
1 0
0 −1

)〉
and G2 :=

〈(
−1 0
0 −1

)
,

(
0 1
1 0

)〉
.

Then

ML
G1

(d) =

{[
Z2, bB

] ∣∣∣∣B ∈ {(1 0
0 8

)
,

(
2 0
0 4

)}}
,

ML
G2

(d) =

{[
Z2, bB

] ∣∣∣∣B =

(
3 1
1 3

)}
and

M̃G1(d) = M̃G2(d) = ML
G1

(d) ∪ML
G2

(d).

The first equality holds, since SG1S
−1 = G2 for S = 1

2

(
1 1
1 −1

)
. For the second equality,

the definitions of the involved sets clearly imply that the right-hand side is included in the
left-hand side. We use the geometric classification of two-dimensional lattices (see Table on
page 12) for the inverse inclusion: Only lattices that are rectangular, centered rectangular,
or rhombic possess automorphism groups of order 4. We assume B to be reduced.

• If (Z2, bB) is rectangular, then B =

(
a 0
0 b

)
with a < b. For d = 8, this only admits

the two matrices given in ML
G1

(d).

• If (Z2, bB) is centered rectangular, then B =

(
2b b
b c

)
with 2b < c. Furthermore, we

have 8 = detB = b(2c − b). We are looking for possible values for b ∈ {1, 2, 4, 8}.
If b = 1 or b = 8, then c = 9

2
, which is not possible. In the remaining cases we get

c = 3. But this would require b < 3
2
. So, there are no centered rectangular lattices

with determinant 8.

• If (Z2, bB) is rhombic, then B =

(
a b
b a

)
with 2b < a. We have 8 = a2 − b2 =

(a+ b)(a− b) and a+ b > a− b > 0. Hence, (a+ b, a− b) ∈ {(8, 1), (4, 2)}. The first
case cannot occur since it would imply a, b /∈ Z. The second case is given in ML

G2
(d).

Therefore, the class numbers are hLG1
(d) = 2, hLG2

(d) = 1 and h̃G1(d) = h̃G2(d) = 3.

If we consider two lattices (L1, b1) and (L2, b2) that are Bravais equivalent (see Definition
A.1) and have the same automorphism group G = O(L1, b1) = O(L2, b2), then we have
hL1
G (d) = hL2

G (d) thanks to part d) of the above Lemma. This shows that the name Bravais
class number of G for the quantity hLG(d) is justified.

Lemma 1.13. Two lattices are isometric if and only if the corresponding Gram matrices
are congruent by a matrix in GLn(OK). (In this case, we speak of integral congruence.)

Proof. If (L1, b1) and (L2, b2) are isometric, then the proof of Lemma 1.7 tells us that they
have the same Gram matrix with respect to suitable bases. By Remark 1.5 Gram matrices
of the same lattice with respect to different bases belong to the same congruence class in

4



(OK)n×n. The base change is described by an integral, integrally invertible matrix, which
proves the first part.

For the converse, let (L1, b1) and (L2, b2) be lattices with Gram matrices B1 and B2 with
respect to the lattice bases (v1, . . . , vn) and (w1, . . . , wn), respectively. Furthermore, let
S ∈ GLn(OK) with B1 = StB2S. We define FS(vj) :=

∑n
i=1 sijwi, j = 1, . . . , n. We claim,

that this is an isometry from L1 to L2:
Since S is regular and has entries belonging to OK , the images FS(vj) of the basis vectors
form a lattice basis of L2. This implies FS(L1) = L2. The orthogonality property of FS
can be seen in the following way:

b1(vi, vj) = (B1)ij = (StB2S)ij =

(
n∑
k=1

n∑
l=1

skisljb2(wk, wl)

)
ij

= b2

(
n∑
k=1

skiwk,

n∑
l=1

sljwl

)
= b2(FS(vi), FS(vj)).

General Assumption. From now on, let K = Q and V = Kn = Qn.

Remark 1.14. Since O×2K = Z×2 = {1}, we have [d] = d for all d ∈ Z and may thus omit
the brackets from expressions as [detB], [d], etc..

Lemma 1.15. Let (L, b) be a lattice with bilinear form. There exists B ∈ Zn×nsym , such that
(L, b) ∼= (Zn, bB) holds, where bB(x, y) := xtBy.

Proof. Let (v1, . . . , vn) be a lattice basis of L. We define a linear transformation F ∈ GL(V )
by F (vi) := ei, i = 1, . . . , n. Here, E = (e1, . . . , en) denotes the standard basis of Qn. We
choose B to be the Gram matrix of L with respect to the basis v1, . . . , vn ∈ V . This way,
F becomes an isometry between the two lattices.

Proposition 1.16. There is a bijection ϕ between the isometry classes of n-dimensional
lattices with bilinear forms and integral congruency classes of elements of Zn×nsym .

Proof. An isometry class [L, b] with (L, b) ∼= (Zn, bB) is assigned to the congruence class
of B. This map is well-defined and injective by Lemma 1.13. Because of the existence of
(Zn, bB), it is surjective as well.

Remark 1.17. We consider a right group action of GLn(Z) on Zn×nsym , which is induced by
the integral congruence of matrices:

. : Zn×nsym ×GLn(Z) −→ Zn×nsym

(B, S) 7−→ B.S := StBS.

An orbit of this group action can be described with the help of the bijection ϕ from
Proposition 1.16 as follows: B.GLn(Z) = ϕ([Zn, bB]). By Proposition 1.16 the orbits
correspond to the isometry classes of lattices. Furthermore, the isometry groups of lattices
can also be characterised using this group action.

By choosing the canonical basis E we can identify GL(V ) = GL(Qn) with GLn(Q).

Lemma 1.18. Let B ∈ Zn×nsym and consider the lattice (Zn, bB). Its orthogonal group is
given by the stabilizer BGLn(Z) of the matrix B.

5



Proof. We have the following chain of equalities:

O(Zn, bB) = {F ∈ GL(V ) | F (Zn) = Zn, bB = bB ◦ (F, F )}
= {A ∈ GLn(Q) | AZn = Zn, B = AtBA}
= {A ∈ GLn(Z) | B.A = B}
= BGLn(Z).

Lemma 1.19. Each two elements of an orbit of a group action possess conjugate stabilizers.
More specifically, let ∗ : X × G → X be a right action of a group G on a set X and let
x ∈ X, g ∈ G. Then, x∗gG = g−1xGg.

Proof. We have

x∗gG = {h ∈ G | (x ∗ g) ∗ h = x ∗ g} = {h ∈ G | x ∗ (ghg−1) = x}
= {g−1hg ∈ G | x ∗ h = x} = g−1xGg.

Proposition 1.20. Let d ∈ Z and let G be a subgroup of GLn(Q). The class number h̃G(d)
equals the number of congruence classes B.GLn(Z) of elements B ∈ Zn×nsym with determinant
detB = d whose stabilizer BGLn(Z) is also a representative of the conjugacy class of G in

GLn(Q), that is, h̃G(d) = |NG(d)|, where

NG(d) := {B.GLn(Z) | B ∈ Zn×nsym , detB = d,∃S ∈ GLn(Q) : SGS−1 = BGLn(Z)}.

Proof. By Definition 1.9 we have

h̃G(d) = |{[L, b] | (L, b) is a lattice in V with det(L, b) = d and G = O(L, b)}|.

If B.GLn(Z) ∈ NG(d), then there is S ∈ GLn(Q) with SGS−1 = BGLn(Z). We define
G′ := SGS−1. Now, Lemma 1.18 implies G′ = O(Zn, bB), hence [Zn, bB] ∈ MG′(d). Since
G and G′ are conjugate, we know from the proof of Lemma 1.11 that MG(d) = MG′(d).
Thus [Zn, bB] ∈ MG(d) and with the help of the bijection ϕ from Proposition 1.16 we can

conclude h̃G(d) ≥ |NG(d)|.

Conversely, let G = O(L, b) for a lattice (L, b) with determinant d, that is, [L, b] ∈MG(d).
By Lemma 1.15 there is a matrix B ∈ Zn×nsym with (L, b) ∼= (Zn, bB). Lemma 1.8 ensures the
existence of S ∈ GLn(Q) with O(L, b) = S−1O(Zn, bB)S. By Lemma 1.18 this implies

SGS−1 = O(Zn, bB) = BGLn(Z).

Now we can see that B.GLn(Z) ∈ NG(d) and hence h̃G(d) ≤ |NG(d)|.

6



2 Reduction Theories

Typically, reduction theories are established for quadratic forms and not for lattices. This
is why we first introduce some notions concerning quadratic forms. Later on, thanks to
the correspondence between lattices and quadratic forms, most of the results can easily be
translated.

Definition 2.1. Let n ∈ N. A quadratic form f is a homogeneous polynomial of degree
two in n indeterminates with coefficients in a commutative ring R, that is,

f =
∑

1≤i≤j≤n

fijXiXj, fij ∈ R.

We assume charR 6= 2. For n = 2, 3, 4, . . . the form f is referred to as being binary,
ternary, quaternary etc..

Definition 2.2. For a given form f we define its Gram matrix Gf := (aij)ij ∈ Rn×n

through ai := aii := fii and aij := 1
2
fij for i 6= j.

For the following let R = Q. The form f is called positive definite, if its Gram matrix
is positive definite.

Two forms f and g are called equivalent, if their Gram matrices are integrally congruent.

Remark 2.3. According to Lemma 1.13 the notion of equivalence of quadratic forms
corresponds to the notion of isometry of lattices with bilinear forms.

Definition 2.4. A quadratic form f with Gram matrix Gf = (aij)ij is called Minkowski
semi-reduced, if, for all k = 1, . . . , n, we have

akk ≤ f(s) for all s ∈ Zn with ggT(sk, sk+1, . . . , sn) = 1.

A Minkowski semi-reduced form is called Minkowski reduced, if ak,k+1 ≥ 0 holds for all
k = 1, . . . , n− 1.

It is well known and easy to see that a binary quadratic form is Minkowski reduced if and
only if 0 ≤ 2a12 ≤ a11 ≤ a22 holds.

Definition 2.5. From now on, let f be a ternary form with Gram matrix

Gf =

 a1 a12 a13
a12 a2 a23
a13 a23 a3

 ; in Gauß’ notation this reads f =

(
a1 a2 a3
a23 a13 a12

)
.

The adjoint F of f is given by

F =

(
a223 − a2a3 a213 − a1a3 a212 − a1a2

a1a23 − a12a13 a2a13 − a12a23 a3a12 − a13a23

)
.

Let

GF =

 ā1 ā12 ā13
ā12 ā2 ā23
ā13 ā23 ā3

 be the Gram matrix of F .

1. A positive definite form f is called Brandt reduced, if it is Minkowski semi-reduced
and fulfils the following conditions:

7



• If we arrange the set {|a23|, |a13|, |a12|} and form an ascending triple (m1,m2,m3)
of its elements, this triple is lexicographically minimal among all triples of equiv-
alent Minkowski semi-reduced forms.

• If there are equivalent Minkowski semi-reduced forms with the same triple,
then the given one is lexicographically closest to the canonical arrangement
(|a23|, |a13|, |a12|).
• The inequalities a12 ≥ 0 and a13 ≥ 0 hold.

2. A positive definite form f is called Eisenstein reduced, if it meets the following
conditions:

(a12, a13, a23 > 0) or (a12, a13, a23 ≤ 0),(1)

2|a12| ≤ a1, 2|a13| ≤ a1, 2|a23| ≤ a2,(2)

a1 ≤ a2 ≤ a3, − a12 − a13 − a23 ≤
1

2
(a1 + a2),(3)

(a1 = a2) ⇒ |a23| ≤ |a13|,
(a2 = a3) ⇒ |a13| ≤ |a12|,

(4)

(
−a12 − a13 − a23 =

1

2
(a1 + a2)

)
⇒ a1 + 2a13 + a12 ≤ 0,(5)

(a1 = 2a12) ⇒ a13 ≤ 2a23,
(a1 = 2a13) ⇒ a12 ≤ 2a23,
(a2 = 2a23) ⇒ a12 ≤ 2a13,

(6)

(a1 = −2a12) ⇒ a13 = 0,
(a1 = −2a13) ⇒ a12 = 0,
(a2 = −2a23) ⇒ a12 = 0.

(7)

3. A positive definite form f is called Seeber reduced, if (1)–(4) and the following
additional conditions hold:(

−a12 − a13 − a23 =
1

2
(a1 + a2)

)
⇒ 2|ā23| ≤ ā3,(8)

(a1 = ±2a12) ⇒ 2|ā12| ≤ |ā2|,
(a1 = ±2a13) ⇒ 2|ā13| ≤ |ā3|,
(a2 = ±2a23) ⇒ 2|ā23| ≤ |ā3|.

(9)

4. A positive definite form f is called Schiemann reduced, if it is Minkowski semi-
reduced, fulfils condition (6) and the following conditions as well:

a12 ≥ 0, a13 ≥ 0 and (a12 = 0 ∨ a13 = 0)⇒ a23 ≥ 0,(10)

(a1 = a2) ⇒ |a23| ≤ a13,
(a2 = a3) ⇒ a13 ≤ a12,

(11)
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(
a12 + a13 − a23 =

1

2
(a1 + a2)

)
⇒ a1 − 2a13 − a12 ≤ 0,(12)

2a23 > −a2.(13)

Lemma 2.6. Let f be a positive definite ternary quadratic form. It is Minkowski semi-
reduced if and only if one of the following sets of conditions is fulfilled by f :

(A) 0 < a1 ≤ a2 ≤ a3 and |a12| ≤ 1
2
a1, |a13| ≤ 1

2
a1, |a23| ≤ 1

2
a2 as well as

−a12 − a13 − a23 ≤
1

2
(a1 + a2),

−a12 + a13 + a23 ≤
1

2
(a1 + a2),

a12 − a13 + a23 ≤
1

2
(a1 + a2),

a12 + a13 − a23 ≤
1

2
(a1 + a2).

(B) 0 < a1 ≤ a2 ≤ a3 and |a12| ≤ 1
2
a1, |a13| ≤ 1

2
a1, |a23| ≤ 1

2
a2 as well as

a12a13a23 < 0⇒ |a12|+ |a13|+ |a23| ≤
1

2
(a1 + a2).

Proof. Since f is positive definite by assumption, we have 0 < a1. For the fact that the
remaining inequalities of (A) hold if and only if f is Minkowski semi-reduced, see [vdW56],
page 290. For this result a proposition of Minkowski is essential, claiming that for n ≤ 4
in the situation of Definition 2.4 we can assume sj ∈ {0,±1}.
It remains to show, that the conditions of (A) and (B) are equivalent. First, we assume
(A) to be true and let a12a13a23 < 0. The number of negative elements in {a12, a13, a23} is
either one or three. So |a12| + |a13| + |a23| is just the left-hand side of one of the last four
conditions of (A). Now, let (B) be true. If we have a12a13a23 < 0 in addition, then

±a12 ± a13 ± a23 ≤ |a12|+ |a13|+ |a23| ≤
1

2
(a1 + a2).

For a12a13a23 = 0, at least one of the factors of the left-hand side equals zero. Then each
of the four inequalities of (A) that we have to show is a special case of

±aij ± akl ≤ |aij|+ |akl| ≤
1

2
ai +

1

2
ak ≤

1

2
(a1 + a2).(14)

But this is true for

(i, j), (k, l) ∈ {(1, 2), (1, 3), (2, 3)}, (i, j) 6= (k, l)

since

|aij| ≤
1

2
ai and a1 ≤ a2

hold. Finally, if a12a13a23 > 0, then one or three of the factors are positive. Hence, at least
one summand of each left-hand side of (A) is negative. Therefore, (14) implies each of the
four inequalities that we have to prove.
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Lemma 2.7. A positive definite form f is Eisenstein reduced if and only if it is Seeber
reduced. In particular, in this case it is Minkowski semi-reduced.

Proof. The first claim is stated by Eisenstein on page 143 of [Eis51]; see also [Dic23],
chapter IX, page 210. I could not find a detailed proof in the literature, however.

Let f be Eisenstein reduced. We wish to show that f is Minkowski semi-reduced. Since f
is positive definite, we have a1 > 0. Condition (2) and the first part of (3) complete the
first line of (B) in Lemma 2.6. Suppose a12a13a23 < 0 then (1) implies a12, a13, a23 < 0. It
follows that

|a12|+ |a13|+ |a23| = −a12 − a13 − a23 ≤
1

2
(a1 + a2)

thanks to the second part of (3). Thus, (B) is true.
We have seen that a ternary positive definite quadratic form is already Minkowski semi-
reduced if it fulfils conditions (1)–(3).

Lemma 2.8. A positive definite form f is Schiemann reduced if and only if it fulfils the
following conditions.
Boundary conditions (decide which forms on the boundary of the cone of Schiemann reduced
forms are included):

(a1 = 2a12) ⇒ a13 ≤ 2a23,
(a1 = 2a13) ⇒ a12 ≤ 2a23,
(a2 = 2a23) ⇒ a12 ≤ 2a13,

(6)

(a1 = a2) ⇒ |a23| ≤ a13,
(a2 = a3) ⇒ a13 ≤ a12,

(11)

(
a12 + a13 − a23 =

1

2
(a1 + a2)

)
⇒ a1 − 2a13 − a12 ≤ 0,(12)

(a12 = 0 ∨ a13 = 0)⇒ a23 ≥ 0(15)

Essential inequalities:

0 < a1 ≤ a2 ≤ a3,(16)

0 ≤ 2a12 ≤ a1,
0 ≤ 2a13 ≤ a1,

−a2 < 2a23 ≤ a2,
(17)

a12 + a13 − a23 ≤
1

2
(a1 + a2).(18)

Proof. Let f be a positive definite quadratic form that complies with the boundary con-
ditions. We have to show that f fulfils conditions (16)–(18) if and only if f is Minkowski
semi-reduced and a12, a13 ≥ 0, 2a23 > −a2.

If the latter is true, (16) and (18) follow as a part of (A) by Lemma 2.6. Each inequality
of condition (17) is either contained in (A) as well or already assumed to be true.
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Now we suppose that (16)–(18) are fulfilled. The inequalities a12, a13 ≥ 0, 2a23 > −a2 are
given as part of (17). We still have to prove that f is Minkowski semi-reduced. We want to
accomplish this by showing (B). The first line of (B) follows from (16) and (17). Suppose
a12a13a23 < 0, then a23 < 0 since a12 and a13 are non-negative. With the help of (18) we
get

|a12|+ |a13|+ |a23| = a12 + a13 − a23 ≤
1

2
(a1 + a2).

Hence f fulfils (B) and is therefore Minkowski semi-reduced.

For the sake of brevity of language we extend the notion of reducedness to matrices and
lattice bases.

Definition 2.9. A matrix is called reduced if it arises as a Gram matrix of a reduced
quadratic form. A lattice basis is called reduced if the corresponding Gram matrix is
reduced.
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3 Asymptotics of Planar Lattices

We begin our asymptotic examination with two-dimensional lattices (L, bB) over Z. Let
the lattice be standard, that is, L = Z2. Furthermore, let its Gram matrix be given by

B =

(
a b
b c

)
with a, b, c ∈ Z .

We assume that B is Minkowski reduced; see Definition 2.4. It is known and easy to see
that every lattice admits a unique reduced Gram matrix. These matrices can be classified
according to the following table:

Case Name Index Conditions

I oblique 0 0 < 2b < a < c

II rectangular re 0 = 2b < a < c

III centered rectangular cr 0 < 2b = a < c

III’ rhombic rh 0 < 2b < a = c

IV square sq 0 = 2b < a = c

V hexagonal hex 0 < 2b = a = c

Definition 3.1. We will refer to the six different cases of the above table as the geometric
types of two-dimensional lattices. The number of isometry classes of lattices of a given
geometric type with determinant D is denoted by hi(D), where i ∈ {0, re, cr, rh, sq, hex} is
the corresponding index. The sum of all class numbers hi(d) of lattices with determinant
d ≤ D is denoted by Hi(D).

Remark 3.2. Four of the six geometric types coincide with a Bravais class, that is, their
class number equals the Bravais class number hLG(D) from Definition 1.9 for L = Z2 and a
certain group G. The centered rectangular type and the rhombic type belong to the same
Bravais class. More precisely, we have

hi(D) = hZ
2

O(Z2,bBi)
(D), i ∈ {0, re, sq, hex}

with

B0 :=

(
3 1
1 4

)
, Bre :=

(
1 0
0 2

)
, Bsq :=

(
1 0
0 1

)
, Bhex :=

(
2 1
1 2

)
.

We define Gi := O (Z2, bBi) We list the corresponding groups

G0 = {± id} ,

Gre =

{
± id,±

(
1 0
0 −1

)}
,

Gsq =

{
± id,±

(
1 0
0 −1

)
,±
(

0 −1
1 0

)
,±
(

0 1
1 0

)}
,

Ghex =

{
± id,±

(
1 1
−1 0

)
,±
(

0 −1
1 1

)
,±
(

0 1
1 0

)
,±
(

1 1
0 −1

)
,±
(

1 0
−1 −1

)}
,
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and note that no two of them are conjugated since they all have different orders. If we set

Bcr :=

(
2 1
1 3

)
and Brh :=

(
3 1
1 3

)
however, then

Gcr =

{
± id, ±

(
1 1
0 −1

)}
and Grh =

{
± id, ±

(
0 1
1 0

)}

are two groups that are conjugated in GL(2,Z) by

(
−1 0
1 1

)
(but not integrally conjugated

to Gre). Hence, according to part c) of Lemma 1.11, we have

hZ
2

O(Z2,bBcr )
(D) = hZ

2

O(Z2,bBrh)(D).

In the remainder of this chapter we shall investigate the behaviour of Hi(D) for D →∞.

Definition 3.3. We fix some notation.

1. For x ∈ R let bxc, dxe and {x} denote the floor function, ceiling function and frac-
tional part of x, respectively. That is,

bxc := max{k ∈ Z | k ≤ x},
dxe := min{k ∈ Z | k ≥ x},
{x} := x− bxc.

2. Let n ∈ N. We define σα(n) :=
∑

q|n q
α, the so-called sum-of-divisors function.

3. Let Q(n) := |{k ∈ N | k2 ≤ n}| be the number of squares less than or equal to n.

The general case I of lattices with trivial automorphism group will be dealt with later on,
applying a result of Minkowski.

II In the case of a rectangular lattice the determinant is Dre = ac. The number of
(natural) divisors of a natural number n is odd if and only if n is a square. In this
case the divisor

√
n will not be counted, since it corresponds to a square lattice.

Therefore, the class number arises as hre(D) = b1
2
σ0(D)c, σ0(D) being the number

of divisors of D. For the aggregated class numbers it follows that

Hre(D) =
D∑
k=1

hre(k) =
D∑
k=1

⌊
1

2
σ0(k)

⌋
=

D∑
k=1

(
1

2
σ0(k)−

{
1

2
σ0(k)

})

=
1

2

D∑
k=1

σ0(k)−
D∑
k=1

{
1

2
σ0(k)

}
.

The asymptotic behaviour of the sum-of-divisors function is well known (see [Apo76],
Theorem 3.3, for example) and the absolute values of the summands of the second
sum are smaller than 1, which gives us

Hre(D) =
1

2

(
D logD + (2C − 1)D +O(

√
D)
)

+O(D) =
D

2
logD +O(D),
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where C is the Euler-Mascheroni constant.

So, for large bounds D, the aggregated class number Hre(D) can be approximated
by D

2
logD.

We notice that the estimate of the fractional parts is very rough. We obtain an error
term of smaller order by calculating the sum of the class numbers avoiding the floor
function:

Hre(D) =
1

2

(
D∑
k=1

σ0(k)−Q(D)

)
.

For a given n ∈ N let k := Q(n). Then the definition of Q yields k2 ≤ n < (k + 1)2,
and taking the square root we get

Q(n) = k ≤
√
n < k + 1 = Q(n) + 1.

Thus, Q(D) =
√
D +O(1), and finally

Hre(D) =
1

2

(
D∑
k=1

σ0(k)−
(√

D +O(1)
))

=
1

2

(
D logD + (2C − 1)D +O

(√
D
))
− 1

2

√
D +O(1)

=
D

2
logD +

(
C − 1

2

)
D +O

(√
D
)
.

III If the lattice is centered rectangular, its Gram matrix is specified by b and c, resulting
in the determinant Dcr = 2bc− b2 = b(2c− b). We define m1 := b and m2 := 2c− b,
which makes (m1,m2) a pair of divisors of Dcr, i.e. Dcr = m1m2. This pair fulfils the
condition 3m1 < m2, since

2b < c ⇔ b <
1

2
c ⇔ m1 <

1

4
(m1 +m2) ⇔

3

4
m1 <

1

4
m2.

Moreover, the congruence m1 ≡ m2 mod 2 holds because of m2 −m1 = 2(c− b).
Conversely, each pair of divisors with these properties determines a centered rectan-
gular lattice with determinant m1m2 via the definitions b := m1 and c := 1

2
(m1 +m2)

as well as a := 2b. Thus, the class number hcr(D) equals the number of such pairs.
We calculate the sum Hcr(D) by adaption of the proof of the asymptotical formula
for the sum-of-divisors function. We note the following auxiliary statements.

Lemma 3.4. Let x ≥ 1 be a real number. Then∑
n≤x

1

n
= log x+ C +O

(
1

x

)
,(a)

∑
n≤x

nα =
xα+1

α + 1
+O(xα), if α ≥ 0.(b)

Proof. See [Apo76], Theorem 3.2.
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Remark. In case of x ∈ N the order of magnitude of the error term in both formulas
corresponds to the last summand on the left-hand side, respectively. Hence, the
summation condition n ≤ x can be replaced by n < x, if required.

We calculate Hcr(D) by counting the possible values of m2 for each admissible m1.
The given restrictions 3m1 < m2 and D ≥ Dcr = m1m2 imply an upper bound m1 <√

D
3

. Having preassigned m1, it follows from the determinant condition Dcr ≤ D

that 1 ≤ m2 ≤ b Dm1
c. By 3m1 < m2 this sharpens to 3m1 < m2 ≤ b Dm1

c. Of these

b D
m1
c − 3m1 possibilities for m2 every second one has the same parity as m1, which

gives us

Hcr(D) =
∑

m1<
√

D
3

(
1

2

(⌊
D

m1

⌋
− 3m1

)
+O(1)

)

as an approximation for the desired class number. With the help of Lemma 3.4 we
can simplify this expression in the following way:

Hcr(D) =
∑

n<
√

D
3

(
1

2

(
D

n
− 3n+O(1)

)
+O(1)

)

=
D

2

∑
n<
√

D
3

1

n
− 3

2

∑
n<
√

D
3

n+O

(√
D

3

)

=
D

2

(
log

√
D

3
+ C +O

(√
3

D

))
− 3

2

(
D
3

2
+O

(√
D

3

))
+O

(√
D

3

)
=
D

4
(logD − log 3) +

C

2
D − 1

4
D +O

(√
D
)

=
D

4
logD +

2C − log 3− 1

4
D +O

(√
D
)
.

III’ Let a and b be the given entries of the Gram matrix. We set m1 := a − b and
m2 := a + b. Because of Drh = a2 − b2 = (a − b)(a + b) = m1m2, we have to count
those pairs of divisors (m1,m2) of D with m1 < m2 and m1 ≡ m2 mod 2, whose
difference 2b is smaller than their average a, to determine hrh(D). Again, such a
pair (m1,m2) uniquely determines a rhombic lattice by a := c := 1

2
(m1 + m2) and

b := 1
2
(m2 −m1). Considering

2b < a ⇔ m2 −m1 <
1

2
(m1 +m2) ⇔ 2m2 < 2m1 +m1 +m2 ,

we conclude m2 < 3m1, which in turn yields m2 <
√

3Drh ≤
√

3D. As opposed
to the centered rectangular case, the upper bound on the determinant here leads to
a restriction on the greater factor m2. This is why we first choose m2 allowing for
1 ≤ m2 <

√
3D. Now, m1 has to satisfy 1

3
m2 < m1 ≤ min{m2−1, D

m2
} and the parity

condition m1 ≡ m2 mod 2. The rhombic case is more complicated than the centered
rectangular case, since we get two competing upper bounds on the last chosen factor,
whereas before, the supposed ordering m1 < m2 of the factors was already contained
in the stricter inequality 3m1 < m2, which resulted from the specific form of the
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lattice in question. So far, we have found

Hrh(D) =
∑
m2∈N

1≤m2<
√
3D

∑
m1∈N

1
3m2<m1≤min{m2−1, Dm2}

m1≡m2 mod 2

1 .

To determine min{m2 − 1, D
m2
} we consider

m2 − 1 ≤ D

m2

⇔ (m2 − 1)m2 ≤ D ⇔ m2
2 −m2 −D ≤ 0.

The parabola function f(x) = x2 − x − D has the zeros x1/2 = 1
2
±
√

1
4

+D with

x1 < 0 < 1 < x2 for positive D. Therefore, since m2 ∈ N,

m2 − 1 ≤ D

m2

⇔ m2 ≤
1

2
+

√
1

4
+D.

Thus, the first bound on m1 applies if m2 ≤ x2, and the second one if m2 ≥ x2. That
is,

min

{
m2 − 1,

D

m2

}
=

{
m2 − 1, m2 ≤ x2

D
m2
, m2 ≥ x2

.

We split the exterior sum accordingly:

Hrh(D) =
∑
m2∈N

m2≤
1
2+

√
1
4+D

∑
m1∈N

1
3m2<m1≤m2−1

m1≡m2 mod 2

1 +
∑
m2∈N

1
2+

√
1
4+D<m2<

√
3D

∑
m1∈N

1
3m2<m1≤

D
m2

m1≡m2 mod 2

1 .(19)

Since the summands of the interior sums are all equal (to 1), we can get rid of the par-
ity condition and multiply by 1

2
instead. The first interior sum can be approximated

in the following way:

∑
m1∈N

1
3m2<m1≤m2−1

m1≡m2 mod 2

1 =
1

2

∑
m1∈N

1
3m2<m1≤m2−1

1 +O(1) =
1

2

(
m2 − 1−

⌊
1

3
m2

⌋)
+O(1)

=
1

2

(
m2 −

1

3
m2 +O(1)

)
+O(1) =

m2

3
+O(1) .

Similar steps yield

∑
m1∈N

1
3m2<m1≤

D
m2

m1≡m2 mod 2

1 =
1

2

(⌊
D

m2

⌋
−
⌊

1

3
m2

⌋)
+O(1) =

D

2m2

− m2

6
+O(1)
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for the second interior sum. We include these results in (19) and get

Hrh(D) =
∑
m2∈N

m2≤
1
2+

√
1
4+D

(m2

3
+O(1)

)
+

∑
m2∈N

1
2+

√
1
4+D<m2<

√
3D

(
D

2m2

− m2

6
+O(1)

)

=
∑
m2∈N

m2≤
1
2+

√
1
4+D

m2

3
+

∑
m2∈N

1
2+

√
1
4+D<m2<

√
3D

(
D

2m2

− m2

6

)
+O

(√
D
)

=
∑
m2∈N
m2≤

√
D

m2

3
+

∑
m2∈N√

D<m2≤
√
3D

(
D

2m2

− m2

6

)
+O

(√
D
)
.

Now, we rearrange the sums such that both of them start at 1. Then we can apply
Lemma 3.4 and end up with

Hrh(D) =
∑
m2∈N
m2≤

√
D

(
m2

2
− D

2m2

)
+

∑
m2∈N

m2≤
√
3D

(
D

2m2

− m2

6

)
+O

(√
D
)

=
1

2

(
D

2
+O

(√
D
))
− D

2

(
log
√
D + C +O

(
1√
D

))
+
D

2

(
log
√

3D + C +O
(

1√
3D

))
− 1

6

(
3D

2
+O

(√
3D
))

+O
(√

D
)

=
D

2

(
log
√

3D − log
√
D
)

+O
(√

D
)

=
D

4
log 3 +O

(√
D
)

for the aggregated class number.

IV Thanks to Dsq = a2, we obviously have hsq(D) ∈ {0, 1}. Furthermore, hsq = 1 if
and only if D is a square. The aggregated class number Hsq(D) simply equals the
number of squares Q(D) less than or equal to D. Therefore, asymptotically, it grows
like
√
D, since

Hsq(D) = Q(D) =
√
D +O(1).

V Again, we look at the conditions on the Gram matrix’s entries. In the hexagonal case
those lead to Dhex = 3b2. Analogously to the last case, we conclude hhex(D) ∈ {0, 1},
and hhex(D) = 1 if and only if D

3
is a square. In adding up, we thus count squares

less than or equal to D
3

. This gives rise to Hhex(3D) = Hsq(D). The resulting order

of magnitude
√

D
3

is similar to the square lattice case:

Hhex(D) = Q

(
D

3

)
=

√
D

3
+O(1).

I The class number in the generic case H0(D) can now be determined as the difference
of the overall class number H(D) and the sum of all special class numbers (cases
II-V). For the overall class number we have the following result of Minkowski.

Theorem 3.5. The aggregated class number H(D) of all isometry classes of lattices
with determinant less than or equal to D is given by

H(D) = v2D
3
2 +O(D logD)
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in the two-dimensional case, whereas for n > 2

H(D) = vnD
n+1
2 +O

(
D

n+1
2
− 1
n

)
.

The constant vn can be viewed as the volume of the domain of rational, Minkowski
reduced quadratic forms with determinant less than or equal to 1. It can be explicitly
computed by

vn =
2

(n+ 1)Γ(1
2
)
n2+n−2

2

n∏
k=2

Γ

(
k

2

)
ζ(k),

where Γ and ζ denote the gamma and Riemann zeta function, respectively.

Proof. See [Min05], §16.

Corollary. The aggregated class number of lattices in the generic case is given by

H0(D) =
π

9
D

3
2 +O(D logD).

Proof. From Γ(1
2
) =
√
π, Γ(1) = 1 and ζ(2) = π2

6
it follows that v2 = π

9
. So, the

right-hand side of the asserted equation describes the overall class number H(D).
Furthermore, we have

∑
i∈{re,cr,rh,sq,hex}

Hi(D) =
3

4
D logD +

6C − 3

4
D +O(

√
D).

Hence, the order of magnitude D logD of the expressions which we have to subtract,
does not exceed those of the error term in Minkowski’s statement.

The results obtained so far are contained in Table 1 at the end of the chapter.

Although we have already determined the main terms of the growth rate of the class
numbers for D →∞ in each of the cases given by the classification at the beginning of the
chapter, we will study once again the asymptotic behaviour of the generic class number.
Using a direct approach, we shall decrease the order of magnitude of the error term. Some
of the calculations will be useful for the investigation of three-dimensional lattices in a
later chapter. There, we will benefit from having established two-dimensional results as
accurately as possible.

For the formulation of our results in the following proposition we use a slightly modified
fractional part of a real number. For x ∈ R let

〈x〉 :=

{
{x}, x /∈ Z
1, x ∈ Z ,

such that for all x ∈ R the equation dxe − 1 = x− 〈x〉 holds.

We state two formulas for H0(D). The first one allows a smaller bound on the error
term but contains a double sum of possibly greater (i.e. linear) order of magnitude, which
we are so far unable to convert to an explicit expression.
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Proposition 3.6. For the aggregated class number of two-dimensional lattices with trivial
automorphism group the following equations hold:

H0(D) =
π

9
D

3
2 − 3

8
D logD +

(
1

8
− 3C

4
− log 2

2
+

log 3

4

)
D(a)

+
∑
a,c∈N

a<c≤Da +a4
D
a <c

〈√
ac−D

〉
+O

(
D

3
4

)
,

H0(D) =
π

9
D

3
2 − 3

8
D logD +O (D) .(b)

To deduce the second claim from the first one, it suffices to show that the remaining double
sum grows at most linearly with D. More precisely, we will see that

Remark 3.7.

0 ≤
∑
a,c∈N

a<c≤Da +a4
D
a <c

〈√
ac−D

〉
≤ D

(
log 2− log 3

2

)
+O

(√
D
)
.

This estimate is based on the inequalities 0 ≤ 〈x〉 ≤ 1, which hold for every x ∈ R. Numer-
ical calculations done by Peter Zeiner with the help of Wolfram Research’s Mathematica
suggest that on average the summand

〈√
ac−D

〉
can be approximated by 1

2
. The differ-

ence between the double sum and D
(
log 2
2
− log 3

4

)
seems to have smaller order of magnitude

than D
3
4 . If true, this would give us

Conjecture 3.8.

H0(D) =
π

9
D

3
2 − 3

8
D logD +D

(
1

8
− 3C

4

)
+O

(
D

3
4

)
.

These observations may convince the reader that the first formula is of some value despite
its rather technical shape.
For the proof of Proposition 3.6 and other calculations as well we need the following general
result.

Lemma 3.9 (Euler-Mclaurin formula). Let x, y ∈ R with 0 < x < y and let f be a
continuously differentiable function with domain [x, y], then∑

n∈N
x<n≤y

f(n) =

∫ y

x

f(t)dt+

∫ y

x

(t− btc)f ′(t)dt+ f(y)(byc − y)− f(x)(bxc − x).

Proof. See Theorem 3.1 in [Apo76].

Proof of Proposition 3.6. We count the admissible Gram matrices by summation over their
entries:

H0(D) =
∑
a,b,c∈N
2b<a<c

ac−b2≤D

1 .(20)
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In a first step, we determine the number of possible values for b. This enables us to carry
out the summation over b which yields

H0(D) =
∑
a,c∈N
a<c

ac−a
2

4 <D

(⌊
a− 1

2

⌋
−max

{
0,
⌈
Re
√
ac−D

⌉
− 1
})

.

Since the remaining summand vanishes for c = D
a

+ a
4

in virtue of
⌊
a−1
2

⌋
−
(⌈

a
2

⌉
− 1
)

= 0,
we can weaken the second inequality under the summation symbol. This is helpful for the
subsequent application of the Euler-Maclaurin formula. We get

H0(D) =
∑
a,c∈N
a<c

ac−a
2

4 ≤D

(⌊
a− 1

2

⌋
−max

{
0,
⌈
Re
√
ac−D

⌉
− 1
})

=
∑
a,c∈N

a<c≤Da +a4

(⌊
a− 1

2

⌋
−max

{
0,
⌈
Re
√
ac−D

⌉
− 1
})

.

Now, we sum separately and omit taking the floor function of a−1
2

. The arising error is
corrected by the second sum. The maximum can only be greater than zero if D < ac. So,
we have

H0(D) =
∑
a,c∈N

a<c≤Da +a4

a− 1

2
−

∑
a,c∈N

a<c≤Da +a4
a≡20

1

2
−

∑
a,c∈N

a<c≤Da +a4
D
a <c

(⌈√
ac−D

⌉
− 1
)
.

Regarding the first expression, we can evaluate the sum over c, since the summands do
not depend on it. We have to take the floor function of the upper bound on c, because
the bound is not necessarily an integer. Afterwards, we replace that term by the difference
between the exact upper bound and its fractional part:∑

a,c∈N
a<c≤Da +a4

a− 1

2
=

1

2

∑
a∈N

a2< 4D
3

(a− 1)

(⌊
D

a
+
a

4

⌋
− a
)

=
1

2

⌈
2
√

D
3

⌉
−1∑

a=1

(a− 1)

(
D

a
− 3a

4
−
{
D

a
+
a

4

})

=
1

2

⌈
2
√

D
3

⌉
−1∑

a=1

(
D − 3

4
a2 +

3

4
a− D

a

)
−

⌈
2
√

D
3

⌉
−1∑

a=1

a

2

{
D

a
+
a

4

}
+O

(√
D
)
.(21)

The second sum is treated in the same way, however, we have to keep in mind the additional
condition a ≡2 0 :∑

a,c∈N
a<c≤Da +a4

a≡20

1

2
=

1

2

∑
a∈2N
a2< 4D

3

(⌊
D

a
+
a

4

⌋
− a
)

=
1

2

∑
a∈N
a2<D3

(
D

2a
− 3a

2
−
{
D

2a
+
a

2

})

=
1

2

⌈√
D
3

⌉
−1∑

a=1

(
D

2a
− 3a

2

)
+O

(√
D
)
.(22)
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If we start summing up with regard to c first in the last double sum, we get two lower
bounds on c depending on a, namely a and D

a
. We add two mutually exclusive conditions

on a, each guaranteeing that one of these bounds is greater than the other and partition
the exterior sum accordingly:∑

a,c∈N
a<c≤Da +a4

D
a <c

(⌈√
ac−D

⌉
− 1
)

=
∑
a∈N
a2≤D

∑
c∈N

D
a <c≤

D
a +a4

(⌈√
ac−D

⌉
− 1
)

+
∑
a∈N

D<a2< 4D
3

∑
c∈N

a<c≤Da +a4

(⌈√
ac−D

⌉
− 1
)
.

Then, we use the modified fractional part
〈√

ac−D
〉

to evaluate the ceiling function,
which gives us

=
∑
a∈N
a2≤D

∑
c∈N

D
a <c≤

D
a +a4

√
ac−D +

∑
a∈N

D<a2< 4D
3

∑
c∈N

a<c≤Da +a4

√
ac−D −

∑
a,c∈N

a<c≤Da +a4
D
a <c

〈√
ac−D

〉
.

We apply the Euler-Maclaurin formula (Lemma 3.9) on the first two interior sums, which
contain the explicit expression

√
ac−D :∑

a,c∈N
a<c≤Da +a4

D
a <c

(⌈√
ac−D

⌉
− 1
)

=

b√Dc∑
a=1

(∫ D
a
+a

4

D
a

√
at−D dt+

∫ D
a
+a

4

D
a

a
(
{t} − 1

2

)
2
√
at−D

dt+
a

2

(
1

2
−
{
D

a
+
a

4

}))
(23)

+
∑
a∈N

D<a2< 4D
3

(∫ D
a
+a

4

a

√
at−D dt+

∫ D
a
+a

4

a

a
(
{t} − 1

2

)
2
√
at−D

dt+
a

2

(
1

2
−
{
D

a
+
a

4

})
(24)

+
√
a2 −D

(
{a} − 1

2

))
−

∑
a,c∈N

a<c≤Da +a4
D
a <c

〈√
ac−D

〉
.(25)

The two main integrals of the Euler-Maclaurin formula are evaluated separately. We begin
with the second one:∫ D

a
+a

4

a

√
at−D dt =

[
2(at−D)

3
2

3a

]D
a
+a

4

a

=
a2

12
− 2 (a2 −D)

3
2

3a
.

The term corresponding to the lower limit of the first integral vanishes, hence∫ D
a
+a

4

D
a

√
at−D dt =

[
2(at−D)

3
2

3a

]D
a
+a

4

D
a

=
a2

12
.

Each third term from lines (23) and (24) can be allocated with line (21), such that in
particular all fractional parts of D

a
+ a

4
cancel out. Similarly, we include the term a2

12
,
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arising at the computation of the main integrals, in line (21). The second sum carries over
unchanged from line (22). The first term in line (25) simplifies since {a} = 0 for a ∈ N.
Altogether, we get

H0(D) =
1

2

⌈
2
√

D
3

⌉
−1∑

a=1

(
D − 11

12
a2 +

a

4
− D

a

)
− 1

2

⌈√
D
3

⌉
−1∑

a=1

(
D

2a
− 3a

2

)
+O

(√
D
)

(26)

+
2

3

⌈
2
√

D
3

⌉
−1∑

a=b√Dc+1

(a2 −D)
3
2

a
+

1

2

⌈
2
√

D
3

⌉
−1∑

a=b√Dc+1

√
a2 −D(27)

−
b√Dc∑
a=1

∫ D
a
+a

4

D
a

a
(
{t} − 1

2

)
2
√
at−D

dt−

⌈
2
√

D
3

⌉
−1∑

a=b√Dc+1

∫ D
a
+a

4

a

a
(
{t} − 1

2

)
2
√
at−D

dt(28)

+
∑
a,c∈N

a<c≤Da +a4
D
a <c

〈√
ac−D

〉
.(29)

The sums over the remaining (error) integrals in line (28) do not grow faster than D
3
4 , the

sum in line (29) probably grows linearly with D (see Remark 3.7). For now, we ignore the
latter. The other expressions will be dealt with separately.

For the first term in line (26) we use the well known asymptotic formulas for the sum of the
first n natural numbers, their squares, and their reciprocals (cf. Lemma 3.4). To improve

the readability we define m := 2
√

D
3

and M := dme − 1. We have

1

2

⌈
2
√

D
3

⌉
−1∑

a=1

(
D − 11

12
a2 +

a

4
− D

a

)
=
D

2
·M − 11

24
· M(M + 1)(2M + 1)

6
+

1

8
· M(M + 1)

2
− D

2

(
logM + C +O

(
1

M

))
=
D

2
·M − 11

72
·M3 − 1

6
·M2 − 1

72
·M − D

2
· logM − DC

2
+O

(√
D
)
.

We determine appropriate expressions for the occurring powers of M :

M = m− 〈m〉 = m+O (1) = O
(√

D
)
,

M2 = m2 +O
(√

D
)

=
4

3
·D +O

(√
D
)
,

M3 = m3 − 3m2 〈m〉+O
(√

D
)

=
8

3
√

3
·D

3
2 − 4D

〈
2

√
D

3

〉
+O

(√
D
)
.
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This gives us

1

2

⌈
2
√

D
3

⌉
−1∑

a=1

(
D − 11

12
· a2 +

a

4
− D

a

)
=
D

2
(m− 〈m〉)− 11

72

(
m3 − 3m2 〈m〉

)
− 1

6
m2 − D

2
log (m− 〈m〉)− DC

2
+O

(√
D
)

=

(
1√
3
− 11

27
√

3

)
D

3
2

−
(
〈m〉 − 11〈m〉

9
+

4

9
+ log

√
D + log

2√
3

+ log

(
1− 〈m〉

m

)
+ C

)
D

2
+O

(√
D
)

=
16

27
√

3
D

3
2 − D

4
logD +

(
1

9

〈
2

√
D

3

〉
− 2

9
− log 2

2
+

log 3

4
− C

2

)
D +O

(√
D
)
,

(30)

because of

log

(
1− 〈m〉

m

)
=
∞∑
k=1

(−1)k+1

k

(
−〈m〉
m

)k
= −

∞∑
k=1

〈m〉k

kmk
= O

(
1

m

)
= O

(
1√
D

)
.

The calculation for the second expression in line (26) is done analogously. We define

n :=
√

D
3

and N := dne − 1 and get

1

2

⌈√
D
3

⌉
−1∑

a=1

(
3a

2
− D

2a

)
=

3

2
· N(N + 1)

2
− D

4

(
logN + C +O

(
1

N

))
=

3

8
·N2 +

3

8
·N − D

4
logN − DC

4
+O

(√
D
)
.

With the help of

N = n− 〈n〉 = n+O (1) = O
(√

D
)

and

N2 = n2 +O
(√

D
)

=
D

3
+O

(√
D
)

we end up with

1

2

⌈√
D
3

⌉
−1∑

a=1

(
3a

2
− D

2a

)
=

3

8
n2 − D

4
log (n− 〈n〉)− DC

4
+O

(√
D
)

=
D

8
− D

4

(
log
√
D + log

1√
3

+ log

(
1− 〈n〉

n

))
− DC

4
+O

(√
D
)

= −D
8

logD +

(
1

8
+

log 3

8
− C

4

)
D +O

(√
D
)
.(31)

The following term from line (27) is calculated by using the Euler-Maclaurin formula. To
do that, the upper bound on the index of summation should involve a weak inequality
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rather than a strict one, necessitating a correction term.

2

3

⌈
2
√

D
3

⌉
−1∑

a=b√Dc+1

(a2 −D)
3
2

a
=

2

3

∑
√
D<a<2

√
D
3

(a2 −D)
3
2

a

=
2

3

(∫ 2
√

D
3

√
D

(t2 −D)
3
2

t
dt+

∫ 2
√

D
3

√
D

(
d

dt

(
(t2 −D)

3
2

t

))(
{t} − 1

2

)
dt(32)

+
D

6

(
1

2
−

{
2

√
D

3

})
−

{
D
6
, 2

√
D
3
∈ N

0, otherwise

})
We will show later on that the asymptotic growth of the second integral does not exceed
that of

√
D. The corresponding parts of the last two terms cancel out with the modified

fractional part of 2
√

D
3

in line (30) of the calculation of the first sum. It remains to

determine the main integral:∫ 2
√

D
3

√
D

(t2 −D)
3
2

t
dt = lim

ε↘0

[
t2 − 4D

3

√
t2 −D −D

3
2 arctan

( √
D√

t2 −D

)]2√D
3

√
D+ε

=
−8

9
√

3
D

3
2 − arctan

(√
3
)
D

3
2 + lim

ε↘0
arctan

(√
D

ε

)
D

3
2

=

(
−8

9
√

3
− π

3
+
π

2

)
D

3
2 =

(
π

6
− 8

9
√

3

)
D

3
2 .

This implies

2

3

⌈
2
√

D
3

⌉
−1∑

a=b√Dc+1

(a2 −D)
3
2

a
=

(
π

9
− 16

27
√

3

)
D

3
2 +

(
1

18
− 1

9

〈
2

√
D

3

〉)
D+O

(√
D
)
.(33)

The Euler-Maclaurin formula can also be applied to the second expression from line (27):

1

2

⌈
2
√

D
3

⌉
−1∑

a=b√Dc+1

√
a2 −D =

1

2

∑
√
D<a<2

√
D
3

√
a2 −D

=
1

2

(∫ 2
√

D
3

√
D

√
t2 −D dt+

∫ 2
√

D
3

√
D

t√
t2 −D

{t} dt(34)

−
√
D

3

{
2

√
D

3

}
−

{ √
D
3
, 2

√
D
3
∈ N

0, otherwise

})
.

All terms except the main integral grow at most as fast as
√
D for D → ∞. We will

prove this claim for the second integral further down the line, for the correction term it is
obviously true. With∫ 2

√
D
3

√
D

√
t2 −D dt =

[
t
√
t2 −D

2
−
D log

(
t+
√
t2 −D

)
2

]2√D
3

√
D

=

(
D

3
− D

4
log (3D) +

D

4
log(D)

)
=

(
1

3
− log 3

4

)
D
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it follows that

1

2

⌈
2
√

D
3

⌉
−1∑

a=b√Dc+1

√
a2 −D =

(
1

6
− log 3

8

)
D +O

(√
D
)
.(35)

By adding up the results from (30), (31), (33) and (35), we obtain

H0(D) =
π

9
D

3
2 − 3

8
D logD +

(
1

8
− 3C

4
− log 2

2
+

log 3

4

)
D +

∑
a,c∈N

a<c≤Da +a4
D
a <c

〈√
ac−D

〉
+O

(
D

3
4

)
,

the first assertion of the proposition.

We still have to show the estimates which we claimed to be true without proof so far. We
start with the error integral from line (32). Its domain of integration will be partitioned
into three intervals:[

√
D, 2

√
D

3

]
=
[√

D,
⌈√

D
⌉]
∪

[⌈√
D
⌉
,

⌊
2

√
D

3

⌋]
∪

[⌊
2

√
D

3

⌋
, 2

√
D

3

]
.

This can be done since for D ≥ 42 (even for D > 3
7−4
√
3
) we obtain

⌈√
D
⌉
≤
⌊
2
√

D
3

⌋
.

Having established these additional boundaries, we estimate each part integral separately.

For the first section∣∣∣∣∣
∫ d√De
√
D

(
d

dt

(
(t2 −D)

3
2

t

))(
{t} − 1

2

)
dt

∣∣∣∣∣
≤ 1

2

∫ d√De
√
D

∣∣∣∣∣ d

dt

(
(t2 −D)

3
2

t

)∣∣∣∣∣ dt =
1

2

[
(t2 −D)

3
2

t

]d√De
√
D

=

(⌈√
D
⌉2
−D

) 3
2

2
⌈√

D
⌉

≤

((√
D + 1

)2
−D

) 3
2

2
√
D

=

(
2
√
D + 1

) 3
2

2
√
D

= O
(
D

1
4

)
holds. A similar calculation for the rightmost integral yields D as the maximal order of
magnitude at first glance. So, we apply a different approach, using that the length of the
integral is at most one, to get a stricter bound:∣∣∣∣∣
∫ 2
√

D
3⌊

2
√

D
3

⌋
(

d

dt

(
(t2 −D)

3
2

t

))(
{t} − 1

2

)
dt

∣∣∣∣∣
≤ 1

2

∫ 2
√

D
3⌊

2
√

D
3

⌋
∣∣∣∣∣ d

dt

(
(t2 −D)

3
2

t

)∣∣∣∣∣ dt ≤ 1

2
max⌊

2
√

D
3

⌋
≤t≤2
√

D
3

∣∣∣∣∣3√t2 −D − (t2 −D)
3
2

t2

∣∣∣∣∣
≤ 3

2
max⌊

2
√

D
3

⌋
≤t≤2
√

D
3

√
t2 −D +

1

2
max⌊

2
√

D
3

⌋
≤t≤2
√

D
3

(
t2 −D

) 3
2

 min⌊
2
√

D
3

⌋
≤t≤2
√

D
3

t2

−1

≤ 3

2

√
D

3
+

(
D
3

) 3
2

2
(

2
√

D
3
− 1
)2 ≤ √3D

2
+

(
D
3

) 3
2

2
(√

D
3

)2 = 2

√
D

3
= O

(√
D
)
.
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The middle section is bounded by integers. For each interval of the form [n, n+ 1], n ∈ Z,

the function {t}
2−{t}
2

is an antiderivative for {t}− 1
2
. Evaluated at integer numbers, it yields

zero, and its absolute value is less than or equal to 1
8
. We exploit this in applying partial

integration.∣∣∣∣∣
∫ ⌊

2
√

D
3

⌋
d√De

(
d

dt

(
(t2 −D)

3
2

t

))(
{t} − 1

2

)
dt

∣∣∣∣∣
=

∣∣∣∣∣∣∣
[(

d

dt

(
(t2 −D)

3
2

t

))
{t}2−{t}

2

]⌊2√D
3

⌋

d√De
−
∫ ⌊

2
√

D
3

⌋
d√De

(
d2

dt2

(
(t2 −D)

3
2

t

))
{t}2−{t}

2
dt

∣∣∣∣∣∣∣
≤ 1

8

∫ ⌊
2
√

D
3

⌋
d√De

∣∣∣∣∣ d2

dt2

(
(t2 −D)

3
2

t

)∣∣∣∣∣ dt =
1

8

∫ ⌊
2
√

D
3

⌋
d√De

∣∣∣∣t2 (2t2 −D) + 2D2

t3
√
t2 −D

∣∣∣∣ dt

=
1

8

[
d

dt

(
(t2 −D)

3
2

t

)]⌊2√D
3

⌋

d√De
=

1

8

[
3
√
t2 −D − (t2 −D)

3
2

t2

]⌊2√D
3

⌋

d√De

≤ 1

8

3

√√√√⌊2

√
D

3

⌋2

−D +

(⌈√
D
⌉2
−D

) 3
2

⌈√
D
⌉2



≤ 1

8

3

√
4D

3
−D +

((√
D + 1

)2
−D

) 3
2

D

 =
1

8

√3D +

(
2
√
D + 1

) 3
2

D

 = O
(√

D
)

Therefore, none of the three integrals has order of magnitude greater than
√
D. Thanks

to the triangle inequality, this also holds for their sum.

Next, we treat the error integral from line (34):∣∣∣∣∣
∫ 2
√

D
3

√
D

t√
t2 −D

{t} dt

∣∣∣∣∣ ≤
∫ 2
√

D
3

√
D

t√
t2 −D

dt =
[√

t2 −D
]2√D

3

√
D

=

√
D

3
= O

(√
D
)
.

Last, we have to deal with the sums of line (28). We begin with the integrals of the first
sum, and suppose

⌈
D
a

⌉
+ 1 ≤

⌊
D
a

+ a
4

⌋
to be true as an additional condition. Thereby, we

can divide the domain of integration in three sections again:[
D

a
,
D

a
+
a

4

]
=

[
D

a
,

⌈
D

a

⌉
+ 1

]
∪
[⌈
D

a

⌉
+ 1,

⌊
D

a
+
a

4

⌋]
∪
[⌊
D

a
+
a

4

⌋
,
D

a
+
a

4

]
.

For the leftmost part we get∣∣∣∣∣
∫ dDa e+1

D
a

a
(
{t} − 1

2

)
2
√
at−D

dt

∣∣∣∣∣ ≤
∫ D

a
+2

D
a

a

4
√
at−D

dt =

∫ 2a

0

1

4
√
x

dx =

[√
x

2

]2a
0

=

√
a

2
(36)

by using the substitution x = at−D. As above, the middle section is calculated using the
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integrity of its boundaries and a primitive function for {t} − 1
2
. This yields∣∣∣∣∣

∫ bDa +a
4c

dDa e+1

a
(
{t} − 1

2

)
2
√
at−D

dt

∣∣∣∣∣
=

∣∣∣∣∣
[

a

2
√
at−D

· {t}
2−{t}
2

]bDa +a
4c

dDa e+1

−
∫ bDa +a

4c

dDa e+1

(
d

dt

(
a

2
√
at−D

))
{t}2−{t}

2
dt

∣∣∣∣∣
≤ 1

2

∫ bDa +a
4c

dDa e+1

∣∣∣∣∣ −a2

4 (at−D)
3
2

∣∣∣∣∣ dt = −1

2

[
a

2
√
at−D

]bDa +a
4c

dDa e+1

≤ a

4
√
a
⌈
D
a

⌉
+ a−D

− a

4
√
a
⌊
D
a

+ a
4

⌋
−D

≤
√
a

4
− a

4
√
a
⌊
D
a

+ a
4

⌋
−D

.(37)

The third integral can be bounded in the following way:∣∣∣∣∣
∫ D

a
+a

4

bDa +a
4c

a
(
{t} − 1

2

)
2
√
at−D

dt

∣∣∣∣∣ ≤ 1

2

∫ D
a
+a

4

bDa +a
4c

∣∣∣∣ a

2
√
at−D

∣∣∣∣ dt

≤ 1

2

{
D

a
+
a

4

}
max

bDa +a
4c≤t≤Da +a

4

a

2
√
at−D

≤ a

4
√
a
⌊
D
a

+ a
4

⌋
−D

.(38)

We see that
(

1√
2

+ 1
4

)√
a is an upper bound on the absolute value of the overall integral

by adding up the results from lines (36)–(38).

It remains to look at the two cases, in which the additional condition
⌈
D
a

⌉
+ 1 ≤

⌊
D
a

+ a
4

⌋
is not true. Supposing

⌊
D
a

+ a
4

⌋
∈ {
⌈
D
a

⌉
,
⌈
D
a

⌉
−1} yields D

a
+ a

4
<
⌈
D
a

⌉
+1< D

a
+ 2. As in (36)

we conclude ∣∣∣∣∣
∫ D

a
+a

4

D
a

a
(
{t} − 1

2

)
2
√
at−D

dt

∣∣∣∣∣ ≤
√
a

2
.

All in all, we have shown that∣∣∣∣∣
∫ D

a
+a

4

D
a

a
(
{t} − 1

2

)
2
√
at−D

dt

∣∣∣∣∣ ≤
(

1√
2

+
1

4

)√
a <
√
a ,

and we get the following bound for the sum:∣∣∣∣∣∣∣
b√Dc∑
a=1

∫ D
a
+a

4

D
a

a
(
{t} − 1

2

)
2
√
at−D

dt

∣∣∣∣∣∣∣ ≤
b√Dc∑
a=1

√
a =

⌊√
D
⌋ 3

2

3
2

+O

(√⌊√
D
⌋)

= O
(
D

3
4

)
.

Now, we look at the second sum from line (28). Our modus operandi will be quite similar.
We first suppose a+ 1 ≤

⌊
D
a

+ a
4

⌋
and employ these two numbers as division points for the

domain of integration from a to D
a

+ a
4
. Recall that a >

√
D.

We apply the substitution from (36) to the first section:∣∣∣∣∣
∫ a+1

a

a
(
{t} − 1

2

)
2
√
at−D

dt

∣∣∣∣∣ ≤
[√

x

2

]a2+a−D
a2−D

=
1

2

(√
a2+a−D −

√
a2−D

)
=

a

2
(√

a2+a−D +
√
a2−D

) ≤ a

2
√
a

=

√
a

2
.

27



As in (37) we cover the middle section:∣∣∣∣∣
∫ bDa +a

4c

a+1

a
(
{t} − 1

2

)
2
√
at−D

dt

∣∣∣∣∣ ≤ a

4
√
a2 + a−D

− a

4
√
a
⌊
D
a

+ a
4

⌋
−D

≤
√
a

4
− a

4
√
a
⌊
D
a

+ a
4

⌋
−D

.

The third integral has already been bounded by the above subtrahend (see line (38)).
Hence we find 3

4

√
a as an upper bound for the whole integral.

We finally look at a =
⌊
D
a

+ a
4

⌋
and use the substitution x = at−D again.∣∣∣∣∣

∫ D
a
+a

4

a

a
(
{t} − 1

2

)
2
√
at−D

dt

∣∣∣∣∣ ≤
[√

x

2

]a2
4

a2−D
=

1

2

(a
2
−
√
a2−D

)
=

a2

4
− (a2 −D)

a+ 2
√
a2−D

≤ D

a
− 3

4
a =

(
D

a
+
a

4

)
− a < 1 ≤

√
a

We see now, that the sum fulfils∣∣∣∣∣∣∣
⌈
2
√

D
3

⌉
−1∑

a=b√Dc+1

∫ D
a
+a

4

a

a
(
{t} − 1

2

)
2
√
at−D

dt

∣∣∣∣∣∣∣ ≤
⌈
2
√

D
3

⌉
−1∑

a=b√Dc+1

√
a = O

(
D

3
4

)
.

This completes the proof of the first statement of Proposition 3.6.

To prove part (b) we show that the remaining double sum has at most linear growth. We
observe, that the fractional part

〈√
ac−D

〉
is trivially bounded by one, which will do the

job:

∑
a,c∈N

a<c≤Da +a4
D
a <c

〈√
ac−D

〉
≤

∑
a,c∈N

a<c≤Da +a4
D
a <c

1 =

b√Dc∑
a=1

∑
c∈N

D
a <c≤

D
a +a4

1 +

⌈
2
√

D
3

⌉
−1∑

a=b√Dc+1

∑
c∈N

a<c≤Da +a4

1

=

b√Dc∑
a=1

(a
4

+O (1)
)

+

⌈
2
√

D
3

⌉
−1∑

a=b√Dc+1

(
D

a
− 3

4
a+O (1)

)

=

√
D
(√

D+1
)

8
+

⌈
2
√

D
3

⌉
−1∑

a=1

(
D

a
− 3

4
a

)
+

b√Dc∑
a=1

(
3

4
a−D

a

)
+O

(√
D
)

=
D

8
+D log

(
2

√
D

3

)
+DC−

3
(

2
√

D
3
−1
)

2
√

D
3

8
+

3
√
D
(√

D+1
)

8

−D log
(√

D
)
−DC +O

(√
D
)

= D

(
1

8
+ log 2 +

logD − log 3

2
− 1

2
+

3

8
− logD

2

)
+O

(√
D
)

= D

(
log 2− log 3

2

)
+O

(√
D
)

= O(D) .
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We summarize our results in the following table.

Table 1: Aggregated Class Numbers of Planar Lattices

Case Name Aggregated Bravais Class Number

I oblique H0(D) = π
9
D

3
2 − 3

8
D logD +O (D)

II rectangular Hre(D) = D
2

logD +
(
C − 1

2

)
D +O

(√
D
)

III centered rectangular Hcr(D) = D
4

logD + 2C−log 3−1
4

D +O
(√

D
)

III’ rhombic Hrh(D) = log 3
4
D +O

(√
D
)

IV square Hsq(D) =
√
D +O(1)

V hexagonal Hhex(D) =
√

D
3

+O(1)

Remarks 3.10. 1. We observe that

1

2
Hre(D) = Hcr(D) +Hrh(D) +O

(√
D
)
.

We recall from Remark 3.2 that Hcr(D) + Hrh(D) is an aggregated Bravais class
number, whereas the individual summands are not.

2. We employed a C-program to count all lattices with determinant up to a given bound
in order to check the plausibility of the results of Table 1. We denote the output for
all lattices with determinant less than or equal to 10 million:

Table 2: Numerical Results for Planar Lattices

Case Name Exact Cl. Nr. Predicted Cl. Nr. Relative Error

all lattices 11.096.955.716 11.038.431.406,440111 -0,005302

I oblique 10.974.911.701 10.974.909.430,262256 -0,000000

II rectangular 81.361.101 81.362.634,903807 0,000019

III cent. rect. 37.933.877 37.934.786,730233 0,000024

III’ rhombic 2.744.050 2.746.530,721670 0,000903

IV square 3.162 3.162,277660 0,000088

V hexagonal 1.825 1.825,741858 0,000406

The exact class number is determined by counting the possible entries of a Gram
matrix corresponding to the lattice.

For the cases II - V, the predicted class number is the evaluation of the explicit terms
from Table 1 for D = 10.000.000. As the predicted class number for oblique lattices
we take

π

9
D

3
2 − 3

8
D logD +D

(
1

8
− 3C

4

)
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from Conjecture 3.8. The number of all lattices is compared to π
9
D

3
2 , the result of

Minkowski (see Theorem 3.5).

The relative error is given by

predicted class number – exact class number

predicted class number
.

We observe the exceptionally small relative error for lattices with trivial automor-
phism group. This further supports Peter Zeiner’s Conjecture 3.8.
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4 Asymptotics of some Three-Dimensional Lattices

In this chapter we want to determine aggregated class numbers of three-dimensional lat-
tices. The Schiemann reduced lattices form a set of representatives for the isometry classes
of all three-dimensional lattices (see [Sch94]). In Appendix A we enumerate all groups
G ⊆ GL3(Z) that occur as isometry groups of Schiemann reduced lattices (Z3, bB). For
each group we shall investigate the asymptotic behaviour of the aggregated class number

HG(x) :=
∑

1≤d≤x

hG(d)(39)

for x→∞, where

hG(d) := hZ
3

G (d) ;(40)

see Definition 1.9. Furthermore, the list of these (rational conjugacy classes of) groups
G is subdivided into the list of Bravais classes of lattices (Z3, bB), where O(Z3, bB) =
G = BGL3(Z). These Bravais classes are in one-to-one correspondence with the GL3(Z)-
conjugacy classes of the occurring groups G. Technically, most of the Bravais classes are
subdivided further by a geometrically motivated case distinction. Table 5 gives a Gram
matrix B in each of these cases. For each index i of Table 5 we write

hi(d) := hGi(d).

Definition 4.1. Let G be a subgroup of GL3(Z). We define the corresponding Dirichlet
series by

FG(s) :=
∞∑
d=1

hG(d)d−s, s ∈ C.

In the first part of this chapter we will use this series for a given isometry group G. Under
some additional requirements it will help us to find a real function fG with fG(x) ∼ HG(x)
for x→∞. (Here, the symbol ∼ denotes the asymptotic equivalence of functions, that is

limx→∞
fG(x)
HG(x)

= 1.)
The results obtained by this method will be summarized in Table 3.

We use a special form of Delange’s Theorem from [BSZ14, Appendix A].

Proposition 4.2. Let F (s) =
∑∞

d=1 h(d)d−s be a Dirichlet series with non-negative co-
efficients h(d). Suppose that there is α > 0 such that F (s) converges in the half-plane
Hα := {s ∈ C | Re(s) > α}. Assume in addition that F (s) is holomorphic on the punc-
tured line {s ∈ C | Re(s) = α} \ {α}.
Let n ∈ N0 and let g(s) be holomorphic at s = α with g(α) 6= 0. Suppose that F (s) has a
singularity of the form F (s) = g(s)/(s− α)n+1 in α when approaching from Hα.

Then, for x→∞ we have the asymptotic equivalence∑
d≤x

h(d) ∼ g(α)

α · n!
xα (log x)n .

Proof. A more general version of this result can be found as Theorem 7.28 in [Ten15,
Chapter II.7]. It is proven in [Del54].
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Our first aim is to determine the Dirichlet series FG(s). We start with the following
auxiliary result which is a special case of the Euler-Maclaurin formula (see Lemma 3.9).

Corollary 4.3. Let x, y ∈ N with x < y, let α, β ∈ R with α 6= 0 and αt + β > 0 for all
t ∈ [x, y], and for s ∈ C let σ := Re s. Define f : [x, y] −→ C by f(t) := (αt+ β)−s. Then

y∑
n=x+1

f(n) =
(αx+ β)1−s − (αy + β)1−s

α(s− 1)
− ϕα,βx,y (s)

=
(αx+ β)1−s − (αy + β)1−s

α(s− 1)
+

1

2(αy + β)s
− 1

2(αx+ β)s
− χα,βx,y (s) ,

where we can estimate the error terms as follows:

∣∣ϕα,βx,y (s)
∣∣ ≤ |s|
|σ|
·
∣∣∣∣ 1

(αx+ β)σ
− 1

(αy + β)σ

∣∣∣∣
and

∣∣χα,βx,y (s)
∣∣ ≤ |s| · |s+ 1| · α

8(σ + 1)

(
1

(αx+ β)σ+1
− 1

(αy + β)σ+1

)
.

Proof. Since the function f is continuously differentiable on [x, y], we can apply Lemma
3.9 and get

y∑
n=x+1

f(n) =

∫ y

x

f(t)dt+

∫ y

x

(t− btc)f ′(t)dt

=

[
(αt+ β)1−s

α(1− s)

]y
x

+

∫ y

x

(t− btc)(−s)α
(αt+ β)s+1

dt

=
(αx+ β)1−s − (αy + β)1−s

α(s− 1)
− sα

∫ y

x

(t− btc)
(αt+ β)s+1

dt︸ ︷︷ ︸
ϕα,βx,y (s):=

with ∣∣ϕα,βx,y (s)
∣∣ = |sα| ·

∣∣∣∣∫ y

x

(t− btc)
(αt+ β)s+1

dt

∣∣∣∣ ≤ |sα|∫ y

x

1

(αt+ β)σ+1
dt

= |sα|
[

(αt+ β)−σ

−σα

]y
x

=
|s|
σ
· |α|
α

(
1

(αx+ β)σ
− 1

(αy + β)σ

)
=
|s|
|σ|
·
∣∣∣∣ 1

(αx+ β)σ
− 1

(αy + β)σ

∣∣∣∣ .
This proves the first assertion. For the second one we calculate ϕα,βx,y (s) more precisely using
that {t} = t− btc equals 1

2
on average. We have

ϕα,βx,y (s) = sα

∫ y

x

(t− btc)
(αt+ β)s+1

dt =
sα

2

∫ y

x

1

(αt+ β)s+1
dt+ sα

∫ y

x

{t} − 1
2

(αt+ β)s+1
dt .

As on page 26, in the proof of Proposition 3.6 (class number of two-dimensional lattices

with trivial automorphism groups), we have {t}
2−{t}
2

as an antiderivative for {t}− 1
2

on each
interval of the form [n, n+ 1], n ∈ Z. We use the integrality of the integration bounds and

32



apply partial integration to the second integral:

ϕα,βx,y (s) =
sα

2

[
(αt+ β)−s

−sα

]y
x

+

[
sα

(αt+ β)s+1
· {t}

2 − {t}
2

]y
x

−
∫ y

x

−s(s+ 1)α2

(αt+ β)s+2
· {t}

2 − {t}
2

dt

=
1

2(αx+ β)s
− 1

2(αy + β)s
+
s(s+ 1)α2

2

∫ y

x

{t}2 − {t}
(αt+ β)s+2

dt︸ ︷︷ ︸
χα,βx,y (s):=

.

It remains to show the estimate on χα,βx,y (s). We get∣∣χα,βx,y (s)
∣∣ ≤ |s| · |s+ 1| · α2

2

∫ y

x

∣∣∣∣ {t}2 − {t}(αt+ β)s+2

∣∣∣∣ dt ≤ |s| · |s+ 1| · α2

8

∫ y

x

1

(αt+ β)σ+2
dt

=
|s| · |s+ 1| · α2

8

[
(αt+ β)−(σ+1)

−α(σ + 1)

]y
x

=
|s| · |s+ 1| · α

8(σ + 1)

(
1

(αx+ β)σ+1
− 1

(αy + β)σ+1

)
.

Now, we will use this result to approximate the Dirichlet series for some isometry groups
of three-dimensional lattices.

Proposition 4.4. For every index i Table 3 specifies a function Fi with Fi(s) = FGi(s),
where the summands Ri(s) and Si(s) are holomorphic for Re s > 1

3
.

Proof. For every index i Table 5 in Appendix A contains a matrix Bi with Gi = BiGLn(Z),
that is, (Z3, bBi) is a lattice with automorphism group Gi. Since all matrices of Table
5 are supposed to be Schiemann reduced, different matrices correspond to non-isometric
lattices. Thus, we can determine hi(d) by counting all reduced matrices of the given form
with determinant d.

In the following calculations we will replace certain Dirichlet series by the Riemann zeta
function ζ(s). In each case we suppose σ = Re s to be big enough for the equation to hold.
In particular, all modifications must be admissible at the rightmost pole α of the resulting
expression which is given in the third column of Table 3. We need this for the application
of Proposition 4.2 later on (see Proposition 4.5).

G48,p The reduced Gram matrix of a primitive cubic lattice is given by multiplying the
identity matrix by a ∈ N:

B48,p =

a 0 0
0 a 0
0 0 a

 .

Its determinant is a3. We have

hG48,p(d) =
∑
a∈N
a3=d

1 and thus, FG48,p(s) =
∞∑
d=1

hG48,p(d)

ds
=
∞∑
a=1

1

a3s
= ζ(3s)

for the corresponding Dirichlet series. Since the Riemann zeta function ζ(s) is given
by its Dirichlet series for Re s > 1, the last equality holds for all complex numbers s
with σ > 1

3
. The pole with the biggest real part of the resulting expression is α = 1

3
.
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Table 3: Dirichlet Series and Asymptotic Class Numbers

Index Fi(s) (Re s = σ ∈ R+) α fi(x)

48, p ζ(3s) 1
3

x
1
3

48, i 1
16s
ζ(3s) 1

3
2−

4
3 · x 1

3

48, f 1
4s
ζ(3s) 1

3
2−

2
3 · x 1

3

24, p, 1 2
6s(s−1)ζ(3s− 1) + 1

6s
ζ(3s)−R24,p,1(s) 1 1

3
ζ(2)x

24, p, 2 22s−1

3s(2s−1)ζ(3s− 1) + 8s−1
2·6s ζ(3s)−R24,p,2(s)

2
3

3

√
3
4
· x 2

3

16, p, 1 ζ(s)ζ(2s)− 1
2s−1ζ(3s− 1)− ζ(3s) +R16,p(s) 1 ζ(2)x

16, p, 2 1
2s−1ζ(3s− 1)−R16,p(s)

2
3

3
2
· x 2

3

16, i, 1 1
4s(s−1)ζ(3s− 1)−R16,i,1(s) 1 1

4
ζ(2)x

16, i, 2
(

1
4s
− 2

16s

)
1

2s−1ζ(3s− 1)− 1
16s
ζ(3s)−R16,i,2(s)

2
3

3
8

(
3
√

4− 3
√

2
)
x

2
3

16, i, 3
(

2
16s
− 3

36s

)
1

2s−1ζ(3s− 1)− 1
36s
ζ(3s)−R16,i,3(s)

2
3

3
8

(
3
√

2− 3

√
4
3

)
x

2
3

16, i, 4 3
36s(2s−1)ζ(3s− 1) + 1

36s
ζ(3s)−R16,i,4(s)

2
3

3
8

3

√
4
3
· x 2

3

12, r, 1 4
3·4s(s−1)ζ(3s− 1)−R12,r,1(s) 1 1

3
ζ(2)x

12, r, 2
(
1
3
− 4

3·4s
)

1
s−1ζ(3s− 1)− 1

4s
ζ(3s)−R12,r,2(s)

2
3

1
2

(
3
√

4− 1
)
x

2
3

12, r, 3
(
1
3
− 4

3·16s
)

1
2s−1ζ(3s− 1)− 1

16s
ζ(3s)−R12,r,3(s)

2
3

1
2

(
1− 1

3√4

)
x

2
3

12, r, 4 4
3·16s(2s−1)ζ(3s− 1)−R12,r,4(s)

2
3

1

2 3√4 · x
2
3

8, p 1
6
ζ(s)3 − 1

2
ζ(s)ζ(2s)− 1

3
ζ(3s) 1 1

12
· x(log x)2

8, f, 1 9·ζ(3s−2)
2·36s(s−1)2 + 3s·ζ(3s−1)

2·36s(s−1)(2s−1) +
R8,f,1(s)

s−1 + S8,f,1(s) 1 1
48
· x(log x)2

8, f, 2 (9s−9)ζ(3s−2)
2·36s(s−1)2 −

(9s(3s−2)+3s)ζ(3s−1)
2·36s(s−1)(2s−1) +

R8,f,2(s)

s−1 + S8,f,2(s) 1 log 3
12
· x log x

For each index i the function Fi(s) equals the Dirichlet series of the group Gi (see
Proposition 4.4). Its abscissa of convergence is given by α, and fi(x) denotes the
corresponding asymptotic class number (see Proposition 4.5). All the expressions Ri(s)
and Si(s) are holomorphic for Re s > 1

3
.
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G48,i The Gram matrix for the body-centered cubic lattice is given by

B48,i =

3d d d
d 3d −d
d −d 3d

 .

Since the Gram matrix is supposed to be reduced, we have d ∈ N. The determinant
of this Gram matrix is given by 16d3 and the corresponding Dirichlet series is

FG48,i
(s) =

∞∑
d=1

hG48,i
(d)

ds
=
∞∑
d=1

1

(16d3)s
=
ζ(3s)

16s
.

Again, this holds for σ > 1
3

= α.

G48,f From Table 5 we have the Gram matrix

B48,f =

2d d d
d 2d d
d d 2d


for the face-centered cubic case. As before, we have d ∈ N. The determinant equals
4d3 and we get

FG48,f
(s) =

∞∑
d=1

hG48,f
(d)

ds
=
∞∑
d=1

1

(4d3)s
=
ζ(3s)

4s
.

G24,p,1 The Gram matrix

B24,p,1 =

2d d 0
d 2d 0
0 0 c


for the first hexagonal case, where the shortest vectors are orthogonal to the sixfold
axis, has two independent parameters c and d. The reduction conditions give 2d ≤ c.
The determinant is 3cd2. We get

FG24,p,1(s) =
∞∑
d=1

hG24,p,1(d)

ds
=
∑
c,d∈N
2d≤c

1

(3cd2)s
=

1

3s

∞∑
d=1

1

d2s

∞∑
c=2d

1

cs
.

We apply Corollary 4.3 for (x, y, α, β) = (2d, k, 1, 0) and suppose σ > 1. Then

∞∑
c=2d

1

cs
= lim

k→∞

(
1

(2d)s
+

(2d)1−s − k1−s

s− 1
− ϕ1,0

2d,k(s)

)
=

1

2sds
+

2

2s(s− 1)ds−1
− lim

k→∞
ϕ1,0
2d,k(s) ,

and, using this, altogether we have

FG24,p,1(s) =
1

6s

∞∑
d=1

1

d3s
+

2

6s(s− 1)

∞∑
d=1

1

d3s−1
− 1

3s

∞∑
d=1

1

d2s
lim
k→∞

ϕ1,0
2d,k(s)︸ ︷︷ ︸

R24,p,1(s):=

=
ζ(3s)

6s
+

2

6s(s− 1)
ζ(3s− 1)−R24,p,1(s) .

35



Beginning with this case, we will not be able to express the Dirichlet series FGi by
Riemann zeta functions in an exact equation but we will have to deal with certain
remainder terms in most cases (the primitive orthorhombic case being the only ex-
ception). The approximation by zeta functions will nevertheless be useful if the error
terms are given by functions that are analytic in a right half-plane of the complex
numbers that contains the rightmost singularity of the explicit expressions.

The remainder term in this case can be estimated in the following way:

|R24,p,1(s)| ≤
1

3σ

∞∑
d=1

1

d2σ
lim
k→∞

∣∣ϕ1,0
2d,k(s)

∣∣ ≤ 1

3σ

∞∑
d=1

1

d2σ
lim
k→∞

|s|
σ
·
∣∣∣∣ 1

(2d)σ
− 1

kσ

∣∣∣∣
=

1

3σ
· |s|
σ

∞∑
d=1

1

d2σ(2d)σ
=

1

6σ
· |s|
σ
ζ(3σ) .

We can see now that the rest R24,p,1(s) is holomorphic for σ > 1
3
. Since the rightmost

pole of the explicit expressions lies at s = 1, we will be able to apply Delange’s
Theorem (Proposition 4.2) to this situation.

G24,p,2 The second hexagonal case (shortest vector spans the sixfold axis) deals with Gram
matrices of the form

B24,p,2 =

a 0 0
0 2f f
0 f 2f

 ,

where a ≤ 2f . If we had a = 2f , reducedness would imply |f | ≤ e = 0, thus f = 0.
But this is not possible. So, both inequalities have to be strict. The determinant of
B24,p,2 is given by 3af 2 yielding

FG24,p,2(s) =
∑
a,f∈N
a<2f

1

(3af 2)s
=

1

3s

∞∑
a=1

1

as

∑
f∈N
a<2f

1

f 2s
=

1

3s

∞∑
a=1

1

as
lim
k→∞

∑
f∈N

a
2<f≤k

1

f 2s
.

We want to apply the Euler-Maclaurin formula to the function t 7→ t−2s. For a odd we
have a

2
/∈ N, so we do not meet the premises of Corollary 4.3 and have to use Lemma

3.9 instead. The expressions of the right-hand side of the Euler-Maclaurin formula
are: main integral, error integral and two error terms for non-integral summation
bounds. Thanks to the special form of the considered function we can proceed as in
the proof of Corollary 4.3 for the calculation of the two integrals. Because of k ∈ Z
the second error term for the bounds vanishes. We get∑

f∈N
a
2<f≤k

1

f 2s
=

(
a
2

)1−2s − k1−2s
2s− 1

− ϕ1,0
a
2
,k(2s) +

a
2
− ba

2
c(

a
2

)2s
=

22s−1

(2s− 1)a2s−1
+ (a mod 2) · 22s−1

a2s
− ϕ1,0

a
2
,k(2s) +

1

(2s− 1)k2s−1
.

For σ > 1
2

and k → ∞ the last expression of the last line vanishes and we end up
with

FG24,p,2(s) =
22s−1

3s

 1

2s− 1

∞∑
a=1

1

a3s−1
+

∞∑
a=1
a odd

1

a3s

− 1

3s

∞∑
a=1

1

as
lim
k→∞

ϕ1,0
a
2
,k(2s)︸ ︷︷ ︸

R24,p,2(s):=

.
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We can express the first two series by the Riemann zeta function if we assume σ > 2
3
.

Regarding the Dirichlet series ζ(s) =
∑∞

a=1
1
as

we know that the subseries over all
even a and odd a have the values 1

2s
ζ(s) and (1− 1

2s
)ζ(s), respectively. Then

FG24,p,2(s) =
22s−1

3s

(
1

2s− 1
ζ(3s− 1) +

(
1− 1

23s

)
ζ(3s)

)
−R24,p,2(s)

=
22s−1

3s(2s− 1)
ζ(3s− 1) +

8s − 1

2 · 6s
ζ(3s)−R24,p,2(s)

with

|R24,p,2(s)| ≤
1

3σ

∞∑
a=1

1

aσ
lim
k→∞

∣∣∣ϕ1,0
a
2
,k(2s)

∣∣∣ ≤ 1

3σ

∞∑
a=1

1

aσ
lim
k→∞

|2s|
2σ
·

∣∣∣∣∣ 1(
a
2

)2σ − 1

k2σ

∣∣∣∣∣
=

1

3σ
· |s|
σ

∞∑
a=1

22σ

aσa2σ
=

4σ

3σ
· |s|
σ
ζ(3σ) .

G16,p,1 If a primitive tetragonal lattice has four shortest vectors, its Gram matrix has the
form

B16,p,1 =

a 0 0
0 a 0
0 0 c


with a 6= c. Together with the reduction conditions we have 0 < a < c and determine
the Dirichlet series as

FG16,p,1(s) =
∑
a,c∈N
a<c

1

(a2c)s
=
∞∑
c=1

1

cs

c−1∑
a=1

1

a2s
=
∞∑
c=1

1

cs

(
∞∑
a=1

1

a2s
−
∞∑
a=c

1

a2s

)
.

We have to employ the last transformation because an application of Corollary 4.3
on
∑c−1

a=1
1
a2s

would give an error term too big for the rest of the calculation. Next,
we use Corollary 4.3 for (x, y, α, β) = (c, k, 1, 0) and assume σ > 1. This yields

FG16,p,1(s) = ζ(s)ζ(2s)−
∞∑
c=1

1

cs
lim
k→∞

(
1

c2s
+
c1−2s − k1−2s

2s− 1
− ϕ1,0

c,k(2s)

)
= ζ(s)ζ(2s)− ζ(3s)− ζ(3s− 1)

2s− 1
+
∞∑
c=1

1

cs
lim
k→∞

ϕ1,0
c,k(2s)︸ ︷︷ ︸

R16,p,1(s):=

and

|R16,p,1(s)| ≤
∞∑
c=1

1

cσ
lim
k→∞

∣∣ϕ1,0
c,k(2s)

∣∣ ≤ ∞∑
c=1

1

cσ
lim
k→∞

|2s|
2σ
·
∣∣∣∣ 1

c2σ
− 1

k2σ

∣∣∣∣ =
|s|
σ
ζ(3σ)

for the remainder term.

G16,p,2 A primitive tetragonal lattice with two shortest vectors is given by Gram matrices
of the form

B16,p,2 =

a 0 0
0 b 0
0 0 b


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with a 6= b. Thus, the independent parameters must fulfil 0 < a < b. For σ > 1
2

we
get

FG16,p,2(s) =
∑
a,b∈N
a<b

1

(ab2)s
=
∞∑
a=1

1

as

∞∑
b=a+1

1

b2s

=
∞∑
a=1

1

as
lim
k→∞

(
a1−2s − k1−2s

2s− 1
− ϕ1,0

a,k(2s)

)
=
ζ(3s− 1)

2s− 1
−
∞∑
a=1

1

as
lim
k→∞

ϕ1,0
a,k(2s) =

ζ(3s− 1)

2s− 1
−R16,p,1(s) .

Since both primitive tetragonal cases involve the same remainder term with a different
sign, we in particular have the exact result

FG16,p(s) = FG16,p,1(s) + FG16,p,2(s) = ζ(s)ζ(2s)− ζ(3s)

for the Dirichlet series of all primitive tetragonal lattices.

G16,i,1 The first body-centered tetragonal case deals with Gram matrices of the form

B16,i,1 =

2e 0 e
0 2e e
e e c

 .

Reducedness implies 2e ≤ c. For the special case 2e = c the boundary conditions
would require e = 0, so this case is prohibited. We would have a face-centered cubic
lattice (see the geometric derivation in Appendix A) which we do not want to count
here anyway. We calculate detB16,i,1 = 4e2(c− e). Then we have

FG16,i,1
(s) =

∑
c,e∈N
2e<c

1

(4e2(c− e))s
=

1

4s

∞∑
e=1

1

e2s

∞∑
c=2e+1

1

(c− e)s
=

1

4s

∞∑
e=1

1

e2s

∞∑
c=e+1

1

cs

=
1

4s

∞∑
e=1

1

e2s
lim
k→∞

k∑
c=e+1

1

cs
=

1

4s

∞∑
e=1

1

e2s
lim
k→∞

(
e1−s − k1−s

s− 1
− ϕ1,0

e,k(s)

)

=
ζ(3s− 1)

4s(s− 1)
− 1

4s

∞∑
e=1

1

e2s
lim
k→∞

ϕ1,0
e,k(s)︸ ︷︷ ︸

R16,i,1(s):=

for σ > 1 and furthermore,

|R16,i,1(s)| ≤
1

4σ

∞∑
e=1

1

e2σ
lim
k→∞

∣∣ϕ1,0
e,k(s)

∣∣ ≤ 1

4σ

∞∑
e=1

1

e2σ
lim
k→∞

|s|
σ
·
∣∣∣∣ 1

eσ
− 1

kσ

∣∣∣∣
=

1

4σ
· |s|
σ
ζ(3σ) .

G16,i,2 The next Gram matrix

B16,i,2 =

2d− f d d
d 2d− f f
d f 2d− f


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has the determinant detB16,i,2 = 4d(d− f)2.

First, the essential reduction conditions imply f ≤ 0 ≤ d. Because of a = b, the
boundary conditions necessitate |f | ≤ d in addition. Thus,

d = 0 ⇒ f = 0.

But we also have

f = 0 ⇒ d = 0

since f = 0 would mean a = 2d, requiring e ≤ f in turn. Therefore, we have to
claim −d ≤ f < 0 < d. Finally, we want −d 6= f , in order to prevent from counting
body-centered cubic lattices. For the Dirichlet series it follows that

FG16,i,2
(s) =

∑
d,f∈Z

−d<f<0<d

1

(4d(d− f)2)s
=

1

4s

∞∑
d=1

1

ds

∑
f∈Z

−d<f<0

1

(d− f)2s

=
1

4s

∞∑
d=1

1

ds

2d−1∑
f=d+1

1

f 2s
=

1

4s

∞∑
d=1

1

ds

2d∑
f=d+1

1

f 2s
− ζ(3s)

16s

=
1

4s

∞∑
d=1

1

ds

(
d1−2s − (2d)1−2s

2s− 1
− ϕ1,0

d,2d(2s)

)
− ζ(3s)

16s

=
1− 21−2s

4s(2s− 1)
ζ(3s− 1)− ζ(3s)

16s
− 1

4s

∞∑
d=1

1

ds
ϕ1,0
d,2d(2s)︸ ︷︷ ︸

R16,i,2(s):=

=

(
1

4s
− 2

16s

)
ζ(3s− 1)

2s− 1
− ζ(3s)

16s
−R16,i,2(s)

with the estimation

|R16,i,2(s)| ≤
1

4σ

∞∑
d=1

1

dσ
∣∣ϕ1,0

d,2d(2s)
∣∣ ≤ 1

4σ

∞∑
d=1

1

dσ
· |2s|

2σ
·
∣∣∣∣ 1

d2σ
− 1

(2d)2σ

∣∣∣∣
=

(
1

4σ
− 1

16σ

)
|s|
σ
ζ(3σ) .

for the error term.

G16,i,3 For the Gram matrix

B16,i,3 =

d+ 2e d e
d d+ 2e −e
e −e d+ 2e


we have to consider the essential condition 0 ≤ d ≤ 2e and the boundary condition
e ≤ d. So, again one parameter equals zero if and only if the other does, yielding the
zero matrix in this case. To exclude body-centered cubic lattices, we must assume
d 6= e. Altogether, we have 0 < e < d < 2e. The determinant values 4e(d + e)2. We
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determine the Dirichlet series:

FG16,i,3
(s) =

∑
d,e∈N
e<d<2e

1

(4e(d+ e)2)s
=

1

4s

∞∑
e=1

1

es

2e−1∑
d=e+1

1

(d+ e)2s

=
1

4s

∞∑
e=1

1

es

(
3e∑

d=2e+1

1

d2s
− 1

(3e)2s

)

=
1

4s

∞∑
e=1

1

es

(
(2e)1−2s − (3e)1−2s

2s− 1
− ϕ1,0

2e,3e(2s)

)
− ζ(3s)

36s

=

(
2

16s
− 3

36s

)
ζ(3s− 1)

2s− 1
− ζ(3s)

36s
− 1

4s

∞∑
e=1

1

es
ϕ1,0
2e,3e(2s)︸ ︷︷ ︸

R16,i,3(s):=

,

and give a bound for the remainder term:

|R16,i,3(s)| ≤
1

4σ

∞∑
e=1

1

eσ
∣∣ϕ1,0

2e,3e(2s)
∣∣ ≤ 1

4σ

∞∑
e=1

1

eσ
· |2s|

2σ
·
∣∣∣∣ 1

(2e)2σ
− 1

(3e)2σ

∣∣∣∣
=

(
1

16σ
− 1

36σ

)
|s|
σ
ζ(3σ) .

G16,i,4 In the last body-centered tetragonal case we consider Gram matrices of the form

B16,i,4 =

4f 2f 2f
2f b f
2f f b

 .

The essential reduction conditions yield 0 < 4f ≤ b. All boundary conditions are
already included in this. In the special case b = 4f the lattice has no additional
symmetries and is still body-centered tetragonal. Hence, b = 4f is admissible here.
The determinant is given by detB16,i,4 = 4f(b− f)2, leading to

FG16,i,4
(s) =

∑
b,f∈N
4f<b

1

(4f(b− f)2)s
=

1

4s

∞∑
f=1

1

f s

∞∑
b=4f

1

(b− f)2s

=
1

4s

∞∑
f=1

1

f s

(
1

(3f)2s
+ lim

k→∞

k∑
b=3f+1

1

b2s

)

=
ζ(3s)

36s
+

1

4s

∞∑
f=1

1

f s
lim
k→∞

(
(3f)1−2s − k1−2s

2s− 1
− ϕ1,0

3f,k(2s)

)

=
ζ(3s)

36s
+

3

36s(2s− 1)
ζ(3s− 1)− 1

4s

∞∑
f=1

1

f s
lim
k→∞

ϕ1,0
3f,k(2s)︸ ︷︷ ︸

R16,i,4(s):=

with the remainder

|R16,i,4(s)| ≤
1

4σ

∞∑
f=1

1

fσ
lim
k→∞

∣∣ϕ1,0
3f,k(2s)

∣∣ ≤ 1

4σ

∞∑
f=1

1

fσ
lim
k→∞

|2s|
2σ
·
∣∣∣∣ 1

(3f)2σ
− 1

k2σ

∣∣∣∣
=

1

36σ
· |s|
σ
ζ(3σ) .
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For the Dirichlet series of all body-centered tetragonal lattices we conclude

FG16,i
(s) =

4∑
j=1

FG16,i,j
(s)

=

(
1

s− 1
+

1

2s− 1

)
ζ(3s− 1)

4s
−
(

1

16s
+

2

36s

)
ζ(3s)−

4∑
j=1

R16,i,j(s) .

G12,r,1 The first rhombohedral trigonal case has the Gram matrix

B12,r,1 =

2d d d
d 2d d
d d c

 .

The reducedness of B12,r,1 requires 0 < 2d ≤ c. The additional condition 2d 6= c
ensures that we do not count face-centered cubic lattices. With the determinant
detB12,r,1 = d2(3c− 2d) and the assumption σ > 1 we get the Dirichlet series

FG12,r,1(s) =
∑
c,d∈N
2d<c

1

(d2(3c− 2d))s
=
∞∑
d=1

1

d2s
lim
k→∞

k∑
c=2d+1

1

(3c− 2d)s

=
∞∑
d=1

1

d2s
lim
k→∞

(
(4d)1−s − (3k − 2d)1−s

3(s− 1)
− ϕ3,−2d

2d,k (s)

)
=

4

3 · 4s(s− 1)
ζ(3s− 1)−

∞∑
d=1

1

d2s
lim
k→∞

ϕ3,−2d
2d,k (s)︸ ︷︷ ︸

R12,r,1(s):=

.

The remainder term can be bounded by

|R12,r,1(s)| ≤
∞∑
d=1

1

d2σ
lim
k→∞

∣∣∣ϕ3,−2d
2d,k (s)

∣∣∣ ≤ ∞∑
d=1

1

d2σ
lim
k→∞

|s|
σ
·
∣∣∣∣ 1

(4d)σ
− 1

(3k − 2d)σ

∣∣∣∣
=

1

4σ
· |s|
σ
ζ(3σ) .

G12,r,2 Next, we deal with Gram matrices of the form

B12,r,2 =

a d d
d a d
d d a

 .

The reduction conditions amount to 0 < a and 0 ≤ 2d ≤ a. Since d = 0 and 2d = a
would give primitive and face-centered cubic lattices, respectively, we claim the strict
inequalities 0 < 2d < a. The determinant is given by detB12,r,2 = (a + 2d)(a − d)2.
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Then

FG12,r,2(s) =
∑
a,d∈N
2d<a

1

((a+ 2d)(a− d)2)s
=
∑
a,d∈N
d<a

1

((a+ 3d)a2)s

=
∞∑
a=1

1

a2s

a−1∑
d=1

1

(3d+ a)s
=
∞∑
a=1

1

a2s

(
a∑
d=1

1

(3d+ a)s
− 1

(4a)s

)

=
∞∑
a=1

1

a2s

(
a1−s − (4a)1−s

3(s− 1)
− ϕ3,a

0,a(s)

)
− ζ(3s)

4s

=

(
1

3
− 4

3 · 4s

)
ζ(3s− 1)

s− 1
− ζ(3s)

4s
−
∞∑
a=1

1

a2s
ϕ3,a
0,a(s)︸ ︷︷ ︸

R12,r,2(s):=

.

Here, we have used the Euler-Maclaurin formula from Lemma 3.9 in the version from
Corollary 4.3 for sums starting at x = 0. This is correct even though in Lemma 3.9
we assume x > 0 and in Corollary 4.3 even x ∈ N. We see this by looking at x→ 0
for the formula from 3.9. On the left-hand side x < 1 implies∑

n∈N
x<n≤y

f(n) =
∑
n∈N

0<n≤y

f(n) .

On the right-hand side all expression depend continuously on x for x→ 0, since for
f(n) = 1

(3n+a)s
the terms f(t), (t− btc)f ′(t) and (t− btc)f(t) possess no singularities

at t = 0 and since the value of an integral depends continuously on the integration
boundaries. Thus, this generalisation of the Euler-Maclaurin formula holds, as long
as the function f is suitable. For Corollary 4.3 we need β 6= 0 in particular, since
otherwise the estimate of the error term would involve dividing by zero.

For the error term we have

|R12,r,1(s)| ≤
∞∑
a=1

1

a2σ
∣∣ϕ3,a

0,a(s)
∣∣ ≤ ∞∑

a=1

1

a2σ
· |s|
σ
·
∣∣∣∣ 1

aσ
− 1

(4a)σ

∣∣∣∣
=

(
1− 1

4σ

)
|s|
σ
ζ(3σ) .

G12,r,3 Gram matrices of the form

B12,r,3 =

a d d
d a −d
d −d a


possess the determinant (a − 2d)(a + d)2. The essential reduction conditions are
0 < a and 0 ≤ 3d ≤ a. They are not sharpened by the boundary conditions. The
special case d = 0 must be excluded as well as a = 3d, since this would lead to a
body-centered cubic lattice.
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Then

FG12,r,3(s) =
∑
a,d∈N
3d<a

1

((a− 2d)(a+ d)2)s
=
∑
a,d∈N
d<a

1

(a(a+ 3d)2)s

=
∞∑
a=1

1

as

a−1∑
d=1

1

(3d+ a)2s
=
∞∑
a=1

1

as

(
a∑
d=1

1

(3d+ a)2s
− 1

(4a)2s

)

=
∞∑
a=1

1

as

(
a1−2s − (4a)1−2s

3(2s− 1)
− ϕ3,a

0,a(2s)

)
− ζ(3s)

16s

=

(
1

3
− 4

3 · 16s

)
ζ(3s− 1)

2s− 1
− ζ(3s)

16s
−
∞∑
a=1

1

as
ϕ3,a
0,a(2s)︸ ︷︷ ︸

R12,r,3(s):=

with

|R12,r,3(s)| ≤
∞∑
a=1

1

aσ
∣∣ϕ3,a

0,a(2s)
∣∣ ≤ ∞∑

a=1

1

aσ
· |2s|

2σ
·
∣∣∣∣ 1

a2σ
− 1

(4a)2σ

∣∣∣∣
=

(
1− 1

16σ

)
|s|
σ
ζ(3σ) .

As in the last case we have applied the Euler-Maclaurin formula for x = 0 here.

G12,r,4 The last type of rhombohedral trigonal lattices is represented by Gram matrices

B12,r,4 =

3d d d
d d− 2f f
d f d− 2f

 .

Reducedness requires 0 < d ≤ −f . The second inequality has to be strict as well
in order to prevent the lattice from being body-centered cubic. Having calculated
detB12,r,4 = (d− 3f)2 and assuming σ > 1

2
, we get

FG12,r,4(s) =
∑
d,f∈Z

0<d<−f

1

(d(d− 3f)2)s
=
∞∑
d=1

1

ds

∞∑
f=d+1

1

(3f + d)2s

=
∞∑
d=1

1

ds
lim
k→∞

(
(4d)1−2s − (3k + d)1−2s

3(2s− 1)
− ϕ3,d

d,k(2s)

)
=

4

3 · 16s(2s− 1)
ζ(3s− 1)−

∞∑
d=1

1

ds
lim
k→∞

ϕ3,d
d,k(2s)︸ ︷︷ ︸

R12,r,4(s):=

with

|R12,r,4(s)| ≤
∞∑
d=1

1

dσ
lim
k→∞

∣∣∣ϕ3,d
d,k(s)

∣∣∣ ≤ ∞∑
d=1

1

dσ
lim
k→∞

|2s|
2σ
·
∣∣∣∣ 1

(4d)2σ
− 1

(3k + d)2σ

∣∣∣∣
=

1

16σ
· |s|
σ
ζ(3σ) .
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Adding up all trigonal lattices leads to

FG12,r(s) =
4∑
j=1

FG12,r,j
(s)

=

(
1

s− 1
+

1

2s− 1

)
ζ(3s− 1)

3
−
(

1

4s
+

1

16s

)
ζ(3s)−

4∑
j=1

R12,r,j(s) .

G8,p The Gram matrix of a primitive orthorhombic lattice is given by an (arbitrary)
diagonal matrix. So, from now on we have to consider three parameters. A lattice
with Gram matrix

B8,p =

a 0 0
0 b 0
0 0 c


could be tetragonal or even cubic unless we prescribe the parameters a, b, c to be
pairwise different. Furthermore, reducedness implies 0 < a < b < c.

For σ > 1 all of the following series converge and we have∑
a,b,c∈N

1

(abc)s
= 6

∑
a,b,c∈N
a<b<c

1

(abc)s
+ 3

∑
a,b,c∈N
a=b<c

1

(abc)s
+ 3

∑
a,b,c∈N
a<b=c

1

(abc)s
+
∑
a,b,c∈N
a=b=c

1

(abc)s
.

We rewrite this as

ζ(s)3 = 6FG8,p(s) + 3FG16,p,1(s) + 3FG16,p,2(s) + FG48,p(s) .

Taking into account the results that we have already established for the primitive
tetragonal and cubic cases, we conclude

FG8,p(s) =
ζ(s)3

6
− ζ(s)ζ(2s)− ζ(3s)

2
+
ζ(3s)

6
=
ζ(s)3

6
− ζ(s)ζ(2s)

2
− ζ(3s)

3
.

In particular, we have an exact formula here.

G8,f,1 The first face-centered orthorhombic case corresponds to the Gram matrix

B8,f,1 =

4f 2f 2f
2f b f
2f f c


with b 6= c and detB8,f,1 = 4f(b− f)(c− f). The essential reduction conditions are
given by 0 < 4f ≤ b ≤ c. Boundary conditions are already fulfilled. We assume
Re(s) > 1 and start with

FG8,f,1
(s) =

∑
b,c,f∈N
4f≤b<c

1

(4f(b− f)(c− f))s
=

1

4s

∞∑
f=1

1

f s

∞∑
b=4f

1

(b− f)s

∞∑
c=b+1

1

(c− f)s
.
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We want to apply Corollary 4.3 with (x, y, α, β) = (b, k, 1,−f) to the innermost sum
but have to use its second approximation here since the first one would include an
error term that would turn out to be too big. We get

FG8,f,1
(s) =

1

4s

∞∑
f=1

1

f s

∞∑
b=4f

1

(b− f)s
lim
k→∞

(
(b− f)1−s − (k − f)1−s

s− 1

+
1

2(k − f)s
− 1

2(b− f)s
− χ1,−f

b,k (s)

)
=

1

4s(s− 1)

∞∑
f=1

1

f s

∞∑
b=4f

1

(b− f)2s−1
− 1

2 · 4s
∞∑
f=1

1

f s

∞∑
b=4f

1

(b− f)2s
(41)

− 1

4s

∞∑
f=1

1

f s

∞∑
b=4f

1

(b− f)s
lim
k→∞

χ1,−f
b,k (s)︸ ︷︷ ︸

r1(s):=

.

Next, we approximate the sums over b:

∞∑
b=4f

1

(b− f)x
= lim

k→∞

k∑
b=3f

1

bx
=

1

(3f)x
+ lim

k→∞

k∑
b=3f+1

1

bx

=
1

(3f)x
+ lim

k→∞

(
(3f)1−x − k1−x

x− 1
+

1

2kx
− 1

2(3f)x
− χ1,0

3f,k(x)

)
=

1

2(3f)x
+

1

(x− 1)(3f)x−1
− lim

k→∞
χ1,0
3f,k(x) .

Including this twice in line (41) yields

FG8,f,1
(s) =

1

2 · 4s · 32s−1(s− 1)

∞∑
f=1

1

f 3s−1 +
1

4s · 32s−2(s− 1)(2s− 2)

∞∑
f=1

1

f 3s−2

− 1

4s(s− 1)

∞∑
f=1

1

f s
lim
k→∞

χ1,0
3f,k(2s− 1)︸ ︷︷ ︸

r2(s):=

− 1

4 · 4s · 32s

∞∑
f=1

1

f 3s

− 1

2 · 4s · 32s−1(2s− 1)

∞∑
f=1

1

f 3s−1 +
1

2 · 4s
∞∑
f=1

1

f s
lim
k→∞

χ1,0
3f,k(2s)︸ ︷︷ ︸

r3(s):=

−r1(s) .

We simplify and express the remaining series with the help of the Riemann zeta
function:

FG8,f,1
(s) =

9 · ζ(3s− 2)

2 · 36s(s− 1)2
+

3s · ζ(3s− 1)

2 · 36s(s− 1)(2s− 1)
− ζ(3s)

4 · 36s

− r1(s)−
1

4s(s− 1)
r2(s) + r3(s) .

The first two terms possess a pole at α = 1 of order 3 and 1, respectively. There
is no pole with a bigger real part in the explicit expressions. We estimate the three
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error terms. The first one can be bounded by

|r1(s)| ≤
1

4σ

∞∑
f=1

1

fσ

∞∑
b=4f

1

(b− f)σ
lim
k→∞

|s| · |s+ 1|
8(σ + 1)

(
1

(b− f)σ+1
− 1

(k − f)σ+1

)

=
|s| · |s+ 1|

2 · 4σ+1(σ + 1)

∞∑
f=1

1

fσ

∞∑
b=3f

1

b2σ+1
.

The sum over b was already determined above. We get

|r1(s)| ≤
|s| · |s+ 1|

2 · 4σ+1(σ + 1)

∞∑
f=1

1

fσ

(
1

2(3f)2σ+1
+

1

2σ(3f)2σ
− lim

k→∞
χ1,0
3f,k(2σ + 1)

)
≤ |s| · |s+ 1|

16 · 36σ(σ + 1)

(
ζ(3σ + 1)

3
+
ζ(3σ)

σ

)
+
|s| · |s+ 1|

2 · 4σ+1(σ + 1)

∞∑
f=1

1

fσ
lim
k→∞

|2σ + 1| · |2σ + 2|
8(2σ + 2)

(
1

(3f)2σ+2
− 1

k2σ+2

)
=

|s| · |s+ 1|
16 · 36σ(σ + 1)

(
ζ(3σ + 1)

3
+
ζ(3σ)

σ
+
|2σ + 1| · ζ(3σ + 2)

36

)
,

from which we infer that r1(s) is holomorphic for σ > 1
3
. For the second error

expression we have

|r2(s)| ≤
∞∑
f=1

1

fσ
lim
k→∞

|2s− 1| · |2s|
8 · 2σ

(
1

(3f)2σ
− 1

k2σ

)
=
|2s− 1| · |s| · ζ(3σ)

8σ · 9σ
.

Hence, r2(s) is holomorphic for σ > 1
3
, too. Finally, the same holds for r3(s) since

|r3(s)| ≤
1

2 · 4σ
∞∑
f=1

1

fσ
lim
k→∞

|2s| · |2s+ 1|
8(2σ + 1)

(
1

(3f)2σ+1
− 1

k2σ+1

)
=
|s| · |2s+ 1| · ζ(3σ + 1)

24 · 36σ(2σ + 1)
.

We define

R8,f,1(s) :=
−r2(s)

4s
and S8,f,1(s) := r3(s)− r1(s)−

ζ(3s)

4 · 36s
.

Then, R8,f,1 and S8,f,1 are holomorphic for σ > 1
3

and fulfil

FG8,f,1
(s) =

9 · ζ(3s− 2)

2 · 36s(s− 1)2
+

3s · ζ(3s− 1)

2 · 36s(s− 1)(2s− 1)
+
R8,f,1(s)

s− 1
+ S8,f,1(s)

for σ > 1. We can see now that the rightmost pole of FG8,f,1
(s) is given by α = 1 and

has order 3. We will calculate lim s→1
σ>1

(s − 1)3FG8,f,1
(s) in the proof of the following

Proposition 4.5.

G8,f,2 In the second face-centered orthorhombic case we have Gram matrices of the form

B8,f,2 =

d+ 2e d e
d d+ 2e −e
e −e c


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with essential conditions d ≤ 2e < d + 2e ≤ c. Assume d = 2e. Then 2d = d + 2e
and the boundary conditions would require e ≤ −e. But e > 0 and thus, d = 2e is
not possible. To exclude lattices of type 16, i, 3 we suppose d + 2e 6= c. Then, the
other boundary conditions give no further restrictions. The determinant detB8,f,2 =
4e(c− e)(d+ e) leads to the Dirichlet series

FG8,f,2
(s) =

∑
c,d,e∈N

2d<d+2e<c

1

(4e(c− e)(d+ e))s
=

1

4s

∞∑
e=1

1

es

2e−1∑
d=1

1

(d+ e)s

∞∑
c=d+e+1

1

cs
.

We suppose Re(s) > 1 and apply Corollary 4.3 with (x, y, α, β) = (d + e, k, 1, 0) to
the sum over c which yields

FG8,f,2
(s) =

1

4s

∞∑
e=1

1

es

2e−1∑
d=1

1

(d+ e)s
lim
k→∞

(
(d+ e)1−s − k1−s

s− 1

+
1

2ks
− 1

2(d+ e)s
− χ1,0

d+e,k(s)

)
=

1

4s(s− 1)

∞∑
e=1

1

es

2e−1∑
d=1

1

(d+ e)2s−1
− 1

2 · 4s
∞∑
e=1

1

es

2e−1∑
d=1

1

(d+ e)2s
(42)

− 1

4s

∞∑
e=1

1

es

2e−1∑
d=1

1

(d+ e)s
lim
k→∞

χ1,0
d+e,k(s)︸ ︷︷ ︸

r1(s):=

.

We approximate the explicit sums over d

2e−1∑
d=1

1

(d+ e)x
=

3e∑
d=e+1

1

dx
− 1

(3e)x
=
e1−x − (3e)1−x

x− 1
− 1

2(3e)x
− 1

2ex
− χ1,0

e,3e(x)

=
e1−x

x− 1

(
1− 31−x)− 1

2ex
(
1 + 3−x

)
− χ1,0

e,3e(x)

and include the result twice in line (42) to get

FG8,f,2
(s) =

1− 32−2s

4s(s− 1)(2s− 2)

∞∑
e=1

1

e3s−2
− 1 + 31−2s

2 · 4s(s− 1)

∞∑
e=1

1

e3s−1

− 1

4s(s− 1)

∞∑
e=1

1

es
· χ1,0

e,3e(2s− 1)︸ ︷︷ ︸
r2(s):=

− 1− 31−2s

2 · 4s(2s− 1)

∞∑
e=1

1

e3s−1

+
1 + 3−2s

4 · 4s
∞∑
e=1

1

e3s
+

1

2 · 4s
∞∑
e=1

1

es
· χ1,0

e,3e(2s)︸ ︷︷ ︸
r3(s):=

−r1(s) .

We convert this to

FG8,f,2
(s) =

9s − 9

2 · 36s(s− 1)2
· ζ(3s− 2)− 9s(3s− 2) + 3s

2 · 36s(s− 1)(2s− 1)
· ζ(3s− 1)

+
9s + 1

4 · 36s
· ζ(3s)− r1(s)−

1

4s(s− 1)
r2(s) + r3(s) .
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As in the first face-centered orthorhombic case, the first two expressions have a pole
at α = 1 of order 3 and 1, respectively, and no pole with a bigger real part occurs
in the explicit terms. We will show, that the domain of analyticity of the three error
terms is large enough for the application of Delange’s Theorem. We start with

|r1(s)| ≤
1

4σ

∞∑
e=1

1

eσ

2e−1∑
d=1

1

(d+ e)σ
lim
k→∞

|s| · |s+ 1|
8(σ + 1)

(
1

(d+ e)σ+1
− 1

kσ+1

)

=
|s| · |s+ 1|

2 · 4σ+1(σ + 1)

∞∑
e=1

1

eσ

2e−1∑
d=1

1

(d+ e)2σ+1
.

The sum over d has been calculated above. We get

|r1(s)| ≤
|s| · |s+ 1|

2 · 4σ+1(σ + 1)

∞∑
e=1

1

eσ

(
1− 3−2σ

2σe2σ
− 1 + 3−2σ−1

2e2σ+1
− χ1,0

e,3e(2σ + 1)

)
≤ |s| · |s+ 1|

16 · 36σ(σ + 1)

(
ζ(3σ)

σ

(
32σ − 1

)
− ζ(3σ + 1)

(
32σ + 3−1

))
+
|s| · |s+ 1|

2 · 4σ+1(σ + 1)

∞∑
e=1

1

eσ
· |2σ + 1| · |2σ + 2|

8(2σ + 2)

(
1

e2σ+2
− 1

(3e)2σ+2

)
=

|s| · |s+ 1|
16 · 36σ(σ + 1)

(
ζ(3σ)

σ

(
32σ − 1

)
− ζ(3σ + 1)

(
32σ + 3−1

)
+
|2σ + 1| · ζ(3σ + 2)

36

(
32σ − 1

))
.

We conclude that r1(s) is holomorphic for σ > 1
3
. Next, we show that the same is

true for the second error term:

|r2(s)| ≤
∞∑
e=1

1

eσ
· |2s− 1| · |2s|

8 · 2σ

(
1

e2σ
− 1

(3e)2σ

)
=
|2s− 1| · |s| · ζ(3σ)

8σ · 9σ
(9σ − 1) .

It remains to estimate the third error. We have

|r3(s)| ≤
1

2 · 4σ
∞∑
e=1

1

eσ
· |2s| · |2s+ 1|

8(2σ + 1)

(
1

e2σ+1
− 1

(3e)2σ+1

)
=
|s| · |2s+ 1| · ζ(3σ + 1)

24 · 36σ(2σ + 1)

(
32σ+1 − 1

)
and see that r3(s) is holomorphic for σ > 1

3
as well. We define new error terms

R8,f,2(s) :=
−r2(s)

4s
and S8,f,2(s) := r3(s)− r1(s) +

9s + 1

4 · 36s
ζ(3s)

that are holomorphic for σ > 1
3
. With this definitions and σ > 1, we get

FG8,f,2
(s) =

(9s − 9) ζ(3s− 2)

2 · 36s(s− 1)2
− (9s(3s− 2) + 3s) ζ(3s− 1)

2 · 36s(s− 1)(2s− 1)
+
R8,f,2(s)

s− 1
+ S8,f,2(s) .

As in the first face-centered orthorhombic case the rightmost pole is at α = 1.

The proof of Proposition 4.4 is finished.
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Proposition 4.5. For every index i Table 3 gives a function fi with fi = fGi, that is
fi(x) ∼ HGi(x) for x→∞.

Proof. For every index i the Theorem of Delange (Proposition 4.2) will be applied to Fi(s).

G48,p The Dirichlet series FG48,p(s) = ζ(3s) has a pole of order one at α = 1
3
. We want to

use Proposition 4.2 for n = 0. If s tends to 1 from the right-hand side, that is, with
σ > 1, we have

1 = lim
s→1
σ>1

(s− 1)ζ(s) = lim
s→ 1

3
σ> 1

3

(3s− 1)ζ(3s).

We deduce

lim
s→ 1

3
σ> 1

3

(
s− 1

3

)
FG48,p(s) =

1

3
.

Thus, there is a function g(s) with g(α) = 1
3
, which is holomorphic (in this case in

the complete complex plane C) such that F48,p(s) has a singularity of the form

F48,p(s) =
g(s)(
s− 1

3

)
at α = 1

3
. Applying Delange’s Theorem yields

fG48,p(x) = x
1
3 .

G48,i The rightmost singularity of FG48,i
(s) = 1

16s
ζ(3s) is a pole of order one at α = 1

3
. We

have

lim
s→ 1

3
σ> 1

3

(
s− 1

3

)
FG48,i

(s) =
1

16
1
3

· 1

3
= 2−

4
3 3−1.

As for the primitive case, there is a holomorphic function g(s) with g(α) = 2−
4
3 3−1

and

F48,i(s) =
g(s)(
s− 1

3

)
at the pole α. Delange’s Theorem for n = 0 and α = 1

3
gives us

fG48,i
(x) = 2−

4
3x

1
3 .

G48,f An analogous calculation for FG48,f
(s) = 1

4s
ζ(3s) shows that

fG48,i
(x) = 2−

2
3x

1
3 .

G24,p,1 The Dirichlet series for the first hexagonal case is given by

F24,p,1(s) =
2

6s(s− 1)
ζ(3s− 1) +

1

6s
ζ(3s)−R24,p,1(s).
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The first expression on the right-hand side has a pole at α = 1 whereas the second
and the third expression converge for σ > 1

3
. We have

lim
s→1
σ>1

(s− 1)FG24,p,1(s) =
1

3
ζ(2) .

Thus, there is a function g(s) with g(1) = 1
3
ζ(2) that is holomorphic in the halfplane

to the right of s = 2
3

(the second rightmost singularity of F24,p,1(s)). We can apply
Proposition 4.2 with (n, α, g(α)) =

(
0, 1, 1

3
ζ(2)

)
to obtain

fG24,p,1(x) =
1

3
ζ(2)x .

G24,p,2 In the second hexagonal case we have

F24,p,2(s) =
22s−1

3s(2s− 1)
ζ(3s− 1) +

8s − 1

2 · 6s
ζ(3s)−R24,p,2(s) ,

and once again the second and the third expression converge for σ > 1
3
. Regarding

the first term, the pole of the zeta function at α = 2
3

has a bigger real part than the
zero of the denominator. From

1 = lim
s→1
σ>1

(s− 1)ζ(s) = lim
s→2
σ>2

(s− 2)ζ(s− 1) = lim
s→ 2

3
σ> 2

3

(3s− 2)ζ(3s− 1)(43)

we infer

lim
s→ 2

3
σ> 2

3

(
s− 2

3

)
FG24,p,2(s) =

1

3
· 2

1
3

3
2
3 · 1

3

= 2
1
3 3−

2
3 .

Applying Delange’s Theorem to the case (n, α, g(α)) =
(

0, 2
3
, 2

1
3 3−

2
3

)
yields

fG24,p,2(x) =
3

√
3

4
· x

2
3 .

G16,p,1 For the first primitive tetragonal case we have determined the Dirichlet series

F16,p,1(s) = ζ(s)ζ(2s)− 1

2s− 1
ζ(3s− 1)− ζ(3s) +R16,p(s) .

The crucial expression on the right-hand side is the first one, having a simple pole
at α = 1, since all the other terms converge for σ > 2

3
. As before, we can deduce the

existence of a holomorphic function g with

g(1) = lim
s→1
σ>1

(s− 1)F16,p,1(s) = ζ(2) .

With the Theorem of Delange we see that

fG16,p,1(x) = ζ(2)x .
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G16,p,2 We start with

F16,p,2(s) =
1

2s− 1
ζ(3s− 1)−R16,p(s) .

The rightmost singularity is the pole of ζ(3s − 1) at α = 2
3
. Using the result from

line (43), we get

lim
s→ 2

3
σ> 2

3

(
s− 2

3

)
FG16,p,2(s) =

1

3
· 1

1
3

= 1 ,

and, applying Proposition 4.2 to (n, α, g(α)) =
(
0, 2

3
, 1
)
,

fG16,p,2(x) =
3

2
x

2
3

for the asymptotic frequency of primitive tetragonal lattices of the second type.

G16,i,1 From Proposition 4.4 we have

F16,i,1(s) =
1

4s(s− 1)
ζ(3s− 1)−R16,i,1(s) .

For (n, α, g(α)) =
(
0, 1, 1

4
ζ(2)

)
Delange’s Theorem gives us

fG16,i,1
(x) =

1

4
ζ(2)x .

G16,i,2 The rightmost singularity of the Dirichlet series

F16,i,2(s) =

(
1

4s
− 2

16s

)
1

2s− 1
ζ(3s− 1)− 1

16s
ζ(3s)−R16,i,2(s)

is the simple pole of ζ(3s− 1) at α = 2
3
. Considering (43) again, we have

lim
s→ 2

3
σ> 2

3

(
s− 2

3

)
FG16,i,2

(s) =
1

3

(
1

2
4
3

− 2

2
8
3

)
1
1
3

=
1

3
√

16
− 1

3
√

32

which leads to

fG16,i,2
(x) =

3

2

(
1

3
√

16
− 1

3
√

32

)
x

2
3 =

3

8

(
3
√

4− 3
√

2
)
x

2
3 .

G16,i,3 The Dirichlet series

F16,i,3(s) =

(
2

16s
− 3

36s

)
1

2s− 1
ζ(3s− 1)− 1

36s
ζ(3s)−R16,i,3(s)

is very similar to F16,i,2(s) from the last case. We end up with

lim
s→ 2

3
σ> 2

3

(
s− 2

3

)
FG16,i,3

(s) =
2

2
8
3

− 3

2
4
3 · 3 4

3

=
1

3
√

32
− 1

3
√

48

and

fG16,i,3
(x) =

3

2

(
1

3
√

32
− 1

3
√

48

)
x

2
3 =

3

8

(
3
√

2− 3

√
4

3

)
x

2
3 .
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G16,i,4 The next Dirichlet series also resembles very much the ones of the last two cases:

F16,i,4(s) =
3

36s(2s− 1)
ζ(3s− 1) +

1

36s
ζ(3s)−R16,i,4(s) .

Again, the relevant singularity is the simple pole of ζ(3s− 1) at α = 2
3
. From

lim
s→ 2

3
σ> 2

3

(
s− 2

3

)
FG16,i,4

(s) =
3

2
4
3 · 3 4

3

=
1

3
√

48

we get to

fG16,i,4
(x) =

3

8
3

√
4

3
x

2
3

with the help of Delange’s Theorem.

G12,r,1 For the first rhombohedral trigonal case we have calculated

F12,r,1(s) =
4

3 · 4s(s− 1)
ζ(3s− 1)−R12,r,1(s) .

With (n, α, g(α)) =
(
0, 1, 1

3
ζ(2)

)
we get

fG12,r,1(x) =
1

3
ζ(2)x .

G12,r,2 Next, we have to deal with

F12,r,2(s) =

(
1

3
− 4

3 · 4s

)
1

s− 1
ζ(3s− 1)− 1

4s
ζ(3s)−R12,r,2(s) .

The rightmost singularity lies at s = 1. Because of

lim
s→1

(
1

3
− 4

3 · 4s

)
ζ(3s− 1)

s− 1
= ζ(2) lim

s→1

d
ds

(
1
3
− 4

3·4s
)

d
ds

(s− 1)

= ζ(2) lim
s→1

(
− 4

3 · 4s

)
log(4)(−1) =

2 log 2

3
ζ(2) ,

this singularity, however, is removable. Hence, we have to look at α = 2
3
, the simple

pole of ζ(3s− 1). With (43) we conclude

lim
s→ 2

3
σ> 2

3

(
s− 2

3

)
FG12,r,2(s) =

1

3

(
1

3
− 4

1
3

3

)
1

−1
3

=
1

3

(
3
√

4− 1
)
.

Applying Proposition 4.2 yields

fG12,r,2(x) =
1

2

(
3
√

4− 1
)
x

2
3 .
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G12,r,3 The Dirichlet series for the third rhombohedral trigonal case

F12,r,3(s) =

(
1

3
− 4

3 · 16s

)
1

2s− 1
ζ(3s− 1)− 1

16s
ζ(3s)−R12,r,3(s) .

also leads to α = 2
3

and n = 0. We have seen several times already that

lim
s→ 2

3
σ> 2

3

(
s− 2

3

)
1

2s− 1
ζ(3s− 1) = 1 ,

thus,

lim
s→ 2

3
σ> 2

3

(
s− 2

3

)
FG12,r,3(s) =

1

3
− 1

3 · 2 2
3

=
1

3

(
1− 1

3
√

4

)
.

Delange’s Theorem gives us

fG12,r,3(x) =
1

2

(
1− 1

3
√

4

)
x

2
3 .

G12,r,4 The last trigonal case is similar to the third one. We have

F12,r,4(s) =
4

3 · 16s(2s− 1)
ζ(3s− 1)−R12,r,4(s)

with a simple pole at α = 2
3

and

lim
s→ 2

3
σ> 2

3

(
s− 2

3

)
FG12,r,4(s) =

1

3 · 2 2
3

=
1

3 3
√

4
.

Hence, the asymptotic frequency is given by

fG12,r,4(x) =
1

2 3
√

4
x

2
3 =

1
3
√

32
x

2
3 .

G8,p The Dirichlet series for the primitive orthorhombic case is

F8,p(s) =
1

6
ζ(s)3 − 1

2
ζ(s)ζ(2s)− 1

3
ζ(3s) .

Its rightmost singularity is a pole of order 3 at α = 1. We have

lim
s→1
σ>1

(s− 1)3 FG8,p(s) =
1

6
.

We apply Proposition 4.2 with (n, α, g(α)) =
(
2, 1, 1

6

)
and end up with

fG8,p(x) =
1

12
x (log x)2 .
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G8,f,1 For σ > 1 we have

FG8,f,1
(s) =

9 · ζ(3s− 2)

2 · 36s(s− 1)2
+

3s · ζ(3s− 1)

2 · 36s(s− 1)(2s− 1)
+
R8,f,1(s)

s− 1
+ S8,f,1(s)

with R8,f,1(s) and S8,f,1(s) being analytic around α = 1. Furthermore,

lim
s→1
σ>1

(s− 1)ζ(3s− 2) = lim
s→3
σ>3

(s
3
− 1
)
ζ(s− 2) = lim

s→1
σ>1

(
s+ 2

3
− 1

)
ζ(s)

=
1

3
lim
s→1
σ>1

(s− 1)ζ(s) =
1

3
,

and thus

lim
s→1
σ>1

(s− 1)3FG8,f,1
(s) = lim

s→1
σ>1

3

2 · 36s
=

1

24
.

Delange’s Theorem for (n, α, g(α)) =
(
2, 1, 1

24

)
gives us

fG8,f,1
(x) =

1

48
x (log x)2 .

G8,f,2 As in the last case we use

lim
s→1
σ>1

(s− 1)ζ(3s− 2) =
1

3

to infer

lim
s→1
σ>1

(s− 1)2FG8,f,2
(s) = lim

s→1
σ>1

9s − 9

6 · 36s(s− 1)
= lim

s→1
σ>1

9s log 9

6 · 36s
=

log 3

12
.

With (n, α, g(α)) =
(
1, 1, log 3

12

)
we conclude

fG8,f,2
(x) =

log 3

12
x log x .

In the rest of the chapter we determine the class numbers of type HL
G(D) of complete

Bravais classes. We will not use the finer subdivision into isometry classes of Schiemann
reduced lattices any longer since their class numbers seem to be harder to calculate.

Proposition 4.6. The aggregated class numbers of the body-centered orthorhombic and
base-centered orthorhombic lattices fulfil the following asymptotic equivalences:

H8,i(D) ∼ D

48
(logD)2 and H8,b(D) ∼ D

8
(logD)2 .

Proof. We begin with the body-centered case. We consider lattices (L, b) with b the usual
dot product and

L := Z

√a0
0

+ Z

 0√
b

0

+ Z
1

2

√a√b√
c

 , a, b, c ∈ N .
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Then, the given vectors form a basis for L and

detL =

∣∣∣∣∣∣∣
a 0 a

2

0 b b
2

a
2

b
2

a+b+c
4


∣∣∣∣∣∣∣ =

1

4

∣∣∣∣∣∣∣
a 0 a

0 b b

a b a+ b+ c


∣∣∣∣∣∣∣ =

1

4
abc .

The Gram matrix shows that for the lattice to be integral we must have a, b ∈ 2Z and
a+b+c ∈ 4Z. In order to exclude the cases of body-centered tetragonal and body-centered
cubic lattices we assume a, b and c to be pairwise different. Interchanging the values of a, b
and c yields isometric copies of the same lattice. Except for this ambiguity there are no
further isometries between lattices of this type: Let

M := Z

√x0
0

+ Z

 0√
y

0

+ Z
1

2

√x√y√
z

 , x, y, z ∈ 2N, x+ y + z ∈ 4N

be another lattice of this kind. Without loss of generality, we can assume a < b < c and
x < y < z. Suppose that there is an isometry F : L→ M . We will prove that L = M by
showing that (a, b, c) = (x, y, z). The square length of an arbitrary lattice vector

u = i

√a0
0

+ j

 0√
b

0

+
k

2

√a√b√
c

 , i, j, k ∈ Z

is given by

|u|2 =

(
i+

k

2

)2

a+

(
j +

k

2

)2

b+
k2

4
· c .(44)

Let u 6= 0.
Suppose k = 0, then |u|2 is minimal for i = ±1 and j = 0 resulting in |u|2 = a. The
corresponding vectors are the first basis vector and its negative. The shortest vectors that
are not spanned by these arise for i = 0 and j = ±1 (second basis vector and its negative).
For k 6= 0, the square length is bounded from below by a+b+c

4
. The bound is (only) realised

for k = 1, i, j ∈ {0,−1} and k = −1, i, j ∈ {0, 1}. The vectors that correspond to these
eight possibilities span the whole lattice.

We determine the successive minima of the lattice and count the vectors that realise these
minima. Depending on the value of a+b+c

4
we distinguish the following cases (a visualisation

can be found in the appendix on page 89 and onwards):

Case Condition Successive Minima # Minimal Vectors

1 a+b+c
4

< a < b (a+b+c
4

, a+b+c
4

, a+b+c
4

) (8, 8, 8)

2 a+b+c
4

= a < b (a, a, a) (10, 10, 10)

3 a < a+b+c
4

< b (a, a+b+c
4

, a+b+c
4

) (2, 8, 8)

4 a < a+b+c
4

= b (a, b, b) (2, 10, 10)

5 a < b < a+b+c
4

(a, b, a+b+c
4

) (2, 2, 8)

Since isometries preserve square lengths and linear independence of vectors (therefore, the
successive minima as well), L and M must belong to the same case (x, y, z replacing a, b, c
in the table).
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• In the last case the equality of the successive minima (a, b, a+b+c
4

) = (x, y, x+y+z
4

)
yields (a, b, c) = (x, y, z) at once.

• In Case 4 we start with (a, b) = (x, y). The assumptions of the case being b = a+b+c
4

and y = x+y+z
4

, we have (a, b, a+b+c
4

) = (x, y, x+y+z
4

) again.

• If the lattices L and M belong to Case 3, the assumptions are a = x and a+b+c
4

=
x+y+z

4
. Therefore, we have b+ c = y + z, and we are done if we can show that b = y.

We look at the second basis vector of L and its image under F :

b =
∣∣∣
 0√

b
0

∣∣∣2 =
∣∣∣F (

 0√
b

0

)
∣∣∣2 =

∣∣∣F (
1

2

√a√b√
c


︸ ︷︷ ︸
v:=

) + F (
1

2

−√a√b
−
√
c


︸ ︷︷ ︸
w:=

)
∣∣∣2.

The vectors v and w of the right-hand side are two of the eight ones that realise
the second successive minimum of L. The isometry F maps them to corresponding
vectors of M , but without further knowledge of F , we do not know the signs of the
vector entries. So, we have

b =
∣∣∣1
2

e1√xe2
√
y

e3
√
z

+
1

2

f1√xf2
√
y

f3
√
z

∣∣∣2 =
(e1 + f1)

2x+ (e2 + f2)
2y + (e3 + f3)

2z

4

with ei, fi ∈ {1,−1} for i = 1, 2, 3. Hence, (ei + ej)
2 ∈ {0, 4} and

b ∈
{

0, x, y, z, x+ y, x+ z, y + z, x+ y + z
}
.

The assumptions 0 < a < b and a = x imply b 6= 0 and b 6= x. Now suppose, b ≥ z.
Having b < c and y < z, we can conclude

b+ c > 2b ≥ 2z > y + z,

in contradiction to b + c = y + z. Therefore, b < z, and only the possibilities b = y
and b = x+ y remain. Analogous considerations for F−1 yield y ∈ {b, a+ b}. But for
b 6= y we would have b = x+ y = x+ a+ b, which is impossible.

• In the second case, the beginning of our considerations is exactly the same. The first
difference occurs when we look at F (v) and F (w). Here, because of a = a+b+c

4
, it is

also possible that these image vectors equal the first basis vector of M or its negative
(that is, e1 = ±2, e2 = e3 = 0, for example).

If none of them does, we have the above possibilities for the value of b.

If one does and the other not, we get e1 + f1 ∈ {−3,−1, 1, 3} and hence b = x+y+z
4

or b = 9x+y+z
4

. Because of

b > a =
a+ b+ c

4
=
x+ y + z

4
,

the first case is impossible. The second case would imply

b = 2x+
x+ y + z

4
= 3a = b+ c,
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which is a contradiction as well .

Since v and w are linearly independent, they cannot both be mapped on multiples
of the first basis vector of M . This leaves us is in the situation of Case 3 and finishes
the argument for Case 2.

• In Case 1 we only have a + b + c = x + y + z to begin with, corresponding to the
eight shortest vectors of L and M . But, looking at the square length of an arbitrary
lattice vector of L in line (44), we see that the coefficients for a, b and c are either 1

4

or at least 1, in which case we would have |u|2 ≥ a. Therefore, the second smallest
length can only occur for k = 0 and is given by a, only realised by the first basis
vector and its negative. So, these vectors must be mapped to the corresponding ones
of M , which gives us a = x in this case as well. Now the argument of Case 3 can be
applied.

We have shown L = M for all five cases, and thus we can count as follows:

h8,i(d) =
1

6

∑
a,b,c∈2N
a+b+c∈4N
abc=4d
a6=b 6=c 6=a

1 .

For appropriate s ∈ C the corresponding Dirichlet series FG8,i
(s) converges, in which case

we can change the order of summation:

FG8,i
(s) =

∞∑
d=1

hG8,i
(d)

ds
=
∞∑
d=1

1

ds

(
1

6

∑
a,b,c∈2N
a+b+c∈4N
abc=4d
a6=b 6=c6=a

1

)
=

1

6

∑
a,b,c∈2N
a+b+c∈4N
a6=b6=c6=a

1(
1
4
abc
)s .

It is easier to determine the sum if we drop the inequality condition on a, b and c, thus we
define

F̃G8,i
(s) :=

1

6

∑
a,b,c∈2N
a+b+c∈4N

1(
1
4
abc
)s =

1

6

∑
a,b∈N

∑
c∈N

c≡2a+b

1

(2abc)s
.

The new series F̃G8,i
comprises the body-centered tetragonal and cubic lattices in addition:

F̃G8,i
= FG8,i

+ 3FG16,i
+ FG48,i

.

We already know the asymptotic behaviour of the tetragonal and cubic lattices. Their
number grows linearly with and like the cube root of the determinant, respectively. Hence,
the error that occurs if we allow a, b and c to partly coincide is small enough not to affect
the result we want to show. To deal with the parity condition on c we have to look at the
parities of a and b which yields four different cases:

F̃G8,i
(s) =

1

6 · 2s

∑
a∈N
a≡20

∑
b∈N
b≡20

∑
c∈N
c≡20

1

(abc)s
+
∑
a∈N
a≡20

∑
b∈N
b≡21

∑
c∈N
c≡21

1

(abc)s
+
∑
a∈N
a≡21

∑
b∈N
b≡20

∑
c∈N
c≡21

1

(abc)s

+
∑
a∈N
a≡21

∑
b∈N
b≡21

∑
c∈N
c≡20

1

(abc)s

 .
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The last three sums are equal because their summands are symmetric in a, b and c. We
substitute even numbers by their halves and odd numbers by the smallest integer greater
than their half:

F̃G8,i
(s) =

1

6 · 2s

 1

8s

∑
a,b,c∈N

1

(abc)s
+

3

2s

∑
a,b,c∈N

1

(a(2b− 1)(2c− 1))s


=

1

6 · 16s

(
∞∑
a=1

1

as

)3

+
1

2 · 4s
∞∑
a=1

1

as

(
∞∑
b=1

1

(2b− 1)s

)2

.

The remaining series can be expressed with the help of the Riemann zeta function which
leaves us with

F̃G8,i
(s) =

ζ(s)3

6 · 16s
+
ζ(s)

2 · 4s

((
1− 1

2s

)
ζ(s)

)2

=
ζ(s)3

6 · 16s
(
1 + 3 (2s − 1)2

)
.

Now, we apply Proposition 4.2. The rightmost pole of the last expression is at α = 1 and
has order 3, hence n = 2. We can choose

g(s) := (s− 1)3
ζ(s)3

6 · 16s
(
1 + 3 (2s − 1)2

)
to meet the requirements of Proposition 4.2. We observe

g(1) =
1

6 · 16s
(
1 + 3 (2s − 1)2

)
=

1

24
.

Then, we get∑
d≤D

(
h8,i(d) + 3h16,i(d) + h48,i(d)

)
∼ g(1)

2!
D (logD)2 =

1

48
D(logD)2

since F̃G8,i
corresponds to the sum on the left-hand side. Finally, we also have

H8,i(D) =
∑
d≤D

h8,i(d) ∼ 1

48
D(logD)2

because of the smaller growth of the number of body-centered tetragonal and cubic lattices.
This proves the first formula of the Proposition.

The result for the base-centered orthorhombic lattices can be shown quite similarly. The
lattices have the form

L := Z

√a0
0

+ Z

 0√
b

0

+ Z
1

2

 0√
b√
c

 , a, b, c ∈ N ,

which implies

detL =

∣∣∣∣∣∣∣
a 0 0

0 b b
2

0 b
2

b+c
4


∣∣∣∣∣∣∣ =

1

4

∣∣∣∣∣∣∣
a 0 0

0 b b

0 b b+ c


∣∣∣∣∣∣∣ =

1

4
abc .
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Integrality of the lattice requires b ∈ 2Z and b + c ∈ 4Z. Again, we start with assuming
pairwise different parameters a, b and c to exclude lattices of higher symmetry but can
forget this restriction as soon as it poses a problem. This time, we can only swap the
values of b and c if we want to remain in the same isometry class of lattices. Hence, we
must divide by 2 instead of 6 and get

h8,b(d) =
1

2

∑
a,c∈N,b∈2N
b+c∈4N
abc=4d
a6=b 6=c 6=a

1 and FG8,b
(s) =

1

2

∑
a,c∈N,b∈2N
b+c∈4N
a6=b 6=c 6=a

1(
1
4
abc
)s =

1

2

∑
a∈N,b,c∈2N
b
2≡2

c
2

a6=b 6=c 6=a

1(
1
4
abc
)s .

We substitute b and c by their halves and omit the inequality condition:

F̃G8,b
(s) :=

1

2

∑
a,b,c∈N
b≡2c

1

(abc)s
=

1

2

∞∑
a=1

1

as

∑
b,c∈2N

1

(bc)s
+

∑
b,c∈2N+1

1

(bc)s

 .

The first sum equals ζ(s). We compute the other sum with the help of the same substitu-
tions as in the previous case:

F̃G8,b
(s) =

ζ(s)

2

 1

4s

∑
b,c∈N

1

(bc)s
+
∑
b,c∈N

1

(2b− 1)s(2c− 1)s


=
ζ(s)

2

(
ζ(s)2

4s
+ ζ(s)2

(
1− 1

2s

)2
)

=
ζ(s)3

2 · 4s
(
1 + (2s − 1)2

)
.

With regard to Proposition 4.2 we have α = 1 and n = 2 as before. We set

g(s) := (s− 1)3
ζ(s)3

2 · 4s
(
1 + (2s − 1)2

)
.

Then g(1) = 1
4

and

H8,b(D) ∼ 1

8
D(logD)2.

Here, the difference between F̃G8,b
and FG8,b

is irrelevant for our computation because of
the same reasons as before.

For the remaining Bravais types (groups of order 4) the method of calculating Dirichlet
series appeared to be less fruitful. Rather, we use a direct approach for the aggregated
class number H(D).

Proposition 4.7. For the aggregated class number of three-dimensional lattices of primitive
monoclinic type we have the equation

H4,p(D) =
πζ
(
3
2

)
9

D
3
2 − 3

16
D (logD)2 +O (D logD) .
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Proof. The calculation of the class number of primitive monoclinic lattices uses the result
for two-dimensional lattices with trivial automorphism groups. With the help of Proposi-
tion 3.6, part (b) we get

H4,p(D) =
∑
a≤D

∑
b,c,f∈N
2f<b<c

bc−f2≤Da

1 =
∑
a≤D

H0

(
D

a

)
=
∑
a≤D

(
π

9

(
D

a

) 3
2

− 3

8
· D
a

log

(
D

a

)
+O

(
D

a

))

=
πD

3
2

9

∑
a≤D

1

a
3
2

− 3D logD

8

∑
a≤D

1

a
+

3D

8

∑
a≤D

log a

a
+O

(
D
∑
a≤D

1

a

)

=
πD

3
2

9

(
−2√
D

+ ζ

(
3

2

)
+O

(
D−

3
2

))
− 3D logD

8

(
logD + C +O

(
D−1

))
+

3D

8

(
1

2
(logD)2 +O(1)

)
+O (D logD)

=
πζ
(
3
2

)
9

D
3
2 − 3

16
D (logD)2 +O(D logD) .

Proposition 4.8. In the base-centered monoclinic case the following formula holds:

H4,b(D) =
πζ
(
3
2

)
6
√

2
D

3
2 − 7

32
D (logD)2 +O (D logD) .

To prepare the proof we start as in Proposition 4.6. We assume that the bilinear form b is
given by the usual scalar product. Let u, v, w ∈ Q3 such that (v, w) is a reduced basis of
the two-dimensional lattice 〈v, w〉Z in the subspace 〈v, w〉Q and u ⊥ 〈v, w〉Q. We suppose
that O(〈v, w〉Z) = {± id}. Let a, b, c be the square lengths of u, v, w, respectively, and let
f := 〈v, w〉. We assume that a, b, c, f ∈ Z. Then every base-centered monoclinic lattice is
isometric to exactly one lattice of the ones with the following bases:

B1 =

(
1

2
(u+ v), v, w

)
,

B2 =

(
1

2
(u+ w), v, w

)
,

B3 =

(
1

2
(u+ v − w), v, w

)
.

We want to count all the possible bases of this kind (or more precisely their Gram matrices)
in order to determine the class number for base centered monoclinic lattices. However, if
3a= 3f = b or 3a= 3f = c, then the corresponding lattice is trigonal and not monoclinic.
Thus, we will count too many lattices. We already know that the asymptotic frequency of
the trigonal lattices is given by

1

3
ζ(2)D +O(D

2
3 ) .

For the class number in the base-centered monoclinic case we only claim accuracy up to
multiples of D logD, hence the error of counting additional lattices is neglectable.
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The corresponding Gram matrices for the three bases are

B1 =


a+b
4

b
2

f
2

b
2

b f
f
2

f c

 , B2 =


a+c
4

f
2

c
2

f
2

b f
c
2

f c

 and B3 =


a+b+c

4
− f

2
b−f
2

f−c
2

b−f
2

b f
f−c
2

f c

 .

The determinant of all three matrices is given by 1
4
a (bc− f 2). Since bc− f 2 is the deter-

minant of a two-dimensional sublattice, this expression is at least one. Therefore, a ≤ 4D.
Moreover, we have 0 < 2f < b < c because of the reducedness of (v, w). We want to find
an upper bound on c as well. We begin with

1

4
a
(
bc− f 2

)
≤ D ⇔ bc ≤ 4D

a
+ f 2 ⇔ c ≤ 4D

ab
+
f 2

b
.

Using 2f < b and b < c gives us

c <
4D

ab
+
b

4
<

4D

ab
+
c

4
⇒ 3c

4
<

4D

ab
⇔ c <

16D

3ab
.

We can weaken this inequality to

c <
16D

3a
.

In each of the three cases some additional conditions must be fulfilled to ensure the integrity
of the lattice. In the first case we need b, f ∈ 2N and a + b ∈ 4N, for example. We sum
over the possible values for a, b, c, f and calculate the three sums in the following lemma.

Lemma 4.9. ∑
a,b,c,f∈N
2f<b<c
b,f∈2N
a+b∈4N

a(bc−f2)≤4D

1 =
πζ
(
3
2

)
18
√

2
D

3
2 − 3

32
D (logD)2 +O (D logD) ,(a)

∑
a,b,c,f∈N
2f<b<c
c,f∈2N
a+c∈4N

a(bc−f2)≤4D

1 =
πζ
(
3
2

)
18
√

2
D

3
2 − 5

64
D (logD)2 +O (D logD) ,(b)

∑
a,b,c,f∈N
2f<b<c

b−f,f−c∈2Z
a+b+c−2f∈4N
a(bc−f2)≤4D

1 =
πζ
(
3
2

)
18
√

2
D

3
2 − 3

64
D (logD)2 +O (D logD) .(c)

Before we prove this lemma, we state two auxiliary results from analytic number theory
and the calculation of a certain sum that arises in all three cases.

Lemma 4.10. Let x and s be real numbers with x ≥ 2 and s > 0, s 6= 1. Then∑
n≤x

1

ns
=

x1−s

1− s
+ ζ(s) +O

(
x−s
)
,(a)

∑
n≤x

log n

n
=

1

2
(log x)2 +O(1).(b)
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Proof. For the first formula see [Apo76], Theorem 3.2.

Part (b) follows from Euler’s summation formula (see Lemma 3.9) and is formulated as an
exercise in a sharper version in [Apo76](Exercise 1(a) on page 70).

Lemma 4.11.∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1 =
2
√

2

9
πζ

(
3

2

)
D

3
2 − 3

8
D (logD)2 +O (D logD) .

Proof. We begin with substituting a by a
2

and observe∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1 =
∑
a∈N
a≤2D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 2D
a

1 =
∑
a∈N
a≤2D

H0

(
2D

a

)
,

that is, the inner sum over b, c and f can be interpreted as a class number of two-dimensional
lattices with trivial automorphism group. For comparison, see line (20) in the proof of
Proposition 3.6 . We apply part (b) of this proposition and get∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1 =
∑
a∈N
a≤2D

(
π

9

(
2D

a

) 3
2

− 3

8

(
2D

a

)
log

(
2D

a

)
+O

(
D

a

))

=
2
√

2

9
πD

3
2

∑
a∈N
a≤2D

a−
3
2 − 3D

4
log (2D)

∑
a∈N
a≤2D

1

a
+

3D

4

∑
a∈N
a≤2D

log a

a
+O

( ∑
a∈N
a≤2D

D

a

)
.(45)

Next, we approximate the four remaining sums. We obtain∑
a∈N
a≤2D

a−
3
2 =

(2D)1−
3
2

1− 3
2

+ ζ

(
3

2

)
+O

(
(2D)−

3
2

)
= ζ

(
3

2

)
+O

(
D−

1
2

)
, (cf. 4.10, (a))

∑
a∈N
a≤2D

1

a
= log(2D) + C +O

(
1

2D

)
= logD +O(1), (cf. 3.4, (a))

∑
a∈N
a≤2D

log a

a
=

1

2
(log (2D))2 +O(1) =

1

2
(logD)2 +O (logD) , (cf. 4.10, (b))

and for the error term

O

( ∑
a∈N
a≤2D

D

a

)
= O

(
D
(

logD +O(1)
))

= O (D logD) .

We include these results in line (45) and get∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1 =
2
√

2

9
πζ

(
3

2

)
D

3
2 − 3D

4
logD log(2D) +

3D

8
(logD)2 +O (D logD)

=
2
√

2

9
πζ

(
3

2

)
D

3
2 − 3

8
D (logD)2 +O (D logD) .
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Proof of Lemma 4.9. We note that all three sums are finite since 2f < b < c < 16D
9

and
a ≤ 4D. Therefore, we can always change the order of summation.

Part (a)
We want to apply Lemma 4.11. Therefore, we have to get rid of all equivalence conditions on
the summation indices except for a ∈ 2N. We begin with choosing an order of summation
for the first sum: ∑

a,b,c,f∈N
2f<b<c
b,f∈2N
a+b∈4N

a(bc−f2)≤4D

1 =
∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a

∑
f∈2N
2f<b

bc−f2≤ 4D
a

1 .(46)

To calculate the innermost sum from the right-hand side we want to get rid of the parity
condition on f . We multiply by 1

2
instead and determine the arising error:

∑
f∈2N
2f<b

bc−f2≤ 4D
a

1 =
1

2

∑
f∈N
2f<b

bc−f2≤ 4D
a

1 +
1

2

( ∑
f∈N
2f<b

bc−f2≤ 4D
a

f≡20

1−
∑
f∈N
2f<b

bc−f2≤ 4D
a

f≡21

1

)
.

Now, we change the expression within the brackets by leaving out the condition on the
determinant D and subtract corresponding sums with the reverse inequality:

∑
f∈N
2f<b

bc−f2≤ 4D
a

f≡20

1−
∑
f∈N
2f<b

bc−f2≤ 4D
a

f≡21

1 =

(∑
f∈N
2f<b
f≡20

1−
∑
f∈N
2f<b
f≡21

1

)
−

( ∑
f∈N
2f<b

f2<bc− 4D
a

f≡20

1−
∑
f∈N
2f<b

f2<bc− 4D
4

f≡21

1

)
.

The value of each sum over odd f is equal to or greater by one than the corresponding
sum over even f , because the upper bounds are the same and the smallest natural number
is odd. Hence, the bracketed differences equal 0 or −1.

For bc− 4D
a
≤ 1 in particular, the second difference is 0 since both sums are empty in this

case.

The first difference depends on the remainder of b modulo 4. To be more specific, we have
to check if the greatest integer fmax smaller than the upper bound b

2
is even or odd:

b ≡4 0 ⇒ b
2
∈ 2Z ⇒ fmax is odd,

b ≡4 1 ⇒ b
2
∈ 2Z + 1

2
⇒ fmax is even,

b ≡4 2 ⇒ b
2
∈ Z \ 2Z ⇒ fmax is even,

b ≡4 3 ⇒ b
2
∈ (Z \ 2Z) + 1

2
⇒ fmax is odd.

The cases b ≡4 1 and b ≡4 3 cannot occur here because of b ≡4 a ∈ 2N. Nevertheless, we
consider them here since they will be used later on in part (b) of this lemma. We have

∑
f∈N
2f<b

bc−f2≤ 4D
a

f≡20

1−
∑
f∈N
2f<b

bc−f2≤ 4D
a

f≡21

1 =

{
−1, b ≡4 0, 3

0, b ≡4 1, 2

}
−

{
O(1), bc− 4D

a
> 1

0, bc− 4D
a
≤ 1

}
,
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and

∑
f∈2N
2f<b

bc−f2≤ 4D
a

1 =
1

2

( ∑
f∈N
2f<b

bc−f2≤ 4D
a

1 +

{
−1, b ≡4 0, 3

0, b ≡4 1, 2

}
−

{
O(1), bc− 4D

a
> 1

0, bc− 4D
a
≤ 1

})
.(47)

We insert this result into line (46):

∑
a,b,c,f∈N
2f<b<c
b,f∈2N
a+b∈4N

a(bc−f2)≤4D

1 =
1

2

( ∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a

1−
∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a
b≡40,3

1 +
∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a

bc− 4D
a >1

O(1)

)
.(48)

The three double sums on the right-hand side will be dealt with separately. First, we
will show that the order of magnitude of the last one does not exceed D logD. Since
the summands are non-negative, and we want to find an upper bound, we can ignore the
congruence conditions on a and b:

∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a

bc− 4D
a >1

O(1) = O

( ∑
a∈N
a≤4D

∑
b,c∈N
b<c

4D
ab

+1
b
<c< 4D

ab
+ b

4

1

)
= O

( ∑
a∈N
a≤4D

∑
b∈N

b<4

√
D
3a

∑
c∈N

1
b
<c< b4

1

)
.

For the last transformation we have used that b < c and c < 4D
ab

+ b
4

imply b < 4
√

D
3a

.

Because of

∑
c∈N

1
b
<c< b4

1 = O(b),
∑
b∈N

b<4

√
D
3a

b = O
(
D

a

)
and

∑
a∈N
a≤4D

D

a
= O (D logD)

we have ∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a

bc− 4D
a >1

O(1) = O (D logD) .(49)

Now, we deal with the second double sum from line (48). As above, we first sum over c and

deduce b < 4
√

D
3a

as a weakened upper bound on b that is independent of c. This yields

∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a
b≡40,3

1 =
∑
a∈2N
a≤4D

∑
b∈N

b<4

√
D
3a

b≡4a
b≡40,3

∑
c∈N

b<c< 4D
ab

+ b
4

1 =
∑
a∈2N
a≤4D

∑
b∈N

b<4

√
D
3a

b≡4a
b≡40,3

(
4D

ab
+O(b)

)
.

We consider the congruence conditions. Since b ≡4 a ≡2 0, the case b ≡4 3 cannot occur.
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Therefore, a ≡4 b ≡4 0 and

∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a
b≡40,3

1 =
∑
a∈4N
a≤4D

∑
b∈4N

b<4

√
D
3a

(
4D

ab
+O(b)

)
=
∑
a∈4N
a≤4D

∑
b∈N

b<

√
D
3a

(
D

ab
+O(b)

)

=
∑
a∈N
a≤D

∑
b∈N

b<

√
D
12a

(
D

4ab
+O(b)

)
=
D

4

∑
a∈N
a≤D

(
1

a

∑
b∈N

b<

√
D
12a

1

b

)
+
∑
a∈N
a≤D

O
(
D

a

)
.

We apply the asymptotic formula for the sum over the reciprocals of the natural numbers
up to a given bound:

∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a
b≡40,3

1 =
D

4

∑
a∈N
a≤D

1

a

(
log

(√
D

12a

)
+O(1)

)
+O (D logD)

=
D

8

∑
a∈N
a≤D

logD − log 12− log a

a
+O (D logD)

=
D logD

8

∑
a∈N
a≤D

1

a
− D

8

∑
a∈N
a≤D

log a

a
+O (D logD) .

For the second sum in the last line we need the second formula of Lemma 4.10, whose
appliance results in

∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a
b≡40,3

1 =

(
1

8
− 1

16

)
D (logD)2 +O (D logD) =

D (logD)2

16
+O (D logD) .(50)

Finally, we look at the first double sum from line (48). We want to avoid the congruence
condition b ≡4 a, so we take the following approach:

∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a

1 =
1

4

( ∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1 +
∑
a∈2N
a≤4D

(
4
∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a

1−
∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1

))
,

and subdivide the last sum in four parts according to the remainder of b − a modulo 4.
Note that the difference in the interior brackets vanishes for x = 0, so only three cases
remain. We get

∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a

1 =
1

4

( ∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1 +
∑
a∈2N
a≤4D

∑
x∈{±1,2}

( ∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a

1−
∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a+x

1

))
.
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The first double sum is known thanks to Lemma 4.11. Therefore, we have

∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a

1 =
πζ
(
3
2

)
9
√

2
D

3
2 − 3

32
D (logD)2 +

1

4

∑
a∈2N
a≤4D

∑
x∈{±1,2}

( ∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a

1−
∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a+x

1

)

+O (D logD) .

We include this preliminary result as well as those from lines (49) and (50) in line (48)
which gives us

∑
a,b,c,f∈N
2f<b<c
b,f∈2N
a+b∈4N

a(bc−f2)≤4D

1 =
πζ
(
3
2

)
18
√

2
D

3
2 − 3

64
D (logD)2 +

1

8

∑
a∈2N
a≤4D

∑
x∈{±1,2}

( ∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a

1−
∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a+x

1

)

− D(logD)2

32
+O (D logD) .

We simplify to

∑
a,b,c,f∈N
2f<b<c
b,f∈2N
a+b∈4N

a(bc−f2)≤4D

1 =
πζ
(
3
2

)
18
√

2
D

3
2 − 5

64
D (logD)2 +

1

8

∑
a∈2N
a≤4D

∑
x∈{±1,2}

( ∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a

1−
∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a+x

1

)

+O (D logD) ,

and see that it remains to show that∑
a∈2N
a≤4D

∑
x∈{±1,2}

( ∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a+x

1−
∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a

1

)
=
D (logD)2

8
+O (D logD) .(51)

We begin with determining the sums of the inner difference:

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a+x

1 =
∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a+x

∑
f∈N
2f<b

bc−f2≤ 4D
a

1 =
∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a+x

⌊b− 1

2

⌋
−


⌈√

bc− 4D
a

⌉
− 1, bc− 4D

a
> 1

0, bc− 4D
a
≤ 1




=
∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a+x

⌊
b− 1

2

⌋
−

∑
b,c∈N

b<c< 4D
ab

+ b
4

bc− 4D
a >1

b≡4a+x

(⌈√
bc− 4D

a

⌉
− 1

)
.(52)

These two sums will be calculated separately. We start with the first one:∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a+x

⌊
b− 1

2

⌋
=

∑
b∈N

b<4

√
D
3a

b≡4a+x

∑
c∈N

b<c< 4D
ab

+ b
4

⌊
b− 1

2

⌋
=

∑
b∈N

b<4

√
D
3a

b≡4a+x

⌊
b− 1

2

⌋(
4D

ab
− 3b

4
+O(1)

)
.
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If we just approximated the value of the floor function by its argument, the error would be
too big to obtain line (51). Therefore, we have to do a case-by-case analysis with regard
to x. We can assume a ≡2 0 since we want to insert the result in line (51). That yields∑

b,c∈N
b<c< 4D

ab
+ b

4
b≡4a+x

⌊
b− 1

2

⌋
=

∑
b∈N

b<4

√
D
3a

b≡4a+x

{
b
2
− 1, x = 0, 2
b−1
2
, x = ±1

}(
4D

ab
− 3b

4
+O(1)

)

=
∑
b∈N

b<4

√
D
3a

b≡4a+x

(
2D

a
− 3b2

8
+O(b)−

{
4, x = 0, 2

2, x = ±1

}
D

ab

)

=
∑
b∈N

b<4

√
D
3a

b≡4a+x

(
2D

a
− 3b2

8
−

{
4, x = 0, 2

2, x = ±1

}
D

ab

)
+O

(
D

a

)
.(53)

Since we have to subtract two sums in line (51) that only differ with regard to x, all
expressions that are independent of x will be irrelevant later on. We split up line (53) in
three sums and begin with∑

b∈N

b<4

√
D
3a

b≡4a+x

2D

a
=

2D

a

(
1

4

∑
b∈N

b<4

√
D
3a

1 +O(1)

)
=

2D

a

(√
D

3a
+O(1)

)

=
2√
3

(
D

a

) 3
2

+O
(
D

a

)
.(54)

Next, we let y ∈ {1, 2, 3, 4} with y ≡4 a+ x. Then, by substituting b = 4k + y we have∑
b∈N

b<4

√
D
3a

b≡4a+x

3b2

8
=

3

8

∑
k∈N0

4k+y<4

√
D
3a

(4k + y)2 =
3

8

∑
k∈N0

k<

√
D
3a−

y
4

(
16k2 + 8ky + y2

)

= 6
∑
k∈N0

k<

√
D
3a−

y
4

k2 +O
(
D

a

)
= 6

∑
k∈N0

k<

√
D
3a

k2 +O
(
D

a

)
.(55)

We apply the same substitution to the following sum:∑
b∈N

b<4

√
D
3a

b≡4a+x

1

b
=

∑
k∈N0

4k+y<4

√
D
3a

1

4k + y
=

∑
k∈N

1<k≤
√

D
3a−

y
4

1

4k + y
+O(1) .

The Euler-Maclaurin formula (Lemma 3.9) yields∑
b∈N

b<4

√
D
3a

b≡4a+x

1

b
=

∫ √ D
3a
− y

4

1

1

4t+ y
dt+

∫ √ D
3a
− y

4

1

−4 (t− btc)
(4t+ y)2

dt

+
1

4
√

D
3a

(⌊√
D

3a
− y

4

⌋
−

(√
D

3a
− y

4

))
− 1

4 + y
(b1c − 1) +O(1) .

67



Because of a ≤ 4D we have O
(√

a
D

)
= O(1). Thus, the terms of the last line can be

neglected, and we have∑
b∈N

b<4

√
D
3a

b≡4a+x

1

b
=

[
1

4
log (4t+ y)

]√ D
3a
− y

4

1

+O

(∫ √ D
3a
− y

4

1

−4

(4t+ y)2
dt

)
+O(1)

=
1

4
log

(
4

√
D

3a

)
− 1

4
log(4 + y) +O

[ 1

4t+ y

]√ D
3a
− y

4

1

+O(1)

=
1

8
log

(
D

3a

)
+O(1) =

1

8
log

(
D

a

)
+O(1) .(56)

Inserting the last results (54),(55) and (56) in line (53) gives us∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4a+x

⌊
b− 1

2

⌋
=

2√
3

(
D

a

) 3
2

− 6
∑
k∈N0

k<

√
D
3a

k2−

{
1
2
, x = 0, 2

1
4
, x = ±1

}
D

a
log

(
D

a

)
+O

(
D

a

)
(57)

for the first sum of line (52). Recall, that only the third summand will be relevant since
the others do not depend on x.

Now, we want to determine the second sum of line (52). We want to get rid of the ceiling
function and choose to sum over c first:∑

b,c∈N
b<c< 4D

ab
+ b

4

bc− 4D
a >1

b≡4a+x

(⌈√
bc− 4D

a

⌉
− 1

)
=

∑
b∈N

b<4

√
D
3a

b≡4a+x

∑
c∈N

b<c< 4D
ab

+ b
4

bc− 4D
a >1

(√
bc− 4D

a
+O(1)

)

=
∑
b∈N

b<4

√
D
3a

b≡4a+x

( ∑
c∈N

b<c≤ 4D
ab

+ b
4

4D
ab

+1
b
<c

√
bc− 4D

a
+O (b)

)

=
∑
b∈N

b<4

√
D
3a

b≡4a+x

∑
c∈N

b<c≤ 4D
ab

+ b
4

4D
ab

+1
b
<c

√
bc− 4D

a
+O

(
D

a

)
.

To calculate the interior sum over c with the help of the Euler-Maclaurin formula (Lemma
3.9) we need to know which of the lower bounds on c is the bigger one. That clearly

depends on b. We have b ≤ 4D
ab

+ 1
b
⇔ b ≤

√
4D
a

+ 1 and therefore

∑
b,c∈N

b<c< 4D
ab

+ b
4

bc− 4D
a >1

b≡4a+x

(⌈√
bc− 4D

a

⌉
− 1

)
=

∑
b∈N

b<4

√
D
3a

b≤
√

4D
a +1

b≡4a+x

∑
c∈N

4D
ab

+1
b
<c≤ 4D

ab
+ b

4

√
bc− 4D

a

+
∑
b∈N√

4D
a +1<b<4

√
D
3a

b≡4a+x

∑
c∈N

b<c≤ 4D
ab

+ b
4

√
bc− 4D

a
+O

(
D

a

)
.
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(Note that the second sum over b is empty if a > 4
3
D.) The interior sums only differ in

their lower bounds on the summation index c. To calculate them efficiently let A denote

a general lower bound on c and define f(t) :=
√
bt− 4D

a
. The Euler-Maclaurin formula

yields

∑
c∈N

A<c≤ 4D
ab

+ b
4

f(c) =

∫ 4D
ab

+ b
4

A

f(t)dt+

∫ 4D
ab

+ b
4

A

(t− btc)︸ ︷︷ ︸
=O(1)

f ′(t)dt

+ f

(
4D

ab
+
b

4

)(⌊
4D

ab
+
b

4

⌋
−
(

4D

ab
+
b

4

))
︸ ︷︷ ︸

=O(1)

−f(A) (bAc − A)︸ ︷︷ ︸
=O(1)

.

We find a primitive function for f to calculate the first integral and roughly estimate the
rest by the value of f at the summation bounds:

∑
c∈N

A<c≤ 4D
ab

+ b
4

f(c) =

[
2

3b

(
bt− 4D

a

) 2
3

] 4D
ab

+ b
4

A

+O (f (A)) +O
(
f

(
4D

ab
+
b

4

))

=
2

3b

(
b2

4

) 2
3

− 2

3b

(
bA− 4D

a

) 2
3

+O (f (A)) +O
(
b

2

)
= − 2

3b

(
bA− 4D

a

) 2
3

+O (f (A)) +O (b) .

We have f
(
4D
ab

+ 1
b

)
= 1 and f(b) =

√
b2 − 4D

a
= O(b). Thus,

∑
b,c∈N

b<c< 4D
ab

+ b
4

bc− 4D
a >1

b≡4a+x

(⌈√
bc− 4D

a

⌉
− 1

)
=

∑
b∈N

b<4

√
D
3a

b≤
√

4D
a +1

b≡4a+x

(
− 2

3b
+O (b)

)

+
∑
b∈N√

4D
a +1<b<4

√
D
3a

b≡4a+x

(
− 2

3b

(
b2 − 4D

a

) 2
3

+O (b)

)
+O

(
D

a

)

=
∑
b∈N

b<4

√
D
3a

b≡4a+x

O (b) +O
(
D

a

)
= O

(
D

a

)
.(58)

We look back on line (52) and plug in the findings from (57) and (58) for the two sums:

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a+x

1 =
2√
3

(
D

a

) 3
2

− 6
∑
k∈N0

k<

√
D
3a

k2−

{
1
2
, x = 0, 2

1
4
, x = ±1

}
D

a
log

(
D

a

)
+O

(
D

a

)
.
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We use this to start verifying line (51):

∑
a∈2N
a≤4D

∑
x∈{±1,2}

( ∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a+x

1−
∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a

1

)
=
∑
a∈2N
a≤4D

∑
x=±1

((
−1

4
+

1

2

)
D

a
log

(
D

a

)
+O

(
D

a

))

=
D

2

∑
a∈2N
a≤4D

logD − log a

a
+O (D logD) .

We substitute a by a
2

and apply the usual asymptotic formulae to finally get

∑
a∈2N
a≤4D

∑
x∈{±1,2}

( ∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a+x

1−
∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4a

1

)
=
D

2

∑
a∈N
a≤2D

logD − log a− log 2

2a
+O (D logD)

=
D logD

4

(
log (2D) +O(1)

)
− D

4

(
1

2
log (2D)2 +O(1)

)
+O (D logD)

=
D (logD)2

4
− D (logD)2

8
+O (D logD)

=
D (logD)2

8
+O (D logD) .

This finishes the proof of part (a) of Lemma 4.9.

Part (b)
Our approach to part (b) of Lemma 4.9 is quite similar to part (a). We choose an order in
which to carry out the summation and apply the result from line (47) to the sum over f :∑
a,b,c,f∈N
2f<b<c
c,f∈2N
a+c∈4N

a(bc−f2)≤4D

1 =
∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

c≡4a

∑
f∈2N
2f<b

bc−f2≤ 4D
a

1

=
1

2

∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

c≡4a

( ∑
f∈N
2f<b

bc−f2≤ 4D
a

1 +

{
−1, b ≡4 0, 3

0, b ≡4 1, 2

}
−

{
O(1), bc− 4D

a
> 1

0, bc− 4D
a
≤ 1

})

=
1

2

( ∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

c≡4a

1−
∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

c≡4a
b≡40,3

1 +
∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

c≡4a

bc− 4D
a >1

O(1)

)
(59)

Next, we separately calculate the three double sums. Apart from the congruence condition
c ≡4 a of the inner sum, the last double sums in lines (48) and (59) are identical. Above,
we ignored all congruence conditions since they were irrelevant for finding an upper bound
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on the expression. Thus, in doing the same here, we end up with the same result:∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

c≡4a

bc− 4D
a >1

O(1) = O (D logD) .(60)

The second double sum from line (59) can be determined as follows:

∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

c≡4a
b≡40,3

1 =
∑
a∈2N
a≤4D

∑
b∈N

b<4

√
D
3a

b≡40,3

∑
c∈N

b<c< 4D
ab

+ b
4

c≡4a

1 =
∑
a∈2N
a≤4D

∑
b∈N

b<4

√
D
3a

b≡40,3

(
1

4

∑
c∈N

b<c< 4D
ab

+ b
4

1 +O(1)

)
.

We will see that the error term of this estimate is small enough for our purpose. We start
with ∑

a∈2N
a≤4D

∑
b∈N

b<4

√
D
3a

b≡40,3

O(1) = O

( ∑
a∈N
a≤4D

∑
b∈N

b<4

√
D
3a

1

)
= O

( ∑
a∈N
a≤4D

√
D

a

)
= O

(
√
D
∑
a∈N
a≤D

1

a
1
2

)
,

and apply Lemma 4.10, part (a) which leads to∑
a∈2N
a≤4D

∑
b∈N

b<4

√
D
3a

b≡40,3

O(1) = O
(√

D

(
2
√
D + ζ

(
1

2

)
+O

(
D−

1
2

)))
= O(D) .

Hence, we have ∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

c≡4a
b≡40,3

1 =
1

4

∑
a∈2N
a≤4D

∑
y∈{0,3}

∑
b∈N

b<4

√
D
3a

b≡4y

∑
c∈N

b<c< 4D
ab

+ b
4

1 +O(D) .

We want to get rid of the congruence condition b ≡4 y. In order to achieve this we
switch the summations over b and c using 16D

3a
as an upper bound on c (see Remarks after

Proposition 4.8) Then, the summands of the sum over b are all equal to one, and we can
replace the congruence condition by a multiplication by 1

4
as done above for the sum over

c. We get ∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

c≡4a
b≡40,3

1 =
1

4

∑
a∈2N
a≤4D

∑
y∈{0,3}

∑
c∈N

c< 16D
3a

∑
b∈N

b<c< 4D
ab

+ b
4

b≡4y

1 +O(D)

=
1

4

∑
a∈2N
a≤4D

∑
y∈{0,3}

∑
c∈N

c< 16D
3a

(
1

4

∑
b∈N

b<c< 4D
ab

+ b
4

1 +O(1)

)
+O(D) .

For the upper bound on c see the remarks before the statement of this lemma. The
summation index b of the innermost sum is constrained by b < c and

c <
4D

ab
+
b

4
⇔ b2

4
− cb+

4D

a
> 0 ⇔ b2 − 4bc+

16D

a
> 0 .
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We interpret the left-hand side of the last inequality as a parabola function with variable
b and determine its zeros:

b1/2 = 2c±
√

4c2 − 16D

a
= 2

(
c±

√
c2 − D

a

)
.

For the inequality to be fulfilled we must have b < b1 or b > b2. The second case is
impossible since b < 2c < b2. Thus,

1 ≤ b ≤ min{c, b1}.

Hence, we sum over a discrete interval, and adding one at every fourth integer is essentially
the same as counting all integers and dividing by four. This verifies the last approximation.

The remaining expression does not depend on y any longer. So the corresponding sum
over y translates into a multiplication by 2. We switch back the order of summation and
continue with∑

a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

c≡4a
b≡40,3

1 =
1

8

∑
a∈2N
a≤4D

∑
b∈N

b<4

√
D
3a

∑
c∈N

b<c< 4D
ab

+ b
4

1 +O

( ∑
a∈2N
a≤4D

∑
c∈N

c< 16D
3a

1

)
+O(D)

=
1

8

∑
a∈N
a≤2D

∑
b∈N

b<2

√
2D
3a

∑
c∈N

b<c< 2D
ab

+ b
4

1 +O

(∑
a∈N
a≤D

D

a

)
+O(D)

=
1

8

∑
a∈N
a≤2D

∑
b∈N

b<2

√
2D
3a

(
2D

ab
+O(b)

)
+O (D logD) .

Because of∑
a∈N
a≤2D

∑
b∈N

b<2

√
2D
3a

O(b) = O

( ∑
a∈N
a≤2D

∑
b∈N

b<2

√
2D
3a

b

)
= O

( ∑
a∈N
a≤2D

D

a

)
= O (D logD) ,

the last estimate is good enough for us to have∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

c≡4a
b≡40,3

1 =
D

4

∑
a∈N
a≤2D

(
1

a

∑
b∈N

b<2

√
2D
3a

1

b

)
+O (D logD) .

We apply Lemma 3.4, part (a):∑
a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

c≡4a
b≡40,3

1 =
D

4

∑
a∈N
a≤2D

(
1

a

(
log

(
2

√
2D

3a

)
+ C +O

(√
a

D

)))
+O (D logD)

=
D

4

∑
a∈N
a≤2D

(
1

a

(
logD − log a

2
+O(1)

))
+O (D logD)

=
D logD

8

∑
a∈N
a≤2D

1

a
− D

8

∑
a∈N
a≤2D

log a

a
+O (D logD) .
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We once again use the same formula for the first of the remaining sums and Lemma 4.10,
part (b) for the second one:∑

a∈2N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

c≡4a
b≡40,3

1 =
D logD

8

(
log(2D) +O(1)

)
− D

8

(
1

2
log (2D)2 +O(1)

)
+O (D logD)

=
D (logD)2

8
− D (logD)2

16
+O (D logD) =

D (logD)2

16
+O (D logD) .(61)

This concludes the computation of the second double sum from line (59).

The yet to be calculated first double sum only differs in the additional congruence condition
c ≡4 a from the sum in Lemma 4.11. If we avoid this condition in the usual way, that is,
by multiplying by 1

4
instead, the occurring error is sufficiently small. We begin with

∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

c≡4a

1 =
∑
a∈2N
a≤4D

∑
b,f∈N
2f<b

b2−f2≤ 4D
a

∑
c∈N
b<c

bc−f2≤ 4D
a

c≡4a

1 =
∑
a∈2N
a≤4D

∑
b,f∈N
2f<b

b2−f2≤ 4D
a

(
1

4

∑
c∈N

b<c≤ 4D
ab

+
f2

b

1 +O(1)

)

=
1

4

∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1 +O

( ∑
a∈2N
a≤4D

∑
b,f∈N
2f<b

b2−f2≤ 4D
a

1

)
.(62)

Again, the inequalities 2f < b and b2 − f 2 ≤ 4D
a

imply b2 < 16D
3a

. Thus, the error can be
bounded as follows:

O

( ∑
a∈2N
a≤4D

∑
b,f∈N
2f<b

b2−f2≤ 4D
a

1

)
= O

( ∑
a∈N
a≤4D

∑
b∈N

b<4

√
D
3a

∑
f∈N
2f<b

1

)
= O

( ∑
a∈N
a≤4D

∑
b∈N

b<4

√
D
3a

b

)
= O

(∑
a∈N
a≤D

D

a

)

= O (D logD) .

Together with the application of Lemma 4.11 to the first summand of line (62) this yields

∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

c≡4a

1 =

√
2

18
πζ

(
3

2

)
D

3
2 − 3

32
D (logD)2 +O (D logD) .(63)

Finally, we insert the findings from (60),(61) and (63) in line (59) and end up with

∑
a,b,c,f∈N
2f<b<c
c,f∈2N
a+c∈4N

a(bc−f2)≤4D

1 =
πζ
(
3
2

)
18
√

2
D

3
2 − 5

64
D (logD)2 +O (D logD) ,

which finishes the proof of part (b).

Part (c)
One condition on the sum in part (c) is the parity of b − f and f − c. Therefore, we can
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split the sum according to the two different cases that b, c and f are either all even or all
odd, respectively. Note, that a+ b+ c− 2f ∈ 4N requires a to be even in both cases. We
have ∑

a,b,c,f∈N
2f<b<c

b−f,f−c∈2Z
a+b+c−2f∈4N
a(bc−f2)≤4D

1 =
∑
a∈2N
a≤4D

∑
b,c,f∈2N
2f<b<c
a+b+c≡40

bc−f2≤ 4D
a

1 +
∑
a∈2N
a≤4D

∑
b,c,f∈N\2N
2f<b<c
a+b+c≡42

bc−f2≤ 4D
a

1.

To simplify the congruence conditions we further subdivide the sums with regard to the
remainder of a after division by 4. For the first sum, b and c are even. If a is divisible by
4, then

a+ b+ c ≡4 0⇒ b+ c ≡4 0⇒ b ≡4 c.

If a is not divisible by 4 (but even), then

a+ b+ c ≡4 0⇒ b+ c ≡4 2⇒ b ≡4 c+ 2.

For the second sum, b and c are odd. If a is divisible by 4, then

a+ b+ c ≡4 2⇒ b+ c ≡4 2⇒ b ≡4 c.

If a is not divisible by 4 (but even), then

a+ b+ c ≡4 2⇒ b+ c ≡4 0⇒ b ≡4 c+ 2.

Hence, we get∑
a,b,c,f∈N
2f<b<c

b−f,f−c∈2Z
a+b+c−2f∈4N
a(bc−f2)≤4D

1 =
∑
a∈4N
a≤4D

∑
b,c,f∈2N
2f<b<c
b≡4c

bc−f2≤ 4D
a

1 +
∑

a∈2N\4N
a≤4D

∑
b,c,f∈2N
2f<b<c
b≡4c+2

bc−f2≤ 4D
a

1 +
∑
a∈4N
a≤4D

∑
b,c,f∈N\2N
2f<b<c
b≡4c

bc−f2≤ 4D
a

1 +
∑

a∈2N\4N
a≤4D

∑
b,c,f∈N\2N
2f<b<c
b≡4c+2

bc−f2≤ 4D
a

1

=
∑
a∈4N
a≤4D

∑
b,c,f∈N
2f<b<c
b≡2c≡2f
b≡4c

bc−f2≤ 4D
a

1 +
∑

a∈2N\4N
a≤4D

∑
b,c,f∈N
2f<b<c
b≡2c≡2f
b≡4c+2

bc−f2≤ 4D
a

1.

The sums over f will be carried out first, since they coincide for both expressions:∑
a,b,c,f∈N
2f<b<c

b−f,f−c∈2Z
a+b+c−2f∈4N
a(bc−f2)≤4D

1 =
∑
a∈4N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4c

∑
f∈N
2f<b

bc−f2≤ 4D
a

f≡2b

1 +
∑

a∈2N\4N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4c+2

∑
f∈N
2f<b

bc−f2≤ 4D
a

f≡2b

1.(64)

For part (a) of this lemma we already calculated a sum which only differs from the present
sum over f in the congruence condition. Then we had f ≡2 0 and now we have f ≡2 b.
Therefore, the next steps are quite similar to those following line (46):∑

f∈N
2f<b

bc−f2≤ 4D
a

f≡2b

1 =
1

2

∑
f∈N
2f<b

bc−f2≤ 4D
a

1 +
1

2

( ∑
f∈N
2f<b

bc−f2≤ 4D
a

f≡2b

1−
∑
f∈N
2f<b

bc−f2≤ 4D
a

f≡2b+1

1

)

=
1

2

( ∑
f∈N
2f<b

bc−f2≤ 4D
a

1 +
(∑

f∈N
2f<b
f≡2b

1−
∑
f∈N
2f<b
f≡2b+1

1
)
−
( ∑

f∈N
2f<b

f2<bc− 4D
a

f≡2b

1−
∑
f∈N
2f<b

f2<bc− 4D
a

f≡2b+1

1
))

.
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To determine the first difference we have to take into account the remainder of b modulo
4 again:

b ≡4 0 ⇒ b ≡2 0, b
2
∈ 2Z ⇒ fmax is odd,

b ≡4 1 ⇒ b ≡2 1, b
2
∈ 2Z + 1

2
⇒ fmax is even,

b ≡4 2 ⇒ b ≡2 0, b
2
∈ Z \ 2Z ⇒ fmax is even,

b ≡4 3 ⇒ b ≡2 1, b
2
∈ (Z \ 2Z) + 1

2
⇒ fmax is odd.

The difference to the calculation in part (a) is given by the commutation of minuend and
subtrahend for b ≡4 1 and b ≡4 3.
The second difference is considered as an error term. Altogether, we have

∑
f∈N
2f<b

bc−f2≤ 4D
a

f≡2b

1 =
1

2

( ∑
f∈N
2f<b

bc−f2≤ 4D
a

1 +


−1, b ≡4 0

0, b ≡4 1, 2
1, b ≡4 3

−
{
O(1), bc− 4D

a
> 1

0, bc− 4D
a
≤ 1

})
.

Inserting this twice in line (64) yields

∑
a,b,c,f∈N
2f<b<c

b−f,f−c∈2Z
a+b+c−2f∈4N
a(bc−f2)≤4D

1 =
1

2

( ∑
a∈4N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4c

1 +
∑

a∈2N\4N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4c+2

1

−
∑
a∈4N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4c≡40

1 +
∑
a∈4N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

b≡4c≡43

1−
∑

a∈2N\4N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

0≡4b≡4c+2

1 +
∑

a∈2N\4N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

3≡4b≡4c+2

1(65)

+
∑
a∈4N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

bc− 4D
a >1

b≡4c

O(1) +
∑

a∈2N\4N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

bc− 4D
a >1

b≡4c+2

O(1)

)
.(66)

We claim that the error terms in line (66) do not grow faster than D logD. We have

∑
a∈4N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

bc− 4D
a >1

b≡4c

O(1) ,
∑

a∈2N\4N
a≤4D

∑
b,c∈N

b<c< 4D
ab

+ b
4

bc− 4D
a >1

b≡4c+2

O(1) = O

( ∑
a∈N
a≤4D

∑
b,c∈N
b<c

4D
ab

+1
b
<c< 4D

ab
+ b

4

1

)
= O (D logD) .

The last equality has been explained in detail in part (a). Now, we want to show that
the four sums of line (65) are all equal up to this error term, and this line adds up to
O (D logD), thus. We note that all four sums share the following structure:∑

a∈N
a≤4D
a≡4x

∑
b∈N

b<4

√
D
3a

b≡4y

∑
c∈N

b<c< 4D
ab

+ b
4

c≡4z

1, x, y, z ∈ {0, 1, 2, 3}.

This triple sum can be determined sufficiently exactly and independently of x, y and z.
The calculation is similar to that of the second double sum from line (59). That reflects
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the fact, that the expression from part (a) can be seen as a sum of four sums of the general
type (all combinations of x = 0, 2 with y = 0, 3). We start with the elimination of z by

∑
a∈N
a≤4D
a≡4x

∑
b∈N

b<4

√
D
3a

b≡4y

∑
c∈N

b<c< 4D
ab

+ b
4

c≡4z

1 =
∑
a∈N
a≤4D
a≡4x

∑
b∈N

b<4

√
D
3a

b≡4y

(
1

4

∑
c∈N

b<c< 4D
ab

+ b
4

1 +O(1)

)

=
1

4

∑
a∈N
a≤4D
a≡4x

∑
c∈N

c< 16D
3a

∑
b∈N

b<c< 4D
ab

+ b
4

b≡4y

1 +O

( ∑
a∈N
a≤4D

∑
b∈N

b<4

√
D
3a

1

)

and continue with applying the same method to y:

∑
a∈N
a≤4D
a≡4x

∑
b∈N

b<4

√
D
3a

b≡4y

∑
c∈N

b<c< 4D
ab

+ b
4

c≡4z

1 =
1

4

∑
a∈N
a≤4D
a≡4x

∑
c∈N

c< 16D
3a

(
1

4

∑
b∈N

b<c< 4D
ab

+ b
4

1 +O(1)

)
+O

( ∑
a∈N
a≤4D

√
D

a

)

=
1

16

∑
a∈N
a≤4D
a≡4x

∑
b,c∈N

b<c< 4D
ab

+ b
4

1 +O

( ∑
a∈N
a≤4D

∑
c∈N

c< 16D
3a

1

)
+O

( ∑
a∈N
a≤4D

√
D

a

)
.

We once again change the order of summation to get rid of x and note that the first error
term dominates the second one:

∑
a∈N
a≤4D
a≡4x

∑
b∈N

b<4

√
D
3a

b≡4y

∑
c∈N

b<c< 4D
ab

+ b
4

c≡4z

1 =
1

16

∑
b,c∈N

b<c< 4D
b

+ b
4

∑
a∈N
a≤4D

c< 4D
ab

+ b
4

a≡4x

1 +O

( ∑
a∈N
a≤4D

D

a

)

=
1

16

∑
b,c∈N

b<c< 4D
b

+ b
4

(
1

4

∑
a∈N
a≤4D

c< 4D
ab

+ b
4

1 +O(1)

)
+O (D logD) .

It remains to show that the new error term is small enough:

∑
a∈N
a≤4D
a≡4x

∑
b∈N

b<4

√
D
3a

b≡4y

∑
c∈N

b<c< 4D
ab

+ b
4

c≡4z

1 =
1

64

∑
a,b,c∈N
a≤4D

b<c< 4D
ab

+ b
4

1 +O

( ∑
b∈N

b<4

√
D
3

∑
c∈N

b<c< 4D
b

+ b
4

1

)
+O (D logD)

=
1

64

∑
a,b,c∈N
a≤4D

b<c< 4D
ab

+ b
4

1 +O

( ∑
b∈N

b<4

√
D
3

D

b

)
+O (D logD)

=
1

64

∑
a,b,c∈N
a≤4D

b<c< 4D
ab

+ b
4

1 +O (D logD) .

76



Having determined lines (65) and (66), we arrive at

∑
a,b,c,f∈N
2f<b<c

b−f,f−c∈2Z
a+b+c−2f∈4N
a(bc−f2)≤4D

1 =
1

2

( ∑
a∈4N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4c

1 +
∑

a∈2N\4N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4c+2

1

)
+O (D logD) .(67)

For the calculation of the interior triple sums let y ∈ {0, 2}. We have

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

b≡4c+y

1 =
∑
b,f∈N
2f<b

b2−f2< 4D
a

∑
c∈N
b<c

bc−f2≤ 4D
a

c≡4b+y

1 =
∑
b,f∈N
2f<b

b2−f2< 4D
a

(
1

4

∑
c∈N

b<c≤ 4D
ab

+
f2

b

1 +O(1)

)

=
1

4

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1 +O

( ∑
b∈N

b<4

√
D
3a

∑
f∈N
2f<b

b2−f2≤ 4D
a

1

)
=

1

4

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1 +O

( ∑
b∈N

b<4

√
D
3a

b

)

=
1

4

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1 +O
(
D

a

)
.

We insert this in line (67):

∑
a,b,c,f∈N
2f<b<c

b−f,f−c∈2Z
a+b+c−2f∈4N
a(bc−f2)≤4D

1 =
1

8

( ∑
a∈4N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1 +
∑

a∈2N\4N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1

)
+O

( ∑
a∈2N
a≤4D

D

a

)
+O (D logD)

=
1

8

∑
a∈2N
a≤4D

∑
b,c,f∈N
2f<b<c

bc−f2≤ 4D
a

1 +O (D logD) .

We complete the proof of part (c) by applying Lemma 4.11 once more:

∑
a,b,c,f∈N
2f<b<c

b−f,f−c∈2Z
a+b+c−2f∈4N
a(bc−f2)≤4D

1 =
1

8

(
2
√

2

9
πζ

(
3

2

)
D

3
2 − 3

8
D (logD)2

)
+O (D logD)

=
πζ
(
3
2

)
18
√

2
D

3
2 − 3

64
D (logD)2 +O (D logD) .

Altogether, adding up the three formulas of Lemma 4.9 and taking into account the pre-
ceding remarks finishes the proof of Proposition 4.8.

To finish this chapter, we give a review of the above results that were obtained by the
different methods. We coarsen the findings by concentrating on complete Bravais classes.
Moreover, we only specify the terms of highest order of magnitude.

77



Theorem 4.12. For every index i, the function fi of Table 4 fulfils the asymptotic equality
fi(x) ∼ Hi(x) for x→∞.

Proof. The results for the cubic Bravais classes carry over from Table 3 unchanged. The
same holds for the primitive orthorhombic case.

The formulas for the hexagonal, tetragonal and trigonal Bravais classes are obtained by
summing up several results for the corresponding Schiemann classes from Table 3. The
same holds for the face-centered orthorhombic case.

The body-centered and base-centered orthorhombic results are given in Proposition 4.6.

The monoclinic formulas are established (more precisely) in Propositions 4.7 and 4.8.

For the triclinic case, that is, for the lattices with trivial automorphism group, we use
the Theorem of Minkowski (Theorem 3.5). For the three-dimensional case Minkowski has
shown

H(D) = v3D
2 +O

(
D

5
3

)
,

whereH(D) is the class number of all three-dimensional lattices and v3 is a certain constant.

Since all the other Bravais classes grow with D at most as fast as some multiple of D
3
2 ,

we can deduce that v3D
2 is the order of magnitude of the triclinic lattices. It remains to

calculate the constant. We use Γ
(
1
2

)
=
√
π, Γ(1) = 1, Γ

(
3
2

)
= 1

2

√
π and ζ

(
3
2

)
= π2

6
to

get

v3 =
2

4Γ
(
1
2

)5 3∏
k=2

Γ

(
k

2

)
ζ(k) =

1

2π
5
2

· π
2

6
· 1

2

√
π · ζ(3) =

1

24
ζ(3) .

This proves the last line of Table 4.
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Table 4: Asymptotic Class Numbers of Bravais Types

Crystal System Bravais Type Index i fi(x)

cubic primitive 48, p x
1
3

cubic body-centered 48, i 2−
4
3x

1
3

cubic face-centered 48, f 2−
2
3x

1
3

hexagonal primitive 24, p 1
3
ζ(2)x

tetragonal primitive 16, p ζ(2)x

tetragonal body-centered 16, i 1
4
ζ(2)x

trigonal rhombohedral 12, r 1
3
ζ(2)x

orthorhombic primitive 8, p 1
12
x(log x)2

orthorhombic body-centered 8, i 1
48
x(log x)2

orthorhombic face-centered 8, f 1
48
x(log x)2

orthorhombic base-centered 8, b 1
8
x(log x)2

monoclinic primitive 4, p π
9
ζ
(
3
2

)
x

3
2

monoclinic base-centered 4, b π
6
√
2
ζ
(
3
2

)
x

3
2

triclinic primitive 2, p 1
24
ζ(3)x2
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A Bravais Classes of Lattices

We collect some properties of three-dimensional lattices. Each lattice has a certain Bra-
vais type. There are 14 Bravais types, which belong to the following seven crystal sys-
tems: cubic, hexagonal, tetragonal, trigonal, orthorhombic, monoclinic, triclinic. Subsets
of Euclidean vector spaces are called Bravais equivalent if their symmetry groups (dis-
tance preserving affine transformations of the surrounding vector space that leave the set
invariant) are conjugated in the general affine group of the space. We will use another
definition (specialised for lattices) that involves the orthogonal group (see Definition 1.6)
of the lattice.

Definition A.1. Two lattices (L1, b2) and (L2, b2) are Bravais equivalent if there is a
linear transformation F ∈ GL(V ) with F (L1) = L2 and F ◦ O(L1, b1) ◦ F−1 = O(L2, b2).

For the equivalence of the two definitions see [Sch12, Lemma 2.6.12].

Definition A.2. Two lattices (L1, b2) and (L2, b2) belong to the same crystal system if
there is a linear transformation F ∈ GL(V ) with F ◦ O(L1, b1) ◦ F−1 = O(L2, b2), that is,
if their orthogonal groups are conjugated in the linear group of the vector space.

For the fact that every three-dimensional lattice belongs to exactly one of the following
crystal systems and Bravais types see [Kle82, Satz 12.9]. There, the hexagonal and trigonal
crystal systems are merged.

Provided the isometry group of the lattice has order at least eight, we sketch an excerpt of
the lattice containing a fundamental domain of the group’s action on the lattice. We add
the shortest vectors, a reduced basis with corresponding Gram matrix, and the isometry
group of the lattice.

We use Schiemann’s notion of a reduced basis here, so that reduced will be short for
Schiemann-reduced.
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Cubic Crystal System

The cubic crystal system (more precisely, the set of all isometry classes of cubic lattices)
is subdivided in three Bravais classes: primitive, body-centered, face-centered.

Let a > 0 be the square length of a shortest lattice vector in the primitive case.

primitive

(0,
√
a,
√
a)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
a,
√
a)

(
√
a,
√
a, 0)

6 shortest vectors:

(±
√
a, 0, 0),

(0,±
√
a, 0),

(0, 0,±
√
a).

Reduced basis:

(
√
a, 0, 0),

(0,
√
a, 0),

(0, 0,
√
a).

Corresponding Gram matrix:

a 0 0
0 a 0
0 0 a

 .

Isometry group of order 48:

〈

0 1 0
1 0 0
0 0 −1

 ,

0 −1 0
0 0 1
1 0 0

〉 =: G48,p .

body-centered
(0,
√
a,
√
a)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
a,
√
a)

(
√
a,
√
a, 0)

8 shortest vectors:

1

2

(
±
√
a,±
√
a,±
√
a
)
.

Reduced basis:

1

2

(√
a,
√
a,
√
a
)
,

1

2

(√
a,−
√
a,
√
a
)
,

1

2

(√
a,
√
a,−
√
a
)
.

Corresponding Gram matrix:

1

4

3a a a
a 3a −a
a −a 3a

 .

Isometry group of order 48:

〈

0 1 0
1 0 0
0 0 −1

 ,

1 0 1
0 0 −1
0 1 −1

 ,

0 1 −1
1 0 1
0 0 1

〉 =: G48,i .
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face-centered

(0,
√
a,
√
a)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
a,
√
a)

(
√
a,
√
a, 0)

12 shortest vectors:
1

2

(
±
√
a,±
√
a, 0
)
,

1

2

(
±
√
a, 0,±

√
a
)
,

1

2

(
0,±
√
a,±
√
a
)
.

Reduced basis:
1

2

(√
a,
√
a, 0
)
,

1

2

(√
a, 0,
√
a
)
,

1

2

(
0,
√
a,
√
a
)
.

Corresponding Gram matrix:

1

4

2a a a
a 2a a
a a 2a

 .

Isometry group of order 48:

〈

0 1 0
1 0 0
0 0 1

 ,

1 1 1
0 −1 0
0 0 −1

 ,

 1 1 1
0 −1 0
−1 0 0

〉 =: G48,f .
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Hexagonal Crystal System

This crystal system consists of only one Bravais class.

Again, let a be the square length of a shortest lattice vector. In the generic hexagonal case
a reduced basis contains at least one vector of greater length. According to the common
entries of the corresponding Gram matrix, we denote this second length by b, if there is
only one vector of length a, and by c, otherwise.

1
2
(−
√
a,
√

3a, 2
√
c)

1
2
(
√
a,−
√
3a, 0)1

2
(−
√
a,−
√

3a, 0)

1
2
(
√
a,
√
3a, 2

√
c)

(
√
a, 0, 0)

a < c ∗

6 shortest vectors:(
±
√
a, 0, 0

)
,

1

2

(
±
√
a,±
√

3a, 0
)
.

Reduced basis:(√
a, 0, 0

)
,

1

2

(√
a,
√

3a, 0
)
,(

0, 0,
√
c
)
.

Corresponding Gram matrix:

1

2

2a a 0
a 2a 0
0 0 2c

 .

Isometry group of order 24:

〈

0 1 0
1 0 0
0 0 −1

 ,

−1 −1 0
0 1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G24,p,1 .

* The equality a = c is admissible here as
well. Then, however, there are eight short-
est lattice vectors. In the second hexagonal
case we need the strict inequality a < b for
the given vectors to form a reduced basis.

1
2
(2
√
a,−
√
b−
√
3b)1

2
(0,−

√
b,−
√
3b)

1
2
(2
√
a,
√
b,
√
3b)

(
√
a,
√
b, 0)

1
2
(2
√
a,
√
b,−
√
3b)

a < b

2 shortest vectors:(
±
√
a, 0, 0

)
.

Reduced basis:(√
a, 0, 0

)
,(

0,
√
b, 0
)
,

1

2

(
0,
√
b,
√

3b
)
.

Corresponding Gram matrix:

1

2

2a 0 0
0 2b b
0 b 2b

 .

Isometry group of order 24:

〈

−1 0 0
0 0 1
0 1 0

 ,

1 0 0
0 −1 −1
0 0 1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G24,p,2 .
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Tetragonal Crystal System

This crystal system includes the primitive tetragonal and the body-centered tetragonal
Bravais class.

There are two free parameters again. We denote them with a and b or c, following the
same principle as in the hexagonal case above.

primitive

(0,
√
a,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
a,
√
c)

(
√
a,
√
a, 0)

a < c

4 shortest vectors:(
±
√
a, 0, 0

)
,(

0,±
√
a, 0
)
.

Reduced basis: (√
a, 0, 0

)
,(

0,
√
a, 0
)
,(

0, 0,
√
c
)
.

Corresponding Gram matrix:a 0 0
0 a 0
0 0 c

 .

Isometry group of order 16:

〈

0 1 0
1 0 0
0 0 1

 ,

1 0 0
0 −1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 −1

〉 =: G16,p,1 .

(0,
√
b,
√
b)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
b)

(
√
a,
√
b, 0)

a < b

2 shortest vectors:(
±
√
a, 0, 0

)
.

Reduced basis: (√
a, 0, 0

)
,(

0,
√
b, 0
)
,(

0, 0,
√
b
)
.

Corresponding Gram matrix:a 0 0
0 b 0
0 0 b

 .

Isometry group of order 16:

〈

1 0 0
0 0 1
0 1 0

 ,

1 0 0
0 −1 0
0 0 1

 ,

−1 0 0
0 1 0
0 0 1

〉 =: G16,p,2 .

For a = c and a = b the lattice would belong to the primitive cubic type.
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body-centered

(0,
√
a,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
a,
√
c)

(
√
a,
√
a, 0)

a < 1
2 c

4 shortest vectors:(
±
√
a, 0, 0

)
,(

0,±
√
a, 0
)
.

Reduced basis:(√
a, 0, 0

)
,(

0,
√
a, 0
)
,

1

2

(√
a,
√
a,
√
c
)
.

Corresponding Gram matrix:

1

4

4a 0 2a
0 4a 2a
2a 2a 2a+ c

 .

Isometry group of order 16:

〈

1 0 1
0 −1 0
0 0 −1

 ,

0 1 0
1 0 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G16,i,1 .

(0,
√
a,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
a,
√
c)

(
√
a,
√
a, 0)

1
2 c < a < c ∗

8 shortest vectors:

1

2

(
±
√
a,±
√
a,±
√
c
)
.

Reduced basis:

1

2

(√
a,
√
a,
√
c
)
,

1

2

(
−
√
a,
√
a,
√
c
)
,

1

2

(√
a,−
√
a,
√
c
)
.

Corresponding Gram matrix:

1

4

2a+ c c c
c 2a+ c −2a+ c
c −2a+ c 2a+ c

 .

Isometry group of order 16:

〈

0 −1 1
0 1 0
1 1 0

 ,

1 0 0
0 0 1
0 1 0

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G16,i,2 .

* For a = c we get a body-centered cubic
lattice.

In case of 2a = c there are twelve shortest vectors, the spanned lattice is face-centered
cubic. It can be obtained from the above given representative by a rotation of π

4
around

one of the space diagonals followed by a dilation with factor
√

2. None of the given bases
remains reduced for 2a = c.
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(0,
√
b,
√
b)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
b)

(
√
a,
√
b, 0)

a < b < 3
2 a

8 shortest vectors:

1

2

(
±
√
a,±
√
b,±
√
b
)
.

Reduced basis:

1

2

(√
a,
√
b,
√
b
)
,

1

2

(
−
√
a,
√
b,
√
b
)
,

1

2

(√
a,
√
b,−
√
b
)
.

Corresponding Gram matrix:

1

4

 a+ 2b −a+ 2b a
−a+ 2b a+ 2b −a

a −a a+ 2b

 .

Isometry group of order 16:

〈

−1 0 0
1 0 1
1 1 0

 ,

0 1 0
1 0 0
0 0 −1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G16,i,3 .

For a = b the lattice is body-centered cubic.

(0,
√
b,
√
b)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
b)

(
√
a,
√
b, 0)

3
2 a < b

∗

2 shortest vectors:(
±
√
a, 0, 0

)
.

Reduced basis:(√
a, 0, 0

)
,

1

2

(√
a,
√
b,
√
b
)
,

1

2

(√
a,−
√
b,
√
b
)
.

Corresponding Gram matrix:

1

4

4a 2a 2a
2a a+ 2b a
2a a a+ 2b

 .

Isometry group of order 16:

〈

1 1 0
0 0 1
0 −1 0

 ,

1 0 0
0 0 1
0 1 0

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G16,i,4 .

* The equality 3a = 2b is possible here, re-
sulting in ten shortest vectors. In the preced-
ing case however, we need the strict inequal-
ity for the given vectors to form a reduced
basis.
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Trigonal Crystal System

The trigonal crystal system consists of only one Bravais class, which is called rhombohedral.

rhombohedral

1
2
(−
√
a,
√
3a, 2

√
c)

(
√
a, 0,

√
c)

(0, 0, 3
√
c)

(0, 0, 0)

1
2
(−
√
a,−
√
3a, 2

√
c)

2a < c

6 shortest vectors:

1

2

(
±3
√
a,±
√

3a, 0
)
,(

0,±
√

3a, 0
)
.

Reduced basis:

1

2

(
3
√
a,−
√

3a, 0
)
,

1

2

(
3
√
a,
√

3a, 0
)
,(√

a, 0,
√
c
)
.

Corresponding Gram matrix:

1

2

6a 3a 3a
3a 6a 3a
3a 3a 2a+ 2c

 .

Isometry group of order 12:

〈

0 1 0
1 0 0
0 0 1

 ,

1 1 1
0 −1 0
0 0 −1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G12,r,1 .

1
2
(−
√
a,
√
3a, 2

√
c)

(
√
a, 0,

√
c)

(0, 0, 3
√
c)

(0, 0, 0)

1
2
(−
√
a,−
√
3a, 2

√
c)

1
2 a < c < 2a

6 shortest vectors:

±
(√

a, 0,
√
c
)
,

± 1

2

(
−
√
a,
√

3a, 2
√
c
)
,

± 1

2

(
−
√
a,−
√

3a, 2
√
c
)
.

Reduced basis:(√
a, 0,
√
c
)
,

1

2

(
−
√
a,
√

3a, 2
√
c
)
,

1

2

(
−
√
a,−
√

3a, 2
√
c
)
.

Corresponding Gram matrix:

1

2

2a+ 2c −a+ 2c −a+ 2c
−a+ 2c 2a+ 2c −a+ 2c
−a+ 2c −a+ 2c 2a+ 2c

 .

Isometry group of order 12:

〈

0 1 0
1 0 0
0 0 1

 ,

1 0 0
0 0 1
0 1 0

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G12,r,2 .
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1
2
(−
√
a,
√
3a, 2

√
c)

(
√
a, 0,

√
c)

(0, 0, 3
√
c)

(0, 0, 0)

1
2
(−
√
a,−
√
3a, 2

√
c)

1
8 a < c < 1

2 a

6 shortest vectors:

±
(√

a, 0,
√
c
)
,

± 1

2

(
−
√
a,
√

3a, 2
√
c
)
,

± 1

2

(
−
√
a,−
√

3a, 2
√
c
)
.

Reduced basis:(
−
√
a, 0,−

√
c
)
,

1

2

(
−
√
a,
√

3a, 2
√
c
)
,

1

2

(
−
√
a,−
√

3a, 2
√
c
)
.

Corresponding Gram matrix:

1

2

2a+ 2c a− 2c a− 2c
a− 2c 2a+ 2c −a+ 2c
a− 2c −a+ 2c 2a+ 2c

 .

Isometry group of order 12:

〈

0 1 0
1 0 0
0 0 −1

 ,

1 0 0
0 0 1
0 1 0

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G12,r,3 .

1
2
(−
√
a,
√
3a, 2

√
c)

(
√
a, 0,

√
c)

(0, 0, 3
√
c)

(0, 0, 0)
1
2
(−
√
a,−
√
3a, 2

√
c)

c < 1
8 a

2 shortest vectors:(
0, 0,±3

√
c
)
.

Reduced basis:(
0, 0, 3

√
c
)
,(√

a, 0,
√
c
)
,

1

2

(
−
√
a,
√

3a, 2
√
c
)
.

Corresponding Gram matrix:

1

2

18c 6c 6c
6c 2a+ 2c −a+ 2c
6c −a+ 2c 2a+ 2c

 .

Isometry group of order 12:

〈

1 0 1
0 1 −1
0 0 −1

 ,

1 0 0
0 0 1
0 1 0

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G12,r,4 .

If we replace any of the classifying inequalities of the different rhombohedral trigonal cases
by the corresponding equality, the given basis always remains reduced. The lattice becomes
cubic. For c = 2a, 2c = a and 8c = a it is face-centered, primitive and body-centered,
respectively.
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Orthorhombic Crystal System

The orthorhombic crystal system’s Bravais classes are the following four: primitive, body-
centered, face-centered, base-centered.

Let a, b, c be the square lengths of the basis vectors in the primitive case. We assume
a < b < c.

primitive

(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

2 shortest vectors:(
±
√
a, 0, 0

)
.

Reduced basis: (√
a, 0, 0

)
,(

0,
√
b, 0
)
,(

0, 0,
√
c
)
.

Corresponding Gram matrix:a 0 0
0 b 0
0 0 c

 .

Isometry group of order 8:

〈

1 0 0
0 1 0
0 0 −1

 ,

1 0 0
0 −1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G8,p .

body-centered

(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

b < a+b+c
4

2 shortest vectors:(
±
√
a, 0, 0

)
.

Reduced basis:(√
a, 0, 0

)
,(

0,
√
b, 0
)
,

1

2

(√
a,
√
b,
√
c
)
.

Corresponding Gram matrix:

1

4

4a 0 2a
0 4b 2b
2a 2b a+ b+ c

 .

Isometry group of order 8:

〈

1 0 1
0 1 1
0 0 −1

 ,

−1 0 0
0 1 1
0 0 −1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G8,i,1 .
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(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

a < a+b+c
4 ≤ b ∗

2 shortest vectors:(
±
√
a, 0, 0

)
.

Reduced basis:(√
a, 0, 0

)
,

1

2

(√
a,
√
b,
√
c
)
,

1

2

(√
a,−
√
b,
√
c
)
.

Corresponding Gram matrix:

1

4

4a 2a 2a
2a a+ b+ c a− b+ c
2a a− b+ c a+ b+ c

 .

Isometry group of order 8:

〈

1 1 1
0 −1 0
0 0 −1

 ,

1 0 0
0 0 1
0 1 0

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G8,i,2 .

* For 3a = b + c the basis remains reduced
and we have ten shortest vectors. The ba-
sis of the following case would no longer be
reduced in case of this equality.

(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

a+b+c
4 < a

8 shortest vectors:

1

2

(
±
√
a,±
√
b,±
√
c
)
.

Reduced basis:

1

2

(√
a,
√
b,
√
c
)
,

1

2

(
−
√
a,
√
b,
√
c
)
,

1

2

(√
a,−
√
b,
√
c
)
.

Corresponding Gram matrix:

1

4

 a+ b+ c −a+ b+ c a− b+ c
−a+ b+ c a+ b+ c −a− b+ c
a− b+ c −a− b+ c a+ b+ c

 .

Isometry group of order 8:

〈

−1 0 0
1 0 1
1 1 0

 ,

0 −1 1
0 1 0
1 1 0

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G8,i,3 .
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face-centered

(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

3a < b ∗

2 shortest vectors:(
±
√
a, 0, 0

)
.

Reduced basis:(√
a, 0, 0

)
,

1

2

(√
a,
√
b, 0
)
,

1

2

(√
a, 0,
√
c
)
.

Corresponding Gram matrix:

1

4

4a 2a 2a
2a a+ b a
2a a a+ c

 .

Isometry group of order 8:

〈

1 0 1
0 1 0
0 0 −1

 ,

1 1 0
0 −1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G8,f,1 .

* Here, as opposed to the next case, 3a = b
is possible, resulting in six shortest vectors.

(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

b < 3a

4 shortest vectors:

1

2

(
±
√
a,±
√
b, 0
)
.

Reduced basis:

1

2

(√
a,
√
b, 0
)
,

1

2

(
−
√
a,
√
b, 0
)
,

1

2

(√
a, 0,
√
c
)
.

Corresponding Gram matrix:

1

4

 a+ b −a+ b a
−a+ b a+ b −a
a −a a+ c

 .

Isometry group of order 8:

〈

1 0 1
0 1 −1
0 0 −1

 ,

0 1 0
1 0 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G8,f,2 .
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base-centered

(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

3a < b

2 shortest vectors:(
±
√
a, 0, 0

)
.

Reduced basis:(√
a, 0, 0

)
,

1

2

(√
a,
√
b, 0
)
,(

0, 0,
√
c
)
.

Corresponding Gram matrix:

1

4

4a 2a 0
2a a+ b 0
0 0 4c

 .

Isometry group of order 8:

〈

1 1 0
0 −1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 −1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G8,b,1 .

(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

b < 3a

4 shortest vectors:

1

2

(
±
√
a,±
√
b, 0
)
.

Reduced basis:

1

2

(√
a,
√
b, 0
)
,

1

2

(
−
√
a,
√
b, 0
)
,(

0, 0,
√
c
)
.

Corresponding Gram matrix:

1

4

 a+ b −a+ b 0
−a+ b a+ b 0

0 0 4c

 .

Isometry group of order 8:

〈

0 1 0
1 0 0
0 0 1

 ,

1 0 0
0 1 0
0 0 −1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G8,b,2 .

In the limit case 3a = b the lattice is hexagonal and has six shortest vectors.
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(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

b < a+c
4

2 shortest vectors:(
±
√
a, 0, 0

)
.

Reduced basis:(√
a, 0, 0

)
,(

0,
√
b, 0
)
,

1

2

(√
a, 0,
√
c
)
.

Corresponding Gram matrix:

1

4

4a 0 2a
0 4b 0
2a 0 a+ c

 .

Isometry group of order 8:

〈

1 0 1
0 1 0
0 0 −1

 ,

1 0 0
0 −1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G8,b,3 .

(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

a < a+c
4 ≤ b

2 shortest vectors:(
±
√
a, 0, 0

)
.

Reduced basis:(√
a, 0, 0

)
,

1

2

(√
a, 0,
√
c
)
,(

0,
√
b, 0
)
.

Corresponding Gram matrix:

1

4

4a 2a 0
2a a+ c 0
0 0 4b

 .

Isometry group of order 8:

〈

1 1 0
0 −1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 −1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 = G8,b,1 .

For 3a = c the lattice is hexagonal again and
has six shortest vectors. The basis of the fol-
lowing case remains reduced as well.
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(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

a+c
4 < a

4 shortest vectors:

1

2

(
±
√
a, 0,±

√
c
)
.

Reduced basis:

1

2

(√
a, 0,
√
c
)
,

1

2

(
−
√
a, 0,
√
c
)
,(

0,
√
b, 0
)
.

Corresponding Gram matrix:

1

4

 a+ c −a+ c 0
−a+ c a+ c 0

0 0 4b

 .

Isometry group of order 8:

〈

0 1 0
1 0 0
0 0 1

 ,

1 0 0
0 1 0
0 0 −1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 = G8,b,2 .

(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

b < b+c
4

2 shortest vectors:(
±
√
a, 0, 0

)
.

Reduced basis:(√
a, 0, 0

)
,(

0,
√
b, 0
)
,

1

2

(
0,
√
b,
√
c
)
.

Corresponding Gram matrix:

1

4

4a 0 0
0 4b 2b
0 2b b+ c

 .

Isometry group of order 8:

〈

1 0 0
0 1 1
0 0 −1

 ,

−1 0 0
0 1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G8,b,4 .

The equality 3b = c generates a hexagonal
lattice with two shortest vectors. The same
applies to the following case.
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(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

a < b+c
4 < b

2 shortest vectors:(
±
√
a, 0, 0

)
.

Reduced basis:(√
a, 0, 0

)
,

1

2

(
0,
√
b,
√
c
)
,

1

2

(
0,−
√
b,
√
c
)
.

Corresponding Gram matrix:

1

4

4a 0 0
0 b+ c −b+ c
0 −b+ c b+ c

 .

Isometry group of order 8:

〈

1 0 0
0 0 1
0 1 0

 ,

−1 0 0
0 1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 =: G8,b,5 .

(0,
√
b,
√
c)

(
√
a, 0, 0)(0, 0, 0)

(
√
a,
√
b,
√
c)

(
√
a,
√
b, 0)

b+c
4 < a ∗

4 shortest vectors:

1

2

(
0,±
√
b,±
√
c
)
.

Reduced basis:

1

2

(
0,
√
b,
√
c
)
,

1

2

(
0,−
√
b,
√
c
)
,(√

a, 0, 0
)
.

Corresponding Gram matrix:

1

4

 b+ c −b+ c 0
−b+ c b+ c 0

0 0 4a

 .

Isometry group of order 8:

〈

0 1 0
1 0 0
0 0 1

 ,

1 0 0
0 1 0
0 0 −1

 ,

−1 0 0
0 −1 0
0 0 −1

〉 = G8,b,2 .

* The equality 4a = b+ c is admissible here.
We have six shortest vectors in this case.
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In the following table we specify for each of the occurring groups G, which (additional)
conditions on the entries of a reduced Gram matrix

B =

a d e
d b f
e f c

 ∈ Z3×3

must be fulfilled in order to have G =B GL3(Z). Generally, all equalities and inequalities
from Lemma 2.8 apply, since we assume the matrix to be reduced. Hence, if the table
gives a = c for example, this implies a = b = c. Because of the additional conditions, not
all parameters are needed. We choose the independent parameters in such a way that no
fractions arise in the Gram matrix.

Table 5: Gram Matrices of Three-Dimensional Lattices

Index Conditions Gram Matrix Determinant

48, p
a = c,
d = 0

a 0 0
0 a 0
0 0 a

 a3

48, i
a = c = 3d,
d = −f

3d d d
d 3d −d
d −d 3d

 16d3

48, f
a = c = 2d,
d = f

2d d d
d 2d d
d d 2d

 4d3

24, p, 1
a = b = 2d,
e = 0

2d d 0
d 2d 0
0 0 c

 3cd2

24, p, 2
b = c = 2f,
d = 0

a 0 0
0 2f f
0 f 2f

 3af 2

16, p, 1
a = b 6= c,
d = e = 0

a 0 0
0 a 0
0 0 c

 a2c

16, p, 2
a 6= b = c,
d = f = 0

a 0 0
0 b 0
0 0 b

 ab2

16, i, 1
b = 2e = 2f,
d = 0

2e 0 e
0 2e e
e e c

 4e2(c− e)

16, i, 2
a = c = 2e− f,
e 6= −f

2d− f d d
d 2d− f f
d f 2d− f

 4d(d− f)2

16, i, 3
a = c = d− 2f,
d 6= −f

d+ 2e d e
d d+ 2e −e
e −e d+ 2e

 4e(d+ e)2

16, i, 4
b = c,
a = 2e = 4f

4f 2f 2f
2f b f
2f f b

 4f(b− f)2

96



Index Conditions Gram Matrix Determinant

12, r, 1
a = b = 2d 6= c,
d = f

2d d d
d 2d d
d d c

 d2(3c− 2d)

12, r, 2
a = c 6= 2d,
d = f 6= 0

a d d
d a d
d d a

 (a+ 2d)(a− d)2

12, r, 3
a = c 6= 3d,
d = −f 6= 0

a d d
d a −d
d −d a

 (a− 2d)(a+ d)2

12, r, 4
a = 3d = 3e 6= b,
b = c = d− 2f

3d d d
d d− 2f f
d f d− 2f

 d(d− 3f)2

8, p
a 6= b 6= c,
d = e = f = 0

a 0 0
0 b 0
0 0 c

 abc

8, i, 1
a = 2e 6= b = 2f,
d = 0

2e 0 e
0 2f f
e f c

 2ef(2c− e− f)

8, i, 2
b = c,
a = 2e 6= 4f,
a 6= b ∨ e 6= f

2d d d
d b f
d f b

 2d(b− f)(b+ f − d)

8, i, 3
a = c = d+ e− f,
d 6= e,
e 6= −f

d+e−f d e
d d+e−f f
e f d+e−f

 2(d+ e)(d−f)(e−f)

8, f, 1
a = 2d = 2e = 4f,
b 6= c

4f 2f 2f
2f b f
2f f c

 4f(b− f)(c− f)

8, f, 2
a = b = 2e+d 6= c,
e = −f

d+ 2e d e
d d+ 2e −e
e −e c

 4e(c− e)(d+ e)

8, b, 1
a = 2d 6= b,
f = 0

2d d 0
d b 0
0 0 c

 cd(2b− d)

8, b, 2
a = b 6= 2d 6= 0,
e = 0

a d 0
d a 0
0 0 c

 c(a+ d)(a− d)

8, b, 3
a = 2e,
f = 0

2e 0 e
0 b 0
e 0 c

 be(2c− e)

8, b, 4
b = 2f 6= c,
e = 0

a 0 0
0 2f f
0 f c

 af(2c− f)

8, b, 5
b = c 6= 2f 6= 0,
d = 0

a 0 0
0 b f
0 f b

 a(b+ f)(b− f)
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