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CHAPTER 1

Introduction

Invariance under a group action is a central theme in mathematics. It is can
be observed that on a homogeneous space M ' G/K for some locally compact
group G and some closed subgroup K a Banach subalgebra of bounded measures
in Mb(G/K) which are invariant under the group action of K can be identified
with the Banach algebra of bounded measures Mb(G//K) on the double coset
space with a convolution ∗ inherited from the measure algebra Mb(G). We call
the pair (G//K, ∗) a double coset hypergroup. The above identification has an
important consequence for time-homogeneous Markov processes on G/K with in-
variant transition probabilities under actions of G or simply G−invariant Markov
processes: They can be identified with time-homogeneous Markov processes on the
hypergroup (G//K, ∗) via the canonical map from G/K to G//K. If the double
coset hypergroup (G//K, ∗) is commutative, i.e., the convolution ∗ onM(G//K)
is commutative, then important tools of Fourier analysis are available, which allow
to analyse the distributions of time-homogeneous Markov processes on (G//K, ∗),
in particular to derive some limit theorems.

In fact, (commutative) hypergroups have been studied in more generality en-
compassing properties of the double coset setting above. They have been idepen-
dently introduced by Dunkl [D] in 1973, Spector [Sp] in 1975 and Jewett [J] in
1975. The study of limit theorems on some particlular hypergroups began even
in 1960’s with Haldane’s [H2] and Kingman’s [Ki], where they studied methods
which allowed the investigation of rotation invariant vectors and generalized them
into non-integer valued ”dimensions”. With this goal they have introduced Bessel-
Kingman hypergroups on [0,∞), which are closely related to the product formula
for Bessel functions. Zeuner [Z1], [Z2] studied random walks Sturm-Liouville hy-
pergroups on [0,∞), which are closely related with invariant random walks on the
hyperbolic spaces. Limit theorems on various hypergroups was also derived by
Voit, see [V1]- [V7].

In this thesis we present several limit theorems for G-invariant random walks
on the non-compact Grassmann manifolds Gp,q(F) = G/K over the (skew-) fields
F = R,C or quaternions H with rank q ≥ 1 and dimension p > q, where, depending
on F, the group G is one of the indefinite orthogonal, unitary or symplectic groups
SO0(q, p), SU(q, p) or Sp(q, p) withK = SO(q)×SO(p), S(U(q)×U(p)) or Sp(q)×
Sp(p), as subgroups. The double coset space G//K with convolution ∗ can be
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identified with some subset CB
q of Rq called the Weyl chamber of type B carrying

certain convolution ∗p,q. For p, q ∈ N with p ≥ 2q these convolutions on ∗p,q on
the space M1(CB

q ) are associative, commutative, and probability-preserving, i.e.,
convolution of two probability measures is again a probability measure, and they
generate commutative hypergroups (CB

q , ∗p,q) in the sense of Jewett, Spector and

Dunkl with 0 ∈ CB
q above. There are two important observations which have been

made about hypergroups (CB
q , ∗p,q):

(1) The convolutions ∗p,q of measures can be extended to p ∈ [2q − 1,∞) in
a way that the hypergroup structure of (CB

q , ∗p,q) is preserved.
(2) As p→∞ the hypergroup (Cq, ∗p,q) tends to the double coset hypergroups

structures of GL(q,F)//U(q,F) in some way.

For both of the above observations the main tools are spherical functions of
the symmetric space G/K i.e., the nontrivial, K-biinvariant, multiplicative con-
tinuous functions on G. After some reparametrisation, these functions correspond
to multiplicative functions of commutative hypergroups (Cq, ∗p,q) which are which
are precisely the functions ϕpλ on CB

q , with λ ∈ Cq defined in [R2] for which

ϕpλ(x)ϕpλ(y) =

∫
CBq

ϕpλ(t) d(δx ∗p,q δy)(t)

holds for all x, y ∈ CB
q . The first observation is based on Heckman-Opdam theory

of hypergeometric functions associated with root systems. It generalizes the theory
of spherical functions on Riemannian symmetric spaces; see [H2], [HS] and [O] for
the general theory and [R2], [RKV], [RV1], [Sch], [NPP] for some recent devel-
opments. In this context the functions ϕpλ correspond to hypergeometric functions
FBC associated with root systems of type BCq. Using the above identification it
was proved by Rösler [R2] that the functions ϕpλ can be extended to
p ∈ [2q − 1,∞) by analytic continuation, which leads to an extension of the ∗p,q
to p ∈ [2q − 1,∞). The second observation was made in [RV1], [RKV], where
it was proved that the functions ϕpλ tend to the spherical functions of the spaces
GL(q,F)/U(q,F), which also correspond to the hypergeometric functions associ-
ated with root systems of type Aq−1.

Now, fix q and d := dimFR = 1, 2, 4. For p ∈ (2q−1,∞) consider random walks
hypergroup the (CB

q , ∗p,q) (as it is well-defined by observation 1) as follows: Fix

a probability measure µ ∈ M1(CB
q ), and consider a time-homogeneous Markov

process (S̃pk)k≥0 on CB
q with start at the hypergroup identity 0 ∈ CB

q and with the
transition probability

P (S̃pk+1 ∈ A| S̃
p
k = x) = (δx ∗p,q µ)(A) (x ∈ CB

q , A ⊂ CB
q a Borel set).

Such Markov processes are called random walks on the hypergroup (CB
q , ∗q,p) as-

sociated with the measure µ.
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Notice that we use p as a superscript here, as this p may be variable below.
We study limit theorems for (S̃pn)n≥0 under two types of normalization procedures.
We obtain results fixed p as well as for the case when p tends to infinity in some
coupled way with n.

We first consider ”outer” normalization where we study the limiting distribu-
tion of random variables S̃pn/n

ε, ε ≥ 1/2 as n → ∞. In the case where p is fixed
central limit theorem (CLT) and strong law of large numbers (LLN) results were
obtained in [V2]. We focus here on the limit theorems for growing p. It turns out
that under suitable moment conditions on µ and for any sequence (pn)n ⊂ [2q,∞)
with pn →∞, there are normalizing vectors m(n) ∈ Rq such that (S̃pnn −m(n))/

√
n

tends in distribution to some classical q-dimensional normal distribution N(0,Σ2)
and (Spnn − m(n))/nε for ε > 1/2 tend to 0 in probability, where the norming
vectors m(n) and the covariance matrix Σ2 are explicitly known and depend on µ.
For q = 1, CLTs of this kind were given in [Gr1] and [V1] by completely different
methods. Both proofs for q = 1, however, are based on the fact that for p → ∞
the hypergroup structures (CB

1 = [0,∞), ∗p) converge to some commutative semi-
group structure on CB

1 = [0,∞) which is isomorphic with the additive semigroup
([0,∞),+). This observation finally shows that for large p, (S̃pnn )n behaves like
a sum of i.i.d. random variables which then leads to the CLT. For q ≥ 2, the
situation is much more involved as here for p → ∞ the hypergroup structures
(CB

q , ∗p,q) converge to the double coset structures G//K in the case Aq−1, as men-
tioned in the second observation above. As for q ≥ 2, this limit structure is more
complicated than for q = 1, the details of the CLT and will be more involved
than in [Gr1] and [V1]. In fact, we will need stronger conditions either on the
moments of µ or on the rate of convergence of (pn)n to ∞ than in [Gr1]; see The-
orems 6.4, 6.7 below. We remark that the CLTs in [Gr1], [V1], and here for the
non-compact Grassmannians are related to other CLTs for radial random walks
on Euclidean spaces of large dimensions in [Gr2] and references cited there. We
also point out that our CLTs for p → ∞ are closely related to a CLT in the case
Aq−1 proved in [V2] which depends heavily on the concept of moment functions
on commutative hypergroups; see [BH] and [Z1] for the general background. In
fact, we shall need these moment functions for the hypergroups (CB

q , ∗p,q) as well
as for the limit cases associated with the case Aq−1. These moment function will
be essential to describe the norming vectors m(n) and the covariance matrix Σ2

above. We point out that our CLTs for p → ∞ are related to the research in [B]
on the limit behaviour of Brownian motions on hyperbolic spaces and noncompact
Grassmannians.

We next consider limit theorems with ”inner” normalisation. We start with
a probability measure µ ∈ M1(CB

q ) with second moments. For each constant

c ∈ [0, 1] we consider the compression mapping Dc(x) := cx on CB
q as well as

the compressed probability measures µc := Dc(µ) ∈ M1(CB
q ) and the associated
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random walks (S
(p,c)
k )k≥0. We shall prove that for fixed p, S

(p,n−1/2)
n converges for

n→∞ in distribution to some kind of “Gaussian” measure γt0 ∈M1(CB
q ) which

depends on p, where the time parameter t0 ≥ 0 can be computed via second
moment of µ. Triangular CLTs of this type are well-known in probability theory
on groups and hypergroups. We refer here in particular to [BH] and references
there for several results in this direction for Sturm-Liouville hypergroups on [0,∞[.
Moreover, for integers p ≥ 2q, our result is similar to a known CLT for biinvariant
random walks on noncompact Grassmannians; see e.g. [G1], [G2], [T1], [T2], [Ri].
Finally, we shall prove that when pn → ∞ faster than n we obtain a weak LLN

result for S
(p,n−1/2)
n i.e., S

(p,n−1/2)
n tends to some vector in Rq in probability.

This thesis is organised in the following way: In Chapter 2 we give a necessary
background on hypergroups. In particular, we collect information on the class of
double coset hypergroups. We then give an explicit description for the double
coset hypergroups corresponding to Aq−1 and BC root systems. In Chapter 3 we
give a brief introduction to Markov processes on hypergroups and homogeneous
spaces. We also introduce moments on hypergroups which are crucial in stating
limit theorems on hypergroups. In Chapter 4 we briefly explain connection between
Heckman-Opdam theory of hypergeometric functions and spherical functions asso-
ciated with symmetric groups. Furthermore, we recapitulate the Harish-Chandra
integral representation for spherical functions (CB

q , ∗p,q) which we use to prove limit
theorems in the forthcoming chapters. Chapters 5 and 6 contain limit theorems
for random walks on hypergroups (CB

q , ∗p,q) for fixed p and growing p, respectively.

A part of this thesis is based on the preprint:

• M. Artykov, M. Voit, Some central limit theorems for random walks asso-
ciated with hypergeometric functions of type BC. Preprint arXiv:1802.05147

10



CHAPTER 2

Hypergroups

We follow axiomatic work by Jewett where he introduced hypergroups as ”con-
vos”. We will be mainly concerned with commutative hypergroups.
Commutatative hypergoups generalize the class of locally compact abelian groups;
for extensive reference for harmonic analysis on locally compact abelian groups
see [Di]. Roughly said, a commutative hypergroup is a locally compact Hausdorff
space with commutative convolution structure ∗ : X ×X →M1(X) and an invo-
lution ∼ : X → X. The convolution on a hypergroup generalizes the convolution
on a group, and the involution in the group case is given by group inversion.

1. Preliminaries

In order to give the definition for hypergroups we need to lay down some simple
notation and especially get to know the Michael topology on the set of compact
subsets of X.

Let X be a locally compact Hausdorff space. Denote by B(X) the space
of Borel measurable functions on X and denote by Bb(X) the space of bounded
Borel functions. By C(X) we denote the subspace of B(X) consisting of continuous
functions. We consider distinguished subsets of C(X) including Cb(X), C0(X) and
Cc(X) consisting of continuous functions which are bounded, continuous functions
vanishing at infinity, and continuous functions with compact support, respectively.
The positive cones of above spaces are denoted by superscript +. Cb(X) and C0(X)
are topologized by uniform norm ‖ · ‖∞ whereas Cc(X) will be topologized as the
inductive limit of the spaces CK := {f ∈ Cc : supp(f) ⊂ K}, with K ⊂ X compact,
each of which carries uniform norm.
Denote the set of Borel measures on X by M(X). Moreover, denote by Mb(X),
Mc(X), M+(X) and M1(X) spaces of bounded Borel measures, measures with
compact support, positive measures, and probability measures respectively.

Definition 2.1. Let X be a locally compact Hausdorff space. Denote by
C (X) the set of nonempty compact subsets of X. The Michael topology on C (X)
is the topology generated by the subbasis {UU,V : U, V open subsets of K}, where
UU,V := {A ⊂ C (X), A ∩ U 6= ∅ and A ⊂ V }.
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We note that if X is metrizable then the Michael topology is stronger than the
Hausdorff topology on C (X) given by Hausdorff metric, see 1.1.1 in [BH].

Definition 2.2. Let X be a nonempty locally compact Hausdorff space. The
pair (X, ∗) with a bilinear associative operation ∗ onMb(X) is called a hypergroup
if the following conditions are satisfied:

(1) The map (µ, ν) 7→ µ ∗ ν is weakly continuous.
(2) For all x, y ∈ X the so called convolution δx ∗ δy of point measures is a

compactly supported probability measure on X.
(3) The mapping (x, y) 7→ supp(δx∗δy) from X×X into the space of compact

subsets of X is continuous w.r.t Michael topology.
(4) There exists a unique element e ∈ X satisfying δe ∗ δx = δx ∗ δe = δx,
∀x ∈ X. This element is called the identity element of X.

(5) There is a continuous involutive homeomorphism x 7→ x̄ on X such that
δx̄∗δȳ = (δx∗δy)− and x = ȳ ⇐⇒ e ∈ supp(δx∗δy), where for µ ∈Mb(X),
the measure µ− is given by µ−(A) = µ(Ā) for all Borel sets A ⊂ X.

A hypergroup (X, ∗) is called commutative if ∗ is commutative.

We collect some elementary observations about hypergroups (X, ∗); for the
proofs see [J].

(1) (Mb(X), ∗, ‖ · ‖TV ) is a Banach-*-algebra with the involution µ 7→ µ∗ such

that µ∗(A) := µ(Ā) and the identity δe. Here ‖ · ‖TV denotes the total
variation norm.

(2) It is well known that the span of point measures is weakly dense inMb(X).
This, together with the bilinearity of the convolution implies that the def-
inition of the convolutions (δx ∗ δy) (x, y ∈ K) of arbitrary point measures
defines the convolution ∗ onMb(X) completely, and thus the hypergroup
(X, ∗).

(3) The weak continuity of the convolution ∗ on Mb(X) ensures that for all
µ, ν ∈Mb(X)

µ ∗ ν =

∫
X

∫
X

δx ∗ δydµ(x)dν(y).

This means that for all f ∈ Cb(X)∫
X

fd(µ ∗ ν) =

∫
X

∫
X

∫
X

fd(δx ∗ δy)dµ(x)dν(y).

Example 2.3. Let (G, ·) be a locally compact group with identity e. The usual
convolution on Mb(X) is defined by

µ ∗ ν(A) :=

∫
X

∫
X

1A(x+ y)dµ(x)dµ(y)
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for A ∈ B(G), µ, ν ∈ Mb(G). Then (G, ∗) is a hypergroup with identity e. The
involution is given by

µ−(A) = µ(A−1),

where A−1 = {g−1 : g ∈ A} ⊂ G for all A ∈ B(G), µ ∈Mb(G).
It can be easily seen that the group (G, ·) is abelian if and only if the hypergroup
is commutative, see [J].

We notice that an arbitrary hypergroup (X, ∗) is not necessarily directly connected
with an algebraic structure of X.
Nevertheless, many concepts from harmonic analysis on some locally compact
groups can be transferred to hypergroups.
Let (X, ∗) be a hypergroup. For a function f ∈ Bb(X) and x ∈ X we define

f(x ∗ y) :=

∫
X

fd(δx ∗ δy)

if the integral exists.
Furthermore, let Txf(y) := f(x ∗ y) and T x(y) := f(y ∗ x) be the right x-translate
of f at y and left x-translate of f at y, respectively.

The following basic facts can be found in [J]:

(1) For f ∈ Bb(X), x ∈ X, Txf, T
xf ∈ Bb(X).

(2) For f ∈ Cb(X), x ∈ X, Txf, T
xf ∈ Cb(X).

(3) For f ∈ C(X), x ∈ X, Tf ∈ C(X) and the map (x, y) 7→ f(x ∗ y) is
continuous on X ×X.

Also the concept of a Haar measure can be transferred to hypergroups.

Definition 2.4. Let (X, ∗) be a hypergroup. A nonzero measure ωX ∈
M+(X) is called a left Haar measure or right Haar measure if for all x ∈ X
and f ∈ Cc(X) it holds that∫

X

TxfdωX =

∫
X

fdωX or

∫
X

T xfdωX =

∫
X

fdωX

respectively.
A left and right Haar measure is called a Haar measure.

It can be observed that for a commutative hypergroup a left Haar measure is
also a right Haar measure and a right Haar measure is also a left Haar measure,
see [BH].

Theorem 2.5. Let (X, ∗) be a commutative hypergroup.Then there exists a
unique Haar measure up to a multiplicative constant.

Proof. See Theorems 1.3.15, 1.3.22, 1.3.28 in [BH]. �
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From now on let (X, ∗) be a commutative hypergroup with a Haar measure
ωX . Then the convolution and the involution for measurable functions are given
by

f ∗ g(x) =

∫
X

f(y)g(x ∗ ȳ)dωX(y)

and f ∗(x) = f(x̄), (x ∈ X) respectively.
We list some basic properties of the convolution of functions from [J]:

(1) If f, g ∈ Cc(X), then f ∗ g, f ∗ ∈ Cc(X) for all x ∈ X.
(2) If f, g ∈ L1(X) := L1(X,ωX), then f ∗ g(x) exists for wX−almost all

x ∈ X, and f ∗, f ∗ g ∈ L1(X) and ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. Moreover,
f ∗ ∈ L1(X) with ‖f ∗‖1 = ‖f‖1.

(3) (L1(X), ∗,∗ , ‖ · ‖1) is a commutative Banach-*-algebra. This Banach-*-
algebra can be identified with the commutative Banach-*-subalgebra of
all absolutely continuous measures in (Mb(X), ∗) via f 7→ f · ωX .

(4) For p ≥ 1 the translation above extends to Lp(X) := Lp(X,ωX), and for
f ∈ Lp(X), g ∈ L1(X) the convolutions obeys ‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

Definition 2.6. Let (X, ∗) be a commutative hypergroup. We define the
spaces

χ(X) := {ϕ ∈ C(X) : ϕ 6= 0, ϕ(x ∗ y) = ϕ(x)ϕ(y) ∀x, y ∈ X};

χb(X) := χ(X) ∩ Cb(X);

X̂ := {ϕ ∈ χb(X) : ϕ(x̄) = ϕ(x) ∀x ∈ X}.

The functions in χ(X) are called semicharacters. The space X̂ is called dual of
X, and its elements are called characters.

The spaces χ(X), χb(X) and X̂ are endowed with the topolgy of uniform con-

vergence on compact sets. X̂ is homeomorphic to the symmetric spectrum of the
Banach-*-algebra ∆∗(L1(X)) of L1(X) via

X̂ 3 ϕ↔ Lϕ ∈ ∆∗(L1(X)) with Lϕ(f) =

∫
X

f · ϕ̄dwX ,

see Theorem 2.2.2 in [BH]. This shows in particular that X̂ is a locally compact
Hausdorff space.
If (X, ∗) is a locally compact group (in the sense of Example 2.3), then X̂ carries
again the group structure w.r.t pointwise multiplication of characters, see [Di]. It is

well-known that such a dual algebraic structure is not available on X̂ for arbitrary
commutative hypergroups (X, ∗), for examples see [J]. This is in particular the
case for the examples considered below.
We next turn to the Fourier transform on hypergroups:
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Definition 2.7. For µ ∈ Mb(X) and f ∈ L1(X) the (hypergroup) Fourier-

(Stieljes) transforms µ̂ and f̂ are defined by

f̂(ϕ) :=

∫
X

f(x)ϕ(x)dωX(x) and µ̂(ϕ) :=

∫
X

ϕ(x)dµ(x) (ϕ ∈ X̂).

We list several well-known properties of these Fourier transforms:

Theorem 2.8. Let X be a commutative hypergroup. Then the following state-
ments are true.

(i) For µ, ν ∈ Mb(X) the Fourier transform satisfies (̂µ ∗ ν) = µ̂ν̂, µ̂∗ = µ̂.

Moreover, µ̂ ∈ Cb(X̂) with ‖µ̂‖∞ ≤ ‖µ‖TV .

(ii) For f, g ∈ L1(X) the Fourier transform satisfies (̂f ∗ g) = f̂ ĝ, f̂ ∗ = f̂ .

(iii) Riemann-Lebesgue lemma: for f ∈ L1(X), f̂ ∈ C0(X̂) with ‖f̂‖∞ ≤ ‖f‖1.

(iv) The maps f 7→ f̂ , µ 7→ µ̂ are injective.

(v) {f̂ : f ∈ Cc(X)} is dense in C0(X̂).

Proof. See Theorems 2.2.2 and 2.2.4 in [BH]. �

The Fourier transform leads to an L2-isometry between L2(X) := L2(X,wX)

and some L2-space on X̂ with respect to some Plancherel measure on X̂. More
precisely:

Theorem 2.9. (Levitan-Plancharel) Let (X, ∗) be a commutative hyper-

group. Then, there exists a unique measure πX ∈M+(X̂), which is called Plancherel
measure such that for all f ∈ L2(X) ∩ L1(X) the identity

(1)

∫
X

|f |2dωX =

∫
X̂

|f̂ |2dπX

is satisfied. The map f 7→ f̂ extends to an isometric isomorphism from L2(X,ω)

to L2(X̂, πX).

Proof. See Theorem 2.2.13 in [BH]. �

If (G, ·) is a locally compact group, then the Plancherel measure πG on Ĝ is just

”the” Haar measure on the locally compact group Ĝ. In particular, in this case,
the support supp(πG) of πG is equal to Ĝ. For a commutative hypergroup however,

the support of πX may be a proper subset of X̂. Examples of such hypergroups
will be considered below.

Definition 2.10. (i) The inverse Fourier transform of f ∈ L1(X̂) :=

L1(X̂, πX) is defined as

f̌(x) =

∫
X̂

f(ϕ)ϕ(x)dπ(ϕ) (x ∈ X).
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(ii) The inverse Fourier transform of µ ∈Mb(X̂) is defined as

µ̌(x) =

∫
X̂

µ(ϕ)dµ(ϕ) (x ∈ X).

We list some properties of these inverse Fourier transforms:

Theorem 2.11. (Fourier inversion theorem)

Let (X, ∗) be a commutative hypergroup with dual X̂. Then the following state-
ments are true.

(i) The Riemann-Lebesgue lemma is satisfied, i.e. for f ∈ L1(X̂), f̌ ∈ C0(X).

(ii) For µ ∈M(X̂), µ̌ ∈ Cb(X).
(iii) The maps µ 7→ µ̌, f 7→ f̌ are injective.

(iv) For all µ ∈Mb(X̂), ν ∈Mb(X), ν = µ̌ωX if and only if µ = ν̂π.

(v) For all f ∈ C(X) ∩ L1(X) with f̂ ∈ L1(X̂), f = (f̂)∨.

(vi) The set {f̌ : f ∈ L1(X̂, πX)} is ‖ · ‖∞-dense in C0(X).

Proof. See Theorems 2.2.35 and 2.2.36 in [BH]. �

We are now ready to state a ”hypergroup” version of Lévy’s continuity theo-
rem which allows to recover some classical theorems in probability theory such as
central limit theorems in the case of hypergroups.

Theorem 2.12. (Lévy continuity theorem)
Let µ ∈ M1(X) and let (µn)n≥1 be a sequence in M1(X). Then the following
statements are true:

(i) If µn converges to µ weakly, then µ̂n → µ̂ locally uniformly in X̂.

(ii) If µ̂n → µ̂ pointwise on S ⊂ X̂ for µ ∈ M1(X), then µn converges to µ
weakly.

(iii) If there exists f ∈ C(X̂) satisfying limn→∞ µ̂n = f pointwise, then there
exists µ ∈M+

b (X) such that µ̂ = f and µn → µ weakly.

(iv) If there exists f ∈ C(X̂) satisfying limn→∞ µ̂n = f pointwise on supp(πX),
then there exists a unique µ ∈M+

b (X) such that f = µ̂ πX-almost every-
where and µn → µ vaguely. Moreover, if in addition 1 ∈ supp(πX) and f
is continuous at 1, then µn → µ weakly.

Proof. See Theorems 4.2.2 and 4.2.4(iv) and 4.2.11 in [BH]. �

2. Double coset hypergroups and Gelfand pairs

In this section we study an important class of hypergroups which are related to
the group theory and which are commutative in particular cases. These examples
are called double coset hypergroups. To introduce these examples let G be a locally
compact group and let K be some compact subgroup of G. Moreover, let

Mb(G|K) := {µ ∈Mb(G) : µ ∗ δy = µ ∀y ∈ K}(2)
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and

Mb(G‖K) := {µ ∈Mb(G) : δx ∗ µ ∗ δy = µ ∀x, y ∈ K}(3)

be the spaces of K-invariant and K-biinvariant bounded measures on G, respec-
tively. Then, clearly the space Mb(G|K) is Banach-subalgebra of Mb(G). More-
over, Mb(G‖K) is a Banach-*-subalgebra of Mb(G).
Let ωG be some left Haar measure of G and ωK be the normalized left Haar mea-
sure of K. The measure ωK will be regarded also as probability measure on G.
Next, let G/K = {gK : g ∈ G} and G//K := K\G/K = {KgK : g ∈ G} be
the spaces of left and double cosets, respectively. Moreover, consider the canonical
projections

π̃ : G→ G/K, g 7→ gK;

π : G→ G//K, g 7→ KgK.

We now equip G/K and G//K with the quotient topologies. It can be easily
observed that G/K and G//K are locally compact Hausdorff spaces, and that π
and π̃ are continuous and open mappings, see Chapter 8 in [J].
The canonical projection π̃ induces a map π̃∗ :Mb(G|K)→Mb(G/K) by taking
images of measures w.r.t π̃. We next define the convolution for point measures on
G/K by

δxK ∗π̃ δyK :=

∫
K

δxkyKdωK(k) (x, y ∈ G).

The general convolution ∗π̃ on the Banach space Mb(G/K) is defined via unique
bilinear, weakly continuous extension. When doing so, (Mb(G/K), ∗π̃, ‖ · ‖TV )
becomes a Banach-algebra, and π̃∗ : Mb(G|K) → MB(G/K) is an isometric
isomorphism of Banach algebras, see e.g Chapter 8 in [J]. Furthermore, let
L1(G) := L1(G,ωG) and let

L1(G|K) := {f ∈ L1(G) : f(xy) = f(x) ∀x ∈ G and y ∈ K}
be the space of K-invariant integrable functions on G. It is well known that
ωG/K := π̃∗(ωG) ∈ M+(G/K) is a left Haar measure on G/K, see Proposition
8.1B in [J]. The map π̃ induces an isometric isomorphism π̃# : L1(G|K) →
L1(G/K, ωG/K), see e.g Chapter 8 of [RS].

Similarly, the canonical projection π induces a map π∗ :Mb(G‖K)→Mb(G//K).
We define the convolution of point measures by

δKxK ∗π δKyK :=

∫
K

δKxkyKdωK(k) (x, y ∈ G).

The general convolution ∗π on the Banach space Mb(G//K) is then defined via
unique bilinear, weakly continuous extension. Moreover, define an involution ∗ :
Mb(G//K)→Mb(G//K) such that µ∗(A) = µ(A−1) for all µ ∈Mb(G//K) and
A ∈ B(G). Then (Mb(G//K), ∗π,∗ , ‖ · ‖TV ) becomes a Banach-*-algebra, and
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π∗ :Mb(G||K) →Mb(G//K) is an isometric isomorphism of Banach-*-algebras,
see e.g Chapter 8 in [RS]. We can observe that ωG//K := π∗(ωG) is a left Haar
measure on G//K, see Proposition 8.2B in [J]. Let

L1(G||K) := {f ∈ L1(G) : f(xyx) = f(x) ∀x ∈ G and y ∈ K}
be the space of K-invariant integrable functions on G. Then π induces an isometric
isomorphism π# : L1(G||K)→ L1(G//K, ωG//K).
We have the following well-known result (see [J]):

Theorem 2.13. Let K be a compact subgroup of a locally compact group G.
Then (G//K, ∗π) is a hypergroup with the identity K = KeK and involution
KgK 7→ Kg−1K (g ∈ G).

We next study the case where Mb(G//K) is a commutative Banach algebra.
For this we define:

Definition 2.14. Let G be a locally compact group and K ⊂ G be a compact
subgroup. Then the pair (G,K) is called Gelfand pair if Mb(G‖K) is commuta-
tive.

We note that if (G,K) is a Gelfand pair, then the group G is unimodular, i.e.
ωG is also a right Haar measure, see Proposition 6.1.2 in [Di]. Furthermore, in
this case, the Banach-*-algebra L1(G||K) is also commutative.

For Gelfand pairs (G,K) we introduce spherical functions:

Definition 2.15. Let (G,K) be a Gelfand pair. Then ϕ ∈ C(G) is called a
spherical function of (G,K) or spherical function of G/K if ϕ is K-biinvariant,
ϕ 6≡ 0 and if ϕ satisfies the product formula

(4)

∫
K

ϕ(gkh)dωK(k) = ϕ(g)ϕ(h) for all g, h ∈ G.

If in addition ϕ is bounded and ϕ(g−1) = ϕ(g) for all g ∈ G, then ϕ is called
a spherical character.

The spherical functions (or spherical characters) on G can be identified with
multiplicative functions (or characters) on the commutative double coset hyper-
group (G//K, ∗π) as follows:

Lemma 2.16. Let (G,K) be a Gelfand pair. Then, for a K-biinvariant function
f ∈ C(G) the following statements are equivalent:

(i) f is a spherical function;
(ii) f has the form f = ϕ◦π for some multiplicative function ϕ ∈ χ(G//K, ∗π);

(iii) for all µ, ν ∈Mb(G‖K) the multiplicativity property∫
G

f(x)d(µ ∗ ν)(x) =

∫
G

f(x)dµ(x)

∫
G

f(y)dν(y)
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is satisfied.

Proof. See Chapter 6.1 in [Di]. �

There are several equivalent descriptions of Gelfand pairs among which we
quote criteria from [GV].

Theorem 2.17. Let K be a compact subgroup of some locally compact group
G. Then under each of the following conditions (G,K) is a Gelfand pair.

(i) There exists a continuous involutive automorphism θ on G satisfying
x−1 ∈ Kθ(x)K for all x ∈ G.

(ii) There exists a continuous involutive automorphism θ on G satisfying
θ(k) = k for all k ∈ K and G = K · P with P := {x ∈ G : θ(x) = x−1}.

(iii) There exists an involutive automorphism θ on G and an abelian subgroup
A ⊂ G such that G = KAK, i.e. every element x ∈ G has a unique
decomposition = k1ak2 with k1, k2 ∈ K and a ∈ A, where θ(k) ∈ K for all
k ∈ K and θ(a) = a−1 for all a ∈ A.

Proof. See Proposition 1.5.2, Corollary 1.5.3 and Corollary 1.5.4 in [GV] �

3. Two examples of Gelfand pairs

In this section we consider two classes of Gelfand pairs which are central to
our work. Furthermore we give the explicit description for the product formula for
spherical functions on these Gelfand pairs.

For the first example consider for q ∈ N the general linear group G = GL(q,F)
and a compact subgroup K = U(q,F) of unitary matrices taken over one of the
(skew-)fields F := R,C and the quaternions H.
Let Mq(F) denote the space of q × q matrices over the field F and let

Pq(F) := {x ∈Mq(F) : x = x∗, x positive semi-definite}
denote the cone of positive semi-definite Hermitian matrices in Mq(F).
It is well-known by the theory of symmetric spaces ( see [GV], [H1]) that in these
cases, (G,K) are Gelfand pairs. As this is central to our work, we recapitulate an
elementary proof of this fact.

Proposition 2.18. For q ∈ N, the pair (G,K) = (GL(q,F), U(q,F)) over the
(skew-)fields F = R,C and quaternions H is a Gelfand pair.

Proof. We prove the result for F = C. The result for R,H follows similarly.
Consider the automorphism θ(x) := (x∗)−1 := (x̄T )−1 on GL(p,C), then θ(k) = k
for all k ∈ U(p,C). For x = (x1, ..., xq) denote by x the diagonal matrix with
entries x1, ..., xq and set

A := {x = diag(x1, .., xq) : x1, ..., xq ∈ (0,∞)}
which is an abelian subgroup of GL(q,C). Every element in g ∈ GL(q,C) has a
polar decomposition g = ry with some r ∈ Pq(C) and some y ∈ U(p,C). Moreover,
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every r ∈ Pq(C) has the decomposition r = zaz−1 for some a ∈ A, z ∈ U(q,C).
Thus every g ∈ GL(q,C) has G = KAK representation, i.e. x = k1ak2 for some
k1, k2 ∈ U(p,F), a ∈ A. Now, the part (iii) of the Theorem 2.17 above yields the
required assertion. �

For the above pair the left coset space G/K can be identified with the cone
Pq(F) via the map

(5) gK 7→ I(g) := gg∗ ∈ Pq(F), (g ∈ G),

where G acts on Pq(F) via a 7→ gag∗. Let σsing(g) ∈ CB
q denote the singular

spectrum of g ∈ Mq(F), where the singular values of g, i.e. the square roots of
eigenvalues of the positive definite matrix gg∗, are ordered by size. Then the map

(6) KgK 7→ lnσsing(g) =
1

2
lnσ(gg∗)

leads to identification of G//K with

(7) CA
q := {x = (x1, ..., xq) ∈ Rq : x1 ≥ x2... ≥ xq}.

We shall now obtain the formula for the convolution on G//K, where we identify
G//K with CA

q . As spherical functions are K-biinvariant functions we can regard

spherical functions ϕ on G as functions on CA
q . In this way a spherical function

ϕ ∈ C(G) corresponds to some ψ ∈ C(CA
q ) via ϕ(x) = ψ(x) for all x ∈ CA

q in
one-to-one way. Let g ∈ G be arbitrary, then via the map (6) g has the form
g = uexũ for x ∈ CA

q and u, ũ ∈ K, where ex := diag(ex1 , ..., exq). We thus obtain

x =
1

2
lnσsing(g)

Thus, for the function ψ ∈ C(CB
q ) above, the product formula (4) writes

(8) ψ(x)ψ(y) =

∫
K

ψ(
1

2
(σsing((e

xkey))))dωK(k)

for all x, y ∈ CB
q . With this product formula in mind, we can now define the

convolution on CB
q , which characterizes the convolution ∗π on G//K. Then, for

x, y ∈ CB
q we define the convolution of Dirac measures δx, δy by

(9) δx ∗q δy(f) :=

∫
K

f(
1

2
(σsing((e

xkey))dωK(k).

We now present our second example: Fix p, q ∈ N with p > q ≥ 1 and let
F = R,C or H, as above. We recapitulate the indefinite orthogonal, unitary and
symplectic groups with dimensions p, q. For this we define

(10) Ip,q =

(
Iq 0
0 −Ip

)
.
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Then the groups

O(p, q) = {A ∈ GL(p+ q,R) : A∗Ip,qA = Ip,q};
U(p, q) = {A ∈ GL(p+ q,F) : A∗Ip,qA = Ip,q};
Sp(p, q) = {A ∈ GL(p+ q,H) : A∗Ip,qA = Ip,q}

are called indefinite orthogonal, indefinite unitary and indefinite symplectic groups,
repectively. Furthermore, let SO(p, q) := O(p, q) ∩ SL(p + q,R), SU(p, q) :=
U(p, q) ∩ SL(p+ q,C) and Sp(p, q) := O(p, q) ∩ SL(p+ q,H), where SL(p+ q,F)
denotes in all cases the (p + q)× (p + q) matrices with determinant 1. Moreover,
let SO0(p, q) ⊂ SO(p, q) is the connected component in SO(p, q) containing the
identity. The groups SU(p, q) and Sp(p, q) are simply-connected, semisimple linear
Lie groups. Now let G be one of the groups SO(p, q), SU(p, q) or Sp(p, q) for p ≥ q.
We choose the groups K = SO(p) × SO(q), S(U(p) × U(q)) or Sp(p) × Sp(q) as
maximal subgroups of groups G, respectively for all of the above classes.

The homogeneous spaces Gp,q := G/K are called the non-compact Grassmann
manifolds over the (skew-)fields F := R,C and H.

As in the preceding example, it is well known that the pair (G,K) is a Gelfand
pair; see Theorem 8.6, Chapter VII in [H1]. As above we give an elementary proof.
For this we use the diagonal matrix notations:

coshx := diag(coshx1, ..., coshxq), sinhx := diag(sinhx1, ..., sinhxq) for x ∈ Rq.

Proposition 2.19. Let G and K be defined as above. Then (G,K) is a Gelfand
pair. Moreover, the double coset space G//K can be identified with the Weyl
chamber

CB
q := {x ∈ Rq : x1 ≥ x2 ≥ ... ≥ xq ≥ 0}

as follows: CB
q will be identified with the set

(11)

{
ax :=

coshx sinhx 0
sinhx coshx 0

0 0 Ip−q

 : x ∈ CB
q

}
⊂ G,

via CB
q 3 x↔ ax, where this set is a set of representatives of the K-double cosets

in G.

Proof. We prove the result for (G,K) = (SU(p, q), S(U(p) × U(q))), the
other two cases follow similarly. Analogously to the Example 2.18 above we set
θ(x) := (x∗)−1. Clearly θ is an automorphism on G. Moreover, for all k ∈ K2

we have θ(k) = k. We now determine an abelian subgroup A ⊂ G such that the
representation G = KAK is satisfied. Consider the (p+ q)× (p+ q) matrix

Hx =

 0q×q x 0q×(p−q)
x 0q×q 0q×p−q

0(p−q)×q 0(p−q)×q 0(p−q)×(p−q)

 .
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We define the exponential of a matrix X as eX :=
∑∞

k=1
Xk

k!
. Then it is easy to

observe that

eHx = ax =

coshx sinhx 0
sinhx coshx 0

0 0 Ip−q

 ,

see e.g. Lemma 15 in [S]. Since we have Hx + Hy = Hx+y and HxHy = HyHx it
follows that

eHx+Hy = eHxeHy = eHyeHx .

Thus, A := {ax : x ∈ Rq} is an abelian subgroup of G with θ(ax) = a−1
x for all

ax ∈ A.
We next prove :

1© Every element g ∈ G can be written as g = k1axk2 for some k1, k2 ∈ K
and x ∈ Rq.

2© KaxK = KayK if and only if x can be derived from y by permutation of
components and multiplication of each component by ±1.

Then, 1© and 2© together with Theorem 2.17(iii) imply that (G,K) is a Gelfand
pair and that

G//K ' CB
q .

We begin with the proof of 1©. The inclusion ⊇ can easily be verified by showing
gT Ip,qg = Ip,q for

(12) g =

(
u1 0
0 v1

)
ax

(
u2 0
0 v2

)
,

where u1, u2 ∈ U(p), v1, v2 ∈ U(q) and ax ∈ A with

det(u1) det(v1) = 1 and det(u2) det(v2) = 1.

To show the opposite direction choose any g ∈ G ⊂ GL(p + q,C). Then by the
same argument as above, there exist k1, k2 ∈ U(p)× U(q) such that

(13) k1gk2 = g̃ =

(
y1 a
b y2

)
,

where d1 ∈ Rq×q, d2 ∈ Rp×p are diagonal matrices and a ∈ Cq×p, b ∈ Cp×q. We
have then

Ip,q =

(
d1 b∗

a∗ d2

)
Ip,q

(
d1 a
b y2

)
=

(
d2

1 − b∗b d1a− b∗d2

a∗d1 − d2b a∗a− d2
2

)
which implies that a∗a = d2

2 − Ip is a diagonal matrix. On the other hand, the
matrix a∗a is positive semi-definite and has the rank ≤ q. Thus, at least p − q
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entries of a∗a are zero and all the entries of d2 are greater or equal to 1. Without
loss of generality we can assume that

d2 =

(
cosh y 0

0 Ip−q

)
for some y ∈ Rq. Moreover, a has the form a = (Z 0q×p−q), where the columns
of Z are orthogonal. Thus a can be written as a = (u sinh y 0q×p−q) for some
u ∈ U(q). Similarly, one can show that there exists x ∈ Rq such that d1 = coshx
and b = Y · sinhx, where Y has orthogonal columns. On the other hand, the
equation d1a− b∗d2 = 0 implies that b =

(
ũ

0(p−q)×q

)
sinhx and

(14) coshxu sinh y = sinhxũ cosh y

for u, ũ ∈ U(q,C) as above.
Now, with elementary computation we can conclude that the vectors x, y are equal
up to permutations and multiplication with ±1. Without loss of generalization
assume that x = y. This yields that u = ũ. Returning to the Eq. (13) we
conclude that the matrix g̃ has without loss of generalization, the representation:

(15) g̃ =

 coshx u sinhx 0
sinhxu∗ coshx 0

0 0 Ip−q


=

u 0 0
0 Iq 0
0 0 Ip−q

coshx sinhx 0
sinhx coshx 0

0 0 Ip−q

u∗ 0 0
0 Iq 0
0 0 Ip−q

 .

2© follows similarly to 1©. �

We shall now define the convolution on the double coset hypergroup G//K,
where we identify G//K with CB

q as above. This convolution is equivalent to the
product formula (4) for the associated spherical function. Here, we follow closely
Section 2 in [R2].
As spherical functions are K-biinvariant functions on G, in view of Proposition
2.19 they can be regarded as functions on the set {ax : x ∈ CB

q } of representatives

of the double cosets and also as continuous functions on CB
q . Thus, a spherical

function ϕ ∈ C(G) corresponds to some ψ ∈ C(CB
q ) via ϕ(ax) = ψ(x) for all

x ∈ CB
q , in one-to-one way. Now let g ∈ G be arbitrary, then g has the form

(16) g =

(
u 0
0 v

)
ax

(
ũ 0
0 ṽ

)
,

with u, ũ ∈ U(q), v, ṽ ∈ U(p) and x ∈ CB
q . The vector x ∈ CB

q here can be
determined uniquely for g ∈ G as follows: Denote the upper left q × q block of g
by A(g). Then, with a short calculation we obtain that

(17) A(g) = u coshxũ, where u, ũ ∈ U(q)
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and thus σsing(A(g)) = (cosh x1, ..., coshxq) =: cosh x. Therefore,

(18) x = arccosh(σsing(A(g))) for g ∈ KaxK, x ∈ CB
q ,

where arccosh is taken componentwise.
As noticed above it suffices to calculate the product formula (4) for arguments
g = ax, h = ay, where x, y ∈ CB

q . Thus, for the function ψ ∈ C(CB
q ) above, the

product formula (4) writes

(19) ψ(x)ψ(y) =

∫
K

ψ(arccosh(σsing(A(axkay))))dωK(k)

for all x, y ∈ CB
q .

We would like to achieve further simplification for the product formula. For this
we introduce the following notation from [R1]:

Let d = 1, 2, 4 be the dimension of F over R, and let

Bq := {w ∈Mq(F) : ww∗ < I} ⊂Mq(F)

denote the matrix unit ball, where the partial ordering A < B means that A−B
is strictly positive definite.
Furthermore, define the following probability measure dmp(w) on Bq s

(20) dmp(w) :=
1

κpd/2
·∆(I − w∗w)pd/2−γdw,

where

γ := d(q − 1

2
) + 1,

∆ denotes the determinant on the cone Pq(F), dw is the Lebesgue measure on the
ball Bq, and

κpd/2 =

∫
Bq

∆(I − w∗w)pd/2−γdw

is the normalization factor.

Theorem 2.20. [Proposition 2.2 in [R1]]
Let p ≥ 2q and γ be defined as above. If we regard a spherical function ϕ as a
function ψ on CB

q , then ψ satisfies the product formula

(21) ψ(x)ψ(y) =

∫
Uq

∫
Bq

ψ(d(x, y, u, w))dmp(w)du,

where du is a Haar measure on Uq, dmp(w) is defined as in (20),

(22) d(x, y, u, w) = arccosh(σsing(coshxu cosh y + sinhxη∗vη sinhx))

and η =
(

Iq
0(p−q)×q

)
.
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As one can see, the domain of integration is independent of p ≥ 2q in the
product formula above. With this product formula in mind, we can now define
the convolution on CB

q , which characterizes the convolution ∗π on G//K.

Definition 2.21. Let f be a continuous function on CB
q . Then, for x, y ∈ CB

q

define the convolution of Dirac measures δx, δy by

(23) δx ∗p,q δy(f) :=

∫
Uq

∫
Bq

f(d(x, y, u, w))dmp(w)du,

where the probability measure dmp(w) is defined as in (20) and d(x, y, u, w) is
defined as in (22).

We summarize the preceding results :

Theorem 2.22. Let p, q ∈ N, p ≥ 2q and let ∗p,q be as in Definition 2.21. Then,
(CB

q , ∗p,q) is a commutative hypergroup which can be identified with the double coset
hypergroup (G//K, ∗π).

Remark 2.23. The hypergroups (CB
q , ∗p,q) in the case q = 1 were extensively

studied by Koornwinder in [K]. Here, the spherical functions ϕ parametrized by
λ ∈ C are given by Jacobi functions

ϕα,βλ (x) := 2F1((α + β + 1− iλ)/2, (α + β + 1 + iλ)/2;α + 1;− sinh2 x) (λ ∈ C)

with

α = pd/2− 1, β = d/2− 1 where d := dimRF = 1, 2, 4.

Moreover, double coset convolutions ∗α,β on [0,∞) can be regraded as special case
of Jacobi convolutions defined by Koornwinder in [K]. For α > β ≥ −1/2, these
convolutions are given by

δx ∗α,β δy(f) :=

∫ 1

0

∫ π

0

f(arccosh| coshx cosh y + reiφ sinhx sinh y|)dmα,β(r, φ)

where the probability measure dmα,β(r, φ) is given by

(24) dmα,β(r, φ) :=
2Γ(α + 1)(1− r2)α−β−1(r sinφ)2β · rdrdφ

Γ(1/2)Γ(α− β)Γ(β + 1/2)
.

Furthermore, the following intergral representation for Jacobi functions ϕ
(α,β)
λ was

obtained in [K] :

ϕ
(α,β)
λ (x) =

∫ 1

0

∫ π

0

| coshx+ reiφ sinhx|iλ−ρdmα,β(r, ϕ)

with dmα,β(r, ϕ) introduced in (24) and

ρ := α + β + 1.
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It was shown by Rösler [R2] that the convolution ∗p,q on bounded measures
on CB

q can be extended by analytic continuation from p ∈ {p ∈ N : p ≥ 2q} to

all p ∈ (2q − 1,∞), so that (CB
q , ∗p,q) in the extended case is still a commutative

hypergroup. For non-integer p these hypergroups are no longer isomorphic to
double coset hypergroups. As this result is central for Chapter 4, we will state it
separately in Theorem 4.18.
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CHAPTER 3

Markov processes on hypergroups and homogeneous spaces

In this chapter we first recapitulate the concept of some Markov processes on
hypergroups which are motivated by the concept of Markov process on groups. We
also introduce random walks on homogeneous spaces for some Gelfand pairs (G,K)
and study their connection with Markov processes on double coset hypergroups
(G//K, ∗π). We later recapitulate the concept of moments on hypergroups which
among other things allows to state limit theorems and construct some martingales
from Markov processes on hypergroups.

1. Random walks and Lévy processes on hypergroups and
homogeneous spaces

1.1. Random walks and Lévy processes on hypergroups. Let (G, ·)
be a locally compact group. We first recapitulate the notion of random walks
on groups. Let (Yn)n≥1 be a sequence of independent and identically distributed
random variables. Then, consider the stochastic process (Sn := Y1 · · ·Yn)n≥0 (with
the convention S0 = e) on G. It is well known that (Sn)n≥1 is a time-homogeneous
Markov process with independent, stationary increments. More precisely:

(i) For all k ∈ N and t1, ..., tk ∈ N, with 0 = t0 < t1... < tk, the random
variables St0 , S

−1
t0 St1 , ..., S

−1
tk−1

Stk are independent.
(ii) For k, n ∈ N with k ≥ n, PS−1

n Sk
depends only on k − n.

(iii) The transition probability is given as follows:

(25) P (Sn+1 ∈ A|Sn = x) = (δx ∗ µ)(A)

for all n ∈ N0, x ∈ G,A ∈ B(G). Here, µ ∈ M1(G) is the distribution of
Yn (independent of n ∈ N). Clearly, the probability measure µ determines
the distribution of (Sn)n≥0 uniquely.

The Markov process (Sn)n≥0 on G is called a (right) random walk on G asso-
ciated with µ ∈M1(G).

We now extend this notion from groups to commutative hypergroups (X, ∗).
As we do not have an algebraic operation on X, we cannot use the concept of
products of i.i.d. random variables above. However, we can use Eq. (25) to define
random walks on commutative hypergroups:
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Definition 3.1. Let (X, ∗) be a commutative hypergroup. Let µ ∈ M1(X)
be an arbitrary probability measure. Then a time-homogeneous Markov process
(Sn)n≥0 with S0 = e is called a random walk on (X, ∗) associated with µ ∈M1(X)
if

(26) P (Sn+1 ∈ A|Sn = x) = (δx ∗ µ)(A)

for all n ∈ N, x ∈ X,A ∈ B(X).

Now we introduce random walks in continuous time. We start with the group
case: Let (G, ·) be a locally compact group. A family of probability measures
(µt)t∈[0,∞) ⊂ M1(G) is called a convolution semigroup on G, if the following con-
ditions are satisfied:

(i) µs ∗ µt = µs+t for all s, t ∈ [0,∞);
(ii) the map [0,∞)→M1(G), t 7→ µt with µ0 = δe is weakly continuous.

Now let (µt)t∈[0,∞) ⊂ M1(G) be a convolution semigroup and let (St)t∈[0,∞) be a
(time-continuous) stochastic process with transition probabilities:

(27) P (St ∈ A|Ss = x) = (δx ∗ µt−s)(A)

for all s, t ∈ [0,∞) with s ≤ t, x ∈ G and A ∈ B(G). Then it is easy to observe
that (St)t∈(0,∞) has independent and stationary increments, that is :

(i) For all t0, t1, ..., tk ∈ [0,∞) with 0 = t0 < t1... < tk, the random variables
St0 , S

−1
t0 St1 , ..., S

−1
tk−1

Stk are independent.
(ii) For s, t ≥ 0 with t ≥ s, PS−1

s St
depends only on t− s.

Conversely, if the G-valued process (St)t∈(0,∞) has independent and stationary in-
crements, then (µt := PX−1

h Xt+h
)t∈[0,∞) forms a convolution semigroup on G.

The process (St)t∈(0,∞) is called Lévy process associated with (µt)t∈[0,∞).

Motivated by this we now define Lévy processes on hypergroups:

Definition 3.2. Let (X, ∗) be a commutative hypergroup. Then:

(i) A family of probability measures (µt)t∈[0,∞) ⊂M1(X) is called a convolu-
tion semigroup on X, if µs ∗ µt = µs+t for all s, t ∈ [0,∞) and if the map
[0,∞)→M1(X), t 7→ µt is weakly continuous.

(ii) Let (µt)t∈[0,∞) ⊂ M1(X) be a convolution semigroup. Then a (time-
continuous) stochastic process (St)t∈[0,∞) is called a X-valued Lévy process
associated to (µt)t∈[0,∞) if

(28) P (St ∈ A|Ss = x) = (δx ∗ µt−s)(A)

for all s, t ∈ [0,∞) with s ≤ t, x ∈ X and A ∈ B(X).

We now turn our attention to the double coset hypergroups (G//K, ∗) in Chap-
ter 2 and discuss examples of random walks and Lévy processes on (G//K, ∗).
There are two constructions for these processes. In both cases let I = N0 or [0,∞)
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be the parameter space.

In the first construction we start either with some K-biinvariant measure µ ∈
M1(G||K) ⊂M1(G) (for I = N0) or with a K-biinvariant convolution semigroup
(µt)t∈[o,∞) ⊂M1(G||K) ⊂M1(G).

Now, let (St)t∈I be an associated random walk or Lévy process on G.

Theorem 3.3. Let π be the canoncial projection from G to G//K. Then the
process (π(St))t∈I is a Markov process on the hypergroup (G//K, ∗π). More pre-
cisely:

(1) for I = N0,

P(π(Sn+1) ∈ A|π(Sn) = z) = (δz ∗π π(µ))(A)

for all n ∈ N0, z ∈ G//K,A ∈ B(G//K).
(2) For I = [0,∞) ,

P(π(St) ∈ A|π(Ss) = z) = (δz ∗π π(µt−s))(A)

for all s, t ∈ [0,∞) with t ≥ s, z ∈ G//K and A ∈ B(G//K).

Proof. We prove the statement for the continuous-time case I = [0,∞). The
result for the discrete time case I = N0 it follows similarly. Let (Ft)t∈I be the

canonical filtration of the process ((St))t∈I and (F̂t)t∈I be the canonical filtration
of the process (π(St))t∈I . We note that for all s ≤ t ∈ I and A ∈ B(G//K) that
the function x 7→ (δx ∗µt−s)(π−1(A)) is K-biinvariant. Since π∗ is an isomorphism
from Mb(G‖K) to Mb(G//K) as noticed in Chapter 2, we have that

(δx ∗ µt−s)(π−1(A)) = (δπ(x) ∗π π∗(µt−s))(A)

for all x ∈ G//K,A ∈ B(G//K). Now, by Markov property of (St)t∈I we deduce
that

P (π(St) ∈ A|Fs) = P (St ∈ π−1(A)|Ss)
= (δSs ∗ µt−s)(π−1(A))

= (δπ(Ss) ∗π π∗(µt−s))(A).

Therefore, we have

P (π(St) ∈ A|Fs) = (δπ(Ss) ∗π π(µt−s))(A) = P (π(St) ∈ A|π(Ss)) a.s.

As σ(π(Ss)) ⊂ F̂s ⊂ Fs, we also have

P (π(St) ∈ A|F̂s) = P (π(St) ∈ A|π(Ss)) a.s.

This yields the claim. �
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1.2. Random walks and Lévy processes on homogeneous spaces. We
now turn to the Markov processes on homogeneous spaces for G. We closely
follow [L].
We first recapitulate homogeneous spaces. A topological space M is called a
homogeneous space for group G, if G acts transitively on M . Fix a point o in M .
Then the stabilizer

K := {g : g = go}
of o in M is a closed subgroup of G. It is easy to see that M is homeomorphic to
G/K under the map go 7→ gK and the G-action on M is just the natural action
of G on G/K. Conversely, given a coset space G/K, it is a homogeneous space for
G with a distinguished point, namely coset of the identity. Thus a homogeneous
space can be thought of as a coset space without the choice of origin.
In this way, a Markov process on M , invariant under the transitive action of G
may be regarded as a Markov process on the homogeneous space G/K invariant
under the natural action. We will now give some basic properties of measures on
G/K before discussing the G-invariant Markov processes in G/K.
Recall that a measure µ on G/K is called a K-invariant (invariant under action of
K) measure, if k(µ) = µ for all k ∈ K where k acts on G/K as usual. It is clear
that the Haar measure ωG/K is K-invariant. Moreover, it can be observed that for
all µ, ν ∈Mb(G/K) and k ∈ K

k(µ ∗π̃ ν) = k(µ) ∗π̃ k(ν),

see c.f. Chapter 1 in [L]. This means that if µ, ν ∈Mb(G/K) are K-invariant, then
µ∗ν is K-invariant as well. Therefore the set of K-invariant measures inMb(G/K)
is a Banach subalgebra of Mb(G/K). Denote this space by Mb,K(M). Further-
more, recall the canonical projection π̃ : G → G/K and let π̃∗ : Mb(G|K) →
Mb(G/K) be the map induced by taking images of measures w.r.t π̃. he follow-
ing result provides the relation between K-(bi)invariant measures on G and on
M = G/K.

Proposition 3.4. (1) The map

µ 7→ ν = π̃∗(µ)

is an isomorphism from Mb(G||K) to Mb,K(G/K).
(2) The map π∗ preserves the convolution in the sense that for any measures
Mb(G|K)

π̃∗(µ ∗ ν) = π̃∗(µ) ∗π̃ π̃∗(ν).

A convolution semigroup on G/K is defined in the same way as on G. A family
of probability measures (µt)t∈[0,∞) ⊂M1(G/K) is called a convolution semigroup
on G/K, if the following conditions are satisfied:

(i) µs ∗ µt = µs+t for all s, t ∈ [0,∞);
(ii) the map [0,∞)→M1(G/K), t 7→ µt with µ0 = δeK is weakly continuous.
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Proposition 3.5. The map

(µt)t∈[0,∞) 7→ (νt)t∈[0,∞) = (π∗(µt))t∈[0,∞)

is a bijection from the set of K-biinvariant convolution semigroups
(µt)t∈[0,∞) on G onto the set of convolution semigroups νt)t∈[0,∞) on
M = G/K.

Proof. See Proposition 1.9 in [L]. �

We can now define the G-invariant random walk and Lévy processes on M = G/K:

Definition 3.6. (1) A random walk (Zn)n∈N on M = G/K with start in
o = eK is called G-invariant random walk if its transition kernel K, i.e.

K(x,A) := P(Zn+1 ∈ A|Zn = x)

x ∈ G/K,A ∈ B(G/K), n ∈ N, satisfies

K(x,A) = K(g(x), g(A))

for all x ∈ G/K,A ∈ B(G/K) and g ∈ G, where G acts on G/K in a
canonical way.

(2) A Lévy process (Zt)t∈[0,∞) on M = G/K is G-invariant if the transition
semigroup (Pt)t∈[0,∞), i.e.,

Pt(x,A) := P(Zt+s ∈ A|Zs = x)

for x ∈M,A ∈ B(M), s, t ∈ [0,∞), satisfies

Pt(x,A) = Pt(g(x), g(A))

for g ∈ G, x ∈M,A ∈ B(M), s, t ∈ [0,∞).

It can be easily shown that for a G-invariant random walk µ̃ := K(eK, ·) is a
K-invariant measure on G/K. Indeed, for all k ∈ K and A ∈ B(G/K) we have

k(µ̃)(A) =µ̃(k−1(A)) = K(eK, k−1(A))

=K(k · eK,A) = K(eK,A)

=µ̃(A).

By Proposition 3.4 there exists a unique K-binvariant measure µ such that π̃∗(µ) =
µ̃. This means that for any random walk (Sn)n≥0 associated with K-biinvariant
probability measure, the process (π(Sn))n≥0 is a G−invariant random walk on
G/K. Conversely, any G-invariant random walk on M = G/K can be obtained
from a random walk with associated K-biinvariant measure above.
Similarly, a G-invariant Lévy process (Zt)t∈[0,∞) on M = G/K is associated with
a K-invariant convolution semigroup (µ̃t)t≥0 := (Pt(eK, ·))t≥0. By Proposition 3.5
there exista a unique K-biinvariant convolution semigroup (µt)t≥0 on G such that
π∗(µ̃t))t≥0 = (µ̃t)t≥0. It can be also shown that for Lévy process (St)t∈[0,∞) on G
associated with K- biinvariant convolution semigroup, the process (π̃(St))t∈[0,∞)

31



is a G−invariant Lévy process on M , see Theorem 1.17 in [L]. Conversely, any
G-invariant Lévy process on M = G/K can be obtained from a Lévy process on
G with an associated K-biinvariant convolution semigroup as above, see Theorem
3.10 in [L].

Now, consider the canonical projection

˜̃π : G/K → G//K, gK 7→ KgK,

which is continuous and open. Let the map ˜̃π∗ : Mb(G/K) → Mb(G/K) be
induced from ˜̃π by taking images of measures w.r.t ˜̃π.
Then, since π̃∗ : Mb(G||K) → Mg,K(G/K) and π∗ : Mb(G||K) → Mb(G//K)

are both bijections, it follows that the map µ 7→ ˜̃π(µ) is also a bijection from
Mb,K(G/K) onto Mb(G//K), with

˜̃π∗(µ ∗π̃ ν) = ˜̃π∗(µ) ∗π ˜̃π∗(ν)

for all µ, ν ∈Mb,K(G/K). Similarly, ˜̃π maps convolutions semigroups inMb,K(G/K)
onto convolutions semigroups in Mb(G//K) bijectively. In summary we obtain
the following result:

Proposition 3.7. (1) Let (Zn)n≥0 be a G-invariant random walk on M =
G/K with µ = K(eK, ·). Then (˜̃π(Zn))n≥0 is a random walk on the hy-
pergroup (G//K, ∗π) with

P(˜̃π(Zn+1) ∈ A|˜̃π(Zn) = x) = (δx ∗π ˜̃π(µ))(A)

for all n ∈ N0, x ∈ G//K,A ∈ G//K.
(2) Let (Zt)t∈[0,∞) be a G-invariant Lévy process on M = G/K with

(µ̃t)t≥0 = (Pt(eK, ·))t≥0. Then (˜̃π(Zt))t∈[0,∞) is a Lévy process the hyper-
group (G//K, ∗π) with

P(˜̃π(Zt)) ∈ A|˜̃π(Zs) = x) = (δx ∗π ˜̃π(µt−s))(A)

for all t ∈ [0,∞), x ∈ G//K,A ∈ G//K.

Proof. We prove the statement for the continuous-time case I = [0,∞). The
result for the discrete time case I = N0 it follows similarly. Let (Ft)t∈I be canonical
filtration of the process (Zt)t∈I and (F̃t)t∈I be the canonical filtration of the process
(˜̃π(Zt))t∈I . We note that for all s ≤ t ∈ I and A ∈ B(G//K) that the function

x 7→ (δx ∗π̃ µt−s)(˜̃π
−1

(A)) is K-invariant (invariant under natural action of K).

Since ˜̃π
∗

is an isomorphism from Mb,K(G/K) to Mb(G//K) by Proposition 3.4
we have that

((δx ∗π̃ µt−s)(˜̃π
−1

(A)) = (δπ(x) ∗π π∗(µt−s))(A)
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for all x ∈ G//K,A ∈ B(G//K). Now, by Markov property of (Zt)t∈I we deduce
that

P (˜̃π(Zt) ∈ A|Fs) = P (Zt ∈ ˜̃π
−1

(A)|Zs)
= (δZs ∗˜̃π µt−s)(˜̃π−1(A))

= (δ˜̃π(Zs)
∗π̃ ˜̃π∗(µt−s))(A).

Therefore, we have

P (π(Zt) ∈ A|Fs) = (δπ(Zs) ∗π π(µt−s))(A) = P (π(Zt) ∈ A|π(Zs)) a.s.

As σ(π(Zs)) ⊂ F̂s ⊂ Fs, we also have

P (π(Zt) ∈ A|F̃s) = P (π(Zt) ∈ A|π(Zs)) a.s.

This yields the claim. �

2. Moment functions on hypergroups

In this section we introduce the concept of moments on commutative hyper-
groups.These moment functions can be seen as analogues of multidimensional
monomials on Rq, q ∈ N. Throughout this section we mainly follow [RV2].
To get the feeling of how the moment functions are defined, consider the Euclidean
space Rq. We regard X = Rq as the group (Rq, ·). Then X̂ = Rq and its characters
are given by exponential functions ϕλ(x) = ei〈x,λ〉. The monomials xκ =: xκ11 ...x

κq
q

for x ∈ Rq, κ ∈ Zq+ satisfy xκ = i|κ|∂κλϕλ(x)|λ=0, where by

(29) ∂κλ = ∂κ1ξ1 ...∂
κq
ξq

we denote partial derivatives. In particular, they satisfy the Leibniz rule

(x+ y)κ =
∑
η≤κ

(
κ

η

)
xηxκ−η,

where, by η ≤ κ we mean the partial ordering ηi ≤ κi for all i = 1, ..., q, κ− η =:
(κ1 − η1, ..., κq − ηq) and

(
κ
η

)
:=
∏q

i=1

(
κi
ηi

)
.

The monomials play an important role in deriving limit theorems for Markov
processes in Rq. To demonstrate this, as a toy example consider the following
setting: Let Sn :=

∑n
k=1Xk be a Rq-valued random walk, where (Xk)k∈N is a

sequence of i.i.d variables with distribution ν ∈ M1(Rq). Then, if the second
moments

∫
Rn x

2
i dν, i = 1, ..., N exist, the distribution of Sn√

n
−
√
n ·m tends to the

normal distribution N(0,Σ), where the mean m and covariance matrix Σ are given
by integrals related to monomials with |κ| = 1, 2:

m =

(∫
Rq
xidν

)
1≤i≤q

and Σ =

(∫
Rq
xixjdν −

∫
Rq
xidν

∫
Rq
xjdν

)
1≤i,j≤q

.

In the following let (X, ∗) be a commutative, second countable hypergroup.
We now imitate the ideas above and introduce moment functions for hypergroups
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which were first introduced )in a slightly different form) by Zeuner in [Z1]. How-
ever, unlike the Euclidean case we need to make additional assumptions on (X, ∗),
namely:

(A1) The dual X̂ can be identified with a closed subset of Rq for some q ∈ N,
where we assume that the identity character 1 corresponds to 0 ∈ Rq, i.e.
we assume ê = 0 ∈ X̂.

(A2) There exist linearly independent vectors ξ1, ..., ξn ∈ Rq and ε > 0 with

t1ξ1 + ...+ tnξn ∈ X̂ for t1, .., tn ∈ [0, ε].

(A3) We now fix the vectors ξ1, ..., ξq ∈ Rq as in (A2). Then each λ ∈ X̂ can

be written as λ = t1ξ1 + ... + tqξq ∈ X̂. We use the same notation as in
(29) for partial derivatives. Then, assume that for all x ∈ X and κ ∈ Zq+
the functions

∂κλϕλ(x)|λ=0

exist, and the map x 7→ ∂κλϕλ(x)|λ=0 is continuous on X.

Definition 3.8. Let (X, ∗) be a second countable hypergroup. Suppose that
the assumptions (A1), (A2) and (A3) are satisfied for X. Let µ ∈ M1(X) be a
probability measure on X.

(i) For κ ∈ Nq
0 the functions

mκ(x) := i|κ|∂κλϕλ(x)|λ=0 (x ∈ X)

with convention m(0,...,0) ≡ 1 are called moment functions of order κ.
(ii) If for κ ∈ Nq

0, the integral
∫
X
mκ(x)dµ(x) =: mκ(µ) exists, then it is called

κ-th moment of µ.
(iii) We say that µ admits moments up to order k (k ∈ N) if mκ(µ) < ∞ for

all κ ∈ Nq
0 with |κ| ≤ k.

(iv) Denote the space of measures with moments up to order k by:

M1
k(X) := {µ ∈M1(X) : mκ ∈ L1(X,µ) for all κ with |κ| ≤ k|}

Example 3.9. The moment functions for the Jacobi hypergroups (X, ∗α,β) the
moment functions for k ∈ N are given by

mk(x) =

∫ 1

0

∫ π

0

(
ln | coshφ+ r · eiφ sinh(φ)|

)k
dmα,β(r, φ).

where the measure dmα,β(r, φ) is as in (24).

We now return to the general theory where (X, ∗) is a commutative hypergroup
which satisfies the assumptions (A1), (A2) and (A3).

Lemma 3.10. For x, y ∈ X the moment functions satisfy the Leibniz rule

(30)

∫
X

mκ(z)d(δx ∗ δy)(z) =
∑
η≤κ

(
κ

η

)
mη(x)mκ−η(y)

for all κ ∈ Nq
0 with |κ| ≥ 1.
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Proof. Applying the product rule for the partial derivatives defined above
and using the fact that ϕ0(x) = 1, we obtain for x, y ∈ X and κ ∈ N q

0 with
|κ| > 0:

∂κλ(ϕλ(x)ϕλ(x))|λ=0 =
∑
η≤κ

(
κ

η

)
∂ηλϕλ(x)|λ=0 · ∂κ−ηλ ϕλ(x)|λ=0

=
∑
η≤κ

(
κ

η

)
mη(x)mκ−η(y).

Now, the result follows from above by definition of hypergroup characters and by
exchanging order of integration and differentiation:∫

X

mκ(z)d(δx ∗ δy)(z) = ∂κλ

( ∫
X

ϕλ(z)d(δx ∗ δy)(z)
)∣∣∣∣

λ=0

= ∂κλ(ϕλ(x)ϕλ(x))|λ=0

=
∑
η≤κ

(
κ

η

)
mη(x)mκ−η(y).

�

Proposition 3.11. Let (mκ)κ∈Nq0 be the moment functions defined as in Defi-
nition 3.8. Then

(a) mκ(e) = 0 for all κ ∈ Nq
0 with |κ| ≥ 1.

(b) Let n ∈ N. Then µ ∗ ν ∈M1
n(X) if and only if µ, ν ∈M1

n(X).

Proof. (a) We prove this by induction on n = |κ|. For all κ ∈ Nq
0 with |κ| = 1

it follows that mκ(e) = 1 by substituting x = y = e in Eq. (30). We now assume
that assertion is true for all κ ∈ Nq

0 with |κ| ≤ n. Denote j-th unit vector by ej.
Then, by substituting x = y = e and κ + ej instead of κ in the Eq. (30), one can
easily see that mκ+ej(e) = 0 for j = 1, ..., q, as claimed.
(b) We again prove this by induction on n = |κ|. We start with the case n = 1.
Let κ = ej for j = 1, ..., q. Indeed,

∫
X
|mej(z)|d(µ ∗ ν)(z) <∞ implies that∫

X

∫
X

∣∣mej(x) +mej(y)
∣∣ dµ(x)dν(y) =

∫
X

∫
X

∣∣∣∣∫
X

mej(z)d(δx ∗ δy)(z)

∣∣∣∣ dµ(x)dν(y)

≤
∫
X

∫
X

(∫
X

|mej(z)|d(δx ∗ δy)(z)

)
dµ(x)dν(y)

=

∫
X

|mej(z)|d(µ ∗ ν)(z) <∞.

Therefore, by Fubini’s theorem there exists y0 ∈ X such that∫
X

∣∣mej(x) +mej(y0)
∣∣ dµ(x) <∞.
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This implies

∫
X

∣∣mej(x)
∣∣ dµ(x) ≤

∫
X

(∣∣mej(x) +mej(y0)
∣∣+ |mej(y0)|

)
dµ(x) <∞,

and by symmetry we get
∫
X
|mej(z)|dν(z) < ∞. The reverse implication follows

from

∫
X

|mej(z)|d(µ ∗ ν)(z) =

∫
X

∫
X

∣∣mej(x) +mej(y)
∣∣ dµ(x)dν(y)

≤
∫
X

|mej(x)|dµ(x) +

∫
X

|mej(y)|dν(y) <∞.

Thus the case n = 1 is complete.
Now, assume that the assertion holds for all κ ∈ Nq

0 with |κ| < n. The proof
of the assertion for |κ| = n is similar to the initial step. Assume that the integral∫
X
mκd(µ ∗ ν) exists for all κ ∈ Nq

0 with |κ| ≤ n. Then we obtain

∫
X

∫
X

∣∣∣∣∣∑
η≤κ

(
κ

η

)
mη(x)mκ−η(y)

∣∣∣∣∣ dµ(x)dν(y)

=

∫
X

∫
X

∣∣∣∣∫
X

mκ(z)d(δx ∗ δy)(z)

∣∣∣∣ dµ(x)dν(y)

≤
∫
X

∫
X

(∫
X

|mκ(z)|d(δx ∗ δy)(z)

)
dµ(x)dν(y)

=

∫
X

|mκ(z)|d(µ ∗ ν)(z) <∞.

Thus, by Fubini’s theorem there exists y0 ∈ X such that for all κ ∈ Nq
0 with

|κ| ≤ n,

∫
X

∣∣∣∣∣∑
η≤κ

(
κ

η

)
mη(x)mκ−η(y0)

∣∣∣∣∣ dµ(x) <∞.

36



This implies that∫
X

|mκ(x)|dµ(x) ≤
∫
X

∣∣∣∣∣∑
η≤κ

(
κ

η

)
mη(x)mκ−η(y0)

∣∣∣∣∣ dµ(x)

+

∫
X

∣∣∣∣∣∑
η<κ

(
κ

η

)
mη(x)mκ−η(y0)

∣∣∣∣∣ dµ(x)

≤

∣∣∣∣∣∑
η≤κ

(
κ

η

)
mκ−η(y0)

∣∣∣∣∣
∫
X

|mη(x)|dµ(x)

+
∑
η≤κ

(
κ

η

)
mκ−η(y0)

∫
X

|mη(x)|dµ(x) <∞,

and by symmetry we have
∫
X
|mκ|dν(x) < ∞. The reverse implication follows

from: ∫
X

|mκ(z)|d(µ ∗ ν)(z) =

∫
X

∫
X

∣∣∣∣∫
X

mκ(z)d(δx ∗ δy)(z)

∣∣∣∣ dµ(x)dν(y)

≤
∫
X

∫
X

∑
η≤κ

(
κ

η

)
|mη(x)||mκ−η(y)|dµ(x)dν(y)

=
∑
η≤κ

(
κ

η

)∫
X

|mη(x)|dµ(x)

∫
X

|mκ−η(y)|dν(y).

�

We now construct a martingale from the Markov process (St)t∈I using the
moment functions:

Proposition 3.12. Let (X; ∗) be second countable hypergroup and let I = N
or [0,∞). Moreover, let (St)t∈I a Lévy process or random walk on (X, ∗) defined
as in Lemma 3.3.
(a) If (St)t≥0 admits first moments i.e E(mej(St)) < ∞ for all t ≥ 0 and j =
1, ..., N then (mej(St)− E(mej(St)))t≥0 is a martingale .
(b) If the (St)t≥0 admits second moments for j, k = 1, ..., N then

(mej+ek(St)−mej(St)E(mek(St))−mek(St)E(mej(St))

+ E(mej(St))E(mek(St))− E(mej+ek(St)))t≥0

is a martingale.

Proof. See Theorem 4.37 in [RV2]. �
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CHAPTER 4

Spherical functions on noncompact Grassmann manifolds
and hypergreometric functions

In this chapter we collect some properties of spherical function on symmetric
spaces. We will look at identifications of spherical functions with hypergeometric
functions associated with root systems, which were studied by Heckman and Op-
dam (see [HS]). We also recapitulate Harish-Chandra integral representation for
spherical functions. In particular, we focus on the above properties of spherical
functions on Grassmann manifolds Gp,q(F). We also study spherical functions on
GL(q,F)/U(q,F) which appear the as the limit of spherical functions on Grass-
mann manifolds above.
For convenience of the reader we give a short survey on this subject based on [R2].
We shall see from the results of [R1] that these functions lead to a larger classes
of commutative hypergroups than just the double coset hypergroups (G//K, ∗)
associated with non-compact symmetric space G/K. .

1. Root systems, Cherednik operators and hypergeometric functions

The basic ingredients in the theory of hypergeometric functions are root sys-
tems and finite reflection groups acting on some Euclidean space. Let a be Eu-
clidean space with inner product 〈·, ·〉. We extend this inner product to a complex
bilinear form on the complexification aC of a. For α ∈ a \ {0} we denote by rα the
orthogonal reflection on the hyperplane

Hα = {x ∈ a : 〈x, α〉 = 0}

perpendicular to α, i.e rα is given by

rα(x) := x− 2〈x, α〉
|α|2

α.

Definition 4.1. A finite subset R ⊂ a is called an abstract root system, if a
is spanned by R and rα(R) = R for all α ∈ R. Moreover,

• R is called reduced if for all α, β ∈ R
2〈α, β〉
〈β, β〉

∈ Z.

• R is called crystallographic if α ∈ R implies 2α /∈ R.
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The group W generated by reflections {rα, α ∈ R} is called Weyl group associ-
ated with R. The dimension of spanRR is called rank of R. If R is crystallographic,
then spanZR forms a root lattice Q = R.Z which is stabilized by the action of as-
sociated Weyl group. The root systems occurring in Lie theory and in a geometric
context associated with Riemannian symmetric spaces are always crystallographic,
see [HS].

Next, we lay out some well known facts about root systems.

Lemma 4.2. (i) If α ∈ R then also α ∈ −R.
(ii) For any root system R in a the Weyl group W is finite.

(iii) The set of reflections contained in W is exactly {rα : α ∈ R}.
(iv) ωrαω = rωα for all ω ∈ W and α ∈ R.

Proof. See Lemma 2.2 in [RV2]. �

As one can see from (i) above, one can write R as a disjoint union R =
R+ ∪ R−, where R+ and R− are separated by hyperplane Hα. We call R+ a
positive subsystem. Furthermore, we call a root simple, if it cannot be written as
a sum of two positive roots. There are exactly q = dim a simple roots and they are
linearly independent. Let {α1, ..., αq} be the basis generated by the simple roots.
Then, every root β ∈ R can be written as linear combination β = x1α1 + ...+xqαq
of α1, ..., αq, where all of xi’s have the same sign. For details and proofs we refer
to [Hu].

We call λ ∈ a dominant if 〈αi, λ〉 ≥ 0 for i = 1, ..., q, and strictly dominant if
the inequality is strict. The set of all strictly dominant vectors generates a Weyl
chamber

C := {λ ∈ a : 〈λ, α〉 > 0 for all α ∈ R}.
It can be shown that the topological closure C̄ of the Weyl chamber C is a fun-
damental domain, i.e. C̄ is naturally homeomorphic to the space (a)W of all W
orbits of in a, endowed with quotient topology.
We now give a list of important examples of root systems (see [RV2]):

Example 4.3. • The root system Aq−1. Let Sq denote the symmetric
group of q elements. It acts faithfully on a by permuting the standard basis
vectors e1, ..., eq. Each transposition (ij) acts as a reflection rij sending
ei − ej to its negative. It is a finite reflection group, since Sq is generated
by transpositions. The root system of Sq is called Aq−1 and is given by

Aq−1 = {±(ei − ej), 1 ≤ i < j ≤ q}.

This root system is crystallographic. Its span is the orthogonal complement
of the vector e1 + ...+ eq, and thus the rank is q − 1.
A positive subsystem is given by

RA
+ = {(ej − ei), 1 ≤ i < j ≤ q}
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and the associated Weyl chamber is

CA
q := {x ∈ Rq : x1 ≥ x2... ≥ xq}.

• The root system Bq. Here W is the reflection group in a generated by
the transpositions (ij) as above, as well as by the sign changes ri : ei 7→
−ei in all coordinates i = 1, ..., q. The corresponding root system is called
Bq; it is given by

Bq = {±ei, 1 ≤ i ≤ q} ∩ {±(ei ± ej), 1 ≤ i < j ≤ q}.
Bq is crystallographic and has rank q.
Here a positive subsystem is given by

RB
+ = {ei, 1 ≤ i ≤ q} ∩ {(ei ± ej), 1 ≤ i < j ≤ q}

and the associated Weyl chamber is

CB
q = {t ∈ Rq : x1 ≥ x2... > xq ≥ 0}

• The root system BCq is given by

BCq := {±ei,±(2ei)} ∪ {±(ei ± ej), 1 ≤ i < j ≤ q}.
Here a positive subsystem is given by

RBC
+ := {ei, 2ei} ∪ {ei ± ej, 1 ≤ i < j ≤ q}

and its associated Weyl chamber is the same as the Weyl chamber associ-
ated with the root system Bq.

Definition 4.4. Let R be a root system and W be its Weyl group. A W -
invariant map m : R → C, α 7→ mα is called a multiplicity function. Denote the
set of multiplicity functions by M and define the half sum of roots by

(31) ρ = ρ(m) :=
1

2

∑
α∈R+

mαα.

The set of multiplicity functions forms a C-vector space whose dimension is
equal to the number of W -orbits in R. We are now ready to introduce the main
object in the theory of this section, namely Cherednik operators. For extended
information on Cherednik operators see [HS].

Definition 4.5. Let ξ ∈ aC and m be a multiplicity function. The Cherednik
operator is given by

(32) Tξ = T (ξ,m) := ∂ξ +
∑
α∈R+

mα〈α, ξ〉
1

1− e−2α
(1− rα)− 〈ρ, ξ〉,

where ∂ξ denotes a directional derivative corresponding to ξ and eλ is the expo-
nential function eλ(ξ) := e〈α,ξ〉 for λ, ξ ∈ aC.

For m = 0 reflection terms vanish and the Cherdnik operator becomes simply
the directional derivative ∂ξ in direction ξ.
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Remark 4.6. We notice that in the works of Heckman and Opdam (cf. [HS])
parameters appear in slightly different normalization, namely root system R there,
corresponds to 2R in our notation and multiplicities k2α there correspond to 1

2
mα

in our notation. However, definition of ρ does not change since

ρ =
1

2

∑
α∈R+

mαα =
1

2

∑
2α∈2R+

k2α2α.

Definition 4.7. Denote the space of finite linear combinations of functions
eλ, λ ∈ Λ by

C[eP ] =: {
∑

aλe
λ : λ ∈ Λ, aλ ∈ C}.

We call C[eP ] the space of trigonometric polynomials.

Basic algebraic computations show that Tξ, ξ ∈ aC, maps C[eP ] into itself, for
the proof see Proposition 2.10 in [O]. This property extends to the algebra of
complex polynomials P(aC), C∞(aC) on aC.

One can also consider an analogue of Laplace operator in the Cherednik setting:

Definition 4.8. The Heckman-Opdam Laplacian is given by

(33) ∆mf(x) :=
n∑
i=1

T 2
ξi
f(x)− 〈ρ, ρ〉,

where {ξ1, ..., ξq} is an arbitrary orthogonal basis of a.

The Heckman-Opdam Laplacian is independent from the choice of the basis,
see Proposition 1.2.3 in [HS]. Explicitly, ∆m is given as follows:

(34) ∆mf(x) = ∆f(x) +
∑
α∈R+

mα coth〈α, x〉∂αf(x)

−
∑
α∈R+

mα
|α|2

2 sinh〈α, x〉
(f(x)− f(rαx)),

where ∆ denotes the euclidean Laplace operator on a. The action of W on func-
tions f : a→ C is given by

w · f(x) := f(w−1x) for all x ∈ a.

The Cherednik operators Tξ do not commute under the actions of w ∈ W in
general. However, one has has the following weak W -equivariance property:

Proposition 4.9. Let Tξ be the Cherednik operator associated with the root
system R and the Weyl group W . Then Tξ is weakly W -equivariant. This means
that for all ξ ∈ aC and w ∈ W,

(35) (w ◦ Tξ ◦ w−1)f(x) = Twξf(x) +
∑

α∈R+∩wR−
mα〈α,wξ〉f(rαx).
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Proof. See Proposition 1.1 in [O]. �

The second fundamental property of the Cherednik operator is commutativity.

Theorem 4.10. Fix a multiplicity m. Then

Tη ◦ Tξ = Tξ ◦ Tη for all η, ξ ∈ aC.

The proof was given by Heckman where he used simultaneous diagonalization
methods for some polynomials constructed using trigonometric polynomials, see
Corollary 2.7. [O].
The commutativity property for Tξ, ξ ∈ aC implies that ξ 7→ Tξ can be extended to
a homomorphism from the symmetric algebra S(aC) to the commutative algebra
of differential-reflection operators which is generated by Tξ. Since the symmetric
algebra S(aC) can be identified with the space of polynomials P(aC) over aC, this
leads to the notion of Cherednik operators Tp for every p ∈ P(aC). Let us denote
by P(aC)W the subalgebra of P(aC) consisting of the polynomials which are W -
invariant. We obtain from Proposition 4.9 that for any W -invariant polynomial
p ∈ P(aC)W and each f ∈ P(aC)W , Tpf ∈ P(aC)W holds. As Tp ◦ Tq = Tpq for all
p, q ∈ P(aC), in particular we have that

T̃p ◦ T̃q = T̃pq

for all p, q ∈ P(aC)W . It has been shown in [HS] that for p ∈ P(aC)W the
operators T̃p are differential operators on P(aC)W , where the degree of T̃p is equal
to the degree of polynomial p with coefficients from P(aC)W . In particular, the
Heckman-Opdam Laplacian can be regarded as Cherednik operator

∆m = Tp, with p(x) = |x|2.
As p ∈ P(aC)W , it follows from (35) that the restriction of ∆m to P(aC)W is given
by

(36) ∆̃m = ∆ +
∑
α∈R+

coth〈α, ·〉∂α.

Notice that the operator ∆̃m is singular on reflection hyperplanes Hα = {x ∈ a :
〈x, α〉 = 0}.

The next theorem is the basis for the main result for this section. It was proved
by Heckman and Opdam in a series of papers, cf. [HS] or Theorem 3.5 in [O].

Theorem 4.11. There exists a set Mreg ⊆M with

{m ∈M : <(m) ≥ 0} ⊆ Mreg

such that for every m ∈Mreg and λ ∈ aC, the system

Tξf = 〈λ, ξ〉f, ξ ∈ a

f(0) = 1(37)
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has a unique solution f(x) = G(λ,m;x) on a, which is called Opdam hypergeo-
metric function. Furthermore, there exists a W -invariant tubular neighbourhood
U of a in aC, such that the solution

(λ, x) 7→ G(λ,m;x)

is a holomorphic function G(λ,m;x) of λ ∈ aC, x ∈ U and m ∈Mreg.

We now define a mean of the Opdam hypergeometric function with respect to
Weyl group W :

Definition 4.12. The Heckman-Opdam hypergeometric function is the aver-
age

(38) F (λ,m;x) :=
1

|W |
∑
w∈W

G(λ,m;wx).

In light of the extension of ξ 7→ Tξ, ξ ∈ aC, to p 7→ Tp, p ∈ P(aC), F (λ,m;x)
can be characterized by the following system of differential-reflection equations.

Corollary 4.13. The Heckmann-Opdam hypergeometric function F (λ,m; ·)
is the unique solution of differential equations

T̃pf = p(λ)f for all p ∈ P(a)W

fλ(0) = 1.(39)

In view of (39) one can also consider the differential equation for Heckman-
Opdam Laplacian. In this spirit the hypergeometric function Fλ is the unique
solution of system of differential equations

(40) ∆mf = (|λ|2 − |ρ|2)f.

where |λ|2 =
∑
λ2
i is the Euclidean norm.

2. Spherical functions on symmetric spaces

In this section we give a necessary background on the theory of symmetric
spaces. We will focus on different characterizations of spherical functions in the
sense of the Definition 2.15. The most important property of spherical functions
that they can be identified by hypergeometric functions. We shall also give a
famous result by Harish-Chandra which states that the spherical functions admit
an integral representation.

2.1. Root system identification for symmetric spaces. Consider a semisim-
ple connected Lie group G with some maximal compact subgroup K. We first
describe the root system associated with G/K. We follow here Chapter 2 in [HS],
for more background see [H1].
Let g be the Lie algebra of Lie group G. Since G is semisimple the Killing form B
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on g is non-degenerate. As in chapter 2, let θ be an involutive automorphism on
G, such that

K = {g ∈ G : θ(g) = g}.
As an automorphism of G, θ fixes the identity element, and hence, by differentiat-
ing at the identity it induces an automorphism of the Lie algebra g of G, which we
will also denote by θ, whose square is identity. It follows that the eigenvalues of θ
are 1,-1. Let k be the Lie algebra of K. Then, k ⊂ g is defined as the eigenspace
of 1, i.e.

k = {X ∈ g : θ(X) = X}.
Denote by q the eigenspace of −1, i.e.

q = {X ∈ g : θ(X) = −X}.
Since θ is an automorphism on g with θ2 = id, this gives the direct sum decompo-
sition

g = k⊕ q

which is also called the Cartan decomposition. Here, the Killing form B is negative
definite on k and positive definite on q. In particular, (q, B) is isomorphic to a
Euclidean space with finite dimensions, where B is Killing form on g.
Choose now a maximal abelian subspace a of q. Then choose q ∈ N such that
(a, B) ' (Rq, 〈·, ·〉) and let aC. Let a∗ be the dual vector space to a. For each
α 6≡ 0 in the dual a∗ of a let

gα = {X ∈ g : [H,X] = α(H)X for all H ∈ a}.
Those α 6= 0 with gα 6= {0} are called the restricted roots of g w.r.t. a or the roots
of (g, a). The geometric multiplicity mα is defined as the dimension of a. Given
the root system R(g, a) we can define a positive subsystem R+ := R+(g, a) in the
same as in the case of abstract root decomposition. Similarly, we define the half
sum of restricted roots by

ρ = ρ(m) :=
1

2

∑
α∈R+

mαα.

Now, let g0 be the centralizer of a. Then, the simultaneous diagonalization of the
commuting operators adH,H ∈ a leads to the root space decomposition

(41) g = g0 +
∑
α∈R

gα,

In summary, for all pairs (G,K) as above we can find can find associated triple
(a, R,m). If we identify a∗ with a, then the geometric root system R(g, a) can
be identified with some abstract root system from Definition 4.1, for details cf
Theorem 2.6 in [HS]. We denote the set of restricted roots by R(g, a). These roots
correspond to reflections which rα which generates Weyl-group W.
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2.2. Spherical functions and hypergeometric functions. We shall now
give two different properties for spherical functions of non-compact symmetric
spaces G/K, where G is a connected non-compact Lie group. The first property
involves an integral representation which traces back to Harish-Chandra. The
second property involves the connection between spherical functions and hyperge-
ometric functions.

In order to give the integral formula for spherical function we recapitulate the
Iwasawa decomposition of Lie groups. Let G be a semisimple connected non-
compact Lie group G. Then G admits Iwasawa decomposition G = KAN and
g = k⊕ a⊕ n where K,A and N are compact, abelian and nilpotent subgroups of
G, and k, a and n are their respective Lie algebras, c.f. [GV]. In the Propositions
2.18 and 2.19 we have considered this decomposition the cases G = GL(q,F) and
SU(p, q,F) for F = R,C and H and p, q ∈ N with p ≥ q. This decomposition
G = KAN is called the Iwasawa decompostion. It induces a diffeomorphism

K × A×N → G,

(k, a, n) 7→ kan.

Now, let exp : a → A be an exponential map. This map is an isomorphism with
inverse log : A 7→ a. We are now ready to present the integral representation for
spherical functions for (G,K):

Theorem 4.14. Let G be defined above. For g ∈ G, let H(g) ∈ a, k(g) ∈ K be
the unique elements such that g ∈ N expH(g)k(g). Then, as λ runs through a∗C
the functions

(42) ϕλ(g) :=

∫
K

e(iλ−ρ)(H(gk))〉dωK(k)

exhaust the class of spherical functions on (G,K), where ρ denotes the half sum
of the roots. Moreover ϕλ = ϕλ′ if and only λ = wλ′ for some w ∈ W.

Proof. See Theorem 4.3 in [Hel2]. �

Theorem 4.14 leads to a parametrization of the space of spherical functions of
(G,K). From now on, when we write ϕλ, λ ∈ a∗C is a spherical function, we mean
the function ϕλ indexed as in Eq. (42) above. Since the spherical functions are
K-biinvariant ϕλ is uniquely determined by the values ϕλ(a), a ∈ A.

Theorem 4.15. Let G be simply connected, semisimple non-compact Lie group
with maximal compact subgroup K. Moreover let (a, R,m) be the corresponding
triple to (G,K) as above. Then for all λ ∈ a∗C and x ∈ a

(43) ϕλ(expx) = F (iλ,m;x)

Proof. See Theorem 5.2.2 in [HS]. �
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3. Spherical functions of non-compact Grassmann manifold

In view of Heckman-Opdam theory the (restricted) root system decomposi-
tion of the noncompact Grassmann manifold Gp,q corresponds to the abstract root
system BCq. Moreover, the the corresponding double coset hypergroup (CB

q , ∗p,q)
can be extended to all p ∈ (2q − 1,∞) using the identification ( 43) of spherical
functions ϕp with hypergeometric functions.
The symmetric space Gq ' Pq(F) is closely related with the abstract root system
Aq−1 introduced in Definition 4.3. For both symmetric spaces we give explicit
integral representations for the spherical functions in the sense of Theorem 4.14.
The symmetric spaces Gp,q and Gq have a close relationship: As p → ∞ spherical
functions on GL(q,F)/U(q,F) converge to spherical function on Gq. Throughout
this section we follow [RV1], [R2], closely.

3.1. Spherical functions of noncompact Grassmannian. Let Gp,q = G/K
be Grassmann manifold where G is one of the groups SO0(p, q), SU(p, q) and
Sp(p, q), and subgroup K is one of the groups SO(p)×SO(q), S(U(p)×U(q)) and
Sp(p)× Sp(q), respectively.
The Lie algebra g of G is given by the matrices X ∈Mp+q of the block form

X =

(
A B
B∗ D

)
where A ∈Mq(F) and D ∈Mp(F) are skew-Hermitian matrices with the property
trA+trD = 0, and B ∈Mq,p(F). Let k be the Lie algebra of K and let g = k⊕q be
the associated Cartan decomposition of g. Then the q consists of block matrices
X ∈Mp+q

X =

(
0 C
C∗ 0

)
where C ∈Mq,p.
In accordance with [S] (see also Proposition 2.19) we can identify a maximal
abelian subspace a of q with Rq by the matrices

Hx =

 0q×q x 0q×(p−q)
x 0q×q 0q×p−q

0(p−q)×q 0(p−q)×q 0(p−q)×(p−q)


where x = diag(x1, ..., xq) is the diagonal matrix corresponding to x = (x1, ..., xq) ∈
Rq. The abelian group A in the Iwasawa decompostion G = KAN consists of
elements

ax = exp(Hx) =

coshx sinhx 0
sinhx coshx 0

0 0 Ip−q


as in Proposition 2.19.
The corresponding restricted root system R(g, a) is of type Bq if F = R and of
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type BCq if F = C,F and the real rank of this symmetric space is q. The restricted
roots α ∈ a∗ are given by

{±ei,±2ei,±ei ± ej : 1 ≤ i, j ≤ q}.

In this case we have 3 classes of roots (c.f. Example 4.3(3)) which correspond
to 3 different root spaces in the root space decomposition (41). These roots with
corresponding geometric multiplicities mα = mα(p, q, d) are give in the table below.

Root α Multipilcity mα

α(Hx) = ±xi = ±ei · x, 1 ≤ i ≤ q d(p− q)
α(Hx) = ±2xi = ±2ei · x, 1 ≤ i ≤ q d− 1
α(Hx) = ±ti ± xj = ±(ei ± ej) · x, 1 ≤ i ≤ q d

Here d denotes the real dimension of the underlying field R,C and H. For the
explicit description of root space decomposition see [RV1], [S].
Here a positive subsystem can be identified by

R+ = {ei, 2ei : 1 ≤ i ≤ q} ∪ {ei ± ej : 1 ≤ i < j ≤ q}.

The sum of positive half roots is

(44) ρBC = ρBC(p) =
1

2

q∑
α∈R+

mαα =

q∑
i=1

(
(
d

2
(p+ q + 2− 2i)

)
ei.

Denote the triplet of multiplicities by

mp = (d(p− q), (d− 1)/2, d/2).

In view of Theorem 2.16 for integers p ≥ 2q the spherical functions associated
with Gp,q(F) are given by

ϕpλ(ax) = FBC(iλ,mp, x),

where FBC is the hypergeometric function of type BCq.

We now give explicit description of Harisch Chandra integral formula (42 for
the spherical functions ϕpλ. For this we need to introduce some notation. For a
square matrix A = (ai,j)1≤i≤j≤q over F we denote by ∆r(A) = det((ai,j)1≤i≤j≤r) the
r-th principal minor of A. Here, for F = H the determinant is understood in the
sense of Dieudonné, i.e. det(A) = (detC(A))1/2 when A is considered as a complex
matrix. See [A] for more information about Dieudonné determinant. Moreover,
for λ ∈ Cq ' a∗C and x ∈ Pq(F), we define

(45) ∆λ(x) = ∆1(x)λ1−λ2∆2(x)λ2−λ2 ...∆q(x)λq .

Theorem 4.16 (Corollary 2.2, [RV1]). Let Gp,q(F) be a non-compact Grass-
mannian. Assume that p ≥ 2q is an integer. Then the spherical functions are
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given by

(46) ϕpλ(ax) =

∫
U0(q,F)

∫
Bq

∆(iρBC−λ)(gx(u,w))dmp(w)du,

where du is the normalized Haar measure on U0(q,F), dmp(w) is the probability
measure defined in (20) and

gx(u,w) = u−1(coshx+ sinhxw)∗(coshx+ sinhxw)u.

We now identify x ∈ CB
q with matrices ax ∈ A above and regard ϕpλ as a

function of x ∈ CB
q . We note that the integral formula (46) can be extended to

p ∈]2q − 1,∞[. Notice that the domain of integration in the integral formula (46)
above is independent of p. This means that right hand side of the Eq. (46) remains
well defined for all p > 2q − 1. On the other hand, from Theorem 4.11 we know
that hypergeometric functions FBC are well defined for all multiplicities m with
<(m) ≥ 0. In our case this means that FBCq is well defined for all multiplicities

(47) mp = (d(p− q)/2, (d− 1)/2, d/2)

correponding to the roots ±ei,±2ei and (±ei ± ej) for p ∈ Cq with <p ≥ q.
Now, for p ∈ (2q − 1,∞) define the functions

ϕpλ(x) := FBCq(iλ,mp, x).

Then, for integers p the the functions ϕpλ are precisely the spherical functions in
(46). The extension ofthe integral formula (46) to p ∈ (2q−1,∞) can be obtained
by analytic continuation using Carlson’s theorem below.

Theorem 4.17. (Carlson) Let f be a function which is a holomorphic in a
neighborhood of {z ∈ C : <z ≥ 0} satisfying f(z) = O(ec|z|) for some constant
c < π. Suppose that f(n) = 0 for all n ∈ N0. Then f is identically zero.

For the detailed proof extension for integral formula we refer to Theorem 2.4
in [RV1].
We now return to the hypergroup (CB

q , ∗p,q) given in Definition 2.21, where p, q ∈ N
with p ≥ 2q−1 . As we pointed out in Chapter 2 we can can extend the convolution
∗p,q to all p ∈ (2q−1,∞), where the hypergroup structure remains preserved. This
extension is made with similar techniques by analytic continuation using Carlson’s
theorem above. More precisely we have:

Theorem 4.18. Let q ∈ N and p ∈ (2q − 1,∞) .

(1) The point measures δx, δy for x, y ∈ CB
q with convolution

(48) δx ∗p,q δy(f) :=
1

κpd/2

∫
Uq

∫
Bq

f(d(x, y, u, w))∆(I − w∗w)pd/2−γdudw,

for all f ∈ C∞(CB
q ) define a commutative hypergroup (CB

q , ∗p,q). Here, the
neutral element is 0 and involution is the identity mapping.
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(2) For all x, y ∈ CB
q

supp(δx ∗p,q δy) ⊂ {z ∈ CB
q : ‖z‖max ≤ ‖x‖max + ‖y‖max}

is satisfied, where ‖ · ‖max denotes the maximum norm in Rq.

Proof. See Theorem 4.1 in [R1]. �

We note that the functions ϕpλ, λ ∈ Cq exhaust all multiplicative functions
for (CB

q , ∗p,q) i.e., if φ(x)φ(y) = φ(x ∗p,q y) for all x, y ∈ CB
q , then there exists

λ ∈ C such that ϕpλ = φ, see Lemma 5.3 in [R2]. In fact, the set of multiplicative
characters and the dual space for CB

q can be explicitly determined:

Theorem 4.19. [5.4 in [R1]] Let p ∈ (2q − 1,∞). The set of multiplicative
functions and the dual of the hypergroup (CB

q , ∗p,q) are given by

χ((CB
q , ∗p,q) = {ϕpλ : λ ∈ CB

q + iCB
q },

̂(CB
q , ∗p,q) = {ϕpλ ∈ χ((CB

q , ∗p,q) : λ̄ ∈ WB.λ and =λ ∈ co(WB.ρBC)}

respectively, where ρBC is the half sum of multiplicities and co(WB.ρBC) denotes
the convex hull of Weyl orbit WB.ρBC .

3.2. Spherical functions of GL(q,F)/U(q,F)) and limit transition. Let
Gq = G/K be symmetric space with (G,K) = (GL(q,F), U(q,F)) for F = R,C
and H. It is well known that G has Iwasawa decomposition G = KAN where the
abelian group is given by A = exp(a) with

a = {Hx = x : x = (x1, ..., xq) ∈ Rq}

and the unique nilpotent group N consists of upper diagonal matrices with entries
1 in the diagonal. We can identify a through the map x 7→ Hx with Rq. The
restricted root system ∆(g, a) is of type Aq−1. The restricted roots α ∈ a∗ are
given by

α(Hx) = ±(xi − xj) = ±(ei − ej) · x for i, j ∈ {1, ..., q.}
Then, an abstract positive root subsystem is given by

R+ = {ei − ej : 1 ≤ i < j ≤ q}.

The sum of positive half roots is

ρA =
1

2

q∑
α∈R+

mαα =

q∑
i=1

(
d

2
(q + 1− 2i)

)
ei

The following explicit integral representation for spherical functions of type
Aq−1 was obtained in [RV1] using the Harish-Chandra representation (42).
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Theorem 4.20. The spherical function ϕAλ of (G,K) = (GL(q,F), U(q,F))
admits an integral representation

(49) ϕAλ (ex) =

∫
U(q,F)

∆(λ−iρA)/2(ue2xu−1)du

for all λ ∈ Cq and x ∈ Rq.

Proof. See Section 3 in [RV1].
�

The spherical function ϕpλ converges to ϕAλ as p → ∞. For convenience we
define

ψλ(x) := ϕAλ (coshx) =

∫
U(q,F)

∆(λ−iρA)/2(u cosh2 xu−1)du

for x ∈ Rq. The following convergence result was obtained in [RV2]:

Theorem 4.21. Let p > 2q − 1, x ∈ CB
q and λ ∈ Cq such that =λ − ρBC

is contained in co(W.ρA), i.e. ϕλ−iρBC is bounded in CB
q . Then, there exists a

universal constant C = C(F, q) such that

(50) |ϕpλ−iρBC (x)− ψλ−iρA(x)| ≤ C · ‖λ‖1 · x̃
p1/2

where x̃ = min(x1, 1). In particular, for these spectral parameters λ the order of
convergence is uniform of order p−1/2 in x ∈ CB

q .

Proof. See Theorem 4.2 in [RV2]. �
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CHAPTER 5

Limit theorems with fixed dimensions

In this chapter we study several limit theorems for time-homogeneous ran-
dom walks on hypergroups (CA

q , ∗q) and (CB
q , ∗p,q) for fixed p, q ∈ N with p > q,

which can be identified with double coset hypergroups (G//K, ∗π) for symmet-
ric spaces G/K = GL(q,F)/U(q,F) corresponding to root system of type Aq−1

and G/K := Gp,q(F) corresponding to root system of type BC, respectively. By
the extension in Theorem 4.18 results are valid for random walks on hypergroups
(CB

q , ∗p,q) for all p ∈ [2q− 1,∞). We consider here two kinds limit theorems under
two different normalization procedures: inner and outer normalizations. These
normalizations yield different limiting distributions. We note that the results with
outer normalizations were derived in [R2], we state these results without proofs
to have a full picture and to compare with the results for growing dimensions p
in Chapter 6. We start with limit theorems on (CA

q , ∗q) as A-case can be in the
Heckman-Opdam theory appears a limit of the BC-case.

1. Limit theorems on the hypergroup (CA
q , ∗q)

Let (S̃n)n≥0 be a random walk on the hypergroup (CA
q , ∗) associated with some

probability measure µ i.e. (S̃n)n≥0 a time-homogeneous Markov process with start
in 0 ∈ CA

q and transition probabilities

(51) P(S̃n+1 ∈ A| (S̃n = x) = (δx ∗q µ)(A) (x ∈ CA
q , A ⊂ CA

q a Borel set).

Remark 5.1. In view of Theorem 3.3 the random walk (S̃n)n≥0 above, can be
identified with random walk on G := GL(q,F) in the following way: Let (Sn)n≥0

on G with a K-biinvariant associated probability measure µG, then the process

(S̃n)n≥0 := (lnσsing(Sn))n≥0

is a random walk on with associated (CA
q , ∗q) associated with the probability measure

µ̃, which is the image of µG under the map lnσsing : G→ CA
q .

We present strong LLN and CLT with outer normalization for the random walk
(S̃n)n≥0 under some moment conditions for the associated measure µ, that is

S̃n
n
→ mA

1 (µ) almost surely,
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for some vector mA
1 (µ), and the distributions of

1√
n

(S̃n − n ·mA
1 (µ))

converge to some normal distribution N(0,ΣA(ν)).

We now give the precise formulas for the vector mA
1 (µ) and covariance matrix

ΣA(µ) via moment functions of the hypergroup (CA
q , ∗q). Let mA

l , l ∈ Nq
0 be the

the moment functions on (CA
q , ∗q) as in Definition 3.8. By definition these moment

functions are given by partial derivatives the spherical function ϕAλ . More precisely,
for multiindices l = (l1, . . . , lq) ∈ Nq

0 the moment functions mA
l are given by

mA
l (x) :=

∂|l|

∂λl
ϕA−iρ−iλ(x)

∣∣∣
λ=0

=
∂|l|

(∂λ1)l1 · · · (∂λn)lq
ϕA−iρ−iλ(x)

∣∣∣
λ=0

=
1

2|l|

∫
K

(ln ∆1(u−1e2x u))l1 ·
(

ln

(
∆2(u−1e2x u)

∆1(u−1e2t u)

))l2
·

· · ·
(

ln

(
∆q(u

−1e2x u)

∆q−1(u−1e2x u)

))lq
du(52)

of order |l| := l1 + · · ·+ lq for x ∈ CA
q . The last equality in (52) follows from (49)

by interchanging integration and derivatives. We denote the j-th unit vector by
ej ∈ Nq and the moment functions of order 1 and 2 by mA

ej
and mA

ej+ek
(j, k =

1, .., q). The q moment functions of first order lead to the vector-valued moment
function

(53) mA
1 (x) := (mA

e1
(x), ...,mA

eq(x))

of first order. Moreover, the moment functions of second order can be grouped by

mA
2 (x) :=

 mA
2e1

(x) · · · mA
e1+eq(x)

...
...

mA
eq+e1

(x) · · · mA
2eq(x)

 for x ∈ CA
q .

We now form the q×q-matrices ΣA(x) := mA
2 (x)−mA

1 (x)t ·mA
1 (x). These moment

functions have the following basic properties; see Section 2 of [V2]:

Lemma 5.2. (1) There is a constant C = C(q) such that for all x ∈ CA
q ,

‖mA
1 (x)− x‖ ≤ C.

(2) For each x ∈ CA
q , ΣA(x) is positive semidefinite.

(3) For x = c · (1, . . . , 1) ∈ CA
q with c ∈ R, ΣA(t) = 0. For all other x ∈ CA

q ,

ΣA(x) has rank q − 1.
(4) All second moment functions mA

ei+ej
(x) are growing at most quadratically,

and mA
2e1

(x) and mA
2eq(x) are in fact growing quadratically.
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(5) There exists a constant C = C(p) such that for all x ∈ CA
q and λ ∈ Rq,

|ϕA−iρA−λ(x)− ei〈λ,mA1 (x)〉| ≤ C||λ||2.

Let µ ∈ M1(CA
q ). In accordance with Definition 3.8, for k ∈ N we say that

µ admits all moments of type A up to order k if for all l ∈ Nq
0 with |l| ≤ k the

moment condition mA
l ∈ L1(CA

q , µ) holds. Now, by Lemma 5.2(1) it follows that

µ admits all moments of type A up to order 1 if the usual moments
∫
CAq
xidµ(x)

(i = 1, ..., q) of order 1 exist. Similarly, Lemma 5.2(4) implies that µ admits all
moments of type A up to order 2 if the usual second order moments

∫
CAq
x2
i dµ(x)

(i = 1, ..., q) exist. This means that if µ admits second moments, then the second
order moment matrix mA

2 (µ) and the covariance matrix ΣA(µ) exist.
We are now ready to present the strong of law large numbers and central limit
theorem for the random walk (S̃n)n≥1 on (CA

q , ∗q) with associated measure µ which
was obtained in [V2].

Theorem 5.3. (Theorem 2.4 in [V2])

(1) If µ admits first moments, then for n→∞,

S̃n
n
→ mA

1 (µ) almost surely.

(2) If µ admits second moments, then for all ε > 1/2 and n→∞,
1

nε
(S̃n − n ·mA

1 (µ))→ 0 almost surely.

Theorem 5.4. (Theorem 2.5 in [V2]) If µ ∈ M1(CA
q ) admits finite second

moments, then for n→∞
1√
n

(S̃n − n ·mA
1 (µ))→ N(0,ΣA(µ)) in distribution.

2. Limit theorems for random walks on (CB
q , ∗p,q)

Let p ∈ (2q − 1,∞) and consider a random walk (S̃pn)n≥0 on the hyper-

group (CB
q , ∗) associated with some probability measure µ i.e. (S̃pn)n≥0 a time-

homogeneous Markov process with start in 0 ∈ CB
q and transition probabilities

(54) P(S̃pn+1 ∈ A| (S̃pn = x) = (δx ∗p,q µ)(A) (x ∈ CB
q , A ⊂ CB

q a Borel set).

Remark 5.5. In view of Theorem 3.3, for integers p ≥ 2q, the random walk
(S̃n)n≥0 above, can be identified with a random walk on G := SU(p, q,F) in the
following way: Let (Spn)n≥0 be a random walk on G associated with K-biinvariant
probability measure µG, then the process

(S̃pn)n≥0 := ((arccosh(A(Spn))n≥0
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is a random walk on (CB
q , ∗p,q) with associated with the probability measure µ̃,

which is the image of µG under the map arccosh(σsing(A(·)) : G→ CB
q , where A(·)

is given as in Eq. (17).

We consider limit theorems for (S̃pn)n≥0 under two different normalization pro-
cedures:
The first case with outer normalization: We present a CLT and strong LLN re-
sults for the random variable S̃pn under some moment conditions for the associated
measure µ, that is

S̃pn
n
→ mp

1(µ) almost surely,

for some vector mp
1(µ), and the distributions of the random variable

1√
n

(S̃pn − n ·m
p
1(µ))

converge to some normal distribution N (0,Σp(µ)).
The second case is the inner normalization, consider the following setting: Fix
some nontrivial probability measure µ ∈ M1(CB

q ) with some moment condition
and for d ∈ (0, 1) consider the component-wise compression map Dc : x 7→ c · x
on CB

q as well as compressed measure µc := Dc(µ) ∈ M1(CB
q ). For given µ and

c we consider the random walk (S
(p,c)
n )n≥0 associated with µc. We investigate the

limiting behavior of (S
(p,n−1/2)
n )n≥1. The limit theorem for (S

(p,n−1/2)
n )n>1 in the

rank 1 case was studied by Zeuner [Z1]. In the group cases, this CLT is related
with the CLTs in [G1], [G2], [T1], [T2], [Ri].

We start with the first case and give the precise formulas for the vector mp
1(µ)

and the covariance matrix Σp(µ) via moment functions of the hypergorup (CB
q , ∗p,q).

Let mp
l , l ∈ Nq be the moment functions of the hypergroup (CB

q , ∗p,q) as in Defini-
tion 3.8. These moments are given by spherical functions ϕpλ. Thus, using integral
representation (46) for ϕpλ the moment functions mp

l for l = (l1, . . . , lq) ∈ Nq
0 are

given by :

mp
l (x) :=

∂|l|

∂λl
ϕp−iρBC−iλ(x)

∣∣∣
λ=0

:=
∂|l|

(∂λ1)l1 · · · (∂λq)lq
ϕp−iρBC−iλ(x)

∣∣∣
λ=0

=
1

2|l|

∫
Bq

∫
U(q,F)

(ln ∆1(g(x, u, w)))l1 ·
(

ln
∆2(g(x, u, w))

∆1(g(x, u, w))

)l2
·(55)

· · ·
(

ln
∆q(g(x, u, w))

∆q−1(g(x, u, w))

)lq
du dmp(w)(56)

for x ∈ CB
q . We also form the vector-valued first moment function mp

1, the matrix-
valued second moment function mp

2, as well as Σp(x) := mp
2(t)− (m1(x)p)t ·mp

1(x)
as above.

We have the following basic properties; see Section 3 of [V2]:
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Lemma 5.6. (1) There is a constant C = C(p, q) such that for all x ∈ CB
q ,

‖mp
1(x)− x‖ ≤ C.

(2) For each x ∈ CB
q , Σp(x) is positive semidefinite.

(3) Σp(0) = 0, and for t ∈ CB
q \ {0}, Σp(x) has full rank q.

(4) All second moment functions mp
ej+el

(x) are growing at most quadratically,

and mp
2e1

is growing quadratically.
(5) There exists a constant C = C(p, q) such that for all x ∈ CB

q and λ ∈ Rq,

|ϕp−iρ−λ(t)− e
i〈λ,mp1(t)〉| ≤ C||λ||22.

Similarly to the A-case, for ν ∈ M1(CB
q ) we define l-th BC(p) multivariate

moments of ν ∈M1(CB
q ) for l ∈ Nq

0 as mp
l (ν) :=

∫
CBq

mp
l (x)dν(t).

Theorem 5.7. (Theorem 3.5 in [R2])

(1) If µ admits first moments, then for n→∞,

S̃pn
n
−→ mp

1(µ) almost surely.

(2) If µ admits second moments, then for all ε > 1/2 and n→∞
1

nε
(S̃pn − n ·m

p
1(µ)) −→ 0 almost surely.

Theorem 5.8. (Theorem 3.6 in [R2])
If µ admits finite second moments, then for n→∞

1√
n

(S̃pn − n ·m
p
1(µ)) −→ N (0,Σp(ν)) in distribution.

We now turn to the second case. In order to state the limit theorem in the we
need to introduce some notation. We first define the hypergroup Fourier transform
on the hypergroup in accordance with Definition 2.7.

Definition 5.9. Let µ ∈ M1(CB
q ). Define the BC-type spherical (or hyper-

group) Fourier transform in the sense of Definition 2.7 by

FpBC(µ)(λ) :=

∫
CBq

ϕpλ(x)dµ(x)

for λ ∈ {λ ∈ Cq : =λ ∈ co(WB
q · ρ)}.

We note that the above hypergroup spherical transform is well defined by
Theorem 2.7 since ϕpλ is bounded for all λ ∈ {λ ∈ Cq : =λ ∈ co(WB

q · ρBC)}.
The dual space ̂(CB

q , ∗p,q) can be parametrized by the set {ϕpλ : λ ∈ CB
q or λ ∈

i · co(WB
q · ρBC)}. The support of Plancherel measure is parametrized by the set
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{ϕpλ : λ ∈ CB
q }.

Definition 5.10. Let µ ∈ M1(CB
q ). The BC-type spherical (or hypergroup)

Fourier transform is given by

FpBC(µ)(λ) :=

∫
CBq

ϕpλ(x)dµ(x)

for λ ∈ {λ ∈ Cq : =λ ∈ co(WB
q · ρBC)}.

We now give some estimates on spherical functions and Fourier transforms
from [V2].

Lemma 5.11. For all x ∈ CB
q , λ ∈ Rq, and l ∈ Nq

0,∣∣∣∣ ∂|l|∂λl
ϕpλ−iρ(x)

∣∣∣∣ 6 mp
l (x)

Lemma 5.12. Let k ∈ N0 and assume that µ ∈ M1(CB
q ) admits finite k-th

modified moments. Then, for all λ ∈ Cq with =λ ∈ co(WB
q · ρBC), FpBC(µ)(·) is

k-times continuously differentiable, and for all l ∈ Nn
0 with |l| 6 k,

(57)
∂|l|

∂λl
FpBC(µ)(λ) =

∫
CBq

∂|l|

∂λl
ϕpλ(x)dµ(x).

In particular,

(58)
∂|l|

∂λl
FBC(µ)(−iρ) =

∫
CBq

mp
l (x)dµ(x).

Remark 5.13. There are corresponding results to the Lemmas 5.11 and 5.12
for the A-case with the corresponding moment functions mA

l for l ∈ Nq
0 and the

Fourier transform FA and µ ∈M1(CA
q ); see Lemmas 6.1, 6.2 in [V2].

We now define a version of Gaussian measure in connection with the above
hypergroup Fourier transform.

Definition 5.14. Let p ≥ 2q − 1 and t ≥ 0. A probability measure γt =
γt(p) ∈M1(CB

q ) (if it exists) is called BC(p)-Gaussian with time parameter t and
shape parameter p if

FpBC(γt)(λ) = exp (
−t(λ2

1 + ...+ λ2
q + ‖ρ‖2

2)

2
)

for all λ ∈ CB
q ∪ i · co(WB

q · ρ) ⊂ Cq.

The existence of the measures γt for t > 0 is not quite obvious at the beginning,
but we shall see from the proof of the following CLT that γt indeed exists. We
notice that by injectivity of the hypergroup Fourier transform, if the measures γt
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exist, then they are determined uniquely. Using properties of hypergroup Fourier
transform one can easily show that (γt)t≥0 form a convolution semigroup , i.e. for
all s, t ≥ 0 we have γs ∗p,q γt = γs+t and γ0 = δ0. Moreover, the map t → γt is
weakly continuous. Indeed, for a sequence (tn)n≥1 ⊂ R+ with limn→ tn = 0 we
have limn→∞FpBC(γtn)(λ) = 1 for all λ ∈ CB

q ∪ i · co(WB
q · ρ). Thus, by Lévy’s

continuity theorem it follows that limt↓0 γt = δ0. We denote the associated Lévy
processes on the hypergroup (CB

q , ∗p,q) in the sense of Definition 3.2 by (Xp
t )t≥0.

Theorem 5.15. Let µ ∈M1(CB
q ) with ν 6= δ0 and with finite second moments.

Let

t0 :=
2

qd

∫
CBq

‖x‖2
2dµ(x).

Then,

S(p,n−1/2)
n → Xp

t0
(p+1)

in distrubtion.

For the proof we need some information on ϕpλ:

Lemma 5.16. Let p ∈ [2q − 1,∞[ be fixed. Then:

(1) For all i, j = 1, 2, ..., q with i 6= j and all λ ∈ Cq,

(59)
∂

∂xi
ϕpλ(0) = 0 and

∂2

∂xi∂xj
ϕpλ(0) = 0

(2) For all i = 1, 2, ..., q, and λ ∈ CB
q ∪ i · co(Wq · ρ),

∂2

∂x2
i

ϕpλ(0) = −
(λ2

1 + ...+ λ2
q + ‖ρ‖2

2)

(p+ 1)qd
< 0.

Proof. The spherical functions ϕpλ(x) are invariant under the action of the
Weyl group of of type BC w.r.t. x. Therefore, ϕpλ(x1, .., xq) is even in each xi, which
leads to (1). Moreover, as ϕpλ(x1, ...., xq) is invariant under the permutations of xi,
∂2

∂x2i
ϕpλ(0) is independent of i. To complete the proof of (2), we recall from Corollary

4.13 and Eq. 40 that for all λ ∈ Cq the hypergeometric function FBC(λ, kp, ·) is
the unique solution to the eigenvalue problem

(60) Lf = −(λ2
1 + ...+ λ2

q + ‖ρ‖2
2)f
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for x ∈ int(CB
q ) = {x ∈ CB

q : x1 > x2 > ... > xq > 0} with f(0) = 1 where the
differential operator L is defined as

(61) L = ∆f(x) +
∑
α∈R+

mα coth〈α, x〉∂αf(x)

=
∑

1≤i≤q

[
∂2
i

∂x2
i

+ (m1 coth(xi) + 2m2 coth(2xi))
∂i
∂xi

]
+m3

∑
1≤i<j≤q

[
coth(xi + xj)

(
∂i
∂xi

+
∂j
∂xj

)
+ coth(xi − xj)

(
∂i
∂xi
− ∂j
∂xj

)]
where (m1,m2,m3) = (d(p− q)/2, (d− 1)/2, d/2) as in (47). Notice here that the
factor 2 of the multiplicity m2 originates from the directional derivatives w.r.t the
roots in Eq. (34).
Now, using part (1), ϕpλ(x) = FBC(iλ,mp, x), and the Taylor expansion of coth
around 0, we have

−(λ2
1 + ...+ λ2

q + ‖ρ‖2
2)ϕpλ(0) = lim

‖x‖→0
Lϕpλ(x)

= (q + qm1 + 2qm2 + q(q − 1)m3)
∂2

1

∂x2
1

ϕpλ(x)

∣∣∣∣
x=0

=
(p+ 1)qd

2
· ∂

2
1

∂x2
1

ϕpλ(x)

∣∣∣∣
x=0

for all λ ∈ Cq. Finally, as co(WB
q · ρ) is contained in {x ∈ Rq : ‖x‖2 ≤ ‖ρ‖2}, the

final statement of (2) is also clear. �

Proof of Theorem 5.15. Lemma 5.16 and ϕpλ(x) ≤ 1 for x ∈ CB
q ensure

that there exists c > 0 such that

1− c(x2
1 + x2

2 + ...+ x2
q) 6 ϕpλ(x) for all x ∈ CB

q .

Consequently by Taylor expansion,

n

∣∣∣∣ϕpλ( x√
n

)− 1 +
λ2

1 + ...+ λ2
q + ‖ρ‖2

2

(p+ 1)qd
· ‖x‖

2
2

n

∣∣∣∣ ≤ C‖x‖2
2

for some constant C > 0 where ‖x‖2
2 is integrable w.r.t µ by our assumption. Thus,

dominated convergence theorems yields that

lim
n→∞

n

∫
CBq

(
ϕpλ(

x√
n

)− 1 +
(λ2

1 + ...+ λ2
q + ‖ρ‖2

2)

(p+ 1)qd
· ‖x‖

2
2

n

)
dµ(x) = 0.

Rewriting this relation as∫
CBq

ϕpλ(
x√
n

)dµ(x) = 1− 1

n

(λ2
1 + ...+ λ2

q + ‖ρ‖2
2)

(p+ 1)qd
·
∫
CBq

‖x‖2
2dµ(x) + o(

1

n
)
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we obtain

FpBC(P
S
(p,n−1/2)
n

)(λ) =

∫
CBq

ϕpλ(
x√
n

)dµ(n)(x) =

[∫
CBq

ϕpλ(
x√
n

)dµ(x)

]n

=

(
1− 1

n
·

(λ2
1 + ...+ λ2

q + ‖ρ‖2
2)

(p+ 1)qd

∫
CBq

‖x‖2
2dµ(x) + o(

1

n
)

)n

which implies

lim
n→∞

FpBC(P
S
(p,n−1/2)
n

)(λ) = exp

(
−

(λ2
1 + ...+ λ2

q + ‖ρ‖2
2)

(p+ 1)qd
·
∫
CBq

‖x‖2
2dµ(x)

)

= exp

(
−
t0(λ2

1 + ...+ λ2
q + ‖ρ‖2

2)

2(p+ 1)

)
for all λ ∈ Rq ∪ i · co(WB

q · ρ). Hence, by Theorem 2.12(iii) there exists a bounded

positive measure in µ ∈M+
b (CB

q ) with

(62) FpBC(µ)(λ) = exp

(
−
t0(λ2

1 + ...+ λ2
q + ‖ρ‖2

2)

2(p+ 1)

)
for all λ ∈ Rq, and (P

S
n−1/2
n

)n≥1 converges to µ weakly.

Moreover, since we have FpBC(µ)(−iρ) = 1, the limiting positive measure µ is
indeed a probability measure. This implies that (P

S
(p,n−1/2)
n

)n≥1 converges weakly

to µ = γ t
(p+1)

as desired. �

Remark 5.17. The considerations in the above proof imply that the probability
measures γt in Definition 5.14 above indeed exist.
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CHAPTER 6

Central limit theorems for growing parameters

1. Limit thereoms with for growing parameters with outer
normalization

In this section we derive two CLTs for random walks when the time and the
dimension parameter p tend to infinity. Unlike the case of fixed parameters p
for growing parameters it is not possible to obtain limit theorems without having
restriction either on the moment conditions or on the growth rate of p. In this
section we present limit theorem with varying moment conditions and growth rate
condition for parameter p.
In the first case we show a CLT and a weak LLN results with second moment
conditions for the associated measure µ, as in Chapter 5, but with restriction on
the growth rate for pn coupled with n i.e., we show that as pn, n → ∞ coupled,
the sequence of random variables

1√
n

(S̃pnn − n ·m
pn
1 (µ))

converge to some normal distribution N(0, Σ̃(µ)), and

S̃pnn − n ·m
pn
1 (µ)

n
−→ 0 in probability,

for the drift vector mp
1(µ) as in Chapter 5 depending on p and with the some

covariance matrix Σ̃(µ).
In the second case we show a CLT and a weak LLN results without restriction on
the growth rate for p with but higher (fourth) moment conditions for the associated
measure µ, i.e we show that as pn, n→∞ the distributions of the random variable

1√
n

(S̃pnn − n · m̃1(µ))

converge to some normal distribution N (0, Σ̃(µ)), and also

S̃pnn
n
−→ m̃1(µ) in probability,

for some drift vector m̃1(µ) and with the same covariance matrix Σ̃(µ) as above.
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We now give the precise formula for the drift vector m̃1(µ) and covariance
matrix Σ̃(µ). For this we consider the transformation
(63)
T : CB

q → CB
q ⊂ CA

q , x = (x1, ..., xq) 7→ ln coshx := (ln cosh x1, ..., ln coshxq).

We then define the modified moment functions m̃l(x) := mA
l (T (x)) which admit

modified integral representations similar to (52). Moreover, for µ ∈ M1(CB
q ) we

consider the image measure T (µ) ∈M1(CB
q ) ⊂M1(CA

q ). As |x− ln coshx| ≤ ln 2
for all x ∈ [0,∞[ by an elementary calculation, we see that for all multiindices
l, the l-th moment of type A of µ exists if and only if the l-th modified of T (µ)
exists. We put m̃l(µ) := mA

l (T (µ)) and Σ̃(µ) := ΣA(T (µ)).

We now show that for a given µ ∈ M1(Cq
q ) the existence of moments of some

maximal order is independent from taking classical moments,modified moments,
or moments of type BC. For our purpose it will be sufficient to restrict to the case
when |l| is even.
Let k ∈ N0 and µ ∈ M1(CB

q ). It is easy to see that µ admits finite modified
moments of order at most 2k if

m̃2k·e1 , ..., m̃2k·eq ∈ L1(CB
q , µ).

Indeed, it follows immediately from the definition of moment functions in (52)
and Hölder’s inequality, that in this case all moments of order at most 2k are
µ-integrable. Similarly, if

mp
2k·e1 , ...,m

p
2k·eq ∈ L

1(CB
q , µ)

then µ admits finite BC(p)-type moments of order at most 2k.

1.1. Rate of convergence for the moment functions mp for p → ∞.
We next derive the estimates for |m̃l(µ)−mp

l (µ)| for l ∈ Nq
0 and large p under the

assumption that these moments exist.

Proposition 6.1. For k ∈ N and µ ∈ M1(CB
q ) the following statements are

equivalent:

(1) µ admits all classical moments of order at most 2k, i.e.∫
CBq

xl11 · · ·x
lq
q dµ(x) <∞ for all l = (l1, ..., lq) ∈ Nq

0 with |l| ≤ 2k.

(2) µ admits all moments of type A of order at most 2k.
(3) T (µ) admits all moments of type A of order at most 2k.
(4) For each p ≥ 2q−1, µ admits all moments of type BC(p) of order at most

2k.

We first recapitulate the following facts; see Lemmas 4.10 and 4.8 of [RV1]:
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Lemma 6.2. (1) Let dmp(w) be the probability measures defined in (20).
Then for each n ∈ N there exists a constant C := C(q, n,F) such that all
p > 2q,

(64)

∫
Bq

σ1(w)2n

∆(I − w∗w)2n
dmp(w) ≤ C

pn
.

(2) Let x ∈ CB
q , w ∈ Bq, u ∈ U(q,F) and r = 1, ..., q. Then

∆r(g(x, u, w))

∆r(g(x, u, 0))
∈ [(1− x̃σ1(w))2r, (1 + x̃σ1(w))2r] with x̃ := min(x1, 1).

Proof Proposition 6.1. To show (1)⇒(2) it is sufficient to prove that
mA

2k·e1 , ...,m
A
2k·eq ∈ L

1(CB
q , µ). From (52) we have

mA
2k·ej(µ) =

1

22k

∫
CBq

∫
U(q,F)

(
ln ∆j+1(u∗e2xu)− ln ∆j(u

∗e2xu)
)2k

du dµ(x).

We now recall from Lemma 4.2 [V2] that jxq ≤ ln ∆j(u
∗e2xu) ≤ jx1 for u ∈

U(q,F), x ∈ CB
q , and j = 1, ..., q. Therefore, from elementary inequalities we

obtain that

(65) mA
2k·ej(µ) ≤ 1

22k

∫
CBq

|(j(x1 − xq) + xq|2kdµ(x) <∞.

To prove (2)⇒(1) it is sufficient to show that
∫
CBq

x2k
1 dµ(x) <∞. It can be easily

seen that for every u ∈ U(q,F) there exist coefficients ci(u) ≥ 0 for i = 1, ...q with∑q
i=1 ci(u) = 1 such that

∆1(u∗e2xu) =

q∑
i=1

ci(u)e2xi ≥ c1(u)e2x1 .

Thus, using the elementary inequality 22k(a2k+b2k) ≥ (a+b)2k for a = ln(c1(u)e2x1)
and b = − ln c1(u) we have∫
U(q,F)

∫
CBq

(ln ∆1(u∗e2xu))2k du dµ(x) ≥
∫
U(q,F)

∫
CBq

(ln(c1(u)e2x1))2k du dµ(x)

≥ −
∫
U(q,F)

(| ln c1(u)|)2k du+

∫
CBq

x2k
1 dµ(x).

Now, Lemma 5.1 and Proposition 4.9 of [V2] ensure that
∫
U(q,F)

(| ln c1(u)|)2kdu

is finite. Hence we have
∫
CBq

x2k
1 dµ(x) <∞ as desired.

The equivalence of (2) and (3) follows from

1

4
u∗e2xu ≤ u∗(coshx)2u ≤ 1

2
u∗e2xu
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which implies that

| ln ∆j(u
∗(coshx)2u)− ln ∆j(u

∗e2xu)| ≤ ln 4.

To prove (3)⇒ (4) we recall from Lemma 6.4 in [V2] that

| ln ∆jg(x, u, w)− ln ∆j(u
∗(coshx)u)| ≤ 2j ·max(| ln(1− σ1(w))|, ln(σ1(w) + 1))

:= Hj(w).(66)

It can be easily seen that
∫
Bq

ln(1 + σ1(w))2kdmp(w) is finite.

Moreover, as 1 ≥ σ1(w) ≥ .... ≥ σq(w) ≥ 0 for w ∈ Bq we have

(67)
1

1− σ1(w)
≤ 2

1− σ1(w)2
≤ 2

q∏
r=1

1

1− σr(w)2
≤ 2

∆(I − w∗w)
.

Now, from Lemma 6.2 and (67) together with the elementary inequality

(68) | ln(1 + z)| 6 |z|
1− |z|

for |z| < 1

we obtain that

(69)

∫
Bq

| ln(1−σ1(w))|2kdmp(w) ≤ 22k

∫
Bq

σ1(w)2k ·∆(I−w∗w)−2kdmp(w) <∞.

Hence,
∫
Bq
|Hj(q)|2kdmp(w) < ∞ for j = 1, .., q. Therefore, using the elementary

inequality
32k(a2k + b2k + c2k) ≥ (a+ b+ c)2k

we have

(70)

mp
2k·ej(µ) ≤

(
3

2

)2k ∫
Bq×U(q,F)×CBq

(
| ln ∆j+1g(x, u, w)− ln ∆j+1(u∗(coshx)u)|2k+

+ |ln ∆j+1(u∗(coshx)u)− ln ∆j(u
∗(coshx)u)|2k +

+ | ln ∆jg(x, u, w)− ln ∆j(u
∗(coshx)u)|2k

)
dmp(w) du dµ(x).

We see that the right hand side of (70) is finite, from (66), (69) and the as-
sumption that mA

2k·ej(µ) is finite.

Finally, the converse statement (4)⇒(3) follows analogously from

(71)

mA
2k·ej(µ) ≤

(
3

2

)2k ∫
Bq×U(q,F)×CBq

[| ln ∆j+1(u∗(coshx)u)− ln ∆j+1g(x, u, w)|2k

+ | ln ∆j+1g(x, u, w)− ln ∆jg(x, u, w)|2k

+ | ln ∆j(u
∗(coshx)u)− ln ∆jg(x, u, w)|2k]dmp(w)dudµ(x).
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�

Proposition 6.3. Let l = (l1, ...., lq) ∈ Nq
0 with |l| ≥ 3 and µ ∈ M(CB

q ).
Assume that µ admits finite moments of order 4(|l| − 2). Then, there exists a
constant C := C(|l|, q, µ) such that

(72) |m̃l(µ)−mp
l (µ)| 6 C

√
p
.

Proof. We consider the |l| factors of the integrand in the integral represen-
tations (55) of the moment functions mp

l and the modified version of (52) for m̃l.
For i = 1, 2, ..., |l| these factors have the form:

fi(x, u, w) := ln ∆r(g(x, u, w))− ln ∆r−1(g(x, u, w)),

f̃i(x, u, w) := ln ∆r(g(x, u, 0))− ln ∆r−1(g(x, u, 0))

with the convention ∆0 ≡ 1 where r ∈ {1, ..., q} is the smallest integer with
i ≤ l1 + ...+ lr.
Then, from Lemma 6.2(2) and (68) for all i = 1, ..., |l|, x ∈ CB

q , u ∈ U(q,F), w ∈ Bq

we obtain that

|fi(x, u, w)− f̃i(x, u, w)| ≤ 2 max
r=1,...,q

| ln ∆r(g(x, u, w))− ln ∆r(g(x, u, 0))|

6 4q · x̃σ1(w)

1− x̃σ1(w)
6 4qx̃

σ1(w)

1− σ1(w)

where x̃ = min{1, x}. Thus, by (67) we have

|fi(x, u, w)− f̃i(x, u, w)| ≤ 8qx̃
σ1(w)

∆(I − w∗w)
.

Now, notice that

(73) |m̃l(µ)−mp
l (µ)|

=

∣∣∣∣∣ 1

2|l|

∫
Bq×U(q,F)×CBq

 |l|∏
i=1

fi(x, u, w)−
|l|∏
i=1

f̃i(x, u, w)

 dudmp(w)dµ(x)

∣∣∣∣∣∣
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Therefore, by a telescopic sum,

|m̃l(µ)−mp
l (µ)| =

=
∣∣∣ 1

2|l|

|l|∑
i=1

∫
Bq×U(q,F)×CBq

(
(fi(x, u, w)− f̃i(x, u, w))×

|l|∏
j=i+1

fj(x, u, w)
i∏

k=1

f̃k(x, u, w)
)
dudmp(w)dµ(x)

∣∣∣
≤ 1

2|l|

|l|∑
i=1

∫
Bq×U(q,F)×CBq

∣∣∣(fi(x, u, w)− f̃i(x, u, w))×

|l|∏
j=i+1

fj(x, u, w)
i∏

k=1

f̃k(x, u, w)
∣∣∣dudmp(w)dµ(x)(74)

We estimate the summands of the expression of the last formula of (74) in two
ways:
Summands for i = 1 and |l|:
From Cauchy-Schwarz inequality, (74) and Lemma 6.2 we obtain that

(75)

∫
Bq×U(q,F)×CBq

∣∣∣∣∣∣(f1(x, u, w)− f̃1(x, u, w))

|l|∏
j=2

fj(x, u, w)

∣∣∣∣∣∣ dudmp(w)dµ(x)

≤

(∫
Bq×U(q,F)×CBq

|fi(x, u, w)− f̃i(x, u, w)|2dudmp(w)dµ(x)

)1/2

×

×

∫
Bq×U0(q,F)×CBq

|l|∏
j=2

fj(x, u, w)2dudmp(w)dµ(x)

1/2

≤M1 · 8q

(∫
Bq

σ1(w)2

∆(I − w∗w)2
dmp(w)

)1/2

≤M1 ·
C
√
p

where

M1 := M1(µ, |l|, q) = 8q · max
r∈Nq0,|r|≤2(|l|−1)

max{m̃r(µ),mp
r(µ)}

which is finite by initial assumption and Proposition 6.1. Similarly, we obtain
same upper bound for the |l|th summand in (74).
Now, let i = 2, ..., q− 1. Here, we apply Hölder’s inequality twice and obtain with
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the same arguments as above that

(76)

∣∣∣∣∣
∫
Bq×U0(q,F)×CBq

(
(fi(x, u, w)− f̃i(x, u, w))

×
|l|∏

j=i+1

fj(x, u, w)
i−1∏
k=1

f̃k(x, u, w)
)
dudmp(w)dµ(x)

∣∣∣∣∣∣
≤

(∫
Bq×U0(q,F)×CBq

|(fi(x, u, w)− f̃i(x, u, w)|2dudmp(w)dµ(x)

)1/2

×

∫
Bq×U0(q,F)×CBq

|l|∏
j=i+1

|fj(x, u, w)|4dudmp(w)dµ(x)

1/4

×

(∫
Bq×U0(q,F)

i−1∏
k=1

|f̃k(x, u, w)|4dudmp(w)dµ(x)

)1/4

≤M2 ·
C
√
p

where

M2 := M2(µ, |l|, q) = 8q · max
r∈Nq0,|r|≤4(|l|−2)

max{m̃r(µ),mp
r(µ)}

which is again finite by our assumption and Proposition 6.1. Thus, the estimates
(75) and (76) give the desired assertion. �

We are now ready to present the limit theorems. :

1.2. Limit theorems for p→∞.

Theorem 6.4. Let (pn)n≥1 ⊂ (2q − 1,∞) be an increasing sequence with
limn→∞ n/pn = 0. Let µ ∈M1(CB

q ) be with µ 6= δ0 and second moments. Consider

the associated random walks (S̃pn)n>0 on CB
q for p > 2q − 1. Then

S̃pnn − n · m̃1(µ)√
n

converges in distribution to N (0, Σ̃(µ)).

Proof of Theorem 6.4. We know from Theorem 4.21 that there exists a
constant C > 0 such that for all p > 2q − 1, x ∈ CB

q , λ ∈ Rq,

|ϕpλ−iρ(x)− ϕAλ−iρA(ln coshx)| 6 C · ‖λ‖1 · x̃
p1/2
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where ‖λ‖1 := |λ1| + . . . |λq| and x̃ := min(x1, 1) > 0. Hence, denoting the half
sums of positive roots of type BC associated with pn by ρ(n) := ρBC(pn), for all
ν ∈M1(CB

q ), we get

(77)

∣∣∣∣∣
∫
CBq

ϕpnλ−iρ(n)(x)dµ(x)−
∫
CBq

ϕAλ−iρA(ln coshx)dµ(x)

∣∣∣∣∣ 6 C · ‖λ‖1√
pn
.

Let µ(n,p) ∈ M1(CB
q ) be the law of S̃pn. Then, T (S̃pnn ) has the distribution

T (µ(n,pn)) whose A-type spherical Fourier transform satisfies

FA(T (µ(n,pn)))(λ− iρA) =

∫
CAq

ϕAλ−iρA(x)dT (µ(n,pn))(x)(78)

=

∫
CBq

ϕAλ−iρA(ln coshx)dµ(n,pn)(x)(79)

for λ ∈ Rq. Therefore, by plugging µ(n,pn) into (77) we get

FA(T (µ(n,pn)))(λ− iρA) =

∫
CBq

ϕpnλ−iρ(n)dµ
(n,pn)(x) +O(

‖λ‖1

p
1/2
n

)

= FpnBC(µ(n,pn))(λ− ρ(n)) +O(
‖λ‖1

p
1/2
n

)

= (FpnBC(µ)(λ− ρ(n)))n +O(
‖λ‖1

p
1/2
n

)

=

(∫
CBq

ϕAλ−iρA(ln coshx)dµ(x)

)n

+O(
‖λ‖1

p
1/2
n

)

=

(
FA(T (µ))(λ− iρA) +O(

‖λ‖1

p
1/2
n

)

)n

+O(
‖λ‖1

p
1/2
n

).(80)

Using the the initial moment assumption and Lemma 6.1 we see that the first and
second modified moments m̃1 and m̃2 exist. Moreover, all entries of the modified
covariance matrix

Σ̃(µ) = m̃2(µ)− m̃1(µ)t · m̃1(µ)

are finite.
By Lemma 5.12, the Taylor expansion of FA(T (µ))(λ − iρA) for |λ| → 0 is given
by

(81) FA(T (µ))(λ− iρA) = 1− i〈λ, m̃1(µ)〉 − λm̃2(µ)λt + o(|λ|2).
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Using the initial assumption that O(1/
√
npn) = o(1/n) we obtain

E(ϕAλ√
n
−iρA(T (S̃pnn ))ei〈λ,

√
nm̃1(µ)〉

= FA(T (µ(n,pn)))(λ/
√
n− iρA) · ei〈λ,

√
nm̃1(ν)〉

=

[(
FA(T (µ))(

λ√
n
− iρA) +O(

‖λ‖1√
npn

)

)n
+O(

‖λ‖1√
npn

)

]
· ei〈λ,

m̃1(µ)√
n
〉n

=

[(
1− i〈λ, m̃1(µ)〉√

n
− λm̃2(µ)λt

2n
+ o(

1

n
)

)
×

×
(

1 +
i〈λ, m̃1(µ)〉√

n
− 〈λ, m̃1(µ)〉2

2n
+ o(

1

n
)

)]n
=

(
1− λΣ̃(µ)λt

2n
+ o(

1

n
)

)n

.

Thus,

(82) lim
n→∞

E(ϕAλ/√n−iρA(T (S̃pnn )) · exp(i〈λ, m̃1(ν)〉
√
n)) = exp(−λΣ̃(µ)λt/2).

On the other hand, from Lemma 5.2(5) we have

(83) lim
n→∞

E(ϕAλ/√n−iρA(T (S̃pnn ))− exp(−i〈λ, m̃1(S̃pnn )〉/
√
n) = 0.

Eq. (82) and (83) and the fact that |ei〈λ,
√
nm̃1(µ)〉| 6 1 together yield that for all

λ ∈ Rq,

lim
n→∞

exp(−i〈λ, m̃1(S̃pnn )− n · m̃1(µ)〉/
√
n) = exp(−λΣ̃(µ)λt/2).

Lévy’s continuity theorem for the classical q-dimensional Fourier transform implies
that

(m̃1(S̃pnn )− n · m̃1(µ))/
√
n

tends to the normal distribution N (0, Σ̃(µ)).
Now, Lemma 5.2(2) implies that (T (S̃pnn ) − n · m̃1(ν)〉)/

√
n also converges to

N (0, Σ̃(ν)).
Finally, with the same argument as in the proof of Theorem 6.4 above we get that
(S̃pnn − nm̃1(µ))/

√
n→ N(0, Σ̃(µ)) in distribution, as desired. �

For the weak LLN result the assumption of existence of first moments of
µ ∈M1(CB

q ) is sufficient.

Theorem 6.5. Let (pn)n≥1 ⊂ (2q − 1,∞) be an increasing sequence with
limn→∞ n/pn = 0. Let µ ∈ M1(CB

q ) be with µ 6= δ0 and first moments. Consider

the associated random walks (S̃pn)n>0 on CB
q for p > 2q − 1 and let ε > 1

2
. Then

1

nε
(S̃pnn − n · m̃1(µ)) −→ 0 in probability.
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This means in particular

S̃pnn
n
−→ m̃1(µ) in probability.

Proof of Theorem 6.5. From Eq. (80), (81) and the initial assumption
O(1/

√
npn) = o(1/n) it follows that

E(ϕAλ
nε
−iρA(T (S̃pnn ))ei〈λ,n

1−εm̃1(µ)〉

= FA(T (µ(n,pn)))(λ/nε − iρA) · ei〈λ,n1−εm̃1(ν)〉

=

[(
FA(T (µ))(

λ

nε
− iρA) +O(

‖λ‖1

nε
√
pn

)

)n
+O(

‖λ‖1√
npn

)

]
· ei〈λ,

m̃1(ν)
nε
〉n

=

[(
1− i〈λ, m̃1(µ)〉

nε
+O(

1

nε+1/2
)

) (
1 +

i〈λ, m̃1(µ)〉
nε

+O(
1

n2ε
)

)]n
=

(
1 + o(

‖λ‖2

n
)

)n
.

Thus we have

(84) lim
n→∞

E(ϕAλ
nε
−iρA(T (S̃pnn ))ei〈λ,n

1−εm̃1(µ)〉 = 1.

On the other hand, from Lemma 5.2(5) we have

(85) lim
n→∞

E(ϕAλ/nε−iρA(T (S̃pnn ))− exp(−i〈λ, m̃1(S̃pnn )〉/nε)) = 0.

Eq. (84) and (85) and the fact that |ei〈λ,
√
nm̃1(µ)〉| 6 1 together yield that for all

λ ∈ Rq,

lim
n→∞

exp(−i〈λ, (m̃1(S̃pnn )− n · m̃1(µ)〉)/nε) = 1.

Lévy’s continuity theorem for the classical q-dimensional Fourier transform implies
that

(m̃1(S̃pnn )− n · m̃1(µ))/nε −→ 0 in distribution.

Now, Lemma 5.2(2) implies that

(T (S̃pnn )− n · m̃1(ν)〉)/nε

also converges to 0.
Finally, with the same argument as in the proof of Theorem 6.4 above we get

(S̃pnn − nm̃1(µ))/nε → 0 in distribution.

This implies also convergence in probability since the limit is constant.
�
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Remark 6.6. For the rank one case (q = 1) the preceding CLT was derived
in [Gr1] with different techniques under weaker assumptions, namely without the
restriction n/pn → 0 as n→∞. The proof in [Gr1] relies on the convergence of
the moment functions

(86) (mp
1(x))2 −mp

2(x)→ 0

on [0,∞) for p→∞. However, for q ≥ 2 this convergence is no longer available.

We next try to get rid of the restriction n/pn → 0. We shall achieve this by
assuming the existence of fourth moments in addition.

Theorem 6.7. Let (pn)n≥1 ⊂ (2q − 1,∞) be an increasing sequence with
limn→∞ pn = ∞. Let µ ∈ M1(CB

q ) with µ 6= δ0 and with fourth moments. Con-

sider the associated random walks (S̃pn)n>0 on CB
q for p ≥ 2q − 1. Then

S̃pnn − n ·m
pn
1 (µ)√

n
)

converges in distribution to N (0, Σ̃(µ)).

Proof of Theorem 6.7. We first notice that by Taylor’s theorem and Propo-
sition 6.3 for all p > 2q − 1,

∣∣∣E(ϕp
λ/
√
n−iρ(S̃

p
n))−

(
1− i〈λ,mp

1(µ)〉√
n

−λm
p
2(µ)λt

2n

)∣∣∣
(87)

≤
∑

l∈Nq ,|l|=3

mp
l (µ)

λl11 ...λ
lq
q

l1!...lq!

≤ 1

n3/2

∑
l∈Nq ,|l|=3

(m̃l(µ) + C/
√
p)
λl11 ...λ

lq
q

l1!...lq!

≤ K1
‖λ‖3

∞
n3/2

(88)

for some constant K1 > 0 which is independent of p. Analogously, for all p > 2q−1,

(89)

∣∣∣∣ei〈λ,√nmp1(µ)〉 −
(

1 +
i〈λ,mp

1(µ)〉√
n

− 〈λ,m
p
1(µ)〉2

2n

)∣∣∣∣ 6 K2
‖λ‖3

∞
n3/2

for some K2 > 0 independent of p.
Using estimates (87) and (89) we now follow similar paths as in the proof of
Theorem 6.4. We however use the BC-type Fourier transform and BC-moments
instead of objects of type A, and then approximate A-type moments by BC-type
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moments using Proposition 6.3. Now, we have

E(ϕpn
λ/
√
n−iρ(n)

(S̃pnn ))ei〈λ,
√
nmpn1 (µ)〉 =

= FpnBC(µ(n,pn))(λ/
√
n− iρ(n)) · ei〈λ,

√
nmpn1 (ν)〉

=

[(
1− i〈λ,mpn

1 (µ)〉√
n

− λmpn
2 (µ)λt

2n
+ o(

1

n
)

)
×
(

1 +
i〈λ,mpn

1 (µ)〉√
n

− 〈λ,m
pn
1 (µ)〉2

2n
+ o(

1

n
)

)]n
=

(
1− λΣpn(µ)λt

2n
+ o(

1

n
)

)n
From Lemma 6.3 we also obtain that

|λΣpn(µ)λt − λΣ̃(µ)λt| = O(
|λ|2
√
pn

)

for pn →∞. Therefore, we have

lim
n→∞

E(ϕpn
λ/
√
n−iρ(n)

(S̃pnn ))ei〈λ,
√
nmpn1 (µ)〉 =

= lim
n→∞

(
1− λΣ̃(µ)λt

2n
+
λ(Σpn(µ)− ˜Σ(µ))λt

2n
+ o(

1

n
)

)n

= exp(−λΣ̃(µ)λt/2)

On the other hand from the Lemma 5.6(5) we have

(90) lim
n→∞

E(ϕpn
λ/
√
n−iρ(n)

(S̃pnn )− exp(−i〈λ,mpn
1 (S̃pnn )〉/

√
n)) = 0.

Now, Lévy’s continuity theorem for the classical q-dimensional Fourier transform
implies that

(m̃1(S̃pnn )− n ·mpn
1 (µ)〉)/

√
n

tends to the normal distribution N (0, Σ̃(µ)).
Now, Lemma 5.2(2) implies that (T (S̃pnn ) − n · mpn

1 (µ)〉)/
√
n also converges to

N (0, Σ̃(µ)).
Finally, with the same argument as in the proof of Theorem 6.4 above we get that

(S̃pnn − n ·m
pn
1 (µ))/

√
n→ N (0, Σ̃(µ)) weakly,

as desired. �

In contrast to the CLT above, in order to obtain a weak LLN the existence of
second moments for the associated measure µ is sufficient.
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Theorem 6.8. Let (pn)n≥1 ⊂ (2q − 1,∞) be an increasing sequence with and
limn→∞ pn = ∞. Let µ ∈ M1(CB

q ) with µ 6= δ0 and with second moments. Con-

sider the associated random walks (S̃pn)n>0 on CB
q for p > 2q − 1. Let ε > 1

2
.

Then
1

nε
(S̃pnn − n ·m

pn
1 (µ)) −→ 0 in probability.

Proof of Theorem 6.8. We first notice that by Taylor’s theorem and Propo-
sition 6.3 for all p > 2q − 1∣∣∣E(ϕpλ/nε−iρ(n)(S̃

p
n))−

(
1− i〈λ,mp

1(µ)〉
nε

)∣∣∣ ≤ 1

n2ε

∑
l∈Nq ,|l|=2

mp
l (µ)

λl11 ...λ
lq
q

l1!...lq!

≤ 1

n2ε

∑
l∈Nq ,|l|=2

(m̃l(µ) + C/
√
p)
λl11 ...λ

lq
q

l1!...lq!

≤ K1
‖λ‖3

∞
n2ε

(91)

for some constant K1 > 0 which is independent of p. Analogously, for all p > 2q−1,

(92)

∣∣∣∣ei〈λ,nε·mp1(µ)〉 −
(

1 +
i〈λ,mp

1(µ)〉
nε

)∣∣∣∣ 6 K2
‖λ‖3

∞
n2ε

for some K2 > 0 independent of p.
Using estimates (91) and (92) we now follow similar paths as in the proof of
Theorem 6.7. For λ ∈ Rq we have

E(ϕpnλ/nε−iρ(n)(S̃
pn
n ))ei〈λ,n

ε·mpn1 (µ)〉 =

= FpnBC(µ(n,pn))(λ/nε − iρ(n)) · ei〈λ,nε·m
pn
1 (µ)〉

=

[(
1− i〈λ,mpn

1 (µ)〉
nε

+ o(
1

n
)

) (
1 +

i〈λ,mpn
1 (µ)〉
nε

+ o(
1

n
)

)]n
=

(
1 + o(

1

n
)

)n
.

Therefore, for all λ ∈ Rq we have

lim
n→∞

E(ϕpnλ/nε−iρ(n)(S̃
pn
n ))ei〈λ,n

ε·mpn1 (µ)〉 = 1.

On the other hand from the Lemma 5.6(5) for all λ ∈ Rq we have

(93) lim
n→∞

E(ϕpnλ/nε−iρ(n)(S̃
pn
n )− exp(−i〈λ,mpn

1 (S̃pnn )〉/nε)) = 0.

Now, Lévy’s continuity theorem for the classical q-dimensional Fourier transform
implies that

(m̃1(S̃pnn )− n ·mpn
1 (µ))/nε −→ 0 in distribution.
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Now, Lemma 5.2(2) implies that also (T (S̃pnn )−n·mpn
1 (µ)/nε −→ 0 in distribution.

Finally, with the same argument as in the proof of Theorem 6.4 above we get
(S̃pnn −n ·m

pn
1 (µ))/nε → 0 in distribution. This implies convergence in probability

since the limit is constant.
�

2. A law of large numbers for inner normalizations and growing
parameters

We present a further limit theorem for (S
(p,n−1/2)
n )n≥1 when p and n go ∞ in a

coupled way. It will turn out that then, under some canonical norming, the limiting
distribution is a point measure, i.e., we obtain a weak law of large numbers:

Theorem 6.9. Let µ ∈ M1(CB
q ) with µ 6= δ0 and finite second moments. Let

t0 be defined as in Theorem 5.15 and (pn)n≥1 ⊂ [2q − 1,∞) be increasing with

limn→∞ n/pn = 0. Then, S
(pn,n−1/2)
n tends in probability for n→∞ to the constant

ln
(
et0/2 +

√
et0/4 − 1

)
· (1, . . . , 1).

For the proof of theorem we first recapitulate the Taylor expansion for ϕAλ (x)
at x = 0 from [G1]:

Lemma 6.10. For ‖x‖2 → 0,

ϕAλ (x) = 1 +
1

qd
(λ1 + λ2 + ...+ λq)

q∑
k=1

xk +Rλ(x)

with

Rλ(x) =
∑
α

fα(λ)Pα(x)

where the Pα(x) are symmetric polynomials in x1, ..., xq which are homogeneous of
order ≥ 2.

We also need the following fact:

Lemma 6.11. For p ≥ 2q − 1, the half sum ρ = ρBC(p) satisfies the condition
ρA − ρ ∈ co(WB

q · ρ), where WB
q is the Weyl group of type Bq.

Proof. Denote ρ̂ := (ρq, ρq−1..., ρ1). Then, obviously ,−ρ,−ρ̂ ∈ WB
q · ρ. On

the other hand we have

ρA − ρ =

(
d

2
(p+ 1)− 1

)
(1, ...., 1) =

1

2
(−ρ− ρ̂).

This proves the result. �
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Proposition 6.12. Let µ, t0 and (pn)n≥1 be defined as in Theorem 6.9. Let
ρ(n) := ρBC(pn) be the half sum of positive roots of type BC associated with the
parameters pn. Then, for all λ ∈ Cq with =λ = ρA,

(94)

∫
CBq

ϕpnλ−iρ(n)(
x√
n

)dµ(x) = 1 +
t0
4n
·

q∑
k=1

(λk − iρAk ) + o(1/n) as n→∞.

Proof. Lemma 6.10 and the Taylor expansion ln coshx = x2 + O(x4) show
that for all λ ∈ Cq with such that =λ ∈ co(WA

q · ρA)

(95) ϕAλ (ln cosh
x√
n

) = 1 +

q∑
i=1

λi
‖x‖2

2

2nqd
+Rλ(

‖x‖2

n
)

for n→∞. On the other hand, Theorem 4.2(2) in [RV1] states that

(96) |ϕpλ−iρ(n)(
x√
n

)− ϕAλ−iρA(ln cosh
x√
n

)| ≤ C · ‖λ‖1 ·min(1, x1/
√
n)

√
p

for all λ ∈ Cq such that =λ−ρ(n) ∈ co(WB
q ·ρ(n)). Notice that the analysis of the

proof of Theorem 4.2(2) in [RV1] shows that (96) is in fact precisely valid for

λ ∈ {λ ∈ Cq : =λ− ρ(n) ∈ co(WB
q · ρ(n)) and =λ− ρA ∈ co(WA

q · ρA)}.

If we combine (95) and (96) and use the Lemma 6.11 we see that as pn/n→∞
(97)∣∣∣∣∣ϕpnλ−iρ(n)(

x√
n

)− 1−
q∑

k=1

(λk − iρAk )
‖x‖2

2

2qnd

∣∣∣∣∣ = o(
‖x‖2

2

n
) for all λ ∈ Cq with =λ = ρA

which, by integrating w.r.t ν yields the result.
�

Proof of the Theorem 6.9. Let µ(n,pn) be the n-fold ∗pn convolution power
of µ. The Proposition 6.12 shows that for all λ ∈ Cq with =λ = ρA

lim
n→∞

∫
CBq

ϕpnλ−iρ(n)(
x√
n

)dµ(n,pn)(x) = lim
n→∞

(∫
CBq

ϕpnλ−iρ(n)(
x√
n

)dµ(x)

)n

= lim
n→∞

(
1 +

t0
4n
·

q∑
k=1

(λk − iρAk ) + o(1/n)

)n

=e
t0
4
·
∑q
k=1(λk−iρAk ).
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Thus, using (96) we have that

lim
n→∞

FA(P
T (S

(pn,n
−1/2)

n )
)(λ− iρA) = lim

n→∞

∫
CBq

ϕAλ−iρA(ln cosh
x√
n

)dµ(n,pn)(x)

= lim
n→∞

∫
CBq

ϕpnλ−iρ(n)(
x√
n

)dµ(n,pn)(x)

= e
t0
4
·
∑q
k=1(λk−iρAk )

for all λ ∈ Cq with =λ = ρA. By making substitution λ 7→ λ+ iρA above, we get

(98) lim
n→∞

FA(P
T (S

(pn,n
−1/2)

n )
)(λ) = e

t0
4
·
∑q
k=1 λk

for all λ ∈ Rq. On the other hand from (49) we can easily see that

e
t0
4
·
∑q
k=1 λk = ϕAλ (

t0
4

(1, ..., 1))

= FA(δ t0
4

(1,....,1))(λ)

for all λ ∈ Cq with =λ ∈ co(WA
q · ρA). Since the equality (98) is satisfied on

Rq, i.e. the support of Plancherel measure, from Theorem 2.12(iv) it follows
that P

T (S
(pn,n

−1/2)
n )

converges vaguely to the Dirac point measure δt0(1,...,1). More-

over, as the P
T (S

(pn,n
−1/2)

n )
and δ t0

4
(1,...,1) are probability measures, the sequence

(P
T (S

(pn,n
−1/2)

n )
)n is tight and the convergence becomes weak. Now, since T−1

is a continuous function, from continuous mapping theorem we conclude that
P
S
(pn,n

−1/2)
n

converges weakly to

T−1(δ t0
4
·(e1,...,eq)) = δ

ln

(
e
t0
4 +

√
e
t0
2 −1

)
·(1,...,1)

as desired. �
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List of Symbols

Symbol Meaning
a Euclidean space with dimension q and scalar product 〈·, ·〉
B(X) Borel sigma algebra of X

Bb(X), Bb(X) Space of (bounded) Borel measures on X
C(X), Cb(X) Space of (bounded) continuous measures on X

δx Dirac measure at x
∆ Euclidean Laplace operator on Rq

∆m Heckman-Opdam Laplacian, see (33)
CA
q Weyl chamber of type A

CB
q Weyl chamber of type B

d(x, y, u, w) see (22)
Fλ hypergeometric function
mα multiplicity: W-invariant map m : R→ C

dmp(w) see (20)
M(X),Mb(X) Space of (bounded) Borel measures on X
M1(X) Space of probability measures on X

Mb(G|K),Mb(G||K) K-(bi)invariant measures in Mb(G), see (??), (3)
Mb,K(M) space of K-invariant (invariant under action of K) measure on M
M1

k(X) space of probability measures with moments up to order k, see
Definition 3.8

P ,PW space of (W -invariant) polynomials
S(a) symmetric algebra on a
ρ(m) half sum of roots, see (31)
R root system, see Definition 4.4
R+ a positive subsystem root system R

χ(X), χb(X) (semi)characters, see Definition 2.6

X̂ dual space of X, see Definition 2.6
∆λ(x) see (45)
FpBC Fourier transform of type BC
FA Fourier transform of type A
co(·) convex hull of a set
int(·) interior of a set
<x real part of x
=x imaginary part of x
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