
POLICY-BASED MANAGEMENT OF MEDICAL
DEVICES AND APPLICATIONS

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

ANNA LITVINA

Dortmund

2018



Tag der mündlichen Prüfung: 24.09.2019
Dekan: Prof. Dr.-Ing. Gernot A. Fink
Gutachter: Prof. Dr. Heiko Krumm

Prof. Dr.-Ing. Andreas Hein



Contents

1 Introduction 1

2 Related Work 3
2.1 Policy-based Management of Medical Systems . . . . . . . . . . . . . . . . . 3

2.1.1 AMUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 CareGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 MATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Model-based Management of Medical Systems . . . . . . . . . . . . . . . . . 7
2.2.1 Model-supported Process Management . . . . . . . . . . . . . . . . . 8
2.2.2 SPES2020/SPES XT . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Medical Domain 11
3.1 Medical Domain Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Medical Service Consumer . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Medical Service Provider . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Medical Assets and Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Medical Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Medical Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Medical Device Software . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Fields of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Technical Management 23
4.1 Paradigms and Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Information Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Organization model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 Communication model . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.4 Functional model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Management Functional Areas . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Fault Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Configuration Management . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Accounting Management . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.4 Performance Management . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.5 Security Management . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Automated Management Challenges . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.4 Administrative Isolation . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Policy-Based Management 39
5.1 Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



ii Contents

5.2 Policy Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Policy Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Policy Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 Sloman et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.2 Bandara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.3 Romeikat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Policy-Based Management Frameworks . . . . . . . . . . . . . . . . . . . . . 50
5.5.1 IETF Policy Framework . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5.2 Ponder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Model-Based Management 57
6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Model-Based Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Model-Based Management Challenges . . . . . . . . . . . . . . . . . . . . . 61

7 Runtime Management System 63
7.1 Management Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1.1 Management Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.1.2 Tree Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.1.3 Data and Execution Handlers . . . . . . . . . . . . . . . . . . . . . . 65
7.1.4 Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.1.5 Management Tree Access . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2.1 Policy Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2.2 Policy Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3 Management Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3.1 Policy Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3.2 Rule Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.3.3 Expression Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4 Management System Characteristics . . . . . . . . . . . . . . . . . . . . . . 74

8 Model-Based Management of Medical Systems 77
8.1 General Metamodel Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.1.1 Metamodel Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.1.1.1 "Use Cases" Layer . . . . . . . . . . . . . . . . . . . . . . . 77
8.1.1.2 "Services" Layer . . . . . . . . . . . . . . . . . . . . . . . . 79
8.1.1.3 "Components" Layer . . . . . . . . . . . . . . . . . . . . . . 81

8.1.2 Building Together the Metamodel . . . . . . . . . . . . . . . . . . . 84
8.1.2.1 From "Use Cases" to "Services" . . . . . . . . . . . . . . . . 84
8.1.2.2 From "Services" to "Components" . . . . . . . . . . . . . . 86

8.2 Medical Domain Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2.1 "Use Cases" Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.2.2 "Services" Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2.3 "Components" Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9 Policy Derivation Patterns 115
9.1 Evaluation Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.1.1 Aggregation Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.1.2 Attribution Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.1.3 Fuzzy Relation Pattern . . . . . . . . . . . . . . . . . . . . . . . . . 117



Contents iii

9.2 Control Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.2.1 Watchdog Timer Pattern . . . . . . . . . . . . . . . . . . . . . . . . 118
9.2.2 Heartbeat Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2.3 Fuzzy Logic Control Pattern . . . . . . . . . . . . . . . . . . . . . . 120
9.2.4 On-off Controller Pattern . . . . . . . . . . . . . . . . . . . . . . . . 122
9.2.5 Multiplexer Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.3 Refinement Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.3.1 Repeater Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.3.2 Translator Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.3.3 Data Selector Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10 Case Study: MEDOLUTION 127
10.1 Demonstration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.1.1 Clinic Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.1.2 Home Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
10.1.3 Outdoor Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10.2 Technical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.2.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.2.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.3 MEDOLUTION System Model . . . . . . . . . . . . . . . . . . . . . . . . . 146
10.3.1 "Use Cases" Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
10.3.2 "Services" Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.3.3 "Components" Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

10.4 Policy Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.4.1 Derivation of Ambient Temperature Policy Rules . . . . . . . . . . . 149
10.4.2 Derivation of Ambient Environment Policy Expression . . . . . . . . 153
10.4.3 Derivation of Data Transmission Policy Rule . . . . . . . . . . . . . 156
10.4.4 Derivation of Aortic Valve Cleaning Cycle Policy Expression . . . . 160
10.4.5 Derivation of Aortic Valve Cleaning Cycle Policy Rules . . . . . . . 163

11 Evaluation 167
11.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

11.1.1 Planning Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.1.2 Runtime Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

11.2 Dependable Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
11.2.1 Policy Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
11.2.2 Policy Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

12 Conclusion 187

Bibliography 191





Chapter 1

Introduction

The significance of the medical and health care sector continues to grow nowadays. The
German Federal Statistical Office reported that expenditure on health in Germany amounted
to 344.2 billion euros or 4,213 euros per inhabitant in 2015. This figure represented 11.3%
of the GDP (gross domestic product) and for the fourth year in a row increased more
rapidly than the GDP itself.1
At the same time, the IT pervades all the aspects of our lives. This ubiquity of the

technology also spreads into the medical field. Thereby, the technology’s advance changes
the medical sector. In his work, the practicing cardiologist Topol states [Top13]:

"This is a new era of medicine, in which each person can be near fully defined
at the individual level, instead of how we (have previously) practiced medicine
at a population level. We are each unique human beings, but until now there
was no way to determine a relevant metric like blood pressure around the clock
while a person is sleeping, or at work, or in the midst of an emotional upheaval.
This represents the next frontier of the digital revolution, finally getting to the
most important but heretofore insulated domain: preserving our health."

Thus, we face a turnaround in the medical care from the treatment of the population to
the treatment of individuals nowadays. The pervasiveness of the IT has the corresponding
power to accomplish this and leads to a more specific, personalized medical care, tailored
to the individual requirements. The application field makes high demands on the data and
functional safety as well as the timeliness of the used sophisticated devices and systems. It
dictates an adaptable and flexible system behavior, which always stays strictly predefined
and is precisely predictable at any time. Another important aspect to consider is that
the common end user is not necessarily technically oriented and requires often additional
assistance and supervision. In order to support these characteristics and qualities of the
systems, sophisticated automated technical management is needed.

This work presents an advanced form of system management which combines the estab-
lished approach of policy-based management and the innovative model-based management
technique and applies it within the medical application field. The thesis statement is
that the introduced management approach can support the development and dependable
behavior of medical devices and systems.
The approach includes two main phases: design and runtime. During the design phase

the managed system is modeled on three abstraction levels with different degree of technical
precision: from the abstract to the technical one. The process is supported by the modeling
MoBaSeC tool which assists the user with its advanced visualizing drap-and-drop functions.
Afterward, the user defines the specific requirements and constraints. The backend functions
of the tool refine the defined requirements and constraints into the management policies,
the instrumentals of the management system.

1https://www.destatis.de/EN/FactsFigures/SocietyState/Health/HealthExpenditure/HealthExpenditure.html
(January 2018)



2 1 Introduction

During the runtime phase the lightweight autonomic management system accomplishes
the control loop by enforcing the generated management policies. Due to the formulation
of the policies on the management variables, the management stays lightweight: the
triggering events are changes of the status variable values, the conditions are expressions
on the status variable values, the management actions are limited to value assignments of
the configuration variables. This management infrastructure allows a low impact of the
management system on the managed system.
The two main contributions of the work can be marked out:

1. A general metamodel structure has been proposed. It forms the basis for the
developed management approach and is used for the tool-supported development of
system models during the design phase.
This general metamodel is specialized for the medical application domain. The
concretized metamodel integrates the domain knowledge and allows to include the
domain-specific constraints and requirements into the modeling process.

2. A collection of policy derivation patterns has been elaborated. The patterns
include evaluation, control and refinement patterns which support the automated
process of the refinement of abstract constraints and requirements into the concrete
technical policies and configurations used during the runtime by the management.

The thesis covers the work conducted in cooperation between TU Dortmund and MA-
TERNA GmbH. The working group on the automated technical management has taken
part in a row of ITEA research projects, such as OSAMI2, BaaS3 and MEDOLUTION4.
A series of joint articles and conference proceedings has been published. The author’s
contribution focusing the policy refinement has been partly introduced at the IEEE Inter-
national Symposiums on Policies for Distributed Systems and Networks (POLICY) in 2010
and 2011 by two conference papers and a demonstrator: "Policy-Based Management for
Resource-Constrained Devices and Systems" [DKK+10b] and "Tool-Supported Refinement
of High-Level Requirements and Constraints into Low-Level Policies" [DKK+11b]. The au-
thor’s work on the technical policy-based runtime management have been integrated into the
conference papers published in the scope of the proceedings of the 24th IEEE International
Conference on Advanced Information Networking and Applications (AINA) - "Lightweight
Policy-Based Management of Quality-Assured, Device-Based Service Systems" [DKK+10a]
and of the 16th IEEE Conference on Emerging Technologies & Factory Automation (ETFA) -
"Adaptive and Reliable Binding in Ambient Service Systems" [DKK+11a] presented at
the Workshops on Service Oriented Architectures in Converging Networked Environments
(SOCNE) in 2010 and 2011.

The thesis is structured as follows. The related work on the policy- and model-based
management of medical systems is presented in Chapter 2. Chapter 3 sets the scene for
the presented approach and explains the application domain specifics. Chapters 4, 5 and 6
provide a basis for the work with the fundamentals of the technical management and the
policy- and model-based approaches. The runtime management system is introduced in
Chapter 7. The core of the work is depicted in Chapter 8: the main modeling approach
including the metamodel applicable to the medical domain is introduced. Chapter 9
presents the elaborated policy derivation patterns used within the refinement process. The
application of the approach to the cardiological use case is described in Chapter 10. The
work is evaluated in Chapter 11. Chapter 12 concludes the work.

2OSAMI (Open Source Ambient Intelligence Commons) https://itea3.org/project/osami-commons.html
3BaaS (Building as a Service) https://itea3.org/project/baas.html
4Medolution (Medical Care Evolution) https://itea3.org/project/medolution.html



Chapter 2

Related Work

This chapter sets the scene for the thesis by introducing the related work regarding the two
approaches to the technical management: the policy-based management and model-based
management. We focus primarily on the researches applied to and evaluated for the medical
application field.

2.1 Policy-based Management of Medical Systems
The approach of the policy-based management has been applied in the medical application
field repeatedly. Thereby, the usage of policies was one of the following: role-based
access control, wireless (body) sensor network management and application workflow
management. In the first case, the policies are used usually as rules restricting the access
to the resources (mostly medical data). In the second case, the policies are applied to the
network management of the (body) sensor networks. In the third case, the policies control
the application flow by explicitly stating the choices in the behavior of the system. The
following sections provide an overview of the relevant research projects conducted during
the last years.

2.1.1 AMUSE
The following section is based primarily on [LDS+08] and [KTP+07]. The project Auto-
nomic Management of Ubiquitous Systems for e-Health (AMUSE) was carried out during
2004 – 2007 as a joint collaboration between the University of Glasgow and Imperial
College, London. The main focus of the work was the developing of an architecture
for autonomic management of ubiquitous computing environments, in particular in the
e-Health sector. In this field the body sensor networks which enable health monitoring at
home arouse a special interest. Formed by low-power on-body and implantable sensors
using wireless communications they interact with processing units (e.g. PDAs, mobile
phones) as well as with the fixed network infrastructure. This allows continuous medical
monitoring, automatic alerting in case of patient’s critical condition and possible also direct
intervention through the actuators (e.g. defibrillators, pacemakers, insulin pumps). By
such systems a high value is set on the autonomic management on account of lacking user’s
knowledge and experience or constricted ability to configure and administrate the used
devices. The developed techniques cater for the runtime extensibility of the component
topology, adaptivity of the components to the current situation and self-configuring due to
the changes of context or in requirements.

The Self-Managed Cell (SMC) was proposed as a policy-driven architectural pattern for
implementing autonomic ubiquitous systems (Figure 2.1). A SMC manages a set of
homogeneous components (i.e. managed resources) uniformly using resource adapters. The
communication with the resources is therefore independent from the used communication
protocol and the resource interfaces. The common event bus provides the interaction with



4 2 Related Work

EventOBus

Monitoring Security
Service

Discovery

Policy
Management Context

Policies

Raw
Managements

Context
InformationManaged

Resources

Resource
Adapters

Other

Figure 2.1: Self-Managed Cell (SMC) Architectural Pattern. Adapted from [LDS+08]

the offered services by using a router to forward event notifications from the event publishers
to the subscribers. This approach permits to decouple the services, so that the sender does
not know the listeners of the event. The advantage of this is that the new services could be
added more comfortably without interrupting the others. Furthermore the concurrent and
independent response of multiple services to the same event is facilitated. As well as the
communication overhead could be lowered by transmitting only the measured data which
exceeds the specified threshold. Self-management and adaptation are performed by means
of the policy service that conducts a basic feed-back control loop. On changing in the state
of the managed objects the corresponding reconfiguration actions in form of events are
forwarded to the event bus. Which actions are to be executed is a subject to obligation
policies. These are represented by means of event-condition-action rules. The authorization
policies define which actions may be performed on which resources. As an implementation of
the policy service the authors present Ponder2 [TDLS09] the successor of Ponder [DDLS00],
a policy definition language and toolkit developed at Imperial College, London. The
Ponder2 compounds a general-purpose object management system with a domain service
providing a hierarchy for the managed objects, an obligation policy interpreter for handling
the obligation policies, a command interpreter performing invocations on the managed
objects and an authorization enforcement supporting fine grained authorizations for the
managed objects. The detecting new devices or other SMCs is a task of the discovery service.
It is responsible for generating the corresponding component-detected and component-left
events as well as for distinguishing between the transient disconnections and permanent
device departures. For managing more complex environments several SMCs could be
composed or collaborate with each other. The composing SMCs allows to manage more
smart diagnostic devices which manage in their turn their own resources. The interaction
of multiple SMCs permits scenarios where new policies from other SMCs are to be loaded
or updated. The requirements of one SMC for interacting with another is defined within
its mission which is a group of policies determining the communication behavior with the
other SMC.

2.1.2 CareGrid

This section is based on [RDD+07b], [RDD07a] and [SBM07]. The project Autonomous
Trust Domains for Healthcare Applications (CareGrid) running since 2005 is a collaboration
between the Imperial College, London and the University of Cambridge. The main aim of
the project is developing a middleware for supporting decisions based on trust, privacy,



2.1.2 CareGrid 5

security and context models in a healthcare application domain. A targeted framework
should include an architecture, which would consist of diverse services and support their
interaction and administration. The integration of the national electronic health record
(EHR) service is to be supported. The framework is policy-based, providing a mechanism for
controlling access to the medical data and dynamic adaptation of the system. Monitoring
and archiving functions, which comprise also system reliability and performance monitoring,
are of a special interest.

MonitoringhService

InterfacehComponent EntityhManagementhService

Home Healthcare Domain
PatienthX

NHS EHR Services Outsourced Carers Primary Care Domain
CompanyhC

SensorhManager

Sensors

Obligationhflow

Audithflow

Observations

Event
subscription/flow

AudithMachine

ObligationhMonitor

AudithLog CredentialhStore
AudithLog CredentialhStore

EHRs

CredentialsAudithrecords

Key

Figure 2.2: CareGrid Architecture. Adapted from [SBM07]

The home healthcare domain interacts with various domains, including hospitals, homecare
providers, specialists, surgeries, social care providers and many others (Figure 2.2). The
coordinating domains (e.g., the National Health Service (NHS)) ensure the compliance of
the provided services and the collaboration of the domains. The primary care domain,
such as hospital, creates a home-based patient care environment. Diverse other domains
could provide specific services. To act as an authority for validating and verifying entities,
domains require a credential store.

The developed architecture for a home healthcare domain include following components:
sensor manager, interface component, entity management service and monitoring service.
All the aspects concerning the use of sensors including sensor discovery, failure detection,
stream management and data capture belong to the tasks of the sensor manager. The
sensor manager is also in charge of the evaluation of the captured data and the invocation
of the appropriate responding actions. The user interface and the interface for access
by devices is provided through the interface component. The entity management service
tracks the devices and services within the domain and defines the privileges according
to the actual policies. The core of the infrastructure is the monitoring service which
observes all the interactions between components passing through a monitoring pipeline.
The monitoring service offers two components: audit machine and obligation monitor.
The first is responsible for transferring relevant information to various audit logs (e.g., to
the electronic health record) according to the defined policies. The obligation monitor
launches compensatory actions in case of a failure in obligation fulfillment. It also informs
the credential services about the performance of the system.



6 2 Related Work

The proposed framework is policy driven both at the system-level (e.g., defining events,
actions and domains) and the user-level (e.g., defining thresholds for relevant parameters).
Ponder2 [TDLS09] was used as a policy language supporting obligation (event-condition-
action rules) and authorization policies. The entities to which policies apply are organized
in hierarchical domains of managed objects. The managed objects are associated with a
set of data, which is used by authentication, authorization and obligations. The domain
hierarchy for each component of the system is maintained by the local policy interpreter.
For execution of actions on managed objects from the external domains proxies are created
by the local interpreter and inserted in the local domain structure. The developed conflict
resolution strategy used statically and dynamically is a subject of [RDD07a].

2.1.3 MATCH
The section is based mainly on [WDT+06] and [WT08]. The ongoing project Mobilizing
Advanced Technologies for Care at Home (MATCH) is running during the years 2005
– 2009 as a collaboration among the universities of Stirling as a lead partner, Glasgow,
Edinburgh and Dundee. The main aim of the project is to develop advanced technologies
in support of social and health care at home, particularly in the area of home network
services, lifestyle monitoring, speech communication and multimodal interfaces. OSGi
(Knopflerfish Framework Implementation) has been selected as an ideal technology for the
implementation as a vendor-neutral, device independent approach to service provision. The
management of home networks is to be accomplished using policies which allow multiple
stakeholders to configure the system behavior. The use of ontologies enhances the discovery
of services and the use of policies managing these services.

Residential
Gateway

Storage

Internet

Inputs Outputs

Cellular
Network

Healthcare Social Work Informal Care

Figure 2.3: MATCH System Architecture. Adapted from [WDT+06]

The proposed architecture (Figure 2.3) involves OSGi residential gateway embedding the
home services and device control. The sensors (e.g. physical devices, logical or user-oriented
data sources) provide the inputs of the system. The outputs invoke the actuators which
could also be in their term physical, logical or relating to user. The link to the outside world
is usually via a broadband connection to Internet or a direct link to a cellular network. The
captured and in the storage saved information could be forwarded to the care providers
(e.g. healthcare centers, social work departments and informal carers).

The authors have developed a service ontology stack which organizes ontologies of multiple
abstract levels. The base ontology provide descriptions for such general concepts like
vendor, location, service type and environment. Each of the concepts in its turn is specified
within the more specific ontology. Upon this the developers can design their own service
type specific ontology which allows a more precise semantically-based description of the



2.2. Model-based Management of Medical Systems 7

provided services. To provide semantic service discovery a special OSGi bundle has been
implemented using Jena2 Semantic Web Toolkit [McB02] and Protege [Sta]. The bundle
collaborates with the OSGi service registry storing service ontology descriptions, reasoning
about them and answers to the queries (Figure 2.4).

Semantic Service
Discovery

OSGi Service
Registry

Service
Providers

Service
Usersservice usage

discover serviceupload description

register service get implementation

Figure 2.4: MATCH Semantic Service Discovery. Adapted from [WDT+06]

A policy-based management system resides on the residential gateway. The task of the
management system is to manage the involved devices and services by means of predefined
policies expressed as trigger-condition-action rules (Figure 2.5). These are formulated
in a language APPEL (ACCENT Project Policy Environment and Language) [Com] in
form of XML documents. A web-based policy wizard was developed for the remote policy
edition and creation. Domain-specific knowledge of concepts and relationship of policies is
integrated using an ontology server, a system called POPPET (Policy Ontology-Parsing
Program – Extensible Translation). The policy store is used as a repository for holding user
profiles, the system configuration and state. The latter two allow the policies to refer to
abstract terms and to be interpreted depending on context. The interaction with the policy
system is a task of the home server. The communication is performed by sending and
receiving events. The home server notifies the policy server about a triggering event. The
policy server selects the corresponding policies, evaluates them and responses accordingly.
Conflict handling is performed by means of high-level resolution policies which are triggered
by a conflicting actions and conduct the resolution according to some given high-level
criterion [WT07].

Policy
Wizard

Home
Server

Policy
Server

Ontology
Server

Policy Store

Inputs Outputs

Figure 2.5: MATCH Policy System Architecture. Adapted from [WDT+06]

2.2 Model-based Management of Medical Systems
Usage of models in order to support medical systems varies in its application area. Thus,
e.g. models are suitable for supporting the process or workflow management system in
health care [BSE12], [LR07]. Another example of application area is model-based medical
decision support for diagnosis and/or prognosis assisting the medical staff in their work



8 2 Related Work

[AKP+11]. This methodology, however, is based on a combination of structural and
stochastic modeling which is not subject of interest in the present work. Models can also
be used for engineering of medical systems [PHAB12], [BGFV11], [RJJZ10] providing a
basis for fast prototyping, testing, safety verification.

2.2.1 Model-supported Process Management

In [BSE12], [BE13] a model-supported process management of medical systems is presented.
Figure 2.6 illustrates the context of model usage within the medical domain [BE13]. The

Figure 2.6: Model-based Management of Medical Systems. Reprinted from [BE13]

authors introduce a framework that reflects the link of medical treatment instructions to the
context of hospital organizations. The current findings of the medical practice are reflected
in the clinical practice guidelines published by the corresponding authorities (upper layer).
The guidelines lead to clinical pathways applied within the concrete local clinical structure
(middle layer). In order to "to reflect the arrangements of the clinical pathways and to
support and standardize the decision-making of the physician as well as the planning of
treatment" [BSE12], a hospital information system is used (bottom layer). The authors
focus in their research on modeling the clinical pathways, since they allow to "represent
the current medical scientific knowledge in combination with institution-specific facts and
prepare it as best practices, e.g. a handbook for treatment in a human understandable
form".

The authors propose claim, that the long-term quality of care and therefore the patient
satisfaction are to be achieved by integrating elaborately modeled and planned patients
pathway models. A dedicated management system is used in order to support the user.
The management process involves modeling, planning and execution phases. The modeling
phase covers the basic work on the analysis and picturing the treatment processes. The
organization specific parameters are considered during the planning phase, whereas in-
stantiation of pathways models for individual patients is done during the execution phase.
Moreover, a management "cockpit" is supposed to give an opportunity to query the pathway
instances in real-time as well as to keep track of the patients individual ways.



2.2.2 SPES2020/SPES XT 9

2.2.2 SPES2020/SPES XT
The research project Software Platform Embedded Systems 2020 (SPES) 2020 has been
carried out during 2008–2012 and its follow-up project SPES XT during 2012–2015 as
joint collaborations between 21 industrial and academical partners under the scientific
direction of Technical University of Munich. Within the projects a seamless model-based
development of safety-critical systems was researched in order to provide for validation and
verification of requirements, simulation, verification, as well as virtual integration testing.
The research results have been applied to and tested for several application domains. In
[PHAB12] the authors report on dramatically increased verification and validation efforts
in the field of medical systems over the last years. Thus, amongst others the SPES project
has addressed the medical domain.

Figure 2.7: SPES Modelling Design Space. Reprinted from [PHAB12]

The proposed SPES Modeling Framework (Figure 2.7) adheres strictly to the principles
of stakeholder concerns, hierarchical decomposition, seamless model-based engineering,
separation between problem and solution as well as logical and technical solution, and
consideration of crosscutting system properties during the development process. Two
fundamental concepts of viewpoints and abstraction layers forming a two-dimensional
design space are promoted.
A viewpoint concept follows the notion of the IEEE Standard 1471 "Recommended

Practice for Architectural Description of Software-Intensive Systems" [IEE00] and is re-
garded as s a template or pattern for the development of individual views on the system:
requirements, functional, logical, and technical viewpoint.
Requirements Viewpoint Requirements engineering process is supported by means

of the requirements viewpoint. Users, stakeholders as well as external systems are regarded



10 2 Related Work

as the system context which provides specific requirements and goals the system is supposed
to satisfy.
Functional Viewpoint The functional viewpoint provides a formal specification

and abstract realization of the functions which are to be offered by the system. The
functions described in this viewpoint specify the system behavior and stem from the system
requirements defined in the requirements viewpoint. A hierarchical decomposition of
functions into sub-functions as well as interactions between (sub-)functions are presented.
Logical Viewpoint The logical viewpoint provides a structural decomposition of

the system independently from the technological aspects. The logical components of the
system and their relationship in form of logical channels are described. The components
form a platform independent model, which abstracts from the underlying hardware solution
and specifies realization of the system functions defined in the functional viewpoint.
Technical Viewpoint The realm of the technical viewpoint includes the platform-

specific representation of the system and its components. The view addresses modeling
of resources (e.g. storage, memory, bandwidth), schedulers (e.g. virtual computational
elements load balancing, hardware and network resource scheduling) and tasks which
specify the physical architecture of the system. The technical viewpoint is intended to
specify for the logical components on which hardware resources they are executed as well
as how the subsystems are physically organized. Resource consumption and redundancy in
matters of timing and safety as essential aspects are addressed within this viewpoint.
System elements can be modeled on different abstraction levels. Abstraction layers are

user defined, i.e. application domain specific ("Supersystem", "System", "Subsystem", and
"Hardware/- Software Component"). In order to allow tracing of refinements, mappings
between the different abstraction layers can be used.
As a proof of concept a study case from the healthcare domain has been described

demonstrating the application of the approach to engineering of an extended care system
comprising body area network devices, a VAD, and a telematics system.
Also in [HR08], the model-based design is claimed to support the development of such

critical systems like medical. Its well-founded methodology is reported to provide a solid
basis for the tool support.



Chapter 3

Medical Domain

The contemporary practice of medical and health care relies on extensive usage of informa-
tion technologies. Due to the sensitivity of the application domain the stringent regulatory
procedures are applied to the used devices and applications. Whereas the scope and content
of laws, regulations and norms as well as certification and inspection procedures vary, they
address some general application domain specific issues:
Safeguard clause The clinical condition and safety of patients (or other persons)

should not be compromised. Associated risks should be eliminated or reduced as far as
possible. Adequate protection measures including alarms, if necessary, should be taken.
Users are to be informed of the residual risks in case any shortcomings of the protection
measures exist.
Standard conformity The modern healthcare delivery relies on the usage of ap-

plications and devices which are distributed across multiple organization, provided by
different vendors, based on diverse technologies and handle with all sorts of data. To
enable interoperability at the highest level, it is essential to resort to existing standards.
They address device connectivity, communication as well as personal health information
exchange issues.
Information security Patient confidentiality is one of the main principles in medical

ethics according to which any information revealed by a patient to a healthcare provider
is strictly private, unless the patient gives a consent to disclose it to a third party or it
can be justified by law. Therefore, access to patient data by applications and devices is
reflected in guarantee of the common information security fundamentals: confidentiality,
integrity and availability of data.
Accountability Accountability is a basic component which means obligation of the

parties to justify and take responsibilities for their activities. In the light of the application
domain it entails processes and procedures to provide for professional competence, legal
and ethical conduct, financial performance, adequacy of access, public health promotion,
and community benefit [EE96].
Quality Assurance Attaining the highest performance and safety level is essential

for the healthcare services. Thus, comprehensive quality management systems for medical
devices and systems are inevitable. Market entering implies a set of regulatory procedures
which refer to the quality assurance. So, the manufacturers must demonstrate that their
product does what it is supposed to do and is able to demonstrably meet the medical claim.

The effective use of information technology and management systems not only advances
but also transforms the healthcare sector. The mission of the Health Information and
Management Systems Society (HIMSS), a non-profit international organization, is to lead
this process. It aims to promote information and management systems’ contributions to the
medical domain and in doing so to improve the quality, safety, access, and cost-effectiveness
of patient care.
Integrating the Healthcare Enterprise (IHE) is a non-profit initiative by healthcare

professionals and industry to improve the process of sharing information between IT systems



12 3 Medical Domain

used in healthcare. Focusing on standardizing and harmonizing the existing standards, it
aims for the primary objective of optimal patient care. IHE publishes, expands annually and
maintains IHE Technical Frameworks which define specific implementations of established
standards. It is supposed to achieve effective system integration and to facilitate the entire
sector. Several healthcare domains are specified (e.g., radiology, cardiology, patient care
devices), within these domains they describe the main workflows from practice, e.g. patient
admission, registration, examination, data acquiring, recording, etc. (Figure 3.1). IHE
defines integration profiles with regard to a specific clinical task or medical condition. They
specify the main actors involved, the information to be exchanged between systems and
actions to take place on certain events.

IH
E

-e
n

ab
le

d
WIn

te
g

ra
te

d
WWH

ea
lt

h
ca

re

Intra-EnterpriseWInterop-
erabilityWwithWIHE-basedW
Solutions

Intra-EnterpriseWInterop-
erabilityWwithWIHE-basedW
Solutions

ImagingWCenter HospitalWB

AccessWtoWpatientWinforma-
tionWwithinWaWhealthcare
network

PhysicianWPractice

Images Clinical
Docu-
ments

Medical
Summa-
ries

Clinical
Docu-
ments

IHE-enabledWSystems

Shared
Infra-

structure

HospitalWA

HIS

Registration
OrderwEntry

Workstation

Diagnostic
Reporting

RIS

Scheduling

Modality

Image
Acquisition

PACS

Image
Storage

Intra-EnterpriseWInteroperabilityWwithW
IHE-basedWSolutions

Patient
Data

Scheduled
Examinations

Diagnostic
Results

Images

Images

HIS

Registration
OrderwEntry

Workstation

Diagnostic
Reporting

RIS

Scheduling

Modality

Image
Acquisition

PACS

Image
Storage

Intra-EnterpriseWInteroperabilityWwithW
IHE-basedWSolutions

Patient
Data

Scheduled
Examinations

Diagnostic
Results

Images

Images

HIS

Registration
OrderwEntry

Workstation

Diagnostic
Reporting

RIS

Scheduling

Modality

Image
Acquisition

PACS

Image
Storage

Intra-EnterpriseWInteroperabilityWwithW
IHE-basedWSolutions

Patient
Data

Scheduled
Examinations

Diagnostic
Results

Images

Images

QCViewing
Image
Acquisition

Images Images

Storage

Figure 3.1: Medical Domain by Integrating the Healthcare Enterprise. Adapted from [Sie10]

IHE claims that adopting their approach would result in the following benefits: reduction
of medical errors, lower costs, more efficient workflow, better informed medical decisions,
faster results for patient and clinician, etc. [CPW+01].

3.1 Medical Domain Actors

3.1.1 Medical Service Consumer

Patient (from Latin patiens - "one who suffers") is a central actor in the medical domain, a
person who receives a health service, in most cases a treatment from a health professional.



3.1.2 Medical Service Provider 13

Usually, a patient refers to a medical service in case of an illness, what means his health
condition does not allow to define him as healthy. World Health Organization (WHO) has
formulated the mode of being healthy in a broader sense as "a state of complete physical,
mental, and social well-being and not merely the absence of disease or infirmity." This
formulation in fact arises some critics especially concerning the usage of the word "complete"
and lack of concrete metrics. However it stays most widely accepted since its publication
in 1946.

A disease is referred as any abnormal condition impairing functions of the patient’s body.
Commonly, it is associated with dysfunction of organism and goes together with certain
symptoms and signs. The causes of a disease can be of different etiology. So, diseases can
result from the influence of exogenous (external) factors (e.g., infection, radiation, trauma),
from endogenous (internal) factors (e.g., autoimmune breakdown, genetic disorder) or their
combination.

Due to the fact that a disease (it’s treatment or prevention) is primary reason of medical
service consumption, it is common to classify patients on the basis of their diseases. ICD-10,
the 10th revision of the International Classification of Diseases and Related Health Problems
published by WHO, provides a hierarchical classification system comprising chapters, blocks
of categories, categories and subcategories. The classification is of practical nature and
strikes a balance between classification based on "etiology of diseases, anatomical site,
circumstances of onset, etc." [Wor10b] It has become the international standard diagnostic
classification for health management purposes, because it permits to carry out "systematic
recording analysis, interpretation and comparison of mortality and morbidity data collected
in different countries or areas and at different times". Provided alphanumeric code of
diseases and health problems supports convenient data storage, retrieval and analysis.

ICD-10

I .. IX .. XXII

I00-I02 .. I20-I25 .. I93-I99

I20 .. I22 .. I25

I22.0 I22.1 .. I22.9

ChapterbIX:bDiseasesbofbthecirculatorybsystem

I20-I25:bIschaemicbheartbdiseases

I22:bSubsequentbmyocardialbinfarction

I22.1:bSubsequentbmyocardialbinfarctionbofbinteriorbwall

SubsequentbinfarctionbOacute)bOof):
bbdiaphragmaticbwall
bbinferiorbOwall)bNOS
bbinferoposterior
bbinferolateral

Figure 3.2: ICD-10 Classification Example

Figure 3.2 shows an example of ICD-10 based classification of a patient suffering from a
subsequent myocardial infarction of inferior wall. The corresponding ICD-10 code I22.1
can be taken from classification hierarchy.

3.1.2 Medical Service Provider

Provision of a health service is typically accomplished by the cooperation of multiple
stakeholders belonging to the health workforce. Based on the International Standard
Classification of Occupations (ISCO, 2008), WHO suggests a classification system defining
the main occupations in this domain and ordering them into a hierarchical structure: health
professionals, health associate professionals, personal care workers in health services, health



14 3 Medical Domain

management and support personnel, and other health service providers not elsewhere
classified.
Health professionals "study, advise on or provide preventive, curative, rehabilitative

and promotional health services based on an extensive body of theoretical and factual
knowledge in diagnosis and treatment of disease and other health problems. They may
conduct research on human disorders and illnesses and ways of treating them, and supervise
other workers. The knowledge and skills required are usually obtained as the result of
study at a higher educational institution in a health-related field for a period of 3-6 years
leading to the award of a first degree or higher qualification." [Wor10a] This group of profes-
sionals include generalist medical doctors (e.g., physician), specialist medical doctors (e.g.,
surgeon, cardiologist, neurologist), nursing professionals (e.g., clinical nurse), midwifery
professionals, traditional and complementary medicine professionals (e.g., homeopath),
paramedical practitioners (e.g., feldsher), dentists, pharmacists, environmental and occupa-
tional health and hygiene professionals (e.g., occupational hygienist, radiation protection
adviser), physiotherapists, dieticians and nutritionists, audiologists and speech therapists,
optometrists and ophthalmic opticians.
The delivery of high-quality healthcare is attendant on the sound relationship between

patient and medical service provider belonging in most cases to this group.
Health associate professionals "perform technical and practical tasks to support diagnosis

and treatment of illness, disease, injuries and impairments, and to support implementation
of health care, treatment and referral plans usually established by medical, nursing and other
health professionals. Appropriate formal qualifications are often an essential requirement
for entry to these occupations; in some cases relevant work experience and prolonged
on-the-job training may substitute for the formal education." To these professionals belong
such occupations as medical imaging and therapeutic equipment technicians (e.g., magnetic
resonance imaging technologist, sonographer), medical and pathology laboratory technicians,
pharmaceutical technicians and assistants, ambulance workers, medical records and health
information technicians (e.g., medical records analyst, disease registry technician).
Personal care workers "provide direct personal care services in health care and residential

settings, assist with health care procedures, and perform a variety of other tasks of a
simple and routine nature for the provision of health services. These occupations typically
require relatively advanced literacy and numeracy skills, a high level of manual dexterity,
and good interpersonal communication skills." The group comprises health care assistants
(e.g., hospital nursing aide) and home-based personal care workers (e.g. home nursing aide,
home care aide).
Health management and support personnel "include a wide range of other types of health

systems personnel, such as health service managers, health economists, health policy
lawyers, biomedical engineers, medical physicists, clinical psychologists, social workers,
medical secretaries, ambulance drivers, building maintenance staff, and other general
management, professional, technical, administrative and support staff." This group of
occupations include health service managers (e.g., health facility administrator, clinical
director), life science professionals (e.g., bacteriologist, water quality analyst), social
work and counseling professionals (e.g., clinical social worker), non-health professionals
not elsewhere classified (e.g., health policy analyst, health statistician, safety engineer,
software developer), medical secretaries, clerical support workers, non-health technicians
and associate professionals not elsewhere classified (e.g., bookkeeper, computer network
technician, data entry supervisor, fitness instructor, forensic science technician, health
insurance claims officer).

The classification also specifies such health service providers as armed forces occupations
(e.g., veteran hospital nursing aide), medical student intern, hospital volunteers etc.



3.2. Medical Assets and Specifics 15

As reported by the German Federal Statistical Office the number of persons employed in
the health sector up to about 4.8 million in 2010 in Germany. That means, that about one
in nine of all persons employed, worked in the health sector. Compared with the previous
year there was an increase in employment of 1.9%. 1

Taking into account the entire public health sector health care organizations take action
as actors within medical domain. They comprise hospitals, clinics, prevention and rehabili-
tation facilities, medical practices, ambulances, rescue services, pharmacies, medical supply
stores, scientific organizations etc. Public health authorities (e.g., medical associations,
health departments, health ministries, federal offices for statistics, disease registers) play
an important role in this sector, also. Worth mentioning are such stakeholders as insur-
ance companies (health, long-term care, annuity, accident), pharmaceutical and medical
technology manufacturers, medical equipment vendors, medical data processing centers, etc.

In [KB11] they address the problem of competing interests between "actors" in healthcare.
The authors describe the health arena as a complex selfmanaging formation affected by
the conflict of interests of the main stakeholders: individuals are motivated to enhance
their health, enterprises target for profit but are controlled by political and organizational
forces, whereas government acts as a main healthcare provider in the economic sense and
as a people protector (Figure 3.3).

Government

Individuals

Enterprise

Individuals,kfamilies,kandkcommunities.
Motivatedktokmaintainkhealthkandkcontrolkcosts.

Provideskregulationskandkoversight,ksetsk
boundaries.kOfferskfiduciarykprotectionkofk
individuals,kinkbalancekwithkfairnessktok
enterprise.kFunctionskaskproviderkandk
reimburserkofkhealthkservices,kthuskoftenk
actingklikekenterprise.kOftenkmotivatedkbyk
desirektokmaintainkpoliticalkconstituency.

Supplierskofkservices,kincludingk
healthcarekproviders,khospitals,k
laboratories,kandkpharmaceuticalk
companies.
Oftenkmotivatedkbykprofit.

Figure 3.3: "Triangle of Actors" on the Health Arena. Adapted from [KB11]

3.2 Medical Assets and Specifics
Provision of medical and health care services supposes in most cases a treatment of a
patient or preventing measures conducted by a health professional. A treatment, or therapy,
implies application of remedies for a disease or injury. Normally, a disease is indicated by
a patient in form of symptoms. They form a "subjective evidence of disease or physical
disturbance observed by the patient". On the contrary, a sign is "an objective evidence of
disease especially as observed and interpreted by the physician rather than by the patient
or lay observer."
The major indicators of body function, which indicate the presence of life, are usually

referred as vital signs. These measures include e.g., temperature, respiratory rate, heart
beat (pulse), and blood pressure. Observing, measuring and monitoring of these parameters
enables the assessment of patient’s body function. There are exist some normal ranges of
measurements of vital signs which can vary with patient’s age, gender, medical condition,
time of day, ambient temperature, activity level, etc.

1https://www.destatis.de/EN/FactsFigures/SocietyState/Health/HealthPersonnel/HealthPersonnel.html
(Jan. 2013)



16 3 Medical Domain

The process of identifying a disease from its symptoms and signs is called diagnostic
procedure. The decision reached by this process is referred to as a diagnostic opinion (or
diagnosis). Diagnostic procedure is in most cases a complex cognitive process which demands
anamnesis, i.e. recollection and accumulation of data concerning the patient case history
and background (e.g., family, environment), physical examination, i.e. body investigation
to determine its state of health, and diagnostic tests (e.g., radiologic, microbiologic, genetic,
electrodiagnostic, blood tests). In the process of differential diagnosis the probability of
one disease versus the one of the others is weighted in order to determine the disease which
causes the symptoms. Often, multimorbidity is present, i.e. several medical conditions
coexist.
An essential component of any treatment is a thoroughly worked out treatment plan.

In most cases, treatment planning is a collaborative process between the patient and the
physician. Treatment options are negotiated in order to select an appropriate treatment
model and approach. Depending on chosen treatment objectives and methods, a manageable
treatment plan is specified. Later on, in the process of treatment it is to be reevaluated
and revisioned, if required.
Patient’s medical information is held in a medical record, a chronologically written

account of patient’s health history including his illnesses, injuries, complaints, medical
conditions, allergies, findings, the results of diagnostic tests, treatments, and medications
and therapeutic procedures. It also contains patient’s personal data such as environment,
profession, family health information. Medical records are legal documents which are
usually created and written by physicians or in hospitals and ambulatory environments. In
case they made in a computerized form, they are referred as electronic medical records.

Sharing electronic medical records across single medical care provider boundaries allows
new forms of medical and health care.

3.3 Medical Devices

Devices used within the medical domain vary greatly in their complexity and art. They
range from contrivances with no intended medical purpose like electronic components,
computers, communication networks to specific medical equipment like electrocardiographs,
sonographic machines and human microchip implants. To ensure high quality and safety is
essential in today’s medical device industry. Innovations and inventions are introduced
daily, whereas the process of clearance, premarket approval and control stays strictly
regulated. Companies who design, manufacture and assemble medical components and
devices must face the challenge of not only ensuring high performance requirements but also
of reducing production time. Several standards exist which regulate quality management
systems for medical devices, e.g. ISO 13485 [ISO03], ISO 14971 [ISO07].
At European level it is intended to harmonize the laws and legislative procedures

relating to medical devices with the ultimate objective to ensure the patient’s safety and
to support the innovation and the competitiveness of this sector at the same time. Three
directives form the core legal framework: Directive 93/42/EEC [Eur93] comprises essential
requirements, quality assurance system, examination, verification, conformity to the type,
clinical evaluation and marking of medical devices in general. Directive 90/385/EEC
[Eur90] focuses on active implantable medical devices. In vitro diagnostic medical devices
are subject to Directive 98/79/EC [Eur98]. The directives were amended by Directive
2007/47/EC [Eur07] providing last technical revision of the documents. In the United
States Food and Drugs Association’s Center for Devices and Radiological Health (CDRH)
regulates the procedures relating to manufacture, repackage, relabel, and/or import of



3.3.1 Definition 17

medical devices sold in the country. Premarket notification process 510(K) is regulated by
the Part 807 Subpart E and the premarket approval process by the Part 814 of the Title
21 of Code of Federal Regulations (CFR) [U.S12].

3.3.1 Definition

Taking into consideration the variety and diversity of devices used in the medical scene,
it is not easy to define a medical device. Multiple definitions have been formulated by
several countries and organizations. European Union Legal Framework defines in Directive
2007/47/EC [Eur07] medical device as "any instrument, apparatus, appliance, software,
material or other article, whether used alone or in combination, including the software
intended by its manufacturer to be used specifically for diagnostic and/or therapeutic
purposes and necessary for its proper application, intended by the manufacturer to be
used for human beings for the purpose of: diagnosis, prevention, monitoring, treatment
or alleviation of disease, diagnosis, monitoring, treatment, alleviation of or compensation
for an injury or handicap, investigation, replacement or modification of the anatomy or
of a physiological process, control of conception, and which does not achieve its principal
intended action in or on the human body by pharmacological, immunological or metabolic
means, but which may be assisted in its function by such means." This definition covers a
great multitude of products from a simple thermometer to a sophisticated medical robot.

Further, Directive 90/385/EEC points out active medical devices defining them as "any
medical device relying for its functioning on a source of electrical energy or any source of
power other than that directly generated by the human body or gravity". At the same
time, medical devices which are intended to transmit energy, substances or other elements
between an active medical device and the patient without any significant change, are not
considered to be active medical devices [Eur90].
Considering the intended use of a device, it is common to distinguish active device for

diagnosis, "any active medical device, whether used alone or in combination with other
medical devices, to supply information for detecting, diagnosing, monitoring or treating
physiological conditions, states of health, illnesses or congenital deformities". As well as
devices intended for clinical investigation, what means "any device intended for use by
a duly qualified medical practitioner when conducting clinical investigations" in clinical
environment [Eur93].
Active implantable medical devices arise special interest and are defined as "any active

medical device which is intended to be totally or partially introduced, surgically or medically,
into the human body or by medical intervention into a natural orifice, and which is intended
to remain after the procedure".
In vitro diagnostic medical devices have become indispensable by providing diagnostic

measures. They are defined as "any medical device which is a reagent, reagent product,
calibrator, control material, kit, instrument, apparatus, equipment, or system, whether
used alone or in combination, intended by the manufacturer to be used in vitro for
the examination of specimens, including blood and tissue donations, derived from the
human body, solely or principally for the purpose of providing information: concerning a
physiological or pathological state, or concerning a congenital abnormality, or to determine
the safety and compatibility with potential recipients, or to monitor therapeutic measures".
Devices can be intended to be used once only for a single patient (single use device) or

not.



18 3 Medical Domain

3.3.2 Classification
An urge to classify existing medical devices is recognized by legislative authorities in many
countries and regions. Current classifications take into consideration such facts like design
complexity, usage characteristics, level of potential hazard connected with use or misuse.
Thereby it is aimed to achieve that rigorous conformity assessment procedures are applied
in an economically feasible, justifiable in practice and at the same time transparent way.
For example, European Commision for Health and Consumer has presented set of

guidelines relating to questions of application of EU Directives on medical devices. In
Annex IX of the Council Directive 93/42/EEC [Eur93] they propose a ’risk-based’ medical
device classification system which uses such criteria like e.g. duration of contact with the
patient, degree of invasiveness, part of the body affected by the use of the device, diagnostic
impact. The classification system comprises a set of complex rules which are used to decide
within which class devices fall: I (Is and Im), II (IIa and IIb), III. Table 3.1 demonstrates
an example of a classification rule concerning active medical devices used in diagnostics
(e.g., magnetic resonance imaging equipment).

Rule#10 Examples

Active devices intended for diagnosis are in Class
IIa:
- if they are intended to supply energy which
will be absorbed by the human body, except for
devices used to illuminate the patient’s body, in
the visible spectrum,

- Magnetic resonance equipment
- Pulp testers
- Evoked response stimulators
- Diagnostic ultrasound

- if they are intended to image in vivo
distribution of radiopharmaceuticals,

- Gamma cameras
- Positron emission tomography and single photon
emission computer tomography

- if they are intended to allow direct diagnosis or
monitoring of vital physiological processes,

- Electrocardiographs
- Electroencephalographs
- Cardioscopes with or without pacing pulse indi-
cators
- Electronic thermometers
- Electronic stethoscopes
- Electronic blood pressure measuring equipment.

unless they are specifically intended for monitor-
ing of vital physiological parameters, where the
nature of variations is such that it could result
in immediate danger to the patient, for instance
variations in cardiac performance, respiration, ac-
tivity of CNS in which case they are in Class
IIb.

- Intensive care monitoring and alarm devices (e.g.
blood pressure, temperature, oxygen saturation)
- Biological sensors
- Blood gas analysers used in open heart surgery
- Cardioscopes
- Apnoea monitors, including apnoea monitors in
home care

Active devices intended to emit ionizing radia-
tion and intended for diagnostic and therapeutic
interventional radiology including devices which
control or monitor such devices, or which directly
influence their performance, are in Class IIb.

- Diagnostic X-ray sources

Table 3.1: Rule 10 - Active Devices for Diagnosis. Adapted from [Eur10]



3.4. Medical Software 19

3.4 Medical Software

Software plays an increasingly important role in medical healthcare and finds nowadays
widespread acceptance in all medical application areas. Rapid evolution in the technology
provides a great challenge for regulatory bodies regulating the qualification and classification
criteria.

Independent of the regulatory body, software which falls under the jurisdiction of medical
devices is also qualified (and therefore regulated) as a medical device. The variety of
regulations concerning medical devices has been introduced in Section 3.3. In addition
to the above mentioned device definitions, the regulatory bodies also published specific
guidelines in relation to software qualification and classification. Thus, International
Medical Device Regulatory Forum (IMDRF) released a finalized a set of definitions for
device software [Int15]. This document defines "software as a medical device" (SaMD),
as "software intended to be used for one or more medical purposes that perform these
purposes without being part of a hardware medical device". Similarly, the guideline
MEDDEV 2.1/6 [Eur16] published by the European Commission refers to "standalone
software" for medical device qualification. It strikes out, that primarily the intended
purpose as described by the manufacturer of the product is relevant for the qualification.

3.4.1 Medical Device Software

In [Asi14] the main forms of medical device software are presented. They classify medical
software broadly into three main forms:
Part of (IVD) Medical Device This form includes software which drives a medical

device or is intended to influence the use of a device directly. In the most cases this refers
to embedded software. It can be incorporated as a component or part of accessory of a
medical device. Thereby the intended usage together with an in-vitro diagnostic medical
device supposes the software to fall under the scope of the IVD Directive [Eur98]. E.g.
imaging software in diagnostic ultrasound system, software in ECG monitor, software in
pacemaker, mobile software that controls insulin pump delivery rate.
Medical Device Accessory This form includes software which is intended to be

an accessory of a medical device, including the device operating or controlling software.
Accessories are intended in general to support, supplement, and/or augment the performance
of one or more parent devices, being built in or installed separately. E.g. Software that is
intended for the analysis and interpretation of raw data transmitted from an MRT device.
Standalone Medical Device Software This form includes software and applications

that are not a component of a medical device. Such software is in general placed on the
market separately from the related devices. In most cases, they are intended to be used
for the purpose of process and analysis of gathered medical information in order to assist
diagnosis and treatment. E.g. Treatment or operation planning software, data analysis
software for the purpose of directly aiding in the treatment or diagnosis of a patient.

Thus, the above mentioned groups include software able to perform their intended medical
purpose "without being embedded in a hardware medical device or being dependent on
specific or proprietary medical purpose hardware", i.e. software falling under the definition
of SaMD [Asi14]. Such software is capable of running on general purpose, not necessary
medical, computing platforms. It is also to mention, that "not being part of" supposes
that the hardware medical device itself does not need the software to achieve its intended
purpose. They can be used in combination with medical devices, other SaMD as well as
general purpose software.



20 3 Medical Domain

Further, IMDRF defines two main major factors that provide adequate description of the
intended use of SaMD. Firstly, the significance of the information provided by the SaMD
to the healthcare decision. Secondly, the state of the healthcare situation or condition in
which the SaMD is used or may lead to.

Speaking of the intended use of the information provided by SaMD IMDRF distinguishes
in [Int15] the following:

• To treat or to diagnose a disease or condition

• To drive clinical management

• To inform clinical management

Using the data provided by SaMD for treatment and diagnosis means that immediate
or short-term actions are done in order to treat, mitigate or even prevent a disease or
condition by using other medical devices, medicinal products or other means of providing
therapy to a human body. It also involves actions intended to diagnose, screen, detect a
disease, condition or its trend using sensors, data, or other information from other hardware
or software devices.
In order to drive clinical management, the information provided by SaMD is used to

aid in treatment and diagnosis, as well as in identification of early signs of a disease or
condition in order to guide the next necessary treatment and diagnostic interventions.
This will be achieved by providing enhanced support to safe and effective use of medicinal
products and medical devices, applying sophisticated analysis of relevant information in
order to predict risk of a disease or support in confirming a final diagnosis.
The information provided by SaMD in order to inform clinical management does not

trigger an immediate or short-term actions to inform of options for treatment, diagnosis,
prevention, or mitigation of a disease and condition, or to provide clinical information by
aggregating relevant disease, condition, drugs, medical devices, and population data.
Concerning the state of the healthcare situation or condition which define the intended

use of the information provided by SaMD IMDRF distinguishes the following groups [Int15]:

• Critical situation or condition. That means that accurate and timely actions are vital
in order to avoid death, long-term disability, impairment of a patient or to reduce
impact on public health.

• Serious situation or condition. That means that accurate and timely actions are of
vital importance in order to avoid unnecessary interventions or long-term irreversible
consequences on a patient’s health condition or public health.

• Non-serious situation or condition. That means that accurate and timely actions
are important but not critical for interventions to mitigate long term irreversible
consequences on a patient’s health condition or public health.

Treatment &
Diagnosis

Drive clinical
management

Inform clinical
management

Critical IV III II
Serious III II I
Non-serious II I I

Table 3.2: Software as Medical Device Categorization. Adapted from [Int15]



3.4.2 Fields of Application 21

Based on the above explained criteria, IMDRF defines four categories (I, II, III, IV) of
SaMD, in relative significance to each other. The category IV has the highest level of impact
on the patient or public health (e.g. software used to perform analysis of cerebrospinal fluid
spectroscopy data to diagnose tuberculosis meningitis or viral meningitis), the category I
- the lowest one (e.g. software which analyzes images, movement of the eye or other
information to guide next diagnostic action of astigmatism).
A software may comprise a number of applications, each of them may be correlated

with a module which can have a medical purpose or not. According to the European
MEDDEV 2.1/6 [Eur16], the modules which are subject to the medical device Directive
must comply with the requirements of the medical device Directive and must carry
the appropriate CE marking. The non-medical device modules are not subject to the
requirements for medical devices. The manufacturer is obligated to identify the boundaries
and the interfaces of the different modules according to the intended use.

3.4.2 Fields of Application

The fields of application of software in healthcare and medical area vary in their diversity.

Hospital Information Systems, Workflow Management Systems

A Hospital Information Systems (HIS) as well as Hospital Workflow Management Systems
are supposed to support the process of patient management in the clinic [HWAB04].
Typically they are intended to replace paper records in keeping and checking patient
information as well as automate the main clinic workflow. Such systems assist in patient
admission and discharge, in scheduling patient appointments and managing the electronic
medical records. Another focus is the support of the insurance and billing processes in the
hospital. In general, such systems are not qualified as SaMD.

Decision Support Software

A Decision Support Software (DSS) is intended to support healthcare professionals with
recommendations for diagnosis, prognosis, monitoring and treatment of individual patients.
They provide exclusively diagnostic references and suggestions, whereas the ultimate clinical
decisions are to be made by the therapist himself. In the core, such tools incorporate
medical knowledge databases and algorithms with patient specific data. This software is
qualified in the most cases as SaMD.

Information Systems

An information system is intended to store, archive and transfer medical and patient data.
Often they incorporate additional modules. Thus, electronic patient record systems can be
intended to store and transfer electronic patient records. Their purpose is to archive all
kinds of documents and data related to a specific patient as explained in Section 3.2.
Another example of an information system is a Clinical Information System (CIS)

intended for e.g. intensive care units to store and transfer patient information generated in
association with the patient’s intensive care treatment. Such systems can contain informa-
tion such as patient identification, vital intensive care parameters and other documented
clinical observations.
A Radiological Information System (RIS) is intended to be used by radiology depart-

ments as a database in order to store and transfer radiological images and patient in-



22 3 Medical Domain

formation [DHTM06], [HWAB04]. In general, such systems include functions for patient
identification and scheduling, store examination results and imaging identification details.
Similarly to RIS, a Picture Archive Communication System (PACS) are intended to

provide economical storage, rapid retrieval of images, as well as simultaneous access to
images at multiple sites [DHTM06]. Such systems often incorporate different modules ,
such as an image acquisition device (an interface to the scanner), a data management
system which controls the data flow, an image storage system, a display module with the
corresponding user interface, and a post-processing tool used to interpret raw images.

Communication Systems

General purpose communication systems are often used in the healthcare sector. Thus,
email systems, mobile telecommunication systems, video communication systems, and
paging etc. are used in order to transfer both non-medical as well as medical information
(e.g. prescriptions, referrals, images, patient records). Such system are not qualified in
their own right as SaMD, however may be used with other as SaMD qualified modules.
A telemedicine system is intended to support monitoring and/or delivery of healthcare

service to patients located remote from the healthcare professional. As a special case,
a telemonitoring system is used in order to enable an ongoing assessment of patient’s
physiological and/or context data at home or outdoors. A telesurgery system is intended
to conduct a surgical intervention from a remote location. Such systems fall under the
Medical Devices Directives. Another example, is a video appointment software which is
intended to support remote consultations between healthcare professionals and patients
and does not fall under the Medical Devices Directives.

In Vitro Diagnostic (IVD) Software

An in vitro diagnostic (IVD) software is intended to be used in or with IVD devices [Eur98].
Thus, a Laboratory Information Systems (LIS) is applied in laboratory based point of care
supporting the process of in vitro examination of specimens derived from the human body.
Besides the pre-analytical functions of ordering and sorting test samples, these systems
provide for the management and validation of obtained information as well as connection
to the analytic instruments. The post-analytical functions include communication of
laboratory results, statistics and reporting to external systems.

Software for General Fitness, Health, Wellness Management

The purpose of software for general fitness, health and wellness management is to provide
sources of information by supplying health professionals and patients with general health
advice. It is intended for individuals for gaining or maintaining general fitness, health or
wellness by logging, recording, tracking and/or making decisions or behavioral suggestions.
They have no purpose in neither diagnosis nor in the cure, mitigation, treatment, or
prevention of a disease or health condition. In the most cases such software is not regulated
by Medical Devices Directives.



Chapter 4

Technical Management

The complexity and size of contemporary IT environment has been growing tremendously
during the last years [RC07]. Today’s distributed systems are extremely large-scale, highly
dynamic and device-rich. The price for it though is a sophisticated system management,
which has to answer wide-ranging, complex, and diverse system requirements.

4.1 Paradigms and Fundamentals

In order to provide a review of the research field, we need to introduce the main paradigms
and fundamentals of the overall complex of management. According to [HAN98],

"The management of networked systems comprises all the measures necessary
to ensure the effective and efficient operation of a system and its resources
pursuant to an organization’s goal".

Thus, the management aims to provide the services and applications of a system with a
desired quality level as well as to assure availability and a rapid, flexible deployment of
resources. In doing so, not only technical tools but also personnel, procedures, and programs
affecting different levels of objects (resources, services, applications) are incorporated.

It is common to distinguish between the following levels of management: network, systems,
and applications. Network management concentrates on the communication network and
its components, systems management emphasizes the resources of the end system, whereas
applications management is responsible for the management of distributed applications
and services. The overall complex of management is, however, more comprehensive
(Figure 4.1). Thus, design and maintenance of enterprise-wide distributed data is the
focus of the information management. The task of enterprise (or business) management
includes financial, personnel, and production measures covering enterprise-wide aspects and
establishing guiding principles for IT infrastructure, operating services, associated services,
and data. These principles produce the conditions for the lower-level management.
Modern distributed systems are heterogeneous and complex require integrated man-

agement solutions [HAN98]. They strive first of all for an integral approach to different
aspects (management level, functional area, global databases, open programming and
user interfaces, etc.). Isolated approaches (be that e.g. in terms of the functional area or
the vendor) tend to be cost-unjustified considering the heterogeneity and complexity of
the management environment. While following the integrated approach, the needs and
requirements of all the stakeholders are to be taken into account and fairly satisfied, so that
an optimal level of efficiency can be achieved while using a synergy effect and best use of all
resources. An integrated management environment presumes that communication between
relevant components rests upon shared protocols. It also requires managed elements to
expose the management-relevant information in a manner which is vendor-independent
and accessible via well-defined interfaces.



24 4 Technical Management

Data

ObjectsCandCresourcesCtoCbeCmanaged LevelsCofCintegratedCmanagement

Data

Application Application Application

ProviderCstructure
IProcesses,Cservices,CpoliciesS

Workstation Host PC Printer

NetworkCandCsystemCresources

CommunicationCnetwork
hubs,Cbridges,Crouter,
multiplexers,Cswitches

...

...

EnterpriseCmanagement

ApplicationCmanagement

InformationCmanagement

SystemCmanagement

NetworkCmanagement

Figure 4.1: Levels of Management. Adapted from [HAN98]

Management architecture provides a framework for management-relevant standards. The
most important forms of contemporary management architectures are presented by e.g.
OSI and TMN, Internet, CORBA management architectures, DMTF Desktop Management
Interface, and web-based architectures as Java Management API and web-based enterprise
management(WBEM). It is common to distinguish between four key models essential for
definition of a management platform [HAN98]:

• Information model controls the methods for modeling and description of managed
resources.

• Communication model defines access to the managed resources and communication
protocols.

• Functional model structures the overall management functionality.

• Organization model specifies management domains, partitions management realm,
defines roles, responsibilities, and cooperation forms.

Serving solely as a framework, a specified management architecture has to be realized in
order to gain a practical use. Under the term management platform we understand imple-
mentations of management architectures done on the basis of standardized programming
and service interfaces. Platforms act as open carrier systems for management applications.
Management applications then again can use other management systems, tools or managed
resources (Figure 4.2).

Aiming for an integrated approach, a management platform must address the following
issues on the vendor-independent basis:

• What information and resources are relevant for managing (information model).

• How to describe the managed information and resources (information model).

• What management-relevant communication flows exist (communication model).

• What protocols should be used to communicate for the management purposes (com-
munication model).



4.1.1 Information Model 25

Applications

Application platform

Management applications

Management platform
API

Management system

Management applications

Management platform
API

Management system

Management
functions

Management
database

Resource

Tool

Figure 4.2: Management Platforms. Adapted from [HAN98]

• What functions the management has to perform (functional model).

• How the management is organized and structured with regard to overall management
policies (organization model).

• What type of user interaction is desired (operational model).

• What are the operational specifications of the management system (operational
model).

Commands

Management
functionality

MANAGEROperator

Management policies

Management
functionality

AGENT

Responses

Notifications

Communication ModelOperational Model

Organizational Model
Information Model

Functional Model

User
interface

Figure 4.3: Management Architecture Models. Adapted from [Pat09]

Figure 4.3 demonstrates how these aspects mirror the above mentioned models within
the overall management structure involving managing (manager), and managed (agent)
entities [Pat09], [HAN98].

4.1.1 Information Model
In order to solve management tasks successfully, a common view of managed resources and
the information they provide is essential. In heterogeneous dynamic environments, this
common view can be achieved by means of an information model. Under this model we
understand a common formal framework used to describe managed resources and structure
management-relevant information. Thereby, it is important that the level of abstraction is
sufficient to provide a scalable and homogeneous view regardless of what kind of resource
it is, where it is located, or how it is accessed.

Characteristics of the managed resources (physical or logical) accessible by management
operations are typically represented by managed objects. Thus, the information model must
establish basis for managed objects, their naming, state, behavior, access model, relation
to each other, and operations on them. The notion of managed objects can incorporate
dynamic, generic, and composed concepts. For example, apart from network components



26 4 Technical Management

and system resources and devices which are straight forward to be identified as managed
objects, such abstract terms like virtual networks, connections, set up locations, domains
can be handled as managed objects.
Management information base (MIB) represents a conceptual repository of management

information, or speaking more generally a collection of managed objects describing a
particular management domain. Different modeling approaches can be used. Thus, OSI
information model [ISO93] just like CORBA object model follows the object-oriented
approach, DMI uses, on the contrary, the data type approach (MIF). The notation for
description of management information is also prescribed by the information model. E.g.,
OSI and Internet management use ASN.1 syntax whereas CORBA implies usage of IDL.

Management 
commands

Management
application or

operator

User
interface

Management 
protocol

Managing
entity or
manager

Managed
entity or agent

Manager-agent interface

System boundary

MIB

MappingMIB access
interface

Responses
Events

Managed
resources

Figure 4.4: Information Model. Adapted from [HAN98]

Figure 4.4 demonstrates the common management process. Thus, management implies
accessing managed objects by means of management commands. Transmission of the
commands to corresponding managed entities is done via management protocols. As MIB
access is standardized, the mapping of managed objects to resources is a local matter.

The identification of management-relevant information is not a trivial task. The selection
of management objects and their characteristics as well as their abstraction level determine
functional scope of the management system. We speak about bottom-up approach, if
deriving management-relevant abstractions we proceed from given protocols, components,
product specifications. In other words, one tries to answer the question "What information is
available?". On the contrary, top-down approach proceeds from requirements of management
applications, users or operators and derives relevant management information, i.e. answering
the question "What information is required?".

4.1.2 Organization model

The organization model of a management architecture defines actors, their roles and how
they cooperate with each other.

Cooperation models

Two main cooperation models are typical for management architectures: manager-agent
and peer-to-peer. The manager-agent model adopts the common client-server paradigm.
The manager requests the client to perform a certain operation. The client responses
with the result of the operation. Suppose, the monitoring task is performed. In this
case, the operation corresponds to a read access to the relevant managed objects. The
manager (client) requests the agent (server) to perform a read operation. The response



4.1.2 Organization model 27

of the agent includes the result of the read operation. In case of the controlling task, the
operation corresponds to the write access to the certain managed objects. Depending on
how operation semantic has been defined by the information model, the effect of the access
will be returned by the agent to the manager (Figure 4.4). The client-server paradigm
implies an asymmetric or hierarchical cooperation form between the management entities.
The manager-agent model is adopted by e.g. OSI and Internet management architectures.
The roles are not compulsory permanently assigned to the components. In practice, they
can be dynamically reassigned depending on the current task.

Another cooperation form is peer-to-peer model which is based on the reciprocal relation-
ship between management entities (peers). It is a completely symmetric cooperation form,
which means that the flexible mutual operation performing and information exchange takes
place. The peer-to-peer model is used by the CORBA management architecture.

Topological forms

In general, management entities are in many-to-many relationship to each other. A manager
is responsible as a rule for a group of managing agents (domain). At the same time a
managing agent can be assigned to several managers at the same time. Thus, concerning
the topology of the management there is a variety of possible forms [Pav98], [HAN98]
(Figure 4.5) .

centralized flat hierarchical

manager to agent relationship
managed element (agent)
management center (manager)
management application (manager-agent)

Figure 4.5: Management Topology Forms. Adapted from [Pav98]

The topological form can be characterized according to multiple aspects. The first one
to mention is centralization. Assume a fully centralized management form, where a single
manager is responsible for a row of managing agents. Its weakness is concentration of
all the functions in one place, lack of scalability because of limitation on the number
of managed resources as well as vulnerability because of the single point of failure. A
significant advantage of this management form is, however, its simplicity. Alternatively,
decentralized forms which employ multiple managers can be used. Thus, the managed
resources are assigned according to a certain criteria to responsible managers. For example,
these criteria can be their physical location, type, functionality, organization affiliation.
Thus, each manager has its own allocated domain and is responsible solely for the resources
of this group.
Another aspect is a hierarchical layout of the manager topology. We speak about

a flat form, in case there is no relationship between distinct managers or they are of
equal rank (peer). Otherwise, it is a hierarchical form, where subordinate relationship
between managers exists. They speak about manager of managers concept. Being logically
centralized, the hierarchical form still provides distributed control capabilities.
Manager affiliation is also a characterizing factor for the topological form. Thus, each

managing agent can be assigned to a distinct manager or to the multiple managers (network
of managers). In the latter case managers may be responsible for different management
areas, e.g. security, performance, accounting. The main benefit of this form is that the



28 4 Technical Management

splitting of management areas improves the robustness of the management system. On the
contrary, access to the same resources requires from the management system support of
conflict detection and resolution.

Centralized Distinct manager
affiliation

Intramanager
coordination

Hierarchy
support

Central
management

+ - - -

Multipoint
control

- - - -

Multicenter
control

- - + -

Hierarchical
management

+ - + +

Network of
manager

- + + -

Table 4.1: Topology Forms

Table 4.1 summarizes the above mentioned topological forms with regard to their
properties. So, central management form evolves a single management system a set of
managed resources. Multipoint control form partitions the resources into disjoint subsets
which are controlled by separate management systems.

A general management paradigm bases on the delegation of tasks to other entities.
Delegation is a process of "transferring power, authority, accountability, and responsibility"
[MFZH99]. Also the technical management incorporates the delegation notion. The
topological form walks along with the delegation direction used within the management
system. Vertical delegation is typical of hierarchical paradigms. The two main kinds of
vertical delegation are downward and upward delegation. Downward delegation supposes
that a manager at level N delegates tasks to a subordinate at level N+1. On the contrary,
in case a subordinate at level N+1 is out of due or is not capable of decision making, he
delegates his tasks upwards to his manager at level N. Horizontal delegation is typical of
cooperative paradigms (flat forms) where peers of equal rank cooperate with each other
[MFZH99].

4.1.3 Communication model

Controlling and monitoring of distributed resources assumes exchange of information.
Regardless of the cooperation model, management entities are supposed to exchange data
while transmitting management operations and manipulating management data. The
communication model of a management architecture specifies the protocol for exchanging
management information between managing and managed entities. Thereby, three main
tasks are covered by the communication model:
Controlling In order to operate on a resource, a corresponding control information

must be transferred to the responsible managed entity. The communication model defines
the protocol for transferring a control command from the managing to the managed entity
and the corresponding answer from the managed to the managing entity, if applicable.
Within the controlling task the communication is initiated by the managing entity.
Monitoring Monitoring resources implies regular status queries performed by the

responsible managing entities. Similar to the controlling task, the monitoring task involves



4.1.4 Functional model 29

the managing entity to initiate communication with managed entities and actively request
desired information in a way specified by the communication model.
Notifications Notifications are used to asynchronously inform the managing entity

about important events on the part of the system comprising the relevant resources. By
contrast to the monitoring and controlling tasks, communication is performed in a one-way
mode. The communication model defines the protocol for exchanging of event messages.
The communication model can also specify mechanisms to build subsets of services

and protocols to perform the above mentioned tasks, i.e. profiles. Specifying protocols
involves naturally defining syntax and semantics of corresponding data structures including
protocol data units, data exchange formats, etc. The embedding of the protocols into the
global architecture or protocol hierarchy can be inbound or outbound. Inbound embedding
means that management communication takes place over the same transport network as
the normal communication. Outbound embedding presumes usage of a logically separate
transport network for the management communication.

4.1.4 Functional model
The functional model of a management architecture specifies the structure of management
functions performed by the overall management system by means of management applica-
tions and tools. Some of the functions can be specified in terms of a dedicated management
function area, the others are general enough to span multiple areas.
Specifying management functions comprises the definition of the following aspects:

• Expected management functionality

• Services providing the management functionality

• Management objects needed for the services realization

• Logical subsets of management functions

• Invocation conventions for management functions

Tight liaison with the associated information model is obvious. Thus, the description of
management objects and invocation conventions assumes a common understanding relying
on the information model. Thereby, invocation conventions include construction of external
and internal interfaces for managers and management agents in order to provide the basis
for open and expandable platforms. Especially management scalability is reliant on the
widespread applicable, flexible configurable, and delegateable management functionality.

Functional decomposition of management allows a modular approach in development of
management applications and tools. It must, however, face the issue of a certain overlapping
of function areas. The overlap can be caused due to the following points:
Common resources The same resources can be used by multiple function areas.

This, for example, may cause challenges originated form concurrent use of objects or conflict
of objectives.
Mutual calls Management applications may need to call each other mutually and

trigger execution of corresponding actions. Control of call sequence along with coordination
of collaboration requires additional efforts by overall management.
Designing a functional model is usually a comprehensive task accomplished in multiple

steps by integrating dedicated management aspects. The approach is in most cases to start
from the standpoint of function areas and process the aspects in a gradual manner. The
next section introduces the fundamental functional areas regarded for the management
purposes.



30 4 Technical Management

4.2 Management Functional Areas

The ISO/ITU-T joint committee has worked out a Recommendation ITU-T X.700 (09/92)
which turned into a widely accepted standard for network and systems management.
According to it, the OSI Management Architecture defines in its functional model the
following five functional areas: Fault, Configuration, Accounting, Performance, and Security
Management (FCAPS) [Int92].

4.2.1 Fault Management

Faults cause the abnormal operation of the system which results in failing the operational
objectives or system functions. The nature of the faults can be of persistent or transient
matter and the manifestation can be in form of particular events in the operation (e.g.,
errors, malfunctions, performance issues). The sources of faults are enormous in their variety
starting from network components and communication channels to software components
and end systems. The faults themselves can be presented as a binary variable signaling
about the system state (e.g., "failed", "okay") or as a numeric indicating the measure of
fault extent. In the latter case fine-tuned thresholds are to be worked out in order to
recognize faulty conditions.
Fault management involves reactive and proactive measures in order to detect, isolate,

and eliminate these faults in the system behavior. It is also to mention that faults occur
often combined together. Simultaneous handling of multiple faults is unavoidable for
effective fault management.
Fault detection relies on periodical checking the system health. In case a fault is detected,

a corresponding notification is supposed to take place. Notification conveyance may be
done by the faulty component itself or by any other monitoring component. In certain
cases not only the management system is to be notified about the detected fault. Also the
end user may need to be informed about it. Irrespective of the mode of checking (push
or pull mechanism) an intelligent balance between real-time notification and costs related
with processing and transport has to be found [SJCC07]. Management tasks providing for
the fault detection usually include monitoring system state, maintaining and periodically
studying error logs, carrying out diagnostic tests, etc.
The next step after the fault detection is usually the fault isolation. Fault isolation

includes diagnosing fault causes and tracing their roots up to potential conceptual weak-
nesses. Once a component fails, a set of fault notifications can be generated and registered
by the management system. A strategy is needed in order to separate the actual faulty
component from the bulk of possible cascading failures. In other words, the main aim
is to localize the root cause, so that point can be found, where a corrective action can
take place. This can turn out to be a physical component or a substantial weak point in
the system design. Some algorithms and techniques for fault isolation in TCP networks
are presented in [Cla82], [KP97]. Among others the following management instrumentals
for fault isolation are useful: fault signatures, pattern recognition, and classifiers [Ise06],
model-based reasoning techniques [Ise04], [VRYK03], rule-based approaches [KAC+05],
[SZ08] etc.

Once the fault is isolated, the next step is to eliminate it. Fault elimination includes all
sorts of corrective measures to return the system to the normal state. In case the correction
of the fault is not possible or takes more time as allowed, procedures are to undertake in
order to compensate for the faulty behavior. Management tasks for fault elimination vary
in their complexity and nature: e.g. recovery actions can integrate arranging for resets and
restarts, providing for redundant components, catering for clearing processed alarms, etc.



4.2.2 Configuration Management 31

To take a step forward in the fault management, a proactive handling is needed. Knowing
about a critical situation in advance, allows the management system to apply countermea-
sures for preventing the fault occurrence [PN04], [SLL+08], [CMK05]. If the fault is not to
be avoided, the system can at least provide for repair mechanisms or fallback solutions in
order to minimize the time-to-repair. A comprehensive work on algorithms used for long-
and short-term prediction in systems management is presented in [VAH+02].

4.2.2 Configuration Management

As defined by ITIL, configuration item means any artifact that is to be monitored and
controlled in order to deliver an IT service [AXE11]. Configuration items may include
include physical, logical, as well as conceptual entities like e.g. hard- and software,
network and its components, databases, services, SLAs, documents, user data, buildings
etc. Irrespective of their dimension, configuration items are regarded as the smallest units
which are designated for and treated like a single entity within a configuration. Thus,
[AXE11] adheres to a service-centered definition of configuration management:

"The process responsible for ensuring that the assets required to deliver services
are properly controlled, and that accurate and reliable information about those
assets is available when and where it is needed."

The above mentioned Recommendation ITU-T X.700 (09/92) states that the main task of
the configuration management is to identify, control, collect data from and provide data
in order to prepare, initialize, start, provide for the continuous operation of, as well as
terminate services [Int92].
Another definition of the configuration management is suggested by ISO [ISO10]:

"A discipline applying technical and administrative direction and surveillance
to: identify and document the functional and physical characteristics of a
configuration item, control changes to those characteristics, record and report
change processing and implementation status, and verify compliance with
specified requirements."

An essential logical partition into static and dynamic configuration management realms is
obvious [KM85], [CCSZ03], [SMM+12]. The scope of responsibility of static configuration
management comprises measures for providing initial configuration of relevant components,
system starting and stopping procedures, provisioning of components. It also performs
inventory tasks, records, reports, and traces system state. These are more or less standard
procedures that are independent of the environmental conditions. Typical use cases for
the static configuration management comprise e.g. software distribution, network topology
setup, access control information management, backup execution, upgrade execution.

Dynamic configuration management implies actions that are context-aware. That means
that the management decisions directly depend on the current state of the environment.
Therefore a comprehensive planning beforehand is essential. The usual outcome of the
changing conditions is that the management system should adjust to them and reconfigure
the managed system in order to meet the predefined requirements. Reconfiguration
according to the environment establishes a basis for the reactive and taking a step forward
for the proactive system behavior. Among typical use cases for the dynamic configuration
management are such tasks like network topology reconfiguration, substitution of failed
components, network roots establishment at runtime, selection of appropriate services due
to the agreed SLAs, etc.



32 4 Technical Management

4.2.3 Accounting Management

There are many definitions of accounting. Thus, American Accounting Association (AAA)
defines it as [Dru92]:

"The process of identifying, measuring and communicating economic information
to permit informed judgments and decisions by users of the information."

In his work, Needles [NP10] provides another definition of the notion of accounting:

"Accounting is an information system that measures, processes, and communi-
cates financial information about" economic entities.

Inspecting the used terms reveals that the attribute of economic information, its measure-
ment and communication as well as its usage for making decisions plays a central role in
the accounting process.

Transferring the accounting notion to the technical management, the attribute of economic
entities refers to resources and services which can be provided on the commercial basis.
Following this, ISO determines accounting management as [Int92]:

A way to identify costs arising from the usage of resources and to establish
charges for it.

To follow up the definition of AAA, it is to decide what users of the accounting information
exist. Firstly, the resource provider has an overview of what resources have been consumed,
by whom, and in what extent. Secondly, the resource user is to be informed about the
incurred expenses. In order to enable this, tariff schedules are to be associated with the
resources in use. Further, accurate logging of resource usage must take place in order to
allocate their usage to the users.
Thereby, cost allocation strategies and procedures should be the subject of predefined

accounting policy. The accounting management system is to be configured to enforce these
policies and not to perform on its own initiative.

The ability of accounting management to report, allocate, and administrate costs brings
further benefits about. Thus, it allows a better SLA adherence by means of advanced
controlling of accounting limits. Runtime control of currently arising costs and remaining
buffer enables speedy reaction and intervention in sufficient time. Provided information
about costs and charges, billing procedures as well as income statistics calculation and
reporting also benefit through these sophisticated functions [Pat09].
Hegering [HAN98] divides accounting management functions into four main groups of

functions: usage management functions, accounting process functions, control functions,
and charging functions. Usage management functions inclose all sorts of functions related
to collection, recording, and maintaining statistics on distributed resource and service
usage data based on monitoring and metering. Accounting process functions represent
administration, monitoring and surveillance of resource usage data. Control functions
include functions for supervision, administration and controlling of any kind artifacts and
processes: tariffs, schedules, records, data transfer and storage, etc. Charging functions
address calculation of charges, production of bills, contracts and payments processing
functions.
Accounting management can be successfully used to leverage planning of resources and

services. Its outcomes and deliverables may help with optimization tasks during the system
design phase. It is obvious, that accounting management bears a close relationship to
service and business management [HAN98], [Jos08].



4.2.4 Performance Management 33

4.2.4 Performance Management

Speaking of system performance, it is firstly to define what output and effort of the system
are to be expected. Thereby the commonly used measure is quality of service (QoS). On
the basis of the definition of the Recommendation ITU-T E.800 (09/08) [ITU08] which
defines the term of quality of service in terms of telecommunication services, we generalize
this notion as:

The totality of observable and/or measurable characteristics of a service that
bear on its ability to satisfy stated and implied needs of the user of the service.

Well defined observable and/or measurable characteristics are referred as parameters. The
selection and specification of such QoS parameters is not a trivial task. Once the QoS
parameters are defined, they can be used for specifying service level agreements (SLAs)
which actually express stated and implied user needs concerning the service. Providing
the service with the desired QoS, permanent performance control, as well as subsequent
traceability are the next steps to undertake. Performance management copes with these
task. We define the term of performance management as:

A process that defines the QoS provided by the system and enforces measures
to guarantee and provide evidence that the QoS complies with the agreed SLAs.

Thus, the responsibilities of the performance management include performance monitoring,
analysis, evaluation, reporting functions [HAN98]. Performance monitoring functions
comprise functions for monitoring resources in order to discover existing soft spots and
exceeding of limits in performance. Performance analysis functions concentrate on prediction
of potential bottlenecks and performance problems by performing required measurements
and calculations. Evaluation of recordings and logs of system activity and performance
malfunctions adheres to the evaluation functions. Reporting functions include composing
and providing all sorts of reports concerning the system performance.
Similar to the accounting management, performance management can be used while

planning resources and services of a system. By means of analytical and simulative models,
performance management can e.g. test the system behavior, check up new configurations,
tune management procedures and instrumentals, etc.

4.2.5 Security Management

Security aspect in the IT addresses mostly two main points: functional security and
data security. Functional security includes system availability and functional correctness,
whereas data security includes confidentiality and integrity of data [GKS+85].

The OMG in "CORBAservices Specifications" [OMG02] states that security aims the
system to be protected from unauthorized information access or interfering with its
operation. These security breaches compromising the system have become numerous and
various lately. Thereby they can be of deliberate or accidental nature. The examples of
the common threats identified by the CORBA security specification are bypassing security
controls, eavesdropping on a communication line, user masquerading, tampering with
communication, etc.

The amount of protection and undertaken security measures depends on the value of the
assets that are to be protected as well as on the potential treats that are to be expected.
Working out an adequate level of protection is a non-trivial task which has become an
indispensable part of system planning and design process.



34 4 Technical Management

Being a central asset to be protected, information has value only if it is correct and
the right people can access it at the right time. Thus, according to [OMG02], security is
concerned with the following targets:
Confidentiality Only authorized users gain access to information. Disclosure to

unauthorized parties can be viewed as a serious menace to the sensible information and the
system itself. Disclosed data can lose in value for the data owner or even turn hazardous.
The loss of confidentiality is irreversible. It is to take into account that acquisition of
confidential information can be done directly or indirectly. Direct acquisition means
unmediated access to the stored, processed or transmitted confidential data whereas
indirect access implies retrieval or extraction of confidential data on the basis of other
information [FJ02].
Integrity Only authorized and entitled users can modify information in intended

way. Protection of information from being modified by unauthorized parties is a key task,
since modification of sensible information may cause a serious damage. Similar to the
confidentiality, malicious or accidental modification of stored, processed, or transmitted
data should be considered. This time, however, provided certain recognition and safeguard
mechanisms, a correction of modified data is possible, i.e. it can be reversible [SWZ05].
Accountability Responsibility for security-relevant actions lies with users who un-

dertake these actions. Holding users responsible for their actions allows to achieve security
by deterrence in spirit of traditional law practice [JJPR09]. Accountability relies on the
after-the-fact verification which presumes widespread logging as well as auditing log records
afterward. Non-repudiation as a special case of accountability implies that the actions of
a user can be traced uniquely to the user, i.e. in addition to logging of user actions an
unambiguous proof of authorship can be provided.
Availability Denial of system usage for authorized users has to be prohibited. It is to

ensure that authorized and entitled parties were able to access information when needed.
Availability loss can be of malicious or accidental nature. E.g. DDoS attack compromises
maliciously the availability where as outage of power causes an accidental loss of system
availability.
Security management evolves all sorts of measures and mechanisms in order guarantee

and support application of defined security policies. It is pervasive and operates on different
abstraction levels starting from physical devices through security services up to abstract
organizational arrangements. According to the Recommendation ITU-T E.800 (09/08)
[ITU08] its functions include:

• definition and control of security services and mechanisms

• definition, distribution and storage of security-relevant information

• reporting and warning on security-relevant events

Security management measures are also to be found during the system design phase,
when corresponding prevention procedures and mechanisms are planned. Similar to other
functional areas, a close relationship with configuration management is obvious.

4.3 Automated Management Challenges
The complexity of modern distributed systems challenges the automated management
solutions in multiple architectural issues. Thus, in [KDR+06] they point out the following
aspects, which are to be handled by the management systems: autonomy, scalability,
heterogeneity and administrative isolation.



4.3.1 Autonomy 35

4.3.1 Autonomy

The need of eliminating the human intervention has become a topic of ongoing research
during the last decades. In 2001 IBM introduced the term of autonomic computing which
was used to describe systems that can prove self-management properties under varying
and unpredictable conditions [KC03], [IBM05]. The intent of self-management is to free
system administrator from details of system operation and maintenance after providing
once or at least relatively rarely high-level management objectives or guidelines. Within
the vision of IBM, self-managing systems and devices naturally and unremarkably adjust
and upgrade to the changing environment without us knowing any details or technicalities
of migration or transformation [DSNH10].
Self-management properties include abilities for self-configuration, self-healing, self-

optimization, and self-protection [HM08], [KC03].
Self-configuration The dimensions and complexity of modern systems makes the

process of initial installation, configuration and setup is a complex, time-consuming and
error-prone task. It is targeted that this task is performed by the system itself according to
specified high-level goals. That means, the main aims and needs are specified but not how
to achieve them. Introducing a new component should be performed transparently for the
rest of the system. The component is to be configured in accordance with its environment
and the system is to integrate the new component seamlessly.
Self-healing Distributed and heterogeneous nature of systems makes errors and

problems during deployment and runtime very likely. Thus, detection and diagnosis of
these conditions is inevitable. The system should fix the problem, if possible, or at least
handle the situation appropriately. No further harm should occur and the corresponding
notification must come about. In terms of self-healing, reactive and proactive behavior is
desired. Thus, the hazardous conditions should not only to be handled directly on arising
in a timely fashion, but also a certain looking ahead should be striven. Early signs of
possible failures are to be recognized and dealt with in advance.
Self-optimization Large and complex systems involve a big amount of resources.

The number of tunable parameters which are to be tweaked is tremendous, correspondingly.
That is why the use of them should be properly planned and thought through demanding
a great expertise and know-how. Optimizing the resource usage is a part of it. Proactive
behavior with constant seeking for ways to improve the operation should be brought
forward in this case, too. With respect to the defined requirements, automatic monitoring
and control of resources should facilitate system performance by seizing every opportunity
to make its behavior more efficient.
Self-protection Hazards of the systems originate not only from malicious attacks but

also from unintended failures and errors. Despite existing automated common protecting
procedures, human intervention in order to protect the system or handle the hazardous
condition is often necessary. Thus, the ability of self-protection gains in importance.
Self-protection measures include defending against harmful attacks, failures and problems
arising from them as well as avoiding such precarious situation in the first place. In order
to prevent fault and damage, weak points and vulnerabilities are to be anticipated. Then
again proactive features enhance systems substantially.
The above mentioned self-management properties are a core of the autonomy aspect.

They help to reduce costs of systems management as well as to improve its efficiency.
Autonomic management systems tackle administration complexity that is out of reach of a
human administrator be that due to his absence or his inability to manage the situation
by hand.



36 4 Technical Management

4.3.2 Scalability
Large-scale distributed systems must face the problem of constantly growing number of
system components as well as permanently increasing amount of work the systems must
deal with. In this context, the issue of scalability arises. A rigorous wide-spread definition
of the scalability term as a property of a system is, however, absent [Hil90], [DRW06].
In most cases it is application case dependent and needs a concrete definition of specific
requirements and metrics.
In [WG06] an extensive analysis has been presented of what is meant by scalability as

well as on factors to be considered in order to evaluate system in terms of scalability. Thus,
two main uses of the term were identified. The first one is rather informal, commonly-used
but at the same time paying no particular attention to the mechanisms or strategies of
addressing the case the workload increases beyond a threshold:

"Scalability is the ability to handle increased workload (without adding resources
to a system)."

In fact it actually means for a system "to continue to function with acceptable performance
when the workload has been significantly increased" [WA02]. In order to improve the
scalability in this sense, one can enhance used algorithms, apply more effective data
structure, or just reduce the amount of services the system provides when it is heavily
loaded.
The second definition identified in [WG06] addresses more issues:

"Scalability is the ability to handle increased workload by repeatedly applying
a cost-effective strategy for extending a system’s capacity."

Thus, a strategy for capacity extending as well as how often a capacity extending can take
place are subjects of interest. Improving scalability in this sense means searching for a
better strategy for adding capacity or catering for a better cost-effectiveness.
In general, overcoming performance limits by adding resources can be done using the

two following approaches:
Vertical scaling In case physical resources are added to an existing node, we speak

of scaling vertically, i.e. scaling up. The approach requires no changes to the architecture
but is limited in the scalability level due to hardware restriction.
Horizontal scaling Additional nodes with physical resources are added to the ar-

chitecture means that the system scales horizontally, i.e. it scales out. In this case the
workload is to be dispatched between additional nodes. Thus, the architecture has to be
designed to be extendable in this way as well as a special load scheduler (or load balancer)
is required. Horizontal scaling is, therefore, more sophisticated by design but is eventually
the one and only way for scaling due to limited hardware capacity of a single machine.

Adopting the general definition described above the scalability of a management system
concerns its ability to accommodate the growth of the managed system. Thereby, the
growth of the managed system may apply to size, number, and diversity of managed
resources.

4.3.3 Heterogeneity
Dealing with large managed systems assumes that the management system should support
a wide spectrum of managed objects. The issue of heterogeneity of the managed systems
arises. It concerns temporal, geographical, structural as well as vendor specific aspects.
Dynamics The management should be able to operate under the circumstance of

high dynamics. Constant changes of the environment as well as the requirements of the



4.3.4 Administrative Isolation 37

managed system demand for it. Moreover, new objects pop up, the old ones disappear.
Similarly, new connections between objects are established and dissolved. Objects can
build dynamically new logical groups that are to be managed as an ensemble. At the same
time these groups can vanish. Such changes in the infrastructure of the managed system
should be mastered by the management system.
Location transparency Managed objects can often be spread noticeably in their

geographical position. It is desired that the management system can handle this locational
diversity and address distributed managed objects in the same manner as it addresses the
local ones. Thus, location transparency is eligible.
Legacy assets The most of the managed resources include diverse devices, appli-

cations, and systems, which can vary extremely in their nature. Thus, they are mostly
manufactured by different vendors and have as a result some certain specifics. E.g. they
can use proprietary protocols, bring no standardized management information along, and
have no description of management objects at all. It is natural, that in most cases managed
resources have not been tailored to be managed by a dedicated management system. In
order to compensate for the by design missing management support, the management
system should provide required mechanisms and instrumentals.

4.3.4 Administrative Isolation
Contemporary large-scaled systems are so huge that it often makes sense to arrange
their elements into logical groups. From the management point of view, an interest of
logical partition of managed resources exists, so that different management views can be
implemented [HAN98].

A concept of a management domain arises. Thus, a management domain can be defined
as:

"a collection of managed objects which have been explicitly grouped together
for the purposes of management" [Slo94].

Being more precise, a management domain can be viewed as a managed object itself which
holds references to managed objects belonging to this managed domain. In this case, a
managed domain is a parent domain whereas the managed objects are its direct members.
In its own turn, a domain as a managed object may be a member of another domain. So,
it is called a management subdomain and its members are indirect members of its parent
domain. Thus, a notion of hierarchy is brought in.
The criterion of domain membership can vary depending on the purpose for which the

domains are defined. For example, geographical location can be used as a characteristics
to group management objects into management domains. Another example is the orga-
nizational affiliation as a grouping criterion. In this case enterprise’s, institution’s, and
facility’s hierarchy or structural distribution can be reflected in the management domain
fragmentation. Eventually, domain can be used to address management objects of a a
common art or type, e.g. all the routers, software processes, sensors.
Of special interest is ability to express complex structures by using multiple domain

membership criteria at the same time. So that advanced filtering for addressing of designated
group of management objects is possible, e.g. the software process running on hosts of an
operating department belonging to a particular enterprise.

Grouping together for the purpose of management implies ability to apply common man-
agement operations or actions for designated sets of management objects. In conjunction
with management domain, the policy concept is brought in [SM88]. The next chapter
provides an overview of the policy-based management field.





Chapter 5

Policy-Based Management

One of the administrative approaches to the technical management which aims to undertake
the given endeavor and strive for certain goals and missions is known as policy-based
management. Being an established and well-accepted solution, policy-based management is
referred as a way to maintain order, consistency and uniformity of not only the management
targets and objectives but also of the way the management is established itself. Policies
represent logic which determines the behavior of the managed system. The operation of
computing resources is conducted according to the predefined rules which express this
desired behavior. The operation is supposed to be dynamically adaptable in order to allow
system reactivity and sometimes proactivity due to constant changes in requirements and
conditions at runtime. Due to policies, a new level of autonomic computing has arisen.
Thereby the variety of policy-based management approaches is extremely great starting
from deeply tied to the application domain and dependent on the field of operation to
those completely generic and suitable to be applied in multiple operation environments.

5.1 Historical Perspective
The historical perspective of research efforts on the policy-based management is widely
presented in [BA07]. The authors highlight not only the chronological order of events but
also concentrate on different functional areas of policy-based management. The roots of
the policy-based management paradigm originate from the security models which date
from the late 1960’s. The focus of research was emphasized on security considerations
targeting from the single machines via enterprises through to networked environments.
The policies were regarded as abstractly formulated rules which were used to regulate
the access control. Within the access control process a selective restriction of access to
resources takes place. The decision about granting the permission to access a resource
is done according to the predefined security policies. They can be of different form and
nature, concerning a variety of criteria as well as means and specifics of security assurance.
A scheme for specifying and enforcing the security policies, i.e. a formal representation
of security policies and their functions, was provided in that case by the security model.
The low-level functions which implement the controls on the soft- and hardware level
were defined by the corresponding predefined security mechanisms. By establishing the
formal representations and the appropriate mapping between them, a proof of properties
concerning the security issues could take place.

The introduction of role-based access control (RBAC) model by [FK92] has gained a wide
acceptance in the field of security. Its refined and extended model was accepted in 2004 as
an ANSI standard ANSI/INCITS 359-2004 [Inf04]. Though the RBAC model does not
describes the usage of policies directly, the security model promotes their employment within
the role-based access control by providing the basis for its specification and enforcement.
Moreover, the security model of RBAC has been adopted by several policy specification
languages (e.g., Ponder, XACML).



40 5 Policy-Based Management

In the mid 1980’s the aspect of policy research drifted to the network and distributed
systems management. The research work of D.C. Robinson, J.D. Moffet, and K. Twidle
supervised by M. Sloman has proven great promise of policies as a management paradigm.
Especially the notion of domains arises in this context [RS88]. The domain model is used
to specify and structure policies. Policies represent a set of rules associated with the
corresponding domain. Domains adhere to a manager responsible for his sphere of interest.
Thus, a scalable and flexible management of large distributed computing systems can
be achieved by using subdomains and touching domains. Further, different functions of
management like Fault, Configuration, Accounting, Performance, and Security (FCAPS)
are addressed by using a uniform interface.

Later on, as the Internet came to the fore, the use of policies for routing and networking
has begun. In RFC 1102 [Cla89]the need of policy routing was addressed. The author
proposes that selection of routs should be done according to predefined resource policies
which refer such considerations like restriction of usage of network resources to certain
customer classes or some measures of route. Policy-based routing came into usage with
emergence of routing protocols BGP (1989), IDRP (1994) and IDPR (1993). The research
field of network policies has turned out to be very promising, so that IETF and DMTF have
started working on standardization of policy framework. A policy management architecture
for policy-based networking has been worked out, which later on was accepted and used
widely apart from network background. So, in 2001 an object-oriented information model
for representing policy information Policy Core Information Model (PCIM) was published
in RFC 3060 [MESW01]. Extending the basic Common Information Model (CIM) concepts
for policy, PCIM describes a "core" model and cannot be applied without domain-specific
extensions. It includes the basic concepts of policy groups, rules, conditions, actions,
repositories as well as their relationships. In RFC 2748 [DBC+00], IETF has also proposed
the Common Open Policy Service (COPS) protocol employing a simple client/server model
for supporting policy control over QoS signaling protocols. The research of IETF/DMTF
was followed by other researches studying different aspects of policies in IP networks.
E.g., alternate policy architectures have been introduced addressing QoS in Differentiated
Services (DiffServ) networks.

The usage of policies for network management was continued with the usage for business-
driven management. The interest of major industries was drawn to the ability to provide
an autonomic management where concrete device configuration and control is guided in
accordance with business-level expert guidance performed by humans. Thus, IBM has
started an initiative for researching autonomic management for large-scale computing
systems and studied policy notion in these terms. Policy Management for Autonomic
Computing (PMAC) framework has been developed and was determined to "help developers
simplify the automation of IT and business processes and makes applications more self-
managing and self-configuring" [IBM05]. The intelligent control loop is implemented in the
PMAC architecture as an autonomic manager (AM). AM is responsible for monitoring,
analyzing, planning, and executing functions in accordance with predefined policies [Kir05].
Later on, HP Research Labs have started works on a business aware management of policy-
based systems and applications. In their research they have addressed the lack of business
and service level context to drive policy-based decisions at runtime and proposed a business-
driven management framework (BDMF). BDMF supported an interaction mechanism
between the more proactive business aware management layer and the underpinning
reactive policy-based resource control layer [ASB+06].



5.2. Policy Definition 41

5.2 Policy Definition
Considering the historical perspective, the definition of policies has varied a lot depending
on the application domain, usage of abstraction levels, form, and management mechanism.
In the following, the main concepts and terms arising with policy-based management are
presented.
In general, policies were defined by Sloman[Slo94] as

"rules governing the choices in behavior of a system".

Adopting the Sloman’s definition, however, allows a certain ambiguity of policies usage.
The behavior of a system can be interpreted as application flow and policies in this case
would be used directly to code the application.

Another definition which focuses on the management purposes was proposed by Lupu:

"policies are a means of specifying and influencing management behavior within
a distributed system, without coding behavior into management agents" [LS99].

In his work, Wies [Wie94] points out that a large number of related terms surround
the notion of "policy", such as "strategy, goal, vision, direction, mission, process, tactic,
procedure, plan, scheme, course, and guideline". He places policies as a link between the
corporate and technology management (Figure 5.1).

CorporateOManagement

NetworkOYOSystemOManagement

E
nt

er
p

ris
e-

or
ie

n
te

d
T

ec
hn

ol
og

y-
or

ie
nt

ed

GoalO/OMission

Strategy

Resources

ManagementOScripts
ManagementOObjects

POLICY

Figure 5.1: Policy Through the Loop of Enterprise Management. Adapted from [Wie94]

From the enterprise-oriented point of view, the corporate goal can be achieved through
a number of long-term strategies. Policies are derived from these strategies and define the
organizational measures and tactics for a particular department. From the technology-
oriented point of view, policies act on their targets, i.e. management objects which are
defined on the concrete resources. Thus,

"policies are derived from the goals of management and define the desired
behavior of distributed heterogeneous systems and networks" [Wie94].

In doing so, they rather "define what management has to accomplish", but not how to do
it, i.e. "what technical instruments, management protocols, functional and information
models are used" [Wie94].
Different as the definitions are, they all adopt the intention of policies as it stands:

policies are persistent specifications of objectives and not immediate, one-time decisions to
perform [MS93]. In other words, policies are supposed to be reused.



42 5 Policy-Based Management

Management Action Policy

Modality Subjects Objectives Constraints

Target
Objects

Goals
Procedures

Actions

Figure 5.2: Policy Attributes. Adapted from [MS93]

A generic policy disposes of the attributes presented in Figure 5.2: modality, subjects,
objectives, and constraints [MS93].

Concerning the modality, two different types of policies are to be distinguished: imperative
and authorization policies. Imperative policies are used to express an imperative obliging
(positive) or inhibiting (negative) a management agent to perform a certain action. By
means of authorization policies management agents are permitted (positive) or prohibited
(negative) to carry out an action on a corresponding target object.

Policy subjects specify actors (human or automated) to whom the policy is associated.
Depending on the policy modality, policy subject is responsible for performing management
actions or is provided with the legitimate power to perform an action to carry out policy
objectives.

Policy
Subjects

Policy Objectives

Possible Modalities

Policy Target
Objects

Goal A
Policy Goal

+ve Authority

-ve Authority

+ve Imperatival

-ve Imperatival

Modality

Figure 5.3: Generic Policy Notation. Adapted from [MS93]

The entities at which the policy is directed are known as the policy target objects. It is
a common practice to define policy subjects and targets in terms of sets (e.g., enumeration,
predicate). Thus, the concept of management domains was introduced by Sloman and
Mofett working group in order to group policy target objects to which common policies
apply (Figure 5.3).
In order to express aims of a policy the term policy objective is used. They are are

defined as a pair of goals and target objects. Thereby, goals define either a high-level goal
or a procedure (i.e. a defined sequence of actions).
Finally, constraints the express applicability of the policy. They allow to formulate the

terms of usage for the policies concerning some predefined conditions, e.g. time, duration,
location, cost.

In this work, we regard policies from the technical management point of view and adopt
the following definition of policy term:

Policies are reusable management instruments applied by the automated man-
agement system in order to guarantee the managed system to conduct in a
flexible but constrained manner. Technically, policies are formulated on man-
agement objects and enforced by the management agents. As a whole, they



5.3. Policy Abstraction 43

define organizational measures in order to achieve the desired management
goals throughout the whole field of functions (FCAPS).

5.3 Policy Abstraction
Early studies of Maullo and Calo [MC93] have highlighted general policies in terms of
several levels distinguished by the degree of precision, communication manner, and the
extent of accommodation. The term of policy hierarchy has been coined. The authors
address in their work the following distinct abstraction levels:

• Societal Policy (Principles) - class of policies applied to human interactions in general
and prescribing modes of conduct.

• Directional Policies (Goals) - policies dictating the directions in which the processes
are routed such as organizational or corporate goals.

• Organizational Policy (Practices) - class of policies which interpret corporate goals
and directives and turn them into the form of developed plans, formulated approaches,
contractual agreements met.

• Functional Policy (Targets) - functions to be accomplished to carry out specified
organizational policies formulated in terms of the functional areas such as integrity
requirements, workload targets, quality measures, configuration specifications.

• Process Policy (Guidelines) - class of policies presenting sets of processes to be
maintained and formulated in form of pseudocode, macros, schemas, programs.

• Procedural Policy (Rules) - statements of policies exist only in form of executable
encoded procedures.

Later on, this idea has been applied to the policy-based system management. Thus,
RFC3198 [WSS+01] states that the policy representation can vary from high-level abstract
form to low-level device-specific configuration parameters.
In order to illustrate this aspect, we regard the following abstractly formulated policy:

"save on power consumption of the system". Applying this form of the policy in practice
demands, however, a more concrete formulation. E.g., the following concrete actions could
be used in order to achieve the above mentioned goal:

• "Use saving power plan" The hosts used within the system are to follow a special
power plan which saves energy by reducing performance where possible. This will
ensure the appropriate power settings of the hosts.

• "Reduce standby power" System on standby should consume as little power as possible.
This will provide for decreasing latent costs in matters of power consumption.

Further, "Use saving power plan" can be expressed more precisely by giving a concrete
specification what actions under which circumstances have to be enforced. E.g., a saving
power plan could make use of the following measures:

• "Put system in a standby mode, if idle" In case of inactivity for a certain period
of time, the system should be put in a standby mode to save power. Regard the
following exemplary rule: "if Tidle >= 3600 then Sstandby = on".



44 5 Policy-Based Management

• "Turn off monitor after a period of inactivity" After idling for too long, monitors
should be turned off. Exemplary, this can be specified by means of the following rule:
"if Tidle >= 300 then V BETOOLdpms = off".

• "Reduce monitor brightness" Configure monitor brightness to the minimum user can
stand, e.g. the following configuration can be used: Mxbacklight = 30.

Similarly, "Reduce standby power" can mean the following concrete measures:

• "Select devices smartly" While planning or reconfiguring the system at runtime,
devices which consume in a standby mode less power are to be preferred. In practice,
this can mean just checking a certain management variable: POWERSB <= 0.5

• "Use devices smartly" In case, the device is not needed for a long time period, it
should be unplugged. This form expresses a common rule realized normally by a
human.

save3on3power
consumption

Guidelines:

Strategies:

Configurations:

Rules:

G,:

S,:
S2:

use3saving3power3plan
reduce3standby3power

C,:
C2:

Mxbacklight3=33L
POWERSB3<=3L65

R,:
R2:

if3Tidle3>=336LL3then3Sstandby3=3on
if3Tidle3>=33LL3then3VBETOOLdpms3=3off

R3: unplug3devicesT3if3not3needed

Figure 5.4: Policy Abstraction Levels

The form of expressing policies can considerable vary in its abstraction level (Figure 5.4). In
the example above different levels were demonstrated: from high-level abstract requirements
and targets down to low-level configurations and instructions for use.

It is common, that policies are formulated in the first place by human experts. Thus, the
high-level form is mostly preferred for expressing the management targets or requirements.
It deals with abstract notions, concepts, and terms. The policies contain domain specific
vocabulary and are understandable, apparent, and obvious for the domain expert. On the
opposite side, the automated management system itself handles normally with the low-level
form of policies. It demands for concrete formulations applicable for the management
environment irrespective of the managed system application domain. Thus, the low-level
policies operate on configuration parameters, management variables, and operands. They
express values that can be quantified by measurement or qualified by categories.
In this regard, [DJS07] and lately in the work in progress by [SHvdM17] the authors

work out the term of policy continuum. Different constituencies of users like business users,
developers and admins use different concepts and terms in their own specific language.
Thereby they contribute to the policy definition at various levels of the policy continuum. A
unified information model allows to build a "consensual lexicon that enables terms from one
language to be mapped to terms of another language" and to support the model-to-model
translation from a business level down to a technical level.



5.4. Policy Refinement 45

Informationbmodel
andboneborbmore

databmodels

Low-levelbpoliciesbwithb
technology-specificbtermsb

inbabspecificblanguage
Admin Languageb2n

High-levelbpolicies
withoutbtechnical

terminology
Businessbuser Languageb21

Policiesbthatbuseb
classes,battributes,b

relationships,b...
Developer Languageb22

... ... ...

Figure 5.5: Simplified Policy Continuum. Adapted from [DJS07]

5.4 Policy Refinement

In order to bridge the gap between requirements specified and operations to be enforced a
certain refinement should occur. Translation between different levels of "abstraction" from
high to low is referred as policy refinement. Policy refinement process is a complex task,
which requires information other than policy [WSS+01].

To carry on with the example above, in order to translate the high-level policy "save
on power consumption of the system" into concrete variable assignments of single devices,
e.g. "if Tidle >= 3600 then Sstandby = on", information is needed, what devices form up
the system and how they are to be configured. Thus, expert knowledge is required as well
as the managed system runtime data. It is also to mention, that this deduction demands
multiple refinement steps. Thus, in the first step a concrete strategy "Use saving power
plan" can be derived. The second step would bring parametrized rules and configurations
to be used by the management systems.
Manual refinement process is error-prone and extremely tedious. Firstly, in a large

distributed system a number of management policies can be very big. Secondly, the
requirements are often specified by multiple stakeholders. Thus, conflicting requirements,
omissions as well as errors in the requirements can result in policy conflicts [LS99]. They
may arise primarily in case multiple policies refer to the same object. It happens oft,
since the requirements to the systems belong to different management categories like fault,
configuration, account, performance, and security. So, conflict detection and resolution
turn out to be inevitable tasks during performing policy refinement.
Taking into consideration these issues, automated solutions for policy refinement have

become a subject of research during the last decades. Different refinement approaches
emerged.

5.4.1 Sloman et al.

In early 1990’s, Moffett and Sloman [MS93] presented their work on policy hierarchies as a
basic structure formed by refining general high-level policies into a number of more specific
ones. The authors argue that there can be no fully automatic way of refining policies, but
state an urgent need to have a "means of codifying the refinement steps and, as far as
possible, generalizing them". Thus, their policy hierarchy model contributes to this.
To be specific, they identify several different relationships which may exist between

policies in a hierarchy:



46 5 Policy-Based Management

Partitioned Targets

While goal is the same, the target set of the lower-level policy is a subset of the target set
of the higher-level one. In order to ensure that the target partitioning is complete, the
whole target must "covered" by lower-level policies. E.g., all the assets of a company are
to be protected, i.e the assets are the target of a company’s policy (higher-level). The
company has several departments to which these assets are assigned. Each department has
its own department’s policy (lower-level) which target is the department’s assets, i.e. the
subset of the company’s target.

Goal Refinement

The goal of a higher-level policy is refined into one or more lower-level goals. Thereby
the higher-level policy’s goal and the lower-level one’s refer to the same target. E.g., a
higher-level policy and a lower-level policy have the same target, the files belonging to a
certain department. The goal of the higher-level policy can be refined from "Protect from
loss" into the lower-level "Backup weekly". Obviously, no fully automated method of goal
refinement can exist. It is up to the system planner to decide how to refine a goal and what
actions are required in order to fulfill it completely. In this example, another lower-level
goal is considerable: "Backup daily" or or a combination of "Backup weekly" and "Inspect
the content of the backup store monthly".

Arbitrary Refinement of Objectives

The arbitrary refinement of objectives means that the goal and target are quite different
from the higher-level objectives. E.g., the higher-level policy "Protect the confidentiality of
files" can be refined into the lower-level one "The users must use a secure login procedure",
whereby there exists no direct relationship between the subjects or targets of the two
policies.

Ordered or Unordered Procedures

A higher-level policy can be refined by an unordered set of lower-level ones. E.g., the
higher-level "Protect data" can be refined into "Protect data from loss" and "Protect data
confidentiality". A higher-level policy can also be refined by a procedure, which is an
ordered sequence of actions, e.g. "Backup to tape" and then "Take the tape to safe store".
In general, Moffett and Sloman [MS93] claim, that the policy refinement process is

strongly dependent on the policy hierarchy. Thus, given a formal description of relationship
between high-level policies, refined low-level policies, and the actions implementing them,
the system management will benefit in the following points:

• Automated translation of high-level policies into enforceable ones can be supported
by the provided policy hierarchy. Automated solutions are possible for partitioned
targets where lower-level policies can be expressed as subset relationships of higher-
level ones. Automation becomes, however, difficult for goal refinement and arbitrary
relationships.

• Verifying whether the set of lower-level policies actually fulfills the higher-level policies.
That means, all the target objects are covered, i.e. the policy goals are met. Again,
the automation of the process is feasible if the relationship between the policies of
different levels is of partitioned targets form and difficult for goal refinement and
arbitrary refinement of objectives.



5.4.2 Bandara 47

• Given the policy hierarchy, it is easier to decide which lower-level policies are to be
created or changed, in case a higher-level policy is defined or changed. Thus, changes
at runtime can be partially supported.

5.4.2 Bandara
Bandara et al. propose a policy refinement process, which is based on the abductive
reasoning technique [BLMR04]. The approach requires that the system, i.e. its objects,
their behavior and organization, is represented formally by means of the Event Calculus, a
formal language for representing and reasoning about dynamic systems [BLR03].

System Definition

In order to support the user, a tool has been developed which allows to specify the
system description (SD) using UML. Thereby the objects in the system including the
types specifying the attributes and interfaces are represented as a class diagram. The
actions for the types are specified in a UML state chart representation. Analog, a UML
representation of the goals (G) is used to model their types and attributes and supports the
goal refinement process. In order to use the refined goals the operations that are needed
to achieve them are to be identified. These operations can be done in sequentially or in
parallel. For this purpose, the concept of strategy (S) is introduced, i.e the mechanism by
which the system can achieve a particular goal or in other words, the relationship between
system description and the goal. Thus, formally it can be stated as: SDx, Sx ` Gx, where
x is the label of the abstraction level. Again, for the sake of usability, the strategies which
define a method invocation trace for achieving a given goal can be represented in UML
using a message sequence chart.

So, in the approach by Bandara et al., it is expected that the user provides a representation
of the system, in terms of the properties and behavior of the components, and defines the
goals that the system must satisfy. The definition of the behavior of the system is done by
specifying the pre- and post-conditions of the operations supported by the components.
These are specified by the user in a high-level notation such as state charts. Similarly, the
goals to be satisfied are defined in terms of desired system states.

Goal Elaboration

The policy refinement process involves a goal elaboration technique which translates high-
level goals, defined during the requirements gathering process, into concrete low-level
policies. A goal refinement hierarchy defines the dependencies between the goals at the
different levels of refinement, thereby a goal of a higher-level can be decomposed either
conjunctive or disjunctive. The conjunctive decomposition means that the higher-level
goal is achieved only by achieving all the sub-goals. On the contrary, the disjunctive
decomposition supposes that the higher-level goal is achieved if any one of the sub-goals is
achieved. Thus, the process of refinement means that a particular path down the hierarchy
is followed. In doing so, the feasibility of achieving the higher-level goal in terms of the
lower-level ones at each level of abstraction is verified. In case the goal cannot be achieved
the information at the higher-level has to be elaborated so that suitable lower-level goals
can be derived. The goal elaboration technique proposed in the KAOS approach by [DvL96]
represents each goal (and also negated goals, i.e. obstacles) as a Temporal Logic rule
and uses refinement patterns in order to decompose it into a set of lower-level sub-goals
entailing this goal. The approach by Bandara et al. goes a step further by elaborating a
mechanism to connect the lower-level goals with the behavioral description of the system.



48 5 Policy-Based Management

This is done by combining the notation used by KAOS with state charts, formal system
definition and abductive reasoning techniques.

Event Calculus

As the underlying formalism for the formal system definition the Event Calculus (EC) is
used. It supports among others abduction as mode of logical reasoning as well as allows to
involve events and temporal relationships while representing and reasoning about dynamic
systems. Following the approach to EC presented in [RMNK02] the authors use a set of time
points (mapping them to the non-negative integers), fluents, i.e a set of properties varying
over the lifetime of the system, and a set of event types. Additionally, they include a number
of base predicates (like initiates, terminates, holdsAt, happens) and domain independent
axioms. The authors as make use of function symbols like state(Obj, V0, V alue) representing
the value of a variable of an object in the system, op(Obj,Action(Vp)) representing the
operations specified in an action event, systemEvent(Event) denoting events that are
generated by the system at runtime, and doAction(ObjSubj, op(ObjTarg,Action(Vp)))
representing the event of the action specified in the operation term being performed by the
subject on the target object.
A UML profile for modeling goals and goal refinement patterns introduced in [HF04]

describes also a high-level notation for representing these patterns. It also presents how
they can be mapped into a set of temporal logic formulas. Bandara et al. shows how to
translate these temporal logic operators into EC representation. Similarly, the state charts
used for the system description are transformed into EC notation in the way that each
transition arrow’s input becomes an action to be performed. The transition between states
is mirrored in the current state values becoming false fluents and the next state values
becoming true fluents. It is also how the self-transitions are to be translated and how the
current state values are reflected in the preconditions. Further, a strategy is translated
into EC by means of conjunction of happens(doAction(...), T ) predicates where the time
values correspond to the order in which the actions should be performed.

5.4.3 Romeikat

A model-oriented approach to policy refinement has been introduced by Romeikat et al. in
[RBS11a], [RBS11b]. The authors use models to specify ECA rules at different abstraction
layers and then apply model transformations in order to refine the rules in an automated
way. The approach is demonstrated for the network management domain, where the
policies are used to optimize the coverage in a mobile network.

The proposed methodology rests upon the idea of policy continuum presented in [Str03].
Romeikat et al. uses different types of models at different abstraction layers. Thus, the
domain model specifies domain-specific concepts in a system, whereas the policy-model
policies specifies policies that manage the system. A linking model is used in order to link
the both models with each other, so that the domain-specifics can be used and addressed
in the policies. A flexible number of abstraction layers can be used. The authors present a
relational algebra which formally defines the semantics of the domain, policy, and linking
metamodels and their views at the different abstraction layers. Figure 5.6 gives an overview
of the approach. A common understanding of a managed system together with its context
is required in order to manage it successfully. Depending on the focus and background
of the stakeholders and experts, specific terminology is used. In [RBS11b] the domain
represents this common understanding of the system by different experts. The domain
model covers all the relevant information and knowledge about the domain with its specific



5.4.3 Romeikat 49

Figure 5.6: Policy Refinement. Reprinted from [RBS11a]

concepts across all abstraction layers. Similarly, the policy model covers any information
about the policies, offering a particular view at any layer. In order to link the domain
and the policy models a linking model is used. The linking model allows to apply the
domain-specific concepts within the policies. The abstract syntax of the models is defined
by means of the corresponding metamodels. The common concepts of such well-known
policy languages as PonderTalk [TDLS09], KAoS [UBJ04], and Rei [KFJ03] are considered
by the policy metamodel.

In order to support the refinement process a linking model has been introduced [RBS11a].
The linking model specifies mappings between the domain-specific entities of the higher-
level to the lower-level one. The authors provide a set of mapping patterns which express
the possible structural changes through the successive refinement process:

• Using the identity pattern means that an entity on the higher-level is leaved unchanged
on the lower-level.

• The replacement pattern is used to map an entity on the higher-level to an entity on
a lower-level.

• By means of the merge pattern multiple higher-level entities are mapped to a single
entity on a lower-level.

• Representing a choice between multiple mapping options, the split pattern maps a
higher-level entity to one out of several lower-level entities.

• The erasure pattern is used in case higher-level entity is not relevant at a lower level.
An entity on the higher-level is mapped to no entity on a lower-level.



50 5 Policy-Based Management

• The appearance pattern is used in case that an entity on the higher-level does not
have any representation on a lower-level.

The refinement patterns are instantiated with the entities of the domain model. They
refer to the instantiated refinement patterns as a mapping model.

After the mapping model is completed, the generation of refinement rules is performed.
They specify a model-to-model transformation in a formal and language-independent way.
A refinement rule transforms links between the domain and policy model from a higher layer
into a lower layer. By applying the refinement rules to the linking and policy model, the
refined policies are generated. Firstly, an intermediate model-based representation of the
target language is generated. Then, a model-to-text transformation generates executable
policy code in the target language. The authors have implemented the code generation for
the Ponder policy language [RSB09].

5.5 Policy-Based Management Frameworks
There have been a number of efforts proposing different policy-based frameworks. In
[PHS+08] a survey on exisiting policy-based frameworks for service-oriented systems is
introduced. KAoS is a policy and domain services framework based on W3C’s the Web
Ontology Language (OWL) [MvH04] suitable for the management of distributed systems
including Web Services, Grid Computing, and multi-agent system platforms [UBJ04],
[UBJ+03]. Rei is a deontic logic-based policy framework [KFJ03] grounded in a semantic
representation of policies in RDF-S [BG04] and policy reasoning engine based on the
F-OWL [ZFC04]. The two pioneers among the policy-based management frameworks, the
IETF policy framework and the Ponder policy framework are presented in the following.

5.5.1 IETF Policy Framework

The IETF working group has introduced a set of standards which define a framework for
the representation, management, sharing and reusing of policies and policy information in
a vendor-independent, interoperable and scalable manner.

Information Model Overview

No specific policy language has been proposed by the IETF, but an object-oriented policy
information model. Thus, the managed system is represented by the Common Information
Model (CIM) [DMT12b], [DMT16]. Whereas the policy-related information is represented
by the Policy Core Information Model (PCIM) [MESW01], an extension of CIM. PCIM
describes the basic concepts of policy groups, rules, conditions, actions, repositories and
their relationships.
Figure 5.7 shows an overview of the basic classes and relationships in PCIM. The

PolicyGroup class is a generalized aggregation container. By means of it, either PolicyRules
or PolicyGroups can be aggregated in a single container providing nesting capabilities with
no restriction on the depth of the nesting for administrative convenience.

The PolicyRule class represents the "condition-action" semantics associated with a policy.
In general the condition is represented as a set of conditions (optionally negated) in DNF
or CNF. If and only if the condition specified by the PolicyRule is true, the corresponding
actions are to be performed. The PolicyCondition and PolicyAction classes are used in order
to model the conditions and actions associated with a policy rule. A policy rule can be active
or inactive. To indicate the schedule of activation and deactivation correspondingly, the



5.5.1 IETF Policy Framework 51

PolicyAction

PolicyRule

PolicyGroup

System

PolicyRepository

PolicyCondition

PolicyTimePeriodCondition

PolicyGroupInSystem

1

0..n

PolicyRuleInSystem

1

0..n

PolicyRuleInPolicyGroup
0..n

0..n

PolicyGroupInPolicyGroup

0..n

PolicyRepositoryInPolicyRepository

0..n

0..1

0..nPolicyConditionInPolicyRule

0..1

0..n

PolicyActionInPolicyRepository

0..n

PolicyActionInPolicyRule

0..nPolicyRuleValidityPeriod

Figure 5.7: Core Policy Classes and Relationships in PCIM. Adapted from [MESW01]

PolicyRuleValidityPeriod aggregation is used. The PolicyTimePeriodCondition is a subclass
of PolicyCondition. Thus, time-based criteria can be included in the condition definitions
for a PolicyRule. In case a PolicyRule does not specify a PolicyTimePeriodCondition, it
should be treated as valid always.

The PolicyRepository class represents an administratively defined container for reusable
policy-related information. Thus, a reusable policy condition or action is always related to
a single PolicyRepository, by means of the PolicyConditionInPolicyRepository or PolicyAc-
tionInPolicyRepository association. Rule-specific conditions and actions, however, are not
related to any policy repository.

The IETF’s initial focus has been on network policies to control Quality of Service (QoS)
and IPSecurity. Thus, after providing a "core" model, the IETF has also published the
corresponding domain-specific extensions (e.g., Policy QoS Information Model [SRS+03],
IPsec Configuration Policy Model [JRV03]).

Deployment Model Overview

The IETF policy framework defines a policy deployment model, shown in Figure 5.8 based
on [YPG00], [WSS+01]. According to it, four main architectural elements take part in
the management process: a policy repository, a policy decision point (PDP), a policy
enforcement point (PEP), and a policy management tool.

Policy Management 
Tool

Policy Decision Point
(PDP)

Policy 
Repository

Local Policy Decision Point
(LPDP)

Policy Enforcement Point
(PEP)

Policy Enforcement Node

Figure 5.8: IETF Policy Deployment Model. Adapted from [YPG00], [WSS+01]



52 5 Policy-Based Management

A policy management tool is an administrative tool which supports the lifecycle manage-
ment of policy objects. A policy repository is an administratively defined component for
storing and classifying policy elements and related data [WSS+01]. A PDP (also referred as
policy server) is a logical entity that makes policy decisions for itself or for other managed
elements that request such decisions [YPG00]. A PEP (also referred as policy client) is a
logical entity that enforces policy decisions [YPG00].

The PEP is supposed to always run on a (distributed) policy enforcement node deployed
at the managed element side. The PEP is the point where the basic interaction between
the PEP and the PDP begins. The PEP detects that a policy decision is required. If
needed, the PEP formulates a request for a policy decision and sends it to the PDP. In
case a local decision point is available (LPDP) is available on the policy enforcement node,
the PEP will first use the LPDP for a local decision. Afterward, the local decision is sent
to the PDP who may override the LPDP and returns the ultimate decision to the PEP
who finally enforces it. In the simplified case the PDP and the PEP may be co-located on
the same policy enforcement node.

5.5.2 Ponder
The policy-based management framework Ponder has been developed over years at Imperial
College [Slo94], [MS93], [Mar97], [Lup98], [Dam02]. The Ponder framework includes the
specific policy specification language, a general architecture and policy deployment model
including several extensions for access control and QoS management.

Information Model Overview

The partial class diagram for the information model used in Ponder’s framework is presented
in Figure 5.9.

Figure 5.9: Policy Information Model in Ponder. Reprinted from [Dam02]

Within the model, all the objects (domain, policy, enforcement component) are defined as
a ManagedObject. A domain can aggregate a number of other managed objects. By applying
set operations (such as union, intersection and difference) to the objects within domains,
basic policies can be defined over sets of objects. Subjects and targets of policies are
defined in terms of domains. It is distinguished between access control (Authorization and



5.5.2 Ponder 53

Delegation classes) and subject-based policies (Obligation and Refrain). The enforcement
of policies in the runtime system is the task of EnforcementComponents. The automated
enforcement of subject-based policies is the task of ManagementComponents, whereas
AccessControllers enforce the access control policies.

The Ponder policy specification language is described in [DDLS00], [DDLS01]. Autho-
rization policies define access rights (positive and negative), i.e. "what activities a member
of the subject domain can perform on the set of objects in the target domain in terms of
interface method calls". The syntax of an authorization policy is shown in Listing 5.1.

1 i n s t ( auth+ | auth− ) policyName {
sub j e c t [<type >] domain−Scope−Express ion ;

3 t a r g e t [<type >] domain−Scope−Express ion ;
a c t i on act ion− l i s t ;

5 [ when cons t ra in t−Express ion ; ] }

Listing 5.1: Authorization Policy Syntax in Ponder. Adapted from [DDLS00]

The name of a policy can be given as a path, so that the corresponding domain can be
located. The specification of the domain scope for the subject and target elements includes
an optional reference to the corresponding interface. In order to restrict the applicability
in terms of time or attribute values, the policies can include constraint attributes. Thereby,
the subject, target, action, event and time constraints are among the basic constraints
applicable to all the policy types.
Delegation policies are meant to permit subjects to grant privileges, which they possess

(positive and negative), to other subjects (grantees) to perform an action. Listing 5.2
demonstrates the syntax of a delegation policy.

1 i n s t ( de l eg+ | deleg− ) ( a s soc i a t ed−po l i cy−name ) policyName {
grantee [<type >] domain−Scope−Express ion ;

3 [ s ub j e c t [<type >] domain−Scope−Express ion ; ]
[ t a r g e t [<type >] domain−Scope−Express ion ; ]

5 [ a c t i on act ion− l i s t ; ]
[ when cons t ra in t−Express ion ; ]

7 [ v a l i d cons t ra in t−Express ion ; ]
[ hops int−value ; ] }

Listing 5.2: Delegation Policy Syntax in Ponder. Adapted from [DDLS00]

A delegation policy is always associated with an authorization policy, which specifies the
access rights to be delegated. After a delegation is performed, the grantors still retain
their access rights. Similar to the authorization policy, the specification of the domain
scope for the grantee, subject and target elements includes an optional reference to the
corresponding interface. In addition to the basic constraints, the positive delegation policies
can optionally contain delegation constraints. In order to specify them, the valid and hops
clauses are used. The valid attribute of the delegation policy specifies the duration or the
period over which the delegation should be valid before the revocation. The hops attribute
specifies the maximum number of cascading delegations allowed (maximum number of
delegation hops).
Along with the access-control, the management of subjects in the system is to be

performed. So, the subject-based policies specify the obligations which subjects must do
and define the actions that subjects must not perform.
Obligation policies "specify the actions that must be performed by managers within

the system when certain events occur and provide the ability to respond to changing
circumstances". In Listing 5.3 the syntax of an obligation policy is shown.



54 5 Policy-Based Management

i n s t ob l i g policyName {
2 on event−s p e c i f i c a t i o n ;

sub j e c t [<type >] domain−Scope−Express ion ;
4 [ t a r g e t [<type >] domain−Scope−Express ion ; ]

do ob l i g a t i on−act ion− l i s t ;
6 [ catch except ion−s p e c i f i c a t i o n ; ]

[ when cons t ra in t−Express ion ; ] }

Listing 5.3: Obligation Policy Syntax in Ponder. Adapted from [DDLS00]

The required on clause of an obligation policy must explicitly specify the event on which
the actions defined in the do clause must be performed. Ponder allows to specify simple
and composite events of internal (e.g. built-in timer event) and external (e.g. propagated
notification of an external component) art. Composition operators can be used to specify
composite events indicating their order, occurrence number, period of time, etc. The actions
to be performed can be combined with concurrency operators which specify whether actions
should be executed sequentially or in parallel. By means of the optional catch clause, an
exception that is executed if the actions fail to execute for some reason is defined.
Refrain policy act as restraints on the actions that subjects perform. Listing 5.4

demonstrates the syntax of a refrain policy.
1 i n s t r e f r a i n policyName {

sub j e c t [<type >] domain−Scope−Express ion ;
3 t a r g e t [<type >] domain−Scope−Express ion ;

a c t i on act ion− l i s t ;
5 [ when cons t ra in t−Express ion ; ] }

Listing 5.4: Refrain Policy Syntax in Ponder. Adapted from [DDLS00]

The syntax of refrain is similar to negative authorization policies, but refrain policies are
enforced by subjects and not by the target access controllers. Refrain policies are used in
case the targets are not trusted or cannot enforce the policy because the decision depends
on a state value of the subject. Further, calls on the actions may be internal to the subject
(e.g. part of the interface or action script implemented by the agent).

Ponder contains also features which allow composition of the basic policies. Thus, a
group is a syntactic scope used to group related policies together. A role allows a semantic
grouping of policies, having the same subject and providing a means of grouping policies
related to e.g. a position in an organization or a specific management agent. By means of a
relationship, policies applying to the interactions between roles are grouped. A management
structure allows configuration of roles and relationships into organizational units.

Deployment Model Overview

The deployment architecture supports the instantiation, distribution and life-cycle manage-
ment of policies, as well as their enforcement by automated enforcement components. The
overview of the architecture is introduced in Figure 5.10 from [DLSD01].

The Ponder deployment architecture includes three supporting services: a domain service,
a policy service and an event service. The policy service serves as the interface to the policy
management. The policy administrator interacts with the policy service in order to design
and specify new policies. The policy service stores compiled policy classes, creates and
distributes the corresponding policy objects. Thus, it instantiates a basic policy by creating
and initializing either an authorization policy object (APO), or an obligation policy object
(OPO) or a refrain policy object (RPO). The enforcement of policies is performed by the
corresponding enforcement agents. Target’s access controllers (AC) are responsible for the



5.5.2 Ponder 55

Authorisation)Policies

Policy)Objects

Domain)Service

Policy)Administrator

Enforcement)Agents

eventsManaged)Objects
(Objects).)Targets) Event)Service

Policy)Service

PMA's

OPO's
RPO's

APO's

AC's

Obligation).)Refrain)Policies

Domain)Objects

actionsactions

actions

eventsregister

) Authorisation)Policy)Object

Obligation)Policy)Object

Refrain)Policy)Object

APO =)

=)

=)

OPO

RPO

Policy)Management)Agent

Access)Controller

PMA =)

=)AC

load,
enable,
disable,
etc.

load,
enable,
disable,
etc.

create create

add
eval)Seval)T

eval)S eval)T

Figure 5.10: Policy Deployment Model in Ponder. Adapted from [DLSD01]

authorization policies and the subject’s policy management agents (PMA) are responsible
for refrain and obligation policies.
The main task of the domain service is to manage a distributed hierarchy of domain

objects and to support the evaluation of subject and target sets at runtime. The domain
objects hold references to the corresponding managed objects and policy objects that
currently apply. For example, an LDAP server can be used in order to implement the
domain service. In this case, the LDAP server has to generate events for changes to
the membership of a directory. Another opportunity is to implement it by a database
system [Dam02].
The event service provides an interface which allows to subscribe for events of certain

type. The event service generates events based on the status of the underlying system
and the managed objects and forwards them to the subscribed PMAs triggering obligation
policy. In order to determine the target objects to which the obligation policy applies, the
PMA asks the domain service and subsequently performs the corresponding policy action
in case no constraint exists.





Chapter 6

Model-Based Management

Using a system model in order to support technical management has proved to be successful
during the last years. Thereby the area of management has varied considerably from network
through devices to services. Thus, in [VVB02] the authors present a model-based approach
to network management. A reactive self-configuring model-based hybrid hard- and software
system is presented in [WNN96]. Whereas [FUMK03], [GHK+01], [EKK+04] address
model-based management of services-oriented systems.

6.1 Model
Model is a selective abstract formal representation of a system [Béz05]. A given system
may have plenty of different models. Each of them represents a particular aspect of the
system and only this aspect. Each model has a specific purpose and is described in the
language of its unique metamodel. The metamodel defines how elements of a system are
to be chosen in order to generate a given model. Thus, a metamodel, which the model is
conform to, specifies what aspect of the system the model represents. Figure 6.1 provides
an UML class diagram illustrating the relationship [Obj10]:

ModelElement

MetaElementViewpoint

View

Concern

Stakeholder

Metamodel

Model

Purpose

System

Environment

ModelContainsViews

10..*

0..*

0..*

0..* 0..*

0..*

0..*
0..*

0..*

0..*

0..*

0..*

0..*

0..*0..*0..*

0..*

0..*

0..*

0..*

0..*

ViewExposesElement ModelContainsElement ModelRepresentsSystem
1 0..1

SystemMeetsPurpose

0..1

ViewConforms
ToViewpoint

1..*

ElementInstanceOf

1..*

ModelConforms
ToMetamodel

SystemInteracts
WithEnvironment

ModelAddressesConcerns

ViewpointExposes
Metaelements

MetamodelContainsElement

1

ViewpointAddressesConcerns

StakeholderHasConcerns

Figure 6.1: Definition of the model concept with MDA. Adapted from [Obj10]



58 6 Model-Based Management

In November 2000, the Object Management Group (OMG) introduced the Model Driven
Architecture (MDATM), adhering to the global trend of and realizing Model Driven
Engineering (MDE) principles [Obj14a]. Based on the established standards like MOF,
XMI, OCL, UML, CWM, SPEM, the MDA separates business and application logic from the
underlying platform technologies by providing platform-independent models and leverages
them to "enhance the agility of planning, design, and other lifecycle processes, and improve
the quality and maintainability of the resulting products".
In the field of automated technical management, the usage of models brings similar

benefits and gains in importance. Several steps towards standardization have been taken
lately. Thus, the DMTF’s Common Information Model (CIM) provides a common definition
of management information for systems, networks, applications and services, and allows
vendor- and domain-specific extensions. It is an information model, a conceptual view of
the managed environment, which unifies and extends the existing instrumentation and
management standards using object-oriented constructs and design. The CIM standard
includes the CIM Metamodel [DMT12b], the CIM Schema [DMT16] and a set of relevant
specifications1.
Relying on the OMG’s UML specification [Obj11], the CIM Metamodel is the basis

on which CIM schemas are defined. It defines the semantics for the construction of new
conformant models and comprises common basic elements for representing models (e.g.
object classes, properties, methods and associations) [DMT12b]. The actual models are
described by the CIM schemas representing the resources of a managed system, including
their attributes, behaviors, and relationships. The CIM Schema is structured into the
distinct layers: core model (applying to all areas of management), common model (applying
to the common areas like systems, applications, networks, and devices but independent of
a particular technology or implementation), and extension schemas (technology-specific
extensions to the common model) [DMT16]. The CIM specifications define the management
infrastructure, the details for integration with other management models, the syntax,
semantics, naming conventions [DMT12a] as well as the use of the Managed Object Format
(MOF) language [DMT12c] for specifying CIM models. DMTF’s Web-Based Enterprise
Management (WBEM)2 comprises a set of specifications that cover discovery, access, and
manipulation of resources modeled using the CIM.

6.2 Model-Based Management
An innovative approach to the technical management harnessing modeling to support the
process has been presented by Lück et al. in [IKP+05], [IPK+06], [L0̈6]. The approach
includes the concept as well as the corresponding tool for automated refinement of policies
in multilevel hierarchies. The tool supports the user by the interactive graphical modeling
which allows easy and intuitive handling.

Figure 6.2 shows the model structure which is the basis of the approach. The model
represents the managed system as well as the associated control and policy elements. The
modeling process includes creating the graph model and subsequent parametrization of
nodes and edges of the graph. The backend functions allow automated refinement of
policies from top to bottom through the hierarchy.
The horizontal allocation of the model in abstraction levels provides a framework for

a three level hierarchy. Each policy element refers to a certain element of the managed
system. These relationships are represented by edges between policy and managed system’s

1From the DMTF’s site: https://www.dmtf.org/standards/cim
2From the DMTF’s site: https://www.dmtf.org/standards/wbem



6.2. Model-Based Management 59

Figure 6.2: Basic Model Structure. Adapted from [L0̈6]

elements. Only intra-layer policy-managed element associations are allowed. The layers of
the model have the following primary focus:
"Roles & Objects" (RO) The top layer of the model is devoted to the organizational

aspects of the model. The basic elements are the roles and abstract objects. The layer can
also include further elements of the similar abstraction grade. However, this is up to the
actual use case and field of application. In general, the control elements are not relevant
for the specification on this abstraction layer.
"Subjects & Resources" (SR) The middle layer of the model is devoted to the

active elements of the model. These are subjects, the elements that take actions on behalf
of certain users and in doing so use the resources of the system. The level of abstraction
on this layer is dictated by the service-oriented aspect of the model. Thus, the services are
also modeled by means of the corresponding elements on this layer.
"Processes & Hosts" (PH) The bottom layer of the model is devoted to the

technical aspects of the model. The basic elements are the processes, hosts as well as user
credentials, system resources, communication protocols and network structure. Since the
abstraction level of the layer is very technical, it is easy to derive the concrete configurations
for the control elements of the actual system from the policy elements.

The proposed approach has been applied and validated in the field of security management,
in particular configuration of security services. Thus, the focus of identified abstraction
levels as well as the attribution of elements to the corresponding layers lies on the aspects
specific to this application field. Each policy is presented in each layer by means of a
certain policy element. Each policy element controls access to certain resources.
The access control is up to the following extended logic: not allowed access has to be

prohibited and allowed access must in fact be provided by the system. These authorization
policies are comparable with the positive authorization policies in Ponder presented in
Section 5.5.2. The explicit access interdiction is not required, since according to the
specified logic the access is implicitly denied until it’s explicitly allowed. Further, it is
possible to define dynamic constraints for allowed access.

The process of model-based management includes multiple steps. Firstly, the modeling
step is done: the managed system is modeled on the abstraction levels mentioned above.
Each layer represents the system with the different level of abstraction. Thus, each abstract



60 6 Model-Based Management

model element of the higher-level has a corresponding concrete element on the lower-level.
These associations are modeled also. Subsequently, the required policy is modeled by means
of the policy elements on the top-level. The modeling process is performed bottom-up:

1. The components ans structures of the real system are modeled on the PH layer. The
developed model presents the technical view of the managed system.

2. The services which are realized by the processes of the PH layer are modeled on the
SR layer and associated with the corresponding elements of the bottom layer. The
model presents the service-oriented view of the system.

3. The attendant roles and object are modeled on the RO layer and connected to the
corresponding subject types and users of the SR layer. The model presents the
organizational view of the system.

Secondly, the policy refinement step is performed in an automated way. Before each
sub-step, the consistency check is done, in order to ensure that the model has no conflicts
and the specified policy is feasible with regard to the modeled system.
On the basis of the system model and the identified abstract requirements, the policy

refinement is performed in the top-down matter.

1. The authorization policies are presented in the RO layer as access permissions and
associated with the corresponding roles, objects and access mode. Several arts
of dynamic constraints can be defined: role cardinality constraint, exclusive role
authorization, and exclusive role activation.

2. The access permissions on the SR layer are presented as service permissions. The
corresponding model element allows a subject of a user by means of a service to
access a certain resource. Access permissions and exclusive role activation elements
of the RO layer are refined to the service permissions and exclusive subject activation
elements on the SR layer.

3. The PH layer includes protocol permissions which allow a process, that can show a
user credential, to communicate with another process by means of a protocol in order
to access a certain system resource. A concurrent usage of certain user credentials
can be prohibited by an exclusive user credential activation constraint. The service
permissions and exclusive subject activation elements on the SR are refined to the
protocol permission and exclusive user credential activation element of the PH layer
having regard to the dependencies between the services. In order to ensure the service
communication, the corresponding processes should be able to communicate with
each other. Thus, the service associations of the SR layer are refined to the protocol
permission elements of the PH layer.

4. For each security service the relevant protocol permission elements are estimated. For
each protocol permission element of the PH layer all the communication paths are
calculated. The paths which do not meet the security requirements are not considered
further.

The derivation of the single configurations from the policy elements of the PH layer as
well as the distribution of them to the corresponding control elements are not the subject
of the policy refinement process. This is in general a syntactic adaption of generic rules on
the PH layer to the specific interfaces of the control elements. At bottom of the step, the
code generation and the distribution are performed.



6.3. Model-Based Management Challenges 61

The consistency check and the refinement algorithm guarantee that the derived elements
comply with the specified policies on the whole. The proof of correctness of the refinement
process is introduced in [L0̈6].

6.3 Model-Based Management Challenges
The challenges which the automated management solutions have to face have been intro-
duced in Section 4.3. Additionally, the adoption of the introduced model-based management
approach obligates to handle the following aspects.

Scalability and Modularization

Dealing with a larger systems with a great number of managed components, the model-
based approach tends to lose its clarity and straightforwardness. The model becomes
obscure and unclear. A common way of dealing such problems is applying the divide and
conquer principle [dAKdG05b]. As the system is modularized into smaller segments, it
becomes possible to deal with them in detail separately. The system is observed on a more
abstract level considering the interaction of the separated segments.
In [dAKdG05b],[dAIKdG05] the system is partitioned into abstract subsystems hiding

the details of the system by concentrating on the overall structure of the system and letting
the particulars of each subsystem to the corresponding internal specifications. Thus, the
processes of system analysis and design are separated even more strongly so that the model
gets more comprehensive and scalable.

Tool Support

Providing a tool support for the users planning, designing and configuring the management
system is very important. Automation of the consistency check, refinement of the provided
abstract system requirements as well as generation of the configurations and management
artifacts supports the users enormously. The characteristic feature of the model-based
approach of modeling the system on multiple abstraction layers places additional demands
from the supporting tools.

The graphical representation of models is much more clear and intuitive for the users in
contrast to the textual or formal representation. At the same time, the visual models tend
to get extremely large which can make them difficult to overview. Thus, the graphical
modeling tool should allow filtering the model elements in order to provide the ability
to group elements according to certain features and handle them in the same way. The
employment of multiple views of the system facilitates the work with larger systems allowing
the user to concentrate on specific points of view.
Further, the object-oriented system design of the model can facilitate the usability

of the model. The ability to use multiple inheritance allows to build any hierarchical
structures. The usage of graph structures for representing the elements of the model
and their relationships not only provides for intuitive display of the model but also
allows applying certain techniques and graph transformation algorithms for the model
transformations.

General Applicability

Developing a model-based management system should face the trade-off of generality of the
technique and the amount of automation. That means, creating a technique that is highly



62 6 Model-Based Management

automated is possible at the expense of trimming its usage to a very narrow application
domain. The types of model elements and structures as well as the used refinement
algorithms are aligned with the management scenario. Extending the management scenario
involves revision and adaption of the model structures and refinement algorithms.
It demands great skill to create a metamodel which covers enough types of model

elements, structures and supports the refinement process, so that the produced models
cover a bright variety of management scenarios. The usage of a common metamodel allows
to exchange the models on demand. Thus, exchanging configurations and management
artifacts at runtime becomes possible.
For though the works of Lück [L0̈6] and de Albuquerque [dAKdG05b], [dAKdG05a],

[dAIKdG05] reside in the application field of network security management, the general
approach of the model-based management can be adopted in other application fields.
Transferring to another application field requires indeed other (as the case may be, more
general) alignment of layers in the system model, working out a set of appropriate refinement
patterns and templates, but still preserve the same principle of the layered abstraction
model structure, graph notion of the model, the metamodel’s arrangement, etc.

Separation of Concerns
The idea of separation of concerns has been studied extensively in [JZ93] "aiming at
clarifying the relationship between a formal specification and the domain of the system to
be specified". The authors have shown the strong need of separation of descriptions of the
domain (with its objects and operations) and the actual requirements.

The introduced model-based approach differentiates clearly between the system, control
and requirements elements. That helps to keep the modification and adaptation efforts
during the runtime comparatively small.

Due to the layered structure, the model-based approach supports the strong separation
of abstraction layers so that the system and requirements definition are tailored to the
certain layer allowing the different user groups to operate with the system elements on the
desired abstraction level.

Formal Representation and Proof
A formal representation of the model provides not only a formalism to describe the system
and its requirements, but also to support their analysis and verification. In general,
choosing the formal technique demands proving its correctness, completeness, consistency,
and minimality [SSS+16].
The model-based approach allows in the most cases a more comfortable, illustrative

and thus quality-assured definition of the system and requirements. Thus, the graph
notion is natural and intuitive for the representation of objects and their relations and
the object-oriented methodology supports the principles of abstraction and generalization.
However, a complex and laborious work has to be done in order to transform the model
representation into the formal representation and to prove that the transformation conforms
to the above referred features.

The detailed proof of the correctness of the refinement rules and the model structure is
elaborated by Lück in [L0̈6] and is extended with the notion of abstract subsystems by de
Albuquerque in [dAKdG05a] .



Chapter 7

Runtime Management System

In order to carry out the management process at runtime, a management system is needed.
This chapter introduces the management system which we use to put into execution the
developed approach. The access to the management data is performed by means of the
management tree data structure, firstly introduced in [BFL+13] and with full details
elaborated in [BKF15]. The policy-based approach to the management presented in
[DKK+10b], [DKK+11b] is applied. Thus, the policies represent the logic which determines
the behavior of the managed system at runtime.

Management
Tree

Management 
Services

JJ J J

J JavaSInterface

Data-/ExecuteSHandler

BACnet,SZigBeeS MQTT OSGi

Rule
Service

Expression
Service

Policy
Service

Policies

J J

Devices,SApplications

Figure 7.1: Overview of the Runtime Management System. Adapted from ([BKF15]

Figure 7.1 provides an overview of the runtime management system ([BKF15]). The core
of the system is a distributed management tree which follows the approach of the OMA
Device Management Alliance described in the Device Management Tree and Description
Specification [Ope07]. The data and execute handlers encapsulate the protocol- as well as
use case-specific management data acquisition and propagation.
Policies, i.e. policy rules and expressions, are the actual guidelines governing the

choices of the management system operations. They are stored in the policy storage which
is addressed directly by the corresponding management services. Policies are defined on
the management data which is organized in the management tree.

The operations on the management tree are performed by the management services.
The primary management service is the policy service which encapsulates the access to
the rule and expression services. The rule service enforces the execution of policy rules
whereas the expression service is responsible for the evaluation of the policy expressions on
demand. The main data flow occurs between the management tree and the policy service
and comprises basically reading and setting the management data.
The following sections introduce the components, their composition and structure as

well as the communication between them in detail.



64 7 Runtime Management System

7.1 Management Tree
The management tree is a virtual data access structure, it is not used to store data, but
rather provides a uniform hierarchical view of the data offered by the management agents.
The handler implementations map the management data to the corresponding hierarchically
organized object model. Therefore, they manage to abstract the management data access
from the actual access operations and event notifications. Owing to this access facade a
homogenous view on the resource landscape is offered. Thereby, the resource landscape
spans all three layers of the system model presented in Section 8.1: from low-level hard-
and software components through the services and applications up to the high-level use
cases with their functions and assets.

7.1.1 Management Data
The management data is provided in form of management variables. We divide logically the
management variables into status and configuration variables [FLL+09], [DKK+10a]. The
configuration variables are set by the management service. Whereas the status variables
are used by the resources to represent their state. Thus, the control loop is performed:
the changes of the managed object’s state trigger the management service to set the
corresponding configuration variables what in turn causes the change in the internal state
of the managed objects. The transition from one system state to another takes place.

It is obvious, that due to the existing event queue there occurs a certain temporal offset
between the requesting of the status change and the actual execution of the corresponding
action. Fails the transition from one state to another or it is not executed within the
predefined time slot, an inconsistency between actual and desired state occurs. The variable
separation, however, allows the system to grip such cases and undertake the corresponding
measures.

7.1.2 Tree Nodes
As the name suggests, the management tree is a virtual hierarchical tree-like data structure
consisting of nodes starting at a root node. Each node is uniquely identified by an absolute
URI starting from the root. Tree nodes can be divided into interior and leaf nodes. The
interior nodes can have children nodes. The leaf nodes, on the contrary, have no children
nodes. They represent an abstraction of the actual management variable. These are
primitive values of the following basic types: Boolean, Short, Integer, Long, Float, Double,
String, Binary and Object.

In order to control the access to the nodes, an Access Control List (ACL) is used. ACL
determines which access operations (Get, Add, Replace, Delete and Execute) on the node
are allowed for which principal.
Moreover, nodes can be associated with the corresponding meta data describing them

and their sibling nodes. The meta data may specify default values for the leaf nodes as
well as allowed access operations for the nodes.

The following list summarizes the settable (and in some cases only readable) properties
which can be defined for a tree node:

Property Description

Name The name of the node must be unique among the node’s siblings. It is up to
the underlying handler implementation, whether the node can be renamed at
runtime.

to be continued.... . .



7.1.3 Data and Execution Handlers 65

. . .to be continued...

Property Description

Title The title of the node must be human readable in comparison to the node’s
name. Depending on the handler implementation, this property is optional.

ACL The Access Control List defines the allowed access operations, which are allowed
to be performed on the node and its descendants.

Version The version number which starts at 0 and is incremented on every node modifi-
cation. Modifications include changes of the node value and any of its properties
(also including ACLs) as well as addition and deletion of nodes. The value is
read-only. Depending on the handler implementation, this property is optional.

Timestamp The timestamp of the last version change. The value is read-only. Depending
on the node’s implementation, this property is optional.

Data Type The data type of the node’s value. This property is supported by the leaf nodes
only.

Mime Type The mime type of the node’s value. This property is supported by the leaf nodes
only.

Schema The name of the schema which defines the structure of the subtree starting at
the node.

Value The value contained in the leaf node. This property is supported by the leaf
nodes only.

Table 7.1: Overview of the Node Properties. Adapted from [BKF15]

To sum up, to perform the management process means just to perform operations on
the management tree: node creation, node removal as well as node property assignment.
A management node, whether interior or leaf, represents an abstraction of the actual
management information. Thus, the management tree offers a uniform view of the
management data.

7.1.3 Data and Execution Handlers
The management tree hides the protocol- and application-specific parameters for data
acquisition by means of data and execute handler implementations. The handlers are
realized in the form of self-contained software components. In order to improve the system
performance, the handlers are provided dynamically at runtime. This means that they
are released when the corresponding management data does not need to be accessible any
more.
Every tree node is provided by the corresponding data handler implementation. This

implementation is responsible for offering a hierarchical view of management data to the
consumer. Thereby it adapts the data, takes care of propagation and collection of the
management data in time. A data handler can be of two types: a base data handler
and a protocol-specific one. The base data handler restricts the tree structure and is
schema-controlled. It reflects the resource landscape (e.g. devices, software components)
of the managed system in accordance with the use case. The other handler type is a
protocol-specific one. This handler implementation encapsulates the communication and
platform technology details (e.g. BACNet, ZigBee, MQTT, OSGi).

7.1.4 Tree Structure
The structure of the management tree is controlled by the schemas. A schema can be
applied to and removed from a node at runtime. The schemas are declarative and specify



66 7 Runtime Management System

Figure 7.2: Management Tree DDF



7.1.5 Management Tree Access 67

the structure of the underlying subtree. In case a node is typed with a schema during its
creation, it represents the root node of the subtree which must conform to the schema. In
case the node stays untyped, it becomes a part of the declared schema valid within this
current subtree. All the modification actions (adding, deleting and changing of properties)
on the tree node must be conform with the valid schema, otherwise the action must fail.
Figure 7.2 demonstrates an example schema specifying the allowed tree structure in

the simplified graphical notation used by the OMA DM Device Description Framework,
DDF [Ope07], [Ope16]. The notation in the shape of a block diagram allows to distinguish
between interior (rounded block) and leaf (unrounded block) nodes. Similar to the syntax
of DTDs for XML, a special character is used to denote the number of occurrences of the
node:
"?" "zero or one"
"*" "zero or many"
"+" "one or many"

In case a character is omitted, the node is present exactly once per default. Each block in
the graphical notation corresponds to a described node, the title of the block stands for
the name of the node. The unnamed blocks act as placeholders and are instantiated at
runtime when the node is created, they are marked with angle brackets ("<>"). In order
to construct the URI for each node in the management object, the names of the ancestral
nodes are used.

Following the approach of the management variables, the management data is organized
in the following way: the root node has two similarly organized subtrees, one for the
devices, one for the software components. Each of them has multiple subtrees for different
device (or component) types. Each device (or component) identified by its id is described
in a separated subtree. It contains three optional collections of configuration variables,
status variables and embedded devices (or subcomponents). The subtrees for the status
and configuration variables are similarly arranged. They have three leaf nodes for holding
the description, timestamp and collection method of the management variable as well as
the data node which in turn is organized into the type and value leaf nodes holding the
data type of the management variable and its value itself. The embedded devices and
subcomponents branches are organized in the same way as the device and component
subtrees.

7.1.5 Management Tree Access

In order to ensure atomic or transactional data access sessions are used, i.e. a valid session
is required to interact with the management tree. The session type is to be specified at the
beginning of the interaction with the management tree by the client. The following session
types are supported:
Shared Session Shared sessions are used for the read-only access to the management

data. An unlimited number of concurrent shared sessions is allowed. The creation of an
exclusive session on the overlapping subtrees must be blocked, however.
Exclusive Session Exclusive sessions are used for the write access to the management

data. Concurrent access to the overlapping subtrees is not allowed for multiple exclusive
sessions. Thus, a write lock on the subtree must be acquired by the exclusive session
blocking the creation of other sessions for operating on the same parts of the tree.
Transactional Session Similar to exclusive sessions, transactional sessions are used

for the write access to the management data. They similarly block the corresponding
subtree from any other sessions. Additionally, transactional sessions can be rolled back any
time as long as they are still opened. Thereby, the initial status of the subtree is saved. In



68 7 Runtime Management System

case of a rollback, the modifications done on the blocked parts of the tree are undone and
the initial status is restored.

7.2 Policies
The logic which determines the behavior of the managed system at runtime is realized by
means of policies. The management system performs the management actions by applying
the policies at runtime. As it was defined in Section 5.2, technically, policies are formulated
on the management objects and enforced by the management agents. Speaking in terms of
the proposed model-based management approach, we reside in the following on the bottom
layer of the system model.
Resorting to the management tree as the virtual data access structure, we define the

policies exclusively on the management variables [DKK+10b], [DKK+11b] which values
reside in the management tree on the leaf nodes (Figure 7.2). The implemented low-
level policies are of two main types, introduced in the following: policy rules and policy
expressions.

7.2.1 Policy Rule

The policy rules we use, follow the definition of positive imperative policies obliging the
management agent to perform a certain action as introduced by the Sloman and Moffett
working group [MS93]. The policy rules follow the event-condition-action paradigm as
presented in Section 8.2.3. Thus, the event part of the rule can be realized as a certain tree
event, e.g. a node is added, deleted or changed, the condition part is realized by checking
the tree structure, node properties and values, in order to trigger the appropriate action.
The action part corresponds to executing the equivalent tree operation, e.g. node addition,
deletion or change.
Since the management data is presented in form of status and configuration variables,

the condition part is reduced to evaluating the nodes containing the status variables and
the action part is reduced to updating the nodes containing the configuration variables.

The interface of a policy rule is shown in Listing 7.1. The interface is built in a flexible
manner in order to allow covering the greatest variety of constellations. Thus, event-
condition-action parts of the rule can be realized in different ways by spreading them
through multiple methods. In the following we look closely at the methods of the rule
interface.

1 package com . materna . nodes . t r e e . r u l e ;

3 pub l i c i n t e r f a c e Rule {

5 pub l i c S t r ing g e tCo r r e l a t o r ( ) ;

7 pub l i c void a c t i v a t e ( RuleContext context ) throws Exception ;

9 pub l i c void deac t i va t e ( RuleContext context ) throws Exception ;

11 pub l i c boolean eva luate ( ExecutionContext context ) throws Exception ;

13 pub l i c void execute ( ExecutionContext context ) throws Exception ;

15 }

Listing 7.1: Policy Rule Java Interface



7.2.1 Policy Rule 69

The rule can be activated and deactivated within its rule context by means of the corre-
sponding methods: activate(RuleContext context) and deactivate(RuleContext context). A
registered policy rule is activated automatically after its registration. After the deactivation,
the policy rule does not fire until it is activated again.
The evaluate(ExecutionContext context) method allows to execute the event-condition

parts of the policy rule. Through the execution context, the access to the management
tree event is done. It is up to the underlying system model, what tree event is used as a
trigger for the rule firing. For example, a node is deleted (e.g. a device has fallen out)
or the value of a leaf node exceeds the predefined threshold (i.e. a status variable is out
of the allowed range). In case the event applies, the evaluation of the condition should
occur. This can be in order to check the current tree structure (e.g. whether a replacement
device is available) or the node value (e.g. what is the value of a status variable). For this
purpose, the execution context is used to access the management tree. A shared session is
opened in order to perform the required read operations. The evaluate(ExecutionContext
context) method returns true if the condition part of the rule is satisfied and otherwise -
false. In the first case the execution of the action part is triggered.
The execute(ExecutionContext context) method realizes the action part of the policy

rule. Again, the access to the management tree is done by means of the execution context.
The corresponding subtree can be locked exclusively for a write session. During the session
an appropriate operation on the management tree is executed. That means nodes can be
created (e.g., a replacement device is initialized), deleted (e.g., a flawed sensor is inactivated)
or changed (e.g., a configuration variable is set with a new value).
The use of execution context allows additional flexibility in realization of the classes

implementing the rule. In case the evaluation of the condition part is expensive (e.g.
time-consuming or requires locking of large subtrees), the intermediate evaluation results
can be saved in properties of the execution context in order to be accessible within the
execute(ExecutionContext context) method. The interface of the execution context is shown
in Figure 7.2.

1 package com . materna . nodes . t r e e . r u l e ;

3 import java . u t i l .Map;
import java . u t i l . regex . MatchResult ;

5

import com . materna . nodes . t r e e . event ing . TreeEvent ;
7 import com . materna . nodes . t r e e . path . pattern . PathPattern ;

9 pub l i c i n t e r f a c e ExecutionContext {

11 pub l i c TreeEvent getEvent ( ) ;

13 pub l i c RuleContext getRuleContext ( ) ;

15 pub l i c Map<PathPattern , MatchResult> getMatchResults ( ) ;

17 pub l i c Map<Str ing , Object> ge tP rope r t i e s ( ) ;

19 }

Listing 7.2: Policy Rule Execution Context Java Interface

The concrete implementation of the rule interface, i.e. how the values of the configuration
variables are computed, what is the triggering event and what status variable values are to
be checked, is up to the underlying system model.



70 7 Runtime Management System

7.2.2 Policy Expression
Another form of policies we advocate is a policy expression [DKK+10b]. This form has not
been addressed by any work known to us so far.

In order to provide a flexible approach to the policy-based management, it is sometimes
appropriate to allow the managed system to address the management system itself. Thus, a
policy-aware developed component can request from the management system the evaluation
of a policy expression at runtime. Depending on the result, the component can react by
adapting its program flow. E.g., a managed component requests the management system
before entering a critical operation to check if the current system state (i.e. resource
availability and performance) is favorable enough. Due to this approach, a special form of
the policy-based resource control level occurs.

1 package com . materna . nodes . t r e e . exp r e s s i on ;

3 pub l i c i n t e r f a c e Express ion<T> {

5 pub l i c void a c t i v a t e ( Express ionContext context ) throws Exception ;

7 pub l i c T eva luate ( EvaluationContext context ) throws Exception ;

9 pub l i c void deac t i va t e ( Express ionContext context ) throws Exception ;

11 }

Listing 7.3: Policy Expression Java Interface

The interface of a policy expression is presented in Listing 7.3. It is a generic type interface
that takes an output type parameter. The policy expression interface’s central method is
evaluate(EvaluationContext context) which is responsible for the evaluation of the expression.
The classes implementing this interface request a shared session on the management tree.
During the session the values of the status variables are read. Similarly to the policy rule,
the evaluation of the expression, is done depending on the underlying system model.

1 package com . materna . nodes . t r e e . exp r e s s i on ;

3 import java . u t i l .Map;

5 pub l i c i n t e r f a c e EvaluationContext {

7 pub l i c Express ionContext getExpress ionContext ( ) ;

9 pub l i c Map<Str ing , Object> getParameters ( ) ;

11 }

Listing 7.4: Policy Expression Evaluation Context Java Interface

The interface of the evaluation context used as an input parameter of the method eval-
uate(EvaluationContext context) is shown in Listing 7.5. The evaluation context within
which the evaluation of a policy expression occurs, allows the access to the corresponding
expression context by means of the method getExpressionContext() and to its parameters
in form of a map by means of the method getParameters().
The policy expression can be activated and deactivated within its expression context

by means of the corresponding methods: activate(ExpressionContext context) and deacti-
vate(ExpressionContext context). A registered policy expression is activated automatically
after the registration. After the deactivation, the evaluation of the policy expression is not
possible until it is activated again.



7.3. Management Services 71

1 package com . materna . nodes . t r e e . exp r e s s i on ;

3 import java . u t i l .Map;

5 import com . materna . nodes . s e r v i c e . r e g i s t r y . ServiceQuery ;

7 pub l i c i n t e r f a c e Express ionContext {

9 pub l i c Expres s ionRefe rence getExpres s i onRe fe rence ( ) ;

11 pub l i c Map<Str ing , Object> ge tP rope r t i e s ( ) ;

13 pub l i c ServiceQuery s e r v i c e s ( ) ;

15 }

Listing 7.5: Policy Expression Context Java Interface

The expression context allows to access the expression reference within its runtime environ-
ment. The access is performed by means of the getExpressionReference() method. Further,
the method getProperties() returns the corresponding properties in form of a map. The
method services() returns a service reference to the responsible expression manager.
Policy expressions allow taking the evaluation logic out of the application, but still

guarantee that the evaluation is initiated on demand by the application. The management
system is indeed responsible for the evaluation but still the interpretation is up to the
requester. Thus, the policies applied by the automated management system at runtime
provide a reusable powerful instrument which forces the managed system to conduct in a
flexible but predefined manner.

7.3 Management Services
The management system is realized in the form of the multiple management services:
policy, rule and expression services. The following sections introduce them in detail.

7.3.1 Policy Service

The policy service is the central part of the management system. It is a switching point
for the policy management and execution at runtime. The policy service encapsulates the
access to the underlying rule and expression managers which act as registries for the rules
and expressions, manage their lifecycle and enforce them.

1 package com . materna . nodes . t r e e . p o l i c y ;

3 import java . i o . InputStream ;
import java . u t i l .Map;

5

import com . materna . nodes . s e r v i c e . S e rv i c eRe f e r ence ;
7 import com . materna . nodes . t r e e . exp r e s s i on . Expre s s i onSe rv i c e ;

import com . materna . nodes . t r e e . r u l e . Ru leServ i ce ;
9

pub l i c i n t e r f a c e Po l i c yS e rv i c e extends Expres s ionServ i ce , Ru leServ i ce {
11

pub l i c i n t e r f a c e Bui lder {
13

pub l i c Po l i c yS e rv i c e . Bu i lder e xp r e s s i onS e r v i c e ( Expre s s i onSe rv i c e
e xp r e s s i onS e r v i c e ) ;



72 7 Runtime Management System

15

pub l i c Po l i c yS e rv i c e . Bu i lder r u l e S e r v i c e ( RuleServ i ce r u l e S e r v i c e ) ;
17

pub l i c Po l i c yS e rv i c e . P rope r t i e s g e tP rope r t i e s ( ) ;
19

pub l i c Serv i c eRe fe rence<Po l i cySe rv i c e> bu i ld ( ) ;
21

}
23

pub l i c i n t e r f a c e Bui lderFactory {
25

pub l i c Po l i c yS e rv i c e . Bu i lder newBuilder ( ) ;
27

pub l i c Po l i c yS e rv i c e . Bu i lder newBuilder ( InputStream in ) ;
29

pub l i c Po l i c yS e rv i c e . Bu i lder newBuilder (Map<Str ing , Object> p r op e r t i e s ) ;
31

}
33

. . .
35

}

Listing 7.6: Policy Service Java Interface

Listing 7.6 demonstrates the interface of the policy service. The BuilderFactory and
the Builder implemented as inner static classes follow the factory and builder pattern
approaches and offer a more maintainable, less error-prone and robust service construction
available to the client. Thus, the builder factory offers several options for the policy
service builder construction. The latter one allows to build the policy service (i.e. the
method build()) and hook the corresponding rule and expression services up (i.e. the
methods ruleService(RuleService ruleService) and expressionService(ExpressionService
expressionService) correspondingly).

7.3.2 Rule Service
The rule service manages the policy rules and is responsible for their firing at runtime.

1 package com . materna . nodes . t r e e . r u l e ;

3 import java . i o . InputStream ;
import java . u t i l . Co l l e c t i o n ;

5 import java . u t i l .Map;

7 import com . materna . nodes . s e r v i c e . S e rv i c eRe f e r ence ;
import com . materna . nodes . s e r v i c e . r e g i s t r y . S e rv i c eReg i s t r y ;

9

pub l i c i n t e r f a c e RuleServ i ce extends RuleEventService {
11

pub l i c Ru l eReg i s t ra t i on r e g i s t e rRu l e ( Rule ru le , Map<Str ing , Object>
p r op e r t i e s ) throws RuleException ;

13

pub l i c Co l l e c t i on<RuleReference> getRuleRe fe rences ( ) ;
15 . . .

}

Listing 7.7: Policy Rule Service Java Interface

The interface of the rule service is presented in Listing 7.7. The central method is
registerRule(Rule rule, Map<String, Object> properties), which is intended for registration



7.3.3 Expression Service 73

of rules with their properties in form of a map. The method registerPolicy (Policy policy,
Map<String, Object> properties) registers the specified policy object with the specified
properties with the management system. Among the obligatory properties which are to
be specified during the rule registration are the name, run level, and path patterns of the
rule. By means of the path patterns those subtrees of the management tree are specified
to which the rule applies. Thus, a more fine-grained rule usage can be achieved.
The collection of the currently registered rule references can be acquired by means of

the getRuleReferences() method.
Moreover, the implementation of the rule service is configurable with eventing, execution

and listener default parameters. The eventing specific parameters allow to specifying the
event delivery timeout, logging level, and the threadpool size. The execution parameters
include the threadpool size and the execution timeout. The listener parameters include
the delivery mode.

7.3.3 Expression Service

Listing 7.8 shows the interface of the expression service. The expression services manages
the policy expressions and is responsible for their evaluation.

package com . materna . nodes . t r e e . exp r e s s i on ;
2

import java . i o . InputStream ;
4 import java . u t i l . Co l l e c t i o n ;

import java . u t i l .Map;
6

import com . materna . nodes . s e r v i c e . S e rv i c eRe f e r ence ;
8 import com . materna . nodes . s e r v i c e . S e r v i c eReg i s t r a t i o n ;

import com . materna . nodes . s e r v i c e . r e g i s t r y . S e rv i c eReg i s t r y ;
10

pub l i c i n t e r f a c e Expre s s i onSe rv i c e {
12

pub l i c S e rv i c eReg i s t r a t i on <Express ion<?>> reg i s t e rExp r e s s i o n ( Express ion<?>
expres s ion , Map<Str ing , Object> p r op e r t i e s ) throws Express ionExcept ion ;

14

pub l i c Co l l e c t i on<Express ionReference> getExpre s s i onRe f e r ence s ( ) ;
16

pub l i c Expres s ionRefe rence getExpres s i onRe fe rence ( S t r ing exp r e s s i on Id ) ;
18

pub l i c Evaluat ionRequest eva luateExpre s s i on ( S t r ing exp r e s s i on Id ) throws
Express ionExcept ion ;

20

. . .
22

}

Listing 7.8: Policy Expression Service Java Interface

The method registerExpression(Expression<?> expression, Map<String, Object> proper-
ties) registers the generic type expression with its properties in form of a map. The return
type of the method is a generic service registration ServiceRegistration<Expression<?>>
typed with the corresponding expression. Thus, the service-oriented approach is followed.
The collection of service references registered by the expression manager is accessible by
means of the getExpressionReferences() methods whereas the getExpressionReference(String
expressionId) method returns the particular expression of interest.

The central method of the interface is evaluateExpression(String expressionId). The
method allows to trigger the evaluation of a policy expression identified by its id. The



74 7 Runtime Management System

return type of the method is an evaluation request, the interface of which is shown in
Listing 7.9.

1 package com . materna . nodes . t r e e . exp r e s s i on ;

3 import java . time . Duration ;
import java . u t i l .Map;

5 import java . u t i l . concurrent . CompletableFuture ;

7 pub l i c i n t e r f a c e Evaluat ionRequest {

9 pub l i c Evaluat ionRequest parameters (Map<Str ing , Object> parameters ) ;

11 pub l i c Evaluat ionRequest parameter ( S t r ing name , Object va lue ) ;

13 pub l i c Evaluat ionRequest with in ( Duration timeout ) ;

15 pub l i c <T> T await ( ) throws Express ionExcept ion ;

17 pub l i c <T> CompletableFuture<T> submit ( ) throws Express ionExcept ion ;

19 }

Listing 7.9: Policy Expression Service Java Interface

The evaluation request allows the access to the parameters of the policy expression
(parameters(Map<String, Object> parameters) and parameter(String name, Object value)
respectively).
The method within(Duration timeout) is of particular importance, since it defines the

maximal duration for the policy expression evaluation. Thus, the consideration of time
supports the dependability aspect of the management. It is configurable, how long the
response can last. In case the response takes longer as allowed, the self-contained managed
system must continue its workflow autonomously. Thereby, the two methods for the
evaluation initiation are distinguished: await() and submit(). The first one returns when it
completes its calculation waiting if necessary, but not later than the predefined timeout.
The last one returns immediately without waiting.

Owing to the currently available implementation of the management system in Java
8 which supports the Concurrency API improvement, the runtime management system
attains a more advanced level of flexibility. The aspect of asynchronous computation,
where the callback actions are scattered across the code, nested inside each other and have
to face likely errors, becomes more and more complex. Further, the additional completion
and computation logic (e.g. premature cancellation of the execution, time-controlled flow)
can be needed. Thus, the use of CompletableFuture class allows to handle these aspects in
the more advanced way.

7.4 Management System Characteristics

To sum up this section, the interfaces provided by the runtime management system as well
as the implementation of the management system support the advanced handling of the
following aspects.
Time Restriction The user can control the maximal duration of the management

operations. Both the rule service and the expression service support the parametrization
with default execution timeout parameters. The expression service allows also to define
actively the desired strategy for the evaluation request logic.



7.4. Management System Characteristics 75

Selective Intervention The user is free to choose the scope of the management inter-
vention. He defines and specifies the management objects and the supported management
operations. Moreover, he decides what policy expressions can be requested actively from
the management system. The handling and interpretation of the management response is
up to the managed system itself.
Error Handling Another important aspect addressed by the management system is

the error handling. The management system operates on the data which is distributed,
transient and dynamic. Thus, the management system separates the exception-handling
code, groups and differentiates error types and propagates the exceptions up the call stack.
Lightweight Infrastructure In order to be manageable, the managed system ba-

sically has just to expose its status and react to reconfiguration. For this purpose,
management variables are used. At bottom, the managed system sets the status variables
and takes care of the corresponding reactions in case the configuration variables are set by
the management system.
Administrative Isolation The concept of management domains presented in Sec-

tion 4.3 unfolds in the presented solution. The hierarchical structure of the underlying
management tree allows logical partitioning of management objects according to their type,
location, or organizational affiliation. Thus, the management system can not only address
the whole groups of management objects at once but can also benefit from the dedicated
restriction of the application scope.
Thus, the used policy-based runtime management system supports a dependable, au-

tonomous, and flexible behavior of the managed system. The managed systems stay
self-contained and gain on additional characteristics at the same time.





Chapter 8

Model-Based Management of Medical
Systems

In this chapter the model-based management approach described in Chapter 6 is enhanced
and generalized in order to be applicable to multiple application domains. Subsequently,
the approach is refined in order to be applied to the medical application domain.
In particular, the general metamodel structure is presented in Section 8.1. Firstly, the

main building blocks of the metamodel are presented. From layer to layer, the intra-layer
structure is described. Secondly, in order to assemble the whole metamodel, we resort to
the inter-layer elements which underlay the policy refinement process.
The application domain specific knowledge gathered in Chapter 3 has flown into the

concretized metamodel for the management of medical devices and systems. Section 8.2
shows how the general metamodel has been transformed into this domain metamodel.

8.1 General Metamodel Structure

8.1.1 Metamodel Layers

The three-layered system model reflects the system from three different points of view:
use cases, service infrastructure and implementing soft- and hardware components. In the
following, the main building blocks of each layer are introduced. In doing so, we make a
distinction between the system elements and policy elements as referred in Section 6.3.

8.1.1.1 "Use Cases" Layer

The top layer of the model provides the most abstract view of the system. It is described
at the highest level of abstraction representing the mission of the system and expressing
the main stakeholder goals.

System Elements

Being a widely used and long-standing term, a use case, has been defined in literature in
very different ways. In [CL01], the authors discuss the diverse focuses of well-established
definitions. For example, the OMG [Obj11] defines a use case in the UML specification as:

"... a set of actions performed by a system, which yields an observable result
that is, typically, of value for one or more actors or other stakeholders of the
system."

According to [Coc00],

"A use case captures a contract between the stakeholders of a system about its
behavior. The use case describes the system’s behavior under various conditions



78 8 Model-Based Management of Medical Systems

as it responds to a request from one of the stakeholders, called the primary
actor. The primary actor initiates an interaction with the system to accomplish
some goal."

These definitions vary greatly from the original definition introduced in 1992 by Jackobson
[JCJO92]:

"A use case is a specific way of using the system by using some part of the
functionality. Each use case constitutes a complete course of interaction that
takes place between an actor and the system."

Since we focus on user requirements and management aspects in this work, we are going to
shift the emphasis on the purpose-centered system-behavior viewpoint and define a use
case, similar to [CL01] and [Wie03], as:

a self-contained, concise, and well-defined task comprising the user intentions
and the system responsibilities expressed using the language of the application
domain, free of implementation, technology details and particulars.

Thus, the use cases modeled on this layer involve certain functions which have to be
performed in order to achieve the intended behavior of the system. They define the scope of
the system and structure the main functional activities of the system. Actors represent the
types of users interacting with the system and typically initiating the use case. They stand
representative for primary participators in the described scenario. Further, relevant assets
used within the use case are modeled on this layer. They include data, material or financial
resources contributing to the use case delivery. Along with assets, the provision of use
cases takes account of certain aspects, also presented in the model. Figure 8.1 demonstrates
the main model building blocks which form the "Use Cases" layer.

Asset

Use Case

Actor

Function

Aspect

Requirement

Constraint

Expression

Figure 8.1: Use Case Layer Building Blocks

Policy Elements

The desired system behavior is expressed by means of concise requirements which can
address various facets (e.g., performance, security, billing, application domain). The
requirements are formulated at a high level and determine the target system state. They
can also express the necessity or prerequisite of the system state. The requirements are
assigned to the use cases, functions, or directly to the assets modeled on his layer.
Along with requirements, it is sometimes desirable to define some constraints which

concern the function, asset, actors and aspects of the use case. They express a condition
that must be satisfied, a certain restriction of the system state. The constraints are assigned
to the corresponding model elements.
In order to evaluate, if the specified constraints are satisfied, the requirements are met

or just to judge on the current system state, it is sometimes advisable to request the



8.1.1 Metamodel Layers 79

evaluation of a predefined expression. These are modeled on the top layer of the model
and refer to the corresponding functions, assets and aspects.
Alike other model elements of this layer, the requirements, constraints and expressions

are to be formulated in the language of the application domain and must be comprehensible
to the domain specialist.

Summary

The identified model elements of the "Use Cases" layer and corresponding intra-layer
associations standing for the relations between the model elements are summarized in
Table 8.1.

Use Case Actor Function Asset Aspect Requirement
Constraint
Expression

Use Case performsI usesI
producesI

takesAccountOfI requestsI

Actor initiatesI
participatesInI

Function
Asset
Aspect
Requirement
Constraint
Expression

refersI refersI refersI refersI refersI

Table 8.1: Model elements of the "Use Cases" layer

8.1.1.2 "Services" Layer

The middle layer provides the service-oriented view of the system. Following the main
service-orientation principles, we focus on the following design aspects stated by [Erl07]:
Standardized Service Contract Expressing service functionality, purpose, and

capability should be done via a standardized and appropriately granular service contract.
Loose Coupling The level of dependency between the service contract, its imple-

mentation, and its service consumers should be as low as possible.
Abstraction Hiding as much of service details and logic as possible provides for

composability. Services can be regarded as "black boxes" where the only information
available is the one published in the service contract.
Reusability Services should be designed with intention to promote reuse. Thus, they

are to be positioned as enterprise resources with agnostic functional contexts.
Autonomy Increasing service’s reliability and behavioral predictability is supported

by means of exercising a high level of control over the underlying runtime execution
environment by services.
Statelessness Delegation and deferral of state management benefits service scalability

and resource consumption.
Discoverability Supplemented meta data should allow to discover and interpret the

services.
Composability Services should be capable of participating as effective composition

participants in a composition of any size and complexity.



80 8 Model-Based Management of Medical Systems

System Elements

Resorting to the existing standards and taking into consideration the above listed aspects,
we refer to the term of service in the way OASIS does it within the scope of the Reference
Model for Service Oriented Architecture 1.0 [OAS06]:

"A service is a mechanism to enable access to one or more capabilities, where
the access is provided using a prescribed interface and is exercised consistent
with constraints and policies as specified by the service description."

The similar intentions are targeted by applications. Services, however, address in most
cases smaller and more isolated problems than applications. Applications often perform
a wide range of operations and in doing so expose and use other services. Thus, the
model layer contains services and applications providing the tightly defined set of functions
specified on the use cases layer.

The applications are used by the users representing the actors modeled on the top layer.
Figure 8.2 demonstrates the main model building blocks of the "Services" layer.

Data

Application

Service

Service-level
Requirement

Service-level
Constraint

Service-level
Expression

User

Figure 8.2: Service Layer Building Blocks

The OASIS SOA Reference Model emphasizes the importance of precise definition
of information and data exchanged with a service. For this purpose, it introduces the
services’s information model which "includes the format of information that is exchanged,
the structural relationships within the exchanged information and also the definition of terms
used" [OAS06]. Especially in case of data exchange across an ownership boundary, these
issues require close attention. The data interpretation on a semantic as well as syntactic
level is highly application dependent. Taking into consideration these problems, we also
introduce data model elements connected to the services and applications encountering
them.

Policy Elements

The OASIS SOA Reference Model endorses the association of services with policies which
provide "necessary information for prospective consumers to evaluate if a service will act
in a manner consistent with the consumer’s constraints" [OAS06].

Thus, corresponding service-level policy elements are required in order to express specific
requirements on this abstraction level. For this purpose, policy constructs are introduced
which define the usage, provision and deployment of services, applications and related
data. Similarly to the policy elements of the "Use Cases" layer, these policy constructs
have a form of service-level requirements, constraints, and expressions. In contrast to
them, however, these elements can be specified not only during the design time, but rather
generated and added to the model automatically during the refinement process.
The service-level policy elements refine the policy elements of the "Use Cases" layer

and address those service-level specifics which are to be considered in order to satisfy the
defined requirements and constraints. They also expand the defined requirements and



8.1.1 Metamodel Layers 81

constraints from the service-oriented point of view. Moreover, the policy elements are
formulated using the service-level specific terminology.
In the model, the policy constructs are connected to the associated application, service

and data elements.

Summary

Table 8.2 brings together the identified model elements and the intra-layer associations.

Application Service Data User Service-level
Requirement
Constraint
Expression

Application usesI
exposesI

encountersI requestsI

Service encountersI
Data
User usesI

interactsWithI
Service-level
Requirement
Constraint
Expression

refersI refersI refersI refersI

Table 8.2: Model elements of the "Services" layer

8.1.1.3 "Components" Layer

The bottom layer of the system model represents the most concrete technical view of the
system. Elements depicted here compose the runtime system and deliver to the user the
tangible services and applications defined on the middle layer.

System Elements

The layer comprises devices which are available at runtime. To be specific, we model
medical domain specific devices introduced in Section 3.3, instruments and appliances as
well as common IT devices like computers, peripherals, and telecommunication equipment.
Devices can host required software platforms, acquire or allocate relevant data sources.
As a special case we also model sensors, devices that detect or measure some physical

quantities (e.g. physiological or ambient parameter) and respond with a transmitted signal.
They can be self-contained or hosted by the corresponding device.

Software platforms hosted by the devices, in their turn, hold software components and
provide an operating environment under which they run.

The term "software component" provides a considerable room for diversity of definitions.
In [Ols06] a comprehensive research on the term’s definition and historical evolution has
been carried out. In this work we rely on the definition worked out by Szyperski [SGM02]:

"A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties."



82 8 Model-Based Management of Medical Systems

The details of this definition are discussed in [V0̈3]. Thus, "unit of composition" implies that
the components are meant to be used and reused in composition with other components.
Together, they can assemble a component-based application. Assembling the applications
from components must not necessarily be accomplished by the same developers.

Software
Component

Data
Source

Sensor

Software
Platform

Device

Policy Rule

Configuration

Policy Expression

User
Credential

Figure 8.3: Components Layer Building Blocks

For instance, suppose the implementation technology is OSGi1. In this case, a device
hosts an OSGi Framework (software platform), where a set of OSGi bundles (software
components) is running. The bundles can expose and use OSGi services (services).
In order to prove user identity and control access to data and other resources, user

credentials are used. The model element standing exemplarily for a credential of any form
(user account-password combination, public key certificate, biometrics, etc.) is modeled on
the "Components" layer. In case credentials are to be stored physically on a computer, a
corresponding association is modeled between the user credential and device element.

Policy Elements

The policy elements on the "Components" layer are the concrete technical representations
of the previously defined abstract requirements, constraints and expressions. They are the
management artifacts used by the management system in order to perform its functions.
We distinguish three types of the policy elements: policy rules, policy expressions and
configurations.

A policy rule represents an event-condition-action rule following the paradigm of positive
imperative policies presented by the Sloman and Moffett working group [MS93]. That
means, on a certain event concerning some components, in case a condition applies to
a set of components, a corresponding action on a set of components is performed. In
order to model this, we associate the policy rule element with the corresponding model
elements. The "event" part of the rule refers to a component which triggers the policy rule,
whereas the "condition" part of the rule supposes checking the status of the corresponding
components. If the case may be, the "action" is undertaken on the associated model
elements.
A policy expression represents a technical representation of the approach presented in

[DKK+10b]. A managed component can request from the management system to evaluate a
policy expression at runtime. Depending on the result, the component can react by adapting

1http://www.osgi.org/



8.1.1 Metamodel Layers 83

its program flow. Thus, the requesting component (software component) is associated with
the corresponding policy expression. The components (software components, platforms,
devices, sensors, data sources) which status is considered for the evaluation of the policy
expression are associated with the policy element.
The "Components" layer also includes the concrete technical configurations of the

components needed in order to fulfill the defined abstract requirements and constraints.
The configuration elements are associated directly with the corresponding elements (user
credentials, software components, platforms, devices and sensors).
To sum up, by means of the configurations the initial state of the managed system can

be set. The policy rules are used to govern the management process by specifying how
the state of the managed system changes reactively (and/or even proactively). The policy
expressions allow the managed system to inquire its state at runtime. In contrast to the
more abstract layers in the model, the policy elements become more technical and specific.
In order to keep the policy definition technology independent, it is appropriate to operate
with management variables of the managed elements. Thus, we resort to a status variable
in order to express the state of the component and to a configuration variable in order to
configure the component.

Status variables

Configuration variables

Policy elementModel
element

Figure 8.4: Used Notation: Management Variables

In the following, we extend the model with the management variable elements and
use the notation shown in Figure 8.4. The management variables are assigned to the
corresponding model elements, whereas the policy and control elements are associated with
those variables, on which they are defined on.

Summary

The model elements and associations of the "Components" layer are listed in Table 8.3.

D
ev
ic
e

Se
ns
or

D
at
a

So
ur
ce

So
ft
w
ar
e

P
la
tf
or
m

U
se
r

C
re
de
nt
ia
l

So
ft
w
ar
e

C
om

po
ne
nt

Po
lic
y
Ru

le
Po

lic
y
Ex

pr
es
sio

n
C
on

fig
ur
at
io
n

Device hostsI acquiresI
allocatesI

storesI

Sensor acquiresI
allocatesI

Data Source
Software
Platform

runsOnI

Software
Component

acquiresI
allocatesI

runsOnI requestsI

User
Credential

to be continued. . .



84 8 Model-Based Management of Medical Systems

. . .to be continued. . .

D
ev
ic
e

Se
ns
or

D
at
a

So
ur
ce

So
ft
w
ar
e

P
la
tf
or
m

U
se
r

C
re
de
nt
ia
l

So
ft
w
ar
e

C
om

po
ne
nt

Po
lic
y
Ru

le
Po

lic
y
Ex

pr
es
sio

n
C
on

fig
ur
at
io
n

Policy Rule
Policy Expression
Configuration

refersI refersI refersI refersI refersI refersI

Table 8.3: Model elements of the "Components" layer

8.1.2 Building Together the Metamodel
In order to assemble the whole system model and be able to derive the management relevant
information, we need a kind of "glueing" elements to put the single model building blocks
together. Such elements support the policy refinement process by indicating how the more
abstract elements and their attributes are to be translated into the more technical ones. In
other words, these elements give information, how to traverse the system model from top
to bottom and express how to realize the abstract requirements on the more technical level.

Firstly, refinement relations are used for this purpose. They comprise primarily top-down
inter-layer associations. Secondly, refinement patterns can imply the strategy for retrieving
the model elements and their attributes on the next lower level. A part of the elements is
added to the model during the modeling process by the domain specialist. This corresponds
to the modeling step of the model-based management presented in Section 6.2. However,
some of the model elements are added to the model in an automated manner. These are
mainly the elements derived within the policy refinement step. In the following, the main
types of refinement relations are introduced.
Figure 8.5 sums up the main building blocks described above and extends them with

inter-layer associations. These associations represent refinement relations between model
elements of adjacent layers. Thus, model elements of an upper layer are connected to those
model elements of the next lower layer which provide for their realization, implementation,
or provision.
Moreover, we also extend the model with the management variables introduced in

Section 8.1.1.3.
In the following, the single inter-layer relationships are described. They build the basis

for the refinement process by reducing the abstraction grade from top to bottom and
providing more and more technical and implementation details to the next lower layers.

8.1.2.1 From "Use Cases" to "Services"

Table 8.4 illustrates the relationship between the "Use Cases" and "Services" layers.



8.1.2 Building Together the Metamodel 85

Software
Component

Data
Source

Sensor

Software
Platform

Device

PolicyFRule

Configuration

PolicyFExpression

User
Credential

Data

Application

Service

Service-level
Requirement

Service-level
Constraint

Service-level
Expression

User

Asset

UseFCase

Actor

Function

Aspect

Requirement

Constraint

Expression

UseFCases

Services

Components

Figure 8.5: Synopsis of Main Building Blocks



86 8 Model-Based Management of Medical Systems

A
pp

lic
at
io
n

Se
rv
ic
e

U
se
r

D
at
a

Se
rv
ic
e-
le
ve
l

R
eq
ui
re
m
en
t

Se
rv
ic
e-
le
ve
l

C
on

st
ra
in
t

Se
rv
ic
e-
le
ve
l

Ex
pr
es
sio

n

Use Case realizedByI
Actor refinesToI
Function providedByI
Asset refinesToI
Aspect refinesToI
Requirement refinesToI
Constraint refinesToI
Expression refinesToI

Table 8.4: Inter-layer Associations "Use Cases" - "Services"

The use cases modeled on the "Use Cases" layer are realized by means of a set of
applications. Thus, a vertical association realizedBy I is used to express this relationship
and connect the use case element with the corresponding application elements. The set of
functions performed within the use case is provided by the corresponding services modeled
by the service elements of the "Services" layer. This constellation is modeled by vertical
associations providedBy I between the use case element and a set of corresponding service
elements.

Assets which are used or produced within the use cases are refined to the data elements
involved by the service provisioning on the "Services" layer. The corresponding elements
are connected in the model by refinesTo I relationship. Similarly, the aspects of which
the use cases take account are associated with the corresponding data elements.
Actors involved on the "Use Case" layer are reflected in user model elements on the

"Services" layer. Accordingly, refinesTo I relationships are used to model this circumstance.
An inter-layer association of special interest is a refinesTo I association between the

policy elements of the "Use Cases" and "Services" layers. It is a matter of derivation of
high-level policies into the more concrete and technical representation from the service-
oriented point of view. Policies, available on the "Use Cases" layer in form of abstract
requirements, constraints and expressions applied to the model elements are refined into
service-specific policy constructs. The associations of this type are added to the model
within the refinement process in an automated manner.

8.1.2.2 From "Services" to "Components"

The relationships between the "Services" and "Components" layers are summarized in
Table 8.5.



8.2. Medical Domain Metamodel 87

So
ft
w
ar
e

C
om

po
ne
nt

U
se
r

C
re
de
nt
ia
l

D
at
a

So
ur
ce

Po
lic
y

Ru
le

C
on

fig
ur
at
io
n

Po
lic
y

Ex
pr
es
sio

n

Application realizedByI
Service providedByI
User refinesToI
Data refinesToI
Service-level
Requirement

refinesToI refinesToI

Service-level
Constraint

refinesToI refinesToI

Service-level
Expression

refinesToI

Table 8.5: Inter-layer Associations "Services" - "Components"

The applications of the middle layer are realized by the software components residing on
the bottom level. Corresponding associations are of type realizedBy I.
Similarly, the services of the middle layer are provided by the software components of

the bottom layer. Thus, providedBy I association connects the corresponding service and
software component elements of the adjacent layers.

The data which has been used or produced by services on the "Services" layer is refined
to the data sources on the "Components" layer. Thus, refinesTo I relationship connects
the data element with the appropriate data resource element.
The identity of application users are represented by the credentials which are used by

the system to prove user’s identity at runtime. That is modeled by refinesTo I association
which connects the users of the "Services" layer with the corresponding user credentials
elements of the "Components" layer.
The above described associations are added to the model and specified during the

modeling process. Additionally, refinement relationships acquired within the automated
policy refinement step from the "Services" to the "Components" layer are present in the
model. This refinement step provides for obtaining the highest level of detail and enriches
the model with concrete implementation specifics. Thus, the service-specific requirement
and constraint expression constructs of the middle layer are refined into policy rule and
configuration elements defined on management variables of the "Components" layer elements.
This is expressed in model by refinesTo I associations. The expression constructs defined
on the middle layer are refined into the concrete policy expressions of the bottom layer.
The corresponding refinesTo I association connects the corresponding elements of the
adjacent layers.

8.2 Medical Domain Metamodel

Based on the application domain description provided in Chapter 3 we construct the
metamodel in line with the worked out model building blocks as well as refinement relations
presented above. The metamodel elements follow the generalization principle and are
organized in a hierarchy using the inheritance or "is a" relationship. That allows to extend



88 8 Model-Based Management of Medical Systems

the metamodel according to the current subdomain of interest. We are going to focus
exemplarily on the neurological and cardiological subdomains in the following sections.

8.2.1 "Use Cases" Layer
The system elements resided on the "Use Cases" layer include use cases, actors, functions,
and assets. Additionally, the layer contains requirements elements which refer to the system
elements and express the desired system behavior.

Actors

As the medical service delivery is a central part and purpose of the most courses of actions
and processes within the medical domain, it is advisable to examine the matter starting
with the aspect of medical service provision. On the part of medical service consumer, the
essential actor is the Patient.
Pursuing the idea, that the medical disease can be used as a classifying criterion, we

follow the presented ICD-10 [Wor10b] classification and introduce within the metamodel a
hierarchy of metamodel elements corresponding to each of the disease classification chapter,
block of categories, category and subcategory. In case of multimorbidity, the primary
disease is taken as the main criterion. Thus, the subtypes of the Patient metamodel element
include the following elements:

• Patient with certain infectious and parasitic disease

• Patient with neoplasm

• Patient with disease of the blood and blood-forming organs and certain disorders
involving the immune mechanism

• Patient with endocrine, nutritional and metabolic disease

• Patient with mental, behavioral and neurodevelopmental disorder

• Patient with disease of the nervous system

• Patient with disease of the eye and adnexa

• Patient with disease of the ear and mastoid process

• Patient with disease of the circulatory system

• Patient with disease of the respiratory system

• Patient with disease of the digestive system

• Patient with disease of the skin and subcutaneous tissue

• Patient with disease of the musculoskeletal system and connective tissue

• Patient with disease of the genitourinary system

• Patient with pregnancy, childbirth and the puerperium

• Patient with certain condition originating in the perinatal period

• Patient with congenital malformation, deformation and chromosomal abnormality



8.2.1 "Use Cases" Layer 89

• Patient with symptom, sign and abnormal clinical and laboratory finding, not elsewhere
classified

• Patient with injury, poisoning and certain other consequence of external causes

• Patient with external cause of morbidity

• Patient with factor influencing health status and contact with health services

These metamodel elements inherit directly from the Patient metamodel element and
generalize the corresponding blocks of categories, in their turn. For example, the metamodel
element Patient with disease of the nervous system is specialized amongst others by the
following subtypes of metamodel elements:

• Patient with inflammatory disease of the central nervous system

• Patient with systemic atrophy primarily affecting the central nervous system

• Patient with extrapyramidal and movement disorder

• Patient with other degenerative disease of the nervous system

• Patient with demyelinating disease of the central nervous system

• Patient with episodic and paroxysmal disorder

• Patient with nerve, nerve root and plexus disorder

• Patient with polyneuropathy and other disorder of the peripheral nervous system

• Patient with disease of myoneural junction and muscle

• Patient with cerebral palsy and other paralytic syndrome

• Patient with other disorder of the nervous system

Expanding the hierarchy further, these metamodel elements generalize the corresponding
categories of patients. To give an example, the metamodel element Patient with other
degenerative disease of the nervous system is specialized by the following subtypes of
metamodel elements:

• Patient with Alzheimer’s disease

• Patient with other degenerative disease of nervous system, not elsewhere classified

• Patient with other degenerative disorder of nervous system in diseases classified
elsewhere

The most fine-grained information is given by the specialization of a metamodel element of
the next lower hierarchical level. E.g., the metamodel element Patient with Alzheimer’s
disease include the following subtypes of metamodel elements:

• Patient with Alzheimer’s disease with early onset

• Patient with Alzheimer’s disease with late onset

• Patient with other Alzheimer’s disease



90 8 Model-Based Management of Medical Systems

Patient with 
Alzheimer’s 
disease with 
early onset

Actor

Patient

Patient with 
disease of the 

nervous system

Patient 
with other dege-
nerative disease
of the nervous 

system

Patient with 
Alzheimer’s 

disease

Figure 8.6: Metamodel Excerpt: Patient

• Patient with Alzheimer’s disease, unspecified

Thus, in order to model a patient suffering from the Alzheimer’s disease with early
onset (ICD-10 diagnosis code G30.0) we use exemplary the following metamodel excerpt
(Figure 8.6):

On the part of medical service provider, the essential actor stems from the Health worker.
Thus, the metamodel includes the corresponding metamodel element at the top of the
hierarchy. The hierarchical structure is based on the differences in skill level and skill
specialization which are necessary to accomplish the tasks and duties of jobs. Resorting to
the presented International Standard Classification of Occupations (ISCO, 2008) of WHO,
we distinguish the following subtypes of the Health worker metamodel element:

• Health professional

• Health associate professional

• Personal care worker in health services

• Health management and support personnel

• Other health service provider not elsewhere classified

These metamodel elements generalize the subtypes of occupation categories of actors in
the medical sector. Thus, e.g., the metamodel element Health professional is specialized by
the following subtypes of metamodel elements:

• Generalist medical practitioner

• Specialist medical practitioner

• Nursing professional

• Midwifery professional

• Traditional and complementary medicine professional



8.2.1 "Use Cases" Layer 91

• Paramedical practitioner

• Dentist

• Pharmacist

• Environmental and occupational health and hygiene professional

• Physiotherapist

• Dietician and nutritionist

• Audiologist and speech therapist

• Optometrist and opthalmic optician

• Health professional not elsewhere classified

Expanding the hierarchy further, these metamodel elements generalize the correspond-
ing categories of health professionals. For example, the Specialist medical practitioner
metamodel element is specialized by the following subtypes of metamodel elements:

• Doctor in obstetric and gynaecological specialties

• Doctor in paediatrics

• Doctor in psychiatric specialties

• Doctor in the medical group of specialties

• Doctor in the surgical group of specialties

• Doctor in specialties not elsewhere classified

These metamodel elements generalize specialists according the their area of practice, in
their turn. Thus, e.g., the metamodel element Doctor in the medical group of specialties
includes the following subtypes:

• Cardiologist

• Dermatovenerologist

• Doctor in forensic medicine

• Gastroenterologist

• Haematologist

• Immunologist

• Doctor in infectious disease

• Doctor in internal medicine

• Neurologist

• Doctor in occupational medicine

• Oncologist



92 8 Model-Based Management of Medical Systems

• Radiologist

• Doctor in rehabilitative medicine

• Doctor in respiratory medicine

• Urologist

Similarly to the patients hierarchy, we assume that each specialist should only be counted
once, according to his main area of practice or the current use case. To give an example of
metamodel elements involved in modeling a doctor in neurology, who provide a service
of any kind to a patient suffering from a degenerative disease of the nervous system, we
demonstrate an excerpt from the metamodel (Figure 8.7):

Neurologist

Actor

Health worker

Health
professional

Specialist 
medical

practitioner

Doctor in the 
medical group
of specialties

Figure 8.7: Metamodel Excerpt: Health Worker

It is to take into consideration, that a health worker can also act as a service consumer.
Depending on the use case, he can use a domain specific service with an educational or
informational objective. Another example is the usage of assisting applications, expertise
and legacy systems by a health worker. Accordingly, the actors acting as a service provider
include the following metamodel elements:

• Health care organization

• Public health authority

• Insurance company

• Pharmaceutical technology manufacturer

• Medical technology manufacturer

• Medical technology vendor

• Medical data processing center



8.2.1 "Use Cases" Layer 93

These metamodel elements generalize the stakeholders according to their liability function,
organizational affiliation, field of activity and sphere of interest. Thus, for example, the
metamodel element Health care organization has got the following subtypes:

• Hospital

• Clinic

• Prevention facility

• Rehabilitation facility

• Medical practice

• Ambulance

• Rescue service

• Laboratory

• Radiology

• Pharmacy

• Medical supply store

• Scientific organization

An excerpt from the metamodel presenting a radiology as a medical domain actor is
demonstrated in Figure 8.8.

Actor

Health care
organization

Radiology

Figure 8.8: Metamodel Excerpt:Radiology

Use Cases

Regarding the plenty of application domain specific use cases presented in the description
of typical course of actions within the medical domain, we can distinguish between the
following main use cases presented in the metamodel:

• Treatment and prevention

• Information and education

• Research

• Legacy procedure



94 8 Model-Based Management of Medical Systems

These metamodel elements inherit directly from the Use Case metamodel element and
generalize the typical use cases specified for the application domain of interest according to
the assigned purpose and general objective. Expanding the hierarchy further, the subtypes
of the metamodel elements specialize the subgroups of use cases more precisely. E.g.,
the Treatment and prevention use case metamodel element is specialized by the following
subtypes of metamodel elements:

• Therapy and diagnostics

• Prevention

• Monitoring

• Rehabilitation

• Assisted living

• Social services and care

In their turn, these metamodel elements are specialized by the more specific subtypes. Thus,
following the OPS-301 [DIM13], the official classification of operational procedures widely
used by the German hospitals and physicians, the Therapy and diagnostics metamodel
element can be expanded to following metamodel nodes:

• Diagnostic procedure

• Radiology

• Operation

• Drugs

• Non-surgical therapeutic measure

• Additional measure

These metamodel elements are specialized by the following subtypes of metamodel elements
with regard to the involved technique. Thus, for example, the Radiology metamodel element
generalizes the following subtypes:

• X-ray imaging

• Computed tomography

• Ultrasonography

• Magnetic resonance imaging

• Radionuclide imaging

• Positron emission tomography

• Single photon emission computed tomography

• Fluoroscopy imaging

Going down the hierarchy, the metamodel elements are specialized further by their subtypes
according to the application target. E.g., the Magnetic resonance imaging metamodel
element generalizes amongst others the following subtypes:



8.2.1 "Use Cases" Layer 95

• Magnetic resonance angiography

• Head MRI

• Chest MRI

• Abdomen and pelvis MRI

• Bone and joint MRI

• Spine MRI

To give an example of the metamodel hierarchy of elements representing a standard use
case covering a magnetic resonance imaging procedure of the head used for diagnostics
of degenerative disease of the nervous system, we introduce the following excerpt of the
metamodel (Figure 8.9):

Magnetic
resonance

imaging

Use Case

Treatment and 
prevention

Therapy and
diagnostics

Radiology

Head MRI

Figure 8.9: Metamodel Excerpt: MRI

Functions

In order to model the functionality carried out within the presented above use cases, a set
of application specific functions is introduced. These metamodel elements inherit directly
from the Function.

• Medical data handling

• Medical device integration

• Patient care coordination

• Medical application workflow control

• Documentation, reporting and archiving



96 8 Model-Based Management of Medical Systems

These metamodel elements generalize the main function types characteristic of the medical
application domain. They are specialized by the subtypes of functions introducing the
functionality on the more concrete level. Thus, for example, depending on the underlying
intention and task the Medical data handling metamodel element generalizes the following
subtypes:

• Medical data acquisition

• Medical data inquiry

• Medical data processing

• Medical data analysis

• Medical data storage

• Medical data representation

Regarding the technical way of the medical data acquisition as well as the observed
parameter type, the metamodel elements can be specialized by the subtypes providing the
more precise level of abstraction in the description of the functions. Thus, the Medical
data analysis can be extended by the following metamodel elements:

• Medical narrative data analysis

• Medical textual data analysis

• Medical numeric data analysis

• Medical image data analysis

• Medical device input data

In their turn, these metamodel elements generalize the subordinate functions described
by the corresponding metamodel elements. E.g., Medical image data analysis metamodel
element is specialized with regard to the volumetric property by the following subtypes of
metamodel elements:

• 3D analysis

• 2D analysis

Going down the hierarchy, these metamodel elements generalize the more specific types
of functions. Thus, the metamodel element Volumetric analysis generalizes according to
lesion and organ specialty amongst others the following subtypes:

• Volumetric abdominal analysis

• Volumetric chest image analysis

• Volumetric neuroimage analysis

• Volumetric bone and joint analysis

• Volumetric spine analysis

The underlying image reconstruction technique can be used as a classification factor on
the next lower level of hierarchy. Thus, Volumetric neuroimage analysis is specialized by
the following subtypes of metamodel elements:



8.2.1 "Use Cases" Layer 97

• Voxel-based morphometric analysis

• Surface-based morphometric analysis

• Deformation-based morphometric analysis

• Tensor-based morphometric analysis

To give an example of the commonly used by the diagnosis of the degenerative disease
of the nervous system cortical thickness analysis, we demonstrate an excerpt from the
metamodel in Figure 8.10.

Voxel-based
morphometry

Medical data
handling

Function

Medical data 
analysis

Volumetric
analysis

Volumetric 
neuroimage 

analysis

Cortical 
thickness
analysis

Figure 8.10: Metamodel Excerpt: Cortical Thickness Analysis

Assets

The main assets involved within the delivery of the use cases characteristic of the medical
domain include a wide range of data, material and financial resources and objects. Referring
to the SNOMED CT 2 which provides a most comprehensive clinical terms terminology,
we define the following subtypes of assets presented as metamodel elements:

• Clinical finding

• Procedure

• Situation with explicit context

• Observable entity

• Body structure

• Organism
2http://www.ihtsdo.org/fileadmin/user_upload/doc/ (Aug.2013)



98 8 Model-Based Management of Medical Systems

• Substance

• Pharmaceutical biologic product

• Specimen

• Physical object

• Physical force

• Event

• Environment and geographic location

• Social context

• Staging and scales

• Qualifier value

• Special concept

• Record artifact

These metamodel elements inherit directly from the metamodel element Asset and generalize
the main subtypes according to their genre and purpose. Thus, according to the LOINC 3

document ontology the Record artifact metamodel element representing the records and
documents typical of the medical domain can be specialized by the following subtypes:

• Administrative document

• Consent document

• Clinical trial document

• Correspondence

• Public health document

• Legal document

• Clinical document

In their turn, these metamodel elements generalize the subordinate assets providing a more
precise level of description. For example, with regard to the underlying form, the Clinical
document metamodel element is specialized amongst others by the following metamodel
elements:

• Communication note

• Conference evaluation note

• Consultation note

• Counseling note

• Diagnostic study note
3http://loinc.org/



8.2.1 "Use Cases" Layer 99

• Digital photographic image

• Education note

• Evaluation and management note

• Medication management note

• Intervention procedure note

• Pathology procedure note

• Referral note

• Supervisory note

• Triage and care note

• Administrative note

Assume a typical for diagnostics of degenerative disease of the nervous system diagnostic
procedure - MRI. An asset which is produced within the procedure, a radiology diagnos-
tic study note, can be demonstrated by the corresponding except from the metamodel
(Figure 8.11).

Record artifact

Asset

Clinical 
document

Diagnostic study
note

Radiology 
diagnostic study 

note

Figure 8.11: Metamodel Excerpt: A Radiology Diagnostic Study Note

Requirements

Regarding the main domain specific issues addressed in Chapter 3, we concentrate on
the common requirements ordered to the general sectors: security, accountability, billing,
resources, and performance, as well as on the requirements specific to the medical application
domain. According to this, we introduce the following metamodel elements representing
the main requirement categories:

• Security requirement

• Nonrepudiation requirement

• Billing requirement



100 8 Model-Based Management of Medical Systems

• Resources requirement

• Performance requirement

• Medical requirement

These metamodel elements inherit directly from the metamodel element Requirement. In
their turn, they generalize the corresponding subcategories of the requirements. Thus, the
Security requirement is specialized by the subordinate types:

• Information security requirement

• Device security requirement

• Application security requirement

• Technological security requirement

Expanding the hierarchy further, these metamodel elements generalize the corresponding
subtypes of requirements. Thus, e.g., Information security requirement is specialized by
the following subtypes:

• Information confidentiality requirement

• Information integrity requirement

• Information availability requirement

An excerpt from the metamodel hierarchy which is relevant for the description of the
confidentiality requirement applied to the radiology diagnostic study note can be seen in
Figure 8.12.

Requirement

Security
Requirement

Information
Confidentiality
Requirement

Information
Security

Requirement

Figure 8.12: Metamodel Excerpt: Information Confidentiality Requirement

8.2.2 "Services" Layer
Similar to the "Use Cases" Layer, the "Services" Layer is resided by the system and policy
elements. The system elements presented on this layer include services (applications), service
bindings, data, SLAs, service consumer, customer and provider. They are dedicated to
present the system from the service-oriented point of view. The corresponding requirements
expressing the agreed upon and targeted service levels are presented in the model in form
of requirements elements.



8.2.2 "Services" Layer 101

Services (Applications)

Unlike [JAW11], who classifies the services and applications used within the medical domain
according to their application-specific purpose (e.g. information, decision, education,
management, and rating aids), we regard the system from the service-oriented point of
view and concentrate on service-oriented issues like [Coh07] does. The services directly
support the business process by being "discovered", orchestrated, and used as a system
solution. They are self-contained units of work with well defined and described capabilities.
A composition of services implements the actual business process by means of applications.
According to the [Coh07], the "service-oriented economies thrive by promoting composition."
Thus, new application-specific business logic and functions are composed together with
existing business capabilities which are built in-house, bought or leased as packaged
component-based solutions. Looking at the types of services, two main types are to be
distinguished. The first type includes the services which provide the common infrastructure
(or bus), communication, and facilities. The actual application logic is provided by the
second type – application services. Following this approach, we identify the following
metamodel elements:

• Infrastructure service

• Application service

These metamodel elements inherit directly from the Service metamodel element. Applica-
tion services, in their turn, divide into four main subtypes: entity, capability, activity, and
process services ([Coh07]). Entity services support and define access to business entities of
the system. They usually implement the standard database actions: create, read, update,
and delete (CRUD). Capability services provide the action-centric building blocks of the
business process while implementing organization’s business-level capabilities. Action
centric business logic on the application level is exposed by activity services. The notion
of process services is to implement a business process tying together their business logic
with the composed functionality of the involved services in order to create a plan for the
operation of the business. Thus, the corresponding metamodel elements inherit from the
Application service element:

• Entity service

• Capability service

• Activity service

• Process service

Providing a complete hierarchy of metamodel nodes for the medical domain is a overwhelm-
ing task. However, we are going to identify the main principles of handling, in order to
construct a metamodel of the "Services" layer for a subdomain of interest. Taking into
consideration the metamodel structure identified for the "Use Cases" layer, the following
guidelines can be applied.
Medical assets and actors of the "Use Cases" layer have their representatives on the

"Services" layer. The services covering management of those components adhere generally
to the Entity services. They can be divided into corresponding subtypes reflecting the
hierarchy of defined metamodel elements for actors and assets, e.g. Entity service →
Asset management service → Record artifact management service → Clinical document
management service → Diagnostic study note management service → Radiology diagnostic
study note management service.



102 8 Model-Based Management of Medical Systems

Functions presented on the "Use Cases" layer are implemented by the corresponding
services of the "Services" layer. The latter belong to Capability and Activity services
depending mostly on their scope and granularity. Thus, services realizing functions which
are action-centric on the application level are to be subordinated to Activity services. Their
subtypes should be consequently organized in a similar way as the superior functions of
the the "Use Cases" layer. Services providing functions which implement organization
business-level capabilities belong to Capability services. They are to be divided into
subtypes according to the hierarchical structure of the corresponding metamodel elements
representing functions, e.g. Capability service → Medical data handling service → Medical
data analysis service → Volumetric analysis service → Volumetric neuroimage analysis
service → Voxel-based morphometry service → Cortical thickness analysis service.

Medical use cases of the "Use Cases" layer are presented on the "Services" layer as
compositions of services and services covering more complex workflows and business
processes. They are also reflected in services which have application workflow control
functions or even applications themselves. Services of such nature are subordinated to the
Process services. The hierarchy of the metamodel nodes representing the Process services
should reflect the corresponding order of use cases and functions of the "Use Cases" layer,
e.g. Process service → Treatment and prevention service → Therapy and diagnostics service
→ Radiological procedure management service → MRI management service → Head MRI
management service.

To give an example of metamodel elements presenting each service type, we consider
the following sample composition of services in order to implement a business process.
Let us regard a standard computer-assisted MRI diagnostic procedure routine. A patient
management service provides an interface to the common CRUD procedures for patient
data management. Being a data-centric component, it surfaces and abstracts the business
entity in the system: the patient. A patient service is an example of the Entity service.
An example of the Capability service is a third-party interfacing service such as PACS
integration service that can be used for communication with an external PACS system
in order to upload the acquired MRI data to the central archiving directory. Another
example of the Capability service includes an MRI acquisition service which exposes the core
functionality of the composite business process while providing a short-running business
activity. A more complex application specific unit of functionality such as head MRI
picture processing module is exposed by the corresponding type of the Activity service. At
last, composing the functionality offered by the above mentioned services is the task of
MRI diagnostic procedure management service which accesses the patient data, chooses the
scheduled MRI type, triggers the corresponding routines (a head MRI picture processing),
and finally, saves the result data to the central external PACS system. This is an example
of the Process service which implements the actual business process workflow and is used
by the advanced software application running on the working station in the radiology
laboratory used by the radiologist who conducts the MRI diagnostic procedure.

A metamodel excerpt used for describing this example is demonstrated in Figure 8.13.

Data

Since providing syntactic and semantic interoperability is essential for any service-oriented
architecture, the metamodel includes Data elements. These metamodel elements are used
to present any information being utilized or exchanged by the services of the "Services"
layer, e.g. patient data, MRI data, measured blood pressure. In most cases they represent
business entities of the system and are directly addressed by the corresponding Entity
services.



8.2.2 "Services" Layer 103

MRI
management 

service

Process 
service

Treatment 
and prevention

service

Therapy and
diagnostics

service

Radiological 
procedure

management 
service

Head MRI  
management 

service

Application
service

Patient
management

service

Actor
management

service

Entity
service

PACS
integration 

service

Capability
service

MRI data
acquisition 

service

Capability
service

Medical data 
handling
service

Medical data 
acquisition

service

Medical 
image data
acquisition 

service

MRI data
processing 

service

Activity
service

Medical data 
handling
service

Medical data 
processing

service

Medical 
image data
processing 

service

Head MRI
data

processing 
service

Medical data 
handling
service

Medical data 
storage
service

Medical 
image data

storage
service

Service

Figure 8.13: Metamodel Excerpt: MRI Diagnostic Procedure Services Composition

The assets hosted on the "Use Cases" layer which include information, material, or
financial resources contributing to the use case delivery are refined to the appropriate
data of the "Services" layer. For this reason, the metamodel elements representing the
data reflect the corresponding hierarchy of the assets on the "Use Cases" layer, e.g. Data
→ Asset data → Procedure data → Radiology procedure data → MRI data → Head MRI
data. The data addressed by the services on the "Services" layer can also be related to
the associated actors on the "Use Cases" layer. Similar to above mentioned example, the
corresponding hierarchy of the actors the "Use Cases" layer is to be found in the data
elements of the "Services" layer, e.g. Data → Actor’s data → Patient’s data.

Service Consumer

Speaking of "medical services" on the abstract "business" level, the role of the medical
service consumer is usually played by the patient who receives a medical treatment from the
health professional (Chapter 3.1). However, regarding services from the technical point of
view, the role of the service consumer is more often played by the health professional, who
uses them in order to enhance his workflow and support the operation methods. Depending
on the subdomain (e.g., assisted living, education, rehabilitation), the patient can act as a
service consumer, also.

According to it, the metamodel elements representing the service consumer are organized
in a hierarchy reflecting the actors of the "Use Cases" layer. Thus, for example, the
radiologist who uses the PACS integration service in order to transfer the MRI data
acquired during a standard MRI diagnostic procedure for storing it in an external PACS
system, is presented in the model by the following metamodel elements Service consumer



104 8 Model-Based Management of Medical Systems

→ Health worker → Health professional → Specialist medical practitioner → Doctor in
the medical group of specialties → Radiologist. The Alzheimer’s patient, who is supported
at home by an ambient assisted living system and uses a special monitoring service is
presented in the model by means of the following metamodel elements: Service consumer
→ Patient → Patient with disease of the nervous system → Patient with other degenerative
disease of the nervous system → Patient with Alzheimer’s disease.

Service Customer

A service customer is a person, organization or entity who byes a service which has been
made available by the service provider to service consumers. For example, a hospital
which byes for his employees external services (e.g., Health record service) services to be
used is presented by the following hierarchy of metamodel elements: Service customer →
Healthcare organization → Hospital.

Depending on the use case and on the subdomain, the same party can play the service
customer and consumer roles both in the same scenario. Assume, an independent medical
practitioner, who buys an electronic health record service from an external provider and
uses it itself in his medical practice. Another example is a patient who uses a supplementary
medication reminder service by choice and pays for the usage to the service provider. Taking
into consideration that the medical service provision is in most countries tightly coupled
with the social health insurance system, the role of the service customer can be played by
the insurance company, also. In any case, the corresponding metamodel elements should
reflect the hierarchical organization of the "Use Cases" layer actors.

Service Provider

A service provider is a person, organization, or entity responsible for making a service
available to service consumers. Regardless of whether the service provision is done against
payment or not, the service provider is legally bounded by the SLA agreed upon with the
service customer.

To give an example, a cloud-based medical software provider acting as a service provider
offers various medical IT services (practice management, appointment scheduling, patient
demographics capturing, patient registration, medical fee management, etc.) to independent
medical practitioners, clinics, and group practices. The corresponding hierarchy of the
metamodel elements reflects the actors hierarchy of the "Use Cases" layer : Service provider
→ Medical technology vendor → Medical software provider.

It is worth mentioning that a lot of public health authorities provide certain IT services
resided within the medical area (clinical data repositories for education and research,
online nomenclatures and catalogs of diseases and medical procedures, database-supported
information systems for drugs and medical devices, etc.). E.g., a notifiable disease reporting
service can be provided by the official national organization presented in the metamodel
by the following elements: Service provider → Public health authority → Disease control
and prevention institution.

Requirements

The requirements defined on the "Services" layer apply mostly to the services, applications,
and their bindings. Analog to the approach presented by [Coh07], we distinguish between
the types of requirements in relation to the infrastructure and application. The first ones
concentrate on resourcing and provision specific claims, the second ones - on performance
and operation specific issues. Thus, the following metamodel elements can be identified:



8.2.2 "Services" Layer 105

• Infrastructure requirement

• Application requirement

Inheriting directly from the Service requirement metamodel element, they concentrate on
their subtypes of requirements. Infrastructure requirement metamodel element refers to
bus, communication, resourcing, and other facility requirements. They are presented in
the metamodel by the corresponding subtypes:

• Bus requirement

• Communication requirement

• Resourcing requirement

• Facility requirement

Generally speaking, these categories refer to all the issues of the infrastructural nature.
Thus, bus requirements cover the data transfer, communication requirements - commu-
nication, resourcing requirements - hardware and software set up, facility requirements -
installation, contrivance, and other things facilitating the service provisioning. For exam-
ple, a requirement concerning the geographical location of the resources involved in the
service hosting can be expressed by the following excerpt from the metamodel hierarchy
(Figure 8.14):

Service
requirement

Infrastructure
requirement

Resourcing
requirement

Geographical
location

requirement

Figure 8.14: Metamodel Excerpt: Geographical Location Requirement

Application requirements, in their turn, divide into the following subtypes presented in
the metamodel hierarchy:

• Performance requirement

• Availability requirement

• Billing requirement

• Data treatment requirement

• Service level requirement

These subtypes of metamodel elements inherit from the Service requirement and mostly
refer the issues of the application specific nature. To be specific, requirements with respect
to the performance issues are covered by the Performance requirement metamodel element.



106 8 Model-Based Management of Medical Systems

Time constraints in terms of service availability are covered by the Availability requirement
metamodel element. Monetary issues are addressed by the Billing requirement metamodel
element subtype. Data treatment requirement metamodel element generalizes requirements
with respect to data handling (e.g., data security issues, storage, archiving, format). Service
level aspects in terms of contractual issues are covered by the Service level requirement
metamodel element.

Thus, Figure 8.15 gives an example of the metamodel hierarchy excerpt used for descrip-
tion of the maximal service response time requirement.

Service
requirement

Application
requirement

Availability
requirement

Maximal 
response time
requirement

Figure 8.15: Metamodel Excerpt: Maximal Response Time Requirement

8.2.3 "Components" Layer
The "Components" layer of the system model is resided by the devices, service platforms,
data resources, user credentials, software components, service implementations, and service
interfaces system elements. The runtime policies which refer to them are presented on the
"Components" layer by the ECA rules and configuration elements. Thus, the bottom layer
presents the actual managed system with the corresponding management infrastructure.

Device

The delivery of medical services involves using a variety of common IT and dedicated
medical devices (Chapter 3.3). The first ones include all the computers, peripherals, and
telecommunication appliances, the second ones - the instrumentals and devices that are
exclusively domain specific. The metamodel, therefore, contains the two corresponding
metamodel elements which inherit from the Device metamodel element:

• Common IT device

• Medical device

The metamodel elements are specialized in their turn by the more specific subtypes. Thus,
following the Medical Device Directives of the European Union Legal Framework ([Eur93],
[Eur98], [Eur90]), the Medical device metamodel element type can be divided into subtypes
corresponding to the specified medical devices types:

• Class Is medical device

• Class Im medical device

• Class IIa medical device



8.2.3 "Components" Layer 107

• Class IIb medical device

• Class III medical device

Further, hierarchical classification of the subtypes can be done subject to device invasiveness,
activity, and intended purpose. For example, Class IIa Medical device metamodel element
generalizes the corresponding class of medical devices and can be specialized according to
measure of invasiveness on the patient’s body by the following subtypes:

• Non-invasive medical device

• Invasive medical device

In their turn, these metamodel elements generalize the subordinate medical devices and
provide a more specific level of description. Thus, with regard to the fact, if the non-
invasive medical device is active or not, we identify further metamodel elements for device
description:

• Non-active medical device

• Active medical device

The intended purpose can be used as a classification factor on the next lower level of
hierarchy. Thus, Active medical device is specialized by the following subtypes of metamodel
elements:

• Diagnostic medical device

• Therapeutic medical device

• Auxiliary medical device

To give an example of metamodel elements involved in modeling an active medical devices
used in diagnostics - magnetic resonance imaging equipment, the following excerpt from
the metamodel is demonstrated in Figure 8.16.

Sensor

As introduced in Section 8.1.1.3 sensors detect and measure information on an attribute
and transform it into an analytically useful signal. Classification of the sensors can be
done according to the basic type of sensing principle, recognition process, sensing element
(transducer), etc.

Sensors are widely used in a lot of application fields. Although the application field
can be multidisciplinary and interdisciplinary, we put forward the application domain and
classify the sensors accordingly. Thus, e.g. biomedical sensors are distinguished. The
biomedical sensors gain the information on human’s body and pathology. The metamodel
elements Biomedical sensor is a subtype of the Sensor metamodel element and can be
specialized according to the type of input signal by the following subtypes:

• Physical sensor

• Chemical sensor

• Biosensor



108 8 Model-Based Management of Medical Systems

Active 
medical device

Device

Medical
Device

Class IIa 
medical device

Non-invasive 
medical device

Diagnostic 
medical device

MRI
equipment

Figure 8.16: Metamodel Excerpt: MRI Equipment

In their turn, these metamodel elements generalize the subordinate biomedical sensors
and provide a more specific level of description. Thus, with regard to the measurand the
physical sensor we refer to the primary physical quantity analyzed and identify further
metamodel elements for device description:

• Electrical signal sensor

• Blood pressure sensor

• Body temperature sensor

• Blood flux sensor

To give an example of the metamodel elements used in order to model a sensor measuring
the electrical signal produced by heart, an ECG electrode, the following excerpt form the
metamodel is shown in Figure 8.17.

Data Source

The data source encompasses all its representation of each and every single data sources
available during the provision of a use case. The data source can be a physical phenomena
which quantified and qualified properties are detected and measured by sensors. The data
source can be also provided by a data medium which can be used by devices, software
component and users directly. The metamodel, therefore, contains the two corresponding
metamodel elements which inherit from the Data source metamodel element:

• Physical phenomenon

• Data medium (Carrier)



8.2.3 "Components" Layer 109

ECG
electrode

Sensor

Biomedical
sensor

Physical
sensor

Electrical signal
sensor

Figure 8.17: Metamodel Excerpt: ECG Sensor

The physical phenomena are classified according to the type of measured properties. E.g.,
in the above introduced context the biomedical sensors can detect physical quantities,
chemical substances and biological materials. Thus, we identify three metamodel elements
which specialize the Physical phenomenon metamodel element type:

• Physical quantity

• Chemical substance

• Biological material

The physical quantities in their turn can be structured according to the underlying energy
domain. Thus the following metamodel elements specialize the Physical phenomenon
metamodel element:

• Electrical quantity

• Mechanical quantity

• Thermal quantity

• Hydraulic quantity

• Geometrical quantity

• Magnetic quantity

• Optical quantity

• Radiation quantity

Figure 8.18 demonstrates an excerpt from the metamodel showing a data source for
temperature measurements.



110 8 Model-Based Management of Medical Systems

Temperature

Data Source

Physical
phenomenon

Physical
quantity

Thermal
quantity

Figure 8.18: Metamodel Excerpt: Temperature

User Credential

The users of the "Services" layer are represented on the technical "Components" layer by
means of their user credentials used in order to perform the process of user authentication.
Based on the modality, it is common to distinguish five types of authentication factors
: knowledge, ownership, inheritance, user location and current time [Tod07], [DRN17].
Thus, the metamodel contains the following subtypes which specialize the User Credential
metamodel element according to the underlying authentication factor:

• Ownership-based credential

• Knowledge-based credential

• Inheritance-based credential

• Location-based credential

• Time-based credential

Going down the metamodel hierarchy, the ownership-based credentials can be divided
into multiple subtypes based on the underlying form. The Ownership-based credential
metamodel element is extended by the following subtypes:

• Key

• Certificate

• ID card

• Security token

• Software token

• Hardware token

Figure 8.19 shows an excerpt from the metamodel demonstrating the elements required to
model a private SSH key.



8.2.3 "Components" Layer 111

User
Credential

Ownership-based
credential

Key

SSH 
private key

Figure 8.19: Metamodel Excerpt: Private SSH Key

Software Platform

OMG defines platform as a "set of subsystems and technologies that provide a coherent
set of functionality through interfaces and specified usage patterns, which any application
supported by that platform can use without concern for the details of how the functionality
provided by the platform is implemented" [Obj14b]. OMG also distinguishes between a
hardware and software platform. Thus, we introduce the metamodel elements of the same
name.
The software platforms include a diversity of arts and types. According to the un-

derpinning designation, the Software platform element is specialized by the following
subtypes:

• Application platform

• Operating system

• Virtual machine

• Database

• Runtime environment

• Middleware

In [KB15] the authors present a helpful categorization of middleware which forms the
basis for the adopted hierarchical metamodel structure. Thus, the Middleware metamodel
element is specialized by the following subtypes of metamodel elements:

• Integration-oriented middleware

• Specialized middleware

In its turn, the Integration-oriented middleware is divided into the following subtypes
presented in the metamodel hierarchy:

• Application-oriented middleware

• Communication-oriented middleware

The Application-oriented middleware metamodel element stands for middleware which
provides support for decomposition or other generic programming abstractions, assisting



112 8 Model-Based Management of Medical Systems

application development in multiple aspects as well as providing a runtime environment
to control the life-cycle execution of application components [Emm00]. According to the
decomposition art there are two main subtypes to distinguish:

• Component-oriented middleware

• Agent-oriented middleware

Component-oriented middleware realizes the idea of interchangeable and reusable software
components [CL02]. They implement a component model, which defines syntax and
semantics of component definitions and their relations [CSVC11]. OSGi Service Platform is
an example of a component-oriented middleware platform. Figure 8.20 shows a metamodel
excerpt used to model a concrete OSGi Framework implementation, an Eclipse Equinox
OSGi Service Platform.

OSGi
Service Platform

Integration-
oriented 

middleware

Application-
oriented 

middleware

Eclipse Equinox

Component-
oriented 

middleware

Software
platform

Middleware

Figure 8.20: Metamodel Excerpt: Eclipse Equinox

Software Component

The components of the bottom layer stand for the concrete technical objects, artifacts and
items which are present in the managed system at runtime. Among them the software
components realize the applications and provide the services of the "Services" layer. They
are the actual physical representation of the at runtime available executable code. The
software components encapsulate a set of related functions provided by the corresponding
services and applications. In terms of the architectural embedding, the software components
are subjects of composition with contractually specified interfaces and explicit context
dependencies [SGM02].
Generally, a software component is a unit of deployment [Szy03]. In order to enable

dynamic scenarios, it also has to be a unit of versioning and replacement. So, in most
cases, a software component includes a collection of modules and resources. The first ones
contain code, e.g. a set of classes, the second ones contain immutable data, e.g. serialized



8.2.3 "Components" Layer 113

objects. The component can be accompanied with a metadata describing the code, data
and deployment descriptors.
According to he underpinning technology, we specialize the Software component meta-

model element by the following subtypes:

• Software package

• Software module

• Web service

• Web resource

• Object & class library

• Standalone software system

Figure 8.21 demonstrates the metamodel elements used to model a software component
used within the OSGi Services Platform, an OSGi Bundle.

OSGi
Bundle

Software
component

Software
package

Figure 8.21: Metamodel Excerpt: OSGi Bundle

Policy Elements

In order to fulfill the specified abstract requirements, they are to be translated into concrete
technical representations formulated for the model elements of the bottom layer: devices,
sensors, software components and platforms, data sources, etc. Thus, we are looking for
the initial configurations of the components and rules specifying the reconfigurations to
be undertaken subject to the status changes of the components. Moreover, the evaluation
rules of the specified abstract expressions are to be refined into the evaluation rules on the
most technical level: formulated on the status variables of the components.

Therefore, the metamodel contains an element Policy which is extended by the subtypes
Configuration, Policy rule, and Policy expression. Following the approach used for the
specification of the service-level requirements, we distinguish between the infrastructure-
and application-specific policy elements. The metamodel is organized similarly to the
solution presented in Section 8.2.2. The infrastructure-specific policy elements address
resourcing and provision requirements whereas the application-specific policy elements
address performance and operation-specific requirements.

Suppose, the battery level of a device must be monitored in order to fulfill the abstract
requirement of the system dependability. Figure 8.22 shows an excerpt of the metamodel
used for modeling the corresponding policy rule.
Another policy type is a policy expression which is requested from the management

system by the application. Suppose, that performing certain functions of an application
is advisable only under certain ambient condition. In this case, before entering the



114 8 Model-Based Management of Medical Systems

Energy
rule

Policy

Policy 
rule

Infrastructure
rule

Resourcing
rule

Battery level
rule

Figure 8.22: Metamodel Excerpt: Battery Level Rule

corresponding blocks in the application code, the application requests the management
system to evaluate the current ambient environment. For example, if the current ambient
environment is favorable, the application enters the critical block in the application code.
Figure 8.23 demonstrates an excerpt of the metamodel used for modeling the corresponding
policy expression.

Ambient 
environment policy 

expresson

Policy

Policy
expression

Application-
specific policy

expression

Operation-
specific policy

expression

Figure 8.23: Metamodel Excerpt: Ambient Environment Policy Expression

The presented metamodel follows the generalization principle and uses the inheritance
relationships in order to form the elements hierarchy. Up to the domain of interest, the
metamodel can be extended appropriately. A system model for the concrete medical case
is constructed as an instance of the metamodel. The following chapter is devoted to the
policy refinement process which applies policy derivation patterns in order to produce the
runtime configurations and policies from the system model.



Chapter 9

Policy Derivation Patterns
The policies and configurations used by the management system at runtime are derived
within the policy refinement process. In order to support the refinement process, we
propose a set of policy derivation patterns. Policy derivation patterns are model patterns
defined on certain types of model elements. In fact, they imply a subgraph with nodes
and edges of special types which builds an excerpt from a system model. Policy derivation
patterns can be parametrized by the system developer, who has an opportunity to adjust
the refinement process to his needs as for the current use case and specific requirements
and conditions.
According to the purpose and architectural structure we distinguish three basic types

of policy derivation patterns: evaluation, control, and refinement patterns. The following
sections describe them closely and provide some demonstrative examples.

9.1 Evaluation Patterns
The purpose of evaluation patterns is to support the definition of abstract status variables
with their range of values within a model layer. Such a construct can combine inputs
of multiple status variables and give an opportunity to evaluate them with appropriate
techniques. In doing so, an evaluation pattern comprises a function which relates a set
of inputs with a set of permitted outputs. Figure 9.1 outlines schematically the common
structure of evaluation patterns.

Status
variable

Model
Element

Model
Element

Status
variable

Abstract
status variable

x1

y = f(x1,...,xn)

... EP

xn

Figure 9.1: Evaluation Pattern Structure

An evaluation pattern model element is connected to those status variables which
contribute to the value of the dedicated abstract variable. The status variables providing
the input for the pattern can originate from several model elements. The input can come
from an abstract variable, also. Thus, composition of multiple evaluation patterns is
allowed. In order to specify the target system state, the modeler is able to limit the allowed
range of values of the output abstract variable.

Based on the underlying function we distinguish the following types of evaluation patterns:
aggregation, attribution, and fuzzy relation patterns.

9.1.1 Aggregation Pattern
The notion of an aggregation pattern is to aggregate multiple status variables into an
abstract status variable by means of an arithmetic expression. The evaluation of an



116 9 Policy Derivation Patterns

arithmetic expression is dependent on the definition of the mathematical operators and the
used system of values. The value may be undefined depending on the underlying function.

Service 1

Service n

System stability

x1

...

F
Weighted

Mean

xn

w1,...,wn

y

y = w1 +...+ wn

w1x1+...+wnxn

Figure 9.2: Aggregation Pattern for System Stability

A simplified example in Figure 9.2 demonstrates the usage of aggregation patterns.
Suppose, the abstract system stability is calculated from the stability values of the single
services composing the system: Service 1, ..., Service n. The model elements are provided
with appropriate status variables: x1, ..., xn. For the sake of simplicity the variable values
are measured in percent. It is also possible to give some weights w1, .., wn to the services
in order to express their ranking. We calculate the system stability value as a weighted
mean:

y =
∑n

i=1wixi∑n
i=1wi

and model it by means of the weighted mean aggregation pattern, which connects the
corresponding status variables with the derived abstract variable system stability and can
be parametrized with appropriate weights.

9.1.2 Attribution Pattern
The idea of attribution patterns is to specify functional attribution of status variables to
multiple value ranges. It allows to assign the single values to (ordered) groups and in doing
so to define an abstract measurement scale for the values of the variable. The underlying
function which maps a set of inputs to exactly one distinct output value can be expressed
as ordered pairs, set membership, graph, or relation.

Service 1

Service n

System
availability

x1

...

ASSSB
Ordinal
Scale

Mapping

xn

y

yS=Sx1...xn

Service
availability

Service
availability

UNRELIABLE:SyS<=S90%
WEAKLY_RELIABLE:S90%S<SyS<=S99%
CONVENTIONAL:S99%S<yS<=S99.9%
HIGHLY_RELIABLE:S99.9%S<SyS<=S99.99%
FAULT_RESILENT:S99.99%S<Sy<=99.999%
FAULT_TOLERANT:S99.999%S<SyS<=S99.9999%
DISASTER_TOLERANT:S99.9999%S<Sy

Figure 9.3: Attribution Pattern for Availability

Figure 9.3 outlines an example of attribution pattern usage. Suppose a user makes
the most high demands on the system availability. This can be expressed by specifying
a corresponding requirement model element with value "DISASTER_TOLERANT". As
discussed before, this requirement is formulated quite abstractly. The measurement and
interpretation of this term is rather use case specific and can vary considerably. In other
words, one needs a concrete definition of the term "DISASTER_TOLERANT" concerning
the availability for this particular use case. Let us assume, the system availability y is
measured in percent and means the percentage of time when system is operational. It can
be calculated from the availability of independent services composing the system x1, ..., xn.
Thus, we are going to use an aggregation pattern with an underlying product function:

y =
n∏

i=1
xi



9.1.3 Fuzzy Relation Pattern 117

0 10 20 30 40 50 60

1

t

extremelySlow low normal high extremelyShigh

MembershipSFunctionsSforSFuzzySSets

Temp.
Service AmbientS

temperature
t

Fuzzy
Relation
Pattern

Figure 9.4: Fuzzy Relation Pattern for Temperature

In order to translate the numeric availability value in abstract notation expressing its level,
we enhance the aggregation pattern with a functional attribution function. It maps the
numeric value given in percent to an ordinal scale of measure. The ordinal scale mapping
attribution pattern connects the corresponding status variables and can be parametrized
as required. E.g., the system availability value of greater than 99,9999% is mapped to the
"DISASTER_TOLERANT" level. It is to point out, that an evaluation pattern expresses
rather "what" than "how" strategy, it does not specify in this case how to achieve the
targeted level of availability but what does it mean technically.

9.1.3 Fuzzy Relation Pattern

Based on the fuzzy logic principles proposed by Zadeh [Zad65], we introduce a fuzzy
relation pattern which allows to express a degree of vagueness while modeling abstract
status variables. Let us assume, the inputs of the fuzzy relation pattern are universal sets
X1, ... , Xn. Fuzzy relation R on X1×X2× ...×Xn is a fuzzy subset of the Cartesian space
X1 ×X2 × ...×Xn mapping each n-tuple (x1, x2, ..., xn) to the interval [0,1], expressing
the strength of the relation. In case the sets are discrete, fuzzy relation may be given as
matrices. If the sets are continuous, relations are given mostly analytically. Further, the
members of the input sets can be members of fuzzy sets. In this case the relation between
the members is often given as a function of their grades of membership in fuzzy sets [SB05].
Consider the following example, high and so much the worse extremely high ambient

temperature can cause system’s malfunction. In order to define these imprecise concepts,
we can use fuzzy sets. E.g., the following membership functions are used to graphically
represent the fuzzy sets: extremely low, low, normal, high, and extremely high. To model
this situation we use a fuzzy relation pattern with one input illustrated in Figure 9.4. The
pattern input is a real number representing the temperature measurement values acquired
by a service. The pattern is parametrized with above mentioned fuzzy set membership
functions. E.g., the measured value is t0 = 55◦. The evaluation of the pattern results in
values:

µextremely_low(t0) = 0, 00
µlow(t0) = 0, 00
µnormal(t0) = 0, 00
µhigh(t0) = 0, 45
µextremely_high(t0) = 0, 75

and means, that 55◦ has a grade of relationship to high of 0,45 and a grade of relationship
to extremely high of 0,75, a grade of relationship to any other defined set is 0,00. Thus,
an abstract variable ambient temperature is specified by means of discrete categories and
allows modeling a desired grade of fuzziness depending on current condition.
To sum up, evaluation patterns support the definition of application domain-specific

terms. That can considerably facilitate the formulation of requirements and constraints on
the abstract level benefiting the acceptance and understanding of the presented policy-based
management approach.



118 9 Policy Derivation Patterns

9.2 Control Patterns
The notion of control patterns is to specify the target management control loop of the
system. They define the dynamic behavior of control elements by mapping abstract
declarative objectives on a higher layer to imperative enforcement mechanisms on the next
lower layer. Thus, in contrast to evaluation patterns, control pattern express rather "how"
strategy for implementing the management solution. The structure of control patterns is
covered in Figure 9.5.

Configuration
variable

Status
variable

Model
Element x1

Status
variable

...

Configuration
variable

Model
Element y1

Configuration
variable

Model
Element

...

x1

Status
variable

x'1

Status
variableModel

Element

...

Model
Element y'1

Configuration
variable

Model
Element

...

Condition

Action

Event

Configuration
variable

Model
Element

Model
Element

CP

ECA
Rule

Control
Element

xn

x'm

yk

y'p

x'1 

y1

y'1

{x11, ..., x1n}

{x'11, ..., x'1t}

{y11, ..., y1z}

{y'11, ..., y'1d}

...

...

...

xn

x'm 

yk

y'p

{xn1,..., xnm}

{x'm1,..., x'ms}

{yk1,..., ykh}

{y'p1,..., y'pw}...

:

:

:

:

:

:

:

:

Figure 9.5: Control Pattern Structure

A control pattern takes values of status variables as an input. Based on the desired
management strategy, the input values are monitored and some managements actions
are undertaken, if necessary. The management actions have a form of setting certain
configuration variables. Thus, the runtime management utilizes a set of ECA rules derived
from the specified control patterns. The condition and action parts of the rules are defined
on the status and configuration variables, the triggering event can come from an additional
control element.
In the following some common models for control patterns are introduced: watchdog

timer, heartbeat, fuzzy logic control, on-off controller, and multiplexer.

9.2.1 Watchdog Timer Pattern

The watchdog timer model is inspired by the common watchdog timer feature used in
embedded systems [MB01], [Lam12]. It implies an external or integrated microprocess
supervisory circuit which monitors the software abnormalities and takes appropriate
corrective actions (e.g., a reset) if an infinite execution loop occurs.
The similar idea is used in the watchdog timer control pattern, which provides a time-

controlled mechanism for monitoring the system state and taking corrective actions in
case of detection of errors, anomalies, or undesirable system state. Suppose the following
simplified watchdog model (Figure 9.6).

Guard/
Wait

Smell

Bark

no alarm

time out

alarm

Figure 9.6: Watchdog Timer Model



9.2.2 Heartbeat Pattern 119

An internal timer (or counter) sets the pace for the enforcement of controlling and
corrective actions respectively. Thus, the watchdog is initially in the state "Guard/Wait",
upon timeout a condition check takes place ("Smell"). The condition check can be performed
for example by reading a status variable or making sure that the corresponding component
is available. In case the condition check fails ("alarm"), the watchdog timer component
undertakes a corrective action ("Bark"). E.g., the action can be in form of setting a
corresponding configuration variable or triggering a service restart or substitution. In case
the condition check succeeds ("no alarm"), the watchdog timer is reset.

TIMEOUT

Data Store
Service x

Archiving
Service y

x

AV_DISK_SPACE

Archiving
Service 

Impl.
ARCHIVE

Condition

Action

Event

Data 
Store Serv.

Impl.

ECA
Rule

Timer
Service 

Impl.

y

t0

{0,s...,sx0}

{true,sfalse}

:

:
Watch

dog

Figure 9.7: Watchdog for Available Disk Space

Figure 9.7 gives an example of a simplified watchdog timer control pattern which models
a control mechanism for available data storage. Assume, a data storage service requires
a certain amount of available disk space. The corresponding status variable x of the
service reflects the current value. In case the value gets out of the predefined range
{0, ..., x0}, an archiving service should be activated to archive the data and free some disk
space. Activation of the archiving service is done via setting the appropriate Boolean
configuration variable y. Thus, a watchdog timer control element is connected to the status
and configuration variables. The element is also provided with the required variable value
ranges. On the next lower layer the modeled elements are refined to the more concrete
implementations with dedicated variables. The watchdog timer’s logic is covered by an
ECA rule defined on these variables. An event which triggers the rule is generated by
a timer service implementation which is preconfigured to the specified timeout t0. The
derived ECA rule has the following form:

event: Timer’s timeout event
condition: AV_DISK_SPACE ≤ x0
action: ARCHIV E = true

9.2.2 Heartbeat Pattern
The heartbeat pattern extends the ability of the watchdog timer pattern. Assume, the
monitored component, does not provide an opportunity to be periodically monitored with
an appropriate periodical time interval. In this case, an additional heartbeat component can
join up in circuit between the monitored component and the watchdog timer mechanism.
The latter will function in a common way as described above by monitoring the heartbeat
component and enforcing adequate corrective actions. The heartbeat component is to be
implemented as an adapter of the monitored component and is responsible for periodical
advertisement ("heartbeat") of the monitored component’s state. As the case may be, the
heartbeat component can also combine heartbeats of several components simultaneously.

Figure 9.8 demonstrates an example usage of a heartbeat control pattern. Let us suppose,
we want to monitor whether the application is running. If the application is not running,



120 9 Policy Derivation Patterns

TIMEOUT

Appl.

Bootstrap
Service y

Bootstrap
Service 

Impl.

RESTART

Condition

Action

Event
Appl.
Impl.

ECA
Rule

Timer
Service 

Impl.

y

t0

{true, false}:
Heart
beat

Heartbeat
Service 

Impl.
ALIVE TIME_INTERVAL

t1

Figure 9.8: Application Heartbeat

we want to enforce the bootstrap service in order to restart it. Granted that there is no
supported mechanism within the application to advertise its state by means of a concise
status variable. The solution is to introduce a heartbeat control pattern which would
encapsulate the corresponding control logic and publish the current application’s status
in form of ALIVE status variable. The time interval for status update as well as the
watchdog timer’s timeout are configured through the corresponding configuration variables.
The heartbeat pattern is refined to an ECA rule with corresponding control components
implementations which are preconfigured to the concrete management variables. The ECA
rule is triggered by events fired by the timer service implementation and has the following
form:

event: Timer’s timeout event
condition: ALIV E = false
action: RESTART = true

9.2.3 Fuzzy Logic Control Pattern

The fuzzy logic control pattern allows to provide a desired degree of vagueness while
defining a management control loop. It is adapted from a common fuzzy logic control
system used broadly in machine control nowadays. The fuzzy logic control strategies are
based on heuristics methods and therefore have the advantage of being easily understood by
application domain experts. That means that the management tasks successfully performed
by human operators can be automatized in a simple way [Ibr03], [BH02].
The fuzzy logic controlling includes the following components. Firstly, the fuzzification

block, where the crisp input of the control system is fuzzificated. That means the inputs
are converted into fuzzy values for each input fuzzy set. Secondly, the knowledge base (i.e.,
a collection of if-then-rules) which comprises a set of linguistic control rules provided by
the application domain experts and expressing the desired control policy and the domain
knowledge. Thirdly, the decision making logic which actually embodies the fuzzy inference
mechanism (e.g., max-min inference, max-prod inference) and is responsible for determining
how to draw conclusions from the set of firing rules (composition of rules). At last, the
output of the decision making logic performed on the knowledge base is defuzzificated (e.g.,
center of gravity, mean of maxima methods). That means the results of the fuzzy inference
process are converted to the crisp values.

Applying this idea, we introduce a fuzzy logic control pattern. The pattern takes as input
values of management variables and translates them to ECA rules and control elements.
The translation is done according to the preconfigured parameters: linguistic variables
specified for each input, inference mechanism, fuzzy knowledge base and defuzzification



9.2.3 Fuzzy Logic Control Pattern 121

x 6x

-

packetfdelayfEPDA%fs

veryfshort short normal long veryflong

MembershipfFunctionsfforfFuzzyfSets:

PD Fuzzy
Control
Pattern

BC

TR

NORM_DELAY

BUFFER_FULLNESS

TRANSMISSION_RATE

StreamT
Service

ImplT

Video
Streaming

Service

ECA
Rule

Action

Condition Fuzzy
Control
ElementEvent TIME_PERIOD

TgBCw

t

{empty,anormal,afull}

{veryashort,ashort,anormal,along,averyalong}

{veryaslow,aslow,anormal,afast,averyafast}

:

:

:

TgPDw

TgTRw

bufferfcongestionfEBCA%f.

-
emty normal full

x -xx

-
veryfslow slow normal fast veryffast

transmissionfratefETRA%fHz

Fuzzyfinference:fmaxwminfinference
Defuzzificationfmethod:fcenterfoffgravity

FuzzyfControlfRules:

BC\PD

emty

normal

full

veryfshort short normal long veryflong

veryffast

veryffast

normal

fast

fast

veryffast

fast

normal

slow

slow

slow

veryfslow veryfslow

veryfslow

slow

x -xx

Figure 9.9: Fuzzy Control Pattern for Video Streaming Service

rule. As usual, the derived ECA rules are defined in the model on status and configuration
variables of the next lower layer.

Assume the following example, the transmission rate of a video streaming service has to
be controlled in the above described manner regarding such factors like congestion of the
buffer and current normalized packet delay [FJRG10] (Figure 9.9). On the basis of the
predefined fuzzy control rules specified by the domain expert (e.g., "if the buffer congestion
(BC) is low and the current packet delay (PD) is very short then set the transmission rate
(TR) to very fast"), it is possible to derive the concrete ECA rules defined on crisp values.
The control element is preconfigured to fire the corresponding event periodically or on
certain circumstances (e.g., status variable value exceeds predefined range). To be more
specific, we have a fuzzy system with two inputs (BC, PD), one output (TR) and a set of
control rules of the form:

Ri: "if BC is BCi and PD is PDi then TR is TRi"

Several control rules can apply at a time. In order to generate a corresponding ECA rule
defined on crisp values, we need to find out which of the fuzzy rules are applicable and to
compose them. Firstly, a premise membership function is calculated for each fuzzy rule on
the basis of the current input. If it is greater than 0, the corresponding fuzzy rule is on:

µpremise(BUFFER_FULL,NORM_DELAY ) > 0

In the related ECA rule the firing fuzzy rules are reflected in the condition term which is
formulated in accordance with the provided linguistic variables and membership functions.
Since the linguistic variables characterize subranges of continuous variables, we need to
determine how to translate the premise terms into crisp values without going through all
possible values. A feasible solution is to define the condition terms of ECA rules on those
subranges where the value of the membership function is positive. Secondly, an inference
step occurs which combines the recommendations of the firing rules. E.g., we use a simple
max-min inference method.

TR = max ◦min(µi(BUFFER_FULL), µi(NORM_DELAY )).

The conclusion of the ECA rule specifies the crisp value of the transmission rate variable.
Depending on the preconfigured defuzzification method (e.g., center-of-gravity) we can
calculate its value, which is a function of the composite membership function TRcrisp =
COG(µ(TR)). A derived ECA rule can have the following form:



122 9 Policy Derivation Patterns

event: Fuzzy control’s timeout
condition: 0 ≤ BUFFER_FULL ≤ 15 and 0 ≤ NORM_DELAY ≤ 20

or
0 ≤ BUFFER_FULL ≤ 15 and 15 ≤ NORM_DELAY ≤ 35

action: TRANSMISSION_RATE = COG(µ(TR))

9.2.4 On-off Controller Pattern

The on-off controller pattern is inspired by the common on-off (or bang-bang) controller
used broadly for years in control engineering [Art80]. Figure 9.10 demonstrates the main
idea of the controller. The on-off controller is a discrete feed back controller switching
between two control limits: "on" and "off". The main idea of the control is to bring the
actual value of the controlled variable to the desired specified value, i.e. set point. In doing
so, the bang-bang controller compares the control variable with the set point and sets the
controller output variable to ymin ("off") if the control variable x exceeds the set point x0
and to ymax ("on") if it goes below the set point. In order to avoid flattering the on-off
controller is often preconfigured to have a certain "deadband", a range of control variable
xmin ≤ x ≤ xmax where no action occurs.

ymin

ymax

xmaxxmin x0

Figure 9.10: On-Off Controller Model

A simple application of the on-controller pattern is presented in the following example
(Figure 9.11). Assume a thermostat service of a gas-fired heating system which turns the gas
burner off or on. A temperature service provides the current measurement of temperature
which is a control variable in this case. The on-off controller pattern is connected to the
corresponding variables of the both services. It is parametrized with the allowed range of
the control variable: [xmin, xmax].

TIMEOUT

y

x

GAS_BURNER

Temp
Service
Impl.

TEMP
Condition

Action

Event

Alarm
Service
Impl.

OnControl
Rule

Control
Element

xmin, xmax

y {ON, OFF}:

OffControl
Rule

Termostat
Service

Temp
Service

On-off
Control t

Condition

Action

Event

Figure 9.11: On-off Controlled Heating System

The pattern refines into two ECA rules which have the following form:



9.2.5 Multiplexer Pattern 123

event: Timer’s timeout event
condition: TEMP < xmin

action: GAS_BURNER = ON

event: Timer’s timeout event
condition: TEMP > xmax

action: GAS_BURNER = OFF

9.2.5 Multiplexer Pattern

The multiplexer pattern is inspired by the idea of multiplexer in electronics, a combinational
logic switching device which allows multiple signals to share a single common output by
acting as a multiple position rotary switch. The multiple input lines of multiplexers are
switched one at a time to an output [Mai07]. Similarly, the notion of the multiplexer
pattern is meant to allow switching dynamically between the corresponding model elements
depending on their availability or environmental condition.

TIMEOUT

SERVICE_REFERENCE

IDENTIFIER

REM_URI

ALIVE Condition

Action

Event

Appl.
Impl.

ECA
Rule

Timer
Impl. 1

t0, t'0

SERVICE_REFERENCE: {IDENTIFIER}

ECA
Rule

Appl.

Service

MUX
Control

Heartbeat
Service
Impl. 1

ALIVE
TIME_INTERVAL

TIME_INTERVAL

Heartbeat
Service
Impl. 2

URI

Service
Impl. 1

URI

Service
Impl. 2

Action

TIMEOUT

Event Timer
Impl. 2

Condition

t1, t'1

Figure 9.12: Multiplexer Pattern for Fault Tolerant Behavior

Figure 9.12 outlines an example usage of a multiplexer pattern. Suppose, the fault
tolerant behavior is one of the requirements made on a certain service used by an appli-
cation. Therefore, the target service is introduced redundantly. The application must
be reconfigured dynamically by multiplexing the corresponding configuration variable, in
case of switching between the service implementations. Let us assume, there exist two
service implementations of the target service type. Each of them can be identified by the
corresponding management variable URI expressing its unified resource identifier. The
configuration variable REM_URI of the application implementation will be switched
in its value between the values of the URI variables of the corresponding service imple-
mentations. The availability of each of the service implementations is monitored by the
heartbeat component which is preconfigured to check if the monitored component is present
in periodic time slots. In case the component is not available, the status variable ALIV E is
set to false. The two derived ECA rules (one for each monitored component) are triggered
periodically to check, if the reconfiguration should take place. E.g., the ECA rules can
have the following form:



124 9 Policy Derivation Patterns

event: Timer’s timeout event
condition: REM_URI = S2.URI

and
HB_S2.ALIV E = FALSE

action: REM_URI = S1.URI

event: Timer’s timeout event
condition: REM_URI = S1.URI

and
HB_S1.ALIV E = FALSE

action: REM_URI = S2.URI

9.3 Refinement Patterns
The purpose of refinement patterns is to support the policy derivation process by specifying
how the values of abstract elements are to be propagated downwards to the more detailed
values. Together with the refinement relations presented in Section 8.1.2 they direct the
refinement from top to bottom. In contrast to refinement relations, they operate on
management variables directly. Thus, they map values of management variables of adjacent
layers and provide calculation rules used within the policy refinement process. The common
structure of refinement patterns is outlined in Figure 9.13.

Model
Element

Model
Element

Model
Element

Model
Element

RP

x1

y1

xn

ym

...

...

(y1,...,ym) = f(x1,...,xn)

Figure 9.13: Refinement Pattern Structure

Within the system model refinement pattern model elements are situated between the
adjacent layers. Management variables of the model elements on the upper layer form
the input of the refinement pattern. The output of the refinement pattern flows into the
management variables of the model elements on the lower layer. Thus, refinement patterns
can be used to extend any inter-layer relation and consequently enrich any policy derivation
pattern defined on management variables of adjacent layer elements.
Based on the underlying refinement function, we distinguish the following refinement

pattern types: repeater pattern, translator pattern, and data selector pattern.

9.3.1 Repeater Pattern
The notion of the repeater pattern is to provide a mechanism to "repeat" the values from
an upper layer to the next lower one. The pattern has only one input - a management
variable of the upper layer. Its value is exactly echoed to the variables on the lower layer
which form the output of the repeater pattern.

An example usage of repeater pattern is outlined in Figure 9.14. Assume a service
having two implementations which must be modeled separately within the system model.
A service has a configuration variable SECURITY_LEV EL, expressing the security
relevant system settings. Suppose, the use case demands the definition of requirements
concerning this value, e.g., SECURITY_LEV EL = high. By using the repeater pattern
the system modeler can specify that within the policy refinement process the value of the



9.3.2 Translator Pattern 125

Repeater
Pattern

SECURITY_LEVEL

SEC_LEVEL1

SEC_LEVEL2

Service

Service
Impl. 1

Service
Impl. 2

x

y1

y2

(y1,y2) = (x,x)

Figure 9.14: Repeater Pattern for Security Level

variable should be propagated one-to-one to the corresponding variables of the service
implementations. Thus, the configuration variables of the lower layer become the same
values:

SEC_LEV EL1 = high
SEC_LEV EL2 = high.

9.3.2 Translator Pattern

Similar to the repeater pattern, the translator pattern echoes the value of a management
variable of the upper layer to variables of the next lower layer. However, the pattern allows
to specify special rules for the policy refinement process which govern the "translation" of
specified values. The rules manifest how the input value of the management variable of
the upper layer is to be transferred to the values of the output variables.

BUDGET

TRANS_RATE TIME_PERIOD

Applica-
tion

Comm.
Serv.Impl.

Archiving
Serv.Impl.

x

y1 y2

Translator
Pattern

(TRANS_RATE,:TIME_PERIOD):=:
(::10,:::::::::1:),
(::50,:::::::::2:),
(100,:::::::::4:),

BUDGET:=:ECONOMY
BUDGET:=:COMFORT
BUDGET:=:PREMIUM

{

BUDGET:::{ECONOMY,:COMFORT,:PREMIUM}

MBit Mal /Tag

Figure 9.15: Translator Pattern for Budget

A simple example demonstrates the usage of the translator pattern (Figure 9.15). An
application has a configuration variable expressing the desired budget level which is supposed
to indicate how sustainable the application’s performance should be. E.g., how high the
transmission rate of the corresponding communication service must be set and how often
the responsible archiving service should undertake backup actions. This can be achieved
by setting the relevant configuration variables: TRANS_RATE and TIME_PERIOD,
respectively. Thus, a translator pattern with two outputs is chosen and configured in a
desired way. Assuming, the modeler has defined that the target budget level should be
"economy", the pattern caters for setting the configuration variable TRANS_RATE of the
communication service and the configuration variable TIME_PERIOD of the archiving
service to the following values:

TRANS_RATE = 10
TIME_PERIOD = 1.

9.3.3 Data Selector Pattern

The data selector pattern is the advanced version of the translator pattern, which uses
for the rule definition an additional input from a status variable of the upper level. This



126 9 Policy Derivation Patterns

status variable indicates the supplementary information needed for the underlying pattern
rule in order to govern the translation of specified values depending on some condition.
Thus, subject to the value of the status variable, the pattern can switch between input
management variables of the upper layer and "select" the corresponding one to transfer its
value downwards in the predefined way.

Data
Selector
Pattern

PROTOCOLLocal
Service

Service
Impl. 1

Remote
Servicex1

y

x2

y = f(x,x1,x2)

Appli-
cation

x

PROTOCOL

LOCATION

y := x1:INDOOR
y := x2:OUTDOOR

Figure 9.16: Data Selector Pattern

Figure 9.16 demonstrates the usage of the data selector pattern for configuring the
used communication service. Assume, the service must be configured to use either HTTP
or HTTPS application layer protocol depending on the target service. In case of the
local service, HTTP protocol is used, in case of the remote service, - HTTPS. The
corresponding configuration variable PROTOCOL is set on the basis of the pattern
output. Suppose, the application has a status variable LOCATION which indicates the
current location {outdoor, indoor}. Within the policy refinement process, the configuration
variable PROTOCOL of the communication service is set to the corresponding value of
the PROTOCOL variable of the service on the upper layer. The decision is done on the
basis of the underlying rule. E.g., the LOCATION variable value has a value ”outdoor”,
the value of the PROTOCOL value will be set to the value of the PROTOCOL variable
of the remote service:

PROTOCOL = https.

The application of the introduced policy derivation patterns will be demonstrated in the
following chapters. With the superior objective of providing an automated management
approach for dynamic, adaptive, and flexible medical systems, we conduct a case study in
order to validate the proposed method. We apply the identified policy derivation patterns
within the application domain model in order to derive the concrete runtime policies
supporting the management process.



Chapter 10

Case Study: MEDOLUTION

Within the Medolution1 project, a systematic and efficient development of Big Dependable
Systems (BDS) as integration of networked reliable systems is to be researched. The
combination of versatile sensors, mobile services, common IT, medical devices as well as
cloud services providing Big Data analysis functions supports application systems, which
are functionally rich, dynamically adaptable but at the same time restricted in reliability.
Thus, technical management solutions are in demand which can support such systems in
the typical life-cycle stages they go through during their lifetime.

The conceptual solution of Medolution is to be validated by means of a medical demonstra-
tor supporting after-care and rehabilitation of patients with an implanted Left Ventricular
Assist Device (LVAD) after their release from hospital. Treatment of LVAD-supported
patients requires constant supervision by their doctor in order to guarantee patient’s in
time monitoring as well as optimal parameter tuning of medical devices and applications.
Moreover, permanent telemedical monitoring by the doctor gives patients a feeling of
safety that improves their living standard significantly. Clinical findings collected during
telemedical monitoring of many LVAD-supported patients (e.g. patient data, vital signs,
device recordings, context data, etc.) can be evaluated, interpreted and analyzed. This
allows employing multiple knowledge discovery techniques. Thus, performing data-mining
algorithms on Big (Medical) Data facilitates disease research as well as acquisition of
new perceptions and empirical findings about treatment of patients with LVAD support.
Another aspect is early detection of critical situations such as device malfunction (e.g. low
battery performance) or patient’s medical condition (e.g. thrombotic risk, neurological
complications, fluid imbalance) with the help of classification algorithms applied to data
gathered and stored in the cloud. Timely intervention or even prevention of such issues is
possible due to the employed Big Medical Data approach.
The BDS-supported enhanced monitoring and controlling functions of Medolution can

be categorized according their time-slotted operational range into three main categories:
short-, middle- and long-term (Table 10.1).

Operation site Description

Short-
term

Certified medical sensors, de-
vices, applications operating
most often within the patient’s
environment

Monitoring and controlling with short-term operational
consequences based on internal built-in functions. These
functions are assumed to be perfect and extremely reli-
able, e.g. the LVAD controller regulating the blood flow
of the artificial heart.

Middle-
term

Common IT devices and sys-
tems of patient surrounding and
clinical area

Monitoring and controlling with middle-term operational
consequences. The functions are supported by a dis-
tributed management system which provides for the
timely and accurate intervention.

to be continued. . .

1http://medolution.org/ - Medical Care Evolution - ITEA3 research project



128 10 Case Study: MEDOLUTION

. . .to be continued

Operation site Description

Long-
term

Cloud infrastructure as well as
common IT devices and sys-
tems of patient surrounding and
clinical area

Monitoring and controlling with long-term operational
consequences. According to the knowledge discovered
within the sophisticated data analysis in the cloud, re-
quired actions are enforced in a dependable manner.

Table 10.1: Monitoring Control-Loops

The focus of this work is the middle-term management provided by a distributed
management system located in the patient surrounding and clinical areas. In order to
demonstrate the meaningful usage of management, the central question is to be answered:
"How can management enrich the application?" Table 10.2 arranges the management tasks
according to the main functional areas of management.

Management Task Examples

Fault Management
Monitoring controlling of operational capacity, monitoring of resources availability and

sufficiency (hardware, sensors, communication and data networks)
Self-testing keeping track of self-tests, observing and adapting execution frequency
Fault handling repair mechanisms, fallback solutions, recovery actions, notifications, alarms,

turning on/off the emergency mode
Reporting logging and recording of fault-relevant events and actions, forwarding relevant

data to the long-term management
Configuration Management
Initial configura-
tion

software distribution, network topology setup, security keys distribution, boot
up

Maintenance backup execution, version control, upgrade execution
Inventory keeping track of used hardware and software components, taking stock of

sensors, user specific allocation of components
Recording keeping records and documentation of all configurations taken place
Reconfiguration network topology reconfiguration, substitution of failed components, selection

of appropriate services due to the agreed SLAs
Accounting Management
Resource usage administration, monitoring and surveillance of resource usage data (data

transfer, data storage, power)
Performance Management
Monitoring performance monitoring, analysis, evaluation, reporting functions (data trans-

fer, reconfigurations)
Security Management
Security services configuration and reconfiguration of security services: access control, au-

thentication, authorization, encryption, malware detection, logging, audit

Table 10.2: Management Tasks According to the Functional Areas



10.1. Demonstration Scenario 129

10.1 Demonstration Scenario

CardiacxCenter

CardiologistLVAD-supported
patient

LVAD-supported
patient

LVAD-supported
patient

CLINICxENVIRONMENT

HOMExENVIRONMENT OUTDOORxENVIRONMENT

Technical
expert

Medolution
cloud

Figure 10.1: Medolution Scenario: Overview with Data Flows

The demonstration scenario is depicted in Figure 10.1. It spans three main environments
(clinic, home and outdoor), the LVAD-supported patient finds himself during and directly
after his in-patient treatment. The scenario concentrates on three main tasks providing a
dependable assistance of LVAD-supported patients: monitoring, alarming, and adaptation.

Monitoring

Monitoring is an automated or manual regular observation, recording and supervising of
processes, assets as well as their parameters and activities. It can be differentiated between
the medical and the technical monitoring.

Medical Monitoring

• Vital parameters are constantly monitored by the application. The parameters are
supposed to stay within a predefined range which is specified individually for each
patient by his treating cardiologist.

• Monitoring of medication is essential since the LVAD-supported patients are dependent
on permanent medicine taking.



130 10 Case Study: MEDOLUTION

Technical Monitoring

• The complex devices landscape as well as precarious patient condition demand for
specific ambient parameters (temperature, humidity, air pressure, magnetic field,
etc.). These are to be monitored by the management application.

• The status and status changes of the common and medical devices are to be per-
manently monitored, since they provide for vital functions supporting patient’s
life.

Thus, the monitoring process supports the requisition of the data and its transmission to
the storage, analysis (cloud) and inspection location (cardiologist, patient). Figure 10.2
illustrates the main data flows within the monitoring process. The data is gathered by the
sensors and devices (LVAD controller, CardioMEMS, smartwatch, smartphone, INR tester)
and is transferred by the monitoring application hosted on the smartphone and home PC
(via home gateway) to the corresponding destination (patient, cardiologist, cloud).

Figure 10.2: Monitoring Use Case: Data Flow

Alarming

Alarming is an automated detection of existing or approaching dangerous situations and
the corresponding warning. It can be differentiated between the medical and the technical
alarming.

Medical Alarming

• In case the patient’s vital parameters exceed the predefined range, an adequate
alarming should take place. The monitoring application takes care of prompt and
proper alarms.

• If a complex medical condition is detected, the monitoring application should alarm
the patient in a suitable way.

• If the monitoring application detects any deviations from the predefined medication
plan, an appropriate alarm is to be produced.



10.1. Demonstration Scenario 131

Technical Alarming

• In case the relevant ambient parameters exceed the predefined ranges, the management
application is supposed to produce a corresponding alarm.

• Detected abnormalities in device statuses are to be alarmed by the monitoring and
the management applications.

The alarming supposes that the analysis algorithms (cloud), tele-monitoring application
hosted in the clinic or the inspecting authority (cardiologist) recognize a dangerous situation
and propagate a corresponding alarm or notification to the patient or the cardiologist.
Figure 10.3 illustrates the main data flows of the alarming use case. The transfer of the
alarms and notifications is done via the clinic server and the home gateway if applicable.
The monitoring application (hosted on the smartphone and home PC) and the clinic
application (hosted on the clinic PC) are responsible for the presentation and display of
the alarms and notifications to the patient and the cardiologist.

Figure 10.3: Alarming Use Case: Data Flow

Adaptation
Adaptation is an automated or manual modification or revision of processes and assets
as well as their parameters and settings in order to make them applicable in situations
different from originally anticipated or in order to optimize their performance in course of
time. It can be differentiated between the medical and the technical adaptation.

Medical Adaptation

• The therapy of LVAD-patients requires a corresponding adjustment from time to
time. That includes such values as target vital parameters ranges, medication plans,
allowed ambient condition parameters. This adaptation can be initiated by the
treating cardiologist directly or by the cloud-based monitoring application.

Technical Adaptation

• Adaptation of the parameters of the common and medical devices providing for life-
supporting functions should be possible due to the constant changes in the patient’s
environment and physical condition. The changes are to be done by the monitoring
and the management applications.



132 10 Case Study: MEDOLUTION

Figure 10.4: Adaptation Use Case: Data Flow

Figure 10.4 narrows the data flows within the adaptation use case down. The need of
modification or revision is detected by the corresponding analysis algorithm (cloud) or
by the supervising authority (cardiologist). The appropriate parameters and settings
are calculated (cloud) or manually input (cardiologist). Afterward they are propagated
to the responsible applications (monitoring application, INR management) and devices
(smartphone, LVAD controller) via clinic server and home gateway if applicable.

Based on the descriptions above, we identify the relevant medical and technical parameters
which are involved in providing the use cases of monitoring, alarming and adaptation. The
following table (Table 10.3) summarizes the parameters with corresponding measuring
devices which are of special interest.

Measuring Device Parameter Art Parameter

LVAD controller circulatory parameter blood flow (L/min), pulsatility index, alarms (low
flow, LVAD stop, suction)

LVAD parameter internal clock, rotary speed (RPM), power con-
sumption (Watts), current, voltage, pulsatility
index

battery parameter state of charge (%), battery cycle count
INR tester anticoagulation parameter INR value (%)
CardioMEMS circulatory parameter mean arterial pressure (MAP), pulmonary artery

pressure (PAP) (mmHg),
Smartwatch circulatory parameter oxygen saturation (%)

geographical parameter GPS coordinates, acceleration
Smartphone connection parameter GSM/WLAN/Bluetooth signal quality

battery parameter state of charge (%)
ambient parameter air pressure, humidity, light, magnetic field

Manual input medication parameter taken medication dose
specific parameters meals, personal activities

Table 10.3: Medical and Technical Parameters of Interest



10.1.1 Clinic Environment 133

10.1.1 Clinic Environment
The clinic environment offers per se a more or less stable infrastructure with a constant
system landscape. The standard course of action can be assumed. The focus is on setting
up the system for functioning after the hospital stay and preparing the patient for the life
after the in-patient treatment supported by the system. Thus, the main three tasks are to
be fulfilled: the system is to be planned, it is to be set up and configured as well as it has
to be put into the first usage by the patient including necessary instructions and education
and training.

Planning the system

In order to provide an individual, patient-tailored technical support and supervision of
patients after their in-patient treatment, a careful and precise system planning is essential.
For this purpose the system engineer and the cardiac specialist work out different patient
profiles which allow a fast prototyping of system models, their requirements and proper
situation specific configuration (Figure 10.1 (1)). The process is supported by the modeling
tool which is used to elaborate the corresponding metamodel. When a new LVAD-patient
comes up, a concrete system model is produced on the basis of the metamodel. According to
the chosen patient profile, the patient specific requirements are defined by the cardiologist
and are used for the automated derivation of appropriate set of configurations, settings and
management rules employed by the management application at runtime (Figure 10.1 (2)).

Set up and initial configuration

After the implant surgery, the patient is equipped with a set of life-sustaining devices.
Supplementary devices and systems for extended patient monitoring purposes are provided
in order to support the patient in his daily activities. The initial configuration is carried
out, the system is initialized, the applications and devices start working (Figure 10.1
(3)). Thus, the monitoring application monitors the vital signs, physiological parameters
and medication and alarms in case of abnormalities or dangerous conditions. From now
on within each environment (clinic, home, outdoor) the collected data is transmitted
periodically to the cardiologist directly for the immediate evaluation (Figure 10.1 (3), (4),
(6)) as well as to the cloud for the complex data analysis (Figure 10.1 (5), (7), (9)). The
management application supports the whole system providing for reliable, secure, fail-safe
behavior.

First usage, instructions, training

Before leaving the hospital, the patient is instructed, educated, and trained to use the
devices and system. After the rehabilitation phase, the patient is released from hospital.

The course of action within the clinic environment is summarized in Table 10.4.

ID Action Requirements Involved Devices

01 The technician and the cardiologist
elaborate a set of LVAD-supported pa-
tients’ profiles

The process has to be sup-
ported by a dedicated tool
which allows the definition
of corresponding characteristics
and attributes

Clinic PC

to be continued. . .



134 10 Case Study: MEDOLUTION

. . .to be continued

ID Action Requirements Involved Devices

02 The cardiologist registers a patient and
provides the patient’s data

A special form is required in or-
der to enter the patient’s data

Clinic PC

03 The cardiologist specifies a profile and
conditions for the patient (e.g. out-
door activities allowed, long-distance
walker, risk assessment based on home
location or habits)

The process has to be sup-
ported by a tool which allows
the cardiologist to choose be-
tween predefined profiles and
settings

Clinic PC

04 The cardiologist configures manually
the patient’s LVAD controller with
dedicated settings of the LVAD, Car-
dioMEMS is configured

LVAD controller,
CardioMEMS

05 Automated data transfer from LVAD
controller into the patient data record
takes place

The data transfer should be
done in secure and reliable man-
ner

LVAD controller,
clinic PC

06 The surgery is performed during which
the LVAD is implanted

LVAD controller,
LVAD

07 Deployment and initial configuration of
the system are carried out (the patient
monitoring application is installed on
the patient’s smartphone, pairing with
LVAD)

The system should be boot-
strapped, the initial configura-
tion is to be done

Patient’s smart-
phone, LVAD
controller, smart-
watch, INR tester

08 The system is put into use and starts
functioning

The system functions in a reli-
able, secure, fail-safe manner

Patient’s smart-
phone, LVAD
controller

09 The patient is instructed, educated,
and trained to use and live with the
implanted LVAD supported by the sys-
tem

LVAD controller,
patient’s smart-
phone

10 The rehabilitation of the patient takes
place in the clinic

LVAD controller,
patient’s smart-
phone, clinic
PC

11 Technician equips the home environ-
ment according to the specified pa-
tient’s profile

The infrastructure at the pa-
tient’s home is ready for use,
all the devices are initially con-
figured

Home PC, home
gateway

12 Patient goes home

Table 10.4: Scenario for the Clinic Environment

10.1.2 Home Environment

The home environment provides a multifaceted but stable infrastructure with a constant
landscape. For the patient it can be seen as an ordinary and safe environment, where he
can rely on constant power supply, stable Internet connection, landlines, support of family
members, available spare equipment, etc. Within the home environment, there is in fact
no presence of a cardiac expert, but it still provides the patient an overall feeling of safety
due to the constant monitoring by the system in a familiar surrounding area.



10.1.2 Home Environment 135

Data acquisition

The monitoring of the patient is continued within the home environment. Thereby the
data acquisition is supported by the system which caters for the correct, timely, and secure
capture of medical as well as contextual data. The captured data is to be transmitted for
the further automated processing, analysis and storage to the cloud (Figure 10.1 (5)) and
for the manual analysis and review to the cardiac specialist in the clinic (Figure 10.1 (4)).

Support of daily routines

In order to provide a maximal comfort and supervision of the patient in his home environ-
ment, he is supported in his daily routines with regard to his condition. Thus, the system
prompts the patient on medications and measurements becoming due, advises on battery
management issues, provides for timely and to the environment adjusted notifications and
alarms. The context of the patient is regarded continuously in order to handle appropriately
to the current situation and ambient condition.

Emergency

In case a medical emergency occurs, the patient is assisted in his critical situation according
to his needs. This can include safe and timely notification of the patient, providing him
with corresponding proceeding instructions (Figure 10.1 (4)).

The course of action within the home environment is summarized in Table 10.5.

ID Action Requirements Involved Devices

13 The patient arrives at home The system and devices at
home are to be initialized au-
tomatically

Home gateway,
home PC, smart-
phone, LVAD
controller, LVAD

14 The monitoring of the patient contin-
ues within the home environment

The system functions in a reli-
able, secure, fail-safe manner

Home gateway,
home PC, smart-
phone, LVAD
controller, LVAD

15 At predefined times the patient is
prompted to undertake the INR value
measurement and to enter the mea-
sured value as well as the taken anti-
coagulation medicine dose

The prompt should take place
at the appropriate time (e.g.
the patient is not sleeping, cur-
rently performing his training,
etc.)

smartphone, home
gateway, ergome-
ter, INR tester

16 At predefined times the patient is
prompted to measure MAP and PAP
values

The measurement is to be done
at the appropriate situation (e.g.
the patient is not training, eat-
ing, working physically, etc.)

smartphone, home
gateway, ergome-
ter, CardioMEMS

17 The captured data (INR value, LVAD
records, MAP, PAP, etc.) is transmit-
ted to the clinic and cloud in predefined
time slots

The data transmission should
be performed at the appropri-
ate situation (e.g. Internet con-
nection, mobile phone battery
status)

smartphone, home
gateway

to be continued. . .



136 10 Case Study: MEDOLUTION

. . .to be continued

ID Action Requirements Involved Devices

18 The patient inspects his driveline exit
site thoroughly daily. In case of drive-
line exit site abnormalities, the patient
follows the protocol to use his smart-
phone to take exit site pictures which
are sent to the cardiologist.

The resources on the smart-
phone are to be available for
this operation.

smartphone, home
PC, home gateway

19 The patient is regularly confronted
with certain critical operations like re-
placing the running LVAD controller
or batteries which require particular
ambient conditions (e.g., a quiet well-
lighted location, the patient is sitting
or lying down)

It is required to check if the cur-
rent situation is suitable for the
critical operation, if necessary
the patient should be informed

smartphone

19 The LVAD controller’s battery life
is constantly monitored by the ap-
plication. Additionally to the state
of charge, cleaning cycles and self-
tests are performed by the LVAD and
the power module. The patient is
prompted to execute a calibration of
his devices if required, as well as of the
expiration date of all the batteries in
use.

Support of the system is needed
while estimating the actual op-
erating life of the battery is af-
fected not only by the rate and
depth of cycles but also by other
conditions such as temperature
and humidity.

LVAD controller,
smartphone, home
gateway

20 The system regularly initiates the
LVAD controller to conduct a clean-
ing cycle of the aortic valve

The system must recognize in a
dependable manner that the pa-
tient does not perform any phys-
ical activity (and not e.g. just
has forgotten his smartphone)
and is awake and trigger the
conduction of cleaning cycles
periodically. In case the patient
falls asleep or starts to perform
physical exercises, he should be
warned immediately.

LVAD controller,
smartphone,
smartwatch

21 When the patient falls asleep, the sys-
tem should adjust the settings of the
involved devices appropriately (The
LVAD controller is connected to the
power module, the volume of the
speaker giving an acoustic tone in case
of a detected alarm is turned on)

The system should detect if the
patient has fallen asleep (vital
parameters, time of the day,
etc.) or can probably fall asleep.
A corresponding alert must be
done. After the patient wakes
up, the original settings are to
be used.

smartphone, home
pc

22 The acquired valuable information
about the patient’s context (e.g. activ-
ity, environmental parameters) is cap-
tured, processed and transmitted to
the cloud for further data mining pur-
poses

smartphone, home
gateway, ergometer

to be continued. . .



10.1.3 Outdoor Environment 137

. . .to be continued

ID Action Requirements Involved Devices

23 Any time the patient has an access
to the data about the resource usage
data (e.g. mobile data traffic) for the
accounting purposes

smartphone, home
gateway

Table 10.5: Scenario for the Home Environment

10.1.3 Outdoor Environment
The outdoor environment is characterized by the unreliable nature of wireless communica-
tion and no constant power supply. In addition the patient within the outdoor environment
can feel insecure due to being on his own in the absence of his family members and
supervising cardiologist.

Hazardous environment

The patient’s equipment (power module, batteries, clips, charger) must be stored and
transported within a certain range of ambient parameters. In order to warn the patient
about unfavorable conditions, the system monitors it, resorting to the available sensors
(barometer, magnetometer, gyroscope, hygrometer, GPS, accelerometer) and services (air
temperature).

No wireless/mobile connection

The loss of wireless and/or mobile connection means for the patient that no data transfer
to the cloud is possible. The main issue, however, is the fact that no emergency call or
contact to the cardiologist can take place. The patient has to be aware of that, in order to
make an appropriate decision: to betake himself to the next cell or to go on his own risk.
The navigation to the next cell is supported by the system.

Emergency

In case of a medical emergency in the outdoor environment, several aspects are to be
considered. Thus, if no wireless/mobile connection exists, there is no opportunity to make
a call for help or contact the cardiologist. The patient feeling particularly insecure can
react time-delayed, so that automation of corresponding actions can bring a considerable
advantage and gain valuable time. An important facet of the outdoor environment is
positioning of the patient, which can also play an important role in case of emergency if
the patient needing assistance has to be located.

The course of action within the outdoor environment is summarized in Table 10.6.



138 10 Case Study: MEDOLUTION

ID Action Requirements Involved Devices

24 The patient leaves his home for a walk The system detects automati-
cally that the patient has left his
home environment. It should
be checked, if the available re-
sources (i.e. batteries) are go-
ing to be sufficient for a walk.
In order to estimate the battery
sufficiency, the system asks the
patient about the intended ab-
sence length. The system also
prompts the patient to take the
backup LVAD controller, neces-
sary power cables, clips and the
spear batteries with him.

smartphone, LVAD
controller, smart-
watch

25 The system reconfigures itself for the
outdoor environment

The sample rates of the pulse
sensor and GPS sensor are
lowed in order to save the bat-
tery of the smartwatch. The
loudness of the speakers of the
smartphone and the LVAD con-
troller is increased in order to
avoid missing alarms in the
noisy environment

smartphone, LVAD
controller, smart-
watch

26 During his walk the patient can reach
locations which are potentially haz-
ardous (industry, airports, establish-
ments with security checks, etc.) due
to the risk of LVAD equipment mal-
functioning (e.g. static discharge)
increased considerably in certain en-
vironments (e.g. close to high-
powered broadcasting and communica-
tion equipment, MRI, radio frequency
energy sources, metal detector, body
scanner, etc.)

The patient has to be tracked
constantly, his position is to be
checked given the list of regis-
tered potentially hazardous lo-
cations

smartphone, smart-
watch

27 The ambient condition can influence
the function of the patient’s equip-
ment (power module, batteries, clips,
charger), thus it must be stored and
transported within certain range of am-
bient parameters

It must be checked constantly
and interfered, if the ambi-
ent parameters like tempera-
ture, humidity, air pressure, and
magnetic field are within the
predefined range

smartphone, smart-
watch

28 The patient can reach a location with
no cellular network coverage. He is
informed about the impossibility to call
the hospital in case of emergency and
navigated to the next cellular cell

It should be detected when the
network connection is lost and
found again. The data trans-
mission to the cloud, system
updates, and downloads are to
be paused or rescheduled. It
also monitors if the cellular net-
work coverage zone has been
reached again.

smartphone

to be continued . . .



10.2. Technical System 139

. . .to be continued

ID Action Requirements Involved Devices

29 During the walk, a critical condition
occurs, the LVAD controller raises an
alarm. The interface of the LVAD con-
troller shows alternating screens "Low
Flow" and "Call Hospital Contact", the
corresponding warning light flashes, a
constant alarm tone persists.

The situation must be recog-
nized by the system as dan-
gerous. The system should
be switched to a safeguarded
mode. Corresponding settings
are to be done.

smartphone, smart-
watch, LVAD con-
troller

30 The patient tries to resolve the prob-
lem acting according to the instruc-
tions by firstly checking, if the cables
are attached, and then connecting to
the working power source (i.e. replac-
ing the batteries). He is assisted by
providing him with corresponding pro-
ceeding instructions.

A timer must be used in order
to check the time expired after
the alarm has been raised.

smartphone, smart-
watch, LVAD con-
troller

31 The patient arrives at home It must be recognized that the
patient has arrived at home.
The patient is to be reminded
about loading the batteries and
making a revision of wear and
carry accessories (e.g. pack up
the travel bag). The original
settings for the home environ-
ment are to be done, postponed
actions are to be resumed (data
transmission to the cloud, sys-
tem updates, and downloads)

smartphone, smart-
watch, home gate-
way

Table 10.6: Scenario for the Outdoor Environment

10.2 Technical System
Based on the described scenario we identify the technical system which provides the
above specified functionality. Therefore, we concentrate on the organization and wiring of
components in the target system. The main logical unit blocks of the system of a higher
abstraction are identified for the start. These are presented as components, which are
self-contained modular parts of the system, encapsulating their contents. The manifestation
of components is replaceable within their environment. A formal contract of the services
that the component provides to the other components and those that it requires from the
other components in the system is specified in terms of its provided and required interfaces
(groups of operations).

Figure 10.5 presents the technical structure in form of a component diagram following
the UML notation [Obj15]. The following sections describe the identified components, their
dependencies and interfaces.

10.2.1 Components
The following Table 10.7 summarizes the identified components stating the inter-component
dependencies and the corresponding device on which the component is hosted:



140 10 Case Study: MEDOLUTION

«D
ev

ic
e»

C
ar

di
oM

E
M

S

«D
ev

ic
e»

LV
A

D
fC

on
tr

ol
le

r

«D
ev

ic
e»

IN
R

fT
es

te
r

«D
ev

ic
e»

S
m

ar
tp

ho
ne

«D
ev

ic
e»

S
m

ar
tw

at
ch

«S
of

tw
ar

e»
B

at
te

ry
fM

a
na

ge
m

en
t

«S
of

tw
ar

e»
A

m
bi

en
tfC

on
di

tio
n

«S
of

tw
ar

e»
P

at
ie

nt
fT

ra
ck

in
g

«S
of

tw
ar

e»
P

at
ie

nt
fM

o
ni

to
rin

g

«S
of

tw
ar

e»
T

hr
om

bo
si

sf
D

et
ec

tio
n

«S
of

tw
ar

e»
IN

R
fM

al
ad

ju
st

m
en

t

«S
of

tw
ar

e»
F

itn
es

sf
T

ra
ck

er

«S
of

tw
ar

e»
N

ot
ifi

ca
tio

nf
3fA

la
rm

in
g

«S
of

tw
ar

e»
D

at
af

T
ra

n
sm

is
si

on

«S
of

tw
ar

e»
A

da
pt

at
io

n

«S
of

tw
ar

e»
N

ot
ifi

ca
tio

nf
3fA

la
rm

in
g

«S
of

tw
ar

e»
C

lin
ic

fA
pp

lic
at

io
n

«S
of

tw
ar

e»
P

at
ie

nt
fM

a
na

ge
m

en
t

C
lo

ud

M
an

ag
em

en
t

[5
]

[6
]

[7
]

[8
]

[9
]

[0
]

[7
]

[8
]

[9
]

[5
4]

[5
5]

[5
6]

[5
7]

[5
8]

[5
9]

[5
0]

[5
7]

[5
8]

[5
9]

[6
4]

[ff
]

[ff
]

[ff
]

[ff
]

[ff
]

[ff
]

[ff
]

[ff
]

[ff
]

[ff
]

Figure 10.5: Medolution Component Diagram



10.2.1 Components 141

Component Description Dependencies Hosting Device

CardioMEMS A component responsible for
the integration of the Car-
dioMEMS device

Patient Monitoring Smartphone

LVAD Controller A component responsible for
the integration of the LVAD de-
vice including the corresponding
controller and monitor

Patient Monitoring,
Thrombosis Detection,
Battery Management

LVAD controller

INR Tester A component representing the
INR tester device

INR Management INR tester

Smartphone A component responsible for
the integration of the smart-
phone device with its sensors

Patient Monitoring, Bat-
tery Management, Am-
bient Condition, Patient
Tracking

Smartphone

Smartwatch A component responsible for
the integration of the smart-
watch

Fitness Tracker Smartwatch

Patient Monitor-
ing

A central component responsi-
ble for active gathering of mon-
itored data (e.g. vital signs,
physiological and device param-
eters, patient’s activity) and for-
warding it for the further analy-
sis and storage

LVAD Controller, Car-
dioMEMS, Smartphone,
Data Transmission,
Notification - Alarming,
Adaptation, Manage-
ment

Smartphone

Battery Manage-
ment

A component responsible for
management of batteries of in-
volved devices (e.g. LVAD
controller, smartphone, smart-
watch) including such functions
like estimation of remaining life-
time considering the current
ambient condition and settings,
reminder of a required charg-
ing, count of rate and depth of
cycles

Smartphone, Smart-
watch, LVAD Controller,
Ambient Condition,
Data Transmission,
Management

Smartphone

Ambient Condi-
tion

A component responsible for
monitoring of the ambient con-
dition (e.g. temperature, hu-
midity, air pressure, magnetic
field) which is to stay within a
predefined range in order not
to influence the function of pa-
tient’s equipment (e.g. bat-
teries) and patient’s condition
(blood circulation) as well as to
provide for information which
can turn out to be significant
during the analysis of the medi-
cal data (e.g. correlation of air
pressure and blood circulation
parameters)

Data Transmission,
Smartphone, Manage-
ment

Smartphone

to be continued . . .



142 10 Case Study: MEDOLUTION

. . .to be continued

Component Description Dependencies Hosting Device

Patient Tracking A component for tracking the
patient’s position (GPS, poten-
tially hazardous locations, dis-
tance to the next cell) and ac-
tivity status

Data Transmission,
Smartphone, Manage-
ment

Smartphone

Thrombosis De-
tection

A component supporting the
thrombosis detection based on
the measured LVAD power con-
sumption

Data Transmission,
LVAD Control, Noti-
fication - Alarming,
Management

Smartphone

INR Maladjust-
ment

A component for requisition
of INR relevant values, like
INR measured values, nutrition
diary, medication dose taken,
edema, etc.

INR Tester, Data Trans-
mission, Notification -
Alarming, Adaptation,
Management

Smartphone

Fitness Tracker A component which monitors
the activity of the patient, e.g.
physical active, doing sport,
sleeping, at rest

Smartwatch, Data
Transmission, Manage-
ment

Smartphone

Adaptation A central component responsi-
ble for executing the modifica-
tions and adjustments of set-
tings (e.g. target vital param-
eters ranges, medication plans,
allowed ambient condition pa-
rameters) which have been sup-
plied by the medical personnel
based on the treating doctor’s
decision and (or) the analysis
of data in the cloud

Clinic Application, Pa-
tient Monitoring, Ambi-
ent Condition, Throm-
bosis Detection, INR
Maladjustment, Man-
agement

Smartphone

Data Transmis-
sion

A component for transmission
of the gathered data for the fur-
ther analysis and storage to the
clinic application and cloud

Patient Monitoring,
Ambient Condition, Pa-
tient Tracking, Battery
Management, Throm-
bosis Detection, INR
Maladjustment, Fitness
tracker, Management,
Clinic Application,
Cloud

Smartphone

Notification -
Alarming

A central component responsi-
ble for notification and alarm-
ing of the patient (or the car-
diologist) about existing or ap-
proaching dangerous conditions
and situations

Patient Monitoring,
Ambient Condition, Pa-
tient Tracking, Battery
Management, Throm-
bosis Detection, INR
Maladjustment, Fitness
Tracker, Management,
Clinic Application,
Cloud

Smartphone

to be continued . . .



10.2.2 Interfaces 143

. . .to be continued

Component Description Dependencies Hosting Device

Management The central management com-
ponent

Patient Monitoring, Am-
bient Condition, Pa-
tient Tracking, Battery
Management, Throm-
bosis Detection, INR
Maladjustment, Fitness
Tracker

Smartphone

Clinic Applica-
tion

A central component provid-
ing for the monitoring of the
patients on the clinic side in-
cluding the main functions of
telemonitoring, notification and
alarming of the cardiologist as
well as pseudonymization of the
patient data and transmission
of it to the cloud for the storage
and further data processing and
analysis

Data Transmission,
Patient Management,
Cloud, Notification -
Alarming, Adaptation

Clinic PC

Patient Manage-
ment

A component for the manage-
ment of the patient data

Clinic Application Clinic PC

Cloud A component for the storage
and analysis (e.g. thrombosis,
derailed BP detection, INR mal-
adjustment, etc.) of the gath-
ered data

Data Transmission,
Clinic Application

Cloud

Table 10.7: Summary of Components

10.2.2 Interfaces
A provided interface of a component represents the services and obligations that the
component offers to its clients. A required interface on the contrary specifies services that
the component "needs in order to perform its function and fulfill its own obligations to its
clients" [Obj15]. Table10.8 summarizes the identified interfaces, stating the corresponding
components and the data exchanged through the interfaces.

Interface Exchanged Data Provided by Required by

[1] MAP/PAP Measured blood pressure
parameters like MAP, PAP
(mmHg), measuring device
id

CardioMEMS Patient Monitoring

to be continued . . .



144 10 Case Study: MEDOLUTION

. . .to be continued

Interface Exchanged Data Provided by Required by

[2] LVAD Measured or calculated cir-
culatory parameters like
blood flow (L/min), pul-
satility index, registered
LVAD alarms like low flow,
LVAD stop, suction, mea-
sured LVAD parameter like
internal clock, rotary speed
(RPM), power consump-
tion (Watts), current, volt-
age, pulsatility index, bat-
tery status

LVAD Controller Patient Monitor-
ing, Thrombosis
Detection, Battery
Management

[3] INR Measured anticoagulation
parameter like INR value
(%), measuring device
id, manually input data
concerning the nutrition,
taken medication dose and
edema, device id

INR Tester INR Maladjustment

[4] Battery Measured state of charge
(%), battery cycle count,
registered maximal num-
ber of load cycles, expira-
tion date, last calibration
date for the main and the
backup battery, battery id

LVAD Controller Battery Management

[5] Ambient Param-
eter

Measured ambient pa-
rameters like air pressure
(mmHg), humidity (%),
light (lx), magnetic field
(µT) and the correspond-
ing measuring sensor
ids

Smartphone Ambient Condition

[6] GPS Accelerom-
eter

Measured GPS coordinates
(latitude and longitude),
proper acceleration (m/s2),
measuring device id

Smartphone Patient Tracking

[7] Notification
Alarm

Notifications and alarms to
be displayed to the patient

Smartphone Patient Monitoring

[8] Activity Patient’s current estimated
activity status (physical ac-
tive, doing sport, sleeping,
at rest), patient’s id

Smartwatch Fitness Tracker

[9] Data Measured data to be trans-
mitted for the further analy-
sis and storage to the clinic
application and the cloud

Data Transmission Patient Monitoring,
Battery Management,
Ambient Condition,
Patient Tracking,
Thrombosis Detection
INR Maladjustment,
Fitness Tracker

to be continued . . .



10.2.2 Interfaces 145

. . .to be continued

Interface Exchanged Data Provided by Required by

[10] Alarm Dangerous condition de-
tected by the local compo-
nents

Notification - Alarming Patient Monitor-
ing, Thrombosis
Detection, INR
Maladjustment

[11]-
[13]

Parameter Adaptation to be applied
(target vital parameters
ranges, medication plans,
allowed ambient condition
parameters), patient id

Patient Monitoring,
Thrombosis Detection,
INR Maladjustment

Adaptation

[14] Adaptation Modifications and adjust-
ments of settings supplied
by the cardiologist based on
the treating doctor’s deci-
sion and (or) the analysis
of data in the cloud (tar-
get vital parameters ranges,
medication plans, allowed
ambient condition parame-
ters), patient id

Adaptation Clinic Application

[15] Notification/
Alarm

Notifications and alarms to
be displayed to the patient
generated in the cloud by
the corresponding applica-
tions

Smartphone Patient Monitoring

[16] Patient Patient personal data,
EHR, id

Patient Management Clinic Application

[17] Data Measured data which is
transmitted for the further
analysis and visualization
to the clinic application

Clinic Application Data Transmission

[18] Notification/
Alarm

Dangerous condition de-
tected by the Clinic Appli-
cation to be displayed to
the cardiologist

Notification - Alarm Clinic Application

[19] Data Measured data which is
transmitted for the further
analysis and visualization
to the cloud

Clinic Application Data Transmission

[20] Management
Data

Request for a policy expres-
sion evaluation

Management Patient Monitoring,
Battery Management,
Ambient Condition,
Patient Tracking,
Thrombosis Detection
INR Maladjustment,
Fitness Tracker

[∗] Management
Data

Management data ex-
changed between the
management and the
managed components:
configuration and status
variables

Management Patient Monitoring,
Adaptation, Notifi-
cation - Alarming

Table 10.8: Summary of Interfaces



146 10 Case Study: MEDOLUTION

10.3 MEDOLUTION System Model

Based on the presented demonstration scenarios, we model the system according to the
approach introduced in Section 8.1. Thus, the identified application scenarios and their
main medical functions are reflected on the "Use Cases" layer, the services provided and
required by the system are presented on the "Services" layer and the involved hosting devices,
measuring sensors as well as software components are allocated to the "Components" layer.

For the sake of brevity, Figure 10.6 shows just a small excerpt of the system concentrating
on the monitoring of a LVAD-supported patient within his home and outdoor environment.

10.3.1 "Use Cases" Layer

Two main actors can be identified in the presented application scenario: the LVAD-
supported patient after his in-patient treatment and the cardiologist supervising the patient
after his stay in the hospital. Thus, the model elements LVAD Patient and Cardiologist
are used in the model to represent the corresponding actors.
The demonstration scenario includes three main use cases: monitoring of the LVAD-

supported patients, alarming the patient and the supervising cardiologist about existing
and approaching dangerous situations as well as adaptation of the patient’s treatment.
Hence, we distinguish three corresponding model elements standing for this use cases:
Patient Monitoring, Alarming and Adaptation.

The functions provided within the scope of the Patient Monitoring use case include
measurement of the relevant parameters, processing of the acquired data, and transmission
of the data to the clinic. Thus, the following functions can be identified: Data Collection,
Data Processing, and Data Transmission.

For the Alarming use case the main identified supported functions are maintenance of
the catalog of the target system state, detection of abnormality, alarm and notification.
That means the model elements Target State Catalog, Detection of Abnormality, Alarm,
Notification are introduced.

The functions provided within the scope of the Adaptation use case include detecting
the need for adaptation, calculation of the adjustment, as well as the actual control of
the system. Thus, the model elements can be identified: Detecting Need for Adaptation,
Calculation of Adjustment and Control of System.

Diverse aspects are of special interest within the demonstration scenario. For the sake
of brevity we bring out only some of them, e.g. such aspects as the ambient condition,
the patient’s activity and the patient’s environment. Corresponding model elements
Ambient Temperature, Ambient Environment, Patient’s Activity, Transmission Connection
are introduced within the model.

The requirements formulated for the aspects, functions and use cases of the demonstration
scenario are also great in numbers. E.g., the requirements formulated for the above
mentioned aspects include constraints on the ambient temperature, patient’s activity
and the transmission connection. The model element Ambient Temperature Constraint
represents the restrictions on the ambient temperature which can be configured with
the minimal and maximal allowed temperatures to allow a normal operation of LVAD
accumulators. The AV Cleaning Cycle Resting Constraint, AV Cleaning Cycle Awake
Constraint model elements represent the constraints on the estimated likelihood that the
LVAD patient performs no physical activity and is awake during the conduction of the
aortic valve cleaning cycle. The Data Transmission Constraint model element is used



10.3.1 "Use Cases" Layer 147

Services ComponentsUseFCases

S
ys

te
m

C
on

tr
ol

P
ol

ic
y

S
m

ar
t

P
ho

ne

LV
/

D

S
m

ar
t,

w
at

ch
LV

/
D

M
on

ito
r

P
at

ie
nt

M
on

ito
rin

g
B

un
dl

e
F

itn
es

s
T

ra
ck

er
B

un
dl

e

P
at

ie
nt

M
on

ito
ri

ng
/

pp
lic

at
io

n

LV
/

D
M

on
ito

rin
g

S
er

vi
ce

P
at

ie
nt

/
la

rm
in

g
/

pp
lic

at
io

n

T
em

pe
ra

tu
re

S
er

vi
ce

/
cc

el
er

o,
m

et
er

G
yr

os
co

pe
H

yg
ro

m
et

erT
he

rm
o,

m
et

er

C
O

M
P

_R
/

T
E

E
P

C
P

P
at

ie
nt

/
la

rm
in

g
S

er
vi

ce

H
um

id
ity

S
er

vi
ce

R
P

E
P

O
n,

O
ffF

C
on

tr
ol

le
rF

P
ol

ic
yF

C
on

st
ru

ct
T

E
M

P
_/

L/
R

M
F3

F{
kt

oo
Fc

ol
d

k"
Fk

to
oF

ho
tk

}

C
P

C
P

O
n,

O
ffF

C
on

tr
ol

le
rF

P
ol

ic
yF

C
on

st
ru

ct
C

O
M

P
_R

/
T

E
F3

F{
N0

0
"FN

0}

P
at

ie
nt

T
ra

ck
in

g
B

un
dl

e

C
P

C
O

N
G

E
S

T
IO

N
D

at
a

T
ra

ns
p

or
t

S
er

vi
ce

LV
/

D
,

P
at

ie
nt

D
at

a
P

ro
ce

ss
in

g

/
m

bi
en

tFE
nv

iro
nm

ne
tFE

xp
re

ss
io

n
{k

S
/

F
E

k"
Fk

U
N

F
/

V
O

U
R

/
B

LE
k"

Fk
H

/
Z

/
R

D
O

U
S

k}

LV
/

D
FD

at
aF

T
ra

ns
m

is
si

on
FC

o
ns

tr
ai

nt
{I

0}
}N

I0
}

P
at

ie
nt

T
ra

ck
in

g
S

er
vi

ce

P
at

ie
nt

M
on

ito
rin

g

D
at

a
C

ol
le

ct
io

n

D
at

a
T

ra
ns

m
is

si
on

/
m

bi
en

t
T

em
pe

ra
tu

re

/
m

bi
en

t
E

nv
ir

on
m

en
t

P
at

ie
nt

Rs
/

ct
iv

ity

T
ra

ns
m

is
si

on
C

on
ne

ct
io

n

LH
_P

/
T

IE
N

T
_

R
E

S
T

IN
G

LH
_P

/
T

IE
N

T
_

/
W

/
K

E

T
E

M
P

E
R

/
T

U
R

E

H
E

/
T

_I
N

D
E

X

LV
/

D
_P

O
W

E
R

_C
O

N
S

U
M

P
_L

/
T

E
N

C
Y

H
U

M
ID

T
E

M
P

C
C

_/
W

/
K

E
_/

L/
R

M
C

C
_R

E
S

T
IN

G
_/

L
/

R
M

T
E

M
P

_/
L/

R
M

LH
_/

S
LE

E
P

LH
_/

C
T

IV
IT

Y

/
or

tic
FV

al
ve

FC
le

a
ni

ng
FC

yc
le

FE
xp

re
ss

io
n

{0
}}N

00
}

/
m

bi
en

tFT
em

pe
ra

tu
re

FC
on

st
ra

in
t

{,
N0

}}b
Z}

/
V

FC
le

an
in

gF
C

yc
le

FR
es

tin
gF

C
on

st
ra

in
t

{'
0}

}N
00

}

V
FC

le
an

in
gF

C
yc

le
F/

w
ak

eF
C

on
st

ra
in

t
{'

Z}
}N

00
}

R
P

R
P

R
P

R
P

R
P

R
P

R
P

R
P

R
P

N
ot

ifi
ca

tio
n

/
la

rm
in

g
B

un
dl

e

/
m

bi
en

t
C

on
di

tio
n

B
un

dl
e

D
at

a
T

ra
ns

p
or

t
B

un
dl

e

D
/

T
/

_F
IL

T
E

R
H T

LV
/

D
_R

E
S

T
IN

G
_/

L/
R

M
LV

/
D

_/
W

/
K

E
_/

L
/

R
M

T
_/

L/
R

M

S
T

/
C

K
_S

IZ
E

/
S

LE
E

P
S

T
E

P
S

_N
U

M

S
ta

tu
s

T
ra

ck
er

F
S

er
vi

ce

W
at

ch
do

gF
T

im
er

FP
ol

ic
yF

C
on

st
ru

ct
C

C
_R

E
S

T
IN

G
_/

L
/

R
M

F3
F{

kn
o

tFr
es

tin
gk

"Fk
re

st
in

gk
}

W
at

ch
do

gF
T

im
er

FP
ol

ic
yF

C
on

st
ru

ct
C

C
_/

W
/

K
E

_/
L/

R
M

F3
F{

kn
ot

Fa
w

ak
ek

"Fk
aw

ak
ek

}

R
P

R
P

R
P

R
P

}J
/

V
/

}J
/

V
/

}J
/

V
/

}J
/

V
/

}J
/

V
/

}J
/

V
/

}J
/

V
/

}J
/

V
/

E
P

R
P

C
P

U
se

FC
as

e

F
un

ct
io

n

/
sp

ec
t

/
ct

or

/
pp

lic
at

io
n

S
er

vi
ce

S
of

tw
ar

e
C

om
po

ne
nt

D
ev

ic
eF

1
S

en
so

r

C
on

st
ra

in
tF1

E
xp

re
ss

io
n

E
va

lu
a

tio
nF

P
at

te
rn

R
ef

in
em

en
tFP

at
te

rn

C
on

tr
ol

FP
at

te
rn

S
ta

tu
sF

V
ar

ia
bl

e

C
on

fig
ur

at
io

nF
V

a
ria

bl
e

}J
/

V
/

P
ol

ic
yF

E
xp

re
ss

io
nF

1
P

ol
ic

yF
R

u
le

E
xp

re
ss

io
nF

R
ef

in
e

m
en

tFC
on

st
ru

ct

E
xp

re
ss

io
nF

R
ef

in
e

m
en

tFC
on

st
ru

ct

/
m

bi
en

tFE
nv

iro
nm

ne
tFP

ol
ic

yF
E

xp
re

ss
io

n

/
V

FC
le

an
in

gF
C

yc
le

FP
ol

ic
yF

E
xp

re
ss

io
n

/
V

FC
le

an
in

gF
C

yc
le

FR
es

tin
gF

P
o

lic
yF

R
ul

e

/
V

FC
le

an
in

gF
C

yc
le

F/
w

ak
eF

P
ol

ic
yF

R
ul

e

/
m

bi
en

tFT
em

pe
ra

tu
re

FO
ff,

C
on

tr
ol

le
rF

P
ol

ic
yF

R
ul

e
/

m
bi

en
tFT

em
pe

ra
tu

re
FO

n,
C

on
tr

o
lle

rF
P

ol
ic

yF
R

ul
e

D
at

aF
T

ra
n

sm
is

si
on

FO
ff,

C
on

tr
ol

le
rF

P
ol

ic
yF

R
ul

e
D

at
aF

T
ra

n
sm

is
si

on
FO

n,
C

on
tr

o
lle

rF
P

ol
ic

yF
R

ul
e

Figure 10.6: Excerpt of the Medolution System Model: "Patient Monitoring" Use Case



148 10 Case Study: MEDOLUTION

to define restrictions on the latency of the LVAD power consumption data during its
transmission to the clinic.
In addition to the use case requirements, use case specific policy expressions can be

used to formulate expressions to be evaluated during the runtime. Thus, e.g. Ambient
Environment Expression represents a construct formulated on the ambient parameters
requiring a complex computation which is beyond the competence of the managed system.
Another example is the AV Cleaning Cycle Expression model element which is used to
evaluate the aggregated likelihood that the LVAD patient performs no physical activity
and is awake. The interpretation of the evaluation output (i.e. whether it is safe to conduct
the cleaning cycle or not) is, however, up to the managed system.

10.3.2 "Services" Layer

The "Services" layer accommodates the model elements representing applications, services
and related requirements.

The central application which provides the identified use cases is the Patient Monitoring
Application presented in the model as one of the main model elements within the home
and outdoor environments. In the clinic environment there is a Clinic Telemonitoring
Application which is modeled by means of the corresponding model element.

The applications use multiple services required to enable access to one or more capa-
bilities described in the sections above. The services are presented in the model by the
corresponding model elements. To give an example, the model elements representing the
services providing the ambient parameters are Humidity Service, Temperature Service,
Ambient Light Service, and Air Pressure Service. The services providing the measured
physiological parameters have the corresponding model elements introduced: MAP/PAP
Measurement Service, LVAD Monitoring Service, Patient Tracking Service, Status Tracker
Service. The model elements Patient Alarming Service and Clinic Alarming Service, stand
for the services responsible for the patient’s and cardiologist’s notification and alarm.
The services for providing access to devices are reproduced by the corresponding model
elements: LVAD Flow Control Service. Another example of external services used by the
applications in the clinic is the service responsible for managing the patient information; it
is represented by the Patient Management Service model element.
The service and application specific requirements are presented in the model by means

of the corresponding model elements. In most cases these are rather auxiliary constructs
used during the policy refinement process. As may be the case dedicated constraints can
be introduced also. They express restrictions, requirements, constraints, and conditions
on the use, provision and deployment of the services and applications. For instance, the
model elements Rule Construct and Expression Construct are introduced on this layer and
are connected to the corresponding model elements.

10.3.3 "Components" Layer

The presented application scenario involves a set of medical and common devices used in
different environments: home, clinic and outdoor. The home and in parts the outdoor
environments include e.g. a LVAD with its controller and monitor, INR tester, smartphone,
smartwatch as well as Home PC. The clinic environment includes just a clinic PC. Thus,
the model elements LVAD, LVAD Controller, LVAD Monitor, INR Tester, Smartphone,
Smartwatch, Home PC and Clinic PC are introduced within the model.

A set of embedded and autonomous sensors measuring physiological as well as ambient
parameters is used in the context of the scenario, e.g. a CardioMEMS sensor, GPS



10.4. Policy Derivation 149

sensor, accelerometer, gyroscope, magnetic field sensor, temperature sensor, barometer,
hygrometer and camera. The corresponding model elements are introduced in the model:
CardioMEMS, GPS sensor, Accelerometer, Gyroscope, Magnetic Field Sensor, Temperature
Sensor, Barometer, Hygrometer, and Camera.

Further, a set of software components used in the home and outdoor environments can
be identified, the model elements which stand for them are: Patient Monitoring Bundle,
Notification Alarming Bundle, Patient Tracking Bundle, Fitness Tracker Bundle, Ambient
Condition Bundle, Data Transport Bundle, LVAD Flow Control Bundle, Thrombosis Detec-
tion, INR Maladjustment, and Battery Management Bundle. Within the clinic environment
the software components are presented by the following model elements: Telemonitoring
Application Bundle, Clinic Notification Alarming Bundle and Patient Management Bundle.

10.4 Policy Derivation
In order to perform the refinement from the model elements of the "Use Cases" to "Services"
layer and afterward from the "Services" to "Components" layer, refinement patterns are to
be specified and properly configured. They state how the variables of the model elements
of the upper layer are to be transformed into the variables of the adjacent lower layer. We
exemplify the policy derivation process on the basis of the introduced model. Thereby, we
look closely on the model elements which represent the patterns, how they are configured
and modeled in the MoBaSeC tool and how does the outcome of the policy derivation
process look like. The summarizing overview of the presented model elements is depicted
in Figure 10.6.

10.4.1 Derivation of Ambient Temperature Policy Rules
Let us consider an example of the ambient temperature. For the proper function of the
LVAD controller device, it is important to ensure that the ambient temperature stays within
the predefined range, since the function of the batteries can be considerably impaired. In
case the allowed range is exceeded, a corresponding action should take place. As soon as
the temperature normalizes, the undertaken measures become unnecessary. The model
element Ambient Temperature represents the ambient temperature measured in degree
Celcius (Figure 10.7). A corresponding status variable TEMPERATURE is provided
within the related aspect. To model this we add a constraint model element related to
the TEMPERATURE status variable. The allowed temperature range is mirrored in the
configuration of the constraint model element, stating the maximal and minimal permitted
values:

double TEMPERATUREmin = −10;
double TEMPERATUREmax = 35;

The service responsible for the measurement of the temperature which is modeled as
the Temperature Service performs operation in degree Fahrenheit. Thus, the status
variable TEMP is defined within this model element. A translator pattern is needed (see
Section 9.3.2) which states how the computation from Fahrenheit into Celsius is done:

double TEMPERATURE = (TEMP − 32) ∗ 5/9;

So, the model element for the translator pattern added to the model and is placed between
the "Use Cases" to "Services" layer.

The Temperature Service measures the ambient temperature and exposes the measured
value by means of the status variable TEMP . Suppose, the value is out of the allowed range.



150 10 Case Study: MEDOLUTION

Figure 10.7: Example: Ambient Temperature Constraint2

The Patient Alarming Service can be used to provide the patient with the corresponding
alarm of the exceeded temperature range. For this purpose, the TEMP_ALARM con-
figuration variable can be used. Let us consider two cases: the registered temperature
is higher than the allowed maximal value and the registered temperature is lower than
the minimal value. In the first case, the TEMP_ALARM configuration variable is set
to the value "too cold", in the second "too cold". To model this situation we reside to a
control pattern, namely an on-off controller pattern (see Section 9.2.4) which controls the
output variable, i.e. TEMP_ALARM of the Patient Alarming Service, subject to the
control variable, i.e. TEMP of the Temperature Service. The on-off controller pattern is
configured accordingly by stating the control variable and setting the output parameters.
The control pattern means that two management rules are required. The first one should
fire on exceeding the maximal allowed threshold and the second on exceeding the minimal
one. Going down in the hierarchy from the "Services" to "Components" layer, we need an
instruction, how to refine the status variable TEMP into the concrete technical status
variable provided by the software component Ambient Condition Bundle. Suppose, the
component provides a status variable T measured in degree Fahrenheit. As a refinement
pattern, a repeater pattern can be used (see Section 9.3.1), which simply repeats the value
of the TEMP variable:

double TEMP = T ;

Similarly, the T_ALARM configuration variable is provided by the software component
Notification Alarming Bundle. It is to be set with a string value which is to repeat the
value of the TEMP_ALARM configuration variable. Thus, a repeater pattern is used:

string TEMP_ALARM = T_ALARM ;

Figure 10.7 demonstrates an extract of the model in the MoBaSeC tool exemplifying the
definition of the ambient temperature constraint.

2To be viewed with a PDF Viewer



10.4.1 Derivation of Ambient Temperature Policy Rules 151

The model after the policy derivation process is shown in Figure 10.8. Two model
elements for the policy rules are generated and added to the model.

Figure 10.8: Example: Ambient Temperature Constraint - Derived Model Elements

The source code for the two policy rules to be executed during the runtime is generated
by the MoBaSeC’s backend functions. The policy rules represent the management rules
resulting from the used control pattern.
The outcome of the policy derivation for the defined ambient temperature constraint is

shown in Listings 10.1, 10.2.
1 package com . materna . medolution . management . showcase . p o l i c y ;

. . .
3 pub l i c c l a s s AmbientTemperatureOnControl lerPolicyRule extends AbstractRule {

pub l i c boolean eva luate ( ExecutionContext context ) throws Exception {
5 Tree managementTree = context . getRuleContext ( ) . s e r v i c e s ( ) . cont rac t ( Tree .

c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;

7 double TEMPERATURE_min = −10;
double TEMPERATURE_max = 35 ;

9 boolean b = f a l s e ;
TreeEvent event = context . getEvent ( ) ;

11 Path path = event . getPath ( ) ;

13 switch ( event . getType ( ) ) {
case NODE_CHANGED:

15 t ry ( SharedSess ion s e s s i o n = managementTree . openSharedSess ion ( nu l l ,
" . " , nu l l ) ) {

NodeData data = s e s s i o n . getNodeValue ( " medolution / dev i ce /
thermometer/thermometer1XXX/ s ta tu s /measurement/data/ value " ) ;

17 double T = ( data . getDouble ( ) != nu l l ? data . getDouble ( ) : 0) ;
double TEMP = T;

19 double TEMPERATURE = (TEMP − 32) ∗5/9 ;

21 i f (TEMPERATURE < TEMPERATURE_min) {
context . g e tP rope r t i e s ( ) . put ( " AmbientTemperature " , " too co ld " ) ;



152 10 Case Study: MEDOLUTION

23 b= true ;
} e l s e i f (TEMPERATURE > TEMPERATURE_max) {

25 context . g e tP rope r t i e s ( ) . put ( " AmbientTemperature " , " too hot " ) ;
b= true ;

27 } e l s e {
context . g e tP rope r t i e s ( ) . remove ( " AmbientTemperature " ) ;

29 }
} catch ( TreeException e ) {

31 e . pr intStackTrace ( ) ;
break ;

33 }
break ;

35 de f au l t :
break ;

37 }
return b ;

39 }

41 pub l i c void execute ( ExecutionContext context ) throws Exception {
St r ing value = " Temperature i s out o f the a l lowed range : " + context .
g e tP rope r t i e s ( ) . get ( " AmbientTemperature " ) ;

43 Tree managementTree = context . getRuleContext ( ) . s e r v i c e s ( ) . cont rac t ( Tree .
c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;
t ry ( Exc lu s i v eSe s s i on s e s s i o n = managementTree . openExc lus iveSes s i on ( nu l l
, " . " , nu l l ) ) {

45 s e s s i o n . setNodeValue ( " medolution /component/ n o t i f i c a t i o n /
not i f icat ion1XXX/ con f i gu r a t i on /temp−alarm/data/ value " , NodeData . o f ( va lue )
) ;
} catch ( TreeException e ) {

47 e . pr intStackTrace ( ) ;
}

49 }
}

Listing 10.1: Ambient Temperature On-Controller Policy Rule Java Class

package com . materna . medolution . management . showcase . p o l i c y ;
2 . . .

pub l i c c l a s s AmbientTemperatureOffControl lerPol icyRule extends AbstractRule
{

4 pub l i c boolean eva luate ( ExecutionContext context ) throws Exception {
Tree managementTree = context . getRuleContext ( ) . s e r v i c e s ( ) . cont rac t ( Tree .
c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;

6

double TEMPERATURE_min = −10;
8 double TEMPERATURE_max = 35 ;

boolean b = f a l s e ;
10 TreeEvent event = context . getEvent ( ) ;

Path path = event . getPath ( ) ;
12

switch ( event . getType ( ) ) {
14 case NODE_CHANGED:

try ( SharedSess ion s e s s i o n = managementTree . openSharedSess ion ( nu l l ,
" . " , nu l l ) ) {

16 NodeData data = s e s s i o n . getNodeValue ( " medolution / dev i ce /
thermometer/thermometer1XXX/ s ta tu s /measurement/data/ value " ) ;

double T = ( data . getDouble ( ) != nu l l ? data . getDouble ( ) : 0) ;
18 double TEMP = T;

double TEMPERATURE = (TEMP − 32) ∗5/9 ;
20



10.4.2 Derivation of Ambient Environment Policy Expression 153

b = (TEMPERATURE <= TEMPERATURE_max) && (TEMPERATURE >
TEMPERATURE_min) ? t rue : f a l s e ;

22 } catch ( TreeException e ) {
e . pr intStackTrace ( ) ;

24 break ;
}

26 break ;
d e f au l t :

28 break ;
}

30 re turn b ;
}

32

pub l i c void execute ( ExecutionContext context ) throws Exception {
34 St r ing value = " Temperature i s with in the a l lowed range " ;

Tree managementTree = context . getRuleContext ( ) . s e r v i c e s ( ) . cont rac t ( Tree .
c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;

36 t ry ( Exc lu s i v eSe s s i on s e s s i o n = managementTree . openExc lus iveSes s i on ( nu l l
, " . " , nu l l ) ) {

s e s s i o n . setNodeValue ( " medolution /component/ n o t i f i c a t i o n /
not i f icat ion1XXX/ con f i gu r a t i on /temp−alarm/data/ value " , NodeData . o f ( va lue )
) ;

38 } catch ( TreeException e ) {
e . pr intStackTrace ( ) ;

40 }
}

42 }

Listing 10.2: Ambient Temperature Off-Controller Policy Rule Java Class

10.4.2 Derivation of Ambient Environment Policy Expression
Another example of usage of the refinement patterns addresses the ambient condition, also.
The evaluation of the current ambient condition is important for carrying out the use case
(Figure 10.9). Let us assume, the ambient condition is represented by a parameter stating
the heat index of the environment. An attribution pattern (see Section 9.1.2) is needed in
order to define how the evaluation is to be done, e.g.:

”SAFE” : HEAT_INDEX < 80
”UNFAV OURABLE” : 80 <= HEAT_INDEX < 90
”HAZARDOUS” : HEAT_INDEX >= 90

So, the corresponding status variable HEAT_INDEX is included into the model element
Ambient Environment. The calculation instruction forms the basis of the policy expression
to be evaluated at runtime by the management. The heat index is not measured directly,
but rather calculated from the ambient air temperature and relative humidity. For this
purpose, the Temperature Service and Humidity Service model elements with their status
variables TEMP measured in Fahrenheit and HUMID measured in % are used. The
calculation of the HEAT_INDEX from the lower layer status variables requires also a
translator pattern (see Section 9.3.2) with the following calculation instruction:

double HEAT_INDEX = −42.379 + 2.04901523 ∗ TEMP + 10.14333127 ∗
HUMID−0.22475541∗TEMP ∗HUMID−0.00683783∗TEMP ∗TEMP −
0.05481717∗HUMID∗HUMID+0.00122874∗TEMP ∗TEMP ∗HUMID+
0.00085282 ∗ TEMP ∗HUMID ∗HUMID− 0.00000199 ∗ TEMP ∗ TEMP ∗
HUMID ∗HUMID;



154 10 Case Study: MEDOLUTION

Figure 10.9: Example: Ambient Environment Policy Expression

Figure 10.10: Example: Ambient Environment Policy Expression - Derived Model Elements



10.4.2 Derivation of Ambient Environment Policy Expression 155

Descending in the hierarchy from the "Services" to "Components" layer, we refine the
status variables TEMP and HUMID into the variables of the lower level. Suppose, the
software component Ambient Condition Bundle provides a status variable T measured
in degree Fahrenheit and H measured in %. Again, a repeater pattern can be used (see
Section 9.3.1) which repeats the values of the corresponding variables:

double TEMP = T ;
double HUMID = H;

Figure 10.9 demonstrates an extract of the model in the MoBaSeC tool exemplifying the
definition of the ambient condition policy expression.
During the policy derivation process, it is iterated in the model from top to bottom.

Based on the configured pattern elements, the tool generates the necessary model elements
automatically.

Figure 10.10 shows the model after the policy derivation process. The backend functions
generate a corresponding source code of the policy expression to be executed during the
runtime. The outcome of the policy derivation for the defined ambient condition expression
is shown in Listing 10.3.
package com . materna . medolution . management . showcase . p o l i c y ;

2 . . .
pub l i c c l a s s AmbientEnvironmentPolicyExpression extends AbstractExpress ion<

Str ing> {
4 pub l i c S t r ing eva luate ( EvaluationContext context ) throws Exception {

Tree managementTree = context . getExpress ionContext ( ) . s e r v i c e s ( ) . cont rac t
( Tree . c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;

6

St r ing r e t = " " ;
8 NodeData data = nu l l ;

10 t ry ( SharedSess ion s e s s i o n = managementTree . openSharedSess ion ( nu l l , " . " ,
nu l l ) ) {
data = s e s s i o n . getNodeValue ( " medolution / dev i ce /hygrometer /

hygrometer11XXX/ s ta tu s /measurement/data/ value " ) ;
12 double H = ( data . getDouble ( ) != nu l l ? data . getDouble ( ) : 0) ;

data = s e s s i o n . getNodeValue ( " medolution / dev i ce / thermometer/
thermometer1XXX/ s ta tu s /measurement/data/ value " ) ;

14 double T = ( data . getDouble ( ) != nu l l ? data . getDouble ( ) : 0) ;
double TEMP = T;

16 double HUMID = H;
double HEAT_INDEX = −42.379 + 2.04901523∗TEMP + 10.14333127∗HUMID −

0.22475541∗TEMP∗HUMID − 0.00683783∗TEMP∗TEMP − 0.05481717∗HUMID∗HUMID +
0.00122874∗TEMP∗TEMP∗HUMID + 0.00085282∗TEMP∗HUMID∗HUMID −0.00000199∗TEMP
∗TEMP∗HUMID∗HUMID;

18 i f (HEAT_INDEX < 80) {
return "SAFE" ;

20 } e l s e i f (HEAT_INDEX < 90) {
return "UNFAVOURABLE" ;

22 } e l s e {
re turn "HAZARDOUS" ;

24 }
} catch ( TreeException e ) {

26 e . pr intStackTrace ( ) ;
}

28 re turn r e t ;
}

30 }

Listing 10.3: Ambient Environment Policy Expression Java Class



156 10 Case Study: MEDOLUTION

10.4.3 Derivation of Data Transmission Policy Rule

In order to provide a reliable LVAD patient monitoring, the regular data transmission
to the clinic is done. Besides the measured physiological parameters (e.g. circulatory,
anticoagulation, medication, exercise parameters), the transmitted data also includes
technical (e.g. LVAD-specific, battery, connection parameters) as well as context parameters
(e.g. geographical, ambient, personal activity parameters). The data is of different nature
and is subject to different restrictions and requirements concerning confidentiality, integrity,
or availability. These requirements apply necessarily to the data transfer. Thus, a control
of the data transfer should take place.

Let us consider a simplified example of controlling the throughput of the data transmission.
While transmitting the measured LVAD parameters, the monitoring application can transfer
the measured data at several predefined rates. This means technically that different filters
can be are applied to the transmitted data. A filter defines the compression rate used
in order to process the data before forwarding. E.g., the LVAD power consumption data
can be provided by the monitoring application with frequency of 10 or 100 Hz. The data
transmission component supports the required data compression, blocking and buffering in
order to optimize the transfer on the transport protocol level when moving large amount
of data. At the same time there exist certain medical as well as technical requirements
for the latency of the transmitted data. E.g., the latency of the transmitted LVAD power
consumption data must be between 10 and 120 seconds. In order to measure the latency,
the data transmission component exposes the current congestion of the connection. Thus,
an appropriate feedback to the monitoring application can be done, which filter to apply.
The connection congestion is manifested by means of a number of elements in the storage.
So the dynamic adjustment of the compression rate can be done according to the connection
status.

Figure 10.11: Example: Data Transmission Constraint - Derived Model Elements

The model element Data Transmission represents the correspondent function provided
within the Monitoring use case (Figure 10.11). By means of the model element Trans-



10.4.3 Derivation of Data Transmission Policy Rule 157

mission Connection we introduce the monitored asset. The corresponding status variable
LV AD_POWER_CONSUMP_LATENCY measured in seconds is provided within
the related aspect. To model the requirement, we add a constraint model element related to
this status variable. The allowed target range of the latency is mirrored in the configuration
of the constraint model element, stating the maximal and minimal permitted values:

double LV AD_POWER_CONSUMP_LATENCYmin = 10;
double LV AD_POWER_CONSUMP_LATENCYmax = 120;

The service responsible for the data transmission is modeled as the Data Transport Service.
It exposes its state by means of a status variable CONGESTION measured in % is
defined within this model element. A translator pattern is needed (see Section 9.3.2), which
states how the computation from the congestion status variable into the expected latency
of the LVAD power consumption data is done, e.g.:
int LV AD_POWER_CONSUMP_LATENCY = 300 ∗ CONGESTION/100 + 30;
The model element for the translator pattern added to the model and is placed between
the "Use Cases" to "Services" layer.
We go down the hierarchy in the model to the "Services" layer. The services LVAD

Monitoring Service and Data Transport Service responsible for the measuring the LVAD
power consumption data and its transport to the clinic are modeled on this layer. Suppose,
the measured latency of the LVAD power consumption data is greater than the predefined
maximal value. In this case the corresponding configuration variable COMP_RATE of
the LVAD Monitoring Service presenting the configurable compression rate should be set to
10 Hz. On the contrary, if the latency of the LVAD power consumption data is lower than
the predefined minimal value, the compression rate of the LVAD Monitoring Service should
be set to 100 Hz. To model this, we introduce a control pattern, namely an on-off controller
pattern (see Section 9.2.4) which controls the output variable, i.e. COMP_RATE, subject
to the control variable, i.e. CONGESTION of the Data Transport Service. The on-off
controller pattern is configured accordingly by stating the control variable and setting the
output parameters. The control pattern means that two management rules are required.
The first one should fire on exceeding the allowed maximal or minimal threshold and the
second one on reaching the allowed target range.
Going down in the hierarchy from the "Services" to "Components" layer, we need an

instruction, how to refine the status variable CONGESTION into the concrete technical
status variable provided by the software component Data Transport Bundle. Suppose
the component provides a status variable STACK_SIZE measured in integer. As a
refinement pattern, a translator pattern is used (see Section 9.3.2), which states how the
value of the CONGESTION variable is computed from the STACK_SIZE variable:

int CONGESTION = STACK_SIZE ∗ 100/10;

Similarly, we need to refine the configuration variable COMP_RATES into the technical
configuration variable DATA_FILTER provided by the software component Patient
Monitoring Bundle. For this purpose, a refinement pattern, namely a repeater pattern (see
Section 9.3.1), is used, which just repeats the variable values:

int COMP_RATE = DATA_FILTER;

Figure 10.12 demonstrates the derived policy elements. Two model elements for the
policy rules are generated and added to the model.
The backend functions of the MoBaSeC generate a corresponding source code of the

policy rules to be executed during the runtime. The outcome of the policy derivation for
the defined data transmission constraint are shown in Listings 10.4, 10.5.



158 10 Case Study: MEDOLUTION

Figure 10.12: Example: Data Transmission Constraint

package com . materna . medolution . management . showcase . p o l i c y ;
2 . . .

pub l i c c l a s s DataTransmiss ionOnContro l lerPol icyRule extends AbstractRule {
4 pub l i c boolean eva luate ( ExecutionContext context ) throws Exception {

Tree managementTree = context . getRuleContext ( ) . s e r v i c e s ( ) . cont rac t ( Tree .
c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;

6

double LVAD_DATA_POWER_CONSUMP_LATENCY_min = 10 ;
8 double LVAD_DATA_POWER_CONSUMP_LATENCY_max = 120 ;

boolean b = f a l s e ;
10 TreeEvent event = context . getEvent ( ) ;

Path path = event . getPath ( ) ;
12

switch ( event . getType ( ) ) {
14 case NODE_CHANGED:

try ( SharedSess ion s e s s i o n = managementTree . openSharedSess ion ( nu l l ,
" . " , nu l l ) ) {

16 NodeData data = s e s s i o n . getNodeValue ( " medolution / dev i ce /mobile−
phone/mobile−phone1XXX/ s ta tu s / s t a c k s i z e /data/ value " ) ;

i n t STACK_SIZE = ( data . g e t I n t e g e r ( ) != nu l l ? data . g e t I n t e g e r ( ) :
0) ;

18 i n t CONGESTION = STACK_SIZE∗100/10;
i n t LVAD_DATA_POWER_CONSUMP_LATENCY = 300∗CONGESTION/100 + 30 ;

20

i f (LVAD_DATA_POWER_CONSUMP_LATENCY <
LVAD_DATA_POWER_CONSUMP_LATENCY_min) {

22 context . g e tP rope r t i e s ( ) . put ( " DataTransmission " , " 100 " ) ;
b= true ;

24 } e l s e i f (LVAD_DATA_POWER_CONSUMP_LATENCY >
LVAD_DATA_POWER_CONSUMP_LATENCY_max) {

context . g e tP rope r t i e s ( ) . put ( " DataTransmission " , " 10 " ) ;
26 b= true ;

} e l s e {



10.4.3 Derivation of Data Transmission Policy Rule 159

28 context . g e tP rope r t i e s ( ) . remove ( " DataTransmission " ) ;
}

30 } catch ( TreeException e ) {
e . pr intStackTrace ( ) ;

32 break ;
}

34 break ;
d e f au l t :

36 break ;
}

38 re turn b ;
}

40

pub l i c void execute ( ExecutionContext context ) throws Exception {
42 i n t va lue = ( i n t ) context . g e tP rope r t i e s ( ) . get ( " DataTransmission " ) ;

Tree managementTree = context . getRuleContext ( ) . s e r v i c e s ( ) . cont rac t ( Tree .
c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;

44 t ry ( Exc lu s i v eSe s s i on s e s s i o n = managementTree . openExc lus iveSes s i on ( nu l l
, " . " , nu l l ) ) {

s e s s i o n . setNodeValue ( " medolution / dev i ce / lvad /lvad1XXX/ con f i gu r a t i on /
data− f i l t e r /data/ value " , NodeData . o f ( va lue ) ) ;

46 } catch ( TreeException e ) {
e . pr intStackTrace ( ) ;

48 }
}

50 }

Listing 10.4: Data Transmission On-Controller Policy Rule Java Class

package com . materna . medolution . management . showcase . p o l i c y ;
2 . . .

pub l i c c l a s s DataTransmiss ionOf fContro l l e rPo l i cyRule extends AbstractRule {
4 pub l i c boolean eva luate ( ExecutionContext context ) throws Exception {

Tree managementTree = context . getRuleContext ( ) . s e r v i c e s ( ) . cont rac t ( Tree .
c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;

6

double LVAD_DATA_POWER_CONSUMP_LATENCY_min = 10 ;
8 double LVAD_DATA_POWER_CONSUMP_LATENCY_max = 120 ;

boolean b = f a l s e ;
10 TreeEvent event = context . getEvent ( ) ;

Path path = event . getPath ( ) ;
12

switch ( event . getType ( ) ) {
14 case NODE_CHANGED:

try ( SharedSess ion s e s s i o n = managementTree . openSharedSess ion ( nu l l ,
" . " , nu l l ) ) {

16 NodeData data = s e s s i o n . getNodeValue ( " medolution / dev i ce /mobile−
phone/mobile−phone1XXX/ s ta tu s / s t a c k s i z e /data/ value " ) ;

i n t STACK_SIZE = ( data . g e t I n t e g e r ( ) != nu l l ? data . g e t I n t e g e r ( ) :
0) ;

18 i n t CONGESTION = STACK_SIZE∗100/10;
i n t LVAD_DATA_POWER_CONSUMP_LATENCY = 300∗CONGESTION/100 + 30 ;

20

i f ( (LVAD_DATA_POWER_CONSUMP_LATENCY <=
LVAD_DATA_POWER_CONSUMP_LATENCY_max) && (LVAD_DATA_POWER_CONSUMP_LATENCY
> LVAD_DATA_POWER_CONSUMP_LATENCY_min) ) {

22 b = true ;
context . g e tP rope r t i e s ( ) . put ( " DataTransmission " , s e s s i o n .

getNodeValue ( " medolution / dev i ce / lvad /lvad1XXX/ con f i gu r a t i on /data− f i l t e r /
data/ value " ) . g e t I n t e g e r ( ) ) ;

24 }



160 10 Case Study: MEDOLUTION

} catch ( TreeException e ) {
26 e . pr intStackTrace ( ) ;

break ;
28 }

break ;
30 de f au l t :

break ;
32 }

return b ;
34 }

36 pub l i c void execute ( ExecutionContext context ) throws Exception {
i n t va lue = ( i n t ) context . g e tP rope r t i e s ( ) . get ( " DataTransmission " ) ;

38 Tree managementTree = context . getRuleContext ( ) . s e r v i c e s ( ) . cont rac t ( Tree .
c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;
t ry ( Exc lu s i v eSe s s i on s e s s i o n = managementTree . openExc lus iveSes s i on ( nu l l
, " . " , nu l l ) ) {

40 s e s s i o n . setNodeValue ( " medolution / dev i ce / lvad /lvad1XXX/ con f i gu r a t i on /
data− f i l t e r /data/ value " , NodeData . o f ( va lue ) ) ;
} catch ( TreeException e ) {

42 e . pr intStackTrace ( ) ;
}

44 }
}

Listing 10.5: Data Transmission Off-Controller Policy Rule Java Class

10.4.4 Derivation of Aortic Valve Cleaning Cycle Policy Expression

In order to prevent the aortic valve from adhering or developing a thrombosis, an aortic
valve cleaning cycle should be conducted periodically. A cleaning cycle means technically
that the LVAD pump is switched off for a short period of time in order to allow the aortic
valve to open due to the natural blood pressure. In order to allow a LVAD safe cleaning
cycle activation, the patient should be awake and not practicing physical activity. Thus,
the system must recognize in a dependable manner, these requirements are met. A policy
expression can be introduced in order to assist the system in its decision whether it is
safe to initiate the aortic valve cleaning cycle or not. Determining whether the patient
is awake or not as well as if he is physically active at the moment is not a trivial task.
Multiple devices and sensors can be used to recognize the patient’s status and activity but
the measured results can often be unreliable. Thus, an evaluation of the likelihood of the
correct measurement is of interest.

Figure 10.13 demonstrates an extract of the model in the MoBaSeC tool exemplifying the
definition of the aortic valve cleaning cycle policy expression. Let us assume, the aortic valve
cleaning cycle policy expression evaluates the probability that the required condition is met
on the basis of the available measurements and the reliability of the measuring device. The
corresponding model element Aortic Valve Cleaning Cycle Expression is presented in the
model and is connected to the use case model element Monitoring. Suppose the patient’s
activity is represented by two parameters stating the expected likelihood that the patient
is awake and resting. So, the corresponding status variables LH_PATIENT_AWAKE
and LH_PATIENT_RESTING are included into the model element Patient Activity.
Suppose the policy expression is calculated as a weighted arithmetic mean of the both
parameters. An aggregation pattern 9.1.1 is used to define the evaluation of the policy
expression. With the help of the corresponding model element the status variables are
weighted as in Figure 10.13.



10.4.4 Derivation of Aortic Valve Cleaning Cycle Policy Expression 161

Figure 10.13: Example: Aortic Valve Cleaning Cycle Policy Expression

The probability that the patient is awake at the moment is calculated from the probability
that the patient is asleep estimated by the corresponding StatusTrackerService presented
in the model as a model element on the "Service" layer. The model element includes a
status variable LH_ASLEEP . A refinement pattern, in this case a translator pattern
(see Section 9.3.2), can be used in order to define how to calculate the status variable of
the "Use cases" layer from the "Service" layer variable:

int LH_PATIENT_AWAKE = 1− LH_ASLEEP ;

Similarly, the status variable LH_PATIENT_RESTING is calculated from the status
variable LH_ACTIV ITY of the Patient Tracking Service model element. The translator
pattern is parametrized with the code (see Section 9.3.2):

int LH_PATIENT_RESTING = 1− LH_ACTIV ITY ;

Descending in the hierarchy from the "Services" to "Components" layer, we refine the
status variable LHASLEEP into the variables of the lower level. Suppose, the software
component Fitness Tracker Bundle provides a status variable ASLEEP measured in
integer stating the estimated probability that the patient is asleep at the moment. The
software component is hosted on the smartwatch device which is presented in the model on
the "Components" layer. A repeater pattern can be used (see Section 9.3.1) which repeats
the values of the corresponding variables:

double LH_ASLEEP = ASLEEP ;

The status variable LH_ACTIV ITY of the Patient Tracking Service is also refined to
the status variables of the lowest layer. Thus, the software component Patient Tracking
Bundle exposes its status as a STEPS_NUM variable stating the registered number of
steps done during the last minute. A translator pattern (see Section 9.3.2) can be used in
order to refine the LH_ACTIV ITY status variable:



162 10 Case Study: MEDOLUTION

double LH_ACTIV ITY = STEPS_NUM/60;

During the policy derivation process, it is iterated in the model from the "Use Case" to
the "Component" layer. Based on the configured pattern elements, the tool generates the
necessary model elements automatically.

Figure 10.14: Example: Aortic Valve Cleaning Cycle Policy Expression - Derived Model Ele-
ments

Figure 10.14 shows the model after the policy derivation process. The backend functions
generate a corresponding source code of the policy expression to be executed during the
runtime. The outcome of the policy derivation for the defined ambient condition expression
is shown in Listing 10.6.

1 package com . materna . medolution . management . showcase . p o l i c y ;
. . .

3 pub l i c c l a s s AVCleaningCyclePol icyExpress ion extends AbstractExpress ion<
Str ing> {

pub l i c S t r ing eva luate ( EvaluationContext context ) throws Exception {
5 Tree managementTree = context . getExpress ionContext ( ) . s e r v i c e s ( ) . cont rac t

( Tree . c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;

7 St r ing r e t = " " ;
NodeData data = nu l l ;

9

t ry ( SharedSess ion s e s s i o n = managementTree . openSharedSess ion ( nu l l , " . " ,
nu l l ) ) {

11 data = s e s s i o n . getNodeValue ( " medolution / dev i ce /mobile−phone/mobile−
phone1XXX/gyroscope /gyroscope1XXX/ s ta tu s / steps−number/data/ value " ) ;

i n t STEPS_NUM = ( data . g e t I n t e g e r ( ) != nu l l ? data . g e t I n t e g e r ( ) : 0) ;
13 data = s e s s i o n . getNodeValue ( " medolution / dev i ce / smartwatch/

smartwatch1XXX/ s ta tu s / a s l e ep /data/ value " ) ;
i n t ASLEEP = ( data . g e t I n t e g e r ( ) != nu l l ? data . g e t I n t e g e r ( ) : 0) ;

15 i n t LH_ASLEEP = ASLEEP;
i n t LH_PATIENT_AWAKE = 1 − LH_ASLEEP;

17 i n t LH_ACTIVITY = STEPS_NUM/60 ;



10.4.5 Derivation of Aortic Valve Cleaning Cycle Policy Rules 163

i n t LH_PATIENT_RESTING = 1 − LH_ACTIVITY;
19 r e t = St r ing . valueOf ( (LH_PATIENT_AWAKE∗20 + LH_PATIENT_RESTING∗30) /(20

+ 30) ) ;
} catch ( TreeException e ) {

21 e . pr intStackTrace ( ) ;
}

23 re turn r e t ;
}

25 }

Listing 10.6: Aortic Valve Cleaning Cycle Policy Expression Java Class

10.4.5 Derivation of Aortic Valve Cleaning Cycle Policy Rules
As explained above, the initiation of the aortic valve cleaning cycle can be only conducted
under certain constraints: the patient is awake and not practicing any physical activity.
If the system recognizes that the constraints are violated during the cleaning cycle, the
patient should be notified immediately. Figure 10.15 demonstrates an extract of the model
in the MoBaSeC tool exemplifying the definition of the aortic valve cleaning cycle policy
rules.

Figure 10.15: Example: Aortic Valve Cleaning Cycle Constraints - Derived Model Elements

Suppose, the probability that the patient is still awake during the aortic valve cleaning
cycle should be at least 85%. In order to model this, we introduce a constraint presented
as a model element which is configured with a parameter correspondingly:

double LH_PATIENT_AWAKEmin = 85;

Similarly, the probability that the patient is still not conducting a physical activity should
be at least 80%. The introduced model element of the constraint is parametrized in the
following way:

double LH_PATIENT_RESTINGmin = 80;



164 10 Case Study: MEDOLUTION

The both status variables are refined to the status variables of the "Services" layer in the
same way as in the example above. The "Services" layer is just to extend with the control
patterns which define the desired system behavior on the constraint violation. For this
purpose, the Watchdog Timer Patterns are used (see Section 9.2.1). They are parametrized
with the status variable to be monitored: the LH_ASLEEP of the of the Status Tracker
Service and the LH_ACTIV ITY of the Patient Tracking Service model elements. The
Watchdog Timer Patterns are also parametrized with the configuration variables to be set
if the constraint is violated. The configuration variable CC_RESTING_ALARM of the
Patient Alarming Service can be set to "not resting" or "resting" otherwise, the configuration
variable CC_AWAKE_ALARM can be set to "not awake" or "awake" correspondingly.

Going down in the hierarchy from the "Services" to "Components" layer, an instruction
is needed, how to refine the management variables of the "Services" layer into the concrete
technical status and configuration variables provided by the software components of the
"Components" layer. In addition to the refinement patterns explained in the section above,
we use repeater patterns (see Section 9.3.2) in order to refine the configuration variables
of the Patient Alarming Service to the configuration variables of its providing software
component Notification Alarming Bundle. The following refinement functions can be used:

String CC_RESTING_ALARM = LV AD_RESTING_ALARM ;
String CC_AWAKE_ALARM = LV AD_AWAKE_ALARM ;

Figure 10.16: Example: Aortic Valve Cleaning Cycle Constraints - Derived Model Elements

Similarly, the policy derivation process includes iterating the model from top to bottom.
Based on the configured pattern elements, the tool generates the necessary model elements
automatically. Figure 10.16 demonstrates the derived policy elements.
The backend functions generate a corresponding source code of the policy rules to be

executed during the runtime.
The result of the policy derivation for the aortic valve cleaning cycle constraints are

shown in Listings 10.7, 10.8.



10.4.5 Derivation of Aortic Valve Cleaning Cycle Policy Rules 165

1 package com . materna . medolution . management . showcase . p o l i c y ;
. . .

3 pub l i c c l a s s AVCleaningCycleRestingPol icyRule extends AbstractRule {
pub l i c boolean eva luate ( ExecutionContext context ) throws Exception {

5 Tree managementTree = context . getRuleContext ( ) . s e r v i c e s ( ) . cont rac t ( Tree .
c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;

7 i n t LH_PATIENT_RESTING_min = 80 ;

9 boolean b = f a l s e ;
TreeEvent event = context . getEvent ( ) ;

11 Path path = event . getPath ( ) ;

13 switch ( event . getType ( ) ) {
case NODE_CHANGED:

15 t ry ( SharedSess ion s e s s i o n = managementTree . openSharedSess ion ( nu l l ,
" . " , nu l l ) ) {

NodeData data = s e s s i o n . getNodeValue ( " medolution / dev i ce /mobile−
phone/mobile−phone1XXX/gyroscope /gyroscope1XXX/ s ta tu s / steps−number/data/
value " ) ;

17 i n t STEPS_NUM = ( data . g e t I n t e g e r ( ) != nu l l ? data . g e t I n t e g e r ( ) :
0) ;

i n t LH_ACTIVITY = STEPS_NUM/60 ;
19 i n t LH_PATIENT_RESTING = 1 − LH_ACTIVITY;

21 i f (LH_PATIENT_RESTING < LH_PATIENT_RESTING_min) {
context . g e tP rope r t i e s ( ) . put ( " AVCleaningCycleResting " , " not

r e s t i n g " ) ;
23 b= true ;

} e l s e {
25 context . g e tP rope r t i e s ( ) . remove ( " AVCleaningCycleResting " ) ;

}
27 } catch ( TreeException e ) {

e . pr intStackTrace ( ) ;
29 break ;

}
31 break ;

d e f au l t :
33 break ;

}
35 re turn b ;

}
37

pub l i c void execute ( ExecutionContext context ) throws Exception {
39 St r ing value = "AV c l ean ing cy c l e i s running under c r i t i c a l c ond i t i on s :

" + context . g e tP rope r t i e s ( ) . get ( " AVCleaningCycleResting " ) ;
Tree managementTree = context . getRuleContext ( ) . s e r v i c e s ( ) . cont rac t ( Tree .
c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;

41 t ry ( Exc lu s i v eSe s s i on s e s s i o n = managementTree . openExc lus iveSes s i on ( nu l l
, " . " , nu l l ) ) {

s e s s i o n . setNodeValue ( " medolution /component/ n o t i f i c a t i o n /
not i f icat ion1XXX/ con f i gu r a t i on / lvad−cc−r e s t i ng−alarm/data/ value " ,
NodeData . o f ( va lue ) ) ;

43 } catch ( TreeException e ) {
e . pr intStackTrace ( ) ;

45 }
}

47 }

Listing 10.7: Aortic Valve Cleaning Cycle Resting Policy Rule Java Class



166 10 Case Study: MEDOLUTION

1 package com . materna . medolution . management . showcase . p o l i c y ;
. . .

3 pub l i c c l a s s AVCleaningCycleAwakePolicyRule extends AbstractRule {
pub l i c boolean eva luate ( ExecutionContext context ) throws Exception {

5 Tree managementTree = context . getRuleContext ( ) . s e r v i c e s ( ) . cont rac t ( Tree .
c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;

7 i n t LH_PATIENT_AWAKE_min = 85 ;

9 boolean b = f a l s e ;
TreeEvent event = context . getEvent ( ) ;

11 Path path = event . getPath ( ) ;

13 switch ( event . getType ( ) ) {
case NODE_CHANGED:

15 t ry ( SharedSess ion s e s s i o n = managementTree . openSharedSess ion ( nu l l ,
" . " , nu l l ) ) {

NodeData data = s e s s i o n . getNodeValue ( " medolution / dev i ce / smartwatch
/smartwatch1XXX/ s ta tu s / a s l e ep /data/ value " ) ;

17 i n t ASLEEP = ( data . g e t I n t e g e r ( ) != nu l l ? data . g e t I n t e g e r ( ) : 0) ;
i n t LH_ASLEEP = ASLEEP;

19 i n t LH_PATIENT_AWAKE = 1 − LH_ASLEEP;

21 i f (LH_PATIENT_AWAKE < LH_PATIENT_AWAKE_min) {
context . g e tP rope r t i e s ( ) . put ( " AVCleaningCycleAwake " , " not awake " )

;
23 b= true ;

} e l s e {
25 context . g e tP rope r t i e s ( ) . remove ( " AVCleaningCycleAwake " ) ;

}
27 } catch ( TreeException e ) {

e . pr intStackTrace ( ) ;
29 break ;

}
31 break ;

d e f au l t :
33 break ;

}
35 re turn b ;

}
37

pub l i c void execute ( ExecutionContext context ) throws Exception {
39 St r ing value = "AV c l ean ing cy c l e i s running under c r i t i c a l c ond i t i on s :

" + context . g e tP rope r t i e s ( ) . get ( " AVCleaningCycleAwake " ) ;
Tree managementTree = context . getRuleContext ( ) . s e r v i c e s ( ) . cont rac t ( Tree .
c l a s s ) . execute ( ) . g e tS e r v i c e ( ) ;

41 t ry ( Exc lu s i v eSe s s i on s e s s i o n = managementTree . openExc lus iveSes s i on ( nu l l
, " . " , nu l l ) ) {

s e s s i o n . setNodeValue ( " medolution /component/ n o t i f i c a t i o n /
not i f icat ion1XXX/ con f i gu r a t i on / lvad−cc−awake−alarm/data/ value " , NodeData .
o f ( va lue ) ) ;

43 } catch ( TreeException e ) {
e . pr intStackTrace ( ) ;

45 }
}

47 }

Listing 10.8: Aortic Valve Cleaning Cycle Awake Policy Rule Java Class



Chapter 11

Evaluation

This chapter depicts the evaluation of the elaborated approach on the basis of the conducted
case study presented in Chapter 10:

• The development of the technical management for medical devices and systems in
the proposed approach is measured and evaluated.

• It is shown that the technical management in the proposed approach supports
dependable behavior of medical devices and systems.

11.1 Measurements

The evaluation of technologies can be performed in a product-oriented or process-oriented
way [BE08]. In the first case, the focus of the evaluation is a product itself, in the last
case, the focus is on the assessing the impact of a new technology as a whole on the
existing practices. Thereby, multiple quality models exist. Their purpose is to define,
evaluate and measure the quality by systematic specification of the relevant factors, criteria
and metrics. The normative quality models are universal and are applicable to any kind
of technology, whereas the concrete ones are context-specific, they are tailored to the
individual requirements and environment of the stakeholders [Bäc13]. In order to construct
an individual quality model, several well-known quality models have been considered:
Boehm’s [BBL76], McCall’s [McC77], Gilb’s [Gil88], Schweiggert’s [Sch85] and ISO9126-
1 [ISO01].

For the evaluation of the developed approach, we construct an individual quality model
on the basis of the combination of Schweiggert’s [Sch85] and ISO 9126-1 [ISO01] quality
models. The quality model concentrates on the features which are of essential importance
and most relevant for the introduced requirements and statements (Figure 11.1).

Quality

Usability

User
Performance

Efficiency Time
Behavior

Factor Criteria

Operability

Subfactor

Execution
Efficiency

User
Satisfaction

Figure 11.1: Quality Model for the Evaluation

ISO9126-1 [ISO01] quality model defines the efficiency as "the capability of the software
product to provide desired performance, relative to the amount of resources used, under
stated conditions". In particular, concerning the execution efficiency, the time behavior
is defined as "the capability of the software product to provide appropriate response



168 11 Evaluation

and processing times and throughput rates when performing its function, under stated
conditions."

The usability is defined according to ISO 9126-1 [ISO01] quality model as "the capability
of the software product to be understood, learned, used and attractive to the user, when
used under specified conditions". The operability is defined as "the capability of the software
product to enable the user to operate and control it". ISO 9241-11 [ISO98] explains how
(operational) usability can be evaluated in terms of user performance and user satisfaction
dependent on the context of use. Thereby, user performance is measured by the extent to
which the intended goals of use are achieved and the resources such as time and effort that
have to be expended to achieve the intended goals. Whereas satisfaction is measured by
the extent to which the user finds the use of the product acceptable.

Although the terms above apply to the software products, we resort to these definitions
and transfer the concepts to the definition of the quality model for the developed approach.
The Goal-Question-Metric (GQM) approach, presented in [Bas92] and elaborated in

further detail in [BE08], [Wal11], can be used in order to derive the metrics used for the
measurement of the quality features.
Additionally, as stated in [HS05], the model-based design requires to consider the

following aspects during the evaluation process: the size and complexity of the model as
well as the size of the automatically generated code.

The following sections describe the evaluation of the identified quality factors according
to the chosen quality model by using the GQM approach. Thereby we evaluate the planning
and the runtime phases separately.

11.1.1 Planning Phase
During the planning phase, aside from the conceptual analysis and design, the system
model is to be created. The MoBaSeC tool is used in order to assist the user in the process.

Time Behavior

Following the chosen quality model, we narrow the identified quality factor of the time
behavior during the planning phase down to the capability of the developed approach

• to allow a qualified system designer to create a system model, formulate the require-
ments and initiate the refinement process in the modeling tool and

• to derive from the modeling tool the generated runtime policies within an appropriate
processing time.

Table 11.1 demonstrates the results of the GQM analysis of the time behavior quality
factor of the developed approach during the planning phase.

Goal

Purpose
Issue
Object (process)
Viewpoint

Evaluation of
the time behavior of
the modeling process
from the system designer’s point of view

Question Metric
to be continued. . .



11.1.1 Planning Phase 169

. . .to be continued

Question Metric

Q1: How much time does the system designer
need to produce the model?

M1.1: Time to instantiate the model
M1.2: Time to instantiate the model elements
M1.3: Time to instantiate the policy derivation
patterns
M1.4: Time to instantiate the policy elements
for the expressions and constraints

Q2: How much time does the system designer
need to represent the requirements in the model?

M2.1: Time to configure the initial model ele-
ments
M2.2: Time to configure the policy derivation
patterns
M2.3: Time to configure the policy elements

Q3: How much time does the policy refinement
process take?

M3.1: Time which the system designer needs to
activate the refinement process
M3.2: Time which the tool takes to automati-
cally derive the runtime policies

Table 11.1: GQM for the Time Behavior during the Planing Phase

Experimental Setup

It is obvious that the time and effort spent on the modeling of the system depend
considerably on the complexity and size of the system itself and the number of the defined
requirements and constraints. The experiment has been conducted for the MEDOLUTION
case study presented in Section 10.3.
The initial model for the presented application case encounters 32 model elements and

28 associations between them. Besides, 15 status and 8 configuration variables have been
specified. The model has been extended with 20 policy derivation pattern instances defined
on the management variables: 2 evaluation, 4 control and 14 refinement patterns. Further,
6 policy elements have been defined: 2 policy expressions and 4 constraints. During the
policy refinement process 6 auxiliary policy constructs and 8 runtime management policies
have been generated and added to the model: 2 policy expressions and 6 policy rules. Thus,
the finalized model includes 72 model elements and 97 associations.

The experiment has been conducted on a PC with the following hardware configuration:
Intel R© CoreTM i5-2500, CPU 3.30 GHz, 10 GB RAM with the 64 Bit Windows 7 Profes-
sional SP1 operating system.

Measurements

Table 11.2 demonstrates the time spent on the single tasks in the MoBaSeC tool during
the planning phase of the MEDOLUTION case study.

Task Description Measured Time

Instantiation of the model
(M1.1)

Per mouse click the "New Model.." menu item
of the menu bar is chosen. The name, storage
location as well as the corresponding metamodel
are chosen.

10 sec

to be continued. . .



170 11 Evaluation

. . .to be continued

Task Description Measured Time

Instantiation of the model
elements (M1.2)

The corresponding metamodel element types are
put per drag-and-drop into the model. The ele-
ments are arranged as desired.

5 min

Configuration of the initial
model elements (M2.1)

The model elements are renamed as needed. The
associations between the model elements are
modeled.

3 min

Instantiation of the policy
derivation patterns (M1.3)

The corresponding metamodel element types are
put per drag-and-drop into the model. The ele-
ments are arranged as desired.

3 min

Configuration of the policy
derivation patterns (M2.2)

The policy patterns are connected with the asso-
ciated management variables. The patterns are
parametrized with the source code.

5 min

Instantiation of the policy
elements for the expressions
and constraints (M1.4)

The corresponding metamodel element types are
put per drag-and-drop into the model. The ele-
ments are arranged as desired.

3 min

Configuration of the policy
elements (M2.3)

The policy elements are connected with the as-
sociated management variables. The policy ele-
ments are parametrized with the corresponding
values.

3 min

Policy refinement process
(M3.1, M3.2)

Per mouse click the "Policy Refinement" menu
item of the menu bar is chosen. The target loca-
tion of the policy files is chosen. The refinement
process is started and performs automatically.

20 sec

Table 11.2: MEDOLUTION Case Study: Measured Time Effort Per Task

The tasks are listed in the chronological order as they are performed during the planning
phase. The used metrics as well as the measured time are provided.

Evaluation

The modeling of the system is a straightforward process. After the standard procedures
of the requirements analysis, the technical structure of the system is designed: the main
components are identified, the interfaces are defined and the requirements are set. On this
basis, the system model including the management artifacts is created. For this purpose,
the modeling tool is used. The in advance elaborated metamodel is used in order to
build the system model. The model elements are initiated and configured by the user.
The requirements and constraints are modeled by means of the corresponding abstract
policy elements. The back-end functions of the modeling tool generate automatically
the management artifacts (refined policies and configurations) ready to be used by the
management system during the runtime. As the measurements have shown, the modeling
process of the demonstration use case (Chapter 10) in the MoBaSeC tool including the
derivation of the runtime policies and configurations has taken under 23 minutes.

We assume, that the developed approach (including the specialized medical metamodel
and policy derivation patterns) can support a qualified system designer in the process of
the development of the automated technical management for other comparable medical use
cases. The time and effort spent during the planning phase can be evaluated as definitely
appropriate, provided that the modeling process is conducted under the similar conditions
(e.g., use case complexity, used hardware, management scenario).



11.1.1 Planning Phase 171

Operability

Following the chosen quality model, we narrow the identified subfactor of operability down
to the criteria of user performance and satisfaction while using the modeling tool during
the planning phase. They are reflected in the suitability of the used approach to

• enable the user to operate the tool and

• support the user to control it.

While choosing the appropriate metrics for the evaluation, we adopt several metrics from
ISO 9241-110 [ISO95]. Table 11.3 demonstrates the results of the GQM analysis for the
operability of the developed approach during the planning phase.

Goal

Purpose
Issue
Object (process)
Viewpoint

Evaluation of
the operability of
the modeling process
from the system designer’s point of view

Question Metric
Q1: Is the tool suitable for the modeling process? M1.1: Proportion of the model elements that

have been presented in the model
M1.2: Proportion of the requirements that have
been presented in the model
M1.3: Ease of replacing a model element
M1.4: Ease of metamodel compatibility check
in the model

Q2: How self-descriptive and intuitive is the
modeling process for the system designer?

M2.1: Ease of understanding the model elements
and their relationships

Q3: How comfortable is the modeling process? M3.1: Ease of handling the model elements and
their relationships
M3.2: Proportion of the elements that can be
made persistent
M3.3: Clarity of the visual representation of the
model structure

Q4: How customizable are the single elements
of the model?

M4.1: Configurability of the model elements
M4.2: Configurability of the policy derivation
patterns

Table 11.3: GQM for the Operability

Experimental Setup

The experimental setup is identical to the one presented in the section above. The MoBaSeC
tool is used to model the demonstration case under the same conditions (e.g., used hardware,
management scenario).

Measurements

The evaluation of the operability has been performed while conducting the modeling
process in the MoBaSeC tool. All the identified model elements and the requirements
have been presented in the model (M1.1) and (M1.2). The model is presented as a graph
structure where the graph nodes stand for the model elements and the graph edges present



172 11 Evaluation

the elements’ associations. This form of representation is intuitive, natural and easy to
understand for the target user, i.e. system designer, (M2.1).

As the model elements are placed into the model or connected with each other, a direct
metamodel compatibility check is performed by the MoBaSeC tool (M1.4) .
The ergonomics of the approach relies on the advantages of the MoBaSeC tool. Thus,

the drag-and-drop function supports a comfortable instantiation of the model elements
(M3.1) . The elements can be added to and also deleted from the model quickly as needed
(M1.3) . This is beneficial in the sense of the usage comfort, since the process of modeling
is a creative task and needs most likely several iterations. The drag-and-drop function
allows the user to layout and organize the model elements quickly in the desired manner
(M3.3). The layout as well as all the modeled elements can be persisted as needed any
time (M3.2).
The size of the model itself is quite extensive. The graphical representation, however,

makes the display of the model clear and intuitive in contrast to the textual or formal
representation (M2.1). In order to avoid the potential complexity in case of a large number
of the model elements, there are several MoBaSeC functions to point out.
Thus, the tool allows to employ multiple views (M3.3), so that the user can better

concentrate on the specific point of view. For each view only the model elements of interest
are shown, the not relevant ones are faded out. E.g., for the presented system model
including 72 model elements and 97 associations 5 different views have been used, in order
to reduce the number of simultaneously visible model elements.

Another ergonomic function is that the management variables are presented as separate
elements assigned to the corresponding parent elements. The parent model element is
implemented as a folder which can be expanded per mouse click if needed. This allows
to model the associations between the management variables in a comfortable manner by
pulling an edge between the corresponding model elements (M3.3). In case the management
variables need not to be seen, the parent node can be just folded up.

The model elements as well as the policy derivation patterns are configured initially
by the system designer. For this purpose, they are provided with input masks, e.g. for
inputting the thresholds values (M4.1) or text fields, e.g. for providing a source code for the
refinement functions (M4.2), so that the user can configure them in a comfortable manner.
The patterns are placed per drag-and-drop into the model, connected to the associated
model elements and parametrized with the corresponding values.

Evaluation

The experiments have shown that the system designer while using the MoBaSeC tool can
perform the modeling process of the in Chapter 10 demonstration use case in a comfortable
manner. We assume, that the developed approach (including the specialized medical
metamodel and policy derivation patterns) can support a qualified system designer in
the process of modeling and policy derivation for any other medical use case in the same
comfortable manner.

11.1.2 Runtime Phase

During the runtime phase, the management artifacts (i.e. the derived management policies,
configurations, management tree) are used by the runtime management system presented
in Chapter 7 in order to support the management process.



11.1.2 Runtime Phase 173

Time Behavior

Following the chosen quality model, we narrow the identified quality factor of the time
behavior during the runtime phase down to the capability of the developed approach to
provide the technical management, which

• has appropriate response and processing time and

• causes acceptable overhead and load while performing its function.

Table 11.4 demonstrates the results of the GQM analysis of the time behavior quality
factor of the developed approach during the runtime phase.

Goal

Purpose
Issue
Object (process)
Viewpoint

Evaluation of
the time behavior of
the technical management during the runtime
from the system administrator’s point of view

Question Metric
Q1: What is the processing speed of the man-
agement operations?

M1.1: Execution time of a policy expression
M1.2: Execution time of a policy rule

Q2: How much time does it take to deploy the
management system and make it ready for use?

M2.1: Time to start and configure the runtime
environment
M2.2: Time to deploy the management system
and artifacts

Q3: What is the time overhead caused by the
management?

M3.1: System startup delay caused by the de-
ployment of the management system
M3.2: Delay caused by the operation of the
management system at runtime

Table 11.4: GQM for the Time Behavior during the Runtime Phase

Experimental Setup

A demonstration scenario has been elaborated for the MEDOLUTION case study presented
in Section 10.3. It included the deployment of the management system and the generated
artifacts (i.e. policy rules and policy expressions) as well as the exemplary invocation of
the policies. Each of the refined 2 policy expressions and 6 policy rules have been evaluated
once during the demonstration scenario. That means 2 policy evaluation requests have
taken place and 6 times a constraint violation has caused that a policy rule has been
invoked.

The experiment has been conducted on a PC with the following hardware configuration:
Intel R© CoreTM i5-2500, CPU 3.30 GHz, 10 GB RAM with the 64 Bit Windows 7 Profes-
sional SP1 operating system. As an execution platform for the demonstration scenario the
Eclipse Equinox 4.6.2 OSGi platform has been chosen.

Measurements

During the experiment, the execution of the policy rules has taken about 5-13 ms each
(M1.2). The policy expression evaluation requests have taken about 7-16 ms (M1.1).

Further, a rough estimate of the policy execution time in the worst case has been
made. For this purpose, the structure of the policy has to be looked at. The main



174 11 Evaluation

time expenditure of a policy invocation can be reduced to the time expenditure of the
management tree accesses. Thus, it is to estimate how many management tree accesses
pro policy take place. The invocation of a policy rule comprises two relevant methods:
the evaluate(ExecutionContext context) method which corresponds to the event-condition
part of the rule and the execute(ExecutionContext context) method which realizes the
action part of the policy rule. The number of the relevant management tree accesses is
summarized for each method in the Table 11.5.

Policy Type Method Reading Tree Accesses Writing Tree Accesses

Policy rule evaluate()
execute()

number of status variables
0

0
number of configuration variables

Policy expression evaluate() number of status variables 0

Table 11.5: Management Tree Accesses

Thereby, the number of the related configuration and status variables varied from 1 to
2 pro policy. It is obvious, that in general the number of the associated management
variables can be greater but it is limited by the underlying model.

In order to evaluate how long does it take to perform a single management tree access,
the following aspects are to be considered: the tree access session type (shared, exclusive,
transactional), the access type (get, set, create, delete), the path length, and the variable
type. The correct usage of the management tree supposes that the data access session is
opened as low as possible in the management tree structure. Thus, in the worst case the
session is opened on the root element. That means in case of an exclusive or a transactional
session the access to the other management variables is not possible for the time duration
of the session. The maximal time duration can be set by the developer in the configuration.
In the demonstration scenario, this setting of the maximal validation time was set to 10
minutes and the setting of the maximal inactive timeout was set to 5 minutes.

Depending on the invocation strategy of the policy expression evaluation, a policy request
call can block the program run or not. In the demonstration scenario, we have used the
strategy, which returns the evaluation request immediately. So that the there has been
no delay in the application run caused by the invocation of policies (M3.2). Otherwise
the evaluation request can block until the calculation completes but not later than the
predefined timeout. That means the developer has a control on the time overhead.

The time needed for the deployment of the management system and making it ready for
the use has been measured, also.

Task Description Time Effort

Deployment of
Runtime Environment
(M1.1)

OSGi Framework start, initialization and start of bundles
(18 framework, 17 management system, 2 demonstration
scenario bundles)

15 sec

Deployment of
Management System
(M1.2)

Parsing of the DDF schema
(1 root, 8 devices and 7 components schemas)
Management tree initialization and start
Setting the initial values of the management variables
(15 configuration variables)
Registration of policy rules and expressions by the manage-
ment services (6 policy rules, 2 policy expressions)

3 sec

2 sec
1 sec

2 sec

Table 11.6: Time Expenditure for Deployment



11.1.2 Runtime Phase 175

Table 11.6 summarizes the time expenditure for the single deployment steps. The overall
time expenditure for the management system deployment in the presented demonstration
case using the above mentioned hardware configuration has amounted to 22 seconds (M2.1,
M2.2). Since the deployment of the management system and artifacts is performed inde-
pendently of the application run, the time overhead caused by it, is zero (M3.1).

Evaluation

The experiments have shown, that the management operations are performed within an
appropriate time. We assume, that the same performance is to be expected for other
comparable application use cases, provided that the runtime management is conducted
under similar conditions (e.g., use case complexity, used hardware, management scenario).
The overhead, which the usage of the management system causes, is minor.

Operability

Following the chosen quality model, the identified subfactor of operability comprises the
administrator’s performance and satisfaction while using the management system during
the runtime phase. In other words, we evaluate, whether the developed approach

• allows a qualified administrator to deploy, configure and operate the management
system with the included management artifacts (also while using self-contained
applications) in a comfortable manner as well as

• supports him to control it (e.g. update, reconfigure) during the runtime in an
appropriate way.

Goal

Purpose
Issue
Object (process)
Viewpoint

Evaluation of
the operability of
the management system at runtime
from the administrator’s point of view

Question Metric
Q1: Is the approach suitable for the management
of self-contained applications?

M1.1: Ease of making a self-contained applica-
tion manageable

Q2: How comfortable is the operation of the
management system at runtime?

M2.1: Ease of deploying the management sys-
tem
M2.2: Ease of deploying new policies

Q3: How configurable is the management system
at runtime?

M3.1: Ease of replacing policies at runtime
M3.2: Ease of activation and deactivation of
policies at runtime

Table 11.7: GQM for the Operability

Experimental Setup

The experimental setup is identical to the one presented in the section above. The
Patient Monitoring Application and Ambient Condition Application are supposed to be
self-contained and are made manageable during the experiment.



176 11 Evaluation

Measurements

In order to be made manageable, the Patient Monitoring Application and Ambient Condition
Application have been extended. Namely, the required configuration and status management
variables have been labeled in the source code correspondingly. E.g. the Ambient Condition
Bundle has been provided with the two status variables T (for temperature) and H (for
humidity), the Patient Monitoring Bundle has been provided with the configuration variable
DATA_FILTER (for the setting of the used data filter). The policy evaluation requests
of the Ambient Environment Policy Expression and Aortic Valve Cleaning Cycle Policy
Expression have been added to the source code. For a qualified developer or administrator,
the effort has been marginal (M1.1).
The realization of the management system and the demonstration scenario on the basis of
the OSGi framework has brought a lot of advantages during the runtime phase. The correct
order of the deployment is ensured by means of the OSGi-specific on-board instruments.
After starting the OSGi framework, the management system is initialized and started.
Before the demonstration use case is started the active DDF schema is parsed so that the
management tree can be initialized and filled with the initial values. Thus, the native
support of the lifecycle management of components facilitates the comfortable deployment
of the management system and its configurations (M2.1).

Because the policies are packaged as OSGi bundles, they have been registered dynamically
at runtime easily (M2.2). As needed the policies have been activated or deactivated by the
system administrator. This is possible due to the service-oriented design of the management
functions (i.e. rule service and expression service) (M3.2).

The OSGi native management of inter-component dependencies and the modular design
ensure the simplified dynamic update. The components can be started and stopped without
the need for shutting down the whole system. Thus, the changes in the system model as well
as the requirements can be easily transferred to the new configuration of the management
system. That means that the bundle with the new management policies can just replace
the old one during the runtime phase (M3.1).

Evaluation

If sources are available, the effort needed for making a self-contained application manageable
is assumed to be acceptable, provided that the task is completed by the qualified professional.
Owing to realization in OSGi, the operation of the management system at runtime

is comfortable. It concerns both the deployment of the required infrastructure and the
management system itself with its configurations. Moreover, the approach allows the
administrator to control the management system at runtime in a comfortable manner.

11.2 Dependable Behavior

In order to show that the technical management, in the proposed approach supports
dependable behavior of medical devices and systems, we regard the effects it has had on
the system in the demonstration scenario described in Chapter 10.

In particular, we evaluate, if the availability, reliability and safety of the system have been
improved due to the use of the technical management. That means, we look specifically at
the occurrence of predictable and/or avoidable

• system failures or breakdowns,



11.2.1 Policy Rules 177

• emergency stops on the part of the application,

• omissions of critical blocks or functions,

caused by

• unfavorable ambient conditions,

• deficient and/or defective operating resources,

• system state

and handled by the technical management.
During the evaluation process, we resort to Event Tree Analysis (ETA) as a basic

technique, performing a bottom up forward error analysis [Lev95], [Eri05], [Sut14].
In the following sections we look at the policy rules and expressions used by the

management system within the presented application scenario.

11.2.1 Policy Rules
The demonstration scenario has included 4 constraints which have been refined into 6
policy rules. One of the very important constraints identified during the requirements
analysis was the ambient temperature constraint.

Ambient Temperature Constraint

The performance of the batteries can drastically decrease or turn unpredictable at very low
and high temperatures. For this reason, the management monitors the ambient temperature
in order to stay within the allowed range.

If the management detects that the temperature is out of the safe zone, it configures the
notification service accordingly. When the temperature reaches the safe zone again, the
management reconfigures the notification service.

Goals

• Continuous as possible operation of the LVAD at temperatures that do not impair
the function of the LVAD batteries

• Reduction of occurrence of terminations caused by the improper function of the
LVAD batteries due to the ambient condition

• The patient stays informed about the possible risk of the battery malfunction induced
by unsuitable temperature

Hazards

• The function of LVAD batteries is impaired, since they are exposed to extreme
temperatures; the operation of the system terminates

• The patient is not informed that the temperature has reached the allowed range
again

Before performing the event tree analysis, the exceptions which can interrupt the correct
course of action are to be defined.



178 11 Evaluation

A
m

bi
en

tOt
em

pe
ra

tu
re

O
ge

ts
Ob

el
ow

Oth
eO

al
lo

w
e

dO
m

in
im

um

LV
A

D
Ob

at
te

ry
Op

ro
b

ab
ly

Ofa
ils

,O
te

rm
in

at
io

nO
of

Oo
pe

ra
tio

n

co
nt

in
uo

u
sO

op
er

at
io

n

P
at

ie
nt

O
un

de
rt

ak
es

Oa
co

rr
e

ct
iv

eO
ac

tio
n

T
he

On
ot

ifi
ca

tio
n

se
rv

ic
eO

no
tif

ie
s

th
eO

pa
tie

nt

T
he

Or
ea

la
te

dO
co

nf
ig

ur
at

io
n

va
ria

b
le

Oo
fOt

he
no

tif
ic

at
io

nO
se

rv
ic

eO
is

Os
et

Oo
n

Rt
oo

Oc
ol

dR

A
m

bi
en

tT
em

p
er

at
ur

eO
n

C
on

tr
ol

le
rP

ol
ic

yR
ul

eO
ev

al
ua

te
sO

th
eO

va
lu

eO
as

Rt
oo

Oc
ol

dR

P
ol

ic
yO

ru
le

O
A

m
bi

en
tT

em
p

er
at

ur
e

O
nC

on
tr

ol
le

rP
ol

ic
yR

ul
e

fir
es

T
he

Or
el

at
ed

Os
ta

tu
s

va
ria

b
le

Oin
Oth

eO
m

an
ag

em
en

tOt
re

e
is

Os
et

Ow
ith

Oth
eO

cu
rr

e
nt

Ov
al

ue

co
nt

in
uo

u
sO

op
er

at
io

n

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

In
iti

at
in

gO
ev

en
t

O
ut

co
m

e

LV
A

D
Ob

at
te

ry
Op

ro
b

ab
ly

Ofa
ils

,O
te

rm
in

at
io

nO
of

Oo
pe

ra
tio

n
co

nt
in

uo
u

sO
op

er
at

io
n

LV
A

D
Ob

at
te

ry
Op

ro
b

ab
ly

Ofa
ils

,O
te

rm
in

at
io

nO
of

Oo
pe

ra
tio

n
co

nt
in

uo
u

sO
op

er
at

io
n

LV
A

D
Ob

at
te

ry
Op

ro
b

ab
ly

Ofa
ils

,O
te

rm
in

at
io

nO
of

Oo
pe

ra
tio

n
co

nt
in

uo
u

sO
op

er
at

io
n

LV
A

D
Ob

at
te

ry
Op

ro
b

ab
ly

Ofa
ils

,O
te

rm
in

at
io

nO
of

Oo
pe

ra
tio

n
co

nt
in

uo
u

sO
op

er
at

io
n

LV
A

D
Ob

at
te

ry
Op

ro
b

ab
ly

Ofa
ils

,O
te

rm
in

at
io

nO
of

Oo
pe

ra
tio

n

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

Figure 11.2: Event Tree Analysis: Ambient Temperature Constraint ("too cold")



11.2.1 Policy Rules 179

A
m

bi
en

tLt
em

pe
ra

tu
re

L
ge

ts
La

bo
ve

Lth
eL

al
lo

w
e

dL
m

ax
im

um

P
at

ie
nt

L
no

tic
es

La
nd

st
ep

sL
in

T
he

Ln
ot

ifi
ca

tio
n

se
rv

ic
eL

no
tif

ie
s

th
eL

pa
tie

nt

T
he

Lr
ea

la
te

dL
co

nf
ig

ur
at

io
n

va
ria

b
le

Lo
fLt

he
no

tif
ic

at
io

nL
se

rv
ic

eL
is

Ls
et

Lo
n

Dt
oo

Lh
ot

D

A
m

bi
en

tT
em

p
er

at
ur

eO
n

C
on

tr
ol

le
rP

ol
ic

yR
ul

eL
ev

al
ua

te
sL

th
eL

va
lu

eL
as

Dt
oo

Lh
ot

D

P
ol

ic
yL

ru
le

L
A

m
bi

en
tT

em
p

er
at

ur
e

O
nC

on
tr

ol
le

rP
ol

ic
yR

ul
e

fir
es

T
he

Lr
el

at
ed

Ls
ta

tu
s

va
ria

b
le

Lin
Lth

eL
m

an
ag

em
en

tLt
re

e
is

Ls
et

Lw
ith

Lth
eL

cu
rr

e
nt

Lv
al

ue

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

In
iti

at
in

gL
ev

en
t

LV
A

D
Lb

at
te

ry
Lp

ro
b

ab
ly

Lfa
ils

,L
te

rm
in

at
io

nL
of

Lo
pe

ra
tio

n

co
nt

in
uo

u
sL

op
er

at
io

n

co
nt

in
uo

u
sL

op
er

at
io

n

su
cc

es
s

fa
ilu

re
LV

A
D

Lb
at

te
ry

Lp
ro

b
ab

ly
Lfa

ils
,L

te
rm

in
at

io
nL

of
Lo

pe
ra

tio
n

co
nt

in
uo

u
sL

op
er

at
io

n

LV
A

D
Lb

at
te

ry
Lp

ro
b

ab
ly

Lfa
ils

,L
te

rm
in

at
io

nL
of

Lo
pe

ra
tio

n
co

nt
in

uo
u

sL
op

er
at

io
n

LV
A

D
Lb

at
te

ry
Lp

ro
b

ab
ly

Lfa
ils

,L
te

rm
in

at
io

nL
of

Lo
pe

ra
tio

n
co

nt
in

uo
u

sL
op

er
at

io
n

LV
A

D
Lb

at
te

ry
Lp

ro
b

ab
ly

Lfa
ils

,L
te

rm
in

at
io

nL
of

Lo
pe

ra
tio

n
co

nt
in

uo
u

sL
op

er
at

io
n

LV
A

D
Lb

at
te

ry
Lp

ro
b

ab
ly

Lfa
ils

,L
te

rm
in

at
io

nL
of

Lo
pe

ra
tio

n

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

Figure 11.3: Event Tree Analysis: Ambient Temperature Constraint ("too hot")



180 11 Evaluation

A
m

bi
en

t t
em

pe
ra

tu
re

 
ge

ts
 w

ith
in

 th
e 

al
lo

w
e

d 
ra

ng
e

co
nt

in
uo

u
s 

op
er

at
io

n

T
he

 n
ot

ifi
ca

tio
n

se
rv

ic
e 

no
tif

ie
s

th
e 

pa
tie

nt

T
he

 r
ea

la
te

d 
co

nf
ig

ur
at

io
n

va
ria

b
le

 o
f t

he
no

tif
ic

at
io

n 
se

rv
ic

e 
is

 s
et

 o
n

"w
ith

in
 th

e 
ra

ng
e

"

A
m

bi
en

tT
em

p
er

at
ur

eO
ff

C
on

tr
ol

le
rP

ol
ic

yR
ul

e 
ev

al
ua

te
s 

th
e 

va
lu

e 
as

"w
ith

in
 th

e 
ra

ng
e"

P
ol

ic
y 

ru
le

 
A

m
bi

en
tT

em
p

er
at

ur
e

O
ffC

on
tr

ol
le

rP
ol

ic
yR

ul
e

fir
es

T
he

 r
el

at
ed

 s
ta

tu
s

va
ria

b
le

 in
 th

e 
m

an
ag

em
en

t t
re

e
is

 s
et

 w
ith

 th
e 

cu
rr

e
nt

 v
al

ue

co
nt

in
uo

u
s 

op
er

at
io

n
bu

t p
at

ie
nt

 is
 n

ot
 in

fo
rm

ed

co
nt

in
uo

u
s 

op
er

at
io

n
bu

t p
at

ie
nt

 is
 n

ot
 in

fo
rm

ed

co
nt

in
uo

u
s 

op
er

at
io

n
bu

t p
at

ie
nt

 is
 n

ot
 in

fo
rm

ed

co
nt

in
uo

u
s 

op
er

at
io

n
bu

t p
at

ie
nt

 is
 n

ot
 in

fo
rm

ed

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re
co

nt
in

uo
u

s 
op

er
at

io
n

bu
t p

at
ie

nt
 is

 n
ot

 in
fo

rm
ed

In
iti

at
in

g 
ev

en
t

Figure 11.4: Event Tree Analysis: Ambient Temperature Constraint ("within the range")



11.2.2 Policy Expressions 181

Exceptions

• The temperature service has not exposed the status by means of status variables
correctly

• The management has not recognized the dangerous temperature

• The management has not set the configuration variable of the notification service
correctly

• The notification service has produced no alarm

• The patient has not noticed the alarm and/or undertaken a corrective action.

Figures 11.2-11.4 show the event tree analysis performed for the ambient temperature
constraint. The violation and the satisfaction of the constraint is caused primarily as
the temperature crosses the specified allowed range. Thus, three initiating events can be
identified: the temperature gets below the allowed minimum, the temperature gets above
the allowed maximum, and the temperature gets within the allowed range again.
In any case, the related status variable in the management tree is set with the cor-

responding value. If this action is to succeed, a corresponding policy rule fires: the
AmbientTemperatureOnControllerPolicyRule, in case the temperature is out of the allowed
range, or the AmbientTemperatureOffControllerPolicyRule, if the temperature returns
back to the allowed range. The fired policy evaluates the value of the status variable and
interprets the ambient temperature according to the calculation rule as "too cold", "too
hot" or "within the allowed range" accordingly. Afterward, the configuration variable of
the notification service in the management tree is set to the corresponding value. The
notification service is reconfigured and notifies the patient about the ambient temperature
status.
The patient notices the notification and can perform a corresponding action, e.g. wrap

the LVAD battery or resort to a place with a more appropriate ambient temperature. In
case that any of the management functions fails, there still exists a probability, that the
patient acts on his own initiative without the interference of the management system.

On the contrary, in the worst case, the exposure to the extreme temperatures can cause
an unreliable behavior of the LVAD batteries which can suddenly fail. If the notification
of the patient about the return of the temperature to the allowed range fails, it can only
cause that the patient stays uninformed. The function of the LVAD battery is not impaired
or affected.

11.2.2 Policy Expressions
The demonstration scenario has included 2 policy expressions to be evaluated by the
management system during the runtime. One of them was the ambient environment
expression.

Ambient Environment Expression

It is typical for the LVAD-supported patients, that certain activities (e.g. physical activity)
should be conducted within an appropriate ambient environment, otherwise a failure or
termination on the part of monitoring application are very likely due to physiological strain.
Thus, before entering some critical code blocks, the application can explicitly request the
management to evaluate the ambient environment expression, which is calculated on the
basis of the heat index in the demonstration scenario. Based upon the evaluation, the



182 11 Evaluation

application can decide whether to enter the critical block or not.

Goals
• Critical functions, like e.g. physical activity, are to be safely omitted, in case a failure

or termination are very likely due to the physiological strain of the LVAD-supported
patient caused by the ambient heat index

• Reduction in occurrence of terminations or failures during the execution of critical
functions

• Unnecessary omissions of critical functions are to be avoided

Hazards
• A failure or termination occurs during performing a critical function, like e.g. physical

activity

Before performing an event tree analysis, the exceptions which can interrupt the correct
course of action are to be defined.

Exceptions
• The temperature service and/or the humidity service have not exposed their status
by means of status variables correctly

• The management has failed to read the status variables correctly

• The management has not evaluated the heat index correctly

• The application fails to interpret the expression value correctly

Figures 11.5-11.7 show the event tree analysis performed for the evaluation of the ambient
environment expression. Assume, the ambient environment can be evaluated as "safe",
"unfavorable" and "hazardous". We regard three initiating events: before entering a critical
block, the application requests the evaluation of the policy expression as the condition is
"safe", "unfavorable" and "hazardous".

The application request initiates, that the policy expression AmbientEnvironmentPolicy-
Expression fires. If the action succeeds, the values of the corresponding status variables
of the temperature and the humidity services are read from the management tree. The
fired policy evaluates the values and interprets the ambient environment according to the
calculation rule of the heat index as "safe", "unfavorable" or "hazardous". The value is
returned to the requesting application. The reaction of the application on the evaluated
request is up to the application itself: it can enter the critical block or omit it.

In case the condition is "safe" and the application enters the critical block, the operation
will continue normally, avoiding the critical block would be unnecessary. In case the
condition is "unfavorable" and the application enters the critical block, the operation will
possibly terminate or fail. If it does not enter the critical block, it is safely omitted. In
case the condition is "hazardous", entering the critical block will most probably cause
termination or failure. If not, the critical block will be safely omitted.
Thus, the decision about entering critical blocks is still up to the application. The

management, however, helps to gain additional knowledge, which allows to avoid escaping
critical blocks unnecessarily or entering them, if they possibly or most probably will be
terminated anyway. That means the risk of a failure or termination during the runtime is
reduced.



11.2.2 Policy Expressions 183

A
pp

lic
at

io
n 

re
q

ue
st

s
th

e 
ev

al
ua

tio
n 

of
 th

e 
am

bi
e

nt
 e

nv
iro

n
m

en
t

in
 c

as
e 

of
 a

 "
sa

fe
"

co
nd

iti
on

th
e 

cr
iti

ca
l b

o
ck

 is
om

itt
ed

 u
nn

ec
es

sa
ril

y

co
nt

in
uo

u
s 

op
er

at
io

n

T
he

 a
pp

lic
at

io
n 

en
te

rs
 a

 c
rit

ic
al

 b
lo

ck
 

in
 th

e 
ap

pl
ic

at
io

n 
co

de
 

A
m

bi
en

tE
nv

iro
nm

e
nt

P
ol

ic
yE

xp
re

ss
io

n
re

tu
rn

s 
"s

af
e"

 to
 

th
e 

ap
pl

ic
a

tio
n

A
m

bi
en

tE
nv

iro
nm

e
nt

P
ol

ic
yE

xp
re

ss
io

n
ev

al
ua

te
s 

th
e 

va
lu

e 
as

"s
af

e"

T
he

 r
el

at
ed

 s
ta

tu
s 

va
ria

b
le

s 
of

 th
e

te
m

pe
ra

tu
re

 a
nd

 
hu

m
id

ity
 s

er
vi

ce
s 

ar
e 

re
ad

P
ol

ic
y 

ex
p

re
ss

io
n

A
m

bi
en

tE
nv

ir
on

m
e

nt
P

ol
ic

yE
xp

re
ss

io
n

fir
es su

cc
es

s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

In
iti

at
in

g 
ev

en
t

O
ut

co
m

e

su
cc

es
s

fa
ilu

re

th
e 

cr
iti

ca
l b

o
ck

 is
om

itt
ed

 u
nn

ec
es

sa
ril

y

co
nt

in
uo

u
s 

op
er

at
io

n

th
e 

cr
iti

ca
l b

o
ck

 is
om

itt
ed

 u
nn

ec
es

sa
ril

y

co
nt

in
uo

u
s 

op
er

at
io

n

th
e 

cr
iti

ca
l b

o
ck

 is
om

itt
ed

 u
nn

ec
es

sa
ril

y

co
nt

in
uo

u
s 

op
er

at
io

n

th
e 

cr
iti

ca
l b

o
ck

 is
om

itt
ed

 u
nn

ec
es

sa
ril

y

co
nt

in
uo

u
s 

op
er

at
io

n

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

Figure 11.5: Event Tree Analysis: Ambient Environment Evaluation ("safe condition")



184 11 Evaluation

A
pp

lic
at

io
n 

re
q

ue
st

s
th

e 
ev

al
ua

tio
n 

of
 th

e 
am

bi
e

nt
 e

nv
iro

n
m

en
t

in
 c

as
e 

of
 a

n 
"u

nf
av

o
ra

bl
e

"
co

nd
iti

on

th
e 

cr
iti

ca
l b

o
ck

 is
sa

fe
ly

 o
m

itt
ed

po
ss

ib
ly

 a
 te

rm
in

at
io

n 
or

 
fa

ilu
re

T
he

 a
pp

lic
at

io
n 

en
te

rs
 a

 c
ri

tic
al

 b
lo

ck
 

in
 th

e 
ap

pl
ic

at
io

n 
co

de
 

A
m

bi
en

tE
nv

ir
on

m
e

nt
P

ol
ic

yE
xp

re
ss

io
n

re
tu

rn
s 

"u
nf

av
or

a
bl

e"
to

 th
e 

ap
pl

ic
at

io
n

A
m

bi
en

tE
nv

iro
nm

e
nt

P
ol

ic
yE

xp
re

ss
io

n
ev

al
ua

te
s 

th
e 

va
lu

e 
as

"u
nf

av
or

ab
le

"

T
he

 r
el

at
ed

 s
ta

tu
s 

va
ria

b
le

s 
of

 th
e

te
m

pe
ra

tu
re

 a
nd

 
hu

m
id

ity
 s

er
vi

ce
s 

ar
e 

re
ad

P
ol

ic
y 

ex
p

re
ss

io
n

A
m

bi
en

tE
nv

iro
nm

e
nt

P
ol

ic
yE

xp
re

ss
io

n
fir

es su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

In
iti

at
in

g 
ev

en
t

O
ut

co
m

e

su
cc

es
s

fa
ilu

re

th
e 

cr
iti

ca
l b

o
ck

 is
sa

fe
ly

 o
m

itt
ed

po
ss

ib
ly

 a
 te

rm
in

at
io

n 
or

 
fa

ilu
re

th
e 

cr
iti

ca
l b

o
ck

 is
sa

fe
ly

 o
m

itt
ed

po
ss

ib
ly

 a
 te

rm
in

at
io

n 
or

 
fa

ilu
re

th
e 

cr
iti

ca
l b

o
ck

 is
sa

fe
ly

 o
m

itt
ed

po
ss

ib
ly

 a
 te

rm
in

at
io

n 
or

 
fa

ilu
re

th
e 

cr
iti

ca
l b

o
ck

 is
sa

fe
ly

 o
m

itt
ed

po
ss

ib
ly

 a
 te

rm
in

at
io

n 
or

 
fa

ilu
re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

Figure 11.6: Event Tree Analysis: Ambient Environment Evaluation ("unfavorable condition")



11.2.2 Policy Expressions 185

A
pp

lic
at

io
nO

re
q

ue
st

s
th

eO
ev

al
ua

tio
nO

of
Oth

eO
am

bi
e

nt
Oe

nv
iro

n
m

en
t

in
Oc

as
eO

of
Oa

O"
ha

za
rd

ou
s"

co
nd

iti
on

th
eO

cr
iti

ca
lOb

o
ck

Ois
sa

fe
ly

Oo
m

itt
ed

m
os

tOp
ro

b
ab

ly
aO

te
rm

in
at

io
nO

or
Ofa

ilu
re

T
he

Oa
pp

lic
at

io
nO

en
te

rs
Oa

Oc
rit

ic
al

Ob
lo

ck
O

in
Oth

eO
ap

pl
ic

at
io

nO
co

de
O

A
m

bi
en

tE
nv

iro
nm

e
nt

P
ol

ic
yE

xp
re

ss
io

n
re

tu
rn

sO
"h

az
ar

d
ou

s"
to

Oth
eO

ap
pl

ic
at

io
n

A
m

bi
en

tE
nv

iro
nm

e
nt

P
ol

ic
yE

xp
re

ss
io

n
ev

al
ua

te
sO

th
eO

va
lu

eO
as

"h
az

ar
do

us
"

T
he

Or
el

at
ed

Os
ta

tu
sO

va
ria

b
le

sO
of

Oth
e

te
m

pe
ra

tu
re

Oa
nd

O
hu

m
id

ity
Os

er
vi

ce
sO

ar
eO

re
ad

P
ol

ic
yO

ex
p

re
ss

io
n

A
m

bi
en

tE
nv

ir
on

m
e

nt
P

ol
ic

yE
xp

re
ss

io
n

fir
es su

cc
es

s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

In
iti

at
in

gO
ev

en
t

O
ut

co
m

e

su
cc

es
s

fa
ilu

re

th
eO

cr
iti

ca
lOb

o
ck

Ois
sa

fe
ly

Oo
m

itt
ed

m
os

tOp
ro

b
ab

ly
aO

te
rm

in
at

io
nO

or
Ofa

ilu
re

th
eO

cr
iti

ca
lOb

o
ck

Ois
sa

fe
ly

Oo
m

itt
ed

m
os

tOp
ro

b
ab

ly
aO

te
rm

in
at

io
nO

or
Ofa

ilu
re

th
eO

cr
iti

ca
lOb

o
ck

Ois
sa

fe
ly

Oo
m

itt
ed

m
os

tOp
ro

b
ab

ly
aO

te
rm

in
at

io
nO

or
Ofa

ilu
re

th
eO

cr
iti

ca
lOb

o
ck

Ois
sa

fe
ly

Oo
m

itt
ed

m
os

tOp
ro

b
ab

ly
aO

te
rm

in
at

io
nO

or
Ofa

ilu
re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

su
cc

es
s

fa
ilu

re

Figure 11.7: Event Tree Analysis: Ambient Environment Evaluation ("hazardous condition")



186 11 Evaluation

Evaluation
By means of ETA we have shown that the use of the technical management allows to reduce
the occurrence of a sudden LVAD battery performance decrease due to unfavorable ambient
temperature. A user’s corresponding action is, however, still needed. It is to mention, that
the exposure to extremely hot or cold temperatures is unlikely (but not impossible) for
the LVAD batteries carried on the body, but is possible for the spare batteries which are
compulsory to be carried along and must be fully operational at all times. The situation
with an unexpected LVAD battery fault is critical for the patient. That is why the level of
risk is to be evaluated as high.
Thus, the gain on the reliability of the system (as defined by the mean time to failure

[Els12]) due to the use of management in case of operation in an unfavorable ambient
environment is obvious. The avoidance of a sudden LVAD battery failure shows gain also
on the availability of the system (as defined by the ratio of uptime to total time [Els12])
since the battery replacement takes time.
It has also been shown, that the ability of the application to request an evaluation of

the ambient environment policy expression from the management allows to reduce the
occurrence of terminations during execution of critical blocks in the application code.
Provided that the application handles the result of the evaluated policy expression in

an appropriate way (i.e. it omits critical blocks in the code if the ambient environment is
evaluated as hazardous), a probable termination or failure during execution of a critical
block is avoided. The probability of a termination or failure during the execution of the
critical block stays the same if the ambient condition is evaluated as safe or unfavorable and
the application enters the critical block in the application code. Thus, the overall number
of terminations during execution of critical blocks in the application code is reduced.

A termination or failure during the execution of a critical block in the application code
has a very high level of risk. Thus, a safe omission of the block in case of a probable failure
contributes to the overall system safety.
We assume, that the technical management will contribute to the dependable behavior

of the system in the same manner in the other application use cases comparable to this
one.



Chapter 12

Conclusion

This work presents an advanced form of system management which combines the innova-
tive model-based management technique with the established approach of policy-based
management. The presented approach is applied within the medical application field. It
has been shown that the approach supports the development and dependable behavior of
medical devices and systems.

The proposed approach applies an explicit separation of the design and runtime phases of
the management process. During the design phase the management and managed system
are extensively planned. The requirements to the concrete managed system are defined
and subsequently the required management artifacts and configurations are derived. These
are used by the management system and govern the choices in its behavior during the
runtime phase.
The planning of the system during the design phase means creating a comprehensive

model of the management system and the managed one. The systems are modeled on three
layers, each of them varying in degree of abstraction and reflecting a different view on the
systems: from the abstract to the technical one. The top layer "Use Cases" provides the
most abstract view of the system. It reflects the main application-oriented purpose of the
system and expresses the main stakeholders’ goals. The desired system behavior is expressed
by means of concise requirements addressing various facets (e.g., performance, security,
billing, application domain). The requirements are formulated at a high level and determine
the target system state. They can also express necessities or prerequisites of the system
state. The middle layer "Services" provides the service-oriented view of the system. On this
layer the system is defined in terms of reusable autonomous loosely coupled services as well
as applications providing and using them. The service-level requirements are introduced
which define the usage, provision and deployment of services, applications and related data.
In contrast to the requirements of the "Use Cases" layer, however, these requirements can
be specified not only during the design time, but rather generated and added to the model
automatically during the refinement process. The most concrete technical view of the
system is represented on the bottom layer of the system model. Thus, the "Components"
layer comprises the hardware and software components composing the runtime system and
delivering to the user the tangible services and applications defined on the middle layer.
The requirements of the higher level are translated to the concrete technical representations
of the bottom layer. In order to assemble the whole system model, a kind of "glueing"
elements is needed to indicate how the more abstract elements and their attributes are
to be translated into the more technical ones. For this purpose, refinement relations are
introduced, which comprise primarily top-down inter-layer associations between the model
elements of the adjacent layers.
The proposed general three-layered metamodel structure has been specialized for the

medical application domain. The presented concretized metamodel integrates the domain
knowledge and allows to include the domain-specific constraints and requirements into
the modeling process. The metamodel follows the generalization principle and uses the



188 12 Conclusion

inheritance relationships in order to form the elements hierarchy and allows extensions if
necessary. A system model for the concrete application use case is constructed as an instance
of the metamodel. Each of the model elements is instantiated from the corresponding
metamodel element and has a predefined set of management variables. The status variables
are used to express the state of the model element and the configuration variables are used
in order to configure the model element.

At runtime the management system reads the status variables and sets the configuration
of the components. To govern the choices in the behavior of the management system
special management artifacts are used. We refer to them as management policies and
recognize two types of them: policy rules and policy expressions. The policy rules follow
the event-condition-action paradigm and are implemented technically by means of reading
the status and setting the configuration variables on certain events. The policy expressions
are formulated on status variables. Their evaluation is requested by a managed component
itself from the management on demand. Due to policy expressions, a special form of the
policy-based resource control level occurs. Policy expressions allow taking the evaluation
logic out of the application, but still guarantee that the evaluation is initiated on demand by
the managed system. The management system is indeed responsible for the evaluation but
still the interpretation is up to the requester. Thus, the policies applied by the automated
management system at runtime provide a reusable powerful instrument which forces the
managed system to conduct in a flexible but predefined manner.

The management policies as well as initial assignments of the configuration variables are
derived from the system model during the refinement process. In order to support this
process, a set of derivation patterns has been proposed. The derivation patterns are model
patterns defined on certain types of model elements. The patterns can be parametrized by
the system developer, so that he can adjust the refinement process to the current use case
and its specific requirements and conditions. According to the purpose and architectural
structure three basic types of derivation patterns have been distinguished: evaluation,
control, and refinement patterns.

Evaluation patterns are intra-layer patterns which are used to support the definition of
abstract status variables within a single model layer. Such a construct can combine inputs
of multiple status variables and allows to evaluate them by means of a calculation rule. In
doing so, an evaluation pattern comprises a function which relates a set of inputs with a
set of permitted outputs. Based on the underlying function we distinguish the following
types of evaluation patterns: aggregation, attribution, and fuzzy relation patterns.
The notion of control patterns is to specify the target management control loop of

the system. They define the dynamic behavior of control elements by mapping abstract
declarative objectives of a higher layer to imperative enforcement mechanisms on the next
lower layer. Thus, in contrast to evaluation patterns, control pattern express rather a "how"
strategy for implementing the management solution. In the work, we have introduced
four forms of control patterns inspired by the common techniques of control engineering:
watchdog timer, heartbeat, fuzzy logic control, on-off controller, and multiplexer patterns.

The purpose of refinement patterns is to support the policy derivation process by
specifying how the values of abstract elements are to be propagated downwards to the
more detailed values. Together with the inter-layer refinement relations they direct the
refinement from top to bottom. In contrast to refinement relations, they operate on
management variables directly. Thus, they map values of management variables of adjacent
layers and provide calculation rules used within the policy refinement process. Based on
the underlying refinement function, we distinguish the following refinement pattern types:
repeater, translator, and data selector patterns.



189

The derivation patterns and the refinement relations are the basis of the policy refinement
process. It is iterated through the model elements from the top layer to the bottom
layer along the refinement relations, the found patterns are applied and at the end the
management policies are generated. The policies derived during the refinement process are
enforced by the management system at runtime.
Within the MEDOLUTION project we have applied the proposed approach to the

technical management of a medical application use case. The application use case has
included monitoring, controlling and adaptation of treatment of LVAD-supported patients.
The development of the technical management for the application use case as well as the
operation of the management system have been measured and evaluated concerning the
time behavior and operability. The measurements and evaluations have been done on the
basis of the GQM approach. The time and effort spent during the planning phase and the
time behavior of the management system at runtime have been evaluated as appropriate.
The overhead, which the usage of the management system causes, has been evaluated as
minor. The process of modeling and policy derivation and the operation of the management
system (deployment, (re-)configuration, etc.) at runtime has been evaluated as comfortable
for a qualified professional. We assume, that the same performance is to be expected for
other comparable application use cases conducted under similar conditions.
It has been shown that the dependability (in particular, availability, reliability and

safety) of the system have been improved in the application use case due to the usage of the
technical management. Specifically, the occurrence of predictable and/or avoidable system
failures or breakdowns, emergency stops on the part of the application and omissions of
critical blocks or functions caused by unfavorable ambient conditions, deficient and/or
defective operating resources, and system state have been looked at. During the evaluation
process, we have resorted to ETA as a basic technique, performing a bottom up forward
error analysis. We assume, that the proposed approach to the technical management will
contribute to the dependable behavior of the medical devices and systems in the same
manner in comparable application use cases.
The introduced approach can be also applied to the future cyber-physical systems

which bring together multiple application domains. Such systems require advanced auto-
mated management solutions due to their complexity caused by involving interdisciplinary
approaches and deeply intertwined applications and consumer devices.





Bibliography
[AKP+11] S. Andreassen, D. Karbing, U. Pielmeier, S. Rees, A. Zalounina, Line Sanden,

M. Paul, and L. Leibovici. Model-Based Medical Decision Support – A Road
to Improved Diagnosis and Treatment? In 15th Nordic-Baltic Conference
on Biomedical Engineering and Medical Physics, volume 34, pages 257–260,
June 2011.

[Art80] Zvi Artstein. Disrcete and Continuous Bang-Bang and Facial Spaces or:
Look for the Extreme Points. SIAM J. REVIEW, 22(2):172–185, 1980.

[ASB+06] I. Aib, M. Salle, C. Bartolini, A. Boulmakoul, R. Boutaba, and G. Pujolle.
Business Aware Policy-Based Management. In 1st IEEE/IFIP International
Workshop on Business-Driven IT Management, pages 55–62. IEEE, April
2006.

[Asi14] Asian Harmonization Working Party, Work Group 1, Pre-Market Submission
and CSDT. White Paper on Medical Device Software Regulation – Software
Qualification and Classification, 2014.

[AXE11] AXELOS Limited. ITIL R© Glossary and Abbreviations. Glossary of Terms
English v.1.0, 2011.

[BA07] Raouf Boutaba and Issam Aib. Policy-based Management: A Historical
Perspective. Journal of Network and Systems Management, 15(4):447–480,
2007.

[Bäc13] M. Bächle. Qualitätsmanagement der Softwareentwicklung: Das QEG-
Verfahren als Instrument des Total Quality Managements. Deutscher Univer-
sitätsverlag, 2013.

[Bas92] Victor R. Basili. Software Modeling and Measurement: The Goal/Ques-
tion/Metric Paradigm. Technical Report UMIACS TR-92-96, University of
Maryland at College Park, MD, USA, 1992.

[BBL76] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative Evaluation of
Software Quality. In Proceedings of the 2nd International Conference on
Software engineering, ICSE ’76, pages 592–605, 1976.

[BE08] H. Balzert and C. Ebert. Lehrbuch der Softwaretechnik: Softwaremanagement.
Spektrum Akademischer Verlag, 2008.

[BE13] Hannes; Burwitz, Martin; Schlieter and Werner Esswein. Modeling Clinical
Pathways - Design and Application of a Domain-Specific Modeling Language.
In Wirtschaftsinformatik Proceedings 2013, 2013.

[BFL+13] A. Brinkmann, C. Fiehe, A. Litvina, I. Lück, L. Nagel, K. Narayanan,
F. Ostermair, and W. Thronicke. Scalable Monitoring System for Clouds.
In 2013 IEEE/ACM 6th International Conference on Utility and Cloud
Computing, pages 351–356, Dec 2013.



192 Bibliography

[BG04] Dan Brickley and Ramanathan V. Guha. RDF Vocabulary Description
Language 1.0: RDF Schema. W3C Recommendation, 10, 2004.

[BGFV11] Ayan Banerjee, Sandeep K. S. Gupta, Georgios Fainekos, and Georgios
Varsamopoulos. Towards Modeling and Analysis of Cyber-physical Medical
Systems. In Proceedings of the 4th International Symposium on Applied
Sciences in Biomedical and Communication Technologies, ISABEL ’11, pages
154:1–154:5, New York, NY, USA, 2011. ACM.

[BH02] Walter Banks and Gordon Hayward. Fuzzy Logic in Embedded Microcom-
puters and Control Systems. Technical report, BYTE CRAFT LIMITED,
2002.

[BKF15] M. Burkert, H. Krumm, and C. Fiehe. Technical Management System for
Dependable Building Automation Systems. In 2015 IEEE 20th Conference
on Emerging Technologies Factory Automation (ETFA), pages 1–8, Sept
2015.

[BLMR04] Arosha K. Bandara, Emil C. Lupu, Jonathan Moffett, and Alessandra Russo.
A Goal-based Approach to Policy Refinement. In Proceedings of the Fifth
IEEE International Workshop on Policies for Distributed Systems and Net-
works, POLICY04, Washington, DC, USA, 2004. IEEE Computer Society.

[BLR03] A. K. Bandara, E. C. Lupu, and A. Russo. Using Event Calculus to Formalise
Policy Specification and Analysis. In 4th IEEE Workshop on Policies for
Networks and Distributed Systems (Policy 2003), Lake Como, Italy, 2003.

[BSE12] Martin Burwitz, Hannes Schlieter, and Werner Esswein. Agility in Medical
Treatment Processes – A Model-Based Approach. In Elmar J. Sinz and Andy
Schürr, editors, Modellierung, volume 201 of LNI, pages 267–279. GI, 2012.

[Béz05] Jean Bézivin. On the Unification Power of Models. Software and System
Modeling, 4(2):171–188, 2005.

[CCSZ03] Jiannong Cao, Alvin Chan, Yudong Sun, and Kang Zhang. Dynamic Config-
uration Management in a Graph-Oriented Distributed Programming Envi-
ronment. Science of Computer Programming, 48(1):43–65, 2003.

[CL01] Larry L. Constantine and Lucy Lockwood. Object Modeling and User
Interface Design. In Mark Van Harmelen, editor, Structure and Style in Use
Cases for User Interface Design. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, April 2001.

[CL02] I. Crnkovic and M.P.H. Larsson. Building Reliable Component-based Software
Systems. Artech House Computing Library. Artech House, 2002.

[Cla82] D.D. Clark. Fault Isolation and Recovery. RFC 816, July 1982.

[Cla89] D.D. Clark. Policy Routing in Internet Protocols. RFC 1102, May 1989.

[CMK05] S. Chakravorty, C. Mendes, and L. Kale. Proactive Fault Tolerance in Large
Systems. In Proceedings of HPCRI Workshop, 2005.

[Coc00] Alistair Cockburn. Writing Effective Use Cases – Crystal Series for Software
Development. Addison-Wesley Longman, November 2000.



Bibliography 193

[Coh07] Shy Cohen. Ontology and Taxonomy of Services in a Service-Oriented
Architecture. Microsoft Architect Journal, 2007.

[Com] Computing Science and Mathematics, University of Stirling. Adapt-
able and Programmable Policy Environment and Language (APPEL).
https://accentsuite.sourceforge.io/. Accessed September 2018.

[CPW+01] David S. Channin, Charles Parisot, Vishal Wanchoo, Andrei Leontiev, and
Eliot L. Siegel. Integrating the Healthcare Enterprise: A Primer Part 3.
What Does IHE Do for ME? RadioGraphics, 21:1351–1358, 2001.

[CSVC11] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V. Chaudron. A Classifi-
cation Framework for Software Component Models. IEEE Transactions on
Software Engineering, 37(5):593–615, 2011.

[dAIKdG05] Joao Porto de Albuquerque, Holger Isenberg, Heiko Krumm, and Paulo Licio
de Geus. Improving the Configuration Management of Large Network Security
Systems. In Proceedings of the 16th IFIP/IEEE Ambient Networks Inter-
national Conference on Distributed Systems: Operations and Management,
DSOM’05, pages 36–47, Berlin, Heidelberg, 2005. Springer-Verlag.

[dAKdG05a] J. P. de Albuquerque, H. Krumm, and P. L. de Geus. Policy Modeling
and Refinement for Network Security Systems. In 6th IEEE International
Workshop on Policies for Distributed Systems and Networks (POLICY’05),
pages 24–33, June 2005.

[dAKdG05b] Joao Porto de Albuquerque, Heiko Krumm, and Paulo Licio de Geus. On
Scalability and Modularisation in the Modelling of Network Security Systems.
In Sabrina de Capitani di Vimercati, Paul Syverson, and Dieter Gollmann,
editors, Computer Security – ESORICS 2005. 10th European Symposium on
Research in Computer Security, Milan, Italy, September 12-14, 2005. Pro-
ceedings, pages 287–304, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[Dam02] N. Damianou. A Policy Framework for Management of Distributed Systems.
PhD Thesis, 2002. Department of Computing, Imperial College.

[DBC+00] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry. The
COPS (Common Open Policy Service) Protocol. RFC 2748 (Proposed
Standard), January 2000. Updated by RFC 4261.

[DDLS00] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman.
Ponder: A Language for Specifying Security and Management Policies for
Distributed Systems The Language Specification Version 2.3. Imperial College
Research Report DoC 2000/1, Imperial College of Science, Technology and
Medicine, Department of Computing, 180 Queen’s Gate, London SW7 2BZ,
U.K., October 2000.

[DDLS01] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy
Specification Language. In Proceedings of the Policy Workshop 2001, pages
29–31. HP Labs, Bristol, UK, Springer-Verlag, 2001.

[DHTM06] Keith J. Dreyer, David S. Hirschorn, James H. Thrall, and Amit Mehta,
editors. PACS. A Guide to the Digital Revolution. Springer-Verlag New York,
2 edition, 2006.



194 Bibliography

[DIM13] DIMDI - Deutsches Institut für Medizinische Dokumentation und
Information. Aktualisierungsliste zur Vorabversion OPS 2014.
http://www.dimdi.de/dynamic/de/klassi/downloadcenter/ops, July
2013.

[DJS07] Steven Davy, Brendan Jennings, and John Strassner. The Policy Continuum
- A Formal Model. In Proceedings of the 2nd IEEE International Workshop
on Modelling Autonomic Communications Environments, MACE, volume 6
of Mulicon, pages 65–79, 2007.

[DKK+10a] O. Dohndorf, J. Krüger, H. Krumm, C. Fiehe, A. Litvina, I. Lück, and F. J.
Stewing. Lightweight Policy-Based Management of Quality-Assured, Device-
Based Service Systems. In Proceedings of 24th IEEE International Conference
on Advanced Information Networking and Applications Workshops, pages
526–531, April 2010.

[DKK+10b] O. Dohndorf, J. Krüger, H. Krumm, C. Fiehe, A. Litvina, I. Lück, and F. J.
Stewing. Policy-Based Management for Resource-Constrained Devices and
Systems. In Proceedings of the IEEE International Symposium on Policies
for Distributed Systems and Networks, pages 61–64, July 2010.

[DKK+11a] O. Dohndorf, J. Krüger, H. Krumm, C. Fiehe, A. Litvina, I. Lück, and
F. J. Stewing. Adaptive and Reliable Binding in Ambient Service Systems.
In Proceedings of the 16th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1–8, 2011.

[DKK+11b] O. Dohndorf, J. Krüger, H. Krumm, C. Fiehe, A. Litvina, I. Lück, and
F. J. Stewing. Tool-Supported Refinement of High-Level Requirements and
Constraints Into Low-Level Policies. In Proceedings of the IEEE International
Symposium on Policies for Distributed Systems and Networks, pages 97–104,
June 2011.

[DLSD01] Naranker Dulay, Emil C. Lupu, Morris Sloman, and Nicodemos Damianou.
A Policy Deployment Model for the Ponder Language. In Proceedings of the
7th IFIP/IEEE International Symposium on Integrated Network Management
(IM’2001), 2001.

[DMT12a] DMTF. Common Information Model (CIM) Infrastructure. Specification,
DMTF Standard, Version 2.8.0. http://www.dmtf.org/standards/cim/, April
2012.

[DMT12b] DMTF. Common Information Model (CIM) Metamodel. Specification, DMTF
Standard, Version: 3.0.0. http://www.dmtf.org/standards/cim/, December
2012.

[DMT12c] DMTF. Managed Object Format (MOF). Specification, DMTF Standard,
Version 3.0.0. http://www.dmtf.org/standards/cim/, December 2012.

[DMT16] DMTF. Common Information Model (CIM) Schema. Specification, DMTF
Standard, Version 2.45.0. http://www.dmtf.org/standards/cim/, Januar
2016.

[DRN17] D. Dasgupta, A. Roy, and A. Nag. Advances in User Authentication. Infosys
Science Foundation Series. Springer International Publishing, 2017.



Bibliography 195

[Dru92] Colin M. Drury. Management And Cost Accounting. Springer US, 3 edition,
1992.

[DRW06] Leticia Duboc, David S. Rosenblum, and Tony Wicks. A Framework for
Modelling and Analysis of Software Systems Scalability. In Proceedings of
the 28th International Conference on Software Engineering, ICSE ’06, pages
949–952, New York, NY, USA, 2006. ACM.

[DSNH10] Simon Dobson, Roy Sterritt, Paddy Nixon, and Mike Hinchey. Fulfilling the
Vision of Autonomic Computing. Computer, 43(1):35–41, January 2010.

[DvL96] R. Darimont and A. van Lamsweerde. Formal Refinement Patterns for
Goal-Driven Requirements Elaboration. In 4th ACM Symposium on the
Foundations of Software Engineering (FSE4), pages 179–190, 1996.

[EE96] Ezekiel J. Emanuel and Linda L. Emanuel. What Is Accountability in Health
Care? Annals of Internal Medicine, 124(2):229–239, January 1996.

[EKK+04] Tamar Eilam, Michael Kalantar, Er Konstantinou, Giovanni Pacifici, Tamar
Eilam, Michael Kalantar, Er Konstantinou, and Giovanni Pacifici. Model-
Based Automation of Service Deployment in a Constrained Environment.
IBM Research Report, IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 704 Yorktown Heights, NY 10598, September 2004.

[Els12] E.A. Elsayed. Reliability Engineering. Wiley Series in Systems Engineering
and Management. Wiley, 2012.

[Emm00] Wolfgang Emmerich. Software Engineering and Middleware: A Roadmap. In
Proceedings of the Conference on The Future of Software Engineering, ICSE
’00, pages 117–129, New York, NY, USA, 2000. ACM.

[Eri05] C.A. Ericson. Hazard Analysis Techniques for System Safety. Wiley, 2005.

[Erl07] Thomas Erl. SOA Principles of Service Design. Prentice Hall Service-Oriented
Computing Series. Prentice Hall International, 2007.

[Eur90] European Parlament; Council of European Union. Directive 90/385/EEC of
the European Parlament and of the Council on the Approximation of the
Laws of the Member States Relating to Active Implantable Medical Devices,
June 1990.

[Eur93] European Parlament; Council of European Union. Council Directive
93/42/EEC of 14 June 1993 Concerning Medical Devices, June 1993.

[Eur98] European Parlament; Council of European Union. Directive 98/79/EC of
the European Parlament and of the Council on In Vitro Diagnostic Medical
Devices, October 1998.

[Eur07] European Parlament; Council of European Union. Directive 2007/47/EC of
the European Parlament and of the Council, June 2007.

[Eur10] European Commission; DG Health and Consumer; Directorate B; Unit B2
Cosmetics and Medical Devices. MEDICAL DEVICES: Guidance Document
MEDDEV 2. 4/1 Rev. 9. Guidelines Relating to the Application of the
Council Directive 93/42/EEC on Medical Devices, June 2010.



196 Bibliography

[Eur16] European Commission; DG Internal Market, Industry, Entrepreneurship and
SMEs; Directorate Consumer, Environmental and Health Technologies; Unit
Health Technology and Cosmetics. MEDICAL DEVICES: Guidance Docu-
ment - Qualification and Classification of Stand Alone Software (MEDDEV
2.1/6), 2016.

[FJ02] Csilla Farkas and Sushil Jajodia. The Inference Problem: A Survey. SIGKDD
Explorations Newsletter, 4(2):6–11, December 2002.

[FJRG10] M. Fleury, E. Jamme, R. Razavi, and M. Ghanbari. Resource-Aware Fuzzy
Logic Control of Video Streaming over IP and Wireless Networks. In A.E.
Hassanien and J.H. Abawajy and A. Abraham and H. Hagras, editor, Per-
vasive Computing: Innovations in Intelligent Multimedia and Applications,
Computer Communications and Networks, pages 47–75. Springer-Verlag
London Limited, 2010.

[FK92] David Ferraiolo and Richard Kuhn. Role-Based Access Controls. In Proceed-
ings of the 15th NIST-NCSC National Computer Security Conference, pages
554–563, 1992.

[FLL+09] Christoph Fiehe, Anna Litvina, Ingo Lück, Franz-Josef Stewing, Oliver
Dohndorf, Jan Krüger, and Heiko Krumm. Policy-gesteuertes Management
adaptiver und gütegesicherter Dienstesysteme im Projekt OSAMI. In Pro-
ceedings 154 - Informatik 2009 Im Focus das Leben, pages 970–983, Lübeck,
Germany, 2009. Gesellschaft für Informatik / Verlag Köellen.

[FUMK03] Howard Foster, S. Uchitel, J. Magee, and J. Kramer. Model-Based Verification
of Web Service Compositions. In Proceedings of the 18th IEEE International
Conference on Automated Software Engineering, pages 152–161, October
2003.

[GHK+01] M. Garschhammer, R. Hauck, B. Kempter, I. Radisic, H. Roelle, and
H. Schmidt. The MNM Service Model - Refined Views on Generic Ser-
vice Management. Journal of Communications and Networks, 3(4):297–306,
December 2001.

[Gil88] Tom Gilb. Principles of Software Engineering Management. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1988.

[GKS+85] K. Görgen, H. Koch, G. Schulze, B. Struif, and K. Truöl. Grundlagen der
Komminikationstechnologie: ISO Architektur offener Kommunikationssys-
teme. Springer Verlag, Berlin Heidelberg New York Tokyo, 1985.

[HAN98] Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard Neumair. Integrated
Management of Networked Systems: Concepts, Architectures, and Their
Operational Application. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1998.

[HF04] W. Heaven and A. Finkelstein. UML Profile to Support Requirements
Engineering with KAOS. IEE Proceedings - Software, 151(1):10–27, February
2004.

[Hil90] Mark D. Hill. What is Scalability? SIGARCH Computer Architecture News,
18(4):18–21, December 1990.



Bibliography 197

[HM08] Markus C. Huebscher and Julie A. McCann. A Survey of Autonomic Com-
puting: Degrees, Models, and Applications. ACM Computing Surveys,
40(3):7:1–7:28, August 2008.

[HR08] Hardi Hungar and Erwin Reyzl. Software-Entwicklung und Zertifizierung
im Umfeld sicherheitskritischer und hochverfügbarer Systeme: Bedeutung
modellbasierter und formaler Ansätze für effiziente Entwicklung und Zerti-
fizierung. In Software Engineering (Workshops), volume 122 of LNI, pages
299–302. GI, 2008.

[HS05] A. Hosagrahara and P. Smith. Measuring Productivity and Quality in
Model-Based Design. Technical report, The MathWorks, Inc., 2005.

[HWAB04] Reinhold Haux, Alfred Winter, Elske Ammenwerth, and Birgit Brigl. Strategic
Information Management in Hospitals. Springer-Verlag New York, 1 edition,
2004.

[IBM05] IBM. IBM Paves the Way for Mainstream Adoption of Autonomic Computing.
Market Wired, April 2005.

[Ibr03] Ahmad Ibrahim. Fuzzy Logic for Embedded Systems Applications. Newnes,
2003.

[IEE00] IEEE Architecture Working Group. IEEE Std 1471-2000, Recommended
Practice for Architectural Description of Software-intensive Systems. Techni-
cal report, IEEE, 2000.

[IKP+05] Stefan Illner, Heiko Krumm, Andre Pohl, Ingo Lück, Darius Manka, and
Thomas Sparenberg. Policy Controlled Automated Management of Dis-
tributed and Embedded Service Systems. In Proceedings of the IASTED
International Conference on Parallel and Distributed Computing and Net-
works, pages 710–715, Innsbruck, Austria, February 2005. ACTA Press.

[Inf04] Information Technology Industry Council. American National Standard for
Information Technology – Role Based Access Control. Technical report,
American National Standards Institute, Inc., February 2004. ANSI R© INCITS
359-2004.

[Int92] International Telegraph and Telephone Consultative Committee (CCITT).
Recommendation X.700 (09/92): Management Framework for Open Systems
Interconnection (OSI) for CCITT Applications. Technical report, Interna-
tional Telecommunication Union, 1992.

[Int15] International Medical Device Regulators Forum (IMDRF), SaMD Working
Group. Software as a Medical Device (SaMD): Application of Quality
Management System (IMDRF/SaMD WG/N23), 2015.

[IPK+06] Stefan Illner, Andre Pohl, Heiko Krumm, Ingo Lück, Andreas Bobek, Hendrik
Bohn, and Frank Golatowski. Model-based Management of Embedded Service
Systems – An Applied Approach. In Proceedings of the 20th International
Conference on Advanced Information Networking and Applications (AINA
2006), pages 519–523, Vienna, Austria, 2006.



198 Bibliography

[Ise04] Rolf Isermann. Model-Based Fault Detection and Diagnosis: Status and
Applications. In Proceedings of the 16th IFAC Symposium on Automatic
Control in Aerospace, pages 71–85, 2004.

[Ise06] Rolf Isermann. Fault-Diagnosis Systems : An Introduction from Fault Detec-
tion to Fault Tolerance. Springer, Berlin, Germany, 2006.

[ISO93] ISO. ISO/IEC 10165–1:1993 Information Technology – Open Systems Inter-
connection – Management Information Services – Structure of Management
Information: Management Information Model. Technical report, ISO/IEC
JTC 1 - Information Technology, September 1993.

[ISO95] ISO. IISO 9241-110:2006, Ergonomics of Human-System Interaction – Part
110: Dialogue Principles. Technical report, ISO/TC 159/SC 4 Ergonomics
of Human-System Interaction, 1995.

[ISO98] ISO. ISO 9241-11:1998, Ergonomic Requirements for Office Work with Visual
Display Terminals (VDTs) – Part 11: Guidance on Usability. Technical
report, ISO/TC 159/SC 4 Ergonomics of Human-System Interaction, 1998.

[ISO01] ISO. ISO 9126-1:2001, Software Engineering - Product Quality, Part 1: Qual-
ity Model. Technical report, International Organization for Standardization,
2001.

[ISO03] ISO. ISO 13485:2003 Medical Devices – Quality Managemen Systems –
Requirements for Regulatory Purposes. Technical report, ISO/TC 210 Quality
Management and Corresponding General Aspects for Medical Devices, July
2003.

[ISO07] ISO. ISO 14971:2007 Medical Devices – Application of Risk Management to
Medical Devices. Technical report, ISO/TC 210 Quality Management and
Corresponding General Aspects for Medical Devices, 2007.

[ISO10] ISO. ISO/IEC/IEEE 24765:2010(E) Systems and Software Engineering –
Vocabulary. Technical report, International Organization for Standardization,
2010.

[ITU08] ITU-T Study Group 12. Recommendation ITU-T E.800 (09/08): Definitions
of Terms Related to Quality of Service. Technical report, International
Telecommunication Union, September 2008.

[JAW11] Jens H. Weber Jahnke, Anissa Agah, and James Williams. Consumer Health
Informatics Services – A Taxonomy. Technical Report UVic/IPIRG-2011-
TR-01, University of Victoria. Department of Computer Science, Victoria,
BC V8W3P6, March 2011.

[JCJO92] Ivar Jacobson, Magnus Christerson, Patrick Jonsson, and Gunnar Övergaard.
Object-Oriented Software Engineering. A Use Case Driven Approach: A Use
Case Approach. Addison-Wesley Longman, 1992.

[JJPR09] Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. Towards a
Theory of Accountability and Audit. In Proceedings of the 14th European
Conference on Research in Computer Security, ESORICS’09, pages 152–167,
Berlin, Heidelberg, 2009. Springer-Verlag.



Bibliography 199

[Jos08] James Joshi. Network Security: Know It All: Know It All. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

[JRV03] J. Jason, L. Rafalow, and E. Vyncke. IPsec Configuration Policy Information
Model. RFC 3585 (Proposed Standard), August 2003.

[JZ93] M. Jackson and P. Zave. Domain Descriptions. In Proceedings of the IEEE
International Symposium on Requirements Engineering, pages 56–64, January
1993.

[KAC+05] Siheung Kim, Seongjin Ahn, Jinwok Chung, Ilsung Hwang, Sunghe Kim,
Minki No, and Seungchung Sin. A Rule Based Approach to Network Fault
and Security Diagnosis with Agent Collaboration. In Kim, TagGon, edi-
tor, Artificial Intelligence and Simulation, volume 3397 of Lecture Notes in
Computer Science, pages 597–606. Springer Berlin Heidelberg, 2005.

[KB11] Robert M Kaplan and Yair M Babad. Balancing Influence Between Actors
in Healthcare Decision Making. Technical report, BMC Health Services
Research, 2011.

[KB15] Julian Kalinowski and Lars Braubach. Integrating Application-Oriented
Middleware into the Android Operating System. In UBICOMM 2015, The
Eighth International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies, page 6. IARIA, Xpert Publishing Services, 7 2015.

[KC03] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing.
Computer, 36(1):41–50, January 2003.

[KDR+06] M. Kessis, P. Dechamboux, C. Roncancio, T. Coupaye, and A. Lefebvre.
Towards a Flexible Middleware for Autonomous Integrated Management
Applications. In Proceedings of the International Multi-Conference on Com-
puting in the Global Information Technology, ICCGI ’06, pages 27–27, August
2006.

[KFJ03] Lalana Kagal, Tim Finin, and Anupam Joshi. A Policy Language for a Perva-
sive Computing Environment. In Proceedings of the 4th IEEE International
Workshop on Policies for Distributed Systems and Networks, POLICY 2003,
Washington, DC, USA, 2003. IEEE Computer Society.

[Kir05] Eric Kirchstein. Policy Management for Autonomic Computing: Solving a
Business Problem Using PMAC. Technical report, IBM, DeveloperWorks,
2005.

[KM85] J. Kramer and J. Magee. Dynamic Configuration for Distributed Systems.
IEEE Transactions on Software Engineering, 11(4):424–436, 1985.

[KP97] Stefan Kätker and Martin Paterok. Fault Isolation and Event Correlation
for Integrated Fault Management. In Lazar, AurelA. and Saracco, Roberto
and Stadler, Rolf, editor, Integrated Network Management V, IFIP – The
International Federation for Information Processing, pages 583–596. Springer
US, 1997.

[KTP+07] S.L. Keoh, K. Twidle, N. Pryce, A.E. Schaeffer-Filho, E. Lupu, N. Dulay,
M. Sloman, S. Heeps, S. Strowes, J. Sventek, and E. Katsiri. Policy-based



200 Bibliography

Management for Body-Sensor Networks. In Proceedings of the 4th Interna-
tional Workshop on Wearable and Implantable Body Sensor Networks, pages
92–98. Springer, March 2007.

[L0̈6] Ingo Lück. Modellbasierte Konfiguration von Sicherheitsdiensten. PhD Thesis,
2006. Universität Dortmund, Fachbereich Informatik.

[Lam12] Jim Lamberson. Single and Multistage Watchdog Timers. White Paper.
Technical report, SENSORAY. Embedded Electronic, 2012.

[LDS+08] Emil Lupu, Naranker Dulay, Morris Sloman, Joe Sventek, Steven Heeps,
Stephen Strowes, Kevin Twidle, Sye Loong Keoh, and Alberto Schaeffer-
Filho. AMUSE: Autonomic Management of Ubiquitous e-Health Systems.
Concurrency and Computation: Practice and Experience, 20:277–295, March
2008.

[Lev95] Nancy G. Leveson. Safeware: System Safety and Computers. ACM, New
York, NY, USA, 1995.

[LR07] Richard Lenz and Manfred Reichert. IT Support for Healthcare Processes -
Premises, Challenges, Perspectives. Data Knowledge Engineering, 61(1):39–
58, April 2007.

[LS99] E. Lupu and M. Sloman. Conflicts in Policy-Based Distributed Systems
Management. IEEE Transactions on Software Engineering, 25:852–869, 1999.

[Lup98] E. C Lupu. A Role-Based Framework for Distributed Systems Management.
PhD Thesis, 1998. Department of Computing, Imperial College.

[Mai07] Anil K. Maini. Digital Electronics: Principles, Devices and Applications.
John Wiley & Sons, Ltd., 1 edition, 2007.

[Mar97] D. A Marriott. Policy Service for Distributed Systems. PhD Thesis, 1997.
Department of Computing, Imperial College.

[MB01] Niall Murphy and Michael Barr. Watchdog Timers. Embedded Systems
Programming, pages 79–80, October 2001.

[MC93] M.J. Maullo and Seraphin B. Calo. Policy Management: An Architecture
and Approach. In Proceedings of the IEEE First International Workshop on
Systems Management, pages 13–26, Hawthorne, NY, 1993. IBM Thomas J.
Watson Res. Center.

[McB02] B. McBride. Jena: A Semantic Web Toolkit. IEEE Internet Computing,
6(6):55–59, November 2002.

[McC77] J. McCall. Factors in Software Quality: Preliminary Handbook on Software
Quality for an Acquisition Manager, volume 1-3. General Electric, 1977.

[MESW01] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. Policy Core Infor-
mation Model – Version 1 Specification. RFC 3060 (Proposed Standard),
February 2001. Updated by RFC 3460.

[MFZH99] Jean-Philippe Martin-Flatin, Simon Znaty, and Jean-Pierre Hubaux. A Sur-
vey of Distributed Enterprise Network and Systems Management Paradigms.
Journal of Network and Systems Management, 7, 1999.



Bibliography 201

[MS93] Jonathan D. Moffett and Morris S. Sloman. Policy Hierarchies for Distributed
Systems Management. IEEE Journal on Selected Areas in Communications,
pages 1404–1414, 1993.

[MvH04] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Lan-
guage Reference. W3C Recommendation. Technical report, W3C, February
2004. https://www.w3.org/TR/owl-ref/.

[NP10] Belverd E. Needles and Marian Powers. Principles of Financial Accounting.
South-Western College Pub., 11 edition, January 2010.

[OAS06] OASIS. Reference Model for Service Oriented Architecture 1.0. OASIS
Standard. http://docs.oasis-open.org/soa-rm/v1.0/, October 2006.

[Obj10] Object Management Group. The MDA Foundation Model. OMG Document
ormsc/10-09-06l. Technical report, OMG, September 2010.

[Obj11] Object Management Group. OMG Unified Modeling Language (OMG UML),
Superstructure. Version 2.4.1. Technical report, OMG, August 2011.

[Obj14a] Object Management Group. Model Driven Architecture (MDA). MDA Guide
rev. 2.0. OMG Document ormsc/2014-06-01, OMG, June 2014.

[Obj14b] Object Management Group. Model Driven Architecture (MDA). MDA Guide
Version 1.0.1. OMG Document omg/2003-06-01, OMG, June 2014.

[Obj15] Object Management Group. OMG Unified Modeling Language (OMG
UMLTM). Version 2.5. Technical report, OMG, March 2015.

[Ols06] Greg Olsen. From COM to Common. ACM Queue, 4(5):20–26, June 2006.

[OMG02] OMG. CORBA Services Specifications: Security Service Specification, Ver-
sion 1.8. Technical report, Object Management Group, Inc., March 2002.
http://www.omg.org/spec/SEC/1.8/.

[Ope07] Open Mobile Alliance. OMA Device Management Tree and Description,
Version 1.2. http://www.openmobilealliance.org, February 2007.

[Ope16] Open Mobile Alliance. OMA DM Device Description Framework DTD,
Version 1.2. http://www.openmobilealliance.org, May 2016.

[Pat09] Patricia A. Morreale and Kornel Terplan, editor. CRC Handbook of Modern
Telecommunications. CRC Press, 2 edition, 2009.

[Pav98] George Pavlou. OSI Systems Management, Internet SNMP and ODP/OMG
CORBA as Technologies for Telecommunications Network Management.
In S. Aidarous and T. Plevyak, editor, In Telecommunications Network
Management: Technologies and Implementations, pages 63–109. IEEE Press,
1998.

[PHAB12] Klaus Pohl, Harald Hönninger, Reinhold Achatz, and Manfred Broy. Model-
Based Engineering of Embedded Systems: The SPES 2020 Methodology.
Springer-Verlag Berlin Heidelberg, November 2012.



202 Bibliography

[PHS+08] T. Phan, J. Han, J. G. Schneider, T. Ebringer, and T. Rogers. A Survey of
Policy-Based Management Approaches for Service-Oriented Systems. In Pro-
ceedings of the 19th Australian Conference on Software Engineering (ASWEC
2008), pages 392–401, March 2008.

[PN04] Soila Pertet and Priya Narasimhan. Proactive Recovery in Distributed
CORBA Applications. In International Conference on Dependable Systems
and Networks, pages 357–366. IEEE, 2004.

[RBS11a] R. Romeikat, B. Bauer, and H. Sanneck. Automated Refinement of Policies
for Network Management. In Proceedings of the 17th Asia Pacific Conference
on Communications, pages 439–444, October 2011.

[RBS11b] Raphael Romeikat, Bernhard Bauer, and Henning Sanneck. Modeling of
Domain-Specific ECA Policies. In Proceedings of the 23d Intenational Con-
ference on Software Engineering and Knowledge Engineering (SEKE), pages
52–58. Knowledhe Systems Institute, 2011.

[RC07] Anand Ranganathan and Roy Campbell. What is the Complexity of a
Distributed Computing System? Complexity, 12:37–45, July 2007.

[RDD07a] Giovanni Russello, Changyu Dong, and Naranker Dulay. Authorization and
Conflict Resolution for Hierarchical Domains. In Policies for Distributed
Systems and Networks, June 2007.

[RDD+07b] Giovanni Russello, Changyu Dong, Naranker Dulay, Jatinder Singh, Jean
Bacon, and Ken Moody. A Policy-Based Framework for e-Health Applications.
In Proceedings of the UK e-Science All Hands Meeting 2007 (AHM 07),
Nottingham, UK, September 2007.

[RJJZ10] A. Ray, R. Jetley, P. Jones, and Y. Zhang. Model-Based Engineering for
Medical-Device Software. Biomed Instrum Technology, 44(6):507–518, Novem-
ber 2010.

[RMNK02] Alessandra Russo, Rob Miller, Bashar Nuseibeh, and Jeff Kramer. An
Abductive Approach for Analysing Event-Based Requirements Specifications.
In Proceedings of the 18th International Conference on Logic Programming
(ICLP), pages 22–37, Copenhagen, Denmark, August 2002.

[RS88] D.C. Robinson and M.S. Sloman. Domains: A New Approach to Distributed
System Management. In Proceedings of Workshop on the Future Trends of
Distributed Computing Systems, pages 154–163, September 1988.

[RSB09] R. Romeikat, M. Sinsel, and B. Bauer. Transformation of Graphical ECA
Policies into Executable PonderTalk Code. In Proceedings of the 3rd Inter-
national Symposium on Rule Interchange and Applications (RuleML), pages
193–207. Springer LNCS, 2009.

[SB05] William Siler and James J. Buckley. Fuzzy Expert Systems and Fuzzy Rea-
soning. John Wiley & Sons, Inc., Hoboken, New Jersy, 2005.

[SBM07] Jatinder Singh, Jean Bacon, and Ken Moody. Dynamic Trust Domains for
Secure, Private, Technology-Assisted Living. Second International Conference
on Availability, Reliability and Security (ARES 2007), 2007.



Bibliography 203

[Sch85] F. Schweiggert. Software-QualitÄt: Eine Standortbestimmung. Wirtschaftsgut
Software. R. Kölsch and W.Schmid and F. Schweiggert, 1985.

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Soft-
ware - Beyond Object-Oriented Programming. Component Software Series.
Addison-Wesley Longman, 2 edition, November 2002.

[SHvdM17] J. Strassner, J. Halpern, and S. van der Meer. Generic Policy Information
Model for Simplified Use of Policy Abstractions (SUPA). Internet draft,
IETF, Network Working Group, 2017.

[Sie10] Siemens AG. IHE – Integrating the Healthcare Enterprise. Our
Contribution to Connectivity Across the Continuum of Care.
http://www.siemens.com/IHE, September 2010.

[SJCC07] Kwang Sik Shin, Jin Ha Jung, Jin Young Cheon, and Sang Bang Choi. Real-
time Network Monitoring Scheme Based on SNMP for Dynamic Information.
Journal of Network and Computer Applications, 30(1):331–353, January 2007.

[SLL+08] X.-H. Sun, Z. Lan, Y. Li, H. Jin, and Z. Zheng. Towards a Fault-Aware Com-
puting Environment. In Proceedings of the High Availability and Performance
Computing Workshop (HAPCW), 2008.

[Slo94] Morris Sloman. Policy Driven Management For Distributed Systems. Journal
of Network and Systems Management, 2:333–360, 1994.

[SM88] Morris Sloman and Jonathan Moffett. Domain Model of Autonomy. In
Proceedings of the 3rd Workshop on ACM SIGOPS European Workshop:
Autonomy or Interdependence in Distributed Systems, pages 1–4, New York,
NY, USA, 1988. ACM.

[SMM+12] Julia Schroeter, Peter Mucha, Marcel Muth, Kay Jugel, and Malte Lochau.
Dynamic Configuration Management of Cloud-based Applications. In Proceed-
ings of the 16th International Software Product Line Conference, volume 2,
pages 171–178, New York, NY, USA, 2012. ACM.

[SRS+03] Y. Snir, Y. Ramberg, J. Strassner, R. Cohen, and B. Moore. Policy Quality of
Service (QoS) Information Model. RFC 3644 (Proposed Standard), November
2003.

[SSS+16] S. N. Shirazi, S. Simpson, K. N. Syeda, A. Mauthe, and D. Hutchison. Towards
Policy Refinement for Resilience Management in Cloud. In Proceedings of
the 8th International Workshop on Resilient Networks Design and Modeling
(RNDM), pages 260–266. IEEE, 2016.

[Sta] Stanford Center for Biomedical Informatics Research (BMIR), Stanford
University. Protege Ontology Editor and Knowledge Aquisition System.
http://protege.stanford.edu. Accessed September 2018.

[Str03] John Strassner. Policy-Based Network Management: Solutions for the Next
Generation (The Morgan Kaufmann Series in Networking). Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2003.

[Sut14] I. Sutton. Process Risk and Reliability Management. Elsevier Science, 2014.



204 Bibliography

[SWZ05] Gopalan Sivathanu, Charles P. Wright, and Erez Zadok. Ensuring Data
Integrity in Storage: Techniques and Applications. In Proceedings of the
2005 ACM Workshop on Storage Security and Survivability, pages 26–36,
New York, NY, USA, 2005. ACM.

[SZ08] S. M. M. Soe and M. P. Zaw. Design and Implementation of Rule-Based
Expert System for Fault Management. Journal of World Academy of Science,
Engineering and Technology, 48:34–39, 2008.

[Szy03] Clemens Szyperski. Component Technology: What, Where, and How? In
Proceedings of the 25th International Conference on Software Engineering,
ICSE ’03, pages 684–693, Washington, DC, USA, 2003. IEEE Computer
Society.

[TDLS09] K. Twidle, N. Dulay, E. Lupu, and M. Sloman. Ponder2: A Policy System for
Autonomous Pervasive Environments. In Proceedings of the 5th International
Conference on Autonomic and Autonomous Systems (ICAS ’09), pages 330–
335, April 2009.

[Tod07] Dobromir Todorov. Mechanics of User Identification and Authentication:
Fundamentals of Identity Management. Auerbach Publishers Inc., 2007.

[Top13] Eric Topol. The Creative Destruction of Medicine: How the Digital Revolution
Will Create Better Health Care. Basic Books, 2013.

[TTT+13] Osamu Takaki, Izumi Takeuti, Koichi Takahashi, Noriaki Izumi, Koichiro
Murata, Mitsuru Ikeda, and Koiti Hasida. Graphical Representation of
Quality Indicators Based on Medical Service Ontology. SpringerPlus, 2:274–
294, 2013.

[UBJ+03] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch,
M. Johnson, S. Kulkarni, and J. Lott. KAoS Policy and Domain Services:
Toward a Description-Logic Approach to Policy Representation, Deconfliction,
and Enforcement. In Proceedings of the 4th IEEE International Workshop
on Policies for Distributed Systems and Networks, Washington, DC, USA,
July 2003. IEEE Computer Society.

[UBJ04] Andrzej Uszok, Jeffrey M. Bradshaw, and Renia Jeffers. KAoS: A Policy and
Domain Services Framework for Grid Computing and Semantic Web Services.
In Proceedings of the 2nd International Conference on Trust Management
(iTrust 2004), pages 16–26, 2004.

[U.S12] U.S. Food and Drug Administration. Premarket Approval of Medical Device.
Code of Federal Regulations. Title 21 Volume 8, April 2012.

[V0̈3] Markus Völter. A Taxonomy for Components. Journal of Object Technology,
2(4):119–125, July-August 2003.

[VAH+02] R. Vilalta, C. V. Apte, J. L. Hellerstein, S. Ma, and S. M. Weiss. Predictive
Algorithms in the Management of Computer Systems. IBM Systems Journal,
41(3):461–474, July 2002.

[VRYK03] Venkat Venkatasubramanian, Raghunathan Rengaswamy, Kewen Yin, and
Surya N. Kavuri. A Review of Process Fault Detection and Diagnosis: Part



Bibliography 205

I: Quantitative Model-Based Methods. Computers & Chemical Engineering,
27(3):293–311, 2003.

[VVB02] Jorge E. López De Vergara, Víctor A. Villagrá, and Julio Berrocal. Semantic
Management: Advantages of Using an Ontology-Based Management Informa-
tion Meta-Model. In Proceedings of the HP Openview University Association
9th Plenary Workshop (HP-OVUA’2002), pages 11–13, 2002.

[WA02] Elaine J. Weyuker and Alberto Avritzer. A Metric to Predict Software
Scalability. In Proceedings of the 8th International Symposium on Software
Metrics, Washington, DC, USA, 2002. IEEE Computer Society.

[Wal11] E. Wallmüller. Software Quality Engineering: Ein Leitfaden für bessere
Software-Qualität. Hanser, 2011.

[WDT+06] Feng Wang, Liam S. Docherty, Kenneth J. Turner, Mario Kolberg, and
Evan H. Magill. Services and Policies for Care at Home. Proceedings of
the 1st. International Conference on Pervasive Computing Technologies for
Healthcare, pages 7.1–7.10, 2006.

[WG06] Charles B. Weinstock and John B. Goodenough. On System Scalability.
Technical Report CMU/SEI-2006-TN-012, Carnegie Mellon University, March
2006.

[Wie94] Rene Wies. Policies in Network and Systems Management - Formal Definition
and Architecture. Journal of Network and Systems Management, 2:63–68,
April 1994.

[Wie03] Karl Wiegers. Software Requirements 2. Microsoft Press, March 2003.

[WNN96] Brian C. Williams, P. Pandurang Nayak, and Urang Nayak. A Model-based
Approach to Reactive Self-Configuring Systems. In Proceedings of 19th
National Conference on Artificial Intelligence (AAAI-96), pages 971–978,
1996.

[Wor10a] World Health Organization. Classification of Health Workforce Statistics.
www.who.int/hrh/statistics/workforce_statistics, 2010.

[Wor10b] World Health Organization. International Statistical Classification of Diseases
and Related Health Problems. 10th Revision, 2010.

[WSS+01] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog,
A. Huynh, M. Carlson, J. Perry, and S. Waldbusser. Terminology for Policy-
Based Management. RFC 3198 (Informational), November 2001.

[WT07] Feng Wang and Kenneth J. Turner. Policy Conflicts in Home Care Systems.
In Proceedings of the 9th International Conference on Feature Interactions
in Software and Communication Systems, Amsterdam, September 2007.

[WT08] Feng Wang and Kenneth J. Turner. Towards Personalised Home Care Systems.
Proceedings of the 1st International Conference on Pervasive Technologies
Related to Assistive Environments (PETRA ’08), July 2008.

[YPG00] R. Yavatkar, D. Pendarakis, and R. Guerin. A Framework for Policy-based
Admission Control. RFC 2753 (Informational), January 2000.



206 Bibliography

[Zad65] Lotfi A. Zadeh. Fuzzy Sets. Information and Control, 8:338–353, 1965.

[ZFC04] Youyong Zou, Timothy W. Finin, and Harry Chen. F-OWL: An Inference
Engine for Semantic Web. In Proceedings of the 3rd InternationalWorkshop
on Formal Approaches to Agent-Based Systems (FAABS), Lecture Notes
in Computer Science, pages 238–248, Greenbelt, MD, USA, April 2004.
Springer-Verlag.


	1 Introduction
	2 Related Work
	2.1 Policy-based Management of Medical Systems
	2.1.1 AMUSE
	2.1.2 CareGrid
	2.1.3 MATCH

	2.2 Model-based Management of Medical Systems
	2.2.1 Model-supported Process Management
	2.2.2 SPES2020/SPES XT


	3 Medical Domain
	3.1 Medical Domain Actors
	3.1.1 Medical Service Consumer
	3.1.2 Medical Service Provider

	3.2 Medical Assets and Specifics
	3.3 Medical Devices
	3.3.1 Definition
	3.3.2 Classification

	3.4 Medical Software
	3.4.1 Medical Device Software
	3.4.2 Fields of Application


	4 Technical Management
	4.1 Paradigms and Fundamentals
	4.1.1 Information Model
	4.1.2 Organization model
	4.1.3 Communication model
	4.1.4 Functional model

	4.2 Management Functional Areas
	4.2.1 Fault Management
	4.2.2 Configuration Management
	4.2.3 Accounting Management
	4.2.4 Performance Management
	4.2.5 Security Management

	4.3 Automated Management Challenges
	4.3.1 Autonomy
	4.3.2 Scalability
	4.3.3 Heterogeneity
	4.3.4 Administrative Isolation


	5 Policy-Based Management
	5.1 Historical Perspective
	5.2 Policy Definition
	5.3 Policy Abstraction
	5.4 Policy Refinement
	5.4.1 Sloman et al.
	5.4.2 Bandara
	5.4.3 Romeikat

	5.5 Policy-Based Management Frameworks
	5.5.1 IETF Policy Framework
	5.5.2 Ponder


	6 Model-Based Management
	6.1 Model
	6.2 Model-Based Management
	6.3 Model-Based Management Challenges

	7 Runtime Management System
	7.1 Management Tree
	7.1.1 Management Data
	7.1.2 Tree Nodes
	7.1.3 Data and Execution Handlers
	7.1.4 Tree Structure
	7.1.5 Management Tree Access

	7.2 Policies
	7.2.1 Policy Rule
	7.2.2 Policy Expression

	7.3 Management Services
	7.3.1 Policy Service
	7.3.2 Rule Service
	7.3.3 Expression Service

	7.4 Management System Characteristics

	8 Model-Based Management of Medical Systems
	8.1 General Metamodel Structure
	8.1.1 Metamodel Layers
	8.1.1.1 "Use Cases" Layer
	8.1.1.2 "Services" Layer
	8.1.1.3 "Components" Layer

	8.1.2 Building Together the Metamodel
	8.1.2.1 From "Use Cases" to "Services"
	8.1.2.2 From "Services" to "Components"


	8.2 Medical Domain Metamodel
	8.2.1 "Use Cases" Layer
	8.2.2 "Services" Layer
	8.2.3 "Components" Layer


	9 Policy Derivation Patterns
	9.1 Evaluation Patterns
	9.1.1 Aggregation Pattern
	9.1.2 Attribution Pattern
	9.1.3 Fuzzy Relation Pattern

	9.2 Control Patterns
	9.2.1 Watchdog Timer Pattern
	9.2.2 Heartbeat Pattern
	9.2.3 Fuzzy Logic Control Pattern
	9.2.4 On-off Controller Pattern
	9.2.5 Multiplexer Pattern

	9.3 Refinement Patterns
	9.3.1 Repeater Pattern
	9.3.2 Translator Pattern
	9.3.3 Data Selector Pattern


	10 Case Study: MEDOLUTION
	10.1 Demonstration Scenario
	10.1.1 Clinic Environment
	10.1.2 Home Environment
	10.1.3 Outdoor Environment

	10.2 Technical System
	10.2.1 Components
	10.2.2 Interfaces

	10.3 MEDOLUTION System Model
	10.3.1 "Use Cases" Layer
	10.3.2 "Services" Layer
	10.3.3 "Components" Layer

	10.4 Policy Derivation
	10.4.1 Derivation of Ambient Temperature Policy Rules
	10.4.2 Derivation of Ambient Environment Policy Expression
	10.4.3 Derivation of Data Transmission Policy Rule
	10.4.4 Derivation of Aortic Valve Cleaning Cycle Policy Expression
	10.4.5 Derivation of Aortic Valve Cleaning Cycle Policy Rules


	11 Evaluation
	11.1 Measurements
	11.1.1 Planning Phase
	11.1.2 Runtime Phase

	11.2 Dependable Behavior
	11.2.1 Policy Rules
	11.2.2 Policy Expressions


	12 Conclusion
	Bibliography

