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Abstract 

Since uncertainty is the crucial point of a capital investment decision, risk analysis in capital 
budgeting is often applied. Usually risk analysis is carried out by a Monte Carlo simulation. The aim 
of this article is to present simple analytical methods which allow us to calculate the standard 
deviation of a project with correlated cash flows as a risk measure. These methods are compared 
with simulation procedures carried out with R, and it is shown that the proposed simple analytical 
methods are indeed a quick and efficient procedure for assessing the risk of an investment project 
where the cash flows are correlated.  
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1. Introduction 
The net present value (NPV) is an indicator of how much value an investment or project adds to the 
wealth of the investor. It is defined as the discounted sum of future cash flows: 
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with C0: net present value (NPV), I0 > 0: investment expenditure at time 0, ct > 0: cash flow at time 
t,   n>0: number of years, q>1: discount factor, i=q-1: discount rate (see, e.g., Pflaumer, 2004, 
2013). The estimation of future cash flows has to be done under uncertainty. Considering future 
cash flows as random variables leads to a stochastic investment appraisal model, where the net 
present value is a random variable, too.  The distribution of the net present value can be determined 
by Monte Carlo simulation methods (see, e.g., Hess/Quigley, 1963; Hertz, 1964; Savvides, 1994; 
Vose, 1997) or analytical methods (see, e.g., Hillier, 1963; Wagle, 1967; Jöckel/ Pflaumer, 1980, 
1981).  
 
2. A Simple Model with Correlated Cash Flows 

In order to consider the uncertainty in stochastic investment appraisal, one has to specify a mean 
estimate of the cash flow, a pessimistic and an optimistic estimate.  It is assumed that the cash flow 
is equally distributed between the lower bound ta and the upper bound tb . Statistically speaking, the 

cash flow is a random variable ct (risk profile) with a rectangular distribution. The expected value 
and the variance of the cash flow are: 
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The correlation coefficient between the cash flow, cj, at time j and the cash flow, ck, at time k shall 
be rjk=rkj. The correlation of a time series with its own past and future values is called the 
autocorrelation. It is also sometimes called “lagged correlation” or “serial correlation”. 
 
The expected value and the variance of the net present value (NPV) will be  

   
0 0

1

n
t

t
t

E c
E C I

q

   and     1

0 2
1 1 1

2 t s

n n n
c ct

tst t s
t t s t

Var c
Var C r

q q

 


   

     . 

                                                 
1 Paper presented at the 61st ISI World Statistics Congress (WSC) held in Marrakech, Morocco from 16 to 21 
July 2017. 
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Positive correlation increases the variance and thus the risk of a capital budgeting project. The 

model is not easy to manage since a large number of correlation coefficients, exactly 
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have to be specified, which are, in general, difficult to estimate.  
Therefore, it is reasonable to assume that the correlation depends only on the time-distance between 
the pair of cash flows, however not on their position in time: 

, ,t t t tr r r    . 

The autocorrelation decreases with increasing time lags. The influence of the cash flow of the 
previous year on this year´s cash flow is more important than the influence of the cash flow from, 
e.g., three years ago. Simplifying the investigation, we further assume that the cash flows are 
identical distributed with a rectangular distribution. Together with the assumptions about the 
autocorrelation, it is possible to derive the expectation and the variance of the NPV distribution, 
using statistical standard methods regarding the variance formula of the sum of discounted 
correlated random variables and sum formulas of geometric series. 
 
The mean and variance of the NPV distribution are now defined as  
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For the sake of simplicity, it may be sometimes assumed that the correlation coefficient is always 

, , 1t t t tr r    . 

In this case we get 
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If all autocorrelation coefficients are unity than the following relationship holds: 
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The general formula in the case of completely autocorrelated cash flows is  
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With the unrealistic assumption of complete correlation between all cash flows the variance, and 
thus the risk of the NPV distribution, will be largely overestimated. Therefore, one may propose the 
calculation of the variances in the cases of uncorrelated and completely correlated cash flows. Thus, 



 3

a lower and an upper limit of the variance can easily be calculated (excluding the case of negative 
correlation). The real variance consequently lies somewhere in the middle. 
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Comparable results can be obtained by the quotients 
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If the number of periods (years) is large then we can find an approximation formula for the variance 
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If it is assumed that only m adjacent cash flows are correlated and temporally far apart cash flows 
are not correlated, that is 
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then the variance formula for the NPV changes to 
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Example  
A project investment of € 100,000 for 10 years will lead to annual autocorrelated cash flows, which 
will be between a = € 14,000 and b = € 26,000. Rectangular distribution of the cash flows is 

assumed. The autocorrelation coefficient is , , 0.7t t t tr r 
    . The mean and the standard 

deviation of the NPV distribution shall be determined at a discount rate of 12%.  
 
Entering the values into the appropriate formulas leads to the following results: 
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The approximation for large n yields: 
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If all correlation coefficients are unity, then the upper limit of the variance will be: 
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The case of annual stochastically independent cash flows leads to the lower limit of the standard 
deviation, which is calculated to be

0
6,502C  . The relative uncertainty interval is therefore  
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In Table 1 the standard deviations of the NPV of our example are shown under different 
assumptions about the correlation coefficient and the length of the autocorrelation. The influence of 
the length of the autocorrelation increases with the value of the correlation coefficient.  
 

Table 1: Standard deviations of the NPV under different assumptions 

 r=0.1 r=0.4 r=0.7 r=1 

m 
0C  Index 

0C  Index 
0C  Index 

0C  Index 

0 6,502 1.00 6,502 1.00 6,502 1.00 6,502 1.00 
1 7,043 1.08 8,461 1.30 9,673 1.49 10,750 1.65 
2 7,088 1.09 9,037 1.39 11,154 1.72 13,360 2.05 
3 7,092 1.09 9,224 1.42 11,947 1.84 15,228 2.34 
4 7,092 1.09 9,286 1.43 12,387 1.90 16,627 2.56 
5 7,092 1.09 9,305 1.43 12,631 1.94 17,685 2.72 
6 7,092 1.09 9,312 1.43 12,763 1.96 18,473 2.84 
7 7,092 1.09 9,314 1.43 12,830 1.97 19,035 2.93 
8 7,092 1.09 9,314 1.43 12,862 1.98 19,396 2.98 
9 7,092 1.09 9,314 1.43 12,872 1.98 19,573 3.01 

Index=
0

/ 6, 052
C

  

In the case of stochastically independent cash flows, the NPV distribution can be approximated by a 
normal distribution (due to the central limit theorem) from which, e.g., quantiles and the probability 
of a negative net present value can be calculated. In the case of autocorrelation the central limit 
theorem is no longer valid. The NPV distribution and its quantiles can only be determined by 
simulation. 
 
3. Simulation 
A simulation with R of uncorrelated and autocorrelated cash flows was carried out. The simulation 
size was N=10,000. The simulation procedure followed an idea of Smart (2014): 
“The idea is simple. 1. Draw any number of variables from a joint normal distribution. 2. Apply the 
univariate normal CDF (cumulative distribution function) of variables to derive probabilities for 
each variable. 3. Finally apply the inverse CDF of any distribution to simulate draws from that 
distribution. The result is that the final variables are correlated in a similar manner to that of the 
original variables. This is because the rank order of the variables is maintained and thus correlations 
are approximately the same though not exact.”  
The calculated and simulated means and standard deviations are similar. If one regards the formulas, 
the results in Table 2 and the graphs in Fig. 1, one clearly recognizes the influence of (positive) 
correlated cash flows: 

1. Standard deviation and, thus, risk increases. 
2. The probability of loss (probability of a negative NPV) increases considerably, from about 

2% to about 18%. 
3. The mean and median are not affected. 
4. The histogram of the correlated cash flows significantly deviates from the density of the 

normal distribution. The histogram density is much flatter (kurtosis = -0656), an impressive 
demonstration that the central limit theorem applies only for independent random variables. 

5. With autocorrelated cash flows, the probability of a low or a high NPV increases. The risk 
of a low outcome is high; however, the chance of a high outcome is also high. 

6. The expected value and the standard deviation of the net present value are decreasing 
functions of the discount factor.   
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7. The relative risk, expressed as coefficient of variation is an increasing function of the 
discount factor as long as the net present value is positive. The relative risk rises 
dramatically as soon as the discount factor approaches the factor of the internal rate of 
return, since the net present value tends to zero, whereas the standard deviation decreases 
only slightly. 

 
Table 2: Results of the simulation 

mean stdev loss prob. IQR skewness kurtosis min 1. Q. median 3. Q. max N 
Autocorrelation r=0.7 

13,000 12,793 0.1762 18,974 0.017 -0.656 -19,726 3,403 13,026 22,378 46,239 10,000
No correlation 

13,054 6,510 0.0237 8,797 -0.024 -0.078 -10,919 8,672 13,061 17,469 35,955 10,000
Q=Quartile, IQR=Interquartile Range 

 
Fig. 1: Simulation results with R: NPV histograms with overlapping normal densities 

 
Sometimes the beta distribution (PERT distribution) is considered as an adequate distribution for 
specifying the cash flows. The estimates of the mean and variance of the constant cash flows are 
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if using the traditional PERT approximation for the variance (see, e.g., Malcolm et al., 1959 or 
Williams, 2005). The parameters a, m, and b are the pessimistic (minimum), the most likely (modus) 
and the optimistic (maximum) estimates. With this specification it is possible to model symmetric 
and skewed distributions of the cash flow. The mean and variance of the NPV distribution are in this 
case 

 0

2 1 1

6 1

n

nPERT

a m b q
E C

q q

  
  


and    2 2

0 2 2

1 1
2

36 1

n

nnPERT

b a q
Var C S

q q

 
    



 
 
 

. 

The standard deviation of the NPV distribution is here around 42% smaller than in the case of a 

rectangular distribution, since the quotient of the standard deviations is 0.57743 / 3  . 
 
4. Conclusions 
Risk analysis is a useful tool for identifying and assessing the risks of investment decisions. Failure 
to take the risk of a project into account can lead to wrong decisions. An average in statistics 
without the standard deviation is as useless as a net present value without a risk measure. The 
proposed simple methods are a first, and only a rough, indicator of the risk associated with an 
investment project. The standard deviations can be calculated easily and quickly. The method is 
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particularly suitable for educational purposes, with the object being to make students and 
practitioners familiar with the concept of uncertainty in capital budgeting. In practice, managers, 
experts, or specialists often have a good imagination about the lower and upper limit of future cash 
flows. Thus, these parameters can be estimated subjectively. In general, no expert can subjectively 
specify the autocorrelation coefficients. Therefore, the correlation coefficient has to be estimated 
from past observations by time series or regression methods (see, e.g., Jöckel/Pflaumer, 1980). 
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