
Jagdhuber et al. BMC Bioinformatics (2020) 21:26
https://doi.org/10.1186/s12859-020-3361-9

METHODOLOGY ARTICLE Open Access

Cost-Constrained feature selection in
binary classification: adaptations for greedy
forward selection and genetic algorithms
Rudolf Jagdhuber1,2, Michel Lang1, Arnulf Stenzl3, Jochen Neuhaus4 and Jörg Rahnenführer1*

Abstract

Background: With modern methods in biotechnology, the search for biomarkers has advanced to a challenging
statistical task exploring high dimensional data sets. Feature selection is a widely researched preprocessing step to
handle huge numbers of biomarker candidates and has special importance for the analysis of biomedical data. Such
data sets often include many input features not related to the diagnostic or therapeutic target variable. A less
researched, but also relevant aspect for medical applications are costs of different biomarker candidates. These costs
are often financial costs, but can also refer to other aspects, for example the decision between a painful biopsy marker
and a simple urine test. In this paper, we propose extensions to two feature selection methods to control the total
amount of such costs: greedy forward selection and genetic algorithms. In comprehensive simulation studies of
binary classification tasks, we compare the predictive performance, the run-time and the detection rate of relevant
features for the new proposed methods and five baseline alternatives to handle budget constraints.

Results: In simulations with a predefined budget constraint, our proposed methods outperform the baseline
alternatives, with just minor differences between them. Only in the scenario without an actual budget constraint, our
adapted greedy forward selection approach showed a clear drop in performance compared to the other methods.
However, introducing a hyperparameter to adapt the benefit-cost trade-off in this method could overcome this
weakness.

Conclusions: In feature cost scenarios, where a total budget has to be met, common feature selection algorithms are
often not suitable to identify well performing subsets for a modelling task. Adaptations of these algorithms such as
the ones proposed in this paper can help to tackle this problem.

Keywords: Feature cost, Genetic algorithm, Budget constraint, Cost limit, Feature selection

Background
Feature selection is an important and widely applied pre-
processing step in the field of biomarker detection. In
high-dimensional data sets, which are often found in the
“-omics” field (genomics, transcriptomics, proteomics,
metabolomics), many input variables may not carry rele-
vant information for a given task. Others may represent
redundant information. Excluding these features from the
model building process can drastically improve predictive
power in such situations.

*Correspondence: rahnenfuehrer@statistik.tu-dortmund.de
1Department of Statistics, TU Dortmund, Vogelpothsweg 87, 44227,
Dortmund, Germany
Full list of author information is available at the end of the article

Often the selection of a suitable feature subset is not
driven solely by performance issues. Costs for the inclu-
sion of certain features can be another aspect to consider.
These costs may not only refer to financial aspects, but
can be seen as a general construct to take into account
any disfavoured aspect of a feature. This could represent a
time span to raise a feature, a failure rate of the measuring
process, or the patient harm during the sample taking pro-
cess. Incorporating costs follows the idea of limiting the
total model cost, which we call budget in this paper. If this
budget is flexible and can be adapted if necessary, we refer
to a soft margin budget. Soft margin budgets have been
investigated in the context of feature selection under the

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-3361-9&domain=pdf
http://orcid.org/0000-0002-8947-440X
mailto: rahnenfuehrer@statistik.tu-dortmund.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 2 of 21

name cost-sensitive learning [1, 2]. This field covers flexi-
ble approaches harmonizing costs of misclassification and
costs of features [3]. Approaches of cost-sensitive learning
may be useful for situations, where the goal is a trade-off
between predictive performance and costs.
If a budget refers to a fixed limit, we call this situa-

tion a hard-margin budget. For a given feature selection
problem it can be seen as an additional constraint. In prac-
tice, a hard-margin budget could be e.g. available money,
available time, or official regulations on test failures. Ini-
tial research on the hard-margin situation was presented
by Min et al. [4] who introduce a thorough problem
definition in the context of rough sets and present fea-
ture selection heuristics. Extensions of this work can be
found in Min et al. [5]. An implementation of a simple
genetic algorithm with a cost-constrained fitness function
is introduced in Liu et al. [6].
We aim to broaden this field of research by proposing

multiple cost-constrained extensions to well known fea-
ture selection algorithms. We adapted a standard greedy
forward feature selection to handle cost constraints. A
similar adaptation, but in the context of submodular per-
formance functions, was proposed by Leskovec et al. [7].
They generalize a greedy algorithm by dividing the gain
in performance of a feature by the additional cost of this
feature. They compute two solutions, one using such a
cost adaptation and one with uniform costs, and select
the solution with better performance. They prove that the
resulting performance is at least a constant fraction (≈
63%) of the optimal solution [7]. In our approach we select
features by a general performancemeasure that is typically
not submodular. We also consider both, cost-adapted and
unadapted, methods separately, instead of the described
hybrid approach, such that theoretical error limits can-
not be transferred. However, we provide a practical and
computationally more efficient method.
Besides the greedy approach, we implemented two

adaptation strategies for genetic algorithms [8]. As base-
line approaches for all of these methods we implemented
an unadapted greedy forward feature selection and a sim-
ple cost-constraining strategy for four filter methods [9]
suggested in Bommert et al. [10].
We evaluated all methods in 11 artificial simulation

settings and two simulation studies based on real-world
data sets. As quality measures we consider predictive per-
formance, run-time, detection rate of relevant features,
and model size. Each data setting is designed to mimic
typical real-world scenarios. Feature costs are generated
randomly and different extents of budget constraints are
analyzed.
The paper starts with a thorough description of the pro-

posedmethods. The third section introduces the design of
the simulation studies. Multiple settings on artificial data
and two real-world data sets are considered to evaluate

the methods. The results of these simulations are summa-
rized in the fourth section. In the final section we discuss
our findings, give recommendations on the application of
the methods and suggest further extensions to this work.

Methods
Problem definition
Given a data set D, the goal of feature selection is to find
a feature combination (feature set) s within the power
set P({X1, . . . ,Xp}) of all features X1, . . . ,Xp for which a
statistical model M(s|D) is optimal with respect to a per-
formance criterion Q. Assume that the optimal value of
the performance criterion is the minimal value. Concisely,
the problem can then be formulated as

ŝ = argmin
s

{Q(M(s|D))} (1)

In many real-world scenarios, obtaining a feature Xi may
cause individual additive feature costs ci. A fixed cost bud-
get cmax for the feature combination s on the one hand
decreases the complexity of the problem by reducing the
number of possible candidate solutions, but on the other
hand complicates the search strategy by introducing an
additional constraint. This constraint can be defined as

∑

i:Xi∈s
ci ≤ cmax. (2)

Many algorithms have been developed to efficiently
solve the standard feature selection problem. For cost-
constrained data situations, filter method results can be
constrained post hoc. We implemented one such strat-
egy as a baseline method for comparisons. However,
for more sophisticated feature combination search algo-
rithms more elaborated specific changes are required to
adapt them to cost-constrained settings. In the following,
we introduce several such methods.

Adaptations of greedy forward selection
Forward selectionwith naive cost limitation (FS)
Greedy forward selection is a popular technique for fea-
ture subset selection. Themain advantage of this approach
is its simplicity and generally low run-time in small feature
spaces. This makes greedy forward selection applicable
to many practical problems. The algorithm starts with
an empty set s0. Then, iteratively the currently optimal
additional feature Xi with respect to a performance mea-
sure is added to the set. A typical choice for this measure
is the Akaike Information Criterion (AIC) [11]. Mini-
mizing the AIC can be interpreted as an optimization
of the trade-off between goodness of fit and model size.
By not solely focusing on goodness of fit, the AIC also
defines an implicit stopping criterion. If no sufficient per-
formance improvement can be achieved to justify adding
an additional feature the current solution is returned.

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 3 of 21

In the context of a limited feature cost budget, however,
this approach in general does not guarantee an admissible
solution. A trivial adaptation to ensure that the constraint
is fulfilled would be to simply redefine the stopping cri-
terion. If a budget violation is detected after adding a
feature, the algorithm is terminated and the prior solu-
tion is returned. This may lead to premature stopping at
any point, where another useful candidate with lower cost
could still be added.
A superior alternative is to subset the candidates in

every iteration to only include those, which will not exceed
the budget if added. This simple forward selection adap-
tation is labeled FS in this paper and is implemented as
a naïve approach as a comparison in the simulation stud-
ies. As FS does not actually weigh costs in the selection
process, but only limits the overall budget, it can seen
as a baseline for the proposed adaptations of the greedy
forward selection described in the following sections.

Cost constraint forward selection (cFS)
In the presence of feature costs, the suitability of a single
feature candidate does not only depend on its contribu-
tion to model performance, but also on its relative cost. A
feature, which is ten times cheaper compared to another
one, but performs almost identically, is intuitively a clearly
better choice to be selected. To formulate this intuition,
we introduce the Benefit-Cost Ratio (BCR). Using the AIC
as measure for performance, the cFS of adding a feature Xi
to a candidate set s is given by

BCR = AIC(M(s|D)) − AIC(M(s ∪ Xi|D))

ci
(3)

This measure quantifies the gain in performance due to
a feature relative to its additional costs. We adapt the
FS algorithm by iteratively adding the candidate feature
resulting in the highest cFS. One advantage of this idea is
that in scenarios with highly correlated data the selection
of cheaper surrogate features with similar information
is encouraged. The stopping criterion for this algorithm
does not need to be adapted, since

AIC(M(s|D)) ≤ AIC(M(s ∪ Xi|D) ⇐⇒ BCR ≤ 0.

As an uninformative feature should never be added even
if it is cheap, it is sufficient to stop if no improvement in
performance can be achieved. The implementation of the
proposed cost-constrained forward selection (cFS) is given
in Algorithm 1.
How to deal with the trade-off between benefit and cost

plays an essential role for the outcome of the feature selec-
tion. The FS algorithm on the one hand solely assesses
the benefit of a feature and ignores costs until the bud-
get limits the available feature pool. In contrast, the cFS
algorithm values cost equally high as benefit in predic-
tive performance, which might be too rigorous in some

Algorithm 1 Cost-constrained forward selection (cFS)
Require: features, costs, cmax, data set
Ensure: Feature combination s

1: s ← ∅
 Start with empty set
2: cs ← 0
 Empty set has costs 0
3: aics ← AIC(y ∼ 1)
4: candidates ← features k : costs(k) ≤ cmax
5: while candidates != ∅ do
6: for i ∈ {1, . . . ,length(candidates)} do
7: aic∗i = AIC(y ∼ s + candidates[i])
8: bcri = aics−aic∗i

costs(candidates[i])

9: ifmax(bcri) ≤ 0 then
 No improvement
10: return s
11: best = argmaxi bcri
12: s ← s ∪ candidates[best]
13: cs ← cs + costs(candidates[best])
14: aics ← aic∗best
15: candidates ← features k :

costs(k) ≤ cmax − cs ∧ k /∈ s
16: return s

applications. A trade-off between these two extrema can
be formulated by adapting the cFS definition:

BCRξ = AIC(M(s|D)) − AIC(M(s ∪ Xi|D))

ci + ξ
(4)

We propose two choices for ξ , which are thoroughly eval-
uated in the simulations of this paper. The first option
is ξ = max

i∈{1,...,p}(ci). The corresponding feature selection

method is called cFS.max. With this adaptation, the
focus of the cFS is strongly altered towards the benefit in
AIC. A more moderate version is given by ξ = 1

p
∑p

i=1 ci,
and the corresponding algorithm is called cFS.mean. In
real-world applications it is important to first assess the
cost distribution and then adapt these measures if neces-
sary. For example, mean and maximum can be prone to
outliers with very high costs. Respective definitions of ξ

using quantiles may be more suited in such situations.

Adaptations on genetic algorithms
Genetic algorithmwithout cost constraints
Genetic algorithms are heuristic search algorithms based
on the evolutionary ideas of survival of the fittest, genetic
crossover and random mutation. They were first intro-
duced by Holland [8]. Genetic algorithms are known to
be well suited for combinatorial problems and hence are
often used for feature selection in machine learning appli-
cations. The base algorithm starts by generating an initial
population of candidate feature combinations. Each of
these combinations is evaluated using a so-called fitness
function, which assigns a real value to the combination.

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 4 of 21

In applications of feature selection this value can repre-
sent a measure of model performance. The results of the
fitness evaluation are the basis for the genetic operators,
which are used to suggest a new candidate population for
the next generation. Genetic operators can be subdivided
into three groups:

• Selection operators
• Crossover operators
• Mutation operators

Selection operators decide, which elements of the current
population will proceed to the next generation. Decisions
are based on the current fitness evaluations. A practi-
cal example is lrSelection, which is implemented in the R
package GA [12]. This selection operator assigns a prob-
ability of proceeding to the next generation based on the
fitness rank in the current population. The evolutionary
idea of survival of the fittest corresponds to this operator.
Crossover operators can be seen as a recomposition of

two feature combinations (’parents’) into two new com-
binations (’children’). These children may comprise ele-
ments of both parents. An implementation for this idea is
uCrossover (R package GA [12]). This function transfers all
features present in both parents to the children and makes
a coin-toss for every other feature present in only one par-
ent to decide if it will be carried over to a child or not. The
corresponding evolutionary idea of the crossover operator
is genetic crossover.
Mutation operators randomly alter feature combina-

tions to further explore unknown regions of the feature
space. This alteration can mean to remove a random fea-
ture from the model, or to add a random new feature to
it. An implementation for this idea is raMutation (R pack-
age GA [12]). This function randomly chooses a feature
from the total feature pool. If the chosen feature is part
of the current feature set, it is removed, and if not, it is
added to it. The mutation operator is meant to resemble
the evolutionary idea of genetic mutation.
Typically, a user does not need to implement genetic

operators from scratch. Besides thementioned implemen-
tations many more pre-defined algorithms exist to choose
from [12]. The generation of a new population using the
genetic operators and the fitness evaluation of this popula-
tion are iterated until a pre-defined convergence criterion
is fulfilled. When not considering restrictions on feature
costs this approach can result in budget violations. In the
following sections we introduce two strategies to alter the
genetic algorithm to handle budget constraints.

Genetic algorithmwith fitness function adaptation (fGA)
The central element of a genetic algorithm is the fitness
function. It assigns a real number assessing the suitabil-
ity of a candidate set s. For candidate sets that violate the

budget the fitness value may be set to a constant negative
value indicating an unsuited feature combination. This is
for example done in the implementation of Liu et al. [6].
The downside of this approach however is that no infor-
mation can be gained from the constraint violations. The
algorithm may need to evaluate a large number of models
before finding a first valid candidate set.
An alternative is to specify the extent of constraint

violation in the fitness function. This way, the genetic
algorithm is able to evolve from higher constraint vio-
lations to lower ones, eventually finding valid candidate
sets. Figure 1 shows an optimization path of a genetic
algorithm, where the fitness value of a candidate set is
defined by

fitness(s) =
⎧
⎨

⎩

1 − costs(s)
cmax

, if costs > cmax

AIC(M(s|D))−1, if costs ≤ cmax

. (5)

In the example in Fig. 1, the algorithm is able to
approach the constraint region with each step, eventually
finding a first suitable candidate in iteration 42. For com-
parison, an implementation of a constant violation term
of 0 (with random initial population) did not find a sin-
gle valid candidate in the exact same scenario after 1000
iterations.
Besides the fitness function, the initial population plays

an important role for the convergence rate of the algo-
rithm. Starting within or close to the constraint region can
spare many iterations of evaluating non-suitable candi-
dates. Random feature combinations with an average total
cost of cmax can be drawn by letting each of the p features
have a probability of min(1, cmax/

∑p
i=1 ci) to be part of a

candidate set.
Using this initialization and the flexible constraint vio-

lation term of (5), we propose the genetic algorithm with
fitness adaptation (fGA). For comparability with the cFS

Fig. 1 Optimization path of a (not cost-adapted) genetic algorithm
that uses a fitness function accounting for the extent of constraint
violation. Data: 298 features (each with cost 1), cmax = 10. The first
candidate meeting the constraint is found in iteration 42

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 5 of 21

algorithm, the fitness measure for candidate sets within
the budget is based on the AIC. As the fitness needs to be
maximized and negative values are reserved for constraint
violations, AIC(M(s|D))−1 is used in the implementa-
tion. For the genetic operators, the earlier mentioned
pre-defined methods lrSelection, uCrossover and raMuta-
tion of the R package GA [12, 13] are typical choices in
feature selection applications and are here used for the
algorithm fGA.

Cost-preserving genetic algorithm (cGA)
When using the fGA, a lot of models that do not meet
the budget constraint may be proposed at any point. A
different approach to this problem is to alter the search
path in a way that only valid models enter the evalu-
ation population at any time. This way, an adaptation
of the fitness function becomes obsolete and the total
amount of fitness evaluations can be reduced. Reducing
fitness evaluations can be particularly relevant for situ-
ations with computationally expensive fitness functions.
To realize this approach, all genetic operators that can
lead to constraint-violating candidates need to be adapted.
These are crossover and mutation. Additionally, the ini-
tial population needs to be chosen more strictly to avoid
choosing sets with violations. The practical implementa-
tion of cost-optimized versions for the genetic operators
and the initial population generation is described in the
following sections.

Cost-optimized population initialization As already
mentioned in the previous section, the definition of an
initial population plays an important role for the conver-
gence time of a genetic algorithm with fitness adaptation.
It is also the first possible source of constraint viola-
tions. The simple initial population algorithm used for the
fGA drastically reduces this problem, it however does not
ensure that every candidate set is within the budget. A
suitable function needs to create a broad variety of dif-
ferent feature combinations solely in the subspace defined
by the budget constraint. For this purpose, we propose a
random forward selection approach, which is described in
Algorithm 2.
Algorithm 2 creates a candidate feature combination by

starting with an empty set and subsequently adding ran-
dom features until the budget is exceeded. At every step,
the current set can be returned with a user defined prob-
ability pStop. This way, any feature combination within
the budget has a chance of entering the initial population.
In the similar cFS algorithm (Algorithm 1) we restricted
the random draws to features with costs smaller than the
remaining budget of the current feature combination. This
is not done here. Hence, the feature combinations are not
pushed towards perfectly reaching the cost limit, which
would not necessarily give an advantage here but would

Algorithm 2 Initialize cGA Population
Require: popSize, features, costs, cmax, pStop
Ensure: population

1: population ← ∅
2: for i ∈ {1, . . . , popSize} do
3: s ← ∅
4: cs ← 0
5: while cs < cmax ∧ s �= population do
6: add = random feature k : k /∈ s
7: cs = cs+ costs[add]
8: if cs ≤ cmax then
9: s = s ∪ add

10: if draw from U(0, 1) ≤ pStop then
11: break;
12: population = population ∪ s
13: return population

favor the selection of very cheap features. In the practical
applications of this paper, pStop is set to 1

500 . With this
rather small choice, the initial population will preferably
consist of large candidate sets.

Cost-optimized selection operator As this procedure is
not affected by the presence of individual feature costs, an
adaptation of this genetic operator is not necessary. In the
practical applications of this paper, the lrSelection of the R
package GA [12, 13] is used.

Cost-optimized crossover operator In the presence of
cost limits, a standard crossover approach can lead to var-
ious problems. Assume a pool of 500 features, each having
a cost of 1, and a total cost limit of cmax = 10, with the
number of informative features being much greater than
10. After a number of generations, parent combinations
may already fill the budget quite well. A crossover of two
parents with 10 different of the 500 features will create a
cost constraint violation in more than 40% of cases.1
By adapting the crossover function with respect to

costs, these violations can be omitted. The proposed cost-
constrained crossover algorithm is given in Algorithm 3.
The algorithm starts by forwarding features present in

both parents to the children, as those are preserved in
any crossover scenario. Possible candidates to be added
are only those, which are present in exactly one parent,
are not exceeding the remaining budget and have not
been selected in the current crossover run before. A ran-
dom candidate is drawn and added to the child set with
probability 0.5 (i.e. each parent has the same chance of

1A total of 20 features each have a 50% chance of entering the model. The
budget is violated if more than 10 are selected, and
X ∼ B(20, 0.5) ⇒ P(X > 10) ≈ 0.412

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 6 of 21

Algorithm 3 Cost-Constrained Crossover
Require: parent1, parent2, costs, cmax
Ensure: child1, child2

 parents and children are index sets of selected
features

1: child1, child2 ← parent1 ∩ parent2
2: c1, c2 ← costs(parent1 ∩ parent2)
3: candidates ← parent1 ⊕ parent2
 ⊕ is exclusive or
4: for i ∈ {1, 2} do
5: tried ← ∅
6: while candidates != ∅ do
7: candidates ← features k :

costs(k) ≤ cmax − ci ∧
k ∈ parent1 ∩ parent2 ∧
k /∈ childi ∧
k /∈ tried

8: add = random feature ∈ candidates
9: tried ← tried ∪ add

10: x ← draw from U(0, 1)
11: if x < 0.5 then
12: childi = childi ∪ add
13: ci = ci+ costs(add)
14: return child1, child2

transcribing its information onto the child). The algo-
rithm stops after either every candidate has been tried,
or the budget does not allow any further candidate to be
added.

Cost-optimized mutation operator The final genetic
operator that can result in budget violations is the muta-
tion operator. This operator adds or removes one random
feature from the current candidate set. While selection
and crossover mainly exploit regions of the feature space
that are already known to perform well, the idea of muta-
tion is to further explore random feature alterations. This
can help to escape from local optima. In the context of a
cost limit, however, the downside of a random mutation
is that carelessly adding a feature may exceed the bud-
get. Recall the example scenario presented in the previous
section with 500 features and cost limit 10. There, after
some iterations, most feature sets may exhaust the bud-
get completely. Then, a randommutation will add another
feature in 98% of cases2 and hence violate the budget.
To overcome this problem, we propose an adaptation

of the mutation operator that avoids solutions outside the
budget. In the cost-agnostic version, first a random feature
is chosen. If this feature is already a member of the cur-
rent set, then it is removed, otherwise it is added. Hence
the decision to remove or add is implicitly modeled by

2P(Adding a feature to s) = #Features not in s
#Features = 490

500 = 0.98

the random selection of a feature. To guarantee a solution
inside the budget, ourmutation operatormodels this deci-
sion explicitly. At each step, we decide in advance if we
add a feature to the current set s, or if we remove one. The
probability for this decision is

P(Add a feature) = 1 −
∑

i:Xi∈s ci
cmax

(6)

The idea is to add a feature with higher probability if the
total cost of the current set is still far away from the budget
limit, and otherwise to rather remove a feature to bet-
ter explore the search space. The decision which feature
actually is added or removed is made in a second step
by choosing randomly from all possible features. In the
extreme case that in the first step the decision is to add
a feature, but none meets the budget constraint, instead
a random feature is removed. The proposed mutation
strategy is given in Algorithm 4.

Algorithm 4 Cost-Constrained Mutation
Require: s, c, cmax
Ensure: s∗

1: s∗ ← s
2: x ← draw from U(0, 1)
 Step 1: Add or remove

feature?
3: if x >

costs(s)
cmax

∧ ∃i : (Xi /∈ s ∧ costs(s) + ci ≤ cmax)
then

 Step 2: Add random feature
4: s∗ ← s∪ random(Xi|Xi /∈ s∧ costs(s)+ci ≤ cmax)
5: else

 Step 2: Remove random feature
6: s∗ ← s \ random(Xi|Xi ∈ s)
7: return s∗

An alternative implementation of the mutation operator
could be formulated as follows: We only consider fea-
tures, which if altered will not exceed the cost budget. This
includes every candidate that is already part of the cur-
rent feature set. The chance of adding a candidate is thus
implicitly modeled by the ratio of possible candidates and
current model size.
Both ideas lead to valid results for the given problem.

For the applications in this paper the two step approach
described in Algorithm 4 is applied.

Overall implementation of cGA This section summa-
rizes the proposed cost-preserving genetic algorithm. The
initial population is generated by a random forward selec-
tion (Algorithm 2). For the genetic operators lrSelection (R
package GA [12, 13]) is used for selection, cost-constrained
crossover (Algorithm 3) is used for crossover and cost-
constrained mutation (Algorithm 4) is used for mutation.

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 7 of 21

As the fitness function does not need to handle constraint
violations, any measure of performance can be used with-
out adaptation. For comparability with the other proposed
methods, the negative AIC was chosen in the simulations
of this paper.

Implementation of baseline filter methods
Besides the proposed methods of the previous sections,
multiple filter methods are implemented as baseline
approaches for the simulations. Filters compute a measure
of importance for every feature that in a second step can
be used to select a suitable feature subset. Filter methods
are simple to use and can easily be adapted to handle cost
constraints. A popular filter choice for binary response
variables is based on the t-test. For every candidate fea-
ture, the p-value of a two-sample t-test for the groups
defined by the response variable is computed. This value is
then used as a measure for the discriminative power of the
respective feature. Further filter methods implemented in
this paper were chosen according to the recommenda-
tions of a recent benchmark study by Bommert et al. [10].
They compared 22 filter methods on 16 high-dimensional
data sets with respect to predictive performance and run-
time. The methods Filter.Symuncert, Filter.PraznikJMIM
and Filter.RangerImpurity showed a good compromise
between both aspects. The former two methods use an
entropy based feature evaluation, while the latter one
assesses the node impurity of random forests. For further
information on these methods see Brown et al. [14], Izen-
mann et al. [15], or Bommert et al. [10]. All analyzed filter
methods are used with their implementation within the R
package mlr [16].
To select a final model from the feature ranking of the

filter methods, which also meets a given budget con-
straint, a top-down approach is used. Features are added
to the model in order of their rank according to the fil-
ter, but only, if the cost of the resulting model does not
exceed the budget. The process is stopped either, if the
cost of any remaining feature would exceed the budget
or, if a certain threshold set for the feature importance
measure is reached. However, the latter option should be
handled with care as the values for feature importance
often represent abstract measures without a natural limit
regarding usefulness. For the simulations, the threshold
for Filter.tTest is set to 0.05 and for Filter.Symuncert it is
set to 10−6. For the remainingmethods no threshold is set.

Simulation studies
Artificial data settings
The goal of our simulation studies is to thoroughly eval-
uate the characteristics of the proposed methods and
to compare them to plausible alternatives in the context
of a limited feature budget. We consider binary clas-
sification problems, i.e. a binary response variable and

p variables emerging from a p-dimensional multivariate
normal distribution. In the simulation studies we vary
the total number of independent variables p, the num-
ber of truly relevant features p(rel) ≤ p, the effect
size β and the feature cost scenario. For each main
setting, the cost of the i-th feature ci is drawn from
a uniform distribution U(0.1, 1). We therefore implic-
itly assume a situation, where the cost of a feature is
independent of its effect size. As an extension, we ana-
lyze additional scenarios that also consider effect depen-
dent costs (see “Settings with altered simulation design
” section).
We define the budget cmax relative to the total cost of

all relevant features via a parameter γ ≥ 0. A value of
γ = 1 corresponds to a budget, where all relevant fea-
tures exactly fit in. For γ ≤ 1 the value cmax is the sum
of the cheapest costs up to the γ -quantile of the empiri-
cal cost distribution of all relevant features. For example,
for γ = 0.5 this means that at maximum only the cheap-
est 50% of the relevant features can be added. γ > 1
represents the situation, where the budget is greater than
the sum of the costs of all relevant features. A total of
γ · p(rel) average features can be added here. To compute
cmax the cost of an additional noise feature is considered
as the overall average feature cost c̄. For example a value of
γ = 1.5 allows the inclusion of all p(rel) relevant features
together with 0.5·p(rel) additional noise features with aver-
age cost c̄. Introducing the parameter γ allows to define
the cost constraint in a relative manner by the proportion
of relevant information that is allowed. Altogether this can
be formulated as

cmax :=

⎧
⎪⎨

⎪⎩

∑
i:βi>0 ci · I(ci ≤ q(rel)

γ), if γ ≤ 1

∑
i:βi>0 ci + (γ − 1) · c̄ · p(rel), if γ > 1

,

(7)

where I is the indicator function, q(rel)
γ is the γ -quantile

of the empirical cost distribution of truly relevant features
and c̄ is the mean cost of all features.
For all main simulation settings, B = 100 data sets of

size n = 500 are generated as follows (following the sim-
ulation framework of Boulesteix et al. [17]). In a first step,
the binary response variable is drawn from the Bernoulli
distribution B(0.5). Subsequently, the features are drawn
from p-dimensional multivariate normal distributions

X1, . . . ,Xp|Y = 1 ∼ Np(μ,�),
X1, . . . ,Xp|Y = 0 ∼ Np(0p,�), (8)

with mean vector μ defined as

μT =
⎛

⎜⎝β , . . . ,β︸ ︷︷ ︸
p(rel)

, 0, . . . , 0︸ ︷︷ ︸
p−p(rel)

⎞

⎟⎠ (9)

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 8 of 21

In all settings simulated according to this method, covari-
ance matrices � are chosen to be p-dimensional iden-
tity matrices Ip. To also extend our analyses to a non-
independent feature space, a further simulation Setting G
is added.
We consider six main settings labeledA to F for the data

parameters γ , p, p(rel) and β . Additionally, five settings
were generated to analyze more specific scenarios. These
scenarios consider a non-identity covariance structure
(Setting G), an effect-dependent cost distribution (Set-
ting H), non-constant effect sizes for relevant parameters
(Settings I and J) and features that are not normally dis-
tributed (Setting K). An overview of the exact parameter
configurations for all settings is given in Table 1.
Every setting represents a common feature selection

task with individual characteristics. We vary the number
of input features p from only a few (Settings A and B) over
several hundreds (Settings C and D) up to over a thousand
(Settings E and F). Effect sizes range from 0.3 to 1 standard
deviation and the number of truly relevant features ranges
from 3 to 30. As the main focus of the simulation concerns
situations with budget constraints, γ is typically chosen to
be small. Yet, we included one setting (Setting E), which
does not constraint the relevant features in order to also
assess the behaviour of the proposed methods in this sit-
uation. A more detailed description of the motivation of
the individual settings is given in the results section.

Settings with altered simulation design
Five additional settings are introduced where the assump-
tions of the main simulation design are modified to obtain
a more complete picture of the characteristics of the
analyzed methods.

Table 1 Combinations of γ , p, p(rel) and β used for the
simulation design

γ p p(rel) β

Setting A 1
2 30 18 0.3

Setting B 2
3 30 3 1

Setting C 1
3 300 30 0.5

Setting D 2
3 300 3 0.5

Setting E 2 1500 15 0.5

Setting F 1
2 1500 20 0.5

Setting G 1
3 300 30 0.3

Setting H 1
3 300 30 0.5

Setting I 1
3 300 30 1

30 ,
2
30 , . . . , 1

Setting J 1
3 300 30 1

30 ,
2
30 , . . . , 1

Setting K 1
3 300 30 0.5

For every setting B = 100 training data sets are generated. Settings G to K are
specialized settings, which focus on changes in the data generation process. For
details see “Settings with altered simulation design” section

Setting G In the main design, features are sampled
according to (8) with � set to the p-dimensional identity
matrix Ip. However, in most real-world applications, the
assumption of completely independent features does not
hold true. Metabolomic or genetic data sets often include
highly correlated covariables [18]. Since the true processes
generating these data are unknown, the covariance matrix
of a real metabolomic data set (prostate cancer staging
data, see “Real-world data settings” section for further
details) was estimated and used to model the dependen-
cies between features. The data generation can be realized
in different ways. One option is to insert the estimated
covariance matrix as � in the framework of (8). This is
a technically valid approach, yet has implications for the
resulting multivariate data structure. Figure 2 illustrates
an exemplary scenario with strong correlation between a
feature x1 defined as relevant and another feature x2 with
no effect with respect to the binary response y.
It can be seen, that these two features create a multi-

variate structure, which is already perfectly separable by a
linear function. With one feature being highly predictive
and another highly correlated feature with no predictive
power at all, this scenario is on the one hand not resem-
bling a realistic data situation and is on the other hand
creating an non-intuitive artificial split between cases and
controls.
Therefore, to assess the quality of feature identifica-

tion, an alternative and more realistic framework is used.
We draw the feature matrix from a multivariate normal
distribution

X1, . . . ,Xp ∼ Np(0p,�), (10)

Fig. 2 Illustration of a possible situation when applying a non-identity
covariance matrix to the situation of (8). Two highly correlated normal
distributed features x1 and x2, where the first component x1 has
different means for the two classes (μ = 1 for y = 1 and μ = 0 for
y = 0) and the second component x2 has the same mean (μ = 0) for
both classes. The resulting multivariate structure is perfectly separable
by a linear function

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 9 of 21

where � represents the estimated covariance matrix of
the prostate cancer data set. The difference in the number
of features (prostate cancer data (298), Setting G (300))
is addressed by appending two additional independent
features to the covariance matrix.
We then draw realizations of the response variable yi

from the Bernoulli distribution

yi ∼ B(πi) (11)

with parameter πi modeled by a logistic relation to the
linear predictor of relevant features

πi = 1
1 + exp(−xTi μ)

(12)

The structure of μ is the same as in (9) with value β for
the first p(rel) entries and 0 else. The remaining simulation
parameters for Setting G are chosen similar to those in
Setting C.

Setting H The second artificial data simulation Setting
H addresses the independence assumption of costs and
true feature effects. In the main design no information
related to costs can be obtained from feature effects and
vice versa. Therefore it can be seen as the strictest sce-
nario requiring optimization in both directions. However,
in practical applications it is plausible to assume that more
valuable features might be more expensive on average. To
cover this aspect as well, Setting H is introduced, modify-
ing the generation process of the feature costs. Depending
on the true effect of Xi, the respective costs are drawn
from different uniform distributions as follows.

βi �= 0 ⇒ ci ∼ U(0.4, 1)
βi = 0 ⇒ ci ∼ U(0.1, 0.7) (13)

Relevant features have mean cost 0.7, and uninformative
features a considerably lower mean cost of 0.4. Besides
the cost distribution, all other simulation parameters are
adopted from Setting C.

Setting I In all previous settings, the effect sizes of the
relevant features are constant. In this case it is clear that
the most important features are the relevant ones with
smallest cost. To extend our scope, in setting I we con-
sider situations with non-constant effects. We define the
true effects sizes of relevant parameters as an equidistant
sequence within the interval] 0, 1]. The mean vector μ of
definition (9) is changed to

μT =
⎛

⎜⎝
p(rel)

p(rel) , . . . ,
2

p(rel) ,
1

p(rel) , 0, . . . , 0︸ ︷︷ ︸
p−p(rel)

⎞

⎟⎠ . (14)

This way, we cover a broad and interpretable range from
weakly to strongly relevant features. Apart from the def-
inition of μ, all remaining simulation parameters are
chosen as in Setting C.

Setting J In Setting H, for constant effects, a dependency
between costs and effect size is considered. In the context
of non-constant effects, such a dependency may have dif-
ferent implications. Setting J represents a combination of
Settings H and I. We use definition (14) for μ, but addi-
tionally, we introduce a correlation between ci and μi by
drawing costs according to

ci ∼ U
(
0.1 + μi

2
, 0.5 + μi

2

)
. (15)

For consistency with previous analyses, we again choose
all remaining parameters as in Setting C.

Setting K The final additional setting discusses the
assumption of normally distributed features. A study by
de Torrente et al. [19] with three datasets of the Cancer
Genome Atlas with different tumor types [20–22] showed
that more than 50% of the genes do not follow a normal
distribution. In Setting K, we address this topic by defin-
ing a new data generation process similar to Rahnenführer
& Futschik [23]. The goal is to draw observations from
non-normal distributions with heavy tails. To achieve this,
we draw 90% of the observations from a N (μi, 1) and
10% from a N (μi, 5) distribution. The second part adds
extreme values to the first main part. This way, we keep
effect sizes comparable to other settings, while still gener-
ating from a more complex distribution with many possi-
ble extreme values. Besides the altered data distribution,
the parameters as in Setting C are used.
In each simulation setting, prediction performance for

every model is evaluated on an independently drawn test
data set of size nTest = 10 000. To compare the analyzed
methods, the Area under the Receiver Operating Char-
acteristic Curve (AUC) [24] is computed on this test set.
During execution, we measure the run-time of each fea-
ture selection task on an AMD Ryzen 7 1700X 3.4 GHz
processor with 16GB of RAM. We finally also analyze the
number of selected features, and the proportion of rel-
evant features among those. However, in Setting G this
measure needs to be interpreted with care as models are
not limited to information from the pre-defined relevant
features, but can also use correlated surrogate features.
For Settings I and J, a simple grouping into relevant and
noise features is not reasonable. We provide an alternative
analysis on an individual feature level for these settings.
Note that the maximum performance of genetic algo-

rithms also depends on the choice of hyperparameters.
We set the population size to 500 and define a maximum
number of iterations of 150. Convergence is assumed after

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 10 of 21

10 consecutive iterations without further improvement.
On average, a feature selection with the high dimensional
Settings E and F takes around 3 to 5 min with a maximum
time-span of over 10 min with this configuration. In prac-
tice, depending on the computational resources, one may
consider scaling these parameters up for a further increase
in performance.

Real-world data settings
Besides the artificial data simulations described in the
previous section, we applied our methods to two real
bioinformatics data sets. In the following, we give a short
introduction to both settings.

Plasmode Setting R
In our first real-world setting, we perform a plasmode
simulation study [25]. A so-called plasmode uses a data
set generated from natural processes but adds a simu-
lated aspect to the data [26]. For this paper we use a
metabolomics data set as basis of our plasmode sim-
ulation. From 2013 to 2015, numares AG3 received
urine samples of prostate cancer patients from cooper-
ation partners of the Universities of Leipzig and Tübin-
gen. Sampling was ethically approved (Leipzig: No. 205-
15-01062015, Tübingen: No. 379-2010BO2). Samples
were analyzed using nuclear magnetic resonance spec-
troscopy (NMR). All measurements were carried out
on a Bruker Avance II + 600 MHz NMR spectrome-
ter using a PATXI 1H/D-13C/15N Z-GRD probe and a
standard pulse program with 30◦ excitation pulse and
pre-saturation for water suppression (zgpr30). Each rack
included one Axinon urine calibrator sample and two
Axinon urine controls (numares AG) samples (positioned
at the beginning and the end of a rack) in order to
assure ideal measurement and reproducibility conditions
throughout the run. 1H-NMR spectra underwent auto-
matic data processing and quality control as part of the
magnetic group signaling® technology based on spectral
properties, such as offset and slope of the baseline in
selected spectral regions as well as properties of selected
signals, e.g. signal position, shape and width [27].
After processing and quality control 547 samples binned

into 298 spectral regions form the basis of our plasmode
data set. The integral of the signals in each spectral region
is proportional to the abundance of the unknown sub-
stances generating the signals. Therefore, these integrals
can be used as input features of a predictive model. The
so-called binning or bucketing is a typical strategy to cre-
ate features from anNMR spectrum [28]. Yet, while reduc-
ing the data dimension, binning can lead to features with
either more than one or no substance at all. In the plas-
mode context, we use this data set to realistically model
the multivariate distribution of the features. To create a
3numares AG, Am BioPark 9, 93053 Regensburg

controlled scenario, which allows an objective assessment
of the analyzed methods, the real relation between fea-
tures and response variable needs to be known. Hence,
the binary response variable is generated from the fea-
tures that are defined to be relevant (c.f. framework of (8),
(9)) To minimize the amount of redundant information,
the truly relevant features selected should have minimal
covariance. Neighbouring spectral regions could include
signals from the same substance, or even only parts of
the same signal. To avoid this, a set of relevant features
is selected with maximum distance between each other.
This way, we observe a median absolute correlation of
0.09 in this setting. The parameter configuration to draw
the response variable is chosen similar to Setting C, see
Table 2 for exact values.
We draw realizations of the response variable yi from a

Bernoulli distribution similar to the approach described
in (11) and (12). For the plasmode setting, the structure
of μ is an adapted version of (9) with value β at scat-
tered positions for relevant features and 0 everywhere else.
However, though all input features are standardized, note
that β = 0.5 cannot be directly compared to the β value of
themain artificial settings, because the distributions of the
features do not follow a normal distribution and contain
many extreme outliers. Also, due to the altered response
generating process, the expected proportion of values 1
for the target variable is no longer controlled by a fixed
hyperparameter and may deviate strongly from 0.5. Here,
we obtained a ratio of 0.417 (y = 1: 228, y = 0: 319).
As the simulation results of Settings H and J do not

suggest a great influence of effect dependent costs, we
draw feature costs equivalent to the main settings from
the uniform distribution U(0.1, 1). Similarly, the relative
definition of cmax of (7) is used.
Since the data is not split into training and validation set,

we generate this split randomly by using approximately 2
3

of the observations (365) to perform the feature selection
and the rest (182) to evaluate the predictive performance
of the resulting feature subsets. In our simulation, we
consider 100 such random splits and assess the overall
results. Similar to the previous section the main focus of
the analysis lies on prediction performance, run-time and
feature count. An analysis of the proportion of detected
true features needs to be assessed with care here as -
similar to Setting G - the non-identity covariance of our
plasmode data set enables to obtain important predictive
information also from originally uninformative features.

Table 2 Combination of γ , p, p(rel) and β used for the plasmode
simulation Setting R

γ p p(rel) β

Setting R 1
3 298 30 0.5

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 11 of 21

Setting S
The plasmode simulation of the previous section has the
advantage of controlling the relationship between features
and response. This allows analyses based on a known
truth. But it only provides a partial real-world analy-
sis. For completeness, we also include an analysis on an
unmodified real-world data set. Setting S uses the publicly
available Bioresponse data set from OpenML (ID 4134)
[29]. The data set was collected by Boehringer Ingel-
heim to analyze a biological response of molecules. The
binary target variable is positive, if the molecule caused a
biological response and negative if not. 1776 features rep-
resent molecular descriptors. These are calculated prop-
erties that can capture some of the characteristics of the
molecule - for example size, shape, or elemental constitu-
tion [30].
We simulate costs similarly to Setting R. The main diffi-

culty of Setting S is defining a budget limit. As no informa-
tion on relevant features is given, we cannot define cmax as
a γ -proportion of the total cost of relevant information as
in definition (7). We solve this, by roughly estimating the
total cost with the computationally fast filter methods.We
define a grid of 9 cmax values between 0 and 4 and compute
the performance of the corresponding models selected by
the filters. For values above cmax = 3 we observe that the
performance does not increase any further. An illustra-
tion of the results is provided in Additional file 6. We use
this value of cmax = 3 as our limit in the simulation. To
additionally generate a setting with a more notable budget
restriction, we also run Setting S with cmax = 1.5. By ana-
lyzing two limits on a single setting, we can obtain further
insight on how results of different methods change when
relaxing the budget constraint.
The Bioresponse data contains 3751 observations,

which are not split into training and testing set. We fol-
low the same strategy as described in Setting R to generate
100 random data splits. As no underlying truth is known,
we only compare the results of the methods, without any
reference to an optimal solution. We assess prediction
performance, run-time and feature count.

Results
For each simulation we applied the methods FS (see “For-
ward selection with naive cost limitation (FS)” section),
cFS, cFS.mean, cFS.max (see “Cost constraint forward
selection (cFS)” section), fGA (see “Genetic algorithm
with fitness function adaptation (fGA)” section), cGA (see
“Cost-preserving genetic algorithm (cGA)” section) and
the four filter methods Filter.tTest, Filter.Symuncert, Fil-
ter.PraznikJMIM and Filter.RangerImpurity (see “Imple-
mentation of baseline filter methods” section). How-
ever, due to the very similar results compared to their
counterparts and for the reasons of clarity we omit the
methods cFS.max and fGA in the following sections.

Nevertheless, for every result presented, correspond-
ing results including these methods can be found in
Additional files 2,3,4 and 5.

Artificial data simulation results
Model performance
In many applications, the central criterion for a well per-
forming feature selection algorithm is the predictive per-
formance of the resulting model. We assess this aspect
using the AUC. Performance results of the analyzedmeth-
ods for all Settings A to K are shown in Fig. 3. Boxplots
are used to illustrate the variation between the 100 simu-
lated data sets. The green bar highlights the 0.05 and 0.95
quantile of the resulting AUC distribution over the simu-
lation data sets when selecting the maximum possible set
of features that were defined relevant in the data genera-
tion process. In settings with independence between the
individual features, this corresponds to the most informa-
tive feature combination any feature selection algorithm
can achieve. For Settings I and J relevant features are
not interchangeable and thus this measure is not applica-
ble. Instead, we provide a golden bar that corresponds to
selecting the maximum amount of effect size by selecting
features according to their true cFS.
Setting A reflects a situation with a rather small number

of candidate features fromwhich 60% carry relevant infor-
mation. Yet, the cost constraint allows only the cheapest
half of the relevant features to enter the model, at best. As
there are many informative features to choose from, the
challenge for this setting is mainly to find a suitable com-
bination regarding the costs. Here, the proposed methods
cFS and cGA show the highest average performance with
only slight differences between them. Comparing the for-
ward selection approaches, the cFS selection (using the
cFS) results in the highest AUC values. The trade-off
adjustment cFS.mean ranks shortly behind, followed by
FS. The filter methods show generally lower AUC values.
Only Filter.tTest and Filter.RangerImpurity are competi-
tive to the baseline FSmethod.
Setting B has the same number of candidate features as

Setting A, but only 3 relevant ones. The budget restricts
only the one most expensive feature from entering the
model. Hence, a good feature selection algorithm pri-
marily needs to separate informative features from noise
features here. The boxplots for this setting are either very
short or stretched for all methods. This can be explained
by the small number of relevant features. The perfor-
mance almost only depends onwhether none, one, or both
possible relevant features are included by the algorithm.
The genetic algorithm and cFS together with cFS.mean
solve this situation for nearly all 100 data sets perfectly (i.e.
including exactly the two relevant features). FS and Fil-
ter.tTest are slightly behind. The remaining filter methods
again find the optimal solution in less cases. Yet overall,

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 12 of 21

Fig. 3 Performance results for simulation Settings A to K. Boxplots for every feature selection method illustrate the distribution of the AUC values
obtained in the 100 data sets (transparent dots). The black diamonds depict the mean AUC values. A horizontal bar highlights the area between the
0.05 and 0.95 quantile of AUC values when always selecting the cheapest subset (green) or the best real cFS subset (golden) of relevant features that
fit in the budget. Both correspond to a univariately optimal solution

every method is able to perfectly solve the given setting in
more than two out of three cases.
Setting C (300 candidate features) describes a realis-

tic data scenario in found for example in metabolomic

applications [18]. One characteristic of this setting is the
strong budget constraint allowing only 1

3 of the 30 rel-
evant features to enter the model. This configuration
therefore combines the challenges of Setting A and B

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 13 of 21

by incorporating many noise features together with the
need for an efficient cost strategy. Here the cFS algorithm
shows a clear advantage compared to its counterpart FS.
Mean trade-off adjustment of the cFS cFS.mean resulted
in lower performance than the unadjusted version cFS,
with a mean AUC difference of 0.017. The genetic algo-
rithm performs only slightly worse than cFS. The lowest
result is obtained with the filter methods, with no great
differences between them. Their AUC is similar as for
FS, yet, their boxes lie fully below the respective boxes of
every other method.
Setting D is in multiple aspects similar to Setting B.

However, the main problem is strongly exacerbated by
only incorporating information in every 100th feature.
Furthermore, the effect size was halved. Nevertheless,
the results mainly resemble the ones observed in Setting
B. The overall differences between the methods appear
smaller, which may be traced back to the smaller amount
of information and lower performance maximum.
The Settings E and F have multiple peculiarities. First of

all, with p = 1500 the total number of features is chosen
in a high-dimensional area. Non-filter methods are often
prone to run-time or convergence problems in these sit-
uations. In analogy to Setting D, only around 1 in every
100 features is simulated to carry relevant information.
For Setting F, γ is set to 1

2 . This results in a similar model
size constraint as in Settings A and C, hence enabling an
assessment of the impact of adding noise features to the
data. On the contrary, Setting E introduces a very spe-
cial scenario with its value for γ . The budget limit is set
higher than necessary to include the information of all rel-
evant features. This contradicts the idea of an actual cost
constraint, yet can illustrate the properties of the analyzed
algorithms in unbounded situations.
While the cFS algorithm is performing best in most

other settings, for Setting E it performs worst with its
full box below the one of the second lowest performing
method. The non-existing constraint on the total relevant
information plays into the hands of the FSmethod. How-
ever, a trade-off adaptation can compensate this weakness
of cFS, and cFS.mean ranks indeed only slightly behind
FS. cGA also performs similarly, seemingly unaffected
from the missing information limit. However, the filter
methods dominate this setting. Especially Filter.tTest and
Filter.RangerImpurity consist only of AUC values above
the boxes of all other methods. Only Filter.PraznikJMIM
cannot exceed the range of the other methods.
For Setting F, most methods perform very similar. Only

models of Filter.PraznikJMIM are notably worse. Both,
cFS and FS result in lower AUC values than the remain-
ing non-filter methods. Here, for the first time, the trade-
off adaptation cFS.mean outperforms both unadjusted
versions (cFS and FS) and shows the best result among
all methods.

A clear advantage of the proposed methods compared
to the analyzed baseline approaches can be found in the
plot of Setting G. In this setting, a non-identity covari-
ance matrix is used and the data generation framework
is altered. The budget limits the original features to only
include 10 out of 30 relevant ones. However, this limi-
tation could be bypassed here by switching to cheaper
surrogate features with high correlation to relevant ones.
Hence, the green bar shown in Fig. 3 cannot be inter-
preted as the optimal result for Setting G. Overall, all
non-baseline methods perform similarly well with slight
advantages for the cFS algorithm. The trade-off adapta-
tion on average leads to a small decrease in AUC. Notably
worse results are obtained with the filter methods, for
which all boxplots lie completely under the full boxplot of
the cFS approach.
Setting H analyzes the influence of a dependency

between effects and costs. Compared to the analogous
Setting C, besides a small reduction in AUC differences
between the methods, most approaches are unaffected by
this adaptation. The typically observed AUC reduction
when using cFS.mean compared to cFS is negligibly
small here.
Setting I introduces different effect sizes for the relevant

features. Here, cFS shows the highest performance, fol-
lowed by cFS.mean and cGA. Again, baseline methods
generally result in notably lower AUC values.
Similarily to Setting I, Setting J defines different effect

sizes for relevant features. Additionally, there is a cor-
relation between effect size and costs. The conclusions
are comparable to those for Setting H. Baseline methods
show overall lower performances, but the differences to
our proposed methods are only minor.
In the final Setting K features are no longer normally

distributed. Instead we use a more complex distribution
with heavy tails andmore extreme values. The conclusions
are similar to those for previous settings. cFS again shows
the highest AUC results, followed by cFS.mean and cGA.
All baseline methods perform similarily bad.

Run-Time
The run-time is analyzed for all methods and settings.
Overall, main influential factors between settings are the
dimension of the feature space and the maximum number
of relevant features that can be added for the given budget.
In general, the genetic algorithms result in longer run-

times than any other method. The only exception to this
occurs in Setting E, where cFS takes longer than fGA.
As in a greedy forward selection approach, the number
of evaluations per iteration scales with the feature dimen-
sion, the complexity for applying such a method may
become prohibitive in situations with very large p. Though
evaluating a smaller number of iterations, cGA has in
general slightly longer run-times than fGA. This does

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 14 of 21

not necessarily imply a more efficient search strategy of
fGA, as the performance of cGA was often slightly higher
as well. Similar reasoning can be applied to the greedy
forward selection approaches. While not adding compu-
tational complexity, cFS shows up to two-fold run-times
compared to FS. Applying a trade-off adaptation slightly
reduces the run-time compared to cFS. All observed dif-
ferences in run-time become more severe with higher
dimension of the input feature space. The average run-
time for filters is negligibly small and dominates all other
methods. A detailed overview of the exact median run-
times for all methods and simulation settings is tabulated
in Additional file 1.

Model Size and Detection of Relevant Features
The final aspect of our simulation analysis concerns the
composition of the resulting feature combinations regard-
ing relevant and noise features. To formulate this, we
analyze the 2× 2 contingency table generated by the vari-
ables ’Is the feature truly relevant?’ and ’Was the feature
selected?’. For our 100 data sets, we can then compute the
precision as the ratio of selected relevant features among
the total number of selected features. (→ What portion
of the selected features is actually relevant?) This measure
focuses on the composition of the selected combination
solely. Hence a method selecting only 1 out of 1000 rel-
evant features, but no noise feature would still optimize
this criterion. To also focus on the total information avail-
able in the feature space we can compute the recall as the
ratio of selected relevant features among all existing rel-
evant features. (→ What portion of all relevant features
was selected?) In settings with a true budget constraint
(γ < 1), this value has an upper limit. With the definition
of cmax according to (7), this limit is γ . An illustration of
precision and recall for the analyzed methods for simula-
tion Settings A-H and K is given in Fig. 4. The exact values
are furthermore tabulated in Table 3.
Values of these measures obtained with a random fea-

ture selection are added as reference. To compute these
measures an estimation of the selected relevant features
under random selection is needed. Assume a selected
feature subset of size n. The expected number of rel-
evant features in this subset equals the expected value
of the corresponding hypergeometric distribution: X ∼
H(p, p(rel), n) ⇒ E(X) = np(rel)

p . We can now derive an
estimate for random precision by dividing this expected
value by the total number of selected features n. The result
is independent of the size of the subset and is given by
p(rel)

p . For recall, n does not cancel out. Hence we need
to estimate it as the average model size a budget allows:

cmax
meani(ci) . We can then estimate the expected value of the

hypergeometric distribution by cmax
meani(ci)

p(rel)

p . Dividing this
number by the total count of relevant features (p(rel)) gives

the random recall value plotted in Fig. 4 and reported in
Table 3.
For all settings with a true budget constraint we observe

that the new proposedmethods cFS, cFS.mean and cGA
clearly dominate with respect to recall. However, for pre-
cision, in several settings the baseline methods seem to
give better results. In particular, cFS always has the high-
est recall values but lower precision values, compared to
cFS.mean and cGA.
In Setting G, a non-identity covariance matrix was used.

Hence, the number of selected relevant features does not
directly correspond to the amount of detected informa-
tion.
Setting E - with no true budget constraint on informa-

tive features - represents another peculiar situation. Filter
methods (except for Filter.PraznikJMIM) dominate this
setting with respect to both precision and recall. Among
the non-filter methods, the missing restrictive budget to
control the overall model size is exploited the most by
the cFS algorithm. It often favors very cheap noise fea-
tures with small random explanatory value over expensive
but truly relevant features and hence in general tends to
include more features than all other methods. This results
in a very low precision value of only 0.379. The trade-off
adaptation attenuates this characteristic and leads to pre-
cision and recall values close to cGA. As this observation
can also be made at Setting F, the adaptation on the cFS
shows to be a relevant and necessary extension to the cFS
algorithm when dealing with high dimensional data.
For Settings I and J the precision-recall analysis is not

carried out. As these settings include features with differ-
ent effect sizes, the pure number of detected features is
not a suitable measure. Alternatively we inspect the fre-
quency of selection for each feature individually. Plots for
every feature are given in Additional file 7. A more con-
cise version with focus on the feature with highest effect,
the feature with highest cFS, and the selection of noise
features is given in Fig. 5.
In both settings, the feature with strongest effect size is

selected almost always by any method. The feature with
optimal cFS is more often selected by our proposed meth-
ods. It is noteworthy that by design, strong cFS value
differences are less frquent for Setting J, due to the corre-
lation between cost and effect size. The number of good
cFS candidates (high performance, low cost) is smaller.
Hence, the advantage of being able to detect such features
is reduced. This explains the smaller performance differ-
ences for Setting J compared to Setting I. The plot of noise
features leads to similar conclusions as before.

Real-World Data Simulation Results
Figure 6 illustrates boxplots of every analyzed feature
selection method for the plasmode Setting R and the
real-world Setting S. For Setting R, the plot structure is

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 15 of 21

Fig. 4 Precision-recall plot comparing analyzed feature selection methods for all simulation settings. Precision corresponds to the ratio of relevant
detected features divided by total amount of features in the model. Recall shows the ratio of relevant detected features divided by the total existing
number of relevant features. The cost budget defines an upper limit for the recall in the simulations. It is highlighted by a green line. To assess the
quality of the feature selection methods precision and recall for selecting features randomly is added to the plots as horizontal and vertical dashed
lines. The plot boundaries are re-scaled to depict the area of interest between randomness and optimal values

analogous to the one in Fig. 3. For Setting S, the left
elements show the results at cmax = 1.5 and the right
elements at cmax = 3.

The results of Setting R resemble in multiple aspects
the results of Setting C. The genetic algorithm and the
cFS method perform best. The cFS trade-off adaptation

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 16 of 21

Ta
b
le

3
O
ve
rv
ie
w
of

pr
ec
is
io
n
an
d
re
ca
ll
of

al
la
na
ly
ze
d
fe
at
ur
e
se
le
ct
io
n
m
et
ho

ds
fo
rd

iff
er
en

ts
im

ul
at
io
n
se
tt
in
gs

Re
ca
ll

Pr
ec
is
io
n

A
B

C
D

E
F

G
H

K
A

B
C

D
E

F
G

H
K

M
et
ho

ds

FS
33
.9

58
.3

19
.2

53
.7

79
.4

34
.4

9.
7

24
.0

18
.9

98
.7

98
.3

98
.8

10
0.
0

69
.9

93
.9

59
.1

91
.2

98
.1

cF
S

41
.6

66
.7

29
.1

62
.7

69
.3

40
.2

20
.5

27
.9

28
.2

95
.5

10
0.
0

92
.5

93
.1

37
.9

68
.2

58
.7

85
.7

92
.3

cF
S.
m
ea
n

38
.8

65
.7

25
.2

59
.3

78
.3

40
.3

18
.6

27
.0

24
.7

97
.8

99
.0

97
.4

97
.8

59
.8

89
.9

65
.8

92
.0

97
.5

cF
S.
m
ax

37
.6

64
.0

23
.6

57
.0

79
.1

38
.7

16
.3

26
.3

22
.9

98
.7

99
.0

98
.6

98
.8

63
.5

91
.1

65
.6

93
.0

97
.9

fG
A

40
.6

66
.3

27
.4

55
.0

81
.7

38
.0

19
.0

27
.8

23
.8

97
.9

99
.5

98
.1

87
.3

59
.3

83
.7

68
.1

93
.8

98
.3

cG
A

40
.3

66
.3

27
.3

61
.7

79
.9

38
.6

19
.0

27
.8

23
.8

97
.8

99
.5

97
.0

96
.9

61
.2

90
.0

69
.7

94
.2

97
.4

Fi
lte

r.t
Te
st

34
.3

58
.7

18
.4

53
.0

98
.4

34
.7

8.
8

23
.9

18
.9

99
.5

99
.4

99
.8

10
0.
0

88
.2

95
.6

61
.5

93
.6

99
.8

Fi
lte

r.S
ym

un
ce
rt

24
.1

56
.0

18
.4

47
.0

84
.2

33
.0

8.
7

24
.1

18
.6

99
.3

10
0.
0

99
.6

97
.2

84
.0

95
.0

57
.9

99
.3

99
.8

Fi
lte

r.P
ra
zn
ik
JM

IM
30
.3

57
.3

18
.6

44
.0

60
.8

28
.1

7.
0

23
.8

18
.4

83
.1

86
.0

97
.6

76
.3

54
.4

77
.0

43
.3

89
.3

96
.0

Fi
lte

r.R
an
ge

rIm
pu

rit
y

34
.3

57
.0

19
.1

53
.7

96
.0

33
.4

8.
9

24
.1

18
.8

93
.5

85
.5

99
.0

98
.8

85
.0

93
.3

60
.5

89
.9

98
.3

Re
fe
re
nc
e

Bu
dg

et
co
ns
tr
ai
nt

50
.0

66
.7

33
.3

66
.7

10
0.
0

50
.0

33
.3

33
.3

33
.3

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

10
0.
0

Ra
nd

om
se
le
ct
io
n

20
.5

4.
7

1.
5

0.
3

1.
1

0.
5

1.
6

4.
0

1.
6

60
.0

10
.0

10
.0

1.
0

1.
0

1.
3

10
.0

10
.0

10
.0

Va
lu
es

ar
e
gi
ve
n
in
pe

rc
en

t.
Th

e
re
su
lts

ar
e
an

ex
te
nd

ed
ve
rs
io
n
of

th
e
da
ta
sh
ow

n
in
Fi
g.
4.
Pl
ea
se

re
fe
rt
o
th
e
de

sc
rip

tio
n
of

th
is
fig

ur
e
fo
rf
ur
th
er
de

ta
ils

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 17 of 21

Fig. 5 Selection frequency the feature with strongest benefit-cost-ratio (first row) and the feature with strongest effect size (second row). The third
row shows the average number of noise features across the simulations

cFS.mean ranks only shortly behind. Again, FS shows
better performance than any filter approach, but can-
not reach the predictive performance of the three new
methods. Similarly to Setting G, no method could reach
overall higher AUC values than the model containing
all relevant features fitting the budget (green bar of top
plot in Fig. 6). Cheaper surrogates of relevant features
could have allowed to exceed this performance value,
but here no such surrogate structure was found. For Set-
ting S, cFS and its adaptations perform best, followed by
the unadapted FS. The genetic algorithms cannot quite
hold up with these results. The reason might be the

high-dimensional nature of the data set and thus slower
convergence of the algorithm. Comparing the two bud-
get limits, no forward selection algorithm can improve its
performance with a higher cmax value. cFS even shows
a minor decrease in AUC. In contrast, the genetic algo-
rithms and the filter methods can still improve their
performance at cmax = 3, but do still not outperform cFS.
With respect to run-time, the results of Setting R are

comparable to Setting G. Filter methods resulted in run-
times around one second, while the greedy forward selec-
tion algorithms required approximately 30 s. The highest
run-times were observed for the genetic algorithm with

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 18 of 21

Fig. 6 Performance results for the plasmode simulation Setting R and
the real world data Setting S. Boxplots for every feature selection
method illustrate the distribution of the AUC values obtained for the
100 training-test splits (transparent dots). The black diamonds depict
the mean AUC values. A green bar in the top plot highlights the area
between the 0.05 and 0.95 quantile of AUC values when always
selecting the optimal subset of relevant features that fit in the budget.
For Setting S, in the bottom plot, the left elements show the results
with cmax = 1.5 and the right elements show the results with cmax = 3

a median value of around 3.5 min. For Setting S, run-
times in the range of those for the high-dimensional
Setting E were observed. Increasing the budget more than
doubled the run-times of non-filter methods, whereas
run-times for filter methods did not increase. A detailed
overview of the exact values for all methods is tabulated in
Additional file 1.
As final analysis we assess the composition of the result-

ing feature subsets. We do not compute precision and
recall here, as these measures are not valid performance
estimates in settings with correlated features and may be
misleading. Moreover, these measures cannot be com-
puted for our Setting S in general. Instead we depict the
resulting model sizes for every method. For Setting R,
we additionally show the number of detected relevant

features. In Fig. 7 the distributions of these measures are
illustrated using discretized versions of violin plots. Sim-
ilar to the previous analyses, we indicate the maximum
number of relevant features fitting in the defined budget
for Setting R, but again comment that reaching an opti-
mum for this measure does not necessarily correspond
to an optimal solution. Also, the size of a model by itself
does not imply any negative aspect. Statements on model
quality are only possible in combination with performance
results.
The discrete violin plots of Setting R show, that the

FS algorithm as well as all filter methods tend to select
smaller feature combinations. Together with the AUC
results, one conclusion is that these algorithms in general
select too expensive features and reach their budget limit
with less overall information than the cost-adapted meth-
ods. On the contrary, the cFSmethod selects rather large
feature combinations, yet does not outperform the genetic

Fig. 7 Discretized violin plots of the relevant feature count
distribution (blue) and the total model size distribution (black) for the
100 analyzed training-test splits of the plasmode simulation. The
green bar indicates the maximum number of relevant features that
can be added within the budget of this setting. Bottom: Setting S.
Discretized violin plots of the distribution of total model size for the
analyzed budget limits cmax = 1.5 (black) and cmax = 3 (gray)

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 19 of 21

algorithms. The number of relevant features approxi-
mately matches the overall model size, with the exception
of cFS, which selects larger models without a tendency
to more relevant features. The additional features do not
improve, but also not impair the overall performance.
For Setting S, the comparison of model sizes between

the methods leads to similar results as before. When
increasing the budget, we observe larger models for all
methods. The clearly largest increase is found for cFS.
As the performance of this method decreases with larger
budget, it can be assumed that in this case at least some
non-relevant features are selected.

Discussion
Simulation studies have demonstrated that in scenarios
with a “true” budget constraint (i.e. not all available infor-
mation can be added) cFS, its adaptations and cGA all
have better prediction performances compared to the
classical FS and to all analyzed filter methods. cFS turned
out to have weaknesses for the unbounded Setting E.
However, the trade-off adaptation of cFS could overcome
this problem and achieved good results in all settings, with
at a short run-time. The most versatile approach was the
genetic algorithm. It ranked best in multiple different set-
tings and did not show sensitivity to any data composition.
However, this comes at the price of an at least five-fold
increased run-time compared to cFS.
The interpretation of the precision-recall plots corre-

sponds to the interpretation of the AUC results inmultiple
aspects. Nevertheless it is important to note, that these
measures can not be valued equally for the given task.
While reducing the number of noise features in the model
is a desirable property, it is more important to include
the relevant features. This is reinforced by the clear per-
formance advantage observed for the methods optimizing
recall. cFS demonstrates this most clearly. It tends to
select relatively large feature subsets including many use-
ful ones, but also multiple noise features. When applying
the mean adaptation to this method (cFS.mean), the
precision increases while the recall decreases. cGA often
ranks in between these methods with both, large precision
and recall values.
The results obtained in the real-world settings reinforce

the overall findings of the simulations with artificial data.
For larger budgets cFS tends to include a higher number
of noise features compared to the other methods. Still, in
the analyzed scenarios its performance is superior com-
pared to methods without this issue. For higher budgets,
the effects of this problemmight becomemore important.

Conclusion
In this paper, we addressed the problem of selecting an
optimal feature subset in the presence of individual feature
costs and a hard budget constraint. This topic is crucial

in many practical applications, but only little research is
devoted to it up to date. We proposed three new meth-
ods, cFS, fGA and cGA, that extend well known and often
applied feature selection algorithms to also handle cost
constraints. For cFS, a general trade-off adaptation strat-
egy of the introduced benefit-cost ratio was proposed and
two explicit options for this strategy were discussed. All
proposed methods share the advantage of not requiring
cost-related hyperparameters. Therefore, no additional
tuning steps are necessary to translate a standard type
algorithm into one with the proposed cost-conscious
extensions.
Altogether, we recommend to use cGA in situations

without extreme computational resource constraints for
its robustness in a wide variety of data settings and its gen-
eralized implementation allowing to define a completely
unconstrained fitness function. If run-time is an essential
factor, then the cFS.mean method also performs well in
many data scenarios, since it results in overall only slightly
lower AUC values compared to cGA, while still being
rather robust to large budgets and selection of noise fea-
tures. In almost all settings with a clear budget constraint,
the unadapted cFS provides the best results. However,
because of its clear inferiority in Setting E and its tendency
to add noise features, we do not recommend this method
as our first choice. Finally, we would advise to check if an
actual budget constraint is given in advance. If the actual
budget is not limited, an unnecessary adaptation of feature
selection methods may strongly impair the final results.
Beyond the scope of this work, many extensions of the

current methods are possible. Currently, the selection of a
feature subset is performed according to the AIC. Other
performance measures evaluated in a cross-validation set-
ting could further improve the general predictive perfor-
mance. Moreover, this would broaden the field of appli-
cable modelling methods, which is currently only lim-
ited by the applicability of the AIC. In principle, each
of the proposed methods could be extended to many
supervised learning tasks. Finally, analogous adaptations
on many other feature selection approaches are possi-
ble to further extend the spectrum of available methods
in this field.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-020-3361-9.

Additional file 1: Run-time overview table. Median run-time in
seconds for the execution of one feature selection run. All results of
methods and Settings analyzed in the simulations of this paper are given
rounded to two digits.

Additional file 2: Extended version of Fig. 3. Performance results for
simulation Settings A to K. Boxplots for every feature selection method
illustrate the distribution of the AUC values obtained for the 100 data sets
(transparent dots).

https://doi.org/10.1186/s12859-020-3361-9

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 20 of 21

The black diamonds depict the mean AUC values. A horizontal bar
highlights the area between the 0.05 and 0.95 quantile of AUC values
when always selecting the cheapest subset (green) or the best real cFS
subset (golden) of relevant features that fit in the budget. Both correspond
to a univariately optimal solution.

Additional file 3: Extended version of Fig. 4 without re-scaling.
Precision-recall plot comparing all analyzed feature selection methods for
the main simulation settings. Precision corresponds to the ratio of relevant
detected features divided by the total number of features in the model.
Recall shows the ratio of relevant detected features divided by the total
number of truly relevant features. The cost budget defines an upper limit
for the recall in the simulations. It is indicated by a green line. To assess the
quality of the feature selection methods, values for precision and recall of
selecting features randomly are added to the plots as horizontal and
vertical dashed lines.

Additional file 4: Extended version of Fig. 6. Performance results for
the plasmode simulation Setting R and the real world data Setting S.
Boxplots for every feature selection method illustrate the distribution of
the AUC values obtained for the 100 training-test splits (transparent dots).
The black diamonds depict the mean AUC values. A green bar in the top
plot indicates the area between the 0.05 and 0.95 quantile of AUC values
when always selecting the optimal subset of relevant features that fit in the
budget. For Setting S, the left elements show the results with cmax = 1.5
and the right elements show the results with cmax = 3.

Additional file 5: Extended version of Fig. 7. Top: Setting R. Discretized
violin plots of the relevant feature count distribution (blue) and the total
model size distribution (black) for the 100 analyzed training-test splits of
the plasmode simulation. The green bar indicates the maximum number
of relevant features that can be added within the budget of this setting.
Bottom: Setting S. Discretized violin plots of the total model size distribution
for the analyzed budget limits cmax = 1.5 (black) and cmax = 3 (gray).

Additional file 6: Screening adequate size of cmax for Setting S. Plot
of AUC values of all filter methods for different values of cmax. After
approximately cmax = 3 no improvement for larger budgets is assumed.

Additional file 7: Complete version of Fig. 5. Individual barplots for
every relevant feature of Settings I and J. The y-axis shows the frequency of
selection for every analyzed method.

Abbreviations
AIC: Akaike information criterion; AUC: Area under the receiver operating
characteristic curve; BCR: Benefit-cost ratio; cFS: Cost-constrained forward
selection; cGA: Cost-preserving genetic algorithm; DFG: Deutsche
Forschungsgemeinschaft; fGA: Genetic algorithm with fitness adaptation; FS:
Forward selection with naive cost limitation; NMR: Nuclear magnetic
resonance;

Acknowledgements
Not applicable.

Authors’ contributions
RJ developed and implemented the proposed methods, designed and
executed the simulation studies, interpreted the results and wrote the
manuscript. ML contributed to the design of the simulation Settings and to
the interpretation of the results, and corrected and approved the manuscript.
AS and JN contributed to the aquisition of the plasmode data set samples and
revised and approved the manuscript. JR supervised the project and initiated
the feature-cost topic, contributed to the design of the simulation settings
and to the interpretation of the results, and corrected and approved the
manuscript.

Funding
This work was supported by Deutsche Forschungsgemeinschaft (DFG), Project
RA 870/7-1, and Collaborative Research Center SFB 876, A3. The authors
acknowledge financial support by Deutsche Forschungsgemeinschaft and
Technische Universität Dortmund within the funding programme Open
Access Publishing. This project furthermore has received funding from the
European Union’s Horizon 2020 research and innovation programme under
the Marie Skodowska-Curie Grant No. 721746 to aquire the plasmode data set.

Availability of data andmaterials
The datasets used and/or analysed during the current study are available from
the corresponding author on reasonable request.

Ethics approval and consent to participate
Sampling of the analyzed plasmode data set was ethically approved by the
Universities of Leipzig and Tübingen (No. 205-15-01062015 and 379-2010BO2,
respectively)

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests. RJ received
personal fees from numares AG, outside the submitted work.

Author details
1Department of Statistics, TU Dortmund, Vogelpothsweg 87, 44227, Dortmund,
Germany. 2numares AG, Am BioPark 9, 93053 Regensburg, Germany. 3Klinik für
Urologie, Universitätsklinikum Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen,
Germany. 4Universitätsklinikum Leipzig AöR, Department für Operative
Medizin, Klinik und Poliklinik für Urologie, Liebigstr. 20, 04103 Leipzig, Germany.

Received: 16 September 2019 Accepted: 10 January 2020

References
1. Tan M. Cost-sensitive learning of classification knowledge and its

applications in robotics. Mach Learn. 1993;13(1):7–33.
2. Zhou Q, Zhou H, Li T. Cost-sensitive feature selection using random

forest: Selecting low-cost subsets of informative features. Knowl-Based
Syst. 2016;95:1–11.

3. Bolón-Canedo V, Porto-Díaz I, Sánchez-Maroño N, Alonso-Betanzos A. A
framework for cost-based feature selection. Pattern Recogn. 2014;47(7):
2481–9.

4. Min F, Hu Q, Zhu W. Feature selection with test cost constraint. Int J
Approx Reason. 2014;55(1):167–79.

5. Min F, Xu J. Semi-greedy heuristics for feature selection with test cost
constraints. Granul Comput. 2016;1(3):199–211.

6. Liu J, Min F, Liao S, Zhu W. A genetic algorithm to attribute reduction
with test cost constraint. In: 2011 6th International Conference on
Computer Sciences and Convergence Information Technology (ICCIT).
IEEE; 2011. p. 751–4.

7. Leskovec J, Krause A, Guestrin C, Faloutsos C, Faloutsos C, VanBriesen J,
Glance N. Cost-effective outbreak detection in networks. In: Proceedings
of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM; 2007. p. 420–429. https://doi.org/10.
1145/1281192.1281239.

8. Holland JH. Genetic algorithms and the optimal allocation of trials. SIAM J
Comput. 1973;2(2):88–105.

9. Guyon I, Elisseeff A. An introduction to variable and feature selection. J
Mach Learn Res. 2003;3(Mar):1157–82.

10. Bommert A, Xudong S, Bischl B, Rahnenführer J, Lang M. Benchmark for
filter methods for feature selection in high-dimensional data. Comput
Stat Data Anal. 2019. https://doi.org/10.1016/j.csda.2019.106839.

11. Akaike H. A new look at the statistical model identification. IEEE Trans
Autom Control. 1974;19(6):716–23.

12. Scrucca L. GA: A package for genetic algorithms in R. J Stat Softw.
2013;53(4):1–37.

13. Scrucca L. On some extensions to GA package: hybrid optimisation,
parallelisation and islands evolution. Submitted R J. 2016. Pre-print
available at arXiv.

14. Brown G, Pocock A, Zhao M-J, Luján M. Conditional likelihood
maximisation: a unifying framework for information theoretic feature
selection. J Mach Learn Res. 2012;13(Jan):27–66.

15. Izenman AJ. Modern multivariate statistical techniques. Regression Classif
Manifold Learn. 2008. https://doi.org/10.1007/978-0-387-78189-1.

16. Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E,
Casalicchio G, Jones ZM. mlr: Machine learning in R. J Mach Learn Res.
2016;17(170):1–5.

https://doi.org/10.1145/1281192.1281239
https://doi.org/10.1145/1281192.1281239
https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/10.1007/978-0-387-78189-1

Jagdhuber et al. BMC Bioinformatics (2020) 21:26 Page 21 of 21

17. Boulesteix A-L, De Bin R, Jiang X, Fuchs M. Ipf-lasso:
Integrative-penalized regression with penalty factors for prediction based
on multi-omics data. Comput Math Methods Med. 2017;2017:. https://doi.
org/10.1155/2017/7691937.

18. De Meyer T, Sinnaeve D, Van Gasse B, Tsiporkova E, Rietzschel ER,
De Buyzere ML, Gillebert TC, Bekaert S, Martins JC, Van CriekingeW. Nmr-
based characterization of metabolic alterations in hypertension using an
adaptive, intelligent binning algorithm. Anal Chem. 2008;80(10):3783–90.

19. de Torrente L, Zimmerman S, Suzuki M, Christopeit M, Greally JM, Mar J.
The shape of gene expression distributions matter: how incorporating
distribution shape improves the interpretation of cancer transcriptomic
data. bioRxiv. 2019572693. https://doi.org/10.1101/572693.

20. Network CGAR. Genomic and epigenomic landscapes of adult de novo
acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74.

21. Network CGAR, et al. Integrated genomic analyses of ovarian carcinoma.
Nature. 2011;474(7353):609.

22. Network CGAR, et al. Comprehensive genomic characterization defines
human glioblastoma genes and core pathways. Nature. 2008;455(7216):
1061.

23. Rahnenführer J, Futschik A. Cost-effective screening for differentially
expressed genes in microarray experiments based on normal mixtures.
Austrian J Stat. 2003;32(3):225–38.

24. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver
operating characteristic (roc) curve. Radiology. 1982;143(1):29–36.

25. Vaughan LK, Divers J, Padilla MA, Redden DT, Tiwari HK, Pomp D,
Allison DB. The use of plasmodes as a supplement to simulations: a
simple example evaluating individual admixture estimation
methodologies. Comput Stat Data Anal. 2009;53(5):1755–66.

26. Franklin JM, Schneeweiss S, Polinski JM, Rassen JA. Plasmode simulation
for the evaluation of pharmacoepidemiologic methods in complex
healthcare databases. Comput Stat Data Anal. 2014;72:219–26.

27. Banas M, Neumann S, Eiglsperger J, Schiffer E, Putz FJ, Reichelt-Wurm S,
Krämer BK, Pagel P, Banas B. Identification of a urine metabolite
constellation characteristic for kidney allograft rejection. Metabolomics.
2018;14(9):116.

28. Powers R. Nmr metabolomics and drug discovery. Magn Reson Chem.
2009;47(S1):2–11.

29. Vanschoren J, van Rijn JN, Bischl B, Torgo L. Openml: Networked science
in machine learning. SIGKDD Explor. 2013;15(2):49–60. https://doi.org/10.
1145/2641190.2641198.

30. Vanschoren J. OpenML Bioresponse. https://www.openml.org/d/4134.
Accessed 25 Nov 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1155/2017/7691937
https://doi.org/10.1155/2017/7691937
https://doi.org/10.1101/572693
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://www.openml.org/d/4134

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Problem definition
	Adaptations of greedy forward selection
	Forward selection with naive cost limitation (FS)
	Cost constraint forward selection (cFS)

	Adaptations on genetic algorithms
	Genetic algorithm without cost constraints
	Genetic algorithm with fitness function adaptation (fGA)
	Cost-preserving genetic algorithm (cGA)
	Cost-optimized population initialization
	Cost-optimized selection operator
	Cost-optimized crossover operator
	Cost-optimized mutation operator
	Overall implementation of cGA

	Implementation of baseline filter methods

	Simulation studies
	Artificial data settings
	Settings with altered simulation design
	Setting G
	Setting H
	Setting I
	Setting J
	Setting K

	Real-world data settings
	Plasmode Setting R
	Setting S

	Results
	Artificial data simulation results
	Model performance
	Run-Time
	Model Size and Detection of Relevant Features

	Real-World Data Simulation Results

	Discussion
	Conclusion
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3361-9.
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

