
Learning with Graphs:
Kernel and Neural Approaches

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Christopher Morris

Dortmund
2019

Tag der mündlichen Prüfung:
20.12.2019

Dekan:
Prof. Dr. Ing. Gernot A. Fink

Gutachter:
Prof. Dr. Petra Mutzel, TU Dortmund, Fakultät für Informatik
Prof. Dr. Kristian Kersting, TU Darmstadt, Fakultät für Informatik

Abstract
Linked data arise in many real-world settings—from chemical molecules, and
protein-protein interaction networks, to social networks. Hence, in recent
years, machine learning methods for graphs have become an important area
of research. The present work deals with (supervised) graph classification,
i.e., given a set of (class) labeled graphs we want to train a model such
that it can predict the labels of unlabeled graphs. Thereto, we want to
map a graph to a (usually) high-dimensional vector such that standard
machine learning techniques can be applied. In the first part of this thesis,
we present kernel methods for graphs. Specifically, we present a framework
for scalable kernels that can handle continuous vertex and edge labels, which
often arise with real-world graphs, e.g., chemical and physical properties
of atoms. Moreover, we present a graph kernel which can take global or
higher-order graph properties into account, usually not captured by other
graph kernels. To this end, we propose a local version of the k-dimensional
Weisfeiler-Leman algorithm, which is a well-known heuristic for the graph
isomorphism problem. We show that a variant of our local algorithm has at
least the same power as the original algorithm, while at the same time taking
the sparsity of the underlying graph into account and preventing overfitting.
To make this kernel scalable, we present an approximation algorithm with
theoretical guarantees. Subsequently, we introduce a theoretical framework
for the analysis of graph kernels showing that most kernels are not capable of
distinguishing simple graph-theoretic properties and propose a theoretically
well-founded graph kernel, which can distinguish these properties. The second
part of this thesis deals with neural approaches to graph classification and
their connection to kernel methods. We show that the expressivity of so-called
graph neural networks can be upper-bounded by the 1-dimensional Weisfeiler-
Leman graph isomorphism heuristic. We then leverage this insight to propose
a generalization which is provable more powerful than graph neural networks
regarding distinguishing non-isomorphic graphs.

i

Acknowledgement
I want to thank my advisor Petra Mutzel for giving me the opportunity to
work in the Collaborative Research Center 876 and giving me all the freedom
I needed to pursue my research ideas. I am thankful to Kristian Kersting
for agreeing to act as my second reader as well as taking the time to discuss
many ideas with me during the first part of my Ph.D. studies. I want to
thank Nils M. Kriege for the interesting discussions about graph classification
as well as helping me write my first paper. Furthermore, I want to thank Jure
Leskovec for letting me stay at his group at Stanford University. Moreover,
I want to thank my other co-authors Fritz Bökler, Martin Grohe, Matthias
Ehrgott, Matthias Fey, William L. Hamilton, Fredrik D. Johansson, Jan
E. Lenssen, Marion Neumann, Gaurav Rattan, Xiang Ren, Anja Rey, Martin
Ritzert, Christian Sohler, Zhitao (Rex) Ying, and Jiaxuan You for sharing
their knowledge. I want to thank Gundel Jankord for helping me with the
paperwork. Finally, I want to thank the German Research Foundation (DFG)
for funding my studies through the Collaborative Research Center SFB 876 –
Providing Information by Resource-Constrained Data Analysis, and making
various conference trips around the world and a research stay possible.

ii

Contents

1. Introduction 1
1.1. Relevant publications . 3
1.2. Structure . 4

2. Preliminaries 5
2.1. Notation . 5
2.2. Graph theory . 5
2.3. Supervised machine learning 6
2.4. Learning with kernels . 7

2.4.1. Support vector machines 9
2.5. Neural networks . 11
2.6. The Weisfeiler-Leman algorithm 12

2.6.1. The 1-dimensional Weisfeiler-Leman algorithm 12
2.6.2. The k-dimensional Weisfeiler-Leman algorithm 13

3. Kernel methods for graphs 17
3.1. Related work . 17

3.1.1. Neighborhood aggregation approaches 17
3.1.2. Assignment- and matching-based approaches 19
3.1.3. Substructure-based approaches 21
3.1.4. Walk- and path-based approaches 23
3.1.5. Convolution graph kernels for graphs with continuous

labels . 24
3.1.6. Other approaches . 25
3.1.7. Theoretical work . 26

3.2. Fast kernels for graphs with continuous labels 28
3.2.1. Hash graph kernels . 28
3.2.2. Analysis . 30
3.2.3. Hash functions . 31
3.2.4. Hash graph kernel instances 34
3.2.5. Experimental evaluation 38
3.2.6. Conclusion . 43

iii

Contents

3.3. Expressive graph kernels based on the Weisfeiler-Leman algorithm 44
3.3.1. The local k-dimensional Weisfeiler-Leman algorithm . . 44
3.3.2. Proof of Theorem 3.3.1 45
3.3.3. A kernel based on the δ-k-LWL 50
3.3.4. An approximation algorithm for the δ-k-LWL for bounded-

degree graphs . 50
3.3.5. Experimental evaluation 55
3.3.6. Datasets and graph kernels 55
3.3.7. Experimental protocol 56
3.3.8. Results and discussion 57
3.3.9. Conclusion . 59

3.4. A theoretical framework for the expressiveness of graph kernels 60
3.4.1. Definitions from property testing 61
3.4.2. Distinguishable graph properties 61
3.4.3. Properties distinguishable by popular graph kernels . . 63
3.4.4. Graph kernels that distinguish graph properties 68
3.4.5. A learning algorithm 72
3.4.6. Conclusion . 74

4. Neural methods for graphs 75
4.1. Related work . 76
4.2. Relationship between the 1-WL and 1-GNNs 77
4.3. Proof of Theorem 4.2.2 . 79

4.3.1. Uncolored graphs . 79
4.3.2. Colored graphs . 84
4.3.3. Shortcomings of both approaches 86

4.4. The k-dimensional graph neural network architecture 87
4.4.1. Hierarchical variant . 89

4.5. Experimental study . 90
4.5.1. Datasets . 90
4.5.2. Baselines . 91
4.5.3. Model configuration 92
4.5.4. Experimental protocol 93
4.5.5. Results and discussion 93

4.6. Conclusion . 94

5. Conclusion 95
5.1. Directions for future work and open problems 96

A. Full list of publications 99

iv

Contents

B. Datasets 101

Bibliography 103

v

Chapter 1.

Introduction

Linked data arise in various domains such as chem- and bioinformatics, social
network analysis, and pattern recognition. Graphs can naturally represent
such data. Therefore, machine learning on graphs has become an active
research area of increasing importance. This thesis deals with developing
methods for (supervised) graph classification.

In the first part of this work, we focus on kernel methods for graph data,
so-called graph kernels. Intuitively, graph kernels measure the similarity of
a pair of graphs. More concretely, a graph kernel is a positive semi-definite
function that maps a pair of graphs to a real number. Hence, it can be used
together with established learning algorithms such as support vector machines.
Since most real-world graphs have continuous features attached to vertices
and edges, e.g., real-valued vectors modeling chemical or physical properties
of molecules in chemistry, developing graph kernels for such data is crucial.
In the past, graph kernels that were able to deal with such input did not
scale to large datasets as they computed the kernel function for each pair of
graphs, leading to a quadratic overhead in running time. Hence, in Section 3.2
of Chapter 3, we present a method to scale graph kernels to large datasets
with continuous vertex and edge information. We circumvent the problem
of quadratic overhead by mapping each graph to a finite-dimensional real
vector. We show that the inner product between such vectors approximates
well-known graph kernel functions that can handle continuous inputs. The
basis of this work is the development of randomized hash functions, where the
collision probability is equal to the value of a kernel function for comparing
real-valued vectors. We evaluate our proposed method on numerous graph
classification benchmark datasets showing state-of-the-art performance while
being much faster.

The next section deals with extensions of kernels based on the 1-dimensional
Weisfeiler-Leman graph isomorphism heuristic (1-WL). We derive a kernel
based on the k-dimensional Weisfeiler-Leman algorithm [36, pp. 84 sqq.] which

1

Chapter 1. Introduction

is more powerful than the 1-WL in terms of distinguishing non-isomorphic
graphs. To make the algorithm suitable for machine learning, we derive a
local variant that prevents overfitting and takes the sparsity of the underlying
graph into account. Moreover, we are able to show that a variant of the
local variant has at least the same power as the original algorithm. In order
to scale the kernel to large datasets, we show how to approximate it. For
bounded-degree graphs, we show that it can be approximated in constant
time. Finally, we empirically evaluate our proposed method showing that it
often outperforms state-of-the-art kernel methods on a wide range of graph
classification benchmark datasets.

The last section dealing with kernels investigates them from a theoretical
perspective. In the past two decades, a large number of graph kernels have
been proposed. Hence, it becomes increasingly difficult to perform a fair
experimental comparison of kernels, and to assess their advantages and
disadvantages for specific datasets. Indeed, current experimental comparisons
cannot give a complete picture, and are of limited help to a practitioner
who has to choose a kernel for a particular application. Moreover, graph
kernels are developed with the (possibly conflicting) goals of being efficiently
computable, and capturing the structural information of the input graphs
adequately. There is no theoretical justification on why specific kernels
perform better than others, but merely experimental evaluations. We address
this by introducing a theoretical framework for the analysis of the expressivity
of graph kernels motivated by concepts from property testing [32, 31]. We say
that a graph kernel distinguishes a property if it guarantees a constant angle
(independent of the graph size) between the feature vectors of any two graphs,
one of which has the property, and the other is far away from doing so. We
study well-known graph kernels, and their ability to distinguish fundamental
properties such as connectivity showing that current graph kernels are not
able to distinguish these basic properties. Subsequently, we propose a more
powerful graph kernel.

The subsequent chapter deals with neural approaches for graph classification.
In the past years, deep learning architectures revolutionized the fields of
computer vision and natural language processing. Hence, the question arises
if such methods can be applied to graph data. Graph neural networks
(GNNs) have emerged as a machine learning framework addressing the above
challenge. Up to now, the evaluation and analysis of GNNs have been mostly
empirical, showing promising results compared to kernel approaches, see,
e.g., [125]. However, it remains unclear how GNNs are encoding graph
structure information into their vector representations, and whether there are
theoretical advantages of GNNs compared to kernel-based approaches. We

2

1.1. Relevant publications

offer a theoretical exploration of the relationship between GNNs and kernels
that are based on the 1-WL. We show that GNNs cannot be more powerful
than the 1-WL regarding distinguishing non-isomorphic (sub-)graphs, e.g.,
the properties of subgraphs around each vertex. This result holds for a broad
class of GNN architectures and all possible choices of parameters for them.
On the positive side, we show that given the right parameter initialization
GNNs have the same expressiveness as the 1-WL, completing the equivalence.

Going further, we leverage these theoretical relationships to propose a
generalization of GNNs, called k-GNNs, which are neural architectures in-
spired by the k-dimensional Weisfeiler-Leman algorithm. The critical insight
in these higher-dimensional variants is that they perform message passing
directly between subgraph structures, rather than individual vertices. This
higher-order form of message passing can capture coarse-grained structures
that are not identifiable at the vertex-level. Our experimental results demon-
strate that these k-GNNs can consistently outperform traditional GNNs on a
variety of graph classification and regression tasks.

1.1. Relevant publications
The following publications are relevant for the present work. Publications
where the author is the first author are colored in maroon. The first two
(three) authors of publication 3 (publication 5) share first authorship.

1. C. Morris, N. M. Kriege, K. Kersting, and P. Mutzel. “Faster Ker-
nel for Graphs with Continuous Attributes via Hashing.” In: IEEE
International Conference on Data Mining. IEEE, 2016, pp. 1095–1100

2. C. Morris, K. Kersting, and P. Mutzel. “Glocalized Weisfeiler-Lehman
Kernels: Global-Local Feature Maps of Graphs.” In: IEEE International
Conference on Data Mining. IEEE, 2017, pp. 327–336

3. N. M. Kriege and C. Morris. “Recent Advances in Kernel-Based Graph
Classification.” In: The European Conference on Machine Learning &
Principles and Practice of Knowledge Discovery In Databases. Springer,
2017, pp. 388–392

4. N. M. Kriege, C. Morris, A. Rey, and C. Sohler. “A Property Testing
Framework for the Theoretical Expressivity of Graph Kernels.” In:
International Joint Conference on Artificial Intelligence. IJCAI, 2018,
pp. 2348–2354

3

Chapter 1. Introduction

5. C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, Jan Eric Lenssen,
G. Rattan, and M. Grohe. “Weisfeiler and Leman Go Neural: Higher-
order Graph Neural Networks.” In: AAAI Conference on Artificial
Intelligence. AAAI. 2019, pp. 4602–4609

6. C. Morris and P. Mutzel. “Towards a practical k-dimensional Weisfeiler-
Leman algorithm.” In: CoRR abs/1904.01543 (2019)

Proofs to which I have not contributed are marked by the literature reference
corresponding to the publication. A full list of publications can be found
in Appendix A.

1.2. Structure
In the first chapter, we fix notation, and introduce various mathematical con-
cepts that are used throughout this thesis. Moreover, we give an introduction
to supervised machine learning, kernel methods, neural networks, and the
Weisfeiler-Leman algorithm. The subsequent chapter deals with the work
on graph kernels, namely the framework for scalable graphs for graphs with
continuous information [82], the kernel based on the k-dimensional Weisfeiler-
Leman algorithm [80, 81], and the theoretical framework for studying the
expressiveness of well-known kernels [65]. In the fourth chapter, we study
GNNs, their relation to kernel methods, and their k-dimensional generaliza-
tion [83]. The last chapter acts as a conclusion and provides directions for
future work.

4

Chapter 2.

Preliminaries
The following chapter introduces notation, defines various mathematical
concepts, and gives an introduction to supervised machine learning, learning
with kernels, and neural networks. Moreover, the last section describes the
Weisfeiler-Leman graph isomorphism heuristic which is the basis for most
algorithms described in this thesis.

2.1. Notation
We (usually) typeset sets in upper-case letters (S), matrices in upper-case
bold letters (M), vectors in lower-case bold or Greek letters (v, ϕ), and
scalars with Latin or Greek letters (a, α).

Let v be a vector in Rn then ∥v∥ =
√︂∑︁n

i=1 |vi|2, and ∥v∥p = p

√︂∑︁n
i=1 |vi|p for

p > 0. Moreover, let [m] = {1, . . . ,m} ⊂ N for m > 1, [m]0 = {0, . . . ,m} ⊂
N0, and let {{. . .}} denote a multiset. Finally, let v and w be vectors in Rn

and Rm, respectively, then [v,w] in Rn+m denotes the column-wise vector
concatenation of v and w.

2.2. Graph theory
A graph G is a pair (V,E) with a finite set of vertices V and a set of edges
E ⊆ {{u, v} ⊆ V | u ̸= v}. We denote the set of vertices and the set of
edges of G by V (G) and E(G), respectively. For ease of notation we denote
the edge {u, v} in E(G) by (u, v) or (v, u). In the case of directed graphs
E ⊆ {(u, v) ∈ V ×V | u ̸= v}. A (vertex) labeled graph is a graph G endowed
with a label function l : V (G)→ Σ, where Σ is some finite alphabet. Edge
labeled graphs are defined analogously. We say that l(v) is a label of v for v in
V (G). If we replace Σ with Rn, we say l(v) is a continuous (vertex) label, and
G is a continuously labeled graph. A vertex coloring is a function V (G)→ S

5

Chapter 2. Preliminaries

with arbitrary codomain S. We say that a vertex coloring c refines a vertex
coloring d, written c ⊑ d, if c(v) = c(w) implies d(v) = d(w) for every v and
w in V (G). If both directions hold, we write c ≡ d. A color class Q ⊆ V (G)
of a vertex coloring c is a maximal set of vertices with c(v) = c(w) for every
v and w in Q. Let S ⊆ V (G) then G[S] = (S,ES) is the subgraph induced by
S with ES = {(u, v) ∈ E(G) | u, v ∈ S}.

We denote the set of all graphs by G and the set of all graphs on n vertices
by Gn. Moreover, N(v) or δ(v) denotes the neighborhood of v in V (G), i.e.,
N(v) = δ(v) = {u ∈ V (G) | (v, u) ∈ E(G)}. Moreover, its complement
δ(v) = {u ∈ V (G) | (v, u) /∈ E(G)}. A tree is a connected graph without
cycles. A directed tree is a directed acyclic graph whose underlying undirected
graph is a tree. Let p be a vertex in a directed tree then we call the neighbors
of s children with parent s. If s is not a child of another vertex then it is
the root of the tree. A graph is of d-bounded degree if its maximum degree is
at most d, where d is always independent of the number of vertices, i.e., d
is in O(1). We say that two graphs G and H are isomorphic if there exists
an edge preserving bijection φ : V (G)→ V (H), i.e., (u, v) is in E(G) if and
only if (φ(u), φ(v)) is in E(H). In the case of labeled graphs, we require
that l(v) = l((φ(v)) and l((u, v))) = l((φ(u), φ(v))) holds. If G and H are
isomorphic, we write G ≃ H and call φ an isomorphism between G and
H. In the case that G and H are directed, isomorphic trees rooted at v
in V (G) and w in V (H), respectively, we write G ≃v→w H. Moreover, we
call the equivalence classes induced by ≃ isomorphism types, and denote
the isomorphism type of G by τG. Let S be a set then the set of k-sets
[S]k = {U ⊆ S | |U | = k} for k ≥ 2, which is the set of all subsets of S with
cardinality k.

2.3. Supervised machine learning
In the following, we give an introduction to supervised machine learning. We
loosely follow the exposition given in [79]. Let X be the set of all possible
examples, e.g., a set of graphs, and let Y be the set of all possible target
values, e.g., {0, 1} in the case of binary classification, or the reals in the case
of regression. We assume that the elements of X are independently and
identically distributed to some fixed but unknown distribution D. Moreover,
we assume that there exists a target concept c : X → Y which maps each
example to its target value. Given a sample S = (s1, . . . , sm) sampled inde-
pendently and identically from D, as well as the corresponding target values
(y1, . . . , ym) = (c(s1), . . . , c(sm)), the aim of supervised machine learning is

6

2.4. Learning with kernels

to select a hypothesis h : X → Y from the set of possible hypothesis H that
minimizes the generalization error

R(h) = Pr
x∼D

(L(h(x), c(x))) = Ex∼D[L(h(x), c(x))],

where L : X ×Y → R≥0 is a loss function, which measures how well the chosen
hypothesis fits the target concept. One possible choice of loss function is the
binary loss, which is equal to the indicator function of the event h(x) ̸= c(x).
Note that a learning algorithm cannot compute the generalization error since
it depends on the unknown distribution D as well the target concept c. Hence,
we approximate it by the empirical error

ˆ︁R(h) = 1
m

m∑︂
i=1

1h(x)̸=c(x).

The basic insight here, which follows by the linearity of expectation, is that

E[ˆ︁R(h)] = R(h).

Clearly, the aim of supervised machine learning is to minimize the gener-
alization error using the empirical error as a proxy. Hence, empirical risk
minimization aims to find the hypothesis ˆ︁h in H such that

ˆ︁h = arg min
h∈H

ˆ︁R(h).

To avoid that the learning algorithm finds a hypothesis that is tailored to
closely to the given sample, so-called overfitting, we employ structural risk
minimization that adds a regularization penalty Ω : H → R≥0 to the empirical
error, resulting in the following optimization problem

arg min
h∈H

ˆ︁R(h) + λΩ(h)⏞ ⏟⏟ ⏞
Regularizer

,

for λ ≥ 0.

2.4. Learning with kernels
Machine learning methods for data that is linearly separable is well understood.
However, most data occurring in the real-world often does not have this
property. The idea of kernel methods is to merge these two viewpoints
by using a kernel that maps each pair of examples to a real number that

7

Chapter 2. Preliminaries

corresponds to an inner product between two vectors in a (usually high-
dimensional) Hilbert space. The hope is that in this space the data can be
separated linearly. Hence, if we can define a kernel for the given data, we
do not have to construct the vectors explicitly. In the following, we formally
introduce kernels.

Definition 2.4.1. Let X be a set, then k : X × X → R is a kernel over X .

The idea here is to choose the kernel k in such a way so that there exists
some feature map ϕ : X → H, where H is some Hilbert space, such that

k(x, y) = ⟨ϕ(x), ϕ(y)⟩,

for x and y in X , where ⟨·, ·⟩ denotes the inner product of H. The space H
is often called a feature space. Let x in X then ϕ(x) in H is called feature
vector. An important subset of kernels are (symmetric) positive semi-definite
kernels.

Definition 2.4.2. Let K be matrix in Rm×m, then K is positive semi-definite
if

1. the eigenvalues of K are non-negative, and

2. for all vectors c = (c1, . . . , cm)T in Rm×1,

cTKc =
n∑︂

i,j=1
cicjk(xi, xj) ≥ 0.

Moreover, we need the definition of a gram matrix corresponding to a
kernel.

Definition 2.4.3. Let k : X × X → R be a kernel, and let x1, . . . , xm ⊆ X .
Then the gram matrix K = [k(xi, xj)]ij.

We can now define a positive semi-definite kernel.

Definition 2.4.4. Let k : X × X → R be a kernel, then k is positive semi-
definite if for all {x1, . . . , xm} ⊆ X the corresponding gram matrix is sym-
metric and positive semi-definite.

For example the Dirac kernel

kδ(x, y) =

⎧⎨⎩1 if x = y,

0 otherwise,

8

2.4. Learning with kernels

for x and y in X is positive semi-definite. In the following, we use the term
kernel and positive semi-definite kernel interchangeable. The following result
is the most important for kernels. It states that for each kernel there exists a
unique Hilbert space and a mapping such that the inner product between
two points under the mapping is equal to the kernel value of the two points.

Theorem 2.4.5. Let k : X × X → R be a (positive semi-definite) kernel,
then there exists a Hilbert space H and a mapping ϕ : X → H such that

k(x, y) = ⟨ϕ(x), ϕ(y)⟩,

for all x and y in X . Moreover H has the reproducing property:

h(x) = ⟨h, k(x, ·)⟩.

The space H is called a reproducing kernel Hilbert space.

By using the above definition, it becomes apparent that we do not need to
construct the feature space explicitly. This insight is often referred to as the
kernel trick and plays an important role when using kernels together with
support vector machines (SVMs), which we describe in the next section.

Remark 2.4.6. In certain cases, e.g., when the number of components of
the (explicit) feature vectors is not too high (e.g., finite), explicit feature
maps may provide computational benefits. In the following, we use the term
explicit kernel for cases where we compute the feature vector for each data
point directly. Consequently, we use the term implicit kernel when we employ
the kernel trick.

2.4.1. Support vector machines
Let X = {x1, . . . ,xm} be a subset of Rn for n > 0, and let Y = {−1, 1} be
the set of target values. SVMs choose a hypothesis from the set of linear
classifiers, or hyperplanes,

H = {x ↦→ sign(w · x + b) | w ∈ Rn, b ∈ R}.

Thus, SVMs try to find a hypothesis from H such that points labeled −1 fall
on one side of the hyperplane w · x + b = 0 and the others, labeled 1, on the
other side. Clearly, we can only find such hypothesis if our data is linearly
separable. We first assume that this is the case. The key idea behind SVMs
is not to choose any such separating hyperplane but to choose the hyperplane

9

Chapter 2. Preliminaries

with the maximum margin, which we call maximum margin hyperplane. The
margin is defined by

min
x∈X

w · x + b

∥w∥
= 1
∥w∥

.1

For example, by following the derivation in [79, pp. 65 sq.], one can show that
this can be achieved by solving the following quadratic optimization problem
with affine constraints:

min
w,b

1
2∥w∥

2

such that yi(w · xi + b) ≥ 1,

for all i in [m]. In practice this problem can be solved efficiently, notably
by block coordinate descent algorithms [15]. Moreover, there exists a dual
problem of the above, which has the following form [79, pp. 67 sq.]:

max
α

N∑︂
i=1

αi −
1
2

N∑︂
i=1

N∑︂
j=1

αiαjyiyj ⟨ϕ(xi), ϕ(xj)⟩⏞ ⏟⏟ ⏞
k(xi,xj)

such that
m∑︂
i=1

αiyi = 0 and αi ≥ 0,

for i in [m]. The critical insight here is that we can replace the inner product
in the nested sum of the objective function with the (precomputed) kernel
function.

Non-separable case

In real-world settings, the data is often not linearly separable, hence the
constraints of the optimization problems, discussed above, cannot hold for
all points simultaneously. To solve this, we introduce the slack variable ξi for
i in [m] such that

yi(w · xi + b) ≥ 1− ξi.

Intuitively, the slack variable ξi measure how much the variable xi violates
the constraint yi(w ·wi + b) ≥ 1. We now add the penalty term

m∑︂
i=1

ξpi ,

1W.l.o.g., we consider the canonical hyperplane, i.e., minx∈X |w · x + b| = 1.

10

2.5. Neural networks

for p > 0, to the above objective of the primal problem, resulting in

min
w,b

1
2∥w∥

2 + C
m∑︂
i=1

ξpi ,

such that yi(w · xi + b) ≥ 1− ξi,
ξi ≥ 0,

for i in [m]. The parameter C ≥ 0 is a trade-off parameter that leverages
between minimizing ∥w∥2, and thus maximizing the margin, and the slack
penalty. The dual problem can be derived as

max
α

N∑︂
i=1

αi −
1
2

N∑︂
i=1

N∑︂
j=1

αiαjyiyj ⟨ϕ(xi), ϕ(xj)⟩⏞ ⏟⏟ ⏞
k(xi,xj)

such that
m∑︂
i=1

αiyi = 0 and 0 ≤ αi ≤ C,

for i in [m].

2.5. Neural networks
In the following, we focus on a special case of neural networks, namely the
multi-layer perceptron (MLP). Let X = {x1, . . . ,xm} be a subset of Rn for
n > 0, and let W be a matrix in Rn×m, then one layer of an MLP is a
function fW : Rn → Rm where

fW(x) = σ(WTx),

for x in X . Here σ : R→ R is a non-linearity, such as a sigmoid function or
rectifier function, i.e.,

σ(x) = 1
1 + e−x ,

or
σ(x) = max(0,x),

respectively, applied component-wise. In order to make the set of hypotheses
more expressive, one composes several layers, resulting in the function

x ↦→Wl
Tσ(Wl−1

Tσ(· · ·W2
Tσ(W1

Tx))).

11

Chapter 2. Preliminaries

The parameters W1, . . . ,Wl are then jointly optimized using a loss function,
in most cases the cross-entropy loss

− 1
m

m∑︂
i=1

(︂
c(x) log(σS(fW(x))) + (1− c(x)) log(1− σS(fW(x)))

)︂
for binary classification, where σS [33, p. 179] denotes the softmax function,
or the mean squared error loss

1
m

m∑︂
i=1

(c(x)− fW(x))2

in the case of regression is employed.
The above function is non-convex, however in practice first-order methods,

e.g., variants of the gradient descent algorithm [33, pp. 147 sqq.], are used to
optimize the above function.

2.6. The Weisfeiler-Leman algorithm
Vertex refinement algorithms are a class of heuristics for the graph isomor-
phism problem. Given two graphs G and H, the idea is to discard bijections
between the set of vertices between G and H that do not induce an iso-
morphism between G and H. Hence, if the algorithm discards all possible
bijections we can be sure that the two graphs are not isomorphic. A well-
known instance of this class is the k-dimensional Weisfeiler-Leman algorithm
(k-WL), which iteratively partitions the set of k-tuples defined over the set
of vertices of a graph by considering neighboring k-tuples.

2.6.1. The 1-dimensional Weisfeiler-Leman algorithm
We first describe the 1-dimensional variant of the algorithm. Let G be a graph,
and let l be a (vertex) label function V (G)→ Σ, e.g., l(v) = |N(v)| for v in
V (G). In each iteration i ≥ 0, the 1-WL computes a coloring C1

i : V (G)→ S.
In iteration 0, we set C1

0 = l. Now in iteration i > 0, we set

C1
i (v) = (C1

i−1(v), {{C1
i−1(u) | u ∈ N(v)}}), (2.1)

for v in V (G). In practice one maps the above pair to an unique value in S,
which has not been used in previous iterations.

For two graphs G and H, we run the algorithm in “parallel” on both graphs.
Then the 1-WL distinguishes between them if they have an unequal number

12

2.6. The Weisfeiler-Leman algorithm

of vertices labeled s in S. Moreover, if C1
i−1 = C1

i , the algorithm terminates.
After at most |V (G)|+ |V (H)|+ 1 iterations the algorithm terminates. It is
easy to see that the algorithm is not able to distinguish all non-isomorphic
graphs, e.g., see [5]. On the other hand, this simple algorithm is already quite
powerful, since it can distinguish almost all graphs with high probability
(depending on the number of vertices) [6].

2.6.2. The k-dimensional Weisfeiler-Leman algorithm
In the following, we introduce two extensions of the 1-WL which are more
powerful. First, we define the k-WL due to László Babai, see, e.g., [13], which
is based upon algorithms proposed by Weisfeiler and Leman, see, e.g., [116,
115]. Moreover, we define the δ-k-dimensional Weisfeiler-Leman algorithm (δ-
k-WL), which is a variant of the k-dimensional combinatorial vertex coloring
algorithm due to Malkin [75]. We first formally define the k-WL.

Let G be a graph, and let k ≥ 2. Moreover, let v be a tuple in V (G)k, then
G[v] is the subgraph induced by the components of v, where the vertices are
labeled with integers from {1, . . . , k} corresponding to indices of v. In each
iteration i ≥ 0, the algorithm computes a coloring Ck

i : V (G)k → S, where S
is some arbitrary codomain. In the first iteration (i = 0), two tuples v and
w in V (G)k get the same color if the map vi ↦→ wi induces an isomorphism
between G[v] and G[w]. Now, for i ≥ 0, Ck

i+1 is defined by

Ck
i+1(v) = (Ck

i (v),Mi(v)), (2.2)

where the multiset

Mi(v) =
(︂
{{Ck

i (ϕ1(v, w)) | w ∈ V (G)}}, . . . ,

{{Ck
i (ϕk(v, w)) | w ∈ V (G)}}

)︂
,

(2.3)

and
ϕj(v, w) = (v1, . . . , vj−1, w, vj+1, . . . , vk).

That is, ϕj(v, w) replaces the j-th component of the tuple v with the vertex
w. We run the algorithm until convergence, i.e.,

Ck
i (v) = Ck

i (w) ⇐⇒ Ck
i+1(v) = Ck

i+1(w),

for all v and w in V (G)k holds, and call the partition of V (G)k induced by
Ck
i the stable partition. For such i, we define Ck

∞(v) = Ck
i (v) for v in V (G)k.

13

Chapter 2. Preliminaries

wv x

u

(a) Underlying graph G,
with tuple (u, v, w)

wv x

u

(b) Local 3-neighbor
(u, v, x)

wv x

u

(c) Global 1-neighbor
(x, v, w)

Figure 2.1.: Illustration of the local and global neighborhood of the 3-tuple
(u, v, w).

For two graphs G and H, we run the algorithm in “parallel” on both graphs.
Then the k-WL distinguishes between them if

|V (G)k ∩ (Ck
∞)−1(c)| ≠ |V (H)k ∩ (Ck

∞)−1(c)|,

for some color c in the codomain of Ck
∞. Hence, if the k-WL distinguishes

two graphs, the graphs are not isomorphic.
For k = 1, the Weisfeiler-Leman algorithm is based on the usual neigh-

borhood of a vertex. That is, in the first iteration, we color the vertices
uniformly. For i ≥ 0, C1

i+1 is defined by

C1
i+1(v) = (C1

i (v), {{C1
i (w) | w ∈ δ(v)}}).

Hence, two vertices with the same color in iteration i get a different color in
the next iteration if the number of neighbors colored with a certain color is
different. Observe that it is straightforward to extend the 1-WL to labeled,
directed graphs.

The δ-k-WL follows the same ratio but uses

Ck,δ,δ
i+1 (v) = (Ck,δ,δ

i (v),M δ,δ
i (v)),

where,

M δ,δ
i (v) =

(︂
{{(Ck,δ,δ

i (ϕ1(v, w)), 1δ((v1, w))) | w ∈ V (G)}}, . . . ,

{{(Ck,δ,δ
i (ϕk(v, w)), 1δ((vk, w))) | w ∈ V (G)}}

)︂
,

(2.4)

instead of Equation (2.2) and Equation (2.3), respectively, where

1δ((u,w)) =

⎧⎨⎩L if w ∈ δ(u)
G otherwise,

14

2.6. The Weisfeiler-Leman algorithm

for u and w in V (G). For i = 0, we set Ck,δ,δ
0 = Ck

0 . We say that ϕj(v, w) is
a local j-neighbor of v if w is in δ(vj), and otherwise it is a global j-neighbor,
which is indicated by L and G in Equation (2.4), respectively. See Figure 2.1
for an example. Hence, the difference between the two above algorithms
is that the k-WL does not distinguish between local and global neighbors
of a k-tuple. Observe that for k = 1, the above algorithms and the 1-WL
Weisfeiler-Leman algorithm have the same power.

The following result relates the two algorithms from above. Since for a
graph G = (V,E), M δ,δ

i (v) = M δ,δ
i (w) implies Mi(v) = Mi(w) for all v and

w in V (G)k and i ≥ 0, the following holds.

Proposition 2.6.1. For all graphs and k ≥ 1, the following holds:

δ-k-WL ⊑ k-WL.

15

Chapter 3.

Kernel methods for graphs
In the following, we present our work on graph kernels. A graph kernel is
a kernel function defined on the set of graphs. In the first section of this
chapter, we will review the related work. Subsequently, we present our work
on scalable graph kernels for graphs with continuous labels, and kernels
based on the k-dimensional Weisfeiler-Leman graph algorithm. Finally, we
present our theoretical framework for investigating the expressiveness of graph
kernels.

3.1. Related work
In the following, we give an overview of the graph kernel literature. We
focus on the most influential work and work that has been published at
major conferences. We start with kernels that are based on neighborhood
aggregation techniques. The following subsections deal with assignment- and
matching-based kernels, and kernels based on the extraction of substructures,
respectively. The subsequent subsections deal with kernels based on walks
and paths, kernels for graphs with continuous (vertex) labels, work that does
not fit into the previous subsections, and theoretical work. The historical
development of graph kernels and related methods is illustrated in Figure 3.1.

3.1.1. Neighborhood aggregation approaches
One of the dominating paradigms in the design of graph kernels is the
representation and comparison of local structure. Two vertices are considered
similar if they have identical labels—even more so if their neighborhoods
are labeled similarly. Expanding on this notion, two graphs are considered
similar if they are composed of vertices with similar neighborhoods, i.e., that
they have similar local structure. The different ways by which local structure

17

1972

1975

1978

1981

1984

1987

1990

1993

1996

1999

2002

2005

2008

2011

2014

2017

Fingerprints for chemical similarity [1]1973

Systematic evaluation of fingerprint similarities [117]1986

ChemNet [57]1995

Extended connectivity fingerprints [99]2000

Random walk kernels [29, 51]2003

Tree pattern kernels [98, 72]2003

Cycle and Tree kernel [45]2004

Shortest-path kernel [8]2005

Kernels from chemical similarities [95]2005

Optimal assignment kernels [28]2005

Molecular graph networks [76]2005

Graphlet kernels [105]2009

Neighborhood Hash Kernel [43]2009

Weisfeiler-Lehman kernels [106]2009

Neighborhood subgraph pairwise distance kernel [17]2010

Subgraph matching kernel [60]2012

GraphHopper kernel [25]2013

Generalized shortest-path kernel [42]2015

Graph Invariant kernels [91]2015

Neural molecular fingerprints [23]2015

Descriptor matching kernel [108]2016

Hash graph kernels [82]2016

Valid optimal assignment kernels [62]2016

Graph convolutional networks [56]2017

Neural message passing [30]2017

GraphSAGE [39]2017

SplineCNN [26]2018

k-GNN [83]2019

Figure 3.1.: Selected techniques for graph classification with a focus on kernels.
Techniques based on fingerprints are marked in gray and methods using neural
networks in brown. Methods proposed for cheminformatics are shown in
italics, kernels for graphs with continuous labels in bold.

3.1. Related work

is defined, represented, and compared form the basis for several influential
graph kernels. We describe a first example next.

Shervashidze et al. [106] introduced a class of kernels based on the 1-WL,
see Section 2.6. The idea of the Weisfeiler-Lehman subtree graph kernel is
to compute the above algorithm for h ≥ 0 iterations resulting in a coloring
function C1

i : V (G)→ Si for each iteration i ≤ h. After each iteration i, we
compute a feature vector ϕi(G) for each graph G. Each component ϕi(G)s
counts the number of occurrences of vertices labeled with s in Si. The overall
feature vector ϕWL(G) is defined as the concatenation of the feature vectors
of all h iterations, i.e.,

ϕWL(G) =
[︂
ϕ0(G), . . . , ϕh(G)

]︂
.

The Weisfeiler-Lehman subtree kernel for h iterations then is computed as
kWL(G,H) = ⟨ϕWL(G), ϕWL(H)⟩. The running time for a single feature vector
computation is in O(hm) and O(Nhm+N2hn) for the computation of the
gram matrix for a set of N graphs [106], where n and m denote the maximum
number of vertices and edges over all N graphs, respectively.

Moreover, based on the above Shervashidze et al. introduced two other graph
kernels, the Weisfeiler-Lehman edge and the Weisfeiler-Lehman shortest-path
kernel. Instead of counting the labels of vertices after each iteration the
Weisfeiler-Lehman edge kernel counts the colors of edges corresponding to the
colors of the incident vertices. The Weisfeiler-Lehman shortest-path kernel is
a variant of the shortest-path kernel, see Section 3.1.4, where the vertex labels
are replaced with the labels of the 1-WL after each iteration. In [43] a graph
kernel similar to the 1-WL was introduced which replaces the neighborhood
aggregation function by a function based on binary arithmetic. Similarly,
in [84] another neighborhood aggregation function is defined which uses a
randomized approach using p-stable locality-sensitive hashing [20], which is
also able to handle real-valued vertex and edge labels.

3.1.2. Assignment- and matching-based approaches
A common approach to comparing two composite or structured objects is
to identify the best possible matching of the components making up the
two objects. For example, when comparing two chemical molecules it is
instructive to map each atom in one graph to the atom in the other graph
that is most similar in terms of, for example, neighborhood structure and
attached chemical and physical measurements. This idea has been used
also in graph kernels, an early example of which was proposed by Fröhlich

19

Chapter 3. Kernel methods for graphs

et al. [28] in the optimal assignment (OA) kernel. In the OA kernel, each
vertex is endowed with a representation (e.g., a label) that is compared using
a base kernel. Then, a similarity value for a pair of graphs is computed based
on a mapping between their vertices such that the total similarity between
the matched vertices with respect to a base kernel is maximized.

More formally, let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be subsets of
objects from X and k : X × X → R a base kernel. The optimal assignment
kernel is

KA(X, Y) = max
π∈Sn

n∑︂
i=1

k(xi, yπ(i)), (3.1)

where π is a permutation of {1, . . . , n}. To apply the assignment kernel to
sets of different cardinality, we may fill the smaller set by objects z with
k(z, x) = 0 for all x in X . Unfortunately, Equation (3.1) is not a positive
semi-definite kernel in general [111, 112]. This fact complicates the use of
assignment similarities in kernel methods, although generalizations of SVMs
for arbitrary similarity measures have been developed, see, e.g., [70] and
references therein.

Different approaches using indefinite assignment similarities for kernel-based
graph classification have been proposed. Woźnica, Kalousis, and Hilario [118]
derived graph kernels from set distances and employed a matching-based
distance, which was shown to be a metric [97]. To obtain a valid kernel, the
authors use a set of prototypes and represent each graph by a feature vector,
where each component is the distance to a prototype. Finally, a standard
kernel is applied to compare the graph feature vectors. Johansson and
Dubhashi [48] proposed to map the vertices of a graph into the d-dimensional
real vector space to compute a matching between the vertices of two graphs
with respect to the Euclidean distance. Several methods for the mapping are
proposed, e.g., spectral approaches using the eigenvectors of the adjacency
matrix, or an embedding associated with the Lovász number [71]. To obtain
a valid kernel, graphs are again represented by feature vectors, where each
component is the optimal assignment similarity to a prototype, here referred
to as landmark.

Instead of generating feature vectors from prototypes, Kriege, Giscard, and
Wilson [62] showed that Equation (3.1) is a valid kernel for a restricted class
of base kernels k. These so-called strong base kernels give rise to hierarchies
from which the optimal assignment kernels are computed in linear time by
histogram intersection. For graph classification a base kernel based on the
1-WL was proposed. The derived Weisfeiler-Lehman optimal assignment
kernel often provides better classification accuracies on real-world benchmark

20

3.1. Related work

datasets than the Weisfeiler-Lehman subtree kernel.
Pachauri, Kondor, and Singh [92] studied a generalization of the assign-

ment problem to more than two sets, which was used to define transitive
assignment kernels for graphs [102]. The method is based on finding a sin-
gle assignment between the vertices of all graphs of the dataset instead of
finding an optimal assignment for each pair of graphs. While this leads to
positive-semidefinite kernels, non-optimal assignments between individual
pairs of graphs are possible. Nikolentzos, Meladianos, and Vazirgiannis [88]
proposed a matching-based approach based on the Earth Mover’s Distance,
which results in an indefinite kernel function. In order to deal with this
they employ a variation of the SVM algorithm, specialized for learning with
indefinite kernels. Additionally, they propose an alternative solution based on
the pyramid match kernel, a generic kernel for comparing sets of features [35].
The pyramid match kernel avoids the indefiniteness of other assignment ker-
nels by comparing features through a multi-resolution histogram (with bins
determined globally, rather than for each pair of graphs).

3.1.3. Substructure-based approaches
In many applications, a strong baseline for representations of composite
objects such as documents, images or graphs is one that ignores the structure
altogether and represents objects as bags of components. A well-known
example is the so-called bag-of-words representation of text—statistics of
word occurrences without context—which remains a staple in natural language
processing. For additional specificity, it is common to compare statistics
also of bigrams (sequences of two words), trigrams, etc. A similar idea may
be used to compare graphs by ignoring global structure and viewing graphs
as bags of vertices or edges. The vertex label kernel does precisely this by
comparing graphs only at the level of similarity between all pairs of vertex
labels from two different graphs, i.e.,

kVL(G,H) =
∑︂

u∈V (G)

∑︂
v∈V (G)

k(l(u), l(v)).

With the base kernel k the equality indicator function, kVL is a linear kernel
on the (unnormalized) distributions of vertex labels in G and H. Similar in
spirit, the edge label kernel is defined as the sum of base kernel evaluations on
all pairs of edge labels (or triplets of the edge label and incident vertex labels).
A downside of vertex and edge label kernels is that they ignore the interplay
between structure, and labels and are almost completely uninformative for
unlabeled graphs. Instead of viewing graphs as bags of vertices or edges,

21

Chapter 3. Kernel methods for graphs

we may view them as bags of subgraph patterns. To this end, Shervashidze
et al. [105] introduced a kernel based on counting occurrences of subgraph
patterns of a fixed size—so called graphlets.

The Graphlet kernel counts the isomorphism types of all induced (possibly
disconnected) subgraphs on k > 0 vertices of a graph G. Let ϕ(G)τi

for
1 ≤ i ≤ N denote the number of instances of isomorphism type τi where N
denotes the number of different types of subgraphs induced by k vertices.
The kernel computes a feature vector ϕGR(G) for G,

ϕGR(G) = [ϕ(G)τ1 , . . . , ϕ(G)N].

The graphlet kernel is finally defined as kGR(G,H) = ⟨ϕGR(G), ϕGR(H)⟩ for
two graphs G and H.

The time required to compute the graphlet kernel scales exponentially
with the size of the considered graphlets. To remedy this, Shervashidze et al.
proposed two algorithms for speeding up the computation time of the feature
vector for k in {3, 4}. In particular, it is common to restrict the kernel to
connected graphlets. Additionally, the statistics used by the graphlet kernel
may be estimated approximately by subgraph sampling, see, e.g., [49, 2, 16,
9]. Similarly, Horváth, Gärtner, and Wrobel [45] proposed a kernel based on
cycles and tree patterns.

Costa and De Grave [17] introduced the neighborhood subgraph pairwise
distance kernel which associates a string with every vertex representing its
neighborhood up to a certain depth. To avoid solving the graph canonization
problem, they proposed using a graph invariant that may map non-isomorphic
neighborhood subgraphs to the same string. Then, pairs of these neighborhood
graphs together with the shortest-path distance between their central vertices
are counted as features.

An alternative to subgraph patterns are tree patterns which may contain
repeated vertices and were initially proposed for use in graph comparison
by Ramon and Gärtner [98], and later refined by Mahé and Vert [72]. Tree
pattern kernels are similar to the Weisfeiler-Lehman subtree kernel, but do
not consider all neighbors in each step, but also all possible subsets [106],
and hence do not scale to larger datasets. Da San Martino, Navarin, and
Sperduti [19] proposed decomposing a graph into trees and applying a kernel
defined on trees. In Da San Martino, Navarin, and Sperduti [18], a fast
hashing-based computation scheme for the aforementioned graph kernel is
proposed.

22

3.1. Related work

3.1.4. Walk- and path-based approaches
A downside of the subgraph pattern kernels described in the previous section
is that they require the specification of a set of patterns, or subgraph size, in
advance. To ensure efficient computation, this often restricts the patterns
to a fairly small scale, emphasizing local structure. A popular alternative
is to compare the sequences of vertex or edge labels that are encountered
through traversals through graphs. In this section, we describe two families of
traversal algorithms which yield different labels sequences and thus different
kernels—shortest paths and random walks.

A first graph kernel that fits into this framework is the shortest-path
kernel [8]. The idea here is to compare the shortest-path distributions of
two graphs. Formally, let G and H be graphs with label function l : V (G) ∪
V (H) → Σ and let d : V (G) ∪ V (H) × V (G) ∪ V (H) → N denote the
shortest-path distance function. Then the kernel is defined as

kSP(G,H) =
∑︂

(u,v)∈V (G)2

u̸=v

∑︂
(w,z)∈V (H)2

w ̸=z

k((u, v), (w, z)), (3.2)

where

k((u, v), (w, z)) = kL(l(u), l(w)) · kL(l(v), l(z)) · kD(d(u, v), d(w, z)).

Here kL is a kernel for comparing (continuous) vertex labels and kD is a
kernel to compare shortest-path distances, such that kD(d(u, v), k(w, z)) = 0
if d(u, v) =∞ or d(w, z) =∞. The running time for evaluating the kernel
function for a pair of graphs is in O(n4), using the Floyd-Warshall algorithm
for solving the all-pair shortest-path problem. Observe that this kernel can
naturally handle continuous labels. In [42] the shortest-path is generalized
by considering all shortest paths between two vertices.

Gärtner, Flach, and Wrobel [29] and Kashima, Tsuda, and Inokuchi [51]
derived graph kernels based on random walks, which count the common
walks of two graphs and support user-specified kernels for (continuous) vertex
and edge labels. Subsequently, Mahé et al. [73] extended this formulation
of random walk kernels with a focus on application in cheminformatics [74].
An unfavorable characteristic of random walks is that they may visit the
same vertex several times, resulting in walks that do not provide additional
information about the structure of the graph. This was partially fixed by
extending random walk kernels to second-order Markov processes. Gärtner,
Flach, and Wrobel [29] explicitly define the feature space of their random walk
kernel as label sequences derived from walks, but propose a different method

23

Chapter 3. Kernel methods for graphs

of computation based on the direct product graph of two labeled input graphs.
Vishwanathan et al. [112] propose a generalizing framework for random walk
based graph kernels and argue that the approach by Kashima, Tsuda, and
Inokuchi and Gärtner, Flach, and Wrobel can be considered special cases of
this kernel. Recently, the phenomenon of halting in random walk kernels has
been studied by Sugiyama and Borgwardt [109], which refers to the fact that
walk-based graph kernels may down-weight longer walks so much that their
value is dominated by walks of length 1. Moreover, Zhang et al. [129] derived
graph kernels based on return probabilities of random walks.

3.1.5. Convolution graph kernels for graphs with
continuous labels

Most real-world graphs have continuous vertex and edge labels, mostly real-
valued vectors, associated with their vertices and edges, respectively. For
example, atoms of chemical molecules have physical and chemical properties;
individuals in social networks have demographic information; and words
in documents carry semantic meaning. Kernels based on pattern counting
or neighborhood aggregation are of a discrete nature, i.e., two vertices are
regarded as similar if and only if they exactly match, structure-wise as well
as (continuous) label-wise. However, in most applications, it is desirable to
compare real-valued labels with more nuanced similarity measures such as
the Gaussian RBF kernel.

Kernels suitable for graphs with continuous labels typically use user-defined
kernels for the comparison of vertex and edge labels. The graph kernel is then
obtained by combining these kernels according to closure properties. Recently
proposed kernels for graphs with continuous labels like GraphHopper [25]
and GraphInvariant [91] use separate kernels for the graph structure and
annotations. They can be expressed as

kWV(G,H) =
∑︂

v∈V (G)

∑︂
w∈V (H)

kW (v, w) · kV (v, w), (3.3)

where kV is a user-specified kernel comparing continuous vertex labels and kW
is a kernel that determines a weight for a vertex pair based on the individual
graph structures. Kernels belonging to this family are easily identifiable as
instances of R-convolution kernels [41].

For graphs with continuous labels one could set kV to the Gaussian RBF
kernel

kV (x,y) = exp
(︄
−∥x− y∥2

2σ2

)︄
,

24

3.1. Related work

for x and y in Rn, where σ is a free parameter. The selection of the kernel
kW is essential to take the graph structure into account and allows to obtain
different instances of the above kernel. A reasonable implementation of kW
motivated along the lines of the GraphInvariant kernel [91] is

kW (v, w) =
h∑︂
i=0

kδ(C1
i (v), C1

i (w)).

Intuitively, this kernel reflects to what extent the two vertices have a struc-
turally similar neighborhood.

Another graph kernel, which fits into this framework, is the GraphHopper
kernel [25] with

kW (v, w) = ⟨M(v),M(w)⟩F .
Here M(v) and M(w) are δ × δ matrices, where the entry M(v)ij for v in
V (G) counts the number of times the vertex v appears as the i-th vertex on
a shortest path of discrete length j in G, δ denotes the maximum diameter
over all graphs, and ⟨·, ·⟩F is the Frobenius inner product.

In [60], Kriege and Mutzel proposed the subgraph matching kernel which
is computed by considering all bijections between all subgraphs on k > 0
vertices, and allows to compare vertex labels using a custom kernel. Moreover,
in [108] the Descriptor Matching kernel is defined, which captures the graph
structure by a propagation mechanism between neighbors, and uses a variant
of the VG kernel [34] to compare labels between vertices. The kernel can be
computed in linear-time in the number of edges.

3.1.6. Other approaches
Kondor, Shervashidze, and Borgwardt [59] derived a graph kernel using graph
invariants based on group representation theory. In [58] a graph kernel
is proposed which can capture the graph structure at multiple scales, i.e.,
neighborhoods around vertices of increasing depth using ideas from spectral
graph theory. Moreover, the authors provide a low-rank approximation
algorithm to scale the kernel computation to large graphs. Johansson et
al. [50] defined a graph kernel based on the Lovász number [71].

Yanardag and Vishwanathan [121] used recent neural techniques from
neural language modeling, such as skip-gram [77]. The authors build on
known state-of-the-art kernels but allow to respect relationships between
their features. This is demonstrated by hand-designed matrices encoding the
similarities between features for selected graph kernels such as the graphlet
and Weisfeiler-Lehman subtree kernel. Similar ideas were used in [122] where

25

Chapter 3. Kernel methods for graphs

smoothing methods for multinomial distributions were applied to the graph
domain.

In [68] a kernel for dynamic graphs is proposed, where vertices and edges are
added and deleted, respectively. The kernel is based on eigendecompositions.
Kriege et al. [61] investigated under which conditions it is possible to compute
the corresponding feature map of a graph kernel. They provide theoretical
as well as empirical results for walk-based kernels. Li et al. [67] proposed a
streaming version of the Weisfeiler-Leman algorithm using hashing techniques.
Aiolli et al. [3] applied multiple kernel learning to the graph kernel domain.

Nikolentzos et al. [89] proposed to first build the k-core decomposition of
graphs to obtain a hierarchy of nested subgraphs, which are then individually
compared by a graph similarity measure. The approach has been combined
with several graph kernels such as the Weisfeiler-Lehman subtree kernel. and
was shown to improve the accuracy on some datasets.

3.1.7. Theoretical work
While a large literature has studied the empirical performance of various
graph kernels, there exist comparatively few works that deal with graph
kernels exclusively from a theoretical point of view. Most works that provide
theoretical insights for graph kernels attempt to formalize their expressivity.

The expressivity of a graph kernel refers broadly to the kernel’s ability to
distinguish certain patterns and properties of graphs. In an early attempt to
formalize this notion, Gärtner, Flach, and Wrobel introduced the concept of
a complete graph kernel—kernels for which the corresponding feature map is
an injection. If a kernel is not complete, there are non-isomorphic graphs G
and H with ϕ(G) = ϕ(H) that cannot be distinguished by the kernel. In this
case, there is no way any classifier based on this kernel can separate these two
graphs. However, computing a complete graph kernel is GI-hard, i.e., at least
as hard as deciding whether two graphs are isomorphic [29]. Therefore, none
of the graph kernels used in practice are complete. Note, however, that a
kernel may be injective with respect to a finite or restricted family of graphs.

Johansson and Dubhashi [48] proved that optimal assignment kernels based
on Laplacian embeddings of graphs can distinguish graphs with different
densities as well as random graphs with and without planted cliques. In Jo-
hansson et al. [50], the authors studied global properties of graphs such
as girth, density, and clique number and proposed kernels based on vertex
embeddings associated with the Lovász-ϑ and SVM-ϑ numbers which have
been shown to capture these properties.

The expressivity of graph kernels has been studied also from statistical

26

3.1. Related work

perspectives. In particular, Oneto et al. [90] used well-known results from
statistical learning theory to give results which bound measures of expres-
sivity in terms of Rademacher complexity and stability theory. Johansson
et al. studied the statistical tradeoff between expressivity and differential
privacy [24]. Finally, the framework in Section 3.4 proposes an alternative
way to measure the expressiveness of graph kernels.

27

Chapter 3. Kernel methods for graphs

3.2. Fast kernels for graphs with continuous
labels

The various graph kernels proposed in recent years can be divided into ap-
proaches that either compute feature maps (i) explicitly, or (ii) implicitly,
see [61] and Section 3.1. Explicit computation schemes have been shown to be
scalable and allow the use of fast linear kernel methods, e.g., linear support
vector machines [47], while implicit computation schemes are typically slow
due to the quadratic running time overhead for comparing each pair of graphs.
Alternatively, we may divide graph kernels according to their ability to handle
annotations of vertices and edges. The proposed graph kernels are either
(i) restricted to discrete labels, or (ii) compare annotations like continuous
labels by user-specified kernels. Kernels of the first category typically implic-
itly compare annotations of vertices and edges by the trivial Dirac kernel,
which requires values to match exactly and is not adequate for continuous
labels. Remarkably, the two classifications of graph kernels mentioned above
largely coincide: Graph kernels supporting complex annotations use implicit
computation schemes and do not scale well. Whereas graphs with discrete
labels can be compared efficiently by graph kernels based on explicit feature
maps. Table 3.1 gives an overview of the related kernels and the model of
computation. In the following, we introduce hash graph kernels which use
hash functions to approximate implicit kernels for continuous labels by finite
dimensional feature vectors. Hence, they circumvent the problem of quadratic
overhead.

3.2.1. Hash graph kernels
The main idea of hash graph kernels is to map continuous labels to discrete
labels using a family of hash functions, and then apply a kernel for graphs
with discrete labels. Let H = {h : Rd → N} be a family of hash functions, and
G a graph with continuous vertex labels a : V (G)→ Rd. We can transform
(G, a) to a graph with discrete labels by mapping each continuous label a(v)
to h(a(v)) with some function h in H. For short, we write h(G) for the
labeled graph obtained by this procedure. The function h is drawn uniformly
at random from the family of hash functions H. This procedure is repeated
multiple times to lower the variance. Thus, we obtain a sequence of discretely
labeled graphs (hi(G))Ii=1, where I is the number of iterations. Hash graph
kernels compare these sequences of labeled graphs by an arbitrary graph
kernel for labeled graphs, which we refer to as discrete base graph kernel, e.g.,

28

3.2. Fast kernels for graphs with continuous labels

Table 3.1.: Summary on selected graph kernels regarding computation by
explicit (EX) and implicit (IM) feature map and support for continuously
labeled graphs. ⋆— not considered in publication, but method can be extended;
†— continuous vertex labels only).

Graph Kernel Model of Computation Labels Continuous Labels

Random Walk ([29, 51]) IM ✓ ✓

Tree Pattern ([98, 72]) IM ✓ ✓⋆

Shortest-Path ([8]) IM ✓† ✓

Subgraph Matching ([60]) IM ✓ ✓

GraphHopper ([25]) IM ✓† ✓

Graph Invariant kernels ([91]) IM ✓ ✓

Descriptor Matching Kernel ([108]) IM ✓ ✓

Weisfeiler-Lehman Subtree ([106]) EX ✓ ✗

Graphlet ([105]) EX ✓⋆ ✗

NSPDK ([17]) EX ✓ ✗

Propagation ([84]) EX ✓ ✓

Hash Graph Kernel with Shortest-path kernel EX ✓ ✓

Hash Graph Kernel with Weisfeiler-Lehman Subtree kernel EX ✓ ✓

the Weisfeiler-Lehman subtree or the shortest-path kernel.

Definition 3.2.1. Let H be a family of hash functions and kb a discrete
base graph kernel, then the hash graph kernel for two continuously labeled
graphs G and H is defined as

kHGK(G,H) = 1
I

I∑︂
i=1

kb(hi(G),hi(H)),

where hi is obtained by choosing hash functions (uniformly at randomly)
from H.

We will discuss hash functions, possible ways to choose them from H, and
how they relate to the kernel value in Section 3.2.3. We proceed with the
algorithmic aspects of hash graph kernels. It is desirable for efficiency to
compute explicit feature vectors for graph kernels. We can obtain feature
vectors for hash graph kernels under the assumption that the discrete base
graph kernel can be computed by explicit kernels. This can be achieved by
concatenating the feature vectors for each iteration and normalizing by

√︂
1/I

according to the pseudocode in Algorithm 1.
Note that lines 4 to 5 in Algorithm 1 can be easily executed in parallel.

Moreover, when using, e.g., the Weisfeiler-Lehman subtree kernel as a discrete

29

Chapter 3. Kernel methods for graphs

Algorithm 1 Explicit feature maps for hash graph kernels
1: Input: A graph with continuous vertex labels (G, a), a graph feature

map ϕL : G → H of the discrete base graph kernel kb for labeled graphs,
and number of iterations I in N>0

2: Output: A feature vector ϕ(G) for (G, a)

3: parallel for i in {1, . . . , I} do
4: (G, l)← hi(G) ▷ Hash continuous labels to labels
5: ϕ(G)← [ϕ(G), ϕL((G, l))] ▷ Concatenate vectors
6: end

7: ϕ(G)←
√︂

1/I · ϕ(G) ▷ Normalize

8: Return ϕ(G)

base kernel, line 5 can be executed in one step over the whole set of graphs,
cf. [106, 61].

Difference to the propagation kernel

The propagation kernel [84] also employs hash functions to discretize con-
tinuous information. However, propagation kernels discretize continuous
probability distributions. Moreover, they do not provide theoretical bounds,
see Section 3.2.4, and the experimental results, see Section 3.2.5, indicate
that hash graph kernels outperform propagation kernels.

3.2.2. Analysis
Since hash graph kernels are a normalized sum over discrete base graph
kernels applied to a sequence of transformed input graphs, it is clear that we
again obtain a valid kernel. For the explicit computation of feature maps by
Algorithm 1 we get the following bound on the running time.

Proposition 3.2.2. Let k : G × G → R be a graph kernel for labeled graphs
and let ϕL : G → H be the corresponding feature map acting as a discrete
base graph kernel for Algorithm 1, then the running time for the computation
of a feature vector of G in G is in

O(I · (TH(G) + Tϕ(G))),

30

3.2. Fast kernels for graphs with continuous labels

where TH(G) denotes an upper bound for the evaluation of the hash functions
for G, and Tϕ(G) denotes an upper bound for the running time to compute
the graph feature map ϕL(G).

Proof. Directly follows from Algorithm 1.

Notice that when we fix the number of iterations and assume TH(G) ≤
Tϕ(G), the hash graph kernel can be computed in the same asymptotic
running time as the discrete base graph kernel.

3.2.3. Hash functions
In this section, we discuss possible realizations of the hashing functions used
to obtain hash graph kernels according to Definition 3.2.1. Our goal is to
establish the necessary background to study hash graph kernels obtained
for concrete discrete base graph kernels, and how they implicitly compare
continuous labels in Section 3.2.4. The key idea is to choose a family of hash
functions, and draw hash functions h1 and h2 in each iteration such that

Pr[h1(x) = h2(y)]

is an adequate measure of similarity between x and y in Rd. For the case
that h1 = h2 drawn at random, such families of hash functions have been
proposed, e.g., by [94] and [4]. However, the results on these approaches
do not lift to kernels composed of products of kernels, see the subsection
below. Hence, they do not directly transfer to hash graph kernels, where
complex discrete base graph kernels are employed. To overcome this issue,
we introduce the following concept.

Definition 3.2.3. Let k : X ×X → R be a kernel, and let H = {h : X → S}
for some set S be a family of hash functions. Then H is an independent
k-hash family if

Pr[h1(x) = h2(y)] = k(x, y),

where h1 and h2 are chosen independently and uniformly at random from H.

In the following, we consider a particularly simple example of a hash
family and illustrate the kernels obtained from either applying the same hash
function to both objects under comparison or drawing them independently.
Then we review locality sensitive hashing techniques for hash graph kernels,
which were used in the empirical evaluation.

31

Chapter 3. Kernel methods for graphs

Randomized binning

We discuss the technique proposed by [94] to approximate the triangular or
hat kernel as a normalized sum of Dirac kernels applied after randomized
binning. The hat kernel on R is defined as

k∆(x, y) = max
{︄

0, 1− |x− y|
γ

}︄
,

where γ > 0 is a parameter describing the maximal discrepancy of x and y,
for which k∆ takes a non-zero value, cf. Figure 3.2. Consider the family of
hash functions

dubin(x) =
⌊︄
x− u
γ

⌋︄
,

where u is drawn uniformly at random from [0, γ]. Let h be a hash function
chosen at random from this family, then

Pr [h(x) = h(y)] = k∆(x, y)

and
1
I

I∑︂
i=1

kδ(hi(x), hi(y))

converges to k∆(x, y) with increasing parameter I [94]. However, when
this approach is used to obtain hash graph kernels, the above result does
not imply that continuous labels are compared by an (approximated) hat
kernel. Consider two pairs of vertices with continuous labels a, b and c, d in
R, respectively. The discrete base graph kernel might require that the hash
values of a and c as well as b and d both exactly match in order to contribute
to the kernel value. However, in general

k∆(a, c) · k∆(b, d) ̸= Pr [h(a) = h(c) ∧ h(b) = h(d)] ,

and as a consequence the approach does not generalize to kernels composed
by multiplication like most graph kernels. Indeed, the hash family defined
above is not an independent k∆-hash family according to Definition 3.2.3.

However, it is an independent kξ-hash family for some kernel

kξ(x, y) = Pr[h1(x) = h2(y)],

where the hash functions h1 and h2 both are selected uniformly at random.
This kernel is illustrated in Figure 3.2. Although it does not guarantee
kξ(x, x) = 1 for all x in R like the hat kernel, see Figure 3.2, it is continuous
on the bin boundaries compared to the simple binning kernel.

32

3.2. Fast kernels for graphs with continuous labels

 0

 0.5

 1

(a) kδ (⌊x⌋ , ⌊y⌋).

 0

 0.5

 1

(b) k∆ with γ = 1.

 0

 0.5

 1

(c) kξ with γ = 1.

 0

 0.5

 1

(d) 2-stable LSH.

Figure 3.2.: Illustration of different kernels applied to x and y in {0, . . . , 4}.
The kernel in (a) is based on straight-forward binning, while the kernels (b)
to (d) are obtained by iterated randomized binning.

Locality sensitive hashing

In this section, we review locality sensitive hashing (LSH) [46]. Its general
idea is to hash points to the same bin with high probability if they are
close together with regard to some distance function. Let S be a set and
D : S × S → R≥0 some distance function defined on S, then an LSH family
is defined as follows.

Definition 3.2.4 ([20]). A family of hash functions H = {h : X → S} for
some set S is (r1, r2, p1, p2)-sensitive for D if for all v and w in X

1. if v in B(w, r1), then PrH[h(v) = h(w)] ≥ p1, and

2. if v not in B(w, r2), then PrH[h(v) = h(w)] ≤ p2

holds, where B(w, r) = {s ∈ S | D(w, s) ≤ r}.

Finally, we require p-stable LSH [20]. We first need to define s-stable
distributions.

Definition 3.2.5 ([130]). Let v be a vector in Rn, D be a distribution on R,
and p in (0, 2]. Moreover, let X1, . . . , Xn, and Z be random variables drawn
i.i.d. from D, then D is p-stable if vT (X1, . . . , Xn) ∼ ∥v∥pZ.

For example the Cauchy distribution and the standard normal distribution
are 1-stable and 2-stable [130], respectively. Let v1 and v2 in Rn be two
vectors we want to map to an integer, and let a be a vector in Rn such that
each component of a is i.i.d. drawn from a p-stable distribution D. Because of
p-stability the distance (aTv1 − aTv2) is distributed as ∥v1 − v2∥pZ, where
Z is a random variable with distribution D. The dot product aTvi maps vi

33

Chapter 3. Kernel methods for graphs

to the real line. By adding an offset b, chosen uniformly at random from
[0, r], and partitioning the real line into equidistant intervals of length r, we
get the following binning function:

da,b
bin(v) =

⌊︄
aTv + b

r

⌋︄
for v in Rn.

Datar et al.[20] showed the following result.
Proposition 3.2.6 ([20]). Let v1 and v2 be in Rn, then

p(c) = Pr
[︂
da,b

bin(v1) = da,b
bin(v2)

]︂
=
∫︂ r

0

1
c
fp

(︃
t

c

)︃(︃
1− 1

r

)︃
dt,

where c = ∥v2 − v2∥p and fp denotes the probability density function of the
absolute value of the p-stable distribution, e.g., the folded normal distribution
for p = 2. Moreover, da,b

bin is (r1, r2, p1, p2)-sensitive for p1 = p(1) and p2 = p(c)
for r2/r1 = c.

The binning function used for LSH is similar to the one discussed in
the previous subsection. However, LSH allows to map multi-dimensional
real values to discrete labels and, thus, extends the applicability of hash
graph kernels to graphs annotated with multidimensional continuous labels.
See Figure 3.2 for an illustration of the computed kernel.

3.2.4. Hash graph kernel instances
In the following, we prove that hash graph kernels approximate implicit
variants of the shortest-path, and the Weisfeiler-Lehman subtree kernel for
graphs with continuous vertex labels.

Shortest-path kernel

We first describe a hash graph kernel instance for the implicit shortest-path
graph kernel which can handle continuous labels, cf. Equation (3.2). If we
assume a labeled graph (G, l) and set kL and kD to the Dirac kernel, we can
compute an feature map ϕSP : G → Rd for some d > 0 for kkL,kD

SP (G,H). Each
component of ϕSP(G) counts the number of occurrences of a triple of the form
(l(u), l(v), duv) for (u, v) in V (G)2, u ≠ v, and duv <∞. It is easy to see that

ϕSP(G)TϕSP(H) = kkδ,kδ
SP (G,H). (3.4)

The following theorem shows that we can approximate kkL,kδ
SP arbitrarily close

by hash graph kernels by using the explicit shortest-path kernel as a discrete
base kernel and an independent kL-hash family.

34

3.2. Fast kernels for graphs with continuous labels

Theorem 3.2.7. Let kL : Rn × Rn → R be a kernel, and let H be an
independent kL-hash family. Assume that in each iteration of Algorithm 1
each continuous vertex label is mapped to a label using a hash function
chosen independently and uniformly at random from H. Then Algorithm 1,
with the explicit shortest-path graph kernel acting as the discrete base kernel,
approximates kkL,kδ

SP such that

Pr
[︂⃓⃓⃓
ϕ(G)Tϕ(H)− kkL,kδ

SP (G,H)
⃓⃓⃓
≥ λ

]︂
≤ 2 exp

(︂
−2λ2I

)︂
.

Moreover, by setting
I = 1

2ϵ2 log(|G|2 · c),

for some constant c > 0 it holds with any constant probability that

sup
G,H∈G

⃓⃓⃓
ϕ(G)Tϕ(H)− kkL,kδ

SP (G,H)
⃓⃓⃓
≤ ϵ,

for ϵ > 0.
Proof. By assumption, we have Pr[h1(a) = h2(b)] = kL(a,b) for h1 and h2
chosen independently and uniformly at random from H. Since we are using a
Dirac kernel to compare discrete labels, we get

E[kδ(h1(a), h2(b))] = kL(a,b).

Since H is an independent kL-hash family, Pr[h1(a) = h2(b) ∧ h3(c) =
h4(d)] = kL(a,b) · kL(c,d) for h1, h2, h3, and h4 chosen independently and
uniformly at random from H. Hence, by the above,

E[kδ(h1(a), h2(b)) · kδ(h3(c), h4(d))] = kL(a,b) · kL(c,d).

By Equation (3.4), and using the linearity of expectation,

E[ϕ(G)Tϕ(H)] = kSP(G,H).

Now assume that kkL,kδ is normalized to [0, 1]1, then the first claim follows
from the Hoeffding bound [44]. We now show the second claim. From the
first claim, we get

Pr
[︂⃓⃓⃓
ϕ(G)Tϕ(H)−kkL,kδ

SP (G,H)
⃓⃓⃓
> ϵ

]︂
≤ 2 exp

(︂
− log(|G|2 · c)

)︂
= 1
c/2 · |G|2 .

The claim then follows from the Union bound.
1It is straightforward to extend the argument to [a, b].

35

Chapter 3. Kernel methods for graphs

Notice that we can also approximate kkL,kD
SP by employing a kD-independent

hash family.

Weisfeiler-Lehman subtree kernel

By the same arguments, we can derive a similar result for the Weisfeiler-
Lehman subtree kernel. To this end, the following Proposition derives an
implicit version of the Weisfeiler-Lehman subtree kernel.

Proposition 3.2.8. Let

khImp-WL(G,H) =
h∑︂
i=0

∑︂
v∈V (G)

∑︂
w∈V (H)

ki(v, w).

The function ki is recursively defined as

ki(v, w) =

⎧⎪⎪⎨⎪⎪⎩
ki−1(v, w) · f(v, w) i > 0 and Mi(v, w) ̸= ∅,
kδ(l(v), l(w)) i = 0,
0 otherwise.

The function f is defined as

f(v, w) = |Mi(v, w)|−1 ∑︂
R∈Mi(v,w)

∏︂
(w,w′)∈R

ki−1(w,w′),

where Mi(v, w) is the set of bijections b : V (G)→ V (H) between N(v) and
N(w) such that ki−1(v′, w′) > 0 for b(v′) = w′. Then khImp-WL is equivalent to
the Weisfeiler-Lehman subtree kernel.

Proof. Follows from [106, Theorem 8].

We show that Algorithm 1, with the (explicit) Weisfeiler-Lehman subtree
kernel acting as the discrete base graph kernel, probabilistically approximates
the graph kernel kh,kA

Imp-WL, where kh,kA
Imp-WL is defined by substituting δ in the

definition of khImp-WL(G,H) by a kernel kA : Rn × Rn → R.

Corollary 3.2.9. Let kA : Rn × Rn → R be a kernel and let H be an
independent kA-hash family. Assume that in each iteration of Algorithm 1
each continuous vertex label is mapped to a label using a hash function chosen
independently and uniformly at random from H. Then Algorithm 1, with
the Weisfeiler-Lehman subtree kernel with h iterations acting as the discrete
base kernel, approximates kh,kA

Imp-WL such that

Pr
[︂⃓⃓⃓
ϕ(G)Tϕ(H)− kh,kA

Imp-WL(G,H)
⃓⃓⃓
≥ λ

]︂
≤ 2 exp

(︂
−2λ2I

)︂
.

36

3.2. Fast kernels for graphs with continuous labels

Table 3.2.: Dataset statistics and properties.
Dataset Properties

Number of graphs Number of classes ∅ Number of vertices ∅ Number of edges Vertex labels Cont. label dim.

Enzymes 600 6 32.6 62.1 ✓ 18
Frankenstein 4337 2 16.9 17.9 ✗ 780
Proteins 1113 2 39.1 72.8 ✓ 1
SyntheticNew 300 2 100.0 196.3 ✗ 1
Synthie 400 4 95 172.9 ✗ 15

Moreover, by setting

I = 1
2ϵ2 log(|G|2 · c),

for some constant c > 0 it holds with any constant probability that

sup
G,H∈G

⃓⃓⃓
ϕ(G)Tϕ(H)− kh,kA

Imp-WL(G,H)
⃓⃓⃓
≤ ϵ,

for ϵ > 0.

Proof. Since khImp-WL is written as a sum of products, and sums of Dirac
kernels, we can again use the property of k-independent hash functions and
argue analogously to the proof of Theorem 3.2.7.

Other discrete base kernels

The above technique can also be adapted to other graph kernels for discrete
labels. For kernels that use subgraphs up to a fixed size as features, this
appears to be highly promising: The graphlet kernel [105] has originally been
proposed for unlabeled graphs, but the same idea can be applied to graphs
with discrete labels [113]. However, such approaches are infeasible for graphs
with continuous labels, which give rise to subgraphs that cannot be mapped to
a discrete feature in a straight-forward manner. To overcome this, subgraph
matching kernels have been proposed [60], which consider structure-preserving
bijections between subgraphs instead. Subgraph matching kernels have been
shown to be able to handle continuous labels adequately, but are orders of
magnitude slower [60, 84]. Hence, a hash graph kernel with a graphlet kernel
as discrete base kernel could combine the advantages of both. Moreover, it is
straightforward to prove a result analogous to Theorem 3.2.7.

37

Chapter 3. Kernel methods for graphs

3.2.5. Experimental evaluation
Our intention here is to investigate the benefits of hash graph kernels compared
to the state-of-the-art. More precisely, we address the following questions:

Q1 How do hash graph kernels compare to state-of-the-art graph kernels
for continuously labeled graphs in terms of classification accuracy, and
computation time?

Q2 How does the choice of the discrete base kernel influence the classification
accuracy?

Q3 How does the number of iterations influence the classification accuracy
of hash graph kernels in practice?

Datasets

We used the following datasets to evaluate and compare hash graph kernels.

Enzymes and Proteins contain graphs representing proteins according to
the graph model of [8]. Each vertex is annotated with a discrete label
and a continuous label containing physical or chemical measurements
of dimension 18 and 1, respectively. The datasets are subdivided into
six and two classes, respectively. Note that this is the same dataset
used in [25], which does not contain all the annotations described and
used in [8].

Frankenstein is a synthetic dataset from [91]. It is a modified version of the
Bursi dataset, cf. [52], which contains 4337 graphs modeling chemical
compounds. In Frankenstein the original discrete vertex labels are
replaced by 780-dimensional Mnist vectors modeling pixel intensities.
The dataset is subdivided into two classes.

SyntheticNew is a synthetic dataset taken from [25, Erratum]. Each of the
300 graphs are derived from a random graph with 100 vertices, 196 edges,
and normally distributed one dimensional continuous vertex labels, by
rewiring edges, permuting continuous vertex labels, and adding noise
to continuous vertex labels. The dataset is subdivided into two classes.

Synthie is a synthetic datasets consisting of 400 graphs. The dataset is
subdivided into four classes. Each vertex has a real-valued vector of
dimension 15 and no discrete labels. We used the following procedure
to generate the dataset: First, we generated two Erdős-Rényi graphs

38

3.2. Fast kernels for graphs with continuous labels

using the G(n, p) model with p = 0.2 and n = 10. For each graph, we
generated a seed set Si for i in {1, 2} of 200 graphs by randomly adding or
deleting 25% of the edges. From these seed sets, we generated two classes
C1 and C2 of 200 graphs each by randomly sampling 10 graphs from
S1 ∪S2 and randomly connecting these graphs. For C1 we choose a seed
graph with probability 0.8 from S1 and with probability 0.2 from S2. The
class C2 was generated the same way but with interchanged probabilities.
Finally, we generated a set of real-valued vectors of dimension 15
subdivided into two classes A and B using the make_classification
method from Scikit-learn [93], which implements the method described
in [38]. We then subdivided Ci into two classes CAi and CBi by drawing a
random continuous label from A or B for each vertex. For class CAi , we
drew a continuous label from A if the vertex belonged to a seed graph
of seed set S1, and from B otherwise. Class CBi was created the same
way but with interchanged seed sets.

See Table 3.2 for an overview of dataset statistics and properties.2

Graph kernels

We implemented hash graph kernels with the explicit shortest-path graph
kernel (HGK-SP), and the Weisfeiler-Lehman subtree kernel (HGK-WL)
acting as discrete base kernels in Python.3 For the Weisfeiler-Lehman subtree
kernel (WL) we used the fast linear algebra-based algorithm described in [54].
We compared our kernels to the GraphHopper kernel (GH) [25], an instance
of the graph invariant kernels (GI) [91], and the propagation kernel from [84]
which supports continuous labels (P2K). Additionally, we compared our kernel
to the Weisfeiler-Lehman subtree graph kernel, and the explicit shortest-path
graph kernel (SP), which only take discrete label information into account, to
exemplify the usefulness of using continuous labels. Since the Frankenstein,
SyntheticNew, and Synthie dataset do not have discrete labels, we used
vertex degrees as labels instead.

For the graph invariant kernel, we used the original Python implementation
provided by the authors of [91]. The variants of the hash graph kernel are
computed on a single core only. For the GraphHopper and P2K kernel we
used the original Matlab implementation provided by the authors of [25]
and [84], respectively.

2All dataset can downloaded from http://graphkernels.cs.tu-dortmund.de.
3The source code can be obtained from https://github.com/chrsmrrs/

hashgraphkernel.

39

http://graphkernels.cs.tu-dortmund.de
https://github.com/chrsmrrs/hashgraphkernel
https://github.com/chrsmrrs/hashgraphkernel

Chapter 3. Kernel methods for graphs

Table 3.3.: Classification accuracies in percent and standard deviations (Num-
ber of iterations for HGK-WL and HGK-SP: 20 (100 for Synthie), ∗—
Kernel uses discrete labels only), OOM— Out of Memory.

Kernel Dataset

Enzymes Frankenstein Proteins SyntheticNew Synthie

WL∗ 54.0 ±1.3 73.5 ±0.3 75.0 ±0.6 98.6 ±0.3 53.6 ±0.8

SP∗ 42.9 ±1.0 69.5 ±0.4 75.7 ±0.3 83.3 ±1.4 53.8 ±0.6

HGK-SP 71.3 ±0.9 70.1 ±0.3 77.5 ±0.4 96.5 ±0.6 94.3 ±0.5

HGK-WL 67.6 ±1.0 73.6 ±0.4 76.7 ±0.4 98.8 ±0.3 96.8 ±0.5

GH 68.8 ±1.0 68.5 ±0.3 72.3 ±0.3 85.1 ±1.0 73.2 ±0.8

GI 71.7 ±0.8 76.3 ±0.3 76.9 ±0.5 83.1 ±1.1 95.8 ±0.5

P2K 69.2 ±0.7 OOM 73.5 ±0.5 91.7 ±0.9 50.2 ±1.9

‘

Experimental protocol

For each kernel, we computed the normalized gram matrix. For explicit
kernels, we computed the gram matrix via the linear kernel. Note that the
computation times of the hash graph kernels could be further reduced by
employing linear kernel methods.

We computed the classification accuracies using the C-SVM implementation
of LIBSVM [14], using 10-fold cross validation. The C-parameter was selected
from {10−3, 10−2, . . . , 102, 103} by 10-fold cross validation on the training
folds. We repeated each 10-fold cross validation ten times with different
random folds and report average accuracies and standard deviations. Since
the hash graph kernels and P2K are randomized algorithms we computed
each gram matrix ten times and report average classification accuracies and
computation times. We report computation times for WL, HGK-WL, and
P2K with the number of iterations set to 5.

We fixed the number of iterations of the hash graph kernels for all but
the Synthie dataset to 20, since this was sufficient to obtain state-of-the-
art classification accuracies. For the Synthie dataset, we set the number
of iterations to 100, which indicates that this dataset is harder to classify.
The number of iterations for the WL, HGK-WL, and P2K was trained on
the training folds only using 10-fold cross validation ({0, . . . , 4}). For the
hash graph kernels, we centered the continuous labels dimension-wise to the
mean, scaled to unit variance, and used 2-stable LSH as hash functions to
hash continuous labels to discrete labels. For the Enzymes, the Proteins,
SyntheticNew, and Synthie dataset we set the interval length to 1. Due

40

3.2. Fast kernels for graphs with continuous labels

Table 3.4.: Computations times in seconds (Number of iterations for HGK-
WL and HGK-SP: 20 (100 for Synthie), number of iterations of WL,
HGK-WL, and PK: 5, ∗— Kernel uses discrete labels only, †— Matlab
code, ‡— Code is executed in parallel using eight processes), OOM— Out of
Memory.

Kernel Dataset

Enzymes Frankenstein Proteins SyntheticNew Synthie

WL∗ 1.3 25.1 4.1 0.7 1.0
SP∗ 1.5 22.9 5.9 3.3 3.7

HGK-SP 43.3 197.8 107.1 80.6 714.4
HGK-WL 32.1 497.7 82.4 22.5 168.0

GH† 365.8 16 329.0 3 396.2 275.3 348.2
GI‡ 1 748.8 26 717.3 7 905.2 3 814.5 5 523.0
P2K† 43.8 OOM 208.1 15.1 45.3

to the high dimensional sparse continuous labels of the Frankenstein
dataset we set the interval length to 100. For the HGK-WL we propagated
(discrete) labels and hashed continuous labels separately. To speed up the
computation, we used the same LSH hash function for all continuous labels
in one iteration.

For the graph invariant kernel, we used the LWLV variant, which has been
reported to perform overall well on all datasets [91]. The implementation is
using parallelization to speed up the computation and we set the number of
parallel processes to eight. For GH and GI we used the Gaussian RBF kernel
to compare continuous vertex labels. For all datasets except Frankenstein,
we set the parameter γ of the RBF kernel to

√︂
D/2 where D is the dimension

of the continuous vertex labels, cf. [25, 91]. For Frankenstein, we set γ =
0.0073 [91, 104]. Moreover, to study the influence of the number of iterations of
the hash graph kernels, we computed classification accuracies and computation
times of hash kernels with 1 to 50 iterations on the Enzymes dataset.
Computation times were averaged over ten independent runs. All experiments
were conducted on a workstation with an Intel Core i7-3770@3.40GHz, 16
GB of RAM, and Ubuntu 14.04 LTS with Python 2.7.6 and Matlab R2015b.

Results and discussion

In the following, we answer questions Q1–Q3.

41

Chapter 3. Kernel methods for graphs

A1 The classification accuracies and the computation times are depicted
in Table 3.3 and Table 3.4, respectively. In terms of classification accura-
cies HGK-WL achieves state-of-the-art results on the SyntheticNew
and the Synthie dataset. Notice that the WL kernel, without using
continuous label information, achieves (almost) the same classification
accuracy on SyntheticNew. This indicates that on this dataset the
continuous labels are only of marginal relevance for classification. A
different result is observed for the other datasets. On the Synthie
dataset HGK-WL achieves the overall best accuracy and is more than
20% better than GH and 40% better than P2K. The kernel almost
achieves state-of-the art classification accuracy on the Frankenstein
dataset. Notice that the γ parameter of the RBF kernel used in GI and
GH was finely tuned. We believe by further optimizing the parameters
of 2-stable LSH, we could also achieve state-of-the-art classification
accuracy on this dataset.
HGK-SP achieves state-of-the-art classification accuracy on the En-
zymes and Proteins dataset and compares favorably on the Synthet-
icNew and the Synthie dataset. On the Frankenstein dataset, we
observe better classification accuracy than GH.
In terms of computation times, both instances of the hash graph kernel
framework perform very well. On all datasets, HGK-WL obtains
computation times that are several orders of magnitude faster than
GH and GI. A similar result can be observed for the HGK-SP (except
for Synthie). Naturally, WL and SP have the lowest computation
times. However, on three out of five datasets the classification accuracies
are severely lower than HGK-SP and HGK-WL. This indicates that
taking continuous information into account is indeed useful.

A2 As Table 3.3 shows, the choice of the discrete base kernel has major
influence on the classification accuracy for some datasets. On the En-
zymes and the Proteins datasets HGK-SP performs favorably, while
HGK-WL achieves higher classification accuracies on Frankenstein,
SyntheticNew, and Synthie.

A3 Figure 3.3 illustrates the influence of the number iterations on HGK-
SP and HGK-WL on the Enzymes dataset. Both plots show that
a higher number of iterations leads to better classification accuracies
while the computation time grows linearly. In the case of the HGK-SP,
the classification accuracy on the Enzymes dataset improves by more
than 12% when using 20 instead of 1 iteration. The improvement

42

3.2. Fast kernels for graphs with continuous labels

0 10 20 30 40 50
Number of iterations

50

52

54

56

58

60

62

64

66

68
C

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

 [%
]

Accuracy
0

20

40

60

80

100

120

140

R
un

ni
ng

 ti
m

e
[s

]

 Time

(a) Weisfeiler-Lehman subtree.

0 10 20 30 40 50
Number of iterations

60

62

64

66

68

70

72

74

Cl
as

si
fic

at
io

n
ac

cu
ra

cy
 [%

]

Accuracy
0

20

40

60

80

100

120

140

Ru
nn

in
g

tim
e

[s
]

 Time

(b) Shortest-path.

Figure 3.3.: Influence of the number of iterations on the classification accuracy
for HGK-SP and HGK-WL on the Enzymes dataset.

on the Enzymes dataset is even more substantial for HGK-SP: the
classification accuracy improves by more than 16%. At about 30 and 40
iterations for the HGK-SP and HGK-WL, respectively, the algorithms
reach a point of saturation. Hence, the empirical results align with your
theoretical findings.

3.2.6. Conclusion
We have introduced the hash graph kernel framework which allows applying
the various existing scalable and well-engineered kernels for graphs with
discrete labels to graphs with continuous vertex labels. The derived kernels
outperform other kernels tailored to graphs with continuous labels in terms
of computation time without sacrificing classification accuracy. To validate
our empirical findings, we showed that the hash graph kernel framework
approximates implicit variants of the shortest-path and the Weisfeiler-Lehman
subtree kernel with an arbitrarily small error. In the course of our theoretical
analysis, we have introduced the concept of an independent k-hash family,
which allows approximating the discrete base graph kernel where k is used to
compare continuous labels. Studying such families of hash functions in more
detail could eventually improve the efficiency and generality of our approach
further. We believe that hash graph kernels will also be effective with other
discrete base graph kernels like the graphlet kernel.

43

Chapter 3. Kernel methods for graphs

3.3. Expressive graph kernels based on the
Weisfeiler-Leman algorithm

Most state-of-the-art graph kernels only take local graph properties into
account, i.e., they are computed based on properties of the neighborhood
of vertices or other small substructures, e.g., see [105, 17, 106, 91] and Sec-
tion 3.1. A prominent instance is the 1-WL and the corresponding kernel,
see Section 3.1.1. Although it is already quite powerful [6], and has been
applied in other areas [37, 54, 69, 123, 127], it is easy to see that the algo-
rithm is not able to distinguish all non-isomorphic graphs, e.g., see [13]. For
example, it is not able to distinguish cycles of different lengths, which is an
important feature in social network analysis and cheminformatics. Intuitively,
the 1-WL takes only local graph properties into account when performed for
a fixed number of iterations. The k-WL does take more global properties into
account but does not consider local properties. To address this, we propose a
graph kernel based on the δ-k-WL, see Section 2.6. To take local properties
into account and prevent overfitting, we propose a local variant of the above
algorithm. Moreover, we show that a variant of the local algorithm converges
to the (global) δ-k-WL, which by Proposition 2.6.1 has at least the power
as the k-WL. Hence, our new algorithm also takes global properties into
account. Since the running times of all three algorithms are in Ω(nk) for
fixed k, where n denotes the number of vertices of the graph, our local kernel
does not scale to large graph databases. Hence, we propose an algorithm to
approximate it. For bounded-degree graphs, we show that the running time
of the approximation algorithm is constant, i.e., it does not depend on the
number of vertices or edges of a graph.

3.3.1. The local k-dimensional Weisfeiler-Leman algorithm
In this section, we define the new local δ-k-dimensional Weisfeiler-Leman
algorithm (δ-k-LWL), which is a variant of the δ-k-WL considering only local
neighbors. That is, instead of Equation (2.4), it uses

M δ
i (v) =

(︂
{{Ck,δ

i (ϕ1(v, w)) | w ∈ δ(v1)}}, . . . , {{Ck,δ
i (ϕk(v, w)) | w ∈ δ(vk)}}

)︂
.

(3.5)

Hence, the labeling function is defined by

Ck,δ
i+1(v) = (Ck,δ

i (v),M δ
i (v)). (3.6)

44

3.3. Expressive graph kernels based on the Weisfeiler-Leman algorithm

Therefore, the algorithm only considers the local j-neighbors of the vertex
v in each iteration. In following, we derive a slight variation of the above
algorithm, and show that this variant, named δ-k-LWL+, has at least the
power as the δ-k-WL. That is, instead of Equation (3.6), it uses

Ck,δ,+
i+1 (v) = (Ck,δ,+

i (v),M δ,+
i (v)). (3.7)

Here

M δ,+
i (v) =

(︂
{{(Ck,δ

i (ϕ1(v, w)),#1
i (ϕ1(v, w))) | w ∈ δ(v1)}}, . . . ,

{{(Ck,δ
i (ϕk(v, w)),#k

i (ϕk(v, w))) | w ∈ δ(vk)}}
)︂
,

(3.8)

where

#j
i (v) =

⃓⃓⃓
{w | w ∈ V (G)k, Ck,δ,+

i (w) = Ck,δ,+
i (v),

and ∃e ∈ V (G) such that ϕj(v, e) = w}
⃓⃓⃓ (3.9)

for j in [k]. That is, #j
i (v) counts how often the color of the tuple v from

iteration i occurs as a j-neighbor of v. Since a tuple w is a j-neighbor of v,
anytime v is a j-neighbor of tuple t the tuple w is also one. Note that after
the stable partition has been reached #j

i (v) will not change anymore. In the
next subsection, we prove the following theorem.

Theorem 3.3.1. For all connected graphs, the following holds:

δ-k-LWL+ ⊑ δ-k-WL.

Moreover, using Proposition 2.6.1, it immediately follows that the δ-k-LWL+

has at least the same power as the k-WL.

Corollary 3.3.2. For all connected graphs the following holds:

δ-k-LWL+ ⊑ k-WL.

3.3.2. Proof of Theorem 3.3.1
The idea of the proof is to show that both algorithms, the local and the global
one, can be “simulated” on directed, labeled trees by the 1-WL by recursively
unrolling the local or global neighborhood of each k-tuple. We then show
that two such local trees are isomorphic if and only if the corresponding
global trees are isomorphic. Since the 1-WL computes the isomorphism type

45

Chapter 3. Kernel methods for graphs

for trees, the result follows. Observe that the local trees might need to be
unrolled further than the global trees to catch all “combinatorial patterns”.

To formalize the above idea, we need to introduce some terminology. We
introduce the k-tuple graph and the unrolling of the neighborhood around a
vertex. Together, these two definitions enable us to reduce the equivalence of
both algorithms to a tree isomorphism problem. The k-tuple graph essentially
contains the set of all k-tuples as vertices. Two such vertices are joined by
an edge if the associated k-tuples are neighbors. The formal definition of a
k-tuple graph is as follows.

Definition 3.3.3. Let G be a graph, and let s and t be tuples in V (G)k,
then the directed, labeled k-tuple graph T k(G) = (VT , ET , lT), where VT =
{vt | t ∈ V (G)k}, and

(vs, vt) ∈ ET ⇐⇒ t = ϕj(s, w), (3.10)

for j in [k] and some w in V (G). Let lT ((vs, vt)) = (j,L) if t is a local
j-neighbor of s and lT ((vs, vt)) = (j,G), otherwise, and let lT (vs) = τG[s].
Analogously, we define the local k-tuple graph T kL(G) that uses

(vs, vt) ∈ ET ⇐⇒ t = ϕj(s, w) for w ∈ δ(vj),

instead of Equation (3.10).

The following lemma states that the δ-k-WL can be simulated on the
k-tuple graph using a variant of the 1-WL.

Lemma 3.3.4. Let G be a graph and let s and t be k-tuples in V (G)k, then
there exists a variant of the 1-WL with coloring C1,∗

i : V (G)k → S such that

Ck,δ,δ
i (s) = Ck,δ,δ

i (t) ⇐⇒ C1,∗
i (vs) = C1,∗

i (vt),

for all i ≥ 0. The same result holds for Ck,δ
i and Ck,δ,+

i (with regard to the
local k-tuple graph).

Proof. We show the results by induction on the number of iterations. For
i = 0, the result follows from the definition of the label function lT . Now
assume the result holds for some i > 0. Let t be a tuple in V (G)k and vt the
corresponding vertex in the k-tuple graph. We show how to construct M δ,δ

i (t)
from the labels of the former. The other direction follows by the same means.
By assumption, we get

M δ,δ
i (t) =

(︂
{{(C1,∗

i (vϕ1(t,w)), 1δ((vt, vϕ1(t,w)))) | w ∈ V (G)}}, . . . ,

{{(C1,∗
i (vϕk(t,w)), 1δ((vt, vϕk(t,w)))) | w ∈ V (G)}}

)︂
,

46

3.3. Expressive graph kernels based on the Weisfeiler-Leman algorithm

ab c

d

a(0,a)

c(1,a) b(1,a)d(1,a)

a(2,d)b(2,d) a(2,c) a(2,b) d(2,b)

Figure 3.4.: Illustration of the unrolling operation around the vertex a for
i = 2.

Hence, can define the coloring Ck,δ,δ
i+1 (t). The coloring of the needed variant

of the 1-WL is defined as

C1,∗
i+1(vt) = (C1,∗

i (vt),M1
i (vt)), (3.11)

where the vector M1
i (vt) is equal to M δ,δ

i (t) .

The unrolling of a neighborhood around a vertex of a given graph to a tree
is defined as follows, see Figure 3.4 for an illustration.

Definition 3.3.5. Let G = (V,E, l) be a labeled (directed) graph and let
v be in V . Then U i

G,v = (Wi, Fi, li) for i ≥ 0 denotes the unrolled tree G
around v at depth i, where

Wi =

⎧⎨⎩{v(0,v)} if i = 0
Wi−1 ∪ {u(i,w(i−1,p)) | u ∈ δ(w) for w(i−1,p) ∈ Wi−1} otherwise,

and

Fi =

⎧⎨⎩∅ if i = 0
Fi−1 ∪ {(w(i−1,p), u(i,w)) | u ∈ δ(w) for w(i−1,p) ∈ Wi−1} otherwise.

The label function is defined as li(u(j,p)) = l(u) for u in V , and li(u(j,w)) =
l((w, u)). For notational convenience, we usually omit the subscript i.

In the following, we use the unrolled tree for the above defined (local)
k-tuple graph. For k ≥ 2, we denote the directed, unrolled tree of the k-tuple
graph of G around the vertex vs at depth i for the tuple s in V (G)k by
U i
Tk(G),vs

. For notational convenience, we write Ui
T,v, the analogous local tree

is denoted by Ui
T,v,L. We write

Ui
T,v ≃v→w Ui

T,w (3.12)

47

Chapter 3. Kernel methods for graphs

if there exists an isomorphism φ between the two unrolled trees that also
respects the label functions li. When considering a local tree of height i, the
vertices at depth d ≤ i of the unrolled tree are additionally labeled with #j

d

for j in [k], and we write Ui
T,v,L ≃v→w Ui

T,w,L if the isomorphism φ between
the two unrolled trees also respects the label functions li and #j

d for d ≤ i.
Moreover, we need the following two results. The first one states that the
1-WL can distinguish any two directed, labeled non-isomorphic trees.

Theorem 3.3.6 ([11, 110]). The 1-WL distinguishes any two directed, labeled
non-isomorphic trees.

Using the first result, the second one states that the (local) δ-k-WL can be
simulated by the 1-WL on the unrolled tree of the k-tuple graph, and hence
can be reduced to a tree isomorphism problem.

Lemma 3.3.7. Let G be a connected graph then there exists an h ≥ 0 such
that the coloring of the stable partition of the δ-k-WL colors s and t in V (G)k
the same if and only if the corresponding unrolled k-tuple trees of height h
are isomorphic, i.e.,

Ck,δ,δ
∞ (s) = Ck,δ,δ

∞ (t) ⇐⇒ Uh
T,vs
≃vs→vt Uh

T,vt
,

for all i in N0. The same holds for the δ-k-LWL+, i.e., there exsits a h ≥ 0
such that

Ck,δ,+
∞ (s) = Ck,δ,+

∞ (t) ⇐⇒ Uh
T,vs,L ≃vs→vt Uh

T,vt,L,

for all i in N0.

Proof. First, by Lemma 3.3.4, we can simulate the (local) δ-k-WL+ for the
graph G in the k-tuple graph T k(G) by the 1-WL. Secondly, consider a vertex
vs in the k-tuple graph T k(G) and a corresponding vertex in the unrolled tree
around vs. Observe that the neighborhoods for both vertices are identical. By
definition, this holds for all vertices (excluding the leaves) in the unrolled tree.
Hence, by Lemma 3.3.4, we can simulate the (local) δ-k-WL+ for each tuple
t by running the 1-WL in the unrolled tree around vt in the k-tuple graph.
Since the 1-WL solves the isomorphism problem for trees, cf. Theorem 3.3.6,
the result follows.

Given the h from the previous result, we write U∞
T,v instead of Uh

T,v, for
local trees we write U∞

T,v,L. That is, the trees U∞
T,v and U∞

T,v,L contain all
information to compute the stable color of the tuples corresponding to the
roots of the trees.

48

3.3. Expressive graph kernels based on the Weisfeiler-Leman algorithm

We can now prove the essential Lemma for the proof of Theorem 3.3.1.
It states that the trees of the unrolled neighborhoods of two vertices in the
global k-tuples graphs are isomorphic if the same holds for the corresponding
local trees (although the local trees might need to be unrolled further).

Lemma 3.3.8. Let G be a connected graph. Let G be a graph, and let v
and w be roots of unrolled trees with regard to the k-tuple graph T k(G).
Then there exists an h such that

Uh
T,v,L ≃v→w Uh

T,w,L =⇒ U∞
T,v ≃v→w U∞

T,w.

Proof. Assume that there is a bijection φL between the two trees Uh
T,v,L

and Uh
T,w,L that is a (labeled) tree isomorphism that respects the labeling

functions lh and #j
h for j in [k]. The exact choice of h will be determined

later. We now extend this isomorphism to the mapping φG between the global
trees and argue that it is again a tree isomorphism, namely an isomorphism
between U∞

T,v and U∞
T,w that respects the labeling functions l∞. We proceed

in an iterative fashion, i.e., we extend φL iteratively for each depth of the
two trees.

Let s be a vertex from Uh
T,v,L and let t in N(s) be a global j-neighbor of s

for which we like to define the mapping φG. Let τ denote the isomorphism
type of Uh−1

T,t,L. We search the local tree, starting at the vertex s, for all trees
of height (h− 1) of type τ reachable on a path, where each edge has a label
of the form (j,L). Since the graph is connected, there must exist such a path.
Observe that the number of such trees is finite when we only consider trees
where the root nodes represent different k-tuples, and there must exist at
least one, e.g., the tree of type τ whose root represents the same tuple as t.

Moreover, observe that these trees are also j-neighbors of s. Since, by
assumption, the local trees are isomorphic, we can discover identical trees (up
to isomorphism) in the other unrolled (local) tree (rooted at φ(s)). Indeed,
the number of trees of type τ are the same in both local trees. Moreover,
since we respect the labeling #j

h the number of trees of type τ whose roots
represents different tuples is also the same. Specifically, the number of local
neighbors of s and φ(s), respectively, that induce trees of type τ are also
the same. Consequently, the same holds for global neighbors. Hence, we
can extend the (local) isomorphism to an isomorphism between the global
neighbors.

By applying the above procedure in a top-down fashion, we eventually get
the desired isomorphism for the global trees. We now set l to some large
finite value such that all trees of type τ are found.

49

Chapter 3. Kernel methods for graphs

Practicality

As Theorem 3.3.1 shows, the δ-k-WL and the δ-k-LWL+ have the same power
in terms of distinguishing non-isomorphic graphs. Although for complete
graphs the local algorithm will have the same running time, for sparse graphs
the running time for each iteration can be upper-bounded by |V (G)k| · kd,
where d denotes the maximum or average degree of the graph. Hence, the local
algorithm takes the sparsity of the underlying graph into account, resulting
in (iteration-wise) improved computation times compared to the non-local
δ-k-WL and the k-WL.

3.3.3. A kernel based on the δ-k-LWL
The idea for a kernel based on the δ-k-LWL (δ-k-LWL+) is the same as for
the 1-WL. We compute the δ-k-LWL for h ≥ 0 iterations, and after each
iteration i compute a feature vector ϕik-LWL(G) in R|Si| for each graph G,
where Si ⊆ S denotes the image of Ck,δ

i . Each component ϕik-LWL(G)s counts
the number of occurrences of k-tuples labeled with s in Si. The overall feature
vector ϕk-LWL(G) is defined as the concatenation of the feature vectors of all
h iterations, i.e., [︃

ϕ0
k-LWL(G), . . . , ϕhk-LWL(G)

]︃
.

Let G and H be two graphs then the kernel kk-LWL = ⟨ϕk-LWL(G), ϕk-LWL(H)⟩
and khk-LWL = ⟨ϕhk-LWL(G), ϕhk-LWL(H)⟩. Moreover, we will need the normalized
feature vector ˆ︁ϕhk-LWL(G) = ϕhk-LWL(G)/∥ϕhk-LWL(G)∥1. (3.13)

Observe that the components of the normalized feature vector are in [0, 1].
We denote the corresponding kernel by ˆ︁khk-LWL.

3.3.4. An approximation algorithm for the δ-k-LWL for
bounded-degree graphs

Since the worst-case running time of the computation of ϕhk-LWL(G) can be
lower bounded by |V (G)k| for fixed k, computing the corresponding kernel
is not feasible for large graphs. Thereto, we describe an approximation
algorithm for the δ-k-LWL (δ-k-LWL+) kernel. For bounded-degree graphs
we show that it can be computed in constant time. One key ingredient for
this algorithm is the following definition.

50

3.3. Expressive graph kernels based on the Weisfeiler-Leman algorithm

Definition 3.3.9. Let G be a graph, and let t be a k-tuple from V (G)k,
then the c-neighborhood of t for c ≥ 0,

A(t, c) = {s ∈ V (G)k | d(vt, vs) ≤ c},

where d : VT ×VT → N denotes the shortest-path distance in the local k-tuple
graph T kL (G) of G.

Algorithm 2 Approximation algorithm for the δ-k-LWL for bounded-degree
graphs
Require: A (d-bounded degree) graph G, number of iterations h ≥ 0, k ≥ 2,

failure parameter δ in (0, 1), and an additive error term ε in (0, 1].
Ensure: A feature map ˜︁ϕhk-LWL(G) according to Inequality (3.15).

1: Let ˜︁ϕhk-LWL(G) be a feature vector
2: Draw a multiset S of k-tuples independently and uniformly from V (G)k

with |S| according to Equation (3.14)

3: parallel for s ∈ S do
4: Compute the h-neighborhood A(s, h) around s
5: Compute σ = lhL,N(s) on G[N(s, h)]
6: ˜︁ϕhk-LWL(G)σ = ˜︁ϕhk-LWL(G)σ + 1/|S|

7: end

8: return ˜︁ϕhk-LWL(G)

The idea of the algorithm is the following: Let G be a graph and let˜︁ϕhk-LWL(G) be a zero vector with the same number of components as ˆ︁ϕhk-LWL(G).
First, we sample a multiset S of k-tuples, where each element is sampled
independently and uniformly at random from V (G)k. The exact cardinality of
S will be determined later. Secondly, for each such k-tuple s in S, we compute
the h-neighborhood A(s, h) and compute the δ-k-LWL for h iterations on
the subgraph induced by all vertices in

N(s, h) = {t1, . . . , tk | (t1, . . . , tk) ∈ A(s, h)},

resulting in a label σ for the k-tuple s. The following result shows that
the label of a k-tuple after h iterations can be computed locally by only
considering its h-neighborhood.

51

Chapter 3. Kernel methods for graphs

Lemma 3.3.10. Let G be a graph, and let s be a k-tuple in V (G)k. Moreover,
let lhL,N(s) be the label of s after the h-th iteration of the δ-k-LWL on
G[N(s, h)], then

lhL,N(s) = Ck,δ
h (s).

Proof (Sketch). Induction on the number of iterations.

Now the algorithm proceeds by adding 1/|S| to ˜︁ϕhk-LWL(G)σ. See Algorithm 2
for pseudo code. Note that lines 4 to 6 can be computed in parallel for all
samples. Moreover, note that the algorithm can be easily adapted so that it
approximates the feature vector over all h iterations. Let G be a d-bounded
degree graph, and let Γ (d, h) be an upper bound on the maximum number of
different labels of the δ-k-LWL after h iterations on G. We get the following
result.

Theorem 3.3.11. Let G be a d-bounded degree graph, and let

|S| ≥
⌈︄

log(2 · Γ (d, h) · 1/δ)
2(ε/Γ (d,h))2

⌉︄
. (3.14)

Then Algorithm 2 approximates the normalized feature vector ˆ︁ϕhk-LWL(G) of
the δ-k-LWL such that with probability (1− δ) for δ in (0, 1),⃦⃦⃦ ˆ︁ϕhk-LWL(G)− ˜︁ϕhk-LWL(G)

⃦⃦⃦
1
≤ ε (3.15)

for any ε in (0, 1]. Moreover, the running time of the algorithm is only
dependent of d, k, and h, i.e., it does not depend on |V (G)|.

Proof. First, observe that Γ (d, h) is only dependent on the number of it-
erations h, k, and the maximum degree d. Let Xi,σ denote the random
variable that is 1 if we sample a k-tuple s such that lhL,N(s) = σ in iteration i
of Algorithm 2, otherwise 0. Now observe that

E(Xi,σ) = ˆ︁ϕhk-LWL(G)σ.

Moreover, let

X̄σ = 1/|S| ·
S∑︂
i=1

Xi,σ = ˜︁ϕhk-LWL(G)σ,

then, by the linearity of expectation,

E
(︂
X̄σ

)︂
= ˆ︁ϕhk-LWL(G)σ.

52

3.3. Expressive graph kernels based on the Weisfeiler-Leman algorithm

Hence, by the Hoeffding bound [44], we get

Pr
(︂⃓⃓⃓
X̄σ − ˆ︁ϕhk-LWL(G)σ

⃓⃓⃓
≥ λ

)︂
≤ 2e−2|S|·λ2

.

By setting the sample size

|S| ≥
⌈︄

log(2 · Γ (d, h) · 1/δ)
2λ2

⌉︄
, (3.16)

it follows that

Pr
(︂⃓⃓⃓
X̄σ − ˆ︁ϕhk-LWL(G)σ

⃓⃓⃓
≥ λ

)︂
≤ δ

Γ (d, h) .

The result then follows by setting λ = ε/Γ (d,h), and the Union bound. Finally
the bound on the running time follows from the observation that Equa-
tion (3.14), and the running time of lines 4 to 6 in Algorithm 2 are indepen-
dent of the size of G, i.e., the number of vertices and edges. The correctness
follows from Lemma 3.3.10.

Now let ˜︁khk-LWL(G,H) denote the corresponding kernel, i.e.,

˜︁khk-LWL(G,H) = ⟨ ˜︁ϕhk-LWL(G), ˜︁ϕhk-LWL(H)⟩

for two graphs G and H. The following proposition shows that the above
kernel approximates the normalized δ-k-LWL kernel arbitrarily close.

Proposition 3.3.12. Let G be (non-empty, finite) set of d-bounded degree
graphs, let ˆ︁khk-LWL be the normalized δ-k-LWL kernel, and let

|S| ≥
⌈︄

log(2 · Γ (d, h) · 1/δ · |G|)
2(λ/Γ (d,h))2

⌉︄
.

Then with probability (1− δ) for δ in (0, 1), Algorithm 2 approximates ˆ︁khk-LWL
such that

sup
G,H∈G

⃓⃓⃓ˆ︁khk-LWL(G,H)− ˜︁khk-LWL(G,H)
⃓⃓⃓
≤ 3λ

for any λ in (0,1]. The running time for computing the gram matrix for G
does only depend on the cardinality of G, the number of iterations h, k, and
the maximum degree d.

53

Chapter 3. Kernel methods for graphs

Proof. First observe that by setting the sample size |S| to

|S| ≥
⌈︄

log(2 · Γ (d, h) · 1/δ · |G|)
2ε2

⌉︄
,

we get that with probability (1− δ) for all G in G⃓⃓⃓ ˆ︁ϕhk-LWL(G)i − ˜︁ϕhk-LWL(G)i
⃓⃓⃓
≤ ε

for any 1 ≤ i ≤ Γ (d, h) holds. Let G and H in G, then

˜︁khk-LWL(G,H) =
⟨︂˜︁ϕhk-LWL(G), ˜︁ϕhk-LWL(H)

⟩︂
=
Γ (d,h)∑︂
i=1

˜︁ϕhk-LWL(G)i · ˜︁ϕhk-LWL(H)i

≤
Γ (d,h)∑︂
i=1

(︂ˆ︁ϕhk-LWL(G)i + ε
)︂
·
(︂ˆ︁ϕhk-LWL(H)i + ε

)︂

≤
Γ (d,h)∑︂
i=1

(︂ˆ︁ϕ(G)i · ˆ︁ϕ(H)i
)︂

+ ε ·
Γ (d,h)∑︂
i=1

(︂ˆ︁ϕ(G)i + ˆ︁ϕ(H)i
)︂

+
Γ (d,h)∑︂
i=1

ε2 ≤ ˆ︁khk-LWL(G,H) + 2Γ (d, h) · ε+ Γ (d, h) · ε .

The last inequality follows from the fact that the components of ˆ︁ϕ(·) are in
[0, 1]. The result then follows by setting ε = λ/Γ (d,h).

Note that the above technique also leads to an approximation result for
the (normalized) Weisfeiler-Lehman subtree kernel.

Corollary 3.3.13. Let G be (non-empty, finite) set of d-bounded degree
graphs, let ˆ︁khWL be the normalized Weisfeiler-Lehman subtree kernel, and let

|S| ≥
⌈︄

log(2 · Γ (d, h) · 1/δ · |G|)
2(λ/Γ (d,h))2

⌉︄
.

Then with probability (1− δ) for δ in (0, 1), Algorithm 2 approximates ˆ︁khWL
such that

sup
G,H∈G

⃓⃓⃓ˆ︁khWL(G,H)− ˜︁khWL(G,H)
⃓⃓⃓
≤ 3λ

for any λ in (0, 1]. The running time for computing the gram matrix for
G does only depend on the size of G, the number of iterations h, and the
maximum degree d.

54

3.3. Expressive graph kernels based on the Weisfeiler-Leman algorithm

Observe that instead of considering bounded-degree graphs, the above
results, i.e., Proposition 3.3.12 and Corollary 3.3.13, also hold for general
graphs with a constant number of colors, i.e., the number of colors is inde-
pendent of the size of the graphs. Moreover, observe that Proposition 3.3.12
and Corollary 3.3.13 can be easily adapted such that we get approximation
results for the kernels over all h iterations.

3.3.5. Experimental evaluation

Our intention here is to investigate the benefits of the δ-k-LWL kernel
compared to the δ-k-WL and the k-WL kernel. More precisely, we address
the following questions:

Q1 How much does the local algorithm speed up the computation times
compared to the non-local algorithms?

Q2 Does the local algorithm lead to improved classification accuracies on
real-world benchmark datasets?

Q3 Does the local algorithm prevent overfitting to the training set?

Q4 Does the sampling algorithm speed up the computation times for larger
datasets while still achieving meaningful accuracy scores?

3.3.6. Datasets and graph kernels

We used the following well-known datasets: Enzymes, IMDB-Binary,
IMDB-Multi, NCI1, NCI109, PTC_FM, Proteins, and Reddit-
Binary to evaluate our kernels. To answer Q4, we used the larger datasets
Reddit-Binary, and Reddit-Multi-5k. See Table 3.5 for statistics and
properties.4 See Appendix B for detailed descriptions of the datasets.

We implemented the δ-k-LWL, the δ-k-WL, and the k-WL kernel for k in
{2, 3}. We compared our kernels to the Weisfeiler-Lehman subtree kernel [106],
the graphlet kernel [105], and the shortest-path kernel [8]. All kernels were
(re-)implemented in C++11.5

4All datasets can obtained from http://graphkernels.cs.tu-dortmund.de.
5The source code can be obtained from https://github.com/chrsmrrs/localwl.

55

http://graphkernels.cs.tu-dortmund.de
https://github.com/chrsmrrs/localwl

Chapter 3. Kernel methods for graphs

Table 3.5.: Dataset statistics and properties.

Dataset
Properties

Number of graphs Number of classes ∅ Number of vertices ∅ Number of edges Vertex labels

Enzymes 600 6 32.6 62.1 ✓

IMDB-Binary 1 000 2 19.8 96.5 ✗

IMDB-Multi 1 500 3 13.0 65.9 ✗

NCI1 4 110 2 29.9 32.3 ✓

NCI109 4 127 2 29.7 32.1 ✓

PTC_FM 349 2 14.1 14.5 ✓

Proteins 1 113 2 39.1 72.8 ✓

Reddit-Binary 2 000 2 429.6 497.8 ✗

Reddit-Binary-5k 4 999 5 508.5 594.9 ✗

Table 3.6.: Overall computation times for the whole datasets in seconds
(Number of iterations for 1-WL, 2-WL, 3-WL, δ-2-WL, δ-3-WL, δ-2-
LWL, and δ-3-LWL: 3, OOT)— Computation did not finish within one day
(24h), OOM— Out of memory.

Graph Kernel
Dataset

Enzymes IMDB-Binary IMDB-Multi NCI1 NCI109 PTC_FM Proteins Reddit-Binary

Ba
se

lin
e Graphlet <1 <1 <1 <1 <1 <1 <1 2

Shortest-path <1 <1 <1 2 2 <1 <1 1 125
1-WL <1 <1 <1 2 2 <1 <1 2

G
lo

ba
l 2-WL 296 86 42 1 402 1 410 11 14 237 OOM

3-WL 74 430 17 552 5 184 OOT OOT 1117 OOM OOM

δ-2-WL 296 88 44 1 465 1 472 11 14 390 OOM
δ-3-WL 70 736 17 809 3 433 OOT OOT 1114 OOM OOM

Lo
ca

l

δ-2-LWL 30 24 19 99 100 < 1 241 57 110
δ-3-LWL 4 464 3 433 2 070 17 832 17 898 96 OOM OOM

3.3.7. Experimental protocol

For each kernel, we computed the normalized gram matrix. We com-
puted the classification accuracies using the C-SVM implementation of
LIBSVM [14], using 10-fold cross validation. The C-parameter was selected
from {10−3, 10−2, . . . , 102, 103} by 10-fold cross validation on the training
folds.

We repeated each 10-fold cross validation ten times with different random
folds, and report average accuracies and standard deviations. We report
running times for the 1-WL, the δ-k-LWL, the δ-k-LWL, and the k-WL
with three refinement steps. For the graphlet kernel, we counted (labeled)
connected subgraphs of size three. For measuring the classification accuracy,
the number of iterations of the 1-WL, δ-k-LWL, the δ-k-LWL, and the k-WL
were selected from {0, . . . , 5} using 10-fold cross validation on the training

56

3.3. Expressive graph kernels based on the Weisfeiler-Leman algorithm

Table 3.7.: Classification accuracies in percent and standard deviations, OOT—
Computation did not finish within one day, OOM— Out of memory.

Graph Kernel
Dataset

Enzymes IMDB-Binary IMDB-Multi NCI1 NCI109 PTC_FM Proteins Reddit-Binary

Ba
se

lin
e Graphlet 41.0 ±1.2 59.4 ±0.4 40.8 ±0.4 72.1 ±0.3 72.3 ±0.2 58.3 ±1.6 72.9 ±0.3 60.1 ±0.2

Shortest-path 42.3 ±1.3 59.2 ±0.3 39.6 ±0.4 74.5 ±0.3 73.4 ±0.1 62.1 ±0.9 76.4 ±0.4 84.7±0.2

1-WL 53.4 ±1.4 72.4 ±0.5 50.6 ±0.6 83.1 ±0.2 85.2 ±0.2 62.9 ±1.6 73.7 ±0.5 75.3 ±0.3

G
lo

ba
l 2-WL 39.4 ±0.8 69.6 ±0.6 48.0 ±0.3 67.3 ±0.3 68.0 ±0.3 57.1 ±1.3 75.2 ±0.4 OOM

3-WL 46.1 ±1.0 69.7 ±0.8 47.8 ±0.3 OOT OOT 58.0 ±0.7 OOM OOM

δ-2-WL 39.3 ±0.9 69.8 ±0.7 48.0 ±0.5 67.5 ±0.3 68.1 ±0.3 57.1 ±1.4 75.2 ±0.4 OOM
δ-3-WL 46.1 ±1.0 69.7 ±0.8 47.8 ±0.3 OOT OOT 58.0 ±0.7 OOM OOM

Lo
ca

l

δ-2-LWL 57.5 ±0.9 73.7 ±0.6 50.8 ±0.4 85.3 ±0.2 84.6 ±0.3 57.3 ±0.3 74.6 ±0.6 89.4 ±0.3

δ-3-LWL 60.9 ±0.9 73.6 ±0.5 49.7 ±0.4 84.0 ±0.3 83.0 ±0.3 58.0 ±0.5 OOM OOM

Table 3.8.: Training versus test accuracy.

Set
Dataset

Enzymes IMDB-Binary IMDB-Multi NCI1 NCI109 PTC_FM Proteins Reddit-Binary

δ-2
-W

L Train 100.0 88.7 63.5 99.8 99.9 97.1 98.7 –
Test 39.3 69.8 48.0 67.5 68.1 57.1 75.2 –

δ-2
-LW

L Train 99.6 88.8 63.6 98.2 98.2 97.0 98.2 98.3
Test 57.5 73.7 50.8 85.3 84.6 57.3 74.6 89.4

folds only.6 To answer Question 3 we used a single 10-fold cross validation
with the hyperparameters found in the former experiment and report average
training and test accuracies. To answer Question 4, we set the sample to
50 and 100. We repeated each experiment ten times, and report average
accuracies and computation times.

All experiments were conducted on a workstation with an Intel Xeon E5-
2690v4 processor with 2.60GHz and 384GB of RAM running Ubuntu 16.04.6
LTS using a single core. Moreover, we used the GNU C++ Compiler 5.5.0 with
the flag –O2.

3.3.8. Results and discussion
In the following we answer questions Q1 to Q4. See also Tables 3.6 to 3.10.

A1 See also Table 3.6. The local algorithm severely speeds up the compu-
tation time compared to the k-WL and the δ-k-WL for k = 2 and 3.
For example, on the Enzymes dataset the 2-LWL is almost 10 times
faster than 2-WL, the same holds for the 3-LWL. The improvement

6As already shown in [106], choosing the number of iterations too large will lead to
overfitting.

57

Chapter 3. Kernel methods for graphs

Table 3.9.: Classification accuracies in percent and standard deviations of the
approximation algorithms, OOT— Computation did not finish within one
day, OOM— Out of memory.

Graph Kernel
Dataset

Proteins Reddit-Binary Reddit-Multi-5k
Ba

se Graphlet 72.9 ±0.3 60.1 ±0.2 23.9 ±0.5

1-WL 73.7±0.5 75.3 ±0.3 48.9 ±0.3

Lo
ca

l δ-3-LWL OOM OOM OOM
δ-3-LWL-Sample (S = 50) 75.1 ±0.4 84.7 ±0.3 48.9 ±0.2

δ-3-LWL-Sample (S = 100) 75.1 ±0.3 85.6 ±0.2 51.2 ±0.2

Table 3.10.: Computation times in seconds of the approximation algorithms
(Number of iterations: 3), OOM— Out of memory.

Graph Kernel
Dataset

Proteins Reddit-Binary Reddit-Multi-5k

Ba
se Graphlet <1 2 5

1-WL <1 2 5

Lo
ca

l δ-3-LWL OOM OOM OOM
δ-3-LWL-Sample (S = 50) 241 4700 9 634
δ-3-LWL-Sample (S = 100) 518 8 948 21 530

of the computation times can be observed across all datasets. For
some datasets, the {2, 3}-WL and δ-{2, 3}-WL did not finish within
the given time limit or went out of memory. For example, on four out
of eight datasets the δ-3-WL is out of time or out of memory, whereas
for the corresponding local algorithm this happens only two out of
eight times. This indicates that the local algorithm is more suitable
for practical applications. Of course, this is not surprising as the local
algorithm considers only a subset of the neighbors compared to the
global algorithm.

A2 See also Table 3.7. The local algorithm for k = 2 and 3 severely
improves the classification accuracy compared to the k-WL and the
δ-k-WL. For example, on the Enzymes dataset the δ-2-LWL achieves
an improvement of almost 20%, and the δ-3-LWL achieves the best
accuracies over all employed kernels, improving over the 3-WL and
the δ-3-WL by almost 15%. This observation holds over all datasets
(excluding PTC_FM). However, is has to be noted that increasing k
does not always result in increased accuracies. For example, on all

58

3.3. Expressive graph kernels based on the Weisfeiler-Leman algorithm

datasets (excluding Enzymes and PTC_FM), the performance of the
δ-2-LWL is better or on par with the δ-3-LWL. On NCI109 the 1-WL
achieves the overall best accuracy. This indicates that with increasing
k the local algorithm is more prone to overfitting.

A3 As Table 3.8 shows the δ-2-WL reaches slightly higher training accu-
racies over all datasets compared to the δ-2-LWL, while the testing
accuracies are much lower, excluding Proteins. This indicates that
the δ-2-WL overfits on the training set. The higher test accuracies of
the local algorithm are likely due to the smaller neighborhood which
promotes that the number of colors grow slower compared to the global
algorithm. Hence, the smaller neighborhood of the local algorithms
acts as a graph-based regularization.

A4 As can be seen in Tables 3.9 and 3.10, the sampling algorithm severely
speeds up the computation time and reduces memory consumption,
while still achieving higher accuracies than the baselines. This aligns
with the theoretical results.

3.3.9. Conclusion
We proposed a local variant of the (global) δ-k-WL, which takes the sparsity
of the underlying graph into account. Moreover, we showed that a variant
of the local algorithm has the same power as the δ-k-WL. We demonstrated
that the local algorithm can be computed approximately in constant time for
bounded-degree graphs. Finally, we employed the local variant as a kernel,
showed that it prevents overfitting, and leads to improved classification
accuracies compared to the corresponding global algorithms and baseline
approaches. Not surprisingly, we found out that increasing k may not lead to
improvements over all datasets.

We believe that the introduction of our local algorithm provides directions
for future work. For example, it would be interesting to investigate if consid-
ering only k-tuples that induce connected subgraphs result in a less expressive
algorithm (for small k). Furthermore, it would be interesting to better under-
stand why Weisfeiler-Leman type algorithms work well for supervised graph
classification, e.g., characterizing for which real-world graphs they compute
meaningful features.

59

Chapter 3. Kernel methods for graphs

3.4. A theoretical framework for the
expressiveness of graph kernels

In the past two decades a large number of graph kernels have been proposed,
see, e.g., [112, 84, 63] and references therein, and Section 3.1. As already
seen in Section 3.1, most graph kernels decompose graphs and add up the
pairwise similarities between their substructures following the seminal concept
of convolution kernels [41]. Considering the large number of available graph
kernels and the wealth of available benchmark datasets [53], it becomes
increasingly difficult to perform a fair experimental comparison of kernels and
to assess their advantages and disadvantages for specific datasets. Indeed,
current experimental comparisons cannot give a complete picture, and are
of limited help to a practitioner who has to choose a kernel for a particular
application.

Graph kernels are developed with the (possibly conflicting) goals of being
efficiently computable and capturing the structural information of the input
graphs adequately. Newly proposed graph kernels are often justified by their
ability to take structural graph properties into account that were ignored by
previous kernels. Yet, to the best of our knowledge, this argument has not
been formalized. Moreover, there is no theoretical justification for why certain
kernels perform better than others, but merely experimental evaluations. We
address this by introducing a theoretical framework for the analysis of the
expressivity of graph kernels motivated by concepts from property testing, see,
e.g., [31]. We consider normalized kernels, which measure similarity in terms
of angles in a feature space. We say that a graph kernel identifies a property
if no two graphs are mapped to the same normalized feature vector unless
they both have or both do not have the property. A positive angle between
two such feature vectors can be helpful to classify the property. As the graph
size increases, on the one hand, this angle can become very small (dependent
on the graph size), which is hindering when applying this knowledge to a
learning setting. On the other hand, we observe that a constant angle between
any two feature vectors of two graphs with complementing properties can
only rarely be the case, since only a marginal change in a graph’s features can
change its property. If a graph can be edited slightly to obtain a property, it
can, however, be viewed as close enough to the property to be ignored. Thus,
in the sense of property testing, it is desirable to differentiate between the
graph set far away from a property and the property itself, which motivates
the following concept. We say that a graph kernel distinguishes a property if
it guarantees a constant angle (independent of the graph size) between the

60

3.4. A theoretical framework for the expressiveness of graph kernels

feature vectors of any two graphs, one of which has the property and the
other is far away from doing so. We study well-known graph kernels and their
ability to identify and distinguish fundamental properties, e.g., connectivity
or connectivity. We propose a new graph kernel based on local k-discs which
can, in contrast to previous kernels, distinguish global properties such as
planarity in bounded-degree graphs. Moreover, the k-disc kernel is efficiently
computable and has a feature space of constant dimension. For a constant
dimensional feature space, we obtain learning guarantees for kernels that
distinguish the class label property.

3.4.1. Definitions from property testing
Here, we assume the bounded-degree graph model. Let G and H be two
d-bounded degree graphs in Gn. The edit distance ∆(G,H) between G and H
is the minimum number of edge modifications, i.e., adding or deleting edges,
that have to be performed on G to obtain an isomorphic copy of H. A graph
property is a set P of graphs that is closed under isomorphism. We denote
the set of graphs in P on n vertices by Pn. Let Pn be a non-empty graph
property. A d-bounded degree graph G with n vertices is ε-far from Pn in
the bounded degree model if for all d-bounded degree graphs H in Pn we
have

∆(G,H) > εdn

for ε > 0. Here we study the following graph properties. A graph G = (V,E)
is called connected if for every two vertices u and v in V (G) there exists a
path from u to v. A graph G is planar if there exists an embedding of G into
the plane such that no edges cross, it is bipartite if V (G) can be partitioned
into two sets V1 and V2 ⊂ V (G) such that for each edge (u, v), u in V1 and v
in V2 or vice versa. A graph is triangle-free if it does not contain a cycle with
three vertices.

3.4.2. Distinguishable graph properties
Let k̂ be the cosine normalized version of a kernel k and denote its normalized
feature map by ϕ̂, i.e.,

k̂(x, y) =
⟨︂
ϕ̂(x), ϕ̂(y)

⟩︂
=
⟨︄

ϕ(x)
∥ϕ(x)∥2

,
ϕ(y)
∥ϕ(y)∥2

⟩︄

= k(x, y)√︂
k(x, x) · k(y, y)

∈ [−1, 1].

61

Chapter 3. Kernel methods for graphs

The normalized kernel k̂(x, y) is equal to the cosine of the angle between
ϕ(x) and ϕ(y) in the feature space. We say that a graph kernel identifies a
property if no two graphs are mapped to the same normalized feature vector
unless they both have or both do not have the property.

Definition 3.4.1. Let P be a graph property. If a graph kernel k : G×G → R
for each n in N, and every G in Pn and H not in Pn, satisfies

k(G,H)√︂
k(G,G) · k(H,H)

< 1,

we say that P can be identified by k.

For a graph kernel to be able to distinguish a graph property, and to use this
knowledge in a learning context, a desirable goal is to have a constant angle
independent of n. However, in the following instance, a constant difference
cannot be achieved.

Proposition 3.4.2. For the shortest-path kernel k, it holds that for each
constant c, 0 < c < 1, there exists some n in N and two graphs G and H in
Gn with G connected, and H not connected such that

k(G,H)√︂
k(G,G) · k(H,H)

> 1− c. (3.17)

Proof. Let, for each n in N, G be a path with n vertices, and let H consist of a
path with n−1 vertices and one isolated vertex. Note that H is not connected,
whereas adding one edge to H is enough to transform it into a connected
graph which is isomorphic to G. The feature vectors for G and H counting the
number of vertex pairs with distances 1 to n− 1 are ϕ = (n− 1, n− 2, . . . , 1)
in Rn−1 and ψ = (n− 2, n− 3, . . . , 1, 0) in Rn−1, respectively. Additionally,
in H there are n− 1 vertex pairs that are not connected. It can be computed
that ⟨ϕ̂, ψ̂⟩2 = 1− 3

4n2−8n+3 . Assume there is a constant c, 0 < c < 1, such
that, for each n in N, it holds that ⟨ϕ̂, ψ̂⟩ ≤ 1 − c, then there would be a
constant c′ = (1 − c)2, 0 < c′ < 1 such that c′ ≥ 1 − 3

4n2−8n+3 which does
not hold for a large choice of n. Thus, for each constant c there exists an n
in N such that, for the graphs G and H as chosen above, k(G,H) > 1 − c
holds.

Note that both graphs in the proof of Proposition 3.4.2 have a maximum
degree of 2. Therefore, the statements hold if any degree bound d ≥ 2 is

62

3.4. A theoretical framework for the expressiveness of graph kernels

required. To be able to achieve an angle independent of the graph size, we
suggest employing the notion of a graph being ε-far from a property as used
in property testing. We aim to obtain a constant7 angle between the feature
vectors of two graphs whenever one graph has a certain property and the other
is ε-far from having that property. In this context, we define distinguishability
of a graph property by a graph kernel as follows.

Definition 3.4.3. In the bounded-degree graph model, a graph property P is
called distinguishable by a graph kernel k : G ×G → R, if for every ε > 0, and
d in N, there exists some δ = δ(ε, d) > 0 such that for every n in N, every G
in Pn, and every graph H that is ε-far from Pn, we have

k(G,H)√︂
k(G,G) · k(H,H)

≤ 1− δ. (3.18)

Note that this notion does not guarantee an accurate learning algorithm in
general. Consider the isomorphism kernel that is 1 for two isomorphic graphs
and 0 otherwise. It distinguishes every property, but as a classifier will not
generalize to unseen data. Nevertheless, we obtain some learning guarantees,
see Section 3.4.5.

3.4.3. Properties distinguishable by popular graph kernels
In this section, we study the identifiability and distinguishability of the
random walk, the Weisfeiler–Lehman subtree, the shortest-path, and the
graphlet kernel. Table 3.11 sums up these results in comparison to the k-disc
kernel studied in Section 3.4.4. Both, the feature maps of a random walk
kernel and the Weisfeiler–Lehman subtree kernel cannot identify a regular
graph. In particular, for the random walk kernel, the number of walks of
length ℓ starting in a vertex of a regular graph with degree d is dℓ. Hence,
for two regular graphs the kernel function is independent from the adjacency
matrix of the product graph.

For the Weisfeiler–Lehman subtree kernel, two regular graphs with the
same degree obtain the same feature vector due to [5]. Therefore, as soon
as for some graph property P and n in N there exists one regular graph in
Pn and another regular graph in Gn ∖ Pn, both kernels cannot identify the
graph property.

7By constant we refer to a value independent of the input size n, which, however, can
depend on ε or d.

63

Chapter 3. Kernel methods for graphs

Property
Graph Kernel

WL RW SP Graphlet k-Disc
Connectivity ✗ ✗ ✓ ✗ ✓

Planarity ✗ ✗ ✗ ✗ ✓

Bipartitness ✗ ✗ ✗ ✗

Triangle-freeness ✗ ✗ ✗ • ✓

Table 3.11.: Distinguishability of graph properties for the Weisfeiler-Lehman
subtree kernel (WL), random walk (RW), graphlet, shortest-path (SP), and
k-disc, Key: ✓ distinguishable, • identifiable (but not distinguishable), and
✗ not identifiable.

Graph G Graph H = K3,3

Figure 3.5.: Counterexample for the proof of Theorem 3.4.4, Corollary 3.4.5,
and Theorem 3.4.7.

Theorem 3.4.4. The random walk kernel cannot identify connectivity, pla-
narity, bipartiteness, or triangle freeness.

Proof. A cycle with six vertices and a graph consisting of two disconnected
triangles with three vertices, both regular graphs, are a counterexample to
the identifiability of connectivity. Furthermore, consider the graphs G and H
as illustrated in Figure 3.5. Since G is planar, but not bipartite, and contains
triangles, whereas H is not planar, but bipartite, and triangle-free, the result
follows.

By the same arguments we obtain the following.

Corollary 3.4.5. The Weisfeiler–Lehman subtree kernel cannot identify
connectivity, planarity, bipartiteness, or triangle freeness.

Next, we attend to a positive result regarding connectivity and the shortest-
path kernel. We will make use of the following technical lemma throughout
proofs in this section.

Lemma 3.4.6 ([65]). Let n and r in N, x in Rr
≥0, and ε > 0. For a non-empty

subset of indices S ⊆ {1, . . . , r} such that ∑︁i∈S |xi| = η > 0 the following

64

3.4. A theoretical framework for the expressiveness of graph kernels

holds for every y in Rr
≥0 with yi = 0 for each i in S:

⟨x,y⟩
∥x∥2 ∥y∥2

≤

⌜⃓⃓⎷1− η2

|S| · ∥x∥2
2
.

Proof. Without loss of generality, let S = {1, . . . , s}. For each y in Rr
≥0 with

yi = 0, 1 ≤ i ≤ s, it holds that

⟨x,y⟩
∥x∥2 ∥y∥2

=
⟨︄(︄

xs+1

∥x∥2
, . . . ,

xr
∥x∥2

)︄
,

(︄
ys+1

∥y∥2
, . . . ,

yr
∥y∥2

)︄⟩︄
,

which, by the Cauchy-Schwarz inequality, is at most√︂∑︁r
i=s+1 x

2
i

∥x∥2
· ∥(ys+1, . . . , yr)∥2

∥x∥2
=

√︂
∥x∥2

2 −
∑︁s
i=1 x

2
i

∥x∥2
=
⌜⃓⃓⎷1−

∑︁s
i=1 x

2
i

∥y∥2
2
.

Moreover, since ∑︁s
i=1 x

2
i ≥ 1

s
· (∑︁s

i=1 xi)
2 = 1

s
η2, this is at most⌜⃓⃓⎷1− η2

s ∥x∥2
2
.

We get the following result.

Theorem 3.4.7 ([65]). The shortest-path kernel

1. cannot identify planarity, bipartiteness, or triangle freeness, and
2. can distinguish connectivity.

Proof.

1. While in general two regular graphs may have different feature vectors,
the graphs in Figure 3.5 also serves as a counterexample here. In
both cases the shortest path feature vector are equal, as there are nine
shortest paths of length 1 and six of length 2, each.

2. Let n and d in N, ε > 0, and H in Gn be ε-far from being connected. For
the shortest-path feature vector ψ = (ψ1, . . . , ψn−1) and each connected
graph G in Gn with shortest-path feature vector ϕ = (ϕ1, . . . , ϕn−1), it
holds that

⟨(ψ1, . . . , ψn−1), (ϕ1, . . . , ϕn−1)⟩ = ⟨(ψ1, . . . , ψn−1, η), (ϕ1, . . . , ϕn−1, 0)⟩,

65

Chapter 3. Kernel methods for graphs

where η denotes the number of disconnected vertex pairs in H. By
Lemma 3.4.6 it holds that

⟨ϕ̂, ψ̂⟩ ≤

⌜⃓⃓⎷1− η2

∥ψ∥2
2
. (3.19)

Assume that n > 4/εd. Otherwise with η ≥ 1 and ∥ψ∥2 ≤ n2 ≤ (4/εd)2,
it holds that Equation (3.19) is at most 1 minus a constant. Now, it is
known that there are more than εdn/2 connected components of which
at least εdn/4 have a size smaller than 4/εd [32]. At least one vertex
in such a small component is disconnected from each vertex outside
the component, that is, η is at least 1/2 · εdn/4 · (n− 4/εd) = εn2d/8− n/2.
Moreover, with ⟨ψ, ψ⟩ ≤ (n(n−1)/2− η)2 + η2 we obtain the following:

∥ψ∥2
2

η2 ≤ n2(n− 1)2

4
(︂
εn2d

8 −
n
2

)︂2 −
4n(n− 1)
εn2d

2 − 2n
+ 2

= (n− 1)2(︂
εnd

2 − 2
)︂ (︂

εnd
8 −

1
2

)︂ − 4(n− 1)
εnd

2 − 2
+ 2

≤ 16(n− 1)2

(εnd− 4)2 −
8(n− 1)
εnd− 4 + 2

= 8
εd

⎛⎜⎜⎜⎜⎝1 + 4− εd
εdn− 4⏞ ⏟⏟ ⏞

∈]0,1[

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝ 2
εd

⎛⎜⎜⎜⎜⎝1 + 4− εd
εdn− 4⏞ ⏟⏟ ⏞

∈]0,1[

⎞⎟⎟⎟⎟⎠− 1

⎞⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

>0

+2

≤ 16
εd

(︃ 4
εd
− 1

)︃
⏞ ⏟⏟ ⏞

ζ

+2.

Note that ζ is a positive number independent of n. All in all,

1− η2

∥ψ∥2
2
≤ 1

2 + ζ
,

for some ζ > 0 independent of n, which implies that Equation (3.19) is
smaller than 1 by a constant strictly between 0 and 1.

Finally, we consider the graphlet kernel. Although the it appears to be
rather expressive, from the considered properties it can only identify triangle-
freeness.

66

3.4. A theoretical framework for the expressiveness of graph kernels

Theorem 3.4.8. The graphlet kernel can identify triangle-freeness for k ≥ 3,
but unless the graphlet size k depends on the graph size, it cannot identify
connectivity, bipartiteness, or planarity. Moreover, the graphlet kernel cannot
distinguish any graph property.
Proof. Triangle-freeness is identifiable, because, for each graphlet size k ≥ 3,
and for each graph that contains a triangle, there exists at least one k-graphlet
that contains a triangle. The corresponding entry in the feature vector of a
triangle-free graph is 0.

In the following, let k be a graphlet size. For connectivity and bipartiteness,
consider the following two graphs as a counterexample. The first graph is an
even cycle of size 4k + 2, which is connected and bipartite; the second graphs
consists of two odd cycles of size 2k + 1 each, which is not connected and
not bipartite. Note that the number of graphlets of each type (paths or a
collection of paths of length up to k) is the same in both graphs.

For planarity, consider the two graphs G and H in Figure 3.6 with n =
20(k+ 1) vertices each, where dotted lines denote paths of length n/20 = k+ 1.

G

Cn/5

Cn/5

Cn/5

Cn/5

Cn/5

H

Cn/4

Cn/4

Cn/4

Cn/4

Figure 3.6.: Counterexample for the proof of Theorem 3.4.8.

Note that H is planar, and G is not. Furthermore, observe that all graphlets
of size k, that occur in either of the two graphs, cannot contain any cycle.
There are in fact only a few different graphlet types to be found, namely
subgraphs whose connected components contain at most one solid edge, each
of which occur in both graphs evenly distributed.

For distinguishability of any graph property, there is one general obstacle,
namely the fact that graphlets do not have to be connected. For each graph
with n vertices and bounded degree d, there are at least

1− d(k − 1)k
2(n− 1)

67

Chapter 3. Kernel methods for graphs

graphlets induced by k vertices with k independent vertices. Thus, for each
constant δ > 0, and each G and H in Gn it holds that

kkGR(G,H)√︂
kkGR(G,G) · kkGR(H,H)

> 1− δ,

which implies that there cannot be a constant angle.

3.4.4. Graph kernels that distinguish graph properties
While we have observed that established graph kernels often cannot distin-
guish basic properties, we aim to find a graph kernel that can distinguish
fundamental properties and is efficiently computable. Following the notation
of [85], we define a histogram histG(k) of the numbers of different (i.e., non-
isomorphic) k-discs around vertices in G. Here, the k-disk around a vertex v
in V (G) is the induced subgraph of all vertices reachable from v on a path of
length smaller or equal than k, cf. Definition 3.3.9 (for c = k). Moreover, we
define the frequency vector

freqG(k) = histG(k)/n,

for G in Gn. Consider the following graph kernel.

Definition 3.4.9. Given two graphs G and H, the k-disc graph kernel is
defined by

kKD(G,H) = ⟨freqG(k), freqH(k)⟩.

A significant difference between the k-disc kernel and the graphlet kernel
is that a k-disc is a connected subgraph of a graph, while a graphlet may
be disconnected. For d-bounded-degree graphs, the k-disc kernel can be
computed in time linear in the graph size.

Theorem 3.4.12 comprises the main results of this section about graph
properties distinguishable by the k-disc kernel. From property testing studies,
see, e.g., [85], we often obtain information about the 1-norm of the distance
between the frequency vectors of a graph ε-far from a property and all graphs
satisfying the property. To translate these facts to a positive angle between
the frequency vectors, we need the following two lemmas. Firstly, it can be
seen that for two normalized real vectors with at least one index at which
the entries differ by at least a constant positive value, their (standard) inner
product is strictly less than 1.

68

3.4. A theoretical framework for the expressiveness of graph kernels

Lemma 3.4.10 ([65]). Let x and y be two vectors in Rn
≥0 for some n in N

with ∥x∥2 = ∥y∥2 = 1. Let ζ > 0 be an arbitrarily small real value. If there
exists some i and 1 ≤ i ≤ n such that |xi − yi| ≥ ζ, then

⟨x,y⟩ ≤ 1− ζ2/2.

Proof. It holds that,

⟨x,y⟩ = 1
2
(︂
∥x∥2

2 + ∥y∥2
2 − ∥x− y∥2

)︂
= 1− 1

2
(︂

(xi − yi)2⏞ ⏟⏟ ⏞
≥ζ2

+
n∑︂

j=1,j ̸=i
(xj − yj)2⏞ ⏟⏟ ⏞

≥0

)︂
≤ 1− ζ2

2 .

Thus, the angle between x and y is positive and independent of n.

Secondly, we need to take care of the fact that the studied frequency
vectors are normalized with respect to their 1-norm. However, since the
number of different k-discs is independent of the number of vertices in the
bounded-degree model, we can show the following lemma for two frequency
vectors with a positive distance with respect to their 1-norm.

Lemma 3.4.11 ([65]). Let ϕ and ψ be two vectors in Rn
≥0 with ∥ϕ∥1 =∥ψ∥1 =1

and ∥ϕ− ψ∥1 ≥ η. Then, there exists an index i, for 1 ≤ i ≤ n, and a real
value ζ > 0 such that ⃓⃓⃓⃓

⃓ ϕi∥ϕ∥2
− ψi
∥ψ∥2

⃓⃓⃓⃓
⃓≥ζ.

Proof. Let without loss of generality ∥ϕ∥2 ≥ ∥ψ∥2. Moreover, let s denote
the number of positive entries in both, ϕ and ψ. Observe that ∥ϕ− ψ∥1 ≥ η
implies the existence of a j: ϕj − ψj ≥ η/s.

Case 1: If ∥ϕ∥2 − ∥ψ∥2 ≤
η

2s3/2 , then

ϕj
∥ϕ∥2

− ψj
∥ψ∥2

≥ ∥ψ∥2⏞ ⏟⏟ ⏞
≥ 1√

s

(ϕj − ψj − j)⏞ ⏟⏟ ⏞
≥ η

s

− ψj⏞⏟⏟⏞
≤1−η

(∥ϕ∥2 − ∥ψ∥2)⏞ ⏟⏟ ⏞
≤ η

2s3/2

≥ η

2s3/2 .

Case 2: ∥ϕ∥2 − ∥ψ∥2 >
η

2s3/2 . Let R denote the subset of indices i such
that ϕi/∥ϕ∥2 > ψi/∥ψ∥2.

Note that |R| < s, otherwise
n∑︂
i=1

(︄
ϕi
∥ϕ∥2

− ψi
∥ψ∥2

)︄
> 0,

69

Chapter 3. Kernel methods for graphs

which implies that
1
∥ϕ∥2

− 1
∥ψ∥2

> 0,

a contradiction to the assumption that ∥ϕ∥2 ≥ ∥ψ∥2. For 0 ≤ |R| < s it
holds that

⃦⃦⃦
ϕ̂− ψ̂

⃦⃦⃦
1

=
n∑︂
i=1

⃓⃓⃓⃓
⃓ ϕi∥ϕ∥2

− ψi
∥ψ∥2

⃓⃓⃓⃓
⃓

=
∑︂
i∈R

(︄
ϕi
∥ϕ∥2

− ψi
∥ψ∥2

)︄

+
∑︂
i/∈R

(︄
ψi
∥ψ∥2

− ϕi
∥ϕ∥2

)︄
.

Since ∥ψ∥1 = ∥ϕ∥1 = 1, this is equal to

∑︂
i∈R

(︄
ϕi
∥ϕ∥2

− ψi
∥ψ∥2

)︄
+ 1−∑︁i∈R ψi

∥ψ∥2
− 1−∑︁i∈R ϕi

∥ϕ∥2

= 1
∥ψ∥2

− 1
∥ϕ∥2

+ 2
∑︂
i∈R

(︄
ϕi
∥ϕ∥2

− ψi
∥ψ∥2

)︄
⏞ ⏟⏟ ⏞

≥0

>
η

2s3/2 .

Thus, there exists an index i, 1 ≤ i ≤ n such that⃓⃓⃓⃓
⃓ ϕi∥ϕ∥2

− ψi
∥ψ∥2

⃓⃓⃓⃓
⃓ > η

2s5/2 .

With 0 < ζ ≤ η/2s5/2 in both cases, this completes the proof.

Finally, we can proof the main theorem of this section.

Theorem 3.4.12 ([65]). For the k-disc graph kernel, it holds that

1. connectivity is distinguishable for k ≥ 4/εd,
2. triangle-freeness is distinguishable for k ≥ 1, and
3. for each ε > 0, d in N there exists some k in N>0 such that distinguisha-

bility is satisfied for planarity.

Proof.

70

3.4. A theoretical framework for the expressiveness of graph kernels

1. Let H in Gn be a graph with bounded degree d that is ε-far from
being connected for some ε > 0. By [32] we know that the number of
connected components of a size smaller than 4/εd is at least εdn/4. For
each vertex in such a small component, the full component is found as
a k-disc of size 4/εd in H. For each connected graph G, the frequency
of such a small component is 0, since each k-disc covers at least 4/εd
vertices. Therefore,

∥freqG(k)− freqH(k)∥1 ≥ εd/4.

The conditions of Lemma 3.4.6 are satisfied for x = freqH(k) and
y = freqG(k) with S indicating the occurrence of small components.
Again, observe that |S| is independent of n. By ∥x∥2

2 ≤ 1 and η ≥ εd
4

we obtain
⟨x,y⟩
∥x∥2 ∥y∥2

≤
√︄

1− εd

4|S| ,

which is a positive constant strictly less than 1.

2. For triangle-freeness, again, we can use similar arguments to [32]. If a
graph is ε-far from being triangle-free, there are εdn superfluous edges
in H in contrast to any triangle-free graph G. Note that only edges
that are part of a triangle are to be removed. Each such edge is shared
by two vertices, and there can be at most d edges involved per vertex.
That means, that at least 2εn vertices are incident to a superfluous
edge. These vertices hence have k-discs, for each k ≥ 1, that contain
triangles, whereas in G there are no such k-discs. Therefore,

∥freqG(k)− freqH(k)∥1 ≥ 2ε.

Since the frequency vectors are always normalized with respect to their
1-norm, the conditions of Lemma 3.4.11 hold. Thus, there exists an
index i, for 1 ≤ i ≤ n, and a constant ζ > 0 such that⃓⃓⃓⃓

⃓ freqG(k)i
∥freqG(k)∥2

− freqG(k)i
∥freqH(k)∥2

⃓⃓⃓⃓
⃓ ≥ ζ.

Then, by Lemma 3.4.10,⟨︄
freqG(k)i
∥freqG(k)∥2

,
freqG(k)i
∥freqH(k)∥2

⟩︄

is smaller than 1 by a constant.

71

Chapter 3. Kernel methods for graphs

3. Benjamini, Schramm, and Shapira [7] show that for each ε > 0 and
degree bound d, there exists a positive integer k independent of n such
that for any two graphs G and H in Gn with bounded degree d, G
planar, H ε-far from being planar, it holds that

∥freqG(k)− freqH(k)∥ ≥ 1/k.

Therefore, via Lemmas 3.4.11 and 3.4.10, we obtain the claimed result.

3.4.5. A learning algorithm
In this section, we study a kernel nearest neighbor classifier for graphs and
show that its prediction error can be bounded under the assumption that
the employed kernel can distinguish the class label property, and that all
considered graphs either satisfy the property or are ε-far from it. We assume
the following supervised binary classification problem: Let Y = {0, 1} be the
set of possible class labels, which represent if a graph has a property or not.
We aim to learn a concept c : Gn → Y such that the binary loss is minimized.
Thereto we receive a training set {g1, . . . , gm} ⊂ Gn and a test graph from
Gn sampled independently and identically from some unknown distribution,
as well as the set of class labels {c(g1), . . . , c(gn)} for the training set with
regard to the concept. We assume in the following that for the considered
graph property, Gn only contains graphs that either have the property or are
ε-far from it.

Kernel nearest neighbor classification

Based on a training set T of data points in RD with known class labels, the
k-nearest neighbor classifier (k-NN) assigns a test data point to the class most
common among its k nearest neighbors in T . Here, the nearest neighbors are
commonly determined based on the Euclidean distance between data points.
Kernel nearest neighbor classifiers have been realized by substituting this
distance by a kernel metric in a Hilbert space, see, e.g., [126]. For a kernel k
with feature map ϕ, we consider the 1-NN algorithm using the kernel metric

dk(x,y) = ∥ϕ(x)− ϕ(y)∥2 =
√︂
k(x,x) + k(y,y)− 2k(x,y). (3.20)

Learning with distinguishing kernels

We again consider the cosine normalized version k̂ of a kernel k and its nor-
malized feature map ϕ̂. For dimension D of the feature space, the normalized

72

3.4. A theoretical framework for the expressiveness of graph kernels

feature map ϕ̂ assigns graphs to points on the unit sphere SD−1. Let us
assume that k̂ distinguishes the class label property. Then, there is a δ, such
that for all graphs G that have the property and H that are ε-far from it, we
have k̂(G,H) ≤ 1− δ and, consequently,

dk̂(G,H) ≥
√︂

1 + 1− 2(1− δ) =
√

2δ.

We denote this guaranteed minimum distance by

∆ =
√

2δ.

Consider the spherical cap C within the open ball centered at ϕ̂(G) with
radius ∆. According to the assumption, every graph H with ϕ̂(H) lying on
C, must have the same class label.
Proposition 3.4.13. Let G be a graph of the training set. Then every
graph H with dk̂(G,H) < ∆ is correctly classified by 1-NN where the base
set contains all graphs that either have the property or are ε-far from it.
Proof. Assume H is not correctly classified and dk̂(G,H) < ∆. Due to
distinguishability, H must belong to the same class as G. Since H is not
correctly classified by 1-NN, there must be a nearest neighbor N ̸= G of
H with a different class label. Since N is a nearest neighbor of G, we have
dk̂(H,N) ≤ dk̂(G,H) < ∆, contradicting distinguishability.

We say that an algorithm (ε, λ)-learns a property if a test graph G drawn
from the underlying distribution is correctly classified with probability (1−λ)
and the base set consists of all graphs that either have the property or are
ε-far from it.
Theorem 3.4.14. Let k be a kernel that distinguishes the class label property
according to Definition 3.4.3 with some fixed δ and a feature space of dimension
D. Let ∆ =

√
2δ. Let all graphs either satisfy the property or be ε-far from

it. Assume that the training set has cardinality

m ≥ (1+6/∆)D/λ ln((1+6/∆)D/λ)

then the 1-NN algorithm (ε, λ)-learns the property.
Proof. We cover the unit sphere with balls of radius ∆/3. It is well-known
that such a cover of size B = (1 + 6/∆)D exists. We observe that if a
training example falls into a ball of the cover then by Proposition 3.4.13 any
other example inside this ball is correctly classified. We observe that with
probability 1 − λ every ball with probability mass at least λ/B contains a
training example. The overall probability of the remaining balls is at most λ.
Therefore, with probability 1−λ the algorithm (ε, λ)-learns the property.

73

Chapter 3. Kernel methods for graphs

3.4.6. Conclusion
We have introduced a framework for analyzing graph kernels with respect to
their ability to distinguish graphs that satisfy a property from those that are
far away from doing so. We showed that some popular graph kernels fail to
even identify fundamental graph properties. Subsequently, we introduced the
k-disc kernel which is able to distinguish many basic graph properties. The
framework opens up interesting directions for future work, e.g., analyzing more
graph properties. For instance, a graph is cycle-free if it does not contain any
cycle, that is, each connected component is a tree. The Weisfeiler–Lehman
subtree kernel can identify cycle-freeness, because graphs from this class have
unique feature vectors up to isomorphism, see [5]. Thus, their feature vectors
are distinct and the angle between them is positive. Note that δ still depends
on n. Similarly, the shortest-path kernel can identify cycle-freeness via the
number of edges. We assume that it can also distinguish cycle-freeness, since
a graph ε-far from cycle-freeness contains at least εnd edges more than each
cycle-free graph. The k-disc kernel can distinguish cycle-freeness for some k
in N via arguments shown in [7]. Finally, the development of more realistic
learning setting should be considered, e.g., by changing Definition 3.4.3 by
emposing a smoothness assumption on δ.

74

Chapter 4.

Neural methods for graphs

In this chapter, we present our work on neural methods for graphs. In recent
years, neural network-based models had a surge of interest in the machine
learning community. Hence, the question arises if such methods can be
applied to graph data. Graph neural networks (GNNs) have emerged as a
machine learning framework addressing the above challenge. In the following,
we investigate their power. More specifically, we show that they cannot be
more powerful than the 1-WL in terms of distinguishing non-isomorphic
graphs. Going further, we leverage these theoretical relationships to propose
a generalization of GNNs, called k-GNNs, which are neural architectures
based on the k-WL, see Section 2.6, and are strictly more powerful than
GNNs. The key insight in these higher-dimensional variants is that they
perform message passing directly between subgraph structures, rather than
individual vertices. This higher-order form of message passing can capture
structural information that is not visible at the vertex-level.

Graph kernels based on the k-WL have been proposed in the past, see Sec-
tion 3.3. However, a key advantage of implementing higher-order message
passing in GNNs—which we demonstrate here—is that we can design hier-
archical variants of k-GNNs, which combine graph representations learned
at different granularities in an end-to-end trainable framework. Concretely,
in the presented hierarchical approach, the initial messages in a k-GNN are
based on the output of lower-dimensional k′-GNNs (with k′ < k), which
allows the model to effectively capture graph structures of varying granularity.
Since many real-world graphs inherit a hierarchical structure—e.g., in a social
network we must model both the ego-networks around individual vertices,
as well as the coarse-grained relationships between entire communities, see,
e.g., [86], we believe that this layer offers empirical utility.

75

Chapter 4. Neural methods for graphs

4.1. Related work
We will first give a general description of GNNs and then discuss related work.
Standard GNNs can be viewed as a neural version of the 1-WL algorithm,
where colors are replaced by continuous feature vectors and neural networks
are used to aggregate over vertex neighborhoods [39, 56]. In effect, the GNN
framework can be viewed as implementing a continuous form of graph-based
“message passing”, where local neighborhood information is aggregated and
passed on to the neighbors [30]. By deploying a trainable neural network to
aggregate information in local vertex neighborhoods, GNNs can be trained
in an end-to-end fashion together with the parameters of the classification or
regression algorithm, possibly allowing for greater adaptability and better
generalization.

Let (G, l) be a labeled graph with an initial vertex coloring f (0) : V (G)→
R1×d that is consistent with l. This means that each vertex v is annotated with
a feature f (0)(v) in R1×d such that f (0)(u) = f (0)(v) if and only if l(u) = l(v).
Alternatively, f (0)(v) can be an arbitrary real-valued feature vector associated
with v. Examples include continuous atomic properties in cheminformatic
applications where vertices correspond to atoms, or vector representations of
text in social network applications. A GNN model consists of a stack of neural
network layers, where each layer aggregates local neighborhood information,
i.e., features of neighbors, and then passes this aggregated information on to
the next layer.

A basic GNN model can be implemented as follows [40]. In each layer
t > 0, we compute a new feature

f (t)(v) = σ
(︃

f (t−1)(v) ·W(t)
1 +

∑︂
w∈N(v)

f (t−1)(w) ·W(t)
2

)︃
(4.1)

in R1×e for v in V (G), where W(t)
1 and W(t)

2 are parameter matrices from
Rd×e, and σ denotes a component-wise non-linear function, e.g., a sigmoid or
a rectifier function.1 Following [30], one may also replace the sum defined
over the neighborhood in the above equation by a permutation-invariant,
differentiable function, and one may substitute the outer sum, e.g., by a
column-wise vector concatenation or LSTM-style update step. Thus, in full
generality a new feature f (t)(v) is computed as

fW2
merge

(︃
f (t−1)(v), fW1

aggr

(︂
{{f (t−1)(w) | w ∈ N(v)}}

)︂)︃
, (4.2)

1For clarity of presentation, we omit biases.

76

4.2. Relationship between the 1-WL and 1-GNNs

where fW1
aggr aggregates over the set of neighborhood features and fW2

merge merges
the vertex’s representations from step (t−1) with the computed neighborhood
features. Both fW1

aggr and fW2
merge may be arbitrary differentiable, permutation-

invariant functions (e.g., neural networks), and by analogy to Equation 4.1,
we denote their parameters as W1 and W2, respectively. In the rest of this
chapter, we refer to neural architectures implementing Equation (4.2) as
1-dimensional GNN architectures (1-GNNs).

A vector representation fGNN over the whole graph can be computed by
summing over the vector representations computed for all vertices, i.e.,

fGNN(G) =
∑︂

v∈V (G)
f (T)(v), (4.3)

where T > 0 denotes the last layer. More refined approaches use differentiable
pooling operators based on, e.g., sorting [128], and soft assignments [125]. To
adapt the parameters W1 and W2 of Equations (4.1) and (4.2) to a given
data distribution, they are optimized in an end-to-end fashion (usually via
some variant of stochastic gradient descent) together with the parameters of
a neural network used for classification or regression.

Most of the neural approaches fit into the graph neural network frame-
work proposed by [30]. Notable instances of this model include Neural
Fingerprints [23], Gated Graph Neural Networks [69], GraphSAGE [39],
SplineCNN [26], and the spectral approaches proposed in [10, 22, 56]—all
of which descend from early work in [57, 107, 76, 101]. Recent extensions
and improvements to the GNN framework include approaches to incorporate
different local structures around subgraphs [120] and novel techniques for
pooling vertex representations in order to perform graph classification [128,
125]. GNNs have achieved state-of-the-art performance on several graph clas-
sification benchmarks in recent years, see, e.g., [125]—as well as applications
such as protein-protein interaction prediction [27], recommender systems [124],
and the analysis of quantum interactions in molecules [103]. A survey of
recent advancements in GNN techniques can be found in [40].

4.2. Relationship between the 1-WL and
1-GNNs

In the following, we explore the relationship between the 1-WL and 1-GNNs.
Let (G, l) be a labeled graph, and let W(t) =

(︂
W(t′)

1 ,W(t′)
2

)︂
t′≤t

denote the
GNN parameters given by Equation (4.1) or Equation (4.2) up to iteration

77

Chapter 4. Neural methods for graphs

t. We encode the initial labels l(v) by vectors f (0)(v) in R1×d, e.g., using a
1-hot encoding.

Our first theoretical result shows that 1-GNN architectures do not have
more power in terms of distinguishing between non-isomorphic (sub-)graphs
than the 1-WL algorithm. More formally, let fW1

aggr and fW2
merge be any two

functions chosen in Equation (4.2). For every encoding of the labels l(v) as
vectors f (0)(v), and for every choice of W(t), we have that the coloring C1

t of
1-WL always refines the coloring f (t) induced by a 1-GNN parameterized by
W(t).

Theorem 4.2.1. Let (G, l) be a labeled graph. Then for all t ≥ 0, and for
all choices of initial colorings f (0) consistent with l, and weights W(t),

C1
t ⊑ f (t).

Proof. We show for an arbitrary iteration t and vertices u and v in V (G),
that

C1
(t+1)(u) = C1

(t+1)(v)

implies
f (t+1)(u) = f (t+1)(v).

In iteration 0, we have

C1
0(u) = C1

0(v)⇐⇒ f (0)(u) = f (0)(v)

as the initial vertex coloring f (0) is chosen consistent with l.
Let u and v in V (G) and t in N such that C1

t+1(u) = C1
t+1(v). Assume for

the induction that

C1
t (u) = C1

t (v) =⇒ f (t)(u) = f (t)(v)

holds. As C1
(t+1)(u) = C1

(t+1)(v), we know from the refinement step of the
1-WL that the colors of the previous iterations, C1

t (u) and C1
t (v) of u and v,

respectively, as well as the multisets {{C1
t (w) | w ∈ N(u)}} and {{C1

t (w) | w ∈
N(v)}} of colors of the neighbors of u and v are identical.

Let Mu = {{f (t)(w) | w ∈ N(u)}} and Mv = {{f (t)(v) | w ∈ N(v)}} be the
multisets of feature vectors of the neighbors of u and v, respectively. By the
induction hypothesis, we know that Mu = Mv and f (t)(u) = f (t)(v) such that
independent of the choice of fmerge and faggr, we get

f (t+1)(u) = f (t+1)(v).

78

4.3. Proof of Theorem 4.2.2

This holds as the input to both functions fmerge and faggr is identical. This
proves

C1
(t+1)(u) = C1

(t+1)(v) =⇒ f (t+1)(u) = f (t+1)(v),
and thereby the theorem.

Our second result states that there exists a sequence of parameter matrices
W(t) such that 1-GNNs have exactly the same power in terms of distinguishing
non-isomorphic (sub-)graphs as the 1-WL algorithm. This even holds for the
simple architecture of Equation (4.1), provided we choose the encoding of the
initial labeling l in such a way that different labels are encoded by linearly
independent vectors.
Theorem 4.2.2 ([83]). Let (G, l) be a labeled graph. Then for all t ≥ 0
there exists a sequence of weights W(t), and a 1-GNN architecture such that

C1
t ≡ f (t).

Hence, in the light of the above results, 1-GNNs may be viewed as an
extension of the 1-WL which in principle have the same power but are more
flexible in their ability to adapt to the learning task at hand and can handle
continuous vertex features.

4.3. Proof of Theorem 4.2.2
For the proof, we first consider graphs where all vertices have the same initial
color (or label) and then extend it to colored graphs. To do that we use a
slightly adapted but equivalent version of the 1-WL. Note that the extension
to colored graphs is mostly technical, while the important idea is already
contained in the first case.

4.3.1. Uncolored graphs
Let ΓG be the refinement operator for the 1-WL, mapping the old coloring
C1

(t−1) to the updated one C1
t :

C1
t (v) =

(︂
ΓG
(︂
C1

(t−1)

)︂)︂
(v) =

(︂
C1

(t−1)(v), {{C1
(t−1)(u) | u ∈ N(v)}}

)︂
.

We first show that for uncolored graphs, this is equivalent to the update rule
Γ̃G:

C̃
1
t (v) =

(︂
Γ̃G

(︂
C̃

1
(t−1)

)︂)︂
(v) =

(︂
{{C̃1

(t−1)(u) | u ∈ N(v)}}
)︂
.

We denote J as the all-1 matrix where the size will always be clear from the
context.

79

Chapter 4. Neural methods for graphs

Lemma 4.3.1 ([83]). Let G be a graph, v and w in V (G), and t in N such
that C̃1

t (u) ̸= C̃
1
t (v). Then C̃

1
t′(u) ̸= C̃

1
t′(v) for all t′ ≥ t.

Proof. Let t in N be minimal such that there are v and w with

C̃
1
t (u) ̸= C̃

1
t (v), (4.4)

and

C̃
1
(t+1)(u) = C̃

1
(t+1)(v). (4.5)

Then t ≥ 1, because C̃1
0 = J as there are no initial colors. Let P1, . . . , Pp be

the color classes of C̃1
(t−1). That is, for all x and y in V (G), we have

C̃
1
(t−1)(x) = C̃

1
(t−1)(y)

if and only if there is an i in [p] such that x and y in Pi. Similarly, let
Q1, . . . , Qq be the color classes of C̃1

t . Observe that the partition {Q1, . . . , Qq}
of V (G) refines the partition {P1, . . . , Pp}.

Indeed, if there were i ̸= i′ in [p], and k in [q] such that Pi ∩Qk ≠ ∅ and
Pi′ ∩Qk ̸= ∅, then all x in Pi ∩Qk, y in Pi′ ∩Qk would satisfy

C̃
1
(t−1)(x) ̸= C̃

1
(t−1)(y) and C̃

1
t (x) = C̃

1
t (y),

contradicting the minimality of q.
Choose v and w in V (G) satisfying Equation (4.4) and Equation (4.5). By

Equation (4.4), there is an i in [p] such that |N(v) ∩ Pi| ≠ |N(w) ∩ Pi|. Let
j1, . . . , jℓ in [q] such that Pi = Qj1 ∪ . . .∪Qjℓ . By Equation (4.5), for all k in
[ℓ] we have

|N(v) ∩Qjk | = |N(w) ∩Qjk |.

As the Qj are disjoint, this implies

|N(v) ∩ Pi| = |N(w) ∩ Pi|,

which is a contradiction.

Hence, the two update rules are equivalent.

Corollary 4.3.2. For all G and all t in N, we have C̃1
t ≡ C1

t .

80

4.3. Proof of Theorem 4.2.2

Thus, we can use the update rule Γ̃ for the proof on unlabeled graphs. For
the proof, it will be convenient to assume that V (G) = [n] (although we still
work with the notation V (G)), i.e., n = |V |. A vertex coloring f (t) defines a
matrix F(t) in Rn×d where the i-th row of F(t) is defined by f (t)(i) in R1×d.
Here we interpret i as a vertex from V (G). As colorings and matrices can be
interpreted as one another, given a matrix F in RV (G)×d we write ΓG(F) (or
Γ̃G(F)) for a Weisfeiler-Leman iteration on the coloring cF induced by the
matrix F. For the GNN computation, we provide a matrix-based notation.
Using the adjacency matrix A in Rn×n of G and a coloring F in Rn×d, we
can write the update rule of the GNN layer as

Ft+1 = ΛA,W,b(F(t)) = σ(AF(t)W(t) + bJ),

where ΛA,W,b is the refinement operator of GNNs corresponding to a single
iteration of the 1-WL. For simplicity of the proof, we choose

σ(x) = sign(x) =

⎧⎨⎩1 if x > 0,
−1 otherwise,

applied component-wise, and the bias as

b = −1.

Note that in [83], we provide a way to simulate the sign function using rectifier
functions to indicate that choosing the sign function is not a hard restriction.

Lemma 4.3.3 ([83]). Let B in Zs×t be a matrix such that 0 ≤ Bij ≤ n− 1
for all i and j, and the rows of B are pairwise distinct. Then there is a matrix
X in Rt×s such that the matrix sign

(︂
BX− J) in {−1, 1}s×s is non-singular.

Proof. Let z = (1, n, n2, . . . , nt−1)T in Rt where n is the upper bound on
the matrix entries of B and b = Bz in Rs. Then the entries of b are non-
negative and pairwise distinct. Without loss of generality, we assume that
b = (b1, . . . , bs)T such that b1 > b2 > · · · > bs ≥ 0. We choose numbers
x1, . . . , xs in R such that ⎧⎨⎩bi · xj < 1 if i ≥ j,

bi · xj > 1 if i < j
(4.6)

for all i and j in [s] as the bi are ordered. Let x = (x1, . . . , xs) in R1×s and
C = b · x in Rs×s and Ĉ = sign(C − J). Then C has entries Cij = bi · xj,

81

Chapter 4. Neural methods for graphs

and thus, by Equation (4.6),

Ĉ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 1 · · · 1 1
−1 −1 1 · · · 1

...

−1 · · · −1 1
−1 · · · −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.7)

Thus, Ĉ is non-singular. We simply let X = z · x. Then BX = C.

Let us call a matrix row-independent modulo equality if the set of all rows
appearing in the matrix is linearly independent or equal. Note that the all-1
matrix J is row-independent modulo equality.

Lemma 4.3.4 ([83]). Let d in N, and let F in Rn×d be row independent
modulo equality. Then there is a W in Rd×n such that the matrix ΛA,W,−1(F)
is row independent modulo equality and

ΛA,W,−1(F) ≡ Γ̃G(F).

Proof. Let Q1, . . . , Qr be the color classes of F. That is, for all v and v′ in
V (G) it holds that

Fv = Fv′ ⇐⇒ ∃j ∈ [r] such that v and v′ ∈ Qj.

Let F̃ in Rr×d be the matrix with rows F̃j = Fv for all j in [r], and v in Qj.
Then the rows of F̃ are linearly independent, and thus there is a matrix M
in Rd×r such that F̃M is the (r × r) identity matrix. It follows that FM in
Rn×r is the matrix with entries

(FM)vj =

⎧⎨⎩1 if v in Qj,

0 otherwise.
(4.8)

Let D in Zn×r be the matrix with entries Dvj = |N(v) ∩Qj|. Note that

AFM = D, (4.9)

because for all v in V and j in [t] we have

(AFM)vj =
∑︂

v′∈V (G)
Avv′(FM)v′j =

∑︂
v′∈Qj

Avv′ = Dvj,

82

4.3. Proof of Theorem 4.2.2

where the second equality follows from Equation (4.8). By definition of ΓG
as the 1-WL operator on uncolored graphs, we have

ΓG(F) ≡ D (4.10)

if we view D as a coloring of V .
Let P1, . . . , Ps be the color classes of D, and let D̃ in Zs×r be the matrix

with rows D̃i = Dv for all i in [s] and v in Pi. Then 0 ≤ D̃ij ≤ n− 1 for all i
and j, and the rows of D̃ are pairwise distinct. By Lemma 4.3.3, there is a
matrix X in Rr×s such that the matrix

sign(D̃X− J) in Rs×s

is non-singular. This implies that the matrix

sign(AFMX− J) = sign(DX− J)

is row-independent modulo equality. Moreover,

sign(AFMX− J) ≡ D ≡ ΓG(F)

by Equation (4.10). We let W in Rp×n be the matrix obtained from MX in
Rp×s by adding (n− s) all-0 columns. Then,

ΛA,W,−1(F) = sign(AFW− J)

is row-independent modulo equality and

ΛA,W,−1(F) ≡ sign(AFMX− J) ≡ Γ̃G(F).

Hence, we get the following result.

Corollary 4.3.5 ([83]). There is a sequence W = (W(t))t∈N with W(t) in
Rn×n such that for all t in N,

C̃
1
t ≡ Λ

(t)
A,W,−1,

where C̃
1
t is given by the t-fold application of Γ̃G on the initial uniform

coloring J.

Remark 4.3.6. The construction in Lemma 4.3.4 always outputs a matrix
with as many columns as there are color classes in the resulting coloring.
Thus, we can choose d to be n and pad the matrix using additional 0-columns.

83

Chapter 4. Neural methods for graphs

4.3.2. Colored graphs
We now extend the computation to colored or labeled graphs. To do that, we
again use an equivalent but slightly different variant of the Weisfeiler-Leman
update rule leading to the coloring C1,0

t instead of the usual C1
t . We again

show that both update rules are equivalent. We define ΓG to be the refinement
operator for the 1-WL, mapping a coloring C1,0

(t−1) to the updated one, C1,0
t ,

as follows:

C1,0
t (v) =

(︂
ΓG
(︂
C1,0

(t−1)

)︂)︂
(v) =

(︂
C1,0

0 (v), {{C1,0
(t−1)(u) | u ∈ N(v)}}

)︂
. (4.11)

We use the initial coloring C1,0
0 to make sure that any two vertices which have

been assigned a different color in iteration t, get different colors in iteration
t′ > t. This is formalized by the following lemma.

Lemma 4.3.7. Let (G, l) be a colored graph, v and w in V (G), and t in N
such that C1,0

t (v) ̸= C1,0
t (w). Then C1,0

t′ (v) ̸= C1,0
t′ (w) for all t′ ≥ t.

Proof. Let t in N be minimal such that there are v and w with

C1,0
t (v) ̸= C1,0

t (w) (4.12)

and

C1,0
(t+1)(v) = C1,0

(t+1)(w). (4.13)

Then t ≥ 1, because by Equation (4.11),

C1,0
1 (v) = C1,0

1 (w)

implies
C1,0

0 (v) = C1,0
0 (w).

Let P1, . . . , Pp be the color classes of C1,0
(t−1), and let Q1, . . . , Qq be the color

classes of C1,0
t . Observe that the partition {Q1, . . . , Qq} of V (G) refines

the partition {P1, . . . , Pp}. The argument is the same as in the proof of
Lemma 4.3.1.

Choose v and w in V (G) satisfying Equation (4.12) and Equation (4.13).
By Equation (4.12), either

C1,0
t (v) ̸= C1,0

t (w)

or there is an i in [p] such that

|NG(v) ∩ Pi| ≠ |NG(w) ∩ Pi|.

84

4.3. Proof of Theorem 4.2.2

By Equation (4.11), C1,0
(t+1)(v) ̸= C1,0

(t+1)(w) contradicts Equation (4.13). Thus,
|N(v) ∩ Pi| ̸= |NG(w) ∩ Pi| for some i in [p]. Let j1, . . . , jℓ in [q] such that
Pi = Qj1 ∪ . . . ∪Qjℓ . By Equation (4.12), for all k in [ℓ] we have

|N(v) ∩Qjk | = |N(w) ∩Qjk |.

As the Qj are disjoint, this implies

|NG(v) ∩ Pi| = |NG(w) ∩ Pi|,

which is a contradiction.

Hence, we get the following result.

Corollary 4.3.8. For all graphs G and initial vertex colorings l of G, we
have C1,0

t ≡ C1
t for all t in N.

We consider the slightly modified update rule for 1-GNNs which takes the
initial colors l into account. Let the matrix F(0)

l,0 in Rn×d be an encoding,
e.g., an one-hot encoding, of l such that F(0)

l,0 is linearly independent modulo
equality. Then

F(t+1)
l,0 = ΛA,0,W,b(F(t)

l,0) =
[︃
F(0)

l,0 , ΛA,W,b

(︂
ΛA,0,W,b(F(t)

l,0)
)︂]︃
,

where square brackets denote column-wise matrix concatenation.
We show that this version of GNNs, which can be implemented by the

GNN of Equation (4.2), is equivalent to the 1-WL on colored graphs, proving
the theorem for colored graphs.

Proof of Theorem 4.2.2. We prove the Theorem by induction over the number
of iterations t. The initial colorings are chosen consistent with l. Hence,

C1,0
0 ≡ F(0)

l,0 .

For the induction step we assume

C1,0
t ≡ F(t)

l,0

for iteration t. We know by Lemma 4.3.4 that the inner part of the update
rule ΛA,W,b

(︂
ΛA,0,W,b(F(t)

l,0)
)︂

results in color classes which are identical to the
ones that Γ̃G would produce. This implies that restricted to each color class Q
from Qt

1, . . . , Q
t
q of iteration t, the new color classes Q(t+1)

1 ∩Q, . . . , Q(t+1)
q′ ∩Q

restricted to Q match the coloring C1,0
(t+1)|Q, that is, C1,0

(t+1) restricted to Q.

85

Chapter 4. Neural methods for graphs

This holds as within one color class, the common color of the vertices contains
no further information as shown in Lemma 4.3.1. Observe that colors are
represented by linearly independent row vectors. This especially holds for
F(t+1) = ΛA,W,b

(︂
ΛA,0,W,b(F(t)

l,0)
)︂
. In order to show that F(t+1)

l,0 represents the
coloring C1,0

(t+1), we have to prove two properties.

1. Given Q
(0)
i ̸= Q

(0)
j and u in Q

(0)
i , v in Q

(0)
j , we have F(t+1)

l,0 (u) ≠
F(t+1)

l,0 (v).

2. F(t+1)
l,0 is linearly independent modulo equality.

In the first item, we interpret F(t+1)
l,0 as a coloring function. Both properties

follow directly from the definition of F(t+1)
l,0 (the concatenation of the matrices

F(0)
l,0 and F(t+1)). The first property holds as the row vectors of F(0)

l,0 are
clearly different, as otherwise Qi = Qj . The second property follows from the
fact that linear independence cannot be lost by extending a matrix. Thus,
within each old color class Q(t)

i , all vectors are linearly independent modulo
equality as F(t+1) (without subscript) is linearly independent modulo equality.
This then extends to all combinations of old color classes and colors from
F(t+1) as F(0)

l,0 is also linearly independent modulo equality. By induction,
this shows that c(t)

l,0 ≡ F(t)
l,0 for all t. Note that the width of the matrices

F(t+1)
l,0 can be bounded by 2n. The width of F(0)

l,0 can trivially be bounded
by n (in the worst case every vertex has a different initial color). The width
of F(t+1) can also be bounded by n. Using Corollary 4.3.8 for the step from
C1,0

(t+1) to C1
(t+1) finishes the proof.

4.3.3. Shortcomings of both approaches

The power of the 1-WL has been completely characterized, see, e.g., [5,
55]. Hence, by using Theorems 4.2.1 and 4.2.2, this characterization is also
applicable to 1-GNNs. Consequently, 1-GNNs have the same shortcomings as
the 1-WL. For example, both methods will give the same color to every vertex
in a graph consisting of a triangle and a 4-cycle, although vertices from the
triangle and the vertices from the 4-cycle are clearly different. Moreover, they
are not capable of capturing simple graph theoretic properties, e.g., triangle
counts, which are an important measure in social network analysis [78, 86].

86

4.4. The k-dimensional graph neural network architecture

4.4. The k-dimensional graph neural network
architecture

In the following, we propose a generalization of 1-GNNs, so-called k-GNNs,
which are inspired on the k-WL. Due to scalability and limited GPU memory,
we consider a set-based version of the k-WL. For a given k, we consider all
k-element subsets [V (G)]k over V (G). Let s = {s1, . . . , sk} be a k-set in
[V (G)]k, then we define the neighborhood of s as

N(s) = {t ∈ [V (G)]k | |s ∩ t| = k − 1}.

The local neighborhood NL(s), similarly to Definition in Section 3.3.1, consists
of all t in N(s) such that (v, w) in E(G) for the unique v in s\t and the unique
w in t \ s. The global neighborhood NG(s) then is defined as N(s) \NL(s).

The set-based k-WL works analogously to the 1-WL, i.e., it computes
a coloring c

(t)
s,k,l : [V (G)]k → S as in Equation (2.1) based on the above

neighborhood. That is, two k-sets that have the same color in iteration t get
the same color in iteration (t+ 1) if their local and global neighborhood is
colored the same. Initially, c(0)

s,k,l colors each element s in [V (G)]k with the
isomorphism type of G[s].

Let (G, l) be a labeled graph. In each k-GNN layer t ≥ 0, we compute a
feature vector f (t)

k (s) for each k-set s in [V (G)]k. For t = 0, we set f (0)
k (s) to

f iso(s), a one-hot encoding of the isomorphism type of G[s] labeled by l. In
each layer t > 0, we compute new features by

f (t)
k (s) = σ

(︃
f (t−1)
k (s) ·W(t)

1 +
∑︂

u∈NL(s)∪NG(s)
f (t−1)
k (u) ·W(t)

2

)︃
.

Moreover, one could split the sum into two sums ranging over NL(s) and
NG(s), respectively, using distinct parameter matrices to enable the model to
learn the importance of local and global neighborhoods. To scale k-GNNs to
larger datasets and to prevent overfitting, we propose local k-GNNs, where
we omit the global neighborhood of s, i.e.,

f (t)
k,L(s) = σ

(︃
f (t−1)
k,L (s) ·W(t)

1 +
∑︂

u∈NL(s)
f (t−1)
k,L (u) ·W(t)

2

)︃
.

The running time for the evaluation of the above depends on |V |, k, and the
sparsity of the graph (each iteration can be bounded by the number of subsets
of size k times the maximum degree). Note that we can scale our method to
larger datasets by using the sampling strategies introduced in Section 3.3.4.
We can now lift the results of the previous section to the k-dimensional case.

87

Chapter 4. Neural methods for graphs

Proposition 4.4.1. Let (G, l) be a labeled graph and let k ≥ 2. Then for
all t ≥ 0, for all choices of initial colorings f (0)

k consistent with l, and for all
weights W(t),

c
(t)
s,k,l ⊑ f (t)

k .

Proof. The proof follows the arguments in the proof of Theorem 4.2.1. We
therefore only provide a brief proof by induction on the iteration t. For the
base case, i.e., iteration t = 0, the statement holds because the initial coloring
f (0)
k is chosen to be consistent with the isomorphism types.

For the inductive step, assume that the statement holds until iteration
(t− 1). Consider two k-sets u and v which (i) are not distinguished in the
first (t − 1) iterations and (ii) are not distinguished in the t-th iteration.
Therefore, u and v must have an equal number of neighbors from every color
class. This implies that the k-GNN update rule yields the same output for u
and v. Hence, if two such k-sets are distinguished by the k-GNN in the t-th
iteration, they must be distinguished by the set-based k-WL as well. This
finishes the induction and proves the proposition.

Again the second result states that there exists a suitable initialization of
the parameter matrices W(t) such that k-GNNs have exactly the same power
in terms of distinguishing non-isomorphic (sub-)graphs as the set-based k-WL.

Proposition 4.4.2. Let (G, l) be a labeled graph and let k ≥ 2. Then for
all t ≥ 0 there exists a sequence of weights W(t), and a k-GNN architecture
such that

c
(t)
s,k,l ≡ f (t)

k .

Proof. We simulate the set-based k-WL on an n-vertex graph G via a 1-WL
on a graph G⊗k on O(nk) vertices, defined as follows. The vertex set of G⊗k

is the set [V (G)]k of all k-element subsets of V (G). The edge set of G⊗k

is defined as follows: two sets s and t are connected by an edge in G⊗k if
and only if |s ∩ t| = k − 1. Observe that the neighborhood of a vertex s
in this graph is exactly the set N(s) defined earlier. The initial labeling of
the vertices of the graph G⊗k is determined as follows: For s in V (G⊗k) the
initial label of s is its isomorphism type.

For the above construction, it immediately follows that performing the
1-WL on the graph G⊗k yields the same coloring, as the one obtained by
performing k-WL for the graph G. It remains to define the sequence (W t)t>0
such that k-GNN simulates the set-based k-WL onG. Applying Theorem 4.2.2
to the graph G⊗k results in a sequence ˜︃W t such that the 1-GNN can simulate

88

4.4. The k-dimensional graph neural network architecture

1-GNN

. . .

2-GNN

. . .

3-GNN

. . .

MLP

Pool

Pool

Pool

Learning higher-order graph properties

(a) Hierarchical 1-2-3-GNN network architecture.

+

(b) Pooling from 2-
to 3-GNN.

Figure 4.1.: Illustration of the proposed hierarchical variant of the k-GNN
layer. For each subgraph S on k vertices a feature is learned, which is
initialized with the learned features of all (k − 1)-element subgraphs of S.
Hence, a hierarchical representation of the input graph is learned.

the 1-WL on G⊗k using ˜︃W t. Hence, this sequence can be directly used in
the k-GNN to simulate k-WL on G.

4.4.1. Hierarchical variant
One key benefit of the end-to-end trainable k-GNN framework—compared
to the combinatorial (set-based) k-WL algorithm—is that we can hierarchi-
cally combine representations learned at different granularities. Concretely,
rather than simply using one-hot indicator vectors as initial feature inputs
in a k-GNN, we propose a hierarchical variant of k-GNNs that uses the
features learned by a (k − 1)-dimensional GNN, in addition to the (labeled)
isomorphism type, as the initial features, i.e.,

f (0)
k (s) = σ

(︃[︃
f iso(s),

∑︂
u⊂s

f (Tk−1)
k−1 (u)

]︃
·Wk−1

)︃
,

for some Tk−1 > 0, where |u| = k − 1, Wk−1 is a matrix of appropriate size,
and square brackets denote column-wise matrix concatenation.

Hence, the features are recursively learned from dimensions 1 to k in an
end-to-end fashion. See Figure 4.1 for an illustration. This hierarchical model
also satisfies Propositions 4.4.1 and 4.4.2, so its representational capacity is
theoretically equivalent to a standard k-GNN (in terms of its relationship
to the set-based k-WL). Nonetheless, hierarchy is a natural inductive bias
for graph modeling, since many real-world graphs incorporate hierarchical
structure, so we expect this hierarchical formulation to offer empirical utility.

89

Chapter 4. Neural methods for graphs

4.5. Experimental study
In the following, we want to investigate potential benefits of GNNs over graph
kernels as well as the benefits of our proposed k-GNN architectures over
1-GNN architectures. More precisely, we address the following questions:

Q1 How do the (hierarchical) k-GNNs perform in comparison to state-of-the-
art graph kernels?

Q2 How do the (hierarchical) k-GNNs perform in comparison to the 1-GNN
in graph classification and regression tasks?

Q3 How much (if any) improvement is provided by optimizing the parameters
of the GNN aggregation function, compared to just using random
GNN parameters while optimizing the parameters of the downstream
classification/regression algorithm?

4.5.1. Datasets
To compare our k-GNN architectures to kernel approaches we used well-
established benchmark datasets from the graph kernel literature [53]. The
vertices of each graph in these datasets is annotated with (discrete) labels or
no labels. See Table 4.1 for statistics and properties, and see Appendix B for
detailed descriptions.

Table 4.1.: Dataset statistics and properties.

Dataset
Properties

Number of graphs Number of classes ∅ Number of vertices ∅ Number of edges Vertex labels

Proteins 1113 2 39.1 72.8 ✓

IMDB-Binary 1000 2 19.8 96.5 ✗

IMDB-Multi 1500 3 13.0 65.9 ✗

PTC_FM 349 2 14.1 14.5 ✓

NCI1 4110 2 29.9 32.3 ✓

Mutag 188 2 17.9 19.8 ✓

PTC_MR 344 2 14.3 14.7 ✓

To demonstrate that our architectures scale to larger datasets and offer
benefits on real-world applications, we conducted experiments on the Qm9
dataset [96, 100, 119], which consists of 133 385 small molecules. The aim here
is to perform regression on twelve targets representing energetic, electronic,

90

4.5. Experimental study

Table 4.2.: Classification accuracies in percent on various graph benchmark
datasets.

Method
Dataset

Proteins IMDB-Bin. IMDB-Mul. PTC_FM NCI1 Mutag PTC_MR

K
er

ne
l

Graphlet 72.9 59.4 40.8 58.3 72.1 87.7 54.7
Shortest-path 76.4 59.2 40.5 62.1 74.5 81.7 58.9
1-WL 73.8 72.5 51.5 62.9 83.1 78.3 61.3
2-WL 75.2 72.6 50.6 64.7 77.0 77.0 61.9
3-WL 74.7 73.5 49.7 61.5 83.1 83.2 62.5
WL-OA 75.3 73.1 50.4 62.7 86.1 84.5 63.6

G
N

N

DCNN 61.3 49.1 33.5 — 62.6 67.0 56.6
PatchySan 75.9 71.0 45.2 — 78.6 92.6 60.0
DGCNN 75.5 70.0 47.8 — 74.4 85.8 58.6

1-Gnn No Tuning 70.7 69.4 47.3 59.0 58.6 82.7 51.2
1-Gnn 72.2 71.2 47.7 59.3 74.3 82.2 59.0
1-2-3-Gnn No Tuning 75.9 70.3 48.8 60.0 67.4 84.4 59.3
1-2-3-Gnn 75.5 74.2 49.5 62.8 76.2 86.1 60.9

geometric, and thermodynamic properties, which were computed using density
functional theory.2

4.5.2. Baselines
We used the following kernel and GNN methods as baselines for our experi-
ments.

Kernel baselines We used the Graphlet kernel [105], the shortest-path ker-
nel [8], the Weisfeiler-Lehman subtree kernel (WL) [106], the Weisfeiler-
Lehman Optimal Assignment kernel (WL-OA) [62], and the global-local
k-WL [80] with k in {2, 3} as kernel baselines. For each kernel, we
computed the normalized Gram matrix. We used the C-SVM imple-
mentation of LIBSVM [14] to compute the classification accuracies
using 10-fold cross validation. The parameter C was selected from
{10−3, 10−2, . . . , 102, 103} by 10-fold cross validation on the training
folds.

Neural baselines To compare GNNs to kernels, we used the basic 1-GNN
layer of Equation (4.1), DCNN [114], PatchySan [87], and DGCNN [128].
For the Qm9 dataset we used a 1-GNN layer similar to [30], where
we replaced the inner sum of Equation (4.1) with a 2-layer MLP in

2The dataset was obtained from http://moleculenet.ai/datasets-1.

91

http://moleculenet.ai/datasets-1

Chapter 4. Neural methods for graphs

Table 4.3.: Mean absolute errors on the Qm9 dataset. The far-right column
shows the improvement of the best k-GNN model in comparison to the 1-GNN
baseline.

Target
Method

Dtnn [119] Mpnn [119] 1-Gnn 1-2-Gnn 1-3-Gnn 1-2-3-Gnn Gain

µ 0.244 0.358 0.493 0.493 0.473 0.476 4.0%
α 0.95 0.89 0.78 0.27 0.46 0.27 65.3%
εHOMO 0.00388 0.00541 0.00321 0.00331 0.00328 0.00337 –
εLUMO 0.00512 0.00623 0.00355 0.00350 0.00354 0.00351 1.4%
∆ε 0.0112 0.0066 0.0049 0.0047 0.0046 0.0048 6.1%
⟨R2⟩ 17.0 28.5 34.1 21.5 25.8 22.9 37.0%
ZPVE 0.00172 0.00216 0.00124 0.00018 0.00064 0.00019 85.5%
U0 2.43 2.05 2.32 0.0357 0.6855 0.0427 98.5%
U 2.43 2.00 2.08 0.107 0.686 0.111 94.9%
H 2.43 2.02 2.23 0.070 0.794 0.0419 98.1%
G 2.43 2.02 1.94 0.140 0.587 0.0469 97.6%
Cv 0.27 0.42 0.27 0.0989 0.158 0.0944 65.0%

order to incorporate edge features (bond type and distance information).
Moreover, we compared against the numbers provided in [119].

4.5.3. Model configuration
We always used three layers for 1-GNNs, and two layers for (local) 2-GNNs
and (local) 3-GNNs, all with a hidden-dimension size of 64. For the hierarchi-
cal variant we used architectures that use features computed by 1-GNNs as
initial features for the 2-GNNs (1-2-GNNs) and 3-GNNs (1-3-GNNs), respec-
tively. Moreover, using the combination of the former, we componentwise
concatenated the computed features of the 1-2-GNNs and the 1-3-GNNs
(1-2-3-GNNs). For the final classification and regression steps, we used a
three layer MLP, with binary cross entropy and mean squared error for the
optimization, respectively. For classification, we used a dropout layer with
p = 0.5 after the first layer of the MLP. We applied global average pooling
to generate a vector representation of the graph from the computed vertex
features for each k. The resulting vectors are concatenated column-wise
before feeding them into the MLP. Moreover, we used the Adam optimizer
with an initial learning rate of 10−2 and applied an adaptive learning rate

92

4.5. Experimental study

decay based on validation results to a minimum of 10−5. We trained the
classification networks for 100 epochs and the regression networks for 200
epochs.

4.5.4. Experimental protocol
For the smaller datasets, which we used for comparison against the kernel
methods, we performed a 10-fold cross validation where we randomly sampled
10% of each training fold to act as a validation set. For the Qm9 dataset, we
followed the dataset splits described in [119]. We randomly sampled 10% of
the examples for validation, another 10% for testing, and used the remaining
for training. We used the same initial vertex features as described in [30].
Moreover, to illustrate the benefits of our hierarchical k-GNN architecture,
we did not use a complete graph, where edges are annotated with pairwise
distances, as input. Instead, we only used pairwise Euclidean distances for
connected vertices, computed from the provided vertex coordinates.

All experiments were conducted on a workstation with an Intel i7-6850K
with 4.00GHz and 128GB of RAM running Ubuntu 18.04.2 LTS using an
Nvdia Gefore GTX 1080 Ti with 11GB of memory.3

4.5.5. Results and discussion
In the following, we answer questions Q1 to Q3. Table 4.2 shows the results
for comparison with the kernel methods on the graph classification benchmark
datasets. Here, the hierarchical k-GNN is on par with the kernels despite
the small dataset sizes (answering question Q1). We also find that the 1-2-3-
GNN significantly outperforms the 1-GNN on all seven datasets (answering
Q2), with the 1-GNN being the overall weakest method across all tasks. We
can further see that optimizing the parameters of the aggregation function
only leads to slight performance gains on four out of seven datasets (for the
1-2-3-GNN), and that no optimization even achieves better results on the
Proteins benchmark dataset (answering Q3). A similar result is obtained
for the 1-GNN. We contribute this effect to the one-hot encoded vertex
labels, which allow the GNN to gather enough information out of from the
neighborhood of a vertex, even when this aggregation is not learned.

Table 4.3 shows the results for the Qm9 dataset. On eleven out of twelve
targets, all of our hierarchical variants beat the 1-GNN baseline, providing

3The code was built upon the work of [26], and is provided at https://github.com/
chrsmrrs/k-gnn.

93

https://github.com/chrsmrrs/k-gnn
https://github.com/chrsmrrs/k-gnn

Chapter 4. Neural methods for graphs

further evidence for Q2. For example, on the target H we achieve a large
improvement of 98.1% in MAE compared to the baseline. Moreover, on ten
out of twelve datasets, the hierarchical k-GNNs beat the baselines from [119].
However, the additional structural information extracted by the k-GNN layers
does not serve all tasks equally well, leading to huge differences in gains across
the targets. For example, for the εLUMO target, the best k-GNN layer only
achieves a gain of 1.4% over the 1-GNN baseline.

It should be noted that our k-GNN models have more parameters than the
1-GNN model, since we stack two additional GNN layers for each k. However,
extending the 1-GNN model by additional layers to match the number of
parameters of the k-GNN did not lead to better results in any experiment.

4.6. Conclusion
We presented a theoretical investigation of GNNs, showing that a wide class
of GNN architectures cannot be stronger than the 1-WL. On the positive
side, we showed that, in principle, GNNs possess the same power in terms of
distinguishing between non-isomorphic (sub-)graphs, while having the added
benefit of adapting to the given data distribution. Based on this insight, we
proposed k-GNNs which are a generalization of GNNs based on the k-WL.
This new model is strictly stronger than GNNs in terms of distinguishing
non-isomorphic (sub-)graphs and is capable of distinguishing more graph
properties. Moreover, we devised a hierarchical variant of k-GNNs, which
can exploit the hierarchical organization of most real-world graphs. Our
experimental study shows that k-GNNs consistently outperform 1-GNNs and
beat state-of-the-art neural architectures on large-scale molecule learning
tasks. Future work includes designing task-specific k-GNNs, e.g., devising
k-GNN layers that exploit expert-knowledge in bio- and cheminformatic
settings. For example, neural architectures for molecules need to incorporate
graph structure at different levels of granularity (atom level as well as on the
level of functional groups). Hence, designing k-GNN architectures that take
into account domain specific substructures would be an interesting problem
for future work.

94

Chapter 5.

Conclusion

In this work, we proposed several methods for (supervised) graph classifica-
tion. The first part of this thesis dealt with kernel-based graph classification.
We showed how to deal with graphs with continuous labels attached to ver-
tices and edges in a scalable manner, which is an important requirement for
various applications, e.g., in chemoinformatic settings atoms are annotated
with physical and chemical measurements. Prior proposed graph kernels
that could handle this kind of input did not scale to large-scale datasets
because they compared each pair of graphs, resulting in a quadratic over-
head. By introducing special hash functions we showed how to (provable)
approximate implicit kernels for graphs with continuous labels by explicit,
finite-dimensional feature vectors. Our experimental study showed that our
new approach achieves state-of-the-art results while being orders of magnitude
faster than its competitors, validating our theoretical results. Our techniques
can also be incorporated into well-known similarity measures for molecules
such as extended connectivity fingerprints [99] and enable them to make use
of continuous measurements.

As most graph kernels rely on comparing graphs by their local structure,
we investigated how to incorporate more global or higher-order structures into
graph kernels. To this end, we derived graph kernels based on variants of the
k-WL, which is a provable more powerful extension of the 1-WL. The 1-WL
has shown good performance in machine learning settings. However, it misses
important structures, e.g., distinguishing cycles of different lengths, which is
an important measure in social network and chemoinformatic settings. Since
the ordinary k-WL does not take the local structure into account and is prone
to overfitting, we derived a local variant of the k-WL. This variant takes the
sparsity of the underlying graph into account, and hence each iteration of the
algorithm can be computed much faster. Moreover, we showed that a variant
of the local algorithm has at least the same power as the k-WL. To scale
up the kernel to large-scale datasets we derived a stochastic variant of our

95

Chapter 5. Conclusion

algorithm, and showed that it can approximate the exact kernel in constant
time for bounded degree graphs. Our experimental study showed that our
proposed kernels often perform better than the 1-WL and other baselines.

To conclude the first part, we developed a theoretical framework to better
understand the expressivity of well-known graph kernels. We showed that
they are not able to distinguish simple graph properties, and proposed a
more powerful kernel based on frequency counts of isomorphism types of
k-discs. Finally, we studied a kernel nearest neighbor classifier for graphs and
showed that its prediction error can be bounded under the assumption that
the employed kernel can distinguish the class label property.

The second part of this work dealt with neural approaches for graph
classification. Specifically, we investigated GNNs and showed that the 1-WL
is an upper-bound for the former in terms of its ability to distinguish non-
isomorphic (sub-)graphs. That is, we showed that any GNN architecture
with any possible parameter setting, cannot be more powerful than the 1-WL.
Hence, we showed the limits of GNNs. Moreover, we showed that there exists
a GNN architecture that has the same power as the 1-WL. Based on these
insights, we proposed k-GNNs which are strictly more powerful than GNNs.
Since many real-world graphs exhibit a hierarchical structure, we introduced
a (hierarchical) variant of k-GNNs, which can capture these hierarchies. Our
experimental study showed that this variant (often) beats baseline approaches
on large-scale molecule learning tasks. We believe that our new architecture
is a stepping stone for deriving new more powerful neural architectures for
the graph domain.

5.1. Directions for future work and open
problems

Since most work in supervised graph classification is conducted from an
empirical point of view, we believe that the theoretical principled design of
new methods is a promising direction, e.g., extending the methods developed
in Section 3.4 to handle more realistic learning settings.

For GNNs, we believe that more work should be conducted in the area of
interpretability, i.e., making sense of the learned weights, and injecting expert
knowledge, e.g., chemical or physical knowledge. Moreover, we believe that
there should be a better understanding of what GNNs learn in the presence
of continuous vertex and edge labels.

For example, we propose the following open problems:

96

5.1. Directions for future work and open problems

P1 Derive a better understanding of what GNNs, optimized with variants of
the stochastic gradient descent algorithm, learn.

P2 Derive a better understanding of why or when Weisfeiler-Leman type
kernels (and hence GNNs) work on real-world datasets. Subsequently,
derive a theoretical understanding.

P3 Develop a better understanding of the trade-offs between sparsity, the
number of iterations, and k for the k-WL.

P4 Design a k-GNN layer that takes physical and chemical expert knowledge
into account.

P5 Develop a theory of generalization for graph-structured data.

97

Appendix A.

Full list of publications
1. C. Morris, N. M. Kriege, K. Kersting, and P. Mutzel. “Faster Ker-

nel for Graphs with Continuous Attributes via Hashing.” In: IEEE
International Conference on Data Mining. IEEE, 2016, pp. 1095–1100

2. F. Bökler, M. Ehrgott, C. Morris, and P. Mutzel. “Output-sensitive
complexity of multiobjective combinatorial optimization.” In: Journal
of Multi-Criteria Decision Analysis 24.1-2 (2017). Wiley, pp. 25–36

3. C. Morris, K. Kersting, and P. Mutzel. “Glocalized Weisfeiler-Lehman
Kernels: Global-Local Feature Maps of Graphs.” In: IEEE International
Conference on Data Mining. IEEE, 2017, pp. 327–336

4. N. M. Kriege and C. Morris. “Recent Advances in Kernel-Based Graph
Classification.” In: The European Conference on Machine Learning &
Principles and Practice of Knowledge Discovery In Databases. Springer,
2017, pp. 388–392

5. N. M. Kriege, M. Neumann, C. Morris, K. Kersting, and P. Mutzel.
“A Unifying View of Explicit and Implicit Feature Maps for Structured
Data: Systematic Studies of Graph Kernels.” In: CoRR abs/1703.00676
(2017). Accepted for publication in Data Mining and Knowledge Dis-
covery

6. N. M. Kriege, C. Morris, A. Rey, and C. Sohler. “A Property Testing
Framework for the Theoretical Expressivity of Graph Kernels.” In:
International Joint Conference on Artificial Intelligence. IJCAI, 2018,
pp. 2348–2354

7. C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, Jan Eric Lenssen,
G. Rattan, and M. Grohe. “Weisfeiler and Leman Go Neural: Higher-
order Graph Neural Networks.” In: AAAI Conference on Artificial
Intelligence. AAAI. 2019, pp. 4602–4609

99

Appendix A. Full list of publications

8. R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec.
“Hierarchical Graph Representation Learning with Differentiable Pool-
ing.” In: Advances in Neural Information Processing Systems. NIPS,
2018, pp. 4800–4810

9. N. M. Kriege, F. D. Johansson, and C. Morris. “A Survey on Graph
Kernels.” In: CoRR abs/1903.11835 (2019). Accepted for publication
in Applied Network Science

10. C. Morris and P. Mutzel. “Towards a practical k-dimensional Weisfeiler-
Leman algorithm.” In: CoRR abs/1904.01543 (2019)

100

Appendix B.

Datasets

Table B.1.: Dataset statistics and properties.

Dataset
Properties

Number of graphs Number of classes ∅ Number of vertices ∅ Number of edges Vertex labels

Enzymes 600 6 32.6 62.1 ✓

IMDB-Binary 1 000 2 19.8 96.5 ✗

IMDB-Multi 1 500 3 13.0 65.9 ✗

Mutag 188 2 17.9 19.8 ✓

NCI1 4 110 2 29.9 32.3 ✓

NCI109 4 127 2 29.7 32.1 ✓

PTC_FM 349 2 14.1 14.5 ✓

PTC_MR 344 2 14.3 14.7 ✓

Proteins 1 113 2 39.1 72.8 ✓

Reddit-Binary 2 000 2 429.6 497.8 ✗

Reddit-Binary-5k 4 999 5 508.5 594.9 ✗

In the following, we describe the datasets used in the experimental evalua-
tions of Section 3.3 and Chapter 4.

Enzymes and Proteins contain graphs representing proteins according to
the graph model of [8]. Each vertex is annotated with a discrete label
and a continuous label containing physical or chemical measurements of
dimension 18 and 1, respectively. Note that we ignored the continuous
labels for the experiments in Section 3.3 and Chapter 4. The datasets
are subdivided into six and two classes, respectively. Note that this is
the same dataset used in [25], which does not contain all the annotations
described and used in [8].

IMDB-Binary and IMDB-Multi are movie collaboration datasets first used
in [122] based on data from IMDB1. Each vertex represents an actor
or an actress, and there exists an edge between two vertices if the

1https://www.imdb.com/

101

https://www.imdb.com/

Appendix B. Datasets

corresponding actor or actress appears in the same movie. Each graph
represents an ego network of an actor or actress. The vertices are unla-
beled and each dataset is divided into two (three) classes corresponding
to movies genres.

Mutag is a dataset consisting of mutagenetic aromatic and heteroaromatic
nitro compounds [21, 60] with seven discrete vertex labels.

NCI1 and NCI109 are (balanced) subsets of datasets made available by the
National Cancer Institute2 [113, 106], consisting of chemical compounds
screened for activity against non-small cell lung cancer and ovarian
cancer cell lines, respectively. The vertices are annotated with discrete
labels.

PTC_FM and PTC_MR are datasets from the Predicte Toxicology Chal-
lenge (PTC)3 containing chemical compounds labeled according to
carcinogenicity on female mice (FM) or male rats (MR). The vertices
are annotated with discrete labels. Both datasets are divided into two
classes.

Reddit-Binary and Reddit-Binary-5k are social network datasets based on
data from the content-aggregation website Reddit4 [122]. Each vertex
represents a user and two vertices are connected by an edge if one user
responded to the other user’s comment. The vertices are unlabeled and
the datasets are divided into two (five) classes representing different
communities.

2https://www.cancer.gov/
3https://www.predictive-toxicology.org/ptc/
4https://www.reddit.com/

102

https://www.cancer.gov/
https://www.predictive-toxicology.org/ptc/
https://www.reddit.com/

Bibliography
[1] G. W. Adamson and J. A. Bush. “A method for the automatic classi-

fication of chemical structures.” In: Information Storage and Retrieval
9.10 (1973). Elsevier, pp. 561 –568.

[2] N. K. Ahmed, T. Willke, and R. A. Rossi. “Estimation of Local
Subgraph Counts.” In: IEEE International Conference on Big Data.
IEEE, 2016, pp. 1–10.

[3] F. Aiolli, M. Donini, N. Navarin, and A. Sperduti. “Multiple Graph-
Kernel Learning.” In: IEEE Symposium Series on Computational
Intelligence. IEEE, 2015, pp. 1607–1614.

[4] A. Andoni. “Nearest Neighbor Search: The Old, the New, and the
Impossible.” Ph.D. thesis. MIT, 2009.

[5] V. Arvind, J. Köbler, G. Rattan, and O. Verbitsky. “On the Power of
Color Refinement.” In: International Symposium on Fundamentals of
Computation Theory. Vol. 9210. Lecture Notes in Computer Science.
Springer, 2015, pp. 339–350.

[6] L. Babai and L. Kucera. “Canonical Labelling of Graphs in Linear
Average Time.” In: Symposium on Foundations of Computer Science.
IEEE, 1979, pp. 39–46.

[7] I. Benjamini, O. Schramm, and A. Shapira. “Every Minor-Closed
Property of Sparse Graphs is Testable.” In: Advances in Mathematics
223.6 (2010). Elsevier, pp. 2200–2218.

[8] K. M. Borgwardt and H.-P. Kriegel. “Shortest-path kernels on graphs.”
In: IEEE International Conference on Data Mining. IEEE, 2005,
pp. 74–81.

[9] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi.
“Counting Graphlets: Space vs Time.” In: ACM International Confer-
ence on Web Search and Data Mining. ACM, 2017, pp. 557–566.

103

Bibliography

[10] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. “Spectral Networks
and Deep Locally Connected Networks on Graphs.” In: International
Conference on Learning Representation. 2014.

[11] R. G. Busacker and T. L. Saaty. Finite graphs and networks: an
introduction with applications. McGraw-Hill, 1965.

[12] F. Bökler, M. Ehrgott, C. Morris, and P. Mutzel. “Output-sensitive
complexity of multiobjective combinatorial optimization.” In: Journal
of Multi-Criteria Decision Analysis 24.1-2 (2017). Wiley, pp. 25–36.

[13] J. Cai, M. Fürer, and N. Immerman. “An optimal lower bound on the
number of variables for graph identifications.” In: Combinatorica 12.4
(1992). Springer, pp. 389–410.

[14] C.-C. Chang and C.-J. Lin. “LIBSVM: A library for support vector
machines.” In: ACM Transactions on Intelligent Systems and Technol-
ogy 2 (3 2011). ACM, Software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm, 27:1–27:27.

[15] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. “Coordinate Descent Method
for Large-scale L2-loss Linear Support Vector Machines.” In: Journal
of Machine Learning Research 9 (2008). JMLR, pp. 1369–1398.

[16] X. Chen, Y. Li, P. Wang, and J. C. S. Lui. “A General Framework
for Estimating Graphlet Statistics via Random Walk.” In: VLDB
Endowment 10.3 (Nov. 2016). VLDB, pp. 253–264.

[17] F. Costa and K. De Grave. “Fast Neighborhood Subgraph Pairwise
Distance Kernel.” In: International Conference on Machine Learning.
Omnipress, 2010, pp. 255–262.

[18] G. Da San Martino, N. Navarin, and A. Sperduti. “A memory efficient
graph kernel.” In: International Joint Conference on Neural Networks.
IEEE, 2012, pp. 1–7.

[19] G. Da San Martino, N. Navarin, and A. Sperduti. “A Tree-Based Kernel
for Graphs.” In: SIAM International Conference on Data Mining.
SIAM, 2012, pp. 975–986.

[20] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. “Locality-
sensitive hashing scheme based on p-stable distributions.” In: ACM
Symposium on Computational Geometry. ACM, 2004, pp. 253–262.

104

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[21] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shus-
terman, and C. Hansch. “Structure-activity relationship of mutagenic
aromatic and heteroaromatic nitro compounds. Correlation with molec-
ular orbital energies and hydrophobicity.” In: Journal of Medicinal
Chemistry 34.2 (1991). ACS, pp. 786–797.

[22] M. Defferrard, Bresson X., and P. Vandergheynst. “Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering.”
In: Advances in Neural Information Processing Systems. NIPS, 2016,
pp. 3844–3852.

[23] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T.
Hirzel, A. Aspuru-Guzik, and R. P. Adams. “Convolutional Networks
on Graphs for Learning Molecular Fingerprints.” In: Advances in
Neural Information Processing Systems. NIPS, 2015, pp. 2224–2232.

[24] C. Dwork and A. Roth. “The algorithmic foundations of differential
privacy.” In: Foundations and Trends in Theoretical Computer Science
9.3–4 (2014). Now, pp. 211–407.

[25] A. Feragen, N. Kasenburg, J. Petersen, M. D. Bruijne, and Borgwardt
K. M. “Scalable kernels for graphs with continuous attributes.” In:
Advances in Neural Information Processing Systems. Erratum available
at http://image.diku.dk/aasa/papers/graphkernels_nips_
erratum.pdf. NIPS, 2013, pp. 216–224.

[26] M. Fey, J. E. Lenssen, F. Weichert, and H. Müller. “SplineCNN:
Fast Geometric Deep Learning with Continuous B-Spline Kernels.” In:
IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
2018, pp. 869–877.

[27] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur. “Protein Interface
Prediction using Graph Convolutional Networks.” In: Advances in
Neural Information Processing Systems. NIPS, 2017, pp. 6533–6542.

[28] H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell. “Optimal assignment
kernels for attributed molecular graphs.” In: International Conference
on Machine Learning. ACM, 2005, pp. 225–232.

[29] T. Gärtner, P. Flach, and S. Wrobel. “On Graph Kernels: Hardness
Results and Efficient Alternatives.” In: Learning Theory and Kernel
Machines. Vol. 2777. Lecture Notes in Computer Science. Springer,
2003, pp. 129–143.

105

http://image.diku.dk/aasa/papers/graphkernels_nips_erratum.pdf
http://image.diku.dk/aasa/papers/graphkernels_nips_erratum.pdf

Bibliography

[30] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl.
“Neural Message Passing for Quantum Chemistry.” In: International
Conference on Machine Learning. PMLR, 2017.

[31] O. Goldreich. “Introduction to testing graph properties.” In: Property
Testing. Vol. 6390. Lecture Notes in Computer Science. Springer, 2010.

[32] O. Goldreich and D. Ron. “Property Testing in Bounded Degree
Graphs.” In: Algorithmica 32 (2002). Springer, pp. 302–343.

[33] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[34] K. Grauman and T. Darrell. “Approximate Correspondences in High
Dimensions.” In: Advances in Neural Information Processing Systems.
NIPS, 2007, pp. 505–512.

[35] K. Grauman and T. Darrell. “The pyramid match kernel: Efficient
learning with sets of features.” In: Journal of Machine Learning Re-
search 8.Apr (2007). JMLR, pp. 725–760.

[36] M. Grohe. Descriptive Complexity, Canonisation, and Definable Graph
Structure Theory. Lecture Notes in Logic. Cambridge University Press,
2017.

[37] M. Grohe, K. Kersting, M. Mladenov, and E. Selman. “Dimension
Reduction via Colour Refinement.” In: European Symposium on Algo-
rithms. Vol. 8737. Lecture Notes in Computer Science. Springer, 2014,
pp. 505–516.

[38] I. Guyon. Design of experiments for the NIPS 2003 variable selection
benchmark. 2003. url: http://clopinet.com/isabelle/Projects/
NIPS2003/Slides/NIPS2003-Datasets.pdf (visited on 09/29/2016).

[39] W. L. Hamilton, R. Ying, and J. Leskovec. “Inductive Representa-
tion Learning on Large Graphs.” In: Advances in Neural Information
Processing Systems. NIPS, 2017, pp. 1025–1035.

[40] W. L. Hamilton, R. Ying, and J. Leskovec. “Representation Learning
on Graphs: Methods and Applications.” In: IEEE Data Engineering
Bulletin 40.3 (2017). IEEE, pp. 52–74.

[41] D. Haussler. Convolution Kernels on Discrete Structures. Tech. rep.
UCS-CRL-99-10. University of California at Santa Cruz, 1999.

106

http://clopinet.com/isabelle/Projects/NIPS2003/Slides/NIPS2003-Datasets.pdf
http://clopinet.com/isabelle/Projects/NIPS2003/Slides/NIPS2003-Datasets.pdf

[42] L. Hermansson, F. D. Johansson, and O. Watanabe. “Generalized
Shortest Path Kernel on Graphs.” In: International Conference on
Discovery Science. Vol. 9356. Lecture Notes in Computer Science.
Springer, 2015, pp. 78–85.

[43] S. Hido and H. Kashima. “A Linear-Time Graph Kernel.” In: IEEE
International Conference on Data Mining. IEEE, 2009, pp. 179–188.

[44] W. Hoeffding. “Probability Inequalities for Sums of Bounded Random
Variables.” In: Journal of the American Statistical Association 58.301
(1963), pp. 13–30.

[45] T. Horváth, T. Gärtner, and S. Wrobel. “Cyclic pattern kernels for
predictive graph mining.” In: ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2004, pp. 158–167.

[46] P. Indyk and R. Motwani. “Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality.” In: ACM Symposium on
Theory of Computing. ACM, 1998, pp. 604–613.

[47] T. Joachims. “Training Linear SVMs in Linear Time.” In: ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2006, pp. 217–226.

[48] F. D. Johansson and D. Dubhashi. “Learning with Similarity Functions
on Graphs Using Matchings of Geometric Embeddings.” In: ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2015, pp. 467–476.

[49] F. D. Johansson, O. Frost, C. Retzner, and D. Dubhashi. “Classifying
large graphs with differential privacy.” In: Modeling Decisions for
Artificial Intelligence. Vol. 9321. Lecture Notes in Computer Science.
Springer, 2015, pp. 3–17.

[50] F. D. Johansson, V. Jethava, D. P. Dubhashi, and C. Bhattacharyya.
“Global graph kernels using geometric embeddings.” In: International
Conference on Machine Learning. PMLR, 2014, pp. 694–702.

[51] H. Kashima, K. Tsuda, and A. Inokuchi. “Marginalized Kernels Be-
tween Labeled Graphs.” In: International Conference on Machine
Learning. AAAI, 2003, pp. 321–328.

107

Bibliography

[52] J. Kazius, R. McGuire, and R. Bursi. “Derivation and validation
of toxicophores for mutagenicity prediction.” In: Journal Medicinal
Chemistry 48.13 (2005). ACS, pp. 312–320.

[53] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and M. Neumann.
Benchmark Data Sets for Graph Kernels. 2016. url: http://graphkernels.
cs.tu-dortmund.de.

[54] K. Kersting, M. Mladenov, R. Garnett, and M. Grohe. “Power iter-
ated color refinement.” In: AAAI Conference on Artificial Intelligence.
AAAI, 2014, pp. 1904–1910.

[55] S. Kiefer, P. Schweitzer, and E. Selman. “Graphs Identified by Log-
ics with Counting.” In: International Symposium on Mathematical
Foundations of Computer Science. 2015, pp. 319–330.

[56] T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph
Convolutional Networks.” In: International Conference on Learning
Representation. 2017.

[57] D. B. Kireev. “ChemNet: A Novel Neural Network Based Method for
Graph/Property Mapping.” In: Journal of Chemical Information and
Computer Sciences 35.2 (1995). ACS, pp. 175–180.

[58] R. Kondor and H. Pan. “The Multiscale Laplacian Graph Kernel.”
In: Advances in Neural Information Processing Systems. NIPS, 2016,
pp. 2982–2990.

[59] R. Kondor, N. Shervashidze, and K. M. Borgwardt. “The graphlet
spectrum.” In: International Conference on Machine Learning. ACM,
2009, pp. 529–536.

[60] N. Kriege and P. Mutzel. “Subgraph Matching Kernels for Attributed
Graphs.” In: International Conference on Machine Learning. Omni-
press, 2012.

[61] N. Kriege, M. Neumann, K. Kersting, and M. Mutzel. “Explicit versus
Implicit Graph Feature Maps: A Computational Phase Transition for
Walk Kernels.” In: IEEE International Conference on Data Mining.
IEEE, 2014, pp. 881–886.

[62] N. M. Kriege, P.-L. Giscard, and R. C. Wilson. “On Valid Opti-
mal Assignment Kernels and Applications to Graph Classification.”

108

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

In: Advances in Neural Information Processing Systems. NIPS, 2016,
pp. 1615–1623.

[63] N. M. Kriege, F. D. Johansson, and C. Morris. “A Survey on Graph
Kernels.” In: CoRR abs/1903.11835 (2019). Accepted for publication
in Applied Network Science.

[64] N. M. Kriege and C. Morris. “Recent Advances in Kernel-Based Graph
Classification.” In: The European Conference on Machine Learning &
Principles and Practice of Knowledge Discovery In Databases. Springer,
2017, pp. 388–392.

[65] N. M. Kriege, C. Morris, A. Rey, and C. Sohler. “A Property Testing
Framework for the Theoretical Expressivity of Graph Kernels.” In:
International Joint Conference on Artificial Intelligence. IJCAI, 2018,
pp. 2348–2354.

[66] N. M. Kriege, M. Neumann, C. Morris, K. Kersting, and P. Mutzel.
“A Unifying View of Explicit and Implicit Feature Maps for Structured
Data: Systematic Studies of Graph Kernels.” In: CoRR abs/1703.00676
(2017). Accepted for publication in Data Mining and Knowledge Dis-
covery.

[67] B. Li, X. Zhu, L. Chi, and C. Zhang. “Nested Subtree Hash Kernels for
Large-Scale Graph Classification over Streams.” In: IEEE International
Conference on Data Mining. IEEE, 2012, pp. 399–408.

[68] L. Li, H. Tong, Y. Xiao, and W. Fan. “Cheetah: Fast Graph Kernel
Tracking on Dynamic Graphs.” In: SIAM International Conference on
Data Mining. SIAM, 2015, pp. 280–288.

[69] W. Li, H. Saidi, H. Sanchez, M. Schäf, and P. Schweitzer. “Detecting
Similar Programs via the Weisfeiler-Leman Graph Kernel.” In: Inter-
national Conference on Software Reuse. Vol. 9679. Lecture Notes in
Computer Science. Springer, 2016, pp. 315–330.

[70] G. Loosli, S. Canu, and C. S. Ong. “Learning SVM in Krĕın Spaces.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
38.6 (2016), pp. 1204–1216.

[71] L. Lovász. “On the Shannon Capacity of a Graph.” In: IEEE Transac-
tions on Information Theory 25.1 (2006). IEEE, pp. 1–7.

109

Bibliography

[72] P. Mahé and J.-P. Vert. “Graph kernels based on tree patterns for
molecules.” In: Machine Learning 75.1 (2009). Springer, pp. 3–35.

[73] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. “Exten-
sions of marginalized graph kernels.” In: International Conference on
Machine Learning. ACM, 2004, pp. 552–559.

[74] P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. “Graph
Kernels for Molecular Structure-Activity Relationship Analysis with
Support Vector Machines.” In: Journal of Chemical Information and
Modeling 45.4 (2005). ACS, pp. 939–951.

[75] P. N. Malkin. “Sherali–Adams relaxations of graph isomorphism poly-
topes.” In: Discrete Optimization 12 (2014). Elsevier, pp. 73 –97.

[76] C. Merkwirth and T. Lengauer. “Automatic Generation of Comple-
mentary Descriptors with Molecular Graph Networks.” In: Journal of
Chemical Information and Modeling 45.5 (2005). ACS, pp. 1159–1168.

[77] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient Estimation
of Word Representations in Vector Space.” In: CoRR abs/1301.3781
(2013).

[78] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U.
Alon. “Network motifs: simple building blocks of complex networks.”
In: Science 298.5594 (2002). AAAS, pp. 824–827.

[79] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Ma-
chine Learning. MIT Press, 2012.

[80] C. Morris, K. Kersting, and P. Mutzel. “Glocalized Weisfeiler-Lehman
Kernels: Global-Local Feature Maps of Graphs.” In: IEEE International
Conference on Data Mining. IEEE, 2017, pp. 327–336.

[81] C. Morris and P. Mutzel. “Towards a practical k-dimensional Weisfeiler-
Leman algorithm.” In: CoRR abs/1904.01543 (2019).

[82] C. Morris, N. M. Kriege, K. Kersting, and P. Mutzel. “Faster Ker-
nel for Graphs with Continuous Attributes via Hashing.” In: IEEE
International Conference on Data Mining. IEEE, 2016, pp. 1095–1100.

[83] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, Jan Eric Lenssen,
G. Rattan, and M. Grohe. “Weisfeiler and Leman Go Neural: Higher-
order Graph Neural Networks.” In: AAAI Conference on Artificial
Intelligence. AAAI. 2019, pp. 4602–4609.

110

[84] M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting. “Propaga-
tion kernels: Efficient graph kernels from propagated information.” In:
Machine Learning 102.2 (2016). Springer, pp. 209–245.

[85] I. Newman and C. Sohler. “Every Property of Hyperfinite Graphs
Is Testable.” In: SIAM Journal on Computing 42.3 (2013). SIAM,
pp. 1095–1112.

[86] M. E. J. Newman. “The structure and function of complex networks.”
In: SIAM review 45.2 (2003), pp. 167–256.

[87] M. Niepert, M. Ahmed, and K. Kutzkov. “Learning Convolutional
Neural Networks for Graphs.” In: International Conference on Machine
Learning. PMLR, 2016, pp. 2014–2023.

[88] G. Nikolentzos, P. Meladianos, and M. Vazirgiannis. “Matching Node
Embeddings for Graph Similarity.” In: AAAI Conference on Artificial
Intelligence. AAAI, 2017, pp. 2429–2435.

[89] G. Nikolentzos, P. Meladianos, S. Limnios, and M. Vazirgiannis. “A
Degeneracy Framework for Graph Similarity.” In: International Joint
Conference on Artificial Intelligence. IJCAI, 2018, pp. 2595–2601.

[90] L. Oneto, N. Navarin, M. Donini, A. Sperduti, F. Aiolli, and D. An-
guita. “Measuring the expressivity of graph kernels through Statistical
Learning Theory.” In: Neurocomputing 268.Supplement C (2017). El-
sevier, pp. 4–16.

[91] F. Orsini, P. Frasconi, and L. De Raedt. “Graph Invariant Kernels.”
In: International Joint Conference on Artificial Intelligence. IJCAI,
2015, pp. 3756–3762.

[92] D. Pachauri, R. Kondor, and V. Singh. “Solving the multi-way match-
ing problem by permutation synchronization.” In: Advances in Neural
Information Processing Systems. NIPS, 2013, pp. 1860–1868.

[93] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. “Scikit-learn: Machine Learning in Python.” In: Journal
of Machine Learning Research 12 (2011). JMLR, pp. 2825–2830.

111

Bibliography

[94] A. Rahimi and B. Recht. “Random features for large-scale kernel
machines.” In: Advances in Neural Information Processing Systems.
NIPS, 2008, pp. 1177–1184.

[95] L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. “Graph kernels
for chemical informatics.” In: Neural Networks 18.8 (2005). Elsevier,
pp. 1093 –1110.

[96] R. Ramakrishnan, O. Dral P., M. Rupp, and O. Anatole von Lilienfeld.
“Quantum chemistry structures and properties of 134 kilo molecules.”
In: Scientific Data 1 (2014). Nature.

[97] J. Ramon and M. Bruynooghe. “A polynomial time computable met-
ric between point sets.” In: Acta Informatica 37.10 (2001). Springer,
pp. 765–780.

[98] J. Ramon and T. Gärtner. “Expressivity versus Efficiency of Graph
Kernels.” In: International Workshop on Mining Graphs, Trees and
Sequences. 2003, pp. 65–74.

[99] D. Rogers and M. Hahn. “Extended-connectivity fingerprints.” In:
Journal of Chemical Information and Modeling 50.5 (2010). ACS,
pp. 742–754.

[100] L. Ruddigkeit, R. van Deursen, L. C. Blum, and J.-L. Reymond.
“Enumeration of 166 Billion Organic Small Molecules in the Chemical
Universe Database GDB-17.” In: Journal of Chemical Information and
Modeling 52 11 (2012). ACS, pp. 2864–75.

[101] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini.
“The Graph Neural Network Model.” In: IEEE Transactions on Neural
Networks 20.1 (2009). IEEE, pp. 61–80.

[102] M. Schiavinato, A. Gasparetto, and A. Torsello. “Transitive Assign-
ment Kernels for Structural Classification.” In: Similarity-Based Pat-
tern Recognition: Third International Workshop. Vol. 9370. Lecture
Notes in Computer Science. Springer, 2015, pp. 146–159.

[103] K. Schütt, P. J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko,
and K. R. Müller. “SchNet: A Continuous-Filter Convolutional Neural
Network for Modeling Quantum Interactions.” In: Advances in Neural
Information Processing Systems. NIPS, 2017, pp. 992–1002.

112

[104] R. K. Sevakula and N. K. Verma. “Support Vector Machine for Large
Databases as Classifier.” In: SEMCCO. Vol. 7677. Lecture Notes in
Computer Science. Springer, 2012.

[105] N. Shervashidze, S. V. N. Vishwanathan, T. H. Petri, K. Mehlhorn,
and K. M. Borgwardt. “Efficient Graphlet Kernels for Large Graph
Comparison.” In: International Conference on Artificial Intelligence
and Statistics. PMLR, 2009, pp. 488–495.

[106] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt. “Weisfeiler-Lehman Graph Kernels.” In: Journal of
Machine Learning Research 12 (2011). JMLR, pp. 2539–2561.

[107] A. Sperduti and A. Starita. “Supervised neural networks for the
classification of structures.” In: IEEE Transactions on Neural Networks
8.2 (1997). IEEE, pp. 714–35.

[108] Y. Su, F. Han, R. E. Harang, and X. Yan. “A fast Kernel for Attributed
Graphs.” In: SIAM International Conference on Data Mining. SIAM,
2016, pp. 486–494.

[109] M. Sugiyama and K. M. Borgwardt. “Halting in Random Walk Kernels.”
In: Advances in Neural Information Processing Systems. NIPS, 2015,
pp. 1639–1647.

[110] G. Valiente. Algorithms on Trees and Graphs. Springer, 2002.

[111] J.-P. Vert. “The optimal assignment kernel is not positive definite.” In:
CoRR abs/0801.4061 (2008).

[112] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt. “Graph Kernels.” In: Journal of Machine Learning Research
11 (2010). JMLR, pp. 1201–1242.

[113] N. Wale, I. A. Watson, and G. Karypis. “Comparison of descriptor
spaces for chemical compound retrieval and classification.” In: Knowl-
edge and Information Systems 14.3 (2008). Springer, pp. 347–375.

[114] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon. “Dynamic Graph CNN for Learning on Point Clouds.” In:
CoRR abs/1801.07829 (2018).

[115] B. Weisfeiler. On Construction and Identification of Graphs. Lecture
Notes in Mathematics, Vol. 558. Springer, 1976.

113

Bibliography

[116] B. Weisfeiler and A. Leman. “The reduction of a graph to canonical
form and the algebra which appears therein.” In: Nauchno-Technicheskaya
Informatsia 2.9 (1968). English translation by G. Ryabov is available
at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.
pdf, pp. 12–16.

[117] P. Willett and V. Winterman. “A Comparison of Some Measures for
the Determination of Inter-Molecular Structural Similarity Measures
of Inter-Molecular Structural Similarity.” In: Quantitative Structure-
Activity Relationships 5.1 (1986). Elsevier, pp. 18–25.

[118] A. Woźnica, A. Kalousis, and M. Hilario. “Adaptive Matching Based
Kernels for Labelled Graphs.” In: Advances in Knowledge Discovery
and Data Mining. Vol. 6119. Lecture Notes in Computer Science.
Springer, 2010, pp. 374–385.

[119] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S.
Pappu, K. Leswing, and V. Pande. “MoleculeNet: a benchmark for
molecular machine learning.” In: Chemical Science 9 (2 2018). RSC,
pp. 513–530.

[120] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka.
“Representation Learning on Graphs with Jumping Knowledge Net-
works.” In: International Conference on Machine Learning. PMLR,
2018, pp. 5453–5462.

[121] P. Yanardag and S. V. N. Vishwanathan. “A Structural Smoothing
Framework For Robust Graph Comparison.” In: Advances in Neural
Information Processing Systems. NIPS, 2015, pp. 2125–2133.

[122] P. Yanardag and S. V. N. Vishwanathan. “Deep Graph Kernels.” In:
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2015, pp. 1365–1374.

[123] Y. Yao and L. B. Holder. “Scalable classification for large dynamic
networks.” In: IEEE International Conference on Big Data. IEEE,
2015, pp. 609–618.

[124] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec. “Graph Convolutional Neural Networks for Web-Scale
Recommender Systems.” In: ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2018.

114

https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

[125] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec.
“Hierarchical Graph Representation Learning with Differentiable Pool-
ing.” In: Advances in Neural Information Processing Systems. NIPS,
2018, pp. 4800–4810.

[126] K. Yu, L. Ji, and X. Zhang. “Kernel Nearest-Neighbor Algorithm.” In:
Neural Processing Letters 15.2 (2002). Springer, pp. 147–156.

[127] M. Zhang and Y. Chen. “Weisfeiler-Lehman Neural Machine for Link
Prediction.” In: ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2017, pp. 575–583.

[128] M. Zhang, Z. Cui, M. Neumann, and C. Yixin. “An End-to-End Deep
Learning Architecture for Graph Classification.” In: AAAI Conference
on Artificial Intelligence. AAAI, 2018, pp. 4428–4435.

[129] Z. Zhang, M. Wang, Y. Xiang, Y. Huang, and A. Nehorai. “RetGK:
Graph Kernels based on Return Probabilities of Random Walks.”
In: Advances in Neural Information Processing Systems. NIPS, 2018,
pp. 3964–3974.

[130] V. M. Zolotarev. One-dimensional stable distributions. Translations of
mathematical monographs. Providence, RI: AMS, 1986.

115

	Introduction
	Relevant publications
	Structure

	Preliminaries
	Notation
	Graph theory
	Supervised machine learning
	Learning with kernels
	Support vector machines

	Neural networks
	The Weisfeiler-Leman algorithm
	The 1-dimensional Weisfeiler-Leman algorithm
	The k-dimensional Weisfeiler-Leman algorithm

	Kernel methods for graphs
	Related work
	Neighborhood aggregation approaches
	Assignment- and matching-based approaches
	Substructure-based approaches
	Walk- and path-based approaches
	Convolution graph kernels for graphs with continuous labels
	Other approaches
	Theoretical work

	Fast kernels for graphs with continuous labels
	Hash graph kernels
	Analysis
	Hash functions
	Hash graph kernel instances
	Experimental evaluation
	Conclusion

	Expressive graph kernels based on the Weisfeiler-Leman algorithm
	The local k-dimensional Weisfeiler-Leman algorithm
	Proof of loco
	A kernel based on the δ-k-LWL
	An approximation algorithm for the δ-k-LWL for bounded-degree graphs
	Experimental evaluation
	Datasets and graph kernels
	Experimental protocol
	Results and discussion
	Conclusion

	A theoretical framework for the expressiveness of graph kernels
	Definitions from property testing
	Distinguishable graph properties
	Properties distinguishable by popular graph kernels
	Graph kernels that distinguish graph properties
	A learning algorithm
	Conclusion

	Neural methods for graphs
	Related work
	Relationship between the 1-WL and 1-GNNs
	Proof of equal
	Uncolored graphs
	Colored graphs
	Shortcomings of both approaches

	The k-dimensional graph neural network architecture
	Hierarchical variant

	Experimental study
	Datasets
	Baselines
	Model configuration
	Experimental protocol
	Results and discussion

	Conclusion

	Conclusion
	Directions for future work and open problems

	Full list of publications
	Datasets
	Bibliography

