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Hybrid quantum registers, such as electron-nuclear spin systems, have emerged as promising hard-
ware for implementing quantum information and computing protocols in scalable systems. Neverthe-
less, the coherent control of such systems still faces challenges. Particularly, the lower gyromagnetic
ratios of the nuclear spins cause them to respond slowly to control fields, resulting in gate times
that are generally longer than the coherence time of the electron. Here, we demonstrate a scheme
for circumventing this problem by indirect control: we apply a small number of short pulses only
to the electron and let the full system undergo free evolution under the hyperfine coupling between
the pulses. Using this scheme, we realize robust quantum gates in an electron-nuclear spin system,
including a Hadamard gate on the nuclear spin and a controlled-NOT gate with the nuclear spin
as the target qubit. The durations of these gates are shorter than the electron coherence time, and
thus additional operations to extend the system coherence time are not needed. Our demonstration
serves as a proof of concept for achieving efficient coherent control of electron-nuclear spin systems,
such as NV centers in diamond. Our scheme is still applicable when the nuclear spins are only
weakly coupled to the electron.

Spin-based quantum registers have come up as a feasible
architecture for implementing quantum computing [1, 2].
Among them are the hybrid systems consisting of elec-
tron and nuclear spins such as Nitrogen Vacancy (NV)
centers in diamond [3–13]. Specific properties of their
subsystems are the distinct gyromagnetic ratios, which
result, e.g. in the requirement that the frequencies of the
control fields applied to electronic and nuclear spins lie in
the microwave (MW) and radiofrequency (RF) regimes
respectively. The fast gate operation times on the elec-
trons (order of ns) and the long coherence times of the
nuclear spins (order of ms) serve as efficient control and
memory channels. However, the lower gyromagnetic ra-
tios of the nuclear spins result in longer nuclear spin gate
operation times (a few tens of µs), which can exceed the
electron coherence times (≈ 1− 25 µs) at room tempera-
ture, thus posing a major challenge for coherent control
of electron-nuclear spin systems. Techniques like dynam-
ical decoupling (DD) can partly alleviate this issue by
extending the coherence times of the electron [14–19],
but the additional DD pulses increase the control cost.

Previously, one- and two-qubit operations were demon-
strated using RF pulses on the nuclear spin that had
strong hyperfine coupling of ≈ 130 MHz [20–22]. Such
strong couplings enhance the nuclear spin Rabi frequency
allowing fast RF operations (order of ns) and hence direct
control of nuclear spins was feasible [21, 23, 24]. How-
ever, scalable quantum computing requires coherent con-
trol of tens to hundreds of qubits and the control of dipo-
lar coupled nuclear spins gets challenging with increasing
distance from the electrons. To avoid these challenges,
indirect control (IC) of the nuclear spins has also been
incorporated [25–30]. In this approach, the control fields
are applied only on the electron, combined with free evo-
lution of the system under the hyperfine couplings. How-
ever, most of the earlier works based on IC required a
large number of control operations, thereby increasing
the control overhead [28, 31].

In this letter, we experimentally implement efficient

quantum gates in an NV center in diamond at room tem-
perature, using IC with minimal control cost of only 2-3
of short MW pulses and delays. Our approach allows
variable delays and pulse parameters. As such, it differs
from earlier work [31] that used many DD cycles with
fixed delays. We use this approach to demonstrate quan-
tum gates that are required for a universal set of gates: a
Hadamard gate on a nuclear spin, and a controlled-NOT
(CNOT) gate with control on the electron and target on
the nuclear spin.
We consider a single NV center that consists of a spin-1
electron coupled to a spin-1 14N and a spin-1/2 13C (see
Supplemental Material [32]). We perform the operations
on the electron and 13C by focussing on a subspace of the
system where the 14N is in the mN = 1 state. We then
can write the secular part of the electron-13C Hamilto-
nian in the lab frame as H/(2π) = D(S2

z ⊗ E2) − (νe −
AN )(Sz⊗E2)−νC(E3⊗Iz)+Azz(Sz⊗Iz)+Azx(Sz⊗Ix),
where Sz and Iz/x are the spin operators for electron

and 13C= respectively, En is an n × n identity matrix,
D = 2.87 GHz is the zero field splitting, νe = −414 MHz
and νC = 0.158 MHz are the Larmor frequencies of the
electron and 13C in a 14.8 mT field, AN = −2.16 MHz
is the hyperfine coupling with 14N and Azz = −0.152
MHz and Azx = 0.110 MHz are the hyperfine cou-
plings with 13C. The eigenstates of H are |0 ↑〉, |0 ↓
〉, | − 1ϕ−〉, | − 1ψ−〉, |1ϕ+〉, |1ψ+〉, where {|0〉, | ± 1〉} are
the eigenstates of Sz, and

|ϕ±〉 = cos(κ±/2)| ↑〉+ sin(κ±/2)| ↓〉
|ψ±〉 = − sin(κ±/2)| ↑〉+ cos(κ±/2)| ↓〉. (1)

Here {| ↑〉,| ↓〉} are the eigenstates of Iz, and κ± =
arctan[Azx/(Azz ∓ νC)] is the angle between the quanti-
zation axis of the 13C and the NV axis.
We implement the quantum gates UT in the mS =
{0,−1} and mN = 1 manifold and refer to it as the
system subspace.This choice of subspace is realized by
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FIG. 1: MW pulse sequence to realize UT by IC, at a fixed
ω1. The delays τi, MW pulse durations ti and phases φi are
the free variables to be optimized.

using MW pulses with a Rabi frequency of ≈ 0.5 MHz
(� AN ), which covers all electron spin resonance (ESR)
transitions in the system subspace but leaves states un-
touched where the 14N is in a different state. For
the system subspace, the Hamiltonian is Hs/(2π) =
|0〉〈0| ⊗ H0 + | − 1〉〈−1| ⊗ H−1, where H0 = −νCIz and
H−1 = −(νC+Azz)Iz−AzxIx are 13C spin Hamiltonians
when the electron is in |0〉 or | − 1〉, respectively.
We implement two examples of UT :

UH = E2 ⊗
[
1 1
1 −1

]
/
√

2

UCNOT = |0〉〈0| ⊗ E2 + | − 1〉〈−1| ⊗ e−iπIx . (2)

The first is a Hadamard gate while the second is a CNOT
gate, both targeting 13C, in a basis defined in Ref. [33].
To check the implementation of UT , we initialize the sys-
tem into a pure state, apply UT and then perform a
partial tomography of the final state by recording free
precession signals (FIDs).
For practical applications, it is useful to allow additional
degrees of freedom, such as variable pulse rotation an-
gles and finite pulse durations. These degrees of free-
dom allow us to compensate experimental errors via nu-
merical optimization of the pulse sequence parameters.
As shown in Fig. 1, we consider a pulse sequence con-
sisting of delays τi and MW pulses with durations ti
and phases φi where i = 1 · · ·n, n is the number of
pulses. We fix the frequency of the pulses to be res-
onant with the ESR transition 0 ↔ −1 and the Rabi
frequency ω1/2π to 0.5 MHz. During τi, the system

freely evolves under Hs such that Ufi = e−iHsτi . The
control Hamiltonians during the MW pulse segments are
HMW
i = ω1[cosφi(sx⊗E2)+sinφi(sy⊗E2)]+Hs, where

sx/y denote the spin-1/2 operators for the electron, and

the corresponding operators are UMW
i = e−iH

MW
i ti . The

total propagator U is the time ordered product of Ufi
and UMW

i . The overlap between U and UT is defined
by the fidelity F = |Tr(U†UT )|/4. We maximize F nu-
merically, using a MATLABR© subroutine implementing
a genetic algorithm [34]. The solution returns the pulse
sequence parameters ti, τi and φi. The sequences were
made robust against fluctuations of the MW pulse ampli-
tude by optimizing F over a range ω1/(2π) = [0.48, 0.52]
MHz. Table I summarizes the optimized pulse parame-
ters for UH and UCNOT , and the average gate fidelities
are > 96% and > 97%, respectively. The resulting tra-
jectories of the electron and 13C on the Bloch-sphere is
shown in the Supplemental Material [32].

TABLE I: MW pulse sequence parameters for UH and
UCNOT . The time durations and phases are in units of µs
and radians, respectively.

τ1 τ2 τ3 τ4 t1 t2 t3 φ1 φ2 φ3

UH 0.74 0.22 0.43 0.89 0.23 1.26 1.50 3π/2 3π/2 π/2

UCNOT 3.78 2.11 2.15 0.63 1.88 3.96 1.90 0 π/5 π/2

Our experiments started with an initial laser pulse with
a wavelength of 532 nm, a duration of 5 µs, and a power
of ≈ 0.5 mW which initialized the electron to |0〉 but left
the 13C in a mixed state. To initialize 13C to | ↑〉, we
resorted to the IC method [32, 35, 36]. Starting from
ψ0 = |0 ↑〉, we implemented the circuits shown in Figs.
(2, 3). Depending on the experiment, we either observed
the electron or the 13C state via FID measurements. The
readout process consisted of another laser pulse with the
same wavelength and 400 ns duration and was used to
measure the population of mS = 0.
Figure 2(a) shows the pulse sequence for implementing
and detecting the effect of UH . The first UH generates
|0〉 ⊗ (| ↑〉 + | ↓〉)/

√
2. The 13C coherence is then al-

lowed to evolve for a variable time t after which we apply
another UH to convert one component of the coherence
to population. Lastly, a clean-up operation, with MW
pulse sequence (90x − τc − 90y), where 90x/y are pulses
with rotation angle 90◦ about the x/y-axis applied to the
mS = 0↔ 1 transition with 0.5 MHz Rabi frequency and
τc = 1/(2|Azz|) is the delay, represented by the dotted
box transfers the population from |0 ↓〉 to |1 ↓〉. The
final read-out operation thus detects only the population
of |0 ↑〉, which depends on t as [1+cos(2πνCt)]/2. In the
frequency domain, this corresponds to a peak at νC .
Using the pulse sequence in Fig. 2(a), we performed two
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FIG. 2: (a) Quantum circuit to test UH . The MW pulse se-
quence parameters for UH are given in Table. I. The clean-up
operation is represented by the dotted box. (b) Populations
(solid circles) and coherences (zig-zag arrows) at each stage
of the pulse sequence in (a). (c, d) 13C spin spectra obtained
by the pulse sequence in (a). (c) Without the first UH . (d)
With both UH . Inset: Final population of |0 ↑〉 as a function
of t.
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FIG. 3: Quantum circuits to test UCNOT . The MW pulse se-
quence parameters for UCNOT indicated by red empty boxes
are given in Table. I. θx/y/φ denote operations with rota-
tion angles θ about the x/y/φ axes that are resonant with
the transition 0 ↔ −1 and with Rabi frequencies of 8 MHz.
(a) Pulse sequence to demonstrate the effect of UCNOT on
different input states via electron spin detection. φ is the de-
tuning phase. In the presence (absence) of the 180y operation
indicated by the dashed box, the FID measurement is used
to determine the population of the mS = −1 (mS = 0) af-
ter UCNOT . (b) Pulse sequence to demonstrate the effect of
UCNOT via 13C spin detection. (c) Pictorial representation of
state ψ1.

experiments to compare the effect of UH : (1) without
the first UH (i.e, no operation, also known as NOOP)
and (2) with both UH . In the case of NOOP, the system
was in ψ0 during the free evolution period. Since ψ0

does not contain 13C coherence the resulting frequency
domain signal does not contain a resonance at νC , as
shown in Fig. 2(c). With both UH present, we observe
in Fig. 2(d) a resonance peak at νC as expected. We
numerically simulated the pulse sequence in Fig. 2(a)
without and with the first UH , and then calculated the
final populations of |0 ↑〉 as a function of t. To match the
theoretical signal with the experimental one, we had to
scale it by a factor 0.9 for NOOP and 0.8 for UH (i.e, with
two UH), and estimated the infidelity of the experimental
UH as ≈ 10%.
The schemes to demonstrate UCNOT are shown in Fig. 3.
Using the pulse sequence in Fig. 3(a), we demonstrated
the effect of UCNOT in mS = −1 by measuring electron
spin spectra. Choosing for the flip-angle θ of the initial θy
operation [37, 38] a value of π, we exchanged the popula-

tions of the |0 ↑〉 ↔ |−1 ↑〉 ≈ |−1〉⊗(|φ−〉−|ψ−〉)/
√

2 ac-
cording to Eq. (1). The subsequent UCNOT transformed

| − 1 ↑〉 to −i| − 1 ↓〉 ≈ −i| − 1〉 ⊗ (|φ−〉 + |ψ−〉)/
√

2,
since by definition of Eq. (2), UCNOT flips the 13C state
when the electron is in | − 1〉. To measure the state after
UCNOT , we transferred the population of |− 1 ↓〉 to |0 ↓〉
using a hard 180y operation. The readout process, which
measures the population of mS = 0, can then be used
to determine the population left in | − 1 ↓〉 by UCNOT .
The sequence (90x − t − 90φ) in Fig. 3(a) implements
the electron spin FID measurement, where the 90x pulse
creates electron coherence and the 90φ pulse converts one
component of the evolved coherence to population [6, 36].
Here we incremented the phase φ(t) = −2πνdt linearly
with t, using a detuning frequency νd of 3 MHz. We then
measured the population of mS = 0 with the readout
laser pulse as a function of t and its Fourier transform
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1
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FIG. 4: (a) Electron spin spectra for the pulse sequence corre-
sponding to Fig. 3(a) without and with UCNOTwhere θy = π.
The thermal state spectra on top are shifted vertically for
reference. The electron spin spectra are centered around the
detuning frequency 3 MHz. (b) 13C spin spectra obtained
by the pulse sequence shown in Fig. 3(b) without and with
UCNOT . The peaks appear at ν−= 0.11 MHz.

gives the frequency domain signal. Thus, as seen in the
electron spin spectra in Fig. 4(a), the change of nuclear
spin state resulted in a different frequency of the ESR
lines in the case of UCNOT as compared to NOOP.
Since UCNOT targets the 13C, we also observed its effects
on the 13C by measuring the nuclear spin spectra using
the pulse sequence in Fig. 3(b). The initial 180y opera-

tion transforms |0 ↑〉 to |−1 ↑〉 ≈ |−1〉⊗(|ϕ−〉−|ψ−〉)/
√

2.
After implementing UCNOT , we allowed the 13C coher-
ence between states |ϕ−〉 and |ψ−〉 to evolve for a variable
time t, as shown in Fig. 3(c), and then applied another
180y operation to the electron to bring the evolved state
from mS = −1 to mS = 0. The subsequent clean-up op-
eration removed the population of |0 ↓〉 and allowed us to
measure the remaining population of |0 ↑〉 with the read-
out laser pulse. The experimental 13C spectra without
and with UCNOT are shown in Fig. 4(b). The resonance
frequency of the peak at 0.11 MHz agree with the ex-
pected resonance frequency ν− of the 13C for mS = −1.
Comparing with NOOP, the inverted amplitude shows
that UCNOT flipped the 13C states in mS = −1. In Figs.
4(a, b), we show the matching simulations, calculated for
ideal pulses, scaled by a factor 0.8.
As an additional test of the sequence for different input
states, we first applied a selective rotation, when mN = 1
[39], of ψ0 by an angle θy to generate the superposition
state ψθ = cos(θ/2)|0 ↑〉 + sin(θ/2)| − 1 ↑〉. As shown
in Fig. 3(a), we then applied either a NOOP or UCNOT .
The latter transforms ψθ to cos(θ/2)|0 ↑〉−i sin(θ/2)|−1 ↓
〉, which is entangled for θ 6= nπ with integer n. Ideally,
the amplitude of the resonance line for the transition |0 ↓〉
↔ |1 ↓〉 [40] is proportional to the population P0↓. We
thus determined P0↓ and the results, which are shown in
Fig. 5, demonstrate the effect of UCNOT for the 2 cases
where the control qubit is |0〉 or |−1〉. Figure 5(a) shows
P0↓ after applying NOOP or UCNOT to ψθ, as a function
of θ in the absence of the 180y operation indicated by the
dotted box in Fig. 3(a). This pulse sequence allows us
to measure the effect of UCNOT when the electron spin is
|0〉. The curves for both cases are similar since UCNOT
does not change the 13C state when the electron spin is
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FIG. 5: P0↓ as a function of θ corresponding to the pulse
sequences shown in Fig. 3(a). The diamonds and solid cir-
cles are the experimental data, and the dashed lines are the
matching simulations.

|0〉. In Fig. 5(b) we show the effect of UCNOT when
the electron spin is | − 1〉. To read out the population
of | − 1 ↓〉, we first applied a 180y operation, as shown
in Fig. 3(a) and then measured the electron spin FID in
mS = {0, 1}. In this case, the P0↓ vs θ curve flipped for
UCNOT compared to NOOP, indicating the change of the
13C state when the electron is in | − 1〉. By fitting the
experimental P0↓ with the corresponding theoretical pop-
ulations for various θ as shown in Fig. 5, we estimated
the experimental infidelity due to UCNOT as 20% [32].
Discussion.— Our experiments convincingly show that
the IC scheme is a very effective approach to implement
operations in systems consisting of 3 types of qubits. The
advantages of this approach will become even more im-
portant as the number of qubits increases. While a full
implementation of the approach in large quantum regis-
ters is beyond the scope of this paper, we have tested the
basic scheme through numerical simulations of gates in
multiqubit systems with up to six qubits. The simula-
tions show that the procedure scales relatively favorably
with the size of the system [32]. For the 6-qubit system
our method to control individual 13C spins was efficient
as it required 3-4 MW pulses and the total duration was
< 30µs. The theory [25, 41] regarding the bounds for the
control overhead and the condition to retain efficiency for
larger spin systems is explained in [32].
Conclusion.— We experimentally demonstrated full co-
herent control i.e, state initialization, gate implementa-

tion and detection of the electron-nuclear spin system in
the NV center of diamond using the methods of IC. We
specifically chose a center with a small hyperfine cou-
pling, some three orders of magnitude weaker than that
of the nearest neighbor 13C spins. The distance between
the electron and 13C is ≈ 0.89 nm [32]. These remote
spins are much more abundant than the nearest neigh-
bors and their relaxation times much longer. However,
since their coupling to RF fields is also much weaker,
direct RF excitation does not lead to efficient control op-
erations. The IC techniques that we have demonstrated
allow much faster controls and therefore overall higher
fidelity - an essential prerequisite for scalable quantum
systems. Specifically, we have implemented a Hadamard
gate on 13C and a CNOT gate, where the electron is the
control qubit and 13C the target qubit, using only a small
number of MW pulses and delays. The above gate oper-
ations targeted the subspace mS = {0,−1} and mN = 1.
If we consider the control state of the 14N, i.e mN = 1, in
the whole space with mN = {0,−1, 1}, then our UCNOT
is a Toffolli gate in 12 dimensions. Since the total dura-
tion of the pulse sequence was well within the electron
coherence time (T ∗2 ≈ 20µs), additional coherence pre-
serving control operations were not required. However,
for complex algorithms consisting of many gates, it may
be necessary to include DD. While we have implemented
this scheme in the diamond NV center at room tempera-
ture in a small external magnetic field, it remains appli-
cable over a much wider parameter range and can clearly
be adapted to other quantum systems, thus opening the
ways for many different implementations of advanced
quantum algorithms using indirect control schemes.
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