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Abstract

The anticipated large-scale market ramp-up of electric vehicles in the future repre-

sents both an opportunity and a major challenge for the power grid. On the one

hand, electric vehicles may support the power grid by offering their flexibility on the

Control Reserve market. On the other hand, simultaneous charging could lead to

severe grid bottlenecks in the low voltage network. In either case, the prediction of

the aggregated charging load is of great importance. Within this work a new multi-

variate multi-step forecasting approach based on Artificial Neural Networks, namely

the Long Short-Term Memory, is introduced. Using historical charging data, a pre-

diction of the aggregated charging load in 15-min resolution, clustered according to

the charging at home, the charging at work, the charging at public car parks and

the charging at shopping centers, is conducted. For each charging site two forecast

horizons, a 1-hour and a 1-day charging load forecast, are analyzed. The results

indicate that no reliable forecast of the charging load can be accomplished with a

forecast horizon of one day and that the prediction accuracy can be significantly

increased if the period is shortened to one hour.

Kurzfassung

Die zukünftig zu erwartende starke Verbreitung von Elektrofahrzeugen stellt sowohl

eine Chance als auch eine große Herausforderung für das existierende Stromnetz

dar. Auf der einen Seite können Elektrofahrzeuge zur Stabilisierung des Stromnet-

zes beitragen, indem sie ihre Flexibilität auf dem Regelleistungsmarkt anbieten. Auf

der anderen Seite könnte das gleichzeitige Laden auch zu gravierenden Netzeng-

pässen im Niederspannungsnetz führen. In beiden Fällen ist die Vorhersage der

aggregierten Ladelast von großer Bedeutung. Im Rahmen dieser Arbeit wird eine

besondere Form der Künstlich Neuronalen Netzen verwendet, das Long Short-Term

Memory, und ein neuwertiger multivariater Prognoseansatz entwickelt, welcher die

Ladelast für die nächste Stunde oder den nächsten Tag prognostiziert. Basierend

auf realen Ladedaten erfolgt die Prognose der aggregierten Ladelast in 15-minütiger

Auflösung für verschiedene Ladeorte – dem Laden zu Hause, dem Laden am Ar-

beitsplatz, dem Laden auf öffentlichen Parkplätzen und dem Laden in Einkaufs-

zentren. Die Ergebnisse zeigen, dass bei einem Prognosezeitraum von einem Tag

keine zuverlässige Lastprognose erzielt werden kann, die Prognosegenauigkeit bei

Verkürzung des Prognosezeitraums auf eine Stunde aber deutlich gesteigert wird.
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1

1. Introduction

Global warming, caused by extensive emission of greenhouse gases, is one of the

greatest challenges of the 21st century [1]. In 2017, the transport sector was re-

sponsible for 27 % of all European greenhouse gas emissions, thus ranking as the

second largest emitter of greenhouse gases in the European Union (EU) right be-

hind the energy sector [2], [3]. At 44 % passenger cars attributed to a major part of

the transport emissions [2].

The goal of the EU, as laid down in the European Green Deal, is to become cli-

mate neutral by 2050 [4]. Consequently, a reduction in emissions by 60 % by 2050

compared to the baseline year of 1990 is being targeted for the transport sector [2].

In order to meet the set targets electric vehicles (EVs) are seen as one of the so-

lutions to reduce carbon emissions in the transport sector. Other related concerns,

such as urban air pollution and its impact on health, have also encouraged politi-

cians to promote the adoption of EVs as a replacement for conventional internal

combustion engine powered vehicles [5]. Due to high costs, range anxiety and other

technical factors such as a lack of public charging stations, the market ramp-up has

been rather slow up to this day except in a few countries such as Norway [6]. How-

ever, due to strong political support, a substantial market penetration of EVs can be

expected in the future.

1.1. Motivation of the thesis

This anticipated large-scale EV rollout represents both a considerable challenge and

an opportunity for the existing power system. On the one hand, the large-scale dif-

fusion of EVs is likely to lead to a significant additional load on the network, which

could endanger system stability. Especially in low voltage networks, an increasing

number of EVs could lead to grid bottlenecks, as the electricity grid is not designed to

cope with this additional load. On the other hand, EVs could also benefit the power

system by providing flexibility. Both the usage of EVs as energy storages or the

implementation of smart charging strategies could offer this flexibility to the power

system. Smart charging strategies could not only avoid or minimize the necessity
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of grid expansions, but also help to safely integrate a large number of renewable

energies sources into the distribution grid [5], [7].

In order to be able to identify potential network constraints, caused by the simul-

taneous charging of a large number of EVs, or to make use of the available flexibility

the accurate forecast of the charging load of EVs is of utmost importance and could

benefit different stakeholders. For network operators, the charging load forecast is

relevant to identify bottlenecks in the low voltage network at an early stage to be able

to derive countermeasures. Moreover, charging load forecasting is also of great im-

portance for balancing group managers in Germany. A balancing group must be

balanced every quarter of an hour and an accurate load forecast helps to avoid

high balancing energy penalties. Last but not least, sub-aggregators that bundle the

flexibility of a large number of EVs could use the charging load forecast to develop

suitable smart charging strategies in order to commercialize the resulting flexibility

in the energy market.

1.2. Objective and scope of the thesis

Given the previously discussed motivation, this thesis aims at developing an Artificial

Neural Network (ANN) for predicting the aggregated charging load of EVs at two dif-

ferent forecast horizons. The analysis is performed for four different charging sites –

the charging at home, the charging at work, the charging at car parks and the charg-

ing at shopping centers. The objective is to enable a sophisticated assessment of

the different charging locations and forecast horizons in order to highlight potential

similarities and differences and derive implications for the successful usage of the

forecast by both sub-aggregators and network operators.

In the scope of this work only passenger cars are considered – the analysis of the

charging behavior of buses or similar vehicles is not part of this research. Further-

more, this thesis focuses on the short-term load forecasting. Hence, medium and

long-term forecasts are not covered within the scope of this work. Lastly, it should

also be noted that this work does not aim at benchmarking different prediction meth-

ods. Rather, the focus is placed on the analysis of different charging locations and

forecast horizons, given the large research gap in the recent literature in this field.
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1.3. Structure of the thesis

The work is structured in the following eight chapters, illustrated in Figure 1.1. While

Chapter 1 deals with the relevance and objectives of the work, Chapter 2 addresses

the fundamentals of EVs, the role of a sub-aggregator, the term of load forecasting

and the current state of research on EV charging load forecasting. Chapter 3 pro-

vides a case study for potential revenues of an EV sub-aggregator when participat-

ing in the German Control Reserve Market. Chapter 4 establishes the foundations

necessary for the understanding of the work by covering the essential aspects of

ANNs and subsequently focusing on Recurrent Neural Networks (RNN) and Long

Short-Term Memory (LSTM) networks, a particular type of RNNs applied in this

work. In the following Chapter 5, the authors own approach for charging load fore-

casting is presented, whereby the data pre-processing, the LSTM training and the

LSTM forecasting is discussed in more detail. Chapter 6 presents the training re-

sults with initial hyperparameters, the hyperparameter tuning results and charging

load forecast results for the various charging locations. Subsequently, an analysis

and evaluation of the results is carried out in Chapter 7. Finally, the thesis concludes

with a summary of the most important findings and an outlook for future research in

Chapter 8.
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2. State of the Art

Now that the motivation and objectives of the work have been outlined in the previous

chapter, a number of fundamentals important for understanding the work are dealt

with in this chapter. First, a number of key aspects of EVs are discussed with the

aim of establishing some boundaries for this thesis. Next, the role of aggregators

and sub-aggregator is addressed to understand the importance of load forecasting.

Subsequently, the term of load forecasting is discussed in more detail. Last but not

least, a comprehensive review of the existing literature deals with the current state

of research on EV charging load forecasting in order to identify shortcomings in the

existing literature and to highlight the contributions of this work.

2.1. Fundamentals of electric vehicles

Several years before Carl Benz filed a patent for the first gasoline-powered car in

1886, the EV was invented in 1834 [8]. However, due to sinking oil prices, range and

cost advantages of combustion engine powered cars compared to EVs, the EV was

slowly pushed out of the market [9]. In recent years environmental considerations

and different societal, economic and technological factors have led to the revival of

the EV [8]. This section covers the following important aspects of EVs – the different

types of EVs, the charging technology, the charging sites and the market ramp-up

of EVs in Finland and Germany.

2.1.1. Classification of electric vehicles

To start with, as of today EVs can be grouped into three different types of cars [10]:

• Battery electric vehicles (BEVs) are solely powered from onboard electrical

battery packs. The battery is charged by connecting the car to the power grid

and furthermore can be supplied with energy recovered by recuperation.

• Plug-in hybrid electric vehicles (PHEVs), on the other hand, have both a

combustion engine and an electric motor. While everyday distances can often
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be covered solely electrically, the conventional motor is used for longer dis-

tances. Similar to BEVs, the battery is charged when connected to the power

grid and by recuperation.

• Hybrid electric vehicles (HEVs) on the contrary, solely consist of a combus-

tion engine and an electric motor without a battery and can therefore not be

charged by an external power supply. The electric motor is powered by recu-

peration energy and supports the combustion engine to achieve a higher fuel

economy.

Since the aim of this work is to predict the charging load of EVs, HEVs will not be

considered any further in this work. Unless explicitly stated, BEVs and PHEVs are

referred to as Plug-in electric vehicles (PEVs) in the further course of this work.

2.1.2. Charging infrastructure

As previously mentioned, the battery of PEVs needs to be charged in order to be

able to power the electric motor. Figure 2.1 illustrates three different possibilities of

PEV charging, although nowadays only one of the three approaches is widely used

[11].

Charging

approaches

Inductive

charging

Battery

swap

Conductive

charging

Fast

charging

Slow

charging
Stationary

Quasi-

dynamic
Dynamic

AC 

charging

DC 

charging

AC 

charging

Figure 2.1: Different PEV charging solutions

Battery swapping refers to the automatic or manual replacement of a discharged

battery with a fully charged battery. The major advantage of this approach is its

quickness as the duration is comparable to an ordinary refueling process. However,

due to the high initial investment costs and lack of standardization in batteries, ve-



2.1 Fundamentals of electric vehicles 6

hicle interfaces and operation platforms, to date, China is one of the few countries

with an existing battery swapping station infrastructure [11].

Inductive charging allows power to be transmitted by means of electromagnetic

waves without direct contact between the PEV and charging station [11]. Three

different approaches can be distinguished – stationary, quasi-dynamic and dynamic

charging [12]. Stationary charging refers to inductive charging while the car is parked

in a car park or garage. In quasi-dynamic charging the PEV is charged while tem-

porarily stopped during a trip. For instance, buses can be recharged during their

stopover at bus stops. Dynamic charging, on the contrary, takes place in-motion

while driving the PEV. Therefore, the charging infrastructure needs to be incorpo-

rated into the roads. Although inductive charging can both increase comfort and

reduce range anxiety, the disadvantages such as high investment costs, limited

charging capacity and charging losses still outweigh the benefits at present, thereby

hindering market diffusion [12].

Conductive charging remains as the only approach that is currently suitable for

large-scale application and hence serves as the foundation for this work. Conduc-

tive charging denotes the recharging of the PEV with the help of a charging cable

and can be distinguished either based on the charging capacity or the current type.

While all charging processes with a charging capacity of up to 22 kW are classified

as slow charging, charging events with a nominal charging power of more than 22

kW are referred to as fast charging [13]. Slow charging processes are based on

alternating current (AC), whereas fast charging processes can be performed with

both AC and direct current (DC). In the following slow charging and fast charging is

discussed in more detail.

Slow charging
The ability to charge is one of the most important aspects for the adoption of PEVs.

The predominant charging of PEVs takes place at locations where long idle times

are achieved, such as overnight parking at home or parking at work. Hence, slow

charging is the most commonly used charging possibility so far [14].

Table 2.1 illustrates four possible charging modes for charging the PEV. Mode 1

charging refers to charging the PEV battery with a single-phase AC power source,

for instance by connecting the car to the power grid via the Schuko or CEE plug.
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Since DC is required to charge the battery, a rectifier is installed in the PEV by

default. Moreover, Mode 1 does not enable any communication between the PEV

and power source. The maximum charging power is limited to 3.7 kW (16 A, 230

V). However, in order to avoid the overloading of possibly inadequately designed

lines or installations, the charging capacity is usually limited to 2.3 kW (10 A, 230

V). Mode 2 enables both single-phase charging (3.7 kW) and three-phase charging

with a nominal power of up to 22 kW (32 A, 230 V). An In-Cable Control-Box (ICCB)

ensures safety and allows the user to adjust the maximum charging current [15].

Table 2.1: Different charging modes for PEV charging (Source: Own illustration based on
[14])

Slow Charging Fast Charging

Charging Mode Mode 1 Mode 2 Mode 3 Mode 4

Phase(s) Single-phase
Single- and three-

phase
Three-phase No phases (DC)

Maximum 

charging power
3.7 kW (Schuko) 22 kW (three-phases) 43.5 kW 400 kW

Communication

between
none

ICCB and onboard

charger (PWM)

Charging station and 

onboard charger

Charging station and 

vehicle

Fast charging
The long charging time and limited range is a major obstacle hindering the mar-

ket ramp-up of PEVs. A nationwide network of fast charging stations could reduce

the range anxiety and increase the acceptance of PEVs by providing an emergency

charging possibility [14]. In contrast to the previously discussed modes, Mode 3 and

Mode 4 support fast charging and are mostly designed for public charging stations.

Similar to Mode 2, Mode 3 uses three-phase AC charging and the communica-

tion between PEV and charging station is based on pulse-width modulation (PWM).

However, the maximum charging power in Mode 3 is significant higher and amounts

to 43.5 kW (63 A, 400 V). Mode 4, on the other hand, denotes charging the PEV

at a DC charging station. DC charging has the major benefit that rather than using

the installed on-board charger, a stationary charger is employed in the charging sta-

tion, which usually allows much higher charging capacities. Communication likewise

works via PWM [15]. At present, most DC charging stations provide 50 kW of power

[16]. Recently, however, an increasing number of charging stations with a charging
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capacity of 350 kW have been built and it is expected that charging capacities of 400

kW will be realized in the near future [16], [17].

In this thesis solely charging sessions with slow charging events are analyzed.

Hence, fast charging is not considered further in the course of this work.

2.1.3. Charging sites

The charging infrastructure can be grouped into three categories – private, semi-

public and public. Table 2.2 illustrates the different charging infrastructure, typical

charging locations for each category and the denotation of the clustered charging

sites within this work.

Table 2.2: Overview of the different charging infrastructures and their typical charging loca-
tions (Source: Own illustration based on [18], [19])

Private Semi-public Public

Garage/ parking 

space at own 

property

Parking lots/ 

underground car 

park of dormitory/ 

multi-family house

Corporate parking 

lots on own 

premises

Car park/ highway 

service station

Shopping centres, 

car parks, 

customer parking

roadside, public

parking lots

Residential charging
Workplace

charging
Public charging

Shopping center 

charging

Public charging infrastructure encompasses charging stations in public spaces and

on the roadside. Semi-public charging infrastructure refers to charging stations in

parking facilities, motorway service stations, petrol stations and supermarkets. Last

but not least, the private charging infrastructure includes charging stations in corpo-

rate car parks and private parking spaces in privately owned homes or residential

complexes [18]. In this work four different charging sites for PEVs are considered,

the charging at home, the charging at company premises and the charging at multi-

storey car parks and car parks of shopping centers. Thus, this work focuses on the

private and semi-public charging infrastructures. In the following residential charging

refers to charging at home, workplace charging denotes the charging at company

premises, public charging refers to charging the car at car parks in the city and shop-
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ping center charging indicates the PEV charging at car parks of a shopping center

complex.

2.1.4. Market ramp-up of electric vehicles in Finland and Germany

Up to now, PEVs has lagged behind expectations and self-imposed market ramp-

up targets in Germany and Finland. As mentioned before, the main reason for the

slow market ramp-up is the lack of charging infrastructure, the range anxiety of cus-

tomers and the high acquisition costs compared to conventional cars [6]. Table 2.3

illustrates the market ramp-up of PEV passenger cars and the stock growth of all

passenger cars within the last ten years in Germany and Finland.

Table 2.3: Number of electric passenger cars and total passenger cars in Germany and Fin-
land within the last ten years (Source: Own illustration based on [20], [21])

Date BEV
(Germany)

PHEV
(Germany)

All passenger
cars (Germany)

BEV
(Finland)

PHEV
(Finland)

All passenger
cars (Finland)

01.01.2010 1,588 no data 41,738,000 17 6 2,758,291
01.01.2011 2,307 no data 42,300,000 34 19 2,858,244
01.01.2012 4,541 no data 42,928,000 70 20 2,958,568
01.01.2013 7,114 no data 43,431,000 127 145 3,036,618
01.01.2014 12,156 no data 43,851,000 188 253 3,105,834
01.01.2015 18,948 no data 44,403,000 386 455 3,172,735
01.01.2016 25,502 no data 45,071,000 657 889 3,234,860
01.01.2017 34,022 20,975 45,804,000 889 2,230 3,322,672
01.01.2018 53,861 44,419 46,475,000 1,538 5,303 3,398,937
01.01.2019 83,175 66,997 47,096,000 2,500 12,222 3,470,507
01.01.2020 136,617 102,175 47,715,977 4,830 23,003 3,549,803

Considering the number of 238,792 PEVs in Germany, measured at the beginning

of 2020, it becomes clear that the target of one million PEVs by the year 2020, set

by the Federal Government in 2009, was missed by a huge margin. In last year’s

progress report, written by the members of the "Nationale Plattform Elektromobilität"

(NPE), it is expected that this figure will be reached in 2022 [17]. However, even this

assessment remains questionable considering the monitored growth rate. By 2030,

the number is expected to reach seven to ten million PEVs [22]. In order to achieve

these ambitious goals, the German federal government recently announced an in-

crease in subsidies for PEVs. BEVs and PHEVs with a net list price up to 40,000 AC

are subsidized with 6,000 AC and 4,500 AC respectively. If the net list price exceeds
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40,000 AC, the subsidy drops to 5,000 AC and 3,750 AC respectively [23].

In Finland, on the contrary, a target of 250,000 PEVs by the year 2030 was set

in it’s energy and climate strategy. Starting in 2018, the purchase of a BEV is subsi-

dized by 2,000 AC [24]. Looking at the current numbers of PEVs in Finland at the start

of 2020, a negligibly small market share of around 0.8 % can be observed, slightly

higher compared to the share of around 0.5 % in Germany. In contrast to Germany,

however, it appears that PHEVs are more popular than BEVs and therefore account

for a significantly higher proportion of the PEV stock. Since 2017, there has also

been a significantly higher increase of PEVs compared to previous years. This pat-

tern may play an important role later in the analysis of the results of the prediction

model, as this trend can be seen in the aggregated charging load at the different

charging sites over the course of the year and certainly have an influence on the

model performance.

2.2. The role of aggregators and sub-aggregators

As shown in the previous section, the market ramp-up of PEVs slowly starts to take

off and countries like Germany are investing a large amount of money to electrify

the transport sector. As mentioned earlier the anticipated large-scale diffusion of

PEVs poses both threats and new possibilities for the power system. In today’s

power system it is becoming increasingly difficult to maintain the necessary balance

between power consumption and generation due to the shutdown of conventional

power plants and the rapid growth of Renewable Energies. Thus, on the one hand,

severe intermittent electrical loads caused by the simultaneous charging of a large

number of PEVs could aggravate this problem and lead to security risks for the

power grid [25]. On the other hand, Distributed Energy Resources (DER), such as

PEVs, could help to balance consumption and weather dependent power generation

such as wind or solar power by providing ancillary services and benefit the power

system [26].

However, a major share of the so far unused and future increasing DER flexibility

potential will be distributed widely throughout the power system. Additionally, the

individual capacity of a single DER is too small to be traded on the Control Reserve
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(CR) market. As a result, new market roles emerge, namely the aggregator and

sub-aggregator [26]. In Figure 2.2 four possible flexible resources for aggregation

(PEV fleets, energy storages, smart heating/ cooling and smart factories) and a hy-

pothetical hierarchy between aggregators and sub-aggregators are illustrated.

Grid/ market

Aggregator dAggregator 1

Sub-

aggregator 2

Sub-

aggregator 1
Sub-

aggregator d

Smart 

factory

PEV 

fleet
Energy 

storage

Smart 

heating/ 

cooling

…

…

Figure 2.2: Visualization of the market roles of the aggregator and sub-aggregator (Source:
Own illustration based on [26] and [27])

The sub-aggregator serves as a link between DER owner and aggregator and there-

fore occupies an intermediate position in the value chain for marketing the DER flex-

ibility to the CR market. The sub-aggregator can be understood as an entity with the

ability to monitor and control DERs and to predict the amount of flexibility for every

tradable timeslot in the market. As for PEVs, the charging point operator might be

able to take on the role of sub-aggregator, as he has the possibility to carry out smart

charging without major adaptations. The aggregator, in contrast, combines the flex-

ibility capacity of multiple sub-aggregators and participates in the market. With this

distinction made, it becomes apparent that the expertise and tools needed for both

the aggregator and sub-aggregator differ widely. However, in some cases one entity

might occupy both roles at the same time [26].
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2.3. Load forecasting

To enable the sub-aggregator to market possible flexibility potentials of PEVs, the

charging load forecast of PEVs plays a decisive role. Load forecasting refers to the

process of predicting future load demands and can be categorized into very short-

term (minutes and hours in advance), short-term (one day to weeks in advance),

medium-term (months to a year beforehand) and long-term (years ahead) forecast-

ing [28].

Moreover, load forecasting can be seen as a time series problem. A time series is

a sequence of values measured over time and arranged chronologically [29]. Time

series forecasting can be categorized according to the input and output of the model.

With regard to the input data, univariate and multivariate models can be distin-

guished. Depending on the output, single-step and multi-step models may be differ-

entiated. While univariate approaches make predictions solely based on univariate

data such as historical load values, multivariate models use additional time series

data like weather or categorical data for achieving the forecasting task. Single-step

forecasting refers to models predicting ahead in time for only one timestep, whereas

multi-step forecasting performs predictions up to a certain time prediction horizon

[30].

Multi-step ahead time series forecasting can be furthermore classified in the fol-

lowing five different methods [31]:

1. A Recursive Strategy,

2. a Direct Strategy,

3. a combination of both the Recursive and Direct Strategy (DirREC),

4. a Multi-Input Multi-Output Strategy (MIMO) and

5. a combination of DirREC and MIMO Strategy (DIRMO).

The Recursive Strategy is based on a 1-step ahead prediction and can be seen as

the oldest and most intuitive multi-step prediction method. A model is trained for a

single-step ahead forecast and the predicted value is then used as part of the inputs

in order to forecast the next timestep based on the same model. This process is

repeatedly carried out until the desired prediction horizon is generated. The major
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drawback of this method can be seen in the possibility of accumulating prediction er-

rors which can lead to quickly degrading forecast accuracy with increasing prediction

time horizon. The Direct Strategy tries to eliminate the aforementioned problem by

developing a distinct model for each prediction timestep. The disadvantages of this

method include the higher computational complexity as well as the difficulty of mod-

eling dependencies. The DirREC Strategy combines the benefits of both previously

discussed approaches. Separate models are constructed for each timestep and the

predicted value of the previous timestep is added as an additional input parameter.

While the first three methods can be seen as single output strategies, the MIMO
strategy follows the approach of developing a model that is able to forecast the en-

tire prediction sequence at once. The MIMO Strategy eliminates both the stochastic

independence assumption of the Direct Strategy as well as the accumulation of

errors that affect the Recursive Strategy. However, due to the fixed prediction hori-

zon the MIMO Strategy might lack flexibility. This drawback was the motive for the

development of a second multiple-output strategy called DIRMO. DIRMO aims at

maintaining the most desirable aspects of both the DirREC and MIMO Strategy. The

forecast is split into different blocks which perform the prediction task based on the

MIMO Strategy [31].

2.4. Related Work

Load forecasting plays a vital role in the management of today’s power systems and

aims at securing the network security of electrical power systems [28]. In contrast

to the extensively researched field of load forecasting in power systems, very few

publications can be found in the literature that address the issue of charging load

forecasting for PEVs. However, with the rising demand for PEVs in recent years,

research on that topic has become more popular.

In the following, the most important studies of the last four years will be reviewed.

The objective of the short meta-analysis is to reflect the current state of research

in order to subsequently summarize the limitations of the considered studies and to

emphasize the relevance and contribution of this work. The literature review in this

section follows the classification in [29], which categorizes the several forecasting
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approaches into linear, non-linear, rule-based, wavelet transform, other and ensem-

ble models. However, only those models which have been applied to PEV charging

load forecasting are taken into account. Hence, only linear, non-linear, ensemble

and other models are considered.

2.4.1. Charging load forecasting based on linear methods

Linear forecasting approaches use linear functions to model time series behav-

ior. Popular methods include Autoregressive (AR), Moving Average (MA), Autore-

gressive Moving Average (ARMA) and Autoregressive Integrated Moving Average

(ARIMA) processes. Even though linear models are still applied, they are usually

inferior to other models in terms of accuracy, which is why they are often used as

baseline models [29]. With regard to the prediction of the charging load of PEVs,

ARIMA models are particularly popular among all linear approaches. Three ARIMA

models can be found in the literature and are discussed in more detail below.

Seasonal Autoregressive Integrated Moving Average models
To start with, Louie [32] proposes various Seasonal Autoregressive Integrated Mov-

ing Average (SARIMAs) models to forecast the aggregated PEV charging station

load. Different prediction time frames are considered, including a 1-, 2-, and 24-

hour short-term forecasts. The modeling is done by using the aggregated charging

load of more than 2,400 public and private charging stations in California, covering

a 2-year time span from January 2011 to January 2013. The load forecast is carried

out separately for weekdays and weekends as well as San Diego and Washington

State. The accuracy is compared to a persistence forecast and a Modified Pat-

tern Sequence-based Forecast (MPSF) algorithm and evaluated on the basis of the

Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). It can be

demonstrated, that the SARIMA models achieve superior results compared to the

two benchmark models in all cases.

Autoregressive Integrated Moving Average models
A plain ARIMA model is introduced in [33] to predict the PEV charging demand of

the next 24 hours and assess the impact of PEVs on the distribution network. Com-

pared to [32], the prediction is not based on real charging data but on expected
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driving distances and charging times, derived from daily driving patterns in the USA.

The paper compares the accuracy of the proposed decoupled forecaster, which in-

dependently predicts the charging demand and conventional electrical load, with an

integrated forecaster, predicting the overall charging load of the PEV parking lot.

The authors conclude that the decoupled forecaster is able to significantly reduce

the error by providing more precise demand predictions.

One more study carried out in [34] examines the applicability of an ARIMA model to

forecast the uncontrolled day-ahead charging demand of PEVs in 15-minute (min)

resolution. Moreover, a storage model for aggregation is introduced to assess the

impact of aggregation on the prediction accuracy. The analysis is conducted based

on charging data obtained from more than 1,341 non-residential charging stations in

California over the full year of 2013. Using Root Mean Squared Error (RMSE), Mean

Absolute Error (MAE) and Coefficient of Variation (CV) for analysis the findings hint

that aggregation has a positive impact on the forecast results. While absolute errors

such as RMSE and MAE rise with increased aggregation, relative errors show the

opposite effect and decrease with larger aggregation. Hence, the authors conclude

that the prediction error can be significantly lowered with larger aggregation.

2.4.2. Charging load forecasting based on non-linear methods

In contrast to linear approaches, non-linear models rely on non-linear functions to

model more complex time series behavior. Non-linear models include ANNs, Ge-

netic Algorithms (GAs) and Support Vector Machines (SVMs) [29]. Looking at the

literature, it becomes clear that considerable attention has been paid to ANNs lately.

A variety of studies can be found that implement different types of ANNs, which are

discussed in more detail below.

Artificial Neural Networks
Jahangir et al. [35] follow a similar approach as in [33] and perform a 24-hour charg-

ing load prediction based on historical driving patterns. Contrary to [33], however,

three distinct ANNs are implemented to determine the arrival and departure time and

correlated trip lengths. Using historical data about travel behavior of conventional

cars in the USA first the arrival and departure times are independently forecasted.
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Afterwards the length of the trips are estimated in correlation to the previously fore-

casted arrival and departure time to calculate the charging load subsequently. Three

different ANNs are deployed and compared to the results of a Monte Carlo Simu-

lation (MCS). It can be shown that the use of ANNs, Rough Artificial Neural Net-

works (R-ANNs) or Recurrent Rough Artificial Neural Networks (RR-ANNs) leads to

a higher load prediction accuracy compared to the MCS. RR-ANNs hereby gener-

ate the most accurate forecasts, followed by R-ANNs. The paper also addresses

the importance of predicting the load for potential aggregators by implementing an

optimal charging algorithm that aims at minimizing the costs of the aggregator while

considering the network constraints. It can be shown that precise prediction algo-

rithms have a positive impact on the aggregators financial gains.

Zhu et al. [36] suggest a special type of RNN, the LSTM, for single-step PEV charg-

ing load prediction and demonstrate the advantages of their model by comparing

the prediction performance at two different timescales with the results of a simple

ANN. The prediction is based on historical charging data from charging stations in

Shenzhen, covering the period from July 2017 to July 2018. The analysis, based on

RMSE and MAE, reveals two different findings. First, the LSTM model outperforms

the ANN at both time scales. Second, when comparing the prediction errors of the

different time scales, 15-min or 30-min resolution of the charging load, it can be seen

that with decreasing time intervals the prediction error diminishes as well.

Another recently published article by Zhu et al. [37] studies the super short-term

charging load predictability of six different types of ANNs and deep learning meth-

ods. The performance of an ANN, a RNN, a canonical LSTM, a Bi-directional LSTM

(Bi-LSTM), a Gated Recurrent Unit (GRU) network and a Stacked Auto-Encoders

(SAEs) is evaluated on the basis of the RMSE, MAPE and goodness of fit. All mod-

els are trained, evaluated and tested on two different historical datasets from Shen-

zhen, containing charging event data with a minute resolution spanning from June

2017 to July 2018. While the first dataset contains charging data from 24 charg-

ing stations including the charging of electric buses the second dataset belongs to

an aggregator for commercial building chargers. The results demonstrate that the

tested models are suitable for super short-term charging load forecasting. How-

ever, the analysis also finds evidence that the prediction accuracy of the commercial

charging site turns out to be lower than that of the public charging site. Similar to

[36], superior results are also seen for the LSTM model taking into account all three
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evaluation metrics.

Finally, [38] provides a further evaluation of different ANN approaches for short-term

charging load forecasting. Once again historical charging load data from Shenzhen,

measured between April 2017 and June 2018, is used and applied to assess the

performance of a Deep Neural Network (DNN), RNN, LSTM and GRU model. The

charging load on an hourly basis, the charging time, the real-time electricity prices

and holiday marks form the inputs for the charging load forecast. For performance

evaluation the Normalized Root Mean Squared Error (NRMSE) and Normalized

Mean Absolute Error (NMAE) are applied. Contradictory to [37], the results indi-

cate that GRUs with one hidden layer achieve the most accurate forecast results for

the hourly predictions over one day. For all four implemented methods the NRSME

does not exceed 4 % and the NMAE never reaches values above 1.5 %. Another

main finding is that increasing the number of hidden layers not only deteriorates the

accuracy, but also slows down the training process. All four models also struggle to

accurately predict peak loads.

2.4.3. Charging load forecasting based on ensemble models

Ensemble models can be understood as a compound of different models with the

aim to increase the prediction accuracy by linking individual methods in a meaningful

way [29]. The literature research shows that numerous studies follow this approach.

In the following, the different hybrid approaches are presented in more detail.

To start with, in a recent paper by Gerossier et al. [39] a bottom-up approach for

the short-term forecast of the aggregated PEV fleet load is presented. The dataset

used in this paper includes minutely resolved power consumption measurements of

46 privately owned PEVs, measured in 2015 in Austin (Texas). For the day-ahead

prediction first the individual PEV power consumption is forecasted with a proba-

bilistic random forest model. In a next step the aggregated load for the PEV fleet

is estimated using a deterministic bottom-up approach. Subsequently, the authors

use two benchmark models in order to evaluate the performance of the bottom-up

model – a persistence and Gradient Tree Boosting model (GTB). It becomes appar-

ent that the developed bottom-up model is superior to the persistence model both in
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terms of the MAE and Continious Ranked Probability Score (CRPS). However, the

GTB achieves similar results even though the bottom-up approach is slightly more

efficient.

Paper [40] follows the approach of forecasting the charging load with the help of

SVMs. A hybrid model combining Least Squares Support Vector Machine (LSSVM),

Fuzzy Clustering (FC) and Wolf Pack Algorithm (WPA) is proposed and the author

aims at forecasting the load for electric bus charging stations. Various influencing

factors are taken into account, such as the type of day, the minimum and maximum

temperatures, weather conditions and the charging load at the same time in the last

three days. The proposed model is trained and tested on two different datasets

and compared to the outcomes of a WPA-LSSVM, a regular LSSVM and a Back

Propagation Neural Network (BPNN). Both datasets include real load data of an

electric bus charging station in Baoding and the necessary meteorological data. It

can be shown that in both case studies the FC-WPA-LSSVM model outperforms all

three other models in terms of RMSE, MAPE and Average Absolute Error (AAE).

However, the author mentions that at certain times FC-WPA-LSSVM leads to less

accurate results.

Li et al. [41] implement a hybrid approach, combining a Lion Algorithm by Niche

Immune (NILA) and a Convolutional Neural Network (CNN), for short-term PEV

charging stations load prediction. With the help of the NILA the optimal weights

and thresholds of the CNN are identified in a first step. Taking into account the input

parameters seasonal category, minimum and maximum temperature, type of day

as well as the charging load at the same time during the former five days the CNN

is trained subsequently. In the final analysis the performance of the implemented

model is compared to the outcome with a Lion Algorithm CNN, a single CNN and

SVM. The NILA-CNN performs superior in all categories considering the RMSE, the

MAPE as well as the AAE.

Lastly, an approved Random Forest (RF) algorithm is applied to predict the PEV

charging load of single and grouped PEV charging stations in [42]. The study is car-

ried out with historical charging data of Shenzhen (China), measured in the years

2016 to 2018. The authors consider a variety of input factors influencing the load

forecast – such as previous day’s charging load, year, month, week, day, latitude

and longitude, charging capacity indicator and an activity indicator representing the
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volatility of the charging load. Evaluating the importance of each input for the fore-

cast accuracy the authors conclude that the input factors previous day’s charging

load, activity indicator, week and day are most important. The capacitor indicator

and year, on the contrary, are negligible. Using MAPE and RMSE for error analy-

sis the authors highlight that the proposed RF approach can effectively predict the

charging load on a 15-min basis, both for single and grouped charging stations. This

analysis also reveals that in contrast to the aggregated load forecast, more precise

results are obtained when performing individual forecasts for the various charging

stations.

2.4.4. Charging load forecasting with different models

In literature two publications can be found which do not link the different models in

one model but implement them individually to compare their prediction accuracy. To

conclude, these two studies are now discussed in more detail below.

Buzna et al. [43] compare different machine learning and time series models to

forecast the daily PEV charging load. To conduct their study, they resort to a large

amount of charging data from 1,700 charging stations. The historical data originates

from charging events in the Netherlands between January 2012 and March 2016.

For time series forecasting two different SARIMAX models are chosen. Whereas the

single SARIMAX model does not distinguish weekdays, the alternative SARIMAX

models predict the charging load for weekdays and weekend separately. Moreover,

a RF and a Gradient Boosted Regression Tree (GBRT) model are implemented,

representing the machine learning algorithms. A 7-day, 14-day and 28-day forecast

is carried out and the accuracy is evaluated using MAPE. For model evaluation a

persistence method serves as a benchmark. The findings reveal the superior per-

formance of all proposed methods compared to the benchmark model. Furthermore,

the authors also note that RF outperforms the GBRT in all scenarios. Comparing the

time series models, the single SARIMAX model indicates a superior performance for

the 7-day forecast whereas the alternative SARIMAX model provides a higher level

of accuracy for 14- and 28-day forecast horizons. The authors conclude that overall

the time series models outperform the machine learning algorithms.
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Last but not least, Majidpour et al. [44] apply four different algorithms, namely

RF, SVR, Time Weighted Dot Product Based Nearest Neighbor (TWDP-NN) and

MPSF, for 24-hour charging load forecasting. The evaluation is based on two dif-

ferent datasets – charging and station measurements recorded between Decem-

ber 2011 to February 2014 from charging stations placed on the UCLA campus in

California. While the charging event data includes information about the start and

end time of the charging process as well as the charged energy, the station mea-

surement consists of voltage, current, power factor and charging length data. Both

speed and accuracy are evaluated for both datasets in order to compare both type of

datasets for the feasibility of charging load forecasting. Using the Symmetric Mean

Absolute Percentage Error (SMAPE) for evaluation, the authors find that there is no

statistical significant difference among the prediction errors. However, the findings

indicate that the most accurate predictions based on the charging measurement can

be achieved using the TWDP-NN while the MPSF provides the most precise results

for the station measurement dataset.

2.4.5. Shortcomings of research and contributions of this work

Table 2.4 summarizes the main findings of the meta-analysis. For each of the pre-

sented studies, the proposed model, the baseline model and the model that pro-

duces the superior results are displayed. Furthermore, the metrics used for the

evaluation are illustrated and key characteristics of the applied dataset and the pre-

diction method are outlined. Finally, the table also provides details on the origin

of the data and the time period during which the data was measured. Overall, the

meta-analysis of the 13 studies reveals several limitations that will be addressed in

this paper.

First of all, most of the papers either use data from the USA [33], [44], [32], [34],

[35], [39] or China [40], [41], [42], [36], [37], [38]. Only [43] covers the European

market by using historical data from the Netherlands. This paper aims at filling the

gap in research on charging load forecasting in the European context by using his-

torical charging load data from Finland.

Additionally, a key limitation of the previous studies is that several datasets con-
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tain charging data collected in times with little PEV penetration in the market which

may limit the significance of the results. While in [33] and [35] no charging data is

used at all, the data in [44], [32], [34], [39] and [43] all originate from years until 2016,

characterized by a negligible market share of PEVs. These concerns regarding the

validity and applicability of the results to today’s situation will be eliminated in this

thesis by the use of up-to-date charging data covering the year 2019 and the start

of the year 2020.

Table 2.4: Literature review on existing PEV charging load forecasting techniques
Author (Year)

[Ref.]
Proposed
model(s)

Baseline
model(s)

Superior
model Metrics Characteristics of data

and forecast methodology
Data origin

[year]
Amini et al.

(2016)
[33]

ARIMA –
Decoupled

forecast
MAE,
MAPE

National household travel survey,
24-hour (single-step) forecast,

1-hour resolution
USA

Majidpour et al.
(2016)
[44]

SVR, RF,
MPSF,

TWDP-NN
–

TWDP-NN,
MPSF SMAPE

Charging & station records,
24-hour (single-step) forecast,

1-hour resolution

UCLA (USA)
[Dec. 2011 -
Feb. 2014]

Louie
(2017)
[32]

SARIMA
persistence,

MPSF SARIMA
MSE,
MAPE

Charging load data (aggregated),
1-, 2-, 24-hour forecast

1-hour resolution

California
[Jan. 2011 -
Jan. 2013]

Zhang
(2018)
[40]

FC-WPA-
LSSVM

BPNN,
LSSVM,

WPA-
LSSVM

FC-WPA-
LSSVM

AAE,
MAPE,
RMSE

Electric bus charging,
multivariate inputs,

24-hour (single-step) forecast,
1-hour resolution

Baoding
[2017]

Li et al.
(2018)
[41]

NILA-
CNN

SVM,
CNN,
Lion
CNN

NILA-
CNN

AAE,
MAPE,
RMSE

Public charging (aggregated),
multivariate inputs,

24-hour (single-step) forecast,
30-min resolution

Beijing
(China)

[Jun. 2017 -
Nov. 2017]

Lu et al.
(2018)

[42]
RF – –

MAPE,
RMSE

Public charging (single & aggr.),
multivariate inputs,

single-step prediction,
15-min resolution

Shenzhen
(China)
[2016 -
2018]

Pertl et al.
(2019)
[34]

ARIMA – –
CV,

MAE,
RMSE

Non-residential charging (aggr.),
24-hour forecast,
15-min resolution

California
[2013]

Jahangir et al.
(2019)
[35]

ANN,
R-ANN,
RR-ANN

MCS RR-ANN
R2, MAE,

MAPE,
RMSE

National household travel survey,
24-hour forecast,
1-hour resolution

USA
[2017]

Zhu et al.
(2019)
[36]

LSTM ANN LSTM
MAE,
RMSE

Public charging (aggregated),
24-hour (single-step) forecast,

15-/30-min resolution

Shenzhen
[Jul. 2017 -
Jul. 2018]

Zhu et al.
(2019)
[37]

ANN, RNN,
GRU, SAE,

LSTM,
Bi-LSTM

– LSTM
MAPE,
RMSE,

Public and commercial
charging (aggregated)
1-, 5-, 15-min forecast,

1-min resolution,

Shenzhen
(China)

[Jun. 2017 -
Jul. 2018]

Zhu et al.
(2019)
[38]

RNN,
DNN,
GRU,
LSTM

– GRU
NMAE,
NRSME

Public charging (aggregated),
multivariate inputs,

24-hour (single-step) forecast,
1-hour resolution

Shenzhen
(China)

[Apr. 2017 -
Jun. 2018]

Gerossier et al.
(2019)

[39]

bottom-
up
RF

persistence,
GTB

bottom-
up
RF

MAE,
CRPS

Residential charging (aggregated),
multivariate inputs,
24-hour prediction

Austin
(USA)
[2015]

Buzna et al.
(2019)
[43]

SARIMAX,
RF,

GBRT

persistence
model SARIMAX MAPE

Charging data (aggregated)
7-, 14-, 28-day forecast,

daily resolution

Netherlands
[Jan. 2012 -
Mar. 2016]
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Furthermore, although [37] has indicated that the achievable prediction accuracy

may be dependent on the type of charging site, no attention has been given to the

analysis and comparison of different charging sites. As stated in [45] and [46] the

charging behavior and thus the uncertainty which may have an influence on the fore-

cast accuracy differs between residential, public and commercial charging locations.

The shortage of research in this area will be addressed in this work by analyzing the

charging load predictability of the before mentioned different charging sites.

Lastly, it can be seen that most studies only perform a single-step prediction [33],

[44], [40], [42] or a prediction of the load values with a very coarse resolution [33],

[44], [40], [43]. Moreover, all reviewed ANN approaches are limited to single-step

predictions [41], [36], [37], [38]. This limitation diminishes the applicability of the pre-

sented methods for an aggregator in practice, requiring a short-term load prediction

for an extended time period in high resolution. This gap is addressed within this

work by developing a short-term forecast with both a 1-hour and 1-day prediction

horizon in 15-min resolution.
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3. Sub-aggregation in Germany - a case study

Before proceeding to the next chapter dealing with the basics of ANNs, this chap-

ter presents a scenario assessment for potential revenues of a PEV sub-aggregator

when participating in the Secondary Control Reserve (SCR) or Tertiary Control Re-

serve (TCR) market in Germany. The chapter is structured as follows: First, the

framework of the scenario analysis is defined and the assumptions made are out-

lined. Subsequently, the key elements of the CR market in Germany are discussed.

Finally, the potential revenues of a sub-aggregator participating in the CR market in

Germany are calculated.

3.1. Context and assumptions made

The analysis is carried out from the point of view of the Finnish company Park-

ing Energy Ltd, which provided a majority of the data used in this work. Parking

Energy Ltd, is part of the project Smart Otaniemi, which currently investigates pos-

sible sub-aggregator concepts for the future in Finland [27]. In Germany the role of

the sub-aggregator is also not yet defined. At present, only one research project,

called New 4.0 – Norddeutsche Energiewende, is focusing on the development of

a sub-aggregator model in Germany, demonstrating that the requirements for sub-

aggregators in Germany remain unclear [47].

However, with it’s core competence of providing cost-effective cabling systems for

the real estate industry to enable PEV charging at all parking bays and charging

stations as a service, Parking Energy Ltd might be well equipped to perform the role

of a PEV sub-aggregator in the future. It is important to emphasize that the follow-

ing calculation can only be understood as a rough estimate, due to the lack of data

and the numerous assumptions that had to be made, as the multitude of influencing

factors could not be modeled. The analysis in this chapter is based on the following

key assumptions:

1. All costs arising from the provision of the CR are not considered.

2. All prequalification conditions for participation in the CR market are fulfilled.
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3. The PEV owner approves the measures taken for providing the CR.

4. All relevant parking lots will be equipped with the cabling system.

5. Interdependencies between workplace and residential charging are not con-

sidered.

6. During the period under consideration, Parking Energy Ltd is contracted to

maintain and provide the CR.

7. The revenues generated are not divided between the aggregator and the sub-

aggregator but are fully allocated to the sub-aggregator.

8. The goals of the German federal government regarding the market ramp-up of

PEVs will be met.

3.2. Control Reserve market in Germany

CR is used to compensate for imbalances between generation and consumption in

order to keep the electricity grid frequency within a small range around its nominal

frequency of 50 Hz and to correct regional discrepancies in the balances from their

benchmark value [48]. Depending on the type of imbalance, either positive or neg-

ative CR is needed to stabilize the grid. In the event of a drop in grid frequency,

positive CR is required by increasing the power consumption or reducing the net-

work load. Contrarily, negative CR is required if the network frequency exceeds a

certain limit [49].

PEVs are capable of providing positive CR by means of a regulated reduction of

the charging load or by feeding the energy stored in the battery back into the grid.

The concept of providing positive CR by feeding energy back into the grid is called

Vehicle-to-Grid (V2G). V2G, however, contains numerous uncertainties regarding

the technical implementation, economic feasibility and user acceptance [50]. The

provision of negative CR by increasing the charging load also proves to be chal-

lenging, implying that the PEV could only use a certain proportion of the maximum

charging load throughout the entire charging process. Therefore, only the provision

of positive CR through the controlled reduction of the PEV charging load is consid-

ered in the following, which imposes the least constraints on the user. As shown

in Figure 3.1, three different types of CR must be distinguished with regard to their

temporal availability – Primary Control Reserve (PCR), SCR and TCR [48].
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Figure 3.1: Types of Control Reserve with regard to time availability (Source: Own illustra-
tion based on [51])

PCR is automatically activated throughout the entire grid control cooperation within

a time limit of 30 seconds. Due to the high demands on reaction speed and the

symmetrical tendering of positive and negative CR, no further consideration is given

to the use of PEVs for the provision of PCR [52]. PEVs may be more suited to

participate in the SCR or TCR market for a variety of reasons. First, the response

times of SCR and TCR are easier to accomplish. The contractually agreed SCR

must be fully provided within five minutes of being automatically requested by one

of the four transmission system operators in Germany. The TCR is also requested

within one of the four balancing zones in Germany and replaces the SCR after 15

min. Furthermore, the tendering procedure is carried out separately for negative

and positive CR, which makes it possible to only offer positive SCR and TCR. In

addition, the minimum bidding volume for SCR and TCR was reduced to 1 MW

in 2018 in order to facilitate market access for aggregated DERs. The tendering

procedure has also been modified, allowing six time blocks of four hours each to

be traded every day [53], [54]. Nevertheless, the high prequalification requirements,

such as proof of service availability throughout the entire contract period, continue

to pose a major challenge for aggregators and sub-aggregators to gain access to

the CR market [52].
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3.3. Potential revenues for a sub-aggregator in Germany

Having introduced the particularities of the CR market in Germany, an exemplary

calculation of potential revenues for a PEV sub-aggregator on the SCR and TCR

market in Germany is presented below.

3.3.1. Number of relevant parking lots

To start with, the number of relevant parking lots that can be equipped with the Park-

ing Energy Ltd cabling system must be determined in order to evaluate the potential

for PEV aggregation in Germany. Looking at the various parking sites in the con-

text of flexibility and load shifting potential, it becomes clear that there is a much

higher flexibility potential for PEV charging at the workplace and at home than in

public places such as supermarkets due to the significantly longer idle time [55]. In

addition, no data on the number of parking spaces in multi-storey car parks could be

found, prompting the focus in the following to be on workplace and residential charg-

ing. Furthermore, the analysis is limited to new office and administration buildings

and residential buildings built after 1993 due to two reasons. On the one hand, com-

pared to residential buildings, office premises have a significantly shorter service

life, which is why there is a trend towards replacing old buildings with new ones and

thus making an investment in the cabling system unlikely [56]. On the other hand,

recordings for new buildings across Germany began in 1993, which is why 1993 is

chosen as the starting date for the analysis of both office and residential buildings.

Table 3.1 portrays the number of constructed office and residential buildings for the

years 1993 to 2018, extracted from the database of the "Statistisches Bundesamt"

(Destatis) [57], [58]. However, the number of new buildings doesn’t indicate the num-

ber of corresponding parking bays. Rather, the number of parking lots is estimated

based on the usable area (office building) or number of apartments (residential build-

ings) along with the guideline values for construction projects. The regulation of the

construction of parking lots is part of the German "Bauordnungsrecht" and therefore,

falls within the legislative competence of the federal states. Since the regulation is

handled differently by the federal states, it is difficult to provide a generally accurate

statement. Generally, three different procedures can be distinguished [59]:
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1. Transfer of the decision-making authority to the municipalities.

2. Specification in the state building regulations.

3. No regulation (Berlin).

While Berlin is the only federal state without regulations, the regulations for office

buildings usually range from 30 m2 to 40 m2 of useful area for one required park-

ing bay [60], [61], [62], [63], [64]. For single-family houses, 1 - 2 parking spaces

per apartment are required and residential buildings with more apartments usually

need 0.6 - 2 parking lots per apartment. However, some regulations on parking

lots for residential buildings are also based on the useful area. For the estimation

of the available parking spaces of the relevant buildings which could be equipped

with a charging station, the most conservative values are used. For office build-

ings, one parking space per 40 m2 is assumed. For residential buildings, one (1 - 2

apartments) or 0.6 (more than two apartments) parking spaces per apartment are

considered. The number of new workplace parking lots for each year is calculated

according to Equation 3.1 and the number of new residential parking lots is based

on Equation 3.2.

plworkplace, year = Useful_areayear in m
2

40 m2 (3.1)

plresidential, year = num_apart (1 or 2) + 0.6× num_apart (3 or more) (3.2)

The resulting number of office building parking lots can be seen in column four and

residential parking lots in column eight of Table 3.1.

3.3.2. Aggregation potential and Control Reserve market prices

In order to deduce the number of PEVs from the number of parking spaces with the

possibility of charging the PEV, the PEV market ramp-up goals of Germany are used

as a benchmark [22]. By 2030, seven to ten million PEVs are envisaged on German

roads, which in view of the roughly 47 million passenger cars in 2020 in Germany

will account for around 15 % to 20 %. Given the still weak market ramp-up of PEVs

in Germany, a market penetration of 15 % is assumed for further analysis, resulting

in a fleet of about 365,074 PEVs for charging at work and about 885,933 PEVs for
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Table 3.1: Summary of the calculated number of workplace and residential parking lots, the
useful area and the number of apartments used for the calculation (Own calcula-
tion based on [57] - [64]

Con-
struc-
tion
year

Number
of

office
buildings

Useful
area

in
1,000 m2

Estimated
number of

parking
lots

Number
of

residential
buildings

Number
of

apartments
(1 or 2)

Number
of

apartments
(3 or more)

Estimated
number of

parking
lots

1993 3,743 6,357 158,925 165,828 164,044 221,555 296,977
1994 3,859 6,310 157,750 212,363 212,354 284,309 382,939
1995 3,883 6,896 172,400 207,958 205,165 312,481 392,654
1996 3,477 5,371 134,275 191,577 188,802 292,173 364,106
1997 3,446 5,620 140,500 212,466 211,056 285,586 382,408
1998 3,227 4,874 121,850 215,832 220,611 208,400 345,651
1999 3,398 4,553 113,825 229,014 237,331 167,314 337,719
2000 3,515 4,576 114,400 220,797 229,715 136,445 311,582
2001 3,172 5,069 126,725 177,769 185,372 99,631 245,151
2002 2,897 5,076 126,900 164,838 172,874 79,728 220,711
2003 2,454 4,225 105,625 158,192 165,162 70,354 207,374
2004 2,046 3,421 85,525 170,400 177,204 69,386 218,836
2005 1,827 2,869 71,725 145,604 151,456 61,518 188,367
2006 1,869 3,206 80,150 146,303 150,069 69,616 191,839
2007 1,784 2,312 57,800 120,239 124,040 59,859 159,955
2008 1,859 2,455 61,375 94,415 96,369 54,615 129,138
2009 1,742 2,654 66,350 82,595 83,898 51,463 114,776
2010 1,533 2,227 55,675 84,340 85,367 53,014 117,175
2011 1,643 2,146 53,650 96,549 97,015 61,217 133,745
2012 1,674 2,028 50,700 100,816 100,294 71,041 142,919
2013 1,799 2,512 62,800 103,331 102,246 78,910 149,592
2014 1,714 2,226 55,650 108,908 106,846 101,021 167,459
2015 1,679 2,569 64,225 105,568 102,713 105,095 165,770
2016 1,618 2,513 62,825 109,990 106,301 115,150 175,391
2017 1,769 2,532 63,300 110,051 105,948 122,841 179,653
2018 1,715 2,756 68,900 107,581 103,363 134,954 184,335

Total 63,342 97,352,000 2,433,825 3,843,324 3,885,615 3,367,676 5,906,222

charging at home, after multiplying the number of parking lots with the degree of

penetration of 15 %.

In a last step, possible revenue scenarios are identified based on the previously

determined maximum number of PEVs to be aggregated. To this end, the capac-

ity and energy prices for SCR and TCR are required. However, prices are subject

to strong annual, monthly and daily fluctuations and even within a day, the price is

highly dependent on the timeslot under consideration. In addition, the capacity and

energy price are remunerated according to the pay-as-bid principle. In other words,

the price for the provision and call up of the CR is based on the own offer [53], [54].



3.3 Potential revenues for a sub-aggregator in Germany 29

Within this work it is not possible to cover all dependencies, which is why the calcu-

lations are carried out with prices from 06.04.20 to 10.10.20, shown in Table 3.2. For

workplace charging the timeslot 8:00 a.m. to 12:00 p.m. (POS_08_12) is chosen

and for residential charging the timeslot from 8:00 p.m to 12.00 a.m. (POS_20_24).

This selection is based on the assumption that at these times the largest possible

number of PEVs are charging simultaneously. Furthermore, since it is not possible

to simulate the own bid, the average prices as well as the marginal prices for both

the capacity and energy price of the SCR and TCR are taken into account to show

two possible scenarios. The demand for SCR and TCR depending on the day and

timeslots are also displayed in order to compare them with the aggregated power of

the PEVs later on.

Table 3.2: Capacity prices, energy prices and need for Secondary and Tertiary Control Re-
serve during the week of 06.04.20 to 10.04.20 (Source: Own illustration based on
[65])

Day
and
Date

Type of
CR and
timeslot

Average capacity
price in AC/MW

(SCR/TCR)

Marginal capacity
price in AC/MW

(SCR/TCR)

Average energy
price in AC/MWh

(SCR/TCR)

Marginal energy
price in AC/MWh

(SCR/TCR)

Demand
in MW

(SCR/TCR)
POS_08_12 4.13/2.96 7.44/17.06 526.03/1,405.58 9,949/9,999 2,149/1,380Mon.,

06.04.20 POS_20_24 7.98/2.96 15.33/12.00 590.47/1,148.75 9,949/9,999 2,132/1,311
POS_08_12 1.41/4.64 6.67/11.00 4,147.76/851.76 9,949/9,999 2,153/1,404Tue.,

07.04.20 POS_20_24 9.12/2.09 14.84/5.36 588.51/549.90 9,949/9,999 2,145/1.364
POS_08_12 3.38/6.76 7.44/9.50 644.80/1,180.84 9,949/9,999 2,153/1,351Wed.,

08.04.20 POS_20_24 9.23/2.69 24.14/4.50 1,061.30/1,095.73 9,982.90/9,999 2,141/1,340
POS_08_12 4.47/6.22 9.00/8.88 584.60/1,149.51 9,949/9,999 2,133/1,379Thu.,

09.04.20 POS_20_24 8.45/2.79 14.15/7.14 673.25/1,498.89 9,982.90/9,999 2,142/1,368
POS_08_12 2.36/2.70 4.00/6.90 1,043.51/1,176.41 9,949/9,999 2,114/1,356Fri.,

10.04.20 POS_20_24 6.77/2.35 15.09/8.00 1,206.02/1,679.51 9,949/9,999 2,120/1,251

3.3.3. PEV sub-aggregation scenarios

Based on the prices, different scenarios can be developed to demonstrate possible

revenue potentials. First, the aggregated power that can be offered on the CR mar-

ket must be determined. Assuming that not all vehicles of the PEV fleet are charging

at the same time, two scenarios are set up where 50 % or 75 % of the PEVs charge

simultaneously during the selected timeslots and all charging processes can be re-

duced by 1 kW in case of a CR request. The resulting capacities amount to 182.54

MW (50 %) and 273.81 MW (75 %) for workplace charging and 442.97 MW (50 %)

and 664.45 MW (75 %) for residential charging. Considering the tendered available

power for SCR and TCR shown in Table 3.2, a large part of the required capac-
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ity could be covered by aggregating the PEVs. In the case of 75-% simultaneous

charging, around 7.9 % of the required SCR and 20 % of the TCR from 8:00 a.m. to

12:00 p.m. and as many as 31 % of the SCR and 49 % of the TCR from 8:00 p.m.

to 12:00 a.m. could be met.

Table 3.3: Results of the different SCR and TCR revenue scenarios for workplace and resi-
dential charging over the period of 06.04.20 - 10.04.20 based on either the average
or marginal price and different degrees of simultaneity (Source: Own calculation)

Type
of
char-
ging
site

Share of
PEVs

charging
at the
same
time

Number of
PEVs/
Aggre-
gated
power
in MW

Type
of

available
positive
Control
Reserve

Scenario 1:
Average and

maximal
revenues
in AC for

capacity only

Scenario 2:
Average and

maximal revenues
in AC for capacity
and 15-min call

of Control Reserve

Scenario 3:
Average and

maximal revenues
in AC for capacity

and 1-h call
of Control Reserve

2,875.00 (av) 319,887.66 (av) 1,270,925.62 (av)
SCR

6,306.76 (max) 2,276,419.83 (max) 9,086,759.06 (max)
4,249.53 (av) 267,294.23 (av) 1,056,428.35 (av)

50 %
182,537/
182.54

TCR
9,736.68 (max) 2,291,258.51 (max) 9,135,823.98 (max)
4,312.51 (av) 479,831.49 (av) 1,906,388.43 (av)

SCR
9,460.14 (max) 3,414,629.75(max) 13,630,138.59 (max)
6,374.30 (av) 400,941.35 (av) 1,584,642.52 (av)

Work-
place

75 %
273,805/
273.81

TCR
14,605.03 (max) 3,436,887.76 (max) 13,703,735.98 (max)

7,584.54 (av) 195,580.20 (av) 759,567.19 (av)
SCR

15,251.22 (max) 2,288,458.34 (max) 9,108,079.73 (max)
2,351.12 (av) 274,918.93 (av) 1,092,622.38 (av)

50 %
442,967/
442.97

TCR
6,753.98 (max) 2,288,275.80 (max) 9,132,841.28 (max)
11,376.39 (av) 293,359.59 (av) 1,139,309.18 (av)

SCR
22,875.99 (max) 3,432,562.15 (max) 13,661,620.63 (max)

3,526.54 (av) 412,363.34 (av) 1,638,873.71 (av)

Resi-
dential

75 %
664,450/
664.45

TCR
10,130.60 (max) 3,432,288.35 (max) 13,698,761.60 (max)

Table 3.3 displays the average (av) and maximum (max) revenue potentials for three

different scenarios, broken down by charging site, percentage of simultaneity and

type of CR. In the first case, only the capacity price accounts for the revenue be-

cause the CR is not requested. In the second and third scenario, however, the CR is

called up for 15 minutes and one hour respectively and for this time is compensated

with the energy price. All revenues of the three scenarios are calculated according

to the following Equations:

revS1s, tCR, dS, tP r = agPows, dS ×
5∑

dt=1
capPdt, tCR, tP r (3.3)

revS2s, tCR, dS, tP r = agPows, dS × (
5∑

dt=1
capPdt, tCR, tP r + 1

4h ×
5∑

dt=1
enPdt, tCR, tP r) (3.4)
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revS3s, tCR, dS, tP r = agPows, dS × (
5∑

dt=1
capPdt, tCR, tP r + 1h ×

5∑
dt=1

enPdt, tCR, tP r) (3.5)

While revS1, revS2, revS3 represent the revenues in the respective scenarios,

agPow indicates the aggregated power of the PEVs and capP and enP correspond

to the capacity and energy price. Indices dt, s and tCR denote the type of day,

charging site and type of CR under consideration and dS indicates the degree of

simultaneity while tPr specifies the type of price (average or marginal) used for the

calculation.

When looking at the Scenario 1 results of workplace charging, the provision of TCR

seems to be more lucrative than SCR for both degrees of simultaneity and price

assumptions. Maximum revenues of 14,605.03 AC can be earned. In comparison,

maximum earnings of 13,703,735.98 AC can be generated in the event that CR is

demanded in Scenario 3. When comparing the revenues from SCR and TCR, SCR

seems more profitable if reimbursed at the average price. Conversely, if CR is of-

fered at the marginal price, slightly higher revenues can be realized by offering TCR.

Contrary to the results for workplace charging, the provision of SCR in Scenario 1

of residential charging yields higher revenues than that of TCR. The maximum rev-

enues amount to 22,875.99 AC . In Scenarios 2 and 3, the duration of delivery and

amount of compensation determines which type of CR is economically preferable.

Assuming compensation at the average price, the provision of TCR is more lucrative

in both scenarios for all cases. If, on the other hand, the marginal price is paid, SCR

in Scenario 2 and TCR in Scenario 3 offer slight benefits. Maximum revenues of

13,698,761.60 AC are possible under the assumptions made.

Overall, it becomes evident that the call-up of control energy significantly increases

profits. However, the results should only be seen as an exemplary calculation, as the

strongly fluctuating prices are likely to result in significant variations when looking at

other weeks.
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4. Artificial Neural Networks

As seen in Section 2.4 there are a number of different approaches available that can

be used to forecast the charging load of PEVs. In this paper, the ANN approach is

chosen for the prediction of the charging load, due to mainly two reasons. Firstly,

ANN have shown superior results in non-linear settings, such as complex time series

and should therefore present a valid choice for the forecasting of the sophisticated

charging load time series used in this paper [66] . Moreover, deep learning with ANN

has been a widely studied topic in research in recent years which is also reflected

in the literature review in Section 2.4. However, as already shown, the current state

of research has considerable limitations due to the lack of data and the complexity

of the subject area. Therefore, this thesis tries to make a substantial contribution to

the field of ANNs by using unique historical datasets as well as a new methodology

which exceeds the previous prognosis horizon of the existing literature.

This chapter first introduces the basic principles of ANNs and deals with the two

main types of ANNs – Feedforward Neural Networks and RNN. Subsequently, the

RNN is discussed in more detail. In the end, the rationale for choosing the LSTM

network and its basic architecture is presented.

4.1. Fundamentals of Artificial Neural Networks

ANNs are computational models inspired by the human nervous system and brain.

Dating back to the first mathematical modeling of a neuron by McCulloch and Pitts in

1943, ANNs have been widely employed in several fields of science and engineer-

ing [67]. For short-term load forecasting, ANNs have been successfully implemented

since the early 1990s [68]. In the following, the functionality and most relevant char-

acteristics and classifications of ANN are described in more detail.
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4.1.1. Structure of an artificial neuron

As mentioned before, ANN were developed to understand the biological processes

of the human nervous system. They consist of a large amount of simple artificial

neurons that send each other information using directed connections [69]. There

are three different types of neurons: input, hidden, and output units. Input units are

neurons that can receive input signals from the outside world. Hidden neurons are

located between input and output units and contain an internal representation of the

outside world. Output units are neurons that deliver signals to the outside world.

Figure 4.1 illustrates the schematic layout of a single neuron e. Each artificial neu-

ron consists of a inputs and corresponding a weights, an optional bias, a propagation

and activation function and one output [70].

w1,e

w2,e

w3,e

wa,e

𝛴

…

Bias be

x1,e

x2,e

x3,e

xa,e

…

ye

ze

Artificial Neuron

Activation functionInputs Weights Propagation function Output

f(ze)

Figure 4.1: Structure of an artificial neuron (Own illustration based on [70])

Neurons can be understood as simple processors that calculate a new output from

the receiving inputs. The inputs x1,e, x2,e, ... to xa,e each posses an unique weighting

w1,e, w2,e, ... to wa,e. Depending on their value, the weights exert a different effect.

While weights with a positive value have a stimulating effect, connection weights

with a negative value inhibit the signal to be communicated. A weight of zero indi-

cates that the neuron currently has no influence on neuron e [69]. Since a neuron

only processes a 1-dimensional input signal, the propagation function calculates the

network input ze of neuron e from the multitude of incoming signals. In Figure 4.1 the

most frequently used propagation function, the weighted sum of the output values

of the predecessor neurons, is illustrated [71].
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The network input ze of neuron e can be calculated according to the formula:

ze =
a∑

i=1
xa,e × wa,e + be (4.1)

The bias node be is optional and enables the output of a neuron to be shifted in

order to achieve the optimal fit for the given data. The activation function f(ze) de-

picts the relationship between the network input and the activity level of a neuron

and determines whether a neuron is active or inactive. If the network input remains

below a certain threshold value, the neuron is not activated, it is only activated when

it exceeds the previously specified threshold value. Activation functions introduce

non-linear characteristics to the network and have a major affect on the model per-

formance [72], [73], [74]. The output ye of the neuron e is finally calculated by the

output function using its activation state. However, in most cases the output signal

is equal to the neuron’s activation level, which is why the output function in Figure

4.1 is not explicitly portrayed [69].

4.1.2. Overall Artificial Neural Network architectures

Generally, grid layouts can be classified as either feedforward or recurrent architec-

tures. Both variants usually consist of a single input and output layer and a variable

number of intermediate hidden layers. A layer is hereby defined as a set of parallel

artificial neurons of variable number.

Figure 4.2 depicts both a Feedforward Neural Network and RNN with one hidden

layer. As can be seen, the Feedforward Neural Network does not possess recurrent

connections and is therefore not able to memorize previous output values or activa-

tion states of its neurons [71]. It is assumed that all inputs and outputs are indepen-

dent from each other, which results in limitations regarding the detection of temporal

dependencies. RNNs, on the contrary, possess additional feedback links. Hence,

they are specialized in the analysis of sequential/temporal data and have been used

successfully in different applications with temporal dependencies [75]. The charging

load of PEVs, similar to the electrical load in energy systems, is typically subject

to strong time dependencies as the charging load profile generally corresponds to

cyclical and seasonal patterns which depend on human activities such as the driv-
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ing behavior [75]. Therefore, the RNN architecture is chosen for further proceedings

and will be discussed in more detail later on.

Input 

layer

Hidden

layer
Output 

layer

Input 

layer

Recurrent hidden

layer

Output 

layer

x neurons y x neurons y

Figure 4.2: Exemplary architecture of a Feedforward (left) and Recurrent (right) Neural Net-
work (Source: Own illustration based on [76])

4.1.3. Artificial Neural Network learning process

One of the key advantages of ANNs is their ability to learn. In theory, the training

can involve a number of different approaches, such as [71]:

1. The development of new connections,

2. the removal of existing connections,

3. the modification of the threshold value of neurons,

4. the modification of the propagation or activation function,

5. the creation of new neurons,

6. the deletion of neurons,

7. and the modification of the weights.

While the first three possibilities can be understood and implemented as a modifi-

cation of the weights, no automated algorithms exist for possibility four in practice,

which is why little attention is paid to this particular training method. Approaches five
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and six are more important in practice, but these techniques are mostly used only

when satisfactory results have not been achieved by optimizing the weights. The

central aspect of learning is thus the modification of weights, which is why in the

further course of this work learning is understood as the modification of the weights

in order to achieve the optimal performance of the ANN after training [71].

The training of the ANN can be primarily classified into three categories - super-

vised, unsupervised and reinforcement learning. In supervised learning, both the

inputs and the desired outputs are provided to the ANN. Based on the inputs, the

outputs are predicted and subsequently compared to the desired outputs to calcu-

late the error of the network according to a specific loss function. Based on the loss

function, the chosen optimizer updates the weights to reduce the error. Supervised

learning usually leads to the fastest training results. In unsupervised training, how-

ever, only the input data is supplied to the ANN without the respective target values.

Based on the given inputs the ANN subsequently modifies itself by learning about

internal features of the presented data. Last but not least, in reinforcement learning

inputs are provided to the network along with a given task. Depending on the cal-

culated outputs, the connection weights are either increased (good performance) or

decreased (bad performance) [77]. In this work, supervised learning is applied to

update the weights during training.

4.2. Recurrent Neural Networks

Now that the basics of ANNs are understood, a more detailed description of RNNs

is given below. First of all, the basic features of the training of RNNS are presented.

Afterwards, the selection of the LSTM for this work is discussed before its main

structure is outlined.

4.2.1. Recurrent Neural Network training

The most popular approach in supervised learning for Feedforward Neural Networks

is the so-called backpropagation training algorithm. As the name backpropagation

indicates, the weights are modified backwards from output to input layer. First, the
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inputs are propagated through the network in order to obtain the output. The pre-

dicted outputs are then compared to the actual output and the loss functions is used

to determine the corresponding error. Hereafter, the "gradient method" is used to

compute the derivatives of the error in relation to each network weight. The deriva-

tives are used to update the weights with the aim to minimize the error. This process

is repeated until a certain termination criterion is met [71].

Due to the existence of feedback connections in RNNs, the error at each timestep

is dependent on the previous timestep which is why the initial backpropagation al-

gorithm cannot be used to calculate derivatives and modify the network parameter

according to the network error. In fact, in order to determine a direct link between

the loss function and the network weights, the RNN must be displayed as a directed

graph [75]. Therefore, a modified backpropagation variant is used, known as Back-

propagation Through Time (BPTT). BPTT operates by unrolling all input timesteps

as shown in Figure 4.3. Each timestep consist of the current input x, the previous

hidden state h and the current output y. For each timestep the error can be com-

puted and accumulated. Subsequently, the network is restored to its original form

and the weights are adjusted. Again, this process is repeated until a termination

criterion is fulfilled. However, the RNN can suffer from the vanishing or exploding

gradient effect [78]. If the gradient becomes to small or big during backpropagation,

the resulting update of the weights will be to small or big as well, hindering the net-

work to deal with long term dependencies [79]. Hence, in this work a RNN variant is

required, which does not suffer from the vanishing or exploding gradient problem.

unroll

x1                     x2                     x3       … xt-1                     xt

y1                     y2                     y3       … yt-1                    yt

h1                      h2                      h3                     ht-1                      htht

xt

yt

Figure 4.3: Unrolling of a Recurrent Neural Network over time (Source: Own illustration
based on [78])
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4.2.2. Model selection

There are two different types of RNN that tackle the vanishing and exploding gradi-

ent problem in the BPTT learning algorithm – LSTMs and GRUs. The LSTM is one

of the most popular approaches of deep learning for load forecasting [80]. LSTM

networks have the ability to learn both long-term dependencies as well as short-

term features of the temporal data [81]. Numerous studies have shown that LSTM

networks can achieve superior results in different domains of electricity load fore-

casting [80], [81], [82] as well as charging load forecasting as shown in the literature

review in Section 2.4 [37], [36], [78].

In contrast to the LSTM, the GRU network represents a relatively novel alterna-

tive to the LSTM network and was first introduced in 2014 by Cho et al. [83]. It

attempts to maintain the advantages of LSTM while reducing complexity. Several

studies indicate that the GRU accelerates training time and can achieve similar and

sometimes superior results in terms of load prediction accuracy [84], [85], [86], [87],

[88].

However, the reduced complexity of the GRU might jeopardize the accuracy of the

charging load prediction. Therefore, a novel LSTM approach is applied in this thesis.

Nonetheless, it should be noted that the results of this work can also be applied to

GRU networks for future research as the implementation follows the same design.

4.2.3. Long Short-Term Memory

The LSTM was developed in 1997 by Hochreiter and Schmidhuber [89] and can be

seen as an effective tool for time series analysis and prediction [90]. The hidden lay-

ers of LSTM consist of three different gate units – namely forget gate ft, input gate it
and output gate ot – and self-connected memory cells which allow the LSTM to learn

long-term dependencies when dealing with sequential data [78]. Figure 4.4 offers a

thorough insight into the inner architecture of a LSTM cell at a single timestep.
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Figure 4.4: Internal architecture of a LSTM cell (Source: Own illustration based on [82])

The functionality of the LSTM cell shown above can be expressed mathematically

by the following formulas [91]:

ft = σ(Wf,xxt +Wf,hht−1 + bf ) (4.2)

it = σ(Wi,xxt +Wi,hht−1 + bi) (4.3)

c̃t = tanh(Wc̃,xxt +Wc̃,hht−1) + bc̃) (4.4)

ct = ft � ct−1 + it � c̃t (4.5)

ot = σ(Wo,xxt +Wo,hht−1 + bo) (4.6)

ht = ot � tanh(ct) (4.7)

While Wf,x, Wf,h, Wi,x, Wi,h, Wo,x, Wo,h, Wc̃,x and Wc̃,h label weight matrices, bf , bi,

bo and bc̃ are bias vectors. Moreover, xt denotes the current input and ct−1, ct, c̃t,

ht−1, ht represent the previous cell state at time t-1, the new cell state, the candidate

cell state, the previous hidden state and new hidden state respectively. The hidden

state (output) can be understood as the networks short-term memory, while the cell

state is the memory of the LSTM and captures long-term dependencies. The arith-

metic operations � and + indicate element-wise multiplication (Hadamard product)

and element-wise addition. Finally, the sigmoid and tanh activation functions are

represented by σ and tanh. While the tanh activation function serves to control the

values passing through the network by ensuring that they are in the range between

-1 and 1, the sigmoid activation function outputs values between zero and one. The

sigmoid function is employed in all three gates and decides on which signals should

pass the gates. While a value of zero causes signals to disappear, a value of one
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ensures that the signal remains the same and passes the gate.

The forget gate ft is the first gate of the LSTM unit (see 4.2) and regulates how

much information to keep from the previous cell state. Both the current input and

previous output are multiplied with their corresponding weights and passed through

the sigmoid activation function along with the bias vector. The output values between

zero and one controls the amount of information to be deleted from the previous cell

state (zero= delete all, one = keep all).

The next stage, which comprises two elements, is to decide what new information to

store in the cell state. First, the input gate it determines which values to update. As

shown in Equation 4.3, the computation of the input gate is similar to the forget gate,

the only distinction concerns the different weight matrices and bias vectors of both

gates. Next, a candidate cell state c̃t is calculated by applying the tanh activation

function to the sum of the weighted current inputs, weighted previous outputs and

bias. Hereafter, the Hadamard product of input gate and candidate cell state decides

which information is important to keep from the candidate cell state, depending on

the output values of the input gate (zero=not important, one=important).

With the help of the forget and input gate and the candidate cell state, the new

cell state can be calculated according to Equation 4.5. First, the Hadamard product

between previous cell state and forget gate vector is calculated. Values of the pre-

vious memory are discarded in case of multiplication by values close to zero. The

new cell state is then determined by the element-wise addition of the result of the

Hadamard product and the result of the element-wise multiplier between input gate

and candidate state. This operation ensures that the previous cell state is updated

to new values that the LSTM considers relevant.

Lastly, the output gate ot controls the information to output based on the cell status

and can be understood as a filtered version of the cell state. As seen in Equation

4.6 the weighted current inputs and weighted previous output along the bias vector

are passed to the sigmoid activation function to determine which part of the current

cell state to output. The current cell state is pushed through a tanh function and then

element-wise multiplied by the result of the output gate to extract only the relevant

information as output. The resulting new hidden state is used for prediction and the

new hidden state and new cell state are then transferred to the next time step.
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5. Methodology: Multivariate multi-step LSTM forecasting

After having laid the foundations important for the understanding of this work in the

previous chapter, this section will present the authors’ own approach.

The novel LSTM approach for predicting the PEV charging load introduced in this

paper is implemented in the Python programming language, which is interoperable

with Version 3 and beyond. Python is chosen due to its reputation in the area for

data analysis, its open accessibility and the large variety of libraries available. The

primary Python libraries used in this thesis are:

1. Pandas, NumPy, scikit-learn,

2. Keras, TensorFlow and

3. hyperopt.

While pandas and NumPy are mostly used for the data pre-processing and model

evaluation, the LSTM is implemented in Keras which uses TensorFlow as a back-end

framework. The hyperopt library is used for hyperparameter tuning. Due to perfor-

mance considerations, training and hyperparameter tuning of the LSTM is performed

on the Narvi Cluster – a SLURM managed cluster at Tampere University consisting

of 64 CPU and 8 GPU nodes [92].

All libraries were chosen with regard to their popularity, user-friendliness and overall

performance. All other packages used in this work are documented in the source

code. These additional packages need to be installed before running the different

Python scripts. When installed, the software can be run on all major operating sys-

tems. In the following, for reasons of clarity, only the name of the function without

its required arguments is given when referring to certain implemented python func-

tions. The required arguments can also be taken from the source code under the

same function name.
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5.1. Methodology

As previously discussed in Section 2.3, different methods for multi-step ahead time

series forecasting can be distinguished. In this work a LSTM using the MIMO strat-

egy in a multivariate setting is introduced. The MIMO Strategy is selected based on

the results in [31], which conclude that multiple output strategies outperforms single

output strategies. Moreover, previous studies indicate that the charging load of elec-

tric vehicles is greatly influenced by various factors such as weather, temperature,

type of day, hour of day or public holidays [93], [40], [41], [42]. Hence, the mul-

tivariate approach is adopted in this thesis. When selecting the multivariate data,

the main focus is placed on keeping the complexity of the model low by selecting

those which can be easily obtained by the aggregator. Therefore, meteorological

and temperature data are not included. All inputs can be derived from the original

data, therefore reducing the complexity to a minimum .

The methodology for designing the proposed model in this thesis is shown in Figure

5.1 and can be divided into three main steps – data pre-processing, LSTM train-

ing and LSTM forecasting. The data pre-processing will be thoroughly discussed

in Chapter 5.2. To start with, the cleaned raw data is used to calculate a time se-

ries of aggregated charging load for each charging site, which will be explained in

more detail in Section 5.2.2. Based on the calculated load values, an analysis of the

different time series is carried out and important features for setting up the model

are ultimately selected on the basis of the results (Section 5.2.3). Subsequently, the

load and feature data is split into training and test data prior to the encoding of the

data (Section 5.2.4). The process of data reshaping according to the requirements

of the LSTM network and supervised learning framing will be dealt with in Section

5.2.5.

Following the data pre-processing, the LSTM model is trained, an important pro-

cess that will be further discussed in Chapter 5.3. In this context, the LSTM hyper-

parameter (Section 5.3.1), the implementation of training (Section 5.3.2), the overall

LSTM architecture and training process (Section 5.3.3) and the hyperparameter tun-

ing (Section 5.3.4) will be addressed.

Once the LSTM has been conditioned, the last step comprises the actual charg-



5.2 Data pre-processing 43

Cleaning and pre-processing of the original data to obtain the various charging load time series
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Selection of the LSTM with the

optimal hyperparameter configuration

Figure 5.1: Methodical approach of developing the LSTM charging load forecast

ing load prediction (Chapter 5.4). The prediction is carried out by feeding the LSTM

with test data that has not been shown to the LSTM before. Based on the prediction,

the performance of the model can be evaluated for the different charging sites using

a variety of metrics. While the implementation of the forecast is dealt with in Section

5.4.1, the evaluation metrics used in this paper are introduced in Section 5.4.2.

5.2. Data pre-processing

The following paragraph details the process of converting the event based data into

an aggregated charging load time series and the subsequent data preparation to

enable the processing of the data by the LSTM.
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5.2.1. Origin and selection of charging data

The data used in this work originate from two different sources. As mentioned

before, a majority of the data has been kindly provided by Parking Energy Ltd, a

company headquartered in Helsinki. Further charging data was provided by the in

Tampere based software provider IGL-Technologies Oy. IGL operates in the sector

of parking management and provides integrated solutions for warming up the car,

charging the car and measure electricity consumption.

Table 5.1 depicts the characteristics of the charging data used in this thesis, which

have been selected according to two criteria. Firstly, given that ANNs can only

achieve good results if a sufficient amount of data is available, sessions of at least

one year must be provided for each of the charging sites. The second criterion

is that the time periods in which the charging sessions were measured must be

the same for each charging site within a cluster. Thus, the sudden increase of the

charging load caused by the addition of new charging locations within one year can

be avoided. In this context, emphasis was placed on using the latest charging data

as far as possible.

Table 5.1: Overview of the original charging session data

Data 

provider

Type of 

charging

Number of 

charging sites

Number of 

charging sessions

Measured

period

IGL-Technologies Oy
Shopping center

(REDI)
1 9,283

01.01.2019 –

31.12.2019

Parking Energy Ltd

Residential 21 10,920
21.01.2019 –

20.01.2020

Public 

(city car parks)
8 18,785

31.01.2019 –

30.01.2020

Workplace 7 11,516
31.01.2019 –

30.01.2020

Taking into account the two selection criteria, the charging data of 37 different charg-

ing locations, originating from different cities in Finland, can be used in this study. A

total number of 21 charging locations are pooled and assigned to residential charg-

ing, eight charging sites represent public (car park) charging and the sessions of

another seven charging sites form the aggregated load for workplace charging. The

dataset available from IGL originates from the shopping center REDI and thus rep-

resents the charging in shopping center complexes.
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After the selection of the suitable data the datasets contain a total number of 50,504

charging sessions, with every charging site containing measurements over a pe-

riod of one year. While 10,920 charging events, measured between 21.01.19 and

20.01.20, are allocated to residential charging, 18,785 and 11,516 charging ses-

sions, registered in the period 31.01.19 - 30.01.20, are associated with public and

workplace charging respectively. The 9,283 charging sessions of shopping center

charging were logged throughout the whole year of 2019.

5.2.2. Charging load time series generation

In order to generate the suitable input for the LSTM, the event-based data of the

accounting system first has to be converted into a time series of aggregated charg-

ing load values. The time series is calculated based on the cleaned datasets in

Python. Different Python functions are implemented to be able to generate a time

series of aggregated charging load in a 15-min resolution for each day over the en-

tire observation period using the different charging events. The data is stored in

2-dimensional array, with the first dimension representing the number of days and

the second dimension specified by the number of 15-min charging intervals. While

the number of rows is thus determined by the time span between the first and last

charging measurement and equals 365, the number of columns totals 96 (4×24).

The 15-min interval size is chosen as a compromise between complexity and accu-

racy. Furthermore, 15 minutes is the smallest time unit to be traded on the Intraday

Market of EPEX Spot, which is why the choice of the 15-min interval should be con-

sidered reasonable [94].

Figure 5.2 depicts the selected approach to create the charging load time series from

the individual charging sessions. While indices k denotes the individual charging

sessions, indices l represents the total number of charging sessions in the dataset.

In a first step the dataset is read into a pandas dataframe using a SQL connection.

The SQL connection allows easy access to the event-based information required

to generate the aggregated load time series – the start-of-charging timestamp (ts),

the power-to-zero ts and the amount of energy charged for each charging event k.

While the IGL data set contains the power-to-zero ts for each charging session k,
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Figure 5.2: Overview of the aggregated charging load time series generation process

not all sessions of the Parking Energy Ltd dataset possess such information. Thus,

the initial charging time timeorig,k is calculated in two different ways according to

Equation 5.1 and Equation 5.2. If the power-to-zero ts is given, the original charging

time in minutes is derived by measuring the deviation between start-of-charging ts

and power-to-zero ts in seconds (sec) and dividing the result by 60 sec. In case the

power-to-zero ts is missing, a nominal charging power of 1.8 kW is assumed and

the charging time in minutes is calculated by dividing the amount of energy charged

energyorig,k (in kWh) by the charging power and multiplying the result with 60 min

per hour.

timeorig,k = power-to-zero_tsk − start-of -charging_tsk

60 (5.1)

timeorig,k = energyorig,k × 60
1.8 (5.2)

Since the parking and charging times might change due to the analysis interval of 15

minutes, the charging time needs to be adjusted accordingly. Equation 5.3 shows
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how the new charging time timenew,k is calculated based on the original charging

time.

timenew,k =


15 timeorig,k < 15 min

timeorig,k −mod(timeorig,k) mod(timeorig,k) < 7.5 min

timeorig,k −mod(timeorig,k) + 15 else

(5.3)

The new charging time indicates the number of full 15-min intervals of each charging

session. In the event of timeorig,k lasting less than 15 minutes, it is rounded up to 15

minutes which equals one 15-min charging interval. Otherwise, a modulo operation

is performed which outputs the rest of an integer division by 15. Any time the output

value falls below 7.5 minutes, it is subtracted from the original charging time, in other

words the amount of 15-min charging intervals is rounded down to the next integer.

Otherwise, the deviation between 15 and the output value is added to timeorig,k,

thus the number of charging intervals is rounded up. The new charging time and

corresponding number of the full 15-min charging intervals for each charging ses-

sion is calculated with the help of the python functions calculate_min_charging(...)
and calculate_num_charging_interval(...).

By means of the adjusted charging time, the modified average charging load of each

charging process can be calculated subsequently. Although it must be assumed

that the maximum charging load decreases with an increasing state of charge, a

constant charging power is assumed in this paper. [95] reveals that the resulting er-

ror caused by a steadily assumed charging power during slow charging is relatively

small and can thus be neglected for the purpose of this paper. The calculation of

the average charging load charging_loadnew,k, using the calculate_charging_load(...)
function, can be taken from Formula 5.4 . To determine the charging load, the origi-

nal amount of energy charged is divided by the modified charging time.

charging_loadnew,k = energyorig,k

timenew,k

(5.4)

In order to determine the aggregated charging load of all charging events for all 15-

min intervals a day throughout the observation period, the start interval is of interest

in order to accurately schedule the load. All charging events whose start-of-charging

ts falls between the start and end of a 15-min interval must be adjusted accordingly.
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It is important to ensure that the deviation from the original start-of-charging ts is as

small as possible. Therefore, for each charging session a reference ts for the same

day of the start-of-charging ts at time 00:00:00 is created. The difference between

reference ts and start-of-charging ts enables to determine the start interval, illus-

trated in Equation 5.5.

start_intervalk = start-of -charging_tsk − ref_tsk

60× 15 (5.5)

The difference between both ts is measured in seconds. By dividing the difference

by the amount of seconds and minutes of each interval and subsequently rounding

the result, the start of the charging process can be assigned to one of the 96 different

15-min intervals of each day. For this purpose function calculate_start_interval(...)
is implemented. If the start-of-charging time falls within the first 7.5 minutes of each

interval, the start interval is set to the value of the respective interval. Otherwise the

charging process starts in the following 15-min interval, thus ensuring the closest

match between the original and modified charging process.

To be able to assign the charging load of each session to the correct day, ad-

ditional information is required to determine the correct row index. Therefore,

a reference and actual data datetime object is created by means of functions

create_start_date(...) and create_reference_date(...) which allow to specify where

the charging load of each session should be inserted. As a result, all necessary val-

ues are available to determine the aggregated charging load in a final step. For each

charging session, the computed charging load is stored at the specific day begin-

ning at a given start interval over the determined duration of the charging process.

If the charging process spans over two days, this circumstance is taken into account

accordingly. Afterwards, the load calculated for each charging session is accumu-

lated iteratively. The resulting output is a 2-dimensional NumPy array containing the

aggregated charging load time series of all charging sessions.

5.2.3. Analysis of time series and feature extraction

To be able to determine important features which can be fed to the LSTM as multi-

variate inputs to support the detection of interrelationships, an analysis of the char-
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acteristics of the load series of the different charging sites is carried out in the fol-

lowing. Additionally, the analysis aims at establishing a basic understanding of the

characteristics of the load series in order to allow a more thorough assessment of

the results in Chapter 7.

Analysis of annual charging load curves
To start with, the course of the aggregated charging load over the entire period of

one year is evaluated. Figure 5.3 illustrates the trajectory of the charging load for

both public (upper plot) and workplace charging (lower plot) in the period 31.01.2019

to 30.01.2020.

Figure 5.3: Aggregated charging load of workplace and public charging over the period from
31.01.19 to 30.01.20

Three observations can be drawn from the plots. First, an increasing trend of the

aggregated load over the course of the year can be observed for both charging sites.

Considering the increasing number of PEVs and the associated number of charging

processes, this finding is not surprising. The noticeably reduced charging load in

the gray-shaded area marks the second conspicuity. This phenomenon is caused

by the two main holiday periods in Finland, the summer holidays dating from the end

of June to the beginning of August and the Christmas holidays between Christmas

and the start of January. Lastly, it also is visible that workplace generally exhibits

steep peak loads with a relative low charging load level the rest of the day, while
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public charging also displays high peak loads but with a slower decay of the charg-

ing load.

By comparison, Figure 5.4 displays the course of the aggregated charging load for

shopping center (upper plot) and residential charging (lower plot). Similar to the

previous chart, the rising trend over the year and the influence of holiday periods on

residential charging is evident, although less significant than before. The load profile

of the shopping center also exhibits a slight trend, but the influence of summer and

Christmas holidays is not clearly visible. This observation may be due to the fact

that the charging stations in the shopping center are used for different purposes, for

shopping, during working hours or as a parking space for nearby residential areas.

Figure 5.4: Aggregated charging load of shopping center (01.01.19 - 31.01.19) and residen-
tial (21.01.19 - 20.01.20) charging

In summary, the rising trend would support the selection of an indicator for the dif-

ferent months as a feature. However, due to the fact that only charging data over

one year is available and the train and test split would therefore result in unknown

indicators, a feature month is omitted. Nevertheless, with data available for several

years in the future, the inclusion of an indicator for the month might be reasonable

for later investigations.
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Analysis of weekly charging load curves
Following the review of the charging load over the entire time span of one year, a

more detailed analysis of individual weeks is carried out with the intention to show

further properties. For each charging site the weeks from 04.02.19 to 10.02.19

(green plot), from 25.11.19 to 01.12.19 (gray plot) and the Christmas week from

23.12.19 to 29.12.19 (purple plot) are analyzed. In this way, the influence of the

different types of day on the charging load can be demonstrated, as well as how the

daily charging load increases over the course of the year due to the previously seen

increasing number of PEVs.

Figure 5.5 displays the weekly load curve in kW for public (upper plot) and work-

place charging (lower plot).

Figure 5.5: Workplace and public charging load exemplified for different weeks

Comparing the load curve in February (green) with that of the end of November

(gray), a significant increase can be seen for both charging sites. While the daily

peak for workplace charging more than doubles on some days, the surge for charg-

ing in public car parks is less pronounced but also clearly visible.

Furthermore, distinct patterns can be identified. As expected, the workplace charg-

ing load at weekends is negligible, while weekdays show a similar tendency. The

maximum peak arises before noon when the majority of people arrive at work and
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start charging. With public charging this pattern is also visible, indicating that many

people use the car park for parking their car during working hours. Nevertheless, the

curve does not flatten out around midday as in pure workplace charging, but rather

has a smaller second peak in the afternoon. On weekends, the load curve drops

sharply due to the loss of users during working hours and the peak shifts to after

midday.

The impact of public holidays on the load curve becomes clear when observing the

purple plot. On public holidays (Tuesday, Wednesday and Thursday), the workplace

charging load drops to almost zero. On the remaining days it is also reduced signif-

icantly, which can be explained by bridge days and the weekend. The same effect

can be seen with public charging, but to a lesser extent.

As shown in Figure 5.6, the rise of the aggregated charging load over the course

of the year can also be observed for residential and shopping center charging by

comparing the green and gray graphs. In addition, the significant drop of charging

load on public holidays is evident when examining the purple load curve for both

charging sites. Apart from the peak in the early evening, which can be observed

during residential charging on weekdays, less significant patterns can be seen for

both charging locations compared to public and workplace charging. Especially the

load curves of the shopping center show strong fluctuations with daily changing load

profiles.

Figure 5.6: Shopping center and residential charging load exemplified for different weeks
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Summarizing the findings of the analysis on the weekly load profiles, a clear impact

of the type of the day and the time of the day on the charging load can be identified.

Consequently, each load value will be linked to an indicator for the quarter of an

hour of each day, for the type of day and whether it is a public holiday, collectively

representing the multivariate inputs to the LSTM.

5.2.4. Scaling and encoding of data

After completion of the feature selection, the input data for the LSTM is determined.

The input data can be divided into numerical and categorical features. While the

charging load values are clearly numerical, the three other features selected in this

paper can be classified as categorical. Moreover, type of day and quarter hour of the

day exhibit cyclic calendrical properties while the feature public holiday possesses

binary character (no holiday or is holiday). Due to the fact that ANNs internally work

with numeric data they must be converted into numerical values. It is also common

practice in machine learning to normalize numeric data in order to accelerate net-

work convergence and ensure that all entries to the LSTM carry the same weight

[37], [96].

One of the most common pitfalls in machine learning is the pre-processing and

encoding of the data before splitting the available data into training, validation and

test sets. This procedure can result in leaking information from the training data to

the test data and should be avoided by all means [97]. Therefore, the charging load

time series is first split into training and test sets by means of the python function

train_test_split_loadseries(...). As the name suggests, the training dataset is used

to train the LSTM and update the weights and bias. During model fitting, a certain

amount of the training data is used as validation data. The validation set is needed

to evaluate the LSTM model during training and be able to tune the hyperparameters

of the model to achieve the most appropriate training results. Last but not least, the

test data, the data that has never been shown to the LSTM during training, is used

to make predictions and provide an unbiased evaluation on the model performance

[98]. Due to the limited amount of available data, in this work, the data is split in

training and test set with a ratio of 0.9 to 0.1. Moreover, 20 % of the training data is

used as evaluation data during model fit, resulting in a 72 % train, 18 % validation
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and 10 % test split.

Min-max scaling
After splitting the charging load time series into training and test sets, the next

step involves normalizing the charging load values and encoding the categori-

cal data. For pre-processing of the charging load the Python function named

minmax_scaling_train_test(...) is implemented, which normalizes the load values

in the range [0,1] according to the commonly used min-max scaling method [37],

[38], [36], [99]. For scaling, the MinMaxScaler(...) function of the sklearn library is

employed, which operates according to the following formula:

loadt,norm = loadt − loadmin

loadmax − loadmin

(5.6)

While loadt,norm denotes the normalized charging load value at time t, loadt is the

actual load value at time t. Loadmin and loadmax represent the minimal and maximal

load value of the training data. To avoid data leakage, normalization for training

and test data is performed separately. At first the training data is normalized and

subsequently the test data is normalized by using the same minimum and maximum

values of the training data.

One hot encoding
For encoding the categorical variables various encoding techniques can be distin-

guished, such as ordinal encoding, one hot encoding, sum coding or binary coding.

Ordinal encoding is one of the simplest form of encoding categorical variables, as-

signing a distinct integer to each category. However, ordinal encoding faces the

problem of imposing an order on the variable that might not be true [100]. Especially

for the type of day and quarter hour indicator this restraint might mislead the LSTM

during training. A superior choice might involve using one hot encoding. One hot

encoding is one of the most commonly used methods in machine learning to con-

vert categorical values to numerical ones [100], [99], [101], [102]. During one hot

coding, the original element from the categorical feature vector with q cardinality is

converted into a new vector of ones and zeros with q elements. The corresponding

new element is thereby represented by a one, while the rest of the new elements

are zeros.
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In order to one hot encode the categorical features a correct numerical indicator

for quarter hour, type of day and public holiday must be assigned to each value in

the load time series. This integer encoding is done both for the training and test

data separately. More precisely, for each of the categorical features, a time series

is generated which contains the matching indicator for each 15-min load value of

the load time series. For this purpose, three different python functions are imple-

mented. Function get_quarter_hour(...) assigns an integer (0 to 95) to each 15-min

load value, which indicates the current time of each day. Hereby, 0 represents the

first quarter of an hour of the day and 95 the final one. Function get_type_of_day(...)
likewise links an integer (0 to 6) to each 15-min load value, indicating the type of day.

While integer 0 depicts Monday, Sunday is represented by the integer 6. Last but

not least, function get_holidays_finland(...) derives a public holiday indicator for the

different datasets originating from Finland. Integer 0 marks no holiday while integer

1 signifies public holiday.

After integer encoding the one hot encoding is performed on both the training and

test set for each feature, calling the functions one_hot_encoding_quarterhour(...),
one_hot_encoding_type_of_day(...) and one_hot_encoding_public_holiday(...). All

functions implement the OneHotEncode(...) function of the sklearn library. Table

5.2 exemplifies the results of the one hot encoding. It becomes apparent that one

hot encoding drastically increases the input dimension for the LSTM.

Table 5.2: Exemplary illustration of categorical feature one hot encoding

Category Feature Ordinal

encoded

One hot

encoded

Dimen-

sion

Type of day

Monday 0 [1, 0, 0, 0, 0, 0, 0] 7

Tuesday 1 [0, 1, 0, 0, 0, 0, 0] 7

… … … …

Saturday 5 [0, 0, 0, 0, 0, 1, 0] 7

Sunday 6 [0, 0, 0, 0, 0, 0, 1] 7

Public 

holiday

No holiday 0 [1, 0] 2

Is holiday 1 [0, 1] 2

Quarter

hour of 

the day

00:00:00 – 00:14:59 (first) 0 [1, 0, 0, … , 0, 0, 0] 96

00:15:00 – 00:29:59 (second) 1 [0, 1, 0, … , 0, 0, 0] 96

… … … …

23:45:00 – 23:59:59 (last) 95 [0, 0, 0, … , 0, 0, 1] 96
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Sine/cosine encoding
One hot encoding not only increases the dimensionality of the input feature quarter

hour and type of day but might also not be the most suitable choice for representing

their cyclic characteristic. Several publications therefore use sine and cosine trans-

formation to enhance the ability to recognize the cyclic nature of features like hour

of the day, type of day or month and conclude that this type of encoding can signifi-

cantly improve the neural network performance [103], [104], [105], [106]. While the

feature public holiday does not possess a cyclic nature, day of the week and quarter

hour of the day do and are therefore encoded with sine and cosine as well. Both one

hot encoding and sine/cosine encoding are tested in this paper. The formula for sine

and cosine encoding for the quarter hour indicator at time t is illustrated by Equation

5.7 and Equation 5.8 respectively. Equation 5.9 and 5.10 depict the sine and cosine

encoding of the type of day indicator at time t. Both training and test data are en-

coded according to the shown equations using sin_cos_encode_quarterhour(...) and

sin_cos_encode_type_of_day(...).

sine_quarter_hourt = sin(2 ∗ π ∗ int_quarter_hourt

96 ) (5.7)

cosine_quarter_hourt = cos(2 ∗ π ∗ int_quarter_hourt

96 ) (5.8)

sine_type_dayt = sin(2 ∗ π ∗ int_type_dayt

7 ) (5.9)

cosine_type_dayt = cos(2 ∗ π ∗ int_type_dayt

7 ) (5.10)

Figure 5.7 illustrates that the feature dimension can be reduced to two for both fea-

tures and that the sine/cosine encoding is able to represent the cyclic nature of both

cyclic variables. In comparison to one hot encoding for instance, the proximity be-

tween Monday and Sunday (see left plot) and between the last quarter hour of the

previous day and the first quarter hour of the next day (see right plot) can be mapped

more precisely. However, both encoding techniques will be implemented to investi-

gate which one is yielding more accurate results and select the superior encoding

technique for each charging site.
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Figure 5.7: Sine/Cosine encoding of temporal features

5.2.5. Reshaping and supervised learning framing

Finally, the input data must be formatted in such a way that the input data shape

meets the specific LSTM requirements and that the input data is presented to the

LSTM network appropriately so that the supervised learning approach used in this

thesis can be successfully applied. The reshaping is done separately for the train-

ing and test data, which will not be explicitly mentioned every time in the follow-

ing for reasons of simplicity. First of all, the features that are still provided sepa-

rately from each other at this point in time must be merged together. By calling the

concatenate_all(...) function, for every 15-min timestep all features are merged into

a single array. The merging is done in the following order: normalized load value,

quarter hour indicator of the day, type of day indicator and public holiday indicator.

The result is a 2-dimensional array that contains all mentioned features for each

timestep. For one hot encoding, each timestep possesses 106 features, while the

number is reduced to seven features in the case of sine/cosine encoding.

Furthermore, the data has to be prepared in such a way that the LSTM can be

trained and tested afterwards. Within this thesis two approaches are examined,

which are illustrated in Figure 5.8 for the month January at the shopping center

charging site and 96 timesteps as inputs and outputs. The upper graph depicts the
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so-called stateless approach, which uses the sliding window method to artificially

increase the amount of training data without altering the results. The LSTM is al-

ways given the fixed sequence of input timesteps as input data to determine the load

values of the output sequence consecutive to the input sequence. The sliding win-

dow enables the creation of a large amount of training data by shifting the input and

output sequence with fixed length in each step by one 15-min timestep. Although

the stateless sliding window approach has the advantage of drastically increasing

initial training data, it also has a significant drawback. During training the internal

state of the cells is reset after each batch, therefore implying that data in each batch

in not related to other batches [107]. This assumption might be not valid for charg-

ing load forecasting, hindering the LSTM to detect long term dependencies outside

each batch.

The second approach, illustrated in the lower plot of Figure 5.8, deals with the afore-

mentioned restriction by using the stateful mode. During stateful training, the hid-

den state calculated for a previous batch of training data serves as the initial state

of the following batch of training data. Therefore, the hidden state is maintained

across batches and long term dependencies might be more easily understood by

the LSTM. Another benefit stems from the fact that the stateful mode can accelerate

training time [107]. However, the sliding window cannot be used while using the

stateful flag. As seen in Figure 5.8 the fixed input sequences adjoin to each other

without overlapping, resulting in a significant decrease of available training data.
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Figure 5.8: Illustration of the stateless and stateful supervised learning framing
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The framing of the stateless mode is done by calling series_to_supervised(...)
which returns a pandas dataframe containing the data framed in a sliding win-

dow manner for supervised learning. While the input data x needs to contain

both the load value and all encoded features for each timestep, the prediction

will only contain the desired charging load values. Therefore, for supervised

learning, the real output values shown to the LSTM for comparison with the pre-

dicted values may also only contain the load values. This necessity is achieved

by calling the function drop_columns_series_to_supervised(...) which drops all the

columns containing the unwanted encoded features for the output y. Finally, the

split_input_output(...) function is employed to separate the inputs x and corre-

sponding outputs y and store them as an array. Ultimately, the input and out-

put data needs to be reshaped into the 3-dimensional format requested by the

LSTM. Using the reshape_2d_to_3d(...) function the data is reshaped into the shape

[number of samples, number of timesteps, number of features].

Figure 5.9 exemplifies this process for the stateless sliding window approach by

the example of 96 input and output timesteps. Whereas indice m depicts the num-

ber of timesteps of the the whole charging load time series, indice n represents the

number of features.
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Figure 5.9: Visualization of the reshaping of input and output data in the stateless sliding
window approach as demanded by the LSTM

The supervised learning framing for the stateful mode proceeds the same way, with

the exception that each sample starts at the next timestep of the last timestep of the
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previous sample. The supervised learning framing, the separation of inputs x and

outputs y as well as the 2-dimensional to 3-dimensional reshaping is implemented

by the input_output_prep_stateful(...) function.

5.3. Long Short-Term Memory implementation and training

Following the data reshaping and supervised learning framing, the LSTM can be

implemented and trained. The selection of the LSTM model with the most suitable

configuration is carried out in two stages. First, the LSTM is trained with initial care-

fully selected parameters to choose the most suitable approach for each charging

site from the different approaches discussed in the previous chapter. Then, an at-

tempt is made to identify the superior LSTM configuration for the forecast from a

number of different hyperparameters.

This chapter is organized in four sections as follows. First, a general understanding

of the most important LSTM hyperparameters is provided. Next, the implementation

in Python is discussed and the initial selection of hyperparameters is addressed in

this context as well. Subsequently, the resulting overall LSTM architecture is illus-

trated in order to explain the training process in more detail. Finally, hyperparameter

tuning is discussed which is used to determine the most suitable configuration of the

LSTM.

5.3.1. Long Short-Term Memory hyperparameter

While implementing the LSTM one has to distinguish between model parameter and

hyperparameter. Model parameter are those parameters that are internal to the net-

work and modified during training, such as the weights. Contrary, hyperparameters

are external and can not be learned during training. Rather, they define the overall

design of the model. Therefore, hyperparameters play an important role in the im-

plementation of the model, as even small modifications can have a major impact on

the training process and the performance of the model. Depending on the structure

of the ANN, the selection of hyperparameters can become very complex. Some of

the most important hyperparameters are discussed in the following. They can be
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classified into network structure related and training algorithm related hyperparam-

eter.

Network structure related hyperparameter
To start with, the number of recurrent units is an decisive hyperparameter for im-

plementing the LSTM design. Both an oversized or undersized number of neurons

can lead to difficulties during training. On the one hand the network might not be

able to solve the prediction task satisfactorily if the number of units is too small.

On the other hand, too many units could lead to overfitting the model, resulting in

decreasing test performance [108]. The same behavior also applies to the second

hyperparameter, the number of hidden layers. Even though in general adding lay-

ers can increase model performance too many layers will lead to overfitting and a

rapid increase in training time. On the contrary, a too small number of layers can

limit the model’s ability to learn [109]. Another hyperparameter, the weight initial-
ization, uses to have an important impact on the model performance as well. When

chosen carefully the right initialization can decrease training time and can avoid bot-

tlenecks during model training. The next hyperparameter, which has already been

mentioned in Section 4.1, is the activation function. Activation functions form one

of the main components of the ANNs and appropriate selection therefore greatly

impacts the model’s capabilities [110]. Finally, dropout also represents a hyperpa-

rameter related to the model structure. Dropout is used to reduce overfitting by ar-

bitrarily dropping several neurons during every iteration. In each iteration the model

optimizes itself under a slightly different structure, therefore avoiding overfitting and

increasing robustness [109].

Training algorithm related hyperparameter
With regard to the training of the LSTM, five important hyperparameters can be dis-

tinguished – the loss function, the optimizer, the learning rate, the batch size and the

number of epochs. To start with, the loss function is the function employed in order

to evaluate a candidate solution. The loss function represents a benchmark for how

well the predicted values meet the real values [98]. The optimizer is closely linked

to the loss function. It determines how the network is modified during training based

on the loss function [98]. Various optimizers with several advantages and disad-

vantages are available for updating the network parameters, having a considerable

impact on the speed and effectiveness of the training [84], [109], [111]. Another hy-

perparameter that needs to be mentioned in relation to the optimizer is the learning
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rate, which is one of the most crucial if not the most important hyperparameter in

deep learning. The learning rate controls the increment of each step, in other words

it determines how large the weight updates within each iteration may be. In case of

an overly high selected learning rate the possibility of skipping a global minimum ex-

ists, hindering the ANN to achieve accurate results. However, if the learning rate is

selected too low training time can increase drastically with the possibility of stagna-

tion. Therefore, the learning rate must be carefully selected to be able to effectively

train the model [75]. The hyperparameter batch size defines the number of sam-

ples that are processed by the ANN during each propagation before updating the

weights. While a very small batch size may lead to a problematic increase of train-

ing time overfitting can be caused by larger batch sizes [112]. Last but not least,

the number of epochs specifies how often the entire training data is shown to the

network. A higher number of epochs naturally increases the training time but might

enhance the overall model performance [109].

5.3.2. Implementation of training

Now that the most important hyperparameters have been outlined, the LSTM train-

ing implementation and initial selection of hyperparameter will be discussed in more

detail. The LSTM model is deployed using the Sequential Model in Keras, which

allows easy implementation through simple stacking of different layers by calling the

model.add(...) command.

Defining the network structure
The hidden layers are defined by the command model.add(LSTM(...)) and possess

a number of different arguments, such as the number of units, dropout and recurrent

dropout. While in the initial setup no dropout is applied, different number of units

are tested – 2, 8, 32 and 128. For weight and bias initialization the standard setting

of Keras is employed. Additionally, the input shape is specified through argument

passing. While in stateless mode only the number of timesteps and features have

to be defined for the input shape, in stateful mode the batch size has to be specified

as well and the stateful argument needs to be set to True. Initially, the LSTM is con-

structed with only one hidden layer. However, in case of multiple hidden layers, the

argument return sequences of the previous layers must be set to True as well so that
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not only the last output in the output sequence but the entire sequence is passed to

the second hidden layer. This argument is important for the later discussed hyper-

parameter tuning.

As activation functions for the LSTM cells of the hidden layer, the LSTM standard

setting in Keras, the Tanh and hard sigmoid function, is adopted. The Tanh activa-

tion function outputs values in the range of (-1 to 1) and is calculated according to

the following formula:

tanh = ez − e−z

ez + e−z
. (5.11)

Similar to the sigmoid activation function used in Section 4.2.3, hard sigmoid outputs

values between zero and one but is faster to compute because of the piecewise lin-

ear approximation. The hard sigmoid activation function in Keras is computed as

follows:

hsig =


0 z < −2.5

1 z > 2.5

0.2× z + 0.5 else

(5.12)

A so-called Dense layer is added on top of the hidden layers to specify the number

of output values by using the model.add(Dense(...)) instruction and argument pass-

ing of the number of output timesteps and type of activation function. For the Dense

layer, the Rectified Linear Unit (ReLU) activation function is chosen in order to force

the outputs to be positive integers, therefore avoiding negative charging load predic-

tion values. Equation 5.13 demonstrates that the ReLU activation function forces all

negative values to zero with a linear character otherwise.

ReLU = max(0, z) (5.13)

Configuring the model training
Once the structure of the LSTM is defined with all network structure related hyper-

parameter, the model.compile(...) method is used to configure the LSTM for training

by specifying both the loss function and the optimizer.
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As an optimizer, the popular first-order gradient based Adam optimizer is selected.

Numerous studies related to load forecasting or electricity price prediction have

shown that the Adam optimizer works well in practice due to its adaptive learning

rate and might outperform other optimizer [84], [75], [111], [113], [90]. Given its fast

convergence, low memory requirements and little need for tuning Adam is the gra-

dient descent strategy most frequently used in practice [84], [75]. The learning rate

is initially set to the default value in Keras of 0.001.

The loss function needs to be chosen according to the prediction task, which can be

roughly broken down into regression and classification. Due to the fact that charging

load forecasting represents a regression problem, popular loss functions such as

MAE and MSE represent potential alternatives. Given that MSE is widely applied in

the field of load forecasting [114], [115], [99], [116] and has the advantage of penal-

izing big outlier predictions, MSE is appointed as the loss function for this work. For

charging load forecasting, the goal is to minimize the loss function. The MSE loss is

calculated as indicated in Equation 5.14. While N represents the number of predic-

tions, loadt,norm and ˆloadt,norm indicate the normalized true load value respectively

normalized predicted load value at timestep t.

L(loadt,norm, ˆloadt,norm) = 1
N

N∑
t=0

(loadt,norm − ˆloadt,norm)2 (5.14)

Training the Long Short-Term Memory
To initiate the training process, the model.fit(...) method is called. As arguments,

the fit method is given the input and output data x and y, the batch size, the number

of epochs and the percentage of training data to be used as validation data. As

mentioned earlier, a training to validation ratio of 0.8/0.2 is chosen. The number of

epochs is initially set to 500. Moreover, in stateless mode a batch size of 32 and

in stateful mode a batch size of one is selected. In stateful operation it must be

ensured that the number of samples can be divided by the batch size without re-

mainder. Therefore, a modulo division is implemented to decide which part of the

train data can be used to ensure that the number of samples is evenly dividable by

the batch size in case of higher batch sizes. The argument shuffle is set to False for

both modes to preserve the chronological order of the time series.

In order to select the most appropriate model after training the LSTM with differ-
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ent configurations, the training and validation loss for each epoch is recorded and

various callbacks are passed to the fit method. Figure 5.10 depicts an illustrative

Figure 5.10: Illustration of the early stopping regularization technique (Source: Own illus-
tration based on [117])

course of training and validation loss recorded over a number of epochs and how

the regularization technique early stopping can be used to choose the model that

generalizes best on unseen data. As shown, the minimum validation loss indicates

the model with the greatest ability to generalize to unseen data and the appropriate

time to stop the training. A premature stop of the training process, however, leads

to underfitting. Underfitting describes a model that is unable to learn the training

dataset due to the inability of the model to obtain a sufficiently low training error

[118]. If, on the other hand, the training is stopped too late and the validation loss

increases again, so-called overfitting occurs. Overfitting refers to a model that has

overly memorized the training dataset, resulting in a reduced ability to generalize to

unseen data [119].

To prevent the LSTM from continuing training while overfitting, the callback

EarlyStopping examines the value of the validation loss after each epoch and aborts

the training of the LSTM, if the value does not decrease further over a defined num-

ber of epochs. The patience is set to 50 epochs as fluctuations of the validation

loss can lead to a temporary increase of the validation loss before dropping again.

However, early stopping only works in stateless mode. Two additional callbacks are

defined based on the callback ModelCheckpoint, storing both the trained LSTM af-

ter each epoch and the model with the optimal weights based on the validation loss.

The model with the optimal weight is then chosen for the charging load forecast.
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5.3.3. Long Short-Term Memory architecture and training process

In the following, the resulting overall architecture of the LSTM and workflow of the

training process will be outlined.

Overall architecture
Figure 5.11 illustrates the layout of the proposed LSTM for multivariate multi-step

charging load forecasting.
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Figure 5.11: Architecture of the proposed LSTM for multivariate multi-step charging load
forecasting

Whereas indices n denotes the number of inputs features, indices in represents the

amount of input timesteps. Indices out on the other hand depicts the number of out-

put timesteps, in other words the amount of predicted future 15-min charging load

values. Within this thesis a load forecast for the next hour (4-timesteps prediction)

as well as for the next day (96-timesteps prediction) is provided. A varying number

of input timesteps are tested to identify the superior approach to undergo hyperpa-

rameter tuning. The variety of timesteps is chosen with regard to the limited amount

of training data available and increasing training time when adding a larger amount

of timesteps as inputs. For the 1-day prediction in stateless mode both 96 and 192

timesteps as input are analyzed. For the 1-hour predictions in stateless mode the
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number of input timesteps is reduced to four, eight, 16 or 32. To allow a consecutive

prediction of all timesteps in stateful mode as well, which is desirable in practice, the

equal amount of input and output timesteps are applied for the forecast.

Training process workflow
The formatted training data as described in Section 5.2.5 is made available to the

LSTM. While the first 80 % of the training dataset is used for training the LSTM, the

remaining 20 % is not used for training but to validate the model performance on un-

seen data. Both training and validation data consists of multiple samples which are

successively processed by the LSTM, each comprising the input sequence and an

output sequence. As can be seen in the input layer of Figure 5.11, for each sample

the concatenated features of each timestep form the current input for the LSTM cell

presented in Section 4.2.3. The dimensionality of the hidden state is defined by the

number of units. Frequently, the number of units in LSTM networks is mistakenly in-

terpreted as the amount of LSTM cells. However, as shown in the figure, the number

of cells is dependent on the count of input timesteps and the number of units only de-

fines the output dimension, hence the dimension of the hidden state of each LSTM

cell. The cell state and hidden state is passed on from the previous cell to the next

cell as discussed in Section 4.2.3. In stateless mode the final state after processing

a batch will be removed. In stateful mode, however, the final state for each sample in

a batch is provided as the initial state for each sample in the next batch. The state is

manually reset after each epoch, as each epoch contains the same time series data.

After the input data has been processed by the cells of the hidden layer the final

state of the last LSTM cell in the last hidden layer is passed to a Dense layer which

outputs the amount of timesteps to be predicted for each input sequence. After

processing a certain amount of samples, defined by the batch size, the forecasted

values are compared to the desired actual output values shown to the LSTM to

calculate the training and validation loss. Based on the training MSE the model pa-

rameter are then modified after each batch size by the Adam optimizer using BPTT.

This process is repeated until the maximum number of epochs is met or the training

process is terminated prematurely by the early stopping callback due to the valida-

tion loss reaching its minimum.
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5.3.4. Hyperparameter tuning

As discussed before, the appropriate choice of hyperparameter has a large influ-

ence on the learning process of the model and its final performance. Hence, it is

unlikely that the initial hyperparameters carefully selected in Section 5.3.2 represent

the most suitable configuration for achieving the most accurate prediction results.

Selecting the right parameter constitutes an intensive, time-consuming and iterative

process. The practice of exploring different values for hyperparameters to enhance

the overall model performance is called hyperparameter tuning [109].

Hyperparameter tuning approach
There are three standard approaches to hyperparameter tuning in machine learn-

ing, which are widely used due to their ease of application – manual search, grid

search and random search. More sophisticated methods exist, such as Bayesian

optimization, but are beyond the scope of this paper due to their complex nature

[120], [121]. As the name already indicates, the hyperparameter are chosen man-

ually during manual search. This approach demands great experience to derive

the optimal parameters with a minimal number of attempts. Using the grid search

method, all possible combinations of a defined number and values of hyperparam-

eters are evaluated. The benefit of this approach lies in the fact that it yields the

optimal model for the specified grid of hyperparameters. However, the drawback is

that it only delivers superior results if the values have been chosen appropriately

and the high expenditure of time. Random search eliminates the drawback of a

human estimating the optimal hyperparameter value within a certain range by ran-

domization and can reduce computing time. The values are chosen randomly from

a certain distribution, thus increasing the likelihood of resulting in a superior perfor-

mance [109].

In this paper random search is applied for hyperparameter tuning mainly due to

two reasons. On the one hand, random search is capable of compensating for the

lack of experience in the selection of suitable hyperparameters. On the other hand

only a certain amount of time can be spent on the hyperparameter tuning in this the-

sis due to the time constraint. Given this restriction, random search, as opposed to

grid search, is able to cover a wider range of possible hyperparameter combinations.
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However, to increase the likelihood of detecting the hyperparameter constellation

with superior performance, the dimensionality should be kept to a minimum and only

the most appropriate alternatives should be tested during random search. There-

fore, not all hyperparameter discussed in the previous paragraph will undergo model

tuning with the aim of reducing the dimensionality of hyperparameter tuning to an

acceptable level. Moreover, hyperparameter tuning is not applied to all approaches

tested in this work. Rather the different model approaches (different encoding tech-

niques: sine/cosine or one hot, different modes: stateful or stateless and different

amount of input timesteps) for the 1-hour and 1-day prediction undergo training with

the defaults setting. Based on the minimal validation loss after training the resulting

superior modeling approach is selected for each charging site to undergo hyperpa-

rameter tuning.

Hyperparameter selection
Table 5.3 provides an overview of the initial hyperparameter setting discussed in

Section 5.3.2 and the selected parameter for hyperparameter tuning. As can be

seen, the loss function, optimizer, activation functions and weight/bias initialization

are not subjected to hyperparameter tuning. The number of epochs are increased to

1,000 for the hyperparameter tuning in order to avoid the possibility of underfitting.

Table 5.3: Summary of selected hyperparameters and scope for hyperparameter tuning

Type of 

Hyperparameter

Default

setting

Hyperparameter

tuning

No 

tuning

Optimizer Adam No tuning

Loss function MSE No tuning

Activation function Tanh and hard sigmoid

(LSTM), ReLU (Dense layer)

No tuning

Weight/bias initialization Standart setting Keras No tuning

Number of epochs
500 (model approach

selection)
1,000 (during tuning)

Tuning

Number of layers 1 [1, 2]

Number of units [2, 8, 32, 128] [2, 4, 8, 16, 32, 64, 128]

Learning rate 0.001 [0.01, 0.001, 0.0001]

Batch size 32 [16, 32, 64, 96]

Dropout 0 [0, 0.2, 0.5]

A total number of five parameters are subject to hyperparameter tuning, leading to
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504 possible hyperparameter configurations to choose from. To start with, different

values for the number of hidden layers and units are chosen for the tuning process.

With respect to the number of layers, in addition to the default setting of one hidden

layer, a deeper LSTM with two hidden layers is examined. The number of units varies

between two, four, eight, 16, 32, 64 and 128 units with the aim of covering a large

spectrum of possibilities. In case of two hidden layers, the same number of units is

applied for both hidden layers to reduce the dimensionality of the random search.

Moreover, three and four different values are allocated to the learning rate and batch

size during hyperparameter tuning. With regard to the learning rate, in addition to the

default value of 0.001, both a lower and a higher learning rate amounting to 0.0001

or 0.01 can be selected as possible values. Apart from the default value of 32,

possible options for batch size tuning in stateless mode are 16, 64 and 96. Finally,

three different dropout variations are examined. The LSTMs can be trained with the

default setting of no dropout and a dropout of 20 % or 50 %. If dropout is used, the

same dropout mask is applied for each timestep and the recurrent layers as well,

as shown in [122] to be a suitable method for LSTMs. Consequently, arguments

dropout and recurrent dropout are both set to the same value.

Implementation in hyperopt
Random search for selecting the most appropriate hyperparameter configuration is

performed in hyperopt, a popular library for conducting hyperparameter optimization

in Python. Random search is conducted for both the hourly and 1-day charging load

forecast of all charging sites. In the following, only the most important aspects of the

random search implementation in hyperopt will be briefly discussed, a more detailed

description is given in [123].

The essential steps of implementing random search in hyperopt can be described

as follows:

1. Define the search space.

2. Specify the objective function to minimize.

3. Configure the search algorithm.

To start with, the search space is implemented as a dictionary. The keys of the

dictionary define all hyperparameter to undergo optimization. The corresponding

value of the dictionary present stochastic expressions. The stochastic expression
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hp.choice(label, options) is implemented to define the search alternatives. While op-

tions represent a list of the aforementioned selected hyperparameter choices, the

label is needed to return the randomly selected parameter choice to the caller.

Next, the objective function needs to be specified. In this case, the validation loss

serves as the objective function and indicates the superior hyperparameter configu-

ration. Therefore, the LSTM is implemented as described in Section 5.3.2. However,

in order to prevent failures in hyperopt, the training and validation data has to be ad-

justed so that they are divisible by the different batch sizes without remainder. This

condition is met by scaling the training and validation dataset to the closest amount

of data divisible by the smallest common divisor of all batch size choices (192). Dur-

ing model fit, the validation loss history is then recorded and the minimum loss for

each configuration is returned as the target score.

Lastly, the fmin function is called to perform the random search. Both the objective

function and search space are passed as arguments to the function. Moreover, the

random search algorithm is defined by specifying algo = rand.suggest. The max-

imum number of evaluations is set to 50 by defining the max_evals argument. A

trials object, storing the minimal validation error and hyperparameter setting of each

trial, is implemented by configuring the trials argument. To ensure comparability

between the different charging sites and reproducibility of the results, the rstate ar-

gument is also included in the fmin function, using a seed of one for all charging

sites. Both the trials object and the rstate are saved after each evaluation run to

ensure that the random search can be continued if the training is interrupted due to

the time limit of running each code on the NARVI Cluster.

5.4. Long Short-Term Memory forecasting

After completing the training with the optimal hyperparameter configuration obtained

during random search, the LSTM stored with the optimal weights can be used to

evaluate the performance of the charging load forecast on previously unseen data.

As shown in 5.1, the test data is fed into the LSTM to achieve the prediction task.

Subsequently, the predicted values undergo inverse normalization to transform the

normalized values to real load quantities. Finally, the model performance is analyzed
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on the basis of different metrics. Below, at first the implementation of the prediction

will be discussed followed by a review of the metrics used in this thesis to evaluate

the model performance.

5.4.1. Implementation of forecast

In a first step, the test data of the stateless and stateful approach needs to be ar-

ranged to enable the comparison of different approaches and stateful prediction.

Prior to the actual prediction, functions prepare_data_prediction_stateless(...) and

prepare_data_prediction_stateful(...) are executed on this behalf.

The stateless test data, which so far includes overlapping sequences due to the

sliding window approach, needs to be modified to enable model performance com-

parison between the different approaches. For the 96-timesteps prediction, the test

data of the stateful mode is selected for the stateless approach as well in order to

generate the same amount of forecasts to enable the comparison between both ap-

proaches. When not using the test data of the stateful mode, the sliding window

approach would lead to a much higher number of predictions, thereby falsifying a

comparison between the two approaches. For the 4-timesteps forecast, the test

data of the stateless approach is prepared in such a way that the forecast results

can be directly compared with the 1-day forecast by repeatedly performing the fore-

cast and stringing together the hourly forecast, allowing the results to be displayed

graphically as well. The test data prepared by the sliding window approach is there-

fore filtered in a manner that only every 4th sample of the stateless sliding window

approach is used for the prediction.

The stateful test data must be slightly modified to ensure a seamless transition be-

tween training and test data, so that the state can be built up during the prediction.

For the 1-hour and 1-day forecast, the last four respectively last 96 charging load

and feature values of the training data are added to the test data. Although these

values were present in the training set, no data leakage occurs. This circumstance

is due to the fact that these last values could not be used during the training because

the corresponding output values to be predicted are already part of the test data.
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In stateless mode the forecast is carried out with a batch size of one, to avoid

errors in the prediction process caused by the varying batch sizes during train-

ing. To this end, the weights of the trained LSTM are copied with the command

old_weights = model.get(weights) and passed to the modified LSTM model with

a batch size of one with the command lstm_model.set_weight(old_weights). The

other configuration of the LSTM remains unchanged. In stateful operation it must

additionally be guaranteed again that the number of samples is divisible by the batch

size without residue. As already practiced during the training of the LSTM, a modulo

division is therefore carried out to determine which part of the test data can be used

to ensure that the number of samples is evenly dividable by the batch size. Since

batch size one is applied for the stateful approach in this paper, the initial data is

maintained. Compared to the stateless prediction, the prediction is carried out on

both the train and test data. The forecast based on the training data solely serves to

establish the state for the prediction on the test data.

The implementation of the LSTM forecast in Keras is handled within function

make_prediction(...), allowing a call of the function with different arguments that

indicate the various approaches used within this thesis. The prediction in Keras is

performed by the command model.predict(...) or lstm_model.predict(...) and passing

of the inputs of the test data and the number of batch size. In this context, model and

lstm_model indicates the trained LSTM model stored with the optimal weights. For

all test inputs passed to the LSTM, the model predicts the corresponding outputs,

either four or 96 timesteps into the future.

As result of the load prediction the projected load values are obtained, which can be

compared with the real load values for each timestep to assess model performance.

However, both the predicted and real output values must be inverse normalized first

to obtain the actual charging load values. For this purpose, the initial parameters of

the MinMaxScaler used in data pre-processing (see 5.2.4) are retrieved and stored

in the variable scaler. By calling scaler.inverse_transform(...) and separately pass-

ing of the predicted and real load values as arguments the real charging load values

can be recovered in the following and used for model evaluation.
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5.4.2. Evaluation metrics for model performance and comparison

To evaluate the prediction performance of forecasting models a number of different

error metrics can be used. Scale-dependent metrics such as MAE, MSE and RMSE

and percentage-error metrics like MAPE are some of the most frequently used error

metrics for model evaluation [124], [37], [125], [126]. MAE is selected as the first

error metric within this thesis due to its simple comprehensibility and calculation,

given in Equation 5.15. While N represents the number of predictions, loadt indicates

the real load at time t and ˆloadt the predicted load value at time t.

MAE [kW ] = 1
N

N∑
t=1

∣∣∣loadt − ˆloadt

∣∣∣ (5.15)

However, MAE is scale-dependent, which implies the need for using additional error

metrics to be able to interpret the results between the different charging sites. Given

its scale-independence, the popular MAPE would provide an easily interpretative

error metric. However, the different charging load time series presented within this

thesis exhibit a charging load of zero at numerous points in time. For this reason,

MAPE cannot be used for overall comparison, as the calculation is based on the

division of the error by the true load value at each timestep. To overcome both

difficulties two variants of the NMAE are used, as shown in Equation 5.16 and 5.17.

NMAE1 = MAE
1
N

∑N
t=1 |loadt|

(5.16)

NMAE2 = MAE

loadmax − loadmin

(5.17)

While NMAE1 normalizes the MAE using the mean value of the observed real load

values as introduced in [127] and [128], NMAE2 is calculated by normalizing the

MAE on the basis of the difference between the maximum load loadmax and mini-

mum load loadmin of the examined time interval of the time series [38].

For the 96-timesteps forecast three additional metrics are used to be able to bet-

ter assess the peak load forecast. The average deviation (dev) between the actual

daily peak load loaddmax and predicted daily peak load ˆloaddmax is calculated in kW
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according to Equation 5.18.

peak_load_dev [kW ] = 1
D

D∑
d=1

∣∣∣loaddmax − ˆloaddmax

∣∣∣ (5.18)

While index D specifies the number of predicted days, dmax denotes the daily peak.

Likewise, the MAPE is calculated according to Equation 5.19 [129]. Last but not

least, Equation 5.20 specifies the average time difference in number of 15-min time-

slots separating the real and predicted peak load. While nslot denotes the number

of 15-min timeslots indices slot corresponds to the respective 15-min interval of the

daily peak loads.

MAPE_peak [%] = 1
D

D∑
d=1

∣∣∣∣∣∣ loaddmax − ˆloaddmax

loaddmax

∣∣∣∣∣∣× 100 (5.19)

time_dev [nslot] = 1
D

D∑
d=1

∣∣∣slot(loaddmax)− slot( ˆloaddmax)
∣∣∣ (5.20)

Having thoroughly presented the LSTM proposed in this thesis and having clarified

the metrics used for the evaluation of the results, the next chapter will present the

findings in full depth.
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6. Results

Having covered the essential steps for generating the charging load forecast in the

previous chapter, the results are presented in the following. The chapter is structured

in three sections. At first, the results of the LSTM training with the initial hyperpa-

rameter setting are displayed for each charging site. Subsequently, the findings of

the hyperparameter tuning are presented. Lastly, the charging load forecast for each

charging site, based on the optimal hyperparameter, will be addressed.

6.1. Training results with initial hyperparameter

To start with, in the following the results of the LSTM training with the default set-

ting of hyperparameters are discussed to determine the mode, encoding variant

and number of input timesteps for the hyperparameter tuning. The training is car-

ried out for each charging site and forecast horizon in stateless or stateful mode,

with sine/cosine or one hot encoding and a varying number of input timesteps. In

stateless mode four, eight, 16, and 32 timesteps are tested as inputs for the hourly

forecast, 96 and 192 timesteps for the daily prediction. To allow a consecutive pre-

diction of all timesteps, which is desirable in practice, the equal amount of input

and output timesteps are applied for the forecast in stateful mode. For all charg-

ing sites, the minimum validation loss and corresponding epoch of each variant are

summarized in a table and the average loss calculated from the loss of the different

number of units is presented. The variant with the lowest loss is then subjected to

the hyperparameter tuning.

6.1.1. Initial training results for shopping center charging

Table 6.1 depicts the MSE results when training the LSTM on the shopping center

charging data. Several observations can be drawn from the table. First of all, when

comparing the minimal validation loss of the LSTM trained with different number of

units, it becomes clear that overfitting occurs much later when using a small number
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of units rather than a large number of units. This circumstance is illustrated by the

consistently higher epoch number when using two units compared to 128 units.

Table 6.1: Minimal validation losses for shopping center charging when training the LSTM
with the initial hyperparameter and different modes, encoding and timestep ap-
proaches

Mode
Mode
Mode

Input &
output

timesteps

encoding
encoding
encoding

val. loss*
2 units
(epoch)

val. loss*
8 units
(epoch)

val. loss*
32 units
(epoch)

val. loss*
128 units
(epoch)

Average
validation

loss*
sine/cosine 12.2641 (109) 5.8727 (248) 5.9513 (69) 33.3763 (1) 14.36614in/ 4out

one hot 12.8256 (18) 5.9514 (47) 5.4416 (12) 33.3763 (1) 14.3987
sine/cosine 11.8557 (26) 11.5512 (7) 11.0418 (21) 10.2204 (6) 11.1673

state-
ful 96in/ 96out

one hot 14.3951 (36) 11.6331 (7) 11.4971 (15) 10.1678 (2) 11.9233
sine/cosine 5.6642 (77) 5.3866 (65) 5.3800 (33) 5.3803 (20) 5.45284in/ 4out

one hot 5.4362 (135) 5.3237 (33) 5.3670 (19) 5.3473 (18) 5.3686
sine/cosine 5.4578 (151) 5.3930 (83) 5.3505 (22) 5.3513 (21) 5.38818in/ 4out

one hot 5.3777 (139) 5.3677 (30) 5.3689 (28) 5.3385 (14) 5.3632
sine/cosine 5.4504 (205) 5.3251 (51) 5.3003 (25) 5.2903 (17) 5.341516in/ 4out

one hot 5.4152 (123) 5.3705 (37) 5.3543 (21) 5.3415 (15) 5.3704
sine/cosine 5.4476 (131) 5.4088 (135) 5.3345 (28) 5.3232 (21) 5.378532in/ 4out

one hot 5.4198 (74) 5.3937 (17) 5.3463 (15) 5.3393 (12) 5.3748
sine/cosine 13.2808 (107) 10.6257 (72) 9.2237 (16) 9.0281 (9) 10.539696in/ 96out

one hot 11.6514 (25) 9.4725 (27) 9.0637 (8) 8.9356 (7) 9.7808
sine/cosine 12.5823 (58) 10.1510 (78) 9.2642 (18) 9.0622 (10) 10.2649

state-
less

192in/ 96out
one hot 11.7118 (36) 9.4719 (20) 9.1177 (7) 8.9634 (7) 9.8162

*All MSE values are given in units of 10−3

Next, it can be seen that the stateless approach for both forecast horizons yields a

lower loss when looking at the average validation loss. Looking at the results of the

stateful 4-timesteps forecast, it is noticeable that when using 128 units, overfitting

starts directly after the first epoch for both encoding variants. The LSTM is not

capable of learning, which results in the much higher loss. Lastly, the different input

timestep variants and encoding methods yield only very small differences in the

validation loss. For the 96-timesteps forecast in stateless mode one hot encoding

leads to a lower loss in all variants, whereby 96 input timesteps deliver slightly lower

losses than 192 timesteps. Looking at the stateless 1-hour MSE results one hot

encoding appears to lead to slightly lower losses for most of the different variants as

well with the exception when using 16 input timesteps, where sine/cosine encoding

produces slightly superior and the most accurate overall results.
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6.1.2. Initial training results for residential charging

Table 6.2 displays the initial training results for the LSTM when using residential

charging data. As already seen before, overfitting generally tends to emerge earlier

with increasing numbers of units, as indicated by the decreasing number of epochs.

Table 6.2: Minimal validation losses for residential charging when training the LSTM with
the initial hyperparameter and different modes, encoding and timestep approaches

Mode
Mode
Mode

Input &
output

timesteps

encoding
encoding
encoding

val. loss*
2 units
(epoch)

val. loss*
8 units
(epoch)

val. loss*
32 units
(epoch)

val. loss*
128 units
(epoch)

Average
validation

loss*
sine/cosine 2.9682 (240) 2.9772 (25) 3.0110 (16) 3.0122 (14) 2.99224in/ 4out

one hot 3.0598 (8) 3.0881 (5) 3.1599 (4) 3.1250 (5) 3.1082
sine/cosine 10.5998 (185) 9.7345 (131) 9.1209 (47) 8.8999 (88) 9.5888

state-
ful 96in/ 96out

one hot 11.6016 (108) 9.3616 (39) 10.4338 (47) 9.4368 (24) 10.2085
sine/cosine 2.8800 (89) 2.8544 (117) 2.8457 (29) 2.8518 (35) 2.85804in/ 4out

one hot 2.8931 (116) 2.8951 (42) 2.9033 (22) 2.9132 (26) 2.9012
sine/cosine 2.8691 (189) 2.8530 (75) 2.8338 (57) 2.8340 (38) 2.84758in/ 4out

one hot 2.8751 (50) 2.8797 (22) 2.9216 (17) 2.8996 (27) 2.8940
sine/cosine 2.8870 (275) 2.8324 (73) 2.8318 (46) 2.8316 (49) 2.845716in/ 4out

one hot 2.8897 (71) 2.8965 (35) 2.8907 (20) 2.9298 (21) 2.9017
sine/cosine 2.8596 (132) 2.8533 (35) 2.8527 (18) 2.8574 (35) 2.855832in/ 4out

one hot 2.8589 (38) 2.8914 (26) 2.9018 (29) 2.8871 (23) 2.8848
sine/cosine 11.6370 (40) 8.4844 (26) 8.4641 (28) 8.3452 (31) 9.232796in/ 96out

one hot 11.5976 (36) 8.6153 (29) 8.6217 (21) 8.4697 (28) 9.3261
sine/cosine 11.7148 (117) 8.4741 (28) 8.5375 (16) 8.4139 (34) 9.2851

state-
less

192in/ 96out
one hot 11.6693 (53) 8.5207 (23) 8.4856 (43) 8.4829 (18) 9.2896

*All MSE values are given in units of 10−3

Additional similarities can be highlighted as well. Comparing the results of the state-

ful and stateless mode, the stateless approach provides slightly lower MSE results

for both the 4-timesteps and 96-timesteps forecasts once again. Furthermore, the

different encoding variants and number of input time steps again lead to only minor

differences in the validation loss. However, in contrast to the shopping center charg-

ing results, it can be observed that sine/cosine encoding almost exclusively leads

to slightly more accurate results for both forecast horizons than one hot encoding.

Moreover, for both the hourly and 1-day forecast, the validation losses are lower

than for the shopping center charging. For the 1-hour prediction, the lowest average

validation loss is generated using 16 timesteps as inputs and sine/cosine encoding.

For the 1-day prediction, the lowest average validation loss is also obtained by using

the sine/cosine encoding and using 96 timesteps as inputs.
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6.1.3. Initial training results for public charging

Table 6.3 lists the LSTM training results on the public charging data. Similar to shop-

ping center and residential charging, the differences in validation loss for the different

input and encoding variants are negligible and in most cases a faster overfitting with

an increasing number of units can be observed. Additionally, the stateless mode

once again delivers slightly more accurate results for both forecast periods based

on the average validation loss.

Table 6.3: Minimal validation losses for public charging when training the LSTM with the
initial hyperparameter and different modes, encoding and timestep approaches

Mode
Mode
Mode

Input &
output

timesteps

encoding
encoding
encoding

val. loss*
2 units
(epoch)

val. loss*
8 units
(epoch)

val. loss*
32 units
(epoch)

val. loss*
128 units
(epoch)

Average
validation

loss*
sine/cosine 2.7560 (44) 2.1867 (155) 2.4283 (51) 2.1389 (53) 2.37754in/ 4out

one hot 3.0056 (167) 2.5535 (500) 2.7790 (145) 2.9909 (96) 2.8322
sine/cosine 15.7161 (467) 13.5583 (430) 11.4747 (334) 12.4940 (10) 13.3108

state-
ful 96in/ 96out

one hot 13.9824 (146) 13.3127 (11) 12.3103 (6) 11.1134 (198) 12.6797
sine/cosine 2.4657 (500) 2.4948 (42) 2.1333 (13) 2.0181 (14) 2.27804in/ 4out

one hot 2.6648 (435) 2.6882 (68) 2.7277 (22) 2.6400 (12) 2.6802
sine/cosine 2.6062 (47) 2.2277 (18) 2.2884 (16) 2.3446 (18) 2.36678in/ 4out

one hot 2.8115 (147) 2.7264 (19) 2.7483 (15) 2.7331 (11) 2.7549
sine/cosine 2.5028 (35) 2.4050 (26) 2.3213 (18) 2.4458 (49) 2.418716in/ 4out

one hot 2.9130 (52) 2.7274 (45) 2.6435 (14) 2.5853 (9) 2.7173
sine/cosine 2.4622 (100) 2.5497 (24) 2.2842 (15) 2.3475 (16) 2.410932in/ 4out

one hot 2.7536 (225) 2.7203 (20) 2.6775 (12) 2.5249 (9) 2.6691
sine/cosine 19.5583 (242) 10.6389 (48) 10.2544 (18) 9.7898 (147) 12.560396in/ 96out

one hot 18.3836 (19) 11.5350 (32) 11.0568 (28) 11.0502 (80) 13.0064
sine/cosine 19.2102 (91) 10.7703 (55) 10.3125 (22) 10.4026 (59) 12.6739

state-
less

192in/ 96out
one hot 18.3996 (55) 11.7388 (143) 10.7379 (135) 11.0473 (79) 12.9809

*All MSE values are given in units of 10−3

With regard to the encoding variants, sine/cosine encoding seems to lead to slightly

lower losses. Solely in stateful mode one hot encoding might be advantageous for

the 96-timesteps forecast. For the hourly forecast the lowest loss can be realised by

using 4 input timesteps and sine/cosine encoding. The minimum loss for the 1-day

forecast is obtained when applying 96 input timesteps and sine/cosine encoding.

Compared to shopping center and residential charging, a lower validation loss is

achieved for the 4-timesteps forecast and a higher loss for the 96-timesteps forecast.
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6.1.4. Initial training results for workplace charging

Lastly, the initial LSTM training results on the workplace charging data, shown in

Table 6.4, reveal a number of previously seen characteristics as well as peculiarities.

To start with, overfitting seems to be less of a problem compared to shopping center,

residential and public charging. This finding is reflected in the fact that even with an

increasing number of units the LSTM can be trained over a large number of epochs

before reaching the minimal validation loss. Only in case of the hourly prediction

with 128 units in stateful mode overfitting occurs after one or two epochs as already

seen with shopping center charging, leading to the extraordinarily high loss.

Table 6.4: Minimal validation losses for workplace charging when training the LSTM with
the initial hyperparameter and different modes, encoding and timestep approaches

Mode
Mode
Mode

Input &
output

timesteps

encoding
encoding
encoding

val. loss*
2 units
(epoch)

val. loss*
8 units
(epoch)

val. loss*
32 units
(epoch)

val. loss*
128 units
(epoch)

Average
validation

loss*
sine/cosine 1.8567 (92) 2.3629 (387) 2.3717 (74) 46.1219 (1) 13.17834in/ 4out

one hot 2.6490 (367) 2.7348 (147) 2.3402 (482) 46.1219 (1) 13.4615
sine/cosine 9.5155 (12) 10.5475 (436) 9.5745 (62) 9.4166 (29) 9.7635

state-
ful 96in/ 96out

one hot 9.4798 (36)) 9.0525 (452) 9.3157 (47) 9.3120 (21) 9.2900
sine/cosine 2.0662 (288) 2.2425 (373) 2.1991 (432) 2.2989 (126) 2.20174in/ 4out

one hot 2.3023 (500) 2.3181 (499) 2.3654 (195) 2.3626 (177) 2.3371
sine/cosine 2.2376 (248) 2.3163 (365) 2.1024 (311) 2.3109 (137) 2.24188in/ 4out

one hot 2.5764 (142) 2.7807 (23) 2.3358 (242) 2.3332 (140) 2.5065
sine/cosine 2.2033 (276) 2.0447 (277) 2.1184 (120) 1.8531 (221) 2.054916in/ 4out

one hot 2.2995 (496) 2.3754 (165) 2.1553 (190) 1.9572 (132) 2.1968
sine/cosine 2.1253 (226) 2.3055 (294) 2.4355 (19) 2.1572 (11) 2.255932in/ 4out

one hot 2.4688 (500) 2.1787 (233) 1.9355 (222) 1.9591 (123) 2.1355
sine/cosine 12.0278 (500) 9.6327 (342) 8.9209 (68) 9.2516 (61) 9.958396in/ 96out

one hot 10.2221 (154) 9.2976 (123) 8.1748 (131) 6.9466 (130) 8.6603
sine/cosine 10.6647 (398) 9.4571 (223) 8.3318 (179) 8.2848 (179) 9.1846

state-
less

192in/ 96out
one hot 10.5301 (424) 9.0731 (188) 8.5981 (65) 7.5280 (110) 8.9323

*All MSE values are given in units of 10−3

When comparing the MSE of the two encoding variants, it becomes evident once

again that in the majority of applications the sine/cosine encoding represents the

superior choice for the hourly load prediction in both stateful and stateless mode. In

contrast, one hot encoding yields more accurate results for the 1-day prediction in

both modes. Finally, examining the validation loss values for the 4-timesteps and 96-

timesteps prediction, it can be seen that in most cases workplace charging achieves

lower validation loss values than shopping center, residential and public charging.

Once again, for both forecast horizons the stateless mode accounts for the lowest

loss. Sine/cosine encoding in combination with 16 input timesteps yields the most
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precise results for the hourly prediction. For the 1-day forecast one hot encoding

and 96 timesteps as input lead to the minimal validation loss.

6.1.5. Summary of initial training results

Table 6.5 summarizes the findings of the initial training by providing an overview of

the LSTM configurations that lead to the lowest validation loss for all charging sites

and different forecast horizons. The illustrated LSTM configurations are selected for

the subsequent hyperparameter tuning.

Table 6.5: Summary of selected LSTM configuration for each charging site
Charging site Number of input timesteps Number of output timesteps Mode Encoding

Shopping center
16 4 Stateless Sine/cosine

96 96 Stateless One hot

Residential
16 4 Stateless Sine/cosine

96 96 Stateless Sine/cosine

Public
4 4 Stateless Sine/cosine

96 96 Stateless Sine/cosine

Workplace
16 4 Stateless Sine/cosine

96 96 Stateless One hot

For each charging site the prediction is performed in stateless mode. Moreover,

sine/cosine encoding is selected in most cases. Only for the 1-day shopping center

and workplace charging load prediction one hot encoding is chosen. The 1-day fore-

cast for all charging sites is based on an input sequence consisting of 96 timesteps.

Regarding the hourly load forecast, 16 timesteps are selected as input for shopping

center, residential and workplace charging and four input timesteps are selected for

public charging.

6.2. Hyperparameter tuning results

With the LSTM configuration selected in the previous section, random search is per-

formed to determine the most appropriate combination of hyperparameters for each

charging site and forecast horizon. The results of the 50 iterations of the random
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search are displayed by means of a heatmap for the hourly and daily forecast for

each charging site. For reasons of readability, the different heatmaps are provided

in Appendix A.1. While the y-axis depicts the various batch size, learning rate and

dropout combinations, the x-axis represents the different number of hidden layers

and units. The minimum validation loss of each training process is presented in the

color range between dark purple (high value) and dark green (low value).

6.2.1. Tuning results for shopping center charging

The outcome of the hyperparameter tuning for the 1-hour prediction for shopping

center charging is given in Figure A.1. The MSE varies between roughly 0.0053 and

0.0337, which corresponds to a 2.5-fold prediction deterioration between the least

and most suitable hyperparameter configuration. While the lowest loss is obtained

by selecting one layer and 128 units, a batch size of 16 and a learning rate of 0.001

without using dropout, five distinct hyperparameter combinations lead to the highest

loss. Strikingly, the highest MSE scores are always recorded when using the high-

est learning rate of 0.01. Compared to the lowest loss obtained during initial training

(see 6.1) none of the hyperparameter configurations during random search yields

an improvement.

The results for the 1-day load prediction can be seen in Figure A.2. Compared to

the 1-hour prediction, the spread between the lowest (roughly 0.0088) and the high-

est validation loss (0.0135) decreases, indicating that the choice of hyperparameter

exerts less effect on the prediction results. Moreover, it can be seen that a limited

number of units or a large batch size diminishes the learning ability of the LSTM,

which is reflected in the overall higher MSE values in those cases. Although the

difference is marginal, the minimum loss achieved during random search represents

an improvement compared to the previous seen minimum loss during initial training.

6.2.2. Tuning results for residential charging

Figure A.3 provides the tuning results for the hourly load prediction for residential

charging. While the maximum MSE equals about 0.0102, the lowest loss amounts
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to roughly 0.0028, thus reducing the prediction error by half in relation to real val-

ues in kW. The highest scores are generated when using 50 % dropout and 20 %

dropout generally also yields higher MSE scores than using no dropout. As already

observed with shopping center charging, hyperparameter tuning does not decrease

the loss for the 1-hour prediction in residential charging compared to the minimum

loss achieved during initial training.

When looking at the hyperparameter tuning results of the 1-day forecast, illustrated

in Figure A.4, similar observations can be made compared to shopping center charg-

ing. The highest losses are recorded with a low number of units (2 or 4), indicating

that a higher number of units is necessary to accomplish the complex prediction

task. However, the batch size does not seem to have a significant impact. While the

maximum MSE is about 0.021, the minimum loss amounts to about 0.008, marking a

minimal improvement from the original minimum loss obtained during initial training.

6.2.3. Tuning results for public charging

The results of the hyperparameter tuning for the public charging hourly forecast, il-

lustrated in Figure A.5, show similar characteristics as the findings for residential

charging. The highest losses are caused by the use of 50 % dropout. In addition,

the tuning does not result in improvements compared to the minimum loss during

the initial training. The lowest loss stands at around 0.002 and rises to a maximum

of around 0.0121. This result would imply a 2.4-fold deterioration of the prognosis in

actual kilowatt figures, demonstrating that the selection of the correct hyperparame-

ter configuration has a significant impact on the LSTM’s performance.

The results of the hyperparameter tuning for the 1-day forecast, which can be seen in

Figure A.6, exhibit similar characteristics to those of shopping center and residential

charging as well. Compared to the initial training, the lowest loss can only slightly be

reduced to around 0.0091. The maximum MSE, however, stands at around 0.0323.

The large margin between both values again underlines the importance of hyperpa-

rameter tuning for the prediction accuracy.
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6.2.4. Tuning results for workplace charging

Lastly, Figure A.7 and Figure A.8 exemplify the findings of the 4-timesteps and 96-

timestep forecast respectively for charging at work. Looking at the results of the

hourly prediction, similar constraints of the LSTM training using a high learning rate

of 0.01 become apparent. Three different variations result in a maximum loss of

around 0.0472. Compared to the lowest loss of around 0.0016, the prognosis in kW

would be 5.4-times less accurate.

Looking at the results of the 96-timesteps forecast, the gap between minimum and

maximum loss decreases significantly. The highest MSE is around 0.0145 and the

lowest stands at around 0.0073. High MSE values are again obtained when using 2

units and in this case a small batch size in combination with a small number of units.

6.2.5. Summary of hyperparameter tuning results

Table 6.6 summarizes the selected hyperparameter configuration, the correspond-

ing minimal validation loss during training and if the tuning yields an improvement

over the initial training for each charging site and forecast horizon. As can be seen,

the hyperparameter tuning only provides improvements for half of the forecasts. Fur-

thermore, the most accurate results are solely achieved with a high number of units

(64 or 128). For most cases, a LSTM with only one hidden layer seems sufficient.

Only for the 1-day forecast for residential charging and 1-hour forecast for workplace

charging the minimum loss is obtained by using two hidden layers. With regard to

the batch size, none seems to be superior, all batch sizes are applied for the differ-

ent forecasts. Moreover, dropout generally does not seem to have a large positive

affect on the training, except for the 1-day residential charging load forecast where

a 20 % dropout scores the lowest loss. Finally, in most cases the standard learning

rate of 0.001 seems to achieve the most satisfactory results.



6.3 Forecast results 85

Table 6.6: Summary of tuning results and hyperparameter selection for the charging load
forecast

Charging

site

Forecast

horizon

Improvement

through

tuning

Minimal

loss in 

10-3

Optimal hyperparameter values

Number

of layers

Number

of units

Batch

size

Drop-

out

Learning 

rate

Shopping

center

1 hour No 5.2903 1 128 32 0 0.001

1 day Yes 8.7778 1 128 64 0 0.01

Resi-

dential

1 hour No 2.8316 1 128 32 0 0.001

1 day Yes 8.0033 2 128 16 0.2 0.001

Public
1 hour No 2.0181 1 128 32 0 0.001

1 day Yes 9.0543 1 64 96 0 0.0001

Work-

place

1 hour Yes 1.5895 2 64 96 0 0.0001

1 day No 6.9466 1 128 32 0 0.001

6.3. Forecast results

For each charging site and forecast horizon, the LSTM trained on the previously out-

lined selected hyperparameters is used to forecast the charging load for the entire

period of 36 days of test data. In the following the results for each charging site

are first presented graphically. Both the real and the predicted load curves are dis-

played for a weekday, a day of the weekend and a public holiday. In addition, the

forecasts for the entire period of 36 days are illustrated. In the end, the outcomes

are compared by means of the metrics selected for the evaluation.

6.3.1. Forecast results for shopping center charging

To begin with, the prediction results of the three different days are exemplified in

Figure 6.1. The upper plot illustrates the results for Monday, 16.12.19, the central

plot provides the findings for Sunday, 08.12.19 and the lower plot visualizes the

outcome for Finland’s independence day (Friday, 06.12.19). Whereas the gray load

curve depicts the actual load over the course of the day in kW, the green load curve

indicates the forecasted load with the forecast horizon of one hour in kW and the

purple load curve corresponds to the load forecast in kW with a forecast horizon of

one day. The same layout is also used for the exemplary illustration of the forecast
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results at the other charging sites.

Figure 6.1: Exemplary illustration of the true and predicted charging load on a weekday, day
of the weekend and public holiday for shopping center charging

Looking at the graph, it becomes evident that the 96-timesteps forecast is not ca-

pable of predicting the strongly fluctuating load course in all three cases. While the

peak load for weekdays and weekends cannot be reproduced at all, the load curve

for the public holiday falls too high. In contrast, the load forecast with a forecast hori-

zon of one hour reflects the real load development more accurate. To some extent

a slight offset can be detected. However, the forecast provides a more accurate pic-

ture of the fluctuating structure of the load curve and peak loads are also much more

accurate. Furthermore, the sharp drop in load on public holidays can be predicted

more precisely by means of the hourly forecast.

Figure 6.2 illustrates the hourly and daily prediction results in the period from

26.11.19 to 31.01.19. In both plots the real charging load in kW is represented

in gray. The upper plot also depicts the hourly predicted charging load in kW in

green while in the lower plot the results of the 96-timesteps forecast is represented

in purple. Once again, the same format is also applied when representing the 36

days forecast results at the other charging sites in the subsequent sections.
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Looking at the two load forecasts, the findings of the previously presented forecasts

for three days appear to prove true. The hourly forecast seems to capture the daily

varying load course relatively well. Peak loads are partly well predicted and also

the predicted load curve on the public holidays seems to be fairly close to the real

charging load. However, the load forecast for the Finnish Independence Day seems

to be more accurate than for the Christmas holidays.

Figure 6.2: Comparison of real and predicted charging load for both forecast horizons for the
36 days of test data for shopping center charging

Moreover, a look at the lower graph confirms that the 96-timesteps forecast is not

capable of predicting peak loads and the fluctuating load profile at all. When compar-

ing the forecast results between weekdays and weekends, the forecast on weekdays

generally seems to reflect at least the structure of the load curve more closely. The

load forecast on weekends, on the other hand, is unable to provide a reliable predic-

tion of the two peak loads that often occur. On most public holidays, the forecasted

load is considerably higher than the real load. Only on the second day of Christmas

the real load exceeds the predicted load.
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6.3.2. Forecast results for residential charging

For residential charging, the forecasts are exemplified for Monday, 13.01.20, for Sat-

urday, 04.01.20 and for Epiphany (Monday, 06.01.20) in Figure 6.3. Again, the hourly

forecast leads to a more accurate prediction of the true load course than the 1-day

forecast. The fluctuating structure can be represented relatively well by the hourly

forecast close to the true load and the peak load is also predicted reasonably well

for the Monday and Saturday in question. For the holiday, the predicted peak load is

slightly higher. Compared to shopping center charging, however, the 96-timesteps

forecast for residential charging is able to anticipate the general trend of the load

profile in the three days considered. The forecast for the weekday and public holi-

day falls closer to the real load than on the weekend. Additionally, it is evident that

the considered holiday does not strongly influence the regular load and thus the user

behavior on this day. However, the fluctuations in the load curve can not be modeled

by the daily forecast.

Figure 6.3: Exemplary illustration of the true and predicted charging load on a weekday, day
of the weekend and public holiday for residential charging

The outcomes of the charging load prediction in the period from 16.12.19 to 20.01.20

are visualized in Figure 6.4. Looking at the upper plot, it can be seen that the

hourly load forecast, as indicated, provides a fairly thorough prediction of the true
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load curve. The largest deviations are visible during the Christmas holidays. Fur-

thermore, difficulties are seen in forecasting the peak load especially in the period

between Christmas and Epiphany. More significant shortfalls can be seen within

the same period for the 96-timesteps forecast. Between Christmas and Epiphany,

the projected charging load is often significantly higher than the real charging load.

Furthermore, the tendency can be seen that the forecast on Saturdays tends to be

lower than the real load, while on Sundays the predicted load profile is overly high.

On the remaining days, the trend of the actual load can be predicted more precisely,

even if the predicted peak load is often lower than the real peak load and fluctuations

of the load can not be reproduced.

Figure 6.4: Comparison of real and predicted charging load for both forecast horizons for the
36 days of test data for residential charging

6.3.3. Forecast results for public charging

For public charging Figure 6.5 displays the forecast results for Thursday, 16.01.20,

for Saturday, 25.01.20 and for the second Christmas holiday (Thursday, 26.12.19).

Comparing the forecast results for public charging, it becomes evident once again

that reducing the forecast horizon from 96 to 4 timesteps enhances the accuracy of

the forecast. This outcome becomes particularly clear when considering the lower

plot, where the hourly prediction fails to provide an adequate prediction of the load

curve, while the hourly forecast leads to a significant reduction of the prediction error.
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For the exemplary day of the week though, the 1-day forecast provides an remark-

ably realistic picture of the actual load profile and, compared with the results shown

for shopping center and residential charging, achieves the most convincing results

to date. In addition, the 1-day forecast provides a relatively realistic representation

of the real load profile on Saturday as well.

Figure 6.5: Exemplary illustration of the true and predicted charging load on a weekday, day
of the weekend and public holiday for public charging

The forecast results over the entire period of 36 days, starting from 26.12.19 and

ending on 30.01.20, are portrayed in Figure 6.6. The hourly load forecast seems to

be able to predict the load profile for weekdays, weekends and holidays in general

fairly accurately. No major outliers are discernible, and the daily peak loads are well

captured by the daily forecast. The only striking observation is that for public holidays

and partly weekends the forecast does not correctly predict the charging load during

the first hours of the day. In such events, the predicted load curve drops to zero while

the real load curve remains at a certain positive level most of the time. Looking at

the 1-day forecast results, a number of observations can be made. First, as shown

in the daily plot before, the 96-timesteps forecast is not able to predict the charging

load of the public holidays. For each of the three public holidays, the predicted load
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curve significantly exceeds the real load curve. Furthermore, the LSTM struggles to

predict the load pattern on weekends. Although, as depicted above, the predicted

load profile reflects the real load profile relatively well in a few cases on Saturday, the

1-day forecast is not capable of accurately forecasting the load profile on Sunday.

Moreover, it can be seen that on most days the predicted and real peak load diverge

significantly.

Figure 6.6: Comparison of real and predicted charging load for both forecast horizons for the
36 days of test data for public charging

6.3.4. Forecast results for workplace charging

Finally, the prediction results for workplace charging are examined as well. Figure

6.7 presents the exemplary results for Friday, 24.01.20, for Saturday, 25.01.20 and

the second Christmas holiday (Thursday, 26.12.19). Looking at the upper plot, it can

be seen that the hourly forecast provides a very good forecast of the real load profile.

The 1-day forecast also shows the structure of the load curve well, but prematurely.

The 1-hour forecast is also capable of reproducing the Saturday load pattern well,

albeit with a small offset. Conversely, the 1-day forecast cannot be used to forecast

the load on Saturday, where the forecast for the entire period amounts to 0 kW. Fur-

thermore, only the hourly forecast is able to provide an appropriate prediction of the

load pattern for the public holiday at hand.
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These exemplary observations are reinforced by looking at the entire forecast in

the period from 26.12.19 to 30.01.20, which is shown in Figure 6.8. The prediction

with a horizon of one hour once again provides a good estimate of the real load

curve. Difficulties mainly concern the correct prediction of the peak load.

Figure 6.7: Exemplary illustration of the true and predicted charging load on a weekday, day
of the weekend and public holiday for workplace charging

When looking at the lower plot, it is evident that the previously shown results of the

1-day charging load forecast on Saturday do not represent an exceptional event. A

charging load of 0 kW is predicted for all weekends over the entire period. The poor

prediction results on holidays are also confirmed when looking at the forecasts for

the 26.12.19, 01.01.20 and 06.01.20. In all cases, the predicted load significantly

exceeds the true load curve and the pattern of the load curve cannot be reproduced

at all. For all other days, the predicted load curve provides a fairly realistic represen-

tation of the structure of the real course of events. However, the true height of the

peak load can only be predicted properly in a limited number of cases. A particularly

large spread between predicted and real peak loads can be seen on Tuesday and

Wednesday of each week.
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Figure 6.8: Comparison of real and predicted charging load for both forecast horizons for the
36 days of test data for workplace charging

6.3.5. Comparison of forecast results based on error metrics

Having graphically analyzed the prediction results for each charging site separately,

the prediction outcomes will now be compared and evaluated according to the se-

lected metrics. First, the results of the MAE, NMAE1 and NMAE2 are displayed for

the entire forecast period and broken down by categories of weekday, weekend and

public holiday. Subsequently, the peak and corresponding time deviation and the

MAPE of the peak load prediction is analyzed for the 1-day load forecast. Finally,

the MAE is also calculated separately for each 15-min interval of a day.

Overall, weekday, weekend and public holiday MAE, NMAE1 and NMAE2 results
Table 6.7 summarizes the MAE and different NMAE for all charging sites and the

respective forecast horizon. As previously evidenced during the graphical analysis,

reducing the forecast horizon from one day to one hour considerably reduces the

prediction error. When considering the total MAE as well as the MAE on weekdays

and weekends for residential, public and workplace charging, a reduction by at least

half can be observed in almost all cases. The error reduction is even more pro-

nounced when looking at the MAE on public holidays, where the MAE is reduced
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by more than four times for public charging and by almost 11 times for workplace

charging. With shopping center charging, the MAE is reduced in all cases by more

than 2 kW. The lowest MAE for both forecast horizons is recorded for residential

charging and amounts to around 1.53 kW and 3.37 kW for 1-hour and 1-day fore-

casting respectively. Workplace charging generates the second lowest MAE values,

followed by public charging. The highest MAE values are recorded for shopping

center charging.

Table 6.7: Summary of MAE, NMAE1 and NMAE2 results for all charging sites

Charging site Shopping

center

Residential Public Workplace

Forecast horizon 1 hour 1 day 1 hour 1 day 1 hour 1 day 1 hour 1 day

MAE [kW] (all) 4.35 6.78 1.53 3.37 2.70 5.84 1.85 5.35

NMAE1 (all) 0.3521 0.5490 0.1775 0.3910 0.1657 0.3591 0.2038 0.5902

NMAE2 (all) 0.0414 0.0645 0.0379 0.0834 0.0316 0.0684 0.0206 0.0595

MAE [kW] (weekday) 4.41 6.75 1.52 3.33 3.10 6.37 2.56 6.56

NMAE1 (weekday) 0.3686 0.5639 0.1745 0.3810 0.1519 0.3120 0.1908 0.4889

NMAE2 (weekday) 0.0420 0.0643 0.0377 0.0823 0.0363 0.0745 0.0285 0.0730

MAE [kW] (weekend) 4.39 7.15 1.60 3.62 1.83 3.20 0.49 1.31

NMAE1 (weekend) 0.3289 0.5356 0.1894 0.4283 0.2084 0.3634 0.3767 1.00

NMAE2 (weekend) 0.0598 0.0974 0.0470 0.1064 0.0563 0.0982 0.0536 0.1422

MAE [kW] (public holiday) 3.71 5.74 1.36 2.89 2.48 10.64 0.88 9.51

NMAE1 (public holiday) 0.3122 0.4835 0.1619 0.3454 0.2618 1.1240 0.5952 6.4538

NMAE2 (public holiday) 0.0729 0.1128 0.0466 0.0994 0.0915 0.3929 0.1604 1.7389

A different picture emerges when looking at the NMAE1 and NMAE2 results. For the

hourly prediction, according to the NMAE1, the most accurate forecast is obtained

for public charging, followed by residential, workplace and shopping center charg-

ing. Conversely, using the NMAE2, the most precise results are seen for workplace

charging, followed by public and residential charging. Shopping center charging

again achieves the least accurate ratings. For the 96-timesteps forecast the most

accurate forecast results are achieved for public and residential charging again when

using NMAE1, however, the least accurate prognosis is given for workplace charging

this time. In contrast, using the NMAE2, the most precise results are achieved for

workplace charging, followed by shopping center and public charging. Residential

charging comes last.

When comparing the clustered NMAE1 results, it can be shown that on weekdays,
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weekends and public holidays the 1-hour forecast yields the most accurate results

for public and residential charging. Shopping center and workplace charging score

the poorest results. Conversely, when using the NMAE2 as an evaluation criterion,

varying results are visible depending on the type of day. For weekdays the most

accurate results are seen for workplace charging followed by public and residential

charging. Shopping center charging generates the least accurate results. While res-

idential charging provides the most exact forecast for weekends, workplace, public

and shopping center charging take second, third and fourth place. For public holi-

days residential charging ranks first again, followed by shopping center and public

charging. Workplace charging comes last. Similar findings to the NMAE1 results of

the 1-hour forecast can be seen for the NMAE1 results of the 1-day forecast. Res-

idential and public charging achieve the most precise scores in most of the cases.

However, for public holidays, shopping center charging outperforms public charging

and comes in second place behind residential charging. Looking at the NMAE2 re-

sults, the poorest performance for weekdays can be observed for residential charg-

ing while shopping center charging yields the most accurate results. On weekends

shopping center charging ranks first again, however, the least accurate score is ob-

tained for workplace charging. For public holidays, workplace charging performs

particularly poor again. Residential charging obtains the most favorable score.

MAE results for the different 15-min timeslots of a day
Next, the prediction results are analyzed separately for each of the 96 quarter hour

intervals of a day. Table A.1 details the MAE for each 15-min interval at each charg-

ing site and for both prediction horizons. The first value corresponds to the MAE of

the 1-hour forecast in kW and the second value represents the MAE of the 1-day

forecast in kW. In addition, six 4-hour averages of the MAE are provided.

To start with, it can be observed once again that the 1-hour forecast can signifi-

cantly reduce the MAE compared to the 1-day forecast. A higher MAE is recorded

only in a few exceptional cases. The extent of the improvement, however, varies

considerably over the course of the day. Furthermore, when looking at the MAE

results of the 1-hour forecast for the individual 15-min intervals, a deterioration of

the forecast results with increasing forecast period can be observed. Generally, the

prediction of the first 15-min timestep yields a lower MAE than the second step, the

second step generates a lower MAE than the third step, and the least accurate re-

sults are generally achieved for the fourth timestep. Consequently, the examined
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time of the hourly forecast influences the extent of the improvement, which can be

achieved compared to the 1-day forecast.

Taking a look at the MAE values in the period from 10:00 a.m. to 11:00 a.m, for ex-

ample, the MAE for shopping center charging rises from 3.63 kW in the first timestep

to 10.74 kW in the 4th timestep. Similar behavior can be shown for the other three

charging sites, where the MAE for residential charging increases from 0.81 kW to

1.6 kW, for public charging from 2.37 kW to 4.65 kW and for workplace charging

from 2.29 kW to 3.81 kW. While from 10:00 a.m. to 10:15 a.m. the MAE is therefore

lowered by 8.48 kW for shopping center charging, this figure drops to 3.95 kW in the

period from 10:45 a.m. to 11:00 a.m.. For residential charging the MAE is reduced

by 1.61 kW respectively 0.56 kW. For public and workplace charging, the reduction

in MAE also falls from 11.28 kW to 8 kW and from 14.6 kW to 11 kW, corresponding

to a decrease of around 3 kW in both cases.

Lastly, it can also be seen that the prediction accuracy at the various charging sites

is strongly dependent on the time of day and correlates with the load level. With

shopping center charging, the lowest average MAE is achieved for both forecast

horizons between 12:00 a.m. and 4:00 a.m.. The lowest MAE values generally

occur between 3:30 a.m. to 7:30 a.m.. The highest average MAE can be seen in

the timeslot 12:00 p.m. to 16:00 p.m., but high MAE values are generally achieved

throughout the entire period from 9:00 a.m. to 8.00 p.m.. For residential charging,

the lowest MAE values are also obtained in the period from 12:00 a.m. to 8:00 a.m.

and the highest in the time between 4:00 p.m. to 8:00 p.m., which again shows the

correlation between the load level and the prediction error. In the case of public and

workplace charging, the lowest MAEs are likewise observed in the period from 12:00

a.m. to 4:00 a.m., while low values are also recorded from 8:00 p.m. to 12:00 a.m..

The highest average MAE values are obtained for the 1-hour forecast in the period

4:00 a.m. to 8:00 a.m. and for the 1-day forecast in the period 8:00 a.m. to 12:00

p.m..

Load deviation, time deviation and MAPE results of the daily forecast
To conclude, special attention is given to the 1-day forecast results by reviewing the

peak load deviation in absolute and relative terms as well as the average deviation

of the peak load time. Table 6.8 lists the peak load deviations and MAPE results in

kW and % respectively as well as the average deviation between the time of the true

and predicted peak load in 15-min timeslots for all charging sites.
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Table 6.8: Summary of the peak deviation, MAPE and corresponding time deviation for each
charging site

Charging site Shopping center Residential Public Workplace

Metric
Peak 

dev. 

(kW)

MAPE_

peak

(%)

Time

dev. 

(nslot)

Peak 

dev. 

(kW)

MAPE

_peak

(%)

Time

dev. 

(nslot)

Peak 

dev. 

(kW)

MAPE_

peak

(%)

Time

dev. 

(nslot)

Peak 

dev. 

(kW)

MAPE_

peak

(%)

Time

dev. 

(nslot)

All days 29.16 53.19 10.17 6.37 34.38 5.86 14.17 37.16 6.92 17.85 128.97 19.00

Weekdays 30.96 53.65 12.43 6.24 34.71 5.74 13.75 23.50 3.48 20.54 35.50 2.30 

Weekends 26.37 53.11 6.30 6.29 32.00 6.60 11.39 43.28 7.70 4.73 100.00 -

Public holidays 24.65 49.90 5.67 7.64 39.80 4.33 26.62 121.46 30.67 41.01 942.13 29.00

Over the period of 36 days, the average deviation between true and predicted peak

load amounts to 29.16 kW for shopping center charging, 6.37 kW for residential

charging, 14.17 kW for public charging and 17.85 kW for workplace charging. In

terms of percentages, the MAPE amounts to about 53.19 % for shopping center

charging, about 34.38 % for residential charging, about 37.16 % for public charging

and 128.97 % for workplace charging. The average deviation between real and pre-

dicted time of peak load expressed in number of 15-min timeslots is about 10, 6, 7

and 19 for shopping center, residential, public and workplace charging.

Examining the scores grouped by weekdays, weekends and public holidays, a num-

ber of discrepancies between the charging sites can be highlighted. Regarding

shopping center charging, it can be seen that on weekends and public holidays,

the absolute and relative errors can be reduced relative to weekdays. In addition,

the deviation between true and predicted occurrence of peak load can be signif-

icantly lowered as well. For residential charging, in contrast, the highest relative

and absolute errors are now seen for public holidays, although the time deviation

is minimized. For public and workplace charging it is clearly visible that by far the

most precise results are achieved during the week. For workplace charging predic-

tions on weekends, the absolute error amounts to 4.73 and MAPE to 100 % due to

the already mentioned constant prediction of 0 kW. Therefore, no deviation between

the time of the true and predicted peak load can be calculated. The highest error

scores between real and predicted peak load are recorded on public holidays for

both charging sites and the time deviation between true and predicted peak load

amounts to a multiple of the deviation during the week.
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7. Discussion of results

The analysis is conducted accordingly to the presentation of the results in the previ-

ous chapter and is structured in three sections. First the results of the initial training

are evaluated, followed by the analysis of the hyperparameter tuning. Subsequently,

a detailed assessment of the prediction results is provided.

7.1. Analysis of initial training results

When looking at the results of the initial training, three key findings emerge. To be-

gin with, in the majority of cases the problem of early overfitting with an increased

number of units is clearly evident. Such behavior indicates that the complexity of

the model may be too high relative to the size of the dataset available. Within this

work, no more than one year’s data is available, of which 78 % is used for train-

ing the LSTM. The availability of charging data over a period of several years might

therefore be of particular importance for the performance of the model. The avail-

ability of charging date measured over a longer period of time would also facilitate

the use of a larger dataset for validation, ensuring that the validation data set is truly

representative of the entire dataset. Looking at the load curve analyzed in Chapter

5.2.3, it seems questionable whether the validation data used are representative for

the whole time series due to the limited size of the sample.

Next, it could be demonstrated that the different encoding approaches and input

timestep variants only cause negligible differences in the validation loss but that

the optimal choice is dependent on the charging site and forecast horizon. Given

the minor improvements in validation loss that can be achieved, the additional time

and complexity required to implement the various encoding and input timestep vari-

ants cannot be justified. Hence, the same number of input timesteps and encoding

choice for all charging sites seems to be more reasonable. While sine/cosine encod-

ing provides a viable encoding variant, a number of 16 input timesteps for the 1-hour

prediction and 96 input timesteps for the 1-day prediction seem to be appropriate.

Ultimately, the initial training results reveal another valuable insight. Under the given
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conditions the stateful mode does not provide benefits compared to the stateless

mode. Therefore, the charging load seems to rather be correlated with short term-

events than long term-events in the past. Since the strength of the LSTM is there-

fore not needed to map long-term relationships, the prediction task could possibly

have been performed by a simpler ANN as well. However, when multi-year data

becomes available, the stateful mode may reveal its strengths, as seasonal relation-

ships and long-term dependencies can be identified by the LSTM. Consequently,

with the availability of data over several years, a further comparison of the different

modes is advisable.

7.2. Analysis of hyperparameter tuning results

With regard to the hyperparameter tuning results, three relevant conclusions can be

drawn. First of all, the often significant variation between minimum and maximum

validation loss during tuning reveals that the different hyperparameter configurations

exert a major influence on the generalizability of the LSTM model and, ultimately, on

its predictive power. Thus, the importance of carefully selecting the hyperparameter

is demonstrated and the relevance of hyperparameter tuning for selecting the most

appropriate LSTM model is outlined.

Moreover, it could be shown, that in general for hourly predictions, a high dropout

rate or a high learning rate can lead to particularly high MSE values. For the 1-day

forecast a small number of units does not seem to be able to accurately map the

complexity of the forecast, leading to the highest validation losses. Despite these

general observations, it is also evident that the varying combinations of hyperpa-

rameters exert a fundamentally different influence on the validation loss for each

charging site and forecast horizon in most cases. Thus, it is essential to perform the

hyperparameter tuning separately for each use case.

Finally, for all charging sites the analyzed hyperparameter configurations by random

search show only minor or no improvement compared to the minimal loss during

the initial training. A variety of conclusions can be made in this respect. First, the

findings reveal that the originally chosen hyperparameters proved to be a fairly good

choice. At the same time, only 50 variations of random search were tested within this
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work due to time constraints. A higher number of test runs eventually would have

led to further improvements of the validation loss. However, taking into account the

lowest validation losses for each charging site and forecast horizon, the result sug-

gests that an increase in test runs might not lead to substantial improvements in the

validation loss. An extension of the search space by varying more hyperparameter

might result in a more conspicuous change of the validation loss.

7.3. Analysis of forecast results

Finally, the analysis of the forecast results is carried out in three stages. First, the

results of the 1-day load forecast are analyzed. Next, a discussion of the 1-hour

prediction results is carried out. Ultimately, several implications for the main stake-

holders are derived on how to use the charging load forecast in practice.

7.3.1. Discussion of 96-timesteps forecast results

In this section the results of the 1-day load forecast are reviewed. At first, the dis-

crepancies between the results obtained for the individual charging sites are ad-

dressed. Subsequently, the overall findings are summarized and potential explana-

tory approaches are provided.

Main differences between the charging sites
To begin with, differences in the ranking of the charging sites become apparent with

regard to the NMAE1 and NMAE2 results. The poor performance of residential

charging using NMAE2 compared to NMAE1 can be attributed to the significantly

lower peak load of around 41.1 kW compared to the other charging sites. Although

shopping center charging exhibits the highest peak load of around 105.1 kW and

second highest mean charging load of around 12.34 kW, it occupies the penultimate

place for the NMAE1 and also ranks second based on the NMAE2. This circum-

stance can possibly be attributed to the high complexity of the load profile, showing

the most irregular load profile compared to the other charging locations as shown

in Section 5.2.3. The large gap in the ranking of workplace charging when using
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NMAE1 and NMAE2 can be attributed to the relatively high peak load of around

89.87 kW and low mean charging load of 9.07 kW. Compared to the similar mean

charging load amounting to 8.62 kW for residential charging, workplace charging

achieves significant less accurate forecast results.

Further evident discrepancies involve the varying NMAE1 results for weekdays,

weekends and holidays between the different charging sites. While the most ac-

curate results are obtained for shopping center and residential charging on public

holidays, contrary observations emerge for public and workplace charging. The

forecasts on public holidays are significantly less accurate than the predictions on

weekdays and weekends. However, the differences are attributable to the load pro-

file characteristics shown in Section 5.2.3 rather than to the different ability of the

LSTM to identify public holidays. While the load profile for workplace and public

charging shifts radically on public holidays, this behavior can not be seen for residen-

tial charging. With shopping center charging the load profile also varies noticeably,

but the entire load series is characterized by strongly fluctuating load characteristics.

Therefore the impact of public holidays remains small.

Similar findings can be seen when looking at the peak deviation and MAPE results of

the individual charging sites. While for shopping center and residential charging the

MAPE difference between weekdays and public holidays amounts to only 3.75 re-

spectively 5.09 percentage points, the figure for public and workplace charging rises

by 97.96 respectively 906.63 percentage points. Once again, the discrepancies can

be explained by the already discussed variations regarding the general characteris-

tics of the load profile and the impact of public holidays on the load pattern. When

looking at the weekday results, the significant discrepancies in MAPE and time de-

viation for each charging site likewise indicate that the characteristics of the load

profile have a decisive influence on the accuracy of the prediction. Shopping center

charging has a highly irregular load profile, which is why both the predicted peak

load level and the time of the peak load display the poorest accuracy. Workplace

charging, on the other hand, as shown in Section 5.2.3, exhibits the most steady

pattern with regard to the time of peak load, which is why the average time deviation

is lowest at 35 minutes.

Overall findings
Overall, two important outcomes can be outlined. The MAE results of the different
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timesteps reveal that the prediction error in times of low load is smaller than in times

of high load and therefore correlates with the the load patterns. The reason for this

outcome can be naturally explained by the fact that during periods of high demand,

the fluctuation in charging load also tend to increase, therefore making it difficult for

the LSTM to reproduce the correct load level. In times of no or very low charging

load, the MAE is consequently lower.

More importantly, the findings of the 1-day prediction results indicate that the LSTM

is not able to provide a reliable forecast given the complex load characteristics and

high resolution of 15-min. There are several explanations for the lack of forecasting

ability of the 96-timesteps prediction.

It is conceivable that the sharp increase in aggregated charging load over the course

of the year, illustrated in Section 5.2.3, and the resulting altered load profile prevents

the LSTM from learning and thus leads to poor prognosis results. Due to the limited

amount of data spanning only one year, the training and validation data possess

insufficient or unrepresentative data to allow the LSTM to establish the correlation

between the inputs and outputs as present in the test data, which was already indi-

cated in Section 7.1.

A similar problem is posed by the large number of holidays in the test data occurring

in a sequence not previously seen by the LSTM, resulting in the LSTM not being

able to locate the public holidays. In addition, the changes in the load characteris-

tics between Christmas and Epiphany, demonstrated in Section 5.2.3 in particular

for residential, workplace and public charging, caused by the winter holidays, might

explain the frequently large prediction errors in those days.

7.3.2. Discussion of 4-timesteps forecast results

In the following the results of the 1-hour forecast are reviewed as well. As for the 1-

day forecast, the different results among the charging sites are discussed first before

a summary of the overall findings is provided.

Differences between charging sites
Looking at the NMAE1 and NMAE2 results of the 1-hour forecast two main find-

ings emerge. On the one hand, the frequently poorly obtained results for shopping
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center charging show that even with a shorter forecast period, a strongly fluctuating

load curve without a clear pattern poses difficulties for the LSTM and leads to poor

prediction results. On the other hand, weekends and public holidays seem to yield

less accurate predictions particularly for public and workplace charging, although

significantly less than seen with the 96-timesteps forecast. This circumstance can

be explained by the fact that due to the shorter forecast period, the preceding load

values assist the LSTM in mapping the height and course of the load curve more

precisely.

Overall findings and explanatory approaches
Similar to the 1-day forecast, two general statements can be derived for the 1-hour

load forecast, applicable to all charging sites. It can be pointed out that by reducing

the forecast period from 96 to four timesteps, the forecast accuracy can be signifi-

cantly increased for all charging sites. The impact of public holidays and weekends

on the forecast accuracy can also be significantly reduced. However, the MAE re-

sults of the individual time steps still show a noticeable increase in the prediction

error with increasing time deviation from the last input load value.

7.3.3. Implications for the practical application of the forecast

Several implications for sub-aggregators and network operators can be derived con-

cerning the application of the charging load forecast in practice, which are discussed

in the following.

Implications for sub-aggregator
To begin with, it is imperative to note that, from the point of view of a sub-aggregator,

the forecasting accuracy achieved by the 1-day load prediction is far from sufficient

to predict flexibility potentials for the provision of CR. In order to improve the poor

forecast result obtained by the 96-timesteps forecast more data is needed. The

dataset needs to cover a much longer period of time with the training and evaluation

data containing representative data that exhibit comparable properties to the test

data. It can be assumed that the prediction accuracy improves if charging data of

the same period as the test data from previous years are also present in the training

data. Furthermore, a higher forecast accuracy can be achieved by either shortening
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the forecast horizon or prolonging the time resolution of the forecast.

The results of the 1-hour forecast show that considerably more accurate predictions

can be achieved compared to the 1-day forecast. Furthermore, as shown in Section

5.2.3, the load profiles of residential, public and workplace charging indicate that

the highest load level usually falls within a certain time period of the day. However,

the identified patterns are mainly valid for weekdays. Weekends and public holidays

are often accompanied by changes in the user behavior that are difficult to predict

and also exhibit a much lower aggregation potential, which is particularly evident for

workplace and public charging.

The above mentioned circumstances suggest two courses of action on how sub-

aggregators can implement the proposed LSTM within this thesis to achieve opti-

mized prediction results. On the one hand, based on the aforementioned reasons,

it seems beneficial to limit the charging load forecast to weekdays. It is likely that

by focusing the forecast on weekdays a higher prediction accuracy can be obtained.

On the other hand, the forecast should only be carried out for the most relevant

periods of a day, when the aggregated charging load is highest. By shortening the

forecast period, the results are improved as shown in this paper. Furthermore, it can

be anticipated that the accuracy of the forecast will be further enhanced by focusing

the LSTM on a specific time period of a day. These two measures would assist the

sub-aggregator to provide a more reliable load forecast in the important periods of a

day to be able to exploit the huge potential of PEV aggregation for CR provision as

outlined in Chapter 3.

Implications for network operators
Similar recommendations for action can be formulated for the network operator. Un-

der the current circumstances, times of high charging loads and peak loads, which

are particularly important for network operators to prevent possible bottlenecks in

the low voltage network caused by the simultaneous charging of PEVs, cannot be

reliably predicted with the 1-day load forecast. The forecast could be targeted to-

wards the time range of the highest aggregated load at each charging site, where

the simultaneous charging is likely to result in the most severe bottlenecks in the low

voltage network. Thus, the forecast could still be used for congestion management.

In addition, the temporal resolution could be reduced down to, for example, one hour

to enhance the accuracy of the forecast.
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8. Conclusions and future work

The following chapter summarizes the contribution and main findings of this work

and provides an outlook on possible focal points for future research.

8.1. Summary of the work

This thesis aims at developing an ANN for predicting the aggregated charging load

for different charging sites clustered according to distinct behavioral patterns. The

charging at home (residential), the charging at work (workplace), the charging at

public car parks (public) and the charging at shopping centers (REDI) are chosen

for the analysis. Moreover, two different forecast horizons are selected in the form

of a 1-hour and a 1-day charging load forecast with a 15-min resolution and imple-

mented for every charging site. A special form of RNNs, the LSTM, is applied within

this thesis due to the good performance demonstrated for time series in the past.

Based on the research shortcomings pointed out by the literature review in Chap-

ter 2.4 it can be demonstrated that the multivariate multi-step LSTM charging load

forecast presented in this work introduces a new approach within the literature. Two

main contributions of this work can be highlighted. The two main achievements of

this thesis comprise the analysis of two forecast horizons, which by far exceed the

prediction horizons reported in the literature so far, and the comparison of different

charging sites based on both real and actual charging load data, providing another

valuable contribution to the poorly researched field of PEV charging load forecasting.

8.2. Findings of the work

In the following the most important findings of the charging load prediction are sum-

marized. First and foremost, the forecast results indicate that the evaluation of the

results is highly dependent on the chosen metrics. Based on the MAE, for both

forecast horizons the smallest error is observed for residential charging, followed

by workplace and public charging. The highest MAE values are seen for shopping
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center charging. To eliminate the scale dependency, the MAE results are normal-

ized using the mean charging load (NMAE1) or difference between maximum and

minimum charging load (NMAE2). Applying the NMAE1, the most precise results

are achieved at both forecast horizons for public charging followed by residential

charging. For hourly forecasting the least accurate results are obtained for shopping

center charging and for 1-day forecasting for workplace charging. In contrast, when

using the NMAE2 as measure of evaluation, the most accurate prediction results for

both forecast horizons are obtained for workplace charging. While public charging

ranks second for 1-hour predictions, shopping center charging comes second for

the 1-day prediction. The least accurate results for hourly predictions are seen for

shopping center charging and with the daily prediction for residential charging.

Furthermore, it is demonstrated that the forecast accuracy strongly correlates with

the respective forecast horizon. The 1-hour load forecast achieves substantially bet-

ter results than the 1-day load prediction. The results of the 1-hour forecast also

indicate that the prediction error increases as the time to be forecasted lies further

in the future.

Last but not least, it can also be seen that the prediction results are strongly depen-

dent on the time and the type of day. The MAE values correlate with the changing

load level during the course of the day. In times of low load, the MAE also remain

low and increase in times of higher aggregated load. Additionally, the prediction re-

sults vary depending on whether it is a weekday, weekend or public holiday. This

influence is mainly visible for the 1-day load prediction. Moreover, under the given

circumstances, the LSTM is not able to predict the peak loads accurately at the re-

spective charging sites based on the 1-day forecast.

The findings of this work benefit a wide range of stakeholders. Sub-aggregators

have a great interest in a reliable load forecast in order to offer flexibility potentials

for the CR market. Network operators, on the other hand, are keen on forecasting

the charging load in order to identify possible bottlenecks in the low voltage network

caused by simultaneous PEV charging at an early stage. The results of this work

provide valuable insights on how LSTMs can be applied most effectively for a valid

charging load prediction and thus provide useful guidelines for future research which

will be discussed in the following.
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8.3. Future work

The outlined weaknesses of the 1-day forecast can be addressed by improving the

LSTM and training it on data collected over a longer period of time. With data over

several years available in the future, a renewed load forecast would be beneficial to

investigate the influence on the accuracy of the forecast. In this context, the LSTM

could be extended by further indicators such as the month, the stateful mode could

be investigated again and time series cross validation could be performed to in-

crease the robustness of the model and overcome early overfitting.

In view of the fact that the accuracy of the forecast increases significantly with a

shortened forecast horizon, it is advisable to focus the forecast on the suitable days

and time periods in the course of the day of each charging site when a sufficient

volume of PEV is available for pooling the PEV flexibility. A future research objec-

tive thus involves the development of a customized LSTM model tailored to each

charging site. For residential charging, the forecast period from 4:00 p.m. to 8:00

p.m. seems to be a good choice. For public charging, however, the time period 8:00

a.m. to 12:00 p.m. would be reasonable and for workplace charging a focus on the

time period from 6:00 a.m. to 10:00 a.m. is recommended. For shopping center

charging no recommendation can be given due to the strongly fluctuating load. For

all charging sites, the load forecast should be targeted to weekdays, since user be-

havior on weekends and holidays is often difficult to predict and in many cases, as

with workplace charging, the aggregation potential is not sufficient enough.

Furthermore, in order to predict the flexibility potential of PEVs, a fundamentally dif-

ferent approach is conceivable for future research, focusing on predicting the start of

charging, the end of charging and the departure time in order to identify the flexibility

potential without restricting the charging process outcome of the user.

Finally, the outcome of the 1-day forecast has shown that with the chosen approach

it is currently not possible to reliably predict the level and time of peak loads. The

previously discussed targeting and customization of the LSTM to the period of the

highest load could significantly improve the accuracy of the forecast. However, an-

other research approach is also feasible, focusing on the sole prediction of the peak

load level and the timing of the peak load.
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A. Appendix

A.1. Hyperparameter tuning results

Figure A.1: Minimal validation losses of random search hyperparameter combinations for
the 4-timesteps shopping center charging forecast
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Figure A.2: Minimal validation losses of random search hyperparameter combinations for
the 96-timesteps shopping center charging forecast
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Figure A.3: Minimal validation losses of random search hyperparameter combinations for
the 4-timesteps residential charging forecast
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Figure A.4: Minimal validation losses of random search hyperparameter combinations for
the 96-timesteps residential charging forecast
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Figure A.5: Minimal validation losses of random search hyperparameter combinations for
the 4-timesteps public charging forecast
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Figure A.6: Minimal validation losses of random search hyperparameter combinations for
the 96-timesteps public charging forecast
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Figure A.7: Minimal validation losses of random search hyperparameter combinations for
the 4-timesteps workplace charging forecast
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Figure A.8: Minimal validation losses of random search hyperparameter combinations for
the 96-timesteps workplace charging forecast



A.2 Forecast results 116

A.2. Forecast results
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Table A.1: Summary of the MAE results in kW for each 15-min timeslot (4-timesteps pre-
diction MAE in kW/96-timesteps prediction MAE in kW)
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