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The explanation of heterogeneity when synthesizing different studies is an

important issue in meta-analysis. Besides including a heterogeneity parameter

in the statistical model, it is also important to understand possible causes of

between-study heterogeneity. One possibility is to incorporate study-specific

covariates in the model that account for between-study variability. This leads to

linear mixed-effects meta-regression models. A number of alternative methods

have been proposed to estimate the (co)variance of the estimated regression

coefficients in these models, which subsequently drives differences in the results

of statistical methods. To quantify this, we compare the performance of hypothe-

sis tests for moderator effects based upon different heteroscedasticity consistent

covariance matrix estimators and the (untruncated) Knapp-Hartung method in

an extensive simulation study. In particular, we investigate type 1 error and

power under varying conditions regarding the underlying distributions, hetero-

geneity, effect sizes, number of independent studies, and their sample sizes.

Based upon these results, we give recommendations for suitable inference

choices in different scenarios and highlight the danger of using tests regarding

the study-specific moderators based on inappropriate covariance estimators.
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1 | INTRODUCTION

Recently, Jackson and White (2018) raised the question
“When should meta-analysis avoid making hidden nor-
mality assumptions?” In the current paper, we investigate
this in the context of meta-regression models while also
studying the effect of employing different methods to
account for heteroscedasticity. Here, the notion meta-
regression refers to a regression, in which the effect sizes
from various studies are modeled by means of certain
study characteristics. Thus, the effect sizes are the depen-
dent (or outcome) variables and the study characteristics

are the independent variables (also called moderators or
explanatory variables).

As the effect sizes are usually certain summary sta-
tistics within diverse studies (as, eg, Cohen's d or a
log-odds ratio), the study-specific moderators can only
account for a part of the between-study heterogeneity.
Thus, to “fully” account for heterogeneity, the intro-
duction of a random effect is necessary, naturally lead-
ing to linear mixed-effects regression models. This was,
for example, proposed1 for the case of a single covari-
ate and later extended.2-7 In this context, a specific
question of interest is to test for an effect of a certain
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moderator, that is, to test the null hypothesis whether
the corresponding regression coefficient is zero. Here,
Viechtbauer et al made a thorough comparison of dif-
ferent existing methods in extensive simulations. In
particular, they compared tests based on the Wald-
type, Knapp-Hartung (with and without truncation),
Permutation, Huber-White, and the likelihood ratio
method together with seven different estimators of the
so-called between-study heterogeneity. It turned out
that the choice of heterogeneity estimator did not
affect the results greatly, while the choice of methods
mattered: They found a certain preference for the
Knapp-Hartung method3 and also concluded that
“Huber-White and likelihood ratio tests (…) cannot be
recommended for routine use, at least in their present
form.” Moreover, they stressed that “additional simula-
tions are needed to assess the performance (…) under
more adverse conditions, such as non-normal random
errors and/or true effects.” In the current paper, we fol-
low this suggestion and continue their work by investi-
gating the effect of non-normal random effects. In
addition, we analyze the effect of choosing different ver-
sions of the Huber-White heteroscedasticity consistent
(HC) covariance estimators. These estimators are typically
applied when the assumption of homogeneous variance
of the residuals is not plausible, to avoid inconsistent
inference. In particular, there exist the six versions HC0-
HC5 of the Huber-White estimator for regression models,
of which Sidik and Jonkman8 proposed the HC0 and
HC1-type in the meta-analytic context. For fixed-effects
regression models, the estimators HC3 and HC4 are often
recommended.9,10 Thus, it is of interest to also investigate
the influence of the different choices in the context of
meta-regression models. This becomes especially impor-
tant under adverse conditions, such as non-normally dis-
tributed effect sizes and/or unbalanced study sizes or
arms. As already shown,11 such circumstances can lead
to poor control of type 1 error and/or poor coverage of
confidence intervals when using standard meta-analytic
techniques. For this paper, we therefore investigate the
performance of the different estimators in different sce-
narios, utilizing both standardized mean differences and
log-odds-ratios as effect measures.

In the following sections, we start with a formal
introduction of the mixed-effects meta-regression model
and introduce inference procedures for testing modera-
tor effects (Section 2). Next, we focus on a motivational
data analysis (Section 3) that illustrates the practical
importance of the choice of covariance estimator and
we analyze the data example using the previously intro-
duced procedures. The data analysis motivates the need
for an extensive simulation study (Section 4). In this
section, we explain the various simulation designs and

illustrate and discuss our main findings. We end with
concluding remarks and an outlook for further research
(Section 5).

2 | THE SETUP

The usual mixed-effects meta-regression model is given
for independent outcome/effect variables

yi = β0 + β1xi1 + � � �+ βmxim + ui + εi, i=1,…,K ð1Þ

where xij denotes the jth moderator variable in the ith study,
βj is the corresponding model coefficient, and K the number
of independent studies. Furthermore, ui is a random effect
that is typically assumed to be normally distributed12 with
ui � N(0, τ2) and εi is the within-study error with distribu-
tion εi �N 0,σ2i

� �
. However, to give answers on the open-

ing question of “When should meta-analysis avoid
making hidden normality aumptions?,” we also study
non-normal situations regarding the random effects ui: We
do not specify a particular distribution and only assume
E uið Þ=0 and Var(ui) = τ2. From a practical point of view,
ui accounts for the variability not explained by the trial-
specific moderators, leading to the notion of between-
study heterogeneity for its variance τ2. We point out here
that the study-level outcome of each individual patient
may be binary. In this case, inference is based on normal
approximations to discrete (binomial) likelihoods. Cau-
tion should be used with such normal approximations, as
highlighted by a recent discussion paper on the topic of
hidden normality assumptions in meta-analysis.13 Here,
an alternative approach would be exact GLMM
approaches, as considered by Stijnen et al and others.14,15

Anyhow, model (1) involves several unknown param-
eters σ2i ,β,τ

2
� �

, which have to be estimated. Thereof, the
within-study sampling variance σ2i is estimated from the
observations in the study and typically assumed to be
known. To provide a simple expression of the weighted
least-squares estimate for β and the corresponding covari-
ance estimators presented below, we rewrite model (1) in
matrix notation as

y=Xβ+u+ ε, ð2Þ

where X ∈ RK × (m + 1), β ∈ Rm + 1, and u, ε ∈ RK. The
weighted least-squares estimator for β is given by

β̂= X 0ŴX
� �−1

X 0Ŵy: ð3Þ

The weight matrix is Ŵ =diag σ2i + τ̂2
� �−1
� �

. In this
setup, we are now interested in testing the null hypothe-
sis of no moderator effect
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H0 : βj =0
n o

for j∈ 1,…,mf g

against two-sided alternatives H1: {βj 6¼ 0}.
There already exist several procedures applicable for

this purpose and most of them are mainly based on a test
statistic of (Welch)-t-type. In particular, these basically
differ in how both, the between-study heterogeneity τ2 as
well as the within-study variances σ2i , are accounted for.
To define them, denote by β̂ the weighted least-squares
estimator for β and Σ=cov β̂

� �
. For all choices of (co)var-

iance estimator Σ̂ considered in part 2.1, a two-sided test
statistic of t-type for testing for the presence of the jth
model coefficient, that is, for inferring H0: {βj = 0}, is then
calculated via

Tj =
β̂jffiffiffiffiffiffi
Σ̂jj

q : ð4Þ

Here, Σ̂jj is the jth diagonal element of the covariance
estimator Σ̂ . For large K, the statistic Tj approximately
follows a t-distribution with K−m− 1 degrees of freedom
under the null hypothesis H0.

16 Comparing |Tj| against
the 1− α/2 quantile of the t-distribution with K−m− 1
degrees of freedom yields the corresponding test and
P values. Under mild regularity conditions on the moder-
ators, these tests are asymptotically correct. We summa-
rize this in Theorem 1, which is given in the supplement
along with a proof.

As has already been pointed out, the testing proce-
dures are not greatly affected by the choice of residual
heterogeneity estimator.17 We therefore solely focus on
one estimator for τ2: the restricted maximum likelihood
(REML) estimator, which was recently propagated as a
good choice for continuous data.18,19 Details regarding
the REML estimator are presented in the Supplementary
Materials (cf. Equation S8). Note that in this context,
REML estimates are more suitable than naive ML esti-
mates of variance components as the latter may have a
negative bias.20

As we have fixed estimators for β and τ2, we now turn
to the question of how to estimate the covariance of the
estimated model coefficient β̂ , given in Equation (3).
Here, the Knapp-Hartung method3 has been rec-
ommended.17 However, in case of semiparametric linear
models, robust Huber-White estimators are often seen as
a reasonable solution; especially when the type of
heteroscedasticity is not specified.9,10,21 As Viechtbauer
et al17 only investigated the HC1 estimator of the six
Huber-White estimators HC0-HC5, we complement their
study by also investigating the other versions with respect
to their applicability in meta-regression. To this end they

are detailed in the next subsection. These HC-estimators
are furthermore compared to the (untruncated) Knapp-
Hartung method, which provided adequate control of the
type 1 error rate in previous research.17

2.1 | Robust (Huber-White) approach

In semiparametric linear models, the assumption of
homogeneous variance of the residuals is often not plau-
sible, possibly leading to invalid inference from classical
methods based on homoscedasticity. Here, the typical
solution is to apply sandwich estimators. These are also
known as Huber-White estimators, to recognize the con-
tributions of Peter J. Huber and Halbert White.22,23 In
model (1), it especially makes sense to consider such esti-
mators because the marginal variances σ2i + τ2 of the
effect size estimates are heteroscedastic. We are now
interested in consistent estimators of the (co)variance
matrix Σ=cov β̂

� �
. The classical White-estimator of type

HC0 that was proposed Sidik and Jonkman8 in the meta-
analytic context is given by

Σ̂0 = X 0ŴX
� �−1

X 0ŴÊ
2
ŴX X 0ŴX

� �−1
, ð5Þ

where Ê=diag y−X β̂
� �

. Multiplying it with K/(K−m
− 1) leads to the HC1-type estimator, which was consid-
ered in the above mentioned work by Viechtbauer et al17

and is given by Σ̂1 =KΣ̂0= K−m−1ð Þ, which is known to
be more conservative. However, even in classical regression
models Wald- or t-tests based on both (co)variance estima-
tors are known to yield inflated type 1 error rates for small
to moderate sample sizes.10,24,25 This was also shown to be
the case in meta-regression models.17 Therefore, improved
versions of the original Huber-White estimator have been
suggested, namely White estimators of type HC2, HC3,
HC4, and HC5. We introduce these estimators but refer to
the papers in which they were originally discussed for fur-
ther details.26-28 As their general forms are rather complex
(cf. Equations 5 and 6), we have also worked out the ana-
lytical form of the HC estimators in the simplest case of no
moderators, that is, random-effects meta-analysis. Please
refer to the Supplementary Material and the discussion for
details. The form of the respective Huber-White covariance
estimators in the context of the mixed-effects meta-
regression model (2) is described below: we first introduce
the HC2 and HC3 estimators given by

HCℓ = Σ̂ℓ = X 0ŴX
� �−1

X 0ŴÊ
2
ℓŴX X 0ŴX

� �−1
, ℓ=2,3:

ð6Þ
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Here, Ê2 = diag 1−xjj
� �−1=2
� �

�Ê and
Ê3 = diag 1−xjj

� �−1
� �

�Ê , where xjj is the jth diagonal
element of the hat matrix X X 0ŴX

� �−1
X 0Ŵ . Thereof,

the HC3 estimator gives a very close approximation to
the computationally more expensive jackknife estimator
described in Reference 26 and given by

HCJK
3 = Σ̂JK

3 =
K−1
K

XK
t=1

β̂ tð Þ−
1
K

XK
s=1

β̂ sð Þ

 !
β̂ tð Þ−

1
K

XK
s=1

β̂ sð Þ

 !0
:

ð7Þ

Here, β̂ ið Þ is the weighted least-squares estimate of β
based on all observations except the ith. It is important
to note that HC3, unlike HC2, is biased under homosce-
dasticity.28 To improve HC3, the following variation was
suggested27:

HC4 = Σ̂4 = X 0ŴX
� �−1

X 0ŴÊ
2
4ŴX X 0ŴX

� �−1
, ð8Þ

where Ê4 = diag 1−xiið Þ−
δi
2

� �
�Ê and δi =min 4, xii�x

� �
.

Finally, there is

HC5 = Σ̂5 = X 0ŴX
� �−1

X 0ŴÊ
2
5ŴX X 0ŴX

� �−1
, ð9Þ

where Ê5 = diag 1−xiið Þ−
αi
2

� �
�Ê and

αi =min xii
�x ,max 4, γxmax

�x

� �� �
with a predefined constant

0< γ <1. Based on findings from simulation studies, the
value γ := 0.7 was recommended.28 We follow this sug-
gestion below.

The asymptotic behavior (for large K) is the same for
all of the considered covariance estimators. However,
for small to moderate numbers of studies K, the respec-
tive behavior may be vastly different, as asymptotic
arguments and limit theorems no longer hold. This is
particularly apparent in the illustrative data example
presented in the next section.

3 | DATA EXAMPLE

Table 1 contains data on six studies, which investigate
the effectiveness of Azithromycin vs Amoxycillin or
Amoxycillin/clavulanic acid (Amoxyclav) in the treat-
ment of acute lower respiratory tract infections. An
explanation of the different variables can be found in
Table 2. Azithromycin is an antibiotic, which is useful
for the treatment of various bacterial infections.29 The
data are contained in the R package metafor and have
previously been analyzed.30 We want to investigate
whether the respective trial having included patients T
A
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with a diagnosis of pneumonia has a significant effect on
the effectiveness of Azithromycin within the subgroup of
trials containing patients with a diagnosis of acute bacte-
rial bronchitis. We will attempt to answer this question
using a mixed-effects meta-regression model.

Although in the original work on these data30 the
authors used risk ratios as the effect measure, we decided
to utilize the log-odds ratio as the effect measure of
choice, due to its favorable statistical properties, such as
an approximate normal distribution.31 Moreover, the log-
odds ratio behaved similarly to the standardized mean
difference in our preliminary simulations. The resulting
P-values and test statistic values (4) for each choice of
estimator HCi, i = 0, …, 5 and the Knapp-Hartung
method are given in Table 3.

The estimators HC0 and HC1 lead to a rejection of the
null hypothesis at nominal level α = 0.05, while the test
based on HC2 still leads to a significant moderator effect at
the 10% level. On the contrary, tests based on HC3-HC5 do
not reject the null hypothesis. If we compare the newer
covariance estimators HC3-HC5 and HCKH, the Knapp-
Hartung method rejects the null hypothesis at the nominal
level α, whereas the formerly mentioned methods do not.

These results illustrate that the choice of covariance
estimator can have a large influence on results in practice
and that the wrong choice of HC-estimator may lead to
possibly false-positive or -negative test results. In particu-
lar, it is unclear whether the above rejections/non-
rejections are due to a potentially liberal/conservative
behavior or different power characteristics of the
corresponding tests. In any case, researchers should take
care when performing inference on study-specific moder-
ators, especially when the number of investigated studies

K is small. In order to help guide researchers' decision of
which covariance estimator to use in their analysis, we
perform an extensive simulation study regarding type
1 error and power.

3.1 | Software

Although this data set was analyzed using the open
source software R, other statistical software packages are
available for meta-regression. Two examples are metareg
in Stata as well as various procedures in SAS. Metareg in
Stata, for example, implements the REML method as the
default estimation procedure regarding the between-
study variance τ2. In both Stata and SAS, the covariance
matrix estimation approach can be specified: Metareg
implements the Knapp-Hartung method as the default
covariance estimation approach. In SAS, the PROC

TABLE 2 Explanation of variables in Table 1

Variable Meaning

ai Number of clinical failures in the group treated with Azithromycin

n1i Number of patients in the group treated with Azithromycin

ci Number of clinical failures in the group treated with amoxycillin or amoxyclav

n2i Number of patients in the group treated with amoxycillin or amoxyclav

age Whether the trial included adults or children

diag.ab Trial included patients with a diagnosis of acute bacterial bronchitis

diag.cb Trial included patients with a diagnosis of chronic bronchitis with acute exacerbation

diag.pn Trial included patients with a diagnosis of pneumonia

ctrl Antibiotic in control group (amoxycillin or amoxyclav)

bi n1i - ai

di n2i - ci

mod 1 {diag.ab == 1 & diag.pn == 1}

θ̂i Estimated effect (here the log-odds-ratio)

vi Sampling variance

TABLE 3 Test statistics and P-values for the data example in

Table 1 based on various HC-type covariance estimators and the

Knapp-Hartung method

Estimator Tj =
β̂jffiffiffiffiffi
Σ̂jj

p
ffiffiffiffiffiffi
Σ̂jj

q
P-value

HC0 3.777 0.288 .019

HC1 3.084 0.352 .037

HC2 2.423 0.449 .073

HC3 1.434 0.758 .225

HC4 1.367 0.795 .244

HC5 1.367 0.795 .244

HCKH 2.943 0.369 .042
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PANEL procedure per default uses the standard sample
covariance estimator but allows the option to specify one
of the HC covariance estimators HC0-HC4 using the
HCCME= option in the MODEL statement.32,33 In the
rma function in the metafor package in R, the default
covariance matrix is simply V=diag σ2i + τ̂2

� �
with REML

as the default estimation procedure for the between-study
heterogeneity τ2. The Knapp-Hartung method can be
specified via the option test = “knha” in the rma

function.

4 | SIMULATION STUDY

We conducted a Monte Carlo simulation using standard-
ized mean differences and log-odds-ratios as the effect
size measures. As we do not want to assume individual
patient data, only the study effects θ̂i are available
(cf. Equation 10). As in previous work,17 we assumed a
single moderator influencing the true study-specific
effects resulting in the model

θi = β0 + β1xi + ui: ð10Þ

The values of the moderator xi were independently
generated from a standard normal distribution and with-
out loss of generality, β0 was set to 0. Moreover, the ran-
dom effects ui were chosen to be either standard normal-,
(standardized) exponential-, double exponential-, log-nor-
mal-, or t3-distributed. For a detailed definition of the
corresponding data generating processes, we refer to
Section S6 in the Supplementary Material.

For the effect size, we considered the standardized
mean difference in the ith study. We generated the true
parameter θi directly, analogously to Viechtbauer et al,17

according to Equation (10). An unbiased estimator of θi is
given by Hedges' g34

gi = 1−
3

4 nTi +nCið Þ−9

	 

di, ð11Þ

where nTi and nCi denote the size of treatment and control
group, respectively, which are specified below. Moreover,
di denote the effect size estimates (Cohen's d) from study
i which were generated via

di =ϕi=
ffiffiffiffiffiffiffiffiffiffiffi
Xi=ni

p
,

where ϕi
~N θi,1=nTi +1=nCi
� �

, Xi
~χ2ni with ni =nT

i +nC
i −2

and then applying expression (11).
For the between-study heterogeneity τ2, we chose the

values {0.1, 0.2, …, 0.9} and for β1 we considered the

choices {0, 0.2, 0.5}, where 0 corresponds to no effect of
the moderator variable. The number K of independent
studies was chosen from {5, 10, 20, 50}. Finally, a good
approximation of the sampling variance of yi is given by35

vi =1=nT
i +1=nCi +

g2i
2 nT

i +nC
ið Þ : ð12Þ

In order to see if and in what way the results
depended on the chosen effect size measure, we also
investigated log-odds ratios for binary data. Simulating
data in a manner analogous to the one described in foun-
dational work,8,12 (results not shown) it turned out that
the change of effect size did not alter the general conclu-
sion. Therefore, we focus on the standardized mean dif-
ference alone.

Regarding study size, we considered balanced experi-
mental and control groups, that is, nTi =nCi . We then con-
sidered the case of equal study sizes (nTi � η for some η)
and unbalanced study sizes. In the former case, we simu-
lated the values η ∈{5, 10, 20, 40, 80} and in the latter we
chose the study size vectors (6, 8, 9, 10, 42), (16, 18,
19, 20, 52), and (41, 43, 44, 45, 77) in accordance with
previous work.17 For K>5, these study size vectors were
simply repeated accordingly, for example, for K = 10 a
study size vector might be (6, 8, 9, 10, 42, 6, 8, 9, 10, 42).

In total, we simulated 30, 240 = 9(τ2) × 3(β1) × 4
(K) × 8(ni) × 5(ui) × 7 (6 HC and Knapp-Hartung) differ-
ent configurations with N = 1000 simulation runs,
respectively. The simulation study was conducted in R,
using the metafor package.36 All tests were performed
with a nominal significance level of α = 0.05.

In practice, the study-specific moderators are often-
times binary, as can be seen in our data example. For this
reason, we have also (exemplarily) considered binary
moderators in the case of balanced study sizes, consider-
ing normal and exponential random effects. So, instead
of generating the x1i from a N 0,1ð Þ distribution, we gen-
erated them from a Bernoulli distribution with parameter
P = .2. It is necessary to exclude the case where all mod-
erators are equal to 1 or 0. Furthermore, it is sufficient to
consider only power for the binary moderators, as the
type 1 error will be the same as in the case of standard
normally generated moderators because for β1 = 0 the
choice of x1i does not matter.

5 | RESULTS

In this section, we describe the results of the simulation
study. In particular, we present type 1 error and power
based on the different covariance estimators under
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various simulation configurations. For power, we consid-
ered both the case of a (comparatively) smaller effect size
β1 = 0.2 and a (comparatively) larger effect β1 = 0.5 of
the study-specific moderator. For ease of presentation, we
focus on the most important results and general trends
and refer the interested reader to the Supplementary
Material for the complete simulation results.

5.1 | Type 1 error rate

Studying the type 1 error results for all configurations
given in the Supplementary Material, we can draw the
first general conclusion that changes in the between-
study heterogeneity τ2, the number of subjects in each
study and the underlying distributions of the random
effects had little effect on the behavior of the procedures
under the null hypothesis. In comparison, the number of
studies K and the chosen test procedure were the driving
forces for changes in type 1 error control. We therefore
start by presenting a summary of the results of type
1 error simulations for different combinations of these
two forces in boxplots given in Figure 1. The results
shown in Figure 1 are for the scenario of unequal study
sizes. We present results for HC1-HC5 and the Knapp-
Hartung method, referring HC0 to the Supplementary
Material, due to its known liberal behavior.

Here, each boxplot represents the 9(τ2) × 3(ni) × 5
(ui) = 135 different empirical type 1 error rates for each
test in case of K ∈{5, 10, 20, 50} studies. The White-type
test based on the classical HC0-estimator exhibits highly
inflated type 1 error rates, as expected; particularly for a
smaller number of studies. The type 1 error rates are even
more inflated than for HC1. For details we refer to the
Supplementary Material. A similar, but less pronounced
behavior can be observed for the tests based upon HC1

and HC2. On the contrary, all other procedures control the
nominal level α = 0.05 quite well. HC3-HC5 are slightly
conservative for K = 5 studies. HC3 has a type 1 error
around 3% and HC4 and HC5 around 4% for K = 5. For
these three estimators, the type 1 error converges to the
nominal level α for increasing number of studies K. The
Knapp-Hartung method holds the nominal level exactly
for K = 5 studies but seems to become (only slightly) con-
servative for increasing number of studies K. It is interest-
ing to note that there was no significant correlation
between type 1 error and different study sizes n (for a fixed
number of studies K), see the Supplement for details.
Finally, the Knapp and Hartung method controlled the
nominal level α very well for a smaller number of studies
K ∈{5, 10}, which is in line with previous research.17 On
the contrary, the other HC estimators were either liberal
or slightly conservative in the scenario of K = 5 studies.

For a better comparison of the procedures with the
overall best type 1 error control (HC3-HC5 and HCKH),
we present the boxplots of their simulated type 1 error
rates together in one figure (see Figure 2). The results
shown are from the simulation configuration of unbal-
anced study sizes and the standardized mean difference
as effect measure.

Figure 2 summarizes the observed type 1 error rates.
These are fairly close to the nominal level α = 5%, albeit
being slightly conservative at the median with median
type 1 error rates between 4% and 5%. The exception is
the HC3 estimator in the case of five studies, which is
much more conservative with a median type 1 error rate
just below 3% and the entire boxplot has whiskers lying
below the nominal level α. For HC3-HC5, the type 1 error
rates increase monotonically toward the nominal level
for an increasing number of studies K, and for the
Knapp-Hartung method the type 1 error rates start close
to nominal for the case of K = 5 studies and decrease
(slowly) away from the nominal level for increasing num-
bers of studies K.

Based on these results, we conclude that for ≤10 stud-
ies the Knapp-Hartung method is to be recommended
(in terms of type 1 error control) and for the case of ≥20
studies, especially when the number of studies is very
large, for example, 50 studies as in Figure 2, HC3 is the
preferred estimator with regards to type 1 error control.
For the case of 10 < K < 20 studies, further simulations
need to be done in order to give a clear recommendation
for the choice of covariance estimator. For more compre-
hensive recommendations, we compare the procedures'
power behavior in the next section.

5.2 | Power

In addition to the type 1 error rate, we investigated the
power of the respective tests to reject the null hypothesis
of no effect of the moderator variable, when it is in fact
false. To this end, we consider alternatives with (compar-
atively) small and (comparatively) larger effects by setting
β1 = 0.2 and β1 = 0.5, respectively.

For all methods, the observed general trend was that
power increased monotonically for decreasing amounts
of heterogeneity τ2, increasing number of studies K as
well as increasing study size n. In the following, we again
concentrate on power for the procedures based on HC3-
HC5 and Knapp-Hartung, as these were the only tests
with a satisfactory type 1 error control. The detailed
power simulation results, for each separate simulation
scenario, for these, and all other methods are given in
Section S6.2 of the Supplement. As the results for hetero-
geneous and homogeneous study sizes were very similar,
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we restrict ourselves to the former case and again refer to
the Supplement (Section S6.2) for the complete results.

Figure 3 summarizes the power results for the tests
based on HC3-HC5 and HCKH for a (comparatively) small
effect size of β1 = 0.2, in the scenario of unbalanced study

sizes. Median power ranges from around 5% to 8% for
K = 5 to around 45% to 47% for K = 50. For larger
amounts of studies, the power of all shown tests is close
together. However, HC3 does seem to have slightly more
median power than the other estimators for K = 50. In

FIGURE 1 Type 1 error of tests

based on the White-type estimators

HC1-HC5 and the Knapp-Hartung

correction HCKH for varying number

of studies K ∈{5, 10, 20, 50} and τ2

∈{0.1, 0.2, …, 0.9}—with unbalanced

study sizes and standardized mean

difference (SMD) as effect measure.

Each boxplot represents 135 type

1 error rates. For detailed individual

simulation results, please refer to the

Supplement [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 2 Type 1 error based on HC3-HC5

and HCKH for K ∈{5, 10, 20, 50}, τ2 ∈{0.1, 0.2, …,
0.9}—with unbalanced study sizes and

standardized mean difference (SMD) as effect

measure [Colour figure can be viewed at

wileyonlinelibrary.com]
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the scenario of K = 5 studies, the Knapp-Hartung method
yields much greater power than HC3 and slightly more
power than HC4 and HC5. For K = 10 and K = 20 studies,
HCKH has slightly more median power than HC3-HC5, as
well as having a longer “upper whisker” in the latter
case, in comparison to the other methods.

The results for a (comparatively) larger effect of
β1 = 0.5 can be found in the Supplementary Materials.
We again concentrate on the estimators HC3-HC5 and
HCKH. In the Supplement, we also give the power results
for the scenario of balanced study sizes. For β1 = 0.5, the
difference between methods is more pronounced; espe-
cially for a smaller number of studies K ∈{5, 10}. In fact,
HCKH has considerably more power than HC3-HC5 for
K ∈{5, 10}. At the median this difference amounts to 7%-
8% more power than HC3 and around 4% more than HC4

and HC5 for K = 5 and around 7%-8% more power than
HC3-HC5 for K = 5. For larger study sizes, this effect
diminishes and the results are quite close together.
Results were very similar for balanced study sizes.

5.3 | Bias and variance estimation

In addition to type 1 error and power, we also study the
bias E β̂1

� �
−β1 and the variance var(β̂1 ) = Σ11 of the

effect estimator of β̂1 in the Supplement. Clearly β̂1 is

identical across all variations of variance estimator.
Because these values cannot be expressed analytically, we
resorted to simulations, which we performed in the sce-
nario of normally distributed random effects and bal-
anced study sizes with moderator variables drawn from a
normal distribution. Our findings can be summarized as
follows: The estimator β̂1 is approximately unbiased for
β1 = 0 and becomes increasingly negatively biased for
larger effect sizes β1. Moreover, the variance seems to
increase with each new version of the HC estimator, that
is, from HC0 to HC5. The Knapp-Hartung method, how-
ever, has a smaller variance than the newer iterations of
the HC estimators HC3-HC5. The details can be found in
the Supplement.

5.4 | Binary moderators

Finally, since moderators can also be binary in practice,
we extended the simulations to consider this scenario.
The results of the power simulations with binary modera-
tors indicate that use of binary covariates instead of con-
tinuous ones reduces power considerably. Furthermore,
power did increase for larger numbers of studies K but
much more slowly than in the case of continuous moder-
ators. When comparing the power results of the different
covariances estimators, it became apparent that the HC

FIGURE 3 Power of tests based on HC3-

HC5 and HCKH for K ∈{5, 10, 20, 50}, τ2 ∈{0.1,
0.2, …, 0.9}, and β1 = 0.2—with unbalanced

study sizes and standardized mean difference

(SMD) as effect measure [Colour figure can be

viewed at wileyonlinelibrary.com]
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estimators displayed vastly superior power over the
Knapp-Hartung method when the number of studies was
small (K ≤ 10). This is interesting, as with continuous
moderators Knapp-Hartung often had more power. For
large numbers of studies (K = 50), Knapp-Hartung had
slightly more power than the HC estimators. It therefore
seems prudent to use one of the newer HC estimators
(HC3-HC5) instead of the Knapp-Hartung method when
dealing with binary moderators and a small number of
studies K. However, if dealing with binary moderators
and a large number of studies (K > 20), it is probably best
to stick with the Knapp-Hartung method. Detailed results
can be found in the Supplementary Material.

6 | DISCUSSION AND FURTHER
RESEARCH

Mixed-effects meta-regression models offer a good possi-
bility to describe and model moderator (covariate) effects
from various studies in a meta-analysis. In this context, it
is of interest to determine which moderators significantly
help to explain heterogeneity. This naturally leads to t-
tests for the null hypotheses of no moderator effects.
Here, Viechtbauer et al17 compared several procedures in
extensive simulations and recommended the
(untruncated) Knapp-Hartung method3 as the procedure
of choice. We complement their investigations by addi-
tionally considering all six robust covariance estimators
of Huber-White (HC) type suggested in the literature,
while also extending their simulation scenarios. In fact,
following recent discussions on hidden normality assump-
tions in meta-analyses,13 we also study situations with
non-normal random effects. Although we focus on
hypothesis tests for moderator effects, confidence inter-
vals for the unknown regression coefficients based on t-
quantiles can easily be constructed via test inversion.37

The coverage probabilities of these confidence intervals
would be given by 1 minus the respective type 1 error.

For a total of 30 240 different simulation configura-
tions we compared the t-tests based on the six different
HC-type estimators (HC0-HC5) and the (untruncated)
Knapp-Hartung method3 with respect to their type 1 error
control and power. As observed in other regression
contexts,9,17,25,27,28 the tests based on the classical Huber-
White estimators HC0, HC1 as well as HC2 generally had
a highly inflated type 1 error, except for the simulation
scenario of K = 50 studies. Of the other existing modifica-
tions HC3-HC5, all managed a satisfactory control of the
nominal level α. HC4 and HC5 controlled the nominal
level more exactly, whereas the HC3 estimator was con-
servative in the case of very few studies (K = 5), with an
observed type 1 error of around 3%. The (untruncated)

Knapp-Hartung method also controlled the nominal level
α well, albeit being more exact for smaller numbers of
studies and slightly conservative for a larger number of
studies K.

Regarding the behavior under different alternatives,
all tests' power tended to increase monotonically with
increasing study numbers K, increasing average study
size and decreasing amounts of heterogeneity τ2—a mar-
ked difference when comparing to type 1 error behavior,
where τ2 and study size had little influence.

Somewhat surprisingly the choice of distribution of
the random effects in the simulation study had hardly
any effect on the type 1 error and power of t-tests based
on the considered covariance estimators. This leads us to
conclude that the typical normality assumption ui � N
(0, τ2) for the mixed-model random effects is
unproblematic, at least in the scenarios we considered in
our simulation study.

Comparing HC3-HC5 and the Knapp-Hartung-
method, we observed a higher power of the latter; espe-
cially in case of larger moderator effects or few studies.
Only in case of small moderator effects and a larger num-
ber of studies (K = 50) a slight power advantage of the
HC3-method was observed. Nevertheless, our findings
lead to similar conclusions as drawn in previous
research17 that in most cases the (untruncated) Knapp-
Hartung method seems to be the procedure of choice.

In addition to meta-regression, we have considered
the special case of no moderators (random-effects meta-
analysis) and worked out the formulas for the individual
HC-type variance estimators of the main effect θ̂ in this
case. These results are presented in Proposition 1 of the
technical Appendix in the Supplementary Material, along
with a proof. Additionally, the individual formulas of the
six HC estimators Σ̂0,…, Σ̂5 of the form
Σ̂ℓ =

PK
j=1vj,ℓ�ε̂2j , ℓ=0,…,5 for specific weights vj,ℓ are

presented in Equations (S2)-(S7) of the Supplement along
with a numerical example. Σ̂0 and Σ̂1 only differ by a
constant, whereas Σ̂2-Σ̂5 differ through the exponent of a
weighting factor included in vj,ℓ. Please refer to the tech-
nical Appendix of the Supplementary Material for their
explicit form.

In applications, one of the most problematic cases is
when only a small number of studies are available. Our
data example in Section 3 shows how large the influence
of the choice of HC estimator can be in such a scenario.
One possible reason may be that all considered estima-
tors make direct use of the residuals. In case of few stud-
ies, this may not be too reliable, leading to less stable
estimation of the between-study heterogeneity τ2 and
more variable SE. Here, alternative approaches exist,
such as higher order likelihood based methods, which
aim to improve on inference based on first order
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likelihoods. In this context, some authors have, for exam-
ple, recommended inference based on Skovgaard's
second-order statistic.38,39 Moreover, we additionally con-
jecture that for such a case of few studies the underlying
error distribution plays an important role as well.13 We
leave an exhaustive evaluation of these “residual con-
cerns” to future research.

We conclude this paper with an outlook on ongoing
and future research. In most clinical trials, two or more
endpoints of interest are measured. Therefore, the cur-
rent investigations will be extended to the case of multi-
variate mixed-effects meta-regression models. As the
assumption of normality is usually more problematic
than in the univariate case,40-43 an adequate treatment
may require the extension and/or improvement of exis-
ting methods. In this context, the additional study of
modern imputation techniques44,45 will be mandatory.
Moreover, different to the present setting one might
explore the methodology under the presence of individ-
ual patient data, allowing the application of a multitude
of different permutation or resampling procedures.25,46,47
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RECOMMENDATIONS
Based on the results of our simulation study, we give the
following recommendations:

In general, we recommend the use of the Knapp-
Hartung method. However, there are a few special cases,
in which an HC-estimator may be superior. In particular,
in the scenario of many studies (K ≥ 50) and an effect
size that is suspected to be “not too large”, that is,
β1 ≤ 0.2, the HC3 estimator seems to yield slightly more
power than the Knapp-Hartung method, with both con-
trolling the nominal type 1 error level α well. Further-
more, when dealing with binary moderators and a small
number of studies (K ≤ 10), it seems that the modern HC
estimators HC3-HC5 have more power than the Knapp-
Hartung method, while controlling type 1 error and
should therefore be preferred in this scenario.

If a researcher does decide to use one of the HC esti-
mators HC0-HC5 then the estimators HC0-HC2 should
not be used, mainly due to their inflated type 1 error
behavior. The other three HC-estimators control the
nominal type 1 error α well. When deciding between the

HC-estimators HC3-HC5, the choice can be made based
on the number of studies available. For K ≤ 10 studies
(especially for K = 5), HC4 and HC5 have more power
than HC3. However, for K ≥ 20 studies, HC3 yields
slightly more power than the other two.
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