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Abstract

In this thesis we investigate a new strategy for addressing stochastic optimiza-

tion problems. Stochastic optimization deals with problems that are affected

by uncertainty. For e.g. a Vehicle Routing Problem, in which customers have

to be served by trucks, the travel times are influenced by the current traffic

situation. It is assumed that the distribution of the parameters affected by

the uncertainty is known and the goal is to optimize the expected value of

a given function. We introduce the new Min-E-Min approach, in which not

only one solution is computed, but K different solutions. Our approach is

based on the assumption that in many real-world optimization problems, the

realization of the uncertain parameters can be observed before the solution is

applied and therefore the best solution among the K precomputed solutions

can be chosen. On the other hand, obtaining a solution in real time is often

not possible due to a lack of time and therefore precomputation of solutions

is essential. The classical stochastic optimization problem is the special case

of the Min-E-Min Problem where K is equal to one, and hence the solution

value of the Min-E-Min Problem is at least as good as the one of the classical

stochastic optimization problem. The Min-E-Min methodology can be applied

to every optimization problem e.g. the Vehicle Routing Problem or the Knap-

sack Problem. We call the certain sub problem inside the Min-E-Min Problem

the underlying problem.

We investigate the complexity of the Min-E-Min Problem for discrete distribu-

tions by analyzing NP-hardness, parameterized complexity, and approximation

properties in detail. We show that if K is part of the input, the problem is NP-

hard and W[2]-hard parameterized by K, even if the set of feasible solutions

of the underlying problem is polynomial in the input size. For fixed K, we

show NP-hardness if K is at least two. Additionally, we show that there is no

polynomial time constant factor approximation algorithm for the Min-E-Min

Problem, unless P=NP. On the other hand, we prove that an approximation

guarantee of an algorithm used for solving the underlying problem can be

preserved if the problem is solved by an oracle based algorithm. We further

demonstrate that for the Min-E-Min Problem with a continuous distribution

even the evaluation of the objective function is #P-hard. Nevertheless, we
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show that these problems can be solved approximately by using a sufficiently

large set of samples following the same distribution.

In addition to the complexity results, we propose different exact algorithms for

solving the Min-E-Min Problem including a Branch-and-price algorithm. In

an extensive computational study, we conclude that the different algorithms

perform differently according to the underlying problem and to the parameters

of the instances, and that in different settings a different algorithm might be

the best choice. We develop a basic heuristic and different variants of it and

demonstrate that they can solve the Min-E-Min Problem fast and precisely.

At last, we consider some problems that are related to the Min-E-Min Problem

and investigate their complexity.
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Zusammenfassung

In dieser Dissertation untersuchen wir eine neue Strategie, um mit stochas-

tischen Optimierungsproblemen umzugehen. Die stochastische Optimierung

beschäftigt sich mit Problemen mit unsicheren Parametern. Unter der An-

nahme, dass die Verteilung dieser unsicheren Parameter bekannt ist, soll der

Erwartungswert der Zielfunktion optimiert werden. Wir führen den Min-E-

Min-Ansatz ein, bei dem anstatt einer Lösung K Lösungen berechnet werden.

Nachdem die Realisierung der unsicheren Parameter beobachtet worden ist,

wird die für die Realisierung beste Lösung ausgewählt.

Wir untersuchen die Komplexität des Min-E-Min-Problems, indem wir NP-

Schwere, parametrisierte Komplexität und Approximationseigenschaften de-

tailliert analysieren. Wir zeigen, dass das Problem NP-schwer und W[2]-schwer

ist, im Fall, dass K Teil des Inputs ist, selbst wenn die Menge der zulässigen

Lösungen polynomiell von der Eingabegröße abhängt. Für festes K bleibt das

Problem NP-schwer, wenn K größer als zwei ist. Zusätzlich beweisen wir, dass

die Existenz eines polynomiellen Algorithmus mit einer konstanten Approxi-

mationsgüte für das Min-E-Min-Problem impliziert, dass P und NP gleich sind.

Für das Min-E-Min-Problem mit kontinuierlicher Verteilung zeigen wir, dass

allein das Evaluieren der Zielfunktion #P-schwer ist. Nichtsdestotrotz bewei-

sen wir, dass man solche Probleme lösen kann, indem man die kontinuierliche

Verteilung mit einer ausreichend großen Anzahl an Stichproben, welche der-

selben Verteilung folgen, diskretisiert.

Neben den Komplexitätsresultaten stellen wir auch verschiedene exakte Algo-

rithmen, unter anderem einen Branch-and-price-Algorithmus, zur Lösung des

Problems vor. In einer ausführlichen experimentellen Untersuchung können wir

belegen, dass je nach Situation jeder der vorgestellten Algorithmen am sinn-

vollsten sein kann. Darüber hinaus stellen wir verschiedene Varianten einer von

uns entwickelten Heuristik vor und demonstrieren, dass diese das Min-E-Min-

Problem schnell und genau lösen können. Zu guter Letzt betrachten wir auch

verwandte Probleme und untersuchen ihre Komplexität.
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Chapter 1

Introduction

Consider a general combinatorial optimization problem of the form

min ξ⊤x

s.t. x ∈ X(θ) ,
(P)

where X(θ) is a compact subset of Rn and describes the set of feasible solutions

and ξ ∈ Rn defines a linear objective function (when investigating computa-

tional complexity, we will assume ξ ∈ Qn). In the following we will denote

Problem (P) also as the underlying problem. In practice, the vector ξ in Prob-

lem (P) is often unknown or uncertain. As an example, consider the Shortest

Path Problem in a road network. In this case, the time needed to traverse

an edge highly depends on the traffic situation, which is not known exactly in

advance. The uncertainty can also arise in the constraints e.g. in a Maximum

Flow Problem with uncertain lower and upper bounds on the edges. To model

the uncertainty, we define a set of scenarios L. Every scenario i consists of

an objective vector ξi, a vector of parameters θi that influences the feasible

region X(θ) and a probability pi that this scenario materializes. The structure

of the feasible set remains the same in all scenarios, only some parameters

defining the feasible set are affected by the uncertainty. To clarify this, let us

consider a Maximum Flow Problem. In a Maximum Flow Problem the struc-

ture of the feasible set is defined by a graph, a source vertex and a sink vertex

and this structure remains the same in all scenarios. The uncertainty affects

the costs of the arcs via ξ and the capacities of the arcs via θ. Note that also

uncertainty affecting the structure of the network e.g. a failure of an edge in

a Shortest Path Problem can be modeled with this approach by introducing
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a sufficiently high cost ξi in the dimension corresponding to an arc failing in

scenario i. In this study we are interested in minimizing the expected value of

the objective function over all instances. This leads to the following objective

function:

Eξ,θ( min
x∈X(θ)

ξ⊤x), (Em)

where the objective vectors ξ and the vector of parameters θ are considered as

random variables.

Suppose that there is an oracle for Problem (P) that gets the set of scenarios

and the structure of the problem X(θ) as an input and returns the optimal

solution for Problem (P). This oracle can be e.g. an algorithm that solves a

Maximum Flow Problem and gets as input the costs of the arcs, the capacities

of the arcs, the graph, the source node and the sink node. In the case of a

discrete set of scenarios L, which are explicitly given as a list, the value (Em)

can be computed in oracle-polynomial time because all of the scenarios induce

optimization problems that can be solved separately in oracle-polynomial time

and afterwards the expected value can be computed in linear time. If the set

of scenarios L is not discrete, the evaluation of Problem (Em) in general be-

comes #P-hard for K ≥ 2, as we will show in Section 3.3, and therefore no

oracle-polynomial algorithms for computing the objective value can be found,

unless P=NP.

The aim of this thesis is to extend Problem (Em) by integrating the K-

adaptability approach: instead of one single solution, it is allowed to compute

a set of up to K feasible solutions XK such that the best one of them, deter-

mined separately in each scenario, is optimal in expectation. It is not necessary

that every solution in XK is feasible in every scenario. We only require that a

solution that is chosen for a scenario is feasible in this scenario. The resulting

problem is the min-E-min Problem:

min Eξ,θ( min
x∈X(θ)∩XK

ξ⊤x)

s.t. |XK | ≤ K

XK ⊂ Rn .

(mEm)

If there is a scenario with no feasible solution among the K selected solutions,

we assume that the minimum corresponding to this scenario takes the value∞.



3

The evaluation of the objective function for a given solution for this problem

is already #P-hard (see again Section 3.3) and therefore we focus here on the

version of the problem where L is a discrete set with l := |L| and is given

explicitly as the input of the problem together with the probabilities pi > 0,

the objective vectors ξi and the parameters θi. Moreover, the feasible set is

given by explicit constraints, where the coefficients depend on θi. Because

the probabilities pi are greater than zero and because X(θ) is bounded, a

scenario without feasible solution lets the objective value of the whole problem

become ∞. To simplify the notation, we denote X(θi) by Xi and integrate the

probabilities pi into the objective vectors ξi. Finally, we define the Discrete

min-E-min Problem as:

min
l∑

i=1

min
x∈Xi∩XK

ξ⊤i x

s.t. |XK | ≤ K

XK ⊂ Rn .

(dmEm)

Applications of our approach arise whenever the scenario materializes be-

fore a decision has to be taken, but by lack of time or flexibility we cannot solve

Problem (P) for this scenario from scratch. In a practical context, decisions

often have to be implemented by human users, e.g., truck drivers, in this case

it is preferable to provide solutions from a small pool of candidate solutions

instead of producing an entirely new solution for every scenario [6, 35]. The

latter may confuse the human user and, in the worst case, he/she will not

accept the solution. Another application for our problem is disaster manage-

ment, where the user has to prepare escape plans for an evacuation that have

to be trained by the staff [20]. It is clear that only training a small number of

such plans is realistic. In other cases, the alternative solutions may have to be

prepared physically, e.g., by establishing links in a network, so that a small set

of candidate solutions is again preferable. Last but not least, the underlying

Problem (P) may just be too hard computationally to be solved from scratch

in real-time after the scenario is known.
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Optimization problems that involve uncertainty have been widely studied

in the literature. The two most used approaches for dealing with uncertainty

are Robust Optimization [1] and Stochastic Optimization [4]. In Robust Op-

timization the goal is to find a solution that is always feasible and optimal in

the worst-case. This approach leads to very conservative solutions [3]. This

phenomenon is often called the "Price of Robustness". The aim of Stochastic

Optimization is to optimize the expected value. Some variants of Stochastic

Optimization deal with chance constraints [9], which means that the solution

does not have to be feasible in all of the scenarios but in a fixed percentage

of them. Another difference between the two approaches is that Stochastic

Optimization requires knowledge about the probabilities in form of a proba-

bility distribution, whereas for Robust Optimization it is in general sufficient

to know the relevant scenarios without understanding the probabilities. The

advantage of Stochastic Optimization is clearly that in average the solution

value is better and therefore it is a more natural approach if a solution has to

be used several times. On the other hand, if it is required that the solution

value does not exceed a certain threshold, Robust Optimization is the right

approach. A good example for that is the problem of deciding when to start

to go to the airport before taking a flight. For most of the passengers it is

more important to be able to catch the flight in all possible scenarios than

spending in average less time waiting because of a too early arrival. Therefore

optimizing the worst case instead of the average case is the suitable choice for

that problem. On the other hand stochastic optimization is favorable if the

same optimization problem has to be solved many times. Consider a company

that delivers to the same customers every day. The travel time of the delivery

vehicles, which influences the costs of the company, has to be minimized, but

in practice it is affected by uncertainty. In this application, it is more impor-

tant for the company to have low accumulated costs over all days instead of

minimizing the maximum cost on one day.

The K-adaptability approach mentioned above was first presented by

Bertsimas and Caramanis [2] for Robust Optimization. The difference to Prob-
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lem (dmEm) is that instead of optimizing the expected value the worst case is

used. This approach is sometimes called min-max-min robustness, it has been

further investigated by Hanasusanto et al., who used the K-adaptability ap-

proach for approximating two-stage robust binary problems [20] and two-stage

distributionally robust programs with binary recourse decisions [21]. Buch-

heim and Kurtz introduced K-adaptability to robust problems without first

stage, investigated the complexity for convex uncertainty sets and proposed an

exact oracle-based algorithm for solving their problem [7]. They also presented

complexity results for the discrete min-max-min problem for several underly-

ing, combinatorial problems [6]. Subramanyam et al. [35] proposed a Branch-

and-bound algorithm for solving K-adaptability problems in two-stage mixed-

integer robust optimization. Chassein et al. [10] investigated the min-max-min

problem for budgeted uncertainty sets. Even though Problem (dmEm) and

the min-max-min Problem seem to be very similar, there are major differences

in the complexity and especially in the methods. Nevertheless, some of our

complexity results can be transferred to the min-max-min Problem to prove

results that have not been present in the literature. The connection of Prob-

lem (dmEm) to the min-max-min Problem is discussed in Chapter 3.2.4.

Problem (dmEm) was studied in my own original research papers Buch-

heim and Prünte [8] and Malaguti, Monaci and Prünte [29] and the results of

this thesis have partially been published in these papers. In Buchheim and

Prünte [8] we focused on the variant, in which the uncertainty only occurs in

the objective function (Xi = X for all i ∈ L). For this setting we investigated

the complexity in terms of NP-hardness, approximability and parameterized

complexity with mostly negative results. Only in the special case, where l−K

is fixed, we presented an oracle-polynomial algorithm. Besides that, we ex-

amined different exact algorithms and a heuristic and compared them in a

computational evaluation. These algorithms can be found in Section 4.1 to 4.3

and in Chapter 5. In Malaguti, Monaci et Prünte [29] we focused on the variant

presented here as Problem (dmEm) and answered open complexity questions.

Additionally we described new algorithms for solving Problem (dmEm). We
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developed a Branch-and-price technique that outperforms the other algorithms

for Problem (dmEm) in most of the settings (see Section 4.5) and improved

the heuristic with unsupervised machine learning techniques (see Section 5.2)

and refinement strategies (see Section 5.4). Apart from that, to the best of

our knowledge, there are no other studies that investigate Problem (dmEm).

The main contribution of this thesis is the definition of a new problem,

Problem (mEm), and its extensive investigation. We show that the problem

is NP-hard and W[2]-hard and that there is no constant factor approximation

algorithm for it. Additionally, we prove that even the evaluation of a fixed solu-

tion is #P-hard if the uncertainty follows a continuous distribution. Linked to

that we demonstrate that by replacing a continuous distribution by a discrete

set of samples that follow the same distribution (and under some further weak

assumptions) we can create a discrete version of (mEm) with a solution that

approximates the solution of the original problem if the number of samples

is sufficiently large. Another positive complexity result that we show is that

an approximation guarantee of an algorithm that is used for the underlying

problem can be preserved for the (mEm) Problem. Our tests suggest that in

the average case the approximation factor is even better for Problem (mEm)

than for the underlying problem. Another important contribution of this thesis

is the investigation of different exact and heuristic methods for solving Prob-

lem (mEm) and a detailed computational study, in which the effectiveness of

each algorithm in various different settings is tested. Besides that we introduce

two new problems that are strongly related to Problem (mEm), namely the

Min-E-Min Completion Problem and the Stochastic Two-Stage Infrastructure

Problem, and examine their complexity. We also transfer some of our com-

plexity results to the min-max-min Problem, resulting in new insights about

this problem that have not been gained in the literature before.

In the next chapter, we will explain different concepts that are used in

this study and are beneficial for the understanding of the following chapters.

Among other topics we introduce fpt algorithms, the W -hierarchy, and #P-
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hardness. Chapter 3 is about the complexity of the min-E-min Problem and

is divided into two parts. Section 3.2 is the main part of this chapter and

we focus on Problem (dmEm) and explore the NP-hardness, the hardness of

approximability and the parameterized complexity of the problem. Section 3.3

serves to understand why we do not consider further the continuous version

of the min-E-min Problem by showing that even evaluating a fixed solution

is #P-hard and that approximating the distribution with a discrete set of

scenarios is a reasonable approach. Exact algorithms are presented in Chap-

ter 4 and heuristics in Chapter 5. An extensive computational study of all of

the presented algorithms can be found in Chapter 6, in which we investigate

which algorithms have the best performance for which underlying problems

and in which settings. We present and discuss other variants of the min-E-min

Problem and connections to other problems from the literature in Section 7.

Chapter 8 concludes.
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Chapter 2

Preliminaries

2.1 Notation

In the following, we denote the set of base vectors of Qn by {ed|1 ≤ d ≤ n},

where ed is a vector consisting of a one in dimension d and zeros in all other

dimensions. We denote the n-dimensional vector consisting of n zeros by 0n
and consisting of n ones by 1n.

2.2 Complexity Concepts

This section serves as a recapitulation of well-known complexity concepts and

an introduction for lesser-known ones. We start with the classical NP-hardness.

Afterwards, we we review the terms about approximation that are relevant for

this thesis. We also discuss parameterized complexity, in which the impact of

a selected parameter on the running time is determined. We finish this chapter

by discussing the complexity of counting problems.

2.2.1 NP-Hardness

In this section, we shortly present the basic information about NP-hardness.

Therefore, we start by defining a decision problem.

Definition 2.1. A decision problem P = (X, Y ) consists of a set X and a

subset Y ⊆ X . We call X the set of instances and Y the set of yes-instances.

9
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For a given instance x ∈ X , the decision problem is to determine, whether it

is a yes-instance (i.e. x ∈ Y ) or a no-instance (i.e. x ∈ X \ Y ).

An important example of a decision problem is the Boolean Satisfiability

Problem.

Definition 2.2. A boolean variable is a variable that can take only the values

zero (false) and one (true). A boolean formula f : {0, 1}n → {0, 1} consists

of n boolean variables that are linked with the following operations:

• ∧ (and-operator) : an operator that returns the minimum value of two

boolean variables

• ∨ (or-operator) : an operator that returns the maximum value of two

boolean variables

• ¬ (negation-operator) : an operator that returns one for false variables

and zero for true variables.

A literal is a variable or a negated variable. A conjunction is a set of literals

that are connected with the and-operator. Similarly, a disjunction is a set of

literals connected with the or-operator. A formula is in conjunctive normal

form if it consists of a conjunction of disjunctions and in disjunctive normal

form if it consists of a disjunction of conjunctions. A formula is satisfied for

an assignment of variables, if the result of the formula is one. The Boolean

Satisfiability Problem (SAT) is to decide for a given boolean formula f if there

exists an assignment of the variables such that f is satisfied. In the following

we will assume that the given formula is in conjunctive normal form.

Decision problems can be categorized into complexity classes based on their

tractability properties. An important question for every specific decision prob-

lem is whether it can be decided in polynomial time.

Definition 2.3. The class P consists of all problems P = (X, Y ) for which we

can decide for every instance x ∈ X in polynomial time if it is a yes-instance

or a no-instance.

Another desirable quality that a decision problem can possess is if every

proof that an instance of this problem is a yes-instance can be verified in

polynomial time.



11

Definition 2.4. Let P = (X, Y ) be a decision problem and x ∈ X be an

instance of it. A certificate for x is a proof that x ∈ Y holds.

For an instance of SAT, which is a boolean formula f , a certificate c is an

assignment of the variables of f such that the formula is satisfied.

Definition 2.5. The class NP consists of all problems P = (X, Y ) for which

we can verify every certificate for every instance x ∈ X in polynomial time.

Since all problems in P can be decided in polynomial time, no certificate is

needed. Therefore, we have

P ⊆ NP.

The question whether there exists a problem in NP that is not in P, is one of

the most important unsolved problems in the field of mathematics.

Definition 2.6. Let P1 = (X1, Y1) and P2 = (X2, Y2) be two decision prob-

lems. An algorithm for deciding every instance x1 ∈ X1 by applying an oracle

that can decide every instance x2 ∈ X2 is called a Turing reduction.

A Turing reduction that can be executed in polynomial time assuming that

every single use of the oracle is possible in constant time is called a Cook

reduction. If there is a Cook reduction from a decision problem P1 = (X1, Y1)

to a decision problem P2 = (X2, Y2) we write

P1 ≤
P
T P2.

A special case of the Turing reductions that is used more frequently is the

many-one reduction.

Definition 2.7. Let P1 = (X1, Y1) and P2 = (X2, Y2) be two decision prob-

lems. The function f : X1 → X2 is called a many-one reduction if the following

condition holds:

x ∈ Y1 ⇐⇒ f(x) ∈ Y2 ∀ x ∈ X1.

A many-one reduction that can be executed in polynomial time is called

a Karp reduction. If there exists a Karp reduction from a decision prob-

lem P1 = (X1, Y1) to a decision problem P2 = (X2, Y2) we write

P1 ≤K P2.
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Definition 2.8. A decision problem P1 = (X1, Y1) is called NP-hard if for

every problem P2 = (X2, Y2) ∈ NP we have

P2 ≤
P
T P1.

If for two decision problems P1 = (X1, Y1) and P2 = (X2, Y2)

P2 ≤
P
T P1

holds, we can draw the following conclusions:

1. If P1 can be decided in polynomial time, we can decide P2 in polynomial

time.

2. If P2 is NP-hard, also P1 is NP-hard.

A decision problem that is in NP and NP-hard is called NP-complete.

In 1971, Cook [12] found a polynomial time reduction from the computation of

a general non-deterministic Turing machine to SAT, which implies that SAT

is NP-hard. Building on that, many other decision problems were proven to

be NP-hard by reduction from SAT or another NP-hard problem.

2.2.2 Approximation

The topic of this section is approximation. Before we introduce this term, we

have to define an optimization problem.

Definition 2.9. An optimization problem O = (X,F (x), c(x, y), goal) is a

quadruple consisting of the following parts:

1. A set of instances X .

2. A set of feasible solutions F (x) for every instance x ∈ X .

3. A function c : X × F (x) → R.

4. An optimization goal goal ∈ {min,max}.

The optimal solution value of O for an instance x is defined by

OPT (x) = goal{c(x, y) | y ∈ F (x)}.
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Now we can define an optimization algorithm.

Definition 2.10. Let O = (X,F (x), c(x, y), goal) be an optimization problem.

An optimization algorithm A computes for every instance x ∈ X with F (x) 6= ∅

a solution y ∈ F (x) with solution value A(x) := goal{c(x, y)}.

A special class of algorithms are approximation algorithms.

Definition 2.11. Let O = (X,F (x), c(x, y), goal) be an optimization problem.

An α-approximation algorithm A is an algorithmwith polynomial running time

that computes for every instance x and for α ≥ 1 a solution with

A(x) ≤ αOPT (x), if goal = min

A(x) ≥
1

α
OPT (x), if goal = max .

An α-approximation algorithm with α = 1 is called exact algorithm and its

solution is called optimal solution.

A class of problems that will occur in this thesis is APX, the class of prob-

lems with a constant factor approximation algorithm.

Definition 2.12. The complexity class APX consists of all optimization prob-

lems that admit α-approximation algorithms with α ∈ O(1). These algorithms

are called constant factor approximation algorithms.

2.2.3 Parameterized Complexity

In this section we deal mostly with NP-hard problems. The parameterized

complexity theory deals with the question which parameters contribute more

than others to the complexity of problems. The goal is to identify a parame-

ter that is alone responsible for an exponential running time of an algorithm

or prove that for some problems an algorithm whose exponential part of the

running time depends only on one parameter cannot exist under some reason-

able assumptions. If such an algorithm exists, instance, in which the identified

parameter is small can be solved in reasonable time.

Definition 2.13. Let P be a decision or optimization problem and let X be

the set of instances of P. We call a function k : X → R a parameter.
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A parameter can be e.g. the number of vertices in a graph problem or the

number of variables in SAT. These numbers are clearly dependent on the given

instance of the problem.

Definition 2.14. Let P be a decision or optimization problem, let X be the

set of instances of P and k(x) be a parameter. We call the tuple (P, k(x)) a pa-

rameterized problem. If we want to specify the parameter, we refer to (P, k(x))

as P parameterized by k(x).

Now we have everything we need to define the algorithms indicated in the

beginning of the section.

Definition 2.15. A fixed-parameter tractable (fpt) algorithm for a param-

eterized problem (P, k(x)) is an exact algorithm that has a running time

of O(p(|x|)f(k(x))) for every instance x ∈ X of P, where p() is a polyno-

mial, f() is a computable function and |x| is the input length of x.

The set of problems that can be solved with an fpt algorithm form a com-

plexity class.

Definition 2.16. The class FPT consists of all parameterized problems that

admit an fpt algorithm.

The problem SAT restricted to formulas in conjunctive normal form param-

eterized by the number of variables p is in FPT since it can be solved by a

brute-force algorithm with running time in O(2pm), where m is the number of

disjunctions.

Definition 2.17. Let (P1 = (X1, Y1), k1(x)) and (P2 = (X2, Y2), k2(x)) be

two parameterized decision problems. A function R : X1 → X2 is called fpt

many-one reduction if the following conditions are fulfilled for every instance

x ∈ X1:

1. x ∈ Y1 ⇐⇒ R(x) ∈ Y2.

2. R(x) is computable in O(p(|x|)f(k1(x)), where p() is a polynomial, f()

is a computable function and |x| is the input length of x.

3. k2(R(x)) ≤ g(k(x)), where g() is a computable function.
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In the following we refer to fpt many-one reductions by fpt reductions or

parameterized reductions.

Definition 2.18. A boolean circuit is an acyclic, directed graph, in which:

• one node with out-degree 0 is labeled as output node.

• every other node with in-degree 0 is labeled an input node or a boolean

constant.

• every other node with in-degree 1 is labeled as a negation node.

• every other node is labeled as and node or as or node.

A boolean circuit can be interpreted as a boolean formula, where the input

nodes are the variables and the output node takes value one if the formula is

true and zero otherwise.

Definition 2.19. We call a boolean circuit C k-satisfiable if there exists a truth

assignment that sets exactly k variables to one. The parameterized problem

Weighted Circuit Satisfiability (WCS) is to decide for a given circuit, whether

it is k-satisfiable, where k is the parameter under consideration.

Definition 2.20. Let C be a class of circuits. WCS restricted to circuits in C

is called WCS[C].

We want to define some features of boolean circuits that help us to define

different classes among them.

Definition 2.21. The depth of a circuit is the maximum length of a path from

an input node to the output node. A small node is a node with in-degree lower

or equal to two and a large node is a node with in-degree greater than two.

The weft of a circuit is the maximum number of large nodes on a path from

an input node to the output node. The class of circuits with weft at most t

and depth at most d is called Ct,d. A parameterized problem (P, k(x)) belongs

to W[t] if there is a parameterized reduction from (P, k(x)) to WCS[Ct,d] for

some fixed d ≥ 1.

Note that every large node can be replaced by a set of small nodes. This

operation possibly enlarges the depth of the circuit. If d is fixed, only large
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nodes with a constant in-degree can become small nodes. Therefore, only

nodes with an in-degree that depends on the input size are always large nodes

and hence the definition of large nodes is equivalent if the two in the definition

is replaced by any other constant that is larger than one.

Definition 2.22. The complexity class W[P] consists of all parameterized

problems (P, k(x)) that can be solved by an algorithm that is allowed to

guess k(x) elements of the solution nondeterministically and afterwards de-

terministically verify that the solution is feasible.

Corollary 2.23. The following statements are true:

• Every problem in P , the class of problems that can be solved in polynomial

time, parameterized by an arbitrary parameter, is in FPT .

• FPT = W [0] ⊆ W [1] ⊆ . . .W [t] ⊆ W [t+ 1] ⊆ . . .W [P ].

• Every parameterized problem in W [P ] without the parameter is in NP .

Since every polynomial time algorithm is also an fpt algorithm, the first

statement follows. The proof of FPT = W[0] can be found in [16]. From the

definition of the class W[t] it follows that W[t+1] contains W[t]. WCS[Ct,d]

can be solved by nondeterministically guessing k elements of the set of vari-

ables that will be assigned with value one and then verifying the result and

hence W[P] contains W[t] for every t. The class NP can be seen as the class

of problems that can be solved by an algorithm that is allowed to guess every

element of the solution nondeterministically and afterwards deterministically

verify that the solution is feasible. Therefore, the third statement follows. If

one of the relations between the classes in the second statement can be proven

to be strict, we can conclude that P6=NP.

Definition 2.24. A parameterized problem (P, k(x)) is W[t]-hard if we can

reduce every parameterized problem in W[t] to (P, k(x)) by an fpt reduction.

Now we want to identify which problems are W[t]-hard. For this purpose,

we need to define some terms.

Definition 2.25. We want to define classes of boolean formulas recursively:

• Γ0,d := {λ1 ∧ · · · ∧ λc | c ∈ [0, . . . , d], λ1, . . . , λc are literals}.
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• ∆0,d := {λ1 ∨ · · · ∨ λc | c ∈ [0, . . . , d], λ1, . . . , λc are literals}.

• Γt+1,d := {
∧

i∈I δi | I is a finite nonempty index set, δi ∈ ∆t,d ∀ i ∈ I}.

• ∆t+1,d := {
∨

i∈I γi | I is a finite nonempty index set, γi ∈ Γt,d ∀ i ∈ I}.

With this definition we can see that Γ1,d is the set of formulas in d-disjunctive

normal form, which means that every conjunction contains at most d literals.

Similarly,∆1,d is the set of formulas in d-conjunctive normal form, which means

that every disjunction contains at most d literals. The set Γ2,1 is the set of

all formulas in disjunctive normal form and ∆2,1 the set of all formulas in

conjunctive normal form.

Definition 2.26. We call a boolean formula f k-satisfiable if there exists a

truth assignment that sets exactly k variables to one. The parameterized prob-

lem Weighted Satisfiability (WSAT) is to decide for a given formula, whether

it is k-satisfiable.

Definition 2.27. Let F be a class of boolean formulas. WSAT restricted to

formulas in F is called WSAT[F].

Corollary 2.28. WSAT[∆t+1,d] is W [t]-hard for d ≥ 1 and t > 0.

The proof of this corollary, which is far too long for this thesis, can be found

in [16]. Building on that, one can prove that the Clique Problem parameterized

by the size of the clique is W[1]-hard and that the Dominating Set Problem

parameterized by the size of the dominating set is W[2]-hard, making them

the most famous members of these classes. Afterwards, many other problems

were proven to be W[1]-hard or W[2]-hard using these problems for reductions.

2.2.4 Complexity of Counting Problems

In this section we introduce counting problems and the important complexity

class #P.

Definition 2.29. Let P(X, Y ) be a decision problem. For every instance x ∈ X

we define the count of x countP(x) as the number of certificates for x.

The count of an instance x of SAT is the number of variable assignments

that satisfy the given boolean formula.
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Definition 2.30. Let P(X, Y ) be a decision problem. For every instance x ∈ X,

the corresponding counting problem #P is to compute countP(x).

The counting problem corresponding to SAT is #SAT.

Definition 2.31. The counting problem #SAT is to compute the number of

truth assignments for a given boolean formula f .

Now we can define the most important complexity class for counting prob-

lems.

Definition 2.32. The class #P consists of all counting problems, whose cor-

responding decision problems are in NP.

Similar to the reductions that we have seen before, one can define reductions

that can be used for counting problems.

Definition 2.33. Let P1 = (X1, Y1) and P2 = (X2, Y2) be two decision prob-

lems. A polynomial time many-one counting reduction consists of two func-

tions f : X1 → X2 and g : Z+ → Z+ with the following condition:

countP1
(x) = g(countP2

(f(x))) ∀ x ∈ X1.

In the following we refer to a polynomial time many-one counting reduction

by counting reduction. A special case of counting reductions are parsimonious

reductions.

Definition 2.34. A parsimonious reduction is a counting reduction, in which

the function g is the identity function.

Definition 2.35. Let P1 = (X1, Y1) be a decision problem. We call P1 #P-

hard if for every problem P2 = (X2, Y2) ∈ #P there exists a counting reduction

from P2 to P1.

A problem that is #P-hard and is a member of #P is called #P-complete.

The reduction used in the theorem of Cook [12] is parsimonious and therefore

it follows that #SAT is #P-hard. Many counting problems with correspond-

ing NP-hard problems are proven to be #P-hard, e.g. the problem #Knap-

sack [17]. But also problems in P can have a corresponding #P-hard counting
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problem like the Perfect Matching Problem [36]. Since every decision prob-

lem P = (X, Y ) can be reformulated to the question, whether for a given in-

stance x ∈ X the countP(x) is at least one, it follows that by solving the

corresponding counting problem #P also P is solved. Therefore, every deci-

sion problem that has a corresponding counting problem that can be solved in

polynomial time is in P. Note that this does not mean that NP-hardness of a

problem P implies #P-hardness of the corresponding counting problem #P.

Nevertheless, as far as we know, there is no known NP-hard problem with a

corresponding counting problem that is not #P-hard [26].

2.3 Mixed Integer Quadratic Programming

In this section we want to present different techniques to deal with Mixed Inte-

ger Quadratic Programs. We will see in Chapter 4 that solving such programs

is necessary for some of the exact solutions methods for (dmEm).

Definition 2.36. Given the matrices Q ∈ Rn×n, A ∈ Rm×n and E ∈ Rp×m

and the vectors c ∈ Rn, b ∈ Rm and f ∈ Rp. Then the following program is

called a Quadratic Program:

min 1
2
x⊤Qx+ c⊤x

s.t. Ax ≤ b

Bx = d

x ∈ Rn

(QP)

If the matrix Q is positive semidefinite, the (IQP) is convex and therefore

every local optimum is a global optimum.

The most popular algorithms for solving convex QP ’s are Active-Set-Methods,

the Barrier algorithm or the QP simplex method. We will focus now on the

Barrier algorithm because it is the default algorithm for solving QP ’s in the

MILP-solver Cplex, which we will use later for our experiments. The bar-

rier algorithm is an algorithm for general continuous non-linear optimization

problems.
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Definition 2.37. Let f : Rn → R and gi : R
n → R for all 1 ≤ i ≤ m. The

following program is called a non-linear Program:

min f(x)

s.t. gi(x) ≤ 0 ∀ 1 ≤ i ≤ m

x ∈ Rn

(NLP)

In the following we assume that the functions f and gi are all convex and

twice differentiable for all 1 ≤ i ≤ m. In the case of QP ’s these criteria are

met. We assume additionally that {x ∈ Rn : gi(x) < 0 ∀ 1 ≤ i ≤ m} is non-

empty. The idea of the Barrier algorithm is to solve a family of optimization

problems defined on the inside of the feasible region of the NLP , in which

solutions that are close to the boundaries of the feasible region are punished.

For this purpose, we need a barrier function b(x) that is twice differentiable

and that is approaching infinity when x is approaching to the boundary of its

feasible region. A commonly used barrier function is the log barrier function

b(x) =
m∑

i=1

− ln(−gi(x)).

Using a parameter τ , which decreases over time, the influence of the barrier

function on the whole objective function can be decreased.

Definition 2.38. The barrier problem is defined as follows:

min Bτ (x)

s.t. gi(x) < 0 ∀ 1 ≤ i ≤ m,

(BPτ )

where Bτ (x) = f(x) + τ b(x).

The following corollary shows that the barrier problem can be solved by

solving a system of non-linear equations.

Corollary 2.39. BPτ has a unique solution x so that

▽Bτ (x) = 0

holds, where ▽Bτ (x) is the gradient of Bτ (x).
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The corollary shows that (BPτ ) is much easier to solve than (NLP ). We

can solve it e.g. with the Newton method. Now we can define a basic version

of the Barrier algorithm.

Basic Barrier algorithm

1: Set i = 0 and choose τi > 0.

2: repeat
3: Compute solution x of (BPτ ) with τ = τi.

4: Set i = i+ 1 and choose 0 < τi < τi+1.

5: until x is optimal solution of (NLP ).

6: return x.

The termination condition that x is an optimal solution of NLP is just

theoretical. In practice a commonly used condition is the following:

mτi ≤ ǫ,

where ǫ > 0. One can show that this condition implies that x fulfills the

Karush-Kuhn-Tucker conditions except for a tolerance of ǫ, which is a suffi-

cient optimality criterion for convex problems. Note that for solving (BPτ ) in

Step 3 the solution of the previous iteration is used and hence the conditioning

of the Hesse matrix ▽
2Bτ (x), which gets worse if τ decreases, is important.

Therefore, it is not preferable to start with a value of τ that is too small.

If some of the variables x are restricted to be integers, the resulting program

is called Mixed Integer Quadratic Program (MIQP ). We want to discuss the

two most relevant strategies for solving MIQP ’s.

The first strategy is to linearize all products of variables. Let xy be a product

of two variables x and y. If one of the variables is binary and the other is

bounded and greater or equal to zero, the quadratic terms in the objective

function can be handled by introducing an additional variable z that replaces

the product xy. Let us assume that y is binary and x is bounded with maxi-

mum value x̄. By introducing the following linear constraints, one can get rid

of the non-linearities:
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z ≥ 0

x ≥ z

y x̄ ≥ z

z ≥ x− (1− y) x̄

(2.1)

If y takes the value zero, the first and the third constraint force z to take

the same value and the second and third constraint do not become invalid.

If y takes the value one, the second and the fourth constraint ensure that z is

equal to x. Note that this linearization works for both continuous and integer

variables x. If y is not binary but a bounded integer, binary expansion can be

used. The resulting problem is a Mixed Integer Linear Program that can be

solved by standard Branch-and-cut methods.

Another way of solving quadratic problems is to use the Branch-and-bound

method without linearization. In every node of the Branch-and-bound tree

quadratic relaxations are computed by dropping the integrality constraints and

solving the resulting QP as discussed above. If the matrix Q is not positive

semidefinite and all variables are binary, the problem can be convexified by

increasing Qi,i by a value vi and subtracting vi from ci for all 1 ≤ i ≤ n,

so that the objective function of the original problem remains unchanged. If

the values vi are sufficiently large, the matrix Q will be positive semidefinite

after this operation and a global optimum can be found. If some variables are

bounded integers, they can be replaced using binary expansion. If some of the

variables cannot be replaced by binaries, it might be the case that the operation

discussed before is sufficient if it is just used for the binary variables. This

depends on the structure of the matrix Q. If this is not the case, relaxations

cannot be solved to global optimality. To obtain a global optimal solution the

spatial Branch-and-bound method has to be used, in which the feasible set of

the problem is subdivided into regions, for which convex relaxations can be

computed.

2.4 Column Generation

Column generation is a method for solving linear programs. The idea is to

solve the given problem iteratively with a subset of the variables, check after
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every solution if it is optimal for the original problem and, if not, add additional

variables of the original problem that can possibly improve the objective value.

Therefore, it is most effective for problems with a large set of variables.

2.4.1 Basic Algorithm

Let us call the following linear program the master problem:

min
n∑

i=1

cixi

s.t.
n∑

i=1

aj,ixi ≥ bj ∀ 1 ≤ j ≤ m

xi ≥ 0 ∀ 1 ≤ i ≤ n

(MP)

If we restrict the set of variables to all variables with an index in

I ⊆ {1, . . . , n},

the resulting program is called the restricted master problem:

min
∑
i∈I

cixi

s.t.
∑
i∈I

aj,ixi ≥ bj ∀ 1 ≤ j ≤ m

xi ≥ 0 ∀ i ∈ I

(RMP)

The dual of the master problem is:

max
m∑
j=1

bjyj

s.t.
m∑
j=1

aj,iyj ≤ ci ∀ 1 ≤ i ≤ n

yj ≥ 0 ∀ 1 ≤ j ≤ m

(DMP)

If after adding an additional variable of the original problem a constraint

in the dual of the restricted master problem is violated, the primal solution

of the restricted master problem may not be optimal for the original problem.

The constraint in the dual master problem corresponding to the i-th variable

is violated if

ri := ci −
m∑

j=1

aj,iyj < 0
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holds, where y is the set of dual variables that we received by solving the

restricted master problem. We call ri the reduced cost of variable i. If a variable

with negative reduce cost is found, it can be added to the restricted master

problem to possibly improve the objective value. If no variable with negative

reduced cost exists, the objective value cannot be improved and therefore the

solution is optimal. Given the dual optimal solution of the restricted master

problem y, one can formulate the following pricing problem to find variables

with negative reduced cost:

min ci −
m∑
j=1

aj,iyj

s.t. i ∈ {1, . . . , n}

(PP)

With these definitions we can define the basic column generation method,

which is illustrated in the following scheme:

Basic Column generation Method
1: Find feasible solution x′ and set I := {i | x′

i 6= 0}.

2: repeat
3: Solve restricted master problem on I and receive primal solution x and

dual solution y.

4: Solve the pricing problem using y and receive index i.

5: if ri < 0 then

6: Add i to I.

7: end if

8: until ri ≥ 0.

9: return x.

The feasible solution in the first line of the algorithm can either be found by

using a heuristic or by introducing a dummy variable that ensures feasibility

of all constraints but has a sufficiently high cost so that it will not be in the

optimal solution. One can improve the basic column generation method by

using a heuristic pricing to find new variables and just solve the pricing prob-

lem exactly, when the heuristic pricing does not find a variable with negative

reduced cost. In the best case, when the heuristic pricing always identifies an

existing variable with negative reduced cost, the pricing problem has to be

solved just once. Of course, this is just an improvement if the heuristic pricing
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is significantly faster than solving the exact pricing problem.

Note that the pricing problem still needs to check all variables, which can be

problematic if the number of variables is very high. If columns

ai := {aj,i | 1 ≤ j ≤ m}

corresponding to a variable are given implicitly by set A, over which one can

optimize, and by a function c(ai) that computes the cost of variable ci, the

pricing problem can be solved without enumeration. In this case it is not even

necessary to enumerate all variables. Problems with a high number of variables

that seemed to be intractable can often be solved in this way. In this case, we

call the pricing problem implicitly :

min c(a)−
m∑
j=1

ajyj

s.t. a ∈ A

(IPP)

This structure A is often given in combinatorial optimization problems e.g.

the Cutting Stock Problem or the Vehicle Routing Problem. To understand

this property better, we want to examine the Vehicle Routing Problem in the

following as an example.

2.4.2 Example: Vehicle Routing Problem

Definition 2.40. Given a directed graph G = (V,A), a node d ∈ V , a cost

function c : A → R+ and an integer k, the Vehicle Routing Problem (VRP) asks

for a set of at most k cycles that each contain d such that every node v ∈ V \{d}

is contained in at least one cycle and such that the sum of the costs of all

selected arcs is minimal. We call d depot, V \ {d} the set of customers and

the k cycles routes.

In practice, there can be additional constraints that only depend on each

route independently e.g. time window or capacity constraints. We denote the

set of feasible routes by R. Now we introduce an IP for solving the VRP:

min
∑
r∈R

prxr

s.t.
∑
r∈R

αr,vxr ≥ 1 ∀ v ∈ V \ {d}

xr ∈ {0, 1} ∀ r ∈ R,

(IPVRP)
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where the constant αr,v is the number of times route r contains customer v

and pr is the total cost of route r. The relaxed version of this program resulting

from replacing the second set of constraints by

xr ∈ [0, 1] ∀ r ∈ R

can be solved with column generation. For computing new columns, one has

to solve the following pricing problem:

min pr −
∑

v∈V \{d}

αr,vyv

s.t. r ∈ R,

(IPPVRP)

where y is the given dual solution of the restricted master problem.

Theorem 2.41. The program IPPVRP can be formulated as a Shortest Path

Problem with Resource Constraints.

Proof. The Shortest Path Problem with Resource Constraints consists of find-

ing a shortest path according to a given cost function from one specified node

to another specified node in a graph such that given constraints are fulfilled.

Let dest(a) ∈ V be the destination of arc a ∈ A. We define a new cost function

csp(a) := c(a)− ydest(a).

The cost of a path according to csp in G from the depot to the depot is now

equivalent to the term that is minimized in the objective function. We require

that all the constraints for a feasible route also have to hold in the Shortest

Path Problem with Resource Constraints that we develop and hence we can

solve IPPVRP with the corresponding reduction.

The Shortest Path Problem with Resource Constraints is NP-hard but in

general much faster to solve than enumerating all feasible routes. Note that

only problems with strong duality can be solved exactly using column gen-

eration. Therefore, to solve IPVRP, column generation can only be used to

compute relaxations that have to be embedded in a Branch-and-bound algo-

rithm.
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2.5 Clustering

In this section, we introduce the k-Clustering Problem, which we use later in

Chapter 5. In particular, we present a well-known heuristic solution approach

for it.

Definition 2.42. Let X := {x1, . . . , xn} be a set of d-dimensional vectors.

The goal of the k-Clustering Problem is to partition X into k sets S1, . . . , Sk,

which are called clusters, such that

min
S

k∑

i=1

∑

x∈Si

||x− ci||
2

is minimized, where

ci :=
1

|Si|

∑

x∈Si

x

is called the center of cluster i.

The k-Clustering Problem was proven to be NP-complete by Garey et

al. [19]. An algorithm for finding local optima was proposed by Lloyd [27]:

k-means algorithm

1: Choose an arbitrary partition S := {S1, . . . , Sk} of X .

2: repeat
3: Set S ′ := S.

4: Compute the center ci for every cluster Si ∈ S ′.

5: Recompute the clusters by assigning every vector x ∈ X to its closest

center: Si = {x ∈ X | ||x− ci|| ≤ ||x− cj || ∀ 1 ≤ j ≤ k} ∀ 1 ≤ i ≤ k.

6: Remove every x that is in more than one cluster from every cluster

except for the lexicographically first cluster that contains x.

7: S := {S1, . . . , Sk}

8: until S = S ′

9: return S

The k-means algorithm can be used as a fast heuristic algorithm for solving

the k-Clustering Problem.
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2.6 Partitions

In a solution of Problem (dmEm), each scenario j is covered by at least one of

the solutions XK = {x1, . . . , xK}, namely argmin{ξ⊤j x|x ∈ Xj ∩ XK}. Com-

bining all scenarios that are covered by the same solution into a subset leads

to a partition of the set of scenarios into at most K parts. In the following,

we will call this the partition induced by XK . If one scenario is covered by

more than one solution, we assign it lexicographically. Conversely, if such a

partition {1, . . . , l} =
⋃K

j=1 Ij is given, one can construct an induced set of

solutions x1, . . . , xK by choosing

xj ∈ argmin
x∈X̃j

∑

i∈Ij

ξ⊤i x with X̃j :=
⋂

i∈Ij

Xi

and solving problem (P) with objective function
∑

i∈Ij
ξ⊤i x and feasible set X̃j .

If there is more than one optimal solution for a subset of scenarios, we decide

to choose the first solution in a lexicographic order with respect to the entries

of the vector. Note that in the case of discrete scenarios and a certain feasible

region X , the induced set of solutions can be computed by summing up all

objective vectors and using the oracle on this aggregated objective vector.

In the case of an uncertain feasible region that is described by θi in scenario i

this may also be true and an aggregated θ may be obtained, e.g., in a Max-

imum Flow Problem the capacity on each arc that is given to the oracle is

the minimum capacity of this arc in all scenarios inside the regarded subset.

For other underlying problems it is not possible to use the oracle, e.g. for a

Knapsack Problem a Multidimensional Knapsack Problem has to be solved

instead to obtain the set of solutions induced by a given partition.

For a given set of solutions, building the induced partition and then the

induced set of solutions does not necessarily lead to the original set of solutions.

Also starting with a given partition in general does not produce the original

partition again. The idea of computing induced partitions and solution sets

alternately gives rise to a heuristic approach to Problem (dmEm), which is

discussed in Chapter 5 below.
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2.7 Combinatorial Optimization Oracles

In this section we want to introduce problems that we use later for our ex-

perimentation in Chapter 6 and present the algorithms we used for solving

them.

2.7.1 The Minimum Spanning Tree Problem

We start with a classical problem of combinatorial optimization, the Spanning

Tree Problem.

Definition 2.43. A tree is an undirected, connected graph that contains no

cycles. A spanning tree of a graph G = (V,E) is a subgraph that is a tree and

contains all vertices of V .

Definition 2.44. Given a graph G = (V,E) and a cost function c : E → R,

the Spanning Tree Problem (ST) asks for a spanning tree T = (V, Ē) of G with

minimum cost
∑

e∈Ē ce.

We solved occurring Spanning Tree Problems with the well-known algorithm

of Kruskal [25].
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Algorithm of Kruskal
1: Sort all edges by decreasing cost in list L := {e1, . . . , em}.

2: Ē = ∅, i = 1.

3: repeat
4: if Ē ∪ {ei} contains no cycle then

5: Add ei to Ē.

6: i = i+ 1.

7: end if
8: until |Ē| = |V | − 1.

9: return T = (V, Ē).

The running time of the algorithm of Kruskal is dominated by the sorting

and hence is in O(|E|log|E|). Therefore, the Spanning Tree Problem belongs

to the class P.

2.7.2 The Maximum Flow Problem

In this section we introduce the Maximum Flow Problem.

Definition 2.45. Given a directed graph G = (V,A), two vertices s, t ∈ V

and a capacity function u : A → R, a function f : A → R+ is called a s-t-flow

if the following conditions are met:

1. fa ≤ ua ∀ a ∈ A.

2.
∑

a:=(w,v)∈A

fa =
∑

a:=(v,w)∈A

fa ∀ v ∈ V \ {s, t}

The first set of constraints is called capacity constraints and the second set

of constraints is called flow conservation constraints.

Definition 2.46. Given a directed graph G = (V,A), two vertices s, t ∈ V

and a flow f : A → R, the value of the flow f is defined by
∑

a:=(s,w)∈A

fa.

Definition 2.47. Given a directed graph G = (V,A), two vertices s, t ∈ V and

a capacity function u : A → R, the Maximum Flow Problem (MFP) consists

in finding the flow with the maximum value.
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Although there are good combinatorial algorithms for solving the Maximum

Flow Problem like the Edmonds-Karp algorithm [15], which has a running

time in O(|V ||A|2), we experienced good results by solving the following linear

program instead:

max
∑

a:=(s,w)∈A

fa

s.t. fa ≤ ua ∀ a ∈ A

∑
a:=(w,v)∈A

fa =
∑

a:=(v,w)∈A

fa ∀ v ∈ V \ {s, t}

fa ∈ R+ ∀ a ∈ A

(LPMFP)

2.7.3 Knapsack Problems

Now we focus on Knapsack Problems.

Definition 2.48. Given a set of items S := {1, 2, . . . , n}, a cost function

c : S → R+ , m weight functions aj : S → R+ for all 1 ≤ j ≤ m and m positive

numbers bi. The Boolean Multidimensional Knapsack Problem (MKP) asks for

a set I ⊆ S such that ∑

i∈I

ci

is maximal and that for all 1 ≤ j ≤ m

∑

i∈I

(aj)i ≤ bj

holds.

Definition 2.49. The version of MKP with m = 1 is called Boolean Knapsack

Problem (1KP) and the version with m = 0 Unconstrained Binary Optimiza-

tion Problem (UCB).

In our experiments we solve MKP and KP with the following IP:

max c⊤x

s.t. a⊤j x ≤ bj ∀ 1 ≤ j ≤ m

x ∈ {0, 1}n,

(IPMKP)
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where x ∈ {0, 1}n is a vector that indicates which items are selected. It

takes in dimension i the value one if and only if the i-th item is selected.

Although there exists a pseudo-polynomial algorithm for (1KP) with running

time inO(|S|b), we made better experiences by solving MKPIP with the MILP-

solver Cplex instead. Problem (1KP) and Problem (MKP) with fixed m are

known to be weakly NP-hard [17]. If the number of dimensions m is part of

the input, Problem (MKP) is strongly NP-hard, which can be seen e.g. by the

IP formulation of the Independent Set Problem. Because Problem (UCB) is

much easier to solve, we used the following polynomial time algorithm.

Algorithm for (UCB)
1: x = 0n
2: for all i ∈ I do

3: if ci ≥ 0 then
4: xi = 1.

5: end if
6: end for

7: return x.

2.7.4 The Traveling Salesman Problem

One of the most important combinatorial problems with applications in the

field of logistics is the Traveling Salesman Problem. It models the problem

of minimizing the total distance covered by a salesman that has to visit n

cities and return to his starting point. It can be applied to real-world delivery

problems. We can define this problem formally as follows:

Definition 2.50. Given an undirected complete graph Kn = (V,E) and a

cost function c : E → R+, the Traveling Salesman Problem (TSP) consists in

finding a connected subgraph T = (V, Ē) such that
∑

e:=(u,v)∈Ē ce is minimal

and that every vertex v ∈ V has exactly two incident edges in Ē.

The Traveling Salesman Problem is known to be NP-hard and the general

version of the problem does not admit a constant factor approximation algo-

rithm [17]. If the cost function c obeys the triangle inequality, the resulting

problem is called Metric Traveling Salesman Problem. The Metric Traveling
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Salesman Problem can be solved approximately with a guarantee of 1.5 by the

algorithm of Christofides [11].

Algorithm of Christofides
1: Compute a Minimum Spanning Tree T = (V, ĒT ).

2: Compute the set of vertices V̄ with odd degree in T .

3: Compute a Minimum Weighted Perfect Matching M = (V̄ , ĒM) on the

graph induced by V̄ .

4: Compute an Euler Tour U on the graph H = (V, ĒT ∪ ĒM ).

5: Remove repeated vertices in U by introducing short-cuts.

6: return E.

A Minimum spanning tree can be constructed in polynomial time as seen

before. Also a Minimum-Weighted Perfect Matching can be computed in poly-

nomial time e.g., with the Blossom algorithm of Edmonds [14], and an Euler

Tour can be computed with the algorithm of Hierholzer [23]. Therefore, the

algorithm of Christofides has a polynomial running time.

The Traveling Salesman Problem can be solved exactly by solving the following

IP:
max c⊤x

s.t.
∑
e∈E

xe = |V |

∑
e∈δ(S)

xe ≥ 2 ∀ ∅ 6= S ⊂ V,

(IPTSP)

where x ∈ {0, 1}|E| is a vector that indicates which edges are traveled in the

tour. We denote by δ(S) the cut induced by S, which is the set of edges with

exactly one end point in S. The second set of constraints is called subtour

constraints. The problem with these constraints is that their number is expo-

nential in the input size. Therefore, in our implementation we separated them

by solving a Minimum Cut Problem. A Minimum Cut Problem can be solved

in polynomial time by the algorithm of Stoer and Wagner [34].
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Chapter 3

Complexity

Detailed knowledge about the complexity of an optimization problem is impor-

tant for deciding if an investigation of a certain kind of algorithm is rewarding.

If a problem is e.g. NP-hard, the search for a polynomial time algorithm can

be stopped, unless one believes in P=NP and wants to prove it. With the

adequate proof technique similar results can be stated for certain kinds of ap-

proximation algorithms, and a problem that is W[t]-hard with t > 0 does not

admit an fpt algorithm unless the W-hierarchy collapses. But we also want to

present positive results about the preservation of approximation factors of the

underlying problem into the (mEm) Problem.

In the first section of this chapter we present results that are valid for the

discrete and continuous version of (mEm). Afterwards we discuss the com-

plexity of Problem (dmEm) by showing NP-hardness, inapproximability and

W-hardness. The last section deals with the continuous version of the problem

and underlines why solving this problem with discretization is an appropriate

option in practice.

3.1 General Min-E-Min Problem

We start the investigation of complexity of (mEm) with a positive result.

We will show that multiplicative and additive approximation factors of the

underlying problem can be transferred into the Problem (mEm). This can be

relevant in practice because it means that high quality solutions of (mEm)

can be computed in a reasonable time even if the underlying problem is NP-

35
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hard and would require a huge amount of time to be solved exactly. In that

case a fast approximation algorithm or a fast heuristic can be used as an

oracle, every time the underlying problem has to be solved. If (mEm) is solved

exactly for this oracle and the oracle provides a solution close to the optimal

solution of the underlying problem, the solution will be close to the optimal

solution of (mEm) assuming that the problem corresponding to the induced

set of solutions (see Section 2.6) is solved with an exact algorithm. For the

convenience of the reader and to have a clean definition of approximation, we

assume in the following that the underlying problem is a minimization problem

and that all possible optimal solution values of the underlying problem are

non-negative. The cases in which the underlying problem is a maximization

problem and/or all possible optimal solution values are non-positive can be

handled with analogous arguments.

Theorem 3.1. Solving (mEm) with an α-approximation algorithm for the

underlying problem, gives rise to an α-approximation algorithm for (mEm).

Proof. Consider an arbitrary partition P̃ = {s1, s2, . . . , sK} of the scenari-

os. Let valα(P̃ ) be the sum of the solution values of every subset contained

in P̃ assuming that a solution value of a subset is obtained by using an α-

approximation algorithm. In addition, let val1(P̃ ) denote the solution value

when solving the oracle to optimality. For a subset of scenarios s, we de-

fine valα(s) in the same way.

By definition of an α-approximation, for each subset s of scenarios in the

partition, we have valα(s) ≤ α · val1(s), and hence

valα(P̃ ) =
∑

s∈P̃

valα(s) ≤
∑

s∈P̃

α · val1(s) = α · val1(P̃ )

Denote now by val∗α = min
P

valα(P ) the best solution value, over all possible

partitions, using the α-approximation algorithm. We have

val∗α ≤ valα(P̃ ) ≤ α · val1(P̃ ) (3.1)

Finally, let val∗1 denote the optimal solution value for the problem if the un-

derlying problem is solved to optimality.

Observe that (3.1) is valid for any partition P̃ and hence we get val∗α ≤ α ·val∗1,

which concludes the proof.
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Note that Theorem 3.1 does not state that we have a polynomial time α-

approximation algorithm for (mEm) if we have a polynomial time α-approxima-

tion for the oracle because in general (mEm) can not be solved in oracle poly-

nomial time and is even NP-hard for underlying problems that are solvable in

polynomial time, as we will see in Section 3.2.1.

Theorem 3.2. Solving (mEm) with an absolute approximation algorithm for

the oracle with guarantee c, we have an absolute approximation algorithm

for (mEm) with guarantee Kc.

Proof. The proof is similar to that of Theorem 3.1. The only difference is that,

for each subset s of scenarios, the algorithm has an absolute approximation

guarantee, i.e., the associated solution value is

valα(s) ≤ c+ val1(s)

where c is a positive constant. Using the approximation algorithm for all

subsets of scenarios we get

valα(P̃ ) =
∑

s∈P̃

valα(s) ≤
∑

s∈P̃

(c+ val1(s)) = K · c+ val1(P̃ ).

Note that in the case of an absolute approximation, we do not need to make

the assumption that all the optimal values of the oracle are positive or negative.

To conclude this section, we now want to show a property of (dmEm) that

implies that it does not change the optimal solution value if the set of feasible

solutions of Problem (dmEm) is replaced by its convex hull.

Theorem 3.3. The objective function of Problem (dmEm) is concave. There-

fore, the set of optimal solutions always contains an extreme point of the fea-

sible set if the latter is convex.

Proof. Let f(XK) := Eξ min
x∈XK

ξ⊤x be the objective function of Problem (dmEm).

For every objective vector ξ, for λ ∈ [0, 1] and for two given, feasible solutions

of Problem (dmEm) XK := {x1, . . . , xK}, X̃K := {x̃1, . . . , x̃k}, we have

min
j∈{1,...,K}

ξ⊤(λxj + (1− λ)x̃j) ≥ min
j∈{1,...,K}

ξ⊤λxj + min
j∈{1,...,K}

ξ⊤(1− λ)x̃j

= λ min
j∈{1,...,K}

ξ⊤xj + (1− λ) min
j∈{1,...,K}

ξ⊤x̃j .
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Because this holds for every realization of ξ, it also holds for the expected

value. Therefore we have

f(λXK + (1− λ)X̃K) ≥ λf(XK) + (1− λ)f(X̃K)

and hence f is concave.

Theorem 3.3 shows in particular that the complexity results for Prob-

lem (dmEm) presented in the following sections generally also hold for convex

feasible sets.

3.2 Discrete Min-E-Min Problem

For investigating the complexity of the Problem (dmEm), we analyze three

different aspects: NP-hardness, hardness of approximation, and parameterized

complexity. We distinguish between the problem variant where the parame-

ter K is part of the input and the variant where it is fixed. Additionally we

discuss the complexity of verifying whether a feasible solution exists and the

hardness of a version of (dmEm), in which some of the K solutions are al-

ready fixed. Besides that, we use complexity results of Problem (dmEm) to

prove new hardness results for the Min-Max-Min Optimization Problem. For

the convenience of the reader in the following the term NP-hard is used for

expressing that a problem is strongly NP-hard because in this thesis no weak

NP-hardness results are shown. It will turn out that many results even hold

when Xi is equal in every scenario and has polynomial size, in which case the

underlying certain problem (P) could even be solved by enumeration. Table 3.1

summarizes the complexity results for the optimization variant and Table 3.2

illustrates the results for the feasibility problem.

Property Complexity result Proof

K is part of the input NP-hard, not in APX Theorem 3.5 & Theorem 3.11

K is not part of the input NP-hard Theorem 3.7

K ≥ 3 is not part of the input Not in APX Theorem 3.12

l −K fixed and the set of feasible solutions X is certain Oracle-Polynomial time solvable Theorem 4.1

Parameter K W[2]-hard Theorem 3.15

Parameter n−K W[1]-hard Theorem 3.16

K = 2 and one solution is fixed NP-hard Theorem 3.19

Table 3.1: Summary of complexity results of Problem (dmEm)
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Property Complexity result Proof

K is part of the input NP-hard Theorem 3.8

K is not part of the input NP-hard Theorem 3.9

Parameter K W[2]-hard Theorem 3.17

Table 3.2: Summary of complexity results for the problem of deciding whether

Problem (dmEm) has a feasible solution

3.2.1 NP-Hardness

We first show that the problem is NP-complete even in very restricted cases.

First note that we have

Theorem 3.4. If membership in Xi can be tested in polynomial time, Prob-

lem (dmEm) belongs to NP .

Proof. For all the K solutions membership in Xi has to be verified. The

objective value can be obtained by comparing K values obtained by vector

multiplication, for a polynomial number of scenarios, and by summing them

up.

In the following, we distinguish between two variants of the problem: we first

consider the number of solutions K as part of the input, afterwards we in-

vestigate the problem for fixed K. For the former case, we can show strong

NP-hardness even when the underlying problem is certain and has a polynomial

number of feasible solutions, i.e., when the set Xi is equal for all scenarios i and

can be specified by an explicit list in the input. This shows that the hardness

in this case already stems from the exponentially many possible assignments

of scenarios to the K chosen solutions. Finally we show that finding a feasible

solution is already NP-hard. This result holds if K is part of the input and

if K is fixed.

Theorem 3.5. If K is part of the input, the Problem (dmEm) is NP -hard.

This remains true even if Xi = X for all i ∈ L and |X| is polynomial.

Proof. We use a reduction from the Dominating Set Problem. Figure 3.1

illustrates an example of the construction. A dominating set D in a graph G is

a subset of the vertex set with the property that every vertex of G belongs toD

or has a neighbor in D. The Dominating Set Decision Problem asks whether
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a dominating set with at most K vertices exists; this problem is NP-complete

and W[2]-hard for parameter K [13].

For the reduction, let G = (V,E) be the given graph. We define l = |V |

scenarios as follows. For every v ∈ V , we define an objective vector ξv ∈ QV

by

(ξv)u :=





−1 if u = v or u is a neighbor of v,

0 otherwise.

For every scenario i we choose Xi = X and X as the set of basis vectors in QV .

We claim that we can find a dominating set of size K in G if and only if we

can find a solution for this instance of the Problem (dmEm) with value equal

to −|V |.

First assume that there exists a dominating set D ⊆ V with |D| = K. Then,

by construction, for each v ∈ V there exists a u ∈ D with (ξv)u = −1.

Hence {eu | u ∈ D} is a solution set for the Problem (dmEm) with

∑

v∈V

min
u∈D

{ξ⊤v eu} = −|V | .

Conversely, if Problem (dmEm) has a set of solutions x1, . . . xK ∈ X with

value equal to −|V |, then for every objective vector ξv there must exist a

basis vector eu ∈ XK = {x1, . . . xK} with (ξv)
⊤eu = −1. Therefore the set of

vertices {u ∈ V | eu ∈ XK} is a dominating set of size K in G.

Together with Theorem 3.4, this shows that the Discrete Min-E-Min Deci-

sion Problem is NP-complete and that the Discrete Min-E-Min Problem is

NP-equivalent in general, provided that membership in X can be tested in

polynomial time. This remains true even if |X| is polynomial.

Remark 3.6. Theorem 3.3 can be used inside the proof of Theorem 3.5 to

show that Problem (dmEm) is NP-hard even if the set of feasible solutions

is the standard simplex. Hence, also for underlying problems with a convex

feasible set Problem (dmEm) is in general NP-hard.

In the following, we focus on complexity results for fixed parameterK. Clearly,

for K = 1 the problem is as easy as the underlying problem (P). However,

starting from K = 2, the problem becomes NP-hard in general:
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v1

v2 v3

v4

ξ1 =




−1

−1

0

0




ξ2 =




−1

−1

−1

0




ξ3 =




0

−1

−1

−1




ξ4 =




0

0

−1

−1




The set of ver-

tices {v2, v3}

form a dominat-

ing set.

We obtain the solution of Prob-

lem (dmEm) as x1 = (0, 1, 0, 0)⊤

and x2 = (0, 0, 1, 0)⊤ with an objective

value of −4.

Figure 3.1: Example of the construction of the proof of Theorem 3.5

Theorem 3.7. For any fixed K ≥ 2, the Discrete Min-E-Min Decision Prob-

lem is NP -hard, even for X = {0, 1}n.

Proof. First we show NP-hardness for K ≥ 3 by reduction from the Vertex

Coloring Problem. Figure 3.2 illustrates an example of the construction. A

K-vertex coloring of a graph G = (V,E) is an assignment of K different colors

to all vertices in V such that no edge in E connects two vertices of the same

color. It is NP-complete to decide whether a given graph admits a K-vertex

coloring when K ≥ 3 [18]. In fact, the problem remains NP-complete even

when a vertex is allowed to have more than one color. This follows from the

fact that a graph admits a K-vertex coloring with more than one color per

vertex allowed if and only if it admits a K-vertex coloring without multiple

colors, since all but one color can be removed from every vertex without making

the coloring infeasible.

Given a graph G = (V,E), we consider one scenario for every vertex. We

use the feasible set Xi = X = {0, 1}V for all i ∈ L and define an objective

vector ξv ∈ QV for each vertex v ∈ V by

(ξv)u :=






−1 if u = v,

1 if u is a neighbor of v,

0 otherwise.
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Color j is assigned to vertex v if the solution xj has value 1 in the dimen-

sion corresponding to v. Now for a given set of solutions x1, . . . , xK ∈ X we

have
∑

v∈V min{ξ⊤v x1, . . . , ξ
⊤
v xK} ≤ −|V | iff the sets Vj := {v ∈ V | (xj)v = 1}

for j ∈ {1, . . . , K} are independent sets covering V . Indeed, if the sets were

not independent, one vertex and one of its neighbors would belong to the same

set Vj . Therefore, the corresponding scenario multiplied with the best xj would

be larger than −1 and the total objective value could not reach −|V |. This

implies the result in the first case, since a covering of V by K independent sets

is the same as a K-vertex coloring (with multiple colors allowed).

For the case K = 2, we reduce from the NP-complete decision variant of

the Maximum Cut Problem [18]. Figure 3.3 illustrates an example of the

construction. For given value q, the latter asks whether there exists a sub-

set W ⊆ V such that the cardinality of the induced cut is at least q, i.e., such

that |δ(W )| ≥ q. We use the same construction as before to obtain scenarios,

except that we set the objective vectors to

(ξv)u :=





− degG(v) if u = v,

1 if u is a neighbor of v,

0 otherwise.

Then we claim that G has a cut of cardinality at least q if and only if there

exist x1, x2 ∈ {0, 1}V with
∑

v∈V min{ξ⊤v x1, ξ
⊤
v x2} ≤ −2q. Indeed, if W ⊆ V

with |δ(W )| ≥ q, we can set (x1)v = 1 and (x2)v = 0 if v ∈ W and (x1)v = 0

and (x2)v = 1 otherwise. Then the minimum of the two terms is

ξ⊤v x1 = − degG(v) + |N(v) ∩W |, if v ∈ W

ξ⊤v x2 = − degG(v) + |N(v) \W |, otherwise

and hence

∑

v∈V

min{ξ⊤v x1, ξ
⊤
v x2} ≤ −2|E|+ 2|E(W )|+ 2|E(V \W )| = −2|δ(W )| .

Conversely, if
∑

v∈V min{ξ⊤v x1, ξ
⊤
v x2} ≤ −2q for some x1, x2 ∈ {0, 1}V , we

define V1 as above and obtain |δ(V1)| ≥ q.
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v1

v2 v3

v4

ξ1 =




−1

1

0

1




ξ2 =




1

−1

1

1




ξ3 =




0

1

−1

1




ξ4 =




1

1

1

−1




V1 := {v1, v3}, V2 := {v2}, and

V3 := {v4} is a feasible coloring

with three colors.

We obtain the solution of Prob-

lem (dmEm) as x1 = (1, 0, 1, 0)⊤ ,

x2 = (0, 1, 0, 0)⊤ and x3 = (0, 0, 0, 1)⊤

with an objective value of −4.

Figure 3.2: Example of the construction of the proof of Theorem 3.7 for K ≥ 3

v2

v1 v3

v4

ξ1 =




−2

0

1

1




ξ2 =




0

−2

1

1




ξ3 =




1

1

−3

1




ξ4 =




1

1

1

−3




The set of vertices W := {v1, v2}

induces a cut with value 4.

We obtain the solution of Prob-

lem (dmEm) as x1 = (1, 1, 0, 0, )⊤

and x2 = (0, 0, 1, 1)⊤ with value −8.

Figure 3.3: Example of the construction of the proof of Theorem 3.7 for K = 2

Different from the case of an unbounded K, we cannot expect a construc-

tion with a polynomially sized feasible set X anymore in Theorem 3.7, since

for fixed K the number of solutions |X|K is polynomial, so that the problem

could be solved efficiently by enumeration.

Now we focus on the problem of finding a feasible solution of Problem (dmEm).

For many underlying problems there is a natural solution that is always fea-



44

sible e.g. an empty knapsack for the Knapsack Problem. For other problems

this is not always ensured. Consider the Maximum Flow Problem with lower

and upper bounds. Because of the lower bounds the 0-flow is not necessarily

feasible in all scenarios and therefore it is possible that Problem (dmEm) does

not have a feasible solution if K is too small. Obviously, for K = l a feasi-

ble solution can always be found if each scenario is a feasible instance of the

underlying problem.

Theorem 3.8. Deciding whether Problem (dmEm) has a feasible solution is

NP -hard if K is part of the input, even if all the coefficients are binary and |Xi|

is polynomial in the input size for all i ∈ L.

Proof. We prove the statement by reduction from the Set Cover Problem. Fig-

ure 3.4 illustrates an example of the construction. Given a positive integer K,

a set U = {u1, u2, . . . , ul} of items, and a collection S = {s1, s2, . . . , sn} of

subsets of U , the Set Cover Problem asks if there exists a subcollection of S

with cardinality at most K, so that every item is contained in at least one of

the subsets.

We will show that, given an instance of the Set Cover Problem, we can define

an instance of Problem (dmEm) that is feasible if and only if the instance of

the Set Cover Problem has a positive answer. For the reduction, we define

a (dmEm) instance with n := |S| dimensions and l := |U | scenarios. For each

scenario i, the feasible set Xi is the set of base vectors of Rn that satisfies a

single constraint of the form a⊤i x ≥ 1, where the coefficient of each dimension d

is defined as:

(ai)d :=





1 if ui ∈ sd,

0 otherwise.

The set of solutions x1, . . . , xK of Problem (dmEm) induces the set cover as

follows: if the d-th base vector is in the set of solutions, then item set sd belongs

to the set cover. With this definition, it holds that the i-th item is included

in at least one subset if and only if there exists a selected subset sd such

that ui ∈ sd; this means that the associated coefficient (ai)d is 1, i.e., the d-th

solution is feasible for scenario i. Hence we have a set cover if and only if, for

every scenario i, at least one solution among x1, . . . , xK is feasible.
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S1 S3

S2u2

u1 u3

u4

a1 =




1

0

0


 a2 =




1

1

0




a3 =




0

0

1


 a4 =




0

1

1




{S1, S3} is a set cover. We obtain the feasible solution of (dmEm)

as x1 = (1, 0, 0)⊤ and x2 = (0, 0, 1)⊤.

Figure 3.4: Example of the construction of the proof of Theorem 3.8

We now discuss again the case of fixed K.

Theorem 3.9. Deciding whether Problem (dmEm) has a feasible solution is

NP -hard if K ≥ 2 is not part of the input.

Proof. We split the proof into two cases: K = 2 and K ≥ 3. For K ≥ 3, we

show NP-hardness by reduction from the Vertex Coloring Problem. Figure 3.5

illustrates an example of the construction.

Given a graph G = (V,E) and an integer K ≥ 3, we define a (dmEm) instance

with n := |V | binary variables and l := |V | scenarios. For each scenario i,

there is a single constraint of the form a⊤i x ≤ b , and the coefficient of each

dimension d is given by

(ai)d :=





−1 if d = i,

1 if (d, i) ∈ E,

0 otherwise.

Finally, we set b := −1 in every scenario.

A solution of Problem (dmEm) x1, . . . , xK induces the vertex coloring as fol-

lows: for each solution xi, all vertices that correspond to a dimension d with

value (xi)d = 1 receive the color i. This solution satisfies the coloring constraint

as scenario constraints forbid any two neighbors to be taken in the same solu-

tion. Finally, feasibility of each scenario in at least one solution implies that

every vertex belongs to a color class.
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Conversely, given a solution of the Vertex Coloring Problem, we can define

solutions x1, . . . , xK as follows: the j-th solution includes all variables that are

associated to vertices belonging to the j-th color class. Remember that each

color class corresponds to a stable set. Thus, a feasible solution for the j-th

scenario is induced by the color class including vertex j, as by definition this

color class cannot include any neighbor of j. Since all vertices receive a color,

then all scenarios are satisfied by at least one solution.

For K = 2, we reduce from the NP-complete decision variant of the Maximum

Cut Problem. Figure 3.6 illustrates an example of the construction. We set the

number of scenarios l and the number of dimensions n to 2|V |. Let ǫ be 1
|V |+1

.

The set of feasible solutions is set to

Xi = {0, 1}V × [ǫ, |V | − 1]V

for every scenario i and we add additional constraints that are described in the

following. For every scenario i ≤ |V |, we define a |V |-dimensional vector ai
as follows:

(ai)d :=





degG(vi) if d = i,

−1 if vd is a neighbor of vi,

0 otherwise.

Each of the first |V | scenarios gets two equality constraints. The first con-

straint for all scenarios i with i ≤ |V | is:

|V |∑

d=1

(ai)dxd = xi+|V |.

The second constraint for all scenarios i with i ≤ |V | is:

2|V |∑

d=|V |+1

xd ≥ q.

All scenarios i with i > |V | get only one constraint:

xi = ǫ.
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The set of solutions {x1, x2} of Problem (dmEm) with K = 2 induces the

cut δ(W ) as follows: vd is in W if and only if (x1)d = 1.

Assume we have a feasible solution of Problem (dmEm). For every dimen-

sion d ≤ |V |, either (x1)d or (x2)d has to be one because otherwise

|V |∑

h=1

(ad)hxh ≤ 0

and therefore in order to fulfill scenario d also xd+|V |≤ 0 < ǫ holds which is a

contradiction to its domain. If (x1)d and (x2)d are equal to one in dimension d,

we can set (x1)d to 0 if scenario d is covered by x2 and (x2)d to 0 if scenario d

is covered by x1 without making the solution infeasible. Therefore without

loss of generality we can assume that x1 and x2 are complementary in all

dimensions d ≤ |V | and with the definition of ai,

|V |∑

d=1

(ai)d(xj)d

is the number of neighbors of vi that are not in the same subset if scenario i

is covered by xj . Because of the first constraint of the first half of scenari-

os, (x1)i+|V | is now equal to the number of neighbors of vertex i that are not

in W if vi is in W (respectively (x2)i+|V | for neighbors in W of vertices not

in W ). Because constraint xi+|V | = ǫ holds, we know that (x1)i+|V | or (x2)i+|V |

has to be equal to ǫ. If vi is not in W , (x2)i+|V | takes the value

|V |∑

d=1

(ai)d(x2)d

that cannot reach ǫ by construction and therefore (x1)i+|V | = ǫ (respective-

ly (x2)i+|V | = ǫ if vi is in W ). Now we can rewrite

2|V |∑

d=|V |+1

(x1)d =

|V |∑

i=1
vi∈W

(x1)i+|V | +

|V |∑

i=1
vi 6=W

(x1)i+|V |.

The first sum of the righthand side of the equation is the sum over all vertices

in W of the number of neighbors that are not in W , which is the definition of

the size of the cut. The second sum of the righthand side of the equation is
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a value between 0 and |V |ǫ < 1. Again, by the same arguments we can prove

that
2|V |∑

d=|V |+1

(x2)d

is equal to the size of the cut plus an additional term between 0 and |V |ǫ < 1.

Because of the second constraint of the first half of scenarios
2|V |∑

d=|V |+1

(x1)d

has to be greater or equal to q. Because of the integrality the ǫ term has no

influence on this constraint and we conclude that the size of the cut has to

have at least the size of q.

Conversely, assume we have a cut δ(W ) of size q or more. We will now con-

struct a feasible solution for Problem (dmEm) step by step. We set (x1)d = 1

and (x2)d = 0 if vertex vd is in W and (x1)d = 0 and (x2)d = 1 otherwise. We

set

(x1)d+|V | =

|V |∑

d=1

(ai)d(x1)d

and (x2)d+|V | = ǫ if vertex vi is in W and (x1)d+|V | = ǫ and

(x2)d+|V | =

|V |∑

d=1

(ai)d(x2)d

otherwise. Therefore all scenarios from the second half admit either x1 or x2

as feasible solution. The first constraint of the first half of solutions is fulfilled

by x1 if vi is in W and by x2 if vi is not in W . So the scenario i is covered

by x1 if vi is in W and by x2 otherwise. Now we have to show that the second

constraint holds in all of the scenarios plugging in the solution that covers the

scenario. By our construction so far

2|V |∑

d=|V |+1

(x1)d =

|V |∑

j=i
vi∈W

(x1)i+|V | +

|V |∑

i=1
vi 6=W

(x1)i+|V |

is the size of the cut plus a term greater than 0. We know that the cut has at

least size of q and therefore also the inequality

2|V |∑

d=|V |+1

xd ≥ q
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holds. Again by symmetry, we get the same result for the scenarios covered

by x2.

Remark 3.10. The proof of Theorem 3.9 still holds, if we require the domain

of the feasible set Xi to be binary instead of {0, 1}V × [ǫ, |V | − 1]V . In a first

step the domain is transformed to

{0, 1}V × {1, |V |+ 1, |V |+ 2, . . . , |V |2 − 1}V .

This is possible by scaling the values of ai and q with (|V | + 1), so that the

lowest possible value is changed from ǫ to 1. In the proof of Theorem 3.9, all

other values of a variable belonging to the set Xi in dimension d > |V | are

integers and therefore it is sufficient to restrict the feasible set to all integers

between |V | + 1 and (|V | − 1)(|V | + 1) = |V |2 − 1. Afterwards, the desired

result can be achieved by binary expansion.

v1

v2 v3

v4

a1 =




−1

1

0

1




a2 =




1

−1

1

1




a3 =




0

1

−1

1




a4 =




1

1

1

−1




V1 := {v1, v3}, V2 := {v2}

and V3 := {v4} is a feasible

coloring with three colors.

We obtain the feasible solution of Problem

(dmEm) as x1 = (1, 0, 1, 0)⊤ , x2 = (0, 1, 0, 0)⊤

and x3 = (0, 0, 0, 1)⊤ .

Figure 3.5: Example of the construction of the proof of Theorem 3.9 for K ≥ 3

3.2.2 Hardness of Approximation

Having shown that Problem (dmEm) is NP-hard, we next investigate its ap-

proximability. Again, we first consider the case ofK being part of the input and

then the case of a fixed K. Polynomial time approximation algorithms bound



50

v2

v1 v3

v4

Scenario 1:

2x1 − x3 − x4 = x5

x5 + x6 + x7 + x8 ≥ 4

Scenario 2:

2x2 − x3 − x4 = x6

x5 + x6 + x7 + x8 ≥ 4

Scenario 3:

−x1 − x2 + 3x3 − x4 = x7

x5 + x6 + x7 + x8 ≥ 4

Scenario 4:

−x1 − x2 − x3 + 3x4 = x8

x5 + x6 + x7 + x8 ≥ 4

Scenario 5:

x5 = ε

Scenario 6:

x6 = ε

Scenario 7:

x7 = ε

Scenario 8:

x8 = ε

W = {v1, v2} induces

a cut with value q = 4.

x1 = (1, 1, 0, 0, 2, 2, ε, ε)T and

x2 = (0, 0, 1, 1, ε, ε, 2, 2)T is a feasible so-

lution for mEm because x1 is feasible in

scenario 1,2,7 and 8 and x2 in the others.

Figure 3.6: Example of the construction of the proof of Theorem 3.9 for K = 2

the worst case ratio between the computed solution and the optimal solution.

Among these, constant factor approximation algorithms are particularly in-

teresting because they guarantee that this ratio is not worse than a constant,

whereas for other approximation algorithms the approximation guarantee in-

creases with the input size. We show that Problem (dmEm) is not in APX

if K is part of the input or if K ≥ 3 is fixed.

Theorem 3.11. If K is part of the input, the Problem (dmEm) does not

belong to APX unless P = NP , even if Xi is equal in every scenario, has

polynomial size, and the objective vectors are restricted to be non-negative.

Proof. Assume that there exists an α-approximation algorithm for the Prob-
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lem (dmEm), for some α > 1. Then we claim that the NP-complete decision

variant of the Vertex Cover Problem can be solved in polynomial time, which

implies P = NP. For given number K, the latter problem asks whether there

exists a set of K vertices in a graph such that every edge is incident to at least

one vertex in this set.

Given a graph G = (V,E), let Xi = X be the set of basis vectors in QV

for every scenario i and define an objective vector ξe ∈ QV with ξe ≥ 0 for

each e ∈ E by

(ξe)v :=





1 if v ∈ e,

(α− 1)|E|+ 2 otherwise.

We claim that there exists a Vertex Cover of size K if and only if the given

α-approximation algorithm finds a solution for (dmEm) with value |E| or less.

Indeed, if U ⊆ V is a vertex cover of G with |U | = K, we can consider the K

solutions {ev | v ∈ U} ⊆ X , for which we obtain
∑

e∈E

min
v∈U

ξ⊤e ev ≤ |E| .

Otherwise, if no such vertex cover exists, we have
∑

e∈E

min{ξ⊤e x1, . . . , ξ
⊤
e xK} ≥ (α− 1)|E|+ 2 + (|E| − 1) = α|E|+ 1

for all x1, . . . , xK ∈ X . This means that the optimal solution value of (dmEm)

is larger than |E| and therefore in the optimal solution there exists one edge

that is not covered. Hence, there is no Vertex Cover of size K or larger.

As argued above, in case of fixed K, we cannot expect the same result for a

feasible set of polynomial size. For showing NP-hardness in Theorem 3.7, we

thus used Xi = {0, 1}n in every scenario i. However, when restricting ourselves

to non-negative objective functions, the feasibility of the zero vector obviously

makes the Problem (dmEm) trivial, as the zero vector is necessarily optimal

then. For this reason, we now consider a slightly changed underlying problem,

by introducing one more variable that is fixed to one. This is equivalent to

allowing an additional constant term in each scenario. Clearly, the underlying

problem (P) remains trivial with this adaptation. Nevertheless, we can now

show:
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Theorem 3.12. For any fixed K ≥ 3, we cannot decide whether the opti-

mal value of Problem (dmEm) is zero, even if all feasible solutions have non-

negative objective value and Xi = {x ∈ {0, 1}n | xn = 1} for every scenario i.

Proof. Assume on contrary that we can decide this question. We claim that the

existence of a vertex coloring with K colors in a given graph can be decided in

polynomial time then. Given a graph G = (V,E), let Xi = X = {0, 1}V × {1}

for every scenario and define an objective vector ξv ∈ QV × Q for each ver-

tex v ∈ V by

(ξv)u =





−1 if u = v,

1 if u ∈ V \ {v} is a neighbor of v,

0 if u ∈ V \ {v} is not a neighbor of v,

1 otherwise (i.e. in the last component).

Now for all x ∈ X and all v ∈ V we have ξ⊤v x ≥ 0 by construction. It is easy

to verify that the optimal value of Problem (dmEm) for this instance is zero

if and only if G admits a vertex coloring with K colors.

Because every constant factor approximation algorithm has a value of zero if

and only if an instance has an optimal solution value of zero, we obtain the

following result:

Corollary 3.13. For fixed K ≥ 3, Problem (dmEm) does not belong to APX

unless P = NP , even if all feasible solutions have non-negative objective value

and Xi = {x ∈ {0, 1}n | xn = 1} for every scenario i.

For the case K = 2, we do not know whether Problem (dmEm) belongs to

APX. However, we obtain the following weaker result, which follows from the

corresponding well-known result for the Maximum Cut Problem [22] and the

construction in the proof of Theorem 3.7

Theorem 3.14. For K = 2, approximating Problem (dmEm) with a factor

better than 17
16

is NP -hard.

Proof. Following the proof of Theorem 3.7 we showed that we can construct a

cut with value of q if the solution value of (dmEm) has a value of −2q. There-

fore, an approximation algorithm for (dmEm) would imply an approximation

algorithm for the Maximum Cut Problem with the same factor.
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3.2.3 Parameterized Complexity

For the complexity results obtained so far, the main distinction was made

between the two variants of Problem (dmEm) where the number K of solutions

is fixed or part of the input. In order to further investigate the role of K, we

now ask for the existence of fpt algorithms.

In Theorem 3.7, we have shown that Problem (dmEm) is NP-hard for any

fixed K ≥ 2, using X = {0, 1}n. This already implies that there cannot exist

an fpt algorithm in the parameter K in general, unless P = NP. On the other

hand, if X is of polynomial size, the problem can be solved by enumeration for

fixed K, leading to a running time of O(|X|K). However, this does not yield

an fpt algorithm. In fact, by having a closer look at the NP-hardness proof of

Theorem 3.5, we can show that even in case of a polynomially large X there

likely does not exist any fpt algorithm in parameter K, by proving that the

problem is W[2]-hard even in this special case.

Theorem 3.15. The decision variant of Problem (dmEm) is W [2]-hard for

parameter K, even if Xi = X for every scenario i and |X| is polynomial.

Proof. The Dominating Set Problem is one of the most well-known W[2]-hard

problems when considering the size of the set as parameter [13]. The reduction

used in the proof of Theorem 3.5 is a parameterized reduction for K because

we use the same K for both problems. This proves the statement.

It follows from Theorem 3.15 that an fpt algorithm for Problem (dmEm) for

parameter K cannot exist, unless W[0]=W[1]=W[2]. A slightly weaker result

can be obtained when considering the parameter n−K instead, where n is the

number of dimensions in the underlying problem:

Theorem 3.16. Problem (dmEm) is W [1]-hard for parameter n − K, even

if Xi = X for every scenario i and |X| is polynomial.

Proof. We construct a parameterized reduction from the decision variant of

the Set Cover Problem. Let Xi = X for every scenario i and X consist of all

basis vectors in Qn and define, for every u ∈ U , an objective vector ξu ∈ Qn

by

(ξu)j =





−1 if u ∈ sj,

0 otherwise.
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Then, by construction, any set cover {si1 , . . . , siK} of size K induces a set of

solutions {ei1 , . . . , eiK} ⊆ X with

∑

u∈U

min
j∈{1,...,K}

ξ⊤u eij = −|U | .

Conversely, for every solution ei1 , . . . , eiK with value −|U |, the corresponding

sets si1 , . . . , siK cover U . Since this is a parameterized reduction for n−K and

the Set Cover Problem is W[1]-hard for parameter n − K [5], we obtain the

desired result.

The following theorem shows that also determining whether a feasible solu-

tion exists, is already W[2]-complete parameterized by K.

Theorem 3.17. Deciding whether Problem (dmEm) has a feasible solution

is W [2]-complete parameterized by K, even if all the coefficients are binary

and |Xi| is polynomial in the input size for all i ∈ L.

Proof. The Set Cover Problem is known to be W[2]-complete parameterized

by K. This was proven by reduction from the Dominating Set Problem [32].

In the proof of Theorem 3.8 we use the same K for Problem (dmEm) and the

Set Cover Problem and therefore the reduction is parameterized.

3.2.4 Connection to Min-Max-Min Robustness

We can adapt some of our proofs in order to obtain hardness results for a

related problem in robust optimization, the so-called Min-Max-Min Optimiza-

tion Problem [6]: instead of the expected value, one asks for the worst case

and additionally one assumes that the uncertainty only affects the objective

function, resulting in the problem

min max
i∈{1,...,l}

min
x∈X∩XK

ξ⊤i x

s.t. |XK | ≤ K .
(mmm)

Buchheim and Kurtz [7] showed that in case of discrete uncertainty Prob-

lem (mmm) is NP-hard for fixed K for the following underlying problems:

Shortest Path, Spanning Tree, Bipartite Matching. We can show that Prob-

lem (mmm) is strongly NP-hard when K is part of the input, even if the

number of feasible solutions of the underlying problem |X| is a polynomial.
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For proving this, we use the same reduction as in the proof of Theorem 3.5.

The only difference is that we find a Dominating Set if and only if we can find

a solution for (mmm) with value equal to −1.

Moreover, with the same reduction as in the proof of Theorem 3.11, we can

show that Problem (mmm) is not in APX when K is part the input, even if |X|

is a polynomial. The only change here is that we can simplify the construction

to

(ξe)v :=





1 if v ∈ e,

α + 1 otherwise.

Also in the case of fixed K ≥ 3 we can show that Problem (mmm) is not

in APX by adapting the proof of Theorem 3.12. Finally, also the results of

Theorem 3.15 and Theorem 3.16 can be carried over to Problem (mmm) using

the same reductions and hence Problem (mmm) is W[2]-hard for parameter K

and W[1]-hard for parameter n−K.

3.2.5 The Min-E-Min Completion Problem

In this section, we introduce a problem that we call the Min-E-Min Completion

Problem, and that is closely related to the Discrete Min-E-Min Problem. In

particular, this problem is a variant of the Discrete Min-E-Min Problem arising

when K solutions have been fixed and are part of the input. The objective is to

determine the remainingKf := K−K free solutions; without loss of generality,

we may assume the free solutions to be the first Kf ones. We denote the set

of fixed solutions, which are given as input, by XK and the set of solutions

that have to be determined by XKf
. The vector ξi is the objective vector in

scenario i. Using this notation, the Min-E-Min Completion Problem can be

formulated as follows:

min
l∑

i=1

min
x∈Xi∩(XKf

∪X
K
)
ξ⊤i x

s.t. |XKf
| ≤ Kf

XKf
⊂ Rn .

(mEmC)

Problem (mEmC) is equivalent to a subproblem appearing in a solution

approach for (dmEm) based on column generation (see Section 4.5.1). In the

following we discuss the complexity of this problem.
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Theorem 3.18. Problem (mEmC) is NP -hard and W [2]-hard parameterized

by Kf if 1 <Kf < l.

Proof. It is easy to see that an instance of (dmEm) with parameter K can

be modeled as an instance of the Min-E-Min Completion Problem with pa-

rameter Kf = K and K = 1, using a dummy solution that is infeasible (or

high-costly) for all scenarios. The result follows from the complexity of Prob-

lem (dmEm) (see Theorem 3.5, Theorem 3.7 and Theorem 3.15).

The case Kf = 1 is giving more interesting results because in this case

(mEmC) turns out to be NP-hard, though Problem (dmEm) is not.

Theorem 3.19. Problem (mEmC) is NP -hard even if Kf = K = 1, if

the uncertainty affects the objective function only, and if Xi = {0, 1}n for

all 1 ≤ i ≤ l.

Proof. We prove the statement by reduction from the Maximum Cut Problem.

Given a graph G = (V,E), we define an instance of (mEmC) with K = Kf = 1

as follows. There are n = |V | binary variables and l = 2|E| scenarios, all with

no explicit constraints, i.e., Xi = {0, 1}n for all 1 ≤ i ≤ l. In particular, for

each edge ei = (u, v) ∈ E, there are two scenarios numbered as i and |E|+ i.

For the former, the objective function coefficients for the variables are

(ξi)d :=





−1 if d = u,

2 if d = v,

0 otherwise,

while for the latter the objective function is defined as follows

(ξ|E|+i)d :=





2 if d = u,

−1 if d = v,

0 otherwise.

Finally, the fixed solution is a vector of zeros, hence, it has a zero cost for

every scenario.

We now show that the graph G has a cut with value q or more if and

only if there exists a solution for the Min-E-Min Completion Problem with

value of −q or less. Assume that G has a cut with value q, i.e., there exists
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a partition (W,V \W ) of its vertices such that δ(W ) ≥ q. Define a solution

for (mEmC) by setting x1 in dimension d to one if the vertex corresponding

to d is in W and 0 otherwise. Since δ(W ) ≥ q, there are at least q scenarios

for which this solution takes value −1. Because there exists a solution with

zero value for all the remaining scenarios, the value of (mEmC) is at least −q.

Conversely, assume now that there exists a solution of Problem (mEmC) with

value −q. Define set W to include all the vertices associated with variables

that take value 1 in the free solution. As (mEmC) has value −q, there are q

scenarios whose value is −1. Every such scenario is associated with an edge

that must have exactly one endpoint in W (otherwise, it would have a positive

cost) and the proof is complete.

3.3 Continuous Min-E-Min Problem

This subsection serves for showing that Problem (mEm) with a continuous

distribution of ξ and θ is in general so hard that solving this problem without

discretization requires techniques that are beyond the scope of this thesis. In

fact we show that even for a given solution, evaluating the objective function

is hard and therefore even meta heuristics, which are in general very fast

and widely used in practice to deal with large problems, become inefficient. In

addition we show that the solution of a new problem, in which the distribution

is replaced by a discrete set of N samples, converges to the original solution

for N → ∞ if the set of feasible solutions is certain. Combining the proof of

Lemma 2 and Theorem 1 in [21] results in the following statement:

Corollary 3.20. Given a ∈ Zn and b ∈ Z, computing

Q(a, b) = Eξ(max{a⊤ξ̃ − b, 0})

is weakly #P -hard (see Definition 2.35) if ξ̃ ∼ U [0, 1]n, i.e. each ξ̃i is indepen-

dently uniformly distributed on [0, 1].

We will use this for proving the following theorem.

Theorem 3.21. Evaluating the objective function of Problem (mEm) for a

fixed solution is #P -hard for general continuous distributions even if K = 2.
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Proof. We reduce the problem of calculating Q(a, b) to the evaluation of Prob-

lem (mEm). Let a ∈ Zn and b ∈ Z be our input. For our reduction we

choose ξ̃ ∼ U [0, 1]n and

ξ =

(
ξ̃

1

)
.

We set the two fixed solutions for Problem (mEm) to

x1 =

(
−a

0

)

and

x2 =

(
0

−b

)

hence x1, x2 ∈ Zn+1. Now we reformulate the objective function of Prob-

lem (mEm):

Eξ(min{ξ⊤x1, ξ
⊤x2}) = Eξ(min{−a⊤ξ̃,−b})

= −Eξ(max{a⊤ξ̃, b})

= −b− Eξ(max{a⊤ξ̃ − b, 0})

= −b−Q(a, b)

Therefore Q(a, b) can be computed by computing Eξ(min{ξ⊤x1, ξ
⊤x2}), and

the statement follows.

Theorem 3.21 implies that it is not possible for every solution to evaluate the

objective function for Problem (mEm) with a continuous distribution in poly-

nomial time, unless P=NP. Therefore it is highly unlikely that there exists an

efficient algorithm for Problem (mEm) in the continuous case.

In the following we want to show that Problem (mEm) with a certain feasible

set X and a continuous distribution can be solved approximately by sampling.

We show that if the number of samples goes to infinity, the optimal solution

value and the optimal solution of the discretized problem converge to their

counterparts of the original problem. The only assumptions we make are that

a feasible solution of Problem (mEm) exists, that the set of feasible solutionsX



59

is bounded, and that Eξ(||ξ||2) is finite, from which it follows that also Eξ(ξ)

is finite. These additional assumptions are not very restrictive, in fact every

well defined instance of Problem (mEm) should meet them.

Definition 3.22. Let ξ̄ be a realization of ξ. Define

F (XK , ξ̄) := min
x∈XK

(ξ̄)⊤x

and let

f(XK) := Eξ(F (XK , ξ))

be the original inner optimization problem of Problem (mEm) and

f̂N(XK) :=
1

N

N∑

i=1

F (XK , ξ̂i)

the inner optimization problem if the original distribution is discretized by N

samples ξ̂i which are independently identically distributed and following the

same distribution as ξ. Let

S := argmin
XK∈XK

f(XK)

be the set of optimal solutions of the original problem and

v := min
XK∈XK

f(XK)

as its optimal value. In the same way we define

ŜN := argmin
XK∈XK

f̂N(XK)

as the set of optimal solutions of the discretized problem and

v̂N := min
XK∈XK

f̂N (XK)

be its optimal value.

In the following we identify XK with the vector in RK·n resulting from

appending all vectors in XK . In particular, we consider

||XK ||p :=
p

√√√√
K∑

h=1

n∑

d=1

|(xh)d|p.
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Lemma 3.23. The following statement holds for all XK , X̄K ∈ XK, for all

realizations ξ̄ of ξ and for all δ > 0:

||XK − X̄K ||2 ≤ δ ⇒ |F (XK , ξ̄)− F (X̄K , ξ̄)| ≤ δ||ξ̄||2,

which means that F (XK , ξ̄) is Lipschitz continuous in XK with a Lipschitz

constant ||ξ̄||2.

Proof. Let XK := {x1, . . . , xK} and X̄K := {x̄1, . . . , x̄K}. Assume without loss

of generality that F (XK , ξ̄) ≥ F (X̄K , ξ̄) and that

j = argmin
1≤h≤K

{(ξ̄)⊤x̄h|x̄h ∈ X̄K}.

We can derive

|F (XK , ξ̄)− F (X̄K , ξ̄)| = | min
x∈XK

(ξ̄)⊤x− min
x̄∈X̄K

(ξ̄)⊤x̄|

∗

≤ |(ξ̄)⊤xj − (ξ̄)⊤x̄j |

= |(ξ̄)⊤(xj − x̄j)|
∗∗
≤ ||ξ̄||2 ||(xj − x̄j)||2

= ||ξ̄||2

√√√√
n∑

d=1

(xj − x̄j)2d

∗∗∗
≤ ||ξ̄||2

√√√√
K∑

h=1

n∑

d=1

(xh − x̄h)2d

= ||ξ̄||2 ||XK − X̄K ||2

≤ δ||ξ̄||2.

For (∗) we use the definition of xj and the assumption that F (XK , ξ̄) ≥

F (X̄K , ξ̄) holds. Inequality (∗∗) follows from the Cauchy-Schwarz inequality

and (∗ ∗ ∗) follows from the fact that no summand of

K∑

h=1

n∑

d=1

(xh − x̄h)
2
d

has a negative value.
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Lemma 3.24. The function f(XK) is continuous in XK.

Proof. Given ǫ > 0, define δ := ǫ
Eξ(||ξ||2)+1

. Because Eξ(||ξ||2) is finite by

assumption, we have δ > 0. If

|XK − X̄K | ≤ δ

then

|f(XK)− f(X̄K)| = |Eξ(F (XK , ξ))− Eξ(F (X̄K , ξ))|

≤ Eξ(|F (XK , ξ)− F (X̄K , ξ)|)
∗

≤ Eξ(δ||ξ||2)

= δEξ(||ξ||2)

≤ δEξ(||ξ||2) + 1

= ǫ.

For (*) we use Lemma 3.23 and the fact that the expected value is monotone.

Lemma 3.25. For Problem (mEm) with a certain feasible set X, f̂N (XK)

converges pointwise on XK to f(XK) with probability 1 for N → ∞.

Proof. Following Shapiro et al. [33], we need to show that C := XK is compact,

that for almost all realizations ξ̄ of ξ, F (XK , ξ̄) is continuous in XK , and that

there exists a measurable function g with

|F (XK , ξ̄)| ≤ g(ξ̄)

for all XK ∈ C. First note that C is compact because the set of feasible

solutions X is compact. Lemma 3.23 implies that F (XK , ξ̄) is continuous

in XK for all realizations ξ̄ of ξ. Let md be the maximum absolute value that

a feasible solution x ∈ X can have in dimension d, which is finite because X

is bounded, and define

g(ξ̄) :=
n∑

d=1

md |ξ̄d|.

Now we have |F (XK, ξ̄)| ≤ g(ξ̄) for all XK ∈ C and almost all realizations ξ̄

of ξ and g(ξ̄) is continuous and hence measurable.
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Remark 3.26. For Problem (mEm) with uncertain constraints, we cannot

prove a similar statement because the crucial requirement that F (XK , ξ̄) is

continuous in XK with probability 1 is not met. A small change in XK can

make the current minimum solution x infeasible and that can cause a jump in

the value of F (XK , ξ̄).

Theorem 3.27. If there exists a feasible solution for Problem (mEm) with cer-

tain, bounded feasible set X and if ξ follows a distribution such that Eξ(||ξ||2)

is finite, the following statements are true:

1. For N → ∞, v̂N converges to v with probability 1.

2. For N → ∞, ŜN converges to S with probability 1, meaning that

max{sup
s1∈S

inf
s2∈ŜN

||s1 − s2||, inf
s1∈S

sup
s2∈ŜN

||s1 − s2||} → 0

holds.

Proof. Building up on the result of Shapiro et al. [33], it is sufficient to show

that there exists a compact set C such that:

1. The set of optimal solutions of the original problem S is nonempty and

contained in C.

2. The function f is finite valued and continuous on C.

3. f̂N converges to f with probability 1 for N → ∞.

4. For large enough N , the set ŜN is nonempty and contained in C.

Let C := XK be the set of K-element subsets of the feasible set of Prob-

lem (mEm) with certain constraints and therefore C is compact. Obviously S

and ŜN are contained in C. Because we know that a feasible solution exists, S

and ŜN are nonempty. Therefore the first and the fourth point are valid. The

function f is continuous on C because of Lemma 3.24. Therefore and be-

cause XK is compact, it follows that f is finite valued. Lemma 3.25 shows the

third point.

Remark 3.28. For (mEm) with uncertain constraints, we cannot prove a

similar statement because for these problems the statement of Lemma 3.25,

which is crucial for the proof, is not true.
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Theorem 3.27 shows that Problem (mEm) with certain constraints can be

solved by replacing the distribution of ξ by a discrete set of samples. If the

number of samples that are used are large enough, the solution value and the

optimal solution of the discretized version are close enough to their counter-

parts of the original problem. The resulting discrete problem can be solved by

the methods described in this thesis.
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Chapter 4

Exact Algorithms

Having shown that the Discrete Min-E-Min Problem is NP-hard in general

even if the underlying problem (P) is tractable, one cannot expect an exact

polynomial-time algorithm. Nevertheless, we will now propose several exact

approaches for this task that we will investigate experimentally in Chapter 6.

The methods differ in the way they depend on the underlying problem (P):

some of the approaches only need an oracle for computing the induced solution

of a subset of scenarios (remember that this is not necessarily the same as an

oracle for (P), see Section 2.6), others require an ILP formulation for the latter

or even a complete enumeration of all elements of
⋃

1≤i≤l Xi. Moreover, as we

will see, their performance depends strongly on the parameters K, l, and n,

and different methods turn out to be preferable in different settings.

We start by describing two types of enumeration algorithms and then pro-

pose an IQP-based compact formulation. Afterwards we present two Set Parti-

tioning formulations and extend one of them to a Branch-and-price algorithm.

4.1 Enumeration of Feasible Solutions

The most straightforward method to solve the Discrete Min-E-Min Problem

is to compute all subsets of
⋃

1≤i≤l Xi of size K, to calculate their objective

values and check whether they are feasible, and to choose the best solution

obtained. Clearly, such a complete enumeration is only reasonable when K

and |
⋃

1≤i≤l Xi| are very small, whereas the number of scenarios l only has a

minor impact on running time. An additional benefit of this solution method

65
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is the fact that it is not necessary to solve the underlying problem, which can

be an advantage when the latter is NP-hard. Nevertheless, in most relevant

situations, this algorithm is impractical and so we do not consider it in the

experimental chapter.

4.2 Enumeration of Partitions

Another way of solving Problem (dmEm) exactly is to compute all possible

partitions of scenarios, to calculate the induced solutions, and to return the

best one of these.

The induced set of solutions is clearly optimal for a given partition and

therefore this strategy leads to an optimal solution. Moreover, it is easy to

verify that it suffices to consider partitions without empty subsets. For fixed l

or fixed l −K, this leads to an oracle polynomial time algorithm, in case the

induced set of solutions can be computed by applying an oracle for (P).

Theorem 4.1. The Discrete Min-E-Min Problem with a certain feasible set X

can be polynomially reduced to the underlying certain problem (P) if either the

number of scenarios l or the difference l −K is fixed.

Proof. The number of partitions of {1, . . . , l} into K non-empty subsets is the

Sterling number of the second kind,

Sl,K =
1

K!

K∑

j=0

(−1)K−j

(
K

j

)
jl .

If K ≥ l, we can compute an optimal solution for each scenario independently,

using the oracle for (P). In particular, when l is bounded, we may assume

that K is bounded as well, and hence also Sl,K. For the second assertion,

note that Sl,K ∈ O(l2(l−K)) is polynomially bounded for fixed l − K and all

necessary partitions can be computed in polynomial time as we will see in the

following.

In case of uncertain constraints we do not necessarily get an oracle-polynomial

time algorithm but obtain an algorithm that has to solve another problem a

polynomial number of times e.g. a Multidimensional Knapsack Problem for

the Knapsack Problem as underlying problem.
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Enumerating all of these partitions is possible with a running time that is a

polynomial of the number of computed partitions. To understand this we cite

a Lemma from [31]:

Lemma 4.2. For all l ∈ N there exists a bijection from the set of partitions

of a set {s1, . . . , sl} to the set of vectors

{(zi, z2, . . . , zl)| z1 = 1, zi ≤ max
j≤i

zj + 1, zi ∈ Z},

where zi = j if and only if si belongs to the j-th subset of the partition.

Intuitively in order to avoid symmetric partitions, every element that has

not been assigned at a certain time can only be placed in a subset that is

not empty at that time or in the empty subset with the lowest index. This

is achieved by the constraint zi ≤ max
j≤i

zj + 1. Following this rule, the first

element that is placed, is always placed in the first subset. To achieve that the

number of subsets is at most K, the additional condition zi ≤ K has to hold. If

it is also required that no subset is empty, before determining the value of zi, it

has to be checked if the number of remaining elements (dimensions d that have

an undetermined value zd) is equal to the number of remaining empty subsets

(numbers from 1 to K that are not used at that time) and if this is true, the

remaining dimensions of the vector are set following the rule zd = zd−1 + 1

for all d ≥ i. Having a vector that is describing a partition, it is easy to

build the corresponding partition by placing the i-th element into the zi-th

subset. Orlov [31] presented a recursive algorithm to compute all vectors cor-

responding to partitions consisting of K non-empty subsets. In the following

we present an algorithm that works without recursions and is faster in prac-

tice. This algorithm will work with a depth-first search, even though with a

breadth-first search, the pseudo code of the algorithm is easier to understand.

The advantage of the depth-first search for using it within an algorithm for

Problem (dmEm) is that after enumerating any partition, we can obtain a

solution for Problem (dmEm). Hence, in instances in which the computation

of all relevant partitions is not possible within the time limit, at least some

solutions can be produced by the algorithm. The running time of the algo-

rithm using depth-first search and of the version using breadth-first search is

comparable.
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Figure 4.1 illustrates the algorithm. The variable c in the algorithm cor-

responds to the current dimension, in which the value has to be computed

in that step, and the vector v is the current vector the algorithm is working

with. The list of lists of vectors Q is supposed to store all vectors, in which

the first i entries are already fixed in the i-th list. In line 5 the variable used

corresponds to the number of subsets that are already used. In the lines 6

to 10 the case that the number of remaining elements (l − c + 1) equals the

number of empty subsets (K − used) is described. In that case, every element

is placed in its own subset. The opposite case is described in lines 12-25. In

line 12 the maximum number max of the c-th entry of the current vector v is

computed. In line 13-17 we create all possible extensions of v that can arise

by fixing the c-th element except for one and store them in the correct list

of Q. In line 18 we perform the last possible fixation and instead of storing

it, we go on working with it (depth-first search). If all l entries of the current

vector v are fixed, the corresponding partition and the induced set of solutions

is computed (line 20) and v is set to null, so that the algorithm knows that it

has to take a new current vector out of Q (line 30-31). If a list of Q is empty,

when the algorithm wants to take a new current vector, c is decreased (line 28)

and the algorithm tries it again. When all lists in Q are empty and the current

vector v is null, c will reach the value 0 and the algorithm stops.

The Sterling number of the second kind increases very fast in K and l but

decreases again when K comes closer to l. Therefore, this solution method

is very effective for small K and l or for small l − K, whereas the number

of dimensions of the underlying problem n does not affect the running time

explicitly, but only via a potentially longer solution time for the underlying

problem.
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Algorithm for Problem (dmEm) by enumeration of partitions

1: c = 1, v = {0}l

2: Let Q be a list of l − 1 lists of vectors

3: while c > 0 do

4: if v 6= null then

5: used = max{vi|i <= c}

6: if l − c+ 1 = K − used then

7: while c ≤ l do

8: vc = used+ 1, c++, used++

9: end while

10: Go to line 20

11: else

12: max = min{used+ 1,K}

13: for i = 1 → i = max− 1 do

14: Create a copy v̂ of v

15: v̂c = i

16: Add v̂ to the (c)-th list of Q

17: end for

18: vc = max

19: if c = l then

20: Use v to obtain a partition p and compute set of solutions induced by

p and store it if the objective value is better than the current best

21: v = null

22: else

23: c++

24: end if

25: end if

26: else

27: if the c-th list of Q is empty then

28: c−−

29: else

30: Remove the last element v̂ of the c-th list of Q

31: v = v̂

32: end if

33: end if

34: end while

Figure 4.1: Algorithm for Problem dmEm by enumeration of partitions.
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4.3 IQP-based Branch-And-Bound

A more sophisticated approach than enumeration is to model the problem as

an integer quadratic program (IQP). To this end, we use two types of variables:

for j ∈ {1, . . . , K}, the vector xj describes the j-th solution to be computed.

Moreover, we need additional variables yij ∈ {0, 1} to model an assignment of

scenarios to the solutions: if yij = 1, then the scenario i is covered by solution j,

i.e., in scenario i one best solution out of x1, . . . , xK is xj . The y-variables are

necessary to correctly calculate the costs induced by the scenario and to select

the corresponding constraints. We obtain the following IQP formulation of

Problem (dmEm):

min
l∑

i=1

K∑
j=1

yijξ
⊤
i xj

s.t.
K∑
j=1

yij = 1 ∀ 1 ≤ i ≤ l

yij = 1 ⇒ xj ∈ Xi ∀ 1 ≤ i ≤ l, ∀ 1 ≤ j ≤ K

yij ∈ {0, 1} ∀ 1 ≤ i ≤ l, ∀ 1 ≤ j ≤ K

(IQP)

Note that the objective function of (IQP) is indeed quadratic, since both yij

and xj are variables here; for each scenario i and each solution j, we count

the corresponding cost ξ⊤i xj if and only if yij = 1. The first set of constraints

in (IQP) ensures that each scenario is covered by exactly one of the solu-

tions x1, . . . , xK . The second set of constraints guarantees that each scenario

is covered by a solution that is feasible for that scenario. Note that for problems

with a certain feasible region these constraints do not depend on yij anymore

and hence can be simplified to the linear constraints xj ∈ X for all 1 ≤ j ≤ K.

We now discuss possible methods for handling this kind of constraints when

using a general-purpose MILP-solver. Assuming that the feasible set of each

scenario i is a polyhedron Xi = {x ∈ X : a⊤i,rx ≥ bi,r ∀ 1 ≤ r ≤ m} charac-

terized by m linear constraints, the first option is to apply linearization, and

replace the constraints by

a⊤i,r xj +BIGM(1− yij) ≥ bi,r ∀ i ∈ {1, ..., l}, j ∈ {1, ..., K}, r ∈ {1, ..., m}

where BIGM is a large enough coefficient. Note that BIGM always exists

because the set of feasible solutions Xi is bounded in every scenario i.
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A second option is to exploit the availability of commercial MILP-solvers

to use the so-called indicator constraints, which are a modeling tool to express

disjunctive conditions. We can then replace the second set of constraints by

yij = 1 ⇒ a⊤i,r xj ≥ bi,r ∀ i ∈ {1, ..., l}, j ∈ {1, ..., K}, r ∈ {1, ..., m}

Preliminary computational experiments showed that, on our benchmark, the

two approaches were comparable, though the former was more robust from a

numerical viewpoint, and was adopted in subsequent experiments.

In Section 2.3 we presented two different ways of handling the quadratic ob-

jective function. It is possible to force Cplex to use one of these strategies

by setting the parameter ’qtolin’. Setting ’qtolin’ to one will force Cplex to

use linearization, whereas setting it to zero results in the use of quadratic re-

laxations. In our experiments in Chapter 6, we tested the impact of using

different values of ’qtolin’ on the running time.

It is easy to verify that the integrality of x-variables does not need to be re-

quired in (IQP) as long as y-variables are binary and a complete polyhedral

description of conv(X) is given.

In the following, we want to present some possible additional improvements

that have not been realized in our experimentation due to the fact that im-

plementing them inside an off-the-shelf MILP-solver is not always possible or

beneficial. The branching decisions only need to take y-variables into account.

When all y-variables are fixed, an algorithm for computing the induced set of

solutions can be used to compute the K solutions x1, . . . , xK : the solution xj

can be computed with

xj ∈ argmin
x∈X̃j

∑

yij=1

ξ⊤i x with X̃j :=
⋂

yij=1

Xi.

As long as some y-variables are not fixed yet, it is reasonable here to createK

children instead of applying the standard binary branching: these children

correspond to the possible values of the vector (yi1, yi2, . . . , yiK), where exactly

one of the variables may be one while all others are zero.

Clearly, the problem (IQP) contains a high degree of symmetry. Part of the

symmetry can be easily broken by requiring yij = 0 for j > i. Nevertheless,

even though this less sophisticated symmetry reduction can be implemented

easily, additional preliminary computations using Cplex suggested that in most



72

of the instances it is faster and more stable from a numerical point of view

to let Cplex handle the symmetry reduction. It is also possible to reduce the

number of children further such that the number of leaves of the Branch-and-

bound tree on the last level (assuming that no branch has been cut before)

is exactly Sl,K , by adapting the methods from Section 4.2. This is illustrated

by Figure 4.2 for an example with l = 4 and K = 3, in which the node yi,j

represents the fixation of yi,j to one and of yi,h to zero for all 1 ≤ h ≤ K

with h 6= j. Every node yi,j can be seen as the decision to put scenario i in

subset j. Let p(yi,j) be the set of all vertices on the direct way from yi,j to y1,1

including yi,j, in the following denoted by predecessors. Let

jmax(yi,j) := max{K,max{ b | ya,b ∈ p(yi,j)}+ 1}.

Let c(yi,j) be the set of children of node yi,j. In order to break the symmetry

we can define c(yi,j) := {yi+1,1, . . . , yi+1,jmax(yi,j))}. This rule ensures that every

node has at most K children and if a scenario is placed into an empty subset,

the index of this subset and the highest index of the subsets so far differ just

by 1. Therefore, we consider for the next scenario just the subsets that are

non-empty and one of the empty subsets instead of all of them, when we decide

in which subset the next scenario has to be placed, thus symmetric solutions

disappear. For obtaining solutions that have no empty subsets, we count in

every node how many subsets are empty in the actual fixation and how many

scenarios are not fixed yet and if these numbers are the same, each of the

missing scenarios is placed into its own subset. The additional avoidance of

empty subsets can be seen in Figure 4.3. The resulting maximum number of

nodes on the lowest level is exactly Sl,K if both rules are used and K l if both

rules are not used. In the example, instead of 81 nodes on the last level the

improved branching tree has only six.
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y4,1 y4,2 y4,1 y4,2 y4,3 y4,1 y4,2 y4,3 y4,1 y4,2 y4,3 y4,1 y4,2 y4,3

y3,1 y3,2 y3,1 y3,2 y3,3

y2,1 y2,2

y1,1

Figure 4.2: Example of the improved branching tree with symmetry breaking

with four scenarios and K = 3.

y4,3 y4,3 y4,3 y4,1 y4,2 y4,3

y3,2 y3,1 y3,2 y3,3

y2,1 y2,2

y1,1

Figure 4.3: Example of the improved branching tree with symmetry breaking

and avoidance of empty subsets with four scenarios and K = 3.

4.4 Set Partitioning Formulations

We now introduce two novel formulations for (dmEm). Both formulations are

pure 0-1 linear programs and involve an exponential number of variables.

Formulation 1. Let F be the family of all subsets of the scenarios. Given

subset S ∈ F , the associated cost is determined by computing the solution

induced by the scenarios in S. In the following, we will assume that an oracle

is available for solving this problem. Note that as already mentioned above,

this problem is not necessarily equivalent to the underlying problem, e.g., a

Knapsack Problem can become a Multidimensional Knapsack Problem. For

notational convenience, assume that F also contains the empty subset and that

the associated cost is zero. Introducing a binary variable ϑt for each feasible
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subset of scenarios St ∈ F and denoting its cost by ct, we get:

min

|F|∑

t=1

ct ϑt

s.t.
|F|∑

t=1

zit ϑt = 1 ∀ 1 ≤ i ≤ l

|F|∑

t=1

ϑt = K

ϑt ∈ {0, 1} ∀ 1 ≤ t ≤ |F|,

(SPP1)

where ϑt = 1 if and only if subset St of scenarios is selected. The constant zjt
is equal to one if and only if the j-th scenario is in the t-th subset and so

the first set of constraints enforces that every scenario is in exactly one of the

chosen subsets. Problem (dmEm) requires to select at most K solutions. Ne-

vertheless, by demanding exactly K subsets instead, which is more convenient

for computing the dual program, the optimal solution does not change: if less

than K subsets are chosen, any subset can be split into more than one subset

without worsening the objective value. The second constraint now guarantees

that exactly K subsets are used. Therefore, the first and second constraint

combined ensure that the variables ϑt describe a partition of the scenarios

into K subsets. By taking the optimal solution for each selected subset, we

obtain a complete solution to Problem (dmEm), whose cost is given by the

sum of the costs of the selected subsets.

Formulation 2. We can derive another formulation for Problem (dmEm)

working in the space of solutions. For each scenario i, let Xi denote the set of

all feasible solutions, and let Q =
⋃

i Xi. Let rip be the cost of solution p in

scenario i; possibly rip = +∞ if p /∈ Xi. For each solution p ∈ Q, introduce a

binary variable σp, taking value 1 if solution p is among the K chosen solutions,

and 0 otherwise. In addition, for each solution p and scenario i, we introduce

the variable ρip, which is one if scenario i is covered by solution p and 0

otherwise. Thus, Problem (dmEm) can be formulated as follows:



75

min

l∑

i=1

|Q|∑

p=1

rip ρip

s.t.
|Q|∑

p=1

ρip = 1 ∀ 1 ≤ i ≤ l

σp ≥ ρip ∀ 1 ≤ i ≤ l, ∀ 1 ≤ p ≤ |Q|

|Q|∑

p=1

σp = K

σp ∈ {0, 1} ∀ 1 ≤ p ≤ |Q|

ρip ∈ {0, 1} ∀ 1 ≤ i ≤ l, ∀ 1 ≤ p ≤ |Q|

(SPP2)

The first set of constraints ensures that every scenario is covered by exactly

one solution. The second set of constraints guarantees that only solutions

that are selected cover scenarios, while the third set of constraints assures that

exactly K solutions are chosen.

Both (SPP1) and (SPP2) require a large amount of enumeration, either

of all the feasible subsets of scenarios or of all feasible solutions. In practice,

this may be computationally very expensive or even impossible when large-size

instances are considered. In such cases, one has to resort to column generation

techniques (see Section 4.5.1) and Branch-and-price algorithms. The models

can be used for computing heuristic solutions as well, as it will be described

in Chapter 5.

We conclude this section showing that the two set partitioning models have

the same tightness in terms of continuous relaxation.

Theorem 4.3. Models (SPP1) and (SPP2) are equivalent in terms of contin-

uous relaxation.

Proof. In the following we will denote by (SPP1)c and (SPP2)c the continuous

relaxations of models (SPP1) and (SPP2), respectively. To prove the statement

we show that, given an optimal solution of (SPP1)c, there exists a feasible
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solution of (SPP2)c with the same value or with a better value, and vice versa.

Given an optimal solution ϑ of (SPP1)c, the corresponding solution for (SPP2)c
is defined as follows:

1. for p := 1 to |Q| do

σp := 0;

for i := 1 to l do ρip := 0;

2. for each St ∈ F such that ϑt > 0 do

let p be the solution induced by subset St;

σp := σp + ϑt;

for i := 1 to l do ρip := ρip + zit ϑt

Step 1 initializes an empty solution, while the second step defines the cor-

rect value for the σ and ρ variables. In this step, only subsets St that are

actually selected in solution ϑ are taken into account. For each such subset,

the associated induced solution p is considered. Every positive value ϑt is used

to increase the value of a single σ variable, hence

K =

|F|∑

t=1

ϑt =

|Q|∑

p=1

σp.

Similarly, for each scenario i, each variable ρip is increased by ϑt when a selected

subset St is considered such that p is the associated induced solution and i ∈ St

(i.e. zit = 1). It follows that

1 =

|F|∑

t=1

zit ϑt =

|Q|∑

p=1

ρip,

hence solution (σ, ρ) is feasible to (SPP2)c. Finally, consider a selected sub-

set St, which contributes with a cost ctϑt to the objective function of (SPP1)c.

Let p be the associated induced solution and note that, by definition, we have

ct =
∑

i∈St

rip.

Increasing each variable ρip (i ∈ St) by ϑt produces a cost increase equal to
∑

i∈St

rit ϑt = ϑt

∑

i∈St

rit = ct ϑt
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in the objective function of (SPP2)c. Hence, the two solutions have the same

cost.

Assume now that (σ, ρ) is an optimal solution for (SPP2)c. The following

procedure defines a solution ϑ for (SPP1)c:

1. for t := 1 to |S| do ϑt := 0

2. for p := 1 to |Q| do

for i := 1 to l do ρ̄ip := ρip;

while there exists a i ∈ {1, . . . , l} such that ρ̄ip > 0 do

St := {i : ρ̄ip > 0}, min := mini∈St
ρ̄ip, ϑt := ϑt +min

for each i ∈ St do ρ̄ip := ρ̄ip −min

For every solution p, the sum of all ϑ variables is increased by the maximum

value of ρ̄ip over all scenarios i. This value is a lower bound for σp and therefore

in an optimal solution σp will take exactly this value. Therefore, we have

K =

|Q|∑

p=1

σp =

|F|∑

t=1

ϑt.

If in the procedure for a subset St the ρ̄ values are decreased each by an

amount of min, the total decrease of the sum of ρ̄ variables is min · |St|. At

the same time we increase ϑt by min. Note that exactly |St| many zit variables

have value 1 and therefore the increase of

|F|∑

t=1

zit ϑt

is min|St|. When all ρ̄ variables have value zero, the algorithm stops and no ϑ

variables can be increased anymore. Therefore, the total decrease of ρ̄ variables

is equal to the total increase of

|F|∑

t=1

zit ϑt.

Because we initialized each ρ̄ip with the value of ρip, the total decrease of ρ̄ip
variables is equal to

|Q|∑

p=1

ρip,
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when the algorithm ends and so we have

1 =

|Q|∑

p=1

ρip =

|F|∑

t=1

zit ϑt.

Let us assume without loss of generality that for a solution p̂ two ρ̄ vari-

ables ρ̄ip̂ and ρ̄jp̂ have a value larger than zero. The algorithm takes the

set St := {i, j} and computes its optimal induced solution p with value ct

and increase ϑt by min := mini∈St
ρ̄ip. The increase of the objective value

of (SPP1) is min ct, which is smaller than min(rip̂ + rjp̂) because p is the op-

timal solution for St and p̂ is not necessarily the optimal solution. Because we

minimize, a smaller increase leads to a better solution value and therefore the

solution value of (SPP1) is at least as good as the solution value of (SPP2).

For a better understanding of the transformation the procedure of transfer-

ring solutions from (SPP1) to (SPP2) is shown in Example 4.4.

Example 4.4. Given the following instance of Problem (dmEm):

1. K = 2, l = 4, n = 3

2. X1 = X2 = X3 = X4 = {0, 1}3

3. ξ1 = (−1,−1, 1)⊤, ξ2 = (1, 2,−2)⊤, ξ3 = (−2, 1, 0)⊤, ξ4 = (2,−2,−1)⊤

We enumerate all subsets of scenarios and the corresponding costs:

Index i Si ci Index i Si ci

1 {1, 2, 3, 4} −2 9 {2, 3} −3

2 {1, 2, 3} −3 10 {2, 4} −3

3 {1, 2, 4} −3 11 {3, 4} −2

4 {1, 3, 4} −3 12 {1} −2

5 {2, 3, 4} −3 13 {2} −2

6 {1, 2} −1 14 {3} −2

7 {1, 3} −3 15 {4} −3

8 {1, 4} −3 16 {} 0

We enumerate all possible solutions and their objective values in the scenarios:
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j pj r1j r2j r3j r4j

1 (0, 0, 0)⊤ 0 0 0 0

2 (0, 0, 1)⊤ 1 −2 0 −1

3 (0, 1, 0)⊤ −1 2 1 −2

4 (0, 1, 1)⊤ 0 0 1 −3

5 (1, 0, 0)⊤ −1 1 −2 2

6 (1, 0, 1)⊤ 0 −1 −2 1

7 (1, 1, 0)⊤ −2 3 −1 0

8 (1, 1, 1)⊤ −1 1 −1 −1

Consider the following feasible (and optimal) solution of the relaxation of

(SPP1) with value −6:

ϑ = (0, 0, 0, 0, 0, 0, 0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0, 0)⊤.

We construct a feasible solution of the relaxation of (SPP2) using the algorithm

in Theorem 4.3 and skip the parts of the algorithm in which no value changes:

• initialization

• Consider S7 = {1, 3}

– one optimal induced solution for S7 is p5 = (1, 0, 0)⊤

– σ5 = 0.5, ρ15 = 0.5, ρ35 = 0.5

• Consider S8 = {1, 4}

– one optimal induced solution for S8 is p3 = (0, 1, 0)⊤

– σ3 = 0.5, ρ13 = 0.5, ρ43 = 0.5

• Consider S9 = {2, 3}

– one optimal induced solution for S9 is p6 = (1, 0, 1)⊤

– σ6 = 0.5, ρ26 = 0.5, ρ36 = 0.5

• Consider S10 = {2, 4}

– one optimal induced solution for S10 is p2 = (0, 0, 1)⊤

– σ2 = 0.5, ρ22 = 0.5, ρ42 = 0.5
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The resulting solution is clearly feasible for the relaxation of (SPP2) and

has a solution value of −6.

Given the following feasible (but not optimal) solution of the relaxation of

(SPP2) with value −5:

• σ2 = 0.5, ρ22 = 0.5, ρ32 = 0, ρ42 = 0.5

• σ6 = 0.5, ρ16 = 0.25, ρ26 = 0.5, ρ36 = 0.75

• σ8 = 0.5, ρ18 = 0.75, ρ38 = 0.25, ρ48 = 0.5

All variables that are not mentioned take the value zero. We construct a

feasible solution of the relaxation of (SPP1) using the algorithm in Theorem 4.3

and skip the parts of the algorithm in which no value changes:

• initialization

• p = 2:

1. ρ̄22 = 0.5, ρ̄32 = 0,

ρ̄42 = 0.5

2. St = {2, 4} = S10

3. ϑ10 = 0.5

4. ρ̄22 = 0, ρ̄42 = 0

• p = 6:

1. ρ̄16 = 0.25, ρ̄26 = 0.5,

ρ̄36 = 0.75

2. St = {1, 2, 3} = S2

3. ϑ2 = 0.25

4. ρ̄16 = 0, ρ̄26 = 0.25,

ρ̄36 = 0.5

5. St = {2, 3} = S9

6. ϑ9 = 0.25
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7. ρ̄26 = 0, ρ̄36 = 0.25

8. St = {3} = S14

9. ϑ14 = 0.25

10. ρ̄36 = 0

• p = 8:

1. ρ̄18 = 0.75, ρ̄38 = 0.25,

ρ̄48 = 0.5

2. St = {1, 3, 4} = S4

3. ϑ4 = 0.25

4. ρ̄18 = 0.5, ρ̄38 = 0,

ρ̄48 = 0.25

5. St = {1, 4} = S8

6. ϑ8 = 0.25

7. ρ̄18 = 0.25, ρ̄48 = 0

8. St = {1} = S12

9. ϑ12 = 0.25

10. ρ̄18 = 0

The resulting solution

ϑ = (0, 0.25, 0, 0.25, 0, 0, 0, 0.25, 0.25, 0.5, 0, 0.25, 0, 0.25, 0, 0)⊤

is feasible for the relaxation of (SPP1) and has a solution value of −5.5.

In the example we chose a non-optimal solution because a solution in which

corresponding σ and ρ values have different fractions, is more interesting and

beneficial for the understanding of the proof of Theorem 4.3. Such a solution

occurs only in larger instances as optimal solution.

We want to conclude this section by emphasizing that formulation (SPP1)

is used in a Branch-and-price algorithm (see Section 4.5.3) and (SPP2) as a

refinement procedure for heuristic solutions (see Chapter 5).
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4.5 Branch-and-Price

In this section we present an exact algorithm based on one of the set parti-

tioning formulations introduced in Section 4.4. Both formulations include an

exponential number of variables and therefore column generation techniques

can be useful for solving the associated linear programming relaxations. The

first model is more convenient for this kind of approach because in the second

model generating new columns leads to an additional creation of new rows

(see the second set of constraints). For this reason and because the models

provide the same lower bound, in this section we will concentrate on the first

formulation only. The developed algorithm is a Branch-and-price scheme that

uses, at each node, the methods described in the next section for computing

the column generation lower bound and adopts the branching strategy given

later in this section.

4.5.1 Column Generation

By dropping the binary requirements, the domain of the variables of mod-

el (SPP1) can be replaced by ϑt ≥ 0 for all 1 ≤ t ≤ |F|, and hence the dual of

the resulting model is:

max
∑l

i=1 λi +Kµ

s.t.
∑l

i=1 zitλi + µ ≤ ct ∀ 1 ≤ t ≤ |F|

µ ≥ 0,

where λi for all 1 ≤ i ≤ l and µ are the dual variables associated with the

constraints of (SPP1).

Column generation defines a restricted master problem, in which a subset

of the ϑt variables is used, and solves this continuous problem to optimality.

Given the associated dual variables, column generation asks for a variable (col-

umn) that has a negative reduced cost, i.e., whose associated dual constraint

is violated by the current dual solution. For a given subset S of scenarios, the

associated dual constraint is violated if
∑

i∈St

λi + µ > ct

where ct is the cost of the solution induced by St. This solution must satisfy

all constraints of the scenarios in the subset. The problem of determining
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the subset St whose associated dual constraint is maximally violated can be

formulated by introducing, for each scenario i, a binary variable πi taking

value 1 if and only if scenario i belongs to subset St. The reduced cost c̄t of

this subset is given by the optimal solution of the following problem

min
∑l

i=1(ξi
⊤x− λi)πi − µ

s.t. πi = 1 ⇒ x ∈ Xi ∀ 1 ≤ i ≤ l

πi ∈ {0, 1} ∀ 1 ≤ i ≤ l.

(PPSPP1)

If the optimal solution of the model has a negative value, then the subset of

scenarios St = {i | πi = 1} corresponds to a variable with negative reduced

cost and should be added on-the-fly to the current restricted master problem.

The model above includes a set of non-linear constraints that can be again ei-

ther linearized using a BIGM coefficient or formulated as indicator constraints

(see Section 4.3). In our experiments with a general-purpose solver, we ex-

perienced better performances using the first strategy. Note that the pricing

problem is NP-hard, as shown by the following reduction from the Min-E-Min

Completion Problem (mEmC) (see Section 7).

Theorem 4.5. The pricing problem (PPSPP1) is equivalent to (mEmC) with

Kf = K̄ = 1.

Proof. For distinguishing the ξ of the pricing problem and the ξ of Prob-

lem (mEmC) we denote the latter by ξ̄. We can reformulate the objective

function of the pricing problem as

min
l∑

i=1

ξi
⊤xπi +

l∑

i=1

λi(1− πi)−
l∑

j=1

λi − µ

where the last two terms are constant and do not depend on the variables x

and π.

We now show that Problem (mEmC) can be reduced to the pricing problem.

Given an instance of (mEmC), we define an instance of the pricing problem

with n+1 dimensions and l+1 scenarios. Every scenario i ≤ l gets the feasible

set (Xi∪{0n})×{0, 1} and scenario l+1 gets the feasible set Xl+1 = {0, 1}n+1.

The objective vector of each scenario i ≤ l is

(ξi)d :=





ξ̄i if d < n+ 1,

λi otherwise
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and the objective vector of the last scenario is

(ξl+1)d :=





0 if d < n+ 1,

BIGM otherwise,

where

BIGM >
∑

λi<0

−λi.

Finally, we define the fixed solution

x̄d :=





0 if d < n+ 1,

1 otherwise.

A scenario i that is covered by the fixed solution contributes to the objective

value with λi if i ≤ l, and with BIGM otherwise. Let xf be the free solution

determined by solving Problem (mEmC) with Kf = K̄ = 1. Because of the

choice of BIGM, the free solution must have (xf )n+1 = 0, i.e., the solution cov-

ers the last scenario with zero cost. For the remaining scenarios i ∈ {1, . . . , l},

a scenario will be covered by the free solution xf if xf ∈ Xi and
n∑

d=1

(ξ̄i)d(xf )d < λi

holds and by the fixed solution otherwise. In other words, the scenarios that

are covered by the free solution determine the set of π variables and the free

solution restricted to the first n dimensions is equal to the xf vector of the

pricing problem. Hence, both problems have the same objective value apart the

constant part and the optimal solution of the pricing problem can be computed

with the optimal solution of Problem (mEmC).

Now we want to reduce Problem (mEmC) to the pricing problem. To this aim,

given a fixed solution x̄, we set λi = (ξ̄i)
⊤x̄ for each scenario i, and use the

same set of scenarios in both problems. It is easy to see that the objective

functions of the two problems are equivalent to each other and the free solution

of Problem (mEmC) is equivalent to the x variables of the pricing problem.

4.5.2 Heuristic Pricing

Having an NP-hard pricing problem, it makes sense to solve it using a heuris-

tic algorithm, resorting to an exact method only in case the former failed in

producing a variable with negative reduced cost.
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Our heuristic algorithm is described in Figure 4.4. The heuristic pricing

algorithm stops if one column with negative reduced costs is found. Of course,

it is also possible to go on searching for more columns with negative reduced

costs and add the one with the lowest reduced costs or add more columns at

the same time. Nevertheless, in our implementation we experienced better

results using the strategy to add just the first column with negative reduced

costs, because the running time for solving the master problem in our case

has no significant effect on the total running time of the column generation

algorithm.

Note that the reduced costs of a column (variable) consist of the costs of the

induced solutions and of a linear term depending on the dual variables. Com-

puting the first part can be very time consuming depending on the underlying

problem, whereas the second part can be computed without a significant loss of

time. Observe that only the second part of the reduced costs changes through

the column generation process. Therefore, by creating a hash table with sets of

scenarios as keys and the corresponding induced solutions and costs as values,

one can compute in negligible time the reduced cost of a column involving a

subset of the scenarios that occurred before. Every time an induced solution

is computed, we store it and its cost in this table.

In the first six lines of the heuristic, we compute the reduced cost for each

variable corresponding to a subset of scenarios stored in the hash table until a

variable with negative reduced cost is found. If we find such variable, we stop

the heuristic and add it to the master problem, which is then re-optimized.

Our computational experiments (see Section 6) show that this may have a

dramatic impact on the performance of the overall procedure, mainly when

the underlying problem is hard to solve. Using hash tables makes the column

generation procedure faster and faster the more iterations are executed. As a

consequence, the method shows a speedup during the exploration of the enu-

meration tree in the Branch-and-price algorithm because large parts of these

hash tables can be passed on from the parent node to a child node. In order to

have a lot of values in this hash table, it is a good improvement to save also the

value of all the subsets that are regarded in the exact pricing, no matter which

algorithm one uses. For an oracle-based algorithm for the exact pricing, this

is trivial. Solving the exact pricing problem with a general-purpose MIQP-
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solver, it is possible that it stores solutions and its values in a solution pool

that can be accessed without additional efforts after the problem is solved and

in this way the hash table can be filled in order to get an additional speedup.

The heuristic pricing algorithm has two parameters p1 and p2 that can be

changed in order to optimize the performance. In line seven of the algorithm, p1
feasible subsets are sampled at random and for each of them a heuristic cost

is computed. The heuristic cost can be computed by using a heuristic instead

of the exact algorithm for computing the induced set of solutions and is there-

fore much faster than the latter. According to this heuristic cost, the best p2
subsets are stored in the list l1 for further investigation. In the lines eight to

fifteen, the algorithm iterates over the subsets in l1.

Another improvement of the algorithm is to compute a relaxed reduced cost,

a lower bound on the reduced cost, and skip the subset if this is not negative

because in this case the real reduced cost cannot be negative. Lower bounds

on the reduced costs can be computed in general much faster compared to the

exact reduced costs. Therefore it is beneficial to spend some time in comput-

ing relaxed reduced costs if it sometimes avoids the computation of the exact

reduced cost. If there is no fast method for computing a lower bound on the

exact reduced costs, this step can also be skipped. Finally, if a solution with

negative exact reduced costs is found, we add it to the master problem (line 11)

and the algorithm terminates.

4.5.3 Branching Scheme

As already mentioned, we used a Branch-and-price algorithm for computing

an optimal solution of model (SPP1). At the root node, a feasible solution is

computed using a heuristic algorithm. At each node, the continuous relaxation

of the current subproblem is solved, producing a lower bound on the optimal

solution value of the current subproblem. If the solution of the relaxation is

integer, the incumbent may not be improved and the node is fathomed. Oth-

erwise, if the lower bound is smaller than the incumbent value, the optimal

solution of the continuous relaxation is used to branch, producing two sub-

problems that are explored according to a depth-first strategy. In particular,

let a be a scenario that is included in more than one subset t with ϑt > 0

in the current fractional solution. Note that this scenario always exists in a
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Heuristic for generating columns
1: for each subset s, for which the value of the induced solution is already

known do
2: if Reduced costs of s are negative then

3: Add a new column for s to the master problem

4: return

5: end if
6: end for

7: Sample p1 random, feasible subsets and save the p2 best of them according

to a heuristic reduced cost in list l1
8: for Subset s ∈ l1 do
9: if Relaxed reduced costs of s are negative then

10: if Exact reduced costs of s are negative then
11: Add a new column for s to the master problem

12: return
13: end if

14: end if
15: end for

Figure 4.4: Heuristic pricing algorithm

non-integer solution because of the first constraint of SPP1. Let S1 and S2 be

two of these subsets, and let b be a scenario that belongs to the symmetric

difference of S1 and S2. In the first node we impose that the scenarios a and

b belong to the same subset, while in the other node we forbid it.

Observe that this branching rule only affects the pricing subproblems at the

descendant nodes, whereas the master problem is influenced only implicitly.

However, a nice property of this branching scheme is that handling these mod-

ifications is very easy both in the heuristic pricing problem, and in the exact

pricing problem. Indeed, in the latter case, it is enough to enforce in (PPSPP1)

the additional constraints ρa = ρb for the first node, and ρa + ρb ≤ 1 for the

second one. The parent node can also inherit parts of the hash tables that store

subsets of scenarios and their induced set of solutions and the corresponding

costs. Here one has to pay attention that the subsets that violate the new fix-

ation of the child node are not passed on. Also in the sampling of a new subset
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the fixation rules can be easily integrated and so the heuristic algorithm will

not produce subsets that violate the fixations. In general, we have a number

of candidate scenarios for a and b, thus we use the following tie breaking rules.

For each scenario i, we define a score

score
1
i =

∑

t:i∈St,ϑt>0

min{1− ϑt, ϑt},

and select the scenario a having maximum score. The idea of this score is to

find the "most fractional" scenario by balancing two properties: the difference

to the closest integer value and the number of occurrences in fractional subsets.

For a given a, we assign to each scenario a second score

score
2
i = min{|{t : ϑt > 0, a ∈ St, i /∈ St}|, |{t : ϑt > 0, a ∈ St, i ∈ St}|}

and take the scenario b that maximizes this value. The second score tries to

find a second scenario so that the number of forbidden subsets that were in

the solution in both branches is as balanced as possible.

The resulting Branch-and-price algorithm turns out to be very effective for

some underlying problems and combinations of the input parameters, as we

can see in the computational experiments in Chapter 6.



Chapter 5

Heuristics

Due to the complexity results for Problem (dmEm) presented in Chapter 3,

it makes sense to investigate not only exact algorithms for Problem (dmEm)

but also algorithms that do not guarantee an optimal solution but are fast in

practice. Therefore, in this chapter we present variants of a heuristic algo-

rithm for solving Problem (dmEm). In the first section, we propose a basic

heuristic, which we use as a foundation for all the other variants we discuss in

this chapter. In Section 5.2 we propose two different approaches for generating

starting partitions that the basic heuristic requires. Different ways to improve

the heuristic are presented in Section 5.3 and in Section 5.4 we introduce a re-

finement procedure that combines solutions from different runs of the heuristic

using formulation (SPP2) (see Section 4.4).

5.1 Basic Heuristic

Using the concepts of induced partitions and induced solution sets as intro-

duced in Section 2, we obtain a natural heuristic algorithm by applying both

constructions alternately, until no changes occur:

89



90

Basic Heuristic
1: Choose an arbitrary partition P of {1, . . . , l}.

2: repeat

3: Set P ′ := P .

4: Compute the solution set XK induced by P ′.

5: Compute the partition P induced by XK .

6: until P = P ′

7: return XK

It is clear from the definitions of induced partitions and induced solution sets

that the objective values of the solution sets produced by this algorithm are

non-increasing. We claim that the algorithm always terminates, i.e., that it

cannot get stuck in a cycle. In fact, by the non-increasing objective values,

such a cycle can only exist if all involved solution sets have the same objective

value. However, if there is more than one optimal solution for a subset of

scenarios, we choose the lexicographically first solution with respect to the

entries of the vector, by our definition of the induced solution set given in

Section 2.6. Therefore a cycle cannot occur.

The running time used by one iteration of the heuristic is dominated by

the time consumed by the oracle. We will see later that it runs very quickly

in our experiments. However, we cannot guarantee a polynomial number of

iterations. In fact, it is possible to construct cases in which the heuristic uses

all Sl,K scenarios that are considered for the exact algorithm, which enumerates

the partitions of the set of scenarios (see Theorem 4.1).

Example 5.1. Let K = 2, l = 4 and n = 13. Consider the scenarios

ξ1 = (0, 60, 14, 60, 6, 60, 14, 12, 60, 2, 60, 1, 60)⊤

ξ2 = (28, 30, 12, 60, 21, 20, 60, 16, 24, 25, 0, 60,−2)⊤

ξ3 = (60, 16, 16, 18, 13, 60, 2, 60, 0, 60, 22, 20, 60)⊤

ξ4 = (60, 14, 60, 10, 60, 8, 60, 10, 60, 9, 60, 9, 60)⊤

and let Xi be the set of all basis vectors e1, . . . , e13 ∈ Q13 in every scenario i.

We start with the partition P = {{ξ1}, {ξ2, ξ3, ξ4}}. The steps of the algorithm

are illustrated in the following table:
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Iteration Induced/Starting Partition Induced solution set Obj. value

0 {ξ1}, {ξ2, ξ3, ξ4} e1, e2 60

1 {ξ1, ξ2}, {ξ3, ξ4} e3, e4 54

2 {ξ1, ξ2, ξ3}, {ξ4} e5, e6 48

3 {ξ1, ξ3}, {ξ2, ξ4} e7, e8 42

4 {ξ3}, {ξ1, ξ2, ξ4} e9, e10 36

5 {ξ2, ξ3}, {ξ1, ξ4} e11, e12 32

6 {ξ2}, {ξ1, ξ3, ξ4} e13, e12 28

7 {ξ2}, {ξ1, ξ3, ξ4} e13, e12 28

We see that all S4,2 = 7 partitions are enumerated. In this case, it follows in

particular that the optimal solution has been found.

5.2 Computing Initial Partitions

In our experiments, it will turn out that this heuristic takes only a few millisec-

onds of running time in general. We can thus start it with more than one initial

partition independently, and finally choose the best set of solutions obtained.

Finding promising starting partitions is crucial for obtaining good results. We

want to present two approaches of computing starting partitions with different

advantages that might be preferable in different settings. The first algorithm,

which requires an integer x > 0 as input, computes deterministic partitions:
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Basic Algorithm for computing starting partitions
1: Add all scenarios to the list L of scenarios that have not been assigned.

2: for i = 1; i ≤ K; i++ do

3: Set Pi = ∅.

4: if i ≤ l mod K then

5: size = l
K
+ 1

6: else

7: size = l
K

8: end if

9: for j = 1; j ≤ size; j ++ do
10: y = (x · j) mod |L|.

11: Insert the y-th element of L to Pi and remove it from L.

12: end for

13: end for
14: return P = {P1, . . . , PK}

In the computed partition, the size of the smallest and the largest subset

differ by at most one. The advantage of this property is that the probability

that scenarios change the subset is higher the more scenarios are contained in

the subset. Numerical tests suggest that using this algorithm for computing

partitions is preferable over taking completely random partitions. Instead of

using completely random partitions, one can use the following randomized

algorithm:

Clustering Algorithm for computing starting partitions
1: for every scenario i do

2: Create a vector vi by appending θi to ξi.

3: end for

4: Cluster the vectors v with the k-means algorithm into K clusters (see

Section 2.5)

5: if vi is in the j-th cluster then
6: Place scenario i in the j-th subset of the partition P

7: end if
8: return P

In the first step, the scenarios are clustered using the k-means algorithm.
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This algorithm itself starts with a random clustering and therefore the result-

ing algorithm for generating a partition is not deterministic. This is important

because using a deterministic clustering algorithm like single-linkage cluster-

ing produces every time the same partition, which is not useful if one wants to

start the algorithm with different partitions. Intuitively, scenarios that slightly

differ from each other are likely to belong to the same subset in a good parti-

tion, while very different scenarios should be put in different subsets. In fact,

scenarios with ξ vectors that are close to each other are more likely to have a

similar optimizer and scenarios with θ vectors that are close to each other are

more likely to be feasible for the same solution.

5.3 Improvement

We now describe a further improvement of the heuristic. For this, we assume

that the induced set of solutions always consists of exactly K different so-

lutions, which can easily be ensured by replacing any duplicate solution by

a random solution not contained in the set yet or a solution that is optimal

for a single scenario. The idea of this improvement is to slightly change the

induced partition when the heuristic runs into a local optimum. To increase

the probability that the next local optimum is better than the old one, it is

reasonable to deteriorate the objective value as few as possible when the par-

tition is changed. To achieve this, the change in the partition consists of a

shift of z scenarios from their induced subset into their second best subset.

Clearly, the role of z is crucial in this algorithm: for larger values of z, the

objective value becomes worse and the probability that the new solution is

better decreases. Otherwise, if z is chosen too small, the change might be too

small to leave the local optimum. In the experimental evaluation described in

the following chapter, we use this heuristic with all presented improvements

and z = 5, because this turned out to yield the best results in our tests.
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Improved heuristic
1: Fix a parameter z ∈ N.

2: Compute a starting partition P of {1, . . . , l}.

3: Run the basic heuristic with starting partition P and denote the result by

XK,1.

4: repeat

5: Compute the partition P induced by XK,1.

6: Set XK,2 := XK,1.

7: For every scenario, save the best and the second best solution from XK,2,

and sort the scenarios in ascending order according to the differences

between the two corresponding objectives.

8: Set i := z.

9: while i > 0 do
10: Let ξl be the i-th element of the sorted list.

11: Change P by removing ξj from the subset covered by its best solution

and adding it to the subset covered by its second best solution.

12: Set i := i− 1.

13: end while

14: Run the basic heuristic with starting partition P and denote the result

by XK,1.

15: until Solution value of XK,2 is not worse than the solution value of XK,1.

16: return XK,2

The computation of the induced set of solutions is clearly the most expensive

part of the algorithm in terms of running time. Since the algorithm may

be required to compute the cost of the same subset at different iterations,

its computing times can be reduced using hash tables to store the costs and

the induced set of solutions of the subsets that have already been evaluated

(see Section 4.5.1). This implementation issue has a dramatic effect in the

performance of the heuristic, mainly for problems in which the subproblem

solved by the oracle is time consuming.
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5.4 Refinement

Our refinement procedure is based on a heuristic application of the set par-

titioning models described in Section 4.4. The idea is to store the solutions

of multiple runs of the heuristic in the set Q̃. Afterwards we solve formula-

tion (SPP2) from Section 4.4, where instead of using the set of all columns Q,

we restrict it to Q̃. It is known that this kind of formulation can be effec-

tively used to derive heuristic solutions for partitioning/covering problems;

see, e.g., [24] for the Vehicle Routing Problem, [30] for Two-Dimensional Bin

Packing, and [28] for the Vertex Coloring Problem. In all these applications,

the main problem is to efficiently compute a large set of alternative solutions,

possibly, with high quality. In our case, we take advantage of the fact that

the presented heuristic is performed with different starting partitions, which

produces a set of solutions XK for each starting partition. Executing this

algorithm, we may expect that a large set Q̃ of feasible solutions, where du-

plicated solutions are removed, is available. Our refinement procedure uses a

general-purpose MILP-solver on a restricted formulation that includes solution

set Q̃ only. In particular, our experiments showed that using Formulation 2

of Section 4.4 produces better results than using the first formulation. Note

that, by construction, the set of solutions includes the final solution found

by the heuristic and for this reason, the solution found by the solver cannot

be worse than the solution without refinement and a feasible solution always

exists. Actually, our computational experiments (see Chapter 6) show that

this approach frequently improves over the basic heuristic and requires a short

computing time.
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Chapter 6

Experiments

In this chapter, we present the results of an experimental investigation of our

exact and heuristic solution approaches for Problem (dmEm). We compare dif-

ferent configurations of the heuristic in Section 6.1, different exact algorithms

in Section 6.2 and examine the effect of using an approximation algorithm for

computing the induced set of solutions on the objective value in Section 6.3.

The described algorithms were implemented in Java version 1.8.0_242 and ex-

ecuted on machines using Intel Xeon processors with 2.6 GHz and a memory

limit of 32 GB. For solving all the integer linear and quadratic programming

problems we used Cplex version 12.6.3.

In our experiments we considered the following underlying problems, which

are described in Section 2.7 :

UCB: Unconstrained Binary Optimization Problem. All values of ξ are

independent uniformly distributed rational numbers between −0.5

and 0.5.

ST: Spanning Tree Problem. For these problems, we always used a

complete graph as network. For determining the costs of the

edges, we computed two-dimensional center coordinates, which are

in both dimensions integers between zero and one hundred. The

coordinates in every scenario are random gaussians using the cen-

ter coordinates as mean and having a standard deviation of 5. The

cost of an edge in a scenario is the Euclidian distance of the coor-

dinates of its end points.

97
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MFP: Maximum Flow Problem. In our implementation it is in fact a

Minimum Flow Problem and therefore the entries of each cost vec-

tor ξ were set to −1.0 if the corresponding arc leaves the source

and 0.0 otherwise. In particular, the objective function is certain

here. For these problems, we always used a quadratic grid graph as

network. The capacity of the arcs were generated in each scenario

as independent uniformly distributed rational numbers between 0.0

and 1.0. Additionally, for each arc there is a ten percent chance

that it fails completely, leading to capacity zero.

1KP: Knapsack Problem. In each scenario, the profits of the items were

randomly generated as independent uniformly distributed values

between –1.0 and 0.0 and and weights of the items as independent

uniformly distributed values between 0.0 and 1.0. The capacity

value was always set to 0.75W , where W denotes the current sum

of the weights of the items.

MKP: Multidimensional Knapsack Problem. We considered a variant

of 1KP in which there are 5 knapsack constraints. The profit,

weight and capacity values for each scenario were generated as in

the knapsack case.

TSP: Traveling Salesman Problem. We used the same generation of in-

stances as for the Spanning Tree Problem.

In every underlying problem except for (MFP) the objective function is un-

certain. For (MFP), (1KP), and (MKP) the set of constraints is uncertain.

For each underlying problem, we considered different settings, which are com-

binations of different values of the parameters K, l, and n. For each setting

we randomly generated ten instances as described above.

6.1 Heuristics

In this section we investigate which heuristic is the most suitable for which

underlying problem. We consider all underlying problems presented before

except for the Traveling Salesman Problem. In our experiments, we compare

the following heuristics:
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• Basic: this corresponds to the basic heuristic of Section 5 with determin-

istic start partitions, no refinement and no hash tables. This approach

agrees with the improved heuristic algorithm described in [8].

• Det–PP: obtained from Basic by the addition of hash tables.

• Det+PP: obtained from Det–PP by the addition of the refinement as

post processing.

• Clu–PP: this is analogous to Det–PP but the initial partitions are com-

puted using the k-means clustering algorithm.

• Clu+PP: obtained from Clu–PP by the addition of the refinement as

post processing.

All algorithms are run with the same time limit, equal to 30 CPU seconds.

For algorithms ’Det+PP’ and ’Clu+PP’, this time was subdivided giving 20

CPU seconds to the first phase and 10 CPU seconds for refinement.

The following Tables 6.1 – 6.5 report the results for the different classes of

instances. Each table gives, for each algorithm, the following information:

• value: average gap (over ten instances) to the best solution among the

five algorithms for each instance.

• # best: number of instances (out of ten) for which the algorithm found

the best solution among the five algorithms (including ties).

The rows that are printed bold present for each value of K the average over

all values of l and n for the column ’value’ and the total for the column ’# best’.

6.1.1 Unconstrained Binary Optimization

The results illustrated in Table 6.1 suggest that for the Unconstrained Binary

Problem the use of hash tables is just a small improvement, which is not

surprising because solving the underlying problem is very fast. We can see

that solving a Clustering Problem to determine starting partitions is beneficial,

whereas the refinement procedure does decrease the quality of solutions. This

is due to the fact that for a very easy underlying problem, a huge number of

solutions are computed. Therefore, solving the Set Partitioning formulation
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becomes too hard to solve it in time. Another reason is that for easy underlying

problems, the time spent on refinement can be used instead to generate a huge

number of other candidate solutions.

Basic Det-PP Det+PP Clu-PP Clu+PP
K l n value # best value # best value # best value # best value # best
20 100 100 0.3 % 2 0.3 % 2 0.5 % 1 0.0 % 7 0.2 % 2
20 100 300 0.1 % 0 0.1 % 0 0.3 % 0 0.1 % 5 0.1 % 5
20 100 500 0.3 % 0 0.3 % 0 0.3 % 0 0.1 % 6 0.1 % 6
20 200 100 0.1 % 4 0.1 % 4 0.3 % 2 0.2 % 4 0.2 % 2
20 200 300 0.2 % 2 0.2 % 2 0.3 % 2 0.1 % 6 0.2 % 2
20 200 500 0.2 % 4 0.2 % 5 0.3 % 1 0.2 % 4 0.3 % 2
20 - - 0.2 % 12 0.2 % 13 0.3 % 6 0.1 % 32 0.2 % 19
30 100 100 0.5 % 0 0.4 % 0 0.6 % 0 0.0 % 8 0.1 % 6
30 100 300 0.3 % 0 0.3 % 0 0.4 % 0 0.1 % 5 0.1 % 7
30 100 500 0.3 % 0 0.3 % 1 0.3 % 0 0.1 % 6 0.1 % 5
30 200 100 0.4 % 1 0.3 % 2 0.4 % 1 0.1 % 5 0.2 % 4
30 200 300 0.3 % 2 0.2 % 4 0.3 % 2 0.1 % 5 0.3 % 1
30 200 500 0.2 % 3 0.2 % 3 0.2 % 2 0.1 % 2 0.2 % 5
30 - - 0.3 % 6 0.3 % 10 0.4 % 5 0.1 % 31 0.2 % 28
40 100 100 0.3 % 1 0.3 % 1 0.5 % 0 0.0 % 9 0.1 % 4
40 100 300 0.3 % 0 0.3 % 0 0.4 % 0 0.0 % 7 0.1 % 5
40 100 500 0.3 % 2 0.3 % 2 0.4 % 2 0.1 % 5 0.1 % 3
40 200 100 0.6 % 1 0.5 % 1 0.7 % 1 0.1 % 8 0.3 % 3
40 200 300 0.3 % 1 0.3 % 2 0.4 % 1 0.1 % 6 0.3 % 3
40 200 500 0.2 % 2 0.2 % 2 0.3 % 1 0.1 % 4 0.1 % 4
40 - - 0.4 % 7 0.3 % 8 0.5 % 5 0.1 % 39 0.2 % 22

Table 6.1: Results for the heuristics for the Unconstrained Binary Problem
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6.1.2 The Spanning Tree Problem

For the Spanning Tree Problem (see Table 6.2) the heuristic with deterministic

starting partitions without refinement is the best algorithm. Only in the easiest

setting with l = 100 and n = 45, it was beaten by other variants. We can

see that for this underlying problem, in most cases the deterministic starting

partitions are the better choice. Nevertheless, the solution values of all variants

are very close to each other.

Basic Det-PP Det+PP Clu-PP Clu+PP
k l n |V | value # best value # best value # best value # best value # best
20 100 45 10 0.0 % 0 0.0 % 1 0.0 % 3 0.0 % 3 0.0 % 6
20 100 190 20 0.0 % 6 0.0 % 10 0.0 % 4 0.1 % 0 0.1 % 0
20 100 435 30 0.0 % 7 0.0 % 9 0.0 % 7 0.2 % 1 0.2 % 1
20 200 45 10 0.0 % 1 0.0 % 4 0.0 % 1 0.0 % 4 0.0 % 3
20 200 190 20 0.0 % 4 0.0 % 7 0.0 % 3 0.1 % 3 0.1 % 2
20 200 435 30 0.0 % 8 0.0 % 10 0.0 % 8 0.2 % 0 0.2 % 0
20 - - - 0.0 % 26 0.0 % 41 0.0 % 26 0.1 % 11 0.1 % 12
30 100 45 10 0.1 % 0 0.1 % 0 0.0 % 8 0.1 % 2 0.0 % 7
30 100 190 20 0.0 % 4 0.0 % 9 0.0 % 3 0.1 % 1 0.1 % 1
30 100 435 30 0.0 % 3 0.0 % 9 0.0 % 4 0.1 % 1 0.1 % 0
30 200 45 10 0.0 % 4 0.0 % 7 0.0 % 4 0.0 % 1 0.0 % 2
30 200 190 20 0.0 % 8 0.0 % 9 0.0 % 5 0.1 % 1 0.1 % 1
30 200 435 30 0.0 % 5 0.0 % 10 0.0 % 4 0.2 % 0 0.2 % 0
30 - - - 0.0 % 24 0.0 % 44 0.0 % 28 0.1 % 6 0.1 % 11
40 100 45 10 0.1 % 0 0.1 % 1 0.0 % 9 0.0 % 0 0.0 % 8
40 100 190 20 0.0 % 2 0.0 % 7 0.1 % 2 0.1 % 3 0.1 % 2
40 100 435 30 0.1 % 1 0.0 % 8 0.1 % 4 0.1 % 2 0.1 % 2
40 200 45 10 0.0 % 2 0.0 % 4 0.0 % 4 0.0 % 3 0.0 % 5
40 200 190 20 0.0 % 5 0.0 % 8 0.0 % 2 0.1 % 2 0.1 % 1
40 200 435 30 0.0 % 5 0.0 % 10 0.0 % 4 0.3 % 0 0.3 % 0
40 - - - 0.0 % 15 0.0 % 38 0.0 % 25 0.1 % 10 0.1 % 18

Table 6.2: Results for the heuristics for the Spanning Tree Problem

6.1.3 The Maximum Flow Problem

Table 6.3 presents the comparison of heuristics for the Maximum Flow Prob-

lem. We can see that there is a high variation within the best solution values.

We have higher gaps between the different solutions and we do not have an

algorithm that is clearly better than all the others. This is due to the fact

that in the instances in which an algorithm produces the best solution the

entry of the column ’value’ is 1.0 no matter how much better the solution is

compared to the others. On the other hand, in instances in which the solu-

tion value is worse, the gap to the best solution has an impact. This results

in comparatively small values in the column ’value’. The best algorithms for

this problem are ’Clu+PP’, which turns out to be more effective if K is closer
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to l, ’Det–PP’ and ’Det+PP’. The basic heuristic is dominated by the algo-

rithm with deterministic starting partitions without refinement. In the case of

starting partitions obtained with the k-means algorithm, using the refinement

procedure as post processing is improving the solution quality.

Basic Det-PP Det+PP Clu-PP Clu+PP
k l n |V | value # best value # best value # best value # best value # best
20 100 60 36 11.3 % 1 10.1 % 4 10.7 % 2 20.6 % 2 7.3 % 6
20 100 84 49 17.4 % 1 12.5 % 4 12.5 % 2 26.8 % 2 14.8 % 4
20 100 112 64 18.2 % 2 15.4 % 2 10.3 % 5 22.4 % 1 9.6 % 5
20 200 60 36 5.4 % 7 5.1 % 8 2.9 % 8 24.8 % 0 18.9 % 1
20 200 84 49 9.6 % 2 6.0 % 8 8.4 % 4 27.7 % 0 19.6 % 2
20 200 112 64 16.9 % 3 15.1 % 3 1.5 % 7 24.1 % 2 18.8 % 1
20 - - - 13.1 % 16 10.7 % 29 7.7 % 28 24.4 % 7 14.8 % 19
30 100 60 36 13.6 % 1 11.0 % 5 8.7 % 4 22.8 % 0 8.7 % 4
30 100 84 49 15.7 % 3 12.2 % 5 11.1 % 4 20.3 % 0 9.2 % 4
30 100 112 64 31.9 % 0 29.6 % 0 14.2 % 5 24.9 % 1 14.7 % 4
30 200 60 36 11.5 % 3 10.3 % 6 11.4 % 3 23.0 % 0 9.7 % 4
30 200 84 49 6.5 % 4 5.0 % 8 5.6 % 7 21.9 % 0 13.6 % 2
30 200 112 64 15.3 % 2 13.1 % 5 11.4 % 4 26.8 % 1 11.7 % 4
30 - - - 15.7 % 13 13.6 % 29 10.4 % 27 23.3 % 2 11.3 % 22
40 100 60 36 19.4 % 0 17.1 % 1 14.6 % 2 25.1 % 0 4.6 % 8
40 100 84 49 16.9 % 1 13.5 % 4 11.5 % 5 17.3 % 0 4.5 % 5
40 100 112 64 24.3 % 0 21.0 % 2 9.3 % 5 20.6 % 0 5.5 % 4
40 200 60 36 13.9 % 1 13.1 % 4 13.7 % 2 19.8 % 1 4.7 % 6
40 200 84 49 15.8 % 1 14.2 % 5 15.1 % 2 25.4 % 0 6.7 % 5
40 200 112 64 16.1 % 1 15.1 % 4 15.7 % 1 23.2 % 1 5.1 % 6
40 - - - 17.7 % 4 15.7 % 20 13.3 % 17 21.9 % 2 5.2 % 34

Table 6.3: Results for the heuristics for the Maximum Flow Problem

6.1.4 The Knapsack Problem

In this section we discuss the experiments of the heuristics for the case that the

underlying problem is the Knapsack Problem. The results are illustrated in

Table 6.4. The underlying problem is harder to solve than for the underlying

problems regarded before. Therefore, the refinement becomes more attractive

because the resulting IP is easier to solve with less solutions and in the time

used for solving it, the other algorithms are producing less solutions with which

they can potentially increase their objective value. In our results we do not

see a systematic advantage of one method of computing the starting partition

over the other. The most successful algorithms for this underlying problem

are ’Det+PP’ and ’Clu+PP’.
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Basic Det-PP Det+PP Clu-PP Clu+PP
K l n value # best value # best value # best value # best value # best
5 50 10 1.6 % 0 1.4 % 0 0.4 % 4 1.1 % 2 0.5 % 4
5 50 15 1.4 % 0 1.3 % 0 0.1 % 7 1.0 % 0 0.3 % 3
5 50 20 0.9 % 0 0.8 % 0 0.3 % 2 0.6 % 0 0.1 % 8
5 100 10 1.2 % 2 1.1 % 2 0.2 % 7 1.2 % 1 0.7 % 3
5 100 15 0.8 % 0 0.6 % 0 0.3 % 4 0.7 % 1 0.2 % 6
5 100 20 0.9 % 0 0.7 % 0 0.3 % 3 0.5 % 0 0.2 % 7
5 200 10 4.3 % 0 2.7 % 2 1.3 % 6 4.1 % 0 2.5 % 2
5 200 15 1.5 % 0 1.3 % 0 1.3 % 1 0.1 % 9 0.4 % 3
5 200 20 1.2 % 0 1.1 % 0 0.4 % 3 0.4 % 4 0.1 % 7
5 - - 1.5 % 2 1.2 % 4 0.5 % 37 1.1 % 17 0.6 % 43
10 50 10 1.0 % 0 0.9 % 0 0.0 % 10 0.9 % 0 0.0 % 10
10 50 15 1.1 % 0 1.0 % 0 0.0 % 5 0.9 % 0 0.1 % 6
10 50 20 1.2 % 0 1.0 % 0 0.0 % 6 1.1 % 0 0.1 % 4
10 100 10 1.9 % 0 1.8 % 0 1.0 % 2 1.1 % 5 0.5 % 6
10 100 15 1.4 % 1 1.4 % 1 0.7 % 4 1.1 % 1 0.4 % 5
10 100 20 0.7 % 1 0.5 % 2 0.5 % 3 0.5 % 4 0.1 % 4
10 200 10 0.1 % 6 0.0 % 8 0.2 % 4 0.5 % 2 0.6 % 2
10 200 15 0.4 % 2 0.3 % 2 0.3 % 4 0.5 % 2 0.5 % 4
10 200 20 1.3 % 0 0.9 % 0 0.3 % 3 1.1 % 1 0.2 % 7
10 - - 1.0 % 10 0.9 % 13 0.3 % 41 0.8 % 15 0.3 % 48
20 50 10 0.3 % 0 0.2 % 0 0.0 % 10 0.1 % 0 0.0 % 9
20 50 15 0.7 % 0 0.5 % 0 0.0 % 10 0.5 % 0 0.0 % 6
20 50 20 0.9 % 0 0.7 % 0 0.0 % 8 0.7 % 0 0.0 % 6
20 100 10 1.1 % 0 0.9 % 0 0.0 % 10 0.8 % 0 0.2 % 8
20 100 15 1.3 % 0 1.1 % 1 0.1 % 6 1.0 % 0 0.5 % 3
20 100 20 0.6 % 2 0.5 % 3 0.2 % 4 0.6 % 2 0.0 % 5
20 200 10 1.4 % 0 1.1 % 0 0.9 % 1 0.2 % 9 0.2 % 5
20 200 15 0.6 % 0 0.5 % 0 0.6 % 0 0.0 % 10 0.1 % 7
20 200 20 0.6 % 0 0.4 % 0 0.6 % 0 0.0 % 10 0.0 % 8
20 - - 0.8 % 2 0.6 % 4 0.3 % 49 0.4 % 31 0.1 % 57

Table 6.4: Results for the heuristics for the Knapsack Problem

6.1.5 The Multidimensional Knapsack Problem

As for the Knapsack Problem, the tests suggest for the Multidimensional

Knapsack Problem (see Table 6.5) that the post processing is very effective.

Additionally, computing starting partitions by solving a Clustering Problem

increases the quality of solutions for this underlying problem. Because the

underlying problem is the hardest that we regarded so far, it is not surprising

that the impact of using the hash tables is higher than before with improve-

ments up 1.5 percentage points. The best variant of the heuristic for the

Multidimensional Knapsack Problem is ’Clu+PP’.
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Basic Det-PP Det+PP Clu-PP Clu+PP
K l n value # best value # best value # best value # best value # best
5 50 5 1.0 % 2 0.7 % 4 0.4 % 5 0.2 % 7 0.1 % 8
5 50 10 2.0 % 0 1.7 % 0 0.4 % 6 1.3 % 0 0.2 % 6
5 50 15 1.4 % 0 1.2 % 0 0.3 % 3 1.0 % 0 0.1 % 7
5 100 5 3.1 % 0 1.5 % 3 1.9 % 1 0.7 % 7 1.0 % 5
5 100 10 1.4 % 0 1.3 % 0 0.1 % 7 1.1 % 0 0.3 % 3
5 100 15 3.1 % 0 2.5 % 0 2.1 % 0 2.0 % 0 0.0 % 10
5 200 5 1.0 % 1 0.5 % 4 0.8 % 2 0.3 % 6 0.4 % 4
5 200 10 7.0 % 0 5.5 % 2 4.3 % 1 2.5 % 1 2.2 % 6
5 200 15 1.2 % 0 1.2 % 0 0.7 % 2 0.5 % 2 0.1 % 8
5 - - 2.4 % 3 1.8 % 13 1.2 % 27 1.0 % 23 0.5 % 57
10 50 5 0.1 % 1 0.0 % 3 0.0 % 6 0.0 % 6 0.0 % 7
10 50 10 2.3 % 0 2.0 % 0 0.1 % 5 1.8 % 0 0.0 % 9
10 50 15 1.7 % 0 1.4 % 0 0.1 % 4 1.2 % 0 0.0 % 6
10 100 5 0.6 % 0 0.4 % 1 0.0 % 9 0.2 % 2 0.0 % 9
10 100 10 3.5 % 0 3.3 % 0 1.2 % 0 2.5 % 0 0.0 % 10
10 100 15 1.9 % 0 1.7 % 0 0.4 % 0 1.0 % 0 0.0 % 10
10 200 5 1.7 % 0 0.8 % 2 0.8 % 2 0.5 % 5 0.3 % 5
10 200 10 1.8 % 0 1.7 % 0 0.5 % 4 1.4 % 0 0.4 % 6
10 200 15 3.1 % 0 2.4 % 0 1.9 % 1 1.6 % 0 0.0 % 9
10 - - 1.9 % 1 1.5 % 6 0.5 % 31 1.1 % 13 0.1 % 71
20 50 5 0.0 % 0 0.0 % 8 0.0 % 7 0.0 % 9 0.0 % 7
20 50 10 0.9 % 0 0.6 % 0 0.0 % 10 0.7 % 0 0.0 % 10
20 50 15 1.4 % 0 1.0 % 0 0.0 % 7 1.0 % 0 0.0 % 6
20 100 5 0.0 % 3 0.0 % 4 0.0 % 5 0.0 % 7 0.0 % 7
20 100 10 2.8 % 0 2.7 % 0 0.2 % 2 2.4 % 0 0.0 % 8
20 100 15 2.1 % 0 1.8 % 0 0.2 % 1 1.6 % 0 0.0 % 9
20 200 5 0.0 % 1 0.0 % 2 0.0 % 7 0.0 % 2 0.0 % 8
20 200 10 3.4 % 0 3.3 % 0 0.6 % 6 2.0 % 0 0.9 % 4
20 200 15 1.4 % 0 1.3 % 0 0.6 % 4 0.8 % 1 0.2 % 6
20 - - 1.3 % 4 1.2 % 14 0.2 % 49 0.9 % 19 0.1 % 65

Table 6.5: Results for the heuristics for the Multidimensional Knapsack Prob-

lem with five constraints

6.2 Exact Algorithms

In this section we compare different exact algorithms for solving (dmEm) with

each other and with the heuristic that turned out to be the most effective for

the given underlying problem. We consider again all underlying problems pre-

sented before except for the Traveling Salesman Problem. In our experiments,

we compare the following algorithms:

• Compact Formulation: direct application of the solver to the compact

formulation (see Section 4.3). In this case, we used big M constraints

instead of indicator constraints, and to let the solver handle the sym-

metry reduction on its own. Additionally, we gave ten starting solutions

obtained each by a one-time use of the basic heuristic with k-means to

the algorithm as so-called ’MIP starts’.

• Set Partitioning: direct application of the solver to the Set Partitioning
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formulation (SPP1). In our implementation, we spent at most 90% of the

time for subsets enumeration. In case this limit is reached, the solver is

applied to a restricted formulation, thus producing a heuristic approach.

• Subsets Enumeration: enumeration of partitions according to the proce-

dure described in Section 4.2.

• Branch-and-price: Branch-and-price algorithm based on column genera-

tion, as described in Section 4.5.3.

• Heuristic: heuristic that turned out to be the most effective for the

underlying problem.

Before we compare the algorithms to each other, we investigate the role of the

parameter ’qtolin’ for the algorithms that use Cplex to solve QP’s. For this

we use the following notation:

• Compact Formulation lin: compact formulation as described before with

linearization.

• Compact Formulation no lin: compact formulation as described before

without linearization.

• Branch-and-price lin: Branch-and-price algorithm as described before

with linearization.

• Branch-and-price no lin: Branch-and-price algorithm as described before

without linearization.

After we determined the best way of dealing with quadratic terms for the

given underlying problem, we use the best strategy for the Compact Formu-

lation and the Branch-and-price algorithm in the comparison to the other

algorithms. All exact algorithms received a time limit of 600 CPU seconds.

For the Set Partitioning algorithm the time was subdivided giving 540 CPU

seconds for the enumeration of the columns and 60 CPU seconds for solving

the resulting IP. The time limit of the heuristic is set to 30 CPU second. If

the chosen heuristic uses post processing, this time was subdivided giving 20

CPU seconds to the first phase and 10 CPU seconds for refinement.

The following Tables 6.6 – 6.13 report the results for the different classes of

instances. Each table gives, for each algorithm, the following information:
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• value: average gap between the solution produced by the algorithm and

the best known solution for each instance, where only instances, in which

the algorithm finds a feasible solution, are taken into account.

• # opt: number of instances (out of ten) that are solved to proven opti-

mality.

• # best: number of instances (out of ten) with a solution value that is

not worse than the solution value of any of the considered methods.

• time: average time, where for the exact algorithms only instances, in

which the algorithm finds an optimal solution, are taken into account.

Lines printed in bold represent again averages or total values for each value

of K. They can be a good orientation to compare different algorithms, but

they have to be read carefully since the different algorithms might have solved

different settings. Therefore, an average value of a bad algorithm can be better

than the average value of a good one if the first was not able to solve harder

instances.

6.2.1 Unconstrained Binary Optimization

In this section, we discuss the results of the tests of the exact algorithms for

the Unconstrained Binary Optimization Problem. At first, we investigate the

role of the parameter ’qtolin’ for the Compact Formulation and the Branch-

and-price algorithm. The results for these tests are illustrated by Table 6.6.

For the Compact Formulation setting ’qtolin’ to zero, which means that Cplex

does not linearize the products of variables, is the better choice only for very

easy instances. In more than half of the settings, this configuration of the

algorithm was not able to find a solution within the time limit. In most of

the cases, using linearization was clearly the better choice. For the Branch-

and-price algorithm, setting ’qtolin’ to zero was in most of the settings slightly

faster. For the setting with the highest average running time, linearization was

favorable. Therefore, we assume that for instances that become harder, the

running time of the variant without linearization is increasing faster than the

variant using linearization.
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For the main comparison of this section (see Table 6.7) we used for the Com-

pact Formulation the version with linearization and for the Branch-and-price

algorithm the version without linearization. For the heuristic the version that

computes starting partitions with the k-means algorithm and does not use the

refinement procedure as a post processing was used because it was the best

method in the comparison of the heuristics.

The only exact algorithm that was able to solve all instances to proven op-

timality is the Branch-and-price algorithm. For all settings with l = 25 and

for settings with l = 20 and K > 2, it was the fastest algorithm. For l = 15

and K > 2 the Set Partitioning algorithm and for l = 15 and K = 2 the

Subsets Enumeration was the most successful algorithm.

We can see that an increase of K has the highest impact on the Subsets Enu-

meration algorithm because the number of partitions depends strongly on K.

We can also observe a high impact of parameter K on the performance of

the Compact Formulation. On the other hand an increase of K only has a

small effect on the running time of the Set Partitioning algorithm because it

does not affect the expensive enumeration phase but only the phase in which

the Set Partitioning Formulation is solved, which is comparably fast. For the

Branch-and-price algorithm we cannot see a significant impact on the running

time if K increases. If at all, we observe a decrease of the running time. A pos-

sible explanation for this is that for higher values of K less subsets have to be

regarded and the average size of the subsets is smaller, leading to potentially

less produced columns in the column generation method. If the parameter l

is increased, we observe the highest impact on the performance for the Set

Partitioning algorithm and on the Subsets Enumeration algorithm. This is

due to the fact that the parameter l strongly affects the number of partitions

and subsets. There is a smaller but still significant effect on the running time

of the Compact Formulation and the Branch-and-price algorithm.

On the other hand, an increase of n has a small impact on the Set Partitioning

algorithm and on the Subsets Enumeration algorithm because only the run-

ning time of the oracle is increased. For the other two exact algorithms, an

increase of n has a high impact on the running time. The heuristic was able to

solve all instances to optimality. Because it does not use refinement, it always

exhausts the 30 seconds given to it as time limit. We conclude that for this
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underlying problem the Branch-and-price algorithm is in most of the cases the

best choice. For small values of l or very high values of n the Set Partitioning

algorithm might be the better choice.

Compact Formulation lin Compact Formulation no lin Branch-and-price lin Branch-and-price no lin

K l n value # opt time value # opt time value # opt time value # opt time

2 15 10 0.0 % 10 1.1 0.0 % 10 0.3 0.0 % 10 11.3 0.0 % 10 6.1

2 15 15 0.0 % 10 4.0 0.0 % 10 2.4 0.0 % 10 19.5 0.0 % 10 12.6

2 20 10 0.0 % 10 4.5 0.0 % 10 2.6 0.0 % 10 28.3 0.0 % 10 21.9

2 20 15 0.0 % 10 19.3 0.0 % 10 12.7 0.0 % 10 65.0 0.0 % 10 44.2

2 25 10 0.0 % 10 12.1 0.0 % 10 9.0 0.0 % 10 93.7 0.0 % 10 87.9

2 25 15 0.0 % 10 201.1 0.0 % 10 67.8 0.0 % 10 121.8 0.0 % 10 138.0

2 - - 0.0 % 60 40.4 0.0 % 60 15.8 0.0 % 60 56.6 0.0 % 60 51.8

3 15 10 0.0 % 10 3.8 0.0 % 7 203.3 0.0 % 10 8.2 0.0 % 10 4.6

3 15 15 0.0 % 10 13.5 0.0 % 2 359.5 0.0 % 10 7.9 0.0 % 10 6.2

3 20 10 0.0 % 10 55.4 0.0 % 0 – 0.0 % 10 12.6 0.0 % 10 9.4

3 20 15 0.0 % 9 382.4 0.0 % 0 – 0.0 % 10 17.8 0.0 % 10 13.3

3 25 10 0.1 % 7 320.7 0.0 % 0 – 0.0 % 10 26.5 0.0 % 10 20.8

3 25 15 1.2 % 0 – 0.0 % 0 – 0.0 % 10 100.2 0.0 % 10 48.4

3 - - 0.2 % 46 139.4 0.0 % 9 238.0 0.0 % 60 28.9 0.0 % 60 17.1
4 15 10 0.0 % 10 5.3 0.0 % 0 – 0.0 % 10 3.9 0.0 % 10 2.7

4 15 15 0.0 % 10 56.7 0.0 % 0 – 0.0 % 10 10.7 0.0 % 10 11.3

4 20 10 0.0 % 10 192.1 0.1 % 0 – 0.0 % 10 14.7 0.0 % 10 11.1

4 20 15 0.6 % 0 – 0.2 % 0 – 0.0 % 10 24.3 0.0 % 10 23.7

4 25 10 0.8 % 0 – 0.0 % 0 – 0.0 % 10 13.5 0.0 % 10 13.8

4 25 15 3.3 % 0 – 0.6 % 0 – 0.0 % 10 97.7 0.0 % 10 61.3

4 - - 0.8 % 30 84.7 0.1 % 0 – 0.0 % 60 27.5 0.0 % 60 20.6

5 15 10 0.0 % 10 9.3 0.0 % 0 – 0.0 % 10 3.1 0.0 % 10 2.3

5 15 15 0.0 % 10 77.2 0.2 % 0 – 0.0 % 10 5.0 0.0 % 10 4.9

5 20 10 0.0 % 8 220.0 0.0 % 0 – 0.0 % 10 12.5 0.0 % 10 8.6

5 20 15 1.4 % 0 – 0.6 % 0 – 0.0 % 10 15.7 0.0 % 10 18.8

5 25 10 1.8 % 0 – 0.3 % 0 – 0.0 % 10 18.4 0.0 % 10 15.0

5 25 15 2.6 % 0 – 0.4 % 0 – 0.0 % 10 87.4 0.0 % 10 43.0

5 - - 1.0 % 28 93.8 0.2 % 0 – 0.0 % 60 23.7 0.0 % 60 15.4

Table 6.6: Investigation of the Cplex parameter ’qtolin’ for the exact methods

for the Unconstrained Binary Problem
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Compact Formulation Set Partitioning Subsets Enumeration Branch-and-price Heuristic

K l n value # opt time value # opt time value # opt time value # opt time value # best time

2 15 10 0.0 % 10 1.1 0.0 % 10 1.0 0.0 % 10 0.0 0.0 % 10 6.1 0.0 % 10 30.0

2 15 15 0.0 % 10 4.0 0.0 % 10 1.1 0.0 % 10 0.0 0.0 % 10 12.6 0.0 % 10 30.0

2 20 10 0.0 % 10 4.5 0.0 % 10 41.2 0.0 % 10 2.4 0.0 % 10 21.9 0.0 % 10 30.0

2 20 15 0.0 % 10 19.3 0.0 % 10 43.2 0.0 % 10 2.0 0.0 % 10 44.2 0.0 % 10 30.0

2 25 10 0.0 % 10 12.1 – 0 – – 0 – 0.0 % 10 87.9 0.0 % 10 30.0

2 25 15 0.0 % 10 201.1 – 0 – – 0 – 0.0 % 10 138.0 0.0 % 10 30.0

2 - - 0.0 % 60 40.4 0.0 % 40 21.6 0.0 % 40 1.1 0.0 % 60 56.6 0.0 % 60 30.0
3 15 10 0.0 % 10 3.8 0.0 % 10 1.6 0.0 % 10 3.4 0.0 % 10 4.6 0.0 % 10 30.0

3 15 15 0.0 % 10 13.5 0.0 % 10 1.2 0.0 % 10 3.7 0.0 % 10 6.2 0.0 % 10 30.0

3 20 10 0.0 % 10 55.4 0.0 % 10 57.3 0.7 % 0 – 0.0 % 10 9.4 0.0 % 10 30.0

3 20 15 0.0 % 9 382.4 0.0 % 10 57.2 0.9 % 0 – 0.0 % 10 13.3 0.0 % 10 30.0

3 25 10 0.1 % 7 320.7 – 0 – 9.5 % 0 – 0.0 % 10 20.8 0.0 % 10 30.0

3 25 15 1.2 % 0 – – 0 – 7.3 % 0 – 0.0 % 10 48.4 0.0 % 10 30.0

3 - - 0.2 % 46 139.4 0.0 % 40 29.3 3.1 % 20 3.5 0.0 % 60 28.9 0.0 % 60 30.0

4 15 10 0.0 % 10 5.3 0.0 % 10 1.0 0.0 % 10 63.3 0.0 % 10 2.7 0.0 % 10 30.0

4 15 15 0.0 % 10 56.7 0.0 % 10 1.7 0.0 % 10 64.7 0.0 % 10 11.3 0.0 % 10 30.0

4 20 10 0.0 % 10 192.1 0.0 % 10 67.9 6.4 % 0 – 0.0 % 10 11.1 0.0 % 10 30.0

4 20 15 0.6 % 0 – 0.0 % 10 63.8 4.8 % 0 – 0.0 % 10 23.7 0.0 % 10 30.0

4 25 10 0.8 % 0 – – 0 – 16.4 % 0 – 0.0 % 10 13.8 0.0 % 10 30.0

4 25 15 3.3 % 0 – – 0 – 15.3 % 0 – 0.0 % 10 61.3 0.0 % 10 30.0

4 - - 0.8 % 30 84.7 0.0 % 40 33.6 7.1 % 20 64.0 0.0 % 60 27.5 0.0 % 60 30.0
5 15 10 0.0 % 10 9.3 0.0 % 10 1.2 0.0 % 10 365.1 0.0 % 10 2.3 0.0 % 10 30.0

5 15 15 0.0 % 10 77.2 0.0 % 10 1.3 0.0 % 10 365.6 0.0 % 10 4.9 0.0 % 10 30.0

5 20 10 0.0 % 8 220.0 0.0 % 10 63.1 7.7 % 0 – 0.0 % 10 8.6 0.0 % 10 30.0

5 20 15 1.4 % 0 – 0.0 % 10 61.1 7.3 % 0 – 0.0 % 10 18.8 0.0 % 10 30.0

5 25 10 1.8 % 0 – – 0 – 20.2 % 0 – 0.0 % 10 15.0 0.0 % 10 30.0

5 25 15 2.6 % 0 – – 0 – 18.3 % 0 – 0.0 % 10 43.0 0.0 % 10 30.0

5 - - 1.0 % 28 93.8 0.0 % 40 31.7 8.9 % 20 365.4 0.0 % 60 23.7 0.0 % 60 30.0

Table 6.7: Results for the exact methods for the Unconstrained Binary Problem

6.2.2 The Spanning Tree Problem

For the Spanning Tree Problem, the classical IP formulation has an expo-

nential number of constraints that ensure that the solution does not contain a

cycle. In our implementation using the MILP-solver Cplex, we separated these

constraints using so-called callbacks. Since the version of Cplex that we used

does not allow callbacks combined with quadratic objective functions, we had

to provide Cplex with the linearized version of the problem. For this reason

an investigation of the parameter ’qtolin’ was not necessary for this problem.

In our comparison presented in Table 6.8, we chose for the heuristic the ver-

sion that computes starting partitions deterministically without the refinement

procedure. The Compact Formulation was able to solve only a small number of

instances because even though the separation of constraints saves a lot of time,
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Compact Formulation Set Partitioning Subsets Enumeration Branch-and-price Heuristic

K l n |V | value # opt time value # opt time value # opt time value # opt time value # best time

2 15 10 5 0.0 % 10 37.2 0.0 % 10 2.0 0.0 % 10 0.0 0.0 % 10 8.2 0.0 % 10 30.0

2 15 45 10 0.0 % 10 190.8 0.0 % 10 2.6 0.0 % 10 1.0 0.0 % 10 203.5 0.0 % 10 30.0

2 20 10 5 0.0 % 2 380.5 0.0 % 10 46.4 0.0 % 10 8.6 0.0 % 10 39.4 0.0 % 10 30.0

2 20 45 10 0.0 % 0 – 0.0 % 10 57.2 0.0 % 10 12.7 0.0 % 0 – 0.0 % 10 30.0

2 25 10 5 0.0 % 2 562.5 – 0 – 0.1 % 0 – 0.0 % 10 138.8 0.0 % 10 30.0

2 25 45 10 0.0 % 0 – – 0 – 0.1 % 0 – 0.0 % 0 – 0.0 % 10 30.0

2 - - - 0.0 % 24 173.6 0.0 % 40 27.1 0.0 % 40 5.6 0.0 % 40 97.5 0.0 % 60 30.0
3 15 10 5 0.0 % 0 – 0.0 % 10 2.1 0.0 % 10 7.5 0.0 % 10 4.6 0.0 % 10 30.0

3 15 45 10 0.0 % 0 – 0.0 % 10 3.1 0.0 % 10 8.2 0.0 % 10 124.1 0.0 % 10 30.0

3 20 10 5 0.0 % 0 – 0.0 % 10 56.2 0.0 % 0 – 0.0 % 10 16.0 0.0 % 10 30.0

3 20 45 10 0.0 % 0 – 0.0 % 10 64.8 0.0 % 0 – 0.0 % 0 – 0.0 % 10 30.0

3 25 10 5 0.0 % 0 – – 0 – 0.5 % 0 – 0.0 % 10 61.2 0.0 % 10 30.0

3 25 45 10 0.1 % 0 – – 0 – 0.4 % 0 – 0.0 % 0 – 0.0 % 10 30.0

3 - - - 0.0 % 0 – 0.0 % 40 31.6 0.2 % 20 7.8 0.0 % 40 51.5 0.0 % 60 30.0

4 15 10 5 0.0 % 0 – 0.0 % 10 2.5 0.0 % 10 63.2 0.0 % 10 4.2 0.0 % 10 30.0

4 15 45 10 0.1 % 0 – 0.0 % 10 2.8 0.0 % 10 71.6 0.0 % 10 82.0 0.0 % 10 30.0

4 20 10 5 0.0 % 0 – 0.0 % 10 61.5 0.3 % 0 – 0.0 % 10 10.4 0.0 % 10 30.0

4 20 45 10 0.1 % 0 – 0.0 % 10 64.7 0.4 % 0 – 0.0 % 0 – 0.0 % 10 30.0

4 25 10 5 0.0 % 0 – – 0 – 0.7 % 0 – 0.0 % 10 23.5 0.0 % 10 30.0

4 25 45 10 0.2 % 0 – – 0 – 0.8 % 0 – 0.0 % 0 – 0.0 % 10 30.0

4 - - - 0.1 % 0 – 0.0 % 40 32.9 0.4 % 20 67.4 0.0 % 40 30.0 0.0 % 60 30.0
5 15 10 5 0.0 % 0 – 0.0 % 10 2.6 0.0 % 10 345.3 0.0 % 10 4.1 0.0 % 10 30.0

5 15 45 10 0.1 % 0 – 0.0 % 10 3.3 0.0 % 10 399.9 0.0 % 10 90.6 0.0 % 10 30.0

5 20 10 5 0.0 % 0 – 0.0 % 10 61.0 0.4 % 0 – 0.0 % 10 4.8 0.0 % 10 30.0

5 20 45 10 0.1 % 0 – 0.0 % 10 59.7 0.6 % 0 – 0.0 % 0 – 0.0 % 10 30.0

5 25 10 5 0.0 % 0 – – 0 – 0.8 % 0 – 0.0 % 10 10.6 0.0 % 10 30.0

5 25 45 10 0.1 % 0 – – 0 – 0.8 % 0 – 0.0 % 0 – 0.0 % 10 30.0

5 - - - 0.1 % 0 – 0.0 % 40 31.6 0.4 % 20 372.6 0.0 % 40 27.5 0.0 % 60 30.0

Table 6.8: Results for the exact methods for the Spanning Tree Problem

it is still a very time consuming procedure. The reason for that is that every

time the separation routine finds a new constraint, the LP relaxation has to be

solved again. Nevertheless, if the Compact formulation did not find the proven

optimal solution, it was able to provide solutions with an objective value close

to the optimum or to the best found solution. For K = 2 and l ≤ 20 the

Subsets Enumeration algorithm and for K > 2 and l ≤ 20 the Set Partitioning

algorithm was the fastest algorithm. The advantage of these two oracle-based

algorithms is that the impact on n on the running time is comparably low.

The Branch-and-price algorithm suffers from high values of n because it is

not purely oracle-based and the exact pricing subroutine also needs callbacks

to separate constraints of the Spanning Tree polytope. For n = 10, in every

setting the Branch-and-price algorithm is either the fastest exact algorithm or

slightly slower than the fastest exact algorithm. For every setting the solu-
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tion found by the Branch-and-price algorithm or by the heuristic has the same

value as the best found solution. We conclude that for our instances of the

Spanning Tree Problem, it seems to be comparably easy to find solutions close

to the optimum solution. For instances with low values of n or high values of l

the Branch-and-price algorithm is a good choice, for the other instances the

Set Partitioning algorithm should be used.

6.2.3 The Maximum Flow Problem

Also for the Maximum Flow Problem, Cplex had problems with the product of

variables in the objective function. Here the problem was that we have prod-

ucts of binary and continuous variables. Unlike in the Spanning Tree case, here

it was sufficient to set ’qtolin’ to one and force Cplex to linearize the products

to solve the problem. Therefore, we do not have an analysis on the parameter

’qtolin’ for the Maximum Flow Problem.

Table 6.9 illustrates the results for the comparison of the exact algorithms for

this underlying problem. For the heuristic, we used the variant in which the

starting partitions are computed with the k-means algorithm and that uses

the refinement procedure. The Set Partitioning algorithm was the fastest ex-

act algorithm only in one setting and the Subsets Enumeration algorithm in

no setting. Whenever these algorithms were not able to compute a solution in

time, the quality of the provided solutions was poor. For K < 4 the Compact

Formulation was the fastest exact algorithm, whereas for the other settings the

Branch-and-price algorithm was better. The Compact Formulation provided

high quality solutions in every setting and the Branch-and-price algorithm in

every setting except for one. The results of the heuristic are comparably bad.

The gap between the solution found by the heuristic and the best found solu-

tion is between 12 and 35 percent for every setting. This confirms the results

of the heuristic experiments, in which the gap between the values of different

solutions was much higher than for other underlying problems. We conclude

that for the Maximum Flow Problem, it is much harder to find solutions that

are close to the optimum compared with other underlying problems. Our con-

jecture is that the reason for this is the fact that the variables are continuous.

Another hypothesis that gives the responsibility for this phenomenon to the

uncertain constraints, can be rejected after seeing the next sections.



112

Compact Formulation Set Partitioning Subsets Enumeration Branch-and-price Heuristic

K l n |V | value # opt time value # opt time value # opt time value # opt time value # best time

2 15 24 16 0.0 % 10 0.0 0.0 % 10 15.9 0.0 % 10 14.5 0.0 % 10 13.8 30.2 % 0 20.0

2 15 40 25 0.0 % 10 0.0 0.0 % 10 15.9 0.0 % 10 17.9 0.0 % 10 14.3 18.1 % 0 20.0

2 20 24 16 0.0 % 10 0.0 0.0 % 10 337.5 0.0 % 10 303.4 0.0 % 10 40.4 22.5 % 1 20.0

2 20 40 25 0.0 % 10 0.7 0.0 % 10 393.9 0.0 % 10 361.0 0.0 % 10 42.1 23.2 % 0 20.0

2 25 24 16 0.0 % 10 0.7 – 0 – 17.4 % 0 – 0.0 % 10 160.3 34.6 % 0 20.0

2 25 40 25 0.0 % 10 2.0 – 0 – 29.5 % 0 – 0.0 % 10 59.1 27.6 % 0 20.0

2 - - - 0.0 % 60 0.6 0.0 % 40 190.8 7.8 % 40 174.2 0.0 % 60 55.0 26.0 % 1 20.0
3 15 24 16 0.0 % 10 2.8 0.0 % 10 15.5 0.0 % 10 19.4 0.0 % 10 13.3 27.4 % 0 20.0

3 15 40 25 0.0 % 10 5.4 0.0 % 10 15.3 0.0 % 10 19.1 0.0 % 10 16.3 19.5 % 0 20.0

3 20 24 16 0.0 % 10 32.2 0.0 % 10 348.5 8.1 % 0 – 0.0 % 10 63.3 19.7 % 0 20.0

3 20 40 25 0.0 % 10 37.5 0.0 % 10 404.7 1.3 % 0 – 0.0 % 10 74.5 20.7 % 0 20.0

3 25 24 16 0.0 % 10 137.0 – 0 – 25.9 % 0 – 0.0 % 8 333.0 30.6 % 0 20.0

3 25 40 25 0.0 % 7 272.1 – 0 – 28.1 % 0 – 0.0 % 10 301.3 22.7 % 0 20.0

3 - - - 0.0 % 57 71.1 0.0 % 40 196.0 10.6 % 20 19.2 0.0 % 58 126.7 23.4 % 0 20.0

4 15 24 16 0.0 % 10 21.2 0.0 % 10 15.3 0.0 % 10 76.4 0.0 % 10 12.3 17.9 % 0 20.0

4 15 40 25 0.0 % 10 92.2 0.0 % 10 16.3 0.0 % 10 80.5 0.0 % 10 23.2 12.2 % 1 20.0

4 20 24 16 0.6 % 3 285.0 6.3 % 9 371.6 24.6 % 0 – 0.0 % 9 126.0 16.3 % 1 20.6

4 20 40 25 0.2 % 1 93.0 0.0 % 10 408.2 18.4 % 0 – 0.0 % 10 92.4 21.0 % 0 20.4

4 25 24 16 0.0 % 0 – 86.6 % 0 – 33.2 % 0 – 7.6 % 3 487.3 17.2 % 0 22.9

4 25 40 25 1.1 % 0 – 87.8 % 0 – 32.2 % 0 – 0.1 % 7 346.1 19.7 % 0 24.9

4 - - - 0.3 % 24 86.8 29.1 % 39 198.5 18.1 % 20 78.5 0.6 % 49 128.5 17.4 % 2 21.5
5 15 24 16 0.0 % 6 45.3 0.0 % 10 16.7 0.0 % 10 367.5 0.0 % 10 12.1 15.6 % 1 20.0

5 15 40 25 0.0 % 3 60.0 0.0 % 10 16.7 0.0 % 10 386.9 0.0 % 10 15.9 11.6 % 1 21.3

5 20 24 16 0.3 % 0 – 0.0 % 10 346.8 27.8 % 0 – 0.0 % 10 97.3 17.6 % 0 24.8

5 20 40 25 0.7 % 0 – 0.0 % 10 402.0 20.5 % 0 – 0.0 % 10 87.2 18.5 % 0 23.4

5 25 24 16 0.5 % 0 – 84.0 % 0 – 35.3 % 0 – 0.0 % 7 360.3 18.0 % 0 23.2

5 25 40 25 0.3 % 0 – 67.1 % 0 – 33.1 % 0 – 0.0 % 2 285.0 16.9 % 0 28.2

5 - - - 0.3 % 9 50.2 25.2 % 40 195.6 19.5 % 20 377.2 0.0 % 49 106.5 16.4 % 2 23.5

Table 6.9: Results for the exact methods for the Maximum Flow Problem

6.2.4 The Knapsack Problem

Again we first investigate the impact of linearization. Table 6.10 suggests

that for the Compact Formulation and for the Branch-and-price algorithm,

linearization is clearly the better choice. That is matching our expectations

that for more complex problems the running time of the version without lin-

earization is growing faster.

Table 6.11 displays the results for the case that the underlying problem is the

Knapsack Problem. We used the linearized versions of the Compact Formu-

lation and of the Branch-and-price algorithm and the version that computes

starting partitions with the k-means algorithm and uses our refinement strat-

egy as post processing for the heuristic. For K = 2 the Compact Formulation

is clearly the best choice. For K = 3 and l = 10 it was still better than the
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other algorithms but these settings were easy for all algorithms. In all other

algorithms the Branch-and-price algorithms are better than the other exact

algorithms. It always gave high quality solutions in cases in which it is not

able to find the optimum within the time limit and in most of the cases these

non-completed solutions are better than the corresponding ones computed by

the Compact Formulation. If the time limit is reached, the Set Partitioning

algorithm provided high quality solutions if K > 3 holds. For no setting the

Subsets Enumeration algorithm was faster than all other exact methods. We

can explain the high performance loss of the purely oracle-based algorithm

compared to the others by the fact that the complexity of the oracle increased

significantly. In all settings except for one, the heuristic was able to provide

the optimal solution or the best found solution. It did not reach the time

limit of 30 CPU seconds because solving the Set Partitioning formulation of

the refinement took at most 4 CPU seconds.

6.2.5 The Multidimensional Knapsack Problem

Table 6.12 provides the results of the investigation of the parameter ’qtolin’,

which controls the handling of products of variables in the MILP-solver Cplex,

for the Multidimensional Knapsack Problem with five constraints. We can

see that for both algorithms linearization is clearly favorable. For the Com-

pact formulation the algorithm without linearization was only able to solve

instances of one setting. For the Branch-and-price algorithm the algorithm

using linearization dominates the other. Note that if the algorithm without

linearization had a better running time, it is only due to the fact that it solved

less settings to proven optimality and therefore the average over the instances

solved within the time limit includes less instances - especially some hard ones

are missing - than the algorithm using linearization.

In our comparison illustrated by Table 6.13 we used for the Compact Formu-

lation and the Branch-and-price algorithm the version with linearization of

products of variables in Cplex. For the heuristic, we used the version that

computes starting partitions with the k-means algorithm and uses our refine-

ment strategy as a post processing. The Branch-and-price algorithm is the

best algorithm for K = 5 and for all other values of K if l ≥ 15. For l = 10

the Set Partitioning algorithm and the Subsets Enumeration algorithm are
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Compact Formulation lin Compact Formulation no lin Branch-and-price lin Branch-and-price no lin

K l n value # opt time value # opt time value # opt time value # opt time

2 10 10 0.0 % 10 0.5 0.0 % 10 27.8 0.0 % 10 10.2 0.0 % 10 11.0

2 10 15 0.0 % 10 2.5 0.0 % 7 357.3 0.0 % 10 24.2 0.0 % 10 44.4

2 15 10 0.0 % 10 21.1 0.0 % 6 350.5 0.0 % 10 110.7 0.0 % 10 159.2

2 15 15 0.0 % 10 71.2 0.0 % 0 – 0.1 % 7 304.0 0.4 % 0 –

2 20 10 0.0 % 8 354.8 0.1 % 0 – 0.4 % 6 345.3 0.7 % 0 –

2 20 15 0.2 % 0 – 0.1 % 0 – 0.7 % 0 – 0.7 % 0 –

2 - - 0.0 % 48 79.0 0.0 % 23 212.3 0.2 % 43 131.4 0.3 % 30 71.5
3 10 10 0.0 % 10 2.4 0.1 % 0 – 0.0 % 10 5.6 0.0 % 10 7.6

3 10 15 0.0 % 10 7.4 0.0 % 0 – 0.0 % 10 11.7 0.0 % 10 36.4

3 15 10 0.0 % 10 208.3 0.3 % 0 – 0.0 % 10 83.4 0.0 % 9 108.9

3 15 15 0.3 % 3 379.7 0.5 % 0 – 0.1 % 9 276.7 0.4 % 0 –

3 20 10 0.6 % 0 – 0.5 % 0 – 0.1 % 6 338.3 0.9 % 1 293.0

3 20 15 0.9 % 0 – 0.7 % 0 – 0.5 % 1 243.0 0.9 % 0 –

3 - - 0.3 % 33 100.6 0.3 % 0 – 0.1 % 46 125.4 0.4 % 30 57.1

4 10 10 0.0 % 10 4.3 0.1 % 3 0.0 0.0 % 10 3.9 0.0 % 10 6.4

4 10 15 0.0 % 10 18.1 0.1 % 0 – 0.0 % 10 4.4 0.0 % 10 19.0

4 15 10 0.2 % 3 311.0 0.2 % 0 – 0.0 % 10 44.7 0.0 % 10 63.3

4 15 15 0.4 % 0 – 0.8 % 6 1.0 0.0 % 10 141.6 0.1 % 3 272.3

4 20 10 1.4 % 0 – 0.6 % 0 – 0.0 % 10 175.0 0.0 % 7 342.4

4 20 15 1.2 % 0 – 0.6 % 0 – 0.7 % 2 240.5 1.3 % 0 –

4 - - 0.5 % 23 50.3 0.4 % 9 0.7 0.1 % 52 80.3 0.2 % 40 102.5
5 10 10 0.0 % 10 6.1 0.4 % 7 0.0 0.0 % 10 2.0 0.0 % 10 2.7

5 10 15 0.0 % 10 26.9 0.4 % 8 0.0 0.0 % 10 2.7 0.0 % 10 18.7

5 15 10 0.3 % 2 428.0 0.1 % 0 – 0.0 % 10 7.9 0.0 % 10 18.0

5 15 15 0.7 % 0 – 0.8 % 5 1.0 0.0 % 10 46.4 0.1 % 8 302.4

5 20 10 1.2 % 0 – 0.4 % 0 – 0.0 % 10 88.0 0.0 % 8 211.4

5 20 15 1.4 % 0 – 0.7 % 0 – 0.1 % 5 330.2 0.6 % 0 –

5 - - 0.6 % 22 53.9 0.4 % 20 0.2 0.0 % 55 56.7 0.1 % 46 97.9

Table 6.10: Investigation of the Cplex parameter ’qtolin’ for the exact methods

for the Knapsack Problem

fast and provide comparable results, but they were not able to solve other

settings within the time limit. The Set Partitioning algorithm found solutions

with better values in cases in which the time limit was reached, but for K < 4

and l = 20 it was not able to find solutions at all. The Compact Formulation is

faster than all other exact algorithms only for K = 2 and l = 10, but consider

that these instances were not challenging for all tested algorithms. For K < 4

the Compact Formulation provides better solutions than the Branch-and-price

algorithm, in cases in which they exceeded the time limit. The reverse state-

ment holds for K > 3. The gap of the solution provided by the Branch-and-

price algorithm to the best found solution is never higher than 1.6% and for

the Compact Formulation never higher than 1.7%. The heuristic was able to

provide the best solution in all settings except for one, where ties are obviously
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Compact Formulation Set Partitioning Subsets Enumeration Branch-and-price Heuristic

K l n value # opt time value # opt time value # opt time value # opt time value # best time

2 10 10 0.0 % 10 0.5 0.0 % 10 7.7 0.0 % 10 7.5 0.0 % 10 10.2 0.0 % 10 20.0

2 10 15 0.0 % 10 2.5 0.0 % 10 9.5 0.0 % 10 10.3 0.0 % 10 24.2 0.0 % 10 20.0

2 15 10 0.0 % 10 21.1 0.0 % 10 239.0 0.0 % 10 235.7 0.0 % 10 110.7 0.0 % 10 20.0

2 15 15 0.0 % 10 71.2 0.0 % 10 407.8 0.0 % 10 403.5 0.1 % 7 304.0 0.0 % 10 20.0

2 20 10 0.0 % 8 354.8 – 0 – 2.0 % 0 – 0.4 % 6 345.3 0.0 % 10 20.3

2 20 15 0.2 % 0 – – 0 – 1.4 % 0 – 0.7 % 0 – 0.0 % 9 20.3

2 - - 0.0 % 48 79.0 0.0 % 40 166.0 0.6 % 40 164.2 0.2 % 43 131.4 0.0 % 59 20.1
3 10 10 0.0 % 10 2.4 0.0 % 10 7.6 0.0 % 10 7.8 0.0 % 10 5.6 0.0 % 10 20.0

3 10 15 0.0 % 10 7.4 0.0 % 10 9.4 0.0 % 10 10.6 0.0 % 10 11.7 0.0 % 10 20.0

3 15 10 0.0 % 10 208.3 0.0 % 10 240.4 0.0 % 10 238.2 0.0 % 10 83.4 0.0 % 10 20.7

3 15 15 0.3 % 3 379.7 0.0 % 10 408.3 0.0 % 10 407.6 0.1 % 9 276.7 0.0 % 10 20.2

3 20 10 0.6 % 0 – 0.8 % 0 – 1.4 % 0 – 0.1 % 6 338.3 0.1 % 9 23.9

3 20 15 0.9 % 0 – – 0 – 1.5 % 0 – 0.5 % 1 243.0 0.0 % 10 22.3

3 - - 0.3 % 33 100.6 0.2 % 40 166.4 0.5 % 40 166.1 0.1 % 46 125.4 0.0 % 59 21.2

4 10 10 0.0 % 10 4.3 0.0 % 10 7.2 0.0 % 10 7.3 0.0 % 10 3.9 0.0 % 10 20.0

4 10 15 0.0 % 10 18.1 0.0 % 10 9.2 0.0 % 10 8.8 0.0 % 10 4.4 0.0 % 10 20.0

4 15 10 0.2 % 3 311.0 0.0 % 10 238.3 0.0 % 10 295.6 0.0 % 10 44.7 0.0 % 10 20.3

4 15 15 0.4 % 0 – 0.0 % 10 404.5 0.0 % 10 464.2 0.0 % 10 141.6 0.0 % 10 20.2

4 20 10 1.4 % 0 – 0.1 % 0 – 2.0 % 0 – 0.0 % 10 175.0 0.0 % 10 21.4

4 20 15 1.2 % 0 – 0.1 % 0 – 2.0 % 0 – 0.7 % 2 240.5 0.0 % 9 23.0

4 - - 0.5 % 23 50.3 0.0 % 40 164.8 0.7 % 40 194.0 0.1 % 52 80.3 0.0 % 59 20.8
5 10 10 0.0 % 10 6.1 0.0 % 10 5.5 0.0 % 10 5.9 0.0 % 10 2.0 0.0 % 10 20.0

5 10 15 0.0 % 10 26.9 0.0 % 10 7.5 0.0 % 10 7.8 0.0 % 10 2.7 0.0 % 10 20.0

5 15 10 0.3 % 2 428.0 0.0 % 10 231.5 0.0 % 6 565.0 0.0 % 10 7.9 0.0 % 10 20.0

5 15 15 0.7 % 0 – 0.0 % 10 397.2 0.0 % 0 – 0.0 % 10 46.4 0.0 % 10 20.0

5 20 10 1.2 % 0 – 0.0 % 0 – 3.1 % 0 – 0.0 % 10 88.0 0.0 % 10 20.3

5 20 15 1.4 % 0 – 0.0 % 0 – 2.2 % 0 – 0.1 % 5 330.2 0.0 % 10 20.4

5 - - 0.6 % 22 53.9 0.0 % 40 160.4 0.9 % 26 135.7 0.0 % 55 56.7 0.0 % 60 20.1

Table 6.11: Results for the exact methods for the Knapsack Problem

included. The refinement procedure never took more than 1 CPU second.

We can conclude that for the Multidimensional Knapsack Problem with five

constraints the Branch-and-price algorithm is the ideal choice because it has

the best running time in most of the settings and in the others it is just slightly

slower than the fastest exact algorithm. Additionally, it provides high quality

solutions in cases in which the time limit is reached.

6.3 Approximation

The goal of this section is to determine how an approximation factor of an

algorithm that is used to compute the induced solution can be conserved

while solving Problem (dmEm). In Section 3.1, we proved that the worst

case approximation guarantee remains the same. In the following we want to
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Compact Formulation lin Compact Formulation no lin Branch-and-price lin Branch-and-price no lin

K l n value # opt time value # opt time value # opt time value # opt time

2 10 10 0.0 % 10 6.8 0.0 % 10 186.4 0.0 % 10 31.3 0.0 % 10 33.2

2 10 15 0.0 % 10 22.0 0.0 % 0 – 0.0 % 10 49.5 0.0 % 10 126.5

2 15 10 0.0 % 10 396.0 0.0 % 0 – 0.1 % 6 296.2 0.4 % 4 333.5

2 15 15 0.0 % 6 441.8 0.1 % 0 – 0.1 % 6 354.0 0.8 % 0 –

2 20 10 0.2 % 3 413.3 0.2 % 0 – 0.6 % 4 425.8 0.8 % 0 –

2 20 15 0.2 % 0 – 0.6 % 0 – 1.1 % 0 – 1.1 % 0 –

2 - - 0.1 % 39 208.7 0.1 % 10 186.4 0.3 % 36 178.1 0.5 % 24 122.1
3 10 10 0.0 % 10 21.3 0.1 % 0 – 0.0 % 10 28.4 0.0 % 10 33.5

3 10 15 0.0 % 10 50.8 0.4 % 0 – 0.0 % 10 52.6 0.0 % 10 197.3

3 15 10 0.7 % 0 – 1.0 % 0 – 0.0 % 7 217.4 0.1 % 7 296.3

3 15 15 0.4 % 0 – 0.5 % 0 – 0.2 % 8 289.6 1.0 % 0 –

3 20 10 1.7 % 0 – 0.7 % 0 – 1.1 % 3 473.0 2.5 % 0 –

3 20 15 0.9 % 0 – 0.5 % 0 – 1.6 % 0 – 1.6 % 0 –

3 - - 0.6 % 20 36.0 0.5 % 0 – 0.5 % 38 159.7 0.9 % 27 162.3

4 10 10 0.0 % 10 38.1 0.0 % 0 – 0.0 % 10 23.0 0.0 % 10 25.8

4 10 15 0.0 % 10 108.0 0.4 % 0 – 0.0 % 10 24.0 0.0 % 10 102.3

4 15 10 1.4 % 0 – 0.6 % 0 – 0.0 % 10 218.3 0.2 % 9 198.6

4 15 15 1.2 % 0 – 0.4 % 0 – 0.1 % 9 270.6 1.2 % 0 –

4 20 10 1.6 % 0 – 0.9 % 0 – 0.4 % 6 428.3 2.1 % 1 248.0

4 20 15 0.9 % 0 – 0.5 % 0 – 0.8 % 1 286.0 1.2 % 0 –

4 - - 0.9 % 20 73.0 0.5 % 0 – 0.2 % 46 172.7 0.8 % 30 110.5
5 10 10 0.0 % 10 41.9 0.1 % 0 – 0.0 % 10 11.5 0.0 % 10 13.9

5 10 15 0.0 % 10 127.0 0.4 % 0 – 0.0 % 10 12.1 0.0 % 10 61.7

5 15 10 0.7 % 0 – 0.4 % 0 – 0.0 % 10 98.9 0.0 % 10 142.1

5 15 15 1.1 % 0 – 0.5 % 0 – 0.0 % 10 161.4 1.3 % 2 545.0

5 20 10 1.5 % 0 – 0.7 % 0 – 0.2 % 8 273.0 1.1 % 1 150.0

5 20 15 1.3 % 0 – 0.8 % 0 – 0.9 % 1 335.0 1.6 % 0 –

5 - - 0.8 % 20 84.5 0.5 % 0 – 0.2 % 49 109.3 0.7 % 33 103.5

Table 6.12: Investigation of the Cplex parameter ’qtolin’ for the exact methods

for the Multidimensional Knapsack Problem with five constraints

understand the behavior in the average case. For this purpose we examine

the Traveling Salesman Problem. We compare two algorithms, both based on

the Set Partitioning algorithm. Either the oracle for computing the induced

solution is an exact algorithm or the induced solution is computed with the

algorithm of Christofides [11]. For every induced solution we computed the

gap between the solution of the approximation algorithm and the exact algo-

rithm. We computed the average gap and the maximum gap over all induced

solutions and the gap of the solution values of Problem (dmEm). Table 6.14

illustrates the main results in the following columns:

• # subs.: number of subsets computed throughout the algorithm

• # mEm better: number of times (out of 10) the gap of Problem (dmEm)
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Compact Formulation Set Partitioning Subsets Enumeration Branch-and-price Heuristic

K l n value # opt time value # opt time value # opt time value # opt time value # best time

2 10 10 0.0 % 10 6.8 0.0 % 10 21.1 0.0 % 10 20.4 0.0 % 10 31.3 0.0 % 10 20.0

2 10 15 0.0 % 10 22.0 0.0 % 10 23.4 0.0 % 10 22.4 0.0 % 10 49.5 0.0 % 10 20.0

2 15 10 0.0 % 10 396.0 0.1 % 0 – 0.2 % 0 – 0.1 % 6 296.2 0.0 % 10 20.0

2 15 15 0.0 % 6 441.8 0.2 % 0 – 0.2 % 0 – 0.1 % 6 354.0 0.0 % 10 20.1

2 20 10 0.2 % 3 413.3 – 0 – 2.0 % 0 – 0.6 % 4 425.8 0.0 % 10 20.0

2 20 15 0.2 % 0 – – 0 – 2.3 % 0 – 1.1 % 0 – 0.0 % 10 20.2

2 - - 0.1 % 39 208.7 0.1 % 20 22.2 0.8 % 20 21.4 0.3 % 36 178.1 0.0 % 60 20.1
3 10 10 0.0 % 10 21.3 0.0 % 10 20.6 0.0 % 10 21.6 0.0 % 10 28.4 0.0 % 10 20.0

3 10 15 0.0 % 10 50.8 0.0 % 10 23.1 0.0 % 10 21.6 0.0 % 10 52.6 0.0 % 10 20.0

3 15 10 0.7 % 0 – 0.0 % 0 – 0.3 % 0 – 0.0 % 7 217.4 0.0 % 9 20.2

3 15 15 0.4 % 0 – 0.1 % 0 – 0.2 % 0 – 0.2 % 8 289.6 0.1 % 8 20.1

3 20 10 1.7 % 0 – – 0 – 3.5 % 0 – 1.1 % 3 473.0 0.0 % 10 20.2

3 20 15 0.9 % 0 – – 0 – 2.0 % 0 – 1.6 % 0 – 0.0 % 10 20.6

3 - - 0.6 % 20 36.0 0.0 % 20 21.9 1.0 % 20 21.6 0.5 % 38 159.7 0.0 % 57 20.2

4 10 10 0.0 % 10 38.1 0.0 % 10 19.6 0.0 % 10 18.8 0.0 % 10 23.0 0.0 % 10 20.0

4 10 15 0.0 % 10 108.0 0.0 % 10 21.7 0.0 % 10 20.8 0.0 % 10 24.0 0.0 % 10 20.0

4 15 10 1.4 % 0 – 0.0 % 0 – 0.1 % 0 – 0.0 % 10 218.3 0.0 % 9 20.0

4 15 15 1.2 % 0 – 0.0 % 0 – 0.1 % 0 – 0.1 % 9 270.6 0.0 % 9 20.0

4 20 10 1.6 % 0 – 0.5 % 0 – 3.3 % 0 – 0.4 % 6 428.3 0.0 % 9 21.0

4 20 15 0.9 % 0 – 0.2 % 0 – 1.8 % 0 – 0.8 % 1 286.0 0.0 % 9 20.4

4 - - 0.9 % 20 73.0 0.1 % 20 20.6 0.9 % 20 19.8 0.2 % 46 172.7 0.0 % 56 20.2
5 10 10 0.0 % 10 41.9 0.0 % 10 16.5 0.0 % 10 15.9 0.0 % 10 11.5 0.0 % 10 20.0

5 10 15 0.0 % 10 127.0 0.0 % 10 19.0 0.0 % 10 17.5 0.0 % 10 12.1 0.0 % 10 20.0

5 15 10 0.7 % 0 – 0.0 % 0 – 0.3 % 0 – 0.0 % 10 98.9 0.0 % 10 20.0

5 15 15 1.1 % 0 – 0.0 % 0 – 0.1 % 0 – 0.0 % 10 161.4 0.0 % 10 20.0

5 20 10 1.5 % 0 – 0.1 % 0 – 3.3 % 0 – 0.2 % 8 273.0 0.0 % 8 20.4

5 20 15 1.3 % 0 – 0.1 % 0 – 2.2 % 0 – 0.9 % 1 335.0 0.0 % 8 20.3

5 - - 0.8 % 20 84.5 0.0 % 20 17.8 1.0 % 20 16.7 0.2 % 49 109.3 0.0 % 56 20.1

Table 6.13: Results for the exact methods for the Multidimensional Knapsack

Problem with five constraints

was lower than the average gap over all induced solutions

• Gap mEm: gap of the solution value of Problem (dmEm) (average over

10 instances)

• aGap oracle: average gap over all induced solutions (average over 10

instances)

• mGap oracle: maximum gap over all induced solutions (average over 10

instances)

The line printed in bold represents again the average or the total value of the

column for one K.
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In the tests the gap of Problem (dmEm) was lower than the average gap of

the oracle in 337 out of 360 instances, and on average it was significantly lower.

In 25 out of 36 settings, considering the average over ten instances, the gap of

the solutions of Problem (dmEm) was less than half of the average gap over all

solutions of the oracle. The highest gap of the solutions of Problem (dmEm)

was only 6.2% in all settings and the highest average gap over all solutions of

the oracle was 7%. The accuracy of the solution of Problem (dmEm) increases

inK: The average gap of the solution of Problem (dmEm) decreases from 2.3%

for K = 2 to 1.5% for K = 5. We conclude that in practice the ratio between

the exact solution value and the solution value computed by an approximation

K l n |V | # subs. # mEm better Gap mEm aGap oracle mGap oracle
2 3 10 5 6 6 1.3 % 2.1 % 4.2 %
2 3 45 10 6 8 3.5 % 4.6 % 9.6 %
2 3 105 15 6 7 6.2 % 7.0 % 10.8 %
2 5 10 5 30 9 1.7 % 3.0 % 7.3 %
2 5 45 10 30 10 2.7 % 5.0 % 13.5 %
2 5 105 15 30 10 2.9 % 5.9 % 15.1 %
2 10 10 5 1022 10 0.4 % 1.5 % 10.2 %
2 10 45 10 1022 10 2.5 % 5.5 % 14.2 %
2 10 105 15 1022 10 2.3 % 5.9 % 19.7 %
2 15 10 5 32766 8 0.7 % 2.2 % 11.7 %
2 15 45 10 32766 10 1.5 % 5.6 % 18.8 %
2 15 105 15 32766 10 1.9 % 5.5 % 20.1 %
2 - - - - 108 2.3 % 4.5 % 12.9 %
3 5 10 5 25 9 1.5 % 3.1 % 7.3 %
3 5 45 10 25 10 2.5 % 5.1 % 13.5 %
3 5 105 15 25 10 4.0 % 6.2 % 15.1 %
3 10 10 5 1012 10 0.4 % 1.5 % 10.2 %
3 10 45 10 1012 10 2.2 % 5.5 % 14.2 %
3 10 105 15 1012 10 1.9 % 5.9 % 19.7 %
3 15 10 5 32751 8 0.6 % 2.2 % 11.7 %
3 15 45 10 32751 10 1.3 % 5.6 % 18.8 %
3 15 105 15 32751 10 1.8 % 5.5 % 20.1 %
3 - - - - 87 1.8 % 4.5 % 14.5 %
4 5 10 5 15 8 2.0 % 3.1 % 7.2 %
4 5 45 10 15 10 3.5 % 5.4 % 13.2 %
4 5 105 15 15 10 5.2 % 6.4 % 14.7 %
4 10 10 5 967 9 0.4 % 1.5 % 10.2 %
4 10 45 10 967 10 2.1 % 5.5 % 14.2 %
4 10 105 15 967 10 2.4 % 6.0 % 19.7 %
4 15 10 5 32646 8 0.5 % 2.2 % 11.7 %
4 15 45 10 32646 10 1.3 % 5.6 % 18.8 %
4 15 105 15 32646 10 1.7 % 5.5 % 20.1 %
4 - - - - 85 2.1 % 4.6 % 14.4 %
5 10 10 5 847 9 0.4 % 1.6 % 10.2 %
5 10 45 10 847 10 2.3 % 5.5 % 14.2 %
5 10 105 15 847 10 2.8 % 6.1 % 19.7 %
5 15 10 5 32191 8 0.5 % 2.2 % 11.7 %
5 15 45 10 32191 10 1.4 % 5.6 % 18.8 %
5 15 105 15 32191 10 1.8 % 5.5 % 20.1 %
5 - - - - 57 1.5 % 4.4 % 15.8 %

Table 6.14: Comparison of the approximation ratios for the Traveling Salesman

Problem
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algorithm is much lower for Problem (dmEm) than for the problem solved by

the oracle. This is because in case there are many solutions for (dmEm) with

the same exact value or exact values that are close to each other, the solutions

in which the approximation ratio is lower, are chosen by the Set Partitioning

algorithm. Therefore, also for underlying problems that are very hard to solve

or for huge instances, good solutions of Problem (dmEm) can be produced by

the oracle-based algorithms by applying a good heuristic for the underlying

problem.

6.4 Summary

In this section we want to summarize the results of the previous sections and

try to generalize them. We can conclude that the Compact Formulation and

the Branch-and-price algorithm are in general the best among the exact solu-

tion methods that we tested for solving Problem (dmEm). For both algorithms

linearizing products of variables is reducing the running time in most of the

cases. The version without linearization was better only for very easy instances

and the difference was not relevant then.

The Subsets Enumeration algorithm and the Set Partitioning algorithm are

better than the latter just in a few instances. Because they are purely oracle-

based, they benefit from underlying problems that are easy to solve. For the

Compact Formulation and the Branch-and-price algorithm the IP formulation

of the underlying problem is important. Formulations that need separation

are causing a huge increase of running time. In this case, the Compact For-

mulation is much more affected than the Branch-and-price algorithm because

the latter is just solving the IP in the exact pricing.

The Subsets Enumeration algorithm and the Set Partitioning algorithm are

much more affected by an increase of l than the other two exact algorithms.

On the other hand, an increase of n has a low effect on the running time of

the first two algorithms and a high on the running time of the latter two. The

Subsets Enumeration algorithm is better than the Set Partitioning algorithm

just for K = 2. An increase of K slows down the Subsets Enumeration algo-

rithm and the Compact Formulation significantly, whereas the Set Partitioning

algorithm and the Branch-and-price method are nearly unaffected. In some
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cases they are even faster for higher values of K.

The underlying problem Maximum Flow leads to solutions that are far away

from the optimum if they are not optimal. We assume that the continuous

variables in this problem are causing this effect.

The tests suggest that the heuristic is always able to compute solutions that

are close to the optimum in a small amount of time. The only exception was

the case in which the Maximum Flow Problem was the underlying problem.

We observed that the refinement strategy works better if the underlying prob-

lem is hard to solve. The tests do not give a clear answer to the question, for

which properties of the underlying problem using starting partitions computed

by solving a clustering problem is beneficial. This seems to be a feature that

has to be individually tested for a new underlying problem.

In the last section, we saw that using approximation algorithms or heuristics

for solving the underlying problem can be a good alternative in practice. The

tests suggest that the combination of solutions leads in average to a lower gap

between the optimal solution and the computed solution for Problem (dmEm)

than for the underlying problem.

We can conclude that the presented tests allow us to understand which algo-

rithm is the most suitable based on different features of the problem or the

instance. Additionally, we saw that by using heuristics or approximation algo-

rithms even large-scale instances or instances with hard underlying problems

can be solved with solutions that are close to the optimum.



Chapter 7

A Related Problem

In this chapter we want to introduce a problem that naturally arises out of

Problem (dmEm) and that can be part of future research. In some underlying

problems for Problem (dmEm) it is important to establish an infrastructure

or to acquire a right of first refusal. For example one can think of a situation,

in which rails have to be laid in order to minimize the average time of con-

nection between different stations in different scenarios. In the methodology

of (dmEm) after the scenario materialized, one of the K paths that have been

prepared is chosen. Because all the rails are already laid and above all paid,

it does not make sense to restrict oneself to the K precomputed solutions in

this case, when solutions arising from combinations of them can be better.

That means in our example that a route can be traveled combining rails from

different solutions. Allowing these combinations of solutions, the Stochastic

Two-Stage Infrastructure Problem arises.

We answer first questions about complexity and present an ILP formulation

for solving it.

7.1 STIP with Continuous Variables

This section covers the Stochastic Two-Stage Infrastructure Problem (STIP),

which can be seen as a variant of Problem (dmEm). At the beginning we

consider the variant in which all variables are continuous. In practice this

problem can model situations in which a right of first refusal has to be bought

in advance to have later the possibility to purchase commodities or assets that

121
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are needed in an optimization problem.

Let y be the variable that determines the decision of the implementation of the

infrastructure. In the case of continuous variables, this means to determine the

amount of each commodity that has to be reserved with the right of first refusal.

Let x be the variable that corresponds to the decision taken after the scenario

materializes. The vector c represents the cost of reserving the commodity

and ξi indicates the problem specific cost in scenario i. The different costs can

be measured in different units. The unit of the c vectors is in general monetary,

whereas the ξ variables can represent totally different costs. We assume that

the input is scaled so that it reflects the preferences of the user and that the

value of an improvement of one unit in the costs indicated by c is equal to an

improvement of the costs indicated by ξ by the same amount. The vector a

introduces an additional knapsack constraint on the y variables, which can be

seen as a budget constraint. Assuming a discrete set of scenarios leads to the

following formulation:

min
y∈Y

c⊤y +
l∑

i=1

min
xi∈Xi
xi≤y

ξ⊤i xi

s.t. a⊤y ≤ K,

(STIP)

where Xi, Y ⊆ Rn for all 1 ≤ i ≤ l. This problem can be modeled with the

following LP-formulation:

min c⊤y +
l∑

i=1

ξ⊤i xi

s.t. a⊤y ≤ K

xi ≤ y ∀ 1 ≤ i ≤ l

xi ∈ Xi ∀ 1 ≤ i ≤ l

y ∈ Y

(LPSTIP)

The objective value is equivalent to the objective of (STIP). The first con-

straint is just the knapsack constraint of the original problem and the second

set of constraints ensures that in every dimension the values of the y variable

is larger than the value of every x variable. Note that in particular, if the

underlying problem permits an LP-formulation and because the y variables
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are continuous here, we have a polynomial time algorithm for (STIP), which

is a difference to Problem (dmEm) (see Remark 3.6). Hence, we see that the

freedom of combining the precomputed solutions (that we do not have in many

applications) leads to a model that is less challenging from the computational

point of view. This observation was also supported by computational exper-

iments for Problem (STIP), in which instances with higher values of l and n

could be solved exactly.

7.2 STIP with (Mixed)-Integer Variables

Now we investigate the version of Problem (STIP) in which either the x or the y

variables are not continuous anymore. If Xi is restricted to be integer for all

scenarios i, one can achieve this implicitly by restricting only the y variables

to be integer and drop the integrality constraint in the set Xi because any

optimal solution is not affected by this. Naturally, the LP-formulation from

the previous chapter can be used, but becomes an IP-formulation. Note that

if Y is restricted to be integer, the problem contains a Knapsack Problem and

is therefore NP-hard. In the following we want to show that also for convex Y ,

the problem can be NP-hard.

Theorem 7.1. Problem (STIP) is NP -hard, even if Y = [0, 1]n, c ≡ 0 and Xi

has polynomial size and is equal in every scenario.

Proof. We reduce the Set Cover Decision Problem to the decision variant of

Problem (STIP). Given an instance of Set Cover (U, S), where U is a set of

elements and S is a set of subsets of U . In our construction we set n := |S|, Xi

to be the set of base vectors of Rn for every scenario i, Y := [0, 1]n, and K to

the maximum number of allowed subsets in the Set Cover decision problem,

and a := 1n. For every element u ∈ U we define an objective vector:

(ξu)j :=





−1 if u ∈ Sj,

0 otherwise.

The set cover is induced by Y as follows: the subset Sj ∈ S belongs to the

cover if and only if yj = 1. We claim to have a set cover withK or less elements

if and only if the objective value of Problem (STIP) is −|U |. Let us assume
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we have a set cover. For every element ui there exists a subset containing

this element and therefore there exists at least one x ∈ Xi with x ≤ y whose

product with ξi is −1. Summing up the minimum values of all scenarios we

get −|U |. Let us assume the solution of (STIP) has a value of −|U |. The

minimum value for every product of ξi and x is −1. Therefore for every ξi

there exists an x, whose product with ξi is −1. Hence every element is covered.

If the knapsack constraint is dropped, the previous argumentation that

Problem (STIP) is hard if Y is restricted to be integer, does not work anymore.

Nevertheless, we can show that in this case the problem remains NP-hard.

Theorem 7.2. If Y is restricted to be integer, Problem (STIP) is NP -hard,

even if a ≡ 0 and Xi has polynomial size and is equal in every scenario.

Proof. Again we reduce the Set Cover Decision Problem to the decision variant

of (STIP). In our construction we set n := |S|, Xi to be the set of base

vectors of Rn in every scenario i, Y = {0, 1}n and c ≡ 1 and we set K to the

maximum number of allowed subsets in the Set Cover Decision Problem. For

every element u ∈ U we define an objective vector:

(ξu)j :=





−K if u ∈ Sj ,

0 otherwise.

The Set Cover is induced by Y as follows: the subset Sj ∈ S is in the set

cover, if yj = 1. We have a set cover with K or less elements if and only if

the objective value of (STIP) is lower or equal to (1 − l)K. Let us assume

we have a Set Cover with at most K sets. For every element u there exists a

subset containing this element and therefore there exists at least one x ∈ Xu

with x ≤ y whose product with ξi is −K. Therefore our objective value is

equal to the sum of −Kl and the number of sets we used in our set cover,

which is smaller or equal to K.

Now we consider the case of a solution that is infeasible for the Set Cover

Problem. First we investigate the case that the solution of Set Cover does

not cover all elements. The minimum objective value in that case corresponds

to the subcase, when only one element is not covered and we only use one

set. Therefore the minimum objective value is equal to K(1 − l) + 1 and
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hence the corresponding solution of (STIP) corresponds to a not accepted

instance. Finally we assume that a solution of Set Cover takes more than K

sets. The product ξ⊤u x cannot take a value smaller than −K. For this reason

the minimum value in this case is −Kl +K + 1 = K(l − 1) + 1. In summary

we have proven that the objective value of Problem (STIP) is smaller or equal

to K(1− l) + 1 if and only if it induces a Set Cover with K or less solutions.

In the following we want to show that the evaluation of the objective func-

tion of Problem (STIP) becomes hard in general. For this, we need to prove

some technical results first. Note that the distribution that is used in the fol-

lowing is discrete, but has an exponential number of realizations, which are

not explicitly given as input. Therefore, enumerating all realizations is not

possible in polynomial time.

Definition 7.3. Let µd ∼ U{0, 1} for all dimensions d = 1, . . . , n be i.i.d.,

i.e., µ is discrete and uncorrelated and each vector in {0, 1}n appears with

probability 2−n. For given y ∈ (Q ∩ [0, 1])n, 0 < K ∈ Q let

fK(y) := Eµ(max {µ⊤x | 1⊤x ≤ K, 0 ≤ x ≤ y, x ∈ Qn}).

For the case where all upper bounds y are equal to one, we have

Lemma 7.4. We can compute fK(1) efficiently.

Proof.

fK(e) = Eµ(max {µ⊤x | 1⊤x ≤ K, 0 ≤ x ≤ 1, x ∈ Qn})

= 2−n
∑

µ∈{0,1}n

min{K, 1⊤µ}

= 2−n
( ∑

µ∈{0,1}n

1⊤µ≤⌊K⌋

1⊤µ+
∑

µ∈{0,1}n

1⊤µ≥⌊K⌋+1

K
)

= 2−n
( ⌊K⌋∑

j=0

(
n

j

)
j +

n∑

j=⌊K⌋+1

(
n

j

)
K
)
.
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Lemma 7.5. For all y ∈ [0, 1]n and K ≥ 1, we have fK(y) = Kf1(
1
K
y).

Proof.

fK(y) = Eµ(max {µ⊤x | 1⊤x ≤ K, 0 ≤ x ≤ y, x ∈ Qn})

= Eµ(max {µ⊤(Kx) | 1⊤(Kx) ≤ K, 0 ≤ (Kx) ≤ y, x ∈ Qn})

= KEµ(max {µ⊤x | 1⊤x ≤ 1, 0 ≤ x ≤ 1
K
y, x ∈ Qn})

= Kf1(
1
K
y) .

Note that for K = 1 the polytope {x ∈ [0, 1]n | 1⊤x ≤ 1} has only n + 1

vertices. Nevertheless, for general y, even the computation of f1 is hard:

Lemma 7.6. It is #P -hard to compute f1(y) for given y.

Proof. Let a ∈ Zn and b ∈ Z with 0 ≤ ai ≤ b for all i = 1, . . . , n. We show

that, given an oracle for computing f1(y) efficiently for all y, we can determine

#{x ∈ {0, 1}n | a⊤x ≤ b} .

Since the latter counting problem is #P-hard [17], the result then follows.

Set y := 1
b
a, then y ∈ [0, 1]n. For all K, we have

fK(y) = Eµ(max {µ⊤x | 1⊤xi ≤ K, 0 ≤ x ≤ y, x ∈ Qn})

= 2−n
∑

µ∈{0,1}n

min{K, y⊤µ} .

Define ε := 1
b
. For µ ∈ {0, 1}n, we obtain

min{1 + ε, y⊤µ} −min{1, y⊤µ} =





0 if y⊤µ ≤ 1

ε otherwise,

since y⊤µ > 1 implies y⊤µ ≥ 1 + ε by the choice of ε. Now

#{µ ∈ {0, 1}n | y⊤µ ≤ 1}

= 2n −#{µ ∈ {0, 1}n | y⊤µ > 1}

= 2n −
∑

µ∈{0,1}n

1

ε
(min{1 + ε, y⊤µ} −min{1, y⊤µ})

= 2n − 2n
1

ε
(2−n

∑

µ∈{0,1}n

min{1 + ε, y⊤µ} − 2−n
∑

µ∈{0,1}n

min{1, y⊤µ})

= 2n − 2n 1
ε
(f1+ε(y)− f1(y))

∗
= 2n(1− 1

ε
((1 + ǫ)f1(

1
1+ε

y)− f1(y))) ,
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so that using our oracle for f1 we can compute

#{µ ∈ {0, 1}n | y⊤µ ≤ 1} = #{µ ∈ {0, 1}n | a⊤µ ≤ b} .

For (*) we used Lemma 7.5.

Theorem 7.7. If ξ ∼ U{−1, 0}n, evaluating the objective function of (STIP)

for fixed y is #P -hard.

Proof. For µ = −ξ and fixed y the function f1(y) corresponds to the objective

function of (STIP), from which the constant term c⊤y is subtracted. Here,

the set of feasible solutions is equal to the set of base vectors of Qn in every

scenario. By using Lemma 7.6, the desired statement follows.

We showed that Problem (STIP) becomes NP-hard if parts of the variables

are restricted to be integer and that evaluating the objective function can be-

come #P -hard when the vector ξ is componentwise discrete distributed. Ad-

ditionally, we obtained an ILP formulation for solving (STIP). Future research

on Problem (STIP) can include approximation algorithms or the proof that

these do not exist and exact algorithms that are faster compared to standard

ILP-based approaches.
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Chapter 8

Conclusion

In this thesis we investigated the Min-E-Min Problem. Among other com-

plexity results we proved that it is NP-hard, W[2]-hard parameterized by K

and that the existence of a polynomial time constant factor approximation

algorithm implies that P is equal to NP. We showed that the version of the

Min-E-Min Problem with uncertain parameters following a continuous distri-

bution is even harder since the evaluation of the objective function becomes

already #P-hard. In this case we proposed to discretize the distribution by a

set of samples and showed that under some realistic assumptions the solution

of the discretized problem converges to the solution of the original problem

when the number of samples approaches infinity. We proposed several exact

and heuristic solution methods and compared them in an extensive computa-

tional study and demonstrated that each algorithm can be useful according to

the setting of the problem. Additionally, we examined how the solution value

of oracle-based exact algorithms is affected if the underlying problem is solved

with an approximation algorithm.

Future research could focus on combinatorial algorithms for solving Prob-

lem (mEmC) so that the Branch-and-price method for Problem (dmEm) does

not need to use an MILP-solver anymore. Moreover, the complexity of Prob-

lem (dmEm) in terms of approximation can be studied for K = 2 and the

question whether there exists an fpt algorithm for Problem (dmEm) parame-

terized by l −K can be examined.
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