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ABSTRACT 

Few studies have addressed the mechanism by which circ_0010729 regulates hypoxia-induced cell injury in car-

diovascular diseases. However, its role and its regulatory mechanism in myocardial infarction remain to be ex-

plored. Cell viability, cycle, apoptosis, and migration were analyzed using cell counting kit-8 assay, flow cytom-

etry, caspase-3 activity assay kit and transwell assay, respectively. Tumor necrosis factor-α (TNF-α), and inter-

leukin-6 (IL-6) concentrations were examined by enzyme-linked immunosorbent assay. Glucose metabolism was 

calculated by detecting ATP production, glucose uptake and lactate production. Levels of circ_0010729, miR-

370-3p and TNF Receptor Associated Factor 6 (TRAF6) were detected using quantitative real-time polymerase 

chain reaction or western blot. The direct interaction between circ_0010729 and TRAF6 or miR-370-3p was ver-

ified using dual-luciferase reporter assay and RNA immunoprecipitation assay. Under hypoxia condition, cardi-

omyocytes suffered from cell viability suppression, cell cycle arrest, cell apoptosis promotion, migration reduc-

tion, increase of inflammatory factor IL-6 and TNF-α, as well as glycolysis inhibition. Circ_0010729 expression 

was up-regulated in the cardiomyocytes at different hypoxia-exposed time points. Circ_0010729 knockdown 

protected cardiomyocytes against hypoxic dysfunction, while circ_0010729 overexpression showed inverse ef-

fects. MiR-370-3p was confirmed to directly bind to circ_0010729 or TRAF6. MiR-370-3p inhibition attenuated 

the protective effects of circ_0010729 knockdown on hypoxia-modulated cardiomyocyte dysfunction. MiR-370-

3p restoration protected cardiomyocytes against hypoxic injury via targeting TRAF6. Besides, circ_0010729 in-

directly regulated TRAF6 expression via miR-370-3p. This study demonstrated that circ_0010729 knockdown 

attenuated hypoxia-induced cardiomyocyte dysfunction via miR-370-3p/TRAF6 axis, indicating a potential ther-

apeutic target for myocardial infarction. 
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INTRODUCTION 

Oxygen is a key micro-environmental 

substrate for sustaining tissue homeostasis in 

mammals, insufficient oxygen supply, or hy-

poxia is associated with diverse deadliest 

human diseases, including chronic obstruc-

tive pulmonary disease, stroke, cancer and 

coronary artery disease (Majmundar et al., 
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2010; Serocki et al., 2018). Acute myocardi-

al infarction (AMI) is the leading pathologi-

cal cause of disability and mortality in cardi-

ovascular disease, which refers to cardiomy-

ocyte dysfunction caused by myocardial is-

chemia and ischemia-associated hypoxia, 

eventually leads to heart failure (Anderson 

and Morrow, 2017; Giordano, 2005). Be-

sides, cardiomyocytes are terminally differ-

entiated cells without regenerative potentiali-

ties, thus, investigation of the mechanisms 

by which ischemia-associated hypoxia mod-

ulates cardiomyocytes dysfunction may be of 

great significance for the development of 

clinically therapeutic strategy of AMI. 

Circular RNAs (circRNAs) are a subclass 

of endogenous noncoding RNAs made of 

covalently closed continuous loop structures, 

which render these molecules resist to RNase 

R decay (Ebbesen et al., 2016). CircRNAs 

are often derived from exons, introns, or in-

tergenic regions, high abundance along with 

the structural stability in eukaryotes and have 

tissue/cell-specific expression patterns (Qu et 

al., 2015; Zhang et al., 2018). CircRNAs are 

involved in almost all cellular processes, and 

accumulating evidence has shown that circ-

RNAs play essential roles in the pathogene-

sis of multiple heart diseases, and have great 

potential as prognostic, diagnostic, and ther-

apeutic biomarkers (Altesha et al., 2019; Fan 

et al., 2017; Qu et al., 2015). Previous stud-

ies have found that hypoxia induced 

circ_0010729 up-regulation in human umbil-

ical vein endothelial cells (HUVECs), and si-

lencing circ_0010729 repressed the prolif-

erative and migratory abilities and promoted 

apoptosis in hypoxia-induced HUVECs via 

down-regulating hypoxia inducible factor 1 

alpha (HIF-1α) via microRNA (miR)-186 

(Dang et al., 2017). Additionally, Jin and 

Chen demonstrated that circ_0010729 was 

significantly elevated in oxygen-glucose-

deprivation (OGD) condition, and strength-

ened OGD-evoked cell viability and migra-

tion reduction, and apoptosis promotion in 

human cardiomyocytes via regulating miR-

145-5p (Jin and Chen, 2019). Thus, we know 

that circ_0010729 is abnormally altered after 

hypoxia, while its role and its regulatory 

mechanism in myocardial infarction (MI) 

remain to be elucidated.  

Herein, this work focused on investigat-

ing the physiological role of circ_0010729 in 

cardiomyocyte phenotypic changes and gly-

colysis under hypoxia condition, and ex-

plored the potential regulatory network un-

derlying circ_0010729 in hypoxia-induced 

cardiomyocyte dysfunction.  

 

MATERIALS AND METHODS 

Cell culture and low oxygen treatment 

Human ventricular cardiomyocytes (AC-

16) cells were obtained from Beijing Insti-

tute for Cancer Research Collection (Beijing, 

China) and cultured in Dulbecco’s modified 

Eagle’s medium/F-12 supplemented 

(DMEM/F12, Invitrogen, Waltham, MA, 

USA) supplemented with 12.5 % fetal bo-

vine serum (FBS, Gibco, Carlsbad, CA, 

USA) and 1 % antibiotic-antimycotic (Gib-

co) with 5 % CO2 at 37 °C. Hypoxia was in-

duced by exposing AC-16 cells to 1 % O2, 

94 % N2, and 5 % CO2 for 12, 24, or 48 h us-

ing a modular incubator. Cells grown under a 

normoxic atmosphere (incubation with hy-

poxia condition for 0 h) were used as the 

control.  

 

Cell transfection  

When cells were grown to 80 %-90 % 

confluency, 100 ng of circ_0010729 or TNF 

Receptor Associated Factor 6 (TRAF6) 

overexpression vector (circ or TRAF6) or 

nontarget plasmid (vector or pcDNA) 

(Promega, Madison, WI, USA), 50 nM of 

small interfering RNA (siRNA) against 

circ_0010729 (si-circ) or siRNA negative 

control (si-NC) (GenePharma, Shanghai, 

China), 40 nM of miR-370-3p mimic or 

miR-370-3p inhibitor (miR-370-3p, anti-

miR-370-3p) or their negative control (miR-

NC, anti-NC) (GenePharma) were transfect-

ed into AC-16 cells using Lipofectamine 

3000 reagent (Invitrogen, Carlsbad, CA, 

USA). 
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Cell counting kit-8 (cck-8) assay  

Following transfection and/or treatment, 

AC-16 cells (5000/well) were cultivated into 

a 96-well plate and co-interacted with 10 μL 

CCK-8 solution (Dojindo Molecular Tech-

nologies, Japan) at 37 °C for 4 h. The ab-

sorbance of each well was measured at 450 

nm using a microplate reader. The results 

represented as the average of three inde-

pendent replicates. 

 

Flow cytometer 

After transfection and/or treatment, for 

cell cycle analysis, AC-16 cells were firstly 

digested by trypsin to obtain single-cell sus-

pensions. After washing by PBS twice, cells 

were fixed by 75 % ethanol for 4 h at 4 °C, 

followed by incubation with 500 uL propidi-

um iodide (PI) staining solution for 15 

minutes. The quantitation of cell cycle dis-

tribution was analyzed using a FACScan 

flow cytometer (BD Biosciences, San Jose, 

CA, USA) with FlowJo software. For cell 

apoptosis analysis, AC-16 cells were har-

vested and washed in PBS, then double-

stained with 10 μL of Annexin V-FITC and 

PI (BD Biosciences) for 15 min. Cell apop-

tosis was analyzed by the flow cytometer. 

All experiments were repeated three times 

independently.  

 

Activity detection of caspase3 

The activity of caspase3 was assessed us-

ing the commercial caspase-3 activity assay 

kit (Beyotime, Shanghai, China) following 

the guidance of producer. The activity was 

proportional to the absorbance which was 

detected at optical density (OD) 405 nm us-

ing the microplate reader. The results were 

represented as the average of three inde-

pendent replicates.  

 

Transwell assay 

A transwell insert (Cell Biolabs, Inc. 

Santiago, CA, USA) without Matrigel (BD 

Biosciences) was employed to detect cell 

migration. Following transfection and/or 

treatment, AC-16 cells suspended in 200 μL 

serum-free medium were placed into the up-

per chamber of Transwell, then 600 μL me-

dium fixed with FBS was added into the bot-

tom chamber. After incubation for 24 h, mi-

grated cells on the lower face of the chamber 

were counted by an inverted light micro-

scope in five random fields (100 ×). Experi-

ments were performed three times. 

 

Enzyme-linked immunosorbent assay 

(ELISA) 

The concentrations of interleukin-6 (IL-

6) and tumor necrosis factor-α (TNF-α) from 

the supernatants of AC-16 cells following 

appropriate transfection and/or treatment 

were determined using commercial IL-6 and 

TNF-α ELISA kits (R&D Systems, Minne-

apolis, Minnesota, USA) referring to the in-

structions of protocol. The results represent-

ed as the average of three independent repli-

cates.  

 

Glucose consumption and lactate  

production  

After transfection and/or treatment, the 

supernatants of AC-16 cell culture media 

were collected, and subjected to the analysis 

of the consumption or production of glucose 

and lactate using a Glucose Uptake Assay 

Kit and L-Lactate Assay Kit (Sigma, St Lou-

is, MO, USA) referring to the producer’s 

guidance using a microplate reader. Experi-

ments were performed three times. 

 

Detection of ATP level 

An ATP Assay Kit (Sigma) was applied 

to detect the level of ATP. Sonicated AC-16 

cells were lysed, and the lysate was fixed 

with ATP reaction mix for 30 min. Finally, 

the OD570 nm value was examined using a 

microplate reader. Experiments were per-

formed three times.  

 

Quantitative real-time polymerase chain  

reaction (qRT-PCR) 

Total RNA was extracted using Trizol 

reagent (Invitrogen) from cells. Then reverse 

transcription was performed using 1 μg of to-

tal RNA with a reverse transcription kit 

(Takara, Tokyo, Japan) to synthesize cDNA. 
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Subsequently, qRT-PCR was conducted us-

ing SYBR Green PCR master mix (Takara) 

on an ABI 7500 Real-Time PCR system. The 

2−ΔΔCt method was used to calculate the fold 

changes with U6 or glyceraldehyde 3-

phosphate dehydrogenase (GADPH) as an 

internal control. The same experiment was 

repeated three times, and the average was 

taken. The following primers were used: 

circ_0010729: F, 5’-CAGGCAGAGGTCC-

GGGCCTGTT-3’ and R, 5’-GGACCGTTC-

TCAATGGCGTATAC-3’; GADPH: F, 5’-

GGTGAAGGTCGGAGTCAAC-3’ and R, 

5’-AGAGTTAAAAGCAGCCCTGGTG-3’; 

TRAF6: F, 5’-CAGTGGTCGTATCGTGC-

TTA-3’ and R, 5’-CCTTATGGT TTCTT-

GGAGTC-3’; miR-370-3p: F, 5’-GCCTGC-

TGGGGTGGAACCTGGT-3’ and R, 5’-

CTCAACTGGTGTCGTGGA -3’; U6: F, 5’-

CTCGCTTCGGCAGCACA-3’ and R, 5’-

AACGCTTCACGAATTTGCGT-3’. 

 

Dual-luciferase reporter assay  

The sequences of circ_0010729 or 

TRAF6 3’UTR containing the wild-type or 

mutant potential binding sites of miR-370-3p 

were cloned into the pmirGLO luciferase 

vector (Promega), named wild-type/mutant-

circ_0010729 or wild-type/mutant-3’UTR 

TRAF6. Then AC-16 cells placed on the 6-

well plates were transfected with these con-

structed reporter plasmids and miR-370-3p 

or miR-NC using Lipofectamine 3000 (Invi-

trogen). Luciferase activities were deter-

mined using a dual-luciferase reporter assay 

kit (Promega). Each group was run in tripli-

cate in 6-well plates.  

 

RNA immunoprecipitation (RIP) assay 

AC-16 cells were lysed using RIP buffer, 

and then incubated with RIPA buffer con-

taining magnetic beads conjugated with hu-

man Anti-Ago2 antibody (Millipore, Billeri-

ca, MA, USA) or normal mouse Anti-IgG 

(Millipore). After interaction with Proteinase 

K, the immunoprecipitated RNA was ex-

tracted and purified RNA was determined 

using qRT-PCR. All experiments were re-

peated three times independently. 

Western blot 

Proteins were extracted from cells using 

RIPA lysis buffer (Beyotime), and approxi-

mately 30 μg of extracted protein was sub-

jected to western blot assay as described 

previously (Park et al., 2018). The following 

antibodies were used: TRAF6 (1:2000, 

ab181622), and HRP-conjugated antibody 

(1:1000, ab9482), which all were obtained 

from Abcam (Cambridge, MA, USA). β-

actin (1: 2000; #ZRB1312, Sigma) served as 

an internal control, and protein bands were 

visualized by a Super ECL assay kit 

(YRBIO, Changsha, Hunan, China). Tripli-

cate individual experiments were performed 

in this study.  

 

Statistical analysis 

Data from thrice-repeated experiments 

were exhibited as mean ± standard deviation 

(SD). All quantitative data were analyzed us-

ing the Student’s t-test, non-parametric test 

(Mann-Whitney U tests) (two groups) and 

one-way analysis of variance (ANOVA) 

(three or more groups). P values < 0.05 were 

considered statistically significant. 

 

RESULTS 

Hypoxia triggers cardiomyocyte injury and 

glycolysis suppression 

First, the effects of hypoxia on cardio-

myocyte properties were tested. Cardiomyo-

cyte AC-16 cells were exposed to hypoxia 

for 0, 12, 24, and 48 h, by contrast with the 

control (0 h) group, hypoxia led to AC-16 

cell viability suppression (Figure 1A), cell 

cycle arrest (Figure 1B), caspase3 activity 

enhancement (Figure 1C), cell apoptosis 

promotion (Figure 1D), as well as cell migra-

tion inhibition (Figure 1E). Besides, the lev-

els of inflammatory factor IL-6 and TNF-α 

were found to be significantly increased un-

der hypoxia at 12, 24, or 48 h (Figure 1F, G). 

Results in Figure 1H-J exhibited hypoxia 

suppressed glycolysis in AC-16 cells, re-

flected by the decrease of ATP production 

(Figure 1H), glucose uptake (Figure 1I) and 

lactate production (Figure 1J) at 12, 24 and 
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48 h exposure. These results suggested that 

hypoxia-induced cardiomyocyte injury and 

suppressed glycolysis. 

 

Circ_0010729 knockdown reverses  

hypoxia-induced cardiomyocyte injury  

and glycolysis suppression  

The molecular mechanism of hypoxia-

modulated injury and glycolysis in cardio-

myocytes was then investigated. We found 

circ_0010729 was elevated by hypoxia ex-

posure at 12, 24, and 48 h (Figure 2A). To 

investigate whether the promotion of the hy-

poxia-induced circ_0010729 could protect 

cardiomyocytes in hypoxia conditions, AC-

16 cells were transfected with circ_0010729 

(circ) or specific si-circ_0010729 (si-circ). 

As expected, circ_0010729 expression was 

markedly up-regulated in AC-16 cells when 

transfected with circ_0010729, while 

circ_0010729 expression was down-

regulated by si-circ_0010729 compared with 

their counterparts, respectively (Figure 2B). 

After treatment with hypoxia for 24 h, 

circ_0010729 knockdown promoted cell via-

bility (Figure 2C) and cell cycle progression 

(Figure 2D), suppressed caspase3 activity 

(Figure 2E), apoptosis (Figure 2F), and mi-

gration (Figure 2G), reduced IL-6 and TNF-

α release (Figure 2H, I), as well as enhanced 

ATP production (Figure 2J), glucose uptake 

(Figure 2K) and lactate production (Figure 

2L) in hypoxia-treated AC-16 cells, while 

the introduction of circ_0010729 in AC-16 

cells exhibited inverse effects (Figure 2C-L). 

Taken together, knockdown of circ_0010729 

 

 

Figure 1: Hypoxia triggers cardiomyocyte injury and glycolysis suppression. Cardiomyocytes 
AC-16 were exposed to hypoxia for 0, 12, 24, and 48 h. (A) CCK-8 assay of cell viability analysis. (B) 
Cell cycle analysis using flow cytometry. (C) Detection of caspase3 activity in cells using a colorimetric 
assay kit. (D) Apoptosis analysis of cells using flow cytometry. (E) Transwell assay of cell migration. 
(F, G) Levels’ detection of IL-6 and TNF-α using ELISA assay. (H-J) Measurement of ATP production, 
glucose uptake and lactate production using the colorimetric assay kits. *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001. 
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Figure 2: Circ_0010729 knockdown reverses hypoxia-induced cardiomyocyte injury and gly-
colysis suppression. (A) qRT-PCR analysis of circ_0010729 expression in AC-16 cells after treat-
ment with hypoxia at 12, 24, and 48 h. (B) qRT-PCR analysis of circ_0010729 expression in AC-16 
cells transfected with vector, circ_0010729 (circ), si-NC or si-circ_0010729 (si-circ). After treatment 
with hypoxia for 24 h, (C) CCK-8 assay of cell viability analysis; (D) flow cytometry of cell cycle; (E) 
caspase3 activity analysis in cells using a colorimetric assay kit; (F) cell apoptosis analysis using flow 
cytometry; (G) transwell assay of cell migration. (H, I) Levels’ detection of IL-6 and TNF-α using ELISA 
assay. (J-L) Measurement of ATP production, glucose uptake and lactate production using the colori-
metric assay kits. **P<0.01, ***P<0.001, #P<0.05, ###P<0.001. 

 

 

 

might protect cardiomyocytes through resto-

ration of cardiomyocyte properties and glu-

cose metabolism.  

 

miR-370-3p is a target of circ_0010729 

To explore molecular mechanism under-

lying the action of circ_0010729 in hypoxia-

modulated cardiomyocyte properties, the 

online database CircInteractome was applied 

to predict the potential microRNA (miRNA) 

that could be interacted with circ_0010729. 

Then miR-370-3p was identified to have the 

potential binding sites of circ_0010729 (Fig-

ure 3A). Afterwards, the transfection effi-

ciency of miR-370-3p or miR-NC was vali-

dated, as expected, miR-370-3p expression 

was greatly overexpressed in AC-16 cells af-

ter miR-370-3p transfection (Figure 3B). 

Immediately, the dual-luciferase reporter as-

say showed miR-370-3p overexpression sig-

nificantly reduced the luciferase activity in 

AC-16 cells transfected with wild type-

circ_0010729 (Figure 3C). Meanwhile, data 

from RIP assay revealed that circ_0010729 

and miR-370-3p were highly enriched in the 

complex precipitated by Anti-Ago2 com-

pared with nonspecific Anti-IgG (Figure 

3D). Importantly, the effect of circ_0010729 

on miR-370-3p expression was investigated, 

qRT-PCR analysis indicated miR-370-3p 

expression in AC-16 cells was decreased by 

circ_0010729 overexpression, but increased 

by circ_0010729 down-regulation (Figure 

3E). Altogether, circ_0010729 directly 

bound to miR-370-3p and negatively regu-

lated its expression. 
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Figure 3: MiR-370-3p is a target of circ_0010729. (A) The putative binding sequences of miR-370-
3p on circ_0010729. (B) qRT-PCR analysis of miR-370-3p expression in AC-16 cells transfected with 
miR-370-3p or miR-NC. (C) Dual-luciferase reporter assay in AC-16 cells co-transfected with wild 
type-circ_0010729 or mutant-circ_0010729 and the indicated miRNAs. (D) RIP assay for the enrich-
ment of Ago2 on miR-370-3p and circ_0010729 in AC-16 cells. (E) qRT-PCR analysis of miR-370-3p 
expression in AC-16 cells transfected with vector, circ_0010729 (circ), si-NC or si-circ_0010729 (si-
circ). **P<0.01, ***P<0.001, ###P<0.001. 

 

Knockdown of circ_0010729 protects  

cardiomyocytes against hypoxia-induced  

injury through miR-370-3p 

Based on the relation between 

circ_0010729 and miR-370-3p, we then in-

vestigated whether circ_0010729 regulated 

cardiomyocytes properties under hypoxia 

was through binding to miR-370-3p. First of 

all, AC-16 cells were transfected with anti-

miR-370-3p or anti-NC, as expected, anti-

miR-370-3p introduction caused significant 

reduction of miR-370-3p expression relative 

to anti-NC (Figure 4A). Next, we transfected 

anti-miR-370-3p into circ_0010729-

decreased AC-16 cells, and found the intro-

duction of anti-miR-370-3p attenuated 

circ_0010729 knockdown-induced miR-370-

3p overexpression in hypoxia condition 

(Figure 4B). Then under hypoxia for 24 h, 

we found miR-370-3p inhibitor reversed the 

regulatory effects of si-circ_0010729 on AC-

16 cell viability (Figure 4C), cell cycle (Fig-

ure 4D), caspase3 activity (Figure 4E), apop-

tosis (Figure 4F), migration (Figure 4G), IL-

6 and TNF-α release (Figure 4H, I) as well 

as glucose metabolism (Figure 4J-L). Alto-

gether, knockdown of circ_0010729 might 

protect cardiomyocytes against hypoxia-

induced injury through the restoration of 

cardiomyocytes’ properties and glycolysis 

via miR-370-3p. 

 

TRAF6 is a target of miR-370-3p 

The downstream target genes of miR-

370-3p were then explored. Through search-

ing online database Targetscan, TRAF6 was 

identified as a potential target of miR-370-3p 

(Figure 5A). Then the significant reduction 

of luciferase activity in AC-16 cells co-

transfected with wild-type-3’UTR TRAF6 

and miR-370-3p confirmed their direct inter-

action (Figure 5B). After that, the effect of 

miR-370-3p on TRAF6 expression was de-

tected, and we found TRAF6 expression 

both at mRNA and protein levels was de-

creased by miR-370-3p up-regulation, but 

increased by miR-370-3p down-regulation 

in AC-16 cells (Figure 5C, D). Thus, we con- 
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Figure 4: Knockdown of circ_0010729 protects cardiomyocytes against hypoxia-induced injury 
through miR-370-3p. (A) qRT-PCR analysis of miR-370-3p expression in AC-16 cells transfected 
with anti-NC or anti-miR-370-3p. (B) qRT-PCR analysis of miR-370-3p expression in AC-16 cells 
transfected with si-NC, si-circ_0010729 (si-circ), si-circ_0010729 (si-circ) + anti-NC, or si-
circ_0010729 (si-circ) + anti-miR-3701-3p under hypoxia for 24 h. (C) CCK-8 assay of cell viability 
analysis. (D) Cell cycle analysis using flow cytometry. (E) Analysis of caspase3 activity in cells using a 
colorimetric assay kit. (F) Apoptosis analysis of cells using flow cytometry. (G) Transwell assay of cell 
migration. (H, I) Levels’ detection of IL-6 and TNF-α using ELISA assay. (J-L) Measurement of ATP 
production, glucose uptake and lactate production using the colorimetric assay kits. **P<0.01, 
***P<0.001, #P<0.05, ##P<0.01 ###P<0.001. 

 

 

firmed miR-370-3p targetedly suppressed 

TRAF6.  

 

Restoration of miR-370-3p protects  

cardiomyocytes against hypoxia-induced  

injury through TRAF6 

Given the direct interaction between 

miR-370-3p and TRAF6, we then studied the 

functions miR-370-3p/TRAF6 axis on cardi-

omyocytes. First, AC-16 cells were trans-

fected with pcDNA or TRAF6, and TRAF6 

expression was markedly elevated in cells af-

ter TRAF6 transfection compared to pcDNA 

(Figure 6A, B). Next, AC-16 cells were co-

transfected with miR-NC, miR-370-3p, miR-

370-3p + pcDNA, or miR-370-3p + TRAF6, 

and we found that introduction of TRAF6 

markedly rescued miR-370-3p-induced de-

crease of TRAF6 level in AC-16 cells (Fig-

ure 6C, D). Thereafter, transfected cells were 

exposed to hypoxia condition for 24 h and 

rescue assay was then performed. Results 

showed miR-370-3p re-expression attenuat-

ed hypoxia-induced AC-16 cell viability 

suppression (Figure 6E), cell cycle arrest 

(Figure 6F), caspase3 activity enhancement 

(Figure 6G), apoptosis promotion (Figure 

6H), migration inhibition (Figure I), IL-6 and 

TNF-α levels increase (Figure J, K), and gly-

colysis suppression (Figure 6L-N), while 

these conditions were reversed by following 

TRAF6 overexpression (Figure 6E-N). 

Overall, miR-370-3p might protect cardio-

myocytes through restoration of cardiomyo- 
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Figure 5: TRAF6 is a target of miR-370-3p. (A) The putative binding sequences of miR-370-3p on 
TRAF6. (B) Dual-luciferase reporter assay in AC-16 cells co-transfected with wild type-3’ UTR TRAF6 
or mutant-3’ UTR TRAF6 and the indicated miRNAs. (C, D) qRT-PCR and western blot analysis of 
TRAF6 expression in AC-16 cells transfected with miR-370-3p, miR-NC, anti-NC, or anti-miR-370-3p. 
**P<0.01, ***P<0.001, ###P<0.001. 

 

 

cyte properties and glucose metabolism via 

TRAF6 in hypoxia condition. 

 

circ_0010729 regulates TRAF6 via binding 

to miR-370-3p 

Whether specific crosstalk existed be-

tween circ_0010729 and TRAF6 through 

competition for miR-370-3p binding was 

further investigated. As shown in Figure 7A, 

B, we found miR-370-3p inhibition rescued 

circ_0010729 decrease-induced TRAF6 

down-regulation under hypoxia condition. 

Thus, we confirmed that circ_0010729 could 

indirectly regulate TRAF6 via miR-370-3p.  

 

DISCUSSION 

Currently, circRNAs have frequently 

been reported in cardiovascular disease and 

have important roles in ischemic heart dis-

eases by regulating cellular biological pro-

cesses (Altesha et al., 2019). For example, Li 

et al. found circNCX1 was elevated in exces-

sive reactive oxygen species (ROS) condi-

tion and enhanced ROS-induced cardiomyo-

cyte apoptosis via regulating miR-133a-3p/ 

CDIP1, thus leading to ischemia-reperfusion 

damage (Li et al., 2018). CircRNA Cdr1as 

strengthened hypoxia-stimulated cardiomyo-

cyte apoptosis through absorbing miR-7a to 

aggravate MI (Geng et al., 2016). Further ev-

idence revealed that circFndc3b was down-

regulated in cardiomyocytes, and restoration 

of its expression promoted cardiac function 

and remodeling after MI through inhibiting 

cardiomyocyte apoptosis and evoking neo-

vascularization via FUS/VEGF-A axis 

(Garikipati et al., 2019). Thus, circRNAs 

may be potential candidates for future thera-

peutic interventions in MI through regulating 

cardiomyocyte phenotypes.  

In this study, cardiomyocytes were ex-

posed to hypoxic condition, and we found 

hypoxia triggered cell viability and migra-

tion suppression, cell cycle arrest, cell apop-

tosis  promotion, as well as increase of in-

flammatory factor IL-6 and TNF-α, thus re-
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Figure 6: Restoration of miR-370-3p protects cardiomyocytes against hypoxia-induced injury 
through TRAF6. (A, B) qRT-PCR and western blot analysis of TRAF6 expression in AC-16 cells 
transfected with pcDNA or TRAF6. (C, D) qRT-PCR and western blot analysis of TRAF6 expression in 
AC-16 cells transfected with miR-NC, miR-370-3p, miR-370-3p + pcDNA, or miR-370-3p + TRAF6 un-
der hypoxia for 24 h. (E) Cell viability analysis using CCK-8 assay. (F) Flow cytometry of cell cycle 
analysis. (G) Analysis of caspase3 activity in cells using a colorimetric assay kit. (H) Apoptosis analy-
sis of cells using flow cytometry. (I) Cell migration analysis using transwell assay. (J, K) Levels’ detec-
tion of IL-6 and TNF-α using ELISA assay. (L-N) Detection of ATP production, glucose uptake and lac-
tate production using the colorimetric assay kits. **P<0.01, ***P<0.001, #P<0.05, ##P<0.01 ###P<0.001. 

 

 

sulting in ischemic cardiomyocytes’ dys-

function. Besides, it is reported that metabol-

ic changes occur in the myocardium during 

ischemia-associated hypoxia due to the dep-

rivation of oxygen and nutrient supply 

(Zhang et al., 2017). Therefore, we also 

found hypoxia induced glycolysis suppres-

sion, evidenced by the reduction of ATP 

production, glucose uptake and lactate pro-

duction. Then we found circ_0010729 was 

increased in hypoxia-treated cardiomyocytes, 

and hypoxia-evoked cardiomyocyte pheno-

typic changes and glycolysis suppression 

were attenuated when circ_0010729 was 

down-regulated, while overexpressed 

circ_0010729 in cardiomyocytes showed in-

verse effects. Taken together, down-

regulation of circ_0010729 exhibited cardio-

protective effects by reducing hypoxia-

evoked cardiomyocyte dysfunction.  
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Figure 7: Circ_0010729 regulates TRAF6 via binding to miR-370-3p. (A, B) qRT-PCR and western 
blot analysis of TRAF6 expression in AC-16 cells transfected with si-NC, si-circ_0010729 (si-circ), si-
circ_0010729 (si-circ) + anti-NC, or si-circ_0010729 (si-circ) + anti-miR-3701-3p under hypoxia for 24 
h. **P<0.01, ***P<0.001, #P<0.05, ##P<0.01 ###P<0.001. 

 

 

In mechanism, circRNAs have been 

widely reported as efficient miRNA “spong-

es” with gene-regulatory potential (Chen et al., 

2017; Du et al., 2017). Current studies indi-

cated that circRNAs contain at least one 

miRNA binding site (Thomas and Sætrom, 

2014).Thus, we identified miRNAs which 

might interact with circ_0010729 by using 

bioinformatics tools, and confirmed that 

miR-370-3p was the downstream target of 

circ_0010729 in cardiomyocytes. Micro-

RNAs are vital epigenetic regulatory mole-

cules, and increasing evidence has exhibited 

the prominent roles of them in progression 

and development of MI (Chistiakov et al., 

2016). A mass of miRNAs exhibited abnor-

mally altered in the pathological process of 

MI, and miRNAs have potential as therapeu-

tic biomarkers of MI (Bejerano et al., 2018; 

Boon and Dimmeler, 2015). For instance, 

miR-27a-5p alleviated hypoxia-evoked rat 

cardiomyocyte damage via modulating au-

tophagy and apoptosis through Atg7 (Zhang 

et al., 2019). MiR-21 attenuated hypoxia-

induced cardiomyocyte apoptosis by sup-

pressing PTEN expression (Wu et al., 2019). 

Additionally, miR-370 was demonstrated to 

have cardioprotective effects on hypoxia-

induced cardiomyocyte injury via regulating 

cell oxidative stress and survival, which 

might be a new therapeutic target for MI 

(Qiu et al., 2019; Zhao et al., 2019). Howev-

er, the role and mechanism of miR-370-3p in 

MI remain vague.  

In our work, we demonstrated that miR-

370-3p overexpression antagonized hypoxia-

induced cardiomyocyte phenotypic changes 

and glycolysis suppression; importantly, in-

hibition of miR-370-3p attenuated the pro-

tective effects of si-circ_0010729 on cardi-

omyocyte under hypoxia condition. Besides 

that, this study also confirmed that TRAF6 

was a target of miR-370-3p, and was reduced 

by miR-370-3p overexpression. What’s 

more, miR-370-3p restoration protected car-

diomyocytes against hypoxia injury through 

TRAF6, and circ_0010729 could indirectly 

regulate TRAF6 via serving as a sponge of 

miR-370-3p in cardiomyocytes. Thus, the 

circ_0010729/miR-370-3p/TRAF6 regulato-

ry network was identified in ischemia-

associated hypoxia-induced cardiomyocytes 

dysfunction.  

In summary, our work suggested that 

knockdown of circ_0010729 weakened hy-

poxia-induced cardiomyocyte dysfunction 

via miR-370-3p/TRAF6 axis, suggesting a 

potential therapeutic target for protecting 

against cardiomyocyte dysfunction during 

hypoxia injury. 
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