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Abstract
In this paper, we prove that Hennessy–Milner Logic (HML), despite its structural limitations,
is sufficiently expressive to specify an initial property ϕ0 and a characteristic invariant χI

for an arbitrary finite-state process P such that ϕ0 ∧ AG(χI ) is a characteristic formula for
P . This means that a process Q, even if infinite state, is bisimulation equivalent to P iff
Q |� ϕ0 ∧ AG(χI ). It follows, in particular, that it is sufficient to check an HML formula
for each state of a finite-state process to verify that it is bisimulation equivalent to P . In
addition, more complex systems such as context-free processes can be checked for bisimula-
tion equivalence with P using corresponding model checking algorithms. Our characteristic
invariant is based on so called class-distinguishing formulas that identify bisimulation equiv-
alence classes in P and which are expressed in HML. We extend Kanellakis and Smolka’s
partition refinement algorithm for bisimulation checking in order to generate concise class-
distinguishing formulas for finite-state processes.

1 Introduction

Branching time semantics [34,35] and, in particular, variants of bisimulation [32,33,35,37,38,
40] together with their congruence properties [12,36,37] are topics that Rob vanGlabbeek has
at heart. This also comprises probabilistic behavior [8], a topic that we (Rob and Bernhard)
cooperated on almost thirty years ago [39]. Hennessy–Milner logic (HML) [17] can be
considered the most basic modal logic for capturing branching time semantics. It is therefore
not surprising that Rob investigated its congruence properties [10,11]. The famous theorem
of Hennessy and Milner [17] establishes the link between (strong) bisimulation and HML:
two finitely branching processes can be separated by means of an HML formula if and
only if they are not bisimulation equivalent. This is often stated as HML and bisimulation
having the same distinguishing power. Characteristic formulas have a more ambitious role
than separating two processes, they are meant to characterize entire bisimulation equivalence
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672 M. Jasper et al.

classes: χ is a (bisimulation) characteristic formula for a process P if satisfaction of χ

coincides with being bisimulation equivalent to P , i.e.:

∀Q. (Q |� χ ⇐⇒ Q ∼bisim P)

In [2], Browne et al. showed how characteristic formulas can be constructed for finite-state
processes in computational tree logic (CTL).1 Moreover, in [28], it was shown how such
formulas can be generated within the modal μ-calculus (and HML with recursion, respec-
tively).

In this paper, we prove that HML is sufficient to define an initial property ϕ0 and a char-
acteristic invariant χI such that χP =def ϕ0 ∧AG(χI ) is a characteristic formula for a given
finite-state process P . This means, in particular, that it is sufficient to check an HML formula
for each reachable state of a finite-state process to verify that it is bisimulation equivalent to P .
In fact, using e.g. the model checking algorithms presented in [5–7], context-free processes,
pushdown-processes, and sequential processes can be checked for bisimulation equivalence
with P .

Key to the construction of χP is the separation of the specification of the one-step tran-
sition potential of states of P from their (loose) characterization. This separation essentially
decomposes the global bisimulation property into a number of local-step properties in a way
reminiscent of Floyd’s inductive assertion method [9]: the global property is guaranteed via
the consistency—here given by the local transition potential—of (loose) invariants. The latter
are given by distinguishing formulas for the bisimulation equivalence classes of P .

Whereas the one-step transition potential can be specified in the way proposed in [2], the
class-distinguishing formulas that separate non-bisimilar states can be constructed along the
classical partition refinement process for minimization up to bisimulation [21]. Key is that
the constructed set of distinguishing formulas Φ for P has the following two properties:

– Each state of P satisfies some distinguishing formula.
– The partition of reachable states in P that is induced byΦ defines a bisimulation relation.

Throughout this paper, we only compare processes from a given universe that is specified by
an alphabet Σ . This alphabet Σ comprises all considered process actions (transition labels).
Based on Σ and the before-mentioned set of distinguishing formulas Φ, the desired HML
invariant χI for specifying the one-step potential of P can be derived as in [2]:

χI =def

∧

ϕ∈Φ

⎛

⎜⎜⎜⎝ϕ �⇒

⎛

⎜⎜⎜⎝
∧

p
a→p′,ψ∈Φ

p|�ϕ, p′|�ψ

〈a〉 ψ ∧
∧

a∈Σ

[a]

⎛

⎜⎜⎜⎝
∨

p
a→p′,ψ∈Φ

p|�ϕ, p′|�ψ

ψ

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠

The resulting characteristic formula ϕ0 ∧AG(χI ) conceptually decomposes the verification
process in a ‘Floyd-like’ manner using invariants and class-distinguishing formulas. In con-
trast, the characteristic formulas presented in [28] can rather be considered to be amonolithic,
syntactic encoding of P .

After sketching some preliminaries in Sect. 2, Sect. 3 introduces our characteristic HML
invariants based on class-distinguishing formulas and proves a corresponding characteri-
zation theorem. Subsequently, Sect. 4 presents the concept of a set of class-distinguishing
formulas (SCDF) as a means to establish a sufficient condition for guaranteeing that our
characteristic formula construction results in a formula that is satisfied by the argument LTS.

1 Please note that it is not required that Q is finite state.
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Characteristic invariants in Hennessy–Milner logic 673

The effective construction of SCDFs from LTSs is described in Sect. 5. The underlying
algorithm is an adaption of Kanellakis and Smolka’s algorithm for checking bisimulation
equivalence [21] to generate the required class-distinguishing formulas. Following a discus-
sion of related work in Sect. 6, the paper closes with our conclusions and an outlook in
Sect. 7.

2 Preliminaries

In this section, we recall the basic concepts that our approach is based on. Central in this
regard are the definition of labeled transition systems and the usual corresponding notion of
a process.

Definition 1 (LTSandprocess)A labeled transition system (LTS) is a tripleL = (SL ,ΣL ,→L )

with set SL of states, alphabet ΣL ,
2 and transition relation →L⊆ SL × ΣL × SL .

We use the notation p
a→L q to denote that (p, a, q) ∈→L and omit the subscript L in

cases where the LTS is unambiguous. Furthermore, given a state s′ ∈ SL and a label a ∈ ΣL ,
we define the following shorthand notation for the set of a-predecessors of state s′

a−1s′ =def {s ∈ SL | s a→ s′}
This definition extends naturally to sets of states: for each S′ ⊆ SL , we have

a−1S′ =def

⋃

s′∈S′
a−1s′

Every state s ∈ SL of an LTS L defines a process PL (s) that constraints initial transitions
to start in s. A state s′ ∈ SL is reachable in PL (s), denoted by s →∗

L
s′, iff there exists a

sequence of transitions si
ai→L si+1 in →L with i ∈ 0 .. (k − 1) for some k ∈ N such that

s0 = s and sk = s′. This notion naturally generalizes to a notion of reachability within an
LTS L from any state s of L .

We are aiming at characterizing processes up to bisimulation, a semantic equivalence relation
that is known to preserve properties expressed in most temporal logics, in particular those
that can be expressed in the modal μ-calculus [1].

Definition 2 (Bisimulation) Let L = (SL ,ΣL ,→L ) be an LTS. A symmetric relation
R ⊆ (SL × SL ) is called a bisimulation if the following holds for all (p, q) ∈ R:

∀(p
a→ p′) ∈→L . ∃(q

a→ q ′) ∈→L . (p′, q ′) ∈ R

Two states s, s′ ∈ S are called bisimilar in L , written as s ∼L s′, iff there exists a bisimulation
R with (s, s′) ∈ R.3

Given a second LTS L ′ = (S
L′ ,ΣL′ ,→L′ ), two processes PL (s) and P

L′ (s′) are
called bisimilar, written as PL (s) ∼ P

L′ (s′), iff there exists a bisimulation in
L ′′ = (SL

·∪ S
L′ ,ΣL ∪ Σ

L′ ,→L
·∪ →

L′ ) that contains (s, s′).4

2 Note that ΣL ⊆ Σ holds for any LTS L , because—as stated in the introduction—we only consider
LTSs/processes from a given universe specified by Σ .
3 Note that ∼, which is in fact the union of all bisimulation relations, is itself a bisimulation.
4 The operator ·∪ stands for the disjoint union of two sets.
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674 M. Jasper et al.

Our characteristic invariants are formulas specified in Hennessy–Milner logic (HML) [17]
that extends propositional logic with a modal operator 〈·〉 (diamond):

Definition 3 (HML) Given an alphabet Σ , Hennessy–Milner logic (HML) is defined by the
following grammar in Backus–Naur form

ϕ ::= tt | ¬ϕ | (ϕ ∧ ϕ) | 〈α〉 ϕ

where α is a meta-variable for an arbitrary element of Σ . In addition, the following derived
operators are frequently used:

ff =def ¬tt ϕ1 ∨ ϕ2 =def ¬(¬ϕ1 ∧ ¬ϕ2)

ϕ1 �⇒ ϕ2 =def ¬ϕ1 ∨ ϕ2 [α] ϕ =def ¬〈α〉 ¬ϕ

Definition 4 (Semantics of HML) The semantics of HML are defined relative to a given LTS
L = (S,ΣL ,→) and formalized via the following satisfaction relation |�L ⊆ S × HML:

s |�L tt
s |�L ¬ϕ iff s �|�L ϕ

s |�L ϕ1 ∧ ϕ2 iff s |�L ϕ1 and s |�L ϕ2

s |�L 〈a〉 ϕ iff ∃s′ ∈ S. s
a→ s′ and s′ |�L ϕ

where s ∈ S,a ∈ Σ andϕ, ϕ1, ϕ2 ∈ HML.Weomit the subscript L of |�L if it is unambiguous
in a given context, and often abbreviate p |�L ϕ and q |�L ϕ by p, q |�L ϕ. In cases were
we want to emphasize the process perspective, we write PL (s) |� ϕ instead of s |�L ϕ.

In the following, we will establish that HML is sufficient to define the invariants required for
our characteristic formulas.

3 Generalized characteristic HML invariant

Our definition of a generalized characteristic HML invariant follows the “diamond-box-
pattern” originally introduced in [13,15]:

Definition 5 (Generalized characteristic HML invariant) Let Σ be a global alphabet that
contains all considered action labels. With a pair (Φ,Ψ ) such that Φ is a finite set of HML
formulas and Ψ : Φ × Σ → 2Φ a function we associate an HML formula χI (Φ,Ψ ) called
generalized characteristic invariant (GCI) as follows:

χI (Φ,Ψ ) =def

∧

ϕ∈Φ

⎛

⎜⎜⎝ϕ �⇒

⎛

⎜⎜⎝
∧

a∈Σ,
ψ∈Ψ (ϕ,a)

〈a〉 ψ ∧
∧

a∈Σ

[a]
⎛

⎝
∨

ψ∈Ψ (ϕ,a)

ψ

⎞

⎠

⎞

⎟⎟⎠

⎞

⎟⎟⎠

Given an LTS L = (S,ΣL ,→), we write L |� AG(ϕ) iff s |�L ϕ holds for all s ∈ S and
say that χI (Φ,Ψ ) is a GCI for L iff L |� AG(χI (Φ,Ψ )). We sometimes write χI instead
of χI (Φ,Ψ ) iff the arguments are unambiguous in a given context.

In order to capture our notion of a GCI, we extend HML as follows.

Definition 6 (Syntax of HMLAG) Given an alphabet Σ , Hennessy–Milner logic with AG
(HMLAG) is defined by the following grammar in Backus–Naur form

ϕ ::= tt | ¬ϕ | (ϕ ∧ ϕ) | 〈α〉 ϕ | AG(ϕ)

123



Characteristic invariants in Hennessy–Milner logic 675

where α is a meta-variable for an arbitrary element of Σ . The derived operators of HML are
also used for HMLAG .

HMLAG is equivalent to a logic called EF or UB− in the literature [25] and is itself a fragment
of CTL. In this paper, we are only interested in two patterns of HMLAG formulas, namely
AG(χI ) and ϕ0 ∧AG(χI ) where ϕ0,χI ∈ HML. Definition 6 therefore specifies AG instead
of an EF operator.

Definition 7 (Semantics of HMLAG) The semantics of HMLAG are defined relative to a
given LTS L = (S,ΣL ,→). Given an LTS L , the satisfaction relation |�L ⊆ S × HMLAG

extends Definition 4 with the following clause:

s |�L AG(ϕ) iff ∀s′ ∈ S. s →∗
L
s′ implies s′ |�L ϕ

where s ∈ S and ϕ ∈ HMLAG. Shorthand notations are defined as in Definition 4.

Note the overloading of AG. In fact, we have:

L |� AG(ϕ) iff ∀s ∈ S. s |�L AG(ϕ)

iff ∀s ∈ S. PL(s) |� AG(ϕ)

Please recall that we only consider LTSs and processes from a universe that is specified
by an alphabet Σ , i.e. the set of possible actions. The following lemma illustrates the power
of the “diamond-box-pattern” [13,15] that underlies our definition of GCIs.

Lemma 1 Let χI (Φ,Ψ ) be a GCI and L = (S,ΣL ,→) an LTS such that L |� AG(χI ).
Then

R = {(p, q) ∈ S × S | ∃ϕ ∈ Φ. p, q |�L ϕ}
is a bisimulation.

Proof Let χI (Φ,Ψ ) be a GCI that is based on some finite set Φ of HML formulas and some
function Ψ : Φ × Σ → 2Φ . Furthermore, let L be any LTS such that L |� AG(χI (Φ,Ψ )).
As the empty relation is clearly a bisimulation, we can assume that R is not empty. Let us
now consider an arbitrary pair (p, q) ∈ R. Then there exists a formula ϕ ∈ Φ with p, q |� ϕ.
Therefore, we know due to L |� AG(χI (Φ,Ψ )) that both p and q satisfy

∧

a∈Σ,
ψ∈Ψ (ϕ,a)

〈a〉 ψ ∧
∧

a∈Σ

[a]
⎛

⎝
∨

ψ∈Ψ (ϕ,a)

ψ

⎞

⎠ .

R is obviously symmetric. Therefore, it suffices to prove the defining invariance property of

bisimulation (Definition 2). Let p
b→ p′ be an arbitrary transition starting in p. Looking at

the subformula

[b]
⎛

⎝
∨

ψ∈Ψ (ϕ,b)

ψ

⎞

⎠

that must be satisfied by p, we know that p′ |� ∨
ψ∈Ψ (ϕ,b) ψ . Therefore, there exists a

ψ ′ ∈ Ψ (ϕ, b) that is satisfied by p′. The fact that q satisfies the subformula
∧

a∈Σ,ψ∈Ψ (ϕ,a)

〈a〉 ψ
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676 M. Jasper et al.

now yields that q satisfies 〈b〉 ψ ′, i.e., the existence of a transition q
b→ q ′ such that q ′

satisfies ψ ′. Thus, both p′ and q ′ satisfy ψ ′ which guarantees (p′, q ′) ∈ R. ��

Of course, not every GCI fits each LTS L , e.g., the bisimulation guaranteed by the above
characterization lemma may well be empty. GCIs develop their full characterizing power
only in combination with an initial condition:

Lemma 2 Let χI (Φ,Ψ ) be a GCI and ϕ0 ∈ Φ. Moreover, let L = (SL ,ΣL ,→L ),
L ′ = (S

L′ ,ΣL′ ,→L′ ) be two LTSs with states s ∈ SL and s′ ∈ S
L′ such that s |�L ϕ0

and s′ |�
L′ ϕ0, respectively. Then we have:

1. L |� AG(χI ) and L ′ |� AG(χI ) implies PL (s) ∼ P
L′ (s′).

2. If all states of SL are reachable from s in L and all states of S
L′ are reachable from s′ in

L ′, then PL (s) ∼ P
L′ (s′) implies L |� AG(χI ) and L ′ |� AG(χI ).

Proof Let χI be a GCI and L and L ′ two LTS with states s ∈ SL and s′ ∈ S
L′ such that

s |�L ϕ0 and s′ |�
L′ ϕ0, respectively.

In order to prove the first part of Lemma 2,we assume that L |� AG(χI ) and L
′ |� AG(χI )

hold, and observe that

L ′′ = (SL
·∪ S

L′ ,ΣL ∪ Σ
L′ ,→L

·∪ →
L′ )

is a well-defined LTS which also satisfies AG(χI ) and in which both s and s
′ satisfy ϕ0, i.e.,

s, s′ |�
L′′ ϕ0. Thus, Lemma 1 guarantees that

R = {(p, q) ∈ (SL
·∪ S

L′ ) × (SL
·∪ S

L′ ) | ∃ϕ ∈ Φ. p, q |�
L′′ ϕ}

is a bisimulation. As s, s′ |�
L′′ ϕ0 also implies (s, s′) ∈ R, we can conclude that PL (s) and

P
L′ (s′) are bisimilar as desired.

Our semantics of AG for an entire LTS coincides with the (standard) semantics for pro-
cesses in which all states are reachable. Thus, the proof of the second part is a consequence
of the well-known fact that bisimulation preserves e.g. all CTL and modal μ-calculus
formulas. ��

The following theorem is a straightforward reformulation of Lemma 2 considering processes
as models of the GCI instead of LTSs:

Theorem 1 (GCI-based characteristic formulas) Let χI be a GCI based on a finite set Φ of
HML formulas, ϕ0 ∈ Φ, and L = (SL ,ΣL ,→L ), L

′ = (S
L′ ,ΣL′ ,→L′ ) be two LTSs with

states s ∈ SL and s′ ∈ S
L′ . Then we have:

(PL (s) |� ϕ0 ∧ AG(χI ) and P
L′ (s

′) |� ϕ0 ∧ AG(χI )) iff PL (s) ∼ P
L′ (s

′)

Whereas the implication from left to right is just a reformulation of Lemma 2(1), the con-
verse implication exploits the fact that satisfaction of invariance properties of processes only
concerns the reachable states.

The following section establishes a sufficient condition for sets of formulas Φ to serve as a
basis for the definition of non-trivial GCIs for a finite-state LTS, i.e., GCIs that remain valid
when initial conditions ϕ ∈ Φ are added, resulting in characteristic formulas for processes
as shown in Theorem 1.
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Fig. 1 Nondeterministic LTS

4 Class-distinguishing formulas

Our notion of class-distinguishing formulas is directly based on the concept of bisimulation:

Definition 8 (Set of class-distinguishing formulas (SCDF)) Given any LTS L = (S,ΣL ,→),
a finite set Φ ⊆ HML with ∀s ∈ S. ∃ϕ ∈ Φ. s |� ϕ is called set of class-distinguishing
formulas (SCDF) for L iff

R = {(p, q) ∈ S × S | ∃ϕ ∈ Φ. p, q |� ϕ}
is a bisimulation.

Example 1 (Set of class-distinguishing formulas (SCDF)) Consider the LTS L depicted in
Fig. 1. The history tree in Fig. 2 identifies the set Φ = {ϕ1, ϕ2, ϕ3} with

ϕ1 = 〈a〉 〈a〉 tt
ϕ2 = 〈a〉 tt ∧ [a] [a] ff
ϕ3 = [a] ff

as an SCDF for L . The subscript i in ϕi correlates with the corresponding state identifier si
such that si |� ϕi . Note that state 2 is bisimilar to state 5 and that state 3 is bisimilar to state 4.

BeingHML formulas, the elements of an SCDFΦ for L can, in general, not fully characterize
the behavior of states in L . They are only sufficient to identify bisimulation equivalence
classes in the context of L . In the following, we will see how the “diamond-box-pattern”
turns this property into a property that universally characterizes processes up to bisimulation,
even in the context of infinite-state systems.

Definition 9 (SCDF-based GCIs) Let L = (S,ΣL ,→) be an LTS, Φ an SCDF for L , and
Ψ : Φ × Σ → 2Φ defined by

Ψ (ϕ, a) = {ψ ∈ Φ | ∃p, q ∈ S. p
a→ q ∧ p |� ϕ ∧ q |� ψ}.

Then χI (Φ,Ψ ) is called a GCI for L based on Φ.

A GCI χI based on an SCDF for L is sufficient to guarantee that L |� AG(χI ).

Lemma 3 Let L = (S,ΣL ,→) be any LTS, Φ an SCDF for L, and χI a GCI for L based
on Φ. Then we have L |� AG(χI ).
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678 M. Jasper et al.

Proof Let L = (S,ΣL ,→) be an LTS, Φ an SCDF for L , and χI (Φ,Ψ ) a GCI for L based
on Φ. Then we have to prove that L satisfies the following formula:

AG

⎛

⎜⎜⎝
∧

ϕ∈Φ

⎛

⎜⎜⎝ϕ �⇒

⎛

⎜⎜⎝
∧

a∈Σ,
ψ∈Ψ (ϕ,a)

〈a〉 ψ ∧
∧

a∈Σ

[a]
⎛

⎝
∨

ψ∈Ψ (ϕ,a)

ψ

⎞

⎠

⎞

⎟⎟⎠

⎞

⎟⎟⎠

⎞

⎟⎟⎠

where

Ψ (ϕ, a) = {ψ ∈ Φ | ∃p, q ∈ S. p
a→ q ∧ p |� ϕ ∧ q |� ψ}.

According to the semantics of L |� AG(ϕ) for some ϕ ∈ HML, it suffices to show that
every state s ∈ S satisfies the conjunction χI (Φ,Ψ ) that serves as the argument of the AG
operator. Let s ∈ S and ϕ ∈ Φ be arbitrary but fixed elements. We can assume that s |� ϕ,
because otherwise the implication is trivially satisfied. Thus, it remains to be shown that

s |�
∧

a∈Σ,
ψ∈Ψ (ϕ,a)

〈a〉 ψ ∧
∧

a∈Σ

[a]
⎛

⎝
∨

ψ∈Ψ (ϕ,a)

ψ

⎞

⎠

holds. Therefore, let ϕc be any of the conjuncts in that HML formula. In order to show its
validity, we distinguish between two cases:

Case 1: ϕc = 〈a〉ψ for some a ∈ Σ with ψ ∈ Ψ (ϕ, a).
Because of ψ ∈ Ψ (ϕ, a), there exist states p, q ∈ S and a transition p

a→ q with
p |� ϕ and q |� ψ . Thus, we have p |� ϕc. In addition, s, p |� ϕ implies s ∼L p
according to the definition of an SCDF. As bisimilar states satisfy the same HML
formulas [17], this yields s |� ϕc, which closes the first case.

Case 2: ϕc = [a] δ with δ = ∨
ψ∈Ψ (ϕ,a) ψ for some a ∈ Σ .

In this case, the following has to be shown:

∀s′ ∈ S. s
a→ s′ implies s′ |� δ

Therefore, let s′ ∈ S be any state such that s
a→ s′ and ψ ∈ Φ be a corresponding

formula with s′ |� ψ . Such a formula exists due to the definition of an SCDF.
Now, s |� ϕ implies ψ ∈ Ψ (ϕ, a) by definition of Ψ which guarantees that ψ is a
disjunct in δ and therefore that s′ |� δ as desired. ��

The following theorem follows straightforwardly fromLemma 3 and the definition of SCDFs.

Theorem 2 (Sufficiency for characterization) Let L = (S,ΣL ,→) be any LTS with s0 ∈ S,
Φ an SCDF for L, and χI a GCI for L based on Φ. Then there exists a ϕ0 ∈ Φ such that
s0 |� ϕ0 and we have:

PL(s0) |� ϕ0 ∧ AG(χI )

The presented construction of a GCI for an LTS L depends on a corresponding SCDF (Defi-
nition 8). The next section introduces an approach that allows us to elegantly generate these
sets of class-distinguishing formulas for any finite-state LTS.
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Characteristic invariants in Hennessy–Milner logic 679

5 Generation of characteristic invariants for finite-state LTSs

In this section, we present an algorithm that automatically generates a finite set of class-
distinguishing formulas (SCDF) for any finite-state LTS L . Given this SCDF, a GCI for L
can be generated according to Sect. 4.

After a brief sketch of partition refinement [16,19] and so called splitters, Sect. 5.2
introduces the class-distinguishing functions that we use to generate an SCDF. Afterwards,
Sect. 5.3 presents our algorithm together with an accompanying example.

5.1 Partition refinement

Partition refinement serves as the underlying concept of many analysis and verification tech-
niques [31].

Definition 10 (Partition refinement) Given a set S, P ⊆ 2S is a partition of S iff its elements,
called classes, are non-empty, pairwise disjoint, and cover S when merged (

⋃
X∈P X = S).

Given two partitions P and Q of S, P refines Q, denoted by P � Q, iff for each X ∈ P
there exists a Y ∈ Q such that X ⊆ Y . We write P ≺ Q iff P � Q and P �= Q.

Our algorithm that is presented in Sect. 5.3 relies on partition refinement: it extends the algo-
rithm by Kanellakis and Smolka [21] for the minimization of non-deterministic systems up
to bisimulation. Our extension computes HML formulas that allow to identify the individual
classes of the partitions that arise during the refinement algorithm.

Partition refinement within this algorithm is based on witnesses, called splitters, which
prove that one or more classes contain states that are not bisimilar.

Definition 11 (Splitter) Let L = (S,ΣL ,→) be an LTS and P a partition over S. Let
B, Y ∈ P and a ∈ ΣL . Then the pair (B, a) is a splitter of Y iff Y ∩ a−1B �= ∅ and
Y\a−1B �= ∅ (see Definition 1). We denote this by (B, a) | Y . Furthermore, we define the
abbreviations Ya

B =def Y ∩ a−1B and Y � a
B =def Y\a−1B.

Note that (B, a)might be a splitter for multiple classes in P . A refinement based on (B, a)

splits all those classes:

Definition 12 (Splitter-based refinement) Let P be a partition and (B, a) a splitter of some
class Y ∈ P . Let P ′ = {Y ∈ P | (B, a) is a splitter of Y }. Then the partition

Pa
B =def (P\P ′) ∪ {Ya

B | Y ∈ P ′} ∪ {Y � a
B | Y ∈ P ′}

is called the refinement of P based on (B, a).

Kanellakis and Smolka [21] proved that exhaustive splitting while starting with the trivial
partition inevitably results in the coarsest partition that defines a bisimulation. The next
section shows how we obtain formulas that uniquely identify the classes of this partition by
the corresponding satisfaction relation, a property that makes the set of those formulas an
SCDF.

5.2 Class-distinguishing functions

The SCDFs that we construct depend on the concrete chain of refinements produced by the
(typically non-deterministic) partition refinement algorithm. Thus, let us consider an arbitrary
but fixed scenario in this subsection, i.e.:

123



680 M. Jasper et al.

Let L = (S,ΣL ,→) be a finite-state LTS, P0 = {S}, (B0, a0) , . . . , (Bm−1, am−1) a
sequence of m splitters, and P0 , . . . , Pm the corresponding sequence of m + 1 (refined)
partitions such that for all k ∈ 0 .. m − 1, we have

1. (Bk, ak) is a splitter of some Y ∈ Pk ,
2. Pk+1 is the refinement of Pk based on (Bk, ak), and
3. Pm cannot be refined based on splitting.

This allows for the following inductive definition:

Definition 13 (Class-distinguishing functions) The sequence ϕ0 , . . . , ϕm with
ϕk : Pk → HML for all k ∈ 0 .. m inductively defined by ϕ0(S) = tt and

ϕk+1(X) =def

⎧
⎪⎨

⎪⎩

ϕk(Y ) ∧ 〈ak〉 ϕk(Bk) if ∃Y ∈ Pk . (Bk, ak) | Y and X = Yak
Bk

ϕk(Y ) ∧ ¬〈ak〉 ϕk(Bk) if ∃Y ∈ Pk . (Bk, ak) | Y and X = Y � ak
Bk

ϕk(X) otherwise.

is called sequence of class-distinguishing functions.

Note that the three cases in the definition of ϕk+1(X) are disjoint and that Y is unique in
the first two cases. For this sequence of class-distinguishing functions, which is uniquely
determined by the considered scenario, we have:

Theorem 3 (Class-distinguishing functions)

∀k ∈ 0 .. m. ∀X ∈ Pk . ∀s ∈ S. s ∈ X iff s |� ϕk(X)

Proof We prove the validity of the statement

A(k) =def ∀X ∈ Pk . ∀s ∈ S. s ∈ X iff s |� ϕk(X)

by induction over k ∈ 0 .. m.

Base case (k = 0): Initially, we have P0 = {S} and ϕ0(S) = tt and therefore ∀s ∈ S. s |� tt
as required.

Induction hypothesis: Let A(k) hold for an arbitrary but fixed k ∈ 0 .. (m − 1).

Induction step (k → k+1): Let X ∈ Pk+1 and s ∈ S be both arbitrary but fixed. We proceed
by proving the two required implications depending on the cases within Definition 13 for the
construction of ϕk+1(X).

Case 1: ∃Y ∈ Pk . (Bk, ak) | Y and X = Yak
Bk

(i) s ∈ X implies s |� ϕk+1(X):
We assume that s ∈ X . Because of (Bk, ak) | Y , we know that X ⊂ Y and therefore
s ∈ Y . Due to the induction hypothesis, we have s |� ϕk(Y ). Based on s ∈ Yak

Bk
, we

know that s has an ak-successor in Bk (Definition 11). Let s′ denote such a successor.
By induction hypothesis, it follows that s′ |� ϕk(Bk). Due to s

ak→ s′ and HML
semantics, we know that s |� 〈ak〉 ϕk(Bk). Thus, we have s |� ϕk(Y )∧〈ak〉ϕk(Bk) =
ϕk+1(X).

(ii) s |� ϕk+1(X) implies s ∈ X :
We assume s |� ϕk+1(X), which means that s |� ϕk(Y ) ∧ 〈ak〉ϕk(Bk). Because of
the induction hypothesis and the first conjunct, we know that s ∈ Y . Using HML
semantics and the induction hypothesis, the second conjunct implies that there exists

a transition s
ak→ s′ such that s′ ∈ Bk . Thus, we have s ∈ (Y ∩ ak−1Bk) = Yak

Bk
= X .
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{1,2,3,4,5}

{1,2,5}
<a>(tt)

{3,4}

!<a>(tt)

a

{1}
<a>(tt & <a>(tt))

{2,5}

!<a>(tt & <a>(tt))

!a

a

!a
{1,2,3,4,5}

{1,2,5}
<a>(tt)

{3,4}

!<a>(tt)

a

{1}
<a>(tt & <a>(tt))

{2,5}

!<a>(tt & <a>(tt))

!a

a

!a

Fig. 2 Partition refinement history and corresponding class-distinguishing predicates based on the input-LTS
from Fig. 1 as generated by a tool that implements Algorithm 1. Dotted arrows denote splitters

Case 2: ∃Y ∈ Pk . (Bk, ak) | Y and X = Y � ak
Bk

Analogous to case 1.
Case 3: X is not split by (Bk, ak)

Then X ∈ Pk and ϕk+1(X) = ϕk(X) and therefore by induction as desired:

s ∈ X iff s |� ϕk(X) (= ϕk+1(X)) ��

In summary, the class-distinguishing functions are defined such that they reflect information
about each splitter in HML. This information can be summarized on the basis of a decision
tree with node set

N =
⋃

k∈0 .. m

Pk

and edges set

E =
⋃

i∈0 .. m−1

{(C,C ′) ∈ Pi × Pi+1 | C ′ ⊂ C}

where for each k ∈ 0 .. m − 1, all the nodes C ∈ Pk that are split by (Bk, ak) are annotated
with the predicate 〈ak〉 ϕk(Bk). If this predicate evaluates to true, then one continues with
Cak
Bk
, otherwise with C � ak

Bk
.

Figure 2 illustrates such a decision tree based on the LTS depicted in Fig. 1. As Fig. 2 is
intended to also display the partition classes, the predicates were moved to the edges.

In the following, we present our algorithm that incorporates both the partition refinement and
the corresponding labeling based on class-distinguishing functions.

5.3 Algorithm for generating an SCDF

WeuseAlgorithm 1 to generate an SCDF (Definition 8). This algorithm is conceptually based
on the “naive method” from [21]. As such, the derived partition P is actually the coarsest
partitionw.r.t. bisimulation.Additionally, our iteratively defined class-distinguishing function
(Definition 13) is incorporated.
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Algorithm 1 Algorithm for generating an SCDF
Input: A finite-state LTS L = (S, ΣL ,→)

Output: An SCDF of L
1: function StateFormulas(S,ΣL , →)
2: P ← {S}
3: W ← P × ΣL
4: ϕ[S] ← tt
5: while W �= ∅ do
6: (B, α) ← pop(W )

7: splitterFormula ← ϕ[B]
8: for all Y ∈ P which are split by (B, α) do
9: classFormula ← ϕ[Y ]
10: replace Y in P by Yα

B and Y �α
B

11: delete entry for Y in ϕ

12: ϕ[Yα
B ] ← classFormula ∧ 〈α〉 splitterFormula

13: ϕ[Y �α
B ] ← classFormula ∧ ¬〈α〉 splitterFormula

14: W ← UpdateWorkset(W , Y , (B, α), ΣL )

15: return {ϕ[X ] | X ∈ P}

Algorithm 2
1: function UpdateWorkset(W , Y , (B, α), ΣL )
2: for all β ∈ ΣL do
3: if (Y , β) ∈ W then remove (Y , β) from W

4: add (Yα
B , β), (Y �α

B , β) to W

5: return W

Theworklist of Algorithm 1 contains potential splitters (Definition 11).Whenever the current
partition P is refined and new classes are thereby added to it, these classes are combined with
every possible transition label and added to the worklist (Algorithm 2). Every time that such
a partition refinement occurs, the class-distinguishing function ϕ is updated according to
Definition 13 in order to incorporate information about the most recent splitter (lines 11–13
of Algorithm 1).

Note that the order in which splitters are applied is not defined by Algorithm 1. In the
following, we assume a fixed order of splitters. As stated in Sect. 5.2 and visible in the pseudo
code (lines 12 and 13 of Algorithm 1), the definition of the class-distinguishing function
throughout the algorithm’s execution is based on that order of splitters. The sequence of
splitters is exactly the sequence of those pairs received in line 6 of Algorithm 1 for which
the inner for-all loop (line 8) executes at least one iteration.

Example 2 (Algorithm 1) Consider the LTS in Fig. 1 as input for Algorithm 1. Figure 2
illustrates the two refinements during an execution of Algorithm 1 for this input LTS. The
actual class-distinguishing formulas generated by Algorithm 1 are as follows. In line with
Sect. 5.2, we use a subscript index to refer to different refinements (Definition 12).

The algorithm’s internal variables are initialized to P0 = {S = {1, 2, 3, 4, 5}} (line 2) and
ϕ0[S] = tt (line 4).

The first splitter is (S, a) (line 6). It splits the class S into the sets SaS = {1, 2, 5} and
S � a
S = {3, 4} (line 10). This split occurs because on the one hand, we have 1

a→ 2, 2
a→ 3,

5
a→ 3, and 2, 3, 5 ∈ S, and on the other hand, states 3 and 4 do not have outgoing transitions
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labeled a (cf. Fig. 1). The new partition is given by P1 = {{1, 2, 5}, {3, 4}} (line 10) and the
formulas are ϕ1[{1, 2, 5}] = tt ∧ 〈a〉 tt (line 12) and ϕ1[{3, 4}] = tt ∧ ¬〈a〉 tt (line 13).

The second splitter is ({1, 2, 5}, a). Note that in the meantime, several other checks for
possible refinements may have been performed that failed. For simplicity, we will only list
actual splitters (Definition 11). The splitter ({1, 2, 5}, a) separates the class {1, 2, 5} into

the sets {1} and {2, 5}. Again, this happens because on the one hand, we have 1
a→ 2 with

2 ∈ {1, 2, 5}, and on the other hand, states from {2, 5} do not possess outgoing transitions
labeled a that end in {1, 2, 5}. The new and final partition is given by P = {{1}, {2, 5}, {3, 4}}
and the formulas are:

ϕ2[{1}] = tt ∧ 〈a〉 tt ∧ 〈a〉 (tt ∧ [a] tt)
ϕ2[{2, 5}] = tt ∧ 〈a〉 tt ∧ ¬〈a〉 (tt ∧ [a] tt)
ϕ2[{3, 4}] = tt ∧ ¬〈a〉 tt

Note that states 2 and 5 as well as 3 and 4 are bisimilar, respectively. The algorithm terminates
(after potentially executing a few more checks for splitters) because the splitter potential is
exhausted.

Algorithm 1 resembles the “naive” algorithm by Kanellakis and Smolka [21] which is known
to run in cubic time and to terminate with the coarsest partition up to bisimulation. Thus, the
following theorem is a consequence of Theorem 3 which guarantees the correct labeling of
the partition classes.

Theorem 4 (Correctness of Algorithm 1) Given an LTS L, Algorithm 1 terminates with an
SCDF for L.

The following theorem summarizes the main result of this paper. Please recall that by
definition of an SCDF, every state s ∈ S has a formula ϕ ∈ Φ with s |�L ϕ:

Theorem 5 (Main theorem) Let L be an LTS L = (S,ΣL ,→), Φ an SCDF for L generated
by Algorithm 1, χI the GCI for L based on Φ, and s ∈ S, ϕ ∈ Φ with s |�L ϕ. Then for any
P
L′ (s′) based on some LTS L ′ = (S′,Σ ′

L′ ,→′) with s′ ∈ S′, we have:

P
L′ (s

′) |� ϕ ∧ AG(χI ) iff PL (s) ∼ P
L′ (s

′)

Proof Theorem 4 guarantees that Φ is an SCDF which, by Theorem 2, implies
PL (s) |� ϕ ∧ AG(χI ). Thus, applying Theorem 1 yields the desired statement. ��

6 Discussion of related work

The coincidence theorem of Hennessy andMilner states that, given a finitely-branching LTS,
two states are bisimilar if and only if they enjoy the same set of HML formulas (first stated
1980 in [17] and again in [18]). Thus, HML has distinguishing power: any two non-bisimilar
finitely-branching LTSs can be distinguished by a formula in HML.

The idea of characteristic formulas goes beyond distinguishability: It requires that, given
a finitely-branching LTS, there exists a (single) formula that distinguishes this LTS from
any other non-bisimilar (finitely-branching) LTS. It is clear that this “swap of quantifiers”
leads to a requirement that cannot be satisfied by HML as HML formulas are limited in their
sensitivity to finite prefixes of computation trees.
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In 1984, Graf and Sifakis published a scheme by which characteristic formulas for finite
CCSprocesses5 canbederived [13,15]. Such a scheme is usually referred to as (characteristic)
translation. The pattern introduced by Graf and Sifakis, which we refer to as “diamond-box-
pattern”, is used in almost all following publications on characteristic formulas, including
this paper (see Definition 5). Graf and Sifakis also extended the idea of Hennessy and Milner
in the sense that they interpret the coincidence theorem as a strict requirement for sensible
temporal logics [14]. Thereby such logics are “sufficiently powerful to distinguish non-
congruent terms”. Indeed, as later shown in various publications, many famous temporal
logics such as HML, CTL, and μ-calculus satisfy this claim.

Browne, Clarke, and Grumberg were the first to take the step from finite to finite-state
systems in 1987, again based on the “diamond-box-pattern” by Graf and Sifakis, but this
time generalized using implication in order to deal with cycles [2]. The key idea, which
is also used in this paper, consists of two steps. First, find a formula for each state that
distinguishes it from every other state of the considered finite-state system. Second, show
that the generalized “diamond-box-pattern” for connecting these distinguishing formulas is
sufficient to define characteristic formulas for finite-state systems. In essence, they observed
that non-bisimilar states of finite-state systems can be distinguished by a finite prefix of the
corresponding computation tree6 which allowed them to infer their distinguishing formulas
simply as characteristic formulas up to a certain depth of bisimilarity.

The paper [28] introduced a technique for deriving characteristic formulas in the modal
μ-calculus for finite-state processes (with divergence potential [26,27]). Key idea was to
associate each state of the LTSwith a fixed point variable and to construct a modal equational
system on the basis of the “diamond-box-pattern” which can then be translated into themodal
μ-calculus. As this translation leads to formulas of exponential size, [30] focused on modal
equational systems as they provide characterizations that are linear in the size of a property,
making bisimulation checking via model checking attractive.

Like [2], the approach presented in this paper is based on the combination of distinguishing
formulas using the generalized “diamond-box-pattern”. The main difference is the construc-
tion of the distinguishing SCDF based on Algorithm 1 which has a reduced form of linear
size in terms of a recursion-free equational system. Key to this construction is an extension
of Kanellakis and Smolka’s partition refinement algorithm for bisimulation checking [21] in
order to incrementally compute distinguishing formulas for the individual partition classes.
By construction, this leads to distinguishing formulas with linearly many distinct subfor-
mulas. Therefore, their corresponding representation in terms of a directed acyclic graph
or, equivalently, as recursion-free equational system, is guaranteed to be linear in the num-
ber of bisimulation equivalence classes. Thus, the characteristic formulas proposed in this
paper can be regarded as very concise versions and therefore practical optimizations of the
characteristic formulas of [2].

7 Conclusion and outlook

We have shown that HML, despite its structural limitations, is sufficiently expressive to
specify an initial property ϕ0 and a characteristic invariant χI for an arbitrary finite-state
process P such that ϕ0 ∧AG(χI ) is a characteristic formula for P . This means, in particular,

5 Such CCS processes can be represented as a labeled tree with finite depth.
6 This is an immediate consequence of the fact that bisimilarity coincides with the limit of n-bisimilarity for
finitely branching systems—a key property originally exploited in [17].
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that it is sufficient to check anHML formula for each state of a candidatefinite-state process to
verify that it is bisimulation equivalent to P . In fact, our proofs do not require the candidate
processes to be finite state. In particular, our theorem also holds for context-free [5] and
push-down candidate systems [6].

The first model checking algorithm for context-free systems has been presented in 1992
in [5]. It was linear in the size of the context-free process representation and exponential in
the size of the, in this case alternation-free, modal μ-calculus formula, or better, in the size
of a corresponding modal equational system. Extensions covered pushdown-processes [6]
and later sequential processes for the full modalμ-calculus [7]. Combining these algorithms,
whose implementation in the fixed point analysis machine has been presented in CONCUR
1995 [29], with an algorithm that constructs characteristic formulas in terms of modal equa-
tional systems (e.g. [30]) immediately implies:

Bisimulation checking of context-free processes with a finite-state process can be per-
formed in exponential time via model checking of characteristic formulas.

Even though not explicitly formulated back then, there existed a corresponding imple-
mentation already in 1995 [29]. Related results concerning equivalence checking involving
infinite-state systems can be found in [3,4,20,22–24].

Currently, we are re-implementing the algorithms for characteristic formula construction
and context-free model checking, also with the goal to experimentally evaluate their practical
efficiency. Our model checking algorithm uses shared BDDs7 to efficiently represent the
property transformers that are characteristic of our second-order treatment of context-free
systems. It is not clear how the choice of characteristic formula construction interferes with
the second-order fixed point computation, whether there are advantageous process patterns,
or whether there are certain technological bottlenecks that can be overcome. An example for
the latter category is the treatment of the identity function, which is intuitively very simple,
but whose representation in terms of shared BDDs is bound to explode.
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