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Abstract

Decentralization of system communication of Industry 4.0 is the main thesis,
where different types of system type topologies (Centralized, Distributed,
and Decentralized) are explored. With the different topologies, the
importance of systems decentralization in the context of logistics is explored
for a socially networked industry. A socially networked industry is a
hierarchical network of systems that collaborate and execute tasks with
optimizations performed at every network level. To develop such a
networking paradigm, decentralization is necessary, unfortunately it is not
possible to provide the same strategies for all communicating systems.
Therefore, the heterogeneous systems in logistics are classified broadly into
two systems types based on the available communication data bandwidth
and energy constraints. Upon classifying the systems into low power, low
data-rate systems and high power, high data-rate systems, networking
architecture for decentralized communication are developed. Two
decentralized networking concepts are developed as part of this research
work called the Decentralized Brains and the DezCom Context Broker,
which is deployed in the industrial research facility of FLW, TU Dortmund.
A sensor floor with 345 low power wireless sensor nodes is used to develop
and evaluate the performance of Decentralized Brains, and a multi-robot
system along with servers deployed in a cloud environment was used for
analyzing DezCom context broker. Networking flooding primitive and
decentralized networking software for low power wireless sensor networks
were developed, and the codebase for Decentralized Brains is published. A
guide for developing decentralized industrial applications is discussed with
the advantages and disadvantages of developing decentralized applications
for specific industrial use cases.

Keywords: Wireless communication, Wireless Sensor Networks, Systems
Communication, Decentralized Systems, Context Broker, Industry 4.0
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Chapter 1
Introduction

Industrialization has evolved from mechanization to automation coming a
long way from mechanical, agricultural machines to manufacturing
domestic appliances on a large scale using automated production facilities.
The paradigm shift of industrialization has been constant, and the next
change is transferring research into the fourth industrial revolution, where
the automated machines are equipped with intelligence for autonomy. The
critical organizational benefit that leverages technological advancements is
logistics. The operations and material handling are mechanized with
autonomous machines with digital processes that improve the whole
supply chain. One of the largest logistics service providers in Germany,
DHL, attributes four key advancements for logistics and material
handling [1] with the action of adapting to digital services. Transparency
and integrity control along the whole supply chain is a factor that integrates
a multitude of service providers into a single process with economic
oversight and distributing business ownership across all stakeholders
participating in the supply chain. As an industrial process spans across
multiple disciplines of a supply chain, it becomes vital that a detailed
real-time understanding of the status of the involved assets improves the
efficiency of just in time production and optimizes resources across the
whole industrial landscape. Integrity control of the goods allows for the
trust-less integration of service providers. The digital processes allow for
the checks and balances in quality control and accountability along the
supply chain. This liberates the business owners while distributing
responsibility across all stakeholders allowing for process optimization to
shift from the center to the edge of the process where actual action and
executive decision making are required. With all of the integrity,
transparency, and accountability, a natural evolution towards fact-oriented
transparent decision-making is enabled due to the vast amounts of data
generated by digitizing processes and machines. These machines can
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always leverage the available data to improvise execution in the field,
whereas decision-making parameters are designed and modeled by the
stakeholders. A central management system becomes obsolete as the supply
chain’s landscape transcends from the physical domain to the digital realm,
allowing for hyper-scalable processes leveraging automated machines to
function autonomously with the available data. Digital transformation
liberates the devices and other participating entities in the supply chain
network to orient away from a centralized architecture where decisions are
made by a system acting as the central brain of the process. Such a
liberation naturally evolves into decentralized systems where each system
decides for the best of the network due to the transparency and integrity
facilitated by the system. To allow for such transformation in the supply
chain landscape, the involved decentralized entities and stakeholders
should be able to communicate across the network transparently in a
data-oriented approach. This decentralized orchestration of services allows
for machines to have a dialog with the process to make local decisions
optimizing the whole supply chain globally. This is the definition of socially
networked industry, where intelligent computers, i.e., IoT devices, robots, and
manufacturing machines along with business logic software, can freely
communicate and negotiate on the execution of the process. The term
socially networked industry also means the enabling of networked entities
to discover voluntarily, associate, and interact in a network for achieving
decentralized autonomy as targeted by Industry 4.0. Social networking is
analogous to the term of a human social network, where humans discover
other peers using a system to negotiate and work towards a goal. In
machines, it is essential to allow for such a discourse. The devices can
identify peers, discover their services, and negotiate to work towards a
common goal in different parts of the supply chain.

1.1 Motivation

In this research work, one of the building blocks of autonomy is identified
for which approaches and design specifications are created. Massive
Machine Type Communications (mMTC) facilitating collaborative actions
amongst physical machines and software processes to work in cohesion is
the focus of this work. Precisely, the underlying communication and the
ability to hyper-scale the network to span across the whole supply chain is
the central theme. With scaling and high-level coordination among
autonomous machines, decentralization becomes inevitable as there are
heterogeneous machines that participate executing the process logic in the
field. As different actions in a supply chain are abstracted into modular
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processes for easy cohesion of multi-disciplinary systems to participate,
process logic becomes the back-bone of any autonomous industry work
flow. While decentralization is the focus for achieving autonomy in
industrial processes, communication plays the vital role of connecting these
machines seamlessly with as little human intervention as possible is the key
enabler for the goals of Industry 4.0. Therefore, from the context of systems
communication, reliable and robust communication systems are required
that are decentralized by design to allow for existing products and
processes in the supply chain to integrate into the network. The necessity of
decentralization is also justified in 2.4, for designing and federating
massively scalable, heterogeneous networks. As Industry 4.0 and machine
autonomy is progressively adapted in the future, the critical feature of
deployment will be the networking and communication between these
machines. In this work, we try to enable machines to communicate in a
decentralized network with focus on the communication and networking
irrespective of the payload. Such a topic is chosen to enable resilient
decentralized networking where machines can join and still run centralized
applications without the bottleneck for a single point of failure. As decisions
are abstracted from the centre and moved to the edges with critical decision
making as a part of the hierarchical network, run-time optimization
decisions are handed down to the machines involved in each process and
the critical systems can be abstracted as reliable micro-services architecture.
To allow for such decentralization and to enable a social discourse within
the machines, we propose and design concepts for machine-based
decentralized networks, which are then evaluated for performance in a real
industrial scenario to be later applied in applications that might require
these features. Here, the term social is lightly used in the context of machines
having to organize and collaborate for executing processes in an
Industry 4.0 context. All of the developed systems are available as design
blueprints to be replicated for an actual scenario. When necessary, code
repositories are also published to reproduce the results, which can be
adapted according to the industrial applications.

1.2 Research Questions

The central question of this research is the decentralization of systems
communication in Industry 4.0 with a particular focus on developing
deployable systems that can be adapted to various applications depending
on the industrial use case. Decentralization is the topical theme of this
thesis, due to the trends in deploying massive IoT devices for process
digitization and autonomous machines capable of edge intelligence. In this
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thesis work, decentralization in communication is emphasized as it is
considered the bottleneck of hyper-scalable IoT deployments. Part of the
work is inspired by evolutionary biology and systems communication to
abstract and transfer concepts from natural phenomena which is detailed in
Sec. 2.1. It is not only used for transferring naturally occurring concepts but
also drawing limitations that biological systems experience where
computers perform better. Therefore, system development with the
understanding of the paradigm shift in massively scalable decentralized
machine organization in an industrial scenario is required.

Since there are low-power IoT devices and machines that are part of a
heterogeneous network, this work focuses on a modular solution. It can be
deployed depending on the application’s requirements. A holistic,
federated approach to developing the thesis is necessary to improve the
adaptability of the developed systems. Therefore, evaluating the developed
systems in industrial scenarios is another approach used for this
application-based research along with developing reproducible and
sharable systems that are not language-agnostic or platform dependent.

1.3 Structure of the Work

The work revolves around two pillars in developing future autonomous,
self-organizing, highly scalable industrial systems. The work deals with
deploying large-scale systems and focuses on decentralization of systems.
These are two main goals, which are classified into two types of systems
and provide two different kinds of solutions for the two broad systems
classifications, which are presented in chapter 2. The description for the
classification with the fundamentals of systems communication are detailed
in chapter 2 and the whole work is divided into two parts as follows: (i)
low-power, low data-rate systems (ii) high-power, high data-rate systems.

In low-power, low data-rate systems, the basics in wireless
communication as well as the two testbeds that were developed as part of
this work are discussed in chapter 3 in sections 3.1, 3.2, and 3.4 respectively.
One of the testbeds was developed for experimenting on industrial wireless
systems with a focus on energy-neutral systems. The second testbed is a
low-power, low data-rate system with capabilities for low-power
distributed sensing and rapid, iterative development of use cases. This
testbed, called the Sensor Floor, is used further in the work for developing
the concept of Decentralized Brains developed in chapter 3.

Basics of wireless communication and various testbeds for wireless sensor
networks are described as the foundation for the design of these testbeds
and then the problem of decentralized networking with consensus in low-
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power, low data-rate systems is conceptualized and a solution for such an
application is developed in chapter 3. Testing, development and performance
analysis are presented in the subsequent sections of chapter 3.

In part 2, high-power, high data-rate systems, basics of distributed
communication are described and a specific solution for messaging called a
context broker is discussed as a solution for communicating with
high-power high data-rate systems in a hyper-scalable industrial network.
The context broker is a communication system that is always available and
relays messages between clients. In this case, the systems use a
publish/subscribe model to send and receive messages. Two major context
brokers are reviewed for the requirements in Sec. 4.1 and their features are
considered as requirements for a decentralized content broker which is
listed in Sec. 4.5.1. Using the derived requirements for a systems
communication solution that is highly scalable, DezCom, a context broker
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for decentralized communication is designed and developed. In this work,
the basis for the solution is considered as blockchain technology for the
context broker and the most imminent distributed ledger and blockchain
technologies are studied in sections 4.8.1 to 4.9. A problem-application fit is
found from the surveyed blockchain technologies in Sec. 4.7 and an
implementation of the system is described in detail in Sec. 4.11.

In chapter 5, the basics for decentralized networking (DeNT) are
described in Sec. 5.4 after exploring various use case solutions for diverse
industrial applications. Finally in chapter 6, the outlook on developed
decentralized systems and the primal contribution of this work are
discussed with an outlook into future work. All of these chapters and
sections are summarized as a block diagram in Fig. 1.1 that provides a
holistic view on the work about communicating the socially networked industry.

1.4 Problem Definition

This application-based research work’s central theme is to enable future
systems to be developed as decentralized systems. The central hypothesis is
that when systems are scaling and working autonomously, the backbone of
such decentralized deployments are the networks and the underlying
communication. Therefore, in this research work, two communication
paradigms are presented in two parts: the necessity of hyper-scaling
industrial networks and the requirement of autonomy that elicits
communication to be self-organizing, decentralized, and collaborative. A
proposal for the network architecture and reference implementation for
decentralized networking are presented. The proposed decentralized
networks are developed, tested, and evaluated in industrial scenarios. The
evaluation is performed using a testbed for low-power systems and
deployed in the cloud environment for high-power systems. The evaluation
approach is chosen to develop a realistic assessment that can be carefully
compared to actual industrial scenarios. The two parts are low-power, low
data-rate systems and high-power, high data-rate systems. Since not all
systems have the same system specification in-terms of available energy for
operation or communication bandwidth, it becomes imperative to
formulate decentralized networking solutions for specific scenarios. In this
work, two systems are categorized as the networking paradigm that
considers the two leading resource constraints, energy and communication
bandwidth. As one size fits all type of solution is not possible in systems
communication due to each system’s resources, two cohesive networking
paradigms are developed, which can be interfaced to function as a single
hierarchical network. This work is a holistic approach to conceptualizing,
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developing, and designing systems communication strategies published as
reproducible results. The design includes modularity and an open-source
development approach to proliferate the results’ adaptation into the
industrial application.

1.5 Research Goals

As there is an exponential rise in the number of battery-operated
cyber-physical systems deployed in logistics, it becomes paramount to
improve these low-power systems’ communication paradigm. Additionally,
these systems are always used along with high-power, high data-rate
systems as access points, edge nodes, and fleet managers. The problem
evolves into a two-part question that cannot be solved with a single
solution. Especially in terms of decentralization of communication, as their
communication and systems specifications are interlinked deeply. Therefore,
in this research work, a two-part problem is proposed for which two
different solutions for the decentralization of Industry 4.0 systems are
developed and evaluated. The first part is where low-power, low data-rate
systems are organized in a decentralized network using an efficient
communication technique inspired by cephalopods” evolutionary biology
called the Decentralized Brains. The critical issue of developing high density
low-power wireless sensor networks is resource constraints. The limitations
in such systems’ resources are low-power as most of them are
battery-operated, and the communication is performed using a shared
medium. To overcome the aforementioned bottlenecks, a low-power
medium access strategy is developed for low-power, low-data-rate systems.

The second part presents the organization of communication amongst
high-power systems. In these high data-rate systems, energy or
communication bandwidth is not the resource constraint. Instead, many
members in the network and the underlying consensus to reliably function
are the challenges. In an autonomous industrial network, there are
multi-vendor systems that would collaborate in accomplishing tasks. Each
system will depend on the information from a subset of scenarios that are
deployed. As more information is generated, it is also necessary to
understand the data’s context to collaboratively self-organize and complete
tasks. The nodes in the network, in order to perform autonomous
organization and collaboration, should associate and disassociate with the
system. They should be able to publish their actions, subscribe to available
tasks, and access other involved systems. A decentralized network allows
for the seamless integration of nodes into the network. However, such a
network architecture introduces a host of challenges while deploying a
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system that is considered as system requirements during system design.
With the suite of requirements, relevant technologies are assessed to
develop and evaluate the industrial facility system.



Chapter 2
Background: Decentralized Networking

In this chapter, communication in nature is explained and the evolution of
communication across organisms over millennia is explored for design
inspirations in Sec. 2.1. With the background of communication in nature
and taking cues from evolutionary biology, the research work develops
hyper-scalable solutions that are autonomously self-organized for
collaborative industrial scenarios. For such an organization of systems
within a network the various kinds of network topology, architecture and
communication modalities are explored and solutions are proposed for
specific problems. In Sec. 2.2, different types of systems with real world
examples are provided which help in understanding the various system
topologies and to provide the fundamentals for understanding the two part
problem. The problem to solve along with the classification of the systems
requires a two part solution that is designed and developed in this work.
Therefore, the state of the art and background for each part relevant to the
proposed solution and the systems used is provided in their specific
chapters.

2.1 Systems Communication and Nature

In this section, we explore the nature of communication in evolutionary
biology to understand the needs and aspects of communication. We do this
to apply certain aspects of communication possible in evolutionary biology,
not limited to humans. Since systems design is the outcome of the
manifestation of imaginative human experiences, it is clear that all the
communication aspects that were developed to this date were developed
from the inspiration of humans experience. Communication primitives such
as a server, client model, or communication topologies such as one-to-many,
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peer-to-peer, have been designed from the experiences and possibilities of
human communication.

Most intelligent biological organisms that can communicate context
information and intent, such as the primates and vertebrates, communicate
using sound. Marine mammals have the most elaborate modes of
communication in the animal kingdom with sound as sound travels in
water with ease and across a large area instead of in the air [2]. Due to these
reasons, underwater acoustic signals evolved to be the principal mode of
information transmission for fully aquatic mammals and a predominant
mode of communication for amphibious marine mammals [2]. There are
other modalities of communication, such as visual, chemical, tactile and
acoustic signaling [2]. Acoustic signaling can be achieved by non-vocal or
vocal signaling. A top-level predator has less non-vocal auditory
communication, as in polar bears, as it may be adaptive to minimize
non-vocal sounds [2]. Most of the organisms use acoustic, vocal
communication using sound propagation as the primary medium of
communication. An organ helps in modulating sound waves to produce
distinctive sounds used to convey emotion and context. Communication in
the animal kingdom has evolved to use sound. Since sound is a shared
medium, only specific communication modalities are allowed, which is the
most evolved and developed form of communication observed in nature.

Even though communication using sound has the same limitations as
communication using electromagnetic radiation, specific parameters are
overlooked. For example, communication in the animal kingdom, for
instance, in humans, is limited by the processing speed of thought and the
ability to control the organ for making very distinctive sounds. Moreover,
the sensors in the organisms for sensing sound are limited in the sound
spectrum, which is another parameter for perceiving sound communication
between two organisms. The communication system is constrained from
both ends, the selection of the medium, and the communicating entities.
Therefore, there are also limitations in the communication that were
developed with the perception of our experiences.

In this work, the main inspiration is evolutionary biology, but those
inspired phenomena and experiences are not part of day to day human
experience. In intra-species communication, using sound to communicate is
the predominant mode of communication [2]. However, decentralization
and communication among different actors are much more evolved within
an organism than within a species. Decentralization has developed far
better in organisms with common ancestors with humans from 300 million
years ago [3]. This has escaped the perception of humans, and it is evident
in the development of such systems [3]. These organisms have developed
methods for integrating multiple intelligence centers into a single organism
developing specific functional intelligence that decides on its own but
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always in consensus with the whole entity. These are hints from
evolutionary biology where bio-inspired decentralization of systems
communication can be developed [3]. Even though they are not part of the
intra-species communication, decentralization models can be used as
inspiration for developing low-power, low-data rate decentralized wireless
applications.

Moreover, in other sense, the biased thought in a centralized system
design due to the limited perspective has limited many avenues where
computers can function with ease and speed to manipulate physical
phenomena. An example of a highly decentralized organism are the
cephalopods that function with more than five brains, each specific to its
avenue of intelligence, and can also understand and take action in
consensus with other intelligence centers. The critical points on
decentralization are inspired to develop a MAC strategy for wireless
communication in Sec. 3, where efficient usage of a shared medium in
decentralized communication is designed, developed, and validated. In
Sec. 3.6, a proposal for developing a large scale decentralized industrial
network is developed where the communication layer for the developed
systems is abstracted as decentralized systems with the goal that every
existing system is capable of retroactively adapting this kind of
decentralized communication. To achieve decentralization on a massive
scale, a consensus-based, distributed ledger is developed where every
system in the network can agree on the published data concerning
communication without considering the contents of the payload. Only the
context of the communication is approved for further execution of tasks
where each system can verify the validity of the contents.

In Sec. 3.6, the main goal of the context broker is to allow for even central-
ized systems to have communication in a decentralized network, which al-
lows for developing new methods and adapting existing systems to become
more manageable. In Sec. 3, the efficient usage of a shared medium is devel-
oped, and in Sec. 3.6, a large scale, the global industrial network is deployed
where consensus is achieved in communication for developing new decen-
tralized systems for industrial applications where adapting existing systems
also becomes more natural.

At this point, omniscient consciousness is achieved across the
participating systems through decentralization, which is still not a known
phenomenon in biology. Computers communicating can choose to take part
in the logic beyond the aspect of communication where every information is
readily available in the network for processing but only on-demand with
access levels federated by the industrial network consortium. When
synthetic neurobiology can provide interfaces to the brain and a digital
communication system [4], communication of knowledge through sound
would be inefficient as consensus in communication can be achieved by
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using systems as proposed in Sec. 3.6, at higher bandwidths using digital
transmission.

2.2 Types of Systems Architecture

There are mainly two broad classifications of systems from the aspect of
communication. They are centralized and decentralized systems with a
practical evolution of a hybrid called distributed systems, which is also part
of this classification. There is a thriving ecosystem in systems
communication called the distributed systems in the path of evolving from
centralized to decentralized systems.

In systems communication, we can postulate that distributed systems are
a hybrid between centralized and decentralized systems due to the property
that all decentralized systems are distributed systems but not all distributed
systems are a decentralized system. Irrespective of the classifications,
distributed computing and communication have gained economic relevance
and wide-spread adaptation. Primarily, the skyrocketing application
domain of cloud servers allowed the computing machines to be collocated
across the globe and provided with the required fault-tolerance, robustness,
and reliability in function and communication. This meant for internet
applications to be deployed with high availability concerning geographical
locations and on-demand scaling from serving a few hundred clients to a
few hundred thousand in a few minutes. As intelligence moves from the
center towards the edges, where the servers are not contained in
high-security facilities, decentralization becomes essential.

Therefore, in this section, the two types of systems, along with distributed
systems, are elaborated on to create the foundational elements for industrial
systems communication, which is used in Secs. 3.5 and 4.11.

2.2.1 Centralized systems

We start with centralized systems because they are the most intuitive, easy to
understand and to define. Centralized systems use client/server architecture
where one or more client nodes are directly connected to a central server.
Centralized systems are the most commonly used type of system in many
organizations where the client sends a request to a company server and
receives the response.

Example — Amazon. Consider a massive server to which we send our
requests, and the server responds with the article that we requested.
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Suppose we enter the search term ‘batteries’ in the Amazon search bar. This
search term is sent as a request to the Amazon servers, responding with the
articles based on relevance. In this situation, we are the client node; amazon
servers are the central server. This is a typical example of a web service or
an e-commerce platform that is part of a supply chain.

Characteristics of a Centralized System — Presence of a global clock: As the
entire system consists of a central node (a server/ a master) and many client
nodes (a computer/ a secondary), all client nodes sync up with the global
clock (the clock of the central node). One single central unit: One single
central unit which serves/coordinates all the other nodes in the system.
Dependent failure of components: Central node failure causes the entire
system to fail. This makes sense because no other entity is available to
send/receive responses/requests when the server is down.

Scaling — Only vertical scaling on a central server is possible. Horizontal
scaling will contradict the single central unit characteristic of this system of
a separate primary entity.

Architecture of a Centralized System — Client-Server architecture. The central
node that serves the other nodes in the system is the server node, and all the
other nodes are the client nodes.

Limitations of a Centralized System — It cannot scale up vertically after a
specific limit. After a limit, even if the server node’s hardware and software
capabilities are increased, the performance will not increase appreciably,
leading to a cost/benefit ratio of < 1. Bottlenecks can appear when the
traffic spikes — as the server can only have a finite number of open ports to
listen to connections from client nodes. When high traffic occurs like a
shopping sale, the server can substantially suffer a Denial-of-Service attack
or Distributed Denial-of-Service attack.

Advantages of a Centralized System — Easy to physically secure. It is easy
to secure and service the server and client nodes by their location. Smooth
and elegant personal experience — A client has a dedicated system that he
uses (personal computer). The company has a similar system that can be
modified to suit custom needs. Dedicated resources (memory or CPU cores).
More cost-efficient for small systems up to a specific limit — As the central
systems take fewer funds to set up, they have an edge when small systems
have to be built. Quick updates are possible — Only one machine to update.
An easy detachment of a node from the system is possible.

Disadvantages of a Centralized System — Highly dependent on the network
connectivity — The system can fail if the nodes lose connectivity as there
is only one central node. No graceful degradation of the system — abrupt
failure of the entire system Less possibility of data backup. If the server
node fails and there is no backup, the data is lost right away. Difficult server
maintenance — There is only one server node, and due to availability reasons,
it is inefficient and unprofessional to take the server down for maintenance.
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So, updates have to be done on-the-fly(hot updates), which is difficult, and
the system could break. Applications of a Centralized System — Application
development — Very easy to set up a central server and send client requests
to the application.

Data analysis — Easy to do data analysis when all the data is in one place
and available for analysis. Personal computing.

Use Cases — Centralized databases — all the data in one server for use.

Single-player games like Need For Speed, GTA Vice City — an entire game
in one system (commonly, a Personal Computer).

Application development by deploying test servers leading to easy
debugging, easy deployment, and easy simulation.

2.2.2 Distributed systems

These are the systems that have gained importance from the evolution of
centralized systems to decentralized networks. It can be easily understood
with the characteristic of transitivity i.e., all decentralized systems are
distributed, but not all distributed systems are decentralized. Therefore,
these kinds of distributed systems are presented as an intermediary step in
networking, communication, and organization of entities in a process.
Distributed systems gained importance in the data centers’ realm, where a
lot of redundant systems were deployed to assure the fault-tolerance nature
of these systems. To keep all the systems in a network on the same page
during execution and communication, developing methods would provide
the needed reliance and robustness. Centralized systems were preferred to
its straightforward nature of deployment, and the central issue of consensus
was not necessary when the orders were centralized. The initial solutions
were to provide consensus across the distributed systems by state-machine
replication. The states of the network are propagated, agreed, and persisted
across the nodes in the network. This was the first use for the development
of distributed systems towards the goal of ubiquitous computing.

In decentralized systems, every node makes its own decision. The final
behavior of the system is the aggregate of the decisions of the individual
nodes. Note that there is no single entity that receives and responds to the
request.

Example — Google search system. Each request is worked upon by
hundreds of computers that crawl the web and return the relevant results.
To the user, Google appears to be one system, but multiple computers work
together to accomplish one task (respond to the results to the search query).

Characteristics of a Distributed System — : Concurrency of components:
Nodes apply consensus protocols to agree on the same
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values/transactions/commands/logs. Lack of a global clock: All nodes
maintain their reference to time, called the system clock. Independent
failure of components: In a distributed system, nodes fail independently
without significantly affecting the entire system. If one node fails, the whole
system continues to work without the failed node.

Scaling — Horizontal and vertical scaling is possible.

Architecture of Distributed System — peer-to-peer — all nodes are a peer of
each other and work towards a common goal. Client-server — some nodes
have become server nodes for the role of coordinator, arbiter. n-tier
architecture — different parts of an application are distributed in different
nodes of the systems, and these nodes work together to function as an
application for the user/client.

Limitations of a Distributed System — It is challenging to design and debug
algorithms for the system. These algorithms are complicated because of the
absence of a common clock, so no temporal ordering of commands/logs can
occur. Nodes can have different latencies, which have to be kept in mind
while designing such algorithms. The complexity increases with an increase
in the number of nodes. No standard clock causes difficulty in the temporal
ordering of events/transactions. It is difficult for a node to get the global
view of the system and make informed decisions based on the state of other
nodes in the system.

Advantages of a Distributed System — Low latency than a centralized system
deployment as distributed systems have high geographical spread, hence the
communicating clients can choose a server that is closer to the client which
reduces the latency.

Disadvantages of a Distributed System — It is challenging to achieve consen-
sus. The conventional way of logging events by the absolute time they occur
in is not possible here.

Applications of Distributed System — Cluster computing is a technique in
which many computers are coupled to work to achieve global goals. The
computer cluster acts as if it was a single computer. Grid computing — All the
resources are pooled together for sharing in this kind of computing, turning
the systems into a powerful supercomputer, mostly.

Use Cases — Distributed computing is a typical example of distributed
systems in logistics, where real-time data is gathered, aggregated, and
computations are performed in multiple computers. There are also
examples of deploying a database service replicated across multiple servers
for robust mission-critical operation in some cases.
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2.2.3 Decentralized systems

These are another type of systems that have gained much popularity,
primarily because of Bitcoin’s massive hype. Now many organizations are
trying to find the application of such systems. In decentralized systems,
every node makes its own decision. The final behavior of the system is the
aggregate of the decisions of the individual nodes. Note that there is no
single entity that receives and responds to the request.

Example — Bitcoin. Let us take bitcoin, for example, because it’s the most
popular use case of decentralized systems. No single entity/organization
owns the bitcoin network. The network is a sum of all the nodes who talk to
each other for maintaining the amount of bitcoin every account holder has.

Characteristics of a Decentralized System — Lack of a global clock: Every
node is independent of each other and has different clocks that they run and
follow. Multiple central units (Computers/Nodes/Servers): More than one
central unit can listen for other nodes’ connections. Dependent failure of
components: one central node failure causes a part of the system to fail, not
the whole system.

Scaling — Vertical scaling is possible. Each node can add resources (hard-
ware, software) to itself to increase the performance, leading to an increase
in the entire system’s performance.

Architecture of a Decentralized System — peer-to-peer architecture — all nodes
are peers of each other. Not a single node has supremacy over other nodes.
Master-secondary architecture — One node can become a master by voting
and help coordinate a part of the system, but this does not mean the node
has supremacy over the other node, which it is coordinating.

Limitations of a Decentralized System — May lead to coordination issues
at the enterprise level — When every node is the owner of its behavior, it
is challenging to achieve collective tasks. Not suitable for small systems —
Not beneficial to build and operate small decentralized systems because of
the low cost/benefit ratio. No way to regulate a node on the network — no
superior node overseeing the behavior of subordinate nodes.

Advantages of a Decentralized System — The minimal problem of
performance bottlenecks occurring — The entire load gets balanced on all the
nodes, leading to minimal or to no bottleneck situations. High availability —
Some nodes (computers, mobiles, servers) are always available/online for
work, leading to high availability. More autonomy and control over
resources — As each node controls its behavior, it has better independence
leading to more control over resources.

Disadvantages of a Decentralized System — It is challenging to achieve big
global tasks — No chain of command to command others to perform specific
tasks. No regulatory oversight. It is challenging to know which node failed.
Each node must be pinged for availability checking, and partitioning of work
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has to be done to determine which node failed by checking the expected
output with what the node generated. It is challenging to know which node
responded — When a decentralized system serves a request, the request is
actually served by one of the network nodes. Still, it is difficult to determine
which node indeed served the request.

Applications of a Decentralized System — Private networks — peer nodes
joined with each other to make a private network. Cryptocurrency — Nodes
joined to become a part of a system in which digital currency is exchanged.
The exchanges in the currency are without any trace and location of who
sent what to whom. However, in bitcoin, we can see the public address and
amount of bitcoin transferred, but those public addresses are mutable and
hence difficult to trace.

Use Cases — Blockchain. Decentralized databases — Entire database split
in parts and distributed to different nodes for storage and use. For example,
records with names starting from A’ to 'K’ in one node, 'L’ to "N’ in second
node and 'O’ to "Z’” in third node.

2.3 System Type Definition

This research work defines two categories for systems for decentralization
of systems communication in Industry 4.0. Since one solution cannot fit all
systems, the categorization is necessary to decentralize the communication
for the self-organization of heterogeneous entities within an industrial
network. The requirements of Industry 4.0 and logistics give us a guideline
for such a categorization. The classification is based on the system
specification of the entities that participate in the network. Two resource
constraints govern the rules of classification. Energy is one criterion due to
the explosion of IoT and the deployment of battery-operated devices in
industrial processes. The amount of energy available also governs the
amount of data that can be transferred for a process. Ultra-low-power
wireless networked devices are battery-operated devices that process data
from an event, sensor trigger or periodically. For example, a vibration
sensor will trigger once a certain amount of vibration is detected. Until the
trigger, the sensor monitors the physical phenomenon while the rest of the
electronics standby in low-power sleep states. The amount of vibration is
measured, and the CPU comes out of the low-power sleep state to decide if
the acquired data is relevant for the process and if it needs to be
communicated. These devices have ultra-low power energy requirements
that operate over a long time and communicate minimal data. The second
resource constraint is the communication bandwidth of the available
data-rate. Even though energy is the main actor for this classification and
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communication is dependent on the amount of energy available, the
communication type plays a vital role while proposing solutions for
systems communication. The first classification of the devices is a
low-power, low data-rate device with a communication requirement that
fits well within the IEEE 802.15.4 standard specification.

The second system type of classification is continuously powered devices
with a source, it could still be battery operated, but the amount of energy
available is considerably high with harvesting capabilities to sufficiently
replenish charge. For example, an access point deployed outdoors with a
photo-voltaic energy-harvesting allows the device to be always
on/available and can communicate information from other low-power
devices to the cloud. These devices are edge node or edge routers which
facilitate communication of the low-power low data-rate devices. The
resource constraint line is drawn at this point where the devices are highly
available and have a large bandwidth to communicate information with
context and actively participate in an industrial process.

2.4 Why Decentralized Systems?

This work hypothesizes that the decentralization of systems architecture
will mitigate the problems and issues that arise due to machines’
autonomous organizations across the supply chain. Machines are
considered heterogeneous devices to software agents that can communicate,
organize, and execute actions within a supply chain network. The following
thought experiment gives us a theoretical explanation of why
decentralization is the key to achieving autonomous organizations in a
supply chain network giving rise to Decentralized Autonomous
Organization (DAO). The following are the key reasons that answer the
requirement for decentralization. Digitization has given rise to improved
machine interaction where the machines are faster. The human nervous
system is one of the most complex computational machines that can take
numerous parameters across multiple disciplines to solve problems.
However, once the question has been answered and needs to be repeated at
an efficient pace, it is easier to transfer the computation into a machine
algorithm executed by software agents. The speed of thought is a theoretical
limitation where Prof. Tim Welsh of Cognitive and Neural Motor Behavior
at the University of Toronto sets a limit considering multiple scenarios that
it is 150 ms for a speed of thought calculated with a start as well as an
endpoint from the stimulus to invoking the action. The example considered
here is an athlete’s actuation to start a 100 m sprint at the advent of a sound
trigger generated by a pistol. Moreover, machines are faster than humans
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and more efficient in their operational hours as they do not have downtime.
The aspect of speed of thought is only considered without the
accompanying complexities including the sheer volume of data that can be
processed by the machines using GPU accelerated computational systems
and TPU [5].

Furthermore, scaling these machines horizontally by replicating the same
device and scheduling parts of the problem to be solved at different
locations is another added advantage of using computational machines. The
aggregation of the solutions can happen later once all the scheduled
computations have been completed, as practiced in distributed computing.
Efficient communication has allowed for such feats in the past with the
evolution of cloud computing with geographically collocated data centers
with specially hosted computational machines like Google Cloud’s TPU
products. When such intelligence shifts from the center towards the edges,
where each system is self-sufficient with computational resources to
organize itself in a network to execute tasks, the next question arises: speed
of execution. When the speed of execution of a task surpasses humans as
machines also have much lesser downtime than humans, we have seen a
massive rise in the demand for autonomous machines. Here, with the help
of intelligence shifting to the edges, self-organizing autonomous machines
will identify, negotiate, and collaborate to execute tasks faster than humans
by a minimum to an order of magnitude. We can safely claim such speeds in
these communication, computation, and eventful organization scenarios
when they happen within a localized network. This localized network
works as part of the extensive supply chain across multiple locations, as the
machines in the localized network work towards optimizing the system for
its tasks, it is also optimizing the whole supply network. In this case of a
localized network tasked for optimized operations, a centralized system
would present a problem on two levels. (i) the transport of the sheer volume
of data between collocated networks and (i) a single point of failure that
would halt not just the local supply chain but also the entire supply
network.

As organizational units grow large, it is essential to mitigate the single
point of failure. It is also essential to keep the communication among the
systems flexible and robust. The network systems organize into units that
collaborate by associating with the network and understanding the context
in multiple locations. When systems require hyper-scaling of services,
decentralization provides the necessary hierarchical network organization.
Additionally, with autonomy and a socially networked industry, the
machines communicate and negotiate to execute tasks that give rise to
mMTC where decentralization can shift the intelligence to the edges to
allow the nodes to function autonomously.
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As large systems coordinate, multiple tasks are happening in parallel. It
becomes paramount that a single point of failure or a networking bottleneck
becomes the reason for the whole system not to function normally.
Organizing the systems in a decentralized manner make them resilient
against network failures and facilitate self-organization. These attributes
also enable automated devices to complete tasks autonomously. These tasks
are carried out without the central system knowing about the parallelized
sub-tasks carried out within an Industry 4.0 scenario like the cyber-physical
production systems. Some tasks are happening independently of each other,
which requires communication and coordination between the participating
systems, which is another reason for deploying these hyper-scalable
systems as decentralized networks.

Summarizing the thought experiment for the hypothesis: Why
decentralized systems?: speed of thought, execution, and the volume of data
alone require the decentralization of the networks in a supply chain.
Reducing human intervention by giving autonomy to the machines is the
goal of Industry 4.0, where the speed of thought is a factor tackled by
automation in execution of the task. Still, the intelligence of decision making
is the critical enabler of autonomy which is hurdled by speed of thought. As
decision-making is localized, it is essential to enable machines to
communicate within the local network and collaborate on the
decision-making process. Using decentralized communication enables the
machines to request information that is not relevant to the system but
important for the decision. Here, decentralized trust-less networks help
authenticate and account for data and its access across the supply chain
without a central federated service. All of these enabling features of
decentralization rest on the shoulders of efficient, decentralized
communication. Working towards the first steps of decentralization, it is
identified that communication as the bottleneck considering the current
systems only provides a centralized solution for communication both in the
medium of propagation and data levels. A few of the aspects that are critical
for achieving decentralization are discovery, consensus, and fault-tolerance.
In discovery, a node identifies the network it has to join automatically. After
joining a network, it can identify the node it has to talk to and discover its
services to collaborate on tasks. Here, the essential criteria that keep every
system synchronized are the consensus algorithms that allow every node in
the network to accept that the information being communicated can be
trusted and synchronized with the rest of the network. When there are
heterogeneous machines in multiple locations that depend on specific
information, consensus plays a vital role in synchronously evolving the
network through time. Finally, fault-tolerance is crucial as it provides the
necessary mitigation issues that arise due to discovery and consensus.
Fault-tolerance strategies allow the network to function at an optimal level
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even when there are service disruptions in the system. Therefore, this work
focuses on communicating the socially networked industry across
heterogeneous machines in the supply chain network. Consequently, the
work also proposes approaches for decentralizing systems communication
for Industry 4.0 applications.

2.5 Approaches using Resource Discovery and Consensus

The basic approaches for a decentralized network requires the nodes to
communicate with protocols that allow for resource discovery, consensus
models, and fault-tolerance. In this work, decentralization relies mainly on
communication between systems. Therefore, the main goal is to create a
fault-tolerant mechanism for a shared memory object or replicated state
machines. In distributed computing, data replication is also known as log
replication. The requirement is that all of the network nodes replicate
specific amounts of memory queried by the system for decision-making
processes. Systems and networks can achieve this through a consensus
model that applies strict replication schemes with guarantees. The memory
is highly available, always up to date, and consistent with all the other
network nodes. Discovery is the initial mechanism with which any node
interacts with the network. Following resource discovery, consensus models
are another building block for decentralized systems that provide the
necessary synchronous behaviors. The consensus models and resource
discovery protocols may fail, and during these events of failure, it is
necessary to mitigate or mask them for the nodes in the network. The
strategies used in cases of failure to overcome the network’s errors are
called fault-tolerant behavior. Mitigation is a method in which the errors can
be detected before their occurrence, and the errors can be prevented. In
specific scenarios, mitigation is not feasible. In such cases, it is necessary to
mask the errors for the nodes to function. Masking makes sure that the
functioning of the network continues. Each of the necessary components of
a decentralized network are described such as resource discovery,
consensus models, and fault-tolerance in the following Sec. 2.5.1,2.5.2,2.5.3
respectively.

2.5.1 Resource discovery

Resource discovery is an essential feature for a decentralized network and
for devices that are targeted to achieve autonomy. It is necessary that a
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device can detect and join a network without or very little human
intervention. For example, a Bluetooth device needs to be in the location,
and both the devices are triggered to associate into a network. Once they are
associated, they can discover each other using beacons and communicate.
Resource discovery and description mechanisms for decentralized devices,
service descriptions, and discovery in networking environments are
necessary [6]. Resources can be anything in a decentralized network such as
a device identifier, service identifier, network identifier, or location identifier.
Resource discovery generates advertisements in a uniform description
format that is broadcast across the whole network or a local sub-network.
The consistent description format is a data payload understood by all other
nodes to describe resources on a network. Device descriptions from
additional resource description protocols and discovery methods can be
used to generate the broadcast advertisements. The advertisements with
this consistent resource identifier are used for cross-network discovery and
access to the resources. An advertisement may include but is not limited to
physical endpoints, virtual endpoints, user-extensible metadata, location
information, and an UUID for the associated resource [6]. If a resource
cannot provide an UUID, the mechanism generates an UUID for the
resource. One manifestation of resource discovery in decentralized
networks can have proxy nodes for generating advertisements for resources
that cannot participate directly in the resource discovery and description
mechanism. These proxy nodes may also serve as a proxy between local
sub-network discovery and cross-network discovery of the
advertisements [6].

Here comes the next vital factor, which is network association, which also
plays an important role in machine autonomy. The device can either discover
an existing authenticated network or form a network locally with a cluster
of nodes that require communication.

2.5.2 Consensus models

Consensus models are another critical factor for decentralized networking
as the devices do not have a central node to communicate. A centralized
architecture provides the guarantee and stability required for a network.
The nodes fail to communicate within the network if the single-point failure
node is compromised, not only the specific node, but the whole system
comes to a standstill. Consensus is a fundamental problem in fault-tolerant
distributed systems [7]. Consensus involves multiple servers agreeing on
values. Once they decide on a value, that decision is final [7]. Typical
consensus algorithms progress when most of their servers are available; for



2.5 Approaches using Resource Discovery and Consensus 23

example, a cluster of 5 servers can continue to operate even if two servers
fail [7]. If more servers fail, they stop making progress (but will never return
an incorrect result) [7]. There are multiple proposals for consensus models
in distributed systems that can be applied along with fault-tolerant
behaviors to mitigate for errors that might occur. The Raft consensus
algorithm is designed to be easy to understand. Raft’s equivalent to Paxos
in fault-tolerance and performance [7]. The difference is that it’s
decomposed into relatively independent sub-problems, and it cleanly
addresses all major pieces needed for practical systems [7]. In this research
work, we drive the research towards decentralized consensus models and
the important state of the art consensus models and protocols are surveyed
and studied in Sec. 4.8.2 and 4.9

2.5.3 Fault-tolerance

Fault-tolerance implements strategies for failures in the network.
Fault-tolerance build a component as such that it can mask the presence of
faults in the network. It helps mitigate the shortcomings imposed on a
decentralized network due to the consensus model’s failures or a leader
election procedure. Leader election is required for all the nodes to follow a
leader. Leader-less networks are purely decentralized networks where every
node acts as a leader and a node in the system. When any node fails, the
failure of the node does not affect the functions of the network. In
distributed computing, the leader node provides authority for specific
functions such as consensus or unique identifier generation. When a leader
node is compromised, a reelection phase is triggered where all nodes can
participate to become the leader. This allows for a distributed network to
perform like a decentralized network. This provides stability and the
necessary guarantees for a well functioning decentralized network as the
network elapses over time and when few nodes disassociate and
re-associate with the network. The leader provides the current status of the
network. In the case of state machine replication, the leader node can
authoritatively provide the latest information, after which the nodes can
participate in the consensus rounds. These are the few essential features that
are required for developing a decentralized networking paradigm.

There are also other features such as security in a trust-less architecture,
scalability of the nodes as well as communication, heterogeneity of the nodes
that are considered crucial while developing a decentralized communication
framework or platform.
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Low-power, low data-rate systems



The classification of low-power, low data-rate systems are battery powered
devices for the majority of its operation. A biologically inspired concept is
developed and evaluated to achieve decentralized communication in a
low-power, low data-rate network called the Decentralized Brains. The
Decentralized Brains design inspiration is as follows for developing a
low-power decentralized industrial IoT system. From the perspective of
evolution, the main reason for certain organisms, such as octopuses, to have
separate brains or Decentralized Brains is to delegate motor processes
without detracting from other vital functions. We find Neurons in the arms
of an octopus, which can independently taste, touch, and control basic
motions without the supervision of a central brain [3]. This decentralized
intelligence allows for autonomous task completion—an intent is broadcast
across the brains, and respective nervous systems take action locally. There
are multiple instances in industrial contexts where similar notions of
decentralized multi-agent systems in CPS, robots, and drones have been
explored [8-11]. Collective behavior from a biological perspective often
involves large numbers of autonomous systems interacting to produce
complex assemblies [8]. Kilobots demonstrate the ability of self-assembly in
a large-scale independent miniaturized robotic system by creating and
programming swarm behavior to achieve a global behavior [8].

Swarm behavior is very much relevant in autonomous industrial robots
where two automated machines communicate and collaborate to execute
tasks. The application of low-power decentralized communication also
extends to space applications, where robotics play a vital role in low-cost,
independent human exploration. The growing interest in and proliferation
of multi-part constellations in orbit, self-assembly of space assets, and
swarm-based architectures shows that the space industry needs robust,
low-power, and decentralized communication architectures to accompany
distributed sensing capability. Space assets need to communicate with
nearby neighbors in real-time, exercising communication protocols for a low
data-rate while maintaining shared state awareness among all interacting
hardware units.

Similar problems have been solved in the warehousing and shipping
industry. Extensive logistics management necessitates keeping track of
many items across physical space, across time, and across the robotic
platforms that contact products [9]. Data replication in decentralized, low
data-rate networks can facilitate a smooth operation and monitoring of
collaborative maneuvers in space. In this part, low-power, low data-rate
networking for decentralization is conceptualized and developed. The
developed system is evaluated in a testbed called the Sensor Floor with 345
nodes. The results are presented and discussed with the practical
advantages and disadvantages of constructive interference.



Chapter 3

Decentralized Brains: Low-power, Low
Data-rate Systems

Paradigm shift is a fundamental change in the basic concepts
and experimental practices of a scientific discipline.
-Thomas Kuhn

In this chapter, low-power communication using radio frequencies is the
focus where a paradigm shift in the understanding is developed with the
concept of Decentralized Brains. The concept of Decentralized Brains is
detailed in Sec. 3.5. To understand the Decentralized Brains concept, two
testbeds developed as part of this research work are detailed along with the
fundamental concepts for wireless sensor networks and wireless
communication standards for low-power, low data-rate systems. The two
testbeds developed were the PhyNetLab and the Sensor Floor. The
PhyNetLab is an ultra-low-power wireless sensor network testbed. Many
testbed results and limitations gave rise to developing another dual-band,
large-scale, high-density deployment called the Sensor Floor. The developed
concept in this chapter, called the Decentralized Brains, is evaluated in the
testbed.

3.1 Basics of WSN

This section will cover the different technologies used in the testbed
implementation and discuss in detail specific state-of-the-art techniques that
are chosen for the diverse characteristics and capabilities to implement
energy-neutral WSN. Furthermore, this section studies and analyses WSN
nodes, IoT testbeds, wireless research  infrastructures and
experiment-driven testbeds to set requirements for ultra-low power,
industrial WSN testbeds. The developed systems are deployed in a research
facility that mimics a warehouse.

27
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3.1.1 Wireless sensor networks

IoT comprises all networked physical systems that communicate
opportunistically irrespective of the medium and exchange data. Therefore,
this work focuses only on opportunistic, energy-constrained wireless
communication by networked nodes in a field or collectively called
WSN [12]. The detailed definition for WSN from different articles
summarizes that a WSN typically requires little or no
infrastructure [12], [13], [14]. They are hosted on the entities in the
environment they are deployed in. The deployed devices in a field form a
network, where each device is called a sensor node in the network. They
obtain data about the environment or any other measurable information in
their influence and report the measured properties to a node called a sink
node or a data sink. Sensor nodes can work together to monitor and report
about the deployed region. The sink nodes are devices that are not energy or
resource constrained, whereas other nodes in the network are usually
resource-constrained devices [12]. Data can be collectively obtained at the
sink devices from all the nodes for further analysis.

Sensor Network
Tracking Monitoring
Military Habitat Military Habitat
Enemy tracking Animal tracking Security detection Animal monitoring
Business Public / Industrial Business Public / Industrial
Human tracking Traffic tracking Inventory monitoring Equipment monitoring

Health Environment
— weather, temperature,

Patient monitorin, oo
g pressure monitoring

Fig. 3.1 Overview of WSN [12]

WSN can be widely categorized into two types from their deployed
nature. The two kinds of WSN categories are Structured and
Unstructured [12]. An Unstructured WSN is one that contains a dense
collection of sensor nodes deployed in an unplanned manner. Sensor nodes
may be deployed in an ad-hoc manner into the field. In ad-hoc deployment,
sensor nodes may be randomly placed into the area, or the area may be hard
to model for a planned WSN deployment. Once deployed, the network is
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left unattended to perform monitoring and reporting functions. In an
unstructured WSN, network maintenance, such as managing connectivity
and detecting failures, is difficult since many nodes are involved. They are
often away from the coverage of the sink nodes. The ideal network topology
for unstructured WSN is a mesh network with a multi-hop communication
protocol in theory. In a structured WSN, all or some of the sensor nodes are
deployed in a pre-planned manner. A structured network’s advantage is
that fewer nodes can be deployed with lower network maintenance and
management cost [12]. Remote sensing applications have a pre-determined
system to be monitored and reported. Such systems can use a structured
system of WSN where the nodes can be strategically placed with analytical
inference. Here the nodes are assumed to be immobile or to traverse a
predefined path in a pre-determined manner in the deployed field [12]
mostly used in environmental (agriculrutal or building) monitoring. In this
work, indoor mobile nodes are deployed to develop an energy-neutral
design for WSN.

3.1.2 Applications of WSN

There are diverse fields in which the power of WSN is harnessed to increase
the efficiency or productivity of a system. The application of WSN can be
classified into two major activities or applications, such as tracking and
monitoring. Fig. 3.1 gives an overview of applications of WSN. Fig. 3.1 also
shows the two use cases of tracking and monitoring in different fields. For
example, WSN deployed in a community for monitoring water
consumption could help model and predict water consumption in that
community. The data can also provide insights on peak consumption during
abnormal periods, leading to the identification of leakage in the water
distribution system. Such monitoring could reduce usage by awareness
with metrics, model demand from the metrics, and make predictions for the
resources to be available [15]. In applications for the public and industrial
sectors, fleet management has seen much importance. Deploying WSN for
reporting location and acquiring newly calculated route plans has given rise
to new business models in warehouse logistics and transport logistics. With
this knowledge, intelligent algorithms can be applied to make route
calculations efficient or improve the throughput of the fleet by making
calculated decisions on centralized data about the fleet, which can also be
used in the field of intra-logistics. In building automation, both tracking and
monitoring are done. Tracking a room to estimate the number of habitants
in the confined space, control the lights, and intelligently reduce power
consumption. Monitoring the brightness through the windows of a room to
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regulate the light source’s brightness in the room is one of the most popular
used applications for modern building automation.

3.1.3 Wireless Sensor Network Protocols

A WSN comprises hundreds or thousands of sensor nodes that are densely
deployed in an unattended environment [12]. They are capable of sensing,
computing, and communicating through wireless media. For such
large-scale systems with capabilities for routing, power management, and
data dissemination, protocols with specific functions must be designed. The
application context also plays a vital role in designing the protocol
functions. There are different algorithms and standards through which data
is disseminated in the network and outside the system. This section will
discuss the design requirements and communication architecture for the
wireless sensor networks in detail. This will provide a foundation for
designing a custom industrial WSN with an application context.

3.1.4 Communication architecture

There are different scenarios with a massive demand for implementing a
wireless sensor network in diverse fields of application [16]. Here we
consider an industrial infrastructure with the function of material handling
and warehousing. Primarily the different scenarios for WSN
communication architecture are discussed in terms of design requirements
in section 3.1.5 and then applied to a specific network topology through
which the network can be operated reliably. The sensor nodes’ primary aim
in the sensor network is to make discrete and local measurements about the
sensors’ phenomena. In industrial WSN, specifically in materials handling
facilities, the communication is event-based, with a requirement for high
availability of the sensor nodes and the nodes’ sensing capabilities [14]. The
sensors measure parameters of the atmosphere, machines, or processes to
which they are attached to. It also should have capabilities for interfacing
with industrial systems to provide actuation capabilities to reduce human
intervention on operating the machines. For example, a sensor node will
measure radiance, moisture, and temperature in its surroundings and
measure the motion of the entity. It is attached in order to infer the actions
performed on the entity. Another essential task for the sensor node would
be to actuate its entity upon receiving the right message, such as making
itself mobile to reach the picking station from the storage racks.
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Therefore, the communication architecture of WSN can be generalized to
understand the properties that WSN nodes should possess and to develop
the design requirements that can be used to design industrially applicable,
energy-constrained nodes in PhyNetLab.

3.1.5 Design requirements

Design factors and requirements are essential before deciding on the type of
protocol to use for a particular application context. Many researchers have
provided guidelines and another important criterion on designing WSN
protocols for implementation [17-25], where each of these works discretely
provides insights on different design scenarios which were considered
depending on their relevance towards this work. A survey of these different
terms to frame the critical design requirements for energy-neutral protocols
and select low energy wireless sensor network communication strategies is
performed. Reliability is one of the most vital factors in designing a WSN. It
means the system’s ability to operate continuously in the failure of one or
more components. In the case of the WSN system, the communication
standard, hardware, and application resources should be modeled to be
fault-tolerant.

Scalability of the networks is the next critical criteria. The network may
be implemented in a small industrial infrastructure, which provides positive
results. When such an implementation is scaled to hundreds or thousands
of nodes, the reliability in the communication within the network might fail,
and the nodes’ maintenance might become difficult. It is essential to design
protocols that are flexible enough to be scaled. Scalability depends on the
network’s communication, the number of nodes, and the communication
reliability between the nodes when the number of nodes increases within a
specific area. Therefore, scalability depends on the size of the network and
the density of the nodes.

Sensor network topology is also considered an essential criterion while
designing industrial sensor networks as this defines the placement of the
special function devices such as the router nodes and base stations for a
given number of nodes. It defines the spatial relationship between the nodes
and provides insight into the network’s latency, capacity, and robustness.
Complex implementations with multi-hop routing criteria provide a large
overhead on the packet that arrives at the base station. Therefore, it has to be
decided if a router or base station should be placed in a specific location for
servicing the sensor nodes or if a multi-hop network is desirable.

Followed by the sensor network topology that influences the costs
involved in implementing a WSN are energy consumption, and hardware
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constraints of the nodes. Considering the amount of energy consumption
required for WSN nodes, it becomes tedious to replace batteries for
maintenance of the nodes in an industrial application context. In a
large-scale implementation, the number of nodes replaced with a battery or
recharged also influences the cost and reduces the factor of desirability to
adapt sensor networks in an industrial process. Energy consumption also
influences the reliability of the network. Hardware constraints are imposed
on the nodes to improve energy consumption. This reduces the capabilities
of the nodes and also reduces the demand for replacing the batteries. The
trade-off between reliability and energy can only be decided upon
depending on the application. In this work, an energy-neutral design with
energy harvesting capabilities is introduced. Therefore, energy consumption
and hardware constraints are considered influential factors in developing
WSN protocols.

Quality of service is defined by the latency by which the sensor network
transmits the data to the base station and the amount of energy it uses to
do the same function. The data needs to be transferred within a bound time
limit. The power required for transmission must be reduced to a minimum to
achieve a better trade-off between the quality of service and energy-neutral
design.

Data management is another important criterion when designing WSN.
The energy-constrained nodes can only send a fixed amount of data, and
they also require data from other nodes that they can use to act on. For
such applications, data management and data encoding are essential while
designing the protocol. It is possible to design the protocol in a way that
data is distributed over heterogeneous networks. Selecting the transmission
media plays an important role as well as energy constraints, coverage, network
dynamics and connectivity.

In this work, transmission media is confined to 2.4 GHz, 868 MHz, and
Ethernet. For an energy-neutral operation, 868 MHz is used. The dynamics
in the wireless network are introduce by the factor of mobility and the
availability of the nodes. Connectivity is imposed because of the mobility
and the density of the nodes in an area. Network dynamics play an
important role in resource discovery and intelligent routing. The base
stations with more power can transmit at their maximum transmitting
power, but the receiving stations that are energy constrained cannot
transmit at their maximum power. Therefore, a dynamic and liberating
standard for assigning nodes with transmitting power should be designed
with the path loss and spatial arrangement of nodes.

Security is essential when sensitive data is being transmitted. A detailed
survey of security threats is discussed in the OSI reference in [26]. For indus-
trial applications, any data that reveals the process or the infrastructure’s in-
formation is considered essential and has to be secured. Some of the security
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threats to WSN are described and categorized as passive information gather-
ing, false nodes, node outage, supervision of a node, node malfunction, mes-
sage corruption, denial of service, and traffic analysis. The networking pro-
tocol has to be analyzed for such threats and designed to be robust against
these threats.

The criteria mentioned above are considered while designing a WSN
communication protocol with an energy-neutral operation. These not only
hint at the factors but also provide initial guidelines for developing
application-based WSN with an industrial context. Standard network
protocols with standardized networking layers defined by the OSI reference
model are explored to implement the wireless protocol to operate in
energy-neutral conditions.

3.1.6 6LOoOWPAN

Energy-neutral industrial IoT devices belong to low-power, low data-rate
wireless personal area networks [27]. The idea behind such networks is to
facilitate low-cost, low-speed, ubiquitous local communication in the
proximity across the deployment with little or no demands on the
infrastructure. This framework is designed for a communication radius of
10 meters, with a data-rate of 250 Kbit/s. The standard’s objective is to
create extremely low manufacturing and operation cost with low-power
operation [27]. This standard provides real-time suitability features by the
reservation of time slots in the communication strategy and reliable
communication with collision avoidance through CSMA/CA strategies.
AES encryption techniques are implemented at the hardware level. This
standard also provides support for power management functions such as
LQI RSSI and energy detection [28], [29]. The devices in these networks are
external devices, which perform only the wireless communication or purely
embedded, self-functioning devices. Many current MCU units have an
embedded radio processor on the same chip to support RF communications.
There are many low-power and low data-rate standards that are well
established for adaptation in industrial systems. Still, they do not provide
support for highly available energy-neutral design on WSN nodes [30]. The
standard that defines exactly these conditions is the IEEE 802.15.4
standard [27], [31].

The OSI reference model is used worldwide for standardizing
communication protocols [32]. This standard is also defined using the same
model where it only describes the MAC sub-layer and the Physical (PHY)
layer of the communication strategy. The rest of the layers depend on the
application and the limitations of the hardware. Specific applications have
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only two nodes connecting in a point-to-point network. In scenarios like
these, the network layer and session layer only provide more latency
towards the communication topology. Therefore, 802.15.4 defines the MAC
and PHY to regulate the medium’s shared channel access for many other
implementations’ coexistence. It leaves the different layers flexible to be
adapted according to the application. Even IPv6 for low-power wireless
personal area networks can be implemented using this standard. The
following are the definitions provided by the IEEE 802.15.4 wireless
standard.

3.1.6.1 Physical layer

The physical layer of this standard consists of three prominent RF bands in
the unlicensed band. There are other low-power bands as well added to the
PHY of 802.15.4 later. The three prominent RF bands are 1) 868 MHz, 2) 915
MHz, and 3) 2450 MHz (2.4 GHz). In this work, the two bands, 868 MHz
and 2.4 GHz are used [31]. In this standard, there are different types of DSSS
modulation techniques used. BPSK and O-QPSK are the primary types of
modulators for 868/915 and 2.4 GHz modulation. Other modulation
techniques are also used in the PHY of 802.15.4 [30]. They are FSK, GFSK,
and OOK. The 2.4 GHz is implemented using ZigBee network protocol with
its standard PHY as defined by 802.15.4 standard in the PhyNetLab
implementation, whereas 868 MHz is used for implementing energy-neutral
communication, which takes advantage of all the low-power capabilities in
designing the PHY.

3.1.6.2 MAC layer

The MAC strategy is defined by this standard for managing the access of the
shared physical channel for the nodes by guaranteeing time slots. Network
beaconing is another function performed by the MAC layer. Network
beaconing is a management frame that is transmitted periodically to
announce the presence of a wireless network. It is transmitted by the access
point in an infrastructure to announce the network’s state for other nodes to
synchronize. The beacon frame consists of the timestamp, which allows all
the other receiving stations to synchronize their clocks with the access point.
The beacon frame is transmitted periodically. A time unit called the TBTT is
transmitted with a beacon frame for the stations in the network to announce
beacon frames’ periodicity. Beacon frame also carries depending on the type
of the PHY layer, a frequency-hopping parameter set or direct-sequence
parameter set, a SSID, supported data-rate, and a traffic indication map, and
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a contention-free parameter set [30]. The MAC layer also controls frame
validation, guarantees time slots, and handles node associations. 6(LoOWPAN
is adapted for IEEE 802.15.4 standard depending on the application [30].
When specific standards like IPv6 or IPv4 are adapted, the standard frame
size is more than 127 bytes. The MAC layer is supplemented with
adaptation layer protocols, which provide fragmentation of the frames and
header compression to support large packet sizes required by those
standards. The above mentioned are IEEE 802.15.4 standard definitions of
low-power, low data-rate, wireless personal area networks.

3.2 PhyNetLab: Ultra-low-power WSN testbed

In this section, PhyNetLab’s architecture design is discussed with the
various features deployed in the infrastructure. Initially, many Internet
testbeds, networking infrastructures, and wireless measurement testbeds
were studied. Performing distributed measurements in WSNss is a critical
feature for PhyNetLab. The derived IoT testbed requirements from the
testbed survey in A.0.5 and the architecture design are made so that the
system could be replicated to any industrial application. The testbed
architecture is consolidated to provide a reference model for an
energy-constrained, distributed infrastructure for deploying wireless sensor
networks in an application-based industrial system.

3.2.1 Requirements for an IoT testbed

For any system, its architecture defines the operation with better qualitative
aspects desired for industrial adaptation [11]. In this section, the primary
qualitative aspects of industrial testbeds are discussed. These aspects are
considered the requirements of an industrial WSN deployment and are
incorporated during the design phase of PhyNetLab. PhyNetLab is an
industrial testbed because it is implemented in an industrial material
handling facility. Experiments held in the testbed can relate to either
communicating an industrial facility’s dynamics or simulating a business
application to estimate performance. The PhyNetLab system architecture
takes the findings from the surveyed testbeds as design considerations.
There have been platforms for experimentation and research with
state-of-the-art outcomes for WSN techniques concerning communication
strategies in low-power platforms. In this testbed, the energy-neutral
operation of the nodes is focused on the logistics facility application context.
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One of the goals of the PhyNetLab testbed is to improve the rate of industry
adaptation of WSNs.

Various testbed architectures are studied to narrow down the design
specifications for PhyNetLab. These are considered the pillars for
developing a robust WSN testbed with a context for energy-neutral
operation in industrial applications. It is highly improbable to simulate an
industry environment to different model modalities. The dynamics of
industry operations require performance availability scenarios, which
become more complicated to simulate [14]. This provides the motivation to
implement the testbed in the materials handling facility [11]. The next
requirement for the testbed is the experimentation experience. It becomes
tedious when there are 350 nodes in the sensor-field that communicate with
six access points. A distributed architecture with the real-time operation is
proposed for the PhyNetLab implementation to provide a multi-user
experimentation context for the data and the nodes that generate the data. A
management portal is built with an information technology infrastructure to
accommodate a multi-user context with less human intervention to improve
experimentation.

Energy neutral operation and energy harvesting are two sides of a coin.
For research on an energy-neutral design on WSN nodes, studies about
energy harvesting should be made [11]. Energy harvesting requires an
environment close to a real case to study the factors influencing energy
harvesting limitations and to implement an energy-neutral design in smart
industrial objects. Seamless experimentation experience is required for
quickly testing iterations over operational concepts and determining the
nodes’ performance availability. These types of experimentation can be
performed remotely over the Internet using a management tool [11].

Scalability is the capability of a system to handle growth in the number of
nodes in the WSN installation. In scenarios like those, the system should be
modeled to accommodate the growth either by increasing the potential to
handle the system’s development or by making multiple instances in a
decentralized manner to reduce the load on a specific system [11]. There are
two types of scalability, horizontal and vertical. In the testbed context,
horizontal scalability should be addressed, and the system should be
designed to scale with the demand for growth in the nodes. Scalability is
considered in the design of PhyNetLab as one of the factors due to the
dynamics involved in industry operation standards. It is essential that these
systems are highly scalable and that their availability could be increased by
increasing the number of nodes without any outage in the network. The
database systems to store the data in an indexed manner are also chosen so
that the whole system is robust against issues arising from scalability [11].
The architecture supports plug and play of devices when pre-installed with
the distributed software implemented across nodes. Scalability is possible
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on both dimensions within the PhyNetLab architecture [11]. When there is
horizontal scaling of nodes, i.e., the number of nodes increases, there should
be vertical scaling of the access-points and database systems, i.e., to
improve the resources for such systems. Therefore, the testbed architecture
is designed in such a way that increasing horizontal scaling inherently
scales vertically using the in-memory data grid.

The heterogeneity of devices is considered to improve the interoperation
of different existing tools in the industry. As cost is a factor for industrial
operation, it is impossible to equip the whole system to adapt to the same
hardware platform, rather the system is modeled to have interoperability.
The PhyNode itself provides heterogeneity concerning the PHY medium
used. There is support for 2.4 GHz, and sub-1 GHz band in one node and
interoperability of these nodes can be realized using the PhyNetLab
management platform [10]. The interoperability of the two systems is
targeted by implementing shared data storage. This unites the two data
driven WSN systems at the data storage. This approach reduces complexity
in implementing a unification stack for two communication stacks.

The six principal architectural requirements for a WSN testbed are

Experimentation experience
Environment

Availability

Scalability

Heterogeneity

Industrial impact

O G W=

Impact here means adaptations of WSN in the industry, which is the
motivation for the testbed. Replicating the environment for better testing
conditions with seamless experimentation tools, providing heterogeneity in
the device nature to incorporate existing installations, and providing
real-time access to data (availability) reliably are considered vital elements
for the impact of such a WSN testbed. The testbed implementation also
hints at the cost required for such an implementation. Energy-neutral
design requirements for indoor photo-voltaic energy-harvesting systems
can be defined. Henceforth, the architecture design of the testbed revolves
mainly around six principal requirements as listed above.

3.2.2 PhyNetLab architecture

PhyNetLab is designed as an ultra-low-power WSN testbed with the design
requirements, as discussed earlier. The testbed architecture considers the six
principles, as mentioned earlier, as requirements to model the testbed for
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experimenting on the end nodes’ energy-neutral operation with an
application context. A generalized approach towards the testbed
architecture is taken to model a system; this can work in a modular
configuration where two of the architecture layers can be implemented as a
standalone system. Depending on the application’s requirements, a layer
can be omitted from implementation or scaled horizontally across
locations [11]. The modularity in the design of the architecture and the
state-of-the-art techniques from distributed computing enables such a
configuration. The architecture is a decentralized, real-time distributed
architecture for ultra-low power application-based WSNs, where the
application defines the requirements. The testbed architecture is defined as
a three-tier architecture with a prospect for high scalability of nodes and
systems [11]. Another essential factor of distributed systems is the
availability of data across tiers of the application and locations of the
infrastructure [11]. Design considerations for scalability, availability, and
reliability of the testbed, among other factors, significantly account for
industrial adaption’s desirability. After performing the architecture design
and vertical integration of the system, an industrial application is designed
with the design guidelines provided by PhyNetLab [11]. One of the design
assumptions inspired by the industrial requirement, which also impacts the
operation of WSN applications, is that all field nodes in the testbed are
mobile. The field nodes are called PhyNode, and they are attached to the
physical entities in a materials handling facility. The mobility of the nodes in
PhyNetLab is achieved by a fleet of an Autonomous Ground / Guided
Vehicle (AGV), as shown in Fig. 3.2. The sensor nodes are attached to the
crates in a materials handling facility. PhyNode and other hardware systems
that are deployed in the architecture are described in chapter 3.3.

Fig. 3.2 The logistics research facility where PhyNetLab was planned with a source for
outdoor lighting and AGVs for mobility.
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Fig. 3.2 is a photo-realistic rendering of the industrial facility where
PhyNetLab is deployed. The testbed has three tiers, with the topmost level
(Tier I) consisting of enterprise-grade cloud servers that have the power of
performing complex computations. The servers also interact with remote
users, store valuable data from the sensor networks, and manage the
systems by delivering firmware from the user using the internet [11]. This
layer implements the three functions of the PhyNetLab testbed. It has three
servers: the application server, database server, and the build server. The
parts of these servers, which implement different functional aspects of
PhyNetLab, are encompassed within an API server, as shown in Fig. 3.3 for
data exchange of the various servers with the entities outside the
PhyNetLab implementation. There can be another location of industrial
WSN with heterogeneous devices and a communication stack or a
third-party application that consumes the data from the WSN testbed.

Tier 1
API service Docker registry service In-memory database — Hazelcast
Servie (https://docker.phynetlab.com) (https://cluster.phynetlab.com)
Address registry service td " Data translator
(https://devaddr.phynetlab.com) pidp master (Hazelcast to MongoDB)
Authentication service Database server — MongoDB
(https://auth.phynetlab.com) (https://db.phynetlab.com)
Management portal Build server —Jenkins master
(https://portal.phynetlab.com) (https://cs.phynetlab.com)

Private network

Fig. 3.3 Three categories of servers deployed on tier 1 of PhyNetLab

The three-tier architecture of the PhyNetLab is illustrated in Fig. 3.5,
where the second tier of the architecture has edge devices of the IoT
architecture. Edge devices are located at the sensor-field where the WSN
nodes are deployed. These devices bind the higher-level application servers
that consume data in a business context with the sensor nodes and
controller devices on the WSN platforms deployed in the sensor-field. These
devices are called access-points in the context of PhyNetLab. There are six
of those access points deployed in the materials handling facility with
capabilities for communicating with all the sensor nodes and the servers on
tier 1. They are deployed in a distributed manner i.e. the data from the
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sensor node is received at an access point in PhyNetLab. The received data
is distributed in real-time to all the access points to handle the nodes’
mobility and the sensor nodes” dynamic associations with the access point.
A Node]S based event logger is deployed in the access point, which
improves debugging possibilities of each access point. Fig. 3.4 illustrates the
functional block diagram of a tier 2 device deployed in PhyNetLab.

Tier 2

Access-point (AP

High-level interface for communication & control Access-point

Build clients Access-point  MINotification, ptpd &
o Docker :
Jenkins slave control app API service Access-point

Data unification for docker clients & AP runtime

Access-point

Low-level hardware interface for data acquisition
Sensor node Sensor node [ Sniffer node 8 Sensor node
(868 MHz) (2.4 GHz) (2.4 GHz) (868 MHz)

Connected to Hazelcast cluster

Access-point

Access-point

Fig. 3.4 Functional block diagram of a tier 2 device

Tier 3 is the actual focus of future research, which is deployed in the
material handling facility and consists of 350 PhyNodes [11]. The PhyNodes
are connected to the user for remote interaction using the ZigBee back-bone
network. This architecture compiles all the principles that were discussed
earlier for the architecture design of the testbed. There is a dynamic data
flow over the network with user authentication. Each tier is vertically
scalable, or horizontal scaling of the levels across locations to form clustered
operation is also possible. Fig. 3.5 shows the consolidated architecture of all
the three tiers with the extension of their features over the different levels of
PhyNetLab. Fig. 3.5 shows that the identification service runs through all
the service layers. This identification is available in all the data platforms by
either accessing an API service for systems outside the PhyNetLab
implementation or using the in-memory data grid identification service.
The systems and nodes associated with the testbed, particularly the nodes
in the same location, can access the in-memory data grid. All other systems
and nodes can only access the API service with proper authentication. The
identification service must be modeled to be a highly available system. It
will identify the testbed devices and assign new devices to the testbed when
they are registered to the testbed platform. This improves the robustness of
the testbed against device spoofing. Device spoofing happens when nodes
in the testbed retain an invalid address assigned to it during a previous
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experiment. When this address is assigned to another device, two devices
receive messages as they are assigned the same address. To tackle such
issues, an identification system is designed to update the device address
centrally with unique identification strings that are used by the end nodes
upon rejoining with the network after abnormally long sleep periods. A
time-limited token system like the JWT is used where the token should be
renewed after the timeout. If expired, the node will receive a new address
and, if required, an identification string from the identification service.

An authentication service is also available across the testbed to allow
authenticated users to access the data and the end nodes. In PhyNetLab
architecture, LDAP is used along with Passport]S for the management
portal to provide a single database for user authentication across the testbed.
The build server also spans its service throughout the testbed, where it is
used for securely iterating the software components of PhyNetLab. It is
used for building software for an access-point, management portal, and
authentication and identification service. It is also planned to manage Texas
Instruments Code Composer Studio to compile code for the PhyNode
research platform. This will automate how the software for the PhyNode is
built and distributed across heterogeneous networks. The firmware is
pushed to the access point to which the node is associated and transferred
to the destination platform using the ZigBee back-bone network.

3.2.3 Distributed real-time architecture

PhyNetLab architecture works in real-time, i.e., the time synchronization is
taken care of by a time server using the Ethernet network. An application is
defined to be working in sync if two or more devices communicating in a
network are synchronized to the same clock where the offset of the time
between the two nodes is at a minimum. They comply with a standard time
unit within which the operation between the two networked devices is
completed [33, 34]. One option to achieve that level of time synchronization
between more than two hardware devices is to synchronize each of the
devices to the clock by the GPS signal. It is expensive to implement external
hardware to receive the GPS signal for each of the access-points. Moreover,
for indoor devices, signal acquisition is low.  Therefore, a
software-implemented time synchronization protocol, called the precision
time protocol, is used in this implementation. Its quality of service claims to
be within the bounds of 10 microseconds between the secondary and the
master [35]. The precision time protocol is used across devices in the first
two tiers from the top, as shown in Fig. 3.5. The master is a virtualized
server running Ubuntu 14.04 on the topmost tier with secondaries on the
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Management portal API service Address registry service Authentication service
(https://lab.phynetlab.com) (https://address.phynetlab.com) https://auth.phynetlab.co

In-memory database - Hazelcast Data translator Database server - MongoDB Docker registry service Build server - Jenkins master
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Private network

& Address services)

Access-point (AP) hardware and software interfaces in Tier Il

High-level interface for communication & control User application containers
Edge algorithms & ~ Business
computing protocol use-case
apps experiments testing

API service for Notification
AP remote control service
AP trol
COMHO Resourceful end nodes
bins / libs bins / libs bins / libs Wired or Wireless
(Ethernet, CAN, Profi)
Docker runtime (User application workspace ) (GSM / GPRS / LTE, WiFi)

In-memory database

Event logging service
9ging client

(s1ua110 dv R 18300Q)
BABIS SUDjUS - JuUslo plihg

Edge Computi
(Communication,
Control, Analytics,

Low-level hardware interface for data acq ) ) Database systems,
Universal Serial Bus & sensors & actuators)
USART heral Interface Bus other Bus standards for

(RS 282, RS 485) (Master & Slave modes, bit-banging) low-level hardware interface

Data unification from low-level hardware for distributed in-memory data grid Data for intra-networking of user clients

<<
=
=
S
g
D
A
s
]
c
@
Q
@
kel
@
£
=
=L
©
£
2
o
©
3
©
kel
a
Q
@
i
5

Energy constrained field nodes MQQT. HTTP, 6LoWPAN
|EEE 802.15.4 & proprietary standards IEEE 802.15.4, 802.11, BLE
(868 MHz) (2.4 GHz, 5 GHz)

splepuels Buppiomiau snouabolajay Jano sonhjeuy “Alaaljiep uoieslidde 1oy seslAles pling

.5 Consolidated centralized testbed reference architecture

Fig. 3



3.2 PhyNetLab: Ultra-low-power WSN testbed 43

testbed’s top and middle tiers. This means all the access points are
synchronized with the database’s clocks, application, and build servers. It is
desirable to run the timeserver and the devices in the second tier to reduce
network latency.

For devices to have a precise time and when the server does not have
internet access, there are possibilities such as a grandmaster clock which
synchronizes itself with the GPS signal and provides the correct time to the
server. The devices don’t have to have the same time as the coordinated
global time but synchronize the network’s time. The time is synchronized to
the global clock on the time server with the Internet’s network time protocol
application. An experiment was conducted to define the precision time
protocol limits to be implemented in the testbed. There were five
secondaries on Tier II for this experiment, and the master clock was in Tier I
with other servers. The master and the secondaries were in the same subnet
running Precision Time Protocol Daemon (ptpd). It is available for
installation directly from the repositories. It can be installed with the
following one-line terminal command executed with root privileges, as
shown in the first line of the listing 3.1.

Listing 3.1 Setup procedure for ptpd in master and secondary nodes [36]

$ sudo apt—get update & sudo apt—get install ptpd
$ sudo ptpd2 M —i ethl —f ~/Desktop/ptpd2l.log
$ sudo ptpd2 —s —i eth0 —f /ptpd31l.log

The initial setup for the ptpd is to assign one of the nodes to run as a
master and the other nodes as secondaries while starting the service in the
terminal window with these command line arguments. The command line
argument for assigning a master is with -M and for a Secondary is -s. With
the initial setup, the log file path is also given using the argument -f, followed
by the file system’s location. The second and third lines in the listing 3.1 are
the examples for starting the ptpd daemon on the master and secondary,
respectively. This log file is used for later analysis to estimate the mean-
offset between the secondary nodes to prove if the nodes’ clocks are within a
desired range of operation. Optionally during the initial setup, the network
interface to be used for packet broadcast by the master and interface to listen
by the secondary can be assigned with the argument -i, followed by the
network interface’s name. This helps the ptpd program choose the right
network interface if more than one interface is activated. From the log files,
offsets from the master with their timestamps are extracted for each log file.

Fig. 3.6 shows the offset from the master plotted against the timestamp. It
can be seen that the nodes have the same signature as each other. This
means that they have a regular offset from the master. All the secondaries
provide the same results for an experiment period of 24 hours. This offset
from the master is calculated for all the secondaries. The arithmetic mean of
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these values provides an operating range for the secondary nodes. Even
though there is an offset between the secondary and the master, the offset
signature is almost equal. Thus five secondary nodes provide an offset
footprint that is similar to each other with an upper limit of 300 ys from the
master. The time synchronization takes up to five minutes, after which the
difference is stabilized between the master and secondary. This proves that

——— Slavel
— Slave2
0| T Slave3

Slave4
— Slaveb

Offset from Master Timestamp

Fig. 3.6 Time offset of each secondary node from the master

the implementation of a precision time protocol can improve the
synchronization of the nodes in the network, providing a better timestamp
for data arriving in the network from the sensor nodes in the field. It is
useful for receiving the same data packets but with different timestamps
because of precision. The time of flight of the packets can be calculated with
higher accuracy. All other servers in the network implemented with
PhyNetLab acquire time from this master clock time server.

3.3 PhyNetLab Hardware Systems

PhyNetLab uses a wide variety of hardware in its testbed ranging from
energy-neutral field nodes to cloud servers with on-demand access to
resources at scale. The energy-neutral devices are one of the field nodes
deployed in the sensor-field in the materials handling facility. The testbed is
designed to host heterogeneous devices on any tier of the testbed
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architecture. The testbed implements a border device that connects to the
Internet, which translates the devices’ IP to the device address in the field.
Other devices are connected using the Ethernet interface to the servers
either in the second or third tier using web services. The devices in the
testbed architecture’s various tiers are described in detail with their block
diagrams as shown in Fig. 3.12 showing their hardware components and
other devices using various services. The hardware in PhyNetLab can be
widely categorized into three device types 1) field nodes or PhyNode, 2)
Router or access-points, and 3) Application servers or remotely collocated
cloud servers.

3.3.1 PhyNode

The PhyNode hardware is intended to create a platform to test various
wireless protocols on the sub-1GHz band and 2.4 GHz band for varying use
cases of the Industry 4.0 standards. Individualized production, horizontal
integration in collaborative networks, and end-to-end digital integration are
some of the applications in Industry 4.0, as described by Brettel, Malte, et
al [37] [11]. PhyNode is used in testing neutral energy strategies with the
operating software on the processing unit or the communication strategy
with the radio unit and the supporting processing unit. Implementing in
materials handling facility or a mimicking facility logistics environment to
test the WSN nodes can overcome any simulation limitations. PhyNode is in
the third tier of the testbed architecture. It uses custom software, written in
C language, to implement user configurations in testing communication
strategies and optimize the processing unit’s operation to operate in
energy-neutral standards.

3.3.1.1 System design description

This section elaborates on the PhyNode’s general configuration, system
design, and hardware architecture. The electronic components used in
PhyNode to provide features for the application and achieve energy-neutral
operation are detailed in the subsections. As mentioned in the comparison,
the hardware platform has two radio transceivers. The configuration is
made in such a way that there are two nodes on the same platform. One of
the platforms uses different RF channels than the other. This enables the two
nodes, in such proximity, to coexist. The objective of having two nodes on
the same platform to provide diverse RF bands is to experiment with an
industrial application. The node part with CC2530 is battery powered and
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can be used as a platform that complements the experimentation experience
by reporting and monitoring the health of the slave node. The slave node is
the CC1200, which has an energy-neutral operation and can be
programmed using the master board of the CC2530 part board. The MCU
core of CC2530 is an 8051 architecture. In contrast, the CC1200 is a radio
front-end chip controlled by an MSP430 with 16-bit Reduced Instruction Set
Computing (RISC) Microprocessor without Interlocked Pipeline Stages
(MIPS) architecture.

The MNB is the central hardware platform that forms a controller
network for a SSB radio chip held by the MNB. A master network is a
backbone network that provides insight into the communication and energy
characteristics of the SSB. The controller network is operated at the 2.4 GHz
band. The operating software of MNB is ZigBee. Applications addressing
other software systems such as TinyOS or ContikiOS, are compatible with
this system MCU architecture. These operating systems are tested with
more than one node for performance, range, and packet error in a lab setup.
In general, the IEEE 802.15.4 protocol standard can be implemented with
any operating system on the 8051 MCU core. The main objective of having
such a network is to collect metrics about the SSB and deliver Over-the-Air
(OTA) firmware updates for the slave board that make sensor nodes highly
mobile in the deployed site. Therefore, it is easier when there is a system
that can facilitate flashing the software process remotely.

Fig. 3.7 shows the 8-pole connection and various other essential
components of PhyNode explained in detail. From Fig. 3.7, it can be seen
that the SSB can be easily removed or changed with the help of holders that
fasten the SSB with the MNB [10]. This is a feature implemented to iterate
hardware quickly. There are possibilities for the MNB or SSB to be damaged
beyond operation due to a user program or other environmental
characteristics like physical damage or electrostatic discharge. It is easier to
swap either one of the damaged boards with new hardware. It reduces the
cost of the implementation since the hardware used in research is bound to
be damaged.

3.3.1.2 System Architecture MNB

MNB provides the skeletal framework of the PhyNode. Its processor core is
powered with a CC2530 IC from Texas Instruments (TI). Fig. 3.8 shows the
MNB system architecture with its functional components. A System on Chip
(SoC) integrates functional components of an electronic system into a single
chip. The CC2530 SoC contains an 8051-core MCU with five-channel direct
memory access and a radio transceiver supporting the IEEE 802.15.4
standard. Easy pin mappings provide interfaces to the chip, such as UART,
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Fig. 3.7 PCB layout of PhyNode with MNB and SSB (inside the cut out) [10]

SPI [29]. The MCU core is an integrated low-power 8051 MCU
architecture [29]. The selection of such an RF SoC is mainly due to its
low-power operation and a small spatial footprint in the PCB. This module
supports a PCB antenna for the 2.4 GHz band operation. The daughter
boards from the CC2530 have a booster antenna module, which provides a
better antenna gain. However, the trade-off provides less spatial footprint
on the PCB with an allowable loss in the antenna gain. It is considered an
acceptable trade-off for the features it provides to PhyNode. A Li-Polymer
Battery with 2000 mAh powers the MNB that provides sufficient energy for
long-term operation with the low-power SoC, powering the SSB when
required and providing enough stable power for flashing a new firmware to
the SSB. For battery protection and the battery’s flexible operation, a power
management IC is added to the module [38]. BQ29700 is the chip used for
flexible power management [39].

An additional feature of the MNB is a high-power infrared (IR) LED. It
is planned to provide a testbed feature that will help verify novel indoor
localization algorithms. A camera that can detect node locations can be used
to estimate the nodes’” absolute location in the sensor-field. An IR LED can
be controlled using the GPIO of the MCU in SSB that facilitates a method to
identify each node uniquely with the frequency with which they are turned
on and off.
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Fig. 3.8 Block diagram of the MNB [10]

3.3.1.3 System Architecture of SSB

SSB is the energy-neutral node by design, and its block diagram is
illustrated in Fig. 3.9. It has photo-voltaic harvesting capabilities and an
ultra-low-power radio transceiver that operates in the sub-1 GHz band. On
the heart of the SSB is an MSP430FR5969 MCU manufactured by Texas
Instruments. It comes from the family of low-power MCU with a 16-bit
RISC architecture core. It has a FRAM-based on MCU with power
consumption from 0.02 pA in sleep mode up to a 100¢A in an active state.
FRAM is a groundbreaking technology for MCU, which increases the speed
at which the controller reads and writes to the RAM. The speed is
considerably better than other RAM technologies and reduces each read
and write data transaction’s energy requirement. As a whole, reduced
energy consumption and increased access speeds reduce the wake time
during a memory access, which results in the total energy consumed during
memory access. This has a positive effect on the operation of nodes with an
energy-neutral design. Compared to a conventional flash RAM, the 64kb
FRAM in the MCU is very flexible concerning memory access and is highly
energy-efficient.

3.3.1.4 Radio front-end

For RF communication, the TI CC1200, a sub-1 GHz, ultra-low-power
transceiver, is used on the board [28]. The MCU communicates with the
transceiver using the SPI bus. The transceiver has three programmable
GPIO, which are used to provide wake-up events and other notifications for
the controller’s programming logic. One GPIO can be programmed to
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provide an interrupt event upon successfully receiving a packet with a valid
Cyclic Redundancy Check (CRC). The chip provides CRC checking in the
hardware itself, which reduces the computation energy required to check
for every packet at the MCU [40]. Another GPIO can be programmed to
invoke an event at the MCU when it does a CCA. The channel’s spectral
energy is measured, and when it is less than a threshold, the channel is
considered free, i.e., no other stations are accessing the channel. This is used
in programming the MCU to sleep for definite cycles before sensing the
channel for CCA in the next slot. Other programmable outputs can be
configured for the GPIO, such as notifying the transceiver state, the end of
transmission, an interrupt event when a packet was received with an
overflow in the RX FIFO buffer [40]. An additional feature in the SSB is to
add a 125 kHz wake-up receiver to reduce the nodes’ listening time. It is
implemented via an inductive coupling coil as a receiver antenna on-board.
It can react to a specified pattern sent on this channel. This signal with a
pattern works as a wake-up signal for the MCU that enables the MCU to
switch between sleep mode and active mode.

3.3.1.5 On-board sensors

Five onboard sensors are used for measuring and monitoring the
environment of the PhyNode. Ambient sensors are essential for a hardware
platform with energy harvesting capabilities [41]. There are two MAXIM
ambient sensors implemented with features to measure RGB color, infrared
and ambient light. This sensor’s primary function is generating a map with
potential optical energy harvesting. Predicting expected power from the
photo-voltaic cell is important for ensuring a reliable operation of energy
neutral devices [42], [43]. Two temperature sensors are used, including the
MCU and one included in the MAXIM ambient sensor. Temperature is a
critical measure since the photo-voltaic cells also depend on an optimum
operating range for their energy production [41]. Furthermore, a 3- axis
accelerometer is also available.

SSB energy-neutral design operation means that the SSB’s energy source
is supplied by an energy harvesting module for active communication and
limited computation on the SSB processor core. Maximum power point
(MPP) tracking is a highly accepted technique for efficient energy
harvesting using photo-voltaic cells. Getting the maximum power possible
from photo-voltaic modules by changing the physical or electronic
configuration is one of the properties. For this purpose and for battery
management, an ultra-low-power harvester IC with boost charger and
autonomous power multiplexer is used [44]. It is designed so that there is a
possibility to switch to an alternative energy source if the photo-voltaic
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charged energy storage goes empty. Such a measure is taken to make the
hardware platform robust in terms of power and efficiently understand and
model its power requirements. Fig. 3.9 shows all the components of the SSB
as a block diagram with the data and power flow between its parts.

3.3.1.6 Energy characteristics of SSB

PhyNode has two parts with different radio front-ends, one has an
energy-neutral design, and the other has a low-power operation with a
different operating RF. PhyNode has a photo-voltaic cell (7072048 Solem
Cell) on the part designed with the energy-neutral operation. It is part of the
SSB. The motivation is to provide a longer operating duration than usual,
compared to low-power wireless sensor nodes without intervention for
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recharging or replacing the battery. This is designed to be at a low cost and
targeted for industrial adaption because of its features. It has an
energy-harvesting module that can provide insight into the capacity of
indoor energy harvesting and model computation and the sensor node’s
communication capabilities to operate in an energy-neutral manner. Energy
modeling for the photo-voltaic panel was studied using the appropriate
photo-voltaic panel in PhyNode, which is detailed in [41]. The results of a
comparative analysis of the power produced by the selected photo-voltaic
cell in indoor lighting conditions are modeled and described in [41]. The
energy produced is modeled in [41] as the function of indoor artificial lights
and reflective sunlight during the day.

3.3.1.7 PhyNode intra-connection

A connection is required to take control of the SSB. The connector can do this
with pin extensions. The configuration of the pins for the connection between
the boards is shown in Fig. 3.10. RX and TX are used for communication
between MNB and SSB. It is a full-duplex communication line between the
two boards. The Bootstrap Loader is firmware from the manufacturer that
is used to flash the MCU. It requires two pins for which reset (!RST) and
TEST pins can be used. The master board or MNB can enter the Bootstrap
Loader (BSL) of the SSB to flash a new firmware provided through the ZigBee
application layer. The MCU is the reference voltage from the SSB MCU unit
used as a reference for an alternate power source. VBAT can be used as an
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Fig. 3.10 8-Pole connection between MNB and SSB [10]

alternative power source. This is designed to provide an external alternative
power source if the energy harvester’s storage battery is empty due to over-
exploitation of the hardware resources. Such a configuration reduces the
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amount of time for a person to flash new software onto the SSB. Calculating
economically, the amount of time spent on reprogramming the nodes for each
iteration during the experimentation phase renders the testbed useless [10].
The MNB is also a hardware platform that could be used for researching
WSNs with a 2.4 GHz band apart from its use as a controller network. The
disadvantage is that the energy-neutral design does not extend also to the
MNB. The SSB, connected to the MNB, has a TT CC1200 RF transceiver that
works in the sub-1 GHz band. This part of the research platform fits energy-
neutral functioning by design [10].

3.3.2 Access-point

In this section, the hardware of the access-point is detailed with its interface
to the low-level hardware. The different communication strategies enabled
with the access-point as a result of the low-level hardware are described with
a functional block diagram and its software stack.

3.3.2.1 Hardware specification

The access-point is deployed in the network as a central hub in a star
topology. The hardware is enclosed in an industrial casing as it is deployed
in an industrial facility for experimentation. The hardware consists of a
low-power computer that can interface with low-level hardware such as the
radio modules and high-level hardware to connect to the internet. The
hardware that is chosen for the implementation is a RPi. It provides
low-cost computer power with an ARM processor at its core. It has 40 pin
headers for low-level interfacing hardware that can be directly programmed
with the data they generate [45]. The hardware, collectively with the 868
MHz and 2.4 GHz radio front-ends, can be called an access point. The
hardware components in the PhyNetLab router hardware are two CC1200
daughter boards, two CC2531 USB sticks, power management for the RPi,
and the connected modules. A tricolor LED strip to improve notifications
from the hardware and an Ethernet cable that provides internet connection.
The interconnection between other sensor field access points can be
achieved by assigning all access points to the same IP network. In the future,
it is planned to implement the transmitted 125 kHz wake-up signal on the
access point to improve the availability of the long sleeping nodes. This
should be interfaced with a software stack of access-points to provide
connections for each node’s physical node and signal pattern.
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3.3.2.2 Low-level hardware interface

Four modules are connected directly to the RPi pin headers. There are two
CC1200 daughter boards connected using the SPI interface. Their three
programmable GPIO are also connected to the PIN headers to program
logic that can improve the interconnected hardware layers’ operation
efficiency. The other two modules are CC2531 USB sticks [46]. There is a
facility to connect them via the headers, but it is also possible to directly
connect them onto the USB hub on the RPi. The CC2531 modules do not
have a better antenna gain compared to the CC2530 daughterboards as they
provide a booster antenna circuit to improve the reception gain. It is
planned to connect the CC2530 modules onto the RPi using the GPIO pin
headers over the USART wired communication standard to improve air
(channel usage) efficiency.

3.3.2.3 Communication strategies

The RPi has more than one standard for communicating as it is deployed in
the middle layer of the three-tier architecture. The middle layer is a
coordination layer which reduces the computation load on the end nodes to
supplement better energy efficiency and as a translator that accesses the
application servers to provide field data for the nodes from the application
data. The access point is connected to the Internet by the TCP/IP protocol
stack over the wired Ethernet interface. This provides an interconnection
between the access-points that are implemented in a facility. Here,
state-of-the-art distributed computing techniques reduce data latency
between the access-points and improve coordinated operation between
collocated access-points. There are four USB connections possible on the
RPi, of which two are free and can be used for planning future operational
features.

The RPi communicates in the 2.4 GHz band, implementing a ZigBee
network in the testbed as a backbone content delivery network for the
PhyNode platform. It is achieved by connecting an SoC to the RPi via USB
in the implemented version. The SoC implements the ZigBee
communication strategy for communicating with the field nodes. RPi
provides Internet interfacing with other nodes over the Internet and offers
better computational capabilities. The application endpoint of ZigBee is
available on the SoC with a connection using the USB, where the SoC is
connected for power and data exchange. Initially, the USB connection is
utilized with the CC2531 USB sticks that provide a virtual comport
connection over USB [46]. The future version is planned to connect the
CC2530 daughter boards directly over the GPIO headers. This is a drop-in
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replacement for the USB sticks for a better reception gain as it is also
interfaced using USART communication over the GPIO headers. There are
two CC2531 connected to the RPi; one of the CC2531 is used for connecting
with the ZigBee network. The other CC2531 module is used as a network
sniffer to record every air message from the field nodes. The sniffer module
uses a TI-supplied firmware, which connects to the RPi using the USB
protocol to improve the data-rate between the module and the RPi.
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Fig. 3.11 Functional block diagram of access-point hardware

The RPi communicates in the sub-1 GHz band using the CC1200 radio
front-end. There are two modules connected to the RPi over the GPIO
headers requiring eight pins for each module. A four-wire SPI bus is
connected with the three GPIO pins, each connected to a GPIO pin on the
RPi. The CC1200 has a reset pin to reset using an input pin by toggling its
state. This also resets the chip’s register configuration, facilitating
communication by a shared setting on the transmitter and receiver. There
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are two modules with a SMA antenna. One of the modules is used for
communicating with the field nodes. The other one is used for sniffing
protocols missed by the access-point software due to the computing delay
or state uncertainty on the CC1200 due to probable errors. The sniffer
provides better insight by collecting messages in the air with timestamps to
study the communication stability and reliability by the access-point
software. There is a requirement to have well-coordinated timestamps in
distributed systems i.e., all the collocated access-points deployed in the
materials handling facility. Fig. 3.11 summarizes the hardware architecture
with its software components of the PhyNetLab access-point.

3.3.3 Servers in PhyNetLab

The servers run the applications and web services, which consume data
generated by the nodes in the PhyNetLab. They are placed in the topmost
layer of the PhyNetLab architecture. In the implementation, this layer is
located in a remote facility with enterprise-grade servers. These machines
are capable of implementing high-level functions of the IoT application.
They are connected over an IP network. In this implementation, servers are
connected over the same subnet for reducing routing latency in the
data-flow. Servers used in this layer either supplement in the operation of
PhyNetLab or provide additional features for making experimentation
possible. It also offers remote access for users to experiment on the
industrial IoT platform with less or no human intervention. This layer on
the PhyNetLab architecture categorizes three servers that provide storage,
processing, and presenting the data generated through experiments or
industrial applications in a real case scenario. Fig. 3.12 illustrates the
configuration of the servers. It is not categorized if the server
implementations are operated in containerized, virtualized, or dedicated
servers. In the top layer of the PhyNetLab architecture, depending on the
application and their availability, the servers are dedicated hardware for
each application or sometimes virtualized. For example, a database server
performs better on dedicated hardware utilizing the disk I/O performance
and the memory exclusively for the database. In contrast, a web application
performs equally on both dedicated and virtualized platforms. These
servers’ data traffic provides insight for the implementation as dedicated,
virtual or container-based servers and applications.

Three physical servers are deployed to provide the necessary digital
infrastructure for implementing the testbed. In total, there are 12 cores and
38 gigabytes of RAM available for the application servers. One of the
servers has a Solid-State Drives SSD drive to improve the read /write access
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Fig. 3.12 Server categories of PhyNetLab

speeds used for the database server. Another server with a 500 gigabytes
hard disk drive (HDD) is used for running application servers and
automation servers. A server with 16 gigabytes of random access memory
(RAM) is preferred in this case to provide enough space for running a large
data store that is highly available and queried in real-time. A Synology
DSM 1515+ is deployed with two active network interfaces, with up to 90
terabytes of disk space with 6 gigabytes of DDR3 RAM. These are the
hardware components that provide the digital infrastructure for the
different servers used in implementing the PhyNetLab testbed.

3.4 The Sensor Floor

In this section, an experiment infrastructure developed as part of this
research is presented in detail. The main reason for developing another
testbed is the time it takes to flash the energy-neutral nodes. The
energy-neutral nodes are developed for application-based research with a
focus on energy consumption. Therefore, another testbed was required for
the rapid prototyping of physical layer characteristics on a large-scale. The
Sensor Floor was conceptualized as a testbed and developed as an
iteratively programmable testbed for dual-band application-based research.
Architecture, software and hardware components of the experiment
infrastructure are discussed in sections 3.4.1, 3.4.2, 3.4.3 respectively. The
experiment infrastructure is a WSN testbed developed for evaluating
industrial wireless sensing scenarios. It is an application-based testbed
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where the architecture design supports rapid prototyping of wireless
network scenarios with a high node density. In Sec. 3.4.3, a single node
hardware overview is discussed in detail, followed by the Sensor Floor
architecture. The architecture provides insight into the ability for data
collection and rapid firmware prototyping for wireless network scenarios.
The various software tools developed for the management of the testbed are
detailed in Sec. 3.4.2. A 3D render of the Sensor Floor is presented in
Fig. 3.13. The Sensor Floor is called so because 345 nodes are embedded
under the research facility’s wooden floor.

Fig. 3.13 Sensor Floor 3d render showing the topology of the nodes.

There have been multiple iterations of the Sensor Floor for various past
applications, even though they were not called Sensor Floor. The
applications of Sensor Floor had an array of floor mounted sensors that
were capable of sensing physical changes on the floor. Remarkably, the two
implementations by Prof. Dr. Joseph A. Paradiso from Responsive
Environments, Media Lab, MIT, were the first few projects that drove the
vision of Sensor Floor for interactive and sensing applications. The
limitations in measuring physical phenomena were limited due to the
technological limitations during the time of conception of this vision. The
two following examples of Sensor Floor are examples of floor augmented
sensor applications that used pressure-sensitive areas for measuring the
interactions on the floor. An interactive floorspace has been developed in
the first example, which uses modular uniquely addressable nodes
connected to a sensor array of pressure-sensitive areas of varying size and
shape [47]. It gave the potential to be integrated into an interactive
environment [47]. The Sensor Floor was called the floorspace, which used
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an array of force-sensitive resistors on each node to detect pressure, and the
pressure information was output by way of a self-organized network
formed by the floor nodes [47]. The pressure sensing and network systems
were explored in this implementation of the Sensor Floor. It suggests
potential applications of the floorspace in virtual reality gaming and artistic
musical and dance performances in 2004 [47]. The other example is the
Magic Carpet, which is a fusion of different sensing elements to capture
human movement on a floorspace [48, 49]. It uses woven piezo-electric
wires that were used for measuring change pressure due to footprint [48,
49]. A precursor to interactive floorspace [47] was the magic carpet, which
improved the shortcomings of the Magic Carpet, such as individually
addressable nodes that can be deployed in any shape or size. In the Sensor
Floor proposed and developed here, the nodes are distributed, low-power
wireless nodes with ten onboard sensors for measuring various physical
parameters such as light, sound, mechanical vibration, and magnetic field
fluctuations.

3.4.1 Architecture of Sensor Floor

The Sensor Floor has three components: the CC1350 STK, a carrier board
where the communication bus and power lines are connected, and finally, a
sink computer for data acquisition and firmware updates. The Sensor Floor
is deployed in a 30-meter long hall with only 23 meter long useable areas.
On the other side, it is 15 meters long, where we chose to deploy a cable of
15 meters with every meter for a sensor node. Every 15 meter length is
called a strip composing 15 sensor nodes connected with power, 1-wire and
RS5422 communication lines. One end of the 15-meter line terminates with
two USB dongles for 1-wire bus and the RS422 bus. The power supply is 12
volts powering each strip. In the end, there were 345 nodes in 23 strips, and
23 internet connected RPi. The dongles provided the necessary control for
each node. The nodes can be used for data acquisition from the floor even
though they have dual-band wireless communication interfaces to perform
experiments. Each node can be flashed individually, and the whole floor can
be flashed in parallel using a command-line tool developed exclusively for
this deployment. The RPi sink computers are time-synchronized with a PoE
connection. The data acquisition is tested to be synchronized within a few
milliseconds within the allowable tolerance for data acquisition. The nodes’
synchronization messages are delivered every 4 seconds on an average due
to the design choices of using a 1-wire bus to apply changes to the
communication bus.
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3.4.2 Software components

There are two types of software for the stack to develop applications. In
general, there are management tools that are developed, which also contain
a boilerplate code for future experimentation. The second type is the
application-specific firmware developed for the CC1350 hardware, with
guidelines for flashing the nodes. The developed software is made available
publicly at https://github.com/akrv/sensorfloor. The management
software includes open source tools like the SBL flasher, which abstracts
flashing for a CC1350 node using the serial boot loader interface. To enable
the serial boot loader on the hardware, the 1-wire bus allows the back door
pin for the MCU to understand that the power reset should boot into the
boot loader mode. The boot loader mode is a standard specification from
the hardware manufacturer (Texas Instruments), which allows the firmware
to be flashed new depending on the experiment. The software is distributed
so that all of the sink computers can run the same software, and their IP
addresses are used to run commands remotely. A frequently run command
is to synchronize the time between the sink computers before starting an
experiment to reduce the skew in synchronization. This is called the
flash_floor tool in the code repository. A GUI is developed to update the
received data from each node of the strip, which is implemented using the
flask library to allow for a straightforward REST API interface. This
software also allows us to flash each node as peruse choice and even
develop a custom flashing tool. The 1-wire bus status is exposed using the
owfs software package, which abstracts the 1-wire communication into a set
of file system changes. The imu_reader is a tool that contains a hex file
targeted for the CC1350 platform. It reads the IMU data and the RSSI value
of any received messages and transmits when an interrupt is received. This
software also implements the boilerplate code for developing full-stack
Sensor Floor applications. The 1-wire nodes are queried in a loop every 4
seconds, accounting for the 1-wire communication delays. The 1-wire
communication involves turning off the previous node that communicated
using the RS422 bus and turning on the next device in the strip to
communicate. A hardware interrupt triggers the node to print into the serial
interface, the data packets with information such as the IMU data and the
RSSI data. Once the sink computer receives the messages, it is directly
posted into multiple MQTT topics built with various unique identifiers, as
shown in 3.2.

Listing 3.2 MQTT topic for Sensor Floor data acquisition

/imu_reader/<MAC address of sink>/<Node ID>
/imu_reader/<strip id>/<Node ID>


https://github.com/akrv/sensorfloor
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Fig. 3.14 CC1350 STK Version 1.5. Front side [51, 52].

This allows for platform-independent, language-agnostic distributed
software architecture for developing Sensor Floor applications. MQTT is
chosen since the library support for multiple applications is of many folds
and can be easily integrated with any application. Another tool developed
is the real-time REST API called the summerschool_api that uses a Redis
in-memory database to persist strip data. A simple get request is responded
to with a JSON formatted string that hosts all the payload information of
each node and each strip and is available over the internet on-demand.

3.4.3 Hardware Overview

In logistics, there is a rising trend in adapting CPS and IoT devices to
digitize industrial processes [9, 50]. A single node is chosen with
fundamental hardware that can be used for future ultra low-power WSN
applications. A single node is comprised of two boards, a sensor tag, and a
carrier board. The sensor tag is an off-the-shelf product, and the carrier
board is used for deployment purposes. This board ensures that the sensor
tag can be supplied with power, data, and flashing capabilities.

3.4.3.1 Node

A Texas Instruments dual-band SoC CC1350 is chosen as the MCU for the
single nodes. A sensor tag is a commercially available off-the-shelf IoT
hardware that was developed for prototyping purposes. A sensor tag has
up to 10 sensors (Ambient Light, Infrared Temperature, Ambient
Temperature, Accelerometer, Gyroscope, Magnetometer, Pressure,
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Fig. 3.15 Texas Instruments CC1350 sensor tag back side[51, 52]

Humidity, Microphone, Magnetic Sensor) that can be used for various
sensing applications. Most on-board sensors are commercial standard for
retail products such as the IMU. The hardware has a 15 pin mezzanine
connector that is placed above the battery clip as seen in Fig. 3.15. The
connector has all the required pins to power, communicate, control and
flash new firmware on the host MCU CC1350. A debug board is also
available for software development with the sensor tag. The debug board
allows for run time debug using the code composer studio. This connector
is used for connecting the carrier board. There are two hardware limitations
for which workarounds were deployed. To flash the hardware using a serial
bootloader (SBL), it was required to access special pins that were already
dedicated to the on-board MEMS microphone. For accessing the SBL,
special TX and RX pins have to be used rather than typical UART TX and
RX pins[53]. DIO 12 and 13 are used UART_RX and UART.TX
respectively [53]. Since DIO 12 is used for AUDIO_D], as illustrated in the
hardware schematic Fig. 3.16, the solder pads of the 0-ohm resistor are used
to jump a cable for UART pins of the SBL. The configuration of the SBL also
requires another trigger to boot the MCU into bootloader mode. This
happens by checking if a specific DIO pin is in a configured state (active low
or high) [53]. Therefore, a logic level switch is required to differentiate every
boot of the MCU between a flash or a normal reset. These are the two
limitations that are overcome using a carrier board that would only be used
for delivering power for the sensor tag.
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Fig. 3.16 CC1350 sensor tag MEMS microphone tied to SBL pin [51, 52]

3.4.3.2 Carrier board

The carrier board is required to power up, communicate, and finally flash
the sensor tag for iterative experimentation due to the limitations
mentioned earlier. The carrier board also has to perform logical operations
to set a pin high or low depending on the operations’ order. If the sensor tag
will be flashed, it is required to set the BL_PIN.NUMBER to the
pre-configured active state. Since there are 15 carrier boards connected in
series per strip, a 12 v supply is used. However, the source voltage for the
sensor tag is 3.3 v. The power circuit is designed with a step-down converter,
as shown in the schematics in Fig. 3.17. The 5 v source is used for the 1-wire
interface and the multiplexers that perform, switching the power off and
switching between the UART pins for flashing and regular communication.
A low-dropout regulator is used as a voltage source for the 3.3 v of the
CC1350 sensor tag.

To overcome the limitations of the SBL due to the special pins used for
flashing using UART, two different pairs of communication channels are
used for flashing and for regular communication. A communication
multiplexer (TVHD1552) is used to switch between the two lines of
communication. A 1-wire interface (DS2408) has 8 open-drain digital pins
used to switch the multiplexer, communication interface converter, and
power source. Since there are 15 carrier boards per line, each 1 meter apart,
UART is not functionally usable. Therefore the carrier boards convert to a
full-duplex differential serial communication interface RS-422. The RS-422
interface on the carrier board is also controlled using the 1-wire interface to
turn on and off the communication. This enables a token-ring based
communication topology between the 15 devices in a single strip where the
token is controlled using a sink device at the end of the strip. Here, the sink
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Fig. 3.17 Carrier board power distribution for the CC1350 sensor tag pin

device is RPi, which connects to the internet and relays the RS-422
interface’s information.

3.5 Decentralized Brains: Concept and Design

In this section, the characteristic of Decentralized Brains is explored, and the
protocol is designed and developed. After developing the fundamentals of
the Decentralized Brains, they are evaluated using the Sensor Floor.
Contributions to this concept are (i) a networking architecture using
well-proven, low-power, low data-rate industrial CPS and wireless
communication standards applicable for self-assembly protocols, (if) a novel
method for creating Decentralized Brains at every node through data
replication for self-assembling swarms and (iii) a proof-of-concept
implementation on commercially available off-the-shelf hardware along
with a large-scale performance evaluation is presented to prove the viability
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of developed communication primitives for scenarios in Industry 4.0.
Finally, in Sec. 5.1, a discussion of space applications with the help of
TESSERAE provides a detailed insight into the various scenarios and
features of Decentralized Brains that can be used in swarm behavior and
space applications.

The distributed cognition framework in [54], for collaborative efforts
between humans, defines distributed cognition as cognitive activities
viewed as computations that occur via the propagation of various
information and knowledge transformation through media. The media here
refers to internal (e.g., individual memories) and external representations
(wireless communication and other sensing capabilities). The states of the
representations refer to various information and knowledge resources
transformation during collaborative maneuvers. According to the
study [54], the way knowledge is propagated across different
representational states. It is characterized by communicative pathways that
are continuously interrupted and coordinated sequences of action by
demanding an ever-changing environment. Here, the evolution of the
nervous system in an octopus is used as an inspiration, and the notion of
distributed cognition is used to conceptualize the idea of Decentralized
Brains. The representational states are reliably replicated between the
collaborating systems in a distributed wireless communication
architecture [55]. This allows for local actuation without global coordination
and facilitates multiple parallel control for collaborative maneuvers [55].

In distributed systems, the most common replication topology is to have
a single leader that then replicates the changes to all the other nodes in the
network with the benefit of avoiding conflicts caused by concurrent
writes [55]. All the clients are writing to the same server, so the coherence in
the data is maintained by the leader [55]. As shown in Fig. 3.20, our data
replication spans two physical layers in radio communication with multiple
state transitions starting from network discovery. This helps in reducing
channel contention while keeping lower bounds in latency [55].

The consensus protocol is inherently developed as a centralized protocol
with network discovery and leader election methods. This architecture’s
primary motivation is to understand and identify a consensus protocol’s
workhorse and develop those networking primitives in a modular manner
reliably. Modularity and reproducibility of the results in WSN will facilitate
in developing different complex consensus algorithms. From understanding
and implementing a decentralized context broker [56], it can be drawn out
that the fundamental requirement for a consensus protocol to reliably
function is to have a robust atomic broadcast communication primitive
within the network. Therefore, a method of reliable network flooding is
identified in [55] and is implemented considering the target hardware. An
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experiment is setup to prove that the broadcast communication primitive
can be reliably deployed in Sec. 3.5.8.

The communication flow of the Decentralized Brains is illustrated in
Fig. 3.20. There are two types of nodes in the network, the leader node, and
the replica node. Leveraging that each node is equipped with a dual-band
networking, it is possible to operate two networking paradigms in parallel.
One of the networks is deployed in 2.4 GHz networking, a 6LoWPAN
network. The other network is deployed in the Sub-1-GHz network, which
performs the data replication operation among the nodes [55]. A cohesive
network spanning over two radio networks is developed in Decentralized
Brains to increase the communication throughput and decrease the latency
for replication [55]. The data replication state is met when networking
flooding is performed using the synchronous broadcasts to propagate the
same message across many nodes that are sparsely deployed in a large
spatial area or in a dense environment [55].

In Industry 4.0 application scenarios, it is considered that the IoT devices
and other machines are located in a dense environment, i.e., the number of
devices per square meter is considerably high compared to smart city IoT
applications. The data that needs to be replicated is sent from the originator
of the data to the leader node [55]. The leader node initiates the
synchronous broadcast, which results in a network flooding in the
sub-1-GHz band [55]. The leader node also receives the replica changes, and
it manages the most recent replica of the data structure that will be
propagated throughout the network using the synchronous broadcasts [55].
For synchronous broadcasts, strict clock synchronization is required
between the nodes, which is implemented and tested in Sec. 3.5.8.
6LoWPAN is the networking layer provided by Contiki-OS, which is used
to create the 2.4 GHz network for one-to-one communication between the
originator data and the leader node [57]. This networking layer provides a
multi-hop mesh network. Therefore the originator and leader nodes can
reliably communicate in harsh environments [57]. Since there is an
extensive amount of literature available discussing the reliability and
performance of a large-scale 6LOWPAN based networking, this work aims
to present the synchronous broadcasts’ performance evaluation, a newly
developed networking primitive for this hardware.

3.5.1 Background

When communication between multi-part systems is desired and needs to
only support low-rate data transfer, Wi-Fi is usually eschewed for
consuming too much power in favor of mesh-networking standards like
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ZigBee [58] or BLE [59]. The trade-off that needs to be met with these
existing wireless communication standards is between energy and
scalability. Wi-Fi and ZigBee work in the frequency range of 2.4 GHz with
11 MBit/s and 250 KBit/s data-rate. Additionally, the number of nodes in an
area is fairly limited to tens of Wi-Fi devices, to a few hundred machines in
ZigBee. The amount of energy used for operation, the density of nodes that
can work in an area, and the network topology of these standards have
various features that can be used according to the application and the
system requirements. We will use the umbrella term of WSN and the IEEE
standard 802.15.4, representing the Low-Rate Wireless Personal Area
Networks (LR-WPAN). For example, ZigBee is one of the communication
protocols in this standard. We propose using this standard due to energy
and data-rate requirements and use self-healing and scalability cases that
are well matured in this standard.

Wireless is a broadcast medium (i.e., when a node is transmitting, all the
other nodes can listen, but when another node also transmits, both the
transmissions are lost due to packet collision). There are recovery methods
for MAC by using a random backoff delay. Additionally, a MAC protocol
called CSMA / Collision Avoidance (CA) is used in a time-slotted manner
in IEEE 802.15.4, where nodes sense the transmission medium duration for
any transmissions and reschedule if the medium is busy [11, 58]. Since a
delay is applied to every transmission at MAC layer, scaling the number of
nodes communicating in the medium increases packet delivery latency [11].
When swarm behaviors are implemented, certain states and data must be
communicated globally between the nodes in a guaranteed time. Instead of
waiting for the medium to be free, we leverage that every node in the
network can hear the transmission. Consequently, we flood the medium
constructively with data that needs to be propagated. The same packet’s
simultaneous transmissions interfere constructively with respect to the
specific physical-layer characteristics, allowing receivers to decode the
packet with high redundancy and achieving high-flooding reliability that
approaches the theoretical lower latency bound across diverse node
densities and network sizes [60]. The phenomenon of constructive
interference to achieve the synchronous broadcast effect is precisely
explained in Sec. 3.5.1.1 and synchronous broadcasts are described in Sec
3.5.3.

Using high-accuracy message timestamping and a combination of low
and high-frequency clocks, VHT synchronization between the nodes can be
achieved [61]. Since time synchronization occurs by message timestamping
and the messages transmitted are always of the same length, clocks among
the nodes can be kept synchronized across multiple hops irrespective of the
network’s number of nodes. This kind of clock synchronization allows
temporal decoupling of synchronous transmission, which frees the medium
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and the MCU between each communication round. Therefore, a modular
communication stack and increasing the throughput of data replication
among the nodes are feasible.

Contiki-OS provides a modular application program interface where
multiple communication stacks can be run using the same RF core [57].
With new progress and increasing market demands for WSN in IoT
applications, there are various SoC products available. The two kinds of
SoC that we wused for the proof-of-concept implementation are
MSP430-CCRF [62], which uses an MSP430 MCU core with a CC1100 RF
front-end working in the sub-1GHz band and CC1350 which is a dual-band
SoC with an ARM M3 architecture MCU. The latter mentioned MCU has 2.4
GHz operation as well as a sub-1 GHz frequency band for communication.
This helps in splitting the traffic between two physical layers
simultaneously while keeping the energy requirement low.

3.5.1.1 What is Constructive Interference?

Constructive interference is a phenomenon that is extensively used in the
development of Decentralized Brains. This was used to reliably flood the
network with the same payload across all the nodes. A physicist might
innately understand constructive interference as an effect where the
electromagnetic waves are phase synchronized to have positive
proportional effects. However, propagation’s positive effect is indeed used;
it is not used in the same way as it might be understood. Constructive
interference, as described by Marco Zimmerling et al. in the 2020 survey on
synchronous transmissions in low-power wireless communication, is the
following: When all signals arrive with similar power as transmitted, a
successful reception is only possible if the transmitted packets are
identical [63]. This is when the effect of constructive interference
occurs [60] [63]. As mentioned earlier, real constructive interference can be
understood as a pure overlap in the signals where there are no time and
phase offsets of the received signal [63]. However, even if transmitters
would compensate for different path delays during transmission, in an
effort for the signals to arrive without the time and phase offsets at the
receiver, the phase offsets would vary throughout the reception because of
different carrier frequencies across the transmitters [63].

In electromagnetic radiation-based packet propagation, especially in IEEE
802.15.4 radio networks, while communication is taking place in a channel
other devices are forbidden from communicating during the same time to
avoid packet collisions. In case a node radiates its message while another
node is also radiating in the same channel, packet collision is imminent due
to the interference of the carrier waves. There are extensive studies on the
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effects of such interference and various scheduling mechanisms to mitigate
radio-based interference issues. This effect of interference is destructive as
packet collision results in loss of transmission of both the packets. Therefore,
simultaneous radio propagation results in destructive interference have been
state-of-the-art for a long time until Glossy [60] was proposed for network-
wide packet flooding using constructive interference by Macro Zimmerling
et al. [60, 63].

Constructive and destructive interference: Interference is constructive when
the receiver senses the superposition of the base-band signals produced by
multiple transmitters [60]. Interference is normally termed as a destructive
effect, as it prevents the receiver from detecting and demodulating the
superimposed base-band signals correctly [60]. Constructive interference
has not been widely exploited in low-power, low data-rate sensor networks
due to the involved complexities and limitations due to available energy or
hardware capabilities. Two of the limitations are that it requires sufficiently
accurate clock synchronization between all the nodes in the network and
the requirement for a highly predictable software delay [64] [60]. Instead,
some protocols exploit the capture effect [65] that occurs when a wireless
radio senses a signal from one transmitter despite interference from other
transmitters [60]. The capture effect, also known as co-channel interference
tolerance, is the ability of certain radios to receive a signal from one
transmitter despite interference from another transmitter, even though the
relative power of the two signals is almost the same [66]. A radio can detect
one signal when it is stronger than the others (power capture [66]) or when
it begins to be received slightly earlier than the others (delay
capture [67]) [60]. However, the capture effect suffers from scalability
problems when multiple transmissions overlap, leading to packet loss as is
always feared in the case of interference [60, 65]. Requirements for
constructive interference are highly dependent on the communication
scheme, in particular on modulation and bit rate [60]. We derive the upper
bound for temporal displacement between several concurrent transmissions
of the same packet, which allows the packet to be correctly received with
high probability due to constructive interference [60] which is performed as
an experiment. The results are presented in Sec. 3.5.8.

The effect is achieved due to strict time synchronization, leveraging the
type of carrier wave modulation used in the communication standard IEEE
802.15.4. If the same payload is radiated in the same channel with an
allowable time delay, the receiver can decode the message even though the
packets interfere with each other. For example, the standard IEEE 802.15.4
transceivers using the DSSS can tolerate twelve incorrect bits (commonly
known as chips) per symbol. This is an error-correction capability to receive
packets allowing a lower threshold for interference and offsets in the carrier
frequency. With the help of literature [60, 68] and by conducting
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experiments in target hardware as presented in Sec. 3.5.8, the claim that an
allowable temporal displacement of 0.5 yis between the transmitting signals
allows for a successful reception is validated and further used in the
protocol design of Decentralized Brains. This is the effect of constructive
interference that is used for network-wide packet flooding. The packet
flooding using constructive interference is called Synchronous Broadcasts,
where the same message is broadcasted by multiple nodes at the same time
interfering constructively in the channel allowing the receiver to decode the
message. The specifics of constructive interference and the protocol of
Synchronous Broadcasts is detailed in Sec. 3.5.3 after the different elements
that are used for achieving synchronous broadcasts such as state
synchronization, data replication, Contiki-NG, and time synchronization are
introduced in Sec. 3.5.1.2, 3.5.1.3, 3.5.7, 3.5.2, respectively.

3.5.1.2 State Synchronization

In ad-hoc mobile deployments in extreme environments, it is often
necessary to update all the nodes in the network, such as re-joining the
network or changing system parameters as requirements and network
conditions change.

Inconsistencies between the nodes in terms of data and the physical state
could lead to undesirable events, which could be detrimental to the network;
therefore, reliable data dissemination is required. There are protocols such
as Deluge and Splash [69], which wait for an explicit request when a node
misses an update and [70] proposes a better approach by using synchronous
transmission of the nodes and setting the flag in the payload as an implicit
confirmation [55].

Global configuration management is a feature where all nodes in a
network can be configured to operate coherently. In specific applications,
the configuration is a piece of global information about the system’s state,
such as changing the nodes’ duty cycle to wake up at a different schedule or
delay a particular function according to its physical position but
propagating the same delay configuration throughout the system. Here the
decision to act is made locally in the nodes depending on the physical
parameters. The reliable information dissemination has a contingency that
when a node does not receive the information during the broadcast for
replication, it can poll the leader to receive the information [55].

Aggregate functions in database management is where the values of
multiple rows in a relational database or a value for a key in all of the
documents in non-relational databases are aggregated to a single value.
Aggregation is performed depending on an operator applied to them, such
as sum, average, or median. Aggregation is considered the most common
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operation in sensor networks. They are computing the maximum (or
minimum) where nodes merge the flags by taking the bit-wise OR and the
payload by taking the larger (or smaller) number. Developing operators
such as duplicate-sensitive aggregates are complex. When a packet is
dropped, or a packet is received more than once, an error in the partial
aggregate occurs. A reliable final aggregate can be delivered to all
participating nodes in the network with presented data replication
schemes [55].

In network-wide agreement, the nodes have to agree on certain parts of
information to perform their actions. A network-wide agreement might be
required in performing tasks for swarm behavior. When the data is
replicated in all the nodes, the nodes can perform coordinated tasks like the
example drawn from an octopus distributed brain and its evolution. Atomic
broadcast is considered as a vigorous embodiment of network-wide
agreement. In this approach of Decentralized Brains, log replication is
proposed instead of leaderless replication techniques such as 3-PC and 2-PC,
as proposed in [70]. All the network nodes receive a time-slotted broadcast
message with more reliability since every change is not propagated. The
leader of the network initiates this message. Any change in the node is
communicated to the leader in the network. During the following broadcast
round, the data is propagated to the rest of the network nodes [55].

Modular communication patterns The communication architecture
supports multiple communication patterns, including all-to-one and
all-to-all traffic, where nodes would merge by inserting their data into
reserved parts of the payload field. Due to the limited packet size in IEEE
802.15.4, multiple communication patterns can be used within the
time-slotted data replication scheme proposed. Moreover, a mesh network
spanning a diversified physical layer makes the system reliable and
provides modular communication techniques that could be used at different
stages of an application. Added to this architectural advantage, the
Contiki-OS offers a more comprehensive and flexible programming
interface for wireless nodes [57], which is chosen as the target application
framework for implementing proposed data replication schemes with
diversified physical layer radio. In Sec. 3.5.7, the basics of Contiki-OS and
the reasons for identifying it as the target application framework are
presented [55].

3.5.1.3 Data Replication
In distributed computing, state machine replication or data structure

replication are standard methods for implementing a fault-tolerant service
by replicating servers and coordinating client interactions with server
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replicas. In micro-services architecture for a web-based application, data
replication schemes have been studied vastly, starting with the conception
of a protocol called Paxos, which was developed by Leslie Lamport [71].
Raft is a consensus algorithm for managing a replicated log. It produces a
result equivalent to (multi-)Paxos, and it is as efficient as Paxos, but its
structure is different from Paxos; this makes Raft more understandable than
Paxos and also provides a better foundation for building practical
systems [7]. Therefore, much of the work was inspired by Raft for the
conception of a data structure replication scheme in WSN [55].

The three main pillars for any distributed data system are consistency,
availability, and partition tolerance. Consistency means that all the nodes in
a cluster see the same data at any given time. Availability means that reads
and writes will always succeed, even if we cannot guarantee that it will
have the most recent data. In practice, it means that we will still be able to
use one of our databases, even when it cannot talk to the others. Partition
Tolerance means that your system will continue working even if there is a
network partition. A network partition means that the nodes in your cluster
cannot talk to each other. The CAP theorem stands for Consistency,
Availability, and Partition Tolerance, which states that given these three
properties in a distributed system, an algorithm needs to prioritize any two
of those because a system cannot have all three properties. The most
common replication topology is to have a single leader that replicates the
changes to all the other nodes in the network to avoid conflicts caused by
concurrent writes. All the clients are writing to the same server, so the
leader node maintains the data’s coherence. In low data-rate WSN systems,
the delay between the time an update is applied in the leader node and the
time it’s applied in a given replica is unavoidable due to the communication
channel’s limitations. This delay is called the replication lag, which causes
inconsistencies in the data replication scheme. This can be mitigated by
several means to achieve eventual consistency. Additional to replication,
there is consensus in distributed systems that reach agreement among
several processes about a proposal, i.e., accept or decline it after a finite time
of execution. Achieving consensus becomes challenging when faults may
occur when communication is lossy, and nodes may crash [55].

Two widely used yet simple consensus protocols are 2-PC and 3-PC. We
introduce both the mechanisms for consensus and discuss their respective
properties and limitations, as presented in [70]. The protocol assumes the
existence of one static coordinator and a set of participants, or cohort. As the
name suggests, 2-PC works in two phases: (a) Proposal Voting: the
coordinator broadcasts a proposal to the cohort, each member replies with
its vote, yes or no; (b) Decide: the coordinator decides to commit if the vote
is yes unanimously; otherwise, it decides to abort. It then broadcasts the
decision to the cohort that will commit or abort upon receiving the message.
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2PC is simple and comes at a low communication complexity, but has a
significant limitation of being a blocking protocol. Whenever a node fails,
other nodes will be waiting for its next message or acknowledgment
indefinitely, i.e., the protocol may not terminate. Recovery schemes can be
considered but fall short when it comes to handling two or more failing
nodes. In particular, if the coordinator and a participant both fail during the
second phase, other nodes might still be in an uncertain state, i.e., have
voted yes but not heard the coordinator’s decision. If all remaining nodes
are uncertain, they cannot make a safe decision as they do not know
whether the failed nodes had committed or aborted [70] [55].

3-PC mitigates the above limitations by decoupling decision from a
commit. This is done with an additional pre-commit phase between the two
phases of 2PC. The three phases are as follows: (a) Proposal Voting: same as
in 2PC; (b) Pre-Commit (or abort): the coordinator and participants decide
as in 2PC, but no commit is applied (abort is applied immediately); (c) Do
Commit: participants finally commit. The additional phase guarantees that
if any node is uncertain, then no node has proceeded to commit. The
protocol is non-blocking in a single participant node failing: remaining
nodes time out and recover independently (commit or abort). 3-PC can also
handle the failure of the coordinator and multiple nodes by using a recovery
scheme. Nodes will then enter the termination protocol, communicate and
unanimously agree to commit, abort, or take over the coordination role and
resume operation. In the more challenging case of a network partition, 3-PC
is unable to maintain consistency. The design relies on synchronous
transmissions for efficient communication and on merge operators for
enabling various all-to-all interactions. In [70], the principle of synchronous
transmission of broadcast messages for flooding in the medium, as
presented by [60] is exploited. Since this reliable broadcast scheme is
beneficial for replication, we also leverage this scheme in replicating our
data structures [55].

3.5.2 Time Synchronization

When a node broadcasts a message to two nodes, the node receives the
messages in different timings according to their spatial displacement when
considering a free space propagation model. The time between the nodes
can be estimated as close as possible to the propagation delay, which is the
only scope of offset in free space propagation. As shown in figure 3.18, the
spatial displacement is apparent by the delay in the reception between the
nodes RX; — RXj. Since the time stamp occurs not at the rising edge as
shown in the Fig. 3.18, there is a SFD used by most transceivers where an
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interrupt occurs for a reception. This interrupt is used for timestamping.
Even though this could be a source for errors, we eliminate this source to
keep the length of the payload constant for the data replication primitive.
When a time synchronization algorithm relies on timestamping the
reception of a specific message at the SFD, it is inherently prone to an offset
of 160 ns for 2.4 GHz band as presented in [61]. As mentioned in Sec. 3.5.1.1,
the synchronization is necessary to minimally align the temporal distance
for the receivers to decode the information while ignoring multiple
instances of the closely aligned signal as reflected signals. For space
applications, when the distances are large, as in the case of CubeSats, then
errors must be mitigated by distance estimation. VHT synchronization for
low-power, low data-rate wireless sensor networks makes them reliable for
coordinated tasks [61] The two critical factors needed to achieve precision
time synchronization are:

1. a high-resolution clock source
2. message timestamping with high accuracy

The two basic requirements for achieving low-power time synchronization
are: [61]

1. low-frequency clocks
2. infrequent communication.

The requirements mentioned above do not comply with operation in
low-power. The higher a source oscillates, the higher the leakage current,
and high accuracy message timestamping is dependent on this clock source.
The basic idea behind VHT is that during active periods, the high-frequency
clock is turned on, and a hardware counter counts the number of
high-frequency clock ticks. There are high-frequency clock ticks during each
low-frequency clock tick [61]. When an event of interest occurs, like the SFD
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Fig. 3.18 Scope of offset in time synchronization [61]
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event, the system records not only the value of the counter sourced by the
low-frequency clock, but also the value of the counter sourced by the
high-frequency clock. The high-frequency clock counter is reset at the end of
the most recent clock ticks of the low-frequency clock to keep up with the
limitations of counting in a 32-bit MCU architecture [61].

_fu
(PoffL

Thus, this second timer will indicate the phase ¢ within a low-frequency clock
tick, allowing the effective resolution to be up-sampled to the high-frequency
clock (modulo one cycle of jitter) [61]. The event time is sampled as

tevent = Cp, - Qo+ @.

Two capture units, one on each timer, are connected to the SFD interrupt
line. An additional capture unit on the fast timer captures the counter on
every low frequency rising edge. The value of hy is stored in one of the
capture units. Later, when the SFD line rises, the two capture units on the
two timers store [y (the value of the low-frequency counter) and #; (the value
of the high-frequency counter), respectively. The event time can be calculated
using these three captured values as

tevent = 1o - @0 + (I — ho)mod .

The modulo operator is necessary to compensate for the speed of the MCU
and relaxes the timing constraint since high-frequency ticks are at an
interval of ¢y . While overflows of the high-frequency counter are not a
problem, the low-frequency counter’s overflows must be dealt with in
software to provide virtualized system counters of higher widths. Also,
while 32-bit counters may be adequate for low-frequency 32 kHz signals,
such timers overflow every five minutes if used for VHT with a
high-frequency clock of 8 MHz, suggesting that 64-bit counters will be
needed to support long time intervals [61]. The VHT algorithm also
suggests that high-frequency clocks are needed not just for time stamping
the reception or transmission of a message with a high time resolution, but
they are also required to improve the frequency error estimation over
intervals or the greater the clock frequency, the shorter the interval of time
needed to synchronize a pair of clocks to a given frequency error
resolution [61]. This could be very useful when applications require greater
accuracy. The system clocks can be increased during design time to
synchronize at a given frequency error resolution [61].
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3.5.3 Synchronous Broadcast

When a node is transmitting in a wireless medium, the node is broadcasting
the same packet information in the allocated channel for all the nodes in the
network. Due to this broadcast nature of wireless communications,
interference occurs whenever stations are close enough to listen to each
other and whenever they are transmitting concurrently [60]. Collision or
interference is an effect due to the overlap of signals in both the time and
space when the transmitting nodes share the same physical layer
characteristics [60]. Digital wireless communication implements multiple
factors for redundancy in radio communication to mitigate interference.
Therefore, the communication link reliability becomes a probability in the
success of transmission from a Boolean if the communication will be
successful or not for a given scenario. Interference is one such factor that
reduces the probability that a receiver will correctly detect the information
embedded in the wireless signals [60]. Interference has always been
considered destructive, owing to the fact that the communication reliability
reduces due to interference. There are two types of effects due to
interference which can be called constructive and destructive interference [60].

We explore the nature of constructive interference in this case to develop
the most crucial communication primitive of Decentralized Brains. If the
overlap of the transmitted signals does not superpose, then the interference
is destructive, and the probability of the transmitted data reaching the
destination reduces. Whereas, when the base-band signals from multiple
transmitters superpose, the receiver detects the superposition of the
transmitted signals generated by multiple transmitters [60]. For achieving
the effect of constructive interference, the transmitted base-band signals
must be within a time window with respect to the carrier frequency used for
communication to allow for the detection of superposition. The time
window is strict as the mismatch in temporal synchronization will affect the
transmission reliability due to destructive interference. To achieve a
constructive effect, the transmitting stations must be time-synchronized.
Due to the complexity, the cost of energy, and the hardware support for
reliable software execution were required for implementing time
synchronization protocols, the effect of constructive interference has not
been extensively exploited in WSN [60, 64]. In [60], a low-power time
synchronization algorithm is implemented to achieve the effect of
constructive interference, whereas in Decentralized Brains, a different
approach leveraging the special hardware capabilities is used, which is
discussed in Sec. 3.5.6. Using the time synchronization, we enable nodes to
synchronize their clocks required for waking up and listening to a
broadcast, calculating any skew, correcting the clock, and waiting for the
predetermined delay to re-transmit. By synchronizing to another transmitter
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Fig. 3.19 Synchronous broadcast rounds with T, and counter C for number keeping
track of number of transmissions [55, 60]

clock, we exploit the nature of constructive interference, allowing multiple
concurrent transmissions to occur on the same channel. Using CSMA/CA
MAC  strategy, the broadcast medium is wused efficiently for
contention-based wireless transmission by avoiding any collisions of two
transmitting stations in the medium. But to allow for multiple concurrent
transmissions using constructive interference, we enable the devices to
transmit into the wireless channel all at the same time. Even though it is
contrary to the well-proven CSMA /CA MAC strategy, we make it possible
for the devices to transmit simultaneously with the help of strict time
synchronization. By creating the opportunity for nodes to overhear packets
from neighboring nodes using [60], nodes turn on their radios, listen for the
transmitted packets over the wireless medium, and relay overheard packets
immediately after receiving them with an allowed software delay where
time synchronization is performed amongst the nodes. Since the neighbors
of a sender receive a packet at the same time, they also start to relay the
packet at the same time. Here the time at which each node transmits after
the reception is governed by the time synchronization. Nodes are allowed to
transmit from the set of received messages that are defined in the
communication protocol. This again triggers other nodes to receive and
relay the packet. In this way, Decentralized Brains benefit from concurrent
transmissions by quickly propagating a packet from a source node (initiator)
to all other nodes (receivers) in the network [55, 60]. Based on [55, 60], the
temporal offset among concurrent IEEE 802.15.4 transmitters must not
exceed 0.5 ps to generate constructive interference with high probability.
As shown in Fig. 3.19, the radio transitions between three states are
looping between two states until the counter is exhausted. When a new
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node joins the network without using the network discovery, the node
synchronizes its clock with the root node by listening to the broadcast. The
broadcast frame carries a counter used to determine the number of
transmissions the node has to make with the same packet. Once the counter
is 0, the node goes to sleep until the next broadcast round.

3.5.4 Protocol definition

In distributed computing, state machine replication or data structure
replication is a standard method for implementing a fault-tolerant service
by replicating servers and coordinating client interactions with server
replicas. The fundamental communication primitive used in distributed
computing to achieve consensus between processes is the atomic broadcast.
Atomic broadcast is where all correct nodes in a network receive the same
set of messages in the same order. The broadcast is termed atomic because
the same set of messages are received by all the nodes in the same order i.e.,
same sequence of messages are received by all the nodes [55]. To adhere to
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Fig. 3.20 Decentralized data replication networking architecture with diversified physical
layers [55]
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the nodes’ energy requirements, provide a guarantee on data dissemination,
and reduce the number of nodes competing to transmit in the medium, a
time-slotted atomic broadcast is used. Using the time synchronization from
the VHT algorithm [61], we enable nodes to synchronize their clocks as
close as required to create constructive interference. Using the time
synchronization, we enable nodes to synchronize their clocks to wake up
and listen to a broadcast, calculate any skew, correct the clock, and wait for
the predetermined delay to retransmit. Our atomic broadcast is designed
using Glossy [60] to leverage synchronous transmissions, which have been
shown to boost the performance of network flooding. Glossy provides
reliability above 95% in a scenario where the capture effect does not occur;
while varying the number of concurrent transmitters between 2 and 10,
reliability stays relatively constant and always above 98%. It achieves an
average time synchronization error of less than 0.4 ys even at receivers that
are eight hops away from the initiator [60]. Instead of adding random
back-off delay to the transmission in CSMA and creating uncertainty in the
upper bound guarantee for swarm behaviors, the nodes transmit the same
packet aggressively for a short period creating constructive interference and
propagating the message network. When there are 94 nodes in a network
with eight hops, the latency of propagation is less than 3 ms, including
synchronization error and injected software delay between two
transmissions [60]. The design of data replication for Decentralized Brains
using a multi-hop mesh network with various physical layer relies on
synchronous transmissions for atomic broadcasts [55]. The theory of
constructive interference is detailed in Sec. 3.5.1.1 and the action of
performing a synchronous broadcast is detailed in Sec. 3.5.3.

As shown in Fig. 3.20, our data replication spans two radio physical layers
with multiple state transitions starting from network discovery. This helps
in reducing channel contention while keeping lower bounds in latency. In
network discovery state, the node first joins or creates a network depending
on the functions of the node. Network discovery is used for leader discovery
for a new node joining the network [55].

As shown in Fig. 3.22, the network discovery state terminates in a data
replication state where the node promotes itself to a network leader or
follows another leader. The time for leader discovery depends on the next
broadcast slot, or it will timeout at the discovery timeout. If a node promotes
itself to leader status, then the node is the initiator of synchronous
broadcasts [55].

In an ideal state, reliable nodes with strong links are desired to be the
leader. Leader election is triggered only as a fault-tolerant mechanism.
When a leader in a data replication state misses more than a predetermined
number of broadcast rounds, all the nodes become a candidate for election.
The election trigger is the number of missed rounds, that when multiplied by
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the duration between broadcast rounds, serves as the discovery timeout
used in leader discovery [55].

As shown in Fig. 3.23, the leader election is similar to a bully election
algorithm [72] except for one assumption that every node address is known
by the other, which is mitigated by a user-set priority. The election state lasts
for a duration from the last missed broadcast round to the upcoming round.
This duration is split into consecutive synchronous broadcast rounds where
the initial three rounds are reserved for the nodes with user-set priority. The
rest of the slots is randomly used by nodes or depending on an objective
function for selecting a back-off delay. The first node sends a leader announce
message, becomes the leader, and the participating nodes re-transmit this
broadcast to establish the leader. The leader transition to a data replication
state happens after propagating the first broadcast message as the new
leader [55].

In the data replication state, the nodes receive read-only replicas of the
current state. The message frame has control fields for the data replication
scheme and payload; these are illustrated in Fig. 3.21 using the Maximum
Transmission Unit (MTU) of IEEE 802.15.4. The preamble, SFD, and total
packet length together constitute a 6-byte physical layer header followed by
CMD byte, which is translated into 3-bit for Counter byte, 1-bit for Message
type and 4-bit Differentiator for cluster differentiation. The leader identifier
is the 16-bit short address in IEEE 802.15.4 networks [55]. The counter is the
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Fig. 3.21 Data replication broadcast packet format [55]

relay counter to decide the number of rounds required for re-transmission
(which is limited to 8 hops since time synchronization deteriorates after
eight hops [60]). The replicas are byte encoded payload decoded as regular
expressions after reception of the packet. The pattern of the replicas are
available at the leader: (i) 2 byte owner identifier of the replica, (ii) 1 byte
data type identifier (iii) delimiter (00000000). There are seven basic data
types available (integer, unsigned integer, float, double, long, character, and
Boolean), each of which is represented by the byte equivalent of their first
ASCII character (i.e., for float the representation is 01100110). Message type
bit is used to announce changes in the pattern along with the owner of the
replicas. This allows for dynamic changes to the pattern of the replicated
data during run-time. The leader manages the replica pattern, where nodes
publish a described value used to interpret the pattern. The replication is
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propagated across the network in three steps. A change is generated by the
owner, who has to write to part of the replica. For example, an integer, a, is
replicated across the network, with the initial value 0. A change is generated
due to a physical trigger or state change event. The generated change is
propagated to the leader by performing a write. This is a point-to-point
transaction between the leader and owner, which is acknowledged. Once
the change is received, the leader performs a merge on the replica at the
corresponding index of the 124-byte payload. During the next broadcast
round, as shown in Fig. 3.24, the change is propagated to the first hop,
followed by retransmit, where nodes propagate the change to the
subsequent hops [55].

This data replication scheme using WSN presents a solution for
collaborative systems using the concept of Decentralized Brains and reduces
the number of wireless transactions required for data propagation and
minimizes per node channel occupancy in terms of time and transmit
power [55].

In this section, the three main features for the Decentralized Brains are
discussed. At first network discovery using the periodic transmission
followed by a leader election protocol which is very important for a network
that has ever changing properties. Finally the data replication protocol in
Decentralized Brains, where all of these communication primitives along
with the support from the networking described earlier is designed [55].

3.5.4.1 Network Discovery

Network discovery is a function that is critical in networks that do not have a
control center that facilitates the association and disassociation to a network.
In a decentralized networking architecture, network discovery is the first step
in network formation. In this step, the node first joins or creates a network
depending on the functions of the node [55]. In this networking architecture,
the network takes part in a synchronous broadcast round, to facilitate this
behavior, one node in the network is elected as a leader which is detailed in
Section 3.5.4.2. Usually, synchronous broadcast rounds are only used for data
replication, but it can also be used to perform network discovery. When a
node turns on, it listens on the channel for the periodic transmission. When it
has found the periodic transmission, it joins the network. If a timeout occurs
at the discovery state, which is the discovery timeout, the node has not found
an existing network. This node becomes the leader, and waits for other nodes
to join the network while periodically sending a broadcast message until join
timeout is reached where the node enters the discovery state as shown in
Fig. 3.22. In certain cases, this network discovery primitive is also used to
segregate clusters of nodes. When a node belongs to a certain cluster, it listens
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Fig. 3.22 Leader discovery states of new nodes for data structure replication [55]

to a specific periodicity whereas the network performs a different function
than the other. This kind of clustering the nodes is required to increase the
data throughput of data replication. This can be considered as a publish
subscribe model in distributed systems communication. Where the cluster
identifier has topics and nodes can discover the topics using this network
discovery primitive for selective listening to messages depending on their
functions [55].

3.5.4.2 Leader Election

For the distributed data consensus, a leader election process is required. The
leader initiates the communication rounds for synchronizing the nodes.
Usually, a node in the network that has the most energy is desired to be the
leader in the network. In this consensus scenario, the leader is elected using
different hop count, address identifier, and user set priority for a node to
become a leader in the network. The process of leader election is triggered
by a timeout that arises in the network where the nodes are implicitly
synchronized. The number of missed rounds is set as the trigger for the
election process. The election process always arrives at a leader with
consensus from all nodes. Since the data objects replicated by the broadcast
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require a leader, the termination of the leader election process is very critical.
Rather all nodes become stale and wait for a leader to be elected. When the
defined number of synchronous broadcast rounds is missed, all the network
nodes become active. Since all nodes wake up for the broadcast, all the
nodes in the network enter an election state [55]. The election state lasts for
a duration from the last missed broadcast round to the upcoming round.
This duration is split into consecutive synchronous broadcast rounds, where
the initial three rounds are reserved for the nodes with the user set priority.
The rest of the slots are used by the nodes randomly or depending on an
objective function that minimizes the back-off delay ! of the nodes. In this
implementation, a random time slot in the given number of time slots is
chosen for sending the leader announce message. The node that has the
minimum back-off delay will start its broadcast depending on the available
slot. The node sets the back-off delay timer, and it actively listens for any
incoming broadcasts. Suppose the incoming broadcast is the leader announce
message during the election state. In that case, the node will reset the
back-off delay timer to a specified delay to achieve synchronous

1 A random time delay referred to as the back-off delay, has been widely used in collision
avoidance strategies during simultaneous transmissions leading to a collision. This MAC
protocol is called CSMA with collision avoidance, and its origin of using the back-off
delay for this purpose can be traced back to Ethernet. It is also used in the Wi-Fi protocol
implementation
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transmission, wait and retransmit the received message and finally set the
leader identifier to the node identifier received during the broadcast. In this
manner, all nodes reset their back-off delay and synchronously retransmit
the received broadcast until a counter is reached to get network-wide
consensus on the leader election. Moreover, to achieve the next synchronous
broadcast round with the continuation of the data replication, the nodes
remain in active listening mode to receive the re-synchronized broadcast
round from the newly elected leader, as shown in Fig. 3.23. In the best-case
scenario, a node with the best user priority will become the leader. It is
assumed that the same user priority is not defined for another node during
deployment, or the node that chose the earliest slot during the synchronous
broadcast becomes the leader. In the worst-case scenario, the nodes end up
with a minimum of two leaders in the network, which is an undesired state.
It can be mitigated by choosing a better objective function for the back-off
delay or reducing the number of nodes participating in the election by
filtering the nodes to participate in the election. One strategy for filtering
could be with the node address and reducing the probability of two nodes
with the random back-off delay [55].

3.5.4.3 Data replication

The data replication primitive is implemented on top of the 6LoWPAN
network after the leader election occurs. Leader election is the first step after
which the leader discovers all the neighboring nodes in the network that
might want to take part in the data replication primitive. The data
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Fig. 3.24 Data replication states from source until propagation [55]
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replication primitive requires a reliable broadcast mechanism to replicate
data. The amount of replicated data is restricted to the MTU frame of the
IEEE 802.15.4 to have the nodes coexist with networks that might run other
networking protocols. The leader replicates the available payload after the
MAC frame headers. The frame consists of a 4-bit counter and a 4-bit cluster
identifier. The leader schedules broadcast round a time slot. This time
duration is communicated to all the other nodes to wake up reliably for the
next round of transmission. After this, the broadcast round is set up in the
initial implementation. Every time a payload is sent using synchronous
broadcast, the memory is overwritten with the newly received bytes. There
are proposals to communicate a dictionary with an objective function for the
nodes during the setup phase. The dictionary serves as a map for the data
that provides meaning, and the objective function can be used as an
operator for the received data. These are two methods with which elaborate
collaborative applications can be programmed. The above-proposed data
replication is a read-only primitive where the changes have to be written to
the leader [55].

The networking paradigm is implemented using Contiki-OS and tested
in a CC1350STK. A 6LoWPAN network is deployed in the nodes, where
there is a border router. Routes are established using the RPL routing
algorithm, which is the de facto standard of routing in lossy and low-power
networks. This network establishes IPv6 addressable nodes in the 2.4 GHz
band, where the network functions as a multi-hop network. Each node has
an IPv6 address, which is reduced to a 64-bit and a 16-bit address. The
border router manages the addresses, and packets can be routed outside the
network using packet conversion. Therefore, it is easier for heterogeneous
networks to interact, such as sensing applications where the sensor collects
data in the field. The data can then be warehoused and used for diverse
applications on stations that communicate using different means [73]. The
data replication is a modular communication primitive that provides easier
state management between nodes and is implemented with reliable atomic
broadcasts in MSP430-CCRF. The time required per update propagation t,
can be estimated using the sum of individual timing requirements in the
networking architecture. As shown in Fig. 3.24, ty,t;,t, are the durations
required for effective replica propagation from the owner to all other
participating nodes. t; is required for point-to-point communication
between the owner and leader, including acknowledgment. ¢, is the time
required for the leader to merge the data received. If the leader nodes are
resourceful, it is possible to offload computation utilizing merge operators.
t, is the collective time required for one broadcast round with all
participating nodes in multiple hops. The update propagation time is given
by

tp =ty +tw + 1t
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3.5.5 Decentralized Brains: Implementation and Evaluation

Decentralized Brains focuses on the communication between the nodes in
scenarios of self-assembly and heterogeneous collaboration of nodes taking
care of the communication payload dissemination. This allows the
implementation of hardware-based extensions to existing centralized
industrial scenarios to retrofit decentralized collaboration on a network
level [55]. Using such a communication paradigm makes it easier to
implement and deploy multiple parallel control of decentralized systems.
An abstract example from networking and communication is when a node
wants to discover and join a network and wants to start operating within
the network to perform collaborative tasks. The collaborative task can be for
self-assembly or task coordination. The control systems have to exchange
precise information between interacting nodes and disseminate the change
in global states across all network nodes.

3.5.6 Design of experiment

There are two main differences between the implementation of Glossy [60]
and synchronous broadcast in Decentralized Brains [55]. The target
hardware where the synchronous broadcast is developed is a dual-band
SoC, which can run two radio networks in two different physical layers. We
choose the 2.4 GHz for data communication in a multi-hop mesh network
topology where the nodes communicate with addresses in a 6LoWPAN
IPv6 networking paradigm. The synchronous broadcast is developed in the
Sub-1-GHz physical layer. Two main reasons for such a choice in
developing the synchronous broadcasts is to increase the range of each of
the nodes and to reduce the strict temporal distance window to improve the
reliability of synchronous broadcasts. Moreover, it leverages the flexible,
hardware-specific simple link SDK for deploying a low-power multi-radio
network. We precisely developed the synchronous broadcast in the 868
MHz bands because the temporal distance is higher to achieve constructive
interference. It allows the nodes to be synchronized less frequently.
Therefore, the precision of synchronization required can be less compared to
glossy [60].

Why CC1350? is because of the ability to run two different radio networks
in two different physical layers and also that the simple link SDK allows it
to be ported to other MCU from TI to enable developers to choose hardware
depending on the application scenario freely.

Due to the hardware selection and the development of synchronous
broadcast in 868 MHz, it is not necessary to implement the time
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synchronization as required in Glossy [60] as the temporal distance required
for performing reliable constructive interference increases. Here,
implementing the time synchronization using the two hardware clock
sources and not using an extra hardware capability to track the clock
changes. The functions of a capture unit as the required by [60] are
performed inherently by the hardware.

Implementation: Time synchronization is required for synchronous
broadcasts to achieve constructive interference. It is implemented in [60],
where time synchronization depends on two clock sources, which are the
Real-Time clock (RTC) and another high-frequency clock. The
high-frequency clock is sourced from the MCU's internal clock. It is widely
known that this clock is unreliable due to skew and MCU’s operating
temperatures. RTC provides better accuracy against clock drifts in the long
term, and the higher frequency clock provides better time resolution to
achieve accurate synchronous broadcasts. For the implementation in [60]
the VHT approach [61] was used, which uses both the RTC and an internal
high-frequency Digital Controlled Oscillator (DCO) from MSP430 MCU.
VHT ensures high precision in time synchronization and low-power
consumption, which has been thought to be an oxymoron in designing
distributed low-power electronics [61].

For our implementation, Dual-band CC1350 MCU is used with TI simple
link SDK. CC1350 is a dual-band SoC containing 2 ARM Cortex cores. One is
the central MCU core that runs the user logic and the operating system, and
the second core is dedicated to the radio functions and dual operation. The
dedicated radio core is implemented to power up and down depending on
the radio usage for power conservation purposes.

CC1350 radio operations are scheduled and time-stamped with a
separate 4 MHz timer, called RAT timer. Therefore, radio operations
scheduling resolution is limited to that frequency. This dedicated core/timer
of CC1350 gives it an advantage of running flooding protocols as it
guarantees the exact timing of the execution of radio commands. Hence, it
provides more deterministic control over temporal distance and required
delays between synchronous broadcast floods.

VHT [61] is used in Glossy, but in the Decentralized Brains, we use the
hardware supported implicit clock synchronization. This synchronization
happens between the 4 MHz RAT timer and the 32 kHz RTC clock. As the
RAT-RTC synchronization command is issued for the first time, the radio
core waits for the next RTC tick to start the RAT timer. To handle the radio
core’s power-downs, every time before issuing the power down command,
a RAT stop command is issued. This command returns a synchronization
parameter passed to the RAT start command at the next radio core power
up. This method keeps consistency between RTC and RAT and preserves the
required clock resolution and power limits.
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Another feature of CC1350 is that time stamping of received packets is
done automatically by the RF core using RAT time. These two features
simplify the calculations of time for the next flood and provide a
deterministic behavior of the nodes’ temporal distance. Instead of a
software time stamping, calculating, and waiting for a software-delayed
time as in [60], Decentralized Brains implements a full hardware-based
approach on CC1350. To adhere to the requirements for low-power
operational constraints, the Decentralized Brains software uses only
event-based callbacks for scheduling of floods and other auxiliary run-time
software components.

As soon as a non-initiator node receives its first flood packet, it stores
its base time with the received packet time stamp, increments the packet
relay counter, and then transfers to transmission mode. The time between
packets within a flood is fixed, so the node immediately issues a transmission
command to the RF core to send after this fixed time. The RF core handles
the power up and down and automatically wakes up before the transmission
time. Depending on the specified number of transmissions, the node may
switch to the receiving mode until the re-transmissions are done. Also, as
the time between floods is fixed, the node schedules the next flood (the first
receiving command of the next flood) with each flood’s last callback.

3.5.7 Why use Contiki-NG?

The Contiki-OS official documentation states the following and delivers on
those points, which is the primary motivation for using Contiki-NG.

Contiki-NG is an open-source, cross-platform operating system for
Next-Generation IoT devices. It focuses on dependable (secure and reliable)
low-power communication and standard protocols, such as /6LoWPAN, 6TiSCH,
RPL, and CoAP. Contiki-NG comes with extensive documentation, tutorials, a
road-map, release cycle, and well-defined development flow for smooth
integration of community contributions.

6LoWPAN is a networking standard implemented in the Contiki-OS
used in the decentralized networking architecture for point-to-point
communication with the leader for writing changes. BLE is a low energy
protocol, but it does not provide all of the networking features. Even though
the BLE beacons are highly scalable and require significantly less energy,
they do not provide scalability when the number of nodes increases in
point-to-point communication in any networking topology. ZigBee is
another standard that is widely used in connected home architecture, and
the latest standard specifications of ZigBee provide IPv6 support. It has
self-healing and network discovery features that are required for a
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decentralized network. Since the networking standard was strictly
developed for home automation standard, it does not offer a developer the
flexibility to easily adapt certain networking layers or the MAC layer.
Therefore, Contiki-OS, with its implementation of 6LoOWPAN is chosen as
the network that drives the nodes’ primary networking.

Above all of this, it also liberates the developer and provides an
operating system that is hardware agnostic. We strive to develop the
Decentralized Brains with the same philosophy of modularity in code-base
with platform agnostic development approach as in the case of Contiki-OS.
This approach enables the developers to apply synchronous broadcast
communication primitive however possible in applications and not only for
distributed consensus in low-power WSN. Moreover, the software support
with well mature features required for developing the Decentralized Brains
networking layer is provided by Contiki-OS. This allows for further
extending the Decentralized Brains networking paradigm into other
hardware systems and applications. The network stack of Contiki-OS is
shown in Table 3.1, which shows the necessary components developed for
the IEEE 802.15.4 standard. It provides the MAC layer for 6LoWPAN
networking using CSMA /CA. The operating system also provides the
flexibility to turn the features on and off during run-time, which requires
developing the synchronous broadcasts communication primitive. Here the
MAC layer is extended to provide synchronous broadcasts as the opposite
of listen-before talk is required during this type of network flooding. In this
network flooding, all nodes that will participate in the synchronous
broadcast round will not listen to the channel, instead transmit the payload
as soon as the time constraints are met.

OSl layers | Contiki-OS | Decentralized Brains Implementation
Application  |web-socket, http-socket, coap.c DeBr
Transport udp-socket, tcp-socket
Network, Routing uip6, rpl not required

Adaption sicslowpan.c

MAC csma.c time synchronised scheduling
Duty Cycling nullrdc, contikimac synchronous broadcast

Radio MSP430, CC1350, .... CC1350 (Sub-1-Ghz)

Table 3.1 Contiki netstack along with Decentralized Brains netstack

With a strict time synchronization protocol, an effect called constructive
interference, as described in Sec. 3.5.1.1, is achieved between the nodes that
are simultaneously transmitting in the medium [55, 60]. The Radio Duty
Cycling (RDC) layer and the MAC layer are the two layers that require
flexible and scheduled operation using the synchronized time. The
modularity provided by Contiki-OS in such granularity makes it easier to
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implement features necessary for Decentralized Brains. A reproducible,
modular code base that can be used to develop applications is the goal of
Decentralized Brains, and Contiki-NG accelerates this process.

3.5.7.1 6LOWPAN in Contiki

The right half of Table 3.1 shows the different layers in the Contiki-OS
netstack. The most straightforward layer in the IoT/IP stack is the MAC
layer. This layer is used to avoid collisions using an exponential back-off
delay if there is traffic after probing the channel for any transmissions from
other nodes. This probing to measure the spectral energy is above or below
a threshold called the CCA.

The MAC protocol used is called the CSMA /CA. The CSMA/CA works
by sensing the medium before transmitting to acquire CCA. The CCA, when
positive, is followed by a transmission. When the CCA is false, the node will
wait with a back-off delay to ensure that the medium is clear for the next
transmission attempt. Contiki-OS provides out of the box networking layer
for 6LoOWPAN which automatically forms a wireless IPv6 network with the
routing protocol called Routing Protocol for Low-power and Lossy
Networks (RPL) network layer, which is part of the network layer as shown
in Table 3.1. Along with header compression and segmentation, the large
frames can be accommodated in IEEE 802.15.4 limited packet size. The
network layer contains two sub-layers, the upper IPv6 layer and the lower
adaption layer, which does the conversions. The Adaptation Layer provides
IPv6, UDP header compression and fragmentation to transport IPv6 packets
with a Maximum Transmission Unit (MTU) of 1280 bytes over IEEE 802.15.4
with an MTU of 127 bytes. In Contiki-OS implementation, the routing
protocol is called ripple. RPL forms a routing graph from root nodes or an
access point, which is a de facto routing protocol for this class of networking.
It builds an acyclic graph from root nodes called Destination Oriented
Directed Acyclic Graph (DODAG) [74].

There are two kinds of routing modes called the storing and non-storing
mode. The non-storing mode does not store the routing information in each
node, reducing the memory strain. Highly unstable networks must use the
storing mode since it can heal faster upon failures than the former. A multi-
hop mesh network is created using the netstack (network stack) provided
by the network. These features are used as the underlying communication
layer that transports the data from the data originator that sends the data to
the leader node which propagates the data to the rest of the nodes for data
replication.
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3.5.8 Experimental setup and evaluation
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Fig. 3.25 Received signal power measured by spectrum analyzer. The X-axis is a time
sweep of 2 s with distance between two vertical lines measuring 20 ms. The experiment is
performed using one initiator node and one non-initiator node.

This section presents the following three parts: (i) developing and
performing experiments to prove the effect of concurrent transmissions, (ii)
a large-scale experiment developed to analyze the performance of
synchronous broadcasts and finally (iii) the performance analysis to
understand the reliability of synchronous broadcasts used in Decentralized
Brains for developing decentralized consensus algorithms. Initially, the
effect of concurrent transmission on received signal power and distortion is
presented with measurements using a spectrum analyzer. As discussed in
Sec. 3.5.3, multiple nodes are transmitting simultaneously within an
allowed window of time. This experiment visualizes the received signal
power measured with a spectrum analyzer listening to 868 MHz, where
nodes are placed away from the measuring antenna equidistantly.

Observing effect of concurrent transmissions: Fig. 3.25 shows the effect of
concurrent transmission when there are two nodes, which are the initiator
node and the non-initiator node. In Fig. 3.26, the experiment with one
initiator and 3 non-initiator nodes transmitting simultaneously with the
allowed window of temporal displacement is shown. In both experiments,
including two nodes and four nodes, the nodes receiving the packets from
the designated initiator node re-transmit the packet three times as soon as



3.5 Decentralized Brains: Concept and Design 91

they receive it. The number of re-transmission is arbitrarily chosen as three
to demonstrate constructive interference during synchronous broadcasts.
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Fig. 3.26 Received signal power measured by spectrum analyzer. The X-axis is a time
sweep of 2 s with distance between two vertical lines measuring 20 ms. The experiment is
done using one initiator node and 3 non-initiator node.

It can be observed from Figs. 3.25 and 3.26 that every time a transmission
occurs, there are peaks in the signal acquisition, which are marked by the
markers M1 and D2. During these transmissions, since there is more than one
transmitting node, the received signal power increases at the receiver as well
as signal distortion increases with the number of concurrent transmissions.
The first peak with the marker M1 is a packet transmitted by the initiator
node; hence, the measurement is not distorted, and the received power is
lower compared to the following peaks. The second and third peaks in the
figures come from all of the nodes. Hence, they have the highest power and
highest distortion. The last packet in each flood comes from non-initiator
nodes. Hence they have received a measured power slightly smaller than the
previously received packets’ measured power. This experiment is repeated
for multiple rounds to ensure the effect of constructive interference.

In the Experimental setup, we present two experiments where both of the
experiments were performed with a physical layer radio configuration of 50
Kbps in a 2-GFSK modulation. The first experiment empirically quantifies
the allowed temporal distance. This effect was already demonstrated for 2.4
GHz using the QPSK modulation in Glossy [60], but we experiment with a
Sub 1-GHz band to prove the feasibility of constructive interference in this
frequency band. Temporal distance is the allowed time window within
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which the effect of interference is constructive. The second experiment
provides an insight into the effect of constructive interference due to the
number of concurrent transmissions. It also helps in studying the effect of
constructive interference in relation to the number of neighbors transmitting
simultaneously.
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Fig. 3.27 Two nodes transmitting with different delays starting at 0 where absolute
concurrent transmission occurs. The x-axis is the delay with a resolution of 0.25 ys. The
experiment is performed for 20 times starting from 0.25 s delay to 5us delay.

The first experiment is performed to prove that constructive interference
works for Sub 1-GHz and calculates the minimum temporal distance. The
experiment is performed by sending a signal from two nodes, one is delayed,
and the other is non-delayed. To prove constructive interference and prevent
the capture effect from making the receiving (RX) nodes capturing the first
signal, the non-delayed node sends at a power of -10 dBm. The delayed
signal transmits at a power of 0 dBm. The experiment is repeated multiple
times, increasing the delay by a step of 0.25 us each time. As observed in
Fig. 3.27, the Sub-1-GHz behaves in a similar way to 2.4 GHz [60], where the
shift in temporal distance results in several valleys and peaks. The signals get
constructively and destructively interfered, but Sub-1-GHz (2-GFSK) seems
to be prone to bigger temporal distances than 2.4 MHz as demonstrated in
Glossy [60]. Fig. 3.27 shows that the allowed temporal distance for Sub 1-GHz
to perform synchronous broadcasts due to constructive interference reliably
can be 1.25 us. The signals can constructively interfere with a reliability of
97.06%.
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The second experiment studies the effect of a number of neighboring
nodes during synchronous broadcast rounds. The experiment starts with
two nodes transmitting simultaneously. With each round of synchronous
broadcast, the number of participating nodes is increased with an extra
node. As observed in Fig. 3.28, flooding works at a 99.99% when there are 2
to 3 neighboring nodes. The behavior starts to deteriorate in the experiment
as more nodes join the synchronous broadcast round. After three nodes
with high reliability, the nature of interference slowly shifts, reaching
reliability of 72% when there are 8 neighboring nodes. Even though the
reliability is above 70% for 8 nodes, for every 10 packets sent, the
constructive interference effect cannot be seen, and three packets are lost.
With a long spatial stretching, a densely populated network for distributed
sensing, or collaborating control systems, this reliability can still offer
specific capabilities that were not possible previously. The delay between
the flooding rounds can be tuned depending upon the application
requirements. The frequency of the flooding initiated by the initiator and
the time between each node’s re-transmission can be configured with the
pre-determined software delay.
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Fig.3.28 The effect of the number of neighbors on the reliability of the packet received. The
number of concurrent transmitters starts at 2 and increased by 1 for each next experiment.

Performance evaluation: In this section, we test our implementation on a
local testbed (Sensor Floor). We use a 345 node deployment to test the
implementation. The 345 node deployment is called the Sensor Floor, a
sensor network array embedded under the floor with CC1350 sensor tags.
The floor contains 345 nodes. A subset of 101 nodes randomly for every
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experiment runs to count for the effect of spatial orientation and
environment of the nodes for multi-path and scattering effects. 1 Initiator
and 10 nodes for 10 concurrent transmissions are chosen randomly from the
network of 345 nodes. Additionally, these random patterns will allow
testing against different pattern arrangements of nodes and the distance
between nodes in the range of 1 to 30 meters. The pattern choice and the
sequence of transmissions performed for analyzing the characteristics of
constructive interference is listed in Table 3.2.

Node/re-transmission| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10|11|12

initiator TX|RX|TX
sequence 0 RX|TX|RX|TX
sequence 1 x |RX|TX|RX|TX
sequence 2 x | x |[RX|TX|RX|TX
sequence 3 x | x | x |RX|TX|RX|TX
sequence 4 x | x | x | x [RX|TX|RX|TX
sequence 5 x| x| x| x| x |RX|TX|RX|TX
sequence 6 x| x| x|x|x]|x [RX|TX|RX|TX
sequence 7 x| x| x| x|x]|x|x |[RX|TX|RX|TX
sequence 8 x| x| x| x|x|x]|x]|x |RX|TX|RX|TX
sequence 9 x| x| x|x|x|x|x]x|x|RXJTX|RX|TX

Table 3.2 Testing on the Sensor Floor for re-transmissions (N=2). For each of the 10
sequences, 10 nodes transmit concurrently. Each sequence is programmed to discard
packets less than their sequence number based on the counter byte in the packet (First
byte)

As the Sub-1-GHz band can operate over greater distances compared to
our testbed area, we simulate the effect of hops as in the case of spatially
distributed nodes in our experiments. Flood packets have their first byte
used as a counter, this counter is set to zero by the initiator and incremented
by 1 by all nodes with each re-transmission within a flood. Nodes are split
into sequence groups, each group discards packets with a counter number
less than a specific programmed number. As shown in table 3.2, where the
tests are presented, when the nodes are programmed to do 2 re-transmission
(N=2), with discarded packets marked as (x). Each sequence group keeps
discarding flood packets until their programmed sequence number. When
the sequence group identifier matches the counter byte, then the sequence
group joins the flood. In this manner, a multi-hop test of 10 hops is simulated
in our testbed for evaluating the performance of spatially distributed nodes.

A flood is considered successful when a node receives the flood packet
with the correct CRC (cyclic redundancy check) at least once, but we do not
count floods if no packets are received. The success rate is the rate of
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successful floods over the overall number of floods averaged among all
nodes on the floor. Each of the tests runs for 50000 packets.

Table 3.3 shows the result for the different number of re-transmissions.
As can be observed, the increase of re-transmissions helps in increasing the
success rate. The success rate can reach 99.50% when there are 6
re-transmissions per synchronous broadcast flood round.

Concurrent transmissions (N) |Average success rate|Max no. of concurrent transmissions

N=1 98.72% 10
N=2 97.51% 20
N=3 97.94% 30
N=6 99.50% 50

Table 3.3 Overall success rate of testing on Sensor Floor

3.5.9 Energy Profile of Decentralized Brains

The energy profile shows the energy requirements at different stages of the
state machine execution. Here, the synchronous broadcast is profiled to
show the effectiveness of energy usage. The most costly action on a wireless
sensor node is a transmission. Since synchronous broadcast relies on
transmissions, it is essential to show the required energy during a
synchronous broadcast. A device that is not the initiator of the synchronous
broadcasts is chosen to profile energy during the synchronous rounds. The
justification for choosing an end node is to understand the field devices and
the requirement of energy when deployed with a synchronous broadcast
paradigm in IoT based use cases since the initiator is a device with
abundant energy to operate actively for long periods. The power source is a
digital power supply, and an initiator node is performing synchronous
broadcasts where the end nodes are participating. Detailed waveform
analysis of the energy requirements is discussed below with the following
six bullet points, each of which corresponds to 6 recorded peaks in Fig. 3.29.

1. Startup phase or boot phase from the low energy mode to receive mode.
Here initialization of all timers, clock synchronization, and the timers to
extrapolate the high-speed clock from the slow clock are performed.

2. The second peak is the reception of the first message from the initiator
during the synchronous broadcast round.

3. Until the third transient, the observed current draw, is the pre-defined
software delay to synchronize all transmitters after message timestamping.
The third peak is a decentralized synchronous transmission, where all
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Fig. 3.29 Energy profile of synchronous broadcast

other nodes are expected to be within the guaranteed temporal distance
for effective constructive interference during transmission. The third peak
observed in the figure is higher than the previous peak as transmission
requires more energy than reception.

. After taking part in the first transmission round, the node stays awake,

listening to the next message to be transmitted again. There are four
synchronous transmissions. The device under investigation will send
only half the time as the alternating times; the node will listen for the
same payload and clock synchronization.

. The fifth peak is the alternating second synchronous transmission attempt

by this node. It is crucial to create an optimization plan across all nodes
on the number of times a node can participate in synchronous broadcast
transmission. In this scenario, a round is with four attempts, and every
node can only participate two times. The larger and denser the network,
the number of transmissions within a flood round should be increased.
Reducing the participating nodes per round will optimize the network’s
overall energy cost.

. The sixth peak is the final round, where the node schedules its next

network flood round to wake up if the application wants to conserve
energy or allows other application-based processing and communication.
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The energy required is relatively lower than the reception and
transmission since the CPU schedules a timer enabling all the interrupts
and returns to idle in this experiment scenario.

Cumulatively calculating the energy requirements from the measured
energy profile, there are four synchronous broadcast rounds. We can
calculate the overhead for decentralized synchronization as two
transmissions and two receptions, each of which requires 13.4 mA at 10
dBm and 5.4 mA, respectively, as per the data sheet [51]. Use case dictates
the frequency of decentralized synchronization that limits the recurrence of
the synchronous broadcast. We can plan broadcast rounds with up to ten
minutes of time delay between each round. This is the allowable limitation
for time synchronization using message time stamping, after which the
nodes cannot guarantee the temporal distance for synchronous broadcasts.
Therefore, we can achieve decentralized synchronization at its highest level
in the low-power wireless sensor networks with its calculated energy
overhead required to perform the necessary communication primitives.

3.6 Conclusion

The Decentralized Brains communication paradigm has been conceptualized,
designed, and developed in this part of the work. The designed protocol is
implemented in a dual-band CC1350 SoC, enabling various other
networking applications in the IEEE 802.15.4 standards. This allows for an
open implementation and adoption of the synchronous broadcast
communication primitive in low-power, low data-rate applications. The
performance analysis of the synchronous broadcast has been presented in
Sec. 3.5.8, which was performed in the logistics warehouse research facility.
A packet success rate of 99.5% was achieved with a 345 node transmitting
50000 packets within the network. Increasing the concurrent transmissions
for flooding rounds reduces the packet success rate but increasing the
number of re-transmission will allow for mitigating this effect. Stringent
time synchronization will allow for better results with calibration for static
nodes to estimate the packet propagation time between the nodes.
Low-power, low data-rate wireless communication techniques are of
inherent interest for space applications. The integration of decentralized
network discovery, dynamic leader election that terminates with a
guarantee, and reliable data replication within 3 ms across hundreds of
nodes facilitates swarm behavior applicable for industrial scenarios and
space applications, which are explored in 5.2 and 5.1. This three-part
network communication integration is the main contribution of this work.
Complemented with multi-hop 6LoWPAN routing topology, we explore the
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stages needed for multi-unit, shared-state maneuvers in the low-power, low
data-rate applications. A multi-hop routing is used to ensure network
stability and ensure a communication path; as nodes are mobile, it is critical
for routes to change depending on link availability. Decentralized Brains is a
framework for developing distributed sensing and collaborative control
systems in low-power, low data-rate WSN networks [55]. The most crucial
feature of Decentralized Brains called the synchronous broadcasts using
constructive interference is developed, deployed in 345 low-power nodes,
and tested for performance. Various design choices and differences to
existing implementations of constructive interference are discussed. The
synchronous broadcasts module for Decentralized Brains is developed as part
of the Contiki-OS to improve the transferable nature of the concepts and
make the features accessible for other industrial applications developers.
Leader election and network discovery are two further modules that
leverage the synchronous broadcasts to create a decentralized network.
When the network loses the initiator node, which acts as the leader node
due to energy constraints or because the network is highly mobile, the
network enters into a leader election phase where all nodes decide on
another leader node using the same synchronous broadcast communication
primitive [55].

Porting implementation to 2.4 MHz: As simple link SDK provides a unified
API across several TI MCU, our implementation can also be ported to 2.4
MHz devices that use the same SDK, for example, TI CC2650. As per [60], the
temporal distance for 2.4 MHz is 0.5 ps, which is possible to be achieved with
CC2650. As the radio clock of CC2650 is also 4 MHz, the minimum allowed
temporal distance is 0.25 ys. The SDK API for both CC1350 and CC2650 is
identical. Therefore the effort to port the code would only involve changes
to the RF settings and time between the synchronous broadcast network
floods. This will allow for running the currently developed Decentralized
Brains synchronous broadcast mechanism in CC2560.

Development of a full stack: As TI simple link SDK can run multiple radio
instances as part of a single MCU core, we leverage it to implement the
synchronous broadcasts. It also allows us to develop a network abstraction
to run multiple radio protocols for communication. To make this possible, to
improve the reproducibility of the results and to increase the use of
constructive interference for network flooding in industrial applications, it
is proposed to write dedicated MAC and NET layers in Contiki-OS for the
target hardware. Since the target hardware SDK already supports multiple
low-power MCU, the same code base can be compiled and reused
out-of-the-box. This would allow making the communication stack more
code friendly and application realistic.
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Industry 4.0 and the concept of a socially networked industry define that
the entities in an industry are networked and are able to communicate
between each other to autonomously collaborate for performing tasks [75].
DezCom is an architecture for decentralized communication and messaging.
In this work, it is considered that in a decentralized industrial process there
are entities communicating, negotiating and coordinating to execute tasks.
Even if the existing systems are not decentralized, the underlying
communication system is decentralized. The hypothesis of decentralized
communication is that any industrial system, when connected, uses a
decentralized communication platform where the messages are
communicated with the advantages of a decentralized networking
paradigm. Even though the execution algorithm is decentralized in nature,
when running on a centralized communication architecture, such as MQTT
or Orion context broker, it is not truly decentralized. Therefore, the effort to
abstract the communication layer with a pure decentralized communication
framework is implemented and presented in this chapter as the DezCom
communication stack. To prove the hypothesis, minimal changes are
performed in a multi-robot system and implemented to perform messaging
and accomplish a task.

The decentralization aspect of the communication is developed by
creating system specifications based on already existing widely used
communication systems and selecting the best state of the art fault-tolerant
distributed communication algorithm. Fault-tolerance is provided by
blockchain where a byzantine fault-tolerance based consensus is
implemented among the communicating nodes. Decentralization using
blockchain not only increases the availability of the broker but also
increases the security of data in a trust-less network. There are a few
preliminary research works available in a literature survey of decentralized
robots based on blockchain [76, 77]. In this chapter, we contribute to the
research by developing a deployable decentralized industrial supply chain
messaging system based on mining-less blockchain. The emphasis on the
development is given to messaging using assets i.e., entities in a socially
networked industry. This stack described in chapter 4 is demonstrated in
the proof-of-concept deployment in Sec. 4.11. Finally, in Sec. 3.6, the
outlooks for DezCom are summarized with production notes for
reproducing the results for future industrial deployment.



Chapter 4

DezCom: High-power, High Data-rate
Systems

Deployment is the action of bringing resources into effective
action.
- From the Lexicon

4.1 What is a Context Broker?

Definition 4.1 A Context Broker acquires contextual information from
heterogeneous sources and fuses them into a coherent model that is then
shared with computing entities in the space [78].

Even though the above-given definition was coined in the context of smart
homes and automation, the definition is still relevant for industrial context
brokers. Then arises the question of what kind of information pertains to a
context that is defined by the following from [79].

Definition 4.2 Context is any information that can be used to characterize the
situation of a person or a computing entity [79].

In a networked industry, every person and entity generates data that can be
used to understand the context. Location information forms the basis for a
context in an industrial network. There are multi-modal approaches for the
precise localization of industrial entities. Sometimes, location and other
system information precisely characterize the context. Previous works have
pointed out why location information is an essential aspect of context
information [80-83], a holistic understanding of context should also include
information that describes system capabilities, services offered and
sought [78]. Furthermore, context information also includes the activities in
which people and computing entities are engaged for collaborative task
execution, the spatial and temporal properties associated with the tasks, and
their situational and access roles, the objective for optimization, and
intentions with which the entities are deployed in the industrial
network [78].

Several communication architectures for context-aware computation and
task execution have been proposed and developed in the past [11, 78, 79, 84,
85] that understand the context and build situational awareness of the
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entities. Although the literature is from another application domain (smart
homes, intelligent environments), the transfer and application of the term
and its underlying meaning of context in an industrial environment are
relevant since context is an intrinsic characteristic for any collaborating
organization of entities in a network. Previous research and literature on
building the earlier architectures have made progress in various aspects of
embedding computational capability or in the trend of IoT. For example [79]
developed a middle-aware framework to facilitate context acquisition,
defined new extensible programming libraries for building intelligent room
agents [84], and created badge-size tracking devices for determining
people’s location in an indoor environment [85, 86].

Many of these systems try to propose a solution for the most critical
aspect of context-aware computing but fail to meet the requirements or cater
to industrial standards to be deployed for long-term operation. Few of these
shortcomings are weak support for knowledge sharing between the entities
across heterogeneous networks and developers for iterative and version
based updates. Lack of adequate user privacy, i.e., the data generated by an
industrial system, belongs to the system developer or the deployer of the
system and the underlying mechanisms to critically control data access.
Interoperability is another vital aspect of context-aware computing and the
underlying communication brokers that were not foreseen during those
systems’ development. In the following examples, the implications of the
lack of interoperability are evident i.e., the Context Toolkit framework [79],
Schilit’s context-aware architecture [85], and the Active Badge system [86].
Context knowledge is embedded in programming objects (e.g., Java classes)
that are often inadequate for supporting knowledge sharing and data fusion
operations [78].

Fig. 4.1 illustrates the role of a context broker in an industrial scenario. As
seen in Fig. 4.1, the context broker becomes the central entity that provides
the necessary communication between the collaborating entities. All of the
connected systems in the illustrated scenario exchange their context
through the broker. Each connected system, agents, and devices use their
means of interfaces as limited by their design. For example, a low-power
wireless sensor, a context-aware device, would choose to communicate
using an event-based (publish-subscribe) communication modality.
Context-aware agents are software systems that are the most highly
available systems that can communicate using an API. These systems
provide different interfaces and tools for communication within the
infrastructure and also with the context broker. A highly available system
exists when there are no resource constraints in terms of energy and
communication bandwidth. A typical highly available system is a software
service deployed in a data center where it is always running with
guaranteed uptime and available bandwidth. The context broker should
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Fig. 4.1 An overview of a context broker deployed in an Industrial application

inherently be able to handle the communication requirements of both of the
system types. Even though the software systems and physical sensors have
two different ranges in the communication requirement, the system should
cater to all of those in the spectrum. To deliver the required quality of
service, it is also required that the context broker itself is designed and
deployed as a highly available system. It needs to handle spurious event
based data from low-power sensors that arise at random where every
message sent is more valuable than a highly available software agent. The
reason for the messages from low-power sensors to be considered valuable
is the cost of transmitting through a network. Every wireless transmission
attempt requires energy that can be used to prolong the field usability of the
sensor. A low-power sensor in the field communicates to update the context
when there is a change. Since they are battery-operated, every message sent
must be treated with a higher priority to process and relay the context to the
rest of the system. The data is used for further planning and execution of
various business processes. In contrast to low-power systems, highly
available systems are not as resource-constrained (energy, network
availability), so considering the messages from low-power sensors is more
valuable and providing a higher quality of service for them.

Two context brokers are considered essential for the study of context
brokers since they are widely used in various industrial applications and
research projects. In the following sections, the two context brokers
understand the working principles and their functionality for industrial
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applications. Consider a spectrum of features for context brokers where the
lower end is equipped with minimum features, and the higher end is
feature full that provides different modalities for communication. The lower
end of the feature spectrum encompasses the bare minimum to establish a
connection and communicate painlessly. It also does so without increasing
the overhead on deploying and integrating the context broker in an existing
application stack. On the other side of the spectrum is a complex
implementation that provides all necessary features like plugins and
requires overhead to set up the context broker itself. We choose to study the
two ends of the spectrum to understand a context broker’s requirements
and the pains and gains in having various features required for integrating
it into a decentralized industrial application. On the lower end of the
spectrum is the MQTT context broker, and on the higher end is the Fiware
Orion context broker. They are widely used in various industrial and retail
applications, even though each of these systems’ economic impact is not the
same; they are widely sought for in applications such as robotics, smart
home, industrial automation, and smart city.

MOQTT is the first kind of context broker at the lower end of the spectrum
that is widely used in many different domains, including highly critical
applications such as oil and gas automation industries. There are multiple
implementations of MQTT that have the core features and improve MQTT
limitations, such as nats.io and ZeroMQ. Due to the study’s simplicity and
understanding of a decentralized context broker’s development, we will
deep dive into MQTT and list the possibilities that the other related systems
provide. Even though those implementations are available, they are not
used as widely as MQTT. This is due to its simplicity in deploying a broker
and integrating the service into the application stack. The implementation’s
programming effort is also very minimal compared to many other featureful
context brokers with certain exceptions (ZeroMQ).

The other type of context broker in the higher end of the spectrum is
Fiware Orion context broker. It is used as an example for this study due to its
position in the spectrum. It is a complex system that can handle various
communication modalities and plugins, providing different functionalities
that can be used for preprocessing on context or post-processing of data
before it is committed into persistent storage. An immediate difference
between the systems chosen in this thesis is the flexibility in communication
modalities and the complexity of the context broker stack itself. In the
following two sections 4.3 and 4.4, the Fiware Orion context broker and the
MQTT context broker respectively are studied in detail. The study also
includes the following (i) features it provides for the developer of an
industrial application, (ii) deployment of the stack and requirements, (iii)
communication paradigms available, (fv)nature and type of flexibility
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provided, (v) limitations in relation to industrial applications and (vi)
various performance metrics that are available in literature.

4.2 Context Broker Architecture Standards from ETSI

In this Sec. 4.2, the three different types of systems architecture are
discussed to clearly understand the choice of system for the context broker
being developed. Furthermore, considering the NGSI standard from the
European Telecommunications Standards Institute (ETSI) [87], it is clear that
this kind of context broker has not been developed. DezCom is a
decentralized context broker with a Byzantine Fault-tolerant consensus
system. In the following Sec. 4.2.1, the different types of systems
architecture and architectural considerations from ETSI are discussed. This
provides a more in-depth insight into the developed system and the exact
differences from the existing systems.

4.2.1 NGSI-LD Architectural considerations

The NGSI-LD API is primarily intended as an API and does not set a
particular architecture. The NGSI-LD API can be used for various
architectural environments, and the design limitations of the API are
minimized. Since the NGSI-LD API cannot be used in all the architectures,
three sample architectures are provided. The NGSI-LD API aims to enable
all of these prototypes to be supported effectively, i.e., design choices for the
NGSI-LD API shall be taken into account. The NGSI-LD API can map to one
specific device architecture, take elements from different architectures, and
combine all prototypes. [87]

4.2.1.1 Centralized architecture

Fig. 4.2 indicates a centralized context broker architecture. There is a Central
Broker at the core, which keeps all contextual information. Context produc-
ers are using updating operations to update context information within the
central broker and context. Consumers use a one-time synchronous query or
asynchronous subscribe / publish notification operations to request context
information from the central broker. The Central Broker responds to all stor-
age requests. A part that acts as both Context Producer and Context User is
presented in Fig. 4.2. The general theory is that components may have many
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functions and are not directly stated in the NGSI-LD API standard specifica-
tion. [87]

Context Consumer Context Consumer Context Consumer
Query
Subscribe/
Notify
Context
Central Broker Producer &
Consumer
Update
Context Context Context
Producer Producer Producer

Fig. 4.2 Centralized architecture [87]

4.2.1.2 Distributed architecture

The distributed architecture is presented in Fig. 4.3. The underlying idea is
that the Context Sources store all information. As a Context Broker, Context
Sources enforce the NGSI-LD API query and subscription components.
They register with the context register, provide descriptions of the context.
However, they do not update data concerning the context, e.g., some context
sources register to provide the indoor air quality of Building A and B or
speed up the cars in a geographical area covering the middle of a city. [87]
Context Consumers can require a Distributed Broker to subscribe to it. A
node can subscribe to the discovery service from the Registry for specific
Context Source, i.e., those that can provide contextual information related to
the corresponding Context User request, are identified or discovered on
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Fig. 4.3 Distributed architecture [87]

each query. The distributed broker will then request or subscribe to each
specific context source and add the context information from the context
sources. The Distributed Broker can send it to the context user,
spatio-temporally, as far as possible. Whether the broker is a central broker
or a distributed broker is not apparent to the context-consuming device or
user in this service mode. The architecture alternatively enables context
consumers to discover context sources by themselves through the Registry
and then request them directly from context sources. Fig. 4.3 demonstrates
that with the finely dashed arrows. [87]

4.2.1.3 Federated architecture

In cases where current domains should be federated, the federated
architecture is shown in Fig. 4.4 is used. For example, different departments
in a city operate their NGSI-LD API infrastructure with the Context Broker,
but applications should easily access all available information with just one
access point. The architecture operates similarly to the distributed
architecture mentioned in Sec. 4.2.1.2, unless whole domains are recorded in
the respective context broker as an access point instead of simple context
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sources. The domains will typically be recorded at a higher level
(coarse-grained level) to the federal context registry with size scopes that
can match the range provided in the requests, particularly geographic size.
For example, the domain would be registered with information about
entities with a building within a geographical area instead of registering
individual entities, such as buildings. The applications query or subscribe to
geographically-based entities, e.g., buildings in a particular city area. The
domain context brokers are located within the federation server, providing
information and sending the request to these brokers. They can also
summarize the data, and the request gets the response as in centralized and
distributed scenarios. [87] A domain itself may use a centralized or
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Fig. 4.4 Federated architecture [87]

distributed architecture or even a federated sub-domains architecture, as in
distributed applications, which also discover relevant domains via the
federal context registry and contact the context brokers directly in each
domain. [87]

4.3 Fiware - Orion Context Broker

FIWARE [88] is a project sponsored by the European Commission to
develop technologies for IoT and the future Internet, in collaboration with
participants from the ICT sector. FIWARE's mission statement is
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To build an open, sustainable ecosystem around public, royalty-free, and
implementation-driven software platform standards that will ease the
development of new Smart Applications in multiple sectors [88].

The FIWARE initiative provides a set of application programming
interfaces (APIs) to develop smart applications based on open and
royalty-free specifications. FIWARE is based on the concepts from the
previous SENSEI project and the IoT-A architecture, a European initiative to
define an architecture for the Future Internet that is reusable across different
domains [30]. FIWARE specifies components called Generic Enablers that
constitute the building blocks for smart applications in different areas.
These Generic Enablers cover aspects that include, but are not limited to,
security, data management, cloud hosting, and device management.

The core of the FIWARE ecosystem is the so-called FIWARE platform. It
is a set of public and free-to-use API specifications that come along with
open source reference implementations. There also exists an initiative called
FIWARE lab, which offers the platform in a cloud environment. Whereas
the FIWARE lab is merely for testing, experimenting, and evaluation, the
FIWARE iHub initiative is supposed to provide production-ready cloud
services in the future. The FIWARE platform is grouped into seven major
parts called the “generic enablers (GEs)” [88]. Every GE represents a
particular aspect of FIWARE services and provides one or more components
and reference implementations that support the specified APIs.
Additionally, there are so-called “domain-specific enablers (DSEs) that (will)
provide components for specific domains like health, energy and Industry
4.0.

The Orion Context broker allows the user to manage the entire life-cycle of
context information, including updates, queries, registrations, and
subscriptions [88], which are also used in DezCom with transactions on
assets approach. The FIWARE Catalogue contains a rich library of
components (Generic Enablers) with reference implementations that allow
developers to put into effect functionality such as connecting to IoT or Big
Data analysis, making programming much easier [88].

4.3.1 Features

The general enablers are organized as follows [89]:

¢ Data/Context Management: This contains all components that are needed
to store, access, process, and analyze data as part of a smart application

¢ [oT Services Enablement: Here are all components needed to set up sensor
networks and route sensor data to other GEs.
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* Advanced Web-based User Interface: Components to design user
interfaces, including geographical information and interactive 3D charts

* Security: Components to add, define and enforce declarative security

¢ Advanced middleware and interfaces to Network and Devices

e Applications/Services and Data Delivery: Components and tools for data
visualization, easy generation of mashups, and app-store-like distribution
of services and data

¢ Cloud Hosting: Components and tools aiming at providing and managing
FIWARE services via a cloud infrastructure

4.3.2 Communication Paradigm

The communication paradigm is centralized and runs on top of a TCP/IP
network. The Orion context broker is deployed in a cloud environment, as
mentioned in Deployment 4.3.3, where issues of centralization can be
mitigated using a distributed architecture. Even though parts of the stack
are deployed reliably in a distributed manner, there is still the case for a
single point of failure when the network connection is lost or when the
cloud environment is not reachable by the IoT devices. The communication
primitives are not limited to the REST API interface as the Orion context
broker leverages the concept of generic enablers.



4.3 Fiware - Orion Context Broker 111

4.3.3 Deployment

FIWARE is an open-source software consortium that develops and curates
software. As mentioned before, one such software is the context broker
called the Orion Context Broker. It is developed for massively scalable
applications such as smart city applications. Therefore, the context broker
must be deployed in a highly available server infrastructure. Cloud
infrastructure creates the environment required for such highly scalable
applications where the software can be scaled as the application grows in
the real world. The Orion context broker’s software stack has a REST API
interface developed as per the NGSI standard and is exposed using a
reverse proxy through a web-server. The software stack orchestration is
relatively simple, but there are multiple dependencies for each layer of the
stack. A local database is required as a persistence layer for the context
broker. In many applications, it is initially suggested to deploy the database
in the same server as the REST API server. As and when scaling is necessary
for the application as it grows in use and memory, an horizontal scaling
architecture with distributed deployment is advised where each component
of the stack has its resource and can be scaled for each of the necessary
resources with a protected cloud environment. The most necessary cloud
server resources are CPU for computing and execution, bandwidth for
network transfer, and memory where both the storage and RAM are
considered here. The database grows over time, and it is advised to run on
servers where the resources for memory can be scaled. The REST API is the
interface to handle the bandwidth for network transfer and concurrent
connections from devices deployed in the world. For such an application,
the REST API interface is deployed with a load balancer to distribute the
incoming connections within deployed application servers.

4.3.4 Flexibility

The flexibility of using the Orion context broker is achieved using the
concept of Generic Enablers (GE). It extends the FIWARE core components,
where the GEs are pluggable to the primary system for interfacing,
information processing, or scheduling tasks. The concept of Generic
Enablers increases the deployed software’s complexity but improves
interface options with other systems.

FIWARE used a great variety of different programming languages (C++,
Java, Python, Node]JS, ...) and environments for developing their reference
implementations. Fortunately, the FIWARE community provides docker
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images for every component, which makes dealing with different runtime
requirements relatively easy [90].

4.3.5 Limitations

FIWARE’s Orion Context Broker is a software stack with multiple interfaces
within the software stack, as in distributed micro-services architecture. As
the system scales, it has to be deployed in a distributed manner for efficient
scaling and optimized use of resources. The stack has a REST API interface
that interacts with the clients connecting with the context broker. It also has
a MongoDB NoSQL database deployed in the same server that needs to be
deployed in a distributed manner when the system is scaled. Even though
FIWARE is the only available multi-purpose context broker, the architecture
is centralized, as shown in Fig. 4.5 with a single point of failure. With every
interfaced entity having a web-server listening on a port for REST endpoint
calls for every communicated message. QoS provided by the Context Broker
improves when using the sharded MongoDB cluster compared to the scale-
up configurations of MongoDB [90].. Issues with scaling, effort to scale the
systems in a distributed manner, and the amount of resources required to
manage and run the system due to the complexity it provides are considered
as limitations for using the system.

4.3.6 Performance

The performance of FIWARE’s Orion context broker for huge-scale projects
is limited because scaling becomes an issue. Reactive scaling of the
deployed servers is the only way to scale the Fiware system for any surge in
demand. In the literature about the performance evaluation of IWARE [90],
various experiments were performed. Few of the results that are listed as
requirements for the development of DezCom are the following:

¢ Effect of using increasingly larger instances for Orion Context Broker,
keeping the database instance (i3.xlarge) fixed. Performance with the
largest evaluated instances for the Context Broker and MongoDB is only
30% better than the baseline configuration, despite having 4x more CPU
and memory (and costing almost 4 times as much) [90].

* FIWARE’s MQTT IoT Agent component also crashes beyond 1000
requests per second [90].

* FIWARE’s agent crashes and is unstable after the system is
overloaded [90].
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* The memory used by the IoT Agents spikes before they crash, when the
system is overloaded [90].

4.4 MQTT

MQTT is an ISO standard (ISO/IEC PRF 20922) messaging protocol [91].
Andy Stanford-Clark of IBM and Arlen Nipper of Cirrus Link co-authored
the first deployed version of MQTT in 1999 [91]. Since then, it has been used
in various remote sensing and telemetry projects. If not whole, then a subset
of the messaging techniques was abstracted into applications for
implementation. In 2013, IBM submitted MQTT v3.1 to the OASIS
specification body with a charter that ensured that only minor changes to
the specification could be accepted [91]. The MQTT standard has a
publish-subscribe-based messaging model for communication. The topics
are used to communicate between the nodes in a network. The flow of
communication is highly event-based, where a broker is always listening to
topics that are published and posts the messages to the subscribed clients.
The messaging protocol uses existing TCP/IP standards, making it easier to
deploy these in existing TCP/IP based networks [91]. It is designed for
connections with remote locations where a ”small code footprint” is
required, or the network bandwidth is limited [91]. Most of the
implementations related to this work were carried out using the python
library, which was implemented using the MQTT specification. The
publish-subscribe model of the MQTT requires a broker, which federates the
network receiving all the messages and relaying them to all the subscribed
clients. It also manages all the nodes’ connection and status as a publisher
or a subscriber for every topic. There is a variation of the MQTT protocol
available for low-power, low bandwidth devices called the MQTT-SN. It
was aimed at non-TCP/IP based networks where MQTT could still be used.
There are deployable implementations of MQTT-SN in ZigBee and
ContikiOS for embedded devices. When a publishing client first connects to
the broker, it can set up a default message to send to subscribers if the
broker detects that the publishing client has unexpectedly disconnected
from the broker.

4.4.1 Features

The messaging protocol can be used on resource-constrained devices where
the messaging bandwidth is less (<1Mbps) or requires only a small code
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Fig.4.6 MQTT stack as deployed at the research facility of the Chair for Material Handling
and Warehousing [56]

base for communication and messaging [91]. A minimal MQTT control
message can be as little as two bytes of data [91]. A control message can
carry nearly 256 megabytes of data if needed [91]. There are fourteen
defined message types used to connect and disconnect a client from a
broker, publish data, acknowledge the receipt of data, and supervise the
connection between client and server [91]. MQTT offers a generic
communication interface and transports the messages to subscribers with a
central MQTT broker’s help. The following are the three important
communication primitives required to successfully communicate with a
MQTT broker, as illustrated in fig. 4.7.

Connect Example of an MQTT connection (QoS 0) with connect,
publish/subscribe, and disconnect. The first message from client B is stored
due to the retain flag. The client waits for a connection to be established
with the server and creates a link between the nodes.

Disconnect The client waits for the MQTT client to finish any work it must
do and the TCP/IP session to disconnect.
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Publish Returns immediately to the application thread after passing the
request to the MQTT client.

4.4.2 Deployment

The MQTT broker is deployed in a central service. The most used MQTT
broker is the Eclipse Mosquitto broker. At the research facility at FLW, TU
Dortmund, the Eclipse Mosquitto broker is deployed on a docker for
communicating with different entities in the industrial network. Eclipse
Mosquitto is an open-source (EPL/EDL licensed) message broker that
implements the MQTT protocol versions 5.0, 3.1.1, and 3.1. Mosquitto is
lightweight and suitable for all devices, from low-power single-board
computers to full servers. MQTT can be installed easily in Linux servers
with a simple configuration and accessed using a web-socket port.

4.4.3 Communication Paradigm

As shown in Fig. 4.6, a deployed MQTT stack consists of two main parts,
namely, the nodes and a broker. There is no difference between a subscribed
node and a publisher node. Nodes communicate with a server, often called
a broker. When a node needs to connect to another node, the nodes must be
connected to the broker since the broker controls the messaging. There is no
peer-to-peer networking. Therefore, every message published in a topic will
be sent to the broker and the broker will then send the message to the nodes
that are subscribed to the topic.

Information is organized in a hierarchy of topics. When a publisher has a
new item of data to distribute, it sends a control message with the
connected broker’s data, as illustrated in Fig. 4.7. The broker then
distributes the information to any client that has subscribed to that topic.
The publisher does not need to have any data on the number or location of
subscribers, and subscribers, in turn, do not have to be configured with any
data about the publishers.

If a broker receives a topic for which there are no current subscribers, it
will discard the topic unless the publisher indicates that it is retained. This
allows new subscribers to a topic to receive the most current value rather
than waiting for the next update from a publisher.
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Fig. 4.7 Message flow in a MQTT broker

4.4.4 Flexibility

The MQTT communication platform strives to be a simple publish-subscribe
communication system that is centralized. It requires a single computer that
is reachable by the rest of the clients over a TCP/IP network. It is effortless to
set up and requires very few code lines to set up the communication. Since it
acts as a communication library and not as a framework, the developer will
create a contextual framework for the broker depending on the application.
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4.4.5 Limitations

Clients only interact with a broker, but a system may contain several broker
servers that exchange data based on their current subscribers’ topics. MQTT
relies on the TCP protocol for data transmission. A variant, MQTT-SN, is
used over other transports such as UDP or Bluetooth. MQTT sends
connection credentials in plain text format and does not include any
measures for security or authentication. This can be provided by the
underlying TCP transport using measures to protect the integrity of
transferred information from interception or duplication. MQTT is
primarily a messaging system where context information can be embedded
in the messages. One of the design limitations in deploying MQTT brokers
is that the number of socket connections depends on the number of files that
a process can open concurrently. This is limited in Linux by default to 1024.
Since the Mosquitto broker is a single-threaded process, for networks with
more than 1000 publisher clients with a payload rate of 10 messages per
second, the brokers’ functionality is reduced due to the network’s
limitations the operating system.

4.4.6 Performance

As the MQTT broker is a single-threaded application, the limitation of
network input and output is limited with the number of concurrent
connections. When there is a significant amount of concurrent connections
in the order of 1000 and more, the process has minimal time to serve all the
publishers and subscribers. As the number of connected devices increases,
the number of concurrent connections increases the amount of network
input-output operations also includes disk input-output adding to the
overhead of the MQTT broker servicing connections faster. The file
limitations and the single-threaded execution limits scaling at a determined
upper limit for a MQTT broker deployment. The ability to predict the delay
based on the number of publishers (e.g., sensor data sources) is critical to
estimate an IoT system’s overall performance and the trade-off between
speed and accuracy [92].

4.5 What is DezCom?

In this section, a solution is proposed for decentralized communication of
entities in an Industry 4.0 environment. Entities are heterogeneous actors
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which can be considered as material handling systems in this context. In the
field, these actors need to perform tasks collaboratively within a warehouse.
For accomplishing the tasks in a warehouse, these systems need to discover
and associate with the network. Once they are part of the network, the
robots, sensors, and other material handling machines can receive messages
from coordinators of the warehouse, such as a warehouse management
system, and can perform various material handling tasks. The network is
available for the transfer of payload between the systems. When there is a
single entity with the same specification of features and the tasks it can
perform, it becomes easier for the rest of the systems to understand and act
in an industrial network. Since this is not the case, and there are multiple
robots and a multitude of systems involved in a material handling system,
the curation of the messages, tasks, and the distribution of tasks becomes
rather complicated. A context manager must perform the protocol
specification of discovery, network association, and advertisement. This
context manager handles all the messages in a secure manner and forwards
it to the system software for further processing. In the case of robots, the
messages are received, and the robot’s core system software understands
the delivered messages and performs the tasks as instructed by the received
messages. For this purpose, context management is required to abstract the
communication between the systems. This helps in the self-organization of
the systems within the warehouse for various tasks. Planning and
scheduling these systems are performed using resources in the network
where they run as a software instance. For these software instances to
understand the current status of the network i.e. the various advertised
properties of the entities with their availability, a software networking
paradigm is necessary to transport these various messages between
heterogeneous systems. This will enable the management of complex
systems where heterogeneous systems take part in performing tasks.

4.5.1 Requirements for a context broker development

The requirements for a decentralized context broker must include but must
not be limited to the following;:

High throughput message fan out - a small number of data producers (pub-
lishers) need to frequently send data to a much larger group of consumers
(subscribers).

Addressing, discovery - sending data to specific application instances,
devices, or users.
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Load balancing with N-way scalability where the application(s) produces a
large volume of work items or requests and dynamically uses a scalable pool
of workers.

Location transparency - applications need to scale to a very high number
of instances spread out geographically, and with intrinsic modularity in the
applications, specific endpoint-configuration information for applications to
understand the endpoints.

Fault tolerance and Trust architecture - the application needs to be highly
resilient to network or other outages with the application executed by diverse
entities of the process supply chain to allow anyone to participate in the
communication.

Decentralized consensus is considered as a by-product of such a highly scal-
able distributed fault-tolerant architecture. The above two widely used sys-
tems do not meet the requirements except for high throughput message fan-
out, i.e., if the server with the central instance is unreachable, the whole net-
work communication is disrupted.

4.5.2 Motivation for a decentralized context broker

In the current state of the art, there are many applications in the industry
that require a service, which in most cases, is a database where applications
query and store information. Most of the databases available are centralized
databases that have a central entity. Even in federated databases,
geographical decentralization takes place but not for the database
availability itself. An abstracted view of central databases can be illustrated
as in Fig. 4.8 with an input source and an output. The server or the database
is protected using a firewall, which helps the service be protected from
external threats. However, it is still vulnerable to other kinds of scaling
issues and network breaches. Such an architecture is considered vulnerable.
In these cases, when the communication layer is made secure, and all the
data transferred by the clients are authenticated and logged, it becomes
easier to develop scalable systems with latent features for network security.

In this architecture, every client has a string that can be considered as
a password. These passwords act as authentication, which makes firewall
breaches easier when the password is known. The service, which could be a
database or compute node, could prove to be vulnerable.

Therefore, a proposal for a decentralized architecture for systems
communication is proposed, as illustrated in Fig. 4.9. Since the inception
and the proof of ledger-based systems, it has become inevitable to use
blockchain technology to decentralize systems communication. The
architecture proposes that all the communication is wrapped using a
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distributed ledger technology that provides the required security layer for
communication.

An in-detail deep dive into distributed ledger technology, blockchain fol-
lowed with various consensus models are presented in this chapter.

In Fig. 4.10, a use case for having a decentralized context broker is
specified where the main objective is not to share the data but only the
answers. There are multiple algorithms where computations and results can
be arrived at without having access to all of the data. Data is an essential
commodity when autonomous machines have to perform intelligent actions
and make them economically viable. Even though data privacy is one of the
motivational factors for developing algorithms that can compute answers
without access to data, the economic value involved in controlling data
access is another major factor for developing such decentralized
communication technology. This involves the owner of the data to become a
stakeholder in making optimized decisions during industrial operations. In
a naive sense, it can be seen as monetizing the collected data during
industrial operations.

An example of an algorithm is laid out to clearly understand the
requirement of a decentralized context broker and its importance in an
industrial scenario. We consider that three entities are continuously
collecting data independently of each other. The three entities are
autonomous machines from three different manufacturers. They are not
intrinsically sharing the data, but they are working in parallel for the same
customer who has deployed these machines in the industrial facility. In an
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initial sense, the data would be transported to a central server where the
data is stored, consumed and acted upon by the customer. Suppose the data
needs to be shared between the operating machines. In that case, it is only
possible if the customer requires the manufacturers to work amongst them
to implement a data sharing policy. Unfortunately, the data is not accounted
for since the manufacturer of the machine fulfills the contract by providing
reliable operations in the facility. This data improves the operations and the
underlying processes, but the machine does not have any accounting
mechanism to have access to the data. The following multi-party
computation developed to share data between machines illustrates a
transparent data sharing policy scenario and the requirement for a context
broker that runs on blockchain technology to account for the data
exchanges. Consider that each machine in the field has a number, which is a
KPIL. This KPI is also available at each of the three machines. When an
average is calculated between this KPI, there is potential for optimizing the
machine’s operations and providing economic value for the customer. As
per our assumptions for decentralizing communication between
autonomous machines, the data is not shared but only the answers. For this
purpose, machine 1 adds a random number to the KPIL So does each of the
machines with the KPI. In our scenario, there are three machines; therefore,
there are three pseudo KPIL. Let us assume that x;, xp and x3 are the three
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Fig. 4.10 Architecture for secure multiparty computation using blockchain [88]

KPI and y1, y2 and y3 are the three pseudo KPI This data is shared amongst
the machines. Since there is a random number added to the actual KPI, the
value is intrinsically flawed. However, to compute the average of that
number, machine 1 sends y; to machine 2. Machine 2 adds y; to ¥, and so
does machine 3. Now since all the numbers summed together are not the
right sum, another communication round is made where each machine
subtracts their random number and broadcasts. When each of the machines
does this, they all have the sum of the numbers without actually sharing the
KPI. Now, by dividing the sum of KPI with the number of participating
machines, we can quickly arrive at the average. The average is known to all
the machines but not the individual KPI, which means the answer is arrived
at without sharing the data itself. This example was presented by Dr. Alex
”Sandy” Petland, professor at MIT Media Lab for Ethics and Human
dynamics. This algorithm is Turing complete with which any computation
can be performed without sharing the data. The critical underlying
mechanism is to provide a reliable communication layer where each of the
communication rounds is logged with metadata from each machine to
understand the computation’s current state. The computation has multiple
steps to be performed and multiple broadcast rounds of sending a payload.
With the help of blockchain, it becomes easily trackable, reliable to transport
data. With the features of a context broker, it becomes easier to transfer the
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messages between specific sets of nodes and store them reliably. A context
broker is a communication software that provides a robust architecture for
reliably transporting payload between the systems.

There are various aspects involved in developing such a software that
can handle communication from heterogeneous entities with a wide range
of communication capabilities. For understanding the fundamentals of such
communication software, initially, two types of such communication
software are studied in Sec. 4.1. There are two predominantly used
industrial systems communication software called context broker. They help
to scale the number of devices connected to a system both horizontally, i.e.,
heterogeneous device types that connect to the network, and vertically, i.e.,
scaling the number of similar devices that belong to the network. The two
types of systems are MQTT and Fiware which are described in Sec. 4.4, 4.3
respectively. Followed by context brokers, different types of systems in
communication and network topology must be understood, described in
the following Sec. 4.2. With this understanding of different systems, the
various state of the art system software are analyzed in Sec. 4.8.1 to
understand the requirements for developing a highly scalable,
heterogeneous communication platform. Followed by technology status
evaluation, choice of a software stack, development, implementation, and
finally, performance analysis.

4.6 Inevitability of Blockchain

A reliable networked computer system with distributed nodes must cope
with the failure of one or more of its networked nodes. A failed node may
exhibit a type of behavior often overlooked, i.e., sending conflicting
information to different system parts. Sending conflicting information could
be delayed information relevant to the system’s operations but triggers an
erroneous action due to transmission delays, a corrupt message, or a
malicious node in the network. The problem of coping with this type of
failure is expressed abstractly in the Byzantine Generals Problem.

4.6.1 Byzantine Generals Problem

The Byzantine Generals Problem is a term etched from the computer science
description of a situation where involved parties must agree on a single
strategy to avoid complete failure, but where some of the involved parties
are corrupt and disseminating false information or are otherwise
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unreliable [93]. The Byzantine Generals Problem makes for an excellent
fundamental example of blockchain-based consensus algorithms.
Understanding it generally elevates the comprehension of other consensus
algorithms. The major problem of distributed and decentralized systems is
that a network system is disseminating false information. The Byzantine
Generals Problem can be explained with the following scenario explained
by Leslie Lamport [93]. Several divisions of the Byzantine army are camped
outside an enemy city. A general commands each division that is camped
outside the enemy city. The generals can communicate with one another
only by messenger. After observing the enemy, they must decide upon a
joint plan of action. The dilemma assumes that each general has its army
and that each group is situated in different locations around the city they
intend to attack. The generals need to agree on either attacking or retreating.
It does not matter whether they attack or retreat, as long as all generals
reach consensus, i.e., agree on a common decision to execute it in
coordination. The common plan of action may be one of the two: attack or
retreat. If they do not attack simultaneously around the city, the attack will
be futile. Here the messenger plays a vital role in delivering the message on
time with the decision intact. Only then, the generals will be able to
converge to a consensus in the decision. There might also be traitors
amongst the generals. Therefore all loyal generals should reach a consensus.

A simplified version of this consensus problem can also be presented
in the following [93]: Each general has to decide: attack or retreat (yes or
no); After the decision is made, it cannot be changed; All generals have to
agree on the same decision and execute it in a synchronized manner. As
mentioned earlier, the communication problems are related to the fact that
one general can only communicate with another through messages, which
are forwarded by a courier. Consequently, the Byzantine Generals Problem’s
central challenge is that the messages can get somehow delayed, destroyed,
or lost. If we apply the dilemma to the context of blockchains, each general
represents a network node, and the nodes need to reach consensus on the
current state of the system. In another perspective, most participants within
a distributed network have to agree and execute the same action to avoid
complete failure. Besides, even if a message is successfully delivered, one or
more generals may choose (for whatever reason) to act maliciously and send
a fraudulent message to confuse the other generals, leading to a total failure.
Therefore, the only way to achieve consensus in these types of a distributed
system is by having at least two thirds or more reliable and honest network
nodes. This means that if most of the network decides to act maliciously, the
system is susceptible to failures and attacks (such as the 51% attack).

In a few words, Byzantine fault tolerance (BFT) is the property of a
network or a communicating system that can resist the class of failures
derived from the Byzantine Generals Problem. This means that a BFT
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system can continue operating even if some nodes fail or act maliciously.
There is more than one possible solution to the Byzantine Generals Problem
and, therefore, multiple ways of building a BFT system. The Byzantine
Generals Problem is an intriguing dilemma that eventually gave rise to the
BFT systems, which are being extensively applied in various scenarios.
Beyond the blockchain industry, a few use BFT systems cases include the
aviation, space, and nuclear power industries. In blockchain technology,
there are different approaches for a blockchain to achieve Byzantine fault
tolerance, leading us to the so-called consensus algorithms. In this work,
blockchain technology is used due to the intrinsic nature of arriving to a
consensus amongst the decentralized nodes. The other features that
blockchain technology provides make it an inevitable choice for developing
a decentralized context broker.

4.7 Problem Application Fit

This section will explore and evaluate if blockchain is the right application
for the developed context broker. The context broker has requirements
derived from existing centralized context brokers. We will use those
requirements presented in Sec. 4.5.1 and evaluate them qualitatively to
understand if blockchain caters to the requirements for developing a
decentralized context broker. Since blockchain technology is still recent,
several organizations are investigating ways to integrate it into their
company [94]. The fear of missing out on this technology is powerful, and
most companies are treating the issue as "we want to use blockchain
somewhere, where can we do it?” [94], which leads to frustration with
technology because it cannot be universally applied. A better approach
would be to understand blockchain technology first, where it fits, and then
identify (new and old) systems that might fit the blockchain paradigm [94].

Blockchain is not limited to the domain of cryptocurrency, but it is also
not a single solution that can solve all the application problems. We take the
guidelines provided by Yuga et al. [94] for understanding the compatibility
of blockchain for applications that are not cryptocurrency applications.
Blockchain technology solutions may be suitable if the activities or systems
require features. It will be quantitatively analyzed if the application that we
develop, i.e., the DezCom context brokers, requires a subset of these
features. The features named by Yuga et al. are written in italics, followed
by a simple explanation if necessary, and finally, the analysis of the
application-specific understanding is provided.

Many participants: an application that requires many participants
irrespective of their nature of how they are deployed in an industrial
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application. Moreover, the participants can scale from a few to hundreds of
clients as in a context broker case.

Distributed participants. The participants are distributed geographically as
in physical entities and distributed in terms of information technology. There
are multiple agents deployed, even in a single computer that interfaces using
a context broker system.

Want or need for lack of trusted third party. As mentioned earlier, when
many participants are part of a network, it becomes hard to keep track of
the parties associated and disassociating from and out of a system,
respectively. Additionally, not all participants are part of the network that
will allow the network to function continuously. Therefore, there is an
inherent lack of trust between the functioning parties in a context broker.

Workflow is transactional (e.g., transfer of digital assets/information between
parties). In general, Industry 4.0 creates a data economy, where the data
generated by the systems is a valuable asset. Moreover, the generated data
needs to be reliably transmitted between the participating clients for
actionable tasks within an industrial system. Therefore, the data in a context
broker can also be considered transactional.

A need for a globally scarce digital identifier (i.e., digital art, digital land, digital
property). The data produced requires a chronologically sorted unique
digital identifier, which will be used to identify the messages and distribute
them when systems are participating in the network requests. A well
functioning context broker allows for reliably transmitting information
across the network and delivering data on demand. For such purposes, the
data, which is the asset, will require a digital identifier.

A need for a decentralized naming service or ordered registry. Since
heterogeneous industrial systems are interacting within an industrial
network, service discovery and peer to peer communication using a
namespace is necessary to reduce the overhead on the participating systems
to store such information before joining the network.

A need for a cryptographically secure system of ownership. A context broker
would not critically require a security system that can be cryptographically
proven. Still, to improve transparency and resolve conflicts when there are
malfunctioning systems, it is necessary to determine the ownership of the
produced data with cryptography. Furthermore, the data economy’s
importance can be realized using such a context broker when the
accountability for generating the data can also be kept as a record.

A need to reduce or eliminate manual efforts of reconciliation and dispute reso-
lutions. In a highly scalable context broker, data dispute resolution is neces-
sary and needs to be performed automatically. Adding to the complexity of
scalability, when the systems are highly mobile and distributed, blockchain
applications provide robust application features for automatic data reconcil-
iation.
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A need to enable real-time monitoring of activity between regulators and
requlated entities. When heterogeneous machines communicate with
multiple vendors, the context broker should allow features for tracking
down malicious agents and bad actors in the network.

A need for full provenance of digital assets and full transactional history to be
shared amongst participants. When the system enables the creation of various
digital assets, and the assets are being transacted between machines for
executing tasks in an industrial scenario, full transactional history should be
accessible amongst the participating nodes.

Permissioned blockchain networks may disclose blockchain data publicly.
Only those inside the blockchain network will have the data available.
Consider cases where data could be regulated by legislation or regulations
(such as Personally Identifiable Information (PII) or the Regulation on
General Data Protection (GDPR)). Even within a permissioned blockchain
network, data such as this may not be suitable to be stored [94].

False Data Input — Because multiple users connect to a blockchain, some can
send incorrect data, imitating data from legitimate sources (such as data from
sensors). Data verification, which enters a blockchain network, is difficult to
automate. Implementation of smart contracts may provide additional checks
to assist in validating data where possible [94].

Node Diversity — A blockchain network is only as strong as the sum of all
of the current nodes participating in the system. If all nodes share similar
hardware, software, geographic location, and a messaging scheme, then there
is some risk associated with the possibility of undiscovered vulnerabilities
in security. This risk is mitigated by decentralizing the heterogeneous device
network, which could be defined as “the non-shared characteristics between
any single node and the generalized set.” [94].

The features, as mentioned above, are part of any decentralized
blockchain system. Still, the features of the blockchain, as discussed by Yuga
et al. [94], are not limited to the points mentioned above. However, we can
already conclude that blockchain is a candidate for developing
decentralized consensus for a context broker. In the following sections,
blockchain’s fundamentals are discussed along with various candidates for
implementing decentralized consensus among the nodes. It is the primary
building block of a decentralized context broker.

4.8 Blockchain Technology

A blockchain is a particular type of decentralized database. There are many
other definitions from the realm of cryptocurrency and other industries.
However, the core idea and the perspective we look at blockchain in this



128 4 DezCom: High-power, High Data-rate Systems

research work are blockchains as a decentralized database for storing digital
assets. A blockchain is commonly operated with decentralized, networked
nodes because the database gets clunky, and there are superior alternatives
for centralized and managed database solutions. Blockchain technology’s
real potential can be exploited in a decentralized environment — that is, one
where all users are equal, as seen in a socially networked industry, as
developed under the Industry 4.0 framework for providing autonomy to
multi-vendor heterogeneous collaborative systems. The blockchain can’t be
deleted or maliciously be taken over due to the nature of connected blocks
where the database always refers to the previously stored information. All
the nodes are in synchrony with the replicated states, and as discussed
earlier in Sec. 4.6, the nodes communicating in this network are BFT secure.
The blockchain database becomes a single source of truth that anyone can
see in an industrial network. A blockchain has specific unique properties.
There are sets of rules for committing data into the network or the database.
Data is added over time in structures called blocks. Each block is built on
top of the last and includes information that links back to the previous one.
By looking at the most up-to-date block, we can check that it has been
created after the last. So if we continue down the ”“chain,” we’ll reach our
very first block — known as the genesis block.

0 abcAA -_— KP
1 defKP —_— CD
2 ghiCD —— BM
3 jkIBM —_— NS
4 mnoNS -_— TH

Fig. 4.11 A example database using excel sheet where each entry is linked to the last.

To understand the linked nature of a blockchain database, let us consider
a spreadsheet with two columns. In the first cell of the first row, the stored
data is Robot-A. In this example, we create a rule that an identifier is created
using a function generated concerning the data. Using the function along
with the first cell’s data, a two-letter identifier is generated, which will then
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be used as part of the next input. In this example, the two-letter identifier KP
was generated concerning the first cells stored data. This identifier must be
used to store the next cell in the second row (Robot-BKP). This means that
if anyone changes the first input data (Robot-C), the function will generate
a different combination of letters in every other cell. Looking at row 4 now,
our most recent identifier is TH. As was mentioned earlier, it is not possible
to go back and remove or delete entries? That is because it would be easy for
any participating node in the network to identify that the data has tampered
with. Such an attempt would not only be identified, but also data would be
ignored for storage. Certain blockchain systems keep count of how many
times a particular node attempts to tamper with the data and controls how
the system interacts with the blockchain to ensure the network’s reliable
operation.

Suppose anyone changes the data in the very first cell. The same data
will get a different identifier in the next request, which would mean the
second block would have different data, leading to a different identifier in
row 2, and so on. Once the data has been stored, it is virtually impossible to
modify or delete it. One way of deleting already stored data is to deem the
data invalid inside the data structure; thus, the history of communication is
maintained without any fraudulent changes in centralized database
systems. In centralized, managed database systems, the database
administrator can log in to the database and change the previously stored
values and manipulate the system without any trace, which is a technical
possibility. Whereas in blockchain, even this manipulation is stored/logged
within the blockchain database.

4.8.1 Blockchain Categories

It is possible to categorize the networks of blockchain based on their
authorization model that decides who can hold them (e.g. publish blocks).
It's Permissionless if anybody can publish a block to the blockchain. When
blocks can only be published by users that are authenticated, such types of
blockchains are called Permissioned. A Permissioned blockchain network is
more like a regulated company intranet, while a Permissionless blockchain
network is like the public internet, with everyone being able to participate.
Simply defined as, Permissioned blockchain networks are frequently used
for a consortium of organizations and individuals. The distinction between
the kinds of blockchain systems is important since it has an influence on the
components of the blockchain.
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4.8.1.1 Permissionless

Blockchain networks with no permissions are decentralized blockchain
platforms open to anyone who publishes blocks without authorization.
Most open-source software is open access, free of charge to anyone wishing
to use the permissionless blockchain platforms. Since everyone has the right
to post blocks, it results in the property that everyone can read the
blockchain and issue transactions on the blockchain. Any blockchain
network user can read and write to the directory inside a blockchain
network without permission. Since unauthorized blockchain networks are
open to anyone, malicious users can try to publish blocks in such a way to
subvert the system (Sybil attack!). To avoid this, blockchain networks
without authorization sometimes use a multi-party agreement or consensus,
demanding that users use or retain resources when publishing blocks. The
consensus is detailed in Sec. 4.8.2 as it is the fundamental building block for
a permissionless blockchain. It ensures that malicious users can easily
compromise the program. Proof-of-work is elaborated in Sec. 4.8.2.1 and
Proof-of-stake (see Sec. 4.8.2.2), these are the consensus models which are
widely implemented for any blockchain. Consensus systems in blockchain
networks without permission typically support non-malicious actors by
rewarding protocol block publishers with a native cryptocurrency.

4.8.1.2 Permissioned

The Permissioned blockchain networks must be approved (whether
centralized or decentralized) by users or a group that runs the blockchain to
ascertain who publishes blocks. Since blockchain is kept only by
Permissioned users, access to reading the blockchain can be restricted, and
the transaction history for users outside the permissioned realm. Registered
blockchain networks can either allow anyone to read the blockchain or
restrict read access to allowing it only to the approved users. It also permits
anyone to transact to the blockchain or restricts access only to approved
persons.

Permissioned blockchain networks may have the same traceability of
digital assets as they pass through the blockchain. Additionally, they are
distributed, resilient, and redundant with their data storage system as in
Permissioned blockchain networks. Consensus models are also used in
Permissioned blockchain systems for publishing blocks. However, these

1 A Sybil attack is an online security breach where a hacker utilizes multiple accounts,
nodes, or systems to take over particular network. Blockchain Sybil attacks of cryptocur-
rencies are carried out by running numerous nodes on a network to achieve a majority, at
least 51%, control over the network.
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methods often do not require resources to be spent or maintained (as is the
case with current Permissionless blockchain networks). This is because
establishing one’s identity is required to participate as a member of the
Permissioned blockchain network; those maintaining the blockchain have a
trust level since they are all Permissioned to publish blocks and since their
authorization can be revoked if they misbehave. Consensus models in
Permissioned blockchain networks are then wusually faster and
computationally less expensive.

Permissioned blockchain networks may often be used by organizations
that wish to track and secure their blockchain due to data privacy and the
importance of the data containing confidential business information.
However, an organization decides who may publish blocks. The network
consumers would need to maintain faith in that agency as the blockchain’s
privacy is breached as soon as an entity that has access to the blockchain is
breached. Permissioned blockchain systems can often be used by
organizations that want to operate together but cannot completely trust
each other. Even though trust can be enforced with contracts, human error,
and the ability to scale from tens to thousands of transactions per second
paves the way for a mutually agreed distributed ledger. Business
organizations and consortia will decide on the agreement format to be used,
depending on how much overhead is required. This is to enforce trust
between the interacting organizations instead of the complexity and cost.
Beyond confidence, approved blockchain networks offer clarity and
analysis to advise business decisions further and keep malicious agents and
parties held accountable. This may explicitly include auditing and
supervisory bodies that make audits a regular event rather than a periodic
event.

Any approved blockchain network endorses the right to selectively
disclose transaction details depending on the blockchain network users’
identification. Typically, the identification is performed using asymmetric
cryptographic keys proven reliable and hard to compromise, given the
current status-quo of computational technologies. With this feature, some
degree of privacy may be gained in transactions. For example, it may be that
the blockchain documents that a transaction has taken place between two
blockchain network participants, but the specific substance of the
transactions is only available to the parties concerned.

Many approved blockchain networks enable all users to submit and
receive transactions (they are not anonymous or even pseudo-anonymous).
In these schemes, parties work together to pursue a shared market
procedure with inherent disincentives to commit fraud or even behave as
resource-constrained agents (because they can be identified). In unethical
conduct, it is merely a judicial process for breach of trust and unethical
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business practices. The blockchain system also holds proof of any malicious
activity within the systems.

4.8.2 Blockchain-based Consensus Models

A key feature of blockchain technology is identifying the consumer
algorithmically and verifying the identity while the consumer publishes the
next block. As seen in other distributed systems, this feature and limitation
are solved by implementing a consensus model. For permissionless
blockchain networks, several publishing nodes are typically competing
simultaneously to publish the next block. The competition in publishing the
next block arises due to two reasons. One being the computation overhead
as the block gets bigger, and the computation becomes complicated. The
second reason being the two competing systems mutually distrust each
other as they are identified only using their public address. The competition
arises from benefit for the self over the other publishing nodes” well-being
or even the network itself [94].

With the two reasons above and the two questions, the requirement for a
decentralized consensus model needs to be implemented with every
blockchain system. Why would a user propagate a block that another user
attempts to publish? Also, who solves conflicts when multiple nodes
publish approximately the same block? blockchain technologies use
consensus models to allow a community of mutually distrustful users to
work together within a single network and allow for the reliability of the
network health [94].

When a user joins a blockchain network, they accept the system’s initial
state. Usually, the initial state of the blockchain is called the genesis block.
It records the inception of the blockchain in a pre-configured block. Every
block that will be published as a reference to a previous block published
and validated by the consensus model before the block is publicly available
for further transactions. There is no reference to any previous block only
for the genesis block, and only one block in the whole of the blockchain
operation has such a block. This block is circulated to any node that will
join the network. Block parameters such as block size, frequency, and other
parameters required for the consensus are recorded in the genesis block.
Blockchain networks have a genesis block published.

Consequently, any block published must be added to the
blockchain-based on the accepted consensus model chronologically after the
genesis block. Regardless of the consensus model, each block must be valid
and validated independently by each blockchain user. Leveraging the initial
state and the ability to validate each block since the inception of the
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network, users can independently decide on the blockchain’s current state.
Notice that if two legitimate chains were ever introduced to a full node, the
default process in most blockchain networks is that the ‘longer’ chain is
regarded as the right one, and the transactions with the longest chain would
be adopted. This is because more resources were dedicated to creating the
blocks, and chronologically many events have been recorded compared to
the other chain. Such scenarios occur when there is a case of split-brain?
inconsistency in the blockchain consensus model is discussed in detail in
their respective algorithms [94]. The following are the summarized
properties of a consensus model before a blockchain system is instantiated:

¢ The initial state of the system is agreed upon (e.g., the genesis block).

* Users agree to the consensus model by which blocks are added to the
system.

¢ Every block is linked to the previous block by including the previous
block header’s hash digest (except for the first ‘genesis’ block, which has
no previous block and for which the hash of the previous block header is
usually set to all zeros).

¢ Users can verify every block independently.

Practically, in blockchain systems, the software handles everything, and users
do not need to be aware of the operational details of the blockchain system.
The main benefit of blockchain technology is that there is no need to share
the state of the system with a trusted third party — as every user within
the system has access to the blockchain network or can check the integrity
of the system. All nodes must reach a mutual agreement over time to add
a new block to the blockchain. However, some temporary disagreement is
possible due to various limitations in operating a computer network, but
the consensus models usually allow for such temporary disagreement. The
consensus model will work for permissionless blockchain networks even
in the presence of potentially malicious users as such users may attempt to
disrupt or take over the blockchain. Notice that legal solutions can be used
for approved blockchain networks when a user behaves maliciously [94].
Some level of trust between publishing nodes can exist in Permissioned
blockchain networks. When this is not the case, the need for a
resource-intensive model (computational overhead and operating cost) to
decide which member of the network can add the next block to the chain
might be necessary. Generally, as the confidence level increases, the need for
resources to measure trust generation decreases. For some Permissioned

2 Split-brain is a computer concept, based on a psychological Split-brain syndrome analogy.
This suggests data or availability anomalies arising from the management of two different
data sets with similarity in scope, either due to servers in a network configuration or a
server-based failure situation that does not interact and synchronize their data. This last
case is often widely called a network partition.
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blockchain implementations, the consensus view extends beyond ensuring
the blocks’ validity and authenticity but encompasses the entire system of
checks and validations from the transaction proposal to its final block
inclusion. Several consensus models and the most common approach to
conflict resolution are discussed in the entirety of the following sections. [94]

4.8.2.1 Proof-of-work Consensus Model

A user publishes the next block in the Proof-of-work (PoW) model by
becoming the first to solve a computationally intensive puzzle. The solution
to this problem is the “proof” that the nodes performed the computation.
The puzzle is built so that it is challenging to solve the puzzle, but it is easy
to verify whether a solution is correct. Such a computationally intensive
model allows the other complete nodes to quickly verify any proposed next
blocks and reject any proposed block that did not satisfy the puzzle. [94]

A standard method of creating the puzzles is to allow a block header’s
hash to be less than a target value. Publishing nodes make several small
changes to their block headers (e.g., changing the nonce), seeking to find a
hash digest that fits the requirement. The publishing node shall compute the
hash for the entire block header for each attempt. Sometimes hazing the block
header becomes a computationally intensive operation. Over time the goal
value can be adjusted to change the complexity (up or down) to determine
how often blocks are released. [94]

For example, Bitcoin, which uses the consensus model Proof-of-work,
increases the difficulty of the computation for solving the puzzle every 2016
blocks to influence the block’s publishing rate to be about once every ten
minutes. The change is made to the puzzle’s difficulty level, which increases
or decreases the necessary number of leading zeros. Approaches such as
this raise the puzzle’s complexity by increasing the number of leading zeros.
Each answer must be lower than the degree of difficulty — meaning fewer
potential solutions exist. It reduces the difficulty level by decreasing the
number of leading zeros. This modification is intended to preserve the
puzzle’s technical complexity and retain the Bitcoin network’s central
security mechanism. Over time, the computational power available
increases, as does the number of publishing nodes, so the puzzle complexity
usually increases. [94]

Adjustments to the difficulty goal aim to ensure that no individual can
take over the creation of blocks. As a result, the puzzle-solving computations
require significant consumption of resources such as energy and computers.
There is a move to add publishing nodes to areas where there is a surplus
supply of cheap electricity due to the substantial resource consumption of
blockchain networks that implement Proof-of-work consensus models. [94]



4.8 Blockchain Technology 135

A significant feature of this model is that the effort put into a puzzle does
not influence one’s likelihood of solving current or future puzzles because
the puzzles are independent. As the computational puzzles are independent,
it also means that a user receives a completed and valid block from another
user. Incentives are provided for users to discard their current work and
start building off the newly acquired block from another user; instead, other
publishing nodes will be building off it. [94]

The following is an example of the computational puzzle that is used
in the Proof-of-work consensus model, which was explained in [94]. As an
example, consider a puzzle where using the SHA-256 algorithm, a computer
must find a hash value meeting the following target criteria (known as the
difficulty level):

SHA256(“blockchain” + Nonce) = Hash Digest starting with “000000”

In this example, the text string “blockchain” is appended with a nonce
value, and then the hash digest is calculated. The nonce values used will
be numeric values only. This is a relatively easy puzzle to solve, and some
sample output follows: SHA256("blockchain(0”) = Oxbd4824d ... ... ab938 (not
solved)

SHA256(”blockchain1”) = Oxdb0b9cl... ... 3e0al (not solved)

SHA256(”blockchain10730895”) = 0x000000cal415e0bec... ...9d67587
(solved)

To solve this puzzle, it took 10,730,896 guesses (completed in 54 seconds
on relatively old hardware, starting at 0 and testing one value at a time).

In this example, each additional “leading zero” value increases the
difficulty. By increasing the target by one additional leading zero
(70000000”), the same hardware took 934,224,175 guesses to solve the
puzzle (completed in 1 hour, 18 minutes, 12 seconds):

SHA256("blockchain934224174”) = 0x0000000e2ae?... ... db3a81

There is currently no known workaround to this process to find the
appropriate nonce value for the target. Therefore, publishing nodes must
spend computational effort, time, and resources. Often, the nodes are
allowed to publish an attempt to solve this computationally difficult puzzle
to assert reward in the blockchain network. The reward is generally in the
form of a blockchain network cryptocurrency. The prospect of being
rewarded for extending and maintaining the blockchain is referred to as an
incentive model or reward system.

Once a publishing node has done the Proof-of-work consensus logic, they
send their block to full nodes within the blockchain network with a valid
nonce. The recipients” complete nodes check that the new block meets the
puzzle criteria, then adds them to their blockchain copy and resend the block
to their peer nodes. In this way, the new block can be spread rapidly across
the participating nodes in the blockchain network. The nonce verification is
simple, as only one hash is generated to test if it solves the puzzle. [94]
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Publishing nodes prefer to organize themselves into “pools” or
”collectives” in a Proof-of-work consensus model. They work together to
solve puzzles and share the reward for contributing to the Proof-of-work
consensus within a blockchain network. Such a model is made possible in
the Proof-of-work consensus model. The computationally intensive puzzles’
benefits can be spread between two or more nodes within a group of nodes
referred to as pools. Splitting the example program into quarters, each node
can take an equal amount of the nonce value range to test as described
in [94]:

¢ Node 1: check nonce 0000000000 to 0536870911
¢ Node 2: check nonce 0536870912 to 1073741823
¢ Node 3: check nonce 1073741824 to 1610612735
e Node 4: check nonce 1610612736 to 2147483647

The following result was the first to be found to solve the puzzle:
SHA256("blockchain1700876653") = 0x00000003ba55d20 ... ... cfl6d7f1

This is a completely new nonce, but still, one that solved the puzzle. It
took 90,263,918 guesses (completed in 10 minutes, 14 seconds) [94]. Dividing
up the work amongst many more machines yields much better results and
more consistent rewards in a Proof-of-work model. [94]

Using a computationally difficult puzzle helps combat the "Sybil Attack”-
a computer security attack where an attacker can build several nodes to gain
power and control. This form of attack is not only restricted to networks with
blockchains. The Proof-of-work consensus model combats this by making
the network effect, focusing on the sum of computational power combined
with a lottery system. The nodes with the most potent hardware increase the
chance but do not guarantee it. Finally, the Proof-of-work consensus model
combats network identities, which generally cost less to create. [94]

4.8.2.2 Proof-of-stake Consensus Model

The Proof-of-stake (PoS) model is based on the idea that the more stake a
user has invested in the system, the more likely they will want the system to
succeed, and the less likely they will want to overturn it. A stake is also a
sum of cryptocurrency that the blockchain network user has invested in the
system. The means of investment can consist of different methods, such as
locking it into a specific form of transaction, sending it to a particular
address, or keeping it in a specific wallet that can be publicly validated by
any other participating system. Once staked, it is generally impossible to
spend the cryptocurrency any more. Proof-of-stake blockchain networks
consider the amount of stake a user has committed as a critical parameter
for publishing new blocks. Thus, a blockchain network user’s probability of
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publishing a new block depends on the ratio of their committed stake into
the system versus the amount of the total staked cryptocurrency blockchain
network. [94]

As found in the Proof-of-work detailed in the earlier section, there is no
need to perform resource-intensive computations in the Proof-of-stake
consensus model. Intensive computations are computations that involve
time, energy, and processing power. As this consensus model requires fewer
resources than the Proof-of-work, some blockchain networks have opted to
forego a block development reward. Blockchain systems with such a
consensus model are designed to allocate all the cryptocurrency to users,
rather than creating new cryptocurrency at a constant rate, thereby
devaluing the cryptocurrency itself. The incentive for block publication in
these systems is usually the earning of the user’s transaction fees paid by
the user. [94]

Methods of how the stake uses the blockchain network may vary. We
address four approaches: random stakeholder collection, multi-round
elections, coin aging systems, and delegate systems. New blocks are more
likely to be published by users with more stake whatever the exact
approach is. If selecting a block publisher is a random choice (sometimes
referred to as chain-based stake proof), the blockchain network can look at
all stakeholder users and select between them based on their stake ratio to
the total amount of stakeholders cryptocurrency. So if a person had 42
percent of the overall stake in the blockchain network, they would be
selected 42 percent of the time; those with 1 percent would be selected 1
percent of the time. [94]

Complexity is added when choosing block publishers is a multi-round
voting system. This form of consensus model is called Byzantine fault
tolerance, Proof-of-stake [94, 95]. The blockchain network selects multiple
users staked to build proposed blocks. All the users staked will then cast a
vote for a proposed block. There could be several rounds of voting before a
new block is determined. This method helps all the staked users vote for
every new block in the block selection process. [94]

When the block publisher’s option for publishing into the blockchain
exists through the age of a coin system, then the consensus model is referred
to as a coin age Proof-of-stake. In this case, staked cryptocurrency has an
age property. After a certain amount of time (such as 30 days), the staked
cryptocurrency can count towards the owning user being selected to publish
the next block. Instead, the staked cryptocurrency has its age reset and cannot
be used again until the appropriate time has passed. This method helps
users with more stake to publish more blocks but not control the system —
because they have a cool-down timer attached to each cryptocurrency coin
counted against block formation. This cool-down timer helps in allowing
other participating systems a chance to publish blocks. Older coins and larger
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groupings of coins will increase the likelihood that the next block will be
issued. Traders can hoard aged cryptocurrencies to benefit from the systems
consensus model. To avoid such behaviour from the participating systems,
the probability of winning is usually set to a predefined limit. [94]

Once the selection of block publishers is performed through a delegate
method, users vote for nodes to become publishing nodes — thereby
generating blocks. The voting power of the nodes in the blockchain network
users depends on their committed stake. The stake that a user commits is
that the greater the stake, the higher the weight of the vote. Nodes that get
the most votes become publishing nodes and can validate blocks and
publish them. Blockchain network users may also vote against a publishing
node formed to exclude them from the publishing node group. Voting to
publish nodes is ongoing, and the remainder of a publishing node can be
quite competitive. The threat of losing the status of publishing nodes for
acting maliciously and the rewards and constant reputation encourages
publishing nodes not to act maliciously. Furthermore, members of the
blockchain network vote for delegates interested in blockchain governance.
Delegates will recommend updates and enhancements to be voted on by
members of the blockchain network. [94]

It is worth noting that some evidence of stake algorithms can give rise to
a problem known as “nothing on stake.” When a temporary ledger dispute
arises, i.e., if several competing blockchains were to occur at any stage, a
staked consumer might operate on any such competing chain. As mentioned
earlier, the action does not have consequences because they are considered
different blockchain systems where the users participate in either one of
the split chains. The consumer staked can do this as a way to improve his
chances of receiving a reward. It may allow multiple blockchain branches to
expand for extended periods without reconciling into a single branch. [94]

Under Proof-of-stake systems, the “rich” can easily stake more of the
digital assets, earning themselves more digital assets; however, to obtain the
majority of digital assets within a system to ”“control”, it is generally cost
prohibitive. [94]

4.8.2.3 Round Robin Consensus Model

Round Robin is a model of consensus that some approved blockchain
networks use. In this consensus model, nodes take turns in block formation.
The Round-robin model of consensus is well proven and widely used for
scheduling in a distributed systems architecture. One such example of a
distributed systems architecture is in load balancing application servers to
improve the distributed servers’ reliability. In scenarios where a publishing
node cannot publish its block during its turn, systems can have a time limit
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to allow accessible nodes to publish blocks so that inaccessible nodes do not
bring block publishing to a halt in the blockchain system. This model
ensures that one node does not create the majority of blocks. It benefits from
a straight-forward approach, lacks cryptographic puzzles, and needs low
computation and energy overhead. [94]

As trust among nodes is required and enforced using contractual means
by the consortium participants, round-robin does not work well in
permissionless blockchain networks. Most of the cryptocurrencies use
permissionless blockchain. Therefore, using a round-robin consensus model
in the cryptocurrency domain may not suit all its requirements. The
limitation in permissionless blockchain networks is that malicious nodes
could add additional nodes to increase their odds of publishing new blocks.
They may use this in the worst case to subvert the blockchain network’s
proper functioning. [94]

4.8.2.4 Proof of Authority/Proof of Identity Consensus Model

The consensus model called proof of authority (also referred to as proof of
identity) relies on the publishing nodes’ partial confidence through their
known link to real-world identities. Publishing nodes must have confirmed
and verifiable identities within the blockchain network ( e.g., identification of
documents checked and notarized and placed on the blockchain). The theory
is to publish new pieces. The publishing node stakes its identity/credibility.
Blockchain network users directly influence the credibility of a publishing
node based on the actions of the publishing node. Publishing nodes can lose
credibility by behaving in a way that the blockchain network users disagree
with, just as they can gain reputation by acting in a way that the users of
the blockchain network embrace. The lower the credibility, the less likely a
block will be written. Hence sustaining a good reputation is in the interest of
a publishing node. This algorithm only applies to approved high confidence
blockchain networks. [94]

4.8.2.5 Proof of Elapsed Time Consensus Model

In the proof of the elapsed time (PoET) consensus model, each publishing
node demands a waiting time inside their secure hardware time source until
it is determined to be ready for block publication. The stable time source for
the hardware will produce a random wait time and return it to the publishing
node’s program. Publishing nodes take their assigned random time and
remain idle for that random period. When a publishing node wakes up from
the idle mode, it generates and publishes a block to the blockchain network,
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alerting the new block’s information to the other nodes. Any publishing
node that does not have a block to publish is idle and can stop waiting to
follow the process with the new cycle start. [94]

This model involves ensuring that the participating nodes use a random
period. The random period is necessary because any malicious actor would
not predict the wait times of other systems. When a malicious agent in the
network can predict other nodes’ waiting times, it can dominate the system
by publishing blocks without allowing different systems to participate. The
PoET consensus model also needs to ensure that the publishing node
waited for the actual time and did not start early. Executing software in a
trusted execution environment found on some computer processors (such
as Intel’s Software Guard Extensions5, or AMD’s Platform Security
Processor6, or ARM’s TrustZone7) helps the software to adhere to these
strict requirements for the consensus models to perform. [94]

Execution within these stable environments where verified and
trustworthy software can run and can not be altered by external programs
even during runtime is critical for the PoET consensus model to function.
Any publishing node in the blockchain network would query the service in
a secure hardware environment for a random time. Followed by the query,
the software will wait for this time to pass. While the CPU is waiting for the
timeout to publish the next block, it can dedicate the resources to other
computational tasks. After waiting for the random time allotted, the
publishing node requests a signed certificate that the publishing node was
waiting for the randomly allocated time. The certificate is then released
along with the block by the publishing node. [94]

4.9 Decentralized Consensus Protocols

Blockchains are tamper-evident and tamper-resistant digital ledgers
implemented in a distributed manner ( i.e., without a central instance) and
usually without a central authority ( ie., a bank, corporation, or
government). At their basic level, they require a group of users to record
transactions within that group in a shared ledger [94]. That way, no
transaction can be modified once published under the regular operation of
the blockchain network. In 2008, to build modern cryptocurrencies, the
blockchain idea was combined with many other innovations and
computing concepts: decentralized cash secured by cryptographic processes
rather than a central repository or authority. The first such cryptocurrency
based blockchain was Bitcoin. [94]

Blockchain technology is the foundation of modern cryptocurrencies, so
named for the heavy use of cryptographic functions. Users use both public
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and private keys to sign and transact safely inside the system digitally. For
cryptocurrency based blockchain networks using mining (see Sec. 4.8.2.1),
users can solve puzzles using cryptographic hash functions in hopes of being
rewarded with a set cryptocurrency number [94]. Blockchain technology can,
however, be more commonly applicable than cryptocurrencies. In this work,
we focus on the use case of cryptocurrency, which is the primary use of
technology today; however, there is increasing interest in other sectors. [94]

Blockchain architecture is also designed for a particular purpose or
function. Example functions include cryptocurrencies, smart contracts
(software implemented on the blockchain and executed by computers
running the blockchain), and distributed ledger systems among companies.
There has been a constant flux of blockchain technology developments,
always announcing new platforms - the landscape is continually
changing [94]. In this work, we explore using blockchain at its bare
minimum to develop a byzantine fault-tolerant consensus for decentralized
systems. The consensus is used as part of a software stack developed as a
context broker for heterogeneous high-power, high data-rate systems. [94]

The use of blockchain technology is not a magic bullet. Some problems
need to be addressed, such as managing malicious users, how restrictions
are implemented, and the implementation limitations. Among the technical
problems that need to be tackled, organizational and governance concerns
impact the network’s behavior [94]. In this work, we meticulously explore
options for developing a decentralized consensus scheme for a context
broker. Since all of the context broker requirements are met, we choose to
develop a blockchain network that is suitable for this application.
Furthermore, blockchain is used only as a decentralized consensus system
developed and demonstrated in Sec. 4.11.2 and 4.11.3.

Industry 4.0 and the concept of socially networked industry define that
the entities in an industry are networked and can communicate with each
other to collaborate for performing tasks autonomously [75]. dezCom is an
architecture for decentralized communication and messaging. For a truly
decentralized industrial process, the communication between the entities
that take part in the process should also communicate in a decentralized
manner. Even though the execution algorithm is decentralized in nature, it
is not truly decentralized when running on a centralized communication
architecture, such as MQTT or Orion context broker. Therefore, the effort to
abstract the communication layer with a purely decentralized
communication framework is implemented and presented in the DezCom
communication stack. Decentralization using blockchain increases the
broker’s availability and increases the security of data in a trust-less
network. There are many implementations of decentralized robots based on
blockchain [76, 77]. DezCom contributes to developing a first-ever
decentralized industrial supply chain messaging system based on
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mining-less blockchain, emphasizing messaging using assets in a socially
networked industry. Such a stack also provides mitigation against a central
point of failure and emphasizes on edge computing. The following three
sections 4.9.1, 4.9.3, 49.2 study the three candidates for decentralized
consensus protocols developed as open-source software in various
blockchain networks. After evaluating the application problem fit, one of
the candidates is selected, and the DezCom system is designed with a
decentralized byzantine fault-tolerant consensus protocol.

4.9.1 Merkle tree

Merkle Trees are one of the reasons blockchain technology has managed to
be so successful today. It is the underlying concept for every blockchain
technology where the whole blockchain is not necessary to validate new
blocks. It helps form a hash tree that can be leveraged to easily associate
newly joining nodes with an extended network overhead to download the
whole blockchain [96]. Since every other block references the preceding
block, the blockchain becomes tamper-evident and resistant. In the rest of
this section, we will understand the functionality of the Merkle tree. [94]

A Merkle tree is also referred to as a hash tree. It is a tree of hashes® in
which the leaves are hashes of data blocks in a file or set of files. Nodes
further up in the tree are the hashes of their respective children. For example,
in the picture hash, 0 is the result of hashing the concatenation of hash 0-0
and hash 0-1. That is, hash 0 = hash( hash 0-0 || hash 0-1 ) where || denotes
concatenation [96, 97].

Most hash tree implementations are binary (two child nodes under each
node), but under each node, they can just as quickly have several more child
nodes. A cryptographic hash function like SHA-2 is typically used for the
hashing. If the hash tree needs to only protect against unintended damage,
unsecured checksums like CRCs can be used [97].

There is a top hash (or root hash or master hash) at the top of a hash tree.
In most cases, before downloading a file to a p2p network, the top hash is
acquired from a trusted source, such as a friend or a website known to have
good file recommendations to download. The hash tree can be received from
an untrusted source, just like any peer in the p2p network, when the top
hash is available. Then, the hash tree obtained is verified against the trusted
top hash, and if the hash tree is corrupted or false, another hash tree will be
tried from another source until the program finds one that matches the top
hash [96, 97].

3 an unidirectional function that transforms an arbitrarily sized data input into a unique,

fixed-size representation
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4.9.2 Tangle

In this section, we will discuss the innovative blockchain technology
developed with the IoT industry in focus. IOTA is a distributed ledger
technology that uses a different form of a graph compared to other
blockchain technologies. The most commonly used graph data structure is
the Merkle tree or hash tree. Here, IOTA uses a different kind of tree called
the Directed Acyclic Graph, as illustrated in Fig. 4.12. In search of mining
less or an effortless mining based distributed ledger system, we study the
benefits, functions, and features of IOTA. Blockchain network fees are not
easy to get rid of because they act as an incentive for block developers [98].
This leads to yet another problem with current cryptocurrency technology,
namely the system’s heterogeneous design [98]. The network consists of
two distinct classes of stakeholders, those who request transactions and
those who authorize transactions [98]. This system’s design forces inevitable
discrimination for some stakeholders, which creates conflicts that cause all
elements to spend resources on conflict resolution. [98]

Fig. 4.12 Visual representation of DAG-Based Tangle ledger [98]

IOTA is a cryptocurrency that implements the tangle based distributed
ledger algorithm. The network is composed of nodes; that is, nodes are
entities that issue transactions and verify them. The tangle’s core premise is
the following: Users will work to accept other transactions to be granted a
transaction in the distributed ledger. This concept of approving previously
available transactions to create new transactions is illustrated in Fig. 4.12.
Thus, users who issue a transaction contribute to the security of the network.
The nodes are presumed to test if the authorized transactions do not conflict.
If a node considers that a transaction conflicts with the tangle history, either
directly or indirectly, the node does not approve the transaction in
dispute [99]. Even though tangle cannot be used as a consensus platform, to
a certain degree, the nodes agree on the transactions which provide
consensus. One of the drawbacks is that the blockchain database is not
global. Instead, there is a Directed Acyclic Graph (DAG) called the tangle,
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where the tips of the transactions are growing in all directions. The growth
of the DAG tree, i.e., the tangle blockchain, depends on the nodes proposing
the transactions. [98]

The transactions are stored in the site* set of the tangle ledger. The
tangle’s edge set is obtained in the following way: when a new transaction
arrives, it must approve two previous transactions. Approving two
previous transactions is the simplest approach. However, there are also
similar systems where transactions must approve k other transactions for a
general k>2, or have an entirely different set of rules. Directed edges
represent these approvals. If there is no directed edge between transaction A
and transaction B, but there is a directed path of length of at least two paths
from A to B, we say that A indirectly approves B [98, 100]. There is also the
“genesis” transaction, which is accepted by all other transactions either
directly or indirectly. The genesis here is defined as follows. There was an
address at the beginning of the tangle, with a balance that included all the
tokens. Such tokens were sent to many other “founders” addresses by the
genesis transaction. Let us emphasize that the genesis transaction produced
all of the tokens. No tokens will be produced in the future, and no mining
will occur in the sense that miners earn monetary rewards “out of thin
air.” [98, 100]

When a transaction earns more approvals, it is approved with a higher
degree of trust by the network. In other words, a double-spending
transaction would be difficult to get the system to accept. It is important to
remember that there are no enforced rules on selecting which transactions a
node approves. Instead of that, if many nodes follow some “reference” rule,
then it is better to stick to a rule of the same kind for any fixed node. This
seems to be a rational assumption, especially in the sense of IoT, where
nodes are specialized chips with firmware pre-installed [98]. In order to
issue a transaction, a node does the following;:

* The node chooses two other transactions to approve according to an algo-
rithm [98]. In general, these two transactions may coincide.

* The node checks if the two transactions are not conflicting, and does not
approve conflicting transactions [98].

e For a node to issue a valid transaction, the node must solve a
cryptographic puzzle similar to those in the Bitcoin blockchain. This is
achieved by finding a nonce such that the hash of that nonce
concatenated with some data from the approved transaction has a
particular form [98]. In the Bitcoin protocol, the hash must have at least a
predefined number of leading zeros [98].

With this understanding of creating transactions and approving other trans-
actions, we can clearly understand that the blockchain is asynchronous. This

4 sites are transactions represented on the tangle graph
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also means that valid transactions created and validated by part of the sys-
tem are not known to the rest of the system at any given point in time. Even
though it saves memory and propagates the network to generate more trans-
actions with less overhead, at any point in time, all nodes in the network do
not agree to all transactions in the system. [98]

The IOTA cryptocurrency and tangle are an excellent solution for
applying blockchain applications on low-power, low-data rate systems.
There are certain limitations on the types of systems that are capable of
creating signed transactions. Certain micro-computers are not capable of
approving transactions due to constraints on their computing resources or
energy. [98]

4.9.3 Tendermint

Tendermint uses hash-linked batches of transactions to provide Byzantine
fault-tolerant state machine replication. These batches of transactions are
called blocks. Therefore, Tendermint can be described as a blockchain
application with a decentralized byzantine fault-tolerant consensus. [101]

Every Tendermint block has an unique index. The index is referred to as
Height. In the blockchain, Height is monotonic. A known set of weighted
validators commits each block. In this validator collection, membership and
weighting can change over time. Tendermint guarantees the blockchain’s
protection and liveliness as long as less than 1/3 of the Validator set’s total
weight is malicious or faulty. [101]

A Tendermint commit is a compilation of signed messages of more than
2/3 of the current Validator set’s total weight. Validators each take a turn to
propose and vote on those proposed blocks. The block is deemed committed
to the blockchain database until appropriate votes are issued. These votes
are used as proof that the previous block was committed. In the next block,
transactions can not be included in the current block because that block has
already been formed. [101]

Once a block has been committed, it can run against an application. For
every transaction in the block, the application returns results. The application
will also be able to return changes to the validator set and a cryptographic
digest of its current state. [101, 102]

Tendermint is designed to verify and authenticate the current state of the
blockchain efficiently. To this end, it integrates cryptographic commitments
in the block "header” as metadata. Such information contains the block
headers ( e.g., transactions), the block committing validator set, as well as
the different results the client produces. Nevertheless, note that the block
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execution happens only after a block has been committed. Therefore, the
results of the application can be included only in the next round. [101]

Also, note that the transaction results and the validator set are never
included explicitly in the block. Only its cryptographic digests (Merkle
roots) are included in the block. Hence, verification of a block requires a
separate data structure to store this information. This data structure is called
the State in Tendermint. Block verification also requires access to the
previous block. [101, 102]

Tendermint is broadly akin to two software categories [101]. The first
category consists of distributed key-value stores, such as Zookeeper and
consul store, which use consensus rather than BFT [101]. The second
category is known as ”“blockchain technology”, which comprises both
cryptocurrencies such as Bitcoin, Ethereum and alternative distributed
ledger implementations such as Burrow from Hyperledger [101].

The Tendermint Core (the “consensus engine”) connects with the
application through a socket protocol that meets ABCI requirements.
Tendermint can decompose the blockchain architecture by providing a
straightforward API (i.e., the ABCI) between the implementation and the
process of consensus [102]. The ABCI consists of three primary message
types, which are delivered to the application from the core. The program
responds with messages with corresponding responses [102]. One program
can have multiple ABCI socket connections. Tendermint Core provides
three ABCI links to the application; one to validate transactions while
broadcasting in the mempool®, one to block proposals on the consensus
engine, and one more to query the application state. It is apparent that
application designers need to design their message handlers very carefully
to create a blockchain that does something useful, but this framework
provides a starting point [101, 102].

4.10 DezCom: A Decentralized Context Broker

Due to the nature of the consensus protocol and the analogous features
widely used in distributed systems, Tendermint is selected as the
prospective candidate for developing the DezCom context broker.
Tendermint also provides an API that communicates using a web socket.
Such an interface to the ABCI allows for any user program written in any
language to openly integrate into the blockchain without considering the
consensus and blockchain [102]. The context broker does not necessarily

5 A mempool (a contraction of memory and pool) is a cryptocurrency node’s mechanism
for storing unconfirmed transactions. It acts as a sort of waiting room for transactions that
have not yet been included in a block.
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require a blockchain but needs to be decentralized with certain security
features to safely run industrial applications. In Sec. 4.7, we systematically
explore features of blockchain provided by Yaga et al. [94] as a guide to
evaluating whether blockchain is the right software component for the
application that is being developed.

In the following Sec. 4.10.1, a system architecture is proposed, including
the decentralized consensus provided by Tendermint. Followed by the
system architecture, the proposed architecture is implemented in Sec. 4.11,
where a use case is introduced that is suitable for exploring the features of
such a decentralized context broker. The implementation and the results
follow the use case discussed in this section.

4.10.1 Systems architecture

PEX

Ready
for msgs

genesis
peers

Communication Interface

Mempool (MongoDB) Deliver

Check
TXs

Consensus (Tendermint)

Context
transfer

Nodes
notified

Message bus (web-socket)

Commit
Valid TX

Fig. 4.13 State machine of the DezCom stack with messaging steps [56]

The implemented decentralized context broker which is comprised of
three main layers is shown in Fig. 4.14 (left) with a decentralized consensus
protocol Tendermint. These layers are a modular black-box style
implementation to keep the flexibility on the consensus protocol and it
seamlessly weaves into the networking stack of the deployed system. The
stack has a communication interface, which is initially implemented with the
well-known TCP/IP stack with IP networking. This communication
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interface can be changed, but the basic services such as reachable,
addressable nodes with functions for discovery need to be provided [56].
Any low-power wireless sensor network with a 6LoWPAN networking
stack can also be used to run this context broker if required computations
resources are available. Even though 6LoWPAN based low bandwidth
networking can be used as a communication interface, there are specific
minimum requirements in terms of the computational resources. The few
computational resources that do not comply with implementing this system
for signing the transactions might not be suitable for deploying the context
broker in low-power, low data-rate systems. A memory pool or mempool is
used to store all the incoming transactions (UTXO) through the
communication interface. The mempool is also where the data is stored after
consensus. It can be compared to MongoDB in FIWARE; the mempool is
also implemented using MongoDB in the networking stack. This is where
the unresolved data is stored before being validated by the consensus
protocol. The consensus protocol is also replaceable, where any
decentralized consensus algorithm can be used. In this reference
implementation, Tendermint is used for the byzantine fault-tolerant nature
of consensus and the mining-less blockchain protocol [101]. Another reason
to use this blockchain-based consensus is that there is no mining required in
the Tendermint protocol [103] [56].

There is a socket interface where the events of the consensus protocol
are triggered by the message bus, which interfaces with the application to
perform CREATE, UPDATE transactions as wells as to query time series data.
Since the consensus is ledger-based, there is no DELETE operation. Instead,
an update operation should be made on the data to deem it invalid, or in
a context broker case, the process state needs to be changed to completed
to mark the end of a process [56]. In Fig. 4.14, the consensus protocol of
Tendermint is shown in simplified steps as used in the DezCom framework.
Nodes connected to a particular node are called peer nodes in the P2P network
where P2P network discovery happens using the Peer Exchange protocol
(PEX) as used in the bit-torrent networks. In industrial mobile robots, all the
field robots are connected to the FMS as peers. At the same time, the WMS
connects to low-level hardware such as the PhyNodes[10] using an edge
router as a client, which is Raspberry-PI based. Any system with necessary
hardware requirements can host a node for consensus or connect to a node
using the API interface.

The decentralized consensus happens in multiple rounds, where the pro-
cess in deciding on the next block (at some height H) is composed of one or
many rounds[101]. NewHeight, Propose, Prevote, Precommit, and Commit
are the states/steps (S) in a state machine of every round (R) [101]. At each
height of the blockchain a round-based protocol is run to determine the next
block which is depicted in Fig. 4.14. Each round is composed of three steps,
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as shown in Fig. 4.14, Propose, Prevote, and Precommit, along with two spe-
cial steps, Commit, and NewHeight. Valid transactions become available on
the message bus after the Commit step is completed. In the optimal scenario,
the order of steps is NewHeight to (Propose —>Prevote —>Precommit) to
Commit to a new height, and so it goes on [101] [56].

Logistics applications are interfaced using the message bus as an
application interface, where the ABCI of Tendermint is implemented.
Events and REST API are the two ways to communicate with the
Tendermint protocol. There are 15 events available from the web socket, of
which the valid transactions are most important for the context broker. The

Txresult

StateRoot

L e

BeginBlock
DeliverTX

EndBlock
commit

Fig. 4.14 Tendermint [101] consensus protocol as used in DezCom [56]

DeliverTX message is where each transaction in the blockchain is delivered
with the message to be verified to all the connected peers as validators [101].
A validated transaction needs to update the application state — by binding
a value into a key-value store or updating the UTXO database. The CheckTx
message is similar to DeliverTx, but it is only for validating
transactions [101]. The Commit message is used to compute a cryptographic
commitment to the current application state to be placed into the next block
header. This simplifies the development of secure, lightweight applications,
as Merkle-hash proofs can be verified by checking against the block hash,
and that a quorum [101] signs the block hash. From a context broker
perspective, assets and the payload the assets carry are more critical, and
integrity checks can be made by checking against the block hash. In this
context broker, an assets-based communication model is preferred over a
topic-based communication. The reason for such a communication model is
detailed in Sec. 4.11.1 using an example from the automotive manufacturing
industry [56].
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4.11 Implementation of DezCom

In this section, a use case is defined where heterogeneous systems are
connected to DezCom. A 6 node testnet DezCom stack is deployed, and the
results are analyzed for the framework, which is presented in the following
sections.

4.11.1 Use case

The life cycle of customized product manufacturing tracked through the
whole supply chain with support for various business services, the goal of a
socially networked industry [75], is the use case. The use case takes the
challenge of connecting flexible production stations in a decentralized
approach, as defined in SMARTFACE [104]. The messaging approach is
addressed using assets, i.e., the products in the production instead of
production stations directly or topics as in a publish-subscribe model. For
example, consider a customized pre-order system of electric vehicles using a
web-interface. When an order is placed, an asset is created in the DezCom
network. This created asset is then transferred between workstations with
respective messages that every production station can carry out their
physical transformation to the manufactured product. By the end of the
production, every message pertaining to the asset’s production is recorded
in the blockchain [56].

4.11.2 Stack implementation

The DezCom testnet network is deployed with cloud servers in 4 major
cities and two local instances in a logistics scenario. The cloud servers acted
as validators in the experiment implementation infrastructure. The local
nodes ran an instance of Tendermint and connected to the cloud servers
using the PEX protocol. Nodes that need to communicate using DezCom
hosted a Tendermint instance and communicated to the local instance.
Nodes that did not meet the minimum requirements for running a
Tendermint instance (e.g. RPi) were using the REST API interface to connect
to local instances. The messaging is relayed to other servers using
Tendermint after the transaction is committed to the blockchain. An asset is
used as a messaging topic in DezCom where an asset is initialized using a
CREATE transaction in the blockchain. The created asset is issued with a
unique hash ID, and it is recorded in the blockchain as a transaction. The
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assets can be queried using this hash ID from the blockchain. The data
model for communication is not in this experiment; here, we try to evaluate
DezCom as a reliable context broker where messages with a constant
payload size are sent around for testing purposes. Topics play an essential
role in providing context to the messages. In contrast to topics for context
messaging, when using assets-based context management, the asset can be
reassigned to a different process step due to the possibility of collaborative
machines. When such reassignment is performed, the asset with the
information available dictates the decision of movement within the
handling facility rather than a process manager service that controls the
actions of the mobile robots. Therefore, if any node in the network was to be
lost, the consensus did not grind to a halt. Lost nodes were not able to
perform the necessary transactions to the asset, which triggers another
station. The measurements were made on this deployed testnet, and their
results are discussed in the following Sec. 4.11.3.

4.11.3 Results

20

6,75

et
w

Delay (second)

~
N
&

100 msgs

W1.NYC

2.LON [Hl3.LOCAL

15
I

Delay (second)

W5 AvS 6. MQTT

NYC

LON

LOCAL

BLR

AMS

MQTT

Fig. 4.15 Comparing message reception at various locations with MQTT, box plot with
maximum delay over all trails [56]

Performance measurement was creaated between MQTT and DezCom
where 100, 1000, and 10,000 messages were sent with 4 cloud servers acting
as validators for DezCom. Each testnet server has a 2x vCPU and 2GB of
RAM hosted in 4 data centers in New York City (NYC), London (LON),
Amsterdam (AMS), and Bangalore (BLR) for location transparency. The
local instances were run on an actual robot that otherwise ran the MQTT
client during operational tests for industrial scenario validations. The
results, as plotted in Fig. 4.15 show that the context broker has constant



152 4 DezCom: High-power, High Data-rate Systems

delay comparing the runs between 100 and 1000 messages. This delay was
because of the decentralized consensus process before the messages were
delivered. MQTT outperforms at a run where 100 messages were sent.
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Fig. 4.16 Resource usage for cloud servers with Tendermint consensus [56]

During the trial run with 1000 messages, where MQTT performance
decreases, DezCom has the same performance as 100, which was due to the
availability of messages committed into a single block. Another trial was
run with 10,000 messages where DezCom performed as good as MQTT.
MQTT stalled when a run with 100,000 messages was executed. Whereas
the DezCom local instance crashed due to inconsistencies in the socket
interface driver of ABCI, the validators were not overloaded during the
100,000 request run, which can be inferred from the cloud service providers’
data 4.16. The average time for preparing and sending the message is 18 ms.
This was measured at every test and averaged throughout the tests. This
number depends on the hardware where the messages were signed with the
cryptographic keys. In this case, robots running ROS on a 4 core and 8 GB
RAM processors were used.

4.12 Conclusion

Decentral systems are fundamental building blocks for self-organizing,
collaborating machines. In the case of a socially networked industry, where
the field systems and the business logic have to organize themselves in a
network and function collaboratively, truly decentral systems are required.
To build truly decentralized industrial applications, DezCom, a
decentralized context broker was conceptualized as a communication
framework [56]. The implemented communication stack was deployed in a
robotics application for goods-to-person picking scenarios where the FMS,
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WMS, and the robots communicate using DezCom by transactions on the
blockchain [56]. These transactions are triggered as events, and every task is
completed in stages by acknowledging that every stage is made as an
update transaction to the data. This proof-of-concept implementation is for
partners to organize in a network and communicate in a socially networked
industry. The implementation has no single point of failure and almost no
bottlenecks in scaling [56]. These features were demonstrated with
requirements such as location transparency, N-way scaling, and fault
tolerance, which were not existing in centralized brokers. A feature to
prioritize the set of validators for specific assets and transactions improves
inherent latency due to the geographically collocated nodes with varying
round trip times. The validator preference set as a field on the transaction
asset data structure is suggested for future releases. The validator
preference setting will create and validate the transactions that are also
physically responsible stations in the production/warehousing facility.
Additionally, a consortium based server that can provide secondary support
on validating the transactions is suggested for production deployment.
Moreover, the ABCI currently used for the proof-of-concept was a
Tendermint testnet in the future DezCom release, where transactions should
be possible between two or more Tendermint blockchains. Interoperation of
Tendermint chains will provide a proper trust-less integration between
networks, i.e., industries in the supply chain. Finally, to use this
decentralized messaging system, semantics for the transaction must be
developed to generalize the process stages between participating entities
using process interpretation techniques. The model is validated before
propagating transactions into the chain.

Notes on production deployment: A load-balancer can proxy the connections
between the cloud servers, which reduces any direct load to a specific server.
The cloud servers for tests were deployed with an SSL terminated Nginx web-
server running on an Ubuntu server. PEX protocol will gossip about the other
server locations within Tendermint [56]. Therefore, one common address
with the genesis file should be copied to all the node instances and allowed
enough time to synchronize with the blockchain. In the case of an industrial
implementation throughout the supply chain, every location should host a
validator node to improve the stability in messaging and reduce the context
broker’s geographic dependency.






Chapter 5
Designing Decentralized Systems

Decentralization is the process of dispersing power away from a
central authority.

In this chapter, three use cases are evaluated, for which the proposed
solutions are suitable. A part of the proposed solution was deployed in a
similar environment to evaluate the use cases and the requirements of
implementing such a system. The three use cases are detailed in the
following two sections 5.1, 5.2 and 5.3. Sec. 5.1 explores the use case of space
applications with the help of TESSERAE. Sec. 5.2 explores the use case of
logistics and distributed robotics where the benefits of decentralization are
also described. In Sec. 5.3, the use case of deploying both the decentralized
communication systems developed as a single system is discussed. This use
case is where specific applications do not require decentralization at the
lowest levels, but the edge nodes need to be resilient and always available.
Beyond being always available and ready for communication, it is also
necessary for such systems to agree with the system’s global state.

The last Sec. 5.4 in this chapter details the best practices and the design
requirements that will fit a system design to evolve from a centralized or a
distributed network into decentralized networks.

5.1 Space Applications

The TESSERAE self-assembling space structures project [105, 106] is one of
the examples of an in-orbit, collective maneuver space system necessitating
distributed shared-state awareness among self-assembling nodes (Fig. 5.1).
Each tile that comprises the geodesic dome shell structure is augmented
with a sensor node that participates as part of a decentralized sensor
network. While initial work focused on the use of the BLE standard for
star-topology or mesh-based communication between tiles, we are now
exploring the use of the communication architecture described below to
share IMU data, physical and system state information between tiles. This

155
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will be used to actuate many electromagnetic interactions in parallel as
LIDAR-based sensing indicates that tiles are approaching one another
during the structures’ distributed assembly process [105, 106]. Although
most close-range distributed spacecraft protocols may assume that all
others can hear each radio, there are scenarios where the large tiles may
shield reception from others, necessitating networked operations. Here the
communication system developed reduces the probability of shielding as
the synchronous broadcast forms a fully connected, routing-less multi-hop
mesh network.

sensor node with
communication module

1 i fully assembled state
tiles

permanent magnets

Fig. 5.1 TESSERAE prototype with the sensor node [105, 106]

Data consensus must be achieved to ensure an optimized use of the elec-
tromagnets and keep the power budget to a minimum while tiles are assem-
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bling into the final structural shell. In this context, we are exploring five pa-
rameters described in more detail below:

Aggregate functions for duplication-sensitive holistic data representation
across nodes.

Network-wide Agreement for state-awareness (notably proximity) among
neighbor nodes.

Atomic broadcast for iterative, two-way propagation of state between a
leader node and client nodes.

Reliable Data Dissemination for detecting packet loss and addressing loss
recovery.

Modular Communication Patterns allowing for flexibility in the communica-
tion topology and protocol being used (star, mesh, one-to-many, one-to-all,
all-to-all etc.) along with 6LoWPAN or BLE.

For self-assembly in space, the networking application should provide
ad-hoc capabilities, where a new network is created and allows all other
nodes in the vicinity to join the network. When a node is faulty or leaves the
network due to an event that was not planned, these events must be
mitigated by self-healing capabilities. In the case of TESSERAE, swarm
behavior is transient during assembly. Therefore, nodes require low latency
data dissemination as well as adaptive replication strategies during
interaction to enable precise control of interacting elements or guarantees in
information propagation [55].

TESSERAE as a use case for the concept of Decentralized Brains presented
here, the functional stages of assembly as illustrated in Fig. 5.2 can be seen
from the networking perspective [55]. The first tile that is deployed or turned
on will become the inherent leader starting broadcasts and waiting for nodes
to discover [55]. At this stage of assembly, the broadcast round consists of
the state from the leader node [55]. As the tiles are deployed and reach the
free floating state, they discover the network and start receiving the shared
states from the leader [55]. As per the requirements of TESSERAE [106], the
required broadcast is 22 bytes sensor data transfer; here a reliable data-rate of
124 bytes per replication round, excluding the physical layer header and the
replication header, is available [55]. The data-rate is increased by decoupling
the meta-data and serialization information for data replication using the
message type bit in the CMD field; this maximizes the data replication since
the same data structure persists with consistency more frequently than the
changes to the information itself in collaborative control maneuvers [55].

In addition to the TESSERAE self-assembly swarm, we note an
applicability for this work to other space applications, such as a space-fed
phased array antenna swarm. Here, each element of the array is free to roam
within a certain area, while compensating for position error via selectively
delaying and amplifying signals to generate a coherent radio signal [107].
The communication architecture should facilitate relative position tracking
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between swarm elements and the necessary variable-delay updating and
re-synchronization of timing between emitters to achieve coherently
cooperating RF elements [55]. This is in contrast to a fixed-array antenna,
where elements are held rigidly along a plane and can use a standard delay
based on fixed positions along the antenna element line [55].

In large-scale, low-power networks, the Decentralized Brains concept is
achieved using data replication with variably participating nodes,
controlled by the cluster-differentiate setting in the CMD field of the payload.
If the nodes are spatially displaced, the range can be extended up to 1 km at
direct line-of-sight per hop due to the limitations in the physical layer as
well as the modulation used in Sub-1 GHz band to comply with IEEE
802.15.4 standard. Furthermore, when there are multiple nodes that are
performing precision control for assembly, where the leader is not involved,
the concept of Decentralized Brains is leveraged wusing the
cluster-differentiate setting. A new brain is initialized using the 6LoWPAN
network among the nodes that need to perform control in precise manner,
thus decreasing the number of hops and also reducing the latency while
propagating the states to the participating nodes in <3 ms.
Cluster-differentiate setting is designed to handle up to 16 different leaders
where the nodes can choose to participate in data replication. The rate at
which data is replicated can be set up by the leader node, allowing for use
case dependent frequency in data replication (i.e., the whole system is
updated with its slow-changing state of assembly less-frequently than the
updates required for quick, precise control between the interacting entities).
This provides a guarantee in communication, which is critical for precise
control, as well as modular communication such as point-to-point. Another
use case of a cluster-differentiate setting is to selectively pick which nodes
participate in the synchronous broadcast depending on their location to
propagate the message for a spatially focused information penetration. For
TESSERAE, a combination of RF (far) and LIDAR (near) ranging will be
used for location determination, enabling tile proximity to be the trigger for
activation of the multi-hop replication between tiles.

The border router with IPv6 adds the feasibility for communicating, to
entities outside the network, trigger events such as end of successful assembly
to a remote station. In the case of a sparse antenna array in space, on top of
data replication, the accuracy in time synchronization can be used to trigger
coherent beam forming. Given a 3 ms time delay for replication across
nodes, we propose that this communication architecture could be used to
share multi-part swarm position information throughout the network in an
efficient manner [55]. Further study is necessary to determine whether this
delay is low enough to support dynamically updating the phase shift
required for coherent beam forming, in real time, with changing element
positions (assuming a comparatively slow relative position change between
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g _
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Fig. 5.2 Shipped Flat— Free Floating— TESSERAE Assembly—Mosaic Constellation of
multiple TESSERAE [105, 106]

elements of the array) [55]. The accuracy of time synchronization can be
scaled to higher resolutions by increasing the operating clock frequency [61]
with an accompanying energy consumption strain on the order of few mA.
Note that stability in spacecraft assembly control will impose strict limits on
allowable propagation delays that the network will need to accommodate.

5.2 Distributed Robotics

In the context of distributed robotics, DezCom — a decentralized context
broker is proposed as a solution for the decentralization of logistics robots.
Each robot is a node that communicates with a central server, a fleet
manager in the current approach. The fleet manager maintains the context
and communicates with each robot to facilitate coordination in the field. The
fleet manager performs task planning as a primary task, but it is not limited
to this function. It also performs other functions of coordination in context
to multi-robot systems. In multi-robot systems, each robot performs tasks,
where each task is allocated by the fleet manager centrally, and the robot
performs the tasks independent of the fleet. There 1is no
inter-communication enabled between the robots even though technology
provides the possibility for communication. Using a decentralized context
broker, the fleet manager is still a service in the network coordinating the
task allocation. Nevertheless, the intelligence of motion planning and traffic
planning can be abstracted to the robots. As proposed, the context broker
allows for seamless communication among all the nodes in the network.
When the fleet manager is not communicating with the robots, the robots
can still organize themselves as a fleet to execute the pending tasks
allocated by the fleet manager. The central dependency of an active fleet
manager controlling the robots is reduced by decentralizing the
communication where the robots can communicate and organize
themselves. The fleet manager becomes a service in the network which
allocates tasks and plans supplementary process logic for the robots. The
robots can work with or without the fleet manager as the fleet’s context is
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communicated using the decentralized context broker. The history of the
messages and the context of the processes persist in the broker’s mempool,
which allows the robots to query for required information about the process.
When there are other integrative services for process optimization that need
to be implemented, the integration becomes modular. Modularity is
achieved due to the standard message bus interface provided by the
decentralized context broker for the optimization service to query for the
necessary information. Decentralization of services increases the
communication overhead; therefore, it is necessary to choose the design
guidelines where the decentralized context broker’s features can be
leveraged. With a centralized context broker such as MQTT, hyper scaling
will overwhelm the communication resources available for service as nodes
in the network require MQTT to execute tasks. With the decentralized
context broker, the communication resources are localized. Every new node
contributes to scaling and the robustness of the network with properties
such as a distributed ledger, decentralized consensus, self-healing, and
self-organization of the nodes. When a critical service such as a fleet
manager is not available, the context broker provides the nodes with the
certainty that the fleet manager is unavailable, which allows for
deterministic monitoring and maintenance of the network. The design
choices and requirements for a decentralized network in terms of
high-power, high data-rate systems are discussed in Sec. 5.4

5.3 IoT Applications for Logistics

At an end to end IoT application, the decentralization of systems requires
low-power low data-rate systems and high data-rate systems. The two
types of systems are for the end nodes or low-power devices deployed in
the field for reporting or monitoring physical parameters. The edge nodes
or the cloud servers that run diverse business logic require coordination
using a context broker. Here, the culmination of both the proposed solutions
can be seen. Moreover, the requirements may not require all of the proposed
solutions. The Sensor Floor as an application itself requires such a hybrid
solution where 23 nodes collect information from 15 nodes each. In this case,
a data aggregation platform is required where the data needs to be stored in
chronological order as acquired from the low-power nodes.

In some instances, the end nodes do not require coordination with the
other end nodes, where decentralization only incurs communication
overhead. In most logistics use cases, the context broker provides the
required decentralization in the edge network. The access points and edge
routers are deployed out in the open. A trust-less network where any node
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can join, organize, and communicate reduces the overhead of securing the
assets and increases efficiency and scaling.

5.4 Design Guidelines

The minimum requirement of a decentralized network depends on the
number of nodes and the scope of scalability. The scenario of the business
logic and the dynamics of the system is the deciding factor for deploying
decentralized networks in low-power, low data-rate systems. In high-power
high data-rate systems, the proposed solutions’ modularity allows for
upgrading the communication layer to a decentralized network. Therefore,
if the application logic allows for decentralization, then the number of
participating nodes becomes the deciding factor for decentralized
networking. Decentralization is vital in a highly dynamic system where
there are multi-vendors and heterogeneous participants in the network.
Trust and security are a concern for maintaining hyper-scalable industrial
networks, but the organization and information transparency are critical
factors that require decentralization. When it comes to decentralizing
applications and systems communication in an open network or a trustless
network where multiple parties participate in a network, blockchain-based
applications prove to be the best fit. To apply blockchain as part of a
decentralized application, one can easily follow the flowchart, as shown in
Fig. 53 to understand if a subset of the features provided by
blockchain-based solutions fit well for the requirements of the application to
be developed.

In low data-rate systems, the necessity of decentralization might be
required, but the system constraints might not allow for a truly
decentralized application development approach. In such cases, edge
routers can be deployed, which provide the necessary abstraction for
decentralization, as seen in the centralized energy-neutral IoT testbed
PhyNetLab. In this application, the nodes are centralized and communicate
to one router. Still, these routers agree with a highly available,
time-synchronized network that allows the nodes to be highly mobile and
use the same amount of energy for communicating to its nearest edge router.
During the design phase, the edge routers were implemented with a
Hazelcast in-memory database, which allowed for synchronizing all the
data structures necessary for the nodes” operation. These hybrid solutions
are most viable in many cases as a truly decentralized system may be the
right candidate for the application development approach—still, the system
constraints introduce challenges such as memory and energy-intensive
applications.
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Fig. 5.3 A guide to application of blockchain as a solution to a problem [94].



Chapter 6
Conclusion

In this research, a holistic approach for developing a decentralized
communication in Industry 4.0 systems has been proposed, developed, and
deployed in industrial use cases. This chapter has three-sections, where
Sec. 6.1 summarizes the proposal and the development in terms of the two
system types. The outlook of the developed systems and the industrial
viability of the developed solutions are discussed in Sec. 6.2. In the final
Sec. 6.3, essential questions to pursue for the future and research notes for
further extension of the developed solutions are discussed.

6.1 Summary

Decentralization of systems communication was the goal of this research,
which gave rise to systems classification depending on communication
constraints and available energy. The two systems were low-power, low
data-rate systems, and high-power, high data-rate systems for which two
solutions were proposed, developed, and evaluated for each of the systems.
For the development of the Decentralized Brains, a network flooding
primitive was developed to use the shared medium efficiently. It gave rise
to a new method of deploying decentralized networks in low-power low
data-rate systems. Several use cases required such a communication
paradigm for collaborative sensing and self-assembly maneuvers. The
proposed solution is developed from a logistics system’s perspective and
requirements, but its features are not limited only to logistics. In Sec. 5.1, the
application of the concept of Decentralized Brains was explored, and specific
concepts were developed, deployed, and tested in zero-gravity experiments.
The communication primitive was tested with 345 nodes in the Sensor Floor,
for developing the experiments, an open-source software framework was
chosen called the Contiki-OS. The developed communication primitives are
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developed as extensions for the Contiki-OS to choose the necessary
communication primitives depending on the scenario selectively. The
codebase for the developed Contiki-OS extensions are made available in the
code repository available at https://www.github.com/akrv/deBr

The industrial data networks with high-power, high data-rate systems
also require decentralization for robust functioning. Decentralization also
helps to reduce bottlenecks due to system unavailability or network
unavailability. The developed solution called the DezCom is a decentralized
context broker. The context broker functions as a middleware between the
communicating systems, providing consensus for the sent data, and
providing a secure communication bus where trust-less systems can also
participate in collaborative actions in an industrial scenario. A
blockchain-based system is designed and developed for testing with a
multi-robot industrial environment. Various approaches were explored to
identify the prospective candidates for the development of the DezCom
context broker. The system was deployed globally in data centers, and the
data was published and subscribed to within the research facility to
demonstrate the global availability of the developed solution. The proposed
solution outperforms the most commonly used context broker in some
instances where MQTT reaches its operational limits due to its design.
However, in some cases, due to the simplicity of the MQTT’s design, it
outperforms the proposed solutions. These cases are not as critical as the
developed system is targeted for hyper-scalable, mMTC, which is a
requirement for developing Industry 4.0 applications. Therefore, in
chapter 5, various use cases for the Decentralized Brains and DezCom context
broker are discussed, finally summarizing the design guidelines for
deploying a decentralized communication network.

6.2 Outlook

In chapter 5, the two developed systems were deployed in diverse
industrial applications, and the design guidelines are proposed for
decentralization of the Industry 4.0 communication. It is evident that with
hyper scaling of IoT devices in the field and the trend for mMTC,
decentralization is necessary. Decentralization means shifting the power of
communication, computation, and intelligence from the center to the
network’s edges. The network can communicate for reacting to events
without the oversight of a central management system. The systems
perform any decision other than the process or business logic in the edge
and the field. In contrast, decision-making capabilities are abstracted as a
part of the system existing in the same hierarchy as other nodes. This allows


https://www.github.com/akrv/deBr

6.3 Discussion and Future 165

for hyper scalability, where the tasks are performed with the available
intelligence at the edges. When there are control effects that need to be
implemented, these nodes can actively change the parameters to allow for
such changes in the run time. This decouples the requirement of a
centralized, always available infrastructure for a full functioning network.
Decentralization of communication allows for decentralizing the whole
network as most of the distributed systems rely heavily on other systems’
availability. In such an architecture, failures are mitigated by allowing each
system to function autonomously with its local intelligence.

6.3 Discussion and Future

Decentralized Brains is developed as an extension of an open-source
embedded real-time operating system called the Contiki-OS with the goal
that it is one of the mature frameworks for developing IoT applications. The
developed communication primitives are modular and are developed with
the perspective of platform-agnostic development. The time
synchronization and other specific libraries used concerning the target
hardware can be abstracted in the future for using other alternatives when
there are hardware limitations. This allows for easy industrial adaptation
for time-synchronized, low-power low data-rate systems. Moreover, the
developed system is a reference implementation for demonstrating the
capabilities that can be achieved for developing methods that are akin to
computers due to their fast computational response and wide availability of
sensing methods for interacting with the communication medium.

The development of DezCom demonstrates a context broker that can
provide a secure layer for communication abstracting the decentralized
byzantine fault-tolerant consensus and providing a standard web-socket
interface for developing industrial applications. Demonstration of DezCom
also provides other existing context brokers with a proof to develop
decentralized context brokers with application layer protocol for payload
validation and replication of data structures as well as files. Node discovery
is available as part of the communication layer for associating nodes into
the network. Future development should consider developing application
layer protocols for service discovery and other application-specific protocols
for process control using the system to develop industrial applications. The
NGSI standardization further simplifies the application development
process, which can be integrated into the decentralized context broker to
deploy the software into existing industrial applications directly.
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Appendix A
Appendix

All's well that ends well

A.0.1 Wireless sensor nodes

In this section, various WSN field nodes are compared to provide a
benchmark for a research hardware platform. PhyNode is a hardware
platform developed for a PhyNetLab testbed. It reveals the design
specification and provides the comparable features with existing WSN
nodes in WSN testbeds. The survey of the various WSN nodes provides the
design specification and the feature set that is to be implemented in
PhyNode. The different types of wireless sensor nodes are discussed
followed by the detailed description of existing WSN field nodes. The three
types of nodes ordered with respect to their responsibility in the network:

1. Controller nodes
2. Router nodes
3. End nodes

A.0.2 Types of nodes in WSN

In case of a wireless network, a controller node in the network controls the
medium of communication creating defined slots for transmission and
giving access to the medium for other nodes to successfully transmit. The
controller node also provides identification services such as providing
token-based address with timeout or physical address of the nodes matched
to the application address. Additionally, they can collect all the data
generated in the network and also translate inbound and outbound traffic
from heterogeneous networks.

Router nodes perform their function to monitor and report. Additionally,
they also forward traffic from the nodes that are not in the coverage of the
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controller nodes. They bind the end nodes with the controller nodes. Router
nodes are the key in a multi-hop network where the data packet has to be
forwarded through other nodes to reach the destination. Router nodes also
maintain a routing table either of the next neighbor nodes or the whole map
of the network, depending on the type of routing algorithm. End nodes are
energy-constrained nodes deployed in the field and they are not monitored
for a longer period of time [108]. In an unstructured WSN, they often are out
of coverage due to a change in the host environment or due to the mobility of
the nodes. They opportunistically transmit data from a queue when in range
with a data sink or a neighboring node in a mesh network. They are called
reduced function devices. These nodes only perform the core responsibility
of the network, which is to transmit the packet it generates and to respond
to the protocol based messages from the router or controller nodes.

There is a sink or a base station which communicates with these sensor
nodes and collects the data. The sink node also transmits information from
the user that is used for actuating the physical entity on which the wireless
sensor node is attached. It is combination of a router node and a controller
node. A base station can be router node but a router is not a base station. The
user uses the data generated from the sensor nodes to perform analysis on
different levels such as facility monitoring, inventory management etc. This
sink node or the base station is usually connected to the Internet where the
data is stored, monitored and analyzed. In some cases the sink node does not
have internet connection due to the spatial location but has a large memory
attached to it where data is written for later analysis [109]. These systems
can either utilize resources on demand or are always available depending
on the application. The communication architecture for WSNs would be
to connect all the sensor nodes in the field to one or more base stations.
Depending on the infrastructure it can be decided for the number of nodes
to be implemented in the facility with the number of base stations [12]. At
times it is possible that the sensor node does not have a direct connection
to the base station due to the radio link or the range of coverage. This node
is called an isolated node. At such conditions protocol standards with self-
healing, intelligent routing schemes should be used where the data packets
reach the base station through the neighboring nodes from the sensor node.

As described in the section A.0.2 about the different types of sensor nodes
that can be deployed in a WSN, this neighbor node acts as a router node.
In the above-mentioned scenario the router nodes that are connected to the
isolated node forward the packets to the base station. This not only requires
a specially designed routing algorithm but these nodes should also have
enough power so that they can listen to packets from the isolated nodes and
also performs its functions as a sensor node. Network topology plays an
important role in designing the type of nodes that have to be placed into the
implementation.
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A.0.3 Existing WSN field nodes

Wireless sensor network field nodes are built with respect to their
application. There is a trade off between the features and the application
requirements. In this section existing field nodes, WiSeMote and Telosb, are
studied and their features are listed with the features of PhyNode. These
two wireless sensor nodes are specifically selected, since they also have
Texas Instruments manufactured MSP430 series MCU units as the
processing core of the nodes. The system design of PhyNode is described
with the description of the implementation of the listed features [10].

Definition of Mote

The meaning of mote, as defined by the Oxford dictionary, is a small
particle; a speck. This term is used to mark a sensor node as it is a small
particle in the environment. Another definition for usage in technology
defined by researchers from the two research centres Network Embedded
Systems Technology (NEST) Berkeley and Center for Embedded Networked
Sensing (CENS) for “mote” is it can be a tiny computer with networking
capabilities for remote sensing.

A.0.3.1 Telosb

Telosb is an ultra-low power wireless module that is used in sensor
networks, for monitoring applications, and rapid application prototyping,
which was initially designed and published by UC Berkeley [110]. Telosb is
implemented with industry standards like USB and IEEE 802.15.4. With
these standards interoperability seamlessly out-ofthe- box with other
devices can be implemented with other devices that implement these
standards. Sensors for humidity, temperature, light and providing flexible
interconnection with peripherals, are integrated with the sensor node.
Revision B of the Telos sensor node is called Telosb and includes increased
performance, functionality, and expansion, using the sensor suite compared
to the previous version [111]. Telosb supports TinyOS out-of-the-box which
was developed at the same research facility [112]. TinyOS is a set of
cooperating processes and tasks written in the nesC programming
language [112]. It provides mesh networking of wireless sensor nodes. It is
also compatible with Contiki, an open operating system for WSNs [57].
Salient features of the CC2420 are that it works on 2.4 GHz band with IEEE
802.15.4 standard, it is ZigBee ready RF frontend with low power and low
voltage consumption with no requirement for external RX filter or switch
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[113]. The maximum data-rate provided by this standard is 250 kbit/s,
which is also the maximum data-rate provided by Telosb. The transceiver
has a 256 byte FIFO (first in first out) register that is divided into two equal
halves and used for receiving and transmitting a data buffer, which can be
accessed via a serial peripheral interface.

POB -
Antenna CC2420 Radio
2.4 GHz
IEEE 802.15.4 compliant
SMA Silicon Serial ID
SPI /0 1-wire
4 6
Humidity
Temperature  |—LOWer SPI[0] P1[0,3,4] UARTI0] 2
Sesnor 1/0 PA[1,5,6] 1O[0] 2
==}
3.6- 3.
PAR ADO[4] ADO[0-367] ¢ 8T
=
Sensor GPIO 4 g x
TI MSP430 Microcontroller %-é
TSR ADOJ[5] Reset =
S
ensor User
- SVSI
JTAG 8-pin. JTAG 7/ | UART[] Reset - SVS 2-pin
2mm IDC header PL1/P22 TOK TO[0] SPI{0] |SvSout IDC header
2 2 2 4
O]
oy
RX/TX RTS/DTR ST Flash
JTAG Write Protection 1024k (2.7V)
USB 2.0
UART/RS232
Functionality

Fig. A.1 Functional block diagram of the Telosb module as illustrated in datasheet [110]

Figure A.1 shows the functional block diagram of the Telosb module. The
processing unit of Telosb has an 8 MHz (operating frequency) Texas
Instruments MSP430 MCU as the central processing unit with a 10k
Random Access Memory (RAM) and a 48k flash memory storage [110]. It
has an integrated ADC, DAC, Supply Voltage Supervisor, and Direct
Memory Access (DMA) Controller [110]. The CC2420 supports an
integrated onboard antenna with a 50m range indoors and 125m range
outdoors, even though this highly depends on the path loss in the
environment and the possibility of direct line of sight for the radio
frequency between the transmitting and receiving stations [110]. The Telosb
mote has a USB programming interface and data collection can be enabled
through the onboard USB controller. The feature set can be extended using
the 16-pin expansion that is interfaced with the MCU unit [110]. An optional
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SMA antenna connector can be added to improve the antenna gain in case
the PCB antenna proves to be inefficient [110].

Two AA batteries can power Telosb with anhe operating voltage in the
range of 2.1 to 3.6 V DC. The voltage provided by the AA batteries must
be at least 2.7 V when programming the micro-controller flash or external
flash [110]. The Telosb can be powered also using the USB when connected
with a host computer. The operating voltage is at 3 V when it is connected
with the USB. Size of the module fits exactly two AA batteries by design but
the battery pack is not necessary when the mote is connected using USB [110].
Another alternative power input is via the 16-pin expansion to the mote. At
all times, the mote should not be powered with more than 3.6 V, which is
damages the internal components [110].

A.0.3.2 WiSeMote

WiSeMote system [109] is a WSN node, developed in context to measuring
and monitoring the structural health of buildings. WiSeMote is a fully
integrated ultra-low power wireless smart sensor node that is used in
structural health monitoring with the hardware design focused towards
implementing unattended networks with long term monitoring
applications. The faculty of civil engineering at the Texas Tech University
developed it. WiSeMote system is a wireless networked system with low
data-rate operating at IEEE 802.15.4 standard in 2.4 GHz band. It was
developed with a base station that acts as a data sink and operates the
low-power WSN nodes. It was developed to provide improvement in the
network reliability, measurement noise mitigation, power consumption, as
well as signal acquisition and throughput capabilities of the available WSN
systems [109]. Figure A.2, shows the building blocks of WiSeMote node as
illustrated in [109] with a processing unit, radio unit and an onboard
three-axis accelerometer. The processing unit of the WiSeMote is a Texas
Instruments MSP430F47187 micro-controller [114]. It is an ultra-low power
MCU with a 16-bit RISC based architecture that handles and coordinates all
operations occurring in the node at all times, with a maximum clock speed
of 16 MHz, 120 KB of flash, 8 KB of RAM, seven Sigma-Delta 16-bit ADC’s
that can simultaneously sample, and 16-bit data processing [114].

A fast, low power, 256 KB SRAM chip as an external component is used
to increase the memory capabilities on the nodes, to store data generated by
the node. An external serial flash memory chip is also used. The radio unit
is an XBee DigiMesh radio transceiver module with a maximum supported
data-rate of 250 kbit/s. The transceiver module is an IEEE 802.15.4 standard
compliant [115]. The XBee transceiver has coverage of 100 feet when
deployed indoors and with direct line-of-sight in outdoor systems, the
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Fig. A.2 Functional block diagram of WiSeMote Node as illustrated in [109]

coverage is up to 300 feet. The transceiver supports ZigBee communication
protocol and also a proprietary routing protocol called DigiMesh. Every
WiSeMote node has an onboard three-axis accelerometer used for data
acquisition [109]. An expansion connector is used for connecting additional
sensor suites for data acquisition depending on the application [109].

A 1.76 Ah Lithium-lon battery is added to the node for its power
requirements. It requires a 3.3 V input for operation and the base station is
used as a data sink for collecting data from the nodes. The base station has
the required components for an external SD card to increase the memory
storage [109]. This increases the amount of data that can be stored in the
base station [109]. The base station is included with a software for FAT16
driver that provides a better interface with a computer running on a
windows operating system. From the published work, the base station was
planned to have a GPS module that provides a mechanism to timestamp the
data generated from the nodes [109].

A.0.4 Comparison of existing WSN systems

PhyNode is an application-based ultra-low power WSN node. The context
of the application is in facility logistics application, which is supposed to be
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implemented in warehouses. It is designed with energy neutral operations
because of the application requirements provided by the concept of
PhyNetLab. The specific requirements from the application, to design the
hardware are implemented with additional features. The additional features
are used in facilitating a better experimentation experience and to provide
data for deep analysis of the hardware operation and energy consumption.
A comparison is made in this section between the existing WSN hardware
systems to provide hints on the system requirement of PhyNode and to
improve the feature set of the hardware with an energy neutral operation.

|WiSeMote | Telos (2005) [Imote2 (2007)  [PhyNode
System Current Draw
Active! <5mA <15mA 46 mA 100uA/MHz
Sleep? 150 uA 545 nA N/A -
Hibernate’ N/A 51puA 0.5mA 0.5 nA
micro-controller
TI
Type MSP430F47187 TI MSP430F1611 | X-Scale PXA271 |TI MSP430FR5969
Max Clockly ¢ Mz 8 MHz 416 MHz 16 MHz
Speed
. 256 KBSRAM 32(2 KB SRAM 64 KB
RAM Size 8 KB 10 KB MB SDRAM FRAM
Flash Size 120 KB 48 KB 32 MB 64 KB
Radio
.. . . TI CC1200 / TI
Type XBee DigiMesh |Chipcon CC2420|Chipcon CC2420 CC2530 SoC
Receive Current |50 mA 19.7 mA 19.7 mA 05 mA to 23.5 mA
peak at 1.2kbps
Transmit 36 mA (+10dBm) to
Current 45mA 174 mA 174 mA 46 mA (+14dBm)
Sleep Current  [;50 uA 0.3 uA 0.3 uA 0.12 uA
Wireless DigiMesh/ 802.15.4, ZigBee,
Protocol 802.15.4 802154 0nly 1802154 0nly |ppicE 6LoWPAN
External Modules
RAM Size 256 KB - - N/A
Flash Size 4 MB 1 MB - N/A
Thin Film Battery
Battery Base station 2xAA 3XAAA ilmAh / Li-Ion bat-
tery 2400mAh
iEnr;rgy harvesty\/a N/A N/A BQ25505

1. MCU fully awake, worst case consumption for peripherals, radio asleep.
2. All modules asleep, MCU in idle state.

3. All modules asleep, some modules completely electronically
disconnected. Module cannot quickly wake up from sleep.

Table A.1 Comparison of WSN systems [109], [18], [110], [10], [116], [117]
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Table A.1 provides an insight into the comparison between existing WSN
hardware platforms in terms of the power consumption metrics, wireless
communication capabilities using a specific transceiver chip, MCU operation
and other external modules. Micro-controllers used in two of three modules
are from the MSP430 series, manufactured by Texas Instruments. PhyNode
also uses a MSP430 based micro-controller chip. Two of the three WSN nodes
in table A.1 use Texas Instruments based radio transceivers. Even though
the MCU comes from the same family of ultra-low power electronics, the
Ferroelectronic Random Access Memory (FRAM), available in PhyNode, was
exclusively selected to provide reduced energy consumption and supersedes
the energy consumption ratio over the other micro-controllers [10], [118].
PhyNode uses two types of radio transceivers, one in the 2.4 GHz band and
the other in the sub 1 GHz band. They both use Texas Instruments based
low-power wireless transceivers CC2350 and CC1200 respectively. External
modules used in the WSN systems are supposed to improve the operation
and to provide more flexibility in an application.

The hardware selection with the energy harvesting photovoltaic cell
clearly shows that PhyNode is capable of energy neutral operations, which
is supported with preliminary experiments [10]. It was considered during
the design phase that the research platform should not only provide energy
neutral capabilities by harnessing the technological advancements in
battery technologies and indoor photovoltaic but also provide more than
one communication medium for designing application based physical
internet entities that are reliable in communication and can coexist with
other legacy industrial WSN systems. These were the motivations to build a
hardware platform from ground up that facilitated to hold experiments in
diverse wireless physical media and also the flexibility to deploy to develop
industrial systems and develop network protocols that aid in achieving an
energy neutral operation of the sensor node platforms [10].

The third section of the table A.1 provides a detailed comparison of the
radio communication capabilities of three WSN systems that operate with
the IEEE 802.15.4 standard. This table asserts the fact for testing familiar
wireless protocols without the need to access or change the hardware [10].
The last section on table A.1 shows the external modules that are available
on the platform. It provides the specifications about the external modules
that are interfaced with the processing unit of the WSN platforms described.
The important point to note is that WiSeMote is deployed for long term data
collection operations and it requires a 4 MB flash memory, whereas
PhyNode will be deployed in a materials handling facility, where
connections to the routers will be available for instantaneous data transfer
and the testbed architecture facilitates access to historical data. The storage
for PhyNode is cloud connected and can be interfaced using the RESTful
application-programming interface. The data can also be queried from the
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router real-time data from the experiment. State-of-the-art distributed cloud
computing techniques are used for data storage and data retrieval for the
nodes in real-time. Energy harvesting is an external module that helps
charging the thin film battery. The power source can be switched between
the batteries with the power management integrated circuit (IC).

From the comparisons drawn by listing popular WSN hardware and their
system description, a clear trend in the hardware description can be seen that
PhyNode provides better hardware components and storage facilities for
an indoor WSN implementation. Moreover, energy harvesting capabilities
and providing two RF bands for WSN operation make it more desirable for
experimentation on various IEEE 802.15.4 networking protocols.

A.0.5 Testbed facilities and research infrastructures

From the sections discussed earlier, there is a clear trend and an imminent
revolution in the future of the Internet and it is highly influenced by the
emerging Internet of Things and WSNs [119, 120]. There is a factual
prediction that the industrial adaptation of Internet of Things is increasing
with demand for M2M communication, where industrial processes can be
made efficient with these devices and can reduce human intervention in
certain processes. PhyNetLab is a concept for increasing the desirability for
industrial adaptation of WSN and to usher in new types of WSN hardware
with energy neutral design for operation of ultra-low power wireless sensor
nodes [11]. A testbed is conceptualized to host energy constrained WSN,
because for such implementations, physical analysis is more important than
simulation and emulation tools since the dynamics of the environment
influence the working of these networks. Dynamics of radio, interference,
resource availability and other considered features should be analyzed and
modeled before large-scale deployments of WSNs at industries. [11]

Key Internet experimental facilities and WSN infrastructures with
existing industrial implementations were surveyed to design the
architecture of PhyNetLab. It is a combination of state-of-the-art systems
and concepts aimed at implementing systems that are emerging in
industrial systems. This is achieved by creating application-based
experiments to understand the operation of state-of-the-art information
technology in coordination with energy neutral WSNs. Experimental
facilities are key instruments that enable practical research which is
important with the dynamic characteristics in RF communication [135].
Distributed network measurements are essential to characterise the
structure dynamics and operational state of the network, which can be
facilitated by an industrial testbed where the application consists of a
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Testbed

Scope

Nodes and locality

Noteworthy

MoteLab [12]]

WSN

190 TelosB motes, in-
door, spread across 3
floors of a laboratory
building

One of the first and longest lasting testbeds. In-situ power
measurements on some nodes. MoteLab testbed service
framework used as a basis for various other testbeds, e.g|
CCNY-CWSNET and INDRIYA

NetEye [122]

WSN

130 TelosB motes,
indoor, 1 room, 15
wooden benches 1 feet
apart

FCFS scheduling approach, static 3db attenuator to each
mote antenna for realising multi-hop network and differ-
ent power levels, to be integrated as part of the Kansai-
Geni testbed

TutorNet [123

WSN

104 motes (91 TelosB,
13 MicaZ), indoor, 1
room

The user indicates the start and end time for its reserva-
tion, as well as the list of motes it would like to reserve,
The reservation will fail when attempting to exceed the
allowed node hours quota, where a node hour represents
a reservation unit corresponding to reserving one mote
for one hour

MIRAGE /|
Intel [124]

WSN

100
(currently
58 available),|
indoor, laboratory
environment

MicaZ motes
onl

The reservation is based on an abstract resource speci-
fication language for resource discovery (only per-node
attribute available) and by using the MIRAGE bidding
language in order to reserve the discovered resources

VineLab [125

WSN

48 TelosB motes, in-
door, 1 floor inside a
laboratory

unlike other testbeds provides only very basic experimen-
tal user support via Python scripts, utilisable for research
on smart in-door environments

Kansei [126]

Mesh,
WSN

210 XSM motes, 210
Stargate gateways, 50
Trio motes, indoor

One of the most advanced surveyed testbeds with various
testbed service functions, co-simulation support, mobility
support using mobile robots, event injection possible both
at GW and mote level

WISEBED
[127]

WSN

750 motes (200 iSense,
143 TelosB, 108 G-
Node, 100 MSB-A2,
44 SunSPOT, 60
pacemate, 24 Tnode),
inand outdoor, 9
different locations in
Europe

Federation architecture, co-simulation support, topology
virtualisation, in-situ power measurements on some
nodes, mobility support using 40 mobile robots

FRONTS [128

WSN

21 iSense motes, in-
door, laboratory envi-|
ronment

In-situ power measurements on some nodes, purely wire-
less in-band management

DES-Testbed
[129]

Mesh,
WSN

95 MSB-A2, 95 Linux
nodes, in- and outdoor

Mobility planned, currently one prototype robot available

w-iLab.t
Testbed [130]

Mesh,
WSN

200 TMoteSky motes,
indoor, laboratory en-
vironment

Measurement and battery emulation, repeatable mobility
support

Senslab [131]

WSN

1024 WSN430 (521
with 802.154 MAC,
512 with free MAC
layer), indoor, 4
different  sites in
France

Energy measurement supported for every node, repeat-
able mobility via electric toy trains

KanseiGeni
[132]

Mesh,
WSN

576 motes (96 XSM,|
384 TelosB, 96
iMote2) attached
to Stargate gateways,)
indoor, laboratory
environment

Based on Kansei and Neteye, federation with other GENI
envisioned, heterogeneous mote platforms

TWIST [133]

WSN

204 motes (102 TelosB,
102 eyesIFX)

Forms the basis for a variety of other testbeds such as
WUSTL

Table A.2 Survey of publicly available WSN testbeds as surveyed by [134] [11]
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network with more than two communication stacks [136]. Although in the
last decade several such systems have been created, access to these systems
remotely has always been a bottleneck as the infrastructure requires
complex information technology infrastructure [136]. The ease of access
and complex network infrastructure aids in the orchestration of complex
measurements [136]. In this section various wireless sensor network
testbeds are studied and design guidelines are established for the design of
energy neutral WSN testbed. A number of implementations of the testbed
with respect to mnetwork analysis, WSN hardware analysis, and
communication analysis in WSNs were studied, surveyed and reported
in [134], after analysis and relevance they are listed in the table A.2. Out of
the listed testbeds, three relevant test bed implementations are discussed in
detail in A.0.6 as they are considered relevant in multiple silos of
PhyNetLab testbed implementations. These features can be used as
guidelines for the implementation of an energy neutral testbed with context
to applications in industry. This will not only provide results on the
methods of energy neutral design adoption in an industrial context but the
architecture model can be consolidated into an industrial reference model
for the implementation of industrial WSNs. [11]

A.0.6 Relevant work

There is a wide variation of WSN testbeds with specific outcome in the field
of WSNs are available as listed in table A.2. Due to a widely accepted
research outcome in the field of WSNSs, these testbeds have grown into
federations. A testbed federation exists, when there is more than one
location where the testbed is deployed and coordinated research is carried
out in a distributed manner. One of the important aspects of testbeds to
grow into federations is that they have matured tools that have been proven
to perform with scalability and provide reliable results for the experiments.
Gluhak, Alexander, et al’s survey of various loT research facilities provides
a deep insight on understanding the various features of the IoT research
facility [134], [137] [138]. All of the testbeds have certain features in
common, which are provided as foundational elements for designing the
PhyNetLab testbed architecture. [11]

A.0.6.1 WISEBED

WISEBED is a WSN research facility, which was first deployed at the
University of Liibeck and was later federated across Europe at 8 other
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locations. Even though the testbed is not an active project since 2011, the
components that the testbed has produced during the runtime of the project
has made it a prominent testbed for WSNs research. It was a heterogeneous
implementation with each WISEBED partners maintaining its own testbed
with different hardware equipment and setup [139]. There was an overlay
network that gave access to the testbed as one large, heterogeneous WSN
implementation without any geographic disparities for experimentation.
Each testbed can be accessed separately to perform experiments in the
testbed [127]. It featured an infrastructure of interconnected test beds with
more than 8 different platforms to perform highly distributed IoT
experiments [127]. The testbed implementation at the University of Liibeck
has three types of sensor nodes with IEEE 802.15.4 radio interface for
experimentation. The testbed provided API endpoints for data acquisition
for the user and provided a testbed runtime which included the clients for
the API access that could be used for acquiring the data from the testbed
experiments. [11]

The software components of the testbed include a testbed runtime, client
libraries for consuming endpoints from the testbed, a library for embedded
devices in the testbed. The following are listed in the web documentation of
WISELIB and articles that describe the same [140], [139]. An operating
system called LorienOS with unparalleled modularity to adapt WSN
applications. The testbed has a Java based runtime to perform the functions
of the testbed. It is an Apache Maven repository that can be installed when
new testbed installations are deployed. One of the many notable outcomes
of the testbed was a generic library called WISELIB [139]. The WISELIB is a
library of algorithms for heterogeneous WSN embedded devices. It contains
various algorithm classes such as localization and routing that can be
compiled for several platforms such as iSense or ContikiOS platforms, or for
WSN simulators (example: shawn). WISELIB is written in C++, with the
same approach as Boost and CGAL, which uses templates to improve
adapting the features provided by the library [139]. This makes it possible to
write generic and platform independent code that is very efficiently
compiled for the various platforms [139]. [11]

A.0.6.2 FIT - IoT

FIT - IoT is a testbed, which also started out as a WSNs testbed and was
deployed in more locations, which later became the federated testbed for
wireless sensor networks called Future Internet of Things (FIT - IoT Lab). It
is a large-scale research facility with state-of-the-art technologies deployed
over 6 locations with more than 2000 nodes collectively. There are
autonomous vehicles that have a planned trajectory to simulate scenarios of
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mobility in wireless sensor nodes. The hardware platform of FIT - IoT
testbed was called WSN430, which is powered with the MSP430 family of
micro-controllers from Texas Instruments. To provide multi-user context for
experimenting on the platform there is an approach using user virtual
machines. It provides a command line interfaces for each user to interact
with nodes and to perform different actions depending on the experiment
being performed [131]. Unfortunately, with an increasing number of users,
scalability of infrastructure becomes expensive with virtual machines in
terms of hardware and resources used. FIT - IoT currently hosts three types
of node classes namely open node, host nodes and the control node. The
open node gives a full IoT experimentation environment, which can be
compared to the PhyNode in PhyNetLab [11]. These nodes are the sensor
nodes in the testbed, in a testbed context these nodes are the nodes that are
deployed for experimentation. The host node and the control node can
interact with the open node actively or passively [141]. [11]

A.0.6.3 Indriya

Indriya is a low-cost, 3D WSN testbed which has teslob nodes deployed in a
testbed. It was implemented at the National University of Singapore with
139 wireless nodes that are connected with active-USB cables [19]. The
approach to provide dynamic reprogramming of the nodes in the testbed
was considered in this testbed, which was one of the reasons to implement a
secondary radio device that provides flexible interaction with the sensor
nodes. The hardware platform with its interconnections and node
intra-connections to facilitate experimentation in the testbed is described in
the chapter PhyNetLab hardware systems. In the testbed Indriya, an
active-USB cable infrastructure provides a back channel for remote
programming and also for powering the sensor nodes [19]. This testbed in
many ways is a low cost implementation of Motelab from Harvard
university. Its low cost implementation with limited requirement for
maintenance due to the power source and flexible reprogramming using the
active- USB cables is considered an important factor of relevance to be
considered for PhyNetLab design. Even though it provides flexibility via
the cables, it reduces the mobility of the nodes and increases the
requirements on the testbed infrastructure. [11]

WISEBED, FIT/IoT-LAB and Indriya are the three relevant testbed
architectures that are considered for design of PhyNetLab testbed
architecture. Since these testbeds have grown into a federation of testbeds or
have proven to perform better in context to WSNs. [11]
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