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Abstract

In this thesis, the novel Tensor Diffusion approach for the numerical simulation of
viscoelastic fluid flows is introduced. Therefore, it is assumed that the extra-stress
tensor can be decomposed into a product of the strain-rate tensor and a (nonsym-
metric) tensor-valued viscosity function. As a main potential advantage, which
can be demonstrated for fully developed channel flows, the underlying complex
material behaviour can be explicitly described by means of the so-called Diffusion
Tensor. Consequently, this approach offers the possibility to reduce the complete
nonlinear viscoelastic three-field model to a generalised Stokes-like problem re-
garding the velocity and pressure fields, only. This is enabled by inserting the
Diffusion Tensor into the momentum equation of the flow model, while the extra-
stress tensor or constitutive equation can be neglected. As a result, flow simula-
tions of viscoelastic fluids could be performed by applying techniques particularly
designed for solving the (Navier-)Stokes equations, which leads to a way more ro-
bust and efficient numerical approach. But, a conceptually improved behaviour
of the numerical scheme concerning viscoelastic fluid flow simulations may be ex-
ploited with respect to discretisation and solution techniques of typical three- or
four-field formulations as well. In detail, an (artificial) diffusive operator, which
is closely related to the nature of the underlying material behaviour, is inserted
into the (discrete) problem by means of the Diffusion Tensor. In this way, certain
issues particularly regarding the flow simulation of viscoelastic fluids without a
Newtonian viscosity contribution, possibly including realistic material and model
parameters, can be resolved.

In a first step, the potential benefits of the Tensor Diffusion approach are illus-
trated in the framework of channel flow configurations, where several linear and
nonlinear material models are considered for characterising the viscoelastic mate-
rial behaviour. In doing so, typical viscoelastic flow phenomena can be obtained
by simply solving a symmetrised Tensor Stokes problem including a suitable choice
of the Diffusion Tensor arising from both, differential as well as integral consti-
tutive laws. The validation of the novel approach is complemented by simulating
the Flow around cylinder benchmark by means of a four-field formulation of the
Tensor Stokes problem. In this context, corresponding reference results are re-
produced quite well, despite the applied lower-order approximation of the tensor-
valued viscosity. A further evaluation of the Tensor Diffusion approach is per-
formed regarding two-dimensional contraction flows, where potential advantages
as well as improvements and certain limits of this novel approach are detected.
Therefore, suitable stabilisation techniques concerning the Diffusion Tensor vari-
able plus the behaviour of deduced monolithic and segregated solution methods
are investigated.
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Chapter 1

Introduction

Even after several decades of research, the numerical simulation of viscoelastic fluid
flows is still a challenging task, especially due to the complex material behaviour of
such fluids characterised by a differential or integral constitutive equation. More-
over, the involved difficulties are amplified in case of simulating applications from
the rubber industry, where specific types of viscoelastic materials are processed, in
detail pure polymer melts. Consequently, numerical challenges do not arise only
due to the complexity of the considered geometry or the underlying process it-
self. In addition, the computational difficulties are enhanced by the mathematical
properties of the rheological model at hand together with the (realistic) material
and model parameters applied therein, which is outlined in the following.

Typically, such material and model parameters are identified by approximating
linear and nonlinear material data resulting from experimental measurements, such
as storage and loss moduli or elongational and shear viscosities. To establish an
accurate prediction of this (non)linear material behaviour, a so-called multi-mode
approach needs to be applied in terms of the rheological modelling. Therefore, the
continuous relaxation time spectrum, which might reach over several decades as
in case of polymer melts, is approximated by means of a sufficiently large num-
ber of reasonably spreaded discrete relaxation times or modes. By doing so, an
appropriate fitting of the experimental data is obtained by a superposition of ap-
proximations resulting for each mode. To maintain the approximation quality of
the viscoelastic material behaviour in corresponding numerical flow simulations,
multiple modes need to be considered in the flow model as well, which is based on
the (Navier-)Stokes equations coupled with constitutive equations of differential
or integral type. Regarding differential material laws, the described multi-mode
approach probably results in a huge numerical effort, since for each mode a sepa-
rate stress tensor needs to be regarded as independent flow variable leading to an
increasing problem size according to the number of modes. Thus, this procedure
is not practical in the context of reasonably simulating polymer melt flows, since
usually a large number of modes is required to guarantee an adequate material
description. In this regard, integral constitutive equations offer a suitable alter-
native at least from a numerical point of view, where the multiple modes do not
explicitly lead to an increasing computational effort. Additionally, a correspond-
ing modelling approach is preferred from a rheological perspective as well, as the
“memory” of the material is taken into account in a much more suitable manner
than in case of differential models.

1



2 Chapter 1. Introduction

A second issue resulting from the broad relaxation time spectrum of realistic
materials is the well-known High Weissenberg Number Problem, which occurs in
the context of numerical viscoelastic fluid flow simulations. As an example, the
calculations might break down already at quite low relaxation times due to the lack
of accurately approximating the exponentially growing stress profiles by means of
polynomial functions, which are typically applied in Finite Element discretisations.
Similarly, high relaxation times increase the complexity of the (discrete) problem,
as the hyperbolic character of differential constitutive equations – commonly in-
cluding the upper-convected time derivative – is intensified. But also concerning
integral material laws, large relaxation times cause numerical difficulties because
of an increasing computational effort. In fact, the resulting memory of the fluid
reaches over a larger time frame, which accordingly needs to be taken into ac-
count in the numerical evaluation of the stress integral. Hence, suitable strategies
are required for dealing with the higher relaxation times or Weissenberg numbers
involved in simulating (realistic) viscoelastic fluid flows.

Moreover, considering pure polymer melts in the differential or integral vis-
coelastic flow model leads to further challenges, as such fluids do not consist of
a solvent contribution to the viscosity. Thus, the corresponding diffusive oper-
ator vanishes from the momentum equation of the (Navier-)Stokes subproblem,
which causes several difficulties regarding discretisation and solution techniques
of the underlying three-field formulation. On the one hand, an additional sta-
bility condition regarding the choice of the approximating spaces with respect to
the velocity and stress variables needs to be taken into account besides the usual
velocity-pressure coupling. On the other hand, restrictions concerning the appli-
cability of common solution methods are observed, in principle making multigrid
solvers in terms of monolithic approaches unpractical or preventing a reasonable
implementation of segregated schemes.

Contribution of the thesis

In this thesis, a novel approach to simulate viscoelastic fluid flows is proposed,
which is intended to resolve at least some of the issues mentioned above. The
underlying concept of this approach is to decompose the extra-stress tensor, which
characterises the complex rheological material behaviour of the fluid, into a prod-
uct of the strain-rate tensor and the so-called Diffusion Tensor, that is a (non-
symmetric) tensor-valued viscosity. By inserting the stress decomposition into the
momentum equation of the flow model, several potential benefits arise in the nu-
merical approach to simulate viscoelastic fluid flows. This is illustrated below by
taking into account various versions of the so-called Tensor Stokes problem with
respect to both, differential as well as integral constitutive equations. In the ideal
case, the pure Tensor Stokes problem describes the original viscoelastic flow so-
lution by means of a generalised non-Newtonian Stokes-like problem, but with a
nonlinear tensor-valued viscosity function. Thereby, the Diffusion Tensor would
be given explicitly depending on the velocity field or its gradient, which is why
the velocity and pressure fields are the only unknowns in this problem. Alterna-
tively, the original differential or integral viscoelastic flow model is supplemented
with an additional (algebraic) equation regarding the determination of the Diffu-
sion Tensor based on the decomposition of the extra-stress. Hence, the four-field
formulation of the Tensor Stokes problem is obtained, where a coupling of the
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Diffusion Tensor and the original flow variables is enabled by means of the (sym-
metrised) stress decomposition applied in the momentum equation of the Stokes
subproblem. Finally, a three-field formulation of the Tensor Stokes problem can be
derived in the context of differential models by inserting the stress decomposition
also into the constitutive equation, which results in a partial differential equation
for calculating the Diffusion Tensor. At the same time, the extra-stress tensor is
removed from the flow model, similar to the pure Tensor Stokes problem.

The potential benefits of the novel Tensor Diffusion approach are obvious: By
means of the three- and four-field formulations of the Tensor Stokes problem, a dif-
fusive operator is recovered in the momentum equation even of the non-solvent flow
model, which for example conceptually allows a successful application of multigrid
solvers or operator splitting techniques. Possibly, the stability regarding certain
Finite Element approximations of the velocity and stress fields might be recov-
ered as well. Most of all, actually deriving a generalised Tensor Stokes problem
correlating to the underlying original nonlinear viscoelastic flow model would sig-
nificantly improve the corresponding numerical approach. On the one hand, the
size of the (discrete) problem is reduced significantly, since no extra-stress tensor –
or even multiple tensors in the multi-mode approach of differential models – needs
to be considered, which decreases the computational effort of the numerical solu-
tion approach. In similar way, no stress integral needs to be evaluated in terms of
integral material laws, which reduces the computation time as no time-dependent
ingredient is regarded at all – which is the case in the original integral model even
for direct steady-state configurations. At the same time, no such thing as the
hyperbolic character of the constitutive equations needs to be taken into account,
and the High Weissenberg Number Problem might be irrelevant as well. On the
other hand, numerical schemes especially designed for solving the (Navier-)Stokes
equations can be applied in the context of simulating viscoelastic fluids in complex
two- (or even three-)dimensional flow configurations. Since such techniques are in
a further developed state than typical approaches considering viscoelastic three-
or even four-field formulations, a more efficient as well as robust numerical frame-
work could be obtained for predicting viscoelastic material behaviour. Overall,
the novel Tensor Diffusion approach offers the possibility to significantly improve
numerical simulations of (realistic) viscoelastic fluid flows, since various issues of
existing numerical methods are potentially weakened or even removed.

In this work, the Tensor Diffusion approach is analysed in a first step in the
context of fully developed channel flows, which allows a deeper insight into the
underlying mathematical and numerical properties of the problem. It turns out,
that this framework indeed offers the possibility to reduce the complete differential
or integral viscoelastic flow model in certain cases to a generalised Tensor Stokes
problem, which in principle allows to exploit the corresponding benefits described
above. Thereby, the tensor-valued viscosity is expressed analytically depending
on the velocity field or the shear rate of the flow, while a numerical determina-
tion is applied in the remaining cases. As a result, viscoleastic effects occuring
in Poiseuille-like flows, including shear thinning or curved pressure contour lines,
originally described by (non)linear differential and integral viscoelastic flow models
are recovered from a Stokes-like problem. In a second step, prototypical or pri-
mal Finite Element techniques are proposed for determining the Diffusion Tensor
numerically in terms of actual two-dimensional configurations, where no analyti-
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cal modelling can be established at the present state of the approach. Naturally,
an explicit model of the Diffusion Tensor regarding complex two-dimensional flow
states is desired as well, which will be part of future work. However, the derived
numerical framework is validated and evaluated in the context of the Flow around
cylinder benchmark as well as the flow in a rounded contraction. Thus, the foun-
dational applicability of the Tensor Diffusion approach is pointed out, but certain
limits are detected as well. Thereby, integral models are treated only conceptu-
ally, while most of the findings are validated and evaluated by means of differential
models due to the existing numerical framework and widely available references.

The structure of the thesis is as follows. A general framework regarding the Fi-
nite Element Method for simulating viscoelastic fluid flows is described in Chpt. 2
based on established approaches concerning differential as well as integral consti-
tutive equations. After outlining the principal difficulties and challenges arising
in this context, the Tensor Diffusion approach is proposed as a novel technique
for potentially resolving at least some of the highlighted issues. In Chpt. 3, the
methodoloy of calculating fully developed flow profiles with respect to viscoelas-
tic constitutive equations is presented, which provides the basis for the initial
validation of the Tensor Diffusion approach. In addition, structural limits of cer-
tain viscoelastic models are detected, which prevent the successful computation
of arbitrary high relaxation times or – generally speaking – realistic material and
model parameters. The validation of the Tensor Diffusion approach is performed
in Chpt. 4 by means of quasi one-dimensional as well as complex two-dimensional
flow configurations. In addition, this novel approach is evaluated with respect
to applying multigrid techniques in terms of Newton’s method for monolithically
solving the discrete nonlinear systems. Moreover, the High Weissenberg Number
Problem is taken into account in the numerical investigations as well, followed
by analysing prototypical coupled and decoupled solution techniques based on the
Tensor Diffusion approach. Concluding remarks as well as a summary of the thesis
are given in Chpt. 5.



Chapter 2

Finite Element techniques for
viscoelastic fluid flows

In this work, the numerical simulation of viscoelastic fluid flows by means of the
Finite Element Method is investigated. Such highly viscous, “slow” or creeping
flows are typically characterised by the well-known instationary Stokes equations,
which determine the velocity vector field u = u (t,x) depending on the time t ∈ R
and the spatial coordinate vector x ∈ Rd, d ∈ {2, 3}, based on the conservation of
mass and momentum. In detail, the corresponding governing equations read

ρ
∂u

∂t
−∇ ·Π = 0, ∇ · u = 0 (2.1)

under the assumption of isothermal and incompressible flows leading to a constant
density ρ, which is usually set to unity in this work. A key quantity for describ-
ing the underlying material behaviour is constituted by the Cauchy stress tensor
Π = Π (t,x) [1, 2], which can be written as

Π = −pI + 2ηsD (u) + Σ (2.2)

Here, p = p (t,x) denotes the scalar pressure field, I the unit tensor,
D (u) = 1

2

(
∇u +∇u>

)
the strain-rate tensor, that is the symmetric part of the ve-

locity gradient, and Σ = Σ (t,x) the extra-stress tensor. Furthermore, ηs refers to
the solvent viscosity of the fluid, which specifies the amount of viscous contribution
to the total stress. By means of specifying the components of the Cauchy stress
tensor from Eq. (2.2), various rheological properties of the considered fluid can be
covered. In detail, modelling the flow of pure Newtonian fluids includes a constant
viscosity ηs together with a vanishing extra-stress tensor. A first extension to-
wards predicting nonlinear material behaviour is given by so-called shear thinning
fluids, where ηs is defined as a decaying function of the shear rate γ̇ ≈ ‖D (u) ‖ [3].
Finally, viscoelastic effects are regarded based on the above decomposition of the
total stress tensor Π by specifying the evolution of the extra-stress tensor Σ ac-
cording to a constitutive equation of differential or integral type. A selection of
such material models is presented in Sec. 2.1, followed by a description of corre-
sponding Finite Element techniques in Secs. 2.2 and 2.3, respectively. In doing so,
several challenges and difficulties in simulating viscoelastic fluid flows are detected,
based on which a novel approach is proposed in Sec. 2.4 for potentially improving
the numerical techniques highlighted beforehand.

5



6 Chapter 2. Finite Element techniques for viscoelastic fluid flows

2.1 Governing equations
For characterising the flow of a viscoelastic fluid, the Stokes equations (2.1) need
to be supplemented with a constitutive equation, which describes the evolution of
the extra-stress tensor Σ based on the velocity field u. Commonly applied models
for predicting the material behaviour of viscoelastic fluids are of differential type
reading

∂Σ

∂t
+ u · ∇Σ−∇u> ·Σ−Σ · ∇u + Z (Λ, ηp,Σ) = 2

ηp
Λ

D (u) (2.3)

where Λ, ηp > 0 denote the (single-mode) relaxation time and polymeric viscosity,
respectively, of the fluid at hand. Typically, these material parameters are deter-
mined by fitting linear viscoelastic material data obtained from small oscillatory
shear tests [4, 5, 6]. However, the Oldroyd-B or Upper-Convected Maxwell model
(UCM, for ηs = 0 in Eq. (2.2)) are often considered for developing and improving
numerical discretisation and solution techniques regarding viscoelastic fluid flow
simulations due to the simple structure of the corresponding model function [1].
In detail, these material laws are obtained in case of considering

Z (Λ, ηp,Σ) =
1

Λ
Σ (2.4)

in Eq. (2.3) [4, 7]. But, no realistic or meaningful viscoelastic material behaviour
can be characterised by means of the above model(s): On the one hand, a constant
shear viscosity is predicted, and on the other hand an infinite elongational viscosity
results from applying a constant (finite) strain rate over time [1, 6]. In contrast,
viscoelastic materials show a so-called shear thinning behaviour, that is a decreas-
ing shear viscosity is observed for increasing shear rates. Moreover, such materials
do not consist of an elongational viscosity diverging to infinity. Thus, concerning
the prediction of more realistic viscoelastic phenomena the model function can be
chosen according to the Giesekus model, where

Z (Λ, ηp,Σ) =
1

Λ

(
Σ + α

Λ

ηp
Σ ·Σ

)
(2.5)

which results from the Oldroyd-B or UCM model by introducing an additional
quadratic stress contribution [4, 8, 9]. In doing so, the so-called mobility factor
α ∈ ]0, 1] can be determined, such that a sufficiently accurate approximation of the
experimentally measured shear thinning behaviour is obtained. At the same time,
the divergence of the elongational viscosity is suppressed in case of α > 0 [4, 6].
Likewise, nonlinear viscoelastic material behaviour may be characterised by the
Phan-Thien Tanner model (PTT, [1, 4, 9, 10]), where choosing the function Z in
Eq. (2.3) as

Zlin (Λ, ηp,Σ) =
1

Λ

(
1 + κ

Λ

ηp
tr (Σ)

)
Σ (2.6a)

Zexp (Λ, ηp,Σ) =
1

Λ
exp

(
κ

Λ

ηp
tr (Σ)

)
Σ (2.6b)
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results in the linear or exponential version, respectively. Similar to the Giesekus
model, also the PTT model is capable of predicting a shear thinning effect by
specifying the nonlinear material parameter κ ∈ ]0, 1], while the Oldroyd-B or
UCM model is obtained for κ = 0.

In case of actually simulating flows of realistic viscoelastic materials, the above
form of the differential flow model will not result in an adequate reproduction of
experimental data, since the underlying relaxation time spectrum easily encom-
passes several decades [6]. Thus, considering multiple relaxation times or modes
already in the rheological model is required to achieve a satisfactory description
of the relaxation behaviour of the material. Therefore, the extra-stress tensor Σ
as part of the Cauchy stress tensor Π from Eq. (2.2) is decomposed into a sum
of single stress tensors according to Σ =

∑K
k=1 Σk. Thereby, each stress tensor is

characterised by satisfying a separate constitutive equation similar to Eq. (2.3), in
detail

∂Σk

∂t
+ u · ∇Σk −∇u> ·Σk −Σk · ∇u + Z (Λk, ηp,k,Σk) = 2

ηp,k
Λk

D (u) (2.7)

including separate parameters Λk, ηp,k [4]. In fact, applying this so-called multi-
mode approach involves a number of K � 1 modes Λk, k = 1, . . . , K, for ob-
taining an appropriate approximation of (non)linear viscoelastic behaviour, par-
ticularly in terms of polymer melts [6]. Tranferring this issue to actual two- or
three-dimensional simulations of viscoelastic fluid flows, each of the separate stress
tensors Σk needs to be regarded as an independent numerical flow variable. Thus,
a significant growth of the problem size can be expected for considering constitu-
tive equations of differential type in numerical simulations of realistic viscoelastic
fluids.

At least in this concern, a promising alternative approach is provided from a
numerical point of view by describing the material behaviour of viscoelastic fluids
via integral constitutive equations, which is outlined below. Furthermore, advan-
tages are achieved compared to differential models from a rheological perspective
as well, since the full deformation history is taken into account for characterising
the current stress state. Thus, a suitable numerical treatment of integral material
laws is of intensified interest, especially concerning the prediction of realistic vis-
coelastic material behaviour. As indicated above, integral viscoelastic models are
intended to be solved within the Finite Element Method together with the Stokes
equations, which are commonly implemented in an Eulerian frame of reference. In
Ref. [11], several techniques for incorporating integral constitutive equations into
a Finite Element framework are discussed, but most of them – like the so-called
Streamline Finite Element Method or a decoupled Eulerian-Lagrangian approach
– include a Lagrangian reference frame. Actually, the Lagrangian reference frame
is an intuitive approach when considering integral models, since the deformation
history of a fluid particle can be traced along the corresponding streamline. Un-
fortunately, this causes high numerical effort. Moreover, the need of re-meshing
the computional domain during calculation arises in Lagrangian methods, which
is avoided in Eulerian approaches due to considering a fixed fluid portion. Hence,
a corresponding Eulerian framework is desired also for integral constitutive equa-
tions, which naturally consists of several challenges as well.
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One of the most suitable approaches to handle integral material models in
an Eulerian frame is the so-called Deformation Fields Method (DFM, [11, 12,
13, 14, 15]). A central object in this Eulerian scheme is the Finger tensor, a
coordinate-frame invariant measure of the deformation occurring between a past
time t′ ∈ ]−∞, t] and the current time t, given in Eulerian coordinates. In detail,
at each time instant t′ in the deformation history of the flow, a new Finger tensor
or Deformation Field Bt′ = Bt′ (s,x) is created and evolved according to the
evolution equation

∂

∂s
Bt′ (s) + u (s) · ∇Bt′ (s)−∇u (s)> ·Bt′ (s)−Bt′ (s) · ∇u (s) = 0 (2.8)

for s ∈ [t′, t] and fixed t′, where Bt′ (t
′) = I. Following Refs. [4, 16], the above

evolution equation corresponds to the definition of the Finger tensor as a symmetric
positive (semi-)definite tensor consisting of a vanishing upper-convected derivative

O
Bt′ (s) :=

∂

∂s
Bt′ (s) + u (s) · ∇Bt′ (s)−∇u (s)> ·Bt′ (s)−Bt′ (s) · ∇u (s)

Hence, benefitial and physically meaningful properties concerning the resulting
extra-stress tensor are established. However, the deformation and thus the state
of the stress Σ = Σ (t) of the flow at the current time instant t is computed
in case of differential models only based on the (given) current velocity field
u = u (t), that is without explicitly considering the complete deformation history.
In contrast, indeed the “memory” of viscoelastic materials is taken into account in
terms of integral constitutive equations. In this regard, the stress at the current
time instant t is built by integrating the deformation history of the fluid, that is
all deformations applied in the past t′ ∈ ]−∞, t] described by the Deformation
Fields Bt′ . In detail, integral models considered in numerical flow simulations are
often of the so-called time-separable Rivlin-Sawyers (or Kaye-BKZ) type [1, 4, 11],
where the extra-stress tensor is written as an infinite integral of the form

Σ (t) =

∫ t

−∞
m (t− t′)

[
φ1 (I1, I2) Bt′ (t) + φ2 (I1, I2) B−1

t′ (t)
]
dt′ (2.9)

Thereby, the memory of viscoelastic fluids is mimicked by means of the memory
functionm, which can be chosen as a superposition of exponentials [4, 11], in detail

m (s) =
K∑

k=1

ηp,k
Λ2
k

exp

(
− s

Λk

)
(2.10)

Thus, deformations applied at large past times t′ � t contribute less to the current
stress and vanish for t → ∞ when considering the memory function in the stress
integral from Eq. (2.9). Furthermore, applying integral models in a numerical
framework allows to keep the problem size fixed even in case of the multi-mode
approach, because no additional numerical variables need to be considered when
increasing the number K of modes shown in Eq. (2.10). However, the actual
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material model resulting from the stress integral (2.9) is specified by choosing the
empirical functions φ1,2, which enable a modelling of nonlinear material behaviour
depending on the two non-trivial invariants I1,2 of the Finger tensor Bt′ , where

I1 (Bt′) = tr (Bt′) , I2 (Bt′) =
1

2

(
tr (Bt′)

2 − tr
(
B2
t′

))

Due to the incompressibility of the considered flow, I3 = det (Bt′) = 1 holds
regarding the third invariant [12]. For example, the integral version of the UCM
model, introduced above as differential model in Eq. (2.4), is obtained by setting
φ1 ≡ 1 and φ2 ≡ 0, where usually B is replaced by B− I in Eq. (2.9) [4]. But, the
above proposed general form is recovered for absorbing the additional (isotropic)
contribution into the pressure in the momentum equation of the Stokes equations
(see Sec. 3.2 or 4.1 for details). Another model frequently used in numerical
investigations is the Papanastasiou-Scriven-Macosko model (PSM, [5, 12, 13, 14]),
where the corresponding damping functions read

φ1 (I1, I2) =
1

1 + γ1 (I1 − 3) + γ2 (I2 − 3)
, φ2 ≡ 0 (2.11)

and the UCM model is recovered for γ1 = γ2 = 0. From a rheological point of
view, a quite popular model is represented by the integral constitutive equation
obtained via

φ1 (I1, I2) = f exp
(
−n1

√
I − 3

)
+ (1− f) exp

(
−n2

√
I − 3

)
, φ2 ≡ 0 (2.12)

introduced by Wagner [5, 17, 18]. Here, a convex combination I = αI1 +(1− α) I2

of the two non-trivial invariants is included besides the convex combination of the
exponentials, hence f, α ∈ [0, 1], which results in the UCM model for n1 = n2 = 0.
In addition, the empirical functions in the Wagner-Demarmels model [5] are defined
as

φ1 (I1, I2) =
1 + β

1 + α
√

(I1 − 3) (I2 − 3)
(2.13a)

φ2 (I1, I2) =
β

1 + α
√

(I1 − 3) (I2 − 3)
(2.13b)

In contrast to the above models, a non-vanishing contribution regarding the in-
verse of the Finger tensor is present in case of β > 0, while the UCM model is
recovered for α = β = 0. Similar to the differential Giesekus or PTT model, also
the nonlinear integral models presented above are capable of predicting typical
viscoelastic material behaviour like shear thinning (see Ref. [5] or Sec. 3.2).

The above viscoelastic flow models are formulated regarding three-dimensional
configurations, but two-dimensional flow states are considered in this work. Hence,
the constitutive equations need to be expressed in terms of two spatial dimen-
sions, which is done in case of differential constitutive laws by simply considering
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Σ ∈ R2×2. Following Ref. [19], the two-dimensional formulation of integral vis-
coelastic constitutive equations is derived from the above model functions by con-
sidering a pseudo three-dimensional Finger tensor of the form

B̃ =



B11 B12 0
B12 B22 0
0 0 1




Based on the upper-left block matrix B ∈ R2×2 of the tensor B̃, it can be easily
shown that

I1

(
B̃
)

= tr (B) + 1, (2.14a)

I2

(
B̃
)

=
1

2

(
tr
(
B̃
)2

− tr
(
B̃2
))

= tr (B) + det (B) (2.14b)

holds regarding the two non-trivial invariants, which mainly characterise the spe-
cific material model. Since det (B) = 1 in case of incompressible flows [12],
the two invariants coincide and thus result in a single invariant of B, that is
I = I1 = I2 = tr (B) + 1. Hence, the two-dimensional versions of the integral
viscoelastic flow models mentioned above are obtained by inserting the invariant I
into the damping functions from Eqs. (2.11), (2.12) and (2.13). In detail, the
damping functions evolve to

φ1 =
1

1 + γ (tr (B)− 2)
, φ2 = 0 (2.15a)

φ1 = f exp
(
−n1

√
tr (B)− 2

)
+ (1− f) exp

(
−n2

√
tr (B)− 2

)
, φ2 = 0 (2.15b)

φ1 =
1 + β

1 + α
√

(tr (B)− 2)2
, φ2 =

β

1 + α
√

(tr (B)− 2)2
(2.15c)

in case of the PSM, Wagner and Wagner-Demarmels model, respectively, where
φ1,2 = φ1,2 (I1, I2) = φ1,2 (tr (B)). Note, that the number of involved material
parameters might be reduced compared to the three-dimensional case due to the
coinciding invariants from Eq. (2.14).

In the following, the numerical treatment of the (stationary) Stokes equations
coupled with constitutive laws of differential or integral type within the Finite
Element Method is discussed. Therefore, the governing equations have to be com-
plemented by suitable boundary conditions to obtain a well-posed mathematical
problem from the corresponding differential as well as integral viscoelastic flow
model. Thereby, a reasonable choice might be to prescribe Dirichlet data regard-
ing the velocity field on all boundaries, while the stress fields are set accordingly
only at the inflow boundary egde [20], for example to assume a fully developed
flow at the entrance of the computational domain. On the remaining boundary
edges, a so-called do-nothing boundary condition [21] is imposed. In this regard,
the condition

pn− 2ηsD (u) · n−Σ · n = 0
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including the outer normal vector n might be prescribed on the outflow boundary
edge of the computational domain in case of assigning a do-nothing boundary
condition to the full set of variables. A detailed study concerning corresponding
in- and outflow profiles, especially regarding the velocity field, is performed in
Chpt. 3. For now, the specific shape of the boundary data is left open. Note, that
no Dirichlet data needs to be set regarding the pressure field, which is taken to
be a function in the Lebesgue space L2 (Ω) (see Sec. 2.2.1) and is thus determined
only up to an additive constant. This constant might be chosen, such that a zero
pressure is obtained at a specific point in the computational domain or the integral
mean value of the pressure vanishes.

However, constitutive equations of differential type are quite straightforward
to apply within Finite Element simulations concerning viscoelastic fluid flows, as
these equations can be treated in similar manner as the Stokes equations them-
selves. Nevertheless, a couple of issues need to be taken into account in this
context, which is outlined in Sec. 2.2. Designing a suitable treatment of integral
models within the Finite Element Method is a challenging task as well, where a
possible procedure is described in Sec. 2.3.

2.2 Numerical treatment of differential constitu-
tive equations

The focus of this work lies in considering direct steady-state configurations, which
are relevant in many benchmark computations as well as simulations of industrial
applications. Thus, a stationary version of the above differential viscoelastic flow
models is taken into account in the following to discuss a suitable implementation
within the Finite Element Method. For completeness, the numerical handling of
the time-dependent case is briefly discussed at the end of this section. To obtain
the stationary problem formulation of the corresponding set of equations presented
in Sec. 2.1, the derivatives of the velocity as well as stress fields with respect to time
are neglected. Consequently, the stationary differential viscoelastic flow model in
the unknowns (u,Σ, p) reads

−2ηs∇ ·D (u)−∇ ·Σ +∇p = 0 (2.16a)

u · ∇Σ−∇u> ·Σ−Σ · ∇u + Z (Λ, ηp,Σ) = 2
ηp
Λ

D (u) (2.16b)

∇ · u = 0 (2.16c)

In the following, a general framework regarding Finite Element Methods for differ-
ential viscoelastic fluids is presented, based on which an overview of state-of-the-art
approaches is given in Sec. 2.2.2. Finally, the specific approach applied in this work
is summarised in Sec. 2.2.3.

2.2.1 General framework

The nonlinear set of equations from Eq. (2.16) represents the strong form of the
stationary differential viscoelastic flow model, where well-posedness as well as ex-
istence and uniqueness results are presented in Refs. [22, 23] at least for suffi-
ciently small data, especially concerning the boundary values of the velocity field.
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For discretising the above flow model by means of the Finite Element Method, a
corresponding weak formulation needs to be derived. In doing so, the unknown
fields (u,Σ, p) are determined in some function spaces V ×S×Q of vector-, tensor-
and scalar-valued functions, respectively, defined on a fixed two-dimensional com-
putational domain Ω ⊂ R2 with boundary Γ. In terms of the Galerkin method
applied here, the above equations are multiplied by arbitrary test functions (v,S, q)
from the same set of function spaces V × S × Q, followed by an integration by
parts resulting in

∫

Ω

(2ηsD (u) + Σ− pI) : D (v) dx =

∫

Γ

(Π · n) · v dS ∀v ∈ V (2.17a)
∫

Ω

(
u · ∇Σ−∇u> ·Σ−Σ · ∇u . . .

+Z (Λ, ηp,Σ) −2
ηp
Λ

D (u)
)

: S dx = 0 ∀S ∈ S (2.17b)
∫

Ω

(∇ · u) q dx = 0 ∀q ∈ Q (2.17c)

As before, Π denotes the Cauchy stress tensor from Eq. (2.2) and n refers to
the outer normal vector of Ω on Γ. However, the specific choice of the function
spaces V and Q is well-known in case of considering the weak formulation of
the standard Stokes equations, which arises from Eq. (2.17) by neglecting the
nonlinear material behaviour and accordingly setting Σ ≡ 0. In this context,
V = (H1

0 (Ω))
2 and Q = L2 (Ω), that is the typical Sobolev and Lebesgue spaces,

are chosen with respect to the velocity and pressure variables [24, 25, 26, 27]. As
an alternative being closer related to the differential viscoelastic flow model, the
Stokes equations can be expressed by means of a three-field formulation, which
results from Eq. (2.17) in the weak sense for Λ = 0, ηs = 0 and ηp > 0. In addition
to V and Q taken from above, a common choice for the function space with respect
to the stress is obtained via S = (L2 (Ω))

2×2
sym including the symmetry condition

σ12 = σ21 concerning the off-diagonal components of Σ [24, 28, 29, 30, 31]. Hence,
the stress tensor is in principle obtained by means of an L2-projection of the
strain-rate tensor D (u). When considering an actual viscoelastic fluid, that is
Λ > 0 in Eq. (2.17b), the extra-stress tensor needs to be chosen from a subset
S ⊂ (L2 (Ω))

2×2
sym consisting of a sufficiently higher regularity due to the convective

term being present even in the weak formulation considered above. For example,
the choice

S =
{

S ∈
(
L2 (Ω)

)2×2

sym | ū · ∇S ∈
(
L2 (Ω)

)2×2

sym

}

is discussed in Ref. [32] for a viscoelastic Oseen-type model. Thereby, the veloc-
ity field is fixed in the convective term of the constitutive equation by means of
a suitable solenoidal and sufficiently bounded velocity field ū ∈ V . At least in
terms of this linearised Oldroyd-B model, a higher regularity is imposed on the
stress variable, which provides existence and uniqueness results of the correspond-
ing continuous and numerical solutions. But, an extension towards the original
viscoelastic flow model can not be specified straightforward. Instead, the convec-
tive term may be partially integrated as well by applying the same procedure as
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proposed below in Eq. (2.56). Thereby, the corresponding derivative can be shifted
in the weak formulation to the test function, similar to Eq. (2.58a), by explicitly
taking into account the continuity equation (2.16c). By means of this conservative
formulation of the constitutive equation, the required regularity concerning the
extra-stress tensor is decreased, which results in S = (L2 (Ω))

2×2
sym as described in

Ref. [33] for Jeffreys constitutive law, that is basically the Oldroyd-B model in
case of neglected deformation terms. However, the weak formulation presented
in Eq. (2.17b) is considered in this work, since only first-order derivatives of the
velocity and stress fields occur and no further partial integration is necessarily
required.

Regarding the spatial discretisation of the weak formulation presented in
Eq. (2.17), a triangulation Th of the (two-dimensional) computational domain Ω is
defined consisting of discrete elements T1, . . . , TM of quadrilateral shape. The
representative mesh size is defined as the maximum diameter of all elements,
that is h := maxi∈{1,...,M} diam (Ti). Based on this triangulation, discrete function
spaces V h, Sh and Qh approximating V , S and Q are defined by specifying corre-
sponding sets of vector-, tensor- and scalar-valued basis functions (υ1, . . . ,υNu),
(Φ1, . . . ,ΦNσ) and

(
χ1, . . . , χNp

)
, respectively. By doing so, the approximated

solutions

uh =
Nu∑

i=1

uiυi, Σh =
Nσ∑

j=1

σjΦj, ph =

Np∑

k=1

pkχk (2.18)

are obtained regarding the velocity, stress and pressure fields, where the corre-
sponding numbers of degrees of freedom related to the triangulation Th are denoted
by Nu, Nσ and Np. Furthermore, u := (ui)

Nu
i=1, σ := (σj)

Nσ
j=1 and p := (pk)

Np
k=1

denote the vectors containing the degrees of freedom of the corresponding field
variable in the discretised domain Ωh. By means of the discrete solutions, spatial
approximations of the differential operators from the strong form in Eq. (2.16) can
be defined as

Lij =

∫

Ω

2ηsD (υj) : D (υi) dx ∀i, j ∈ {1, . . . Nu} (2.19a)

Cij =

∫

Ω

Φj : D (υi) dx ∀i ∈ {1, . . . , Nu} , j ∈ {1, . . . Nσ} (2.19b)

Bij =

∫

Ω

χjI : D (υi) dx ∀i ∈ {1, . . . , Nu} , j ∈ {1, . . . Np} (2.19c)

Kij (uj) =

∫

Ω

(
ujυj · ∇Φj −∇ (ujυj)

> ·Φj −Φj · ∇ (ujυj) . . .

· · ·+ Z (Λ, ηp,Φj)
)

: Φi dx ∀i, j ∈ {1, . . . , Nσ} (2.19d)

Dij =

∫

Ω

2
ηp
Λ

D (υj) : Φi dx ∀i ∈ {1, . . . , Nσ} , j ∈ {1, . . . Nu} (2.19e)

based on the above weak formulation. Thereby, the degree of freedom of the
velocity field in Eq. (2.19d) is related to the degree of freedom of the stress vari-
able in a suitable way. However, the discrete operators presented above denote
approximations of the operators from Eq. (2.16) according to
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Lu ≈ 2ηs∇ ·D (u) , Cσ ≈ ∇ ·Σ, Bp ≈ ∇p
K (u)σ ≈ u · ∇Σ−∇u> ·Σ−Σ · ∇u + Z (Λ, ηp,Σ)

B>u ≈ ∇ · u, Du ≈ 2
ηp
Λ

D (u)

Finally, a discrete version of the weak formulation from Eq. (2.17) is obtained,
which can be written in matrix-vector notation as



L C B
D K (u) 0
B> 0 0





u
σ
p


 =




ru
rσ
rp


 (2.20)

Note, that the boundary values are included in the components ru, rσ and rp of
the right-hand side.

In this context, a couple of numerical challenges may arise. First of all, the
approximating spaces regarding the velocity and pressure fields need to obey a
compatibility condition [34]. By satisfying this so-called inf-sup or LBB condition
(named after Ladyzhenskaya, Babuška and Brezzi)

sup
v∈V h

∫
Ω

(∇ · v) q dx

‖v‖1,Ω

≥ α‖q‖0,Ω ∀ q ∈ Qh (2.21)

for a constant α > 0 independent of the mesh, a stable approximation of the
velocity-pressure subproblem is provided. Here, ‖.‖1,Ω and ‖.‖0,Ω denote the norms
with respect to the Sobolev space H1 (Ω) and Lebesgue space L2 (Ω), respectively,
defined regarding the continuous computational domain Ω. Furthermore, a similar
stability condition is also imposed on the velocity-stress coupling according to
Ref. [35], which is why the discrete velocity and stress spaces V h and Sh need to
satisfy

sup
Σ∈Sh

∫
Ω

Σ : D (v) dx

‖Σ‖0,Ω

≥ γ‖v‖1,Ω ∀ v ∈ V h (2.22)

where again γ > 0 is a mesh-independent constant. In case the above inequality
is violated, suitable stabilisation techniques need to be applied for recovering a
stable approximation of the flow variables. But following Ref. [35], this additional
LBB-condition may be omitted in case of a non-vanishing solvent viscosity ηs > 0
in the momentum equation (2.16a). Besides the choice of a stable approxima-
tion of the velocity-pressure-stress formulation, various numerical challenges arise
when elaborating the general concept of a Finite Element discretisation presented
above. For example, a suitable numerical treatment of the convection term or the
hyperbolic character of the constitutive equation (2.16b), which is emphasised for
increasing relaxation times, needs to be taken into account for avoiding spurious
oscillations in the numerical solution. But even in that case, the calculations break
down at already low or moderate relaxation times or Weissenberg numbers, which
is known as the High Weissenberg Number Problem [36, 37]. In fact, the numerical
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simulations might diverge due to the loss of the positive definiteness of the confor-
mation tensor, which is linked straightforward to the extra-stress tensor, caused by
numerical inaccuracy or instability [1, 2]. In addition to the above issues regarding
discretisation techniques, the choice of suitable solution methods turns out to be
non-trivial as well. As suggested by means of Eq. (2.20), the resulting discrete
nonlinear problem can be solved in a monolithic fashion, which might allow for
deriving a fast, efficient and robust numerical scheme. But instead, applying a
decoupled solution approach can be attractive as well due to the involved high
computational costs of fully coupled approaches.

2.2.2 Overview of established FE approaches

In the following, the numerical challenges indicated above as well as further aspects
of Finite Element techniques concerning differential viscoelastic flow models are
outlined by means of a more or less brief discussion of selected approaches.

For example, the choice of a stable approximation of the velocity, pressure
and stress fields is addressed in Ref. [24] based on the fully coupled stationary
formulation of the differential viscoelastic model from Eq. (2.20). In detail, the
velocity and pressure solutions are approximated by means of biquadratic and
bilinear shape functions, respectively, together with the stress being approximated
via n × n bilinar subelements of the approximation of the velocity field. Thus,
stable numerical results can be obtained for n = 3 or n = 4 in terms of the stick-
slip problem or a flow through an abrupt contraction. Moreover, the convection
term in the constitutive equation is treated by the Streamline Upwind Petrov
Galerkin (SUPG) or a non-consistent Streamline Upwind (SU) stabilisation, where
the latter is preferable in non-smooth geometries [38].

In fact, the convective contribution in the constitutive equation is stabilised via
SUPG or SU by various numerical approaches to simulate differential viscoelastic
fluids, while the main differences occur in the treatment of the velocity-stress cou-
pling. In Ref. [39], the stress computation is decoupled from the momentum and
continuity equation by updating the stress fields based on the constitutive equation
successively on each element together with SU stabilisation. Naturally, this tech-
nique requires a special ordering of the elements for having the updated stresses
available in upwind direction in terms of the stabilisation procedure. However, the
velocity and pressure fields are approximated via the Stokes pair Q2/P1, which is
also applied in this work (see Sec. 2.2.3). Furthermore, piecewise discontinuous
biquadratic shape functions are implemented with respect to the stress, where the
degree of freedom in the cell centre is neglected due to consistency regarding the
velocity gradient. But at the same time it is indicated, that instead a bilinear
stress approximation may avoid spurious oscillations in the context of SU.

The two approaches presented above mainly address the choice of a stable
velocity-stress approximation together with a numerical treatment of the convec-
tion in the constitutive equation via upwinding techniques. In contrast, a funda-
mental technique called the Elastic-Viscous Stress Splitting (EVSS) regarding the
stabilisation of the velocity-stress coupling is introduced in Ref. [40]. In detail, a
diffusive operator acting on the velocity field is added into the momentum equa-
tion of the Stokes problem by decomposing the extra-stress tensor into a viscous
and an elastic component. Thus, a corresponding operator is present also in the
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case of no solvent, that is ηs = 0, as the strain-rate tensor is weighted in princi-
ple with the total viscosity η0 = ηs + ηp instead of only the solvent contribution.
Hence, the differential viscoelastic problem is regularised, since the ellipticity of
the subproblem formed by the momentum and continuity equation is established
or emphasised, offering the use of special numerical algorithms designed for such
kind of equations. At the same time, the need to consider a stable velocity-stress
approximation according to Eq. (2.22) is removed [35], which allows a correspond-
ing discretisation by means of polynomials of the same degree on each element, for
example via biquadratic polynomials as done in this work (again see Sec. 2.2.3).
Nevertheless, the EVSS consists of some disadvantages due to considering the elas-
tic stress as primal numerical stress variable instead of the extra-stress tensor [41].
On the one hand, the constitutive equation needs to be transformed for charac-
terising the evolution of the elastic stress, which is not possible in general, for
example in case of conformation tensor-based models. On the other hand, the
upper-convected derivative of the strain-rate tensor D occurs in the transformed
version of the prototypical constitutive equation from Eq. (2.3), which requires
some further attention. In detail, one might perform an additional integration by
parts (similar to Eq. (2.56)), which would require a special treatment of the arising
boundary integral given in Ref. [42] at the outflow of the computational domain.
Alternatively, the strain-rate tensor can be approximated in terms of an additional
numerical variable, which avoids higher-order terms in the weak formulation.

Similarly, the strain-rate tensor is considered as additional independent numer-
ical unknown in the Discrete Elastic-Viscous Stress Splitting (DEVSS) proposed
in Ref. [41], based on which artificial diffusion is introduced into the momentum
equation. But, no change in the stress variable or the constitutive equation is
carried out and hence no higher-order terms regarding derivatives of the velocity
field need to be taken into account. Instead, an additional diffusive operator is
inserted into the left- as well as the right-hand side of the momentum equation,
which results in the (stationary) set of equations

−2 (ηs + α)∇ ·D (u) +∇p = ∇ · (Σ− 2αE) (2.23a)

u · ∇Σ−∇u> ·Σ−Σ · ∇u + Z (Λ, ηp,Σ) = 2
ηp
Λ

D (u) (2.23b)

E = D (u) (2.23c)
∇ · u = 0 (2.23d)

where α > 0 is an artificial model parameter. Naturally, the original version of
the flow model from Eq. (2.16) stays unchanged when applying the DEVSS on the
continuous level. But on the discrete level, the additional equation (2.23c) leads to
approximation errors in the newly introduced variable E with respect to the strain-
rate tensor D, which results in additional (stabilising) contributions in the discrete
system. In fact, a diffusive operator acting on the velocity field is obtained in the
momentum equation even in the non-solvent case ηs = 0, which is why for example
the compatibility condition from Eq. (2.22) regarding a stable velocity-stress ap-
proximation is suppressed. Consequently, the DEVSS shows improved properties
concerning the stability of the numerical method, but leads to an increased prob-
lem size due to the original problem being extended to a four-field formulation in
(u,Σ,E, p). Thus, there will be an increasing effort in terms of a fully coupled



2.2. Numerical treatment of differential constitutive equations 17

solution approach, which is why a decoupled approach is proposed in Ref. [41].
The corresponding procedure consists of successively solving Eqs. (2.23a), (2.23d)
for (u, p) with the stress acting as a body force, Eq. (2.23b) again in combination
with SU for Σ and Eq. (2.23c) for E. In contrast to approaches based on the
original discrete system from Eq. (2.20), such a segregated solution scheme is ap-
plicable in terms of the DEVSS even for ηs = 0, since a regular system regarding
the velocity and pressure is obtained from Stokes subproblem due to α > 0.

Thus, one of the benefits of applying the (D)EVSS is the ability to solve the
stationary differential viscoelastic flow model in a decoupled fashion, even if the
solvent viscosity vanishes. For example, this is a key feature for simulating pure
polymer melts, that is ηs = 0, where multiple modes and thus extra-stress tensors
need to be considered simultaneously in the flow model, which makes a monolithic
approach unpractical. The same problem occurs in the context of transient simu-
lations of viscoelastic fluids in case of neglected inertia in addition to the solvent
viscosity. In detail, the density is set to ρ = 0 causing also the time-derivative of
the velocity field to vanish from the momentum equation. Actually, this is consis-
tent to reducing the Navier-Stokes equations to the case of creeping flows, where
the convective operator in the momentum equation is dropped, too. Consequently,
the only present time-derivative in the differential model occurs in the constitutive
equation (2.3). Naturally, a fully implicit temporal discretisation in terms of a cou-
pled solution approach leads to a robust and accurate prediction of the transient
flow behaviour, but large numerical effort is needed. Thus, a decoupled solution
approach may be of interest, which at first glance is applicable only in case of a
present solvent contribution. In the non-solvent case (and also for neglected iner-
tia), a suitable decoupled transient solution approach of second order is proposed
in Ref. [43]. Besides the typical stabilisation via DEVSS and SUPG regarding the
velocity-stress coupling and the stress convection, the (implicitly treated) stress
in the momentum equation is replaced by an expression derived from the consti-
tutive equation. In detail, the constitutive equation is discretised semi-implicitly
with respect to time, where the stresses are taken explicitly and the velocity is
taken implicitly. Thus, accordingly substituting the extra-stress tensor leads to a
re-coupling of the velocity field in the momentum equation even for ηs = ρ = 0.
An extension of this approach to the case ρ > 0 – but still ηs = 0 – which imposes
restrictions on the time step for avoiding spurious oscillations due to the present
convection operator, is proposed in Ref. [44].

In the numerical approaches described above, stabilisation techniques are ap-
plied mainly regarding the coupling of the velocity and stress approximation as well
as the hyperbolic character of the constitutive equation. At the same time, usually
a stable approximation is chosen concerning the velocity and pressure fields. In
an alternative approach based on a Galerkin Least-Squares (GLS) formulation as
proposed in Ref. [45], a global stabilisation is applied taking into account all nu-
merical variables as well as the convective term in the constitutive equation. Thus,
by adding penalising terms in form of least-squares expressions of the residuals, the
compatibility conditions from Eqs. (2.21) and (2.22) are suppressed, in principle
contributing to stable simulations even for low equal-order approximations of the
numerical unknowns. Moreover, the set of nonlinear equations can be converted
into a set of partial differential equations of first order by considering the velocity
gradient as independent numerical variable via the DEVSS, both allowing a rela-
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tively simple numerical implementation as well as a cheap calculation of the flow
model. But at the same time, the problem size is increased due to the additional
variable approximating the strain-rate tensor.

In Refs. [36, 37, 46] a stabilisation approach concerning the High Weissenberg
Number Problem is introduced. Thereby, the numerical simulations break down
at relatively small values of the Weissenberg number We = Λuc

lc
, which specifies

the nonlinearity of the problem based on the relaxation time Λ as well as the
characteristic velocity uc and length lc. Naturally, the hyperbolic character of the
constitutive equation is enhanced for increasing relaxation times, which causes sev-
eral numerical challenges. At the same time, the source of this numerical problem
is traced back to an exponential growth of the stress variable observed for increas-
ing relaxation times, which might not be captured by polynomial approximations
applied in the context of a Finite Element discretisation. Hence, the positive defi-
niteness of the conformation tensor T, which is provided on an analytical level [16],
may get lost in terms of numerical computations due to such inaccuracy, further
leading to oscillations or instabilities. Therefore, a suitable variable transforma-
tion may be applied, where the logarithm of the conformation tensor, which is
defined according to

Σ =
ηp
Λ

(T− I) (2.24)

instead of the extra-stress tensor itself is considered as numerical variable. By
doing so, the exponential growth of the stress is balanced and the positive def-
initeness of the conformation tensor is preserved. Since T is not only positive
definite, but also symmetric according to the extra-stress tensor Σ, it can be di-
agonalised offering the possibility to introduce the matrix-logarithm

Ψ = log (T) = R log (L) R>

as new stress variable, where R and L denote suitable rotation and diagonal ma-
trices, respectively [47]. By following Refs. [36, 37, 46], applying a certain de-
composition of the velocity gradient in the constitutive equation (2.3) yields the
corresponding Log-Conformation Representation (LCR), in detail

∂Ψ

∂t
+ u · ∇Ψ− (Ω ·Ψ−Ψ ·Ω)− 2B = H (Ψ) (2.25)

for the matrix-logarithm Ψ, where the matrices Ω and B arise from decomposing
the velocity gradient. In case of the differential models mentioned above, the model
function H in Eq. (2.25) takes the form

H (Ψ) =
1

Λ
(I− α exp (Ψ) · (exp (−Ψ)− I)) · (exp (−Ψ)− I)

concerning the Giesekus model for α ∈ ]0, 1], where the Oldroyd-B or UCM model
are obtained for α = 0 [47]. Following Ref. [48], the model function evolves to
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Hlin (Ψ) =
1

Λ

(
1 + κ

Λ

ηp
(tr (exp (Ψ)− I))

)
(exp (−Ψ)− I)

Hexp (Ψ) =
1

Λ
exp

(
κ

Λ

ηp
(tr (exp (Ψ)− I))

)
(exp (−Ψ)− I)

in case of the PTT model concerning the linear or exponential version, respectively.
In Ref. [49], an alternative formulation of LCR is proposed, where no trans-

formation of the constitutive equation is performed, but just a change regarding
the stress variable. In detail, the conformation tensor is simply replaced by the
matrix-exponential of Ψ in the corresponding material model, but the equation
itself stays the same. Thus, possibly a simpler realisation of LCR is provided, since
no decomposition of the velocity gradient needs to be applied. But, this alternative
form provides in principle the same features as the original approach, that is the
exponential growth of the stress variable is damped and the positive definiteness
of the conformation tensor is guaranteed, even in numerical calculations.

A conceptually different, but also positivity preserving approach called the Con-
travariant Deformation Tensor formulation (CDT) is presented in Ref. [50], which
consists of a multiplicative decomposition of the conformation tensor similar to a
Cholesky-type decomposition. It turns out, that one deformation contribution is
absent in the evolution equation of the contravariant deformation tensor compared
to the constitutive equation arising with respect to the conformation tensor based
on Eqs. (2.3) and (2.24). Thus, besides the ensured positive semi-definiteness of
the conformation tensor, the High Weissenber Number Problem is avoided more
or less by design, since a “natural” balance between convection and deformation is
established in the considered evolution equation. But at the same time, the numer-
ical effort is increased, since the contravariant deformation tensor is nonsymmetric,
which requires to store one additional component compared to the extra-stress or
conformation tensor. Note, that a similar approach is proposed regarding integral
constitutive equation in Ref. [15], which will be discussed in Sec. 2.3.2.

2.2.3 The implemented numerical framework

The underlying numerical framework regarding two-dimensional differential vis-
coelastic flow models applied and extended in this work is validated and evalu-
ated in Refs. [47] and particularly [51]. Thereby, the set of equations is treated
in a monolithic fashion resulting in a (discrete) nonlinear system according to
Eq. (2.20). Thus, the numerical handling considered here corresponds to the
mixed or velocity-pressure-stress formulation [1]. In various approaches such as
in Refs. [46, 39, 43, 44, 50], the flow problem is solved numerically in terms of
operator splitting and/or pseudo time-stepping techniques to avoid the high com-
putational costs of a fully coupled solution method, since only smaller subproblems
have to be tackled successively. But, these approaches usually suffer from a rela-
tively slow convergence speed, potentially consisting of large computation times to
reach a steady-state solution. In contrast, solving for all unknowns simultaneously
– in combination with a higher-order approximation of the flow variables as in the
framework presented in Refs. [47, 51] – results in a robust, stable, accurate and
efficient numerical approach, which is outlined in the following.
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Discretisation techniques

For obtaining a high accuracy in approximating the velocity, stress and pressure
fields, the corresponding set of unknowns (u,Σ, p) is discretised via the approx-
imation triple Q2/Q2/P

disc
1 . In detail, the corresponding polynomial spaces are

defined as

Q2 (T ) :=
{
q ◦ Φ−1

T | q ∈ span〈1, x, y, xy, x2, y2, x2y, y2x, x2y2〉
}
(2.26a)

P disc
1 (T ) := span〈1, x̃, ỹ〉 (2.26b)

in case of two-dimensional configurations. Note, that the bilinear transformation
ΦT : T̂ → T of the reference element T̂ = [0, 1]2 onto a physical element T ∈ Th
is taken into account when defining the biquadratic polynomial space Q2 on an
element T ∈ Th. In contrast, the space P disc

1 is defined by means of a local element-
based coordinate system x̃, ỹ resulting from connecting the midpoints of opposite
edges of T to maintain a higher-order convergence. In contrast, constructing P disc

1

in the same way as Q2 in Eq. (2.26), that is by a composition with the bilinear
mapping ΦT , would reduce the order of convergence [27, 52]. However, the nine
local degrees of freedom of the velocity and stress fields are the function values
located in the corner and centre points of each element as well as in the midpoints
of the element edges, establishing a globally continuous approximation. In con-
trast, the degrees of freedom regarding the pressure field are the function value
plus the derivatives in both spacial dimensions located in the element midpoints,
which leads to a piecewise continuous approximation allowing jumps across ele-
ment edges. Finally, the velocity, stress and pressure solutions are approximated
in the discrete spaces

V h =
{
vh ∈ V | vh|T ∈ (Q2 (T ))2 ∀T ∈ Th,vh|∂Ωh = 0

}
(2.27a)

Sh =
{

Sh ∈ S | Sh|T ∈ (Q2 (T ))2×2
sym ∀T ∈ Th

}
(2.27b)

Qh =
{
qh ∈ Q | qh|T ∈ P1 (T ) ∀T ∈ Th

}
(2.27c)

being subspaces of V × S × Q ⊂ (H1
0 (Ω))

2 × (L2 (Ω))
2×2
sym × L2 (Ω) discussed in

Sec. (2.2.1). Note, that in practice only three components of the discrete stress
tensor need to be stored due to symmetry.

Obviously, the above choice of the discrete spaces provides a stable approxi-
mation of the velocity and pressure fields regarding the compatibility condition
from Eq. (2.21), as the well-known Stokes pair is applied [27]. But, the additional
inf-sup condition from Eq. (2.22) concerning the velocity-stress coupling is not
satisfied, which at least for the non-solvent case ηs = 0 results in an unstable
approximation. Consequently, a suitable stabilisation needs to be applied, which
in this framework takes the form of the so-called Edge-Oriented FEM stabilisation
(EOFEM, [47, 53]). Therefore, penalising terms J u,J σ regarding jumps of the
gradient of the (discrete) velocity and stress fields over element edges are added
to the diagonal blocks of the (discrete) system from Eq. (2.20). In detail, the
stabilising matrices read
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J u
ij =

∑

edge E

γuhE

∫

E

[∇υj] : [∇υi] dS ∀i, j ∈ {1, . . . Nu} (2.28a)

J σ
ij =

∑

edge E

γσh
2
E

∫

E

[∇Φj] : [∇Φi] dS ∀i, j ∈ {1, . . . Nσ} (2.28b)

where, γu, γσ > 0 denote mesh-independent stabilisation constants, hE the length
of the edge E and [ξ] = ξ+−ξ− the jump over an element edge of a given quantity ξ.
Besides balancing the potentially unstable velocity-stress approximation, it is use-
ful to add stabilisation in the present framework to the system anyways, since the
hyperbolic character of the (differential) constitutive equation (2.16b) may cause
unphysical numerical oscillations in the flow, which are not tackled here via SUPG
or other techniques mentioned above. Moreover, the typical saddle-point struc-
ture as well as the original size of the problem is kept by making use of EOFEM
stabilisation, which allows for applying numerical solvers especially designed for
these kind of problems, for example the monolithic solution approach described
below. In contrast, many alternative approaches providing a stable or stabilised
approximation consist of several drawbacks like an increasing problem size in case
of the stress approximation via subelements proposed in Ref. [24] or due to an
additional variable in terms of the (D)EVSS from Ref. [40, 41]. However, the LCR
of the constitutive equation will typically be considered in the numerical scheme
applied in the following to reasonably treat the stress variables in case of higher
relaxation times or Weissenberg numbers.

Solution methods

Applying the discretisation techniques described above results in a nonlinear sys-
tem of similar structure as presented in Eq. (2.20), which is solved monolithically
via Newton’s method. Hence, a faster convergence speed compared to a simple
fixed-point iteration is obtained, but the Jacobian matrix of the nonlinear problem
or a suitable approximation needs to be provided. However, one nonlinear step of
the iterative scheme reads

xk+1 = xk − ωkA−1
(
xk
)

r
(
xk
)

(2.29a)

including a step width ωk ∈ ]0, 1], which can be chosen adaptively to establish a
global convergence of the nonlinear solver [47, 51]. Thereby, x denotes the vector
of unknowns, r the residual and A the Jacobian matrix, which have the structure

x =



u
σ
p


 , r (x) = r (u,σ,p) =



Lu+ J uu+ Cσ + Bp− ru
Du+K (u)σ + J σσ − rσ

B>u− rp


 (2.29b)

A (x) = A (u,σ) =




L+ J u C B
D +Ku (u,σ) K (u) + J σ 0

B> 0 0


 (2.29c)
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based on the discrete operators from Eq. (2.19), where the stabilisation operators
resulting from EOFEM are included as well. Furthermore, the subscript u of the
operator K in the Jacobian matrix A denotes the corresponding derivative with
respect to the velocity field. Note, that the extra-stress tensor is considered in
Eq. (2.29) as numerical variable regarding the stress, although the LCR of the
constitutive equations is mainly applied in the numerical investigations performed
in Chpt. 4. Naturally, this causes slight changes in the discrete quantities presented
above, since the matrix-logarithm of the conformation tensor represents the primal
stress variable. But, the overall structure of the problem will stay the same.

In principle, the Jacobian matrix from Eq. (2.29c) can be computed analyti-
cally, which leads to discretising the Fréchet derivative of the continuous problem.
By doing so, an exact Newton solver would be obtained, since numerical errors
in terms of approximating the Jacobian matrix are avoided. But, a (complicated)
derivation of the continuous problem is required, which has to be adapted once a
different material model is chosen. Thus, computing the Jacobian matrix numeri-
cally via Finite Differencing is the conceptually much simpler procedure, which at
the same time can be used in a “black box” style for any applied material model.
But, the Newton scheme reduces to a quasi-Newton method, since the system ma-
trix of the linear subproblems is only an approximated Jacobian. Nevertheless, in
the present approach the entries of the (approximated) Jacobian are calculated by

Aij (x) =
1

2ε
(ri (x + εej)− ri (x− εej)) ∀i, j ∈ {1, . . . , Nu +Nσ +Np} (2.30)

where ri refers to the row of the residual vector r from Eq. (2.29b) and ej to the unit
vector corresponding to degrees of freedom denoted by the indices i, j. Moreover,
ε > 0 is a small perturbation parameter, which is typically chosen in the range of
10−8 and 10−6 in this work. Naturally, the choice of the perturbation parameter
will affect only the convergence speed or the overall convergence behaviour, but
not the solution itself.

Besides the calculation of the Jacobian, another important part of Newton’s
method is solving linear subproblems of the form

A
(
xk
)

x̄ = r
(
xk
)

(2.31)

for a correction x̄ of the current solution xk. In principle, this can be done by means
of a direct solver, although that might not be practical in many applications due to
large problems sizes causing huge memory requirements and computation times.
Consequently, iterative solution approaches offer a suitable alternative, where –
aiming at the design of robust and efficient solvers – applying multigrid techniques
for solving the above linear system is attractive, since a mesh-independent con-
vergence behaviour can be obtained. Therefore, a (geometric) multigrid solver is
designed based on a hierarchical sequence of meshes by specifying grid transfer
operators plus a (direct) coarse grid solver as well as a smoothing scheme. Re-
garding the grid transfer, rather classical operators are applied in this context.
For example, the restriction operator is realised by means of injection, where the
values on the coarse mesh are set according to the corresponding values on the
fine grid. In addition, biquadratic interpolation may be chosen concerning the
prolongation. The general concept of multigrid solvers is described below follow-
ing Refs. [54, 55, 56, 57], where the applied smoother plays an important role in
the given framework.
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As mentioned above, the goal is to solve the linear subproblem from Eq. (2.31)
arising in terms of the Newton scheme. Starting from the linear system on the
current (finest) mesh, a pre-smoothing step is performed, which may consist of
few iterations of a basic iterative damped defect-correction technique of Richard-
son type. By doing so, the high-frequent components of the error between the
current and actual solution are damped, while the low-frequent components are
unaffected. Since these components appear to be of higher frequency on a coarser
grid, the residual of the original linear problem with respect to the pre-smoothed
solution is restricted to the next coarser mesh for further reduction of the error
components. Therefore, the restricted residual is considered as the right-hand side
of a linear problem on the coarser mesh level, which is solved for the correction of
the solution of the original problem. The corresponding problem matrix is built in
a suitable manner based on the original operator. After performing a few smooth-
ing steps, the resulting residual is restricted further (including smoothing) until
the coarsest mesh is reached and the coarse-grid problem is solved by a direct
solver. Afterwards, optionally combined with few post-smoothing steps on each
mesh level, the coarse-grid solution is prolonged back to the finest grid, where it is
used to correct and thus update the solution of the original linear problem (2.31).
In fact, the procedure described above corresponds to a so-called V-cycle, since
the coarse-grid problem is only solved once, framed by restriction or prolongation
operations from the finest to the coarsest level or vice versa, combined with ap-
plications of the smoother. As an alternative strategy, the coarse-grid solution
might not be prolonged the full way up to the finest level, but intermediately can
be restricted (together with smoothing) to the coarsest level again, before being
prolonged to the finest mesh. Thus, the obtained W- or F-cycle includes at least
one additional solution of the coarse-grid problem compared to the V-cycle.

A crucial component of the multigrid solver is the smoother, which is chosen to
be of Vanka-type in the present framework, since it provides a suitable treatment of
the zero blocks in the (approximated) Jacobian matrix from Eq. (2.29c), typically
occurring for saddle-point problems. In fact, a standard global Jacobi or Gauß-
Seidel smoother is not applicable in this context, as parts of these zero blocks
would need to be inverted. In contrast, an update of the solution is computed
within the applied Vanka smoother successively on small subdomains of the global
mesh, where a local counterpart of the Jacobian matrix as well as the residual is
extracted from the global versions. Actually, these quantities are built according
to the degrees of freedom on one element or a small patch of elements leading
to a local expression of the global system. This resulting small local system is
solved “exactly” to update the unknowns corresponding to the specific element or
patch, where solutions on already treated elements or patches are included in the
local residual. Finally, a global update of the solution is obtained by collecting the
local contributions. Consequently, the applied smoother can be interpreted as a
block-wise Gauß-Seidel procedure.

Transient configurations

So far, discretisation and solution techniques regarding differential viscoelastic flow
models are described for considering the direct steady-state formulation. In case of
a time-dependent configuration, the basic ingredients of the numerical framework
will be the same, extended by contributions arising from the discretisation of the
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governing equations with respect to time [47], which is illustrated below. Based
on the original time-dependent flow model consisting of Eqs. (2.1), (2.2) and (2.3),
applying an implicit time discretisation by means of the Fractional-Step-θ scheme
together with the spatially discretised operators from Eq. (2.19) leads to the time-
and space-discrete system

ul+1 − ul
∆t

+ θ
(
Lul+1 + Cσl+1

)
+ . . .

· · ·+ (1− θ)
(
Lul + Cσl

)
+ Bpl+1 = ru (2.32a)

σl+1 − σl
∆t

+ θ
(
K
(
ul+1

)
σl+1 +Dul+1

)
. . .

+ (1− θ)
(
K
(
ul
)
σl +Dul

)
= rσ (2.32b)

B>ul+1 = rp (2.32c)

For simplicity, an equidistant time step width ∆t = tl − tl−1 is chosen for com-
puting the discrete unknowns

(
ul,σl,pl

)
at the discrete time instants tl, l > 1,

but in principle also an adaptive choice of ∆t is possible. The initial solutions
(u0,σ0) may be set to zero or according to results of previous simulations, possi-
bly interpolated from a coarser to the current mesh. In case of choosing θ = 1

2
, the

second-order Crank-Nicolson scheme is obtained from Eq. (2.32), which is appli-
cable also in the case of neglected inertia and/or a vanishing solvent contribution
due to the monolithic treatment of the set of equations. Thus, the design of spe-
cial decoupling techniques leading to second-order transient schemes as done in
Refs. [43, 44] may be avoided. As the main difference to the direct steady-state
approach, the Newton scheme from Eq. (2.29) has to be applied in every time
step in case of an instationary simulation. The corresponding global matrix from
Eq. (2.20) is modified, such that a contribution of the form 1

∆t
M is added to

the diagonal blocks regarding the velocity and stress fields. Note, that the actual
mass matrixM depends on the specific spatial discretisation of the velocity and
stress fields, respectively, that is the choice of the basis functions from Eq. (2.18).
Furthermore, specific blocks of the matrix according to Eq. (2.32) are weighted
with θ, while the explicit contributions enter the right-hand side of the nonlinear
problem. Considering the linear subproblems (2.31) in terms of transient simula-
tions, the system matrix is stabilised by the additional contributions 1

∆t
M, which

might improve the behaviour of the linear (multigrid) solver.

2.3 The Deformation Fields Method regarding in-
tegral material laws

As illustrated above, differential constitutive equations can be implemented within
the Finite Element context more or less straightforward. But, numerical simula-
tions involving such material models suffer from several issues, for instance re-
garding the prediction of the behaviour of realistic viscoelastic materials, because
the required multi-mode approach or the HWNP may lead to serious difficulties.
Consequently, an implementation of integral constitutive laws is of intensified in-
terest, since an improved modelling approach is obtained from a rheological point
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of view and in addition, some of the numerical drawbacks of differential models
are avoided. Therefore, the Deformation Fields Method is applied for treating
integral constitutive equations together with the Stokes equations in a Finite El-
ement framework. Naturally, a couple of major challenges arise in this context as
well, which is illustrated in Secs. 2.3.1 and 2.3.2 by describing the basic develop-
ments of the Deformation Fields Method proposed in Refs. [12, 13, 14, 15]. At the
same time, suitable ingredients are detected to extend the numerical framework
of differential models presented in Sec. 2.2 or Refs. [47, 51] to considering integral
models, which is outlined in Sec. 2.3.3.

2.3.1 The initial approach

As a starting point, the temporal as well as spatial discretisation of integral vis-
coelastic models is discussed by means of the initial approach to the Deformation
Fields Method proposed in Ref. [13], which is transferred to the two-dimensional
case described in Sec. 2.1. A key component of such integral models is to consider
the deformation history of the flow by means of a stress integral. In doing so,
the “memory” of the fluid is represented by the function m, which is taken to be
exponentially decaying for increasing age of the deformation. Hence, the effect of
deformations applied at a certain time instant in the deformation history decreases
for marching forward in time, which is why a so-called cut-off time sc ∈ ]−∞, t[
is introduced in Ref. [13], below which contributions to the deformation history
are negligible small. Thus, an approximation of the stress integral from Eq. (2.9)
according to

Σ (t) ≈
∫ t

sc

m (t− t′)
[
φ1 (tr (Bt′)) Bt′ (t) + φ2 (tr (Bt′)) B−1

t′ (t)
]
dt′ (2.33)

is obtained. Obviously, it is not possible to consider the deformation history on
a continuous level within a numerical framework, which is why the above stress
integral needs to be discretised with respect to the reference time t′. Besides the
memory function m, empirical functions related to the Finger tensor Bt′ occur in
the stress integral (2.33), which consequently have to be discretised with respect
to the reference time as well to obtain an approximation of the whole deformation
history. For simplicity, φ2 ≡ 0 is considered in the following, since the methodology
applied for discretising φ1 (tr (Bt′)) Bt′ =: G (Bt′ (t)) can be directly transferred
to the case of a non-vanishing function φ2. In the initial approach to the De-
formation Fields Method proposed in Ref. [13], a fixed number of discrete times
si ∈ [0,∞[ , i = 0, . . . , N, is introduced covering the whole deformation history,
such that t − s0 = t, that is the current time instant, and t − sN = sc. Thereby,
an optimal approximation of the deformation history should be obtained by ap-
propriately choosing the discrete times si, which may be related to the memory of
the material. Since the memory function m is exponentially decaying, it consists
of a large gradient with respect to reference times t′ close to t. Consequently, for
small ages – or reference times close to the current time instant – the applied de-
formations are assumed to have a large influence on the current state of the flow,
while deformations arising from large ages contribute less. Hence, it seems reason-
able to apply a small age step width close to the current time instant t, while the
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step width can be increased for larger ages t− t′, for example by means of integer
multiples, since corresponding numerical errors are damped due to the shape of
the memory function [13]. For discretising the stress integral with respect to the
reference time t′, the included empirical function is approximated by interpolating
the Deformation Fields assigned to the discrete reference times t − si. In detail,
the resulting approximation

G (Bt−s (t)) ≈
N∑

i=0

G [Bt−si (t)] ξi (s) (2.34)

is established by means of suitable one-dimensional basis functions ξi depending
on s ∈ [0,∞[, for example piecewise linear functions satisfying ξi (sj) = δij, where
ξN (sc) = 1 is set due to the definition of the cut-off time sc. Consequently, an
approximation

Σ (t) ≈
N∑

i=0

WiG [Bt−si (t)] , Wi =

∫ ∞

0

m (s) ξi (s) ds (2.35)

of the stress integral from Eq. (2.33) is obtained, where the corresponding
weights Wi need to be computed only initially during pre-processing.

As a next step, the Stokes equations (2.1) as well as the evolution equation (2.8),
coupled by means of the approximated stress integral (2.35), need to be discretised
regarding the time variables t and s, respectively. For simplicity, it is assumed that
both equations are considered according to the same time scale, which is why the
same time step width may be applied during discretisation. But naturally, the
evolution equation of the Finger tensors might be solved on a different time scale
than the Stokes equations, which would require suitable interpolation techniques
to transfer the velocity field calculated from the Stokes equations (2.1) to the
evolution equation (2.8). However, the evolution equation (2.8) of the Finger
tensor is discretised in Ref. [13] with respect to time via the explicit Euler scheme
giving

Bl+1
tl−si −Bl

tl−si
∆t

+ K̃
(
ul
)
Bl
tl−si = 0 (2.36)

concerning all si, i = 0, . . . , N . In doing so, small time steps for obtaining accurate
results are required, which makes this the weak spot of the initial approach to the
Deformation Fields Method. Regarding the temporal discretisation of the Stokes
equations (2.1), similar techniques as presented in Sec. 2.2 can be applied, for ex-
ample the Backward Euler method as in Ref. [13] resulting for θ = 1 in Eq. (2.32a).
Note, that inertia are neglected in the initial approach proposed in Ref. [13] (and
also in further developed approaches from Refs. [14, 15]), which implies ρ = 0
and thus leads to a vanishing derivative of the velocity field with respect to time,
although the flow is still time-dependent. Obviously, this results in an ill-posed
continuous or discrete problem when considering the Stokes equations (2.1) for the
non-solvent case ηs = 0 including the divergence of the stress tensor as a right-hand
side. Consequently, the Discrete Elastic-Viscous Stress Splitting (DEVSS, [41]) is
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applied in Ref. [13] similar to differential models, while also other techniques are
applicable as proposed in Ref. [15] or in Sec. 2.4. Concerning the spatial dimension,
the evolution equation (2.8) regarding the fields Bt′ is discretised in Ref. [13] by a
discontinuous Galerkin scheme including piecewise bilinear polynomials. However,
the (spatially discretised) operator K̃ from Eq. (2.36) may be defined similarly
to the corresponding operator in case of differential models from Eq. (2.19d). In
addition, the velocity and pressure variables are approximated by means of the
well-known LBB-stable Stokes pair Q2/P

disc
1 .

It becomes clear, that the resulting discrete system of equations needs to be
solved via operator splitting, since the full set of Deformation Fields assigned to
the discrete reference times tl − si, i = 0, . . . , N − 1, is updated by perform-
ing one time step in Eq. (2.36) based on the velocity field ul. In doing so, the
fields Bl+1

tl−s0 , . . . ,B
l+1
tl−sN−1

are obtained, and at the same time the oldest field Bl
tl−sN

is deleted. In addition, the updated fields are shifted regarding the reference times
according to tl−si → tl+1−si+1 for i = 0, . . . , N−1 and a new field Bl+1

tl+1
assigned

to tl+1 − s0 = tl+1 is created, which keeps the number of N + 1 fields constant.
By means of the resulting fields Bl+1

tl+1−s0 , . . . ,B
l+1
tl+1−sN , the approximated stress

integral Σl+1 is computed from Eq. (2.35), which enters the right-hand side of
the Stokes equations (2.32a) and (2.32c) for computing an updated velocity and
pressure solution. Note, that this straightforward procedure of updating, creating
and deleting fields can be implemented only, if the age discretisation consists of
a constant step width, that is si+1 − si = ∆t ∀i. But this makes sense only re-
garding (discrete) reference times t− si close to the current time t, while the age
step width should be increased for discrete times si � 0. In this case, it is not
practical to delete the oldest field assigned to sN after a new field is created at the
new time instant tl+1: Since sN = sN−1 + k∆t for a fixed k ∈ N, the field Bl

tl−sN−1

needs to be evolved for at least k time steps, until tl − sN−1 → tl+k − sN = sc
forces the field to being deleted. Instead, some intermediate field is discarded once
shifting tl − si → tl+j − si+1 for specific i ∈ {0, . . . , N − 1} and j ∈ N, where
si+1 = si + j∆t, would assign the discrete field to the next discrete time, which is
in fact still blocked by the (not yet reassigned) field Btl−si+1

[13].
In Ref. [13] it is found, that considering about 100 discrete Deformation Fields

leads to quite accurate and stable simulation results, although a time discretisation
error remains since the fields do not reach a steady state, even when the flow itself
becomes stationary. Furthermore, initially small defects occurring in the Deforma-
tion Fields are intensified by the persisting evolution. In the long term, this will
affect the accuracy in calculating the stress tensor, since the numerical oscillations
might not be damped by the exponentially decaying memory function anymore. In
this regard, the cut-off time sc may be shifted closer to the current time t leading
to a shorter evolution time of the (oscillating) fields. Hence, the numerical per-
turbations could be limited, since the age of the Deformation Fields and thus the
build-up of oscillations is reduced [13]. But naturally, a reduced cut-off time also
decreases the accuracy of the approximated stress integral from Eq. (2.33), again
affecting the quality of the numerical results. Consequently, a reasonable choice of
the time step for evolving the Deformation Fields in combination with a suitable
discretisation of the reference time and an appropriate setting of the cut-off time
is of interest to obtain stable and accurate numerical results. Obviously, a higher-
order scheme approximating the evolution equation (2.8) with respect to time is
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an important point for improving the initial approach to the Deformation Fields
Method, as already mentioned in Ref. [13].

In summary, a fixed number of (discrete) fields Bt−si , i = 0, . . . , N , is stored
within the initial approach to the Deformation Fields Method from Ref. [13], which
are convected and deformed over time. Consequently, having the velocity field
available at the time instant t from the Stokes equations Eq. (2.1), the Deformation
Fields need to be updated by performing one time step in Eq. (2.36) regarding
each of the fields Bt−si . Additionally, a new field Bt+∆t is initialised and an
existing field is deleted to keep the number of fields constant. Moreover, the
initially computed weights Wi, which are linked to the specific discrete time si,
need to be reassigned to different fields when initialising, shifting and and deleting
fields. Furthermore, the Deformation Fields do not become steady even when the
flow is steady, which might lead to time discretisation errors potentially causing a
loss of the positive (semi-)definiteness of the fields. In addition, instabilities are
observed associated with the choice of the cut-off time, which are thus not present
in case of an equivalent differential model formulation, but affecting the stability
and accuracy of the numerical method [13]. Hence, several developments of the
Deformation Fields Method have been proposed based on this initial approach
concerning the issues discussed above.

2.3.2 Further developments

In a first improved method presented in Ref. [14], the age τ := t− t′ is introduced
as an additional time scale leading to re-defined Deformation Fields of the form
B (t, τ,x) := Bt−τ (t,x). Recall, that a Deformation Field Bt′ (t) in the initial
approach contains information about the deformation history from the absolute
reference time t′ to the current time t. In contrast, the transformed fields B (t, τ)
characterise the deformation of a fluid particle during a fixed time frame [t− τ, t]
back from the current time. Thus, the deformation history of the fluid is considered
within a fixed age relative to the current time t by introducing τ as additional time
scale. In contrast, an absolute time interval is taken into account from the cut-
off time sc to the current time in the original approach. However, based on the
re-defined fields the evolution equation of the Finger tensor changes to

∂

∂t
B (t, τ) +

∂

∂τ
B (t, τ) + u (t) · ∇B (t, τ) . . .

· · · − ∇u (t)> ·B (t, τ)−B (t, τ) · ∇u (t) = 0 (2.37)

together with the initial and “boundary” condition B (0, τ) = B (t, 0) = I. Thus,
the flow is at rest at the initial time t = 0 and the fields at the current time
instant t are initialised with age τ = 0 in a state of equilibrium. Naturally, also
the stress integral from Eq. (2.9) is affected by the newly introduced time scale,
since a corresponding transformation of the integral gives

Σ (t) ≈
∫ τc

0

m (τ)
[
φ1 (tr (B (t, τ))) B (t, τ) + φ2 (tr (B (t, τ))) B−1 (t, τ)

]
dτ (2.38)

Here, a suitable cut-off age τc is directly incorporated, because contributions to
the stress integral again are assumed to be negligible small for large ages τ > τc.
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Compared to the evolution equation (2.8) from the initial approach in Ref. [13],
the modified evolution equation (2.37) consists of an additional term, that is the
derivative of the Deformation Fields with respect to the age variable. By discretis-
ing the evolution equation concerning the re-defined Deformation Fields B (t, τ)
with respect to both, the actual time t as well as the age scale τ , a global cou-
pling of the discrete fields during evolution is introduced due to the additional
derivative [14], which is absent in the original method. Consequently, this modi-
fied Deformation Fields Method does not seem to provide an improved formulation
at first glance. But, there are some significant advantages obtained in case of as-
signing the fields to the age τ instead of the reference time t′. In fact, the fields
become steady when the complete flow reaches a stationary state, that means for
a velocity field indepenent of t. Therefore, the fields B (t, τ) can be written as
B (t, τ) = Bt−τ (t) = Bt−τ (τ + t′) = Bt′ (τ) since the age is defined as τ := t − t′
for fixed t′. Thus, the evolution equation (2.37) gives

0 =
∂

∂t
B (t, τ) +

∂

∂τ
Bt′ (τ) + u · ∇Bt′ (τ) . . .

· · · − ∇u> ·Bt′ (τ)−Bt′ (τ) · ∇u

=
∂

∂t
B (t, τ) +

∇
Bt′ (τ) (2.39)

where the upper-convected time derivative of B (t, τ) = Bt′ (τ) is regarded with
respect to the age variable τ instead of t by taking into account, that u is indepen-
dent of any time variable. Hence, the fields B (t, τ) indeed reach a stationary state
regarding the actual time t, since the upper-convected time derivative of the De-
formation Fields in the evolution equation (2.39) vanishes according to Eq. (2.8).
But naturally, the fields are evolved with respect to the age scale. Another feature
of the modified approach is provided by offering the possibility to discretise the
age τ independently of the actual time step. In contrast, the discretisation of the
reference time t′ in the initial approach is in some way linked to the actual time
step applied in the Stokes equations (2.1) and/or the evolution equation (2.8) of
the Finger tensor. Additionally, there is no need to create or delete fields due to
considering a “fixed” part [t− τ, t] of the deformation history, furthermore avoiding
the need of re-assigning the weights in the resulting approximated stress integral.

Accordingly, more stable and accurate results are obtained concerning the nu-
merical behaviour of the modified approach to the Deformation Fields Method
compared to the original approach proposed in Ref. [13]. A significant improve-
ment is established in Ref. [14] by evolving the discrete Deformation Fields forward
in time by a second-order Adams-Bashforth scheme as well as introducing the age
as an additional time scale. Thus, numerical oscillations arising from the time
discretisation are damped and do not keep growing even for stationary flows, since
also the Deformation Fields reach a stationary state, although being persistently
evolved with respect to the age scale. As a result, the simulation quality regard-
ing integral models taking into account the improved version of the Deformation
Fields Method is comparable to differential models. This does not hold for the
original approach, since numerical instabilities occur already for lower We than in
the differential case [13]. Furthermore, the corresponding age discretisation can
be performed independently of the actual time step, in contrast to discretising the
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reference time in the original approach. But, slight drawbacks arise in terms of the
improved approach due to the additional age derivative, since a smaller time step
needs to be chosen regarding the stability in the age-stepping. In addition, a cou-
pling of the discrete fields is established, which affects the corresponding updating
strategy.

So far, no detailed remark is made concerning the discretisation of the age
scale, which needs to consist of discrete age points concentrated close to τ = 0,
while at the same time the age mesh should get coarser for larger ages. In Ref. [14],
a stretched mesh regarding τ is considered, where the step widths ∆τj = τj+1− τj,
j = 0, . . . , N − 1, are linked via ∆τj+1 = γ∆τj. Here, the factor γ is determined
from a one-dimensional auxiliary problem adapting the (decaying) memory of the
flow, once N , ∆τ0 and τc are specified. A similar strategy for specifying the dis-
crete ages τj is presented in Ref. [12], where the age scale is defined by a mapping
τ : [0, 1] → [0,∞] as τ (r) = −β ln (1− r) for a parameter β related to the re-
laxation time Λ. By doing so, a uniform mesh in r-space automatically generates
a mesh in τ -space, where points are concentrated at τ = 0 and thus small age
steps are applied for small ages. In fact, the resulting discretisation in τ resembles
the memory of the viscoelastic fluid characterised by the (exponentially decay-
ing) memory function, which is realised by taking into account the inverse map-
ping r (τ). Furthermore, the fields B∗ (t, τ) := ηp

Λ2 exp
(
− τ

Λ

)
B (t, τ) are considered

as Deformation Fields in Ref. [12], which results in B∗ (t, τ)→ 0 for t→∞, since
also τ := t− t′ →∞. Note, that the fields B grow quadratically in time for simple
flow configurations as outlined in Sec. 3.2, which is why the modified fields B∗

behave much more predictable than the original fields B. The corresponding evo-
lution equation

∂

∂t
B∗ (t, r) +

1− r
β

∂

∂r
B∗ (t, r) + u (t) · ∇B∗ (t, r) . . .

· · · − ∇u (t)> ·B∗ (t, r)−B∗ (t, r) · ∇u (t) +
1

Λ
B∗ (t, r) = 0 (2.40)

is obtained by inserting the fields B∗ (t, τ) into Eq. (2.37) and realising τ = τ (r).
In doing so, an additional contribution arises in the evolution equation (2.40),
which has the form of the model function from Eq. (2.4) in case of the differential
Oldroyd-B or UCM model. However, the full integral viscoelastic model proposed
in Ref. [12] is obtained from coupling the evolution equation (2.40) with the Stokes
equations (2.1) and the transformed version

Σ (t) =

∫ ∞

0

φ1 (tr (B (t, τ))) B∗ (t, τ) dτ

=

∫ 1

0

φ1 (tr (B (t, r))) B∗ (t, r)
β

1− r dr (2.41)

of the stress integral from Eq. (2.38) for φ2 ≡ 0. Note, that the memory function
is absorbed into the fields B∗, while the damping function still corresponds to the
original fields B. An approximation of the above integral with respect to r can be
established by the Composite-Trapezoidal Rule giving
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Σ (t) ≈
N∑

j=1

Wjφ1 (I1 (t, rj) , I2 (t, rj)) B∗ (t, rj)
β

1− rj

for equidistant points rj = j−1
N

. In contrast to previous approaches, the cut-off
time or age may be introduced implicitly, for example by setting the contribution
corresponding to r = 1 or j = N to zero in the above numerical integration
together with W1 = 1

2N
and Wj = 1

N
for 1 < j < N − 1 [12].

Following Ref. [12], the numerical results obtained by evolving B∗ instead of B
tend to be of slightly higher accuracy compared to the approach proposed in
Ref. [14], since errors caused in terms of the evolution equation are damped by
the exponentially decaying part in the fields B∗. Moreover, a further improvement
– especially regarding computational effort – is achieved by updating only one
field every time step, but all fields only every 5, 10 or 20 time steps. Thus, the
computational costs are roughly of the same magnitude as compared to (single-
mode) differential models, where only one stress tensor is considered, while the
Deformation Fields Method involves about 100 Finger tensors. In fact, stability
and accuracy of the numerical simulations are improved as well. However, this is
just found by performing numerical experiments and no theoretical explanation is
given. In addition, the above updating strategy is feasible only when computing
to the steady-state, since the time-dependent behaviour of the Deformation Fields
is not captured correctly [12].

So far, some major drawbacks of the initial version of the Deformation Fields
Method proposed in Ref. [13] are removed and an improved method is obtained by
following Refs. [12, 14], especially regarding the discretisation of the Finger ten-
sors as well as the stress integral with respect to the reference time or age. But,
still no improvement is established concerning the preservation of the positive
(semi-)definiteness of the Deformation Fields B during numerical computations.
When differential constitutive equations are considered, the positive definiteness of
the underlying conformation tensor may be guaranteed by considering the corre-
sponding matrix-logarithm (LCR, [36, 37, 46]) or the Contravariant Deformation
Tensor (CDT, [50]) as primal flow variable. In principle, LCR might also be ap-
plicable with respect to the Deformation Fields, but it is unclear at the moment,
whether these fields show an exponential growth that would need to be balanced
as well, which is one of the key features of introducing LCR. In fact, considering
the logarithm of the Deformation Fields might be an unnecessary effort. An alter-
native approach to guarantee the positive (semi-)definiteness of the Deformation
Fields is presented in Ref. [15], where the deformation tensor Ft′ (t) is evolved over
time instead of the Finger tensor Bt′ (t). Similar to the improved version of the
Deformation Fields Method proposed in Ref. [14], introducing the age τ := t− t′
as new time variable yields the evolution equation

∂

∂t
F (t, τ) +

∂

∂τ
F (t, τ) + u (t) · ∇F (t, τ)−∇u (t)> · F (t, τ) = 0 (2.42)

regarding the deformation tensor F (t, τ) := Ft−τ (t). The above evolution equa-
tion is supplemented with the initial condition F (0, τ) = I as well as the boundary
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condition F (t, 0) = I with respect to the τ -axis. Based on the deformation tensor,
the Finger tensor is calculated by B = F ·F> and is thus guaranteed to be positive
semi-definite. Indeed, an improved behaviour of the resulting numerical approach
is observed, since stability properties similar to applying LCR in the context of
differential models are obtained. In Ref. [15], this phenomenon is traced back not
only to the guaranteed positive semi-definiteness of the Finger tensor, but also to
the evolution equation (2.42) being reduced by one deformation term compared to
evolving the Finger tensor B according to Eq. (2.37), which is done similarly in
case of the CDT formulation for differential models [50]. Note, that an additional
component of the deformation tensor compared to the Finger tensor has to be
stored in the numerical method, since F is not symmetric. In fact, it needs to be
estimated, whether the resulting additional numerical effort pays off regarding an
improved accuracy in the simulations.

2.3.3 Implementation of stationary integral models

In the following, the above numerical treatment of integral constitutive equations
is summarised by illustrating an extension of the framework regarding differential
models presented in Refs. [47, 51] or Sec. 2.2.3 towards integral material laws.
Therefore, the stationary version of the integral viscoelastic fluid flow model is
derived to be able to compute direct steady-state solutions according to the dif-
ferential case. Concerning time-dependent configurations, the same techniques as
presented in Refs. [12, 13, 14, 15] can be taken into account.

Apparently, the corresponding Stokes part of the integral model is of the same
form as in Eq. (2.16a) and (2.16c), but the remaining equations are not formulated
straightfoward regarding the direct steady-state. On the one hand, the stress ten-
sor is computed by means of the time-dependent integral expression from Eq. (2.9)
and on the other hand, the Finger tensors do not reach a steady state when evolved
according to Eq. (2.8), even in case of a stationary velocity field [13]. Recall, that
the fields indeed become stationary with respect to the actual time when intro-
ducing the age as additional time scale [14]. But, considering the age scale is
redundant in the context of stationary flows, since the actually resulting evolution
equation basically stays the same as can be realised from Eq. (2.39) by interchang-
ing t and τ . Thus, a suitable way of dealing with the accumulating time errors
of the non-stationary Deformation Fields mentioned in Ref. [13] also needs to be
incorporated in case of the stationary integral model derived below. Based on the
initial (time-dependent) approach to the Deformation Fields Method proposed in
Ref. [13], in each time step a new Deformation Field Bt′ is created and evolved
depending on the velocity field u (s). Assuming a steady-state solution, the veloc-
ity field stays the same for all times s, especially in the evolution equation (2.8).
Thus, all fields Bt′ would give the same solution when evolved over the infinite
time interval s ∈ [t′,∞[, since the initial condition Bt′ (t

′) = I holds for all t′. Con-
sequently, it is sufficient to consider only one single Deformation Field B (s) in a
“stationary” integral model, and the time variable in the stress integral (2.9) can
be transformed according to s := t − t′. Hence, a quasi steady-state formulation
of the integral viscoelastic model regarding the quantities (u,Σ, p) is obtained,
reading
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0 = −2ηs∇ ·D (u)−∇ ·Σ +∇p (2.43a)

Σ =

∫ ∞

0

m (s)
[
φ1 (tr (B (s))) B (s) + φ2 (tr (B (s))) B−1 (s)

]
ds(2.43b)

∇ · u = 0 (2.43c)

complemented by the evolution equation

∂

∂s
B (s) + u · ∇B (s)−∇u> ·B (s)−B (s) · ∇u = 0 (2.43d)

which is solved in s ∈ [0,∞[ for the Finger tensor B together with the initial
condition B (0) = I. Note, that the stress integral from Eq. (2.43b) indeed takes a
finite value independent of the time s, since the field B grows quadratically in time
at least for simple flow configurations as outlined in Sec. 3.2, while the memory
function is taken to be exponentially decaying.

Naturally, the numerical framework applied in the context of differential consti-
tutive equations has to be extended by suitable components to cover (stationary)
integral models by means of the DFM. Therefore, mainly the discretisation of the
stress integral (2.43b) as well as the evolution equation (2.43d) with respect to
the time scale s needs to be taken into account. In this context, a meaningful
basis for extending the framework of differential models is proposed in Ref. [12],
since approximating the stress integral via a simple (Composite-)Trapezoidal Rule
can be implemented more or less straightforward. Moreover, a reasonable way to
generate the discrete times si ∈ [0,∞[ is illustrated in Ref. [12] as well, since the
corresponding procedure is related to the shape of the memory function based on
the mapping τ (r). Furthermore, the deformation tensor F could be considered
within the integral material law, which gives the Finger tensor via B = F · F>
guaranteeing the positive (semi-)definiteness of the Deformation Fields [15]. At
the same time, the technique of absorbing the memory function into the fields –
leading to the quantity B∗ – would need to be adjusted, since the stress integral
from Eq. (2.43b) is written only implicitly depending on the field F. But, including
the exponentially decaying memory function into the evolution of the field seems
reasonable in order to obtain damped time-discretisation errors, which occur even
in a stationary setting [13]. However, the field B or F needs to be evolved over a
wide time interval, in detail until contributions to the stress integral are negligible
small, starting all over again from the initial time s = 0, once an updated (sta-
tionary) velocity field is available. Thus, the evolution equation of the field F or B
should be discretised regarding the time s by applying an explicit scheme of higher
order to obtain a fast and efficient, but also accurate time-stepping procedure.

In addition to the extensions mentioned above, the basic components required
for implementing a suitable numerical treatment of integral models may be adopted
from the existing differential framework. In detail, the spatial discretisation of the
velocity and pressure fields as well as the Finger or deformation tensor, which rep-
resents the primal stress variable in case of integral models, could be implemented
by means of the triple Q2/P

disc
1 /Q2 together with EOFEM stabilisation. Again,

the latter may be applied anyways regarding the hyperbolic character of the evo-
lution equation of the Deformation Fields. In contrast to differential models, the
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resulting discrete nonlinear system – consisting of the Stokes equations, the stress
integral plus the evolution equation of the Finger or deformation tensor – must be
solved via operator splitting techniques. By doing so, the contribution of the stress
tensor in the momentum equation enters the right-hand side as a force term, while
the discrete version of the evolution equation (2.43d) is solved with respect to B
for a given discrete version of the velocity field u. Following Refs. [13, 14, 15],
the integral viscoelastic flow model might be treated in combination with the
DEVSS to stabilise the numerical approach. At the same time, a well-posed prob-
lem as well as a useful decoupled solution approach can be obtained even in the
non-solvent case, which can be established in similar way by means of the novel
approach proposed in the following section.

2.4 The Tensor Diffusion approach
As described in Secs. 2.2 and 2.3, simulating viscoelastic fluid flows involves a num-
ber of crucial steps for designing a stable, robust, efficient and accurate numerical
framework. Thereby, suitable discretisation and solution techniques need to be
applied for properly handle the approximation of the flow variables, the particular
type of constitutive equation, its hyperbolic character or the High Weissenberg
Number Problem. A key component with respect to the properties of the under-
lying mathematical problem is represented by the amount of solvent contribution
to the total or Cauchy stress tensor from Eq. (2.2). Among others, this quantity
provides an essential regularisation of the subproblem constituted by the balance
of mass and momentum. For example, the additional LBB condition (2.22) with
respect to choosing a stable velocity-stress approximation can be neglected for
ηs > 0 [35]. In addition, several challenges arise for ηs = 0 also concerning the
solution procedure regarding the discrete nonlinear problems, which result from
differential or integral flow models. Recall, that this is one of the reasons for
introducing the (D)EVSS [40, 41] in the so-called non-solvent case, where the cor-
responding diffusive or elliptic operator vanishes from the momentum equation of
the Stokes problem. To further illustrate these numerical difficulties, direct steady-
state solution approaches are considered below, where the presence of a solvent
viscosity plays an important role.

Based on the procedure outlined in Sec. 2.2, the discrete problem formulation
corresponding to a single-mode stationary differential viscoelastic flow model reads



J u B C
B> 0 0
D 0 K (u) + J σ





u
p
σ


 =




ru
rp
rσ


 (2.44)

after re-sorting the order of the unknowns to emphasise the Stokes subproblem.
Apparently, only the operator resulting from the EOFEM stabilisation proposed in
Eq. (2.28a) remains in the corresponding upper-left block matrix – in case it is ap-
plied at all. Thus, the Stokes part of the (differential) viscoelastic flow model yields
a singular (sub-)problem in case of a vanishing solvent viscosity, since it basically
consists of a zero diagonal when omitting stabilising terms. Consequently, several
difficulties and challenges arise in the numerical approach, for example with respect
to solving the linear subproblems resulting within Newton’s method described in
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Eq. (2.29). Obviously, no preconditioners involving the diagonal part of the global
(Jacobian) matrix are applicable in terms of typical Krylov-space methods due to
the vanishing diagonal blocks. In similar manner, applying multigrid techniques
for solving these linear systems does not allow for the use of diagonal smoothers
such as Jacobi or Gauß-Seidel defect correction techniques. Therefore, Vanka-like
smoothers, which perform preconditioning locally on each element [54, 55, 56, 57],
are proposed in Sec. 2.2.3 for appropriately treating the zero blocks typically occur-
ring in saddle-point problems. But unfortunately, at least in the non-solvent case
a non-robust behaviour of the multigrid solver involving these kind of smoothers is
observed (see Sec. 4.2.2). At this stage, the only reliable procedure for successfully
performing numerical simulations of non-solvent viscoelastic fluid flows within the
framework presented in Sec. 2.2.3 is obtained by applying Newton’s method in
combination with a direct solver for tackling the arising linear systems. But, this
limits the simulations to the range of small or moderate problem sizes, only. In
this regard, operator splitting techniques might be taken into account for solving
the nonlinear system from Eq. (2.44) in a decoupled fashion. Thereby, an update
solution

(
uk+1,pk+1

)
regarding the velocity and pressure fields, respectively, is

intended to be calculated from the subproblem

Bpk+1 + Cσk = ru, B>uk+1 = rp (2.45)

for a given stress solution σk. Apparently, no reasonable solution – especially
regarding the velocity field – can be computed from Eq. (2.45) to be applied in a
next step of determining an updated stress field. Naturally, the same difficulties
are obtained in case of non-solvent integral viscoelastic flow models, where the
corresponding discrete problem formulation is not solvable in a monolithic fashion
at all.

However, the simulation of realistic viscoelastic fluid flows, which typically do
not include a solvent viscosity, provides further numerical challenges in case of
both types of constitutive equations. Recall, that multiple modes need to be con-
sidered in terms of the differential material modelling, where an additional stress
tensor occurs as separate numerical unknown for each mode or relaxation time.
Hence, the size of the numerical problem increases accordingly, which could lead to
a significant growth of the computational effort. This is also the case for integral
models, although the multiple relaxation times just enter the memory function in
the stress integral. But, considering multiple and thus probably larger relaxation
times will increase the computational effort in calculating the stress integral. In
detail, the memory function consists of a slower decrease for larger Λ, which is
why a wider age interval needs to be regarded in the numerical integration of the
extra-stress tensor as well as the Deformation Fields. Thus, the numerical effort
will increase either way for simulating realistic viscoelastic fluids, since the prob-
lem size or computation time is increased due to the involved broad relaxation
time spectrum. Moreover, also the HWNP or the hyperbolic character of the con-
stitutive equation need to be treated appropriately in a corresponding numerical
framework, as (very) high relaxation times are provided by means of such fluids.

Overall, the numerical challenges highlighted above are caused to a certain ex-
tend by taking into account realistic viscoelastic materials, among others consisting
of a vanishing solvent viscosity. Consequently, some serious issues are caused by



36 Chapter 2. Finite Element techniques for viscoelastic fluid flows

considering the stationary non-solvent Stokes equations as part of differential as
well as integral viscoelastic flow models. Hence, corresponding Finite Element
simulations suffer from difficulties regarding discretisation as well as solution tech-
niques concerning the set of equations

−∇ ·Σ +∇p = 0, ∇ · u = 0 (2.46)

As outlined above, in principle unstable or even non-solvable configurations are
obtained, mainly due to the absent diffusive operator regarding the velocity field in
the momentum equation from Eq. (2.46). In this regard, the novel Tensor Diffusion
approach is introduced in the following, which is intended to improve numerical
simulations of viscoelastic fluid flows with special emphasis on the non-solvent case.
The underlying assumption of this approach, motivated by the findings presented
in Sec. 4.1.1, is the existence of a decomposition of the extra-stress tensor according
to

Σ = M ·D (u) (2.47)

where the second-order tensor M = M (u,∇u) is called the Diffusion Tensor.
Apparently, the above decomposition of the extra-stress tensor is of similar style
as the solvent amount to the Cauchy stress tensor from Eq. (2.2) referred to by the
scalar-valued viscosity ηs. Accordingly, inserting the stress decomposition (2.47)
into Eq. (2.46) introduces a diffusive operator in the resulting the so-called Tensor
Stokes problem. But, in general a nonsymmetric tensor-valued vsicosity is obtained
in the corresponding momentum equation due to the shape of M (see Sec. 4.1.1
for details). It turns out, that an improved numerical behaviour is obtained for
considering the symmetric version

Σ =
1

2

(
Σ + Σ>

)
=

1

2

(
M ·D (u) + D (u) ·M>) (2.48)

of the stress decomposition from Eq. (2.47). Note, that the original stress decom-
postion from Eq. (2.47) also satisfies the symmetrised version due to the symmetry
of the extra-stress tensor Σ. However, the resulting symmetrised Tensor Stokes
problem reads

−1

2
∇ ·
(
M ·D (u) + D (u) ·M>)+∇p = 0, ∇ · u = 0 (2.49)

where a diffusive operator is provided by means of the Diffusion Tensor M. Note,
that a non-vanishing solvent viscosity in the momentum equation from Eq. (2.49)
may be absorbed into the Tensor Stokes operator by considering M̃ = 2ηsI+M in-
stead of M. Moreover, the Diffusion Tensor can be regarded as M ∈ R2×2 or R3×3

both for two-dimensional configurations, since the (symmetric) extra-stress and
strain-rate tensors may be interpreted as tensor- or vector-valued quantities, re-
spectively. The latter is obtained by making use of the so-called Voigt notation,
which for instance provides additional degrees of freedom for determining the Dif-
fusion Tensor in terms of the four-field formulation discussed below in Eq. (2.51),
potentially leading to improved mathematical properties of M. In the following,
the potential benefits of simulating viscoelastic fluid flows by means of the Tensor
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Diffusion approach are outlined. Therefore, several versions of the Tensor Stokes
problem are considered, that is Eq. (2.49) possibly supplemented by a constitutive
equation of differential or integral type. In doing so, major challenges and difficul-
ties described in Secs. 2.2 and 2.3 regarding numerical simulations of viscoelastic
fluid flows might be weakened or even removed.

Ideally it is assumed, that the Diffusion Tensor M is known or given depend-
ing on the velocity field u and/or its gradient according to an actual differential
or integral viscoelastic flow problem. Hence, a well-posed problem regarding the
velocity and pressure variables is derived from Eq. (2.46), that is even in the non-
solvent case, when a diffusive operator acting on the velocity field is re-coupled
into the momentum equation according to Eq. (2.49). Based on that, the nonlin-
ear velocity and pressure solutions, originally characterised by the fully coupled
problems (2.16) or (2.43), can be computed by simply solving the Tensor Stokes
problem (2.49), which is a problem in (u, p) only. The according stress solution
is just computed in post-processing fashion based on the velocity field calculated
from Eq. (2.49). Hence, the stress variable and a corresponding stable or stabilised
velocity-stress approximation do not need to be taken into account in the numeri-
cal framework. Thus, the original problem is simplified by expressing the complex
rheology of the fluid, which is described originally by the constitutive equation,
in terms of a tensor-valued viscosity function denoted by the Diffusion Tensor M.
Furthermore, a robust, efficient, accurate and stable numerical scheme can be used
for solving the Tensor Stokes problem (2.49), since solution techniques especially
designed for (generalised) Stokes problems are applicable in this context. In do-
ing so, the overall numerical effort for computing the solution corresponding to
the original viscoelastic flow problems from Eq. (2.16) or (2.43) would be reduced
significantly. Similar holds regarding the simulation of realistic viscoelastic fluids,
since multiple modes are not considered explicitly in the flow model. Moreover,
among other things the hyperbolic character of the constitutive equation, the High
Weissenberg Number Problem or a proper treatment of integral constitutive equa-
tions would not need to be (explicitly) taken into account. In addition, converting
the full viscoelastic differential or integral flow model to a pure Tensor Stokes prob-
lem gives rise to substantial improvements regarding transient simulations, since
capturing the time-dependent behaviour of viscoelastic fluid flows would only re-
quire a time-stepping scheme regarding a generalised Stokes problem instead of a
fully coupled nonlinear system.

Unfortunately, no explicit or analytical modelling of the Diffusion Tensor M
for general or complex flow configurations is available (yet). Hence, a suitable
way of determining such a quantitiy numerically needs to be established based on
the original (differential or integral) viscoelastic model. A straightforward imple-
menation for calculating the Diffusion Tensor is obtained by complementing the
(differential) non-solvent steady-state viscoelastic model by an additional algebraic
equation regarding M. In doing so, the set of equations

−∇ ·Σ +∇p = 0 (2.50a)

u · ∇Σ−∇u> ·Σ−Σ · ∇u + Z (Λ, ηp,Σ) = 2
ηp
Λ

D (u) (2.50b)

M ·D (u)−Σ = 0 (2.50c)
∇ · u = 0 (2.50d)
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is obtained based on Eq. (2.16). Obviously, the discrete solution corresponding
to (u,Σ, p) resulting from Eq. (2.50) is not affected by the Diffusion Tensor M,
which is computed from Eq. (2.50c) in post-processing fashion only. That changes,
when the (symmetrised) stress decomposition from Eq. (2.48) is inserted into the
momentum equation, leading to

−1

2
∇ ·
(
M ·D (u) + D (u) ·M>)+∇p = 0 (2.51a)

u · ∇Σ−∇u> ·Σ−Σ · ∇u + Z (Λ, ηp,Σ) = 2
ηp
Λ

D (u) (2.51b)

M ·D (u)−Σ = 0 (2.51c)
∇ · u = 0 (2.51d)

Naturally, both problem formulations are equivalent on the continuous level, but
differ after applying a suitable discretisation procedure. Thus, the (discrete) veloc-
ity, stress and pressure solutions indeed are coupled with the Diffusion Tensor M by
means of the Tensor Stokes operator in the momentum equation (2.51a). Similar
to the DEVSS described in Eq. (2.23) or Ref. [41], the problem size is increased by
introducing an additional variable, which is intended to provide a diffusive contri-
bution in the momentum equation. But in terms of the Tensor Diffusion approach,
the stress variable is replaced by means of the additional variable instead of adding
a diffusive contribution to the left- as well as right-hand side of Eq. (2.16a). More-
over, the velocity coupling is introduced via the Diffusion Tensor related to the
nature of the actual flow, since it is linked in a meaningful way to the stress tensor
itself. In contrast, a Newtonian-like quantity is considered in terms of the DEVSS,
where the diffusive contribution is defined somehow artificially by the parameter α
in Eq. (2.23a). Thus, a potentially improved numerical scheme could be obtained
based on the above Tensor Stokes problem. Naturally, the Diffusion Tensor may
be inserted into (integral) viscoelastic models similarly to the DEVSS, which leads
to an additional step in the corresponding operator splitting approach due to cal-
culating the Diffusion Tensor from Eq. (2.47). Corresponding preliminary studies
are performed in Sec. 4.2.4 of this work. Note, that it is not possible to calculate
the Diffusion Tensor based on the symmetric decomposition from Eq. (2.48), as the
resulting linear system with respect to the components of M is under-determined.
Thus, the symmetrised operator occuring in Eq. (2.51a) actually needs to be built
from Eq. (2.51c) within numerical simulations.

However, the four-field formulation of the Tensor Stokes problem presented in
Eq. (2.51) is considered in Chpt. 4 in terms of numerical investigations for validat-
ing and evaluating the Tensor Diffusion approach. Therefore, the Diffusion Ten-
sor M is approximated within the Finite Element framework described in Sec. 2.2.3
by means of element-wise constant polynomials. By defining corresponding basis
functions

(
N1, . . . ,NNµ

)
based on the triangulation of the discrete computational

domain Ωh, an approximate solution of the Diffusion Tensor is defined as

Mh =

Nµ∑

i=1

µiNi,

where the degrees of freedom located in the element midpoints are collected in
µ = (µi)

Nµ
i=1. Furthermore, the additional discrete operators
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Tij (µj) =

∫

Ω

1

2

(
µjNj ·D (υj) + D (υj) · (µjNj)

>
)

: D (υi) dx

∀i, j ∈ {1, . . . , Nu} (2.52a)

Nij (uj) =

∫

Ω

(Nj ·D (ujυj)) : Ni dx ∀i, j ∈ {1, . . . , Nµ} (2.52b)

Sij =

∫

Ω

Φj : Ni dx ∀i ∈ {1, . . . , Nµ}, j ∈ {1, . . . , Nσ} (2.52c)

arise from considering the four-field formulation in Eq. (2.51) compared to the
original problem in Eq. (2.16). Again, the nonlinear dependencies of the degrees
of freedom regarding the Diffusion Tensor or velocity field in Eq. (2.52) are con-
sidered in a suitable way in the actual implementation. At first glance, the pro-
posed lower-order approximation of M is somewhat surprising. In principle, a
higher-order approximation is expected to be applied for obtaining an accurate
reconstruction of the extra-stress tensor based on the Diffusion Tensor accord-
ing to Eq. (2.47). But as indicated by the numerical investigations performed in
Sec. 4.2.1, jumps or discontinuities of the Diffusion Tensor seem to occur naturally
in the flow field, for example along the symmetry axis of a contraction. Thus, it
indeed makes sense to approximate M by means of discontinuous Finite Elements
like element-wise constant polynomials, which in principle allow jumps of the func-
tion values between neighbouring elements. Furthermore, no derivatives actually
acting on M need to be considered at this fundamental stage of the Tensor Diffu-
sion approach, which is why no higher-order approximation is necessarily required
here. However, the numerical results presented in Chpt. 4 – especially concern-
ing a viscoelastic contraction flow – show, that the jumps in the Diffusion Tensor
along the symmetry axis are not resolved properly or are too large to provide a
stable and converging numerical scheme. In detail, small values of the strain-rate
tensor D (u) are obtained in the problematic section of the computational domain,
while the extra-stress tensor Σ is rather large, which causes large values or even
a singular behaviour of the Diffusion Tensor (see Sec. 4.2.1). Hence, the Diffu-
sion Tensor may be calculated numerically in an improved way by penalising the
derivatives of M to avoid too drastic changes in the numerical variable. This can
be implemented by determining the Diffusion Tensor by means of

j (M) :=
1

2

(
‖M ·D (u)−Σ‖2

2 + ε‖∇M‖2
2

)
→ min (2.53)

for a penalisation parameter ε > 0, which would lead to an additional Laplacian or
artificial diffusion operator acting on M in the strong formulation of the problem,
that is Eq. (2.51c). Obviously, this is not feasible with the lower-order approxima-
tion of the Diffusion Tensor proposed above, which is why an alternative damping
or stabilising technique is introduced. In detail, EOFEM stabilisation [47, 53] is
applied with respect to M, which results in a (discrete) penalisation term reading

J µ
ij =

∑

edgeE

γµ

∫

E

[Nj] : [Ni] dS ∀i, j ∈ {1, . . . , Nµ} (2.54)
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for a parameter γµ > 0. In contrast to the corresponding stabilisation regarding
the velocity and stress fields presented in Eq. (2.28), the above operator affects
the function values of M instead of its gradient. By doing so, a stabilisation
technique is obtained actually suiting the approximation of the Diffusion Tensor as
an element-wise constant quantity. Note, that EOFEM stabilisation with respect
to the function values as presented in Ref. [53] may be interpreted in some sense
as a bilinear form corresponding to a Laplacian. In detail, the jump terms can
be regarded as the difference of the function values normal to the specific edge.
Including a scaling with h−1

E , that is the length of the edge, in the weighting factor
of the above stabilisation operator results in an approximation of the gradient in
Finite Difference fashion. Thus, basically the weak form of a Laplacian is obtained
from a stabilisation operator similar to Eq. (2.54) for considering γµh−1

E instead
of γµ only, which can be confirmed by means of numerical experiments. But in
terms of the Tensor Diffusion approach, stabilising M by means of the discrete
operator from Eq. (2.54) seems to provide more useful results than the scaled
version from Ref. [53], especially in the context of the contraction flow discussed
in Sec. 4.2. Nevertheless, an operator similar to the artificial diffusion arising
from Eq. (2.53) is established with respect to the Diffusion Tensor by means of
the EOFEM stabilisation proposed above, even for M being approximated in Q0.
However, based on the discrete operators from Eq. (2.19) and (2.52), the discrete
nonlinear systems arising from the four-field formulations (2.50) and (2.51), that
is in particular for the non-solvent case, are given as




J u C 0 B
D K (u) + J σ 0 0
0 S N (u) + J µ 0
B> 0 0 0







u
σ
µ
p


 =




ru
rσ
rµ
rp


 (2.55a)




T (µ) + J u 0 0 B
D K (u) + J σ 0 0
0 S N (u) + J µ 0
B> 0 0 0







u
σ
µ
p


 =




ru
rσ
rµ
rp


 (2.55b)

which are considered in Chpt. 4 in terms of two-dimensional Finite Element sim-
ulations.

Based on the above four-field formulations, further potential benefits of the
Tensor Diffusion approach compared to state-of-the-art numerical techniques for
simulating viscoelastic fluid flows are outlined below. But beforehand, an advanced
approach for calculating the Diffusion Tensor in terms of differential viscoelastic
models is illustrated concerning future research work. Therefore, the extra-stress
tensor Σ is replaced by the decomposition from Eq. (2.47) not only in the momen-
tum equation (2.16a), but also in the constitutive equation (2.16b). Unfortunately,
higher-order derivatives of the velocity field u occur in the resulting convective term
similar to the EVSS proposed in Ref. [40]. Accordingly, one might introduce an ad-
ditional variable for treating these derivatives numerically in a suitable way, which
would again lead to an increased problem size as in case of the (D)EVSS or the
four-field formulation from Eq. (2.51). Instead, the convective term may be trans-
formed by explicitly taking into account, that the velocity field is divergence-free.
Therefore, the identity
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∇ · (P⊗ v) =
∂

∂xl
((Pijei ⊗ ej)⊗ (vkek)) · el = (Pijvk),l ei ⊗ ejδkl

= (Pij,kvk + Pijvk,k) ei ⊗ ej

= v · ∇P + (∇ · v) P = v · ∇P (2.56)

can be derived for a second-order tensor field P and a solenoidal vector field v
via usual tensor calculus following Einstein‘s summation convention. Here, “⊗”
denotes the dyadic product of two vectors, eι for ι ∈ {1, . . . , d} refer to the (carte-
sian) basis vectors of Rd and the subscript (, ι) indicates the derivative with respect
to the corresponding spatial dimension. By setting P = M ·D (u) and v = u, the
three-field formulation

−1

2
∇ ·
(
M ·D (u) + D (u) ·M>)+∇p = 0 (2.57a)

∇ · [(M ·D (u))⊗ u] . . .

· · · − ∇u> · (M ·D (u))− (M ·D (u)) · ∇u . . .

· · ·+ Z (Λ, ηp,M ·D (u)) = 2
ηp
Λ

D (u) (2.57b)

∇ · u = 0 (2.57c)

is obtained from the stationary differential viscoelastic flow model from Eq. (2.16),
where the extra-stress tensor Σ is replaced completely by M·D (u). Recall, that Σ
is discretised within the original method by means ofQ2, which is why the Diffusion
Tensor M can be approximated in the same way. But, the corresponding test and
trial functions are set to be nonsymmetric – just as the Diffusion Tensor itself –
in contrast to the basis functions of the discrete stress space. Accordingly, the
full Diffusion Tensor needs to be stored within the numerical framework, while the
number of actually considered components of the symmetric extra-stress tensor Σ
is less. However, considering the transformed conservative form of the constitutive
equation with respect to the Diffusion Tensor M presented in Eq. (2.57b) offers the
possibility to shift the derivative in the convective term in the weak formulation
to the test function avoiding higher-order derivatives of the velocity field. In
addition, no derivatives with respect to M occur in the corresponding continuous
weak formulation of Eq. (2.57). Thus, probably a lower regularity of the function
space regarding the Diffusion Tensor is required compared to the space S discussed
in Sec. 2.2.1. The discrete operators arising from Eq. (2.57b) in the weak sense
read

Pij (uj) =

∫

Ω

(Nj ·D (ujυj)) : (ujυj · ∇Ni) dx

∀i, j ∈ {1, . . . , Nµ} (2.58a)

Qij (uj) =

∫

Ω

[
−∇ (ujυj)

> ·Nj ·D (ujυj)−Nj ·D (ujυj) · ∇ (ujυj) . . .

· · ·+ Z (Λ, ηp,Nj ·D (ujυj))
]

: Ni dx

∀i, j ∈ {1, . . . , Nµ} (2.58b)

Eij =

∫

Ω

2
ηp
Λ

D (υj) : Ni dx, ∀i ∈ {1, . . . , Nµ} , j ∈ {1, . . . Nu} (2.58c)
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which occur in the discrete nonlinear system



T (µ) + J u 0 B

E P (u) +Q (u) + J µ 0
B> 0 0





u
µ
p


 =




ru
rµ
rp


 (2.59)

resulting from Eq. (2.57) including certain discrete operators introduced in Sec. 2.2
as well as the Tensor Stokes operator from Eq. (2.52a). Note, that the boundary
integral arising from partially integrating the convective contribution in the consti-
tutive equation, which is similar to the one given in Ref. [42] for the original EVSS,
is considered in the corresponding right-hand side rµ. In fact, the “PDE approach”
proposed above, where the Diffusion Tensor is determined by means of a partial
differential equation, might lead to an improved numerical scheme compared to the
“algebraic approach” described in Eq. (2.51). Characterising the Diffusion Tensor
by means of Eq. (2.57b) establishes a global coupling of the corresponding degrees
of freedom due to the derivatives acting on M, which could lead to a more sophis-
ticated calculation. Furthermore, the problem size of the original approach is kept
in case of the problem formulation from Eq. (2.57) by actually replacing the stress
variable by the Diffusion Tensor, which leads to a reduced computational effort
compared to four-field formulations. Thus, the PDE approach is quite attractive
in case of differential constitutive laws, whereas it is not transferable to integral
models – at least not that easily.

In this section, three formulations of the Tensor Stokes problem are proposed,
that is the pure (u, p)-problem from Eq. (2.49), the four-field formulation from
Eq. (2.51) as well as the three-field formulation from Eq. (2.57). Since the concep-
tual advantages of the pure Tensor Stokes problem are already highlighted above,
potential benefits particularly concerning the corresponding three- and four-field
formulations are taken into account in the following. As a key feature, inserting the
Diffusion Tensor into the Stokes part of the viscoelastic flow model provides a diffu-
sive operator regarding the velocity field in the corresponding momentum equation.
Thus, regularising effects may be expected regarding discretisation and solution
techniques for simulating non-solvent viscoelastic fluid flows, while a comparable
operator or velocity coupling is absent in case of the according original (unsta-
bilised) problem from Eq. (2.44). For example, the non-vanishing Tensor Stokes
operator in the systems from Eq. (2.55b) or (2.59) offers the possibility to apply
diagonal smoothers or preconditioners within multigrid or Krylov-space methods.
Furthermore, Vanka-like smoothers or the multigrid solver in general have the
potential to show a stabilised behaviour, since these techniques are designed for
linear systems arising from elliptic problems [57], which might be provided by
the Tensor Stokes (sub)problem. Moreover, the need of satisfying the additional
LBB condition regarding a stable choice of the velocity-stress approximation – or
velocity-Diffusion Tensor approximation in case of Eq. (2.57) – is potentially re-
moved. Another significant effect of the Tensor Diffusion approach is established
in terms of operator splitting techniques regarding differential as well as integral
models, which are not applicable in case of the original non-solvent model for-
mulation. But, such solution approaches are more or less unavoidable especially
regarding stationary integral models, since a fully coupled treatment turns out to
be not practical. When introducing the proposed Diffusion Tensor M into the cor-
responding system, a well-posed problem is obtained by the (discretised) Tensor
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Stokes subproblem of the full differential or integral flow model. Hence, a velocity
and pressure solution can be obtained by solving

T
(
µk
)
uk+1 + Bpk+1 = ru, B>uk+1 = rp

for
(
uk+1,pk+1

)
in a first step of a prototypical operator splitting approach,

where µk is given. Next, the new velocity solution can then be used in the al-
gebraic approach to calculate the updated extra-stress tensor σk+1 from the dis-
cretised either differential or integral constitutive equation, where the latter is
based on evolving the discrete Deformation Fields. In a third step, the Diffusion
Tensor is updated by a discrete version of Eq. (2.51c) accomplishing a full loop of
a useful decoupled solution technique, which can not be established in case of the
original problems characterised by Eq. (2.45). In principle, the operator splitting
technique may be applied regarding the PDE approach proposed in Eq. (2.57) as
well. In doing so, the velocity field uk+1 would be directly used to compute the up-
dated Diffusion Tensor µk+1 from the discrete version of Eq. (2.57b) avoiding the
intermediate step of calculating σk+1 compared to the algebraic approach. Thus,
the novel Tensor Diffusion approach provides an at least conceptually improved
scheme for solving the corresponding set of equations numerically in a decoupled
manner, even in the non-solvent case.

In summary, a diffusive operator of “natural” type is introduced into non-solvent
viscoelastic fluid flow models by means of the novel Tensor Diffusion approach pro-
posed above. In doing so, the numerical treatment of corresponding flow problems
is potentially improved in terms of three- or four-field formulations of the Tensor
Stokes problem concerning both, monolithic as well as segragated solution tech-
niques. Moreover, direct steady-state solutions involving differential or integral
constitutive equations could be successfully computed simply based on a gener-
alised Stokes-like problem. This might be achieved by explicitly expressing the
complex rheology of the fluid by means of the Diffusion Tensor, which potentially
avoids the need of considering constitutive equations at all. However, a detailed
validation and evaluation of the Tensor Diffusion approach is presented in Chpt. 4
– also with respect to deriving analytic representations of the Diffusion Tensor, for
which preliminary basic investigations are performed in Chpt. 3.
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Chapter 3

Calculating fully developed
viscoelastic flow profiles

So far, foundational and prototypical discretisation and solution techniques regard-
ing viscoelastic differential and integral flow models have been discussed. But, no
detailed remark is made concerning the applied boundary conditions supplement-
ing the flow model for obtaining a well-posed mathematical problem. Following
Ref. [20], the velocity field should be prescribed on the complete boundary of the
computational domain for successfully performing numerical simulations in the
context of differential constitutive equations, in case no such thing as symmetry
boundary conditions needs to be taken into account. For example, a non-vanishing
velocity profile is set on the in- and outflow egdes, that is on Γin and Γout, when
simulating viscoelastic Poiseuille flow as depicted in Fig. 3.1, while u = (u, v)> ≡ 0
is fixed on Γno-slip. In fact, this flow configuration can be regarded as a section
of length [0, L] of a channel of infinite length with height [a, b], where the flow
would not be affected by any in- or outflow boundary values. Consequently, such
a flow state might be reproduced in the section of the channel by specifying the
in- and outflow data as fully developed flow profiles according to the chosen ma-
terial model. The corresponding velocity field u would consist of a non-vanishing
y-dependent velocity u in x-direction, while v ≡ 0 holds regarding the y-velocity.

Γno-slip

Γout

Γno-slip

Γin

x

L

y

a

b

Figure 3.1: Poiseuille flow configuration

In case of one of the simplest models for describing viscoelastic material behaviour,
that is the Oldroyd-B or UCM model, the resulting fully developed velocity pro-
file is of parabolic shape (see Ref. [47] or Sec. 3.1.1). Hence, a parabolic velocity
profile is a suitable choice regarding boundary values in corresponding viscoelas-
tic fluid flow simulations, which is possibly combined with the according stress
profiles applied at the inflow edge [20]. In contrast, considering parabolic in- and

45
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outflow profiles in case of simulating viscoelastic Poiseuille flow described by the
Giesekus model leads to flow phenomena caused by the prescribed boundary data
(see Fig. 3.2). It turns out, that the applied parabolic velocity profile is an inapro-
priate choice, since the velocity field takes a different shape away from the in- and
outflow edges as realised from Fig. 3.2(a). This is contradictory to the numerical
results expected for Poiseuille flow, which should show straight contour lines across
the whole fluid domain. The effect of inappropriate boundary data becomes even
more clear in case of considering the corresponding stress and pressure fields de-
picted in Figs. 3.2(b) and 3.2(c). In detail, significant oscillations or perturbations
are visible particularly close to the inflow edge, which is equipped additionally
with the stress profiles resulting from the parabolic velocity field. Consequently, it
is highly recommended to apply suitable in- and outflow boundary data according
to the considered viscoelastic model.

(a) x-velocity field

(b) σ11 field

(c) p field

Figure 3.2: Flow quantities resulting from the Giesekus model with parabolic in-
and outflow profiles

Similarly, it makes sense to prescribe fully developed flow profiles as in- and out-
flow data in numerical simulations of complex flow configurations, since numerical
artefacts arising from inappropriate boundary conditions are suppressed. At the
same time, it needs to be ensured that the flow at the in- and outflow edges indeed
is fully developed. Hence, it should not be affected by flow phenomena arising in
the interior of the domain due to obstacles or overall geometrical changes, for ex-
ample of the cross section. This can be done by sufficiently increasing the length of
the up- and downstream channels of the computational domain to provide enough
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space for the flow to relax to the fully developed state. Thus, flow phenomena or
oscillations as well as instabilities are damped or even removed, which would arise
in case of a fully developed flow being enforced at the in- and outflow regardless
of its actual – possibly not fully developed – shape. In addition, the flow can
be considered indeed as fully developed when entering (and leaving) the actual
computational domain. This corresponds to an important feature of viscoelastic
fluids, where the current flow state is affected by deformations applied in the past.
Thus, assuming a fully developed flow at the inlet of the computational domain –
also with respect to the stress tensor – ensures an evolved deformed state of the
fluid when entering the domain, where no recently applied deformations affect the
fluid flow [11].

Unfortunetaly, fully developed flow profiles can not be derived straightforward
in an analytical and closed form concerning various nonlinear viscoelastic models
(see Refs. [9, 58, 59, 60]). Hence, a numerical technique for determining such
viscoelastic flow profiles, which among other things can be applied as suitable in-
and outflow data, is presented in the following. But in this work, the numerical
framework for treating differential and integral viscoelastic flow models in terms
of fully developed channel flows is mainly taken into account for another purpose.
In detail, the initial validation of the novel Tensor Diffusion approach proposed in
Sec. 2.4 is performed by means of such flow configurations, which furthermore offer
the possibility to simplify both types of flow models and allow a deeper insight
into the underlying structure and mathematical properties. In order to prepare
the initial investigations on the Tensor Diffusion approach, the fully developed
flow profiles resulting in case of the Giesekus model are validated and evaluated
in Sec. 3.1 with respect to the included material and model parameters. In doing
so, the effect of the parameters on the shape of the obtained velocity and stress
fields is elaborated to provide the basis for analysing the form of the corresponding
Diffusion Tensor in Sec. 4.1.1. Concerning integral constitutive equations, only a
selection of the resulting flow profiles is given in Sec. 3.2 for a brief comparison
with the Giesekus model. Besides, one of the essential potential benefits of the
Tensor Diffusion approach, that is the simplification of (integral) viscoelastic flow
models to a generalised Stokes-like problem, is illustrated in this context, as the
Diffusion Tensor can be given (semi-)analytically in case of the PSM as well as
Wagner model.

3.1 Differential constitutive equations
In this section, the numerical framework for calculating fully developed flow profiles
according to viscoelastic fluids is presented and validated by means of differential
constitutive equations. Therefore, the Giesekus model is considered in Sec. 3.1.1
in terms of the Poiseuille flow configuration, which results in a one-dimensional
system of nonlinear ordinary differential equations (ODE) with respect to the
unknown flow quantities. Corresponding numerical results, which are computed
based on a Finite Difference discretisation, are discussed in Sec. 3.1.2 taking into
account the effect of varying material and model parameters. Finally, the obtained
fully developed flow profiles for the Giesekus model are validated in terms of two-
dimensional Finite Element simulations, where the suitably interpolated profiles
are prescribed as Dirichlet boundary data.
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3.1.1 The underlying framework

Obviously, a two-dimensional stationary flow state is obtained by the flow con-
figuration depicted in Fig. 3.1, in case suitable time-independent in- and outflow
data is prescribed. Thus, the direct steady-state differential viscoelastic flow model
from Eq. (2.16) is considered below in the context of fully developed channel flows.
Thereby, the velocity field is assumed to be of the same shape at any cutline over
the channel height, that is simply consisting of a non-vanishing y-dependent con-
tribution in x-direction. Similarly, also the components of the extra-stress tensor
vary only with respect to the channel height, which is why the flow quantities
satisfy

u =

(
u
v

)
=

(
u (y)

0

)
, D (u) =

1

2

(
0 ∂u

∂y
∂u
∂y

0

)
∂

∂x
σij = 0, i, j ∈ {1, 2} (3.1)

where σij denote the components of the extra-stress tensor Σ ∈ R2×2. Applying the
properties (3.1) to the steady-state version of the Giesekus model, that is inserting
Eq. (2.5) into Eq. (2.16), leads to a one-dimensional nonlinear ODE system reading

−ηs
∂2u

∂y2
− ∂σ12

∂y
+
∂p

∂x
= 0 (3.2a)

−∂σ22

∂y
+
∂p

∂y
= 0 (3.2b)

−2σ12
∂u

∂y
+

1

Λ

[
σ11 + α

Λ

ηp

(
σ2

11 + σ2
12

)]
= 0 (3.2c)

−σ22
∂u

∂y
+

1

Λ

[
σ12 + α

Λ

ηp
σ12 (σ11 + σ22)

]
=

ηp
Λ

∂u

∂y
(3.2d)

1

Λ

[
σ22 + α

Λ

ηp

(
σ2

12 + σ2
22

)]
= 0 (3.2e)

Here, the polymeric viscosity ηp is linked to the solvent viscosity ηs by means
of the total viscosity η0 = ηs + ηp, where the amount of solvent contribution is
specified via β = ηs

η0
. In the following, the unknown quantities

(
∂p
∂x
, u, σ11, σ12, σ22

)

are determined, such that the resulting flow profiles correspond to a certain vis-
coelastic flow configuration typically defined by the so-called Weissenberg Number
We = Λuc

lc
. Hence, the flow is specified by means of the characteristic velocity uc

as well as length lc and the relaxation time Λ. Regarding the flow configuration
depicted in Fig. 3.1, lc is determined by the channel height b− a, while uc is given
in terms of the mean value Umean of the velocity. Thus, it makes sense to generate
fully developed flow profiles resulting in a prescribed flow rate of U̇ = Umean (b− a),
which is why the above system of equations is supplemented by the condition

∫ b

a

u (y) dy = U̇ (3.2f)

In fact, the set of equations (3.2) can be solved analytically in case a Newtonian
fluid, that is Λ = 0, or the Oldroyd-B (α = 0, β ∈ ]0, 1[) as well as the UCM model
(α = 0, β = 0) for Λ > 0, resulting in a parabolic velocity profile of the form

u (y) =
1

2η0

∂p

∂x

(
y2 − (b+ a) y + ba

)
(3.3)
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Thereby, u (a) = u (b) = 0 holds due to u ≡ 0 on Γno-slip, while the maximum ve-
locity U is obtained on the centre line of the channel. Moreover, the pressure drop
in the parabolic velocity profile can be determined easily as ∂p

∂x
= −2η0U

(
b−a

2

)2,
where Eq. (3.2f) is satisfied due to U̇ = 2

3
U (b− a). In addition,

Σ =

(
σ11 σ12

σ12 σ22

)
=

(
2ηpΛ

(
∂u
∂y

)2

ηp
∂u
∂y

ηp
∂u
∂y

0

)
(3.4)

holds regarding the components of the extra-stress tensor. Thus, applying a
parabolic velocity profile as fully developed in- and outflow profile in numerical
simulations regarding the Oldroyd-B or UCM model is justified. However, based
on the momentum equations (3.2a) and (3.2b) the pressure field may be written
as

p (x, y) = c1 + c2x+ fp (y) (3.5)

where c1, c2 ∈ R are constants. Furthermore, for a velocity field pointing in positive
x-direction the pressure decreases linearly in x, that is ∂p

∂x
= c2 ≡ const < 0, which

is already indicated by means of the Oldroyd-B or UCM model. In addition,
the pressure might show a y-dependent behaviour described by the contribution
fp : R → R, where fp = σ22 is directly implied from Eq. (3.2b). Note, that
this equation does not need to be taken into account in the solution procedure
described below, as all degrees of freedom are already covered by the remaining
equations. Instead, the momentum equation (3.2a) acts as a key component, where
the pressure drop is explicitly linked to the velocity field and hence basically to
the desired flow rate – at least for ηs > 0. Moreover, the constitutive equations
can be regarded as an auxiliary problem to establish a nonlinear coupling of the
pressure drop and the velocity field, even in the non-solvent case.

For treating the set of nonlinear equations presented in Eq. (3.2) numerically,
discrete grid points yk = a + k b−a

n
, k = 0, . . . , n, are spreaded over the channel

height y ∈ [a, b]. The resulting discrete nonlinear system for calculating the fully
developed flow profiles is obtained from Eq. (3.2) by applying a Finite Difference
approximation of second order regarding the derivatives with respect to y. At
the same time, no-slip boundary conditions regarding u are prescribed, that is
u (a = y0) = u (b = yn) = 0, while do-nothing boundary conditions with respect
to the components of the extra-stress tensor are chosen. The condition (3.2f)
specifying the flow rate is approximated by a suitable quadrature rule, for example
the Composite-Trapezoidal Rule. The resulting nonlinear system for the discrete
values of (u, σ11, σ12, σ22) as well as the pressure drop ∂p

∂x
is solved by means of

Newton’s method, where the discrete Jacobian matrix is calculated analytically.
Note, that the number of discrete grid points n ∈ N is chosen, such that the
profiles show a mesh-converged behaviour in the picture norm, whereas a detailed
convergence study may be performed for example based on the convergence of
the pressure drop ∂p

∂x
with respect to n. But this is not done here, since the

resulting flow profiles are intended to be used for example as boundary data in
two-dimensional Finite Element simulations, where the discrete data points are
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interpolated anyways to generate suitable boundary values according to a probably
coarser spatial resolution. Furthermore, the scope of the following analysis is to
evaluate the shape of the flow profiles with respect to varying material and model
parameters, which is why it is sufficient to consider numerical results of the above
framework converged up to a visual “tolerance”.

In principle, the problem formulation introduced above by means of the single-
mode Giesekus model can be extended to the multi-mode case straightforward.
For this purpose, separate constitutive equations (3.2c), (3.2d) and (3.2e) need
to be considered for each stress tensor Σk including separate parameters Λk, ηp,k
and αk, while the extra-stress component in the momentum equation (3.2a) needs
to be written as σ12 =

∑K
k=1 σ12,k. Naturally, the numerical effort will increase,

but the overall framework can still be applied.
Furthermore, the numerical method is applicable conceptually to any differ-

ential viscoelastic model by adapting the constitutive equations (3.2c), (3.2d)
and (3.2e). In case of the PTT model presented in Eq. (2.6), the complexity
of the numerical problem can even be reduced significantly. Following Ref. [9], the
velocity profile in the non-solvent case ηs = 0 is given analytically depending on
the pressure drop as well as the chosen model and material parameters, in detail

ulin (y) =
1

2ηp

∂p

∂x

[(
1 + κ

(
Λ

ηp

∂p

∂x

(
y − b+ a

2

))2
)(

y − b+ a

2

)2

. . .

· · · −
(

1 + κ

(
Λ

ηp

∂p

∂x

(
b− a

2

))2
)(

b− a
2

)2
]

(3.6a)

uexp (y) =
ηp

4κΛ2 ∂p
∂x

[
exp

(
2κ

(
Λ

ηp

∂p

∂x

(
y − b+ a

2

))2
)
. . .

· · · − exp

(
2κ

(
Λ

ηp

∂p

∂x

(
b− a

2

))2
)]

(3.6b)

Thus, the one-dimensional nonlinear set of equations from Eq. (3.2) may be trans-
formed to the problem of determining the pressure drop, such that the velocity
profile results in the desired flow rate. But, this problem can not be solved as
straightforward as in case of the Oldroyd-B or UCM model including a parabolic
velocity profile or a linear dependency on ∂p

∂x
. Instead, a corresponding solution

might be computed via nonlinear optimisation, where the objective function is
defined based on the integral expression from Eq. (3.2f) including the analytical
profiles from Eq. (3.6). In fact, the same can be done for the Giesekus model
as well, where a corresponding semi-analytical expression of the fully developed
velocity profile in the non-solvent case is given in Ref. [9]. But in this work, the
semi-analytical solution is used only for validating the one-dimensional numeri-
cal framework introduced above, which provides a kind of “black box” tool for
calculating fully developed flow profiles regarding in principle any (differential)
constitutive law or specific rheology. Furthermore, a numerical solution technique
needs to be applied anyways in case of a non-vanishing solvent viscosity, also re-
garding the PTT model. However, the PTT model will not be considered here
in detail, since the corresponding numerical solutions show a behaviour similar to
the Giesekus model, which is discussed in the following section. But, the flow pro-
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files according to the PTT model will be applied in Sec. 4.2 in terms of boundary
conditions for evaluating the Tensor Diffusion approach in two-dimensional Finite
Element simulations.

3.1.2 Numerical results and validation

As mentioned before, no realistic or meaningful viscoelastic material behaviour can
be predicted by means of the Oldroyd-B or UCM model. For example, this can be
realised based on the corresponding fully developed parabolic velocity profile from
Eq. (3.3), which is independent of the relaxation time Λ. Consequently, no mod-
elling of any nonlinear effects such as shear thinning, which occurs for increasing
relaxation times, is possible, although this represents a typical viscoelastic phe-
nomenon in terms of channel flow configurations. Thus, results for the Giesekus
model computed by means of the numerical framework presented above are dis-
cussed to illustrate, that indeed flow profiles deviating from the parabolic shape
are obtained. In addition, the flow profiles are evaluated with respect to the effect
of the included material and model parameters on the nonlinearity of the solution.
Therefore, the calculated velocity profiles are compared against a parabolic profile
with a maximum velocity of U = 1 over a channel height of y ∈ [−1, 1], which is
why the numerically determined velocity profiles need to result in a flow rate of
U̇ = 2

3
U (b− a) = 4

3
. Furthermore, the corresponding stress profiles are taken into

account as well.
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Figure 3.3: x-velocity profiles for the Giesekus model at α = 0.1, η0 = 1.0, β = 0.0,
U = 1.0 for several relaxation times Λ
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In a first step, the flow profiles resulting from the non-solvent case, that is ηs = 0 in
Eq. (3.2a), and fixed α = 0.1 are considered for various values of Λ. For increasing
relaxation times, a typical shear thinning behaviour can be observed regarding the
velocity profiles depicted in Fig. 3.3, which is one of the main material properties
predicted by the Giesekus model. In case of shear thinning, the velocity profile de-
viates from the parabolic profile, such that a large velocity gradient arises close to
the walls, while a plateau-like behaviour is observed in the middle of the channel.
Furthermore, a very good agreement to the semi-analytical reference solution given
in Ref. [9] is observed on a visual basis, where the numerical results are obtained
for a spatial discretisation consisting of n = 513 one-dimensional grid points. In
particular, the large velocity gradients close to the channel wall, which are caused
by the pronounced shear thinning effect, are captured precisely. In Fig. 3.4, the
error between the computational result and the reference solution regarding the
velocity profile is plotted over n, where the latter is evaluated for the numerically
determined pressure drop ∂p

∂x
. It turns out, that a resolution of n = 513 already

provides a quite accurate approximation of the semi-analytical expression of the
velocity field even for the considered – quite extreme – parameter configuration.
Moreover, the approximation quality is sufficiently high regarding the application
of these (suitably interpolated) fully developed velocity profiles as boundary data
in Finite Element simulations. Probably, corresponding two-dimensional configu-
rations consist of a much coarser spatial resolution of the corresponding in- and
outflow egdes, which is why the approximation error in the one-dimensional set-
ting does not need to be decreased too much. Consequently, a spatial resolution of
n = 513 is applied in the one-dimensional framework to also generate the numerical
results presented in the following.
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Figure 3.4: Error of calculated x-velocity profile to the analytical solution for the
Giesekus model at Λ = 10.0, α = 0.1, η0 = 1.0, β = 0.0, U = 1.0 for increasing
spatial resolution

To further outline the difference in the solutions of the nonlinear Giesekus model
compared to the linear UCM model, the stress profiles are presented in Fig. 3.5 in
addition to the velocity profiles discussed above. For ηs = 0 and α = 0.1, a rapid
increase of σ11 is observed for smaller relaxation times, which is kind of consistent
to the UCM model, where the corresponding Σ-component depends linearly on Λ.
Thereby, the Giesekus model for small Λ indeed represents a “small perturbation”
of the UCMmodel, which can be realised by means of Eqs. (3.2c), (3.2d) and (3.2e).
However, a maximum value of σ11 at the channel walls is obtained at Λ ≈ 3 followed
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by a slow descent, which illustrates the stabilizing character of the additional
quadratic stress contribution in the constitutive equation compared to the UCM
model [4, 6]. Recall, that σ11 grows unboundedly with repect to Λ in case of
the UCM model, but stays parabolic with respect to y. Instead, the slope of σ11

obtained from the Giesekus model increases monotonously close to the channel
walls according to the velocity field or the amount of shear thinning.
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Figure 3.5: Stress profiles for the Giesekus model at α = 0.1, η0 = 1.0, β = 0.0,
U = 1.0 for several relaxation times Λ

Concerning the σ22-profile, a maximum value with respect to magnitude is reached
at y = ±1 as well, in detail at Λ ≈ 2, while the slope as well as the magnitude
decrease for larger relaxation times. In contrast, σ22 = 0 holds in case of the UCM
model. A monotonous behaviour with respect to the relaxation time Λ is observed
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only for σ12, where the magnitude as well as the slope of the corresponding profiles
decrease for increasing Λ. In case of the UCM model, σ12 does not depend on the
relaxation time at all. Overall, the stabilising character of the additional quadratic
contribution concerning the extra-stress tensor Σ is observed. In particular, the
component σ11 seems to approach a finite limit value for increasing relaxation
times or Weissenberg numbers after a significant build-up of stress for lower or
moderate Λ. But, also the remaining flow quantities resulting from the Giesekus
model clearly deviate in a nonlinear manner from the (linear) UCM-solutions.
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Figure 3.6: x-velocity profiles for the Giesekus model at Λ = 1.0, η0 = 1.0, β = 0.0,
U = 1.0 for several mobility factors α

After having analysed the behaviour of the flow profiles regarding the relaxation
time Λ, as a next step the effect of a varying Giesekus parameter or mobility
factor α is investigated. Therefore, again a vanishing solvent viscosity is considered
and additionally the relaxation time is set to Λ = 1.0, which results in the flow
profiles depicted in Figs. 3.6 and 3.7 for several values of α. It turns out, that
increasing the mobility factor has in principle a similar effect on the velocity field
as considering higher relaxation times, since an increasing shear thinning effect
is observed. Similarly, also the stress component σ11 clearly deviates from the
parabolic shape with respect to the channel height, which is obtained in case of
the UCM model, that is α = 0. In detail, its magnitude decreases, but the slope
close to the channel wall increases according to shear thinning. Also regarding
the σ22-component, the deviations to the UCM-solution σ22 = 0 are intensified,
since its magnitude grows for increasing α. Similar to larger Λ, σ12 preserves a
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linear form for higher α, which is also provided by the UCM model, although its
magnitude decreases. In fact, this behaviour can be realised from Eq. (3.2a) giving
σ12 = ∂p

∂x
y, since the pressure drop ∂p

∂x
< 0 increases according to α as well as Λ or

the amount of shear thinning.
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Figure 3.7: Stress profiles for the Giesekus model at Λ = 1.0, η0 = 1.0, β = 0.0,
U = 1.0 for several mobility factors α

However, σ11 seems to grow again close to the channel walls for α > 0.5, but
no solutions corresponding to significantly larger α are computable due to the
structural limits of the Giesekus model outlined at the end of Sec. 3.2.2. Thus,
the change in the behaviour of σ11 can not be pursued. However, in contrast to
increasing the relaxation time, no pronounced build-up of the stress is observed
for small values of α, as a more or less monotonous behaviour of Σ with respect
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to the mobility factor is observed.
Up to now, the non-solvent case is considered only, that is ηs = 0 is set in the

momentum equation (3.2a). Hence, the effect of a present viscosity on the fully
developed flow profiles is investigated in the following, where corresponding results
are depicted in Figs. 3.8 and 3.9.
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Figure 3.8: x-velocity profiles for the Giesekus model at Λ = 10.0, η0 = 1.0,
α = 0.1, U = 1.0 for several amounts β of solvent viscosity

As expected, the velocity profiles for β = ηs
η0
→ 1 reform incrementally to a

parabolic shape, which correlates to the velocity profile of a Newtonian fluid.
Thereby, a pronounced change of the solutions is observed for small β, while a
nearly parabolic profile is already recovered at β ≈ 0.5.
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Figure 3.9: Stress profiles for the Giesekus model at Λ = 10.0, η0 = 1.0, α = 0.1,
U = 1.0 for several amounts β of solvent viscosity

Naturally, also the stress profiles approach the Newtonian limit Σ = 0 for β → 1,
which can be realised by means of the nonlinear set of equations from Eq. (3.2) as
well. In addition, the profiles resulting in case of β > 0 deviate significantly from
the solutions obtained for pure melts, since a large stress gradient is observed close
to the centre line of the channel at y = 0 (see Fig. 3.9). But at the same time,
the overall magnitude is decreased and a plateau-like behaviour is formed towards
the channel walls. Obviously, the underlying shear thinning effect is damped by
introducing a solvent contribution to the viscosity, which causes the varying shape
of the flow profiles due to the fluid becoming more Newtonian. Consequently, the
velocity profile recovers the “linear” solution, but the stress profiles for β → 1 still
show nonlinear effects close to the centre line of the channel.

Overall, the flow profiles calculated for the Giesekus model in terms of fully
developed channel flow configurations show a reasonable behaviour under variation
of the present parameters, that is the relaxation time Λ, the mobility factor α and
the amount of solvent contribution β. It turns out, that the velocity profiles consist
of a distinct shear thinning effect for increasing Λ as well as α, which typically is
predicted by means of the Giesekus model [4, 6]. In addition, introducing a present
solvent contribution pushes the flow profiles towards the Newtonian case.

In the following, the validity of the fully developed flow profiles determined
above is illustrated by means of Finite Element simulations of Poiseuille flow of a
viscoelastic fluid described by the Giesekus model. In doing so, Dirichlet boundary
conditions with respect to the velocity are prescribed at every boundary segment of
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the computational domain, including fully developed velocity profiles applied as in-
and outflow data at Γin and Γout. These profiles are determined by means of Finite
Element interpolants of the discrete values of the Finite Difference discretisation
proposed in Sec. 3.1.1. Thereby, the required spatial resolution for determining
the fully developed flow profiles in the one-dimensional framework needs to be
sufficiently fine, for example to resolve large gradients of the velocity profile in
case of a pronounced shear thinning effect. In contrast, the resolution of the in-
and outflow edges in two-dimensional Finite Element simulations typically will
be much coarser. Hence, the data points used for interpolation are chosen from
the Finite Difference approximation according to the degrees of freedom of the
Finite Element discretisation to establish accurate boundary data. However, the
upper and lower walls of the channel are set to be no-slip boundaries, that means
u ≡ 0 is prescribed on Γno-slip. At the inlet Γin, the fully developed stress profiles
are prescribed as well, but a do-nothing boundary condition with respect to Σ is
applied on Γno-slip as well as Γout.

In this context, the prescribed boundary values can be considered as the actual
fully developed flow profiles according to the Giesekus model, if the contour lines
of the x-component u of the velocity field u as well as the contour lines of the
components of the extra-stress tensor Σ obey a purely straight behaviour in the
complete channel. This straight shape implies, that the same profile of the associ-
ated quantity is obtained on every cutline over the channel height – including the
prescribed in- and outflow edge. Thus, there is no change in the flow with respect
to x and the profiles arising from the two-dimensional Finite Element simulation
coincide with the profiles applied at the boundary. In this case, the results of the
fully developed channel flow configuration can be regarded as validated.

(a) x-velocity field
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u(L/2, y)

(b) x-velocity profile

Figure 3.10: Velocity solution for the Giesekus model at Λ = 1.0, α = 0.1, η0 = 1.0,
β = 0.0, U = 1.0

As representative study, non-solvent viscoelastic fluids described by the
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Giesekus model at fixed Λ = 1.0 and α = 0.1 are simulated. The computational
domain is defined based on Fig. 3.1 as a rectangular channel of height y ∈ [−1, 1]
and length x ∈ [0, 6], where the actual computational mesh is build by a successive
refinement of a coarse mesh consisting of three squares. Moreover, the full set of
variables (u,Σ, p) is discretised according to the techniques described in Sec. 2.2.3,
where suitable fully developed flow profiles presented in Figs. 3.3 and 3.5 are ap-
plied as in- and outflow profiles. Corresponding simulation results regarding the
velocity field can be found in Fig. 3.10, where the contour lines indeed show a
perfectly straight behaviour and the profile in the middle of the channel matches
the one-dimensional result prescribed at the in- and outflow edges. The same can
be observed regarding the numerical solution of the stress variables depicted in
Fig. 3.11, where the profiles set as Dirichlet data at Γin represent the fully devel-
oped stress profiles. Hence, the flow profiles determined in the one-dimensional
framework proposed above coincide with the actual fully developed profiles arising
in two-dimensional simulations.

(a) σ11 field

(b) σ12 field

(c) σ22 field

Figure 3.11: Stress solution for the Giesekus model at Λ = 1.0, α = 0.1, η0 = 1.0,
β = 0.0, U = 1.0

Besides the shear thinning effect, a typical observation in terms of the Giesekus
model is the fact, that the pressure shows a y-dependent behaviour. Actually,
the corresponding contour lines over the channel height take a curved shape, in
contrast to the Oldroyd-B or UCM model, where the pressure consists of straight
contour lines with respect to y. This issue is already addressed by the pressure
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function presented in Eq. (3.5), where the y-dependent part is characterised by
fp (y) = σ22 (y). It turns out, that this pressure characteristic actually is recovered
in the two-dimensional simulations of the Poiseuille flow (see Fig. 3.12(a)). In fact,
the pressure contour lines match the profile of the stress component σ22 up to an
additive contribution depending on the position x over the channel length, where
the pressure profile depicted in Fig. 3.12(b) is already shifted to coincide with σ22.
Thus, the desired y-dependent behaviour of the pressure field is obtained by terms
of fully developed channel flow configurations as well.

(a) p field
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(b) (shifted) p profile

Figure 3.12: Pressure solution for Giesekus model at Λ = 1.0, α = 0.1, η0 = 1.0,
β = 0.0, U = 1.0

In terms of further investigations it is worked out, that the velocity profiles re-
sulting from one- and two-dimensional configurations show a very good agreement
also regarding higher relaxation times or an increased mobility factor. In these
cases, also the stress fields consist of straight contour lines over the full channel,
while the contour lines of the pressure field again take a curved shape. Similarly,
the numerically calculated flow profiles for β > 0 coincide with the profiles deter-
mined in two-dimensional channel flow simulations, since purely straight contour
lines for the velocity as well as stress fields are obtained. In summary, the flow
profiles determined from the one-dimensional nonlinear system (3.2) coincide with
the flow profiles resulting from two-dimensional simulations of Poiseuille flow of a
viscoelastic fluid desribed by the Giesekus model. This implies, that the numeri-
cally determined flow profiles provide a meaningful choice as Dirichlet boundary
conditions even for more complex flows. Moreover, the one-dimensional framework
proposed in Sec. 3.1.1 can be used for analysing the properties of flow models in a
simplified setting, since the corresponding results are validated in terms of actual
two-dimensional simulations. In fact, this is done in Sec. 4.1.1 regarding the initial
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validation and evaluation of the Tensor Diffusion approach introduced in Sec. 2.4.
Furthermore, the corresponding procedure can be extended to covering integral
constitutive equations, which is discussed in the next section.

3.2 Integral material laws
In the following, viscoelastic fluid flow models including an integral constitutive
equation are considered within the framework of fully developed channel flows to
determine corresponding flow profiles similar to the differential case. For deriving
an according one-dimensional system of equations, the properties listed in Eq. (3.1)
are applied to the stationary integral viscoelastic flow model from Eq. (2.43) includ-
ing the damping functions given in Eq. (2.15). In contrast to differential models,
the Finger tensor B represents the primal flow variable instead of the extra-stress
tensor Σ, which is why accordingly ∂

∂x
Bij = 0, i, j ∈ {1, 2} holds for the compo-

nents of the Finger tensor. When considering the evolution equation (2.43d) of
the Finger tensor B for fully developed channel flows, the one-dimensional set of
equations

∂

∂s
B11 (s) = 2B12 (s)

∂u

∂y
,

∂

∂s
B12 (s) = B22 (s)

∂u

∂y
,

∂

∂s
B22 (s) = 0

for s ∈ [0,∞[ is obtained. Together with the initial condition B (0) = I, the above
equations result in analytical expressions for the components of the Finger tensor,
in detail

B22 (s) = 1, B12 (s) = s
∂u

∂y
, B11 (s) = s2

(
∂u

∂y

)2

+ 1 ∀s ∈ [0,∞[ (3.7)

Since B−1 can be computed analytically based on the components of B as well as
det (B) ≡ 1 due to incompressibility [12], inserting Eq. (3.7) into the stress integral
from Eq. (2.43b) gives the one-dimensional set of equations

0 = −ηs
∂2u

∂y2
− ∂σ12

∂y
+
∂p

∂x
(3.8a)

0 = −∂σ22

∂y
+
∂p

∂y
(3.8b)

σ11 =

∫ ∞

0

m (s)

(
φ1 (tr (B))

(
s2

(
∂u

∂y

)2

+ 1

)
+ φ2 (tr (B))

)
ds (3.8c)

σ12 =

∫ ∞

0

m (s) (φ1 (tr (B))− φ2 (tr (B))) s
∂u

∂y
ds (3.8d)

σ22 =

∫ ∞

0

m (s)

(
φ1 (tr (B)) + φ2 (tr (B))

(
s2

(
∂u

∂y

)2

+ 1

))
ds (3.8e)

based the original stationary integral model. Furthermore, the trace of the Finger
tensor evolves to
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tr (B) = B11 +B22 = s2

(
∂u

∂y

)2

+ 2 (3.9)

which is why φ1,2 = φ1,2 (tr (B)) = φ1,2

(
s, ∂u

∂y

)
in Eq. (3.8c), (3.8d) and (3.8e).

Thus, from Eq. (3.8) it is realised, that the components of the extra-stress ten-
sor Σ are written explicitly depending on ∂u

∂y
and do not have to be considered

as numerical variables. Furthermore, the fully developed flow profiles are mainly
determined based on Eq. (3.8a) according to the differential case, which provides
a nonlinear relation of the velocity field and the pressure drop over the channel
length. Hence, by inserting Eq. (3.8d) into the momentum equation (3.8a) and
taking ∂u

∂y
out of the time integral, the fully developed velocity profile regarding

integral viscoelastic models is determined by

∂p

∂x
− ηs

∂2u

∂y2
. . .

· · · − ∂

∂y

([∫ ∞

0

m (s)

(
φ1

(
s,
∂u

∂y

)
− φ2

(
s,
∂u

∂y

))
s ds

]
∂u

∂y

)
= 0 (3.10)

supplemented with Eq. (3.2f) specifying the desired flow rate. Thus, the integral
viscoelastic flow model is reduced to a nonlinear problem in the unknowns

(
∂u
∂y
, ∂p
∂x

)
,

where the stress profiles are calculated in terms of post-processing only.
Note, that many difficulties arising in the context of the original Deformation

Fields Method, which are indicated in Sec. 2.3, are irrelevant or not present in the
given setting. For example, the positive definiteness as well as incompressibility of
the fields are satisfied automatically by considering fully developed channel flows.
Moreover, no accumulating error regarding the time-approximation of B needs to
be taken into account, since the corresponding analytical solution is known. How-
ever, it is confirmed by means Eq. (3.7), that the Deformation Fields B indeed do
not reach a stationary state even in case of a velocity field independent of the time
variable as mentioned in Ref. [13]. Nevertheless, the extra-stress tensor Σ from the
integral expression (2.43b) reaches a finite value, since B only grows quadratically
in s. At the same time, the damping functions from Eqs. (3.14) and (3.20) obtained
for the invariant in Eq. (3.9) as well as the memory function m (s) = ηp

Λ2 exp
(
− s

Λ

)

decay with increasing time s ∈ [0,∞[, the latter even exponentially. In addition,
determining fully developed flow profiles regarding integral constitutive equations
in case of the multi-mode approach is conceptually even simpler than compared
to differential models. In detail, multiple modes are considered by inserting the
memory function m from Eq. (2.10) into Eq. (3.10). Thus, only the evaluation of
the former stress integral is affected when considering multiple modes, while the
overall problem formulation stays unchanged.

In the following, fully developed velocity profiles are calculated based on
Eq. (3.10) according to the UCM, PSM, Wagner and Wagner-Demarmels model.
Therefore, the specific damping functions from Eq. (2.15) are inserted into the gov-
erning equation (3.10), which results in conceptually varying solution approaches
for each model. At first, flow profiles regarding the UCM model are considered,
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which can be derived analytically according to the differential case. In this regard,
φ1 ≡ 1, φ2 ≡ 0 and m (s) = ηp

Λ2 exp
(
− s

Λ

)
are applied in Eq. (3.10), which gives

0 =
∂p

∂x
− ηs

∂2u

∂y2
− ∂

∂y

([∫ ∞

0

ηp
Λ2

exp
(
− s

Λ

)
s ds

]
∂u

∂y

)

=
∂p

∂x
− ηs

∂2u

∂y2
− ∂

∂y

(
ηp
∂u

∂y

)
=
∂p

∂x
− η0

∂2u

∂y2
(3.11)

including σ12 = ηp
∂u
∂y
. In addition, the same parabolic velocity profile as in Eq. (3.3)

is obtained for a channel height of y ∈ [a, b] and u (a) = (b) = 0. Actually, the
Finger tensor B is often replaced by B−I in the stress integral (2.43b) when refer-
ring to the UCM model, which does not affect the nonlinear problem in Eq. (3.10)
or the solution of Eq. (3.11). But, the components σ11 and σ22 from Eq. (3.8c)
and (3.8e) result in

σ11 =

∫ ∞

0

ηp
Λ2

exp
(
− s

Λ

)
s2 ds

(
∂u

∂y

)2

, σ22 = 0 (3.12)

Hence, σ11 = 2ηpΛ
(
∂u
∂y

)2

is directly obtained, which completes the results of
the differential version of the UCM model from Eq. (3.4). Moreover, considering
B− I instead of B causes a vanishing pressure function fp, which is introduced in
terms of differential constitutive equations. Accordingly, fp = σ22 is satisfied also
based on the one-dimensional form of the general integral viscoelastic model when
taking into account Eq. (3.8b). But, a y-dependent behaviour of the pressure is
introduced in case of non-trivial damping functions φ1,2, for example regarding the
PSM or Wagner model as outlined below. Furthermore, the two components σ11

and σ22 of the extra-stress tensor are related in this context according to

σ11 =

∫ ∞

0

m (s)φ1

(
s,
∂u

∂y

)
s2

(
∂u

∂y

)2

ds+ σ22 (3.13a)

σ22 =

∫ ∞

0

m (s)φ1

(
s,
∂u

∂y

)
ds (3.13b)

based on Eqs. (3.8c) and (3.8e). Consequently, the extra-stress tensor is shifted
compared to the UCM-solution by a diagonal matrix with entries fp varying over
the channel height. Hence, the stress components are presented below in terms of
the PSM or Wagner model excluding the contribution of σ22 or fp from Eq. (3.13).
By doing so, a reasonable comparison of the results regarding the UCM model is
drawn, since especially σ11 = 0 is obtained on the centre line of the channel. For
completeness, the profile of the pressure function fp is depicted below as well to
illustrate the y-dependent contribution in the pressure field. However, an analyti-
cal form of the velocity profile – and thus also of the stresses – resulting from more
complex models like the PSM or Wagner(-Demarmels) model can not be derived.
Consequently, the (nonlinear) equation (3.10) has to be solved numerically, which
is discussed in the following.
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3.2.1 The PSM model

Compared to the UCM model, more complex integral constitutive equations are
considered by choosing non-trivial damping functions φ1,2 in the stress integral
from Eq. (2.43b). For example, the damping function in case of the PSM model
evolves to

φ1 =
1

1 + γs2
(
∂u
∂y

)2 (3.14)

when inserting Eq. (3.9), that is the trace of the Finger tensor resulting in two-
dimensional fully developed channel flows, into Eq. (2.15a). Consequently, the
basic equation (3.10) for calculating fully developed integral flow profiles gives

∂p

∂x
− ηs

∂2u

∂y2
− ∂

∂y



∫ ∞

0

ηp
Λ2

exp
(
− s

Λ

) s

1 + γs2
(
∂u
∂y

)2 ds
∂u

∂y


 = 0 (3.15)

which is a nonlinear equation with respect to ∂u
∂y
. Note, that considering the

Wagner-Demarmels model, that is the damping functions from Eq. (2.15c), for
fully developed channel flows leads to Eq. (3.15) as well. Thus, the same velocity
profile as in case of the PSM model is obtained, while the corresponding stress
profiles will be of different shape. Recall, that these quantities are determined in
pure post-processing fashion, which is why the Wagner-Demarmels model will be
not investigated here. However, the integral expression occurring in Eq. (3.15) can
not be given in closed form, which is why a corresponding approximation needs
to be taken into account within the numerical approach to solve for the unknown
quantities ∂p

∂x
and ∂u

∂y
or u. Therefore, the viscosity

µPSM
(
∂u

∂y

)
:=

∫ ∞

0

ηp
Λ2

exp
(
− s

Λ

) s

1 + γs2
(
∂u
∂y

)2 ds (3.16)

is defined, whereby the original equation (3.15) for calculating the fully developed
velocity profile for the PSM model may be rewritten as

∂p

∂x
− ηs

∂2u

∂y2
− ∂

∂y

[
µPSM

(
∂u

∂y

)
∂u

∂y

]
= 0 (3.17)

Obviously, Eq. (3.17) is of similar type as (symmetric) Sturm-Liouville problems,
which is why an according discretisation technique in terms of a Finite Difference
approximation may be applied here. Similar to the differential case, discrete grid
points yk = a+ k b−a

n
, k = 0, . . . , n, are spreaded over the channel height y ∈ [a, b],

based on which the derivatives occurring in Eq. (3.17) are discretised. By defining
the operator

∆hv (y) =
v (y + h)− v (y − h)

2h
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regarding central Finite Differencing, the derivative in Eq. (3.17) involving the
newly defined viscosity µPSM is approximated by

∂

∂y

[
µPSM∂u

∂y

]
≈ ∆h

2

[
µPSM
k ∆h

2
uk

]

=
1

h2

[
µPSM
k+ 1

2
uk+1 −

(
µPSM
k+ 1

2
+ µPSM

k− 1
2

)
uk + µPSM

k− 1
2
uk−1

]
(3.18)

where uk := u (yk), k = 0, . . . , n, denote the discrete unknowns regarding the
velocity field u, while the discrete values of the viscosity are defined via

µPSM
k± 1

2
≈ 1

2

(
µPSM
k + µPSM

k±1

)
, µPSM

k = µPSM
(
uk+1 − uk−1

2h

)
(3.19)

Hence, the viscosity in an intermediate grid point yk± 1
2
is set according to the av-

erage value regarding the two neighbouring actual grid points. Finally, a nonlinear
system with respect to the unknowns uk is obtained from Eq. (3.17) by applying
the discretisation proposed in Eq. (3.18) together with a Finite Difference approx-
imation of second order concerning the solvent contribution.

Since evaluating the viscosity µPSM involves “infinite” numerical integration,
it makes sense to decouple this step from actually solving the discrete version of
Eq. (3.17). Therefore, the viscosity µPSM from Eq. (3.16) is evaluated for given
discrete values uk according to Eq. (3.19) in the first step of the decoupled solution
approach. Thereby, µPSM is integrated numerically in the actual implementation
as long as corresponding contributions are larger than a specified tolerance. In a
second step, the discrete versions of Eq. (3.17) as well as (3.2f) regarding the flow
rate are solved for an update solution of uk, k = 0, . . . , n, and ∂p

∂x
for given µPSM

k .
Basically, the resulting numerical solution approach consists of alternately eval-
uating µPSM from Eq. (3.16) according to Eq. (3.19) and solving Eq. (3.17) for
the discrete values of u until the (relative) changes in the velocity field as well as
the viscosity fall below a certain tolerance. In fact, this problem formulation or
solution approach can be interpreted as a one-dimensional equivalent of the Ten-
sor Diffusion proposed in Sec. 2.4, where the Diffusion Tensor is determined in an
intermediate step of a decoupled scheme. In contrast, a fully coupled treatment of
the discrete unknowns of the velocity field for solving Eq. (3.10) can be established
in terms of the Wagner model (see Sec. 3.2.2).

Numerical results concerning the quantities u, σ11 and σ12 for the non-solvent
case at Λ = 1.0 and γ = 0.1 are given in Fig. 3.13. In principle, the flow pro-
files show a similar behaviour as the results obtained for the Giesekus model, that
is a shear thinning effect is observed regarding the velocity profile depicted in
Fig. 3.13(a) and the stress profiles deviate accordingly from the solutions of the
UCM model. In addition, a curved pressure contour line is obtained, which is indi-
cated by means of the pressure function fp in Fig. 3.13(b). However, the numerical
method described above does not yield a solution for significantly larger relaxation
times than Λ = 1 due to a breakdown of the calculations, which is investigated
further below in case of the Wagner model. The corresponding studies give the
impression, that conceptual limitations (also) of the PSM model are responsible
for the failure of the numerical simulations. Probably due to the same reason, flow
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profiles can not be obtained for higher model parameters γ as well. Nevertheless,
varying the model parameter γ occurring in the damping function from Eq. (3.14)
has the same effect as the corresponding variation of the mobility factor α in the
Giesekus model. In detail, a higher value of γ intensifies the developed shear
thinning effect for a given relaxation time Λ.
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Figure 3.13: Flow profiles for the PSM model at Λ = 1.0, γ = 0.1, η0 = 1.0,
β = 0.0, U = 1.0
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Figure 3.14: Stress profiles for the PSM model at Λ = 1.0, γ = 0.1, η0 = 1.0,
U = 1.0 for several amounts β of solvent viscosity
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Also in case of a present solvent contribution, the velocity profiles show a behaviour
similar to the Giesekus model, since a parabolic shape is recovered for β → 1. But
in contrast to the results depicted in Fig. 3.9, the stress profiles corresponding to
the PSM model do not consist of such a large gradient close to the centre line
of the channel. Actually, a present solvent contribution damps the growth of the
stress variable causing a much smoother transition to the Newtonian case (see
Fig. 3.14(a) and 3.14(b)), while the stress profiles regarding the Giesekus model
seem to converge to a nearly discontinuous behaviour in y = 0 for β → 1.

In summary, the fully developed flow profiles determined in case of the PSM
model behave similar to the (differential) Giesekus model under a variation of the
material and model parameters, which indicates that reasonable results are ob-
tained for this integral constitutive equation as well. But, no validation in terms
of two-dimensional simulations can be performed, since a corresponding numer-
ical framework for simulating integral viscoelastic fluid flows is not realised yet.
Thus, the calculated fully developed flow profiles can not be prescibed as boundary
data in actual two-dimensional configurations. But, according investigations are
performed in terms of the initial validation of the Tensor Diffusion approach in
Sec. 4.1.1, where the Wagner model discussed next is taken into account as well.
In fact, it is aimed at realising the numerical treatment of integral viscoelastic
models by means of the Tensor Diffusion approach as part of future research work,
particularly with respect to complex two-dimensional configurations.

3.2.2 The Wagner model

In the following, the framework of fully developed channel flows is transferred to
the Wagner model, which allows a further investigation on the general properties of
this integral constitutive equation. In doing so, the non-trivial damping function

φ1 = f exp


−sn1

√(
∂u

∂y

)2

+ (1− f) exp


−sn2

√(
∂u

∂y

)2

 (3.20)

is obtained by inserting the trace of the Finger tensor B from Eq. (3.9) into the
damping function given in Eq. (2.15b). For simplicity, f = 1 is considered in the
following theoretical remarks, as results for the convex combination in Eq. (3.20)
follow directly. In contrast, numerical examples are usually presented based on
the nonlinear material parameters given in Ref. [17], including f ∈]0, 1[.

Similar to the PSM model, in a first step the damping function from Eq. (3.20)
is inserted into the basic equation (3.10) for calculating fully developed flow profiles
regarding integral viscoelastic models, which gives

∂p

∂x
− ηs

∂2u

∂y2
=

∂

∂y



∫ ∞

0

m (s) exp


−sn1

√(
∂u

∂y

)2

 s ds

∂u

∂y




=
∂

∂y



∫ ∞

0

ηp
Λ2

exp


−s


 1

Λ
+ n1

√(
∂u

∂y

)2



 s ds

∂u

∂y



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since m (s) = ηp
Λ2 exp

(
− s

Λ

)
. In contrast to the PSM model, the nonlinear viscosity

function arising for the Wagner model can be given in closed form, in detail

µWag =

∫ ∞

0

ηp
Λ2

exp


−s


 1

Λ
+ n1

√(
∂u

∂y

)2



 s ds

= ηp


1 + n1Λ

√(
∂u

∂y

)2


−2

(3.21)

Consequently, Eq. (3.10) evolves to the nonlinear equation

∂p

∂x
− ηs

∂2u

∂y2
− ηp

∂

∂y




1 + n1Λ

√(
∂u

∂y

)2


−2

∂u

∂y


 = 0 (3.22)

in case of the Wagner model at f = 1. Note, that the corresponding equation re-
sulting for f ∈ ]0, 1[ is obtained by replacing the viscosity contribution in Eq. (3.22)
by a convex combination of viscosities of the type presented in Eq. (3.21) accord-
ing to Eq. (3.20). Moreover, the above problem formulation can be regarded as a
one-dimensional analog of the pure Tensor Stokes problem from Eq. (2.49), where
the integral constitutive equation is indeed replaced by an explicit expression of
the Diffusion Tensor, which is investigated further in Sec. 4.1.1. In addition, the
multi-mode approach might be included by defining the viscosity µWag as a sum
of terms of the form presented in Eq. (3.21) for separate parameters ηp,k and Λk.

In principle, Eq. (3.22) (or the version corresponding to f ∈ ]0, 1[) can be
treated numerically in a similar way as the PSM model, that is based on a Fi-
nite Difference discretisation according to Eq. (3.18). But in contrast to the PSM
model, the nonlinear system arising from Eqs. (3.22) and (3.2f) regarding the pres-
sure drop ∂p

∂x
and the discrete unknowns uk of the velocity field is solved monolithi-

cally. In detail, the intermediate decoupled step of evaluating the viscosity may be
omitted in case of the Wagner model by explicitly considering the approximation

µWag
k := µWag

(
∆h

2
uk

)
=


1 + n1Λ

√(
uk+ 1

2
− uk− 1

2

h

)2


−2

(3.23)

in the discrete version of Eq. (3.22). Thus, the nonlinear character of Eq. (3.22)
is kept in the discrete setting, since an actual nonlinear equation regarding the
discrete unknowns uk of the velocity field is derived when taking into account
Eq. (3.18) with respect to µWag

k from Eq. (3.23) instead of µPSM
k .

Numerical results concerning the Wagner model for the parameters f = 0.57,
n1 = 0.31 and n2 = 0.106 given in Ref. [17] as well as β = 0 are presented in
Fig. 3.15. In principle, the flow profiles behave similarly to the PSM model at
Λ = 1.0 and γ = 0.1 depicted in Fig. 3.13. In detail, the velocity profile shows
a clear shear thinning effect and also the stress profiles deviate significantly from
the solution regarding the UCM model.
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Figure 3.15: Flow profiles for the Wagner model at Λ ≈ 1.6, f = 0.57, n1 = 0.31,
n2 = 0.106, η0 = 1.0, β = 0.0, U = 1.0

But apparently, the quantity fp depicted in Fig. 3.15(b) characterising the y-
dependent behaviour of the pressure field shows an obvious difference to the cor-
responding quantity arising from the PSM model (see Fig. 3.13(b)). In fact, fp is
not smooth in y = 0 in case of the Wagner model, which can realised by computing
fp = σ22 based on Eq. (3.8e) for the damping function from Eq. (3.20), which gives

σWag
22 =

ηp
Λ


f


1 + n1Λ

√(
∂u

∂y

)2


−1

+ (1− f)


1 + n2Λ

√(
∂u

∂y

)2


−1


Thus, σ22 or fp includes the absolute value of ∂u∂y , which causes the non-smoothness
in y = 0. However, in case of a present solvent viscosity the velocity profile evolves
again towards a parabolic shape similar to the PSM as well as Giesekus model,
which is realised by means of further numerical studies. Also the stress profiles
arising from the Wagner model at β > 0 look similar to the previous results,
as the magnitude of the stresses decreases for increasing β. But, the Newtonian
limit Σ = 0 is not approached as smooth as in case of the PSM model, since
the component σ22 of the extra-stress tensor consists of a kink at y = 0 for all
β ∈ [0, 1[, similar to fp from Fig. 3.15(b) .

As already mentioned in terms of the PSM model, for the given setting it is
not possible to compute flow profiles regarding the Wagner model at significantly
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larger relaxation times than Λ = 1.5. Especially concerning the simulation of
industrial applications, successful numercial computations for significantly larger
relaxation times are of intensified interest due to the properties of the processed
materials, for example polymer melts. Consequently, the source of the failure in
obtaining corresponding numerical results is investigated deeper in terms of the
present – quite simple – setting. A typical guess would be, that the discretisation
is not able to capture the large gradient of the velocity or stress fields occurring
due to a pronounced shear thinning effect. But instead, the flow profiles depicted
in Fig. 3.15 for the maximum relaxation time of Λcrit ≈ 1.6 only show a moderate
growth close to the channel walls, which is probably resolved sufficiently accurate
by means of the applied spatial resolution. Moreover, a higher mesh refinement
even leads to a decreasing maximum relaxation time for successfully solving the
nonlinear problem from Eq. (3.22). Thereby, the relaxation time is increased incre-
mentally, where the previous solution is used as starting value for computing the
next higher Λ, which should provide suitable initial solutions in terms of Newton’s
method. But, the nonlinear solver is not converging even for very small increments
of Λ. In addition, performing damped Newton steps, which would lead to a glob-
alised convergence behaviour by including an (adaptive) step length control when
updating the solution vector, does not result in a converging numerical scheme ei-
ther. The same holds in case of applying a simple fixed-point iteration. Similarly,
modifying the discretisation approach by taking into account a Finite Difference
approximation of higher order does not resolve this issue, which is furthermore
observed in two-dimensional Finite Element simulations as well (see Sec. 4.1.1).
Thus, the Wagner model seems to consist of underlying mathematical properties,
which prevent successful computations at higher Λ, since adapting the solution
as well as discretisation techniques does not improve the numerical scheme. As
expected, inserting diffusion into the system by setting ηs > 0 easily leads to solu-
tions for higher Λ, whereas the non-solvent case is of intensified interest, since it
provides the most challenging configuration.

Luckily, the nonlinear problem corresponding to the Wagner model is given in
closed form, which is why a more detailed analysis can be performed compared to
the PSM model. In fact, the relation

∂u

∂y
=
∂p

∂x

y

(
1 + n1Λ

√(
∂u
∂y

)2
)2(
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√(
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)2
)2
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
f

(
1 + n2Λ

√(
∂u
∂y

)2
)2

+ (1− f)

(
1 + n1Λ

√(
∂u
∂y

)2
)2



(3.24)

concerning the derivative of the velocity field can be derived by integrating
Eq. (3.22) for f ∈]0, 1[ and ηs = 0 with respect to y ∈ [−1, 1]. Note, that the
constant arising during integration vanishes in the considered setting, since ∂u

∂y
= 0

for y = 0. Naturally, considering y ∈ [a, b] for arbitrary a, b ∈ R, where a < b, will
not affect the following remarks, since only slight adaptions are necessary for a
corresponding generalisation. Thereby, the y-term in the enumerator of Eq. (3.24)
is replaced by y − b+a

2
, again giving ∂u

∂y
= 0 in the centre of the channel, which

does not lead to major changes in the structure of the problem. However, solving
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Eq. (3.24) for ∂u
∂y

can be interpreted as finding the roots of a quadratic polynomial
when again considering f = 1. Thus, the condition

1− 4
∂p

∂x
n1

Λ

ηp
sgn

(
∂u

∂y

)
y ≥ 1− 4

∣∣∣∣
∂p

∂x

∣∣∣∣n1
Λ

ηp
≥ 0 (3.25)

can be derived to guarantee the existence of real polynomial roots, that is real
solutions concerning ∂u

∂y
. Thereby, ∂p

∂x
≡ const < 0 and sgn

(
∂u
∂y

)
= −sgn (y) is

taken into account in the above inequality. Moreover, a similar condition can
be derived regarding f ∈ ]0, 1[, which gives a polynomial of degree four in ∂u

∂y
.

Consequently, the original nonlinear equation (3.22) for calculating fully developed
flow profiles in case of the Wagner model at f = 1 can be solved only, if the chosen
parameter set satisfies Eq. (3.25), which is violated at Λ > Λcrit for the parameters
given above. Furthermore, Eq. (3.25) explains the descreasing maximum relaxation
time for ηs = 0 in case of increasing mesh refinement: In numerical experiments it
is observed, that the magnitude of ∂p

∂x
at fixed Λ increases according to the spatial

resolution until convergence is reached. Hence, Eq. (3.25) is satisfied in case of
increasing mesh refinement only by considering accordingly decreasing relaxation
times Λ.

However, introducing ηs > 0 yields root-finding of a polynomial of degree three
for f = 1 or degree five for f ∈ ]0, 1[ in ∂u

∂y
, which thus guarantees at least one real

solution of Eq. (3.22). Hence, computing fully developed flow profiles regarding the
Wagner model should be possible for any parameter set (f, n1, n2,Λ, η0) including
ηs > 0. In contrast, the limits of the non-solvent Wagner model in the current
setting can be weakened, when so-called slip boundary conditions are applied with
respect to the velocity field on the channel walls. In doing so, the absolute value
of the pressure drop – for example resulting with respect to Poiseuille flow – is
reduced compared to the no-slip setting, which allows to consider larger relaxation
times for satisfying Eq. (3.25). Following Ref. [9], the simple linear Navier slip law
reads

u = κ
∂u

∂y
(3.26)

where the parameter κ ∈ [0,∞[ is related to the amount of slip prescribed on the
boundary. For κ = 0, the typical no-slip boundary condition is recovered, while
κ → ∞ leads to the full-slip or Neumann boundary condition. In the numerical
framework presented above, the slip boundary condition from Eq. (3.26) can be
implemented within the discretisation of the nonlinear problem from Eq. (3.22)
by making use of a suitable forward Finite Differencing in the grid points on the
channel wall. It turns out, that κ > 0 indeed allows the computation of flow
profiles corresponding to relaxation times larger than the critical value of Λ ≈ 1.6
obtained for κ = 0. As realised from Fig. 3.16(a), increasing the slip parameter κ
for a fixed relaxation time Λ leads to a proportionally reduced pressure drop in the
channel. Thus, in principle “arbitrary” high relaxation times can be computed by
means of the Wagner model for accordingly increasing κ, where velocity profiles for
increasing Λ (and thus also κ) are depicted in Fig. 3.16(b). Obviously, a constant
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velocity profile is obtained for Λ, κ→∞, which would correspond to infinite shear
thinning including full slip.
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Figure 3.16: Flow quantities for the Wagner model at f = 0.57, n1 = 0.31, n2 =
0.106, η0 = 1.0, β = 0.0, U = 1.0 for increasing relaxation times Λ and slip
parameters κ

Following Ref. [9], the Giesekus model discussed in Sec. 3.1 consists of structural
limits similar to the Wagner model. This is realised by means of the analytical
expression
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y
)2
)2 (3.27)

regarding the derivative of the velocity field, which can be derived from Eq. (3.2)
in case of ηs = 0. Obviously, the relation in Eq. (3.27) is not well-defined, once the
radicand in the denominator becomes negative or the whole denominator vanishes,
while the former turns out to be more critical. Consequently, the inequality

1− 4α2 Λ2

η2
p

(
∂p

∂x

)2

≥ 0 (3.28)

needs to be satisfied by the chosen parameter set in case of the Giesekus model,
which is a condition similar to Eq. (3.25) for the Wagner model. However, a
“typical” mobility factor of α = 0.1 is considered in Sec. 3.1 when analysing the
flow profiles of the Giesekus model for increasing relaxation times Λ. In addition,
the pressure drop ∂p

∂x
decreases for increasing Λ, which is why the radicand will be

close to 1 for a wide relaxation time spectrum. But, no solutions corresponding
to Λ = 1.0 and mobility factors significantly larger than α ≈ 0.5 can be obtained
(see Fig. 3.6), while choosing a mobility factor of α = 1 leads to a non-solvable
Giesekus model already at Λcrit ≈ 0.325. Again, the observed shear thinning
effect is not very pronounced, but calculating the flow profiles including no-slip
boundary conditions for higher relaxation times still fails, probably due to violating
Eq. (3.28). A remedy for computing flow profiles regarding higher relaxation times
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for the non-solvent case of the Giesekus model is provided by introducing slip
boundary conditions. Similar to the Wagner model, the slip parameter κ needs to
be increased proportionally to the relaxation time for obtaining solutions from the
one-dimensional system from Eq. (3.2) at higher Λ.

Instead of introducing slip, inserting a solvent contribution into the Giesekus
model modifies the inequality from Eq. (3.28), such that

1− 4α2 Λ2

η2
p

(∣∣∣∣
∂p

∂x

∣∣∣∣ |y| − ηs
∣∣∣∣
∂u

∂y

∣∣∣∣
)2

≥ 0 (3.29)

needs to be satisfied for successfully calculating the derivative of the velocity field.
Thus, the criterion regarding the parameter set (α,Λ, ηp) is weakened by consid-
ering ηs > 0 similar to the Wagner model, which is why higher relaxation times
can be considered. When only a small amount of solvent contribution is taken
into account, that is 0 < β � 1, where ηs = βη0 and ηp = (1− β) η0, no solution
for relaxation times Λ significantly larger than the critical value Λcrit can be com-
puted, since the inequality from Eq. (3.28) is weakened only a little. Thus, the
condition from Eq. (3.29) can be violated during the start-up of inserting ηs > 0.
In contrast, the velocity profile converges towards the parabolic shape in case of
β → 1 leading to ηs

∣∣∣∂u∂y
∣∣∣ →

∣∣ ∂p
∂x

∣∣ |y|, which is obtained faster than ηp → 0 due
to the velocity profile being nearly parabolic already at β ≈ 0.5 (see Fig. 3.8(c)).
Consequently, the left-hand side of Eq. (3.29) converges to 1, which is why fully
developed flow profiles for arbitrarily high relaxation times can be computed, in
case of a sufficiently large amount of solvent contribution is considered.

The above results regarding slip boundary conditions are obtained in prelim-
inary numerical tests only, while a more detailed analysis is part of future work.
Nevertheless, based on the inequalities from Eqs. (3.25) and (3.28) it becomes clear,
why introducing slip (potentially) improves the numerical simulation of (realistic)
viscoelastic fluid flows: First of all, the magnitude of the pressure drop ∂p

∂x
is de-

creased for increasing κ, which in turn allows higher values of Λ for satisfying the
inequalities arising from the non-solvent Wagner or Giesekus model. In particular,
this might be relevant in case of considering realistic material and model param-
eters within the constitutive equations – for example concerning polymer melts,
which typically involve large relaxation times, but no solvent contribution to the
viscosity. Secondly, higher relaxation times lead to an intensified shear thinning
effect or a plateau-like shape of the velocity field even in case of wall slip. At the
same time, large gradients of the flow fields are avoided, in contrast to results in-
cluding no-slip boundary conditions. This might help the numerical scheme when
simulating viscoelastic fluids for higher relaxation times or Weissenberg numbers,
since for example a critical growth of the variables is suppressed. Hence, apply-
ing techniques such as LCR or adaptive grid refinement for resolving large flow
gradients might be unnecessary. However, the optimal choice of a suitable slip
parameter for a given setting still needs to be exploited, where the above results
regarding the Wagner model are computed based on a – in some sense – minimal
slip length. But it is not clear, whether that is a meaningful choice for repro-
ducing experimental results, which is why a detailed validation and evaluation of
modelling wall slip is required.
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As an alternative approach to introducing slip boundary conditions, well-defined
constitutive equations may be taken into account when simulating realistic vis-
coelastic fluids, which do not consist of such underlying mathematical properties
as the Giesekus or Wagner model. In detail, a suitable candidate is provided by the
linear or exponential PTT model, where the corresponding fully developed velocity
profiles are computable for any parameter set. In particular, the corresponding
analytical expressions from Eq. (3.6) can be evaluated for any (reasonable) choice
of the pressure drop as well as the relaxation time, that is ∂p

∂x
< 0 and Λ > 0.

Thus, realistic viscoelastic material parameters might be successfully considered
in corresponding fluid flow simulations by taking into account the PTT model in-
stead of the Giesekus or Wagner model. Recall, that also the PSM model seems to
consist of structural limits similar to the Wagner model as indicated in Sec. 3.2.1.
But, an according analysis can not be performed straightforward, since the arising
nonlinear viscosity is not given in closed form. Naturally, a well-defined integral
model is of interest as well, but such an “analog” to the PTT model is not known
to the author.

In summary, fully developed flow profiles resulting from the nonlinear inte-
gral viscoelastic models considered above resemble the behaviour already observed
in case of the differential constitutive equations in Sec. 3.1. As an important
feature of both types of constitutive laws, a pronounced shear thinning effect is
obtained for increasing relaxation times, while varying the remaining material and
model parameters shapes the flow profiles in a reasonable way. But, a validation
of the determined flow profiles is performed in terms of two-dimensional chan-
nel flow configurations only with respect to differential models. Nevertheless, the
corresponding framework may be used for further investigations, in particular con-
cerning the initial validation and evaluation of the Tensor Diffusion approach in
Sec. 4.1.1 regarding differential as well as integral viscoelastic flow models. More-
over, a selection of the fully developed flow profiles covered above are prescribed
in Secs. 4.1.2 and 4.2 as in- and outflow profiles concerning two-dimensional Finite
Element simulations in terms of the Tensor Diffusion approach.



Chapter 4

Validating and evaluating the
Tensor Diffusion approach

In Chpt. 2, state-of-the-art approaches regarding Finite Element techniques for
simulating viscoelastic fluid flows are presented taking into account differential as
well as integral material models. In both cases, several difficulties and challenges
arise, for example the hyperbolic character of the differential constitutive law or
the evolution equation of the Finger tensor requires certain attention. Moreover,
the multi-mode approach causes huge numerical effort in terms of differential mod-
els concerning the prediction of realistic viscoelastic fluids. At the same time, the
High Weissenberg Number Problem may lead to a breakdown of calculations. Fur-
thermore, integral models at realistic and thus large relaxation times involve high
computational costs due to evolving the Deformation Fields over a wide time inter-
val – even in case of stationary flows. In particular, major difficulties arise when
treating both types of constitutive equations numerically in case of a vanishing
solvent viscosity in the momentum equation of the Stokes part of the flow model.
In detail, the properties of the mathematical problem are downgraded as the reg-
ularity of the Stokes subproblem gets lost, where the stress tensor is considered
as a force term. Hence, certain issues occur when considering fully coupled so-
lution schemes in the non-solvent case, for example regarding the applicability of
Newton-multigrid techniques, which turn out to behave non-robust. In addition,
the possibility of applying decoupled solution approaches especially concerning di-
rect steady-state configurations is removed, since no meaningful relation of the
velocity and stress fields is established in the momentum equation. Unfortunately,
such a segregated scheme is highly demanded in case of solving integral or multi-
mode differential models, where a monolithic treatment is not practical or leads
to high numerical effort.

Concerning this matter, the Tensor Diffusion approach is proposed in Sec. 2.4,
where the extra-stress tensor is decomposed into a tensor-valued viscosity multi-
plied with the strain-rate tensor. By inserting this decomposition into the momen-
tum equation of the Stokes subproblem, a diffusive operator is recovered even in
the case of no solvent, which conceptually offers the possibility to resolve some of
the difficulties addressed above. However, the underlying assumption, that a cor-
responding decomposition of the extra-stress exists in general, is not yet verified.
In this regard, the Tensor Diffusion approach is validated in the following section
by reproducing viscoelastic flow characteristics usually resulting from differential

75
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or integral material models in terms of one as well as two-dimensional flow states.
In detail, channel flow configurations as well as the Flow around cylinder bench-
mark are considered. Afterwards, further investigations on the Tensor Diffusion
approach to simulate viscoelastic fluid flows are carried out in Sec. 4.2 based on
the flow through a rounded contraction. In doing so, possible improvements of the
original method, but also certain limitations of the novel approach are evaluated,
especially concerning numerical solution schemes.

4.1 Proof of concept

In this section, the novel Tensor Diffusion approach is validated in terms of quasi
one-dimensional as well as actual two-dimensional flow configurations. The initial
validation is performed by means of Poiseuille-like flows in Sec. 4.1.1, where the
considered tensor-valued viscosity is derived in terms of fully developed channel
flows. By inserting the arising Diffusion Tensor into the pure Tensor Stokes prob-
lem, the according fully developed flow profiles, especially regarding the velocity
field, are intended to be recovered within two-dimensional Finite Element simu-
lations. In addition, it turns out that the viscoelastic rheology indeed might be
completely characterised by a suitable choice of the Diffusion Tensor. Thus, the
possibility is highlighted to potentially remove the constitutive equation of differ-
ential or integral type from the viscoelastic flow model, which would significantly
improve the corresponding numerical approach as outlined in Sec. 2.4. However,
the validation of the Tensor Diffusion approach is complemented in Sec. 4.1.2 by
considering two-dimensional Finite Element simulations of the well-known Flow
around cylinder benchmark [47, 46, 61]. In this regard, the drag values as well
as stress profiles resulting from the four-field formulation of the Tensor Stokes
problem are compared to reference results to evaluate the corresponding solution
quality.

4.1.1 Poiseuille-like flow configurations

In the following, channel flow configurations are considered for validating the Ten-
sor Diffusion approach. By considering the framework of fully developed channel
flows from Chpt. 3, the original two-dimensional differential or integral viscoelas-
tic model can be reduced to a more or less simple set of equations. In this con-
text, the components of the Diffusion Tensor are derived either numerically or
(semi-)analytically depending on the specific constitutive law. In a second step,
the resulting tensor-valued viscosity is applied in the pure Tensor Stokes problem to
investigate certain properties of this novel approach by means of two-dimensional
Finite Element simulations. For example, the need of considering the symmetrised
stress decomposition in the momentum equation or the possibility to reduce the
full viscoelastic flow model to a Stokes-like problem is demonstrated.

The UCM model

Similar to determining fully developed flow profiles, it is a reasonable approach
starting off the study on the Tensor Diffusion approach by considering the Upper-
Convected Maxwell model. In this case, the resulting extra-stress and strain-rate
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tensors can be given analytically as
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where the extra-stress tensor can be deduced from both, the differential as well
as integral version of the UCM model (see Chpt. 3). It is realised from Eq. (4.1),
that indeed a matrix- or tensor-valued quantity can be derived – even analytically
– relating Σ and D according to Eq. (2.47), that means Σ = M ·D (u), where

M =

(
µ11 µ12

µ21 µ22

)
= 2ηp

(
1 2Λ∂u

∂y

0 1

)
(4.2)

Obviously, the resulting (nonsymmetric) Diffusion Tensor consists of constant di-
agonal entries, while the upper right entry depends linearly on the relaxation
time Λ as well as the derivative of the x-component u of the velocity field. Note,
that a diagonal matrix with entries 2ηp is obtained in the Newtonian limit Λ→ 0,
which correlates to the Newtonian scalar viscosity when being inserted into the
(symmetrised) Tensor Stokes problem (2.49), hence giving the well-known Stokes
equations.

u = (−U, 0)

Γ

u = (U, 0)

Γ

x

L

y

a

b −→

←−

Figure 4.1: Shear flow configuration

Based on the above Diffusion Tensor, the need of considering the symmetrised
Tensor Stokes problem introduced in Sec. 2.4 is demonstrated in terms of (two-
dimensional) numerical simulations. Therefore, a so-called shear flow in a channel
of height y ∈ [−1, 1] and length x ∈ [0, 6] is regarded in the following, where the
velocity on the upper and lower walls of the channel points in positive and negative
x-direction, respectively (see Fig. 4.1). For this flow configuration, the ODE system
from Eq. (3.2) in case of the UCM model, that is ηs = 0 and α = 0, gives a
vanishing pressure drop as well as a linear velocity profile, which results in ∂u

∂y
= U .

Consequently, a globally constant, but nonsymmetric, Diffusion Tensor is obtained
from Eq. (4.2), which is applied in the original Tensor Stokes problem

−∇ · (M ·D (u)) +∇p = 0, ∇ · u = 0 (4.3)

In terms of a numerical treatment, the Finite Element framework proposed in
Sec. 2.2.3 is applied, but without considering the extra-stress tensor as a flow vari-
able, since the above Stokes-like problem depends only on the velocity and pressure
fields. However, since a quite simple solution will be obtained from the shear flow
configuration even by means of the Tensor Stokes problem, the complexity of the
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flow is increased by incorporating actual two-dimensional effects. Therefore, the
velocity profile

ũ (y) = Uy
(
1 + γ

(
1− y2

))
(4.4)

is set on the left and right edge Γ of the channel, which corresponds to a modi-
fication of the actual solution by a polynomial of degree three weighted with the
factor γ > 0. By doing so, a “wrong” boundary condition concerning a fully devel-
oped flow is enforced, which still satisfies the continuity equation and thus provides
a “consistent” perturbation of the analytical solution. At the same time, the ana-
lytical Diffusion Tensor according to the fully developed flow is prescribed globally
in the computational domain, which is why the corresponding linear velocity pro-
file should be recovered inside the channel – in case the Tensor Diffusion approach
is defined properly.

(a) Λ = 1.0

(b) Λ = 5.0

Figure 4.2: x-velocity field resulting from the Tensor Stokes problem (4.3) for the
UCM model at η0 = 1.0, U = 1.0, γ = 1.0 for several relaxation times

For a moderate relaxation time of Λ = 1.0, the resulting flow shows a more or less
appropriate behaviour. In particular, the desired linear velocity profile is obtained
in the middle of the channel, since the contour lines depicted in Fig. 4.2(a) are
equidistant. But at the same time, a nonsymmetric velocity distribution results
from the – except for the applied Diffusion Tensor – symmetric flow configration.
Moreover, the flow breaks down when Λ is increased (see Fig. 4.2(b)) probably
again due to the prescribed tensor-valued viscosity from Eq. (4.2) being nonsym-
metric. This presumption is confirmed by solving the symmetrised Tensor Stokes
problem presented in Eq. (2.49) instead of the original version from Eq. (4.3),
which results in the velocity distribution depicted in Fig. 4.3. Towards both, left
as well as right edge of computational domain, the velocity profile from Eq. (4.4)
is approached in a symmetric way, whereas the fully developed analytical linear
profile is recovered in the channel centre. Overall, a symmetric flow field is gener-
ated in contrast to the orignal Tensor Stokes problem, together with a smoother
transition from left and right edge to the channel centre.
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Figure 4.3: x-velocity field resulting from the symmetrised Tensor Stokes problem
for the UCM model at Λ = 5.0, η0 = 1.0, U = 1.0, γ = 1.0

Consequently, the Tensor Diffusion approach gives meaningful results for the con-
sidered shear flow configuration, at least when applied in terms of the symmetrised
Tensor Stokes problem. Thus, the corresponding symmetric operator will be con-
sidered in the momentum equation of the flow model in terms of the subsequent
investigations as already indicated in Sec. 2.4. But still, the Diffusion Tensor
needs to be determined analytically or numerically based on the nonsymmetric
stress decomposition, since the symmetrised version leads to a singular system
with respect to the components of M. Recall, that the symmetrised stress decom-
position is directly obtained from the original nonsymmetric case due to Eq. (2.48),
both including the same tensor-valued viscosity.

Poiseuille-like flow for the Giesekus model

As shown above, a tensor-valued viscosity relating the extra-stress tensor Σ to the
strain-rate tensor D (u) can be derived analytically from the differential as well as
integral version of the UCM model. Furthermore, reasonable results for the shear
flow configuration depicted in Fig. 4.1 are obtained by solving an according sym-
metrised Tensor Stokes problem. In a similar way, the Tensor Diffusion approach
is validated below for more complex configurations by considering nonlinear (dif-
ferential) constitutive equations, represented by the Giesekus model, in terms of
Poiseuille-like flows. Since the velocity as well as stress profiles can not be given
analytically in this case, the profiles of the Diffusion Tensor M are determined
numerically by solving Σ = M ·D (u) for the components of M based on the flow
profiles determined in Sec. 3.1. Accordingly, a parameter study regarding the effect
of Λ, α and β on the components of the Diffusion Tensor is performed to evaluate
the shape of M. In a second step, the resulting Diffusion Tensor is applied in the
pure Tensor Stokes problem, which is considered within two-dimensional Finite
Element simulations of Poiseuille-like flow configurations. In doing so, the shear
thinning effect typically predicted by means of the Giesekus model is desired to
be reproduced in terms of a simple Stokes-like problem, which includes a suitable
tensor-valued viscosity. For increasing Λ, the deviations from the UCM-solutions
increase and the profiles show a highly nonlinear behaviour, where µ21 seems to
behave qualitatively axial symmetric compared to µ12, but consisting of a different
magnitude.

First of all, the components of the Diffusion Tensor M depicted in Fig. 4.4 for
varying Λ at fixed α = 0.1 and β = 0.0 are analysed. Naturally, the Diffusion
Tensor obtained from the Giesekus model at small relaxation times is close to
the solution regarding the UCM model, that means µ11 = µ22 is nearly constant
and µ12 behaves linearly, while µ21 vanishes.
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Figure 4.4: Diffusion Tensor profiles for the Giesekus model at α = 0.1, η0 = 1.0,
β = 0.0, U = 1.0 for several relaxation times Λ

Similar to the extra-stress tensor, also the Diffusion Tensor seems to be bounded for
higher relaxation times in contrast to the UCM model, where the magnitude of µ12

is proportional to Λ. In detail, µ11 takes the maximum value of 2ηp on the centre
line, while µ12 and µ21 attain the maximum and minimum values for increasing Λ
in between centre line and walls of the channel. Note, that the Diffusion Tensor
approaches the Newtonian form at y = 0, as µ12 and µ21 vanish. Moreover, the
off-diagonal components of M show a rapid increase for smaller relaxation times
and take extreme values at y = ±1 for Λ ≈ 2, similar to the diagonal components
of the extra-stress tensor (see Fig. 3.5). In contrast, µ11 behaves monotonically
with respect to Λ at the channel walls.



4.1. Proof of concept 81

0.5 1.0 1.5 2.0
µ11

−1.0

−0.5

0.0

0.5

1.0

y
α = 0.1

α = 0.25

α = 0.5

(a) µ11 = µ22 profiles

α

0.0 0.1 0.2 0.3 0.4 0.5 0.6

y

-1.0
-0.5

0.0
0.5

1.0

µ11

0.50
0.75
1.00
1.25
1.50
1.75

2.00

(b) evolving µ11 profile for increasing α

−4 −2 0 2 4
µ12

−1.0

−0.5

0.0

0.5

1.0

y

α = 0.1

α = 0.25

α = 0.5

(c) µ12 profiles

α

0.0 0.1 0.2 0.3 0.4 0.5 0.6

y

-1.0
-0.5

0.0
0.5

1.0

µ12

−6
−4
−2
0
2
4
6

(d) evolving µ12 profile for increasing α

−0.4 −0.2 0.0 0.2 0.4
µ21

−1.0

−0.5

0.0

0.5

1.0

y

α = 0.1

α = 0.25

α = 0.5

(e) µ21 profiles

α

0.0 0.1 0.2 0.3 0.4 0.5 0.6

y

-1.0
-0.5

0.0
0.5

1.0

µ21

−0.4

−0.2

0.0

0.2

0.4

(f) evolving µ21 profile for increasing α

Figure 4.5: Diffusion Tensor profiles for the Giesekus model at Λ = 1.0, η0 = 1.0,
β = 0.0, U = 1.0 for several mobility factors α

When increasing the mobility factor α at fixed Λ = 1.0 and β = 0.0, the com-
ponents of the Diffusion Tensor M behave similar to increasing Λ – according to
the results observed for the velocity and stress profiles. Thus, µ11 again takes the
maximum value at y = 0 and µ12 as well as µ21 develop minimum and maximum
values for increasing α in between centre line and channel walls (see Fig. 4.5). In
some sense, the shape of µ11 for higher Λ and α can be interpreted as a shear
thinning viscosity, since the magnitude decreases towards the channel walls, that
is for higher “shear rates” ∂u

∂y
, but a maximum value is obtained on the centre line,

that is at zero shear. Again, the components of M behave mainly monotonically
with respect to α, similar to the components of Σ. But, the magnitude of the off-
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diagonal component µ21 seems to decrease close to the channel walls for higher α,
where σ11 increases in similar way. Furthermore, µ11 (or µ22) looks similar to σ22

and µ12 recovers qualitatively the behaviour of σ12.
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Figure 4.6: Diffusion Tensor profiles for the Giesekus model at Λ = 10.0, α = 0.1,
η0 = 1.0, U = 1.0 for several amounts β of solvent viscosity

In case of a present solvent contribution β = ηs
η0
> 0, where the corresponding

profiles of M are depicted in Fig. 4.6, the somewhat strange behaviour of the
extra-stress tensor Σ is recovered by the Diffusion Tensor (see Fig. 3.9). In detail,
the components of M seem to show a large growth in the centre of the channel, that
is at y = 0, while the overall magnitude decreases. At least the latter makes sense,
since M → 0 is expected for β → 1 leading to the Newtonian case of a vanishing
extra-stress tensor Σ, which is realised from Eq. (2.47) or (2.48). However, the
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reason of an increasing gradient of M or Σ close to y = 0 is still unclear. As
before, the maximum value of µ11 = 2ηp on the centre line of the channel as well
as the axial symmetry of µ12 and µ21 is observed.

Summarising the observations in terms of varying Λ, α and β, the Diffusion
Tensor M reflects the behaviour of the extra-stress tensor recorded in Sec. 3.1.
Thus, the material behaviour indeed might be expressed by means of the Diffusion
Tensor instead of the extra-stress tensor or a constitutive equation. This is con-
firmed in the following by solving the symmetrised Tensor Stokes problem (2.49)
for channel flow configurations by means of two-dimensional Finite Element sim-
ulations, similar to the investigations in Chpt. 3. In detail, a modified Poiseuille
flow is considered in the following, such that a parabolic velocity profile is strongly
enforced as in- and outflow data in terms of non-homogeneous Dirichlet boundary
conditions [21]. At the same time, the Diffusion Tensor M, which is determined
above according to the fully developed nonlinear viscoelastic flow characterised by
the Giesekus model, is prescribed globally in the computational domain. Since the
nonlinear material behaviour is intended to be described by the Diffusion Tensor
instead of the constitutive equation, the corresponding fully developed velocity
profile should be recovered in the two-dimensional domain away from the in- and
outflow edges. Thereby, the Diffusion Tensor is inserted into the Finite Element
framework described in Sec. 2.2.3 by defining element-wise constant representa-
tions of M based on the discrete values resulting from the one-dimensional con-
figuration. Consequently, an approximation of M according to the discretisation
proposed in Sec. 2.4 in terms of the four-field formulation of the Tensor Stokes
problem is obtained.

(a) x-velocity field
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Figure 4.7: Velocity solution resulting from the symmetrised Tensor Stokes prob-
lem for the Giesekus model at Λ = 10.0, α = 0.1, η0 = 1.0, β = 0.0, U = 1.0

Indeed, the velocity distribution depicted in Fig. 4.7(a) resulting from the Tensor
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Stokes problem in case of the Giesekus model shows the expected pronounced shear
thinning effect for the quite extreme parameter set consisting of Λ = 10.0, α = 0.1
and β = 0.0. Furthermore, the velocity profile in the middle of the channel behaves
almost perfectly according to the fully developed velocity profile computed from
the one-dimensional setting (see Fig. 4.7(b)). In similar way, the Poiseuille flow
with parabolic in- and outflow profiles gives meaningful results regarding the Ten-
sor Diffusion approach applied for the parameter sets (Λ = 1.0, α = 0.5, β = 0.0)
as well as (Λ = 10.0, α = 0.1, β = 0.5) depicted in Fig. 4.8. In detail, the shear
thinning effect is reproduced quite well in the solution obtained from the Ten-
sor Stokes problem (2.49) for a higher value of the mobility factor α, where the
viscosity depicted in Fig. 4.5 is applied. Furthermore, the nearly parabolic fully
developed velocity profile is recovered inside the channel in case of a non-vanishing
solvent viscosity as well.
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Figure 4.8: x-velocity profile resulting from the symmetrised Tensor Stokes prob-
lem for the Giesekus model at η0 = 1.0, U = 1.0

Thus, the nonlinear solution corresponding to the Giesekus model is reproduced
in this two-dimensional channel flow configuration simply by solving the linear
Stokes-like problem (2.49) for a suitable choice of M. Consequently, the nonlin-
ear rheology of a viscoelastic fluid – described here by the differential Giesekus
model – is reconstructed within a pure (u, p)-problem by defining an appropri-
ate tensor-valued diffusion operator. Hence, a first evidance is provided, that the
(symmetrised) Tensor Diffusion approach actually is a reasonable concept.

Poiseuille-like flow for the PSM model

After having validated the novel Tensor Diffusion approach in terms of
two-dimensional channel flow configurations regarding differential constitutive equa-
tions, nonlinear integral viscoelastic models are considered as a next step. Based
on the findings from Sec. 3.2.1, the extra-stress tensor arising from the PSM model
in fully developed channel flows reads

Σ =
ηp
Λ2

∫ ∞

0

exp
(
− s

Λ

) 1

1 + γs2
(
∂u
∂y

)2

[(
s2
(
∂u
∂y

)2

s∂u
∂y

s∂u
∂y

0

)
+ I

]
ds (4.5)
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Hence, the above stress integral can be decomposed according to

Σ =


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D (u) + N (4.6)

where the strain-rate tensor D (u) takes the form presented in Eq. (4.1). By
separating the isotropic contribution supplied by the identity I in Eq. (4.5), a
diagonal matrix N ∈ R2×2 with entries

ν := ν11 = ν22 =
ηp
Λ2

∫ ∞

0

exp
(
− s

Λ

) 1

1 + γs2
(
∂u
∂y

)2 ds, ν12 = ν21 = 0 (4.7)

is obtained, which consist of the infinite integral over the single-mode memory
function multiplied with the damping function from Eq. (3.14). Consequently, a
generalised stress decomposition compared to Eq. (2.47) of the form

Σ = M ·D (u) + N (4.8)

is derived, which gives

−1

2
∇ ·
(
M ·D (u) + D (u) ·M>)−∇ ·N +∇p = 0, ∇ · u = 0 (4.9)

after being incorporated into the momentum equation of the symmetrised Tensor
Stokes problem (2.49). Since ν from Eq. (4.7) in the current setting is in principle
a function of ∂u

∂y
and thus y itself, the additional quantity ∇·N in Eq. (4.9) can be

regarded as ∇ν. Consequently, again a (symmetrised) version of the Tensor Stokes
problem is obtained similar to Eq. (2.49) by considering the modified pressure
P = p − ν instead of p. Hence, the isotropic part N of the stress decomposition
from Eq. (4.8) does not affect the solution regarding the velocity field, but the
pressure field as well as the extra-stress tensor. However, the latter is of minor
interest in this context, since the stresses are calculated in pure post-processing
fashion only for considering the pure Tensor Stokes problem (4.9). Since the main
focus of the current investigations is the evaluation of the Diffusion Tensor M,
which is determined based on the velocity field, the modification of the pressure
is not taken into account here. Thus, the original symmetrised Tensor Stokes
problem from Eq. (2.49) is considered in the following, where M is calculated from
Eq. (4.6). In contrast to the nonlinear differential Giesekus model, the components
of the Diffusion Tensor M (and also the tensor N) resulting from the PSM model
can be written explicitly as functions of ∂u

∂y
, in detail

µ11 = µ22 = 2
ηp
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µ21 = 0 (4.10c)
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Hence, the complex rheology arising from the stress integral over a time interval of
infinite length is explicitly expressed by means of the tensor-valued viscosity M.
Consequently, the full integral viscoelastic model is transformed in case of fully
developed channel flows to a generalised Stokes-like problem of the form

−1

2
∇ ·
(

M

(
∂u

∂y

)
·D (u) + D (u) ·M>

(
∂u

∂y

))
+∇p = 0, ∇ · u = 0 (4.11)

Thereby, simply (u, p) (or the x-component of u in this case) represent the remain-
ing unknowns for simulating a nonlinear two-dimensional viscoelastic Poiseuille
flow originally described by the PSM model consisting of Eq. (2.15a) and (2.43).
Unfortunately, integrals over infinite time still have to be computed in Eq. (4.10),
since the components of M are hardly given in closed form. But, the extra-stress
or Finger tensors do not need to be considered as numerical unknowns anymore.

Note, that µ21 = 0 holds in case of the PSM model (and also the Wagner
model, see below) in contrast to the Giesekus model due to the separated isotropic
contribution denoted by N. This directly correlates to a vanishing component σ22

of the extra-stress tensor Σ, since σ22 = µ21D12 is case of fully developed channel
flows. Accordingly, a vanishing y-dependent behaviour of the pressure function fp
is obtained, which is introduced in terms of calculating fully developed flow pro-
files in case of differential as well as integral constitutive equations in Chpt. 3.
For recovering a non-vanishing µ21 according to the Giesekus model, the gener-
alised stress decomposition from Eq. (4.8) can be written in terms of the original
decomposition from Eq. (2.47) by considering M̃ = M + N · D−1 (u) assuming
that the strain-rate tensor is invertible. In turn, µ21 being non-vanishing in case of
the Giesekus model suggests, that the corresponding extra-stress tensor actually
consists of a generalised decomposition according to Eq. (4.8) as well.

However, there are several ways to calculate the Diffusion Tensor arising from
the PSM model when considering Finite Element simulations of two-dimensional
Poiseuille-like flows by means of the Tensor Diffusion approach. Similar to the
Giesekus model, the components of M can be calculated from Eq. (4.8) based on
the one-dimensional fully developed flow profiles from Sec. 3.2.1, that is in the
discrete one-dimensional grid points. Alternatively, the integral expressions from
Eq. (4.10) can be evaluated during pre-processing to build up the element-wise
constant representation of the Diffusion Tensor. Therefore, the fully developed
velocity profile corresponding to the PSM model would need to be provided in
terms of suitable Finite Element interpolants. Furthermore, calculating the com-
ponents of M from Eq. (4.10) can be considered as an intermediate step when
solving the (nonlinear) problem from Eq. (4.11) in a two-dimensional Finite El-
ement framework. In this context, an “infinite” integral needs to be computed
in every cubature point within each decoupled step of solving Eq. (4.11), actu-
ally leading to a huge numerical effort. Nevertheless, the latter option is chosen
to evaluate the Tensor Diffusion approach in case of the PSM model, since rela-
tively “small” computations have to be performed within the Poiseuille-like flow
configuration. In addition, a nonlinear problem in (u, p) is obtained resulting in a
conceptually different approach than applied above for the Giesekus model. Ob-
viously, this solution approach is already utilised in Sec. 3.2 for calculating fully
developed flow profiles in the context of the PSM model. In fact, the quantity µPSM
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(or µWag) coincides with the component µ11 of the Diffusion Tensor M ∈ R2×2,
since the stress component σ12 = µ11D12 is considered in the corresponding basic
equation (3.10).

Below, simulation results regarding the PSM model solved by means of the
generalised Tensor Stokes problem (4.11) in the context of Poiseuille-like flows
are presented, where the corresponding Diffusion Tensor is defined according to
Eq. (4.10). Again, a parabolic velocity profile is prescribed on the in- and outflow
edges, while the considered Diffusion Tensor corresponds to the fully developed
viscoelastic flow. Thus, the according fully developed velocity profile, especially
consisting of shear thinning, should be recovered inside the channel.
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Figure 4.9: Velocity solution resulting from the symmetrised Tensor Stokes prob-
lem for the PSM model at Λ = 1.0, γ = 0.1, η0 = 1.0, β = 0.0, U = 1.0
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Figure 4.10: Diffusion Tensor profiles for the PSM model at Λ = 1.0, γ = 0.1,
η0 = 1.0, β = 0.0, U = 1.0
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It turns out, that horizontal contour lines actually occur away from the in- and
outflow edges in the velocity field depicted in Fig. 4.9(a), which results from the
Tensor Stokes problem (4.11). At the same time, the velocity profile obtained
from the two-dimensional simulations matches the fully developed profile computed
from the one-dimensional setting almost perfectly (see Fig. 4.9(b)). To further
validate the Tensor Diffusion approach in this context, the corresponding profiles
of M obtained from the two-dimensional Tensor Stokes problem are compared
with the resulting quantity calculated in the one-dimensional grid points based on
the fully developed velocity and stress profiles (see Fig. 4.10). Obviously, these
profiles show a very good agreement, similar to the velocity field. Hence, both flow
configurations lead to the same solution, which indicates, that the Tensor Diffusion
approach is a reasonable approach for treating integral viscoelastic models in terms
of numerical simulations – at least concerning channel flow configurations.

It has to be emphasised, that the above flow fields, which are originally de-
scribed by an integral viscoelastic flow model, are computed by means of a pure
Stokes-like problem including a nonlinear tensor-valued viscosity explicitly ex-
pressed depending on the velocity field. Thus, the Tensor Diffusion approach
offers the possibility to reduce the full viscoelastic flow model to an actual gener-
alised Tensor Stokes problem in the unknowns (u, p). But neither in case of the
Giesekus or PSM model, the corresponding tensor-valued viscosity can be given in
closed form: The Diffusion Tensor has to be calculated numerically when consid-
ering the Giesekus model, while it can be given analytically in context of the PSM
model, but not in closed form. Consequently, there is still the need to determine
the Diffusion Tensor during pre-processing or in a decoupled step of the solution
scheme. But, at least the original problem formulation is simplified by removing
the stress field from the flow model.

Poiseuille-like flow for the Wagner model

As indicated above, there will be a huge improvement in the Tensor Diffusion ap-
proach by expressing M in terms of u in closed form, since an actual nonlinear
tensor-valued viscosity function is derived from the original viscoelastic material
law. Fortunately, this is the case for the Wagner model, where the damping func-
tion in the stress integral (2.43b) is chosen from Eq. (3.20), which results in
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again for f = 1 as in Sec. 3.2.2. Consequently, a generalised stress decomposition
according to Eq. (4.8) may be derived, where the components of the Diffusion
Tensor M as well as the isotropic contribution N can be given in closed form
reading



4.1. Proof of concept 89

µ11 = 2ηp
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(4.13c)

besides µ22 = µ11 and µ21 = 0. Hence, the original integro-differential flow model
from Eq. (2.43) including the damping function proposed in Refs. [17, 18] can
be transformed to a generalised Tensor Stokes problem in the unknowns (u, p)
including a shear-rate dependent tensor-valued viscosity. In particular, this prob-
lem formulation can be interpreted as an extension of classical generalised Stokes
equations involving a shear-rate dependent scalar-valued viscosity, which are con-
sidered for example in Ref. [3]. But, the Tensor Stokes problem (4.11) could be
able to predict actual viscoelastic material behaviour, while generalised Stokes
equations typically describe a shear thinning (or thickening) effect, only. However,
the quantities M and N for f ∈ ]0, 1[ arise by a convex combination of terms
from Eq. (4.13) according to the damping function from Eq. (3.20). Moreover, the
terms in front of the brackets in Eq. (4.13) coincide with the entries of the Diffu-
sion Tensor M obtained from the UCM model (see Eq. (4.2)). Similar holds for
the isotropic contribution denoted by ν in Eq. (4.13c), which arises in case of the
integral version of the UCM model by replacing B− I with B. Thus, the Diffusion
Tensor regarding nonlinear (integral) models possibly results from the UCM model
by a suitable scaling, for example with a fractional function as above in case of the
Wagner model, which might help to derive a closed form of the components of M
in the case of the PSM model.

In the following, the generalised Tensor Stokes problem (4.11) is solved for
the analytical form of the Diffusion Tensor M resulting from the Wagner model
given in Eq. (4.13). Hence, a nonlinear problem in (u, p) is solved for the mod-
ified Poiseuille flow, where the velocity on the in- and outflow edges is again set
to take a parabolic shape. As before, the flow should evolve to its fully devel-
oped shape away from the in- and outflow boundaries, since the Diffusion Tensor
corresponding to a fully developed channel flow is prescribed globally in the com-
putational domain. In principle, the flow obtained from the Wagner model for
the material parameters f = 0.57, n1 = 0.31 and n2 = 0.106 given in Ref. [17]
shows a similar behaviour as in case of the PSM model depicted in Fig. 4.9. In de-
tail, again a shear thinning behaviour inside of the channel is observed and at the
same time, the fully developed velocity profile is recovered (see Fig. 4.11). Thus,
viscoelastic channel flow characteristics can be predicted by means of an actual
generalised (Tensor) Stokes problem including a nonlinear tensor-valued viscosity
function. Recall, that the same flow is originally described by a nonlinear integro-
differential model including the damping function from Eq. (3.20). However, the
component µ11 depicted in Fig. 4.12(a) of the Diffusion Tensor M is not differ-
entiable in the centre line of the channel, which is observed accordingly for the
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pressure function fp (see for example Fig. 3.15(b)). Obviously, this shape occurs
due the absolute value of the derivative of the velocity field being present in the
denominator of the corresponding analytical expressions of the Diffusion Tensor
in Eq. (4.13). In contrast, the components of the Diffusion Tensor resulting from
the Giesekus as well as PSM model show a much smoother behaviour as depicted
in Fig. 4.4 and 4.10, respectively. But, µ12 is smoothed due to ∂u

∂y
being present

also in the enumerator of the expression from Eq. (4.13b), while ν should show a
similar kink as µ11.

(a) x-velocity field
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Figure 4.11: Velocity solution resulting from the symmetrised Tensor Stokes prob-
lem for the Wagner model at Λ = 1.0, f = 0.57, n1 = 0.31, n2 = 0.106, η0 = 1.0,
β = 0.0, U = 1.0
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Figure 4.12: Diffusion Tensor profiles for the Wagner model at Λ = 1.0, f = 0.57,
n1 = 0.31, n2 = 0.106, η0 = 1.0, β = 0.0, U = 1.0
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After having validated the Tensor Diffusion approach with respect to the Wagner
model in terms of channel flow configurations, an issue investigated in Sec. 3.2.2
is taken up in the following. In detail, no flow profiles at relaxation times signifi-
cantly larger than Λ = 1 can be computed for the Wagner model – at least in the
framework of fully developed channel flows, which is traced back to the underly-
ing mathematical properties of the rheological model. Below it is illustrated, that
calculations fail at a similar critical relaxation time in terms of two-dimensional
Finite Element simulations of Poiseuille-like flow configurations. Hence, it is con-
firmed, that indeed no numerical artefacts give rise to the observed difficulties, but
the underlying properties of the model, since a different discretisation as well as
solution approach leads to more or less the same limitations.

(a) Λ = 1.5

(b) Λ = 2.0

(c) Λ = 2.25

Figure 4.13: x-velocity field resulting from the symmetrised Tensor Stokes problem
in a channel of length L = 6 for the Wagner model at f = 0.57, n1 = 0.31,
n2 = 0.106, η0 = 1.0, β = 0.0, U = 1.0 for several relaxation times Λ

Recall, that a maximum relaxation time of Λcrit ≈ 1.6 is reached in the one-
dimensional framework regarding the Wagner model at f = 0.57, n1 = 0.31
and n2 = 0.106. When simulating the above two-dimensional Poiseuille-like flow
by means of the Tensor Diffusion approach for the same parameter set, numerical
solutions regarding Λ ≈ 2 actually can be obtained, but the corresponding results
show a wrong behaviour as realised from Fig. 4.13. In fact, the flow hardly evolves
to its fully developed shape for Λ = 2.0 and at the same time, the expected shear
thinning behaviour, visible for smaller relaxation times, is much weaker in case
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of Λ > 2. Thus, the corresponding solutions can be regarded as non-physical, since
the shear thinning effect should increase for increasing Λ. An obvious assumption
would be, that this wrong flow results due to the relatively short computational
domain considered so far. Recall, that the fluid consists of a larger “memory” for
higher relaxation times, which might be exemplarily realised from the stress inte-
gral in Eq. (2.43b). In detail, the (single- or multi-mode) memory function from
Eq. (2.10) decays less rapidly for larger Λ, which causes deformations applied in
the past to affect the fluid behaviour over a longer time frame. Consequently, the
deformation imposed by the parabolic inflow profile might need a larger channel
distance to relax in the context of this Poiseuille-like flow. More precisely, the
residence time required for full relaxation of the flow might not be provided by
the channel length considered so far, which is why it would make sense to simu-
late the flow in a longer channel. This is done by extending the channel length
from x ∈ [0, 6] to x ∈ [0, 10] by adding two square elements to the coarsest mesh
level. But even in this case, it is difficult to obtain numerical solutions for sig-
nificantly larger relaxation times as considered above. Simulation results for the
longer channel are depicted in Fig. 4.14, where again the fully developed velocity
profile is recovered for Λ = 1.5 according to the short channel. But even in the
longer channel, the velocity field for Λ = 2.0 does not take a fully developed shape,
which seemingly indicates that the channel is still not long enough for reasonably
treating the given flow configuration. However, a further extension of the channel
length to x ∈ [0, 20] still does not allow for obtaining a corresponding numerical
solution.

(a) Λ = 1.5

(b) Λ = 2.0

Figure 4.14: x-velocity field resulting from the symmetrised Tensor Stokes problem
in a channel of length L = 10 for the Wagner model at f = 0.57, n1 = 0.31,
n2 = 0.106, η0 = 1.0, β = 0.0, U = 1.0 for several relaxation times Λ

In Fig. 4.15, the velocity profile resulting from the Wagner model for Λ = 2.0 is
depicted concerning a varying channel length l, where the profile is taken at the
x-position consisting of the “most fully developed” state, that is nearly horizontal
contour lines. It turns out, that a longer channel indeed “improves” the obtained
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shear thinning effect, since an increasing plateau-like behaviour is observed close
to the centre line of the channel at y = 0. But at the same time, the solutions
show a jump in the last element at the channels walls to satisfy the prescribed
no-slip boundary condition. Thus, the resolution seems to be not fine enough to
capture the change in the velocity field. As the jump in the velocity profile even
increases with the channel length, further extending the channel does not seem to
resolve the numerical difficulties.
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Figure 4.15: x-velocity profiles resulting from the symmetrised Tensor Stokes prob-
lem for Wagner model at Λ = 2.0, f = 0.57, n1 = 0.31, n2 = 0.106, η0 = 1.0,
β = 0.0, U = 1.0 on level 5 for a varying channel length L

Instead, it might make sense to apply local mesh refinement close to the upper and
lower walls of the channel to accurately capture the growth of velocity field and
remove the jump observed in Fig. 4.15. In addition, large velocity gradients at the
channel walls are expected for higher relaxation times due to an intensified shear
thinning effect, which requires a sufficiently high spatial resolution as well. At the
same time, regarding M from Eq. (4.13) as a function of ∂u

∂y
gives the impression,

that a fine mesh is demanded close to the centre line of the channel, since the
Diffusion Tensor consists of a large gradient at ∂u

∂y
≈ 0 as depicted in Fig. 4.16.
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Figure 4.16: Diffusion Tensor profiles for the Wagner model at Λ = 1.0, f = 0.57,
n1 = 0.31, n2 = 0.106, η0 = 1.0, β = 0.0, U = 1.0

But, applying a globally finer resolution in the two-dimensional mesh actually de-
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creases the critical relaxation time similar to the one-dimensional framework, that
is even smaller Λ are computable. In detail, not even the solution corresponding
to Λ = 1.7 can be computed by taking into account one additional mesh refine-
ment. Moreover, the Diffusion Tensor consists of a much larger gradient in case
of the Giesekus model for the parameter set Λ = 10.0, α = 0.1 and β = 0.0 (see
Fig. 4.17), which leads to a pronounced shear thinning effect as depicted in Fig. 4.7.
But nevertheless, such an extreme configuration is computable by means of the
Tensor Diffusion approach – in contrast to the Wagner model for the much “easier”
parameter set discussed above, which especially provides a less pronounced shear
thinning effect.
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Figure 4.17: Diffusion Tensor profiles for the Giesekus model at Λ = 10.0, α = 0.1,
η0 = 1.0, β = 0.0, U = 1.0

Concluding, the above remarks encourage, that no numerical artefacts cause the
failure in computing numerical solutions regarding higher relaxation times. In fact,
difficulties similar to the one-dimensional Finite Difference framework are obtained
with respect to the generalised Tensor Stokes problem (4.11) treated in a Finite
Element context. Instead, probably the structural limits of the Wagner model,
which are already derived in Sec. 3.2.2, prevent the calculations of reasonable nu-
merical solutions regarding higher relaxation times. Moreover, the velocity profiles
for the Wagner model at Λ = 2.0 depicted in Fig. 4.15 give the impression, that
indeed a slip instead of a no-slip boundary condition might be a reasonable choice
regarding the velocity field in this setting. Recall, that this is already proposed in
Sec. 3.2.2 as a remedy for computing “arbitrary” large relaxation times by means
of the Giesekus or Wagner model.

In summary, phenomena arising in viscoelastic channel flow configurations can
be predicted by simply solving a generalised Tensor Stokes problem in the un-
knowns (u, p). In terms of this Stokes-like problem, the complex rheology arising
from the viscoelastic material behaviour is completely hidden inside the Diffu-
sion Tensor. In addition, it is even possible to explicitly model the nonlinear
tensor-valued viscosity function depending on the “shear rate” ∂u

∂y
in case of the

Wagner model. Recall, that such flows are originally characterised by nonlinear
(integro-)differential flow models models including the velocity, stress and pres-
sure fields as (numerical) variables. Thus, the need of considering a separate
stress tensor or a constitutive equation for computing the nonlinear viscoelastic
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solution might be avoided, which dramatically reduces the implied numerical ef-
fort. Moreover, the numerical framework for simulating viscoelastic fluid flows
can be improved significantly: In this context, discretisation and solution tech-
niques may be applied, which are designed especially for solving the incompressible
(Navier-)Stokes equations. Hence, numerical schemes of a further developed state
than corresponding techniques regarding viscoelastic fluid flows could be taken into
account, which probably lead to more robust and efficient approaches compared
to the state of the art.

4.1.2 The Flow around cylinder benchmark

So far, the proposed Tensor Diffusion approach is analysed only in the context
of fully developed channel flows due to the corresponding simple flow properties,
for which it is possible to verify the validity of this novel approach. As a main
result, a decomposition of the extra-stress tensor according to Σ = M · D (u)
can be derived, such that the Diffusion Tensor M is given explicitly depend-
ing on the (gradient of the) velocity field u – especially regarding integral vis-
coelastic models. Furthermore, viscoelastic material behaviour can be predicted
by means of the Tensor Diffusion approach in quasi one-dimensional channel flows.
In the following, the Tensor Diffusion approach is validated in terms of more gen-
eral two-dimensional flow configurations, in detail the well-known Flow around
cylinder benchmark [46, 47, 61]. The underlying flow configuration is depicted in
Fig. 4.18(a), where the considered computational domain is of length x ∈ [−L,L]
for L = 20 and height y ∈ [a, b] = [0, 2] with a confined cylinder of radius R = 1
placed in the origin.

Γsym

Γc

Γsym

Γout

Γno-slip

Γin

x

−L L

y

a

b

(a) Computational domain

(b) Coarse mesh

Figure 4.18: Configuration for the Flow around cylinder benchmark

But for such actual two-dimensional flow states, an explicit derivation of the corre-
sponding tensor-valued viscosity is not (yet?) possible. Thus, this quantity needs
to be determined numerically, which is implemented straightforward into the ex-
isting numerical method for simulating viscoelastic fluid flows from Refs. [47, 54]
by means of the algebraic approach as described in Sec. 2.4. Hence, the four-field
formulations from Eqs. (2.50) and (2.51), that is the original problem formulation
as well as the Tensor Stokes problem, are taken into account below to highlight the
foundational applicability of the Tensor Diffusion approach even for more complex
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flow configurations than channel flows. The two problem formulations are discre-
tised by means of the different Finite Element techniques described in Secs. 2.2.3
and 2.4. Details on the underlying coarse mesh (see Fig. 4.18(b)) are given in
Tab. 4.1, where mesh refinement is realised in each element by connecting the
midpoints of opposite edges. Additionally, the mesh is adapted to the cylinder
surface Γc for increasing refinement. Moreover, the numbers of degrees of freedom
refer to the full set of unknowns, that is the velocity and pressure fields as well as
the (symmetric) extra-stress tensor and (nonsymmetric) Diffusion Tensor.

level l elements nodes edges degrees of freedom
0 8 18 25 311
1 32 51 82 1049
2 128 165 292 3821
3 512 585 1096 14549
4 2048 2193 4240 56741
5 8192 8481 16672 224069

Table 4.1: Mesh information for the Flow around cylinder benchmark

Regarding boundary conditions, a fully developed velocity profile giving a mean
velocity of Umean = 1.0 is prescribed on Γin and Γout, where the corresponding
parabolic profile applied for the Oldroyd-B or UCM model reads

u =

(
u
v

)
=

(
u (y)

0

)
=

(
3
2

(
1− y2

4

)

0

)

In addition, Γno-slip and Γc are set to be no-slip boundaries with respect to the
velocity field, where u ≡ 0, and a do-nothing boundary condition [21] is applied
on Γsym due to the assumed symmetry of the computational domain. Accordingly,
the resulting stress profiles are prescribed on Γin, while the extra-stress tensor is
treated in terms of the do-nothing boundary condition on all remaining boundary
segments. No boundary condition needs to be assigned to the pressure field as well
as the Diffusion Tensor, since the corresponding degrees of freedom are located in
the interiour of each element (see Secs. 2.2 and 2.4).

However, the resulting discrete nonlinear systems are solved via Newton’s
method, where the initial guess for computing the solution for a given Λ on a
fixed mesh level is set to the solution on the same level for a lower Λ. For increas-
ing mesh refinement at a fixed Λ, the solution prolongated from the coarser level is
chosen as initial value. The arising linear systems are solved by means of a direct
solver, although multigrid techniques may be applied for the Oldroyd-B model at
least in terms of the original problem formulation. But, a direct solver is used
throughout the following study to be able to evaluate the particular behaviour
of the nonlinear solver also regarding the non-solvent case, where multigrid tech-
niques can hardly be applied as illustrated in Secs. 2.2.2 and 2.4. Furthermore, the
scope of the present analysis is to evaluate the Tensor Diffusion approach mainly
with respect to the solution quality and not the behaviour of the (linear) solver.
Note, that applying multigrid techniques in terms of the Tensor Diffusion approach
is investigated in Sec. 4.2.2.
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For evaluating the accuracy of the simulation results, the drag coefficient
CD (Π) resulting on the cylinder surface at several relaxation times is considered.
In detail, this quantity is computed based on the total stress tensor Π ∈ R2×2

from Eq. (2.2) according to

CD (Π) =
2

U2
meanR

FD (Π) , FD (Π) =

∫

Tc
(π11n1 + π12n2)

∂υ

∂x
dx (4.14)

Here, Tc denotes the set of elements next to the cylinder surface Γc and n1 as
well as n2 refer to the components of the corresponding local normal vector n.
Furthermore, υ represents a test function with support on Tc from the discrete
function space regarding the approximation of the velocity field, which is unity in
the degrees of freedom attached to the cylinder surface. Recall, that actually two
different discrete problem formulations are taken into account due to the varying
discretisation techniques concerning the original and Tensor Diffusion approach.
Thus, the total stress tensor for computing the drag coefficient from Eq. (4.14)
based on the numerical solution is problem dependent. In the following, Πσ de-
notes the (discretised) total stress tensor arising from the original viscoelastic flow
model (2.50), and Πµ the one corresponding to the (symmetrised) Tensor Stokes
problem (2.51). On the continuous level, these tensors read

Πσ = −pI + 2ηsD (u) + Σ,

Πµ = −pI + 2ηsD (u) +
1

2

(
M ·D (u) + D (u) ·M>)

where Σ is replaced by the symmetrised stress decomposition from Eq. (2.48) to
obtain Πµ from Πσ. In the below study, the drag coefficients calculated via the
discrete version of Πµ for a sequence of Weissenberg numbers We = ΛUmean

R
= Λ

or relaxation times Λ are compared to reference results as well as results based
on Πσ, that is in principle resulting from the validated original approach presented
in Ref. [47, 51]. Based on this, the applicability of the Tensor Diffusion approach
is validated also with respect to actual two-dimensional flow states, which is done
up to now only concerning quasi one-dimensional configurations.

Benchmark configuration

In a first step, the typical benchmark configuration regarding the Oldroyd-B model
is considered, that is Eqs. (2.50) and (2.51) are combined with Eq. (2.4) for a total
viscosity of η0 = ηs + ηp = 1.0 and an amount β = ηs

η0
= 0.59 of solvent con-

tribution. A summary of the resulting drag coefficients is presented in Tab. 4.2
depending on the mesh level l and the Weissenberg number We. In addition, also
the number of nonlinear iterations, Nσ or Nµ, of the Newton scheme is given as well
as the amount of EOFEM stabilisation regarding the velocity, stress and Diffusion
Tensor variable. It turns out, that solutions of the unstabilised Tensor Stokes
problem already at a Weissenberg number of 0.2 are not computable, although a
present solvent viscosity is taken into account. Moreover, a step-length control
(see Ref. [47, 51] for details) is activated in the Newton scheme and an appropri-
ate initial solution is chosen, which does neither lead to a converging nonlinear
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solver. Similar holds for varying the parameter ε for calculating the approximated
Jacobian according to Eq. (2.30). Instead, applying EOFEM stabilisation with
respect to the velocity field as well as the Diffusion Tensor, which is presented in
Eqs. (2.28) as well as (2.54), respectively, allows for successfully calculating nu-
merical results. Thereby, a relatively large amount of stabilisation has to be taken
into account for obtaining solutions of the Tensor Stokes problem (2.51), especially
for larger We numbers. Naturally, the stabilisation parameters are intended to be
chosen as small as possible to provide a certain accuracy of the numerical results,
while the solution becomes inaccurate for a higher or possibly oscillating for a
too less amount of stabilisation. In the present case, the stabilisation is applied
mainly to prevent the nonlinear solver from diverging, which is further illustrated
in Sec. 4.2.1. To be able to reasonably evaluate the results of the Tensor Diffu-
sion approach, the original problem formulation is solved for the same amount
of EOFEM stabilisation. In turn, the deviations of results obtained from both
formulations compared to the reference increase for higher relaxation times.

We l CD (Πσ) Nσ CD (Πµ) Nµ Ref. [46] γu γσ γµ

0.1 3 130.065 3 130.137 3 130.36 0.0 0.0 0.0
4 130.283 2 130.303 4 0.0 0.0 0.0
5 130.342 2 130.348 11 0.0 0.0 0.0

0.2 3 126.360 2 126.628 4 126.62 0.001 0.0 0.001
4 126.549 3 126.617 4 0.001 0.0 0.001
5 126.605 2 126.624 4 0.001 0.0 0.001

0.3 3 122.961 2 123.563 4 123.19 0.001 0.0 0.001
4 123.121 3 123.269 5 0.001 0.0 0.001
5 123.172 2 123.212 4 0.001 0.0 0.001

0.4 3 120.330 2 121.068 5 120.59 0.05 0.0 0.001
4 120.486 3 120.597 10 0.05 0.0 0.001
5 120.552 2 120.548 8 0.05 0.0 0.001

0.5 3 118.458 3 119.095 5 118.83 0.5 0.0 0.1
4 118.634 3 118.752 4 0.5 0.0 0.1
5 118.747 3 118.751 3 0.5 0.0 0.1

0.6 3 117.454 3 118.570 4 117.78 0.5 0.0 0.5
4 117.581 3 118.059 5 0.5 0.0 0.5
5 117.694 3 117.970 3 0.5 0.0 0.5

0.7 3 116.910 3 118.256 4 117.32 1.0 0.0 1.0
4 117.072 3 117.629 5 1.0 0.0 1.0
5 117.214 3 117.545 3 1.0 0.0 1.0

Table 4.2: Drag coefficients resulting from the Oldroyd-B model at η0 = 1.0,
β = 0.59 for several We numbers and mesh levels

Nevertheless, the results obtained from the four-field formulation (2.51) of the
Tensor Stokes problem show an excellent agreement to the results computed by
means of the original method. In detail, the deviations occur only in the decimal
places and are thus significantly lower than one percent. Furthermore, the results
of the Tensor Diffusion approach show a nice mesh-converged behaviour towards
the reference solution from Ref. [46]. The nonlinear solver behaves appropriately



4.1. Proof of concept 99

as well, because most of the nonlinear iteration numbers are in the same order
as in case of the original problem formulation. Note, that the original approach
allows for successfully solving for all Weissenberg numbers mentioned in Tab. 4.2
without applying any stabilisation. Hence, the resulting drag coefficients would be
even more accurate compared to the reference values, while the solver behaviour
is similar to the stabilised setting.

Additionally, cutlines of the normal component of the extra-stress parts of Πσ

and Πµ acting in flow direction are compared along the surface and wake of the
cylinder, that is the bold boundary parts in Fig. 4.18(a). In detail, the compo-
nent σ11 of the extra-stress tensor Σ is plotted plus the corresponding component
of the symmetrised stress decomposition from Eq. (2.48) for both, the original
model and the four-field formulation of the Tensor Stokes problem. Note, that the
symmetrised Tensor Diffusion operator is evaluated in case of the original model
during post-processing based on the calculated velocity field.
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Figure 4.19: Cutlines of the normal stress in flow direction for the Oldroyd-B
model at We = 0.1, η0 = 1.0, β = 0.59 for several mesh levels

For a low relaxation time of Λ = 0.1, the cutlines of the component σ11 of the
extra-stress tensor show a good agreement when computed from Eqs. (2.50) as well
as (2.51), among each other and also compared to the “reference” (see Fig. 4.19(a)),
which is computed by means of the unstabilised original approach on a finer mesh.
In contrast, considering the corresponding component of the symmetrised stress
decomposition from Eq. (2.48) leads to deviations of the computational results
from the reference. Since Σ is approximated in Q2, a higher accuracy of the
resulting cutlines is expected than based on M being approximated in Q0, which
explains the inaccuracy of the cutlines from Fig. 4.19(b). Thus, cutlines of Σ
– or in fact σ11 – resulting from both problem formulations, that is Eqs. (2.50)
and (2.51), are considered in further investigations.

Comparing such cutlines for higher relaxation times leads to larger deviations
between results concerning Πσ and Πµ as well as compared to the “reference”, that
is the mesh-independent result computed with the validated original method. In
case of Λ = 0.3, probably applying one more mesh refinement would lead to a
very good match of σ11 resulting from the Tensor Stokes problem with the original
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results and the reference. Actually, the results on level 5 are already quite close
(see Fig. 4.20(a)). Considering the plots for Λ = 0.6 depicted in Fig. 4.20(b) gives
the impression, that σ11 from Πµ might also converge towards the reference for
increasing mesh refinement at least on the cylinder surface. In fact, the corre-
sponding stress cutline on level 5 coincides with the cutline taken on level 4 with
respect to the solution of the original approach. But, the results of the Tensor Dif-
fusion approach do not show the expected pronounced stress growth in the wake of
the cylinder, since the corresponding stress peak seems to converge to a different
value than the original or the reference results. At least, mesh-converged results
seem to be obtained as well. Note, that a quite large amount of stabilisation has
to be applied to obtain results for this high relaxation time (see Tab. 4.2), which
obviously affects the solution quality. Actually, only the stabilisation regarding
the velocity (and stress) fields enters the solution in case of the original approach,
since M is determined in post-processing fashion and is not recoupled to u and Σ.
In turn, a “doubled” amount of stabilisation is active in the Tensor Diffusion ap-
proach compared to the original approach, consequently having a larger impact on
the solution quality. But nevertheless, the drag coefficients as well as the stress
cutlines obtained by the Tensor Diffusion approach show an acceptable agreement
to the original and reference results. Thereby, the (only small or moderate) de-
viations may arise due to the lower order approximation of M compared to Σ as
well as the applied amount of EOFEM stabilisation, which is required to generate
numerical solutions of the Tensor Stokes problem.
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Figure 4.20: Cutlines of the normal stress in flow direction for the Oldroyd-B
model at η0 = 1.0, β = 0.59 for several We numbers and mesh levels

In principle, the same observations are made, when the Giesekus model with a mo-
bility factor of α = 0.1 in Eq. (2.5) is considered instead of the Oldroyd-B model.
The resulting drag coefficients are listed in Tab. 4.3, where higher Weissenberg
numbers compared to the Oldroyd-B model can be reached for applying less sta-
bilisation, probably due to the stabilising character of the quadratic stress term in
the constitutive equation [4, 6]. Consequently, the drag coefficients obtained from
the Tensor Diffusion approach show an even better agreement to results provided
by the original approach as well as the reference, where the latter is not widely
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available for larger relaxation times. Hence, the Tensor Stokes results for higher
Weissenberg numbers are evaluated by a comparison with the original approach,
only. Similar to the Oldroyd-B model in Tab. 4.2, the drag coefficients obtained
by the Tensor Diffusion approach converge with mesh refinement also in case of
the Giesekus model, and thus even for large Weissenberg numbers. Furthermore,
the nonlinear solver shows a very stable behaviour as well, which is comparable to
the case of the original problem formulation.

We l CD (Πσ) Nσ CD (Πµ) Nµ Ref. [61] γu γσ γµ

0.1 3 125.313 2 125.361 3 125.58 0.001 0.0 0.001
4 125.512 2 125.526 4 0.001 0.0 0.001
5 125.567 2 125.572 3 0.001 0.0 0.001

0.5 3 103.533 4 103.718 5 103.73 0.001 0.0 0.001
4 103.675 5 103.729 4 0.001 0.0 0.001
5 103.717 5 103.733 5 0.001 0.0 0.001

1.0 3 95.349 2 95.623 5 95.55 0.005 0.0 0.005
4 95.495 3 95.584 3 0.005 0.0 0.005
5 95.536 2 95.568 3 0.005 0.0 0.005

5.0 3 85.029 4 85.261 5 – 0.005 0.01 0.005
4 85.166 3 85.243 4 0.005 0.01 0.005
5 85.210 3 85.248 6 0.005 0.01 0.005

10.0 3 82.853 2 83.006 4 – 0.005 0.01 0.005
4 83.012 4 83.069 4 0.005 0.01 0.005
5 83.047 4 83.068 6 0.005 0.01 0.005

Table 4.3: Drag coefficients resulting from the Giesekus model at α = 0.1, η0 = 1.0,
β = 0.59 for several We numbers and mesh levels
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Figure 4.21: Cutlines of the normal stress in flow direction for the Giesekus model
at α = 0.1, η0 = 1.0, β = 0.59 for several We numbers and mesh levels

In addition, the corresponding cutlines of the extra-stress tensor component σ11

match the original and reference results very well, even for higher relaxation times
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(see Fig. 4.21). Note, that the stress curves for increasing Λ show a different be-
haviour than for the Oldroyd-B model. In detail, the stress stays more or less
bounded for the Giesekus model, probably due to the stabilising quadratic contri-
bution in the constitutive equation [6]. Moreover, for increasing relaxation times
the stress peak in the wake of the cylinder becomes larger, while the stress on
the cylinder surface is decreased. In contrast, the magnitude of both stress peaks
grows according to Λ in case of the Oldroyd-B model, where similar effects occur
in terms of the fully developed flow profiles calculated in Sec. 3.1.

Overall, the Tensor Diffusion approach gives satisfactory results in terms of the
Flow around cylinder benchmark, especially for lower relaxation times in case of
the Oldroyd-B model, but also for higher relaxation times in case of the Giesekus
model. For computing higher Weissenberg numbers regarding the Oldroyd-B
model, a more or less significant amount of EOFEM stabilisation has to be in-
serted into the (discrete) system for obtaining a converging nonlinear solver or a
stable solution. Nevertheless, the corresponding solution quality is still sufficiently
high to emphasise, that the Tensor Diffusion approach could provide a reasonable
numerical scheme for simulating viscoelastic fluid flows – particularly bearing in
mind the applied lower-order approximation of M. A further study on the EOFEM
stabilisation concerning the shape and stability of the Diffusion Tensor variable is
performed in Sec. 4.2.1, while the validation of the Tensor Diffusion approach is
continued in the following.

The non-solvent case

The more challenging configuration compared to the setting discussed above is
represented by considering the non-solvent case of the Flow around cylinder bench-
mark. Unfortunately, no reference results are available for this flow configuration
in case of considering the Giesekus model, which is why the corresponding solu-
tions of the Tensor Stokes problem are again compared below only with the original
approach. Furthermore, the simulation results are not evaluated with respect to
mesh refinement, since it is considered as sufficient to focus on the overall solution
quality of the Tensor Diffusion approach just by means of results computed on a
fine mesh.

We CD (Πσ) Nσ CD (Πµ) Nµ Ref. [62] γu γσ γµ

0.1 127.373 3 127.403 3 127.41 0.1 0.0 0.1
0.2 117.782 3 117.899 6 117.81 0.1 0.0 0.1
0.3 108.626 3 109.091 7 108.66 0.25 0.0 0.25
0.4 101.372 5 102.461 6 101.41 0.5 0.0 0.5
0.5 96.046 4 98.054 5 96.08 1.0 0.0 1.0
0.6 92.301 4 95.054 9 92.33 1.5 0.0 1.5
0.7 89.754 4 93.184 8 89.79 2.0 0.0 2.0

Table 4.4: Drag coefficients resulting from the UCM model at η0 = 1.0 for several
We numbers on level 5

In a first step, the four-field formulations from Eqs. (2.50) and (2.51) are considered
with respect to the UCM model, that is choosing the model function from Eq. (2.4)
in the constitutive equation and setting ηs = 0 in the momentum equation of the
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flow model. Besides stabilising the Diffusion Tensor variable similar to ηs > 0,
certain difficulties in the context of the non-solvent case outlined in Sec. 2.4 need
to be treated as well. Consequently, a quite large amount of stabilisation is required
for successfully performing corresponding simulations. However, the Tensor Stokes
results show a good agreement to the results of the original problem as well as the
reference from Ref. [62] when analysing the calculated drag coefficients given in
Tab. 4.4, especially for lower We. For higher Weissenberg numbers, the deviations
of the Tensor Stokes to the original and reference results increase due to a larger
amount of stabilisation being applied especially regarding the Diffusion Tensor.
Recall, that the same amount of stabilisation is taken into account in the Tensor
Diffusion as well as the original approach. In the latter, the stabilisation with
respect to M is not active, which is why the corresponding results are closer to the
reference. In fact, numerical solutions can be successfully computed by means of
the unstabilised original approach until We = 0.4, which in principle reproduces
the drag values from the reference. Also regarding higher relaxation times, only a
slight amount of EOFEM stabilisation in the range of γu ∈ [0.001, 0.01] needs to
be applied for obtaining numerical solutions from the original approach, which still
leads to simulation results close to the reference. Nevertheless, applying the Tensor
Diffusion approach gives results of a similar accuracy as the original approach
regarding drag coefficients as well as solver behaviour. In detail, the maximum
deviation in the drag coefficient is around 2.5% and the nonlinear iteration numbers
are at most a factor of two larger, which is why the results from the Tensor Stokes
problem are of acceptable quality.
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Figure 4.22: Cutlines of the normal stress in flow direction for the UCM model at
η0 = 1.0 for several We numbers and mesh levels

In principle, similar observations are made for the corresponding stress cutlines
depicted in Fig. 4.22. Based on the results of the Tensor Stokes problem, a very
good agreement with the original and reference results is observed for a small
relaxation time of Λ = 0.1, which may be further improved when considering
an even finer mesh level. Naturally, the deviations increase for higher Λ and an
accordingly increasing amount of stabilisation, which leads to deviations of 30%
regarding the first stress peak at Λ = 0.5. Possibly, this will also be reduced on
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finer mesh leves, but the results obtained on mesh level 5 differ significantly. In
the wake, again a less pronounced and slightly shifted stress peak results from the
Tensor Stokes solution, which at least shows a mesh-converged behaviour.

We CD (Πσ) Nσ CD (Πµ) Nµ γu γσ γµ

0.1 115.377 3 115.508 3 0.1 0.0 0.1
0.2 93.855 3 94.166 5 0.1 0.0 0.1
0.3 78.822 3 79.517 3 0.5 0.0 0.5
0.4 68.401 3 69.222 7 0.5 0.0 0.5
0.5 60.804 8 61.992 4 1.0 0.0 1.0
0.6 55.059 9 56.509 4 1.5 0.0 1.5
0.7 50.472 9 52.191 4 2.0 0.0 2.0

Table 4.5: Drag coefficients resulting from the Giesekus model at α = 0.1, η0 = 1.0,
β = 0.0 for several We numbers on level 5

Again, the same configuration is simulated for the Giesekus model including a
mobility factor of α = 0.1, which results in an appropriate quality of the drag
values provided by the Tensor Diffusion approach. But, the deviations to the
original approach increase for higher Weissenberg numbers, probably due to the
required large amount of stabilisation, which is also applied with respect to the
Diffusion Tensor M (see Tab. 4.5). But, the maximum deviation is still below 5%.
Moreover, the number of nonlinear iterations is in the same range as in case of
ηs > 0 and the solver concerning the Tensor Stokes problem seems to be superior
to the original approach for higher relaxation times.
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Figure 4.23: Cutlines of the normal stress in flow direction for the Giesekus model
at α = 0.1, η0 = 1.0, β = 0.0 for several We numbers and mesh levels

It becomes clear, that the results of the Tensor Diffusion approach are not as
accurate as in case of a present solvent contribution, which is also realised by
means of the stress cutlines depicted in Fig. 4.23. In terms of accuracy on the
finest mesh, the results are roughly of the same quality as for the (actually more
unstable) UCM model, probably due to the required large amount of stabilisation
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plus the lower-order approximation of M in Q0. But, the Tensor Stokes results
obtained from the Giesekus model are smoother than in case of the UCM model,
and at the same time the stress peak in the wake is reproduced much better.
However, for the Giesekus model it is not possible to reach significantly larger
Weissenberg numbers than for the UCM model – in contrast to a present solvent
viscosity, which further illustrates the complexity of this flow configuration. But
still, the Tensor Diffusion approach provides reasonable results, since the drag
coefficients are quite close to the “reference” values and in similar way the stress
cutlines qualitatively correlate to the results obtained from the original approach.

In summary, the Tensor Diffusion approach leads to very acceptable results
compared to the original (differential) viscoelastic problem formulation also in
case of actual two-dimensional flow configurations like the Flow around cylinder
benchmark – even for the very challenging non-solvent case. Together with the
validation performed in the context of Poiseuille-like flows in Sec. 4.1.1, the basic
implementation of the Tensor Diffusion approach discussed above may be regarded
as a (potentially) reasonable numerical procedure for simulating viscoelastic fluid
flows. However, no significant improvement compared to the original numerical
technique is established at the current stage of the apporach. But, it has to be
emphasised that the quite accurate results of the Tensor Diffusion approach are
generated despite the lower-order approximation of the tensor-valued viscosity as
well as a partly significant amount of stabilisation. Naturally, this novel approach
needs to be further developed by improving the numerical calculation of the Diffu-
sion Tensor, for example by means of the PDE approach illustrated in Sec. (2.4),
the design of suitable solution techniques and/or an explicit modelling of the in-
troduced tensor-valued viscosity. In the following section, the Tensor Diffusion
approach is further evaluated in terms of two-dimensional Finite Element simu-
lations to detect the limits as well as highlight the actual benefits of the current
implementation.

4.2 Evaluation for contraction flows
After having validated the Tensor Diffusion approach in the previous section, some
further aspects of this novel approach are analysed in the following. First, the ac-
tual shape of the components of the Diffusion Tensor is studied in Sec. 4.2.1 in
terms of two-dimensional flow configurations, as this is done so far only in the
context of (fully developed) channel flows. Thereby, the purpose of the specific
discretisation and stabilisation techniques regarding the Diffusion Tensor variable,
which are proposed in Sec. 2.4, are illustrated. Furthermore, the improvement of
the linear solver within the Newton scheme is investigated in Sec. 4.2.2 in terms
of applying multigrid techniques in case of a vanishing solvent viscosity. Recall,
that the linear systems are solved in the non-solvent case of the original approach
typically via direct solvers, which imposes certain restrictions on the considered
problem. Finally, the Tensor Diffusion approach is conceptually analysed concern-
ing the High Weissenberg Number Problem in Sec. 4.2.3, followed by an evaluation
of prototypical iteration schemes including the Diffusion Tensor, where a fully cou-
pled as well as decoupled approach is taken into account in Sec. 4.2.4. The under-
lying configuration considered in the current section is given by a viscoelastic fluid
flow within a contraction. Thereby, a rounded instead of an abrupt contraction
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is taken into account to avoid numerical difficulties and oscillations arising due to
sharp corners, although the latter are typically regarded in benchmark computa-
tions [63]. Moreover, the present configuration deviates from the common setting
by considering the full geometry instead of only the upper half (see Fig. 4.24(a)).
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(b) Coarse mesh

Figure 4.24: Configuration of the rounded contraction flow

By doing so, there is no need to set do-nothing or symmetry boundary conditions
on the symmetry axis of the computational domain, which might cause unphysical
effects. These modifications may simplify the complexity of the resulting (dis-
crete) problem, since numerical difficulties arising from the overall configuration,
for example the geometrical shape, are intended to be avoided. Thus, it should be
possible to analyse the numerical treatment of the novel Tensor Diffusion approach,
without taking account additional numerical issues. The computational domain
regarded in the following consists of a 4:1 contraction, where the in- and outflow
egdes are of height y ∈ [−4, 4] and y ∈ [−1, 1], respectively. The entrance section of
the contraction is realised by means of two quarter circles of radius 1 on the upper
as well as lower half of the geometry, which are located at (x, y) = (−1,±3) and
(x, y) = (1,±2). The up- and downstream channels are of length 8 and 40, respec-
tively. Information on the considered computational meshes is given in Tab. 4.6
based on the coarse mesh depicted in Fig. 4.24(b), where the refinement levels as
well as the degrees of freedom are to be understood the same way as in Sec. 4.1.2.

level l elements nodes edges degrees of freedom
0 84 109 192 2513
1 336 385 720 9557
2 1344 1441 2784 37253
3 5376 5569 10944 147077
4 21504 21889 43392 584453

Table 4.6: Mesh information for the rounded contraction flow

Similar to the Flow around cylinder benchmark, the original problem formulation
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from Eq. (2.16) (or (2.50)) as well as the four-field formulation of the Tensor Stokes
problem from Eq. (2.51) are treated below in terms of two-dimensional Finite Ele-
ment simulations. Thus, again the discretisation and solution techniques presented
in Secs. 2.2.3 and 2.4 are applied, where the arising discrete systems typically are
solved monolithically by means of Newton’s method based on Eq. (2.29), including
a direct linear solver. In contrast, applying multigrid techniques in terms of the
Tensor Diffusion approach is investigated in Sec. 4.2.2, while a decoupled solu-
tion approach is discussed in Sec. 4.2.4, which consists of solving a set of linear
subproblems of Eq. (2.51).

Concerning boundary conditions, a fully developed velocity profile according
to the specific material model is imposed on the in- and outflow edges Γin and Γout

of the computational domain, together with no-slip on the remaining boundaries.
The corresponding stress profiles are prescribed only on the inflow egde Γin, while
do-nothing boundary conditions regarding the stress tensor are set on all other
boundaries. Similar to the Flow around cylinder benchmark discussed above,
no boundary conditions need to be assigned to the pressure field as well as the
Diffusion Tensor. Regarding the velocity field, the profiles

uin (y) =
U

16

(
16− y2

)
, y ∈ [−4, 4], uout (y) = 4U

(
1− y2

)
, y ∈ [−1, 1] (4.15)

are applied in case of the UCM model, where a velocity parameter of U = 0.1
is considered giving a mean velocity of Umean = 0.26̄ in the downstream chan-
nel of height 2. Hence, the resulting flow leads to a Weissenberg number of
We = ΛUmean

2
= 0.13̄Λ. Besides, the same average velocity needs to be obtained

by the boundary data computed within the framework introduced in Sec. 3.1 as
well, in case a nonlinear material model is chosen. However, the exponential PTT
model is taken into account in the following studies, although it is not evaluated
above in terms of fully developed channel flows. But, it makes sense to consider
such a well-defined constitutive equation, since especially in Sec. 4.2.3 viscoelastic
fluid flow simulations at higher relaxation times are investigated. Thus, underlying
limits, for example provided by means of the Giesekus model, are avoided and do
not affect the analysis of the Tensor Diffusion approach. For completeness, the
exponential PTT model is briefly analysed in the subsequent sections as well, that
is also with respect to the stabilisation of the Diffusion Tensor variable and the
application of multigrid techniques.

4.2.1 Stabilising the Diffusion Tensor variable

In the previous investigations, the structure of the Diffusion Tensor is discussed
only in the context of channel flows, that is basically in terms of one-dimensional
configurations. In this context, the arising tensor-valued viscosity can be given
even analytically in case of considering certain material models, which is not pos-
sible regarding actual two-dimensional flow states. Naturally, the corresponding
shape of the Diffusion Tensor is of interest as well, to be able to derive a similar
explicit representation regarding more complex configurations. But, even for ap-
plying the Tensor Diffusion approach to simulate the Flow around cylinder bench-
mark, no study is performed with respect to the shape of this tensor-valued quan-
tity. Although no according analytical expression or simple representation can be
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given, the resulting Diffusion Tensor is of minor interest, since the main goal is to
reproduce reference results regarding the velocity and stress fields. Hence, a corre-
sponding analysis concerning the shape of the Diffusion Tensor is performed below,
especially demonstrating the use of the particular Finite Element approximation
as well as EOFEM stabilisation with respect to M proposed in Sec. 2.4.

In this regard, the four-field formulation of the Tensor Stokes problem is solved
in a first step for the UCM model on level 3 of the coarse mesh depicted in
Fig. 4.24(b), where the Diffusion Tensor is approximated by means of element-
wise constant polynomials. Simulation results regarding the components of M for
the two relaxation times Λ = 1.0 and Λ = 5.0 are depicted in Fig. 4.25. Note,
that M evolves to the fully developed shape given in Sec. 4.1.1 in the up- and
downstream channels, which are not presented below in full. In addition, the
shape of the components of the Diffusion Tensor is discussed at the example of µ11

and µ12, since the remaining components µ21 and µ22 behave similarly.

(a) µ11 field at Λ = 1.0 (b) µ12 field at Λ = 1.0

(c) µ11 field at Λ = 5.0 (d) µ12 field at Λ = 5.0

Figure 4.25: Diffusion Tensor solution in Q0 for the UCM model at η0 = 1.0 for
EOFEM parameters γu = 0.1, γσ = 0.01, γµ = 0.0, on level 3

It turns out, that the Diffusion Tensor exhibits singularities or pronounced dis-
continuities building up right behind the contraction, which decay relatively fast
in the downstream channel. Thereby, the magnitude of the peaks is proportional
to Λ and also increases with mesh refinement. The latter is illustrated by the
plots of the M-components over the channel height at the x-position of the actual
maximum peak (see Fig. 4.26), which varies more or less slightly depending on the
mesh level and the specific component. Moreover, µ11 and µ22 behave according
to y−m close to y = 0 for an even m ∈ N, while the off-diagonal components µ12

and µ21 correspond to (∓y)−m for an odd m.
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Figure 4.26: Diffusion Tensor profiles for the UCM model at Λ = 1.0, η0 = 1.0 for
EOFEM parameters γu = 0.1, γσ = 0.01, γµ = 0.0 at the maximum M-peak for
several mesh levels

Although the highlighted behaviour of the Diffusion Tensor seems to be unphysical
– in case this tensor-valued viscosity can be interpreted as a physical quantity at all
– there are several aspects indicating, that indeed its natural form is observed: In
fact, the cutlines of the components of the strain-rate as well as extra-stress tensor
in this section of the downstream channel depicted in Fig. 4.27 illustrate, that
no numerical artefacts are observed. Instead, the small values of D (u) together
with the rather large values of Σ naturally lead to large values of M based on
the stress decomposition from Eq. (2.47). Furthermore, there is a certain smooth
build-up towards the singularity on the symmetry axis located at y = 0 (see
Figs. 4.26 and 4.28). Moreover, no oscillating behaviour or sudden appearance of
perturbations in the solution is observed, which would indicate a numerical source
of the peaks arising in M.
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Figure 4.27: Cutlines of flow quantities for the UCM model at Λ = 5.0, η0 = 1.0
for EOFEM parameters γu = 0.1, γσ = 0.01, γµ = 0.0 at the maximum M-peak
on level 3

Furthermore, the singular shape of M successively evolves for increasing relaxation
times or Weissenberg numbers. Thus, a continuous growth of the Diffusion Tensor
depending on the prescribed parameter(s) is observed concerning the profiles of M
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depicted in Fig. 4.28. In addition, the Diffusion Tensor indeed might consist of a
large gradient close to the symmetry line, which is discussed in Sec. 4.1.1 in case of
channel flows. Hence, a similar behaviour could also occur in more complex cases
like considered here, but a higher resolution might be required for appropriately
capturing the components of M.
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Figure 4.28: Diffusion Tensor profiles for the UCM model at η0 = 1.0 for EOFEM
parameters γu = 0.1, γσ = 0.01, γµ = 0.0 at the maximum M-peak on level 3 for
several relaxation times

Consequently, the approximation of the Diffusion Tensor as element-wise constant
quantity, which is proposed in terms of the Finite Element techniques described
in Sec. 2.4, indeed is a reasonable choice for the following analysis as well as the
benchmark computations from Sec. 4.1.2. In particular, jumps of M over ele-
ment edges are allowed by means of this discretisation, as such phenomena seem
to arise naturally in the corresponding variable. But at the same time, singular
effects within the Diffusion Tensor might not be optimal regarding the numerical
treatment of the Tensor Stokes problem. This is outlined in the subsequent sec-
tions, escpecially concerning the behaviour of the iterative solvers or the stability
of the corresponding solutions. Thus, enabling a global continuity of M or at least
damped singularities is a reasonable goal.

(a) Q1-interpolant of µ11 ∈ Q2 (b) Q1-interpolant of µ12 ∈ Q2

Figure 4.29: Diffusion Tensor solution for the UCM model at Λ = 1.0, η0 = 1.0
for EOFEM parameters γu = 0.1, γσ = 0.01, γµ = 0.0, on level 3
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Therefore, the Diffusion Tensor may be approximated by means of biquadratic
Finite Elements even within the algebraic approach, which is also proposed in the
context of the three-field formulation of the Tensor Stokes problem from Eq. (2.57).
But, this is not a satisfying approach, since the “singularities” in M are still present
in the approximations in Q2, and the corresponding solution consists of even larger
peaks (see Fig. 4.29). The latter is observed due to some of the considered degrees
of freedom being located on the symmetry axis. Thus, the obtained eigenvalues
of D (u) are probably even smaller than in the midpoints of elements next to y = 0
corresponding to Q0 as indicated by means of Fig. 4.27. Possibly, an overall
improved approach for calculating the Diffusion Tensor is provided in terms of
the three-field formulation of the Tensor Stokes problem illustrated in Sec. 2.4,
which enables a global coupling of the degrees of freedem concerning M.

(a) µ11 field, γµ = 0.00001 (b) µ12 field, γµ = 0.00001

(c) µ11 field, γµ = 0.0005 (d) µ12 field, γµ = 0.0005

Figure 4.30: Diffusion Tensor solution for the UCM model at Λ = 5.0, η0 = 1.0
for EOFEM parameters γu = 0.1, γσ = 0.01 and several choices of γµ on level 3

As an alternative, the jumps in the Diffusion Tensor can be damped by introduc-
ing EOFEM stabilisation with respect to M by means of the (discrete) operator
proposed in Eq. (2.54), which is already successfully applied in Sec. 4.1.2. The
components of the Diffusion Tensor resulting from the UCM model at a relaxation
time of Λ = 5.0 are depicted in Fig. 4.30 regarding two choices of the stabilisa-
tion parameter γµ, while the undamped fields are presented in Fig. 4.25. Indeed,
a smoothening effect especially regarding the jumps in M discussed above is ob-
served, while including a too large amount of stabilisation naturally leads to artifi-
cial representations. However, damping the jumps in the Diffusion Tensor mainly
improves the behaviour of the numerical solver, which is pointed out in Secs. 4.1.2
and 4.2.3. At the same time, the solution regarding the primal variables (u,Σ, p)
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and also D (u) might consist of numerical oscillations, which are not significantly
improved by applying EOFEM stabilisation with respect to M. Instead, this is
achieved in terms of directly stabilising the velocity or stress variables.

For completeness, the Diffusion Tensor resulting from a nonlinear differential
viscoelastic model, in detail the exponential version of the PTT model including
the model function from Eq. (2.6b), is depicted in Fig. 4.31. The resulting com-
ponents of the Diffusion Tensor for a relaxation time of Λ = 5.0 and a model
parameter of κ = 0.1 principally show the same behaviour as in case of the UCM
model. But, the effect of applying a relatively small amount of EOFEM stabil-
isation seems to be too strong especially concerning µ12 from Fig. 4.31(b), since
this quantity is not “smooth” along the downstream channel. Unfortunately, no
solution can be computed from the Tensor Stokes problem in case of a lower value
of γµ even for applying a damped Newton scheme and performing a successive
reduction of the stabilisation parameter. In fact, the solution regarding a van-
ishing stabilisation with respect to M can be computed for Λ ≤ 0.1 only, where
the resulting Diffusion Tensor naturally looks similar to the UCM-case. Thus, the
four-field formulation of the Tensor Stokes problem including the exponential PTT
model at higher relaxation times can not be solved successfully without applying
EOFEM stabilisation with respect to M – in contrast to the UCM model.

(a) µ11 field (b) µ12 field

Figure 4.31: Diffusion Tensor solution for the PTT model at Λ = 5.0, κ = 0.1,
η0 = 1.0, β = 0.0 for EOFEM parameters γu = 0.00125, γσ = 0.0, γµ = 0.0005 on
level 3

Overall, it becomes clear that discretising the Diffusion Tensor by means of a
discontinuous Finite Element approximation is a reasonable approach, since dis-
continuities actually occur in the corresponding flow field. Moreover, the behaviour
of the numerical solver probably is improved by introducing EOFEM stabilisation
with respect to M, since the jumps in the Diffusion Tensor are damped. At the
same time, it makes sense to increase the amount of stabilisation for higher Weis-
senberg numbers due to the accordingly increasing “singularities” in M. Note, that
these aspects of stabilising the Diffusion Tensor variable are already exploited in
terms of simulating the Flow around cylinder benchmark in Sec. 4.1.2. Neverthe-
less, the choice of the EOFEM parameter and the way, in which the stabilisation
regarding the Diffusion Tensor is introduced in Sec. 2.4, may be improved. In de-
tail, the stabilisation parameter might be linked to the (local) mesh size to apply
a comparable amount of stabilisation on each considered mesh level. Furthermore,
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the EOFEM stabilisation could be applied only locally to damp the significant
jumps in the Diffusion Tensor, while it might be neglected in the remaining part
of the computational domain.

4.2.2 Multigrid techniques within the Tensor Diffusion ap-
proach

In terms of the monolithic solution scheme regarding the simulation of non-solvent
viscoelastic fluid flows applied in this work, the linear systems arising within New-
ton’s method typically are solved by means of a direct solver. Hence, corresponding
numerical investigations are limited to small or moderate problem sizes, that is in
particular relatively coarse meshes, due to the involved quite extensive memory
requirements. Instead, applying multigrid techniques as described in Sec. 2.2.3
offers a promising alternative for obtaining an efficient (as well as fast) numerical
solution scheme. But, the vanishing diffusive operator in the momentum equation
of the original problem formulation leads to numerical difficulties in combination
with multigrid solvers as outlined below. Based on that, it is demonstrated that
inserting Tensor Diffusion into the (discrete) problem indeed allows for success-
fully applying multigrid techniques in terms of numerically treating viscoelastic
fluid flow models without a solvent contribution to the viscosity. Therefore, the
four-field formulation of the Tensor Stokes problem from Eq. (2.51) is solved be-
low by means of Newton-multigrid techniques for the flow through the rounded
contraction depicted in Fig. 4.24. In detail, the applied multigrid solver performs
an F-cycle between a coarse mesh of level lmin ∈ {1, 2, 3} and a fine mesh of
level lmax ∈ {3, 4}, which are connected by suitable grid transfer operators as de-
scribed in Sec. 2.2.3. Information on the considered mesh levels can be found in
Tab. 4.6. Furthermore, a Vanka-like smoother is utilised including a number of ns
smoothing steps as well as a damping factor ωs when updating the solution vec-
tor. Additionally, damping might also be applied when prolongating the solution
from a lower to a higher mesh level, which is realised by the weighting factor ωp.
Besides, the number N of nonlinear steps, the number L of average linear steps
per nonlinear iteration and the applied parameters regarding the EOFEM stabil-
isation are given below as well when discussing the simulation results. However,
a relative tolerance of 0.1 is defined within the multigrid solver, while an absolute
tolerance of 10−8 is assigned to the outer Newton iteration. Naturally, reducing
the tolerance of the linear solver will lead to an increasing average number of linear
iterations (and probably a lower number of nonlinear steps), but a diverging linear
solver will not become convergent.

In a first step, the failure of applying multigrid solvers is pointed out regarding
the non-solvent case of the original approach, that is with respect to the problem
formulation from Eq. (2.16). In doing so, the UCM model is considered for the
material parameters defined above, in detail a velocity parameter of U = 0.1 in
Eq. (4.15) and a total viscosity of η0 = 1.0. For starting off with a quite easy
configuration, the solver behaviour of Newton’s method combined with a two-grid
solver is analysed for calculating the solution regarding Λ = 0.2 on mesh level 3.
Thereby, the coarse-grid solver, that is a direct solver, is applied already on a
quite fine mesh, which is why the solution scheme in some sense represents a
first extension of an overall direct linear solver towards actual Newton-multigrid



114 Chapter 4. Validating and evaluating the Tensor Diffusion approach

techniques. Probably, considering a larger sequence of mesh levels within the linear
solver will not lead to a successful scheme, in case already the two-grid solver does
not converge. However, the solution corresponding to Λ = 0.1 on the same mesh
level is used as initial solution in terms of the outer nonlinear solver, which is taken
to be undamped throughout the following study.

Λ ns ωs ωp N L γu γσ γµ

0.2 2 0.125 0.125 6 44 0.1 0.01 –
4 0.125 0.125 7 7

16 0.125 0.125 7 7

2 0.25 0.5 7 7

2 0.5 1.0 7 7

4 0.5 1.0 7 7

16 0.5 1.0 7 7

2 0.125 0.125 6 54 0.1 0.001 –
16 0.125 0.125 7 7

2 0.5 0.5 7 7

2 0.125 0.125 7 7 0.1 0.0 –
7 7 0.01 0.0 –
7 7 0.01 0.01 –
7 7 1.0 0.01 –
7 7 10.0 0.1 –

2 0.25 0.25 7 7 100.0 0.1 –
2 0.5 0.5 7 7

4 0.125 0.125 7 7

4 0.5 0.5 7 7

16 0.25 0.25 7 7

32 0.5 1.0 7 7 1.0 0.01 –
7 7 10.0 0.01 –
7 7 100.0 0.01 –

Table 4.7: Behaviour of the two-grid solver (lmin = 2, lmax = 3) for the original
problem formulation including the UCM model at Λ = 0.2 for several parameters
of the linear solver and EOFEM parameters

As indicated above, a corresponding solution of the original problem formulation
from Eq. (2.16) can hardly be computed due to the failure of the two-grid solver.
This is illustrated by the results given in Tab. 4.7, where 7 denotes a diverging
(linear) solver typically obtained within the first nonlinear step. In few cases, the
residual can be successfully reduced by one digit within the first Newton itera-
tion(s), but divergence of the linear two-grid solver keeps occurring during the
solution process. Obviously, a convergent Newton scheme including a two-grid
solver is obtained only for a very small number of smoothing steps and a signif-
icant damping in the smoothing as well as prolongation operators. Even slightly
varying the “successful” parameters causes the linear solver to diverge. Thereby,
a moderate or even large smoother damping parameter ωs ∈ ]0, 1] leads to diver-
gence independently of the number of smoothing steps as well as the amount of
EOFEM stabilisation. Moreover, the chosen EOFEM parameters should not be
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too high and naturally not too small either. Surprisingly, even considering a large
amount of EOFEM stabilisation does not lead to a converging solution scheme,
where the stabilising operator should be the dominant part in the Stokes subprob-
lem naturally resulting in a too diffusive (and thus unphysical) solution. Overall,
the two-grid solver clearly behaves non-robust in the non-solvent case of the orig-
inal problem formulation, at least regarding the UCM model. Besides, the only
converging configurations listed in Tab. 4.7 consist of a very large average number
of linear steps, which does not make this solution approach very attractive. In
addition, no two-grid setting is found regarding a successful computation of the
solution corresponding to Λ = 0.3, where the initial solution is chosen according
to Λ = 0.2.

Λ ns ωs ωp N L γu γσ γµ

0.2 2 0.125 0.125 6 83 0.1 0.01 0.0
2 0.25 0.25 6 58
2 0.5 1.0 7 7

4 0.25 0.25 7 7

8 0.5 1.0 7 7

16 0.25 0.25 6 12
16 0.5 1.0 7 7

32 0.5 1.0 6 2
32 0.25 1.0 5 5
64 0.25 1.0 5 2
64 0.5 1.0 7 7

32 0.5 1.0 7 7 0.05 0.01 0.0
32 0.25 1.0 7 7

32 0.125 0.125 6 10
16 0.125 0.125 6 13
64 0.125 0.125 7 8
16 0.25 0.5 7 7

16 0.125 0.25 7 7

32 0.25 0.25 7 7

32 0.5 1.0 5 2 0.05 0.01 0.001

Table 4.8: Behaviour of the two-grid solver (lmin = 2, lmax = 3) for the Tensor
Stokes problem including the UCM model at Λ = 0.2 for several parameters of the
linear solver and EOFEM parameters

Next, applying multigrid techniques is analysed for solving the linear systems
arising within Newton’s method regarding the four-field formulation of the Tensor
Stokes problem from Eq. (2.51). Therefore, a similar setting as above for the
original problem formulation is considered, that is mesh level 2 is regarded as
the coarsest and level 3 as the finest mesh within a two-grid solver. Again, the
computation of Λ = 0.2 is investigated in the first place, which is used for fine-
tuning the two-grid solver concerning the numerical calculation of successively
increasing relaxation times in a second step. The resulting behaviour of the two-
grid solver given in Tab. 4.8 is improved compared to the original approach, since
very good convergence rates – that is the combination of nonlinear and average
linear steps N/L – are obtained at least for certain solver settings. In detail, only
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few nonlinear steps are needed and at the same time, a number of less than ten
average linear iterations can be reached. Furthermore, the two-grid solver seems
to be more robust compared to the original problem formulation, but still the
linear solver diverges in case of moderately varying the “successful” parameters.
As before, the applied EOFEM stabilisation including γu = 0.1 and γσ = 0.01 can
not be changed significantly to maintain the good convergence behaviour of the
solver. Accordingly, slightly reducing the stabilisation with respect to the velocity
field obviously increases the complexity of solving the linear problem via multigrid
techniques, which are still applicable successfully though. But, the convergence
rates obtained for the larger amount of EOFEM stabilisation with respect to u
can be recovered in case of γu = 0.05 by stabilising the Diffusion Tensor variable
as well.

Λ ns ωs ωp N L γu γσ γµ

0.2 32 0.5 1.0 6 2 0.1 0.01 0.0
0.3 32 0.5 1.0 5 3 0.1 0.01 0.0
0.4 32 0.5 1.0 5 3 0.1 0.01 0.0
0.5 32 0.5 1.0 5 3 0.1 0.01 0.0
0.6 32 0.5 1.0 5 3 0.1 0.01 0.0
0.7 32 0.5 1.0 5 3 0.1 0.01 0.0
0.8 32 0.5 1.0 5 3 0.1 0.01 0.0
0.9 32 0.5 1.0 5 3 0.1 0.01 0.0
1.0 32 0.5 1.0 5 3 0.1 0.01 0.0
1.25 32 0.5 1.0 5 4 0.1 0.01 0.0
1.5 32 0.5 1.0 6 5 0.1 0.01 0.0
1.75 32 0.5 1.0 5 7 0.1 0.01 0.0
2.0 32 0.5 1.0 7 7 0.1 0.01 0.0

64 0.5 1.0 7 7 0.1 0.01 0.0
32 0.25 0.5 7 7 0.1 0.01 0.0
16 0.25 1.0 7 7 0.1 0.01 0.0
4 0.25 1.0 7 7 0.1 0.01 0.0
64 0.25 1.0 7 7 0.1 0.01 0.0
64 0.125 0.25 7 7 0.1 0.01 0.0
32 0.5 1.0 6 117 0.1 0.01 0.00005
32 0.5 1.0 6 77 0.1 0.01 0.0001
32 0.5 1.0 6 57 0.1 0.01 0.000225
32 0.5 1.0 7 7 0.1 0.01 0.00025
32 0.5 1.0 7 7 0.1 0.01 0.0005

Table 4.9: Behaviour of the two-grid solver (lmin = 2, lmax = 3) for the Tensor
Stokes problem including the UCM model at increasing Λ for several parameters
of the linear solver and EOFEM parameters

Also in case of successively increasing the relaxation time Λ, the two-grid solver
can be applied successfully in terms of solving the four-field formulation of the Ten-
sor Stokes problem from Eq. (2.51). In detail, very stable convergence rates are
obtained even at higher relaxation times when choosing a number of 32 smoothing
steps together with a smoother damping parameter of ωs = 0.5 (see Tab. 4.9).
Thereby, the solution corresponding to the lower relaxation time is used as initial
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solution within the Newton scheme for computing the current Λ. In doing so, the
number of nonlinear steps is more or less unaffected when increasing Λ, though the
number of average linear iterations increases for the higher relaxation times con-
sidered here. It turns out, that Λ = 2.0 is computable for this setting only when
introducing EOFEM stabilisation with respect to the Diffusion Tensor. But even
in this case, the convergence rates are not of the same quality as in case of lower
relaxation times and can not be improved for varying the EOFEM parameters or
the parameters specifying the linear solver. Moreover, the complexity of apply-
ing multigrid techniques increases somehow suddenly. Nevertheless, introducing
the Tensor Diffusion approach indeed improves the numerical framework of sim-
ulating non-solvent viscoelastic fluid flows concerning the application of two-grid
solvers within Newton schemes. In detail, no solution of the original approach at
Λ > 0.2 can be obtained for this setting, while the Tensor Diffusion approach
allows successful computations including higher relaxation times.

Λ ns ωs ωp lmin lmax N L γu γσ γµ
0.2 32 0.5 1.0 1 3 6 6 0.1 0.01 0.0
0.3 32 0.5 1.0 1 3 5 8 0.1 0.01 0.0
0.4 32 0.5 1.0 1 3 5 8 0.1 0.01 0.0
0.5 32 0.5 1.0 1 3 5 9 0.1 0.01 0.0
0.2 32 0.5 1.0 3 4 7 7 0.1 0.01 0.0

32 0.25 0.5 3 4 7 7

32 0.125 0.25 3 4 5 91
32 0.25 0.25 3 4 7 7

8 0.125 0.125 3 4 7 7

16 0.125 0.125 3 4 7 7

0.2 32 0.5 1.0 2 4 7 7 0.1 0.01 0.0
32 0.125 0.25 2 4 7 7

64 0.25 0.5 2 4 7 7

2 0.125 0.125 2 4 6 135
8 0.125 0.125 2 4 5 75
16 0.125 0.125 2 4 6 67
32 0.125 0.125 2 4 7 7

8 0.25 0.25 2 4 5 26

Table 4.10: Behaviour of several configurations of multigrid solvers for the Tensor
Stokes problem including the UCM model at increasing Λ for different EOFEM
parameters

In Tab. 4.10, the convergence behaviour of actual multigrd solvers regarding vary-
ing mesh levels is presented, which results from solving the Tensor Stokes prob-
lem at moderate relaxation times. As before, the solution corresponding to the
next lower Λ is used as initial solution within Newton’s method for successively
increasing relaxation times, while the solution regarding Λ = 0.1 is applied for
computing Λ = 0.2 in this context. In case of the three-grid solver consisting
of lmin = 1 and lmax = 3, again a quite stable behaviour of the solution scheme
is obtained including acceptable convergence rates, although the average number
of linear iterations is slightly higher than in case of the corresponding two-grid
solver (see Tab. 4.9). However, when considering a two-grid solver with respect
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to the mesh levels 3 and 4, the performance of the linear solver is downgraded
significantly. In detail, the chosen damping parameters of the smoother as well
as prolongation need to be descreased, which causes a large number of average
linear steps. One might have the idea, that considering lmin = 2 might improve
the behaviour of the multigrid solver, since the jumps of the Diffusion Tensor are
less pronounced on level 2 compared to level 3 (see Sec. 4.2.1). Indeed, consid-
ering a lower coarse mesh level seems to cause a slightly better solver behaviour,
as the number of average linear iterations per nonlinear step can be reduced. In
addition, the resulting solver seems to behave more robust, since more convergent
configurations of the linear solver can be found. Nevertheless, the performance
is still inferior to configurations consisting of lmax = 3, as the convergent settings
involve a significant smoother and prolongation damping, which in turn leads to
a high number of average linear iterations. Possibly, the inferior behaviour of the
multigrid solver concerning a higher maximum mesh level is obtained due to the
larger M-peaks compared to level 3. Thus, applying EOFEM stabilisation with
respect to the Diffusion Tensor could again improve the solver behaviour, since
the increasing jumps in M are damped.

Finally, the applicability of the two-grid solver is briefly discussed regarding
the nonlinear exponential PTT model. Therefore, the original problem formu-
lation as well as the four-field formulation of the Tensor Stokes problem from
Eqs. (2.16) and (2.51) are considered, where the model function is chosen accord-
ing to Eq. (2.6b). In Tab. 4.11, the convergence behaviour of the Newton scheme
together with a two-grid solver is presented for solving the original problem for-
mulation regarding moderate relaxation times.

Λ ns ωs ωp N L γu γσ γµ

0.2 64 0.5 1.0 5 2 0.00125 0.0 –
0.3 64 0.5 1.0 5 3 0.00125 0.0 –
0.4 64 0.5 1.0 5 3 0.0025 0.0 –
0.5 64 0.5 1.0 5 3 0.01 0.0 –
0.6 64 0.125 0.25 6 18 0.1 0.0 –
0.7 7 7

Table 4.11: Behaviour of the two-grid solver (lmin = 2, lmax = 3) for the original
problem formulation including the exponential PTT model at κ = 0.1, β = 0.0 for
increasing Λ

In contrast to the UCM model, stable and good convergence rates are obtained
even for successively increasing Λ, while the amount of EOFEM stabilisation needs
to be slightly increased, too. At the same time, only few nonlinear iterations are
needed to solve the discrete systems and the involved average number of linear steps
stays small. However, the linear solver experiences certain difficulties for Λ > 0.5,
since small damping parameters regarding both, smoothing as well as prolonga-
tion, need to be applied for maintaining a convergent solver at Λ = 0.6. Concern-
ing Λ = 0.7, no convergent Newton-multigrid scheme can be configured, although
various two-grid and EOFEM settings are tried similar to the above investigations.
Nevertheless, especially the linear solver shows an improved behaviour compared
to the UCM model, where no two-grid setting is found for successfully perform-
ing simulations regarding Λ > 0.2 in case of the original problem formulation.
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Possibly, the (exponential) PTT model consists of similar stabilising properties
as the Giesekus model, where the additional quadratic stress contribution in the
constitutive law damps the growth of the stress variable (see Sec. 3.1 or Ref. [6]).

Λ ns ωs ωp N L γu γσ γµ

0.2 64 0.5 1.0 4 1 0.00125 0.0 0.0005
0.3 64 0.5 1.0 4 1
0.4 64 0.5 1.0 4 1
0.5 64 0.5 1.0 6 1
0.6 64 0.25 1.0 5 4
0.7 7 7

Table 4.12: Behaviour of the two-grid solver (lmin = 2, lmax = 3) for the Tensor
Stokes problem including the exponential PTT model at κ = 0.1, β = 0.0 for
increasing Λ

As mentioned in Sec. 4.2.1, EOFEM stabilisation with respect to the Diffusion
Tensor has to be taken into account for successfully solving the four-field formula-
tion of the Tensor Stokes problem including the exponential PTT model. In doing
so, the Newton scheme combined with a two-grid solver shows an even better be-
haviour than in case of the original approach, which is realised from Tab. 4.12. It
turns out, that stabilisation as well as multigrid settings can be kept constant for
obtaining nearly optimal convergence rates up to Λ = 0.5, where only one linear
step needs to be performed inside every nonlinear iteration. In addition, a solution
regarding Λ = 0.6 can be calculated only by reducing the smoother damping by a
factor of two, while the prolongation damping as well as the number of smoothing
steps and EOFEM parameters stay unchanged. Naturally, the average number of
linear iterations increases, although not that drastically as in case of the original
approach, where the damping factors need to be further reduced (see Tab. 4.11).
However, Λ = 0.7 is neither computable when solving the linear subproblems by
means of a two-grid solver in terms of the Tensor Diffusion approach, even in case
of varying the EOFEM stabilisation or multigrid parameters.

In summary, the results presented above demonstrate the (potentially) im-
proved behaviour of the Newton-multigrid solver in case of applying the Tensor
Diffusion approach for both, linear as well as nonlinear differential constitutive
equations. Concerning the original problem formulation, a non-robust behaviour
even of two-grid techniques is observed for solving the UCM model, which further
allow the successful computation of only small relaxation times. This is improved
significantly by considering the Tensor Stokes problem formulation, where numer-
ical solutions for successively increasing relaxation times can be obtained includ-
ing quite stable convergence rates. Moreover, actual multigrid techniques can be
successfully applied within Newton’s method as well. However, two-grid solvers
might also show a robust behaviour in terms of the original approach, for example
regarding the non-solvent exponential PTT model. But still, an at least slight
improvement is obtained again by means of the Tensor Diffusion approach. Natu-
rally, the specific multigrid configuration may be exploited and fine-tuned for each
considered relaxation time, mesh level and material model. In addition, applying
such solution techniques needs to be evaluated for other flow configurations like
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the Flow around cylinder benchmark as well. Nevertheless, a general improvement
of the Newton-multigrid scheme is required also in terms of the Tensor Diffusion
approach. In fact, a overall direct linear solver still leads to a more stable solution
scheme, especially concerning higher mesh levels and relaxation times, where the
latter becomes clear in the following section.

4.2.3 A note on the High Weissenberg Number Problem

Concerning numerical simulations of viscoelastic fluid flows, a serious issue is pro-
vided by means of the High Weissenberg Number Problem (HWNP, [36, 37, 46]),
which typically limits successful computations to the range of low or moderate
Weissenberg numbers. But especially in the polymer industry, viscoelastic ma-
terials consisting of a relaxation time spectrum reaching over several decades of
seconds are processed. Thus, corresponding numerical simulations including high
relaxation times and hence high Weissenberg numbers are of intensified interest.
In this regard, the Tensor Diffusion approach is applied in the following to evaluate
the solvability of resulting viscoelastic flow problems regarding higher relaxation
times compared to the original problem formulation. Therefore, the flow of a
viscoelastic fluid, which consists of a vanishing solvent viscosity, in the rounded
contraction depicted in Fig. 4.24 is considered for the same material parameters as
above. Hence, again a Weissenberg number of We = ΛUmean

2
= 0.13̄Λ is obtained

in the downstream channel for a given relaxation time Λ.
For determining the maximum Λ computable by means of the original as well

as Tensor Diffusion approach, this quantity is increased successively starting from
a quite small value, until no solution can be obtained anymore. Thus, the stability
of the nonlinear solution scheme is of interest instead of the accuracy or stability of
the corresponding numerical solution, which is already analysed in Sec. 4.1.2. As
discussed in the previous section, Newton-multigrid solvers do not behave reliably
robust even in case of the Tensor Diffusion approach. Hence, an (undamped)
Newton scheme as described in Sec. 2.2.3 is combined below with a direct solver
for treating the arising discrete nonlinear systems, similar to the computations in
terms of the Flow around cylinder benchmark. It turns out, that only few nonlinear
iterations are needed for computing the solution, that is obtaining residuals smaller
than 10−8, regarding the next higher relaxation time, which is usually increased in
additive 0.1-steps. But, the nonlinear solver suddenly stagnates or diverges even in
the damped case when solving for Λmax +0.1, although only two or three nonlinear
steps are needed for all lower relaxation times. Once a diverging or stagnating
nonlinear solver is obtained, the applied amount of stabilisation is adjusted with
the aim to successfully compute even higher relaxation times. In case no such
setting can be found, the according configuration in the following tables is denoted
by 7, that is no solution for a larger relaxation time than the corresponding Λinit

can be computed. At the same time, the actual limits of the specific configuration,
that is the problem formulation together with the chosen material model as well as
stabilisation parameters, are not exhausted. In fact, the computations are usually
stopped at a certain parameter configuration offering a suitable comparison of
both approaches, since the main goal is to detect, whether (potentially) higher
relaxation times can be reached by means of the Tensor Diffusion approach.

In a first step, again the UCM model is considered in the original as well as
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Tensor Stokes formulation of the differential stationary viscoelastic flow model,
that is Eq. (2.4) is inserted into the nonlinear problem from Eq. (2.16) (or (2.50))
as well as (2.51), respectively, at ηs = 0. According to the computations in terms
of the Flow around cylinder benchmark discussed in Sec. 4.1.2, the corresponding
results presented in the following are denoted by Πσ and Πµ, although the total
stress tensors do not play an important role in this context. However, the maximum
computable relaxation times are given in Tab. 4.13 for a specific amount of EOFEM
stabilistation with respect to the velocity and stress fields as well as the Diffusion
Tensor.

γu γσ γµ Λinit Λmax

Πσ 0.01 0.001 0.0 0.1 14.5
“>0.01” 0.001 0.0 14.5 7

0.1 0.01 0.0 0.1 9.9
0.5 0.01 0.0 9.9 21.3

Πµ 0.01 0.001 0.0 0.1 7

0.01 0.001 0.0005 0.1 11.5
0.01 0.001 0.00075 11.5 14.1
0.01 0.001 0.001 14.1 16.9
0.1 0.01 0.0 0.1 12.0
0.1 0.01 0.0005 12.0 20.8

Table 4.13: Maximum computable relaxation times in terms of a gradual increase
for the UCM model on level 3 when adjusting the EOFEM parameters

(a) x-velocity field (b) y-velocity field

(c) D11 field (d) p field

Figure 4.32: Flow quantities resulting from the original problem formulation in-
cluding the UCMmodel at Λmax = 14.5, η0 = 1.0 on level 3 for EOFEM parameters
γu = 0.01, γσ = 0.001
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Concerning the original problem formulation, an EOFEM configuration including
fixed stabilisation parameters of γu = 0.01 and γσ = 0.001 allows for computing
a maximum relaxation time of 14.5, while higher Λ can not be reached even by
increasing the amount of stabilisation. In contrast, larger EOFEM parameters
already applied for Λinit = 0.1 make higher Λ computable for increasing γu and γσ,
although the intermediate Λmax is smaller. The solution of the original approach
corresponding to the lower amount of EOFEM stabilisation at Λmax = 14.5 is
depicted in Fig. 4.32. The visible significant perturbation in D and p (and also Σ)
as well as slight oscillations in u and v indicate the non-convergent behaviour
of the nonlinear solver regarding higher relaxation times: As realised by means
of the discrete problem formulation in Eq. (2.29) or Eq. (2.55), the (Jacobian)
matrix of the nonlinear system is built based on such polluted solutions according
to Eq. (2.30), which naturally sooner or later might affect the numerical solver.
Probably, the solution at Λmax for γu = 0.01 and γσ = 0.001 is already so distorded,
that the nonlinear solver is not able to converge due to the shape of the resulting
Jacobian – even in case of an intensified stabilisation. In fact, similar perturbations
are observed for all solutions corresponding to Λmax, also regarding the Tensor
Diffusion approach. But, these effects build up slowly for increasing Λ and do not
appear all of a sudden, which is why the nonlinear solver may be converging for
lower relaxation times despite the actually perturbed shape of the flow quantities.

When considering the Tensor Stokes problem formulation, a stabilising effect of
the “artificial” tensor-valued viscosity or diffusion is observed compared to the orig-
inal approach. Regarding the EOFEM parameters γu = 0.1, γσ = 0.01 and γµ = 0,
higher Λ can be reached by considering the Tensor Diffusion approach, which con-
sequently seems to stabilise the numerical problem by itself. Moreover, taking into
account a small amount of stabilisation with respect to M allows for computing
a similar maximum relaxation time as in case of quite extensively increasing the
stabilisation with respect to the velocity field to γu = 0.5 in terms of the original
approach. Thus, the numerical approach can indeed be interpreted as improved:
By considering the Tensor Diffusion approach, solutions regarding similar maxi-
mum Weissenberg numbers can be calculated successfully using less stabilisation
compared to the original approach. In addition, higher Λ are computable for
increasing the stabilisation with respect to M based on the lower initial choice
of γu = 0.01 and γσ = 0.001, which is not established by means of an increasing
amount of stabilisation in case of the original problem formulation.

In fact, the velocity, stress and pressure fields resulting from the Tensor Stokes
problem at Λmax show similar oscillations as presented above. Thus, only the shape
of the Diffusion Tensor is analysed in the following, again concerning EOFEM
stabilisation. Thereby, the stabilising effect of γµ > 0 with respect to the Diffusion
Tensor in case of γu = 0.1 and γσ = 0.01 as well as a maximum relaxation time
of Λ = 12.0 is similar to the results presented in Sec. 4.2.1 or Fig. 4.30. In contrast,
the shape of M differs from these results in case of the smaller parameters γu = 0.01
as well as γσ = 0.001, which is observed by means of the components of M at
Λ = 11.5 depicted in Fig. 4.33. Obviously, the resulting Diffusion Tensor consists of
significant perturbations in a broader section of the computational domain, which
is why the EOFEM stabilisation is not mainly addressing jumps of the Diffusion
Tensor along the symmetry axis, but also at the corners of the contraction and
in the downstream channel. Although the oscillations in the Diffusion Tensor are
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damped only moderately, the maximum relaxation time can be further increased
for a slightly larger amount of EOFEM stabilisation with respect to M. In detail,
the nonlinear solver recovers a converging behaviour for setting γµ = 0.00075
instead of γµ = 0.0005, where M still shows significant oscillations. Note, that
similar observations are made for increasing the EOFEM parameter with respect
to the Diffusion Tensor at Λ = 14.1 (see Tab. 4.13).

(a) µ11 field, γµ = 0.0005 (b) µ12 field, γµ = 0.0005

(c) µ11 field, γµ = 0.00075 (d) µ12 field, γµ = 0.00075

Figure 4.33: Diffusion Tensor solution in Q0 for the UCM model at Λ = 11.5,
η0 = 1.0 for EOFEM parameters γu = 0.01, γσ = 0.001, γµ = 0.0, on level 3

In addition to the UCM model, similar numerical experiments are performed re-
garding the exponential version of the PTT model including the model function
from Eq. (2.6b) at a model parameter of κ = 0.1. Thereby, suitable fully de-
veloped flow profiles are set on the in- and outflows egdes of the computational
domain, which deviate from the parabolic shape. In case of the original problem
formulation, no maximum relaxation time is found and computations are stopped
at Λ = 250.0, where a smaller amount of EOFEM stabilisation is chosen compared
to the UCM model. Due to the very large relaxation times computable in this set-
ting, a computational domain consisting of an extended upstream channel with the
inflow edge being located at x = −25 instead of x = −8 is taken into account. By
doing so, nonlinear effects arising at the entrance of the contraction do not reach
up to the inflow, which would conflict with the assumption of a fully developed
flow entering the computational domain. Note, that the relaxation of the flow
variables towards the fully developed state at the in- and outflow edges is not visi-
ble completely, as the entire up- and downstream channel are not presented in the
below results. However, the corresponding solution looks quite smooth in the “in-
teresting” section of the computational domain including the contraction depicted
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in Fig. 4.34. But, slight oscillations or perturbations are visible in the flow quanti-
ties, for example in D (u) and p. Furthermore, significant deviations compared to
the UCM model depicted in Fig. 4.32 are observed regarding the general shape of
the flow fields. In fact, u, D and Σ show distinct phenomena reaching upstream
towards the inflow edge of the computional domain. Probably, this is caused by
the significant nonlinear material behaviour within the contraction, which is not
that pronounced in case of the UCM model (and a lower relaxation time).

(a) x-velocity field (b) D11 field

(c) σ11 field (d) p field

Figure 4.34: Flow quantities resulting from the original problem formulation in-
cluding the exponential PTT model at Λ = 250.0, κ = 0.1, η0 = 1.0, β = 0.0 for
EOFEM parameters γu = 0.00125, γσ = 0.0, γµ = 0.0, on level 3

γu γσ γµ Λinit Λmax

Πσ 0.00125 0.0 0.0 0.1 ≥ 250.0
Πµ 0.00125 0.0 0.0005 0.1 13.8

0.00125 0.0 0.001 13.8 17.1
0.00125 0.0 0.00125 17.1 22.4
0.01 0.0 0.0025 22.4 136.1

Table 4.14: Maximum computable relaxation times in terms of a gradual increase
for the exponential PTT model at κ = 0.1, β = 0.0 on level 3 when adjusting the
EOFEM parameters

Concerning the Tensor Diffusion approach, no solution can be computed regard-
ing the (exponential) PTT model in case of a neglected EOFEM stabilisation
with respect to M. Thus, a relatively small parameter of γµ = 0.0005 similar
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to Sec. 4.2.1 is chosen with respect to the initial configuration for successively
increasing the relaxation time. According to the original problem formulation,
Weissenberg numbers significantly larger than for the UCM model can be reached
here (see Tab. 4.14), which might be explained by means of a stabilising character
of the constitutive equation similar to the Giesekus model – although the material
behaviour becomes highly nonlinear. However, such large relaxation times as in
case of the original problem formulation can not be obtained straightforward by
means of the Tensor Diffusion approach. In detail, the EOFEM parameters need
to be adjusted in terms of increasing Λ in contrast to the original approach, where
the amount of stabilisation can be kept constant for all considered relaxation times.

(a) µ11 field, γµ = 0.0005 (b) µ12 field, γµ = 0.0005

(c) µ11 field, γµ = 0.001 (d) µ12 field, γµ = 0.001

Figure 4.35: Diffusion Tensor solution in Q0 for the exponential PTT model at
Λ = 13.8, κ = 0.1, η0 = 1.0, β = 0.0 for EOFEM parameters γu = 0.01, γσ = 0.001
and different choices of γµ on level 3

Compared to the UCM model, the oscillations in the Diffusion Tensor are damped
in a much more meaningful way in case of the exponential PTT model when in-
creasing the corresponding amount of EOFEM stabilisation. In fact, the slight
perturbations visible in M for Λ = 13.8 are removed by increasing the EOFEM
parameter γµ from 0.0005 to 0.001 (see Fig. 4.35), which probably helps the (nonlin-
ear) solver to recover a convergent behaviour. Moreover, the components of M re-
sulting in case of the UCM model for the same stabilisation parameter of γu = 0.01
(see Fig. 4.33) are way more distorted than in case of the PTT model. In fact,
these oscillations are not even damped significantly, while a clear smoothening ef-
fect is observed regarding the PTT model. However, the stabilised component µ12

(and also µ21) of the Diffusion Tensor does not look smooth downstream along the
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symmetry axis of the domain, which clearly indicates a required upgrade of the
corresponding stabilisation in terms of the PTT model.

Summarising, only a slight improvement regarding the computation of higher
relaxation times is achieved by means of the Tensor Diffusion approach for con-
sidering the UCM model. In contrast, the original approach allows for calculating
solutions corresponding to larger Λ in case of the (exponential) PTT model. Ac-
tually, the (potential) stabilising effect of introducing the Diffusion Tensor might
be more pronounced in case of the UCM model, since the PTT model seems to be
already more stable per se as indicated by the behaviour of the original approach.
Possibly, considering a higher-order approximation together with an advanced de-
termination of the Diffusion Tensor may allow for computing higher relaxation
times in context of the PTT model on a similar level as the original problem
formulation. Overall, no significant progress concerning the High Weissenberg
Number Problem is established by means of the Tensor Diffusion approach. Ad-
mittedly, this novel approach is not intended to tackle such an issue, which is why
no improved numerical scheme can be expected concerning this matter.

4.2.4 Prototypical solution schemes based on the Diffusion
Tensor

As outlined by means of the Flow around cylinder benchmark in Sec. 4.1.2, the be-
haviour of the nonlinear solver is basically of similar quality concerning both, the
original as well as Tensor Stokes problem formulation. But, the latter does not pro-
vide as accurate solutions as the three-field formulation of the original differential
viscoelastic flow model. For keeping the potential benefits of the Tensor Diffusion
approach and improving the resulting solution quality, iteration procedures actu-
ally minimising the original residual might be taken into account, which at the
same time make use of the Diffusion Tensor. Therefore, a prototypical monolithic
solution scheme – especially applicable regarding differential constitutive equations
– is presented below, followed by a decoupled approach, which could be a suitable
candidate in the context of integral material laws. The solver behaviour of both
approaches is analysed by means of the flow configuration considered throughout
this section, that is the flow in a rounded contraction including the material and
model parameters introduced above. Moreover, the material behaviour is charac-
terised by means of the (differential) Oldroyd-B as well as UCM model to analyse
the impact of a present solvent contribution on the solver behaviour.

The mixed iteration within a monolithic approach

In a first step, a so-called mixed iteration taking into account the (differential)
four-field formulations introduced in Sec. 2.4 is designed. Thereby, the residual of
the original viscoelastic model from Eq. (2.50) and the Jacobian resulting from the
corresponding Tensor Stokes problem (2.51) are combined in terms of a Newton-
like method based on Eq. (2.29). Thus, the solution corresponding to the original
problem formulation is obtained, and at the same time (additional) stabilisation or
artificial diffusion is provided by means of the Diffusion Tensor, which could lead
to a potentially improved solution scheme. Note, that the arising linear systems
are again solved by means of a direct linear solver, while multigrid techniques
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should show a similar behaviour as outlined in Sec. 4.2.2. However, the resulting
(undamped) iteration procedure reads

xk+1 = xk −
(
Aµ
(
xk
))−1

rσ
(
xk
)

(4.16a)

for a given initial solution x0, where the residual and Jacobian are actually taken
from the differing discrete versions of Eqs. (2.50) and (2.51), in detail

x =




u
σ
µ
p


 , rσ (x) =




Lu+ J uu+ Cσ + Bp
Du+K (u)σ + J σσ
Sσ +N (u)µ+ J µµ

B>u


 (4.16b)

Aµ (x) =




L+ T (µ) + J u 0 Tµ (µ,u) B
D +Ku (u,σ) K (u) + J σ 0 0
Nu (u,µ) S N (u) + J µ 0
B> 0 0 0


 (4.16c)

Similar to Eq. (2.29), the subscript of a discrete operator from the Jacobian matrix
given in Eq. (4.16c) denotes the derivative with respect to the indicated quantity,
which is computed by means of Finite Differencing. Note, that the Jacobian ma-
trix Aµ corresponds to the residual rσ with respect to the stress, Diffusion Tensor
as well as continuity equation, but not the momentum equation. Regarding this,
the discrete operator acting on the (discretised) stress tensor is “replaced” by the
Tensor Stokes operator, which occurs in the velocity instead of the stress block.
Hence, a diffusive operator is provided even in the non-solvent case. Besides, the
block referring to the Diffusion Tensor is non-vanishing. In the following, the
unstabilised discrete problem is considered, unless stated otherwise.

Naturally, the resulting convergence behaviour will not be able to compete with
an actual Newton scheme for solving the pure original or Tensor Stokes problem,
which is why second-order convergence is not expected. In fact, the iteration
procedure presented in Eq. (4.16) is of pure fixed-point type, which becomes clear
by analysing the two problem formulations

P1 =





−2η∇ ·D (u) +∇p = 0

Σ− 2ηD (u) = 0

∇ · u = 0

, P2 =





−∇ ·Σ +∇p = 0

Σ− 2ηD (u) = 0

∇ · u = 0

(4.17)

of the Stokes equations for a given viscosity η. The set of equations denoted by P1

represents the original Stokes problem supplemented by an additional equation
determining the Newtonian stress tensor in post-processing fashion, while P2 con-
sists of the actual three-field formulation. Obviously, both problem formulations
are equivalent on continuous, but not on discrete level: After discretisation ac-
cording to the techniques presented in Sec. 2.2.3, the resulting discrete versions of
the momentum equations regarding P1 and P2 read

Lu+ Bp = ru, CK̃−1
(
rσ + D̃u

)
+ Bp = ru (4.18)
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Thereby, K̃ and D̃ basically denote suitable simplifications or modifications of the
discrete operators introduced in Eq. (2.19) regarding differential constitutive equa-
tions. However, the mixed iteration resulting from the two problem formulations
given in Eq. (4.17) probably will not recover the convergence behaviour of Newton’s
method. In contrast to the continuous versions, the discrete problem formulations
are not equivalent due to CK̃−1D̃ ≈ L (in case of neglecting rσ). Thus, only a
quasi-Newton scheme or a pure fixed-point iteration would be obtained based on
the discrete Jacobian from P1 and the residual from P2. Possibly, the convergence
speed might be accelerated with increasing mesh level, since the problem formula-
tions are equivalent continuously being the limit of the discrete problems regarding
mesh refinement. Thus, the discrete momentum equations from Eq. (4.17) might
converge towards each other for infinitely decreasing the mesh size. But at the
same time, the structure of the Jacobian matrix resulting from problem P1 varies
compared to the Jacobian from P2. Hence, the Jacobian matrix will not “match”
the residual in terms of a mixed iteration on any mesh level, probably limiting the
convergence speed in general to not recover a Newton-like behaviour. Concerning
the mixed iteration from Eq. (4.16), this effect might be even more pronounced,
since the structure of the Jacobian matrix differs not only regarding the operators
acting on the (discrete) velocity or stress fields. Moreover, an additional contribu-
tion is present regarding the Diffusion Tensor, which will be non-vanishing even in
case of a converged solution or increasing mesh refinement.

In a first step, the mixed iteration proposed above is applied for solving the
Oldroyd-B model, where the number of nonlinear iterations of the Newton-like
scheme from Eq. (4.16) is given in Tab. 4.15. When computing the solution cor-
responding to Λ = 0.001 on all mesh levels, the Newtonian case is used as initial
solution, while the solution for the previous relaxation time is chosen for calcu-
lating higher Λ. Thus, the iteration numbers decrease from Λ = 0.001 to 0.01
before increasing in case of higher relaxation times. In detail, the number of non-
linear steps keeps increasing for increasing Λ on all mesh levels due to the problem
accordingly becoming more nonlinear.

level
Λ 0.001 0.01 0.1 1.0 2.5 5.0

1 12 9 (2) 12 (2) 17 21 7

2 10 8 (2) 11 (2) 18 23 7

3 7 6 (1) 10 (2) 18 35 7

4 4 4 (1) 8 (1) 20 7

Table 4.15: Number of nonlinear iterations of the mixed iteration (compared to
an actual Newton scheme) for the Oldroyd-B model at β = 0.5 for increasing Λ
and mesh levels

As expected, an increased number of nonlinear steps is obtained from the mixed
iteration compared to an actual Newton scheme, where the corresponding itera-
tion numbers for certain relaxation times are given in brackets in the same table.
Hence, probably not even a quasi-Newton method is established by means of the
mixed iteration, which consequently leads to an inferior solution approach. But,
it seems like the possible acceleration of the iteration scheme mentioned above is
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observed in case of small relaxation times, that is Λ ∈ {0.001, 0.01, 0.1}, where
the number of nonlinear steps indeed decreases with increasing mesh refinement.
The performance of Newton’s method is not reached for the considered mesh levels
though. But actually, the convergence speed stays constant for increasing mesh
levels, which is realised by means of the residual plots depicted in Fig. 4.36(a).
Instead of a faster convergence, the initial residual decreases with mesh refinement
causing a decreasing number of iterations, which probably holds in all cases in-
dicated above as “accelerating” iterations. In the same way, the nonlinear solver
seems to behave more or less independently of the mesh size at Λ = 1.0, which is
also contradicted by the residual plots from Fig. 4.36(b). It turns out, that the
convergence speed actually decreases for increasing refinement, which leads to a
rather constant number of iterations due to the decreasing initial residuals. In case
of Λ = 2.5, the iteration numbers increase in case of a converging solution scheme,
which is not obtained on level 4. When considering Λ = 5.0, no solution can be
computed on any mesh level for the current configuration. The latter observations
may result again from the increasing complexity or nonlinearity of the problem,
once too high relaxation times are considered.
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Figure 4.36: Convergence behaviour of the mixed iteration for the Oldroyd-B
model at β = 0.5 for different Λ and mesh levels

Concerning the UCM model, the iteration numbers of the mixed iteration increase
drastically compared to the Oldroyd-B model regarding all mesh levels as well as
relaxation times (see Tab. 4.16).

level
Λ 0.001 0.01 0.1 0.5

1 390 100 227 327
2 873 118 329 1347

3 (γu = 0.0) 1374 90 396 >5000 7

3 (γu = 0.1) 11 7 10 52
4 644 38 266 >5000 7

Table 4.16: Number of nonlinear iterations of the mixed iteration for the UCM
model at increasing Λ and mesh levels



130 Chapter 4. Validating and evaluating the Tensor Diffusion approach

Again, the iteration numbers decrease from Λ = 0.001 to 0.01 before increasing
again due to the varying initial solution: The solution obtained for the
Oldroyd-B model on the same level is chosen in case of Λ = 0.001, while the
solutions on each mesh level regarding higher Λ are computed based on the so-
lution for the next lower relaxation time. However, the larger iteration numbers
compared the Oldroyd-B model probably result from the vanishing solvent viscos-
ity, although a diffusive – and thus stabilising – operator is supposed to be provided
in terms of the Tensor Diffusion approach. In turn, the at least subliminal stabilis-
ing effect of the Diffusion Tensor is highlighted when neglecting the corresponding
diffusion operator in the “Jacobian” matrix from Eq. (4.16c) in case of ηs > 0,
which leads to a stagnating and thus inferior behaviour of the nonlinear solver. In
addition, neglecting the Diffusion Tensor regarding the unstabilised UCM model
does not make the mixed iteration applicable at all due to the resulting properties
of the “Jacobian”.
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(b) Λ = 0.5 on level 3

Figure 4.37: Convergence behaviour of the mixed iteration for the (unstabilised)
UCM model at different Λ and mesh levels

To further illustrate the convergence behaviour of the mixed iteration in terms
of the UCM model, a plot of the residuals corresponding to Λ = 0.001 is given
in Fig. 4.37(a) for several mesh levels. It turns out, that the initial residuals
again decrease with increasing mesh refinement. In addition, the convergence
speed increases during the solution process, which is not observed in case of the
Oldroyd-B model. Obviously, this effect occurs at larger iteration numbers, which
are not required in case of a present solvent viscosity. At the same time, a nearly
linear convergence behaviour is obtained in terms of the first nonlinear steps,
similar to the Oldroyd-B model. However, a relatively fast convergence close to the
solution is observed especially on lower mesh levels, which is not that pronounced
on finer meshes leading to an increasing number of nonlinear steps. In case of
larger relaxation times, the complexity of the numerical problem seems to increase
drastically, since the residuals obtained from the mixed iteration regarding Λ = 0.5
on mesh level 3 stagnate or even oscillate (see Fig. 4.37(b)), which is not observed
for lower relaxation times. But even on lower mesh levels, the iteration numbers
concerning Λ = 0.5 increase drastically compared to smaller relaxation times.
Thus, the behaviour of the mixed iteration is downgraded significantly, particularly
in the non-solvent case, but also regarding higher relaxation times, as the stability
properties of the numerical problem are weakened (see Chpt. 2). Unfortunately,
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this lack of stability in the solution scheme can not be balanced by means of
introducing the Diffusion Tensor, at least not in the current state of the approach.

Recall, that the Tensor Diffusion approach is intended to at least potentially
improve the numerical approach compared to the DEVSS [41], since the Diffusion
Tensor is related to the nature of the nonlinear problem – in contrast to a simple
scalar artificial viscosity as applied in Eq. (2.23). But, implementing a DEVSS-
like approach in terms of the UCM model by setting M = 2ηpI instead of the
algebraic equation (2.51c) of the four-field formulation of the Tensor Stokes prob-
lem actually results in an improved solver behaviour. Regarding Λ = 0.001, the
DEVSS-like setting behaves similar to the Tensor Diffusion approach, since M is
expected to be close to 2ηpI in case of small relaxation times. In contrast, roughly
20% reduced iteration numbers are obtained on level 3 for computing the solution
concerning Λ ∈ {0.01, 0.1}. Moreover, a significant improvement is achieved by
means of the DEVSS for calculating the solution at Λ = 0.5, which requires less
than 3000 nonlinear iterations. In contrast, no solution is obtained by means of
the Tensor Diffusion approach in this case, as the nonlinear solver stagnates or
even diverges (see Fig. 4.37(b)). Thus, the Tensor Diffusion approach does not
give an improved numerical scheme compared to the DEVSS. But, neither does
the DEVSS provide an overall satisfying numerical framework, since still very high
iteration numbers are recorded in the non-solvent case. Instead, inserting EOFEM
stabilisation into the system dramatically improves the solver behaviour in terms
of the Tensor Diffusion approach with respect to the UCM model, which is realised
from Tab. 4.16 as well as Fig. 4.38 at the example of level 3.
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Figure 4.38: Convergence behaviour of the mixed iteration for the UCM model at
different Λ and EOFEM parameters γu = 0.1, γσ = 0.0, γµ = 0.0 on level 3

It turns out, that a choice of the EOFEM parameter regarding the velocity field
of γu = 0.1 leads to a solver behaviour similar to the Oldryd-B model for
Λ ≤ 0.1 (see Tab. 4.15). But, the number of nonlinear steps increases stronger for
higher relaxation times in case of the UCMmodel compared to β > 0. However, the
Tensor Diffusion approach is superior to the DEVSS in case of applying EOFEM
stabilisation with respect to u, since twice as much nonlinear iterations are needed
for convergence when setting M = 2ηpI. Thus, the Tensor Diffusion approach
provides a reasonable solution scheme by means of the mixed iteration proposed
above at most in case of a present solvent contribution or additional stabilisation
as well as small relaxation times. Concerning more challenging configurations, the
iteration procedure does not behave really promising overall.
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The decoupled block fixed-point iteration

In this work, mainly monolithic approaches for solving various versions of discrete
differential viscoelastic flow models are discussed. As pointed out in Chpt. 2, such
a coupled scheme is not practical in the context of integral constitutive equations.
Instead, operator splitting techniques need to be applied, where evaluating the
stress integral as well as evolving the Finger tensor(s) is decoupled from the Stokes
part of the flow model. But, no meaningful iteration procedure is obtained accord-
ingly in case of a vanishing solvent viscosity, since the diffusive operator regarding
the velocity field is removed from the momentum equation. Besides well-known
approaches like the (D)EVSS [40, 41], a novel possibility for resolving this issue is
provided by means of the Tensor Diffusion approach, which might offer a reason-
able realisation of decoupled solution approaches in similar way. In the following,
corresponding preliminary studies are performed based on differential constitutive
equations. But naturally, segregated iteration procedures are intended to be ap-
plied mainly to integral viscoelastic material laws, as the monolothic approach
described in Sec. 2.2.3 or Ref. [47, 51] offers significant advantages compared to
decoupled schemes with respect to differential flow models.

Similar to the mixed iteration discussed above, the residual of the original
problem formulation is intended to be minimised within the decoupled solution
approach proposed below, again taking into account the Diffusion Tensor in a
reasonable way. Therefore, the (symmetrised) stress decomposition from Eq. (2.48)
based on the solution from the previous step is inserted into the right-hand side
of the momentum equation from the Tensor Stokes problem (2.51). By doing so,
the following sequence of linear problems can be solved even in the non-solvent
case ηs = 0, which does not provide a corresponding well-posed problem based on
the original problem formulation. In a first step, an updated solution (un+1, pn+1)
regarding the velocity and pressure fields is calculated from

−2ηs∇ ·D
(
un+1

)
+∇pn+1 . . .

−1

2
∇ ·
(
N ·D

(
un+1

)
+ D

(
un+1

)
·N>

)
= . . .

. . .∇ ·Σn − 1

2
∇ ·
(
N ·D (un) + D (un) ·N>

)
(4.19a)

∇ · un+1 = 0 (4.19b)

for a given velocity as well as stress solution (un,Σn) and some Diffusion Tensor N.
Secondly, the extra-stress tensor is determined for v = un+1 by solving

v · ∇Σn+1 −∇v> ·Σn+1 −Σn+1 · ∇v + Z
(
Λ, ηp,Σ

n+1
)

= 2
ηp
Λ

D (v) (4.20)

with respect to Σn+1. In case of integral models, this step would be replaced by
evaluating the stress integral from Eq. (2.43b) based on Finger tensors evolved by
means of Eq. (2.43d). As a final step, the Diffusion Tensor Mn+1 is calculated
according to

T−Mn+1 ·D (v) = 0 (4.21)
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where T = Σn+1 and v = un+1. For initialising the next outer iteration of the
decoupled solution method, N = Mn+1 is considered in Eq. (4.19). Hence, the
residual of the original problem formulation indeed is recovered in case of a con-
verging scheme, since the resulting solution (u,Σ, p) satisfies

−2ηs∇ ·D (u)−∇ ·Σ +∇p = 0

as the contributions including the Diffusion Tensor vanish from Eq. (4.19). Ad-
ditionally, the discrete versions of the continuity as well as constitutive equations
are satisfied. In this context, the numerical solution is considered to be converged,
once the residual in a decoupled step regarding the Stokes subproblem, that is
based on Eq. (4.19), falls below a certain tolerance. The corresponding stress ten-
sor will be computed from Eq. (4.20) according to the converged velocity field to
obtain the full nonlinear solution regarding the primal flow variables.

To contrast the operator splitting technique described above especially with
the mixed iteration proposed in Eq. (4.16), the decoupled iteration procedure is
written as a coupled system of the form




L+ T (µn) + J u B 0 0
B> 0 0 0
D 0 K (un+1) + J σ 0
0 0 S N (un+1) + J µ







un+1

pn+1

σn+1

µn+1




=




Cσn + T (µn)un

0
0
0


 (4.22)

resulting from the Finite Element discretisations presented in Chpt. 2. Similar
to the mixed iteration, the discrete stress operator in the momentum equation
is “replaced” by the Tensor Stokes operator acting on the velocity field, which
potentially provides a diffusive operator even in the non-solvent case. But, in the
“Jacobian” no operator arises derived with respect to the Diffusion Tensor, since
this quantity is not considered as unknown in the Stokes subproblem. In this
way, the solver behaviour might be improved compared to the mixed iteration,
as the – regarding the original problem formulation – “unnatural” contribution is
not present. However, the separate blocks or subproblems of the above system
actually are solved subsequently, which leads to a block-wise fixed-point iteration
consisting of solving decoupled linear problems regarding the flow quantities (u, p),
Σ and M. Again, the unstabilised discrete problem is considered in the following,
unless stated otherwise.

Similar to the results presented above, the numerical study on the behaviour of
this block fixed-point iteration is started off by considering the Oldroyd-B model.
Hence, the solvent contribution to the viscosity in the flow model is taken to
be non-vanishing. The corresponding number N of decoupled steps needed for
convergence is listed in Tab. 4.17 regarding several mesh levels as well as relaxation
times. Note, that the initial solutions are chosen in the same way as in case of
the mixed iteration analysed beforehand. It turns out, that the block fixed-point
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iteration shows a slightly improved behaviour compared to the mixed iteration from
Tab. 4.15, since the number of outer steps is smaller in case of all considered mesh
levels and escpecially for Λ > 0.001. Moreover, the decoupled solution scheme
allows for computing the solution corresponding to Λ = 2.5 on level 4 and Λ = 5.0
on level 1, which is not possible by means of the coupled approach. Thereby,
the iteration numbers concerning Λ = 2.5 are similar to the smaller relaxation
time Λ = 1.0 in case of the mixed iteration.

level
Λ 0.001 0.01 0.1 1.0 2.5 5.0

1 12 7 9 13 19 64
2 10 5 7 11 19 7

3 7 3 5 10 20 7

4 5 2 3 9 23 7

Table 4.17: Number of outer iterations of the block fixed-point iteration for the
Oldroyd-B model at β = 0.5 for increasing Λ and mesh levels

Hence, the block fixed-point iteration behaves (slightly) more stable than the mixed
iteration, which might be explained by means of the structure of the problem ma-
trix outlined above. But naturally, the performance quality of Newton’s method
applied in previous tests is not reached and (significantly) higher relaxation times
than before neither are computable. It has to be emphasised, that the considered
Diffusion Tensor has a significant stabilising effect regarding the numerical solver,
since the number of decoupled steps increases drastically when neglecting the Ten-
sor Stokes operator in Eq. (4.22) even for ηs > 0 and small relaxation times. In
fact, a number of decoupled steps greater than 2500, which is set as maximum
number of iterations here, is needed for solving the above problem formulation
for Λ = 0.001, β = ηs

η0
= 0.5 and N ≡ 0 already on mesh level 1. As indicated

by the numerical results presented above, the number of decoupled steps probably
will even further increase with mesh refinement – in case convergence is obtained
at all.
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Figure 4.39: Convergence behaviour of the block fixed-point iteration for the
Oldroyd-B model at β = 0.5 for different Λ and mesh levels

In Fig. 4.39, exemplary convergence plots are depicted concerning the residuals of
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the components of the velocity field. It turns out, that the residuals are decreased
by one digit in the first decoupled iterations, while for smaller relaxation times a
linear convergence of lower speed is observed regarding the remaining iterations,
similar to the mixed iteration (see Fig. 4.36(a)). In addition, the initial residual is
decreased with mesh refinement and the convergence speed stays constant, which
leads to a decreasing number of decoupled steps. Note, that the residuals in
case of Λ = 0.01 on level 4 fall below the prescribed tolerance already after two
decoupled steps, which is why no “slower range” of convergence is observed here
(see Fig. 4.39(a)). Regarding higher Λ, the convergence speed decreases with mesh
refinement as realised by means of Fig. 4.39(b), although not that drastically as in
case of the mixed iteration, since the number of decoupled steps is still decreasing
for Λ = 1.0 regarding the block fixed-point iteration.

As a next step, the block fixed-point iteration is applied for solving the UCM
model, where the diffusive operator in the momentum equation from Eq. (4.19)
weighted with ηs is not present. The resulting iteration numbers are presented in
Tab. 4.18.

level
Λ 0.001 0.01 0.1 0.5

1 393 98 229 326
2 873 103 324 1338

3 (γu = 0.0) 1373 71 334 >5000 7

3 (γu = 0.1) 11 5 13 94
4 643 19 161 >5000 7

Table 4.18: Number of outer iterations of the block fixed-point iteration for the
UCM model at increasing Λ and mesh levels
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Figure 4.40: Convergence behaviour of the block fixed-point iteration for the UCM
model at Λ = 0.001 for several mesh levels

As expected, an increasing number of decoupled steps is required for convergence
compared to the Oldroyd-B model even in case of small relaxation times. At
the same time, a decreasing convergence speed is observed with mesh refinement
as realised from Fig. 4.40. But, the convergence behaviour at larger iteration
numbers is similar to the mixed iteration, since the convergence speed increases
towards the solution (see Fig. 4.37(a)). Note, that a smaller number of decoupled
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steps is needed for computing Λ = 0.001 on level 4 compared to level 2 and 3
due to the decreased initial residual. Moreover, no convergence on higher mesh
levels is obtained for Λ = 0.5, similar to the mixed iteration (see Tab. 4.16), again
highlighting the increased numerical difficulties in the non-solvent case.

Again, an improved convergence behaviour is observed for a DEVSS-like scheme,
where the Diffusion Tensor is set as M = 2ηpI in Eq. (2.51c). In case of lower
relaxation times Λ ∈ {0.001, 0.01, 0.1}, the number of outer iterations is very sim-
ilar to the results from Tab. 4.18, since the actual Diffusion Tensor at small Λ is
close to the Newtonian setting. But, a converging iterative method is obtained
by means of the DEVSS-like configuration even for the UCM model at Λ = 0.5,
where roughly 2800 are needed for sufficiently reducing the corresponding residu-
als. In contrast, the outer decoupled solution scheme stagnates in case of the actual
Tensor Diffusion approach including γu = 0.0 similar to the mixed iteration (see
Fig. 4.41(a)). Thus, the block fixed-point iteration including the Diffusion Tensor
according to the DEVSS results in a superior numerical approach, although still
quite high iteration numbers are obtained. Possibly, applying the actual version
of the DEVSS from Eq. (2.23) would give a further improved solver behaviour,
where the strain-rate tensor itself is approximated by means of an additional flow
variable instead of a basically scalar quantity as above.
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Figure 4.41: Convergence behaviour of the block fixed-point iteration for the UCM
model at different Λ for several choices of the EOFEM parameter γu on level 3

Similar to the mixed iteration, a possible way of improving the performance of the
actual Tensor Diffusion approach is provided by the EOFEM stabilisation. The
resulting accelerated convergence behaviour of the block fixed-point iteration is il-
lustrated by means of the plots of the velocity residuals for several relaxation times
regarding mesh level 3 (see Fig. 4.41(b)). Especially in case of lower relaxation
times, a fast convergence speed is observed, while Λ = 0.5 again leads to a slower
reduction of the residuals, which is observed for the mixed iteration as well (see
Fig. 4.38). But, the latter seems to behave more consistent regarding the stabilised
UCM model, since the residuals concerning Λ ∈ {0.001, 0.01, 0.1} are reduced with
similar speed. In contrast, a varying convergence speed is observed with respect
to the block fixed-point iteration, in addition leading to a higher number of steps
compared to the mixed iteration at Λ = 0.5. Furthermore, the DEVSS gives sim-
ilar iteration numbers as the actual Tensor Diffusion approach in case of Λ = 0.5
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and γu = 0.1, where 102 respectively 94 outer iterations are required, while the
DEVSS is inferior regarding the mixed iteration.

Overall, the mixed and block fixed-point iterations lead to a similar solver
behaviour, while the latter is slightly superior in case of the Oldroyd-B model.
Regarding the UCM model, which is more challenging from a numerical point of
view due to the vanishing solvent viscosity, both (unstabilised) solution approaches
do not behave satisfactory. As expected, a significant growth of the iteration num-
bers in the solution process – according to the complexity of the numerical problem
– is observed compared to the Oldroyd-B model. Naturally, applying EOFEM sta-
bilisation results in an improved solver behaviour, where the mixed iteration seems
to be slightly more “stable”. In detail, the convergence speed is constant for lower
relaxation times and the iteration numbers for Λ = 0.5 are smaller compared to
the block fixed-point iteration. However, the convergence behaviour of Newton’s
method is not recovered by any of the two approaches, which thus are of pure
fixed-point type. Consequently, none of the iteration procedures in the present
state seem to be suitable candidates regarding alternative solution techniques to
the pure original or Tensor Diffusion approaches. Especially concerning integral
constitutive equations, future research needs to exploit the potential benefits of
the Tensor Diffusion approach with respect to the design of segregated solution
methods to possibly obtain improvements compared to existing techniques like the
DEVSS. But, the Tensor Diffusion approach at least allows for applying a decou-
pled solution scheme in non-solvent case, which is not possible in terms of the
original problem formulation. Furthermore, the novel approach results in a similar
or even improved solver behaviour as the DEVSS in case of introducing EOFEM
stabilisation, which gives some hope to be able to actually derive a reasonable
decoupled solution scheme including Tensor Diffusion.



138 Chapter 4. Validating and evaluating the Tensor Diffusion approach



Chapter 5

Conclusion

In this thesis, a novel approach to simulate viscoelastic fluid flows is introduced
with special emphasis on pure polymer melts, that is viscoelastic fluids without a
solvent contribution to the viscosity. Therefore, arising numerical difficulties and
challenges are outlined by describing existing Finite Element techniques for simu-
lating such types of fluids. It turns out, that the stability as well as regularity of the
numerical problem resulting from non-solvent differential or integral viscoelastic
flow models are weakened, which affects the applicability of certain Finite Ele-
ment (or Finite Volume) approximations and numerical solution techniques. On
the one hand, the discrete spaces regarding the velocity and stress fields need to
satisfy an additional inf-sup or LBB condition in order to obtain a stable mixed
Finite Element formulation of the viscoelastic model. On the other hand, fast and
efficient multigrid solvers as part of a Newton scheme within a monolithic solu-
tion approach behave non-robust because of the vanishing diffusive operator in the
momentum equation. Due to the same reason, operator splitting techniques or de-
coupled solution approaches are not applicable, which are particularly required for
deriving a practical numerical method for treating integral constitutive equations.
In this regard, the novel Tensor Diffusion approach is proposed, which replaces
the extra-stress tensor in the momentum equation of the viscoelastic flow model
by a product of the strain-rate tensor and the so-called Diffusion Tensor, that is
a nonsymmetric tensor-valued viscosity. In doing so, an approach similar to the
DEVSS is obtained by introducing an (additional) artificial viscosity contribution
into the (discrete) momentum equation, which conceptually resolves the issues of
the numerical approach mentioned above. Moreover, the diffusive operator recov-
ered in terms of this novel approach is related to the nature of the problem in a
much more physical way than a simple scalar-valued artificial viscosity. Thus, a
potentially improved numerical approach might be obtained compared to existing
techniques. However, several problem formulations of the viscoelastic flow model
can be derived in terms of the Tensor Diffusion approach, where the correspond-
ing diffusive operator needs to be symmetrised to realise a reasonable numerical
scheme.

Similar to the DEVSS, the four-field formulation of the Tensor Stokes prob-
lem is obtained by considering the Diffusion Tensor as additional flow variable,
which can be determined by means of a simple algebraic equation resulting from
the underlying decomposition of the extra-stress tensor. In case of differential
models, this problem formulation might be further developed by directly insert-
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ing the stress decomposition also into the constitutive equation. Thereby, again a
three-field formulation is derived according to the original flow model, which pos-
sibly allows a more sophisticated numerical determination of the Diffusion Tensor.
But, the applicability of this approach is limited to differential material models,
since an equivalent procedure concerning integral constitutive laws is not appli-
cable straightforward. The potentially most powerful formulation of the Tensor
Stokes problem is obtained by assuming, that the Diffusion Tensor is explicitly
known or given according to a specific viscoelastic flow configuration and mate-
rial law. Hence, the complex rheology of the fluid, originally described by means
of a differential or integral viscoelastic model, is “hidden” inside the Diffusion
Tensor. In this case, the need of considering the nonlinear material behaviour by
means of a constitutive equation or by explicitly calculating the extra-stress tensor
would be removed. Thus, the problem formulation can be reduced to a generalised
Stokes-like problem, where the nonlinear material behaviour of viscoelastic fluids
is characterised by means of a tensor-valued viscosity function. Assuming this
can be done for several material models and complex flow configurations, the nu-
merical effort for simulating highly nonlinear viscoelastic fluids may be reduced
significantly. For example, solution techniques especially designed for solving the
(Navier-)Stokes equations may be applied. Thus, a highly developed, efficient and
robust numerical framework can be taken into account for simulating viscoelastic
fluid flows. At the same time, addressing corresponding three- or even four-field
formulations of viscoelastic flow models would not be necessary.

In this work, the algebraic four-field formulation as well as the pure Tensor
Stokes problem mentioned above are taken into account for validating and eval-
uating the novel Tensor Diffusion approach. The underlying assumption, that
a corresponding stress decomposition exists in general, is verified in a first step
for Poiseuille-like flow configurations. In this framework it is worked out, that
the Diffusion Tensor indeed can be given analytically in case of specific material
models. Thus, the complete viscoelastic model actually can be reduced to a gen-
eralised Tensor Stokes problem, that is a generalised Stokes-like problem (in terms
of velocity and pressure only) including a tensor-valued viscosity depending on
the shear rate of the flow. Besides, the Diffusion Tensor is calculated numeri-
cally, in case no analytic derivation is possible. On this basis, the numerically or
(semi-)analytically determined Diffusion Tensor is prescribed in the pure Tensor
Stokes problem for simulating Poiseuille-like flows. In doing so, viscoelastic ef-
fects originally arising from various differential or integral (non)linear viscoelastic
flow models are recovered within corresponding two-dimensional Finite Element
simulations. Consequently, the original nonlinear viscoelastic flow solution can
be simply computed from a Stokes-like problem, where the velocity and pressure
fields are the only unknowns and the resulting extra-stress tensor is computed in a
simple post-processing step. In this context it is realised, that several differential
or integral constitutive equations like the Giesekus, PSM or Wagner model consist
of underlying mathetical properties preventing the computation of arbitrary high
relaxation times. One possibility for resolving this issue is provided by introducing
slip boundary conditions, which allows for successfully calculating increasing re-
laxation times in case of an accordingly increasing amount of slip. In contrast, the
linear or exponential PTT model does not show such a behaviour, which makes
this model attractive regarding Finite Element simulations of industrial applica-
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tions including realistic material and model parameters. However, the foundational
applicability of the Tensor Diffusion approach is further validated concerning gen-
eral two-dimensional flow configurations by means of the Flow around cylinder
benchmark. In contrast to certain viscoelastic channel flows, the Diffusion Tensor
needs to be determined numerically in this context, which is done by means of
the four-field formulation of the Tensor Stokes problem. In terms of validating the
novel approach, the drag coefficients as well as the stress profiles on the surface
and in the wake of the cylinder are compared to results from the literature plus
the original problem formulation, that is the three-field formulation including the
velocity, stress and pressure fields. It turns out, that the numerical results are
reproduced quite well for both, the typical benchmark configuration – including
a non-homogeneous solvent viscosity – as well as the much more challenging non-
solvent case, where the Oldroyd-B or UCM and the Giesekus model are taken into
account.

Furthermore, Finite Element simulations of viscoelastic fluid flows within a
rounded contraction are considered for evaluating the Tensor Diffusion approach,
again by means of the four-field formulation of the Tensor Stokes problem. Thereby,
it is illustrated, that approximating the Diffusion Tensor by element-wise constant
polynomials, which allow jumps over element edges, is a reasonable choice. Actu-
ally, “natural” discontinuities occur in the Diffusion Tensor variable in such flow
configurations, which at the same time should not become too large to not af-
fect the behaviour of the numerical solution scheme. In this regard, the need of
introducing EOFEM stabilisation with respect to the function values of the Dif-
fusion Tensor variable is demonstrated, which is already successfully applied in
terms of the Flow around cylinder benchmark. Another aspect of the Tensor Dif-
fusion approach analysed in this context deals with the linear solver as part of a
monolithic Newton scheme. Compared to the original approach, applying multi-
grid techniques is improved significantly when considering the UCM model within
the Tensor Stokes problem, since a more robust behaviour is observed and higher
relaxation times are computable. But, there is still the need to further develop
such numerical solution techniques, especially regarding non-solvent viscoelastic
fluid flows. In fact, a direct linear solver still is superior to multigrid techniques
when applied within Newton’s method, which is outlined is further investigations.
In detail, the Tensor Diffusion approach is evaluated concerning the High Weis-
senberg Number Problem by successively increasing the relaxation time for both,
the original as well as Tensor Stokes problem. Again, a stabilising effect due to
the (additional) tensor-valued diffusion is observed in case of the UCM model.
Thereby, slighty higher relaxation times can be reached for applying less amount
of stabilisation with respect to the velocity and stress fields compared to the origi-
nal problem formulation. In contrast, the original approach behaves very stable in
case of the PTT model, where the Tensor Stokes formulation leads to an inferior
numerical scheme. Possibly, the PTT model – similar to the Giesekus model –
is more stable per se, which is why the additional diffusion provided by means of
the Tensor Diffusion approach does not lead to an improved method. Recall, that
the Diffusion Tensor is approximated in this study by means of piecewise constant
polynomials, while the stress approximation in terms of the original approach is
of higher order. Hence, a downgraded numerical scheme might be obtained also
due to the lower-order approximation, possibly resulting in lower computable re-
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laxation times. As an alternative, the differential three-field formulation of the
Tensor Stokes problem might lead to an improved calculation of the Diffusion
Tensor, which in turn may improve the numerical method. However, prototypi-
cal iteration procedures based on the Tensor Diffusion approach are analysed as
well, which are intended to solve the original problem formulation and potentially
improve the behaviour of the numerical solver. It turns out, that the proposed
monolithic as well as segregated solution approaches result in an acceptable solver
behaviour regarding the Oldroyd-B model at least for lower relaxation times. But,
serious limits of these approaches are detected for higher relaxation times and a
vanishing solvent viscosity, both leading to an increasing complexity of the nu-
merical problem. Nevertheless, a decoupled solution approach – especially being
relevant concerning integral material models – can not be realised by means of the
original non-solvent problem formulation, but the Tensor Diffusion approach.

In summary, the Tensor Diffusion approach proposed in this thesis provides
the basis for a reasonable alternative to existing numerical techniques for simulat-
ing viscoelastic fluid flows characterised by differential or integral material mod-
els. The fundamental applicability of this novel approach is highlighted concern-
ing channel flows as well as two-dimensional configurations like the Flow around
cylinder benchmark. Thereby, viscoelastic flow characteristics, which are initially
described by the original problem formulation, are reproduced quite well by solving
the Tensor Stokes problem. Moreover it is indicated, that the original approach
indeed might be improved by inserting Tensor Diffusion into the (numerical) prob-
lem, in detail concerning the application of multigrid techniques within Newton’s
method, the High Weissenberg Number Problem or the implementation of decou-
pled solution schemes.

As part of future work, a further study on actually modelling the tensor-valued
viscosity needs to be performed to improve the current state the approach, where
the Diffusion Tensor is calculated numerically by means of an algebraic equation.
For example, this might be done by means of a partial differential equation arising
from inserting the stress decomposition into the (differential) constitutive equation
regarding the extra-stress tensor, which is illustrated conceptually in this work as
well. As an alternative, the Diffusion Tensor can be considered as a fourth-order
tensor, which provides additional degrees of freedom within the (numerical) cal-
culation to improve its underlying properties. Moreover it should be investigated,
whether the numerical solver – especially the linear solver within the Newton
scheme – can be further improved by fine-tuning the application of multigrid tech-
niques. In addition, the realisation of a decoupled solution scheme based on the
Tensor Diffusion approach needs to be tackled to implement a – compared to ex-
isting techniques possibly improved – numerical treatment of integral constitutive
laws. However, the potentially most attractive goal of future research work re-
garding general two- (and also three-)dimensional configurations is provided by
establishing the novel Tensor Diffusion approach in the same way as proposed for
Poiseuille-like flows. Consequently, the Diffusion Tensor is desired to be modelled
explicitly according to the nonlinear material behaviour of viscoelastic fluids – even
for complex flow configurations. As a vision, the corresponding flow model might
then be reduced to a pure Tensor Stokes problem, that is to a generalised non-
Newtonian Stokes-like problem including a tensor-valued viscosity only depending
on (the gradient of) the velocity field. In doing so, viscoelastic material behaviour
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could be predicted without the need to consider a differential or integral consti-
tutive equation or even a stress variable at all, which might significantly improve
the efficiency of corresponding numerical simulation tools.
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