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Abstract Flavour-changing neutral-current interactions of the top quark can be searched for
in top-quark pair production with one top quark decaying to an up-type quark and a neutral
boson, and they can be searched for in the single production of a top quark in association with
such a boson. Both processes interfere if an additional up-type quark is produced in the case of
single production. The impact of these interference effects on searches for flavour-changing
neutral currents at the LHC is studied for the case where the neutral boson is a photon or a
Z boson. Interference effects are found to be smaller than variations of the renormalisation
and factorisation scales.

1 Introduction

In the Standard Model (SM), flavour-changing neutral currents (FCNCs) are forbidden at
tree level and highly suppressed at loop level. For FCNCs that involve the top quark, the
SM predictions for top-quark branching ratios range from 2 × 10−17 for the decay t → uH
to 4.6 × 10−12 for the decay t → cg [1]. Several extensions of the SM predict branching
ratios that are much larger and may be accessible at the Large Hadron Collider (LHC) [1].
An observation of FCNCs in the top-quark sector would hence be a clear sign of physics
beyond the SM. Deviations from the SM predictions in these searches can be described in
a model-independent way using an effective-field theory (EFT) approach [2,3]. In lowest
order, these deviations are described by dimension-six operators, suppressed by the square
of the new-physics scale.

Top-quark FCNCs can be searched for in top-quark pairs where one top quark decays into
a W boson and a b-quark and the other top quark decays via an FCNC, as shown in Fig. 1a.
They can also be searched for in the production via an FCNC, as presented in Fig. 1b. The
former process is called “the decay process” in the following, and the latter process is called
“the production process”.
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Fig. 1 Example of Feynman diagrams a for top-quark pair production with an FCNC top-quark decay to a
photon or a Z boson and b for the associated production of a single top quark together with a photon or a Z
boson via an FCNC interaction. The FCNC vertex is marked with a red dot

Interference effects have shown to play an important role in several studies of the top-quark
sector. The interference of two SM processes, top-quark pair production and the production
of a single top quark in association with a W boson, was studied in Ref. [4], constraining
interference models for these processes. In searches for new particles, considering interfer-
ence effects has also proven to be important. For example, in the search for new scalars
and pseudoscalars that decay to a top-quark pair, interference effects significantly alter the
shape of the narrow signal resonance on the falling background to a peak–dip structure [5].
A similar effect was observed in the search for fermionic top-quark partners that decay to a
W boson and a b-quark [6].

Searches for top-quark FCNCs have focused either on the decay process, for example
in Refs. [7,8], or on the production process, for example in Refs. [9,10]. However, both
processes interfere if at least one additional up-type quark is produced in the production
process. These interference effects may have an impact on the interpretation of a potential
observation of an FCNC signal and on the exclusion limits that are set by current and future
searches.

The goal of this study is to quantify whether these interference effects should be considered
in the experimental searches at the LHC or, on the contrary, they can be safely neglected,
as it has been done to date. We have limited ourselves to the study of interference effects
in top-quark FCNC processes with either a photon or a Z boson. Processes with a Higgs
boson should be studied separately. Processes with a gluon are experimentally probed via
the process gq → t [11,12], where q is either an up or a charm quark, i.e. not via top-quark
decays.

2 Monte Carlo samples

Monte Carlo (MC) samples were generated for proton–proton collisions at
√
s = 13 TeV

with MadGraph5_ aMC@NLO [13] at leading order using the TopFCNC [14,15] UFO [16]
model for the production and decay processes. In addition, a sample that includes both
processes and their interference, called “the total process”, was generated. For all samples,
dynamic factorisation and renormalisation scales were used as well as the NNPDF2.3LO
PDF set [17]. In the following, the generation of the processes with a photon is discussed.
The samples for the processes with a Z boson were generated analogously. The quark q can
be either an up quark or a charm quark.

The decay process was generated by pp → t t̄ with t t̄ → W+bγ q̄ or t t̄ → W−b̄γ q .
The production process was generated by pp → tγ (or t̄γ ) and adding the processes

with an extra quark, anti-quark or gluon, j , i.e. pp → tγ j (or pp → t̄γ j). Diagrams with
an intermediate t̄ (t) were excluded in the case of tγ ( j) (t̄γ ( j)) production, because these
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Table 1 Number of events
generated for each process and
the number of Feynman diagrams
included in the generation

Process No. of events No. of Feynman diagrams

Production 500,000 84

Decay 500,000 16

Total 500,000 100

diagrams are considered as part of the decay process. In all cases, the (anti-)top quarks were
decayed to W+b (W−b̄) using MadSpin [18]. If j = q , i.e. the extra quark corresponds to
the up-type quark that couples via an FCNC to the top quark, interference of the decay and
production processes occurs.

The total process was generated by pp → tγ (or t̄γ ) and by adding the processes pp →
tγ j (or t̄γ j). Again, the (anti-)top quarks were decayed to W+b (W−b̄) using MadSpin.

All W bosons were decayed to an electron or muon and the corresponding neutrino,
and all Z bosons were decayed to either two electrons or two muons using MadSpin. A
minimum pT of 20 GeV was required for every final-state parton in the generation with
MadGraph5_aMC@NLO.

Pythia 8.2 [19] was used for parton showering and hadronisation. For all processes,
events were matched using the MLM procedure [20] using a kt value between partons of
30 GeV. Even though not necessary for the decay process, we also apply MLM matching
to this process for a consistent treatment of all processes. Detector effects were simulated
with Delphes 3 [21] using the default detector card, tuned to match the CMS detector
parameters. An overview of the number of events generated for each sample and the number
of contributing Feynman diagrams is shown in Table 1.

The FCNC operators may be left- or right-handed, and they may couple the top quark to
the up quark or to the charm quark [2]. For each of these four possibilities, samples were
produced with the strength of one operator fixed to a benchmark value and that of the other
operators set to zero. It was verified that the choice of the benchmark value used does not alter
the kinematics of the processes unless the value would be chosen so large that it modifies the
intrinsic width of the top quark significantly.1 Uncertainties were evaluated by generating
additional samples with fixed renormalisation and factorisation scales set to the top-quark
mass and by varying the scales by factors of two. The variations in the fixed-scale samples
were used as relative uncertainties for the nominal samples, which were generated with a
dynamic scale defined as the transverse mass of the system after kt clustering of the final-state
particles.

3 Results

The cross sections for the different processes are presented in Table 2, showing that the cross
section for the sum of the decay and production processes is very close to the cross section
of the total process. In order to quantify the impact of considering or neglecting interference
effects, the sample generated for the total process was compared to the cross section weighted
sum of the samples for the production and decay processes. Only results for the left-handed
coupling of the top quark to the up quark are shown as an example. The conclusions for the

1 Such large values of the strengths of the operators are, however, excluded by searches for FCNC processes
at the LHC [7–10].
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Table 2 Cross sections for the
different processes including the
uncertainty from scale variations

Boson Decay process Production process Total process

γ 6 ± 3 fb 13 ± 5 fb 20 ± 8 fb

Z 24 ± 11 fb 85 ± 30 fb 110 ± 40 fb

right-handed coupling and for the left- and right-handed couplings to the charm quark are
the same as for the example shown. Results at parton and at detector level are discussed.

3.1 Parton level

Kinematic distributions of the different final-state particles—i.e. the photon / Z boson2, the
b quark, the top quark, the W boson, and the highest-pT up-type quark—were studied at
parton level, and no large effects were seen. As examples, the normalised distributions of the
transverse momentum (pT) of the photon/Z boson from the total process and from the sum
of the production and decay processes are shown in Fig. 2.

In the phase space where both the production and the decay process contribute and interfer-
ence effects could hence appear, i.e. pT smaller than approximately 300 GeV, the difference
between the total process and the sum of the two individual processes is small and covered
by the scale uncertainties.3 This implies that effects due to interference are small compared
to the systematic uncertainties from scale variations.

3.2 Detector level

The photon and Z -boson pT were also studied at detector level. A simple event selection
was used in order to mimic the selection of a search: in each event at least one photon or
Z boson was required, respectively. The photon was required to fulfil pT > 25 GeV and
|η| < 2.5, where η is the pseudorapidity. Z bosons were reconstructed from two electrons
or two muons with an invariant mass within a 10 GeV window around the Z -boson mass. If
several Z -boson candidates were found, the one with the mass closest to the Z -boson mass
was selected. The leptons were required to have opposite electric charge, pT > 25 GeV and
|η| < 2.5. Moreover, at least one (additional) electron or muon with the same pT and η

criteria was required, as well as Emiss
T > 20 GeV, at least one b-tagged jet and at least one

non-b-tagged jet, reconstructed with the anti-kt algorithm [22] with a radius parameter of
R = 0.5, with pT > 25 GeV and |η| < 2.5.

The normalised distributions from the total process and from the sum of the production and
decay processes are shown in Fig. 3. The same observations and conclusions hold as for parton
level: no large interference effects are seen where they could be expected (pT � 300 GeV).

4 Conclusions

Interference effects in top-quark processes with flavour-changing neutral currents were stud-
ied for proton–proton collisions at 13 TeV, focusing on interactions that involve a photon or a

2 The kinematics of the Z boson were considered before final-state radiation, i.e. directly at the flavour-
changing vertex.
3 For larger pT, the distributions of the total process and the production process are consistent within statistical
uncertainties.
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Fig. 2 The a photon and b Z boson transverse momentum, respectively, for the total process compared to the
sum of the production and decay processes at parton level. The distributions for the total process and for the
sum of the production and the decay process are each normalised to unity. The ratio of the total process and the
sum of the processes is also shown. The uncertainty in the total process due to variations of the renormalisation
and factorisation scales is shown as a band. The statistical uncertainty due to the limited size of the samples
is shown as a green error bar

Z boson. Interference effects were found to be much smaller than changes from variations of
the renormalisation and factorisation scales in the leading order (multileg) samples used for
this study. These results indicate that the current practice of neglecting interference effects
in searches for top-quark flavour-changing neutral current interactions at the LHC is a viable
(and practical) strategy also for the future. However, if flavour-changing neutral currents were
observed in such searches, the impact of interference effects on their interpretations should
be quantified.
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(a)
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Fig. 3 The a photon and b Z boson candidate transverse momentum, respectively, for the total process
compared to the sum of the production and decay processes at detector level. The distributions for the total
process and for the sum of the production and the decay process are each normalised to unity. The ratio of the
total process and the sum of the processes is also shown. The uncertainty in the total process due to variations
of the renormalisation and factorisation scales is shown as a band. The statistical uncertainty due to the limited
size of the samples is shown as a green error bar

Acknowledgements This work was supported by OE/FCT, Lisboa2020, Compete2020, Portugal 2020
and FEDER through Project POCI/01-0145-FEDER-029147, PTDC/FIS-PAR/29147/2017; by Project
CERN/FIS-PAR/0008/2017 (OE/FCT); by Grant SFRH/BD/129321/2017 (OE/FCT); by the DFG through
Project KR 4060/7-1; and by the BMBF via FSP-103 through Projects 05H15PECAA and 05H19PECA1.

Funding Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

123



Eur. Phys. J. Plus (2020) 135:339 Page 7 of 7 339

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. J.A. Aguilar-Saavedra, Acta Phys. Polon. B 35, 2695 (2004)
2. J.A. Aguilar-Saavedra, Nucl. Phys. B 812, 181 (2009). https://doi.org/10.1016/j.nuclphysb.2008.12.012
3. C. Zhang, S. Willenbrock, Phys. Rev. D 83, 034006 (2011). https://doi.org/10.1103/PhysRevD.83.034006
4. M. Aaboud et al., Phys. Rev. Lett. 121, 152002 (2018). https://doi.org/10.1103/PhysRevLett.121.152002
5. M. Aaboud et al., Phys. Rev. Lett. 119, 191803 (2017). https://doi.org/10.1103/PhysRevLett.119.191803
6. M. Aaboud et al., JHEP 05, 164 (2019). https://doi.org/10.1007/JHEP05(2019)164
7. M. Aaboud et al., JHEP 07, 176 (2018). https://doi.org/10.1007/JHEP07(2018)176
8. CMS Collaboration. CMS-PAS-TOP-17-017 (2017). https://cds.cern.ch/record/2292045
9. G. Aad et al., Phys. Lett. B 800, 135082 (2020). https://doi.org/10.1016/j.physletb.2019.135082

10. A.M. Sirunyan et al., JHEP 07, 003 (2017). https://doi.org/10.1007/JHEP07(2017)003
11. G. Aad et al., Eur. Phys. J. C 76, 55 (2016). https://doi.org/10.1140/epjc/s10052-016-3876-4
12. V. Khachatryan et al., JHEP 02, 028 (2017). https://doi.org/10.1007/JHEP02(2017)028
13. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli,

M. Zaro, JHEP 07, 079 (2014). https://doi.org/10.1007/JHEP07(2014)079
14. C. Degrande, F. Maltoni, J. Wang, C. Zhang, Phys. Rev. D 91, 034024 (2015). https://doi.org/10.1103/

PhysRevD.91.034024
15. G. Durieux, F. Maltoni, C. Zhang, Phys. Rev. D 91, 074017 (2015). https://doi.org/10.1103/PhysRevD.

91.074017
16. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, Comput. Phys. Commun. 183,

1201 (2012). https://doi.org/10.1016/j.cpc.2012.01.022
17. R.D. Ball et al., Nucl. Phys. B 867, 244 (2013). https://doi.org/10.1016/j.nuclphysb.2012.10.003
18. P. Artoisenet, R. Frederix, O. Mattelaer, R. Rietkerk, JHEP 03, 015 (2013). https://doi.org/10.1007/

JHEP03(2013)015
19. T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen,

P.Z. Skands, Comput. Phys. Commun. 191, 159 (2015). https://doi.org/10.1016/j.cpc.2015.01.024
20. M.L. Mangano, M. Moretti, F. Piccinini, M. Treccani, JHEP 01, 013 (2007). https://doi.org/10.1088/

1126-6708/2007/01/013
21. J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, M. Selvaggi, JHEP 02,

057 (2014). https://doi.org/10.1007/JHEP02(2014)057
22. M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 063 (2008). https://doi.org/10.1088/1126-6708/2008/04/

063

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nuclphysb.2008.12.012
https://doi.org/10.1103/PhysRevD.83.034006
https://doi.org/10.1103/PhysRevLett.121.152002
https://doi.org/10.1103/PhysRevLett.119.191803
https://doi.org/10.1007/JHEP05(2019)164
https://doi.org/10.1007/JHEP07(2018)176
https://cds.cern.ch/record/2292045
https://doi.org/10.1016/j.physletb.2019.135082
https://doi.org/10.1007/JHEP07(2017)003
https://doi.org/10.1140/epjc/s10052-016-3876-4
https://doi.org/10.1007/JHEP02(2017)028
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1103/PhysRevD.91.034024
https://doi.org/10.1103/PhysRevD.91.034024
https://doi.org/10.1103/PhysRevD.91.074017
https://doi.org/10.1103/PhysRevD.91.074017
https://doi.org/10.1016/j.cpc.2012.01.022
https://doi.org/10.1016/j.nuclphysb.2012.10.003
https://doi.org/10.1007/JHEP03(2013)015
https://doi.org/10.1007/JHEP03(2013)015
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1088/1126-6708/2007/01/013
https://doi.org/10.1088/1126-6708/2007/01/013
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063

	Study of interference effects in the search for flavour-changing neutral current interactions involving the top quark and a photon or a Z boson at the LHC
	Abstract
	1 Introduction
	2 Monte Carlo samples
	3 Results
	3.1 Parton level
	3.2 Detector level

	4 Conclusions
	Acknowledgements
	References




