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Abstract
Stochastic shortest path problems (SSPPs) have many applications in practice and
are subject of ongoing research for many years. This paper considers a variant of
SSPPs where times or costs to pass an edge in a graph are, possibly correlated, random
variables. There are twogeneral goals one can aim for, theminimization of the expected
costs to reach the destination or the maximization of the probability to reach the
destination within a given budget. Often one is interested in policies that build a
compromise between different goals which results in multi-objective problems. In
this paper, an algorithm to compute the convex hull of Pareto optimal policies that
consider expected costs and probabilities of falling below given budgets is developed.
The approach uses the recently published class of PH-graphs that allow one to map
SSPPs, even with generally distributed and correlated costs associated to edges, on
Markov decision processes (MDPs) and apply the available techniques for MDPs to
compute optimal policies.

Keywords Stochastic shortest path problems · Markov decision processes · Phase
type distributions · PH graphs · Multicriteria optimization

1 Introduction

Shortest path problems are classical decision problems in computer science and oper-
ations research with many practical applications. The goal is to find an in some sense
optimal path between a source and a destination node in a weighted directed graph.
Weights of edges describe time, costs, gain, or reliability when passing the edge. We
use in the sequel the term costs of an edge to describe the quantitative parameter. The
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entire version of the problem assumes deterministic costs. However, often costs are
not exactly known such that stochastic descriptions of the costs are more appropriate
which results in the Stochastic Shortest Path Problem (SSPP). We consider in this
paper cases where a decision maker can decide to choose an outgoing edge when
reaching a node. This implies that decisions are made adaptively and not a priori as
in Nie and Wu (2009). In many practical applications, random variables modeling the
edge costs are not independent. For example adjacent roads have similar traffic con-
ditions, interest rates in subsequent periods are correlated and failure rates of related
components are dependent. This implies that the introduction of correlation in SSPPs
is important for realistic models but makes the problem of specifying parameters and
computing optimal paths even harder.

In a stochastic setting with adaptive decisions, a unique optimal path usually does
not exist, instead the chosen path depends on the realization of costs on already passed
edges. This includes the situation that even with only positive weights, the optimal
path may contain cycles. Instead of a path, a policy is defined that specifies for each
node the choice of the outgoing edge which may depend on additional information
that is available when reaching the node. The term optimal is not uniquely defined
for stochastic decision problems. One possible interpretation is the minimization (or
maximization) of the expected costs to reach the destination from the source. In other
settings, it is more appropriate to maximize (or minimize) the probability to reach the
destination within a given budget. In traffic networks, the first goal corresponds to
the minimization of the expected travel time and the second goal corresponds to the
maximization of the probability to meet a deadline. Often one is interested in a com-
promise solution, i.e., a policy that reaches the destination in a short expected timewith
a small probability of missing the deadline. This results in a multi-objective optimiza-
tion problem, with incomparable solutions. Therefore it is important to characterize
the set of Pareto optimal solutions or at least a convex hull of this set.

This paper considers SSPPs with correlated edge costs and introduces methods to
compute optimal policies for instances of the two mentioned problems. Furthermore,
an approach is introduced to approximate the convex hull of Pareto optimal policies,
if several goal functions are combined. The problem will be solved in the context of
PH-graphs (PHGs) (Buchholz and Felko 2015), a recently published class of stochas-
tic graphs that allows one to include generally distributed edge costs and correlation
between adjacent edges. Edge costs are modeled by phase-type distributions (PHDs)
(Buchholz et al. 2014; Neuts 1981). PHGs can be mapped on Markov decision pro-
cesses (MDPs) such that algorithms from MDPs can be adopted to compute optimal
policies and a convex hull of Pareto optimal policies.

Related work SSPPs are considered in many different applications ranging from
transportation (Barbarosoǧlu and Arda 2004; Nikolova and Karger 2008) to computer
networks (Nain and Towsley 2016), data migration (Li et al. 2016), social networks
(Rezvanian and Reza Meybodi 2016) or finance (Budd 2016; Koenig and Meissner
2015). An enormous number of papers has been published in the area such that we
can only highlight a few, most relevant results for our work. Algorithms to compute
policies that maximize the probability to reach the destination within a given budget
can be found in Fan et al. (2005b) and Samaranayake et al. (2012). Correlation among
edge costs is considered in several papers (Fan et al. 2005a; Nain and Towsley 2016;
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Samaranayake et al. 2012). Themajor problem in this context is the compact definition
of dependencies and its consideration in optimization algorithms. Often dependencies
are defined for the costs of adjacent edges.

The combination of different goal functions results in multi-objective SSPPs (Ji
et al. 2011; Zhaowang et al. 2004; Randour et al. 2015; Zhang et al. 2010). Often
multi-dimensional costs are considered in this case. Alternatively, the combination of
expectation and variance is minimized (Zhaowang et al. 2004; Zhang et al. 2010) or
the probability of exceeding the budget is defined as a constraint (Ji et al. 2011). Often
heuristic algorithms are applied to approximate the set of Pareto optimal solutions (Ji
et al. 2011; Zhaowang et al. 2004; Zhang et al. 2010). Only in some cases correlations
are considered, more often independent distributions are assumed (Nikolova et al.
2006).

We analyze the problems in the context of PHGs which have been defined in Buch-
holz and Felko (2015) and Dohndorf (2017). Distributions in this model class are
described by PHDs (Neuts 1981) and correlations between edge costs are introduced
using concepts from Markovian arrival processes (MAPs) (Neuts 1979) which have
been adopted to adjacent distributions in a graph (Buchholz and Felko 2015; Dohndorf
2017). PHDs and MAPs are commonly used in performance and reliability analysis
and methods to determine their parameters from measurements are available (Buch-
holz et al. 2014). Themajor advantage of PHGs is that they can bemapped onMDPs in
continuous time which implies that the large set of available optimization techniques
for MPDs can be adopted for PHGs.

MDPs are widely studied and shortest path problems, where the successor edge
is defined by a probability distribution rather than a single edge, can be naturally
defined as MDPs (Bertsekas 2007; Puterman 2005). The analysis of continuous time
MDPs and the relation between discrete and continuous time MDPs is investigated in
Miller (1968), Buchholz et al. (2011), Puterman (2005) and Serfozo (1979). Several
approaches for multi-objective optimization exist in the context of MDPs (Chatterjee
et al. 2006; Ghosh 1990; Forejt et al. 2011; Wakuta and Togawa 1998; Bouyer et al.
2018).Algorithms to compute or approximate the convexhull ofmulti-objectiveMDPs
can be found in Roijers et al. (2014b), Roijers et al. (2015) and Roijers et al. (2014a).

Contribution of the paper In this paper we consider in SSPPs with correlated edge
costs the combined optimization of different goal functions that take into account the
expected costs and the probability to reach the destination with a given budget. It is
shown that the weighted sum of these values can be optimized using standard MDP
algorithms. Furthermore, the convex hull of Pareto optimal policies according to the
goal functions is computed with an algorithm which is an extension of the approach
proposed in Roijers et al. (2014b), Roijers et al. (2015) and Roijers et al. (2014a).

Organization of the paper In following section, we introduce the basic definitions
and describe solution algorithms. Then, in Sect. 3, it is shown that the weighted
sum of the several goal functions can be described by an MDP with a single goal
function and a value iteration based approach for optimization of the multi-objective
goal function relative to a given weight vector is presented. Afterwards, in Sect. 4,
the multi-objective solution algorithm to compute the convex hull of Pareto optimal
solutions is described. We present examples from scheduling and vehicular traffic in
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Sect. 5 to show the applicability of the proposed solution method and conclude the
paper in Sect. 6.

2 PH-graphs

We present PHGs formally and by a simple example. Further details about the model
and algorithms to fit the parameters of the included PHDs can be found in Buchholz
and Felko (2015) and Dohndorf (2017). After introduction of the basic model, the
shortest path problem and the basics for solving the problem are introduced.

A PHG is a directed stochastic graph G = (V, E,P) where V is a finite set of
nodes, E is a finite set of edges, and set P contains Phase-type distributions (PHDs)
characterizing the random variables for edge costs. Set V contains an initial node
vini ∈ V and a destination node v f in ∈ V , as shown in Fig. 1. We consider paths
betweenvini andv f in and assume in the sequel thatv f in has nooutgoing edges. Passing
an edge of a PHG induces costs that are described by non-negative random variables.
These costs are redrawn from the distribution of the associated random variables if
the edge is passed more than once. Costs of adjacent edges can be correlated.

The costs of edge i ∈ E are described by a PHD with representation (π i ,Di )

of order ni (see Fig. 1b). Matrix Di is a ni × ni sub-generator (i.e., Di I1 ≤ 0,
Di (x, y) ≥ 0 for x �= y) which describes an absorbing Markov chain in continu-

(a) (b)

(c)

Fig. 1 Simple examples of PH-graph with 3 possible paths between vini and v f in
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ous time where all non-absorbing states are transient states (Buchholz et al. 2014).
The closing vector di = (−Di ) I1 where I1 is the a column vector of 1s of length ni .
Vectorπ i ∈ R

1×n1≥0 is the initial distribution. The costs of edge i corresponds to the time

to absorption of the Markov chain described by the PHD. Thus, E(X j
i ) = j !π iM

j
i I1

with Mi = (−Di )
−1 is the j th moment of the costs, σ 2

i = E(X2
i ) − (E(X1

i ))
2 is

the variance and Fi (t) = 1 − π i etDi I1 is the distribution function. Typical examples
of PHDs are Erlang distributions, hyperexponential distributions and hypoexponen-
tial distributions. Hyperexponential distributions are used to model random variables
with a coefficient of variation (cv) larger than 1. An hyperexponential distribution with
only two states allows one to describe random variables with an arbitrary positive first
moment and an arbitrary finite cv ≥ 1. Erlang and hypoexponential distribution are
used to describe distributions with cv < 1. However, the minimal cv for a distribution
with k phases or states equals 1/

√
k. Parameters of a PHD can derived from data

available for the costs of edges (e.g., data about the time to pass a segment of a road in
a traffic model) by fitting empirical moments or by a maximum likelihood approach,
corresponding algorithms can be found in the literature (Buchholz et al. 2014). Costs
described by PHDs with initial distributions π i I1 = 1 are strictly positive.

We assume that between two nodes at most one edge exists. For some edge i ∈ E ,
i• ∈ V and •i ∈ V are the starting and terminating node. For some node v ∈ V , ◦v ⊆ E
and v◦ ⊆ E are the sets of edges that start and terminate in node v, respectively. On
a possible path through the graph (i•)◦ is the set of possible successors of edge i .
Similarly, we define ◦(•i) as the set of possible predecessors of edge i .

If PHDs are assigned to edges, the costs of adjacent edges (i.e., edges i, j ∈ E
with j ∈ (i•)◦) are independent random variables. However, the model allows one
to introduce correlation among edge costs by making the initial state of the PHD
of the following edge dependent on the final state of the PHD from previous edge.
Figure 1 shows an example instance of a PH-graph where the network of PHDs for two
different paths and the graph model are visualized. For two adjacent edges i, j ∈ E we
define a ni × n j transfer matrix Hi j with Hi j ≥ 0 and Hi j I1 = −Di I1. Furthermore,
Hi j has to be chosen such that for matrix Pi j = MiHi j the condition π iPi j = π j

with Mi = (−Di )
−1 holds. Hi j (x, y) equals that rate with which state x of the PHD

associated to edge i is left towards phase y of the PHD associated to edge j . The
conditions on the row sums of matrix Hi j assures that the exit rates from the states of
the PHD for edge i are kept. Pi j is a stochastic matrix and its entry Pi j (x, y) includes
the conditional probability of starting in state y of the PHD at edge j if the PHD for
edge i (∈ ◦(• j)) has been entered at state x . The conditions on matrix Pi j assure that
the distribution of the costs for edge j are not modifieded, i.e., are defined by PHD
(π j ,D j ). Then

Cov(Xi , X j ) = π iMiPi jM j I1 − (π iMi I1)
(
π jM j I1

)
and ρXi ,X j = Cov(Xi , X j )

σiσ j

(1)
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are the covariance and the correlation coefficient of the costs of edge i and j , and

E(Xk
i , X

l
j ) = k!l!π iMk

i Hi jMl
j I1 (2)

is the joint moment of order k, l between the costs of edge i and j . The computations
follow from the analysis of MAPs (Buchholz et al. 2014) and have been derived for
PHGs in Dohndorf (2017). Algorithms to compute the entries of matrix Hi j based on
available estimates for the covariance or joint moments can be found in Buchholz and
Felko (2015) and Dohndorf (2017)

For a given PHG, a sequence of edges (i1, . . . , iK ) defines a path which can be
analyzed using an absorbing CTMC with n = ∑K

k=1 nik states. The state space of the
CTMC contains the states of PHDs corresponding to edges along the path. The path
matrixQ(i1,...,iK ) is a non-singular matrix, such that quantitative properties of the path
can be analyzed from an absorbing Markov chain.

The problem of finding an optimal path between vini and v f in in a PHG can be
formulated as a stochastic shortest path problem in an MDP with state space

S = {(i, x) | i ∈ E, x ∈ {1, . . . , ni }} ∪ {(0, 0)},

with an absorbing state (0, 0) associated to v f in . For some state (i, x) with di (x) > 0
the choice of a particular successor edge from the set (i•)◦ is associatedwith an action.
For some u ∈ (i•)◦ define

Qu((i, x), ( j, y)) =

⎧
⎪⎪⎨

⎪⎪⎩

Di (x, y) if j = i, i > 0
Hi u(x, y) if j = u, u ∈ (i•)◦, i > 0,
di (x) if j = 0 and y = 0
0 otherwise.

(3)

For a vector u of length |S| with u(i, x) ∈ (i•)◦, (3) defines row (i, x) of matrix Qu.
Example We consider as a running example the small PHG shown in Fig. 1a. There
are three paths i1 → i4, i2 → i5 and i1 → i3 → i5 between vini and v f in .

Costs of the edges i1 and i4 are described by a hyperexponential distribution with
two phases and the following description.

π1 = π4 = (1/9, 8/9) , D1 = D4 =
(− 0.2 0

0 − 2.0

)
, d1 = d4 =

(
0.2
2.0

)

This implies E(X1
1) = E(X1

4) = 1 and σ 2
1 = σ 2

4 = 5. Costs of the edges i2 and i5 are
given by Erlang-2 distributions with

π2 = π5 = (1, 0) , D2 = D5 =
(− 2.0 2.0

0.0 − 2.0

)
, d2 = d5 =

(
0.0
2.0

)

with E(X1
2) = E(X1

5) = 1.0 and σ 2
2 = σ 2

5 = 0.5. Costs of edge i3 are exponentially
distributed with rate 2, i.e.,
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π3 = (1), D3 = (−2), d3 = (2)

and E(X1
3) = 0.5, σ 2

3 = 0.25.We assume that only the costs of i1 and i4 are correlated
by matrix

Hi1,i4 =
(
0.16 0.04
0.1 1.9

)
such that Pi1,i4 =

(
0.80 020
0.05 0.95

)

which implies a positive correlation with ρ14 = 0.32. Fig. 1b, c show the states and
transitions of the MDP for the paths i1 → i4 and i2 → i5.
PH-graph algorithms for shortest path problems By interpreting a PHG as an MDP
with a single absorbing state, decision problems can be naturally defined as shortest
path problems in an MDP, even if edge costs are correlated.

For our purpose, it is sufficient to consider deterministic but possibly time-
dependent policies. A policy is deterministic, if it only depends on the current state and
chooses a unique successor edge to leave immediately after the destination node of the
current edge. Let U be the set of deterministic policies u = (u0,u1, . . . ,uT ) contain-
ing decision vectors to be chosen at each decision epoch 0, . . . , T , i.e.,ut (i, x) ∈ (i•)◦
for t > 0 is the successor edge that is chosen at time t if edge i is left from state x and
u0 ∈ vini◦ is the initial edge selected at vini . For the computation of optimal policies
a discretization scheme is applied. For sufficiently small discretization step h > 0,
eh Quk = Puk

h + o(h2) holds, and the stochastic matrix Puk
h is defined as

Puk
h = I + h Quk , (4)

which is the transition matrix of the DTMC induced by the decision vector uk . Thus,
for each time step of length h, eh Quk is substituted by Puk

h resulting in a global error
in O(h) (Miller 1968). To avoid an overloading of notation, we remove the index h
which is fixed during optimization.Weuse here a discretization approach to analyze the
continuous timemodel, alternatively, onemay use a uniformization based computation
as inBuchholz et al. (2017)whichworks similarly but requires a slightlymore complex
derivation of the resulting equations and computes policies that switch the successor
edge at arbitrary times. Define for each edge i ∈ vini◦ a vector φi of length |S| such
that φi ( j, x) = π i (x) if j = i and 0 otherwise.

With the matrices Puk , the process becomes a discrete time MDP and standard
dynamic programming methods can be applied. We first consider the probability of
reaching the absorbing state with a given probability within budget T . Let N = T /h
the number of steps of the discrete time process.

Let g∗
N be a vector of length |S|with g∗

N (i, x) = 1 if (i, x) = (0, 0) and 0 otherwise.
Then the Bellman equations (Puterman 2005) are
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g∗
k (i, x) = max

u∈(i•)◦

(
∑

( j,y)∈S
Pu((i, x), ( j, y))g∗

k+1( j, y)

)

and

u∗
k+1(i, x) = arg max

u∈(i•)◦

(
∑

( j,y)∈S
Pu((i, x), ( j, y))g∗

k+1( j, y)

) (5)

for all k = 0, . . . , N − 1. Vectors g∗
k contain the maximal probabilities to reach v f in

within [kh, Nh] for each state (i, k) and will be denoted as gain vectors. Computation
follows the standard approch to compute policies in stochastic dynamic program-
ming for finite horizon problems (Bertsekas 2005; Puterman 2005). The maximal
probability to reach v f in with the given budget is then Gu∗ = maxi∈vini◦ φig

∗
0 and

u∗
0 = argmaxi∈vini◦(φig

∗
0). Then u

∗
0 is the first edge which is chosen when vini is left

at time time t = 0 and u∗ = (u∗
0,u

∗
1, . . . ,u

∗
N ) is the policy describing the choice of

successor edges at times kh with k = 0, . . . , N . An optimization algorithm starts at
N and evaluates (5) backwards. The following theorem shows that the maximization
problem (5) can also be formulated as a minimization problem which might become
necessary if different goal functions are combined.

Theorem 1 Let g∗
k , u

∗
k+1, for k = 0, . . . , N − 1, be the gain and policy vectors com-

puted from (5) and let g′
k , u

′
k+1 be the gain and policy vectors resulting from (5) with

the minimum operator and initial vectors g′
N = I1−gN , then g′

k = I1−g∗
k , decisions

can be selected such that u∗
k = u′

k for k = 0, . . . , N − 1 and u∗
0 = u′

0 can be chosen
such that u∗

0 = argmaxi∈vini

(
φig

∗
0

)
and u′

0 = argmini∈vini

(
φig

′
0
)
are identical.

Proof gN = I1 − g′
N holds by assumption. We show that when gk = I1 − g′

k , then
gk−1 = I1−g′

k−1 and if u(k)maximizes the values for gk , then it minimizes the values
for g′

k . The computations for one state (i, x) ∈ S equals

g′
k−1(i, x) = min

u∈(i•)◦

(
∑

( j,y)∈S
Pu((i, x), ( j, y))g′

k( j, y)

)

= min
u∈(i•)◦

(
∑

( j,y)∈S
Pu((i, x), ( j, y))(1 − gk( j, y))

)

= 1 − max
u∈(i•)◦

(
∑

( j,y)∈S
Pu((i, x), ( j, y))gk( j, y)

)

= 1 − gk−1(i, x)

The identity holds since Pu is a stochastic matrix and the same u can be chosen in
both cases. The identity of u∗

0 and u′
0 follows since g

′
0 = I1 − g∗

0. 
�

Equation 5 considers the probability of reaching v f in within the budget irrespective
of the costs with which the absorbing state is reached. To include costs, define a reward
vector r ∈ R

|S|×1
≥0 such that r(i, x) is the reward of staying for one time unit in state

(i, x). The followingBellman equations describe themaximization of the accumulated
reward in [0, T = Nh] where f∗N = 0.
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f∗k (i, x) = max
u∈(i•)◦

(

r(i, x) + ∑

( j,y)∈S
Pu((i, x), ( j, y))f∗k+1( j, y)

)

and

u∗
k+1(i, x) = arg max

u∈(i•)◦

(

r(i, x) + ∑

( j,y)∈S
Pu((i, x), ( j, y))f∗k+1( j, y)

) (6)

Then u∗
0 = argmaxi∈vini◦(φi f

∗
0 ) is the initial edge, u∗ = (u∗

0,u
∗
1, . . . ,u

∗
N ) the policy

and Fu∗ = φu∗
0
f∗0 is themaximal reward. Forminimizationof the reward, themaximum

in the above equation is substituted by aminimum.Often the costs of the edges describe
the relevant rewards such that it is sufficient to let r(i, x) = 1 if (i, x) �= (0, 0) and
r(0, 0) = 0. Then f̄ = limk→∞ fk , computed with (6) and the minimum operator, is
the vector of the minimal expected costs to reach v f in . Let ū be the corresponding
policy which does not depend on the time step k (Bertsekas 2007, Chap. 2) and F̄ ū

the expected costs (i.e., the expected length of the shortest path). Observe that ū and
f̄ can be computed with well known algorithms for MDPs like policy iteration, value
iteration or linear programming (Puterman 2005, Chap. 8). Theorem 1 can be extended
to (6) if all states (i, x) �= (0, 0) have the same reward.

For some policy u = (u0,u1, . . . ,uN ) let

guk = Puk+1guk+1, Gu = φu0g
u
0 , fuk = r + Puk+1 fuk+1 and Fu = φu0 f

u
0 (7)

for k = 0, . . . , N − 1 with guN (i, x) = 1 for (i, x) = (0, 0) and 0 otherwise and

fuN = 0. Obviously g∗
k−1 = maxu(k:N )

(
gu(k:N )
k

)
and f∗k−1 = maxu(k:N )

(
fu(k:N )
k

)
,

where u(k : N ) = (uk, . . . ,uN ) equals policy u restricted to the interval [kh, Nh].
Then guk = gu(k:N )

k and fuk = fu(k:N )
k . We denote by Uk the set of all possible policies

u(k : N ), i.e, u(k : N ) = (uk, . . . ,uN ) and ul(i, x) ∈ (i•)◦ for k ≤ l ≤ N . Both
vectors guk and fuk are denoted in the sequel as gain vectors.
Example (continued)We begin with the problem of minimizing the accumulated costs
to reach v f in from vini where all non absorbing states have costs 1. This corresponds
to the classical shortest path problem which we solve with policy iteration (Bertsekas
2007, Chap. 3). If we neglect the correlation between the costs of i1 and i4, then the
expected costs of reaching v f in from vini are 2 for path i1 → i4 and path i2 → i5,
whereas path i1 → i3 → i5 has costs of 2.5. With correlation the optimal policy starts
with i1 and chooses i4 if i1 has been passed via phase 2, if i1 has been passed via phase
1, then i3 followed by i5 is chosen as successor. This policy results in expected costs
of 1.811.

For the maximization of the probability to reach v f in with a given budget a dis-
cretization h = 0.05 is chosen and the policy, which is time-dependent, is computed
with (5). If the budget is ≥ 3.2, then path i2 → i5 is selected. The small variance of
the Erlang distributions assures that it is unlikely to exceed the budget but it is also
unlikely to pass the edges with low costs.With a budget≤ 3.15 the optimal paths starts
with i1, if i1 is left from phase 1 with a budget≤ 2.1, then i3 followed by i5 is selected,
otherwise i4 is chosen as next edge. In this case, first the edge with hyperexponentially
distributed costs is chosen. The hyperexponential distribution has a large variance. If
i1 is left after a small number of steps (i.e., with a large budget), it is the best choice
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to exploit the positive correlation and choose i4 as the next edge. Otherwise, if i1
is left with a large number of steps (i.e, with a small remaining budget), the positive
correlation of the costs at edge i4 would have a negative effect and it is better to choose
the path over i3 and i5 with uncorrelated costs.

3 Optimization of the scalarizedmulti-objective problem

In many settings, one is interested in policies which behave well with respect to
different measures, e.g., the probability to reach the destination with a given budget
should be high but the expected length of the shortest path should not be too long. One
way to compute such policies is to minimize or maximize the weighted sum of the
goal functions. In this section, we show that this problem can often be mapped on an
MDP with a single goal function. In the following section it is shown how the convex
hull of all gain vectors that are optimal according to some preference vector including
the weights is computed.

We consider the convex linear combination of C goal functions. Let Tc > 0 and
Tc ≥ Tc−1 (1 < c ≤ C) be the time bounds of the different goal functions and
rc ≥ 0 the corresponding reward vectors, if a reward vector is required for goal
function c. We assume that Nc = Tc/h are integers. The following two sets are
neededNk = {c|Nc = k} andN≥k = ∪k≤l≤NCNl . The resultingmethod is commonly
denoted as weighting factor method (White 1982). Since a convex linear combination
of the goal functions is considered letw ∈ R

1,C
>0 be the preference vector withw I1 = 1.

For notational convenience we define ωk = ∑
c∈N≥k

w(c). Let δc = 1 if goal c
computes a probability according to (5) and δc = 0 if goal c computes a reward
according to (6).

Let u = (u0,u1, . . . ,uNC ) be some policy vector and let huk for k = 0, . . . , NC

be vectors of length |S| that store the costs of the sum of the different goal functions
multiplied with the weights from the preference vector. Define a vector hini ∈ R

|S|,1
with hini (0, 0) = 1 and hini (i, x) = 0 for (i, x) �= (0, 0). The costs for the composed
goal function are then computed from

huk = ωk+1
ωk

(
∑

c∈N≥k+1∧δc=0

w(c)
ωk+1

rc + Puk+1huk+1

)

+
∑

c∈Nk
δcw(c)

ωk
hini (8)

with

huNC
=

∑
c∈NNC

δcw(c)

ωNC

hini . (9)

For c with δc = 1 let fu,c
k and for δc = 0 let gu,c

k (0 ≤ k ≤ Nc) be the gain vectors
for goal function c under policy u. The following theorem shows the correspondence
between the costs for the different goal functions and huk .
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Theorem 2 For k = 0, . . . , NC the relation

huk =
∑

c∈N≥k∧δc=1

w(c)

ωk
gu,c
k +

∑

c∈N≥k∧δc=0

w(c)

ωk
fu,c
k

holds.

Proof We prove the results by induction starting with k = NC . Observe that for all
policies u and c with δc = 1, gu,c

Nc
= hini and for c with δc = 0 fuNC

= 0. Thus, we
have

huNC
=

∑
c∈NNC

δcw(c)

ωNC

hini =
∑

c∈NNC ∧δc=1

w(c)

ωNC

hini =
∑

c∈NNC ∧δc=1

w(c)

ωNC

gu,c
NC

Now assume that the theorem has been proved for k + 1, we show that it also holds
for k.

huk = ωk+1
ωk

(
∑

c∈N≥k+1∧δc=0

w(c)
ωk+1

rc + Puk+1(i)huk+1

)

+
∑

c∈Nk

δcw(c)

ωk
hini

= ∑

c∈N≥k+1∧δc=0

w(c)
ωk

rc + ∑

c∈N≥k+1∧δc=0

w(c)
ωk+1

Puk+1(i)fu,c
k+1+

∑

c∈N≥k+1∧δc=1

w(c)
ωk

Puk+1(i)gu,c
k+1 + ∑

c∈Nk∧δc=1

w(c)
ωk+1

guk

= ∑

c∈N≥k+1∧δc=0

w(c)
ωk

fu,c
k+1 + ∑

c∈N≥k∧δc=1

w(c)
ωk

gu,c
k

which proves the theorem because fu,c
k = 0 for k = Nc. 
�

To compute an optimal policy, assume that the partial policy u∗(k + 1 : N ) and the
vectors hu(k+1:N )

k+1 , . . . ,hNC are available. The decision vector at k then equals

u∗
k (i, x) = arg max

u∈U(i)

⎛

⎝
∑

( j,y)∈S
Pu((i, x)( j, y))hu

∗(k+1:N )
k

⎞

⎠ , (10)

where u∗(k : N ) = (u∗
k ,u

∗(k + 1 : N )) and u∗
0 = argmaxi∈vini◦

(
φih

u(1:N )
0

)
,

resulting in policy u∗ = (u∗
ini ,u

∗
1, . . . ,u

∗
N ).
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Algorithm 1 Algorithm to compute an optimal policy and the costs for a preference
vector.
1: Initialize hNC using (9) and uNC+1 = ∅;
2: for k = NC downto 1 do
3: Compute uk using (10);
4: u(k : NC ) = (uk ,u(k + 1 : NC ));
5: Compute hk−1 using (8) and policy vector uk ;
6: end for
7: u0 = argmaxi∈vini ◦

(
φih0

)
;

8: H∗ = φu0h
u(1:NC )
0 , u∗ = (u0,u);

Theorem 3 For vectors hk computed with Algorithm 1 the following relation holds

hk = max
u∈U k

⎛

⎝
∑

c∈{1,...,C}∧δc=0

w(c)

ωk
fu,c
k +

∑

c∈{1,...,C}∧δc=1

w(c)

ωk
gu,c
k

⎞

⎠

Proof According to Theorem 2 vector hk contains the sum of costs multiplied with
the weights from the preference vector for the different goal functions under policy
u(k : NC ). For k = NC the vector is given by the initial vector which is independent
of any decision. Equation 10 selects decisions that maximize the sum of costs in step
k multiplied with the preference values. Thus, we can argue recursively that in each
step decisions are chosen that maximize the vector h. Since the Bellman optimality
criterion holds, the result holds. 
�

It is, of course, possible to substitute in (10) the maximum operator by a minimum
to compute minimal costs. Using Theorem 1 it is also possible to transform a mini-
mization problem in a maximization problem and vice versa. Thus, it is possible to
combine minimization and maximization in a single problem. E.g., to find a policy
with a large probability to meet a deadline and a small expected length of the shortest
path. The combination ofminimization andmaximization reaches its limits, if we have
a minimization problem with edge dependent rewards and a maximization problem
with edge dependent rewards which cannot be combined.

Algorithm 1 can only be applied for finite horizons of all goal functions. Now
assume that we have C goal functions with finite horizons Nc (c = 1, . . . ,C) and B
additional goal functions, numbered C + 1, . . . ,C + B with an infinite horizon. We
assume that all infinite horizon goal functions have a finite optimal solution, i.e., they
are minimization problems or they are maximization problems in an acyclic graph.
This implies that only problems with accumulated rewards (Eq. 6) are of interest since
the probability of eventually reaching v f in from vini is 1 in the mentioned settings.
The B goal functions with an infinite horizon can then be combined by defining a new
reward vector

r̄ =
C+B∑

b=C+1

w(b)

ϑB
rb
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where ϑB = ∑C+B
b=C+1 w(b). For the MDP with reward vector r̄, the shortest (or

longest) path can be computed (White 1982), resulting in a vector with the optimal
costs and an optimal policy for the weighted sum of costs. Let f̄ be the resulting costs
and ū be the resulting policy which only depends on the state but not on the time. f̄
and ū are computed using one of the available methods to compute optimal policies
for average reward MDPs over infinite horizons (Puterman 2005, Chap. 8). To solve
the entire problem hNC is then initialized with

hNC =
∑

c∈NC∧δc=1

w(c)

ωNC

hini +
C+B∑

b=C+1

w(b)

ωNC

f̄ .

Observe that ωNc = ∑
cNNC

w(c) + ∑C+B
C+1 w(c) in this case. By adding f̄ multiplied

with the relative weights for goal functions without a time bound, the approach takes
care of the situation that after NC steps v f in has not been reached but the expected
accumulated reward to reach v f in is considered in some measures (i.e., B > 0). Then
ū is the best policy at step k > NC and f̄(i, x) are the remaining costs to reach v f in .
Then Algorithm 1 can be applied to compute the solution of the complete problem.
Example (continued) We first consider the computation a policy that maximizes the
probability to reach v f in with T1 = 2, T2 = 3 and T3 = 4 (Nc = 40, 60, 80 for
c = 1, 2, 3). We begin with preference vector w = (1/3, 1/3, 1/3) that results in a
policy that start with i1 and selects i3 afterwards if i1 is left from phase 1 and the
budget is 3 or below 2.2, otherwise i4 is selected as subsequent edge.

4 Solvingmulti-objective PH-graphs

For a given preference vector, a dynamic programming approach which computes
an optimal piecewise constant policy has been introduced in the previous section.
However, often the preference vector w is not known in advance or cannot be defined
(see Roijers et al. 2013 for some examples). Then it is important to know the set of
policies that are optimal for some preference vector. We slightly extend the notation
and define u∗

w as an optimal policy computed for preference vector w, H∗
w are the

corresponding costs. All values are computed in Algorithm 1. For some policy u
define Gc

u = φu0 f
u,c
0 if δc = 0 and Gc

u = φu0g
u,c
0 if δc = 1. Obviously H∗

w =
∑C

c=1w(c)Gc
u∗ .

The following set of policies is defined.

CU =
{
u |u ∈ U ∧ ∃w ∀u′ ∈ U : Hu

w ≥ Hu′
w

}

The set is often referred as a convex coverage set - a convex hull of Pareto optimal
policies (Roijers et al. 2013). Set CU as it is defined might still contain redundant
policies, i.e., a policy is redundant, if it can be removed from the set and the required
condition still holds. Thus, it is sufficient to define set CU such that for eachw a policy
u ∈ CU exists such that Hu

w ≥ Hu′
w for all u′ ∈ U . An approximation of this set can
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often be computed with an acceptable effort, as shown in the sequel of this section
whereas the computation of the whole set of Pareto optimal policies is a non-trivial
task with a complexity strongly depending on the dimension of the preference vector
and the number of existing policies (Chatterjee et al. 2006).
Computationof optimal policiesThe iterativemethodproposed inRoijers et al. (2014b)
finds optimal policy for some preference vectors w by solving a finite number of
linearly scalarized problems using the Algorithm 1 as a subroutine. Let w1, . . . ,wL

be a set of preference vectors for which policies have been computed (i.e., for which
Algorithm 1 has been used). Let u1, . . . ,uJ be the corresponding set of policies.
Observe that J ≤ L but not necessarily J = L because some preference vectors may
result in the same policy. Define

θ j =
(
G1

u j , . . . ,G
C
u j

)
and � =

⎛

⎜
⎝

θ1 − 1
...

...

θ J − 1

⎞

⎟
⎠

as the result vectors of the analyzed policies and the matrix of these result vectors.
Then let ξ = (ξ1, . . . , ξC , ξC+1)

T be a vector. Any non-negative solution of

�ξ ≤ 0 and
C∑

c=1

ξc = 1, ξ ≥ 0, (11)

defines an upper bound ξC+1 for the costs resulting from the available poli-
cies u1, . . . ,uJ under some preference vector. This can be seen by considering
θ j (ξ1, . . . , ξC )T . For some preference vector (ξ1, . . . , ξC ) the value equals the costs
under policy u j and ξC+1 has to be chosen larger than or equal to this value to obtain
a value ≤ 0. A solution of (11) with θ j (ξ1, . . . , ξC )T = ξC+1 for some j is a minimal
solution that cannot be reduced by any of the policies u1, . . . ,uJ .

We can define a second polyhedron to bound possible costs from above. Define

� =
⎛

⎜
⎝

w1(1) · · · w1(C)
...

...
...

wL(1) · · · wL(C)

⎞

⎟
⎠ and χ =

⎛

⎜
⎝

H∗
w1

...

H∗
wL

⎞

⎟
⎠

as the matrix of already analyzed preference vectors and the vector of resulting costs.
Let ψ = (ψ1, . . . , ψC )T be a vector of potential costs of the goal functions c =
1, . . . ,C (i.e., upper bounds for Gc

u under some unknown policy u). An upper bound
for the costs is then given by

�ψ ≤ χ . (12)

This can be seen by considering (wl(1), . . . ,wl(C))ψ which has to be smaller than
or equal to H∗

wl which is the optimal value for this preference vector.
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Equation 11 defines the lower surface for preference vectors and the corresponding
costs. Equation 12 defines the upper surface for the costs of the different goal functions.
To compute the preference vector that results in the largest difference between lower
and upper bound of the resulting costs, the following problem has to be solved.

max
ψ,ξ

((
ψT ,−1

)
ξ
)

under the constraints �ψ ≤ χ ,�ξ ≤ 0 and
C∑

c=1
ξ
j
c = 1,ψ, ξ ≥ 0

(13)

Theorem 4 The optimization problem (13) computes themaximal difference between a
solution which can be derived with the policies u1, . . . ,uJ and a hypothetical solution
that results from a preference vector that respects the optimal solutions that have been
computed for the preference vectors w1, . . . ,wL .

Proof Vector ψ contains potential costs for the goal functions 1, . . . ,C . These costs
have to observe�ψ ≤ χ because otherwise the already computed optimal solution for
the preference vectors w1, . . . ,wL would no longer be optimal. The first C elements
of vector ξ define a preference vector and the last element a value for the weighted sum
of costs resulting from the preference vector multiplied with the costs for the different
policies. Since we are computing a maximum, the accumulated costs have to be at
least as large as the costs resulting from one of the already analyzed policies which
implies that for the solution the relation≥ 0 has to hold. The goal function can then be
interpreted as

∑C
c=1 ξ(c)ψ j (c)−ψ j (C +1), the difference between the upper bound

for the costs under the chosen weight vector and the costs for some policy under this
weight vector. By choosing the maximum among all already analyzed policies, this
results in the computation of a preference vector belonging to the maximal difference
between a point belonging to a preference vector on the upper surface and a point
belonging to the same preference vector on the lower surface. 
�

Equation 13 is a bilinear optimization problem (Nahapetyan 2009) which is not
convex. However, if we fix ψ or ξ , the problem becomes a linear program. Since the
two vector have no joint constraints, the optimal solution (ψ∗, ξ∗) consists of extreme
points of the polyhedra defined by the constraints. The solution algorithm proposed in
Roijers et al. (2014b) computes the extreme points for polyhedron �ξ ≤ 0 and solves
the linear program for the preference vectors resulting from these extreme points.
However, it seems to be preferable to solve (13) by one of the available solvers for
bilinear problemswhich use cutting planes or branch and boundmethods (Nahapetyan
2009; Sherali and Alameddine 1992).

Algorithm 2 computes an approximation of the set CU . New policies and vectors
with costs are added until the difference between upper and lower bound falls beyond
a threshold ε. The effort of the proposed algorithm depends on the number of states of
the MDP, the size of CU which can be exponential in the problem size and the number
of preference vectors that have to be analyzed. In each iteration a bilinear optimization
problem (Eq. 13) and anMDP problem (Eqs. 8 and 9) have to be solved. If the number
of different goal functions is not too large, the computation of an optimal policy
for the MDP requires most of the time. For larger number of different goal functions,
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Algorithm 2 Approximation of the set CU .
1: Initialize w1 = (1, 0, . . . , 0), . . . ,wC = (0, . . . , 0, 1) and set L = C ;
2: Compute for wl optimal policies u j and vectors with costs using Algorithm 1 (l = 1, . . . , L, j =

1, . . . , J , J ≤ L);
3: Compute Gc

u j for c = 1, . . . ,C , j = 1, . . . , J ;
4: while the maximal value resulting from (13) > ε do
5: Add preference vector wL+1 = (ξ(1), . . . , ξ(C)) and set L = L + 1;
6: For preference vector wL compute an optimal policy u and costs H∗

wL using (8,9);

7: if u /∈ {u1, . . . , uJ } then
8: Add u as uJ+1 and set J = J + 1;
9: Compute G1

uJ
, . . . ,GC

uJ
;

10: end if
11: end while
12: return w1, . . . ,wL and u1, . . . , uJ ;

Fig. 2 Convex hull of the Pareto optimal policies for the weighted sum of the minimal probabilities to reach
the destination with budget 2 and 4

beyond 5–10, the number of policies in CU often grows quickly andmakes the problem
practically infeasible for smaller values of ε.
Example (continued)We consider the maximization of the weighted sum of the proba-
bilities to reach the destinationwith a budget of 2 and 4. Figure 2 shows the convex hull
for the simple example and the probabilities of not reaching the destinationwith budget
2 and 4. For this simple example only two different policies have to be considered.

5 Examples

In this section, we illustrate the applicability and effectiveness of the proposed multi-
objective approaches with two application examples.
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Scheduling problem in the cloud Scheduling with stochastic task execution times is
of interest in many applications and has received significant attention over the years.
Within soft real-time systems, Markovian analysis techniques become more and more
popular, e.g. Markovian methods have been applied to model the system using GSPNs
and CTMCs and to analyze the probability of task deadline misses (Manolache et al.
2002), or to analyze the average system utilization (Diaz et al. 2002).

Consider a scheduling problem on a singlemachine in a sequencewhere task execu-
tion times are stochastic and possible correlations between execution time distributions
can occur. In practice, the stochasticity of task execution time is motivated due to the
large number of environmental run-time parameters which can depend on the appli-
cation, the hardware and software platform. Typically, the key factors influencing the
execution time are determined by the hardware-architecture of the processing units,
the program structure, the level of parallelism, the data interchange, e.g. database and
web accesses etc. However, in the real-time field, the task execution times can be
correlated, e.g. due to the amount of data to be processed. Obviously, the existing
dependencies between execution time distributions should be accurately considered
when the tasks have to be executed in a sequence.

We propose the PH-graph model to model stochastic execution times of tasks in a
uniprocessor system and to analyze scheduling of tasks with time slot constraints in
a cloud service environment. Reserving a time unit for job processing on the cloud
is typically associated with some costs. Cloud users anticipate completing their tasks
within a reserved time slot which is much cheaper than on-demand pricing options
when instances are charged on a pay-as-used basis. However, the execution of tasks is
linked to economic benefits, e.g. number of orders processed, number of verified trans-
actions, SLA-awareness, load balancing. Hence, one is dealing with the optimization
of these conflicting criteria simultaneously. The goal is to find a compromise between
tight time deadline compliance and reward maximization which is linked to a profit
associated with the job running time.

Consider three tasks T1, T2 and T3 running in a sequence within a cloud service
environment. Execution times of these tasks on a single processor are modeled by the
order 2 hyper-exponential and hypoexponential PHDs PHT1 , PHT2 , and PHT3 with
the following representation

πT1 = (0.5, 0.5) , DT1 =
( − 10 0

0 − 0.25

)
, DT2 =

( − 14 0
0 − 0.11

)
, DT3 =

( − 5.24 5.24
0 − 0.789

)
,

where πT2 = πT3 = πT1 . The means and variances of the execution times are shown
in Table 1.

Table 1 First conditional
moment and variance of PHDs
describing task execution time

PHD μ σ 2

(πT1 ,DT1 ) 2.05 11.80

(πT2 ,DT2 ) 4.53 60.43

(πT3 ,DT3 ) 1.36 1.63
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(a) (b)

Fig. 3 PH-paths used to model stochastic task scheduling

Furthermore, the data processing and output performed by the task T1 influence
the input of the task T2 and thus its execution time. The scenario is realistic when
both tasks are working on the same data trace. We assume that the distribution of the
execution time of the task T1 is correlated with the distribution of the execution time
of T2 by the matrix

HT1T2 =
(
10 0
0 0.25

)

which results in a positive correlationρ = 0.325. The execution times of the remaining
tasks are all independent. However, there are different possibilities to schedule the
tasks within a predefined time slot. The task graph and two corresponding PH-paths
are visualized in Fig. 3.

The analysis of the scheduling policies in the system is shown in Fig. 4 where
varying time slots for the tasks completions have been considered.

Consider two scheduling policies T1 T2 T3 and T1 T3 T2. The effect of correlation
between execution times of the task T1 and the task T2 can be shown in Fig. 5 where
conditional transient probabilities and conditional accumulated reward of the remain-
ing schedules T2 T3 and T3 T2 in dependence of the realized execution time of the
task T1, which is the first task in sequence, have been analyzed, such that different
scheduling policies are optimal for different optimization goals.

The multi-objective problem is analyzed in order to compute scheduling policies
with high weighted probability to satisfy a tight time deadline and high economical
profit constraint simultaneously. The resulting PH-graph has 36 states. Results are
presented in Table 2 and in Fig. 6 for a very tight time deadline T = 2.5, and in
Fig. 7 for a larger time deadline T = 12. The discretization parameter is set to a small
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(a)

(b)

Fig. 4 Probability of reaching the absorbing state and the expected accumulated reward over the finite
horizon

value h = 0.0001 and the approximation of the set CU is performed for time horizon
T = 2.5 and T = 12. In the former case the set CU contains 4 policies and in the
latter 2 policies.
Shortest paths in random road networks (Eisenstat 2010) proposed a random road
network generation method based on quadtrees. These quadtree models show many
useful features which are essential in modeling and analysis of real road networks
and relevant algorithms. In particular, quadtree based road networks represent planar,
self-similar and multi-scale-disperse graphs with reasonable variations in density of
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(a)

(b)

Fig. 5 Probability of completing the execution of tasks T2 T3 and T3 T2 within the short time slot T = 2.5
depending on the realized execution time of the task T1, which is the first task in sequence. The accumulated
reward of the remaining tasks T2 T3 and T3 T2 is visualized in Fig. 5b

Table 2 Pareto optimal policies
computed for a short time
horizon T = 2.5

Policy u j , θ j Weight vector w Hu j
w

(1.2695, 0.7475) (0, 1) 0.7476

(2.3304, 0.1576) (0.3775, 0.6225) 0.9778

(2.4869, 0.0179) (0.5742, 0.4258) 1.4357

(2.4987, 0.0021) (1, 0) 2.4987
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Fig. 6 The set of scalarized value functions for Pareto optimal solutions obtained in the short time slot T =
2.5, which is the time less than the expected path length in the PH-graph

Fig. 7 The set of scalarized value functions for Pareto optimal solutions obtained in the time slot T = 12

modeled roads and in the number of road intersections. Each node in the quadtree
represents a square embedded in a plane. In order to resemble realistic road networks
each node could have up to n children which represents the division of the square
into quadrants of equal size. Squares are added to the quadtree by recursively dividing
squares into quadrants, i.e. adding the child nodes. The subdivision can be performed
according to some predefined parameters, like distribution of road intersections, num-
ber of peripheral or high way roads and amount of sprawl.

We used this method to generate a random road instance which describes some
realistic road network. We generated the desired number of squares such that each
path from the leftmost top node vini to the rightmost bottom node v f in contains 32
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Fig. 8 A random quadtree road
network instance. The mean
weight of each possible path
from vini to v f in is given by
μ = 30.55

edges. Figure 8 shows the generated quadtree tomodel some realistic roads. Each edge
in the quadtree forms a road connecting two vertices in the square. Edges are directed
from top to bottom and from left to right and are parameterized with Phase-type dis-
tributions introduced in the running example in Fig. 1a. We used the hyperexponential
distribution to describe the weights of the path running from the initial node vini to the
leftmost bottom node vlb and from the node vlb to the final node v f in . Additionally,
the path running from the node vt to the node vb is also modeled using hyperexpo-
nential PHD. We assume that costs of edges along these paths are correlated. Costs of
the remaining edges are given by the introduced Erlang-2 distribution and are uncor-
related. Even though the generated quadtree road network assures a relatively small
node degree, each road intersection doubles the number of strategies. We computed
results for the maximization of the weighted sum of the probabilities to reach the node
v f in with a budget slightly below the expected path length, i.e. T = 30, and T = 42.

For the weighted maximization problem 7 different strategies have been computed
for ε = 0.01 within 60.27s using a MATLAB implementation of the algorithms on
a PC with 3.2 GHz processor. Figure 9 shows the corresponding convex hull and the
probabilities of not reaching the final nodewithin the specified time bounds andTable 3
summarizes the results for different optimal strategies. The required time to compute
the approximation of the Pareto optimal policies in quadtrees indicates that small road
networks can be analyzed fairly quickly and that PH-graphs have a potential to be
applied in online navigation scenarios in cities.

6 Conclusions

In this paper, we present a multi-objective approach for solving multiple criteria PH-
graphs to analyze Stochastic Shortest Path Problemswith several goal functions. Based
on available approaches for MDPs, we develop a value iteration based algorithm for
finite horizon MDPs to compute the optimal policy for the weighted combination
of reachability probabilities with given budgets and cumulative rewards in stochastic
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Fig. 9 Convex hull of the Pareto optimal policies for the weighted sum of the minimal probabilities to reach
the destination v f in with budget 30 and 42

Table 3 Pareto optimal policies
computed for the maximization
of the weighted sum of the
probabilities to reach the
destination in the quadtree with
a budget of 30 and 42

Policy u j , θ j Weight vector w Hu j
w

(0.6892, 0.8086) (1, 0) 0.6892

(0.3120, 0.9928) (0, 1) 0.9928

(0.6214, 0.9157) (0.3281, 0.6719) 0.8191

(0.6835, 0.8698) (0.6122, 0.3878) 0.7557

(0.4646, 0.9704) (0.1995, 0.8005) 0.8695

(0.6745, 0.8803) (0.4880, 0.5120) 0.7799

(0.4646, 0.9704) (0.1983, 0.8017) 0.8701

graphs with correlated edgeweights. To characterize the set of policies that are optimal
with respect to some preference vector including weights for the different goals, an
algorithm is introduced that approximates the convex hull of Pareto optimal policies.
This algorithm, that is based on earlier work in the context of sequential decision
making, repeatedly solves a bilinear optimization problem and applies then the value
iteration based approach for some weight vector to reduce an upper bound for the
approximation error in each step. For small bounds for the approximation error, the
algorithm computes a precise approximation of the convex hull of Pareto optimal
policies.

In this paper a simple discretization approach is used to solve the continuous time
models. It is also possible to solve thesemodelswith recently developedmethods based
on uniformization resulting in adaptive decision points. The corresponding algorithms
can be easily integrated in the developed framework. In future work, multi-objective
PH-graphs should be extended by decisions which are based on edges in the PH-graph
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and not on states in the correspondingMDP. Then, the number of implemented policies
can be reduced but the same MDP algorithms can still be used in order to compute
Pareto optimal policies.
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Barbarosoǧlu G, ArdaY (2004)A two-stage stochastic programming framework for transportation planning
in disaster response. J Oper Res Soc 55(1):43–53

Bertsekas DP (2005) Dynamic programming and optimal control, vol I. Athena Scientific, Belmont
Bertsekas DP (2007) Dynamic programming and optimal control, vol II. Athena Scientific, Belmont
Bouyer P, González M, Markey N, Randour M (2018) Multi-weighted Markov decision processes with

reachability objectives. In: Andrea O, Martin Z (eds) Proceedings ninth international symposium on
games, automata, logics, and formal verification, GandALF 2018, Saarbrücken, Germany, 26–28th
September 2018, volume 277 of EPTCS, pp 250–264

Buchholz P, Felko I (2015) PH-graphs for analyzing shortest path problems with correlated traveling times.
Comput OR 59:51–69

Buchholz P, Hahn EM, Hermanns H, Zhang L (2011) Model checking algorithms for CTMDPs. In: CAV
2011, USA, pp 225–242

Buchholz P, Kriege J, Felko I (2014) Input modeling with phase-type distributions and Markov models:
theory and applications. Springer briefs in mathematics. Springer, Berlin

Buchholz P, Dohndorf I, Scheftelowitsch D (2017) Optimal decisions for continuous time Markov decision
processes over finite planning horizons. Comput OR 77:267–278

Budd JK (2016) Modelling credit card usage for individual card-holders. Ph.D. thesis, The University of
Melbourne, Melbourne, Australia

Chatterjee K, Majumdar R, Henzinger TA (2006) Markov decision processes with multiple objectives. In:
Bruno D, Wolfgang T (eds) STACS 2006, 23rd annual symposium on theoretical aspects of computer
science, Marseille, France, February 23–25, 2006, proceedings, volume 3884 of lecture notes in
computer science, pp 325–336. Springer

Diaz JL, Garcia DF, Kim K, Lee C-G, Lo BL, Lopez JM, Min SL, Mirabella O (2002) Stochastic analysis
of periodic real-time systems. In: 23rd IEEE real-time systems symposium, 2002. RTSS 2002, pp
289–300

Dohndorf I (2017) Stochastic graph models with phase type distributed edge weights. Ph.D. thesis, TU
Dortmund, Dortmund, Germany

Eisenstat D (2010) Random road networks: the quadtree model. CoRR, arXiv:1008.4916
Fan YY, Kalaba RE, Moore JE (2005a) Shortest paths in stochastic networks with correlated link costs.

Comput Math Appl 49(9–10):1549–1564
Fan YY, Kalaba RE, Moore JE II (2005b) Arriving on time. J Optim Theory Appl 127(3):497–513
Forejt V, Kwiatkowska MZ, Norman G, Parker D, Qu H (2011) Quantitative multi-objective verification

for probabilistic systems. In: Abdulla PA, Leino KRM (eds) Tools and algorithms for the construction
and analysis of systems: 17th international conference, TACAS 2011, volume 6605 of lecture notes
in computer science, pp 112–127. Springer

Ghosh MK (1990) Markov decision processes with multiple costs. Op. Res. Lett. 9(4):257–260
Ji Z, Kim YS, Chen A (2011) Multi-objective alpha-reliable path finding in stochastic networks with

correlated link costs. Expert Syst Appl 38(3):1515–1528

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1008.4916


Amulti-objective approach for PH-graphs with applications… 177

Koenig M, Meissner J (2015) Value-at-risk optimal policies for revenue management problems. Int J Prod
Econ 166:11–19

Li G, Zhang Q, Feng Z (2016) Research on optimal path of data migration among multisupercomputer
centers. Sci Program 2016:5018213:1–5018213:8

Manolache S, Eles P, Peng Z (2002) Schedulability analysis of multiprocessor real-time applications with
stochastic task execution times. In: Pileggi LT,KuehlmannA (eds) Proceedings of the 2002 IEEE/ACM
international conference on computer-aided design, ICCAD 2002, San Jose, California, USA, Novem-
ber 10–14, 2002. ACM/IEEE Computer Society, pp 699–706

Miller BL (1968) Finite state continuous time Markov decision processes with a finite planning horizon.
SIAM J Control 6(2):266–280

Nahapetyan AG (2009) Bilinear programming. In: Floudas CA, Pardalos PM (eds) Encyclopedia of opti-
mization, 2nd edn. Springer, Berlin, pp 279–282

Nain P, Towsley D (2016) File dissemination in dynamic graphs: the case of independent and correlated
links in series. TOMPECS 2(1):4:1–4:23

Neuts MF (1979) A versatile Markovian point process. J Appl Probab 16:764–779
Neuts Marcel F (1981) Matrix geometric solutions in stochastic models: an algorithmic approach. Dover

Publications Inc., New York
Nie YM, Wu X (2009) Reliable a priori shortest path problem with limited spatial and temporal dependen-

cies. In: LamW,Wong S, Lo H (eds) Transportation and traffic theory 2009: Golden Jubilee, chapter 9.
Springer, Boston, pp 169–195

Nikolova E, Karger DR (2008) Route planning under uncertainty: the canadian traveller problem. In: Fox
D, Gomes CP (eds) Proceedings of the twenty-third AAAI conference on artificial intelligence, AAAI
2008, Chicago, Illinois, USA, July 13–17, 2008. AAAI Press, pp 969–974

Nikolova E, Brand M, Karger DR (2006) Optimal route planning under uncertainty. In: Long D, Smith SF,
Borrajo D, McCluskey L (eds) Proceedings of the sixteenth international conference on automated
planning and scheduling, ICAPS 2006, Cumbria, UK, June 6–10, 2006. AAAI, pp 131–141

Puterman ML (2005) Markov decision processes. Wiley, New York
Randour M, Raskin JF, Sankur O (2015) Variations on the stochastic shortest path problem. In: Souza DD,

Lal A, Larsen KG (eds) Verification. Model checking, and abstract interpretation (VMCAI). Volume
8931 of lecture notes in computer science. Springer, Berlin, pp 1–18

Rezvanian A, Reza Meybodi M (2016) Stochastic graph as a model for social networks. Comput Hum
Behav 64:621–640

Roijers DM, Vamplew P, Whiteson S, Dazeley R (2013) A survey of multi-objective sequential decision-
making. J Artif Intell Res 48:67–113

Roijers DM, Scharpff J, Spaan MTJ, Oliehoek FA, de Weerdt M, Whiteson S (2014a) Bounded approxima-
tions for linear multi-objective planning under uncertainty. In: Chien SA, Do MB, Fern A, Ruml W
(eds) Proceedings of the twenty-fourth international conference on automated planning and scheduling,
ICAPS 2014, Portsmouth, New Hampshire, USA, June 21–26, 2014

Roijers DM, Whiteson S, Oliehoek FA (2014b) Linear support for multi-objective coordination graphs. In:
AAMAS ’14, Paris, France, pp 1297–1304

Roijers DM, Whiteson S, Oliehoek FA (2015) Computing convex coverage sets for faster multi-objective
coordination. J Artif Intell Res 52:399–443

Samaranayake S, Blandin S, BayenA (2012) A tractable class of algorithms for reliable routing in stochastic
networks. Transp Res C Emerg Technol 20(1):199–217

Serfozo RF (1979) An equivalence between continuous and discrete time Markov decision processes. Oper
Res 27(3):616–620

Sherali HD, Alameddine A (1992) A new reformulation-linearization technique for bilinear programming
problems. J Glob Optim 2(4):379–410

Wakuta K, TogawaK (1998) Solution procedures for multi-objectiveMarkov decision processes. Optimiza-
tion 43(1):29–46

White DJ (1982) Multi-objective infinite-horizon discountedMarkov decision processes. J Math Anal Appl
89(2):639–647

Zhang Y, Jun Y, Wei G, Lenan W (2010) Find multi-objective paths in stochastic networks via chaotic
immune PSO. Expert Syst Appl 37(3):1911–1919

123



178 P. Buchholz, I. Dohndorf

Zhaowang J, Anthony C, Subprasom K (2004) Finding multi-objective paths in stochastic networks: a
simulation-based genetic algorithm approach. In: Proceedings of the 2004 congress on evolutionary
computation (IEEE Cat. No. 04TH8753), vol 1, pp 174–180

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A multi-objective approach for PH-graphs with applications to stochastic shortest paths
	Abstract
	1 Introduction
	2 PH-graphs
	3 Optimization of the scalarized multi-objective problem
	4 Solving multi-objective PH-graphs
	5 Examples
	6 Conclusions
	References




