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Abstract

Based on accelerated lifetime experiments, we consider the problem of con-
structing prediction intervals for the time point at which a given number of
components of a load-sharing system fails. Our research is motivated by lab
experiments with prestressed concrete beams where the tension wires fail suc-
cessively. Due to an audible noise when breaking, the time points of failure
could be determined exactly by acoustic measurements. Under the assumption
of equal load sharing between the tension wires, we present a model for the fail-
ure times based on a birth process.Weprovide amodel check based on aQ-Qplot
including a simulated simultaneous confidence band and four simulation-free
prediction methods. Three of the prediction methods are given by confidence
setswhere two of themare based on classical tests and the third is based on a new
outlier-robust test using sign depth. The fourth method uses the implicit func-
tion theorem and the 𝛿-method to get prediction intervals without confidence
sets for the unknown parameter. We compare these methods by a leave-one-out
analysis of the data on prestressed concrete beams.Moreover, a simulation study
is performed to discuss advantages and drawbacks of the individual methods.
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1 INTRODUCTION

We consider J load-sharing systems that are exposed to different initial stress conditions s1, … , sJ. Each system consists
of I components, and the external load of the system is equally distributed over all working components. In particular,
the stress of a working component increases if other components have failed. This is also known as load redistribution
with equal load-share rule. A system fails if a critical number Ic ≤ I of its components fails. We assume that the time
points of component failures are observed up to Ij ≤ I for j = 1, … , J. Our aim is to provide prediction intervals for the
time point that Ic components have failed in a new system exposed to a specific initial stress s0. The initial stress of the
new system, for which the prediction should be done, can be much lower than the initial stress of observed systems, that
is, s0 < min{s1, … , sJ}. Hence, we consider the problem of accelerated lifetime experiments.
Our research is motivated by experiments with prestressed concrete beams with I = 35 tension wires that are exposed

to cyclic loading. In this case, the stress on the beam is periodically increased/decreased between two fixed values. The
difference between these two values is called stress range and takes the role of the load/stress sj in our model. Other
examples1 of equal load-sharing system include systems of electrical components or batteries in a parallel arrangement.
Our experimental setting is different from the situation of systems of I independent components often considered in

reliability analysis and usually called k-out-of-n systems with k = Ic and n = I in our notation. In such situations, the life-
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times of the components can be assumed to be independent and identically distributed. For several lifetime distributions,
prediction intervals for the time of the Icth failure are constructed if I0 < Ic ≤ I failures of I components were observed.
This is usually done by predicting the Icth-order statistic based on the I0th-order statistic.2-4 Nordman and Meeker5 also
construct a prediction interval for the additional number of failures in the I components at time tw based on the number
of failures at time t < tw.
According to our knowledge, prediction intervals for load-sharing systems have not been derived up to now. Even

load-sharing systems exposed to different initial load conditions are not treated, although several results for identi-
cally distributed load-sharing systems have been published recently. Most of these results are based on sequential order
statistics.6-11 Several approaches assume exponential or Weibull distribution12-17 or other parametric distributions18 for
the lifetime of the components or the time between successive failures. Semiparametric approaches are given by Kvam
and Peña1 and Deshpande et al.19 Kong and Ye use a cumulative exposure model20 as it was used in step-stress acceler-
ated life testing and provide a method21 for testing the exponential distribution for the time between successive failures.
Confidence sets for model parameters were derived for some special parametric models.12,15,22 Xu et al16 propose a test
for the mean time to failure in a load-sharing model with Weibull distribution.
In most of these approaches, I or Ic parameters must be estimated. This is only possible if the number I of components

and the number Ic of critical failures is not too large and several independent and identical systems under same conditions
can be observed. However, here we will consider systems with more than 30 components, and the systems are observed
under different stress conditions. To get reliable prediction intervals for the time that a critical number Ic of components
has failed, it is important to use a model with not too many unknown parameters to avoid overfitting.
There are some simple models with few parameters for identically distributed load-sharing systems based on Weibull

distribution13 and exponential distribution.15 To reduce complexity, we assume an exponential distribution for the times
between failures, but with the difference that we incorporate the different initial stress conditions by a link function. This
leads to nonlinear birth processes.
We present different methods for simulation-free prediction intervals for the time until the Icth failure (event) in a new

system under initial stress s0 when other systems exposed to different initial stress levels have been observed before. We
also include the possibility that some failures of the new system have already been detected.
Our approach is based on the fact that exponentially distributed interarrival times lead to failure times with a hypoexpo-

nential distribution and in particular the distribution function is known explicitly. However, a standard implementation
of this distribution function can become numerically instable, which can cause the implemented function to not bemono-
tone increasing and to take values above 1. Fortunately, there is an efficient and more stable algorithm for calculating the
hypoexponential distribution function.23 Hence, the quantiles of the failure time distribution can be computed efficiently
and only the uncertainty of the unknown model parameters needs to be incorporated.
A simple possibility to include this uncertainty is to use classical confidence sets for the parameters of generalized

linear models based on, for example, the Wald or the likelihood ratio test.24, pp. 409 Here, we propose two alternatives. One
alternative is based on the sign depth for getting outlier-robust confidence sets.25,26 Since all methods based on confidence
sets for the parameter vector have the shortcoming that they require a grid search or another form of candidate generation
to evaluate the respective test, we also use the 𝛿𝛿-method to construct confidence intervals for the quantiles of the predictive
distribution as a second alternative.
The paper is organized as follows. Section 2 introduces the model including the prediction problem and provides a

model check based on a Q-Q plot with a simulated simultaneous confidence band. Section 3 deals with the deriva-
tion of confidence sets. Section 3.1 summarizes classical confidence sets for the whole vector of model parameters and
one-dimensional aspects of the model parameters such as the quantiles of the predictive distribution. In particular, the
𝛿𝛿-method for asymptotic distributions is used to obtain confidence intervals for one-dimensional aspects of the model
parameters. Completely new outlier-robust confidence sets for the whole model parameter are derived in Section 3.2.
Section 4 contains the derivation of prediction intervals starting with the predictive distribution in Section 4.1. Numerical
problemswhen calculation the quantiles of this so-called hypoexponential distribution are also discussed here. Prediction
intervals based on confidence sets for the whole model parameter are given in Section 4.3 whereas predictions based on
confidence intervals for quantiles of the predictive distribution can be found in in Section 4.4. In Section 5, we apply the
model check and the different prediction methods to the data of experiments with prestressed concrete beams and com-
pare the performance of the prediction methods by cross-validation. A comparison via simulation is given in Section 6.
We summarize and discuss our results in Section 7. Appendix A.1 provides the mathematical foundations for getting the
classical confidence sets, Appendix A.2 for all proofs, and Appendix A.3 details about the R implementation.
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2 THE LOAD-SHARING MODEL AND THE PREDICTION PROBLEM

In this section, we provide the load-sharing model (Section 2.1), the prediction problem in the load-sharing model
(Section 2.2), and a model check of the load-sharing model (Section 2.3).

2.1 The load-sharing model
We assume that each system j = 0, 1, … , J has I components and that the failure times of the components of system j are
given by a point process 0 = T0,𝑗𝑗 < T1,𝑗𝑗 < T2,𝑗𝑗 < … < TI𝑗𝑗 ,𝑗𝑗 with Ij ≤ I, where Ij is the number of observed failures in the
jth system. It can be assumed that all these time points are different although, in reality, several failures may be observed
at the same time since the time is measured on a discrete scale. Let Wi,j = Ti,j − Ti−1,j and i ∈ N be the waiting times
(interarrival times) between the (i − 1)th and ith failures (events) and let

N𝑗𝑗(t) ∶= N𝑗𝑗
t ∶=

∞∑
i=1

𝟙𝟙[0,t](Ti,𝑗𝑗), t ≥ 0

be the corresponding counting process of the failures, where 𝟙𝟙[0,t](x) denotes the indicator function which equals one if
x ∈ [0, t].
Here, we assume that only the number of past failures (events)N𝑗𝑗

t− = lim𝜏𝜏↑tN𝑗𝑗
𝜏𝜏 influences the intensity of appearance of

a failure at time t. Hence, (N𝑗𝑗
t )t≥0 is a state dependent point process, that is, a birth process.

27, p. 95, 9628, p. 21, p. 95 In particular,
we regard nonlinear birth processes given by the intensity function

𝜆𝜆𝑗𝑗(t) ∶= h𝑗𝑗
(

I
I − N𝑗𝑗

t−

)
.

This implies that thewaiting timesWi+1,j and i = 0, 1, … , Ij−1 are independent and have an exponential distributionwith
parameter 𝜆𝜆𝑗𝑗i ∶= h𝑗𝑗 (I∕(I − i)). Since we aim to model several independent systems under different initial stress levels, we
incorporate the initial stress level sj by

𝜆𝜆𝑗𝑗i = 𝜆𝜆𝜽𝜽(i, s𝑗𝑗) ∶= h𝜽𝜽
(
s𝑗𝑗 ·

I
I − i

)
,

where h𝜽𝜽 is a given link function between stress and failure time and 𝜽𝜽 ∈ Θ ⊂ Rp is an unknown parameter. Hence, the
waiting times are independent and exponentially distributed with

Wi,𝑗𝑗 ∼ Exp(𝜆𝜆𝜽𝜽(i − 1, s𝑗𝑗)), i = 1, … , I𝑗𝑗 ≤ I, 𝑗𝑗 = 0, 1, … , J.

An example for the function h𝜽𝜽 is
h𝜽𝜽(x) ∶= exp (−𝜃𝜃1 + 𝜃𝜃2 ln(x)) (1)

with 𝜽𝜽 = (𝜃𝜃1, 𝜃𝜃2)⊤ ∈ Θ = R × [0,∞) so that the logarithm of the expected waiting time

log(E(Wi,𝑗𝑗)) = log
(

1
𝜆𝜆𝜽𝜽(i − 1, s𝑗𝑗)

)
= 𝜃𝜃1 − 𝜃𝜃2 ln

(
s𝑗𝑗 ·

I
I − (i − 1)

)

is strictly decreasing in sj and i. It is the often used linear link function proposed by Basquin.29 However, other linear and
nonlinear link functions are possible.
Our model is different from the linear birth process given by intensity 𝜆𝜆i = i𝜆𝜆 for fatigue accumulation mentioned

by Sobczyk and Spencer.30, p.112 However, for load redistribution, our model is very reasonable since the failure of 𝛼𝛼I
components increases the individual load on each of the remaining (1 − 𝛼𝛼)I components by a factor of 1∕(1 − 𝛼𝛼). Hence,
the load increases nonlinearly. Note that this load-sharing rule has previously been used12,31 but without the function h.
The Basquin link was also used by Kong and Ye15 for load-sharing models based on exponentially distributed lifetimes of
the components. We are aware that our model does not include damage accumulation and aging. This is only possible by
more general self-exciting point processes that canmodel damage accumulation and aging via intensity functions that are
not constant between failures, see Section 7. However, this makes the derivation of simulation-free prediction intervals
difficult. In particular, only exponential waiting times yield aMarkov process.32, Theorem 8.2.9 Moreover, we have fairly small
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datasets in mind (see Section 5), which always bears the risk of overfitting if models with too many model parameters are
used. Hence, we keep the model as simple as possible. However, we provide a model check in Section 2.3. The results for
the real data set in Section 5 indicate that this model is realistic enough to provide good prediction intervals.

2.2 The prediction problem
The aim of this article is to provide prediction intervals for the time at which a critical number Ic of the I components has
failed. Depending on the application, Ic could be I but a smaller value is possible as well, for example, if the stability of the
system cannot be guaranteed after a certain number of component failures. Moreover, the number Ij of observed compo-
nent failures in experiment j is not restricted to be exactly Ic. A smaller value Ij < Ic usually appears if the corresponding
experiment lasts too long and thus is stopped due to time/cost limitations. Larger values Ij > Ic are possible if Ic is only
the minimum number of failures for which some safety condition of the system is not ensured.
The predictions are based on observations from previous experiments as well as potentially a certain number of com-

ponent failures in the current system for which a prediction is made. More precisely, we observe realizations wi,j of the
random variablesWi,j, i = 1, … , Ij, and j = 1, … , J, from J different systems and eventually additional realizations wi,0 of
the random variablesWi,0, i = 1, … , I0, from a new system. For the new system, I0 is smaller than Ic and is set equal to 0
if no failure of the new process was observed. In particular,w1,0, … ,wI0,0 are already realizations of the random variables
W1,0, … ,WI0,0 while the random variablesWI0+1,0, … ,WIc,0 will be realized in future. The aim is to predict

w1,0 + … + wI0,0 +WI0+1,0 + … +WIc,0, Ic > I0, (2)

that is, the time up to the failure of the Icth component of the new system. Note that it is sufficient to predict WI0+1,0 +
… +WIc,0 since this immediately* yields a prediction interval for (2). To quantify the uncertainty of a point prediction,
we derive prediction intervals in Section 4 based on confidence sets.

2.3 A model check
Although there are many tests for checking the exponential distribution for i.i.d. variables,33 the problem of check-
ing the exponential distribution for variables that are not identically distributed is challenging. Kong and Ye21 provides
a goodness-of-fit test for their approach of a load sharing model with exponentially distributed lifetimes. Since any
goodness-of-fit test has the disadvantage of a 0-1 decision of rejecting or not rejecting the null hypotheses, we present
here a model check via a Q-Q plot including a simulated simultaneous 90%-confidence band.
Since the waiting times are not identically distributed, this requires some kind of standardization first: The sample

quantiles in the Q-Q plot are taken from the rescaled waiting times

W̃i,𝑗𝑗 = 𝜆𝜆𝜽̂𝜽(i − 1, s𝑗𝑗) ·Wi,𝑗𝑗 , (3)

where 𝜽̂𝜽 is the maximum likelihood estimator for 𝜽𝜽 and the rates are chosen according to the Basquin model, that is,

𝜆𝜆𝜽𝜽(i − 1, s𝑗𝑗) = e−𝜃𝜃1 ·
( s𝑗𝑗I
I − (i − 1)

)𝜃𝜃2
for 𝜽𝜽 = (𝜃𝜃1, 𝜃𝜃2) ∈ R × [0,∞). (4)

Note that ifWi,j is distributed according to ourmodel and the truemodel parameter is 𝜽𝜽, then 𝜆𝜆𝜽𝜽(i−1, s𝑗𝑗) ·Wi,𝑗𝑗 ∼ Exp(1).
Hence, W̃i,𝑗𝑗 should have a distribution close to Exp(1) if 𝜽̂𝜽 is a consistent estimator for 𝜽𝜽.
We will discuss our approach for deriving a simultaneous confidence band in the following more general framework.

Consider independent random variablesW1(𝜽𝜽), … ,WN(𝜽𝜽) from the parametric model

Wn(𝜽𝜽) ∼ Exp(𝜆𝜆n(𝜽𝜽)), n = 1, … ,N,

*the conditionW1,0 + … +WI0 ,0 = w1,0 + … + wI0 ,0 can be disregarded sinceWi,0, i = 1, … , I, are independent by assumption
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with 𝜽𝜽 ∈ Θ ⊂ Rp, p ≥ 1 and 𝜆𝜆n ∶ 𝛩𝛩 → (0,∞), where N is the number of observations (here N ∶= N( J) ∶=
J∑

𝑗𝑗=0
I𝑗𝑗).

Suppose that the rates satisfy
𝜆𝜆n(𝜽𝜽)
𝜆𝜆n(𝜽̃𝜽)

= hn(𝜽𝜽 − 𝜽̃𝜽), n = 1, … ,N (5)

for all 𝜽𝜽, 𝜽̃𝜽 ∈ Θ and some function hn ∶ Rp → R. Note that condition (5) is satisfied for the Basquin model given by (4).
We first observe that a rescaling with the maximum likelihood estimation (MLE) of 𝜽𝜽 leads to a distribution that does not
depend on the model parameter anymore, hence allowing us to fix 𝜽𝜽 to any value in the subsequent analysis. Note that
this was already observed for i.i.d. exponentially distributed random variables,34 in which case the MLE is given by the
inverse of the sample mean.

Lemma 1. Let 𝜽̂𝜽(𝜽𝜽) denote the MLE for 𝜽𝜽 based on the data (W1(𝜽𝜽), … ,WN(𝜽𝜽)) and

W̃n(𝜽𝜽) ∶= 𝜆𝜆n(𝜽̂𝜽(𝜽𝜽)) ·Wn(𝜽𝜽), n = 1, … ,N.

If 𝜆𝜆n(𝜽𝜽) satisfies (5), then the distribution of (W̃1(𝜽𝜽), … , W̃N(𝜽𝜽)) does not depend on 𝜽𝜽, that is,

(W̃1(𝜽𝜽), … , W̃N(𝜽𝜽))
d
=(W̃1(𝜽̃𝜽), … , W̃N(𝜽̃𝜽)) for all 𝜽𝜽, 𝜽̃𝜽 ∈ Θ.

Computing the confidence band. The confidence band is based on an adaptation of the Kolmogorov-Smirnov test
to the rescaled random variables in (3). To this end, fix an arbitrary parameter 𝜽𝜽 (the chosen parameter is irrelevant
according to Lemma 1). Let M be the number of simulations used to determine the confidence band, that is, consider
random variables

Xn,m ∶= W̃n,m(𝜽𝜽) ∶= 𝜆𝜆n(𝜽̂𝜽m(𝜽𝜽)) ·Wn,m(𝜽𝜽), n = 1, … ,N, m = 1, … ,M,

where (W1,m(𝜽𝜽), … ,WN,m(𝜽𝜽)),m = 1, … ,M, are independent copies of (W1(𝜽𝜽), … ,WN(𝜽𝜽)) and 𝜽̂𝜽m(𝜽𝜽) is the ML estimate
for𝜽𝜽 based onW1,m(𝜽𝜽), … ,WN,m(𝜽𝜽). Let x1,m, … , xN,m be realizations ofX1,m, … ,XN,m and let x(1),m, … , x(N),m denote their
order statistic form = 1, … ,M. Furthermore, let Fm denote the empirical distribution function of x1,m, … , xN,m, that is,

Fm(x) ∶=
1
N

N∑
n=1

𝟙𝟙[0,x](xn,m), x ≥ 0, m = 1, … ,M.

Let F(x) = 1 − e−x, x ≥ 0 denote the distribution function of Exp(1) and qn the
n

N+1
-quantile of this distribution. Let

||𝑓𝑓 ||∞ = supt∈[0,∞)|𝑓𝑓 (t)| denote the sup norm of a function 𝑓𝑓 ∶ [0,∞) → R. Note that since F is increasing and Fm is
piecewise constant, x → Fm(x) − F(x) is a monotone decreasing function between two consecutive jumps of Fm (note
that this difference might change from positive to negative and thus the absolute difference x → |Fm(x) − F(x)| is not a
monotone function). Hence, the absolute value of this difference attains its global maximum at the beginning or end of a
jump, that is, if a < b are two consecutive jumps of Fm, then

sup
x∈[a,b)

|Fm(x) − F(x)| = max
{
lim
x↑b

|Fm(x) − F(x)|, |Fm(a) − F(a)|
}

,

where lim
x↑b

denotes the limit to b from below. Since jumps of Fm occur at x(1),m, … , x(N),m and since Fm(x(n),m) = n∕N and

lim
x↑x(n),m

Fm(x) = (n − 1)∕N, we therefore obtain

||Fm − F||∞ = max

{
limsup
x→xn,m

|Fm(x) − F(x)|; n = 1, … ,N

}

= max
{
max

{||||
n − 1
N

− F(x(n),m)
|||| ,

||||
n
N

− F(x(n),m)
||||

}
; n = 1, … ,N

}
.
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Finally, let c0.90 be the empirical 90%-quantile of ||F1 − F||∞, … , ||FM − F||∞. Then, the simulated simultaneous
90%-confidence band for the Q-Q plot is the smallest band containing all the points in

{
(q1, x(1),m), … , (qN , x(N),m); m with ||Fm − F||∞ ≤ c0.90

}
.

More formally, the upper bound of the confidence band is a linear interpolation of the points
(q1,max

m∈A
x(1),m), … , (qN ,max

m∈A
x(N),m) where A = {m; ||Fm − F||∞ ≤ c0.90}. The lower bound of the band is obtained by

taking the minimum instead.

Remark 1. Note that X1,m, … ,XN,m are not identically distributed (their distributions only converge to Exp(1)). We
therefore determine the quantile c0.90 by simulation rather than taking the critical value of the Kolmogorov-Smirnov
test for the Exp(1) distribution.

3 CONFIDENCE SETS

Most of the prediction intervals in Section 4 are based on confidence sets for 𝜽𝜽. We will therefore discuss two classical
approaches as well as a new outlier-robust approach to derive such confidence sets in this section. Another prediction
approach in Section 4.4 is based on confidence intervals for the quantiles of the predictive distribution. Hence, we will
also provide a confidence interval for a one-dimensional aspect g(𝜽𝜽) of the parameter. As an overview, the following four
confidence sets/intervals are provided:

(a) A classical confidence set for 𝜽𝜽 based on the Wald test (6) in Section 3.1.
(b) A classical confidence set for 𝜽𝜽 based on the likelihood-ratio test (8) in Section 3.1.
(c) A confidence interval (9) for a one-dimensional aspect g(𝜽𝜽), g ∶ Θ → R, in Section 3.1.
(d) A new outlier-robust confidence set for 𝜽𝜽 based on sign depth (10) in Section 3.2.

Note that the sets in (a) to (c) are affected quite a lot by outliers in the data, that is, by observations that are atypically
small or large.Method (d) provides an alternative that is less sensitive to such outliers but has the disadvantage of yielding
a larger confidence set, in particular for small sample sizes. Hence, an appropriate confidence set from (a) to (d) should
be chosen based on whether outliers are likely to occur in the application.

3.1 Classical confidence sets for the whole parameter and for functions of the parameter
Since we assume that the waiting times (interarrival times) Wi,j are independent for i = 1, … , Ij and j = 0, 1, … , J and
have an exponential distribution with parameter 𝜆𝜆𝜃𝜃(i − 1, sj), we can easily derive a maximum likelihood estimator 𝜽̂𝜽 for
𝜽𝜽 by

𝜽̂𝜽 = argmax
𝜃𝜃

J∏
𝑗𝑗=0

I𝑗𝑗∏
i=1

𝑓𝑓𝜆𝜆𝜽𝜽(i−1,s𝑗𝑗 )(wi,𝑗𝑗),

where f𝜆𝜆(w) denotes the density of the exponential distribution with parameter 𝜆𝜆 and wi,j is the realization ofWi,j for all
i, j. A classical (1 − 𝛼𝛼)-confidence set for the whole parameter vector 𝜽𝜽 based on this maximum likelihood estimator 𝜽̂𝜽 is
given by

{
𝜽𝜽; (𝜽̂𝜽 − 𝜽𝜽)⊤I(𝜽̂𝜽) (𝜽̂𝜽 − 𝜽𝜽) ≤ 𝜒𝜒2

p,1−𝛼𝛼

}
, (6)

where

I(𝜽𝜽) ∶=
J∑

𝑗𝑗=0

I𝑗𝑗∑
i=1

1
𝜆𝜆𝜽𝜽(i − 1, s𝑗𝑗)2

.
𝝀𝝀𝜽𝜽(i − 1, s𝑗𝑗)

.
𝝀𝝀𝜽𝜽(i − 1, s𝑗𝑗)⊤ with

.
𝝀𝝀𝜽𝜽(i, s) ∶=

𝜕𝜕
𝜕𝜕𝜽𝜽

𝜆𝜆𝜽𝜽(i, s) (7)

is the information matrix, 𝜒𝜒2
p,1−𝛼𝛼 denotes the (1 − 𝛼𝛼)-quantile of the 𝜒𝜒2-distribution with p degrees of freedom and p is

the dimension of the model parameter, that is, 𝜽𝜽 ∈ Rp. The related test is widely known as the Wald test.37, p. 349 Another
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classical (1 − 𝛼𝛼)-confidence set for 𝜽𝜽 based on the likelihood-ratio test35, pp. 459-461 is given by

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝜽𝜽; −2 ln

⎛
⎜
⎜
⎜
⎜
⎜
⎜⎝

J∏
𝑗𝑗=0

I𝑗𝑗∏
i=1

𝑓𝑓𝜆𝜆𝜽𝜽(i−1,s𝑗𝑗 )(wi,𝑗𝑗)

J∏
𝑗𝑗=0

I𝑗𝑗∏
i=1

𝑓𝑓𝜆𝜆𝜽̂𝜽(i−1,s𝑗𝑗 )(wi,𝑗𝑗)

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎠

≤ 𝜒𝜒2
p,1−𝛼𝛼

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

. (8)

This is sometimes easier to calculate than the information-based confidence set given by (6) since no informationmatrix
is needed. However, since the confidence set (6) is an ellipsoid, the computation of the set (8) usually takes more time
than the computation of the set (6).

Remark 2. Note that the confidence sets (6) and (8) shrink to the true 𝜽𝜽 for N ∶= N( J) ∶=
J∑

𝑗𝑗=0
I𝑗𝑗 → ∞ if 𝛼𝛼 is constant.

This happens as well if 𝛼𝛼 is replaced by 𝛼𝛼(N) depending on N as long as 𝜒𝜒2
p,1−𝛼𝛼(N)

1
N
converges to zero. In particular,

𝛼𝛼(N) itself can converge to zero.

If g(𝜽𝜽)with g ∶ Θ → R is a one-dimensional aspect of 𝜽𝜽, then a classical (1− 𝛼𝛼)-confidence interval for g(𝜽𝜽) is given by

[
g(𝜽̂𝜽) − qN1−𝛼𝛼∕2

√
.g(𝜽̂𝜽)⊤I(𝜽̂𝜽)−1 .g(𝜽̂𝜽), g(𝜽̂𝜽) + qN1−𝛼𝛼∕2

√
.g(𝜽̂𝜽)⊤I(𝜽̂𝜽)−1 .g(𝜽̂𝜽)

]
, (9)

using the 𝛿𝛿-method for asymptotic distributions where .g(𝜽𝜽) ∶= 𝜕𝜕
𝜕𝜕𝜽𝜽
g(𝜽𝜽) and qN𝛼𝛼 is the 𝛼𝛼-quantile of the standard normal

distribution. Similarly, one-sided confidence intervals for g(𝜃𝜃) can be constructed by using the (1− 𝛼𝛼)-quantile instead of
qN1−𝛼𝛼∕2 and by replacing one of the interval boundaries with infinity.

Remark 3. Again, as in Remark 2, 𝛼𝛼 may depend on the sample size N = N(J) via 𝛼𝛼(N). Then, the confidence interval
for g(𝜽𝜽) shrinks to the true value g(𝜽𝜽) for N → ∞ as long as qN1−𝛼𝛼(N)∕2

√
1
N
converges to zero.

For the derivation of the confidence sets (6), (8), and (9), see Appendix A.1. In particular, the confidence sets keep the

nominal level of 1 − 𝛼𝛼 only asymptotically for growing sample size N =
J∑

𝑗𝑗=0
I𝑗𝑗 if some simple asymptotic requirements

on the design dJ ∶= ((1, s0), … , (I0, s0), … , (1, sJ), … , (IJ , sJ)) with growing sample size N hold. Note that, ideally in
applications, the stress levels s0, … , sJ and observed numbers of failures I0, … , IJ should be chosen in such a way that the
information matrix I(𝜽̂𝜽) leads to the smallest possible confidence set in 6. In particular, the information matrix should
not be singular in order to avoid an unbounded set. For the Basquin model (4) considered here, this is ensured if there
are at least observations (failures) at two different initial stress levels si ≠ sj and preferably the distance between these
two stress levels should be large. However, the maximal and minimal feasible choice for the stress levels usually depends
on the underlying experiment since very small choices for sj result in extremely long and therefore cost-inefficient failure
times whereas very large choices for sj may result in immediate failures or at least failure times that are too short to be
recorded. Hence, in applications, typically an adaptive choice of the initial stress levels starting with some larger stress
levels is used. In case of the application considered in this paper, the chosen initial stress levels are listed in Figure 1 in the
chronological order they were used in the experiments. Note that these choices were made adaptively based on the time
span of the previous experiments. In particular, we did not attempt to optimize them in terms of the resulting information
matrix.

3.2 New confidence sets for the parameter based on sign depth
Data depth is a possibility to generalize the outlier-robust median of univariate data tomore complex situations. In partic-
ular, simplicial regression depth can be used for getting outlier-robust tests for hypotheses in general regressionmodels.38
Simplicial regression depth leads to (p + 1)-sign depth for many regression models if the unknown regression parameter
is p-dimensional.26 The (p+ 1)-sign depth is the relative number of subsets with p+ 1 observations with alternative signs
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FIGURE 1 Logarithmic waiting times between the breaks of all
experiments with pointwise 90%-prediction interval for the next wire
break using data depth and the 𝛿𝛿-method [Colour figure can be
viewed at wileyonlinelibrary.com]

of residuals. To define sign depth here, set N ∶= N(J) and

w∗ ∶=
(
w1,0, … ,wI0,0, … ,w1,J , … ,wIJ ,J

)⊤ ∈ RN ,

s∗ ∶=
(
s0, s0

I
I − 1

, … , s0
I

I − (I0 − 1)
, … , sJ , sJ

I
I − 1

, … , sJ
I

I − (IJ − 1)

)⊤

∈ RN .

To determine alternating signs of residuals, an ordering of the explanatory variables is needed. Therefore, let s̃ ∶=
(s̃1, … , s̃N)⊤ be the vector obtained by sorting s* in ascending order and let w̃ ∶= (w̃1, … , w̃N)⊤ be the corresponding
vector obtained from w* when applying the same permutation as used for s̃. If some initial stress levels are equal, then
some of the components of s̃ are equal so that it is unclear how to order the corresponding observations in w̃. Each time
when this happens, competing observations are ordered randomly, independently from the other cases where this hap-
pens. SinceWi,j are exponentially distributedwith parameter 𝜆𝜆𝜽𝜽(i−1, sj) for j = 0, … , J, i = 1, … , Ij, themedian is ln(2)

𝜆𝜆𝜽𝜽(i−1,s𝑗𝑗 )
.

Then, the residuals

rn(𝜽𝜽) ∶= w̃n −
ln(2)
h𝜽𝜽(s̃n)

, n = 1, … ,N

are realizations of independent random variables Rn(𝜽𝜽), which have a median zero if 𝜽𝜽 is the true parameter. Setting
z* = (z1, … , zN)⊤ with zn = (s̃n, w̃n)⊤, the (p + 1)-sign depth is defined as

dS(𝜽𝜽, z∗) =
1(
N
p+1

)
∑

1≤n1<n2<…<np+1≤N

(p+1∏
k=1

𝟙𝟙
{
rnk (𝜽𝜽)(−1)

k > 0
}
+

p+1∏
k=1

𝟙𝟙
{
rnk (𝜽𝜽)(−1)

k+1 > 0
}
)
.

A parameter 𝜽𝜽 is appropriate for a data set z* if its sign depth is not smaller than the 𝛼𝛼-quantile of the distribution of
the sign depth. The distribution can be determined exactly for small sample sizes since only 2N different realizations of
the signs are possible almost surely for a continuous distribution of the residuals. However, for larger samples sizes, an
asymptotic distribution is needed. These asymptotic distributions are known25,39 for p = 1 and for p = 2. They are given in
these papers for autoregressive models, but they also hold for other regressionmodels since only the signs of the residuals
are used. There is ongoing research to derive the asymptotic distribution for p > 2. Alternatively, simplified versions of
the sign depth as proposed by Kustosz et al26 can be used for p > 2. However, we do not recommend using the simplified
version since it usually leads to much larger confidence sets.
Having an 𝛼𝛼-quantile q𝛼𝛼 of the distribution of the sign depth, a (1 − 𝛼𝛼)-confidence set based on sign depth is given by

{𝜃𝜃; dS(𝜃𝜃𝜃 z∗) ≥ q𝛼𝛼}. (10)

Note that tests based on (p + 1)-sign depth are generalizations of the classical sign test since they are equivalent to the
classical sign test for p = 1. Hence, they are outlier-robust. However, previous results25,26 indicate that tests based on
(p + 1)-sign depth with p ≥ 2 are much more powerful than the classical sign test.
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4 PREDICTION INTERVALS

This section contains several different approaches to construct asymptotic (1 − 𝛼𝛼)-prediction intervals Îpred(W∗) for
the time W ∶= WI0+1,0 + … + WIc,0 between the I0th and the Icth failure based on the waiting times W∗ ∶=
(W1,0, … ,WI0,0, … ,W1,J , … ,WIJ ,J) observed so far. More formally, Îpred(W∗) is an interval computed based onW* such
that

lim
J→∞

P𝜽𝜽(W ∈ Îpred(W∗)) ≥ 1 − 𝛼𝛼𝛼 for all 𝜽𝜽 ∈ Θ. (11)

Such prediction intervals usually require knowledge about the predictive distribution, that is, the distribution of the
future random variableW. Hence, the cumulative distribution function and the quantiles ofW are given in Section 4.1.
Afterwards, the following prediction intervals are presented:

(a) Naive/Plug-in prediction intervals (14) based on a maximum likelihood estimator for 𝜽𝜽 (Section 4.2).
(b) Prediction intervals (15) based on a confidence set for 𝜽𝜽 computed in one of the following ways (Section 4.3):

• Using the Wald test (6).
• Using the likelihood-ratio test (8).
• Using the outlier-robust sign depth (10).

(c) Prediction intervals (19) based on confidence intervals (9) for the quantiles of the predictive distribution
(Section 4.4).

Each prediction interval has its own advantages and disadvantages, which are highlighted in Sections 5 and 6. Most
notably, approach (a) provides the smallest prediction intervals but struggles to keep the nominal (1 − 𝛼𝛼)-coverage rate
unless the samples size is very large and no outliers occur in the data. Approach (b) based on the sign depth is the only
outlier-robust prediction presented in this paper and thus outperforms all other approaches in terms of coverage rate
whenever outliers appear frequently in the data. However, this approach often produces the largest prediction intervals
and can lead to very conservative predictions, in particular in applications where outlier-robustness is not needed. Finally,
approach (c) is computationally waymore efficient than (b) and also yields smaller prediction intervals while still keeping
the nominal (1 − 𝛼𝛼)-coverage rate in applications without outliers.

4.1 Predictive distribution of the failure times
If allWI0+1,0, … ,WIc,0 had the same exponential distribution, thenW would have a Gamma distribution and prediction
intervals could be constructed via known results for Gamma distributions. However, here 𝜆𝜆𝜽𝜽(I0, s0), … , 𝜆𝜆𝜽𝜽(Ic − 1, s0) are
pairwise different, and thereforeW has a hypoexponential distribution with density given by46

𝑓𝑓W ,𝜽𝜽(w) ∶=
Ic−1∑
i=I0

𝜆𝜆𝜽𝜽(i, s0) e−w 𝜆𝜆𝜽𝜽(i,s0) ai(𝜽𝜽) with ai(𝜽𝜽) ∶=
Ic−1∏

k=I0,k≠i

𝜆𝜆𝜽𝜽(k, s0)
𝜆𝜆𝜽𝜽(k, s0) − 𝜆𝜆𝜽𝜽(i, s0)

.

Hence, the cumulative distribution function is

FW ,𝜽𝜽(w) ∶=
Ic−1∑
i=I0

ai(𝜽𝜽)
(
1 − e−w 𝜆𝜆𝜽𝜽(i,s0)

)
. (12)

Expression (12) can be computed efficiently, see R package sdprisk.47 However, this implementation suffers from
numerical instability when 𝜆𝜆𝜽𝜽(I0, s0), … , 𝜆𝜆𝜽𝜽(Ic − 1, s0) do not differ much.48 Since this is often the case in our data, we
need a numerically more stable algorithm. This can be done by rewriting the cumulative distribution function using a
matrix exponential as follows:

FW ,𝜽𝜽(w) = 1 − e⊤1 exp(Dw)1Ic−I0 = 1 − e⊤1
∞∑
k=0

Dkwk

k!
1Ic−I0 , (13)
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where e1 = (1, 0, … , 0)⊤ is the first (Ic − I0) × 1 unit vector, 1Ic−I0 = (1, 1, … , 1)⊤ is an (Ic − I0) × 1 vector of ones, and

D =

⎛
⎜
⎜
⎜
⎜⎝

−𝜆𝜆𝜽𝜽(I0, s0) 𝜆𝜆𝜽𝜽(I0, s0) 0 … 0
0 −𝜆𝜆𝜽𝜽(I0 + 1, s0) 𝜆𝜆𝜽𝜽(I0 + 1, s0) … 0
⋮ ⋮ ⋱ ⋱ ⋮
0 … 0 −𝜆𝜆𝜽𝜽(Ic − 2, s0) 𝜆𝜆𝜽𝜽(Ic − 2, s0)
0 … 0 0 −𝜆𝜆𝜽𝜽(Ic − 1, s0)

⎞
⎟
⎟
⎟
⎟⎠

is a (Ic − I0) × (Ic − I0) matrix. An implementation23 of (13) is considerably more stable than the direct computation of

expression (12). The infinite series
∞∑
k=0

Dkwk

k!
1Ic−I0 is computed via the Matrix R package49 using Ward's diagonal Padé

approximation.
An 𝛼𝛼-quantile b𝛼𝛼(𝜽𝜽) of this distribution can only be given implicitly, namely as

H𝛼𝛼(𝜽𝜽, b𝛼𝛼(𝜽𝜽)) = 0 where H𝛼𝛼(𝜽𝜽, b) ∶=
Ic−1∑
i=I0

ai(𝜽𝜽)
(
1 − e−b 𝜆𝜆𝜽𝜽(i,s0)

)
− 𝛼𝛼

or equivalently

H𝛼𝛼(𝜽𝜽, b) = 1 − e⊤1
∞∑
k=0

Dkbk
k!

1Ic−I0 − 𝛼𝛼𝛼

4.2 Background and naive approach
Although there are many methods for getting prediction intervals for exponential and other univariate lifetime
distributions,2,40-43 not much has been published for accelerated lifetime experiments. Patel2 mentions only a pre-
diction interval for accelerated lifetime experiments with normal distribution, while Xiong and Milliken44 provide
simulation-based prediction intervals for exponentially distributed lifetimes for accelerated life testing. Hong and
Meeker45 provide a prediction method based on dynamic covariate information, but no prediction intervals are given.
Our (simulation-free) prediction intervals all require knowledge about the predictive distribution analyzed in

Section 4.1, that is, the distribution of the random variableW in (11). If the 𝛼𝛼-quantiles of this predictive distribution are
denoted by b𝛼𝛼(𝜃𝜃), then the so-called naive or plug-in prediction interval forW is given by

[
b𝛼𝛼∕2(𝜽̂𝜽), b1−𝛼𝛼∕2(𝜽̂𝜽)

]
, (14)

where 𝜽̂𝜽 = 𝜽̂𝜽(W∗) is any consistent estimator for 𝜽𝜽 such as the maximum likelihood estimator. This prediction interval
is popular among engineers due to its simplicity. While it yields good results for large sample sizes, small sample sizes
can lead to prediction intervals with a poor coverage rate.50 Therefore, we propose four more conservative approaches
for prediction intervals in Sections 4.3 and 4.4 below. These approaches can also be used in other situations where the
predicted variableW is independent of the observed random vectorW*.

4.3 Prediction intervals based on confidence sets for the model parameter
The first approach is based on confidence sets for 𝜽𝜽 like those given by (6), (8), and (10). Throughout the section, 𝛼𝛼(1)
and 𝛼𝛼(2) denote given error rates in (0, 1), representing the choice for 𝛼𝛼 in the confidence set and the choice for 𝛼𝛼 in the
quantiles of the predictive distribution. Note that we do not use the more common subscript notation 𝛼𝛼1 and 𝛼𝛼2 to avoid
double or triple subscripts in the formulas.

Theorem 1. If Ĉ𝛼𝛼(1)(W∗) is an asymptotic (1 − 𝛼𝛼(1))-confidence set for 𝜽𝜽, then the interval Î 1pred(W∗) given by

Î 1pred(W∗) ∶= ∪
𝜽𝜽 ∈Ĉ𝛼𝛼(1)(W∗)

[
b𝛼𝛼(2)∕2(𝜽𝜽), b1−𝛼𝛼(2)∕2(𝜽𝜽)

]
(15)

is an asymptotic (1 − 𝛼𝛼(1)) (1 − 𝛼𝛼(2))-prediction interval for W = WI0+1,0 + … +WIc,0.
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For the choice of 𝛼𝛼(1), providing the confidence set, and 𝛼𝛼(2), providing the interval for the future observation, see
Remark 4. Note that it is sometimes easier to work with the following larger prediction interval:

Î 1pred(W∗) ⊆
[
min{b𝛼𝛼(2)∕2(𝜽𝜽); 𝜽𝜽 ∈ Ĉ𝛼𝛼(1)(W∗)}, max{b1−𝛼𝛼(2)∕2(𝜽𝜽); 𝜽𝜽 ∈ Ĉ𝛼𝛼(1)(W∗)}

]
. (16)

All prediction intervals (based on confidence sets) in this article are computed via (16) rather than (15) to reduce the
computational effort. Note that both prediction intervals often coincide, for example, when the confidence set Ĉ𝛼𝛼(1)(W∗)
is connected and the mapping 𝜽𝜽 → b𝛼𝛼(𝜽𝜽) is continuous for every 𝛼𝛼.

4.4 Prediction intervals based on confidence intervals for quantiles
The construction of a confidence set Ĉ𝛼𝛼(1)(W∗) for 𝜽𝜽 is sometimes not that easy, in particular for high-dimensional param-
eters 𝜽𝜽. Therefore, it might be easier to base the prediction interval on confidence intervals of the quantiles b𝛼𝛼(𝜽𝜽) of the
predictive distribution. Since these confidence intervals are obtained with the 𝛿𝛿-method for asymptotic distributions, we
call such prediction intervals prediction intervals by the 𝜹𝜹-method. To this end, let

.
b𝛼𝛼(𝜽𝜽) ∶= 𝜕𝜕

𝜕𝜕𝜽𝜽
b𝛼𝛼(𝜽𝜽). The implicit function

theorem yields
.
b𝛼𝛼(𝜽𝜽) = −

(
𝜕𝜕
𝜕𝜕b̃
H𝛼𝛼(𝜽̃𝜽, b̃)

||||(𝜽̃𝜽,b̃)=(𝜽𝜽,b𝛼𝛼 (𝜽𝜽))

)−1 𝜕𝜕
𝜕𝜕𝜽̃𝜽
H𝛼𝛼(𝜽̃𝜽, b̃)

||||(𝜽̃𝜽,b̃)=(𝜽𝜽,b𝛼𝛼 (𝜽𝜽))
,

which can be calculated explicitly. Setting g(𝜽𝜽) = b𝛼𝛼(2)/2(𝜽𝜽) and g(𝜽𝜽) = b1−𝛼𝛼(2)/2(𝜽𝜽), respectively, Section 3.1 ensures that

[
b𝛼𝛼(2)∕2(𝜽̂𝜽) − v̂1, ∞

)
, v̂1 ∶= qN1−𝛼𝛼(1)∕2

√ .
b𝛼𝛼(2)∕2(𝜽̂𝜽)⊤I(𝜽̂𝜽)−1

.
b𝛼𝛼(2)∕2(𝜽̂𝜽) (17)

and (
−∞, b1−𝛼𝛼(2)∕2(𝜽̂𝜽) + v̂2

]
, v̂2 ∶= qN1−𝛼𝛼(1)∕2

√ .
b1−𝛼𝛼(2)∕2(𝜽̂𝜽)⊤I(𝜽̂𝜽)−1

.
b1−𝛼𝛼(2)∕2(𝜽̂𝜽), (18)

are one-sided
(
1 − 𝛼𝛼(1)

2

)
-confidence intervals for b𝛼𝛼(2)/2(𝜽𝜽) and b1−𝛼𝛼(2)/2(𝜽𝜽), respectively.

Theorem 2. Let v̂1 and v̂2 be as in (17) and (18). Then, the interval Î
2
pred(W∗) given by

Î 2pred(W∗) ∶=
[
b𝛼𝛼(2)∕2(𝜽̂𝜽) − v̂1, b1−𝛼𝛼(2)∕2(𝜽̂𝜽) + v̂2

]
(19)

is an asymptotic (1 − 𝛼𝛼(1)) (1 − 𝛼𝛼(2))-prediction interval for W = WI0+1,0 + … +WIc,0.

Note that b𝛼𝛼(𝜽𝜽) can be given explicitly if Ic = I0+ 1, that is, if we want to predict only the next component failure. Then,
we have

b𝛼𝛼(𝜽𝜽) = − ln(1 − 𝛼𝛼)
𝜆𝜆𝜽𝜽(I0, s0)

=
ln

(
1

1−𝛼𝛼

)

𝜆𝜆𝜽𝜽(I0, s0)
= ln

( 1
1 − 𝛼𝛼

)
g(𝜽𝜽)

with g(𝜽𝜽) = (𝜆𝜆𝜽𝜽(I0, s0))−1. By choosing

v̂ ∶= qN1−𝛼𝛼(1)∕2

√
.g(𝜽̂𝜽)⊤I(𝜽̂𝜽)−1 .g(𝜽̂𝜽),

one obtains a (1 − 𝛼𝛼(1)) (1 − 𝛼𝛼(2))-prediction interval Î 2pred(W∗) via

Î 2pred(W∗) =
[
ln

(
2

2 − 𝛼𝛼(2)

) (
g(𝜽̂𝜽) − v̂

)
, ln

(
2

𝛼𝛼(2)

) (
g(𝜽̂𝜽) + v̂

)]
.

Remark 4. All approaches of prediction intervals in Sections 4.3 and 4.4 lead to (1−𝛼𝛼(1)) (1−𝛼𝛼(2))-prediction intervals.
If the level of the prediction interval should be 1−𝛼𝛼, then 1−𝛼𝛼 = (1−𝛼𝛼(1)) (1−𝛼𝛼(2))must be satisfied. For small sample
sizes, a good choice is 𝛼𝛼(1) = 𝛼𝛼(2) so that 1− 𝛼𝛼 = (1− 𝛼𝛼(1))2. For larger sample sizes, it is better to choose 𝛼𝛼(1) smaller
than 𝛼𝛼(2) since confidence sets shrink to the true parameter if the sample size goes to infinity. As noted in the remarks
in Section 3.1, thismayhappen aswell if𝛼𝛼(1) converges to zero for growing sample size. Since 1−𝛼𝛼 = (1−𝛼𝛼(1)) (1−𝛼𝛼(2))
implies 𝛼𝛼(2) = 1− 1−𝛼𝛼

1−𝛼𝛼(1)
, a convergence of 𝛼𝛼(1) to zeromeans that 𝛼𝛼(2) converges to 𝛼𝛼. In such situations, the proposed

prediction intervals behave asymptotically like the so called naive or plug-in prediction interval given by (14).
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Remark 5. All confidence set based approaches typically lead to conservative prediction intervals, that is, the true
coverage rate is usually above the (1 − 𝛼𝛼) level the predictions are designed for. This is not surprising since these
prediction intervalswill have at least a (1−𝛼𝛼(2))-coverage rate† whenever the true parameter lieswithin the confidence
set. Even if this is not the case, the coverage ratewill often be fairly large simply due to the large intervals provided. The
same is also true for predictions based on the 𝛿𝛿-method although these prediction intervals are usually a bit smaller.
The naive approach (14) is recommended if the sample size is sufficiently large‡ and/or nonconservative predic-

tions are not an issue. However, aside from having small sample sizes, we suggest to use the confidence-set-based
predictions/𝛿𝛿-method in the following situations:

• The prediction model is an oversimplification of the true dynamics in the experiment. This is often the case and
can cause the naive approach to yield poor coverage rates. Our application in the next section is indeed an example
for a poor coverage rate.

• The data can be contaminated with outliers. If some experiments might yield unexpectedly short/long component
lifetimes, due to, for example, fabrication errors in the components,we recommendusing a confidence set based on
an outlier-robust method, for example, the approach in Section 3.2. A simulation study with outlier contaminated
data can be found in Section 6.

Note that the approach in Section 3.2 can lead to an extremely large confidence set (and thus also prediction inter-
vals) if the sample size is small. We therefore recommend this approach only if a sufficiently large number of waiting
times (> 100) is observed.

5 APPLICATIONS

In this section, we analyze data from J=11 experiments with concrete beams. Each beam contains a total of I = 35 ten-
sion wires and is exposed to cyclic loading. During this process, the tension wires successively break. Since wire breaks
produce a loud noise, the failure times can be determined exactly using acoustic measurements. Throughout the analysis,
we consider the Basquin model given by the link function h𝜽𝜽(x) = exp (−𝜃𝜃1 + 𝜃𝜃2 · ln(x)) since initial investigations indi-
cated that this is the best choice among the link functions we considered. The initial stress levels s1, … , s11 used in the
experiments and a plot of the observed waiting times wij between the breaks against the actual loads of

s𝑗𝑗 I
I−i

are presented
in Figure 1. Before applying our prediction methods, we start with the model check given in Section 2.3.

5.1 Model check
The confidence band of the Q-Q plot in Figure 2 is computed by the simulated simultaneous 90%-confidence band pre-
sented in Section 2.3 usingM = 1 000 000, that is, one million samples, from our model with a parameter 𝜽𝜽 equal to the
MLE 𝜽̂𝜽 of the data example. Although it seems like all quantiles lie within the confidence band, actually the first few
sample quantiles are slightly below it. This is due to some lower outliers, see Figure 1 for a plot of all waiting times on
a logarithmic scale. Ideally, one should therefore choose a robust parameter estimation/confidence set, for example, the
method presented in Section 3.2.

5.2 Comparison of the prediction intervals via cross validation
We now apply the different prediction methods from Section 4 to the data from the concrete beam experiments. Recall
that we consider the Basquin model, that is, the link function h𝜽𝜽(x) = exp (−𝜃𝜃1 + 𝜃𝜃2 · ln(x)). Also note that since the
unknown parameter vector 𝜽𝜽 is two-dimensional, the sign depth from Section 3.2 is based on subsets with three residuals
and therefore called 3-depth. The following predictions intervals are compared:

†usually even more than that since the interval is larger than [b𝛼𝛼(2)/2(𝜽𝜽), b1−𝛼𝛼(2)/2(𝜽𝜽)]
‡The simulation study in Section 6 suggests that naive predictions based on around 150 observed waiting times already provide intervals with a coverage
rate close to 1 − 𝛼𝛼.
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FIGURE 2 Q-Q plot of the (linearly interpolated) quantiles of the
rescaled data compared with the standard exponential distribution.
The grey area represents a simultaneous 90%-confidence band for the
(rescaled) exponential distribution, see (3) for the rescaling

Wald: information based prediction interval given by (15) based on (6),
LR: likelihood ratio based prediction interval given by (15) based on (8),
3-depth: 3-depth prediction interval given by (15) based on (10),
𝛿𝛿-method: 𝛿𝛿-method based prediction interval given by (19),

Naive: the naive/plug-in prediction interval in (14) using a MLE 𝜽̂𝜽 for 𝜽𝜽.

For all prediction intervals, a level of 90% was chosen, which is a common choice for applications in construction engi-
neering. That means 𝛼𝛼(1) = 𝛼𝛼(2) ≈ 0.0513 for the methods Wald, LR, 3-depth, and 𝛿𝛿-method to ensure the level
(1 − 𝛼𝛼(1))(1 − 𝛼𝛼(2)) = 90%.
Figure 1 shows the logarithmicwaiting times between the breaks of all experiments togetherwith the estimated function

log10(h𝜽̂𝜽(·)−1) using the maximum likelihood estimator 𝜽̂𝜽 = (27.99, 2.89) and the pointwise prediction intervals for the
logarithmic waiting time of the next break based on the two new predictionmethods 3-depth and 𝛿𝛿-method. Themajority
of the data is well approximated by our estimations. The 𝛿𝛿-method mostly provides smaller prediction intervals than the
3-depth method, the only exception is the upper bound for small stress ranges, in which both methods yield nearly the
same bound. However, the intervals are very similar and, in particular, not much influenced by the outliers with very
small waiting times.
A comparison of all prediction methods is done by a leave-one-out cross-validation. The following scenarios for

leave-one-out cross-validation are considered:

Next∶ For all 𝑗𝑗 = 1, … , J = 11 and L = 0, … , I𝑗𝑗 − 1,
the waiting time WL+1,𝑗𝑗 for the next event is predicted using
w1,𝑗𝑗 , … ,wL,𝑗𝑗 and wi,l for i = 1, … , Il, l ≠ 𝑗𝑗𝑗

Next 5∶ For all 𝑗𝑗 = 1, … , J = 11 and L = 0, … , I𝑗𝑗 − 5,
the waiting time w1,𝑗𝑗 + … + wL,𝑗𝑗 +WL+1,𝑗𝑗 + … +WL+5,𝑗𝑗

until the future five events is predicted using
w1,𝑗𝑗 , … ,wL,𝑗𝑗 and wi,l for i = 1, … , Il, l ≠ 𝑗𝑗𝑗

The chosen j = 1, … , J = 11 takes the role of the series that is to be predicted, and L denotes the number of wire breaks
already observed in this series, that is, L = I0 in the setup described in (2). Again, L = 0 means that no observations of the
new series are used.
To measure the performance of the prediction intervals, the interval score51 is used. It is given by

([l,u],w0) ∶= (u − l) + 2
𝛼𝛼
(l − w0)𝟙𝟙{w0 < l} + 2

𝛼𝛼
(w0 − u)𝟙𝟙{w0 > u}

if [l,u] is the prediction interval,w0 is the realized future observation, and 𝟙𝟙{ } denotes the indicator function. It combines
the coverage and length of the prediction interval in such away that a small score corresponds to a good prediction interval.
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TABLE 1 Median interval score in millions and coverage rates for the
90%-prediction intervals in the scenarios Next and Next 5 for the different prediction
methods

Interval score Coverage rate
Method Next Next 5 Next Next 5
3-depth 11.24 25.78 0.89 0.98
𝛿𝛿-method 11.10 24.29 0.88 0.91
Wald 11.71 25.14 0.88 0.92
LR 11.71 25.26 0.88 0.92
Naive 9.62 26.99 0.83 0.74

Sample size 137 97 137 97

FIGURE 3 A, 90%-prediction
intervals for a new experiment SB06
with a very low stress range of 50 MPa.
The arrow indicates that the experiment
was stopped after 108 million load
cycles with only one wire breakage. B,
The restarted experiment SB06a with a
higher stress range of 120 MPa [Colour
figure can be viewed at
wileyonlinelibrary.com]

Table 1 shows the average value of this score in millions and the coverage rates in the two scenarios. Note that the naive
method struggles to reach the 90%-coverage rate since it provides too small prediction intervals. This leads to the best
interval score in the scenario Next and the worst interval score in scenario Next 5. The other methods provide coverage
rates close to or above the nominal level of 90%. The 𝛿𝛿-method leads to the best interval score within these methods. Since
the 3-depth method provides larger prediction intervals, its interval score is worse. However, it still beats the Wald and
LRmethods in scenario Next. In scenario Next 5, its prediction intervals are so large that the coverage is much above 90%,
causing its interval score to be the worst among the non-naive methods.

5.3 The prediction intervals in the accelerated set-up
Finally, we discuss predictions for the last experiment with a lower stress range and only onewire break in total. Figure 3A
shows the 90%-prediction intervals for this experiment called SB06with a stress range s0 = 50MPausing the depthmethod
and the 𝛿𝛿-method based on the J = 10 experiments with stress ranges from 80 to 455 MPa. Again, both methods provide
very similar prediction intervals where lower and upper bounds of the prediction intervals of the 3-depth method are a
little bit smaller than those of the 𝛿𝛿-method. Both prediction intervals cover the first wire breakage at about 28 million
load cycles given by the red line. The experiment was stopped after about 108 million load cycles without observing a
second wire failure. This results in a censored observation indicated by the arrow in Figure 3A. Both methods predict
another wire break within the next 25 million load cycles, hence indicating that the experiment should have been run a
little longer to produce more data.

Remark 6. In order to check for preexisting defects in the tension wires caused by the 108 million load cycles at
50 MPa, the experiment was restarted at a higher stress range of 120 MPa as SB06a. The course of this experiment is
depicted in Figure 3B along with the 90%-prediction intervals given by the twomethods where no preexisting damage
is assumed, that is, the predictions in Figure 3B are done without using the results for SB06 at 50 MPa (note that this
extra failure time would have barely any effect on the overall prediction). The prediction intervals are again similar
but do not include the true failure times of the experiment SB06a. The wires broke earlier than ourmethods proposed.
This makes preexisting defects in the wires plausible.
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FIGURE 4 A, Coverage rates and B,
scores of different methods applied to
simulated data without contamination
[Colour figure can be viewed at
wileyonlinelibrary.com]

6 SIMULATION STUDY

We consider a setupwhere several wire breaks inmodels with high stress levels are observed (representing the accelerated
lifetime experiments), which then are used to make predictions for a system with a fairly low stress level. More precisely,
we simulate the first six wire breaks (i.e., Ij = 6 for all j) in experiments with a total number of I = 10 wires§ based on the
Basquin link function with 𝜽𝜽 = (28, 3) (which corresponds to the rounded MLE in the real data). The initial stress ranges
for the observed experiments are a K-times repetition of the triple s = 200, 100, 80 for several integers K. The prediction
interval concerns the sixth break in an experiment with initial stress range s0 = 60 where only the first three wire breaks
are taken as part of the observed data. The overall prediction error is set to be 𝛼𝛼 = 0.1. As suggested in the remark at the
end of Section 4, this error is split into

𝛼𝛼1(K) =
0.05√
K
, 𝛼𝛼2(K) = 1 − 1 − 0.1

1 − 𝛼𝛼1(K)
,

in the cases of the 𝛿𝛿-method and methods based on confidence sets, where (𝛼𝛼1(K), 𝛼𝛼2(K)) represent the errors (𝛼𝛼(1), 𝛼𝛼(2))
occurring in Sections 4.3 and 4.4. Note that the choice for 𝛼𝛼1(K) is somewhat arbitrary among choices that ensure 𝛼𝛼2(K) →
𝛼𝛼 as K → ∞ and that also lead to confidence sets that converge to the one-point set {𝜽𝜽} as K → ∞.
The simulation results for K = 1, … , 50 (averaged over 10,000 simulations) are given in Figure 4. Although the naive

approach struggles to keep the 90%-coverage rate if the dataset is fairly small, it still yields better results than the other
approaches in terms of interval score (note that a small score corresponds to a good prediction interval). This is not
surprising given that the other prediction methods are more conservative and lead to larger prediction intervals with an
unnecessarily high coverage rate.
Contaminated data. To study the behavior of the methods in the presence of outliers, we contaminated the data as

follows: Each of the 18K simulated waiting times for s = 200, 100, 80 has a 20% chance to become an outlier (the choices
are made independently from each other). Each chosen waiting time is replaced by an outlier where with the probability
50% the outlier is given by the 10th of the original value and with probability 50% it is set to 1. Outliers with small values
appear often in applications as can be seen from the data set in Figure 1. However, it is known that methods for the
exponential distribution are fairly robust against small outliers since these outliers are bounded by zero. This is also visible
from the results in Section 5.2. But there is also the phenomenon of fatigue-tested specimen without rupture at stress
levels where this is not expected. This means that sometimes unusual long waiting times appear. These are the outliers
with large values.
Figure 5 shows the results for the contaminated data. Now the naive method always has the problem that its coverage

rate is much smaller than the nominal level. This also happens for the other likelihood-based methods Wald, LR, and
𝛿𝛿-method although the deviation from the nominal coverage level is not as large as for the naivemethod. Only the 3-depth
method keeps the level so that its score becomes the best for larger sample sizes.
Similar results are obtained with other scenarios of contamination, see Supporting Information.

§we reduced the total number of wires in order to obtain a relative number Ij∕I = 0.6 of broken wires which is similar to the number of wire break in,
e.g, experiment SB04 in the real data
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FIGURE 5 A, Coverage rates and B,
scores of the different methods applied
to contaminated data. The
contamination chance is 20%.
Contaminated data has a 50% chance to
increase the waiting time by a factor of
10 and a 50% chance to decrease the
waiting time to 1 [Colour figure can be
viewed at wileyonlinelibrary.com]

7 CONCLUSION

We have proposed two new prediction intervals for the time of the failure of the Icth component of a load-sharing system
with I components when the failure process of other systems with I components under different stress levels has been
observed before. One of the new prediction intervals is outlier-robust because it is only based on the signs of residuals
of the observed failures. Outlier-robustness is important since sometimes the waiting times between the failure of com-
ponents are very short. Also, unusually long waiting times appear in so-called fatigue tests without rupture. Although
outlier-robustmethods are often less efficient than classical methods, the application to a real data set coming from exper-
iments with prestressed concrete beams showed that they behave similarly or even better than the classicalmethods based
on the Wald test and the likelihood ratio test. In the simulation study, they become superior for data with contamination.
The outlier-robust methods and the classical methods have the disadvantage that confidence sets for the unknown

parameter must be calculated. In particular, this can be very time consuming for higher-dimensional parameters and
usually has to be approximated by, for example, a grid search. Therefore, we proposed a more accurate method via the
𝛿𝛿-method and the implicit function theoremwhere no confidence sets of the parameters have to be calculated. The appli-
cation to the real data set and the simulation study show that this method yields fairly good results although the used
dimension of the parameter was not high. It can be assumed that the superiority of this method compared with the
confidence-set-based approaches becomes higher if the parameter has a higher dimension.
We assumed that the number I of components is the same for all systems since this was the case in our application with

experiments with prestressed concrete beams. An extension to systems with different numbers of components can be
done easily. We ignored censoring since most of our experiments were stopped after the last reported failure. Censoring
can be easily incorporated in the likelihood based methods, but for the method based on sign depth, it is still unclear how
this can be done. Similarly, an extension to a model incorporating damage accumulation and aging of the components
will be much more complicated. Then, simple state-dependent processes are not adequate anymore and processes from
the more general class of self-exciting processes must be used.
Self-exciting point processes includemany point processes often used in reliability analysis as the homogeneous or inho-

mogeneous Poisson process or renewal processes.27,30,52 Although a combination of a nonhomogeneous Poisson process
with a birth process would be very adequate tomodel damage accumulation and load redistribution, we are not aware of a
statistical analysis for such models. The only related paper53 considers a combination of (nonhomogeneous) Poisson pro-
cesses and renewal processes. In this paper, Lawless and Thiagarajah derive maximum likelihood estimators and apply
a Wald test for a nonhomogeneous Poisson process of airplane air-condition failure data. Dachian and Kutoyants54 also
developed a test for testing a stationary Poisson process against a stationary self-exciting point processes. Other extensions
of the nonhomegeneous Poisson process and renewal processes can be found in the literature.55,56
Statistical inference for the more general class of self-exciting processes is treated mainly for other fields of application

asmarket analysis,57 analysis of financial data,58-62 neuron firing data,63 cancer data,64 or earthquake data.65 These papers
treat estimation and testing of unknown parameters of the model but not prediction intervals. Only one58 of the papers
provides prediction intervals, namely for the terminal prices in online auctions. However, the prediction intervals are
obtained by simulations.
We expect that simulation-free predictions intervals will be difficult to derive for self-exciting point processes including

load sharing and damage accumulation. This ismainly due to the fact that our simulation-free prediction intervals depend
heavily on knowing the distribution of the sum of the waiting times, that is, the hypoexponential distribution in our
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approach, explicitly. Without assuming independence between waiting times, it is usually very hard to compute this
distribution analytically and simulation-based predictions are required.
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APPENDIX A: DERIVATIONS, PROOFS, AND IMPLEMENTATION DETAILS

A.1 Derivation of the classical confidence sets
In order to also obtain an (asymptotic) confidence set for 𝜽𝜽, we need additional assumptions for the design of the stress
levels and total numbers of failures.
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Let dJ ∶= ((1, s0), … , (I0, s0), … , (1, sJ), … , (IJ , sJ)) be the concrete design. Moreover, let e𝜔𝜔 denote the Dirac measure
in a point 𝜔𝜔 = (i, s) ∈ 𝛺𝛺, (i.e., e𝜔𝜔(A) = 1 if 𝜔𝜔 ∈ A and e𝜔𝜔(A) = 0 if 𝜔𝜔 ∉ A, where A ⊂ 𝛺𝛺) and let

𝛿𝛿J =
1

N( J)

J∑
𝑗𝑗=0

I𝑗𝑗∑
i=1
e(i,s𝑗𝑗 ), N( J) =

J∑
𝑗𝑗=0

I𝑗𝑗

be the corresponding designmeasure on𝛺𝛺 ∶= {1, … , I}×[0, smax]where smax is themaximumpossible stress level. Then,
we assume 𝛿𝛿J → 𝛿𝛿 weakly as J → ∞ for some design measure 𝛿𝛿 on {1, … , I} × [0, smax]. This implies35, pp. 421-428

√
N( J) (𝜽̂𝜽 − 𝜽𝜽) →  (

0, I𝜽𝜽(𝛿𝛿)−1
)
, (A1)

where the asymptotic information matrix I𝜽𝜽(𝛿𝛿) for exponentially distributed observations is given by36

I𝜽𝜽(𝛿𝛿) = ∫
1

𝜆𝜆𝜽𝜽(i − 1, s)2
.
𝝀𝝀𝜽𝜽(i − 1, s)

.
𝝀𝝀𝜽𝜽(i − 1, s)⊤ 𝛿𝛿(d(i, s))

with
.
𝝀𝝀𝜽𝜽(i, s) ∶= 𝜕𝜕

𝜕𝜕𝜽𝜽
𝜆𝜆𝜽𝜽(i, s). This matrix can be estimated by 1∕N( J) · I(𝜽̂𝜽) with I(𝜽𝜽) given by (7). The continuous mapping

theorem and Lemma of Slutzky provide that (𝜽̂𝜽 − 𝜽𝜽)⊤ I(𝜽̂𝜽) (𝜽̂𝜽 − 𝜽𝜽) converges weakly to a 𝜒𝜒2-distribution so that the set
given by (6) is an asymptotic (1 − 𝛼𝛼)-confidence set for 𝜽𝜽. Using an additional approximation with the Taylor expansion
for the i.i.d. case leads to the confidence sets based on the likelihood-ratio test given by (8).
Moreover, the 𝛿𝛿-method applied to (A1) provides the asymptotic normality of

√
N( J)(g(𝜽̂𝜽)−g(𝜽𝜽)). Hence, an asymptotic

(1 − 𝛼𝛼)-confidence interval for g(𝜽𝜽) is given by (9).

A.2 Proofs
Proof of Lemma 1. It is a well-known fact thatW∕𝜆𝜆 ∼ Exp(𝜆𝜆) forW ∼ Exp(1) and 𝜆𝜆 𝜆 0. Hence, we may assume that
for all 𝜽𝜽 ∈ 𝛩𝛩,

Wn(𝜽𝜽) =
Wn

𝜆𝜆n(𝜽𝜽)
, n = 1, … ,N, (A2)

whereW1, … ,WN are i.i.d. standard exponentially distributed random variables. Now, let 𝜽𝜽* ∈ 𝛩𝛩 be fixed. Since we
consider independent exponentially distributed random variables, one can compute the log-likelihood function  for
(W1(𝜽𝜽∗), … ,WN(𝜽𝜽∗)) explicitly and obtains

(𝜽𝜽) =
N∑
n=1

log (𝜆𝜆n(𝜽𝜽)) −
N∑
n=1

𝜆𝜆n(𝜽𝜽)Wn(𝜽𝜽∗), 𝜽𝜽 ∈ Θ.

Using (5) and (A2), this may be rewritten as

(𝜽𝜽) =
N∑
n=1

log
(
𝜆𝜆n(𝜽𝜽∗)

)
+

N∑
n=1

log
(
hn(𝜽𝜽 − 𝜽𝜽∗)

)
−

N∑
n=1

hn(𝜽𝜽 − 𝜽𝜽∗)Wn.

Hence, the maximum likelihood estimation (MLE) is given via 𝜽̂𝜽(𝜽𝜽∗) = 𝜽𝜽∗ + 𝝑̂𝝑, where 𝝑̂𝝑 is the global maximum of the
function

̃(𝝑̂𝝑) =
N∑
n=1

log
(
hn(𝝑̂𝝑)

)
−

N∑
n=1

hn(𝝑̂𝝑)Wn.

Note that 𝝑̂𝝑 does not depend on 𝜽𝜽*, that is, the distribution of the difference 𝜽̂𝜽(𝜽𝜽∗) − 𝜽𝜽∗ does not depend on the true
model parameter 𝜽𝜽*. Consequently, once again using (A2),

W̃n(𝜽𝜽∗) = 𝜆𝜆n(𝜽̂𝜽(𝜽𝜽∗)) · Wn

𝜆𝜆n(𝜽𝜽∗)
= hn(𝝑̂𝝑)Wn.

The assertion follows since the right-hand side does not depend on 𝜽𝜽*.
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Proof of Theorem 1. SinceW* andW are independent, we obtain for all 𝜃𝜃0

lim
J→∞

P𝜽𝜽0(W ∈ Î 1pred(W∗))

= lim
J→∞

P𝜽𝜽0

(
W ∈ ∪

𝜽𝜽 ∈Ĉ𝛼𝛼(1)(W∗)

[
b𝛼𝛼(2)∕2(𝜽𝜽), b1−𝛼𝛼(2)∕2(𝜽𝜽)

]
)

≥ lim
J→∞

P𝜽𝜽0
(
W ∈

[
b𝛼𝛼(2)∕2(𝜽𝜽0), b1−𝛼𝛼(2)∕2(𝜽𝜽0)

]
and 𝜽𝜽0 ∈ Ĉ𝛼𝛼(1)(W∗)

)

= lim
J→∞

P𝜽𝜽0
(
W ∈

[
b𝛼𝛼(2)∕2(𝜽𝜽0), b1−𝛼𝛼(2)∕2(𝜽𝜽0)

])
P𝜽𝜽0

(
𝜽𝜽0 ∈ Ĉ𝛼𝛼(1)(W∗)

)

≥ (1 − 𝛼𝛼(2)) (1 − 𝛼𝛼(1)).

Proof of Theorem 2. The one-sided confidence intervals given by (17) and (18) provide

P𝜽𝜽
(
b𝛼𝛼(2)∕2(𝜽𝜽) < b𝛼𝛼(2)∕2(𝜽̂𝜽) − v̂1

)
≤ 𝛼𝛼(1)

2

and
P𝜽𝜽

(
b1−𝛼𝛼(2)∕2(𝜽𝜽) > b1−𝛼𝛼(2)∕2(𝜽̂𝜽) + v̂2

)
≤ 𝛼𝛼(1)

2
.

SinceW and 𝜽̂𝜽 = 𝜃̂𝜃(W∗) are independent, we obtain

lim
J→∞

P𝜽𝜽(W ∈ Î 2pred(W∗))

= lim
J→∞

P𝜽𝜽
(
W ≥ b𝛼𝛼(2)∕2(𝜽̂𝜽) − v̂1 and W ≤ b1−𝛼𝛼(2)∕2(𝜽̂𝜽) + v̂2

)

≥ lim
J→∞

P𝜽𝜽
(
W ≥ b𝛼𝛼(2)∕2(𝜽𝜽) and b𝛼𝛼(2)∕2(𝜽𝜽) ≥ b𝛼𝛼(2)∕2(𝜽̂𝜽) − v̂1 and

W ≤ b1−𝛼𝛼(2)∕2(𝜽𝜽) and b1−𝛼𝛼(2)∕2(𝜽𝜽) ≤ b1−𝛼𝛼(2)∕2(𝜽̂𝜽) + v̂2
)

= lim
J→∞

P𝜽𝜽
(
b𝛼𝛼(2)∕2(𝜽𝜽) ≤ W ≤ b1−𝛼𝛼(2)∕2(𝜽𝜽)

)

·
(
1 − P𝜽𝜽

(
b𝛼𝛼(2)∕2(𝜽𝜽) < b𝛼𝛼(2)∕2(𝜽̂𝜽) − v̂1 or b1−𝛼𝛼(2)∕2(𝜽𝜽) > b1−𝛼𝛼(2)∕2(𝜽̂𝜽) + v̂2

))

≥ (1 − 𝛼𝛼(2)) ·
(
1 − 𝛼𝛼(1)

2
− 𝛼𝛼(1)

2

)
= (1 − 𝛼𝛼(1)) (1 − 𝛼𝛼(2)).

A.3 Implementation details
For details of the implementation in R, see Supporting Information. Here it should only be mentioned that some effort
was necessary not only for the calculation of the quantiles of the hypoexponential distribution but also for the 3-depth
method. In order to speed up the computation of the 3-depth, we use an (asymptotically) equivalent form25, Equation (3.2)

that can be computed in linear time. The quantiles of the asymptotic distribution of the 3-depth were taken from the R
package rexpar.66 For small sample sizes, we used simulated quantiles of the distribution of the 3-depth calculated by
Melanie Horn (TU Dortmund).

SUPPORTING INFORMATION

R-package loadshare: R-package which provides the methods and data set. This package is available on GitHub
and can be installed via devtools::install_github(KLeckey/loadshare)

More details and results: R implementation details andmore results of the simulation study can be found in the sepa-
rate fileLoadshare_Supplementary_Material.pdf given onhttps://www.statistik.
tu-dortmund.de/leckey0.html.




