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Abstract

Emerging hardware platforms are characterized by large degrees of parallelism, complex memory hierarchies, and increas-
ing hardware heterogeneity. Their theoretical peak data processing performance can only be unleashed if the different pieces
of systems software collaborate much more closely and if their traditional dependencies and interfaces are redesigned.
We have developed the key concepts and a prototype implementation of a novel system software stack named MXKERNEL.
For MxKernel, efficient large scale data processing capabilities are a primary design goal. To achieve this, heterogeneity
and parallelism become first-class citizens and deep memory hierarchies are considered from the very beginning. Instead of
a classical “thread” model, MXKERNEL provides a simpler control flow abstraction: MXTASKS model closed units of work,
for which MXKERNEL will guarantee the required execution semantics, such exclusive access to a specific object in memory.
They can be a very elegant abstraction also for heterogeneity and resource sharing. Furthermore, MXTASKS are annotated
with metadata, such as code variants (to support heterogeneity), memory access behavior (to improve cache efficiency
and support memory hierarchies), or dependencies between MXTASKS (to improve scheduling and avoid synchronization
cost). With precisely the required metadata available, MXKERNEL can provide a lightweight, yet highly efficient form of
resource management, even across applications, operating system, and database.

Based on the MXKERNEL prototype we present preliminary results from this ambitious undertaking. We argue that threads
are an ill-suited control flow abstraction for our modern computer architectures and that a task-based execution model is
to be favored.

1 Introduction mance improvements in the form of high degrees of par-

allelism, increasingly paired with growing heterogeneity.

It is quite remarkable how Moore’s Law still prevails af-
ter more than half a century. Its consequences, however,
have become very intricate. Rather than ever-increasing sin-
gle-thread performance, today’s hardware provides perfor-
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Beyond the need to express algorithms in a parallel and,
ideally, re-targetable way, the hardware trends shift perfor-
mance bottlenecks toward communication and synchroniza-
tion across a pool of diverse resources. Hard- and software
must tightly cooperate to achieve performance in this new
world [4].

With MXKERNEL, we set out to re-think the interplay
of hardware, system software, and applications in the light
of the shifting hardware landscape and the tremendously
growing demands on data processing capabilities.

Classical system designs build on rigid interfaces
that strictly separate concerns, e.g., between the “oper-
ating system”—in charge of managing resources—, the
DBMS—responsible for managing data—, and applica-
tions, which are supposed to implement logic in a resource-
oblivious way. Such a separation can hardly address the
challenges that come with modern hardware. Applications
have to jump through hoops to leverage modern hardware
features. Classical system software stacks, on the other end,
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know very little about the actual characteristics and needs
of individual applications. Under these premises, resource
management essentially becomes a blind flight.

A key design goal of MXKERNEL, therefore, is to ex-
change such knowledge much better between the resource
manager and the code running on top. We argue that
threads—one of the most fundamental building blocks in
today’s application/OS interfaces—are a poor basis to ex-
press the relevant knowledge. On commodity hardware,
they are too course-grained; resource access patterns often
change considerably over the lifetime of a thread. In a het-
erogeneous environment, featuring, e.g., FPGAs and/or
GPUs, “threads” might not even have a sensible meaning
in some of these hardware components [5].

In MXKERNEL, the principal unit of reasoning are
tasks—or MXTASKS—instead. Tasks represent a unit of
work (rather than a straight-line sequence of code) to the
system. Code-wise, they tend to be much smaller than
classical threads; the equivalent of a single classical thread
may fire a number of MXTASKS in MXKERNEL. Since they
relate to a very specific unit of work, tasks are a good
abstraction for metadata that describes the characteristics
of the unit [24]. Thus, tasks can be annotated with meta-
data that provides hints on future software behavior to
the system software. These hints can be used to optimize
scheduling decisions and synchronization of concurrent
tasks.

In the course of the paper we will focus on the task-
based programming environment and how task annotations
can be used to improve the performance and simplify the
development of data processing applications. For details on
how our system deals with heterogeneity, the reader may
refer to our work on He..roDB [25]. Since the MXKERNEL
Project is still in an early stage, not all details of the system
have been fleshed out yet. So we are still exploring the set
of useful annotations and their applications.

First we will give a short overview of previous work
related to MXKERNEL. Sect. 3 describes the current state
of our task runtime and the annotations that are currently
available. Sects. 4 and 5 present examples how annotations
can be used to ease development of parallel data processing
applications and first results we obtained so far. Finally,
Sect. 6 will give a short summary and conclusion.

2 Related Work

Control flow models with short tasks have become popu-
lar in several frameworks for parallel programming in user
space. Apple’s Grand Central Dispatch, the Cilk runtime
system, and Intel’s Threading Building Blocks follow this
approach [27]. The maintainers of the mentioned frame-
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works argue, that tasks provide a suitable granularity for
data parallelism on today’s multi-core systems.

Making tasks a unit for scheduling decisions has been
explored very recently also by Giceva et al. [10], who ex-
tended the Barrelfish operating system [2] by a support for
run-to-completion tasks. Their main argument for doing so
are the potentially better cache locality and the avoidance of
ill synchronization decisions (such as de-scheduling a lock
holder).

Server-based architectures such as microkernel operating
systems partly solve the problem as well. If state is man-
aged by single-threaded servers, the input message queues
of the servers effectively serialize the requests and thus
concurrent access is avoided by design. As queues can be
synchronized in a lock-free manner, scalability tends to be
good on manycore systems. The fos microkernel follows
this idea in a more flexible manner: servers are “elastic‘’
and can have more than a single thread [33].

When designing scalable system software, one can also
learn from other domains. For instance, embedded operat-
ing systems have a much stricter execution plan for con-
trol flows then general purpose server operating systems.
An extreme case of that is offline scheduling of short tasks
with a run-to-completion semantic — an option of the AU-
TOSAR OS specification [9]. As concurrency is planned
ahead of runtime, the offline scheduler can make sure that
race conditions are avoided even without synchronization at
runtime [13]. Though, this approach works only for static
task schedules in contrast to the dynamic task scheduling
and synchronization of MXKERNEL.

Scalability and performance can also be improved by
avoiding concurrency situations with an innovative system
design. For example DORA [28], does not use one thread
per transaction but instead one thread per data object, e.g.
a part of a table. Transactions are then split into smaller
actions which are executed by the thread that manages the
data the action is going to access. So DORA avoids expen-
sive data movements between caches and also reduces con-
tention between threads, since actions that access the same
data are executed by the same thread and thus never run
in parallel. The ERIS system [16] extends the concepts of
DORA by NUMA-awareness and a load balancing mech-
anism. Since DORA focuses on transactional workloads,
ERIS reduces skew for analytical workloads.

MXKERNEL borrows the fundamental concept of a data-
oriented architecture, but provides a general abstraction for
data-driven applications. By supplying a lightweight layer
between a full-fledgded DBMS on top and the hardare be-
low, MXKERNEL intends to offer a programming model to
ease the construction of scalable data-processing applica-
tions.
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Psaroudakis et al. explored the benefits and the right
granularity of tasks for highly concurrent analytical and
transactional main-memory workloads in SAP HANA [30].

Our poster child for MXKERNEL will be a Bli"k-tree [19].
B-trees (and their derivations) are widely used index struc-
tures. However, much research has been investigated into
parallel and latch-free tree structures. Bragisnky and Pe-
trank built a latch-free B+-tree using atomic CPU instruc-
tions resulting in less contention and higher scalability com-
pared to using latches for synchronization [7]. The Bw-
tree [21, 32] focusses on scalability and cache-performance.
Delta changes are applied in a latch-free manner. As a re-
sult, the Bw-tree needs no latches at all.

With Optimistic Lock Coupling, Leis et al. introduced
an optimistic synchronization technique for B-tree, which
is not latch-free but focusses on parallel reads [20]. As
a result, they achieved high scalibility, especially for read
operations. This approach is similar to OLFIT [8], where
reads are applied optimistically without using a latch. In-
stead, they check whether concurrent writes have happened
with help of using a version counter.

3 Task Model: mxtasks

For lack of suitable means to communicate application
behavior to the resource management component, due to
the rather generic and rigid system interfaces of common
systems, applications worked around the limitations, im-
posed by these interfaces, in often rather crude ways. The
common approach is to let the application code take over
all resources from the operating system, then use low-
level mechanisms such as thread or NUMA pinning, deeply
building on the assumption that no resources have to be
shared with other applications. But often this assumption

proves to be false, as there are always OS services running
(e.g. kernel threads) and often applications are run concur-
rently, e.g. a key-value store and a web-server. So these
work-arounds often quickly lead to severe interference of
applications in a system, competing for CPU cores, cache
lines and memory. Often enough, deteriorating the perfor-
mance of the system instead of improving it.

Hence, in MXKERNEL, metadata that provides hints on
future software behavior can be provided to the resource
manager through annotations to MXTASKS. Poster child
examples where the resource manager could leverage such
annotations could be information about data location—so
the task can be scheduled close to the object that it oper-
ates on—or communication patterns with related tasks—so
related tasks could be co-located on the same CPU core.
Data processing and database algorithms fit particularly
well into this pattern. Their behavior is often highly pre-
dictable; and there are many examples that show how the
awareness of resources and their uses in database code can
significantly improve performance [1, 14, 15, 18, 26, 31,
34].

Fig. 1 shows a simplified excerpt of MXKERNEL’S task
model. Every task can have multiple implementations. For
example, one implementation that can run on a CPU core,
one implementation that can run on a GPGPU, and finally
an implementation for reconfigurable logic. For each task
the task scheduler will make the decision on which CPU
core or accelerator it shall be executed. In the remaining
sections of this paper we will not address exploitation of
accelerators again.

Tasks can have relations to each other, for example,
caused by data dependencies. Furthermore, tasks have rela-
tions to data objects in memory or other resources, modeled
here as SharedResource objects. Tasks can access data
objects in read or write AccessMode. With this meta-

Fig. 1 Task model in MXKER- *
NEL Task
* | schedule() |_* ) depends on
execute()
Q
accesses implements enqueued in
1 --*
«enum» Tasklmplementation
AccessMode
- processorType =~ SynchronizationDomain
read estimatedExecutionTime
write execute()
SharedResource

@ SynchronizationRequirement
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data on tasks the resource manager of MXKERNEL, i.e. the
task scheduler, has a lot of information on synchronization
requirements and access pattern for the tasks that shall be
run in the near future. It can exploit this information for
an optimized task and data mapping, scheduling, and syn-
chronization within the same component. Examples will be
given in the following two sections.

Each example was implemented on a prototype of the
MXKERNEL that can run natively on bare-metal and as
a multi-threaded application under Linux. The examined
application scenario was an in-memory key/value store. Its
heart deliberately consists of an optimized implementation
of a Bli"k-tree, a variant of the most-widely used data struc-
ture in databases. Bli"t-trees are a good device to study the
benefits of locality and NUMA. Traversing them yields non-
trivial data access patterns, and the tree shape results in non-
uniform load on the individual nodes.

In experiments, we demonstrated the advantages of
scheduling tasks on a core local to the accessed data, which
can be decided based on task annotation [11, 12, 17, 23]. In
our prototype, the access to each Bli"*-tree node is handled
by a dedicated mxtask; that is, a Bli"*-tree search will spawn
a new task for every tree level of the root-to-leaf traversal.
Each of these MXTASKS is annotated by the programmer
with a reference to the tree node that it will access, together
with the desired mode of access. Thus, the scheduler of
MXKERNEL knows for each enqueued task object which
tree node it will access in advance.

To obtain the evaluation results, presented in the follow-
ing two sections, we ran our prototype on top of Ubuntu
Linux 20.04 LTS, as it provided easier means for measur-
ing and debugging, and made the comparison with existing
approaches more fair. For each logical CPU core, we instan-
tiated one worker thread. Our evaluation platform consisted
of two Intel(R) Xeon(R) CPU E5-2690 processors running
Linux kernel 5.4.0 at 2.90 GHz. Both processors provide
16 hardware threads, which makes a total of 32 hardware
threads on our platform and two NUMA regions. Hyper-
threading has been activated for both processors during the
benchmarks. We used the Yahoo Cloud Service Benchmark
with 50 million inserts and 50 million lookups to evaluate
the scalability of our prototype. Each worker thread has
been pinned to a dedicated CPU and it has been ensured that
there were no other applications sharing resources with our
benchmark. Furthermore, we employed libnuma for numa-
aware allocation of task queues, task objects and tree nodes.

4 Model Exploitation: Automatic
Prefetching

One example that shows the benefits of using tasks, is that
it is easy to use automated prefetching of tree nodes. As
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Fig.2 MXKERNEL prefetches tasks and accessed data automatically
with help of annotations

shown in Fig. 2, the scheduler performs prefetching of task
metadata and accessed data fully transparent for the appli-
cation. Everytime when a task is dequeued from the ready
queue, the scheduler prefetches the data, accessed by the
following task, and the metadata of its successor. So while
one task is executed by the CPU, the data for the next task
in line is already transfered to the cache. Since, the sched-
uler provides automatic prefetching of data, the programmer
does not have to reason about how to implement prefetch-
ing for his specific application, instead she just needs to
annote her tasks with the referenced data.

Fig. 3 shows the effect our automatic prefetching mech-
anism has for resource efficiency on a single core.

As can be seen in the figure, pre-loading significantly
reduces the number of CPU cycles that B'"™*-tree traversal
will stall and wait for memory (Fig. 3a), with immediate
effect on the overall Bli"k-tree throughput (Fig. 3b).

In addition, we evaluated the prefetching mechanism us-
ing lookups on a Bli"-tree with diverging cores. Fig. 4 shows
the comparison of tasks with and without prefetching. As
a result, pre-loading the tasks annotated data structures re-
sults in 20% more lookups per second on average. This is
mainly caused by less CPU cycles wasted during memory
stalls.

5 Scheduling Challenges: Course-Grained
Work Stealing

As by Amdahl’s Law, scalability and synchronization are
tightly coupled, and have to be regarded together. Not do-
ing so, inevitably leads to not only reducing scalability,
but even more reversing it. So the method for synchro-
nization and the granularity of critical sections has to be
chosen carefully [6]. Even though fine-granular latches for
synchronization are the common method and can improve
scalability, their usage is error-prone and can easily lead to
synchronization errors [22].

Therefore, tasks in MXKERNEL are run with run-to-com-
pletion semantics, i.e., they are not preempted by the sched-
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uler. This guarantee can significantly ease software devel-
opment, while at the same time avoid expensive latches. To
illustrate, tasks that execute on the same CPU core cannot
interfere with one another, because of the implicit serial-
ization.

Building on that observation, it is sufficient to enqueue
tasks, competing for a shared resource, in a shared waiting
queue, serializing them that way. This queue is then pro-
cessed by a CPU, running each task in the queue one after
another. As waiting queues can be implemented latch-free,
there is no need for any latches for this synchronization
method to work.

Hence, the MXKERNEL provides the possibility to create
waiting queues for shared resources. It is not necessary to
pay the overhead of thousands of queues for all data objects,
e.g. one queue per tree node. In contrast, mulitple resources
can be joined in more course-grained synchronization do-
mains as long as the sequential execution of tasks that ac-
cess the same resource is guaranteed. A synchronization
domain, thus, is a kind of monitor, managing the access of
activities to shared resources. Moreover, synchronization
domains are also used as ready-queues for tasks.

The MXKERNEL employs a two-level scheduling ap-
proach for scheduling tasks and synchronizing them. On
the first level, which is entered upon spawning a new task,
it is determined into which synchronization domain a task
will be enqueued. To make this decision the scheduler uses
the annotations of the task regarding its access patterns.
Knowing which data object a task will access, the sched-
uler can find the appropriate synchronization domain by
looking it up in its mapping of data objects to synchro-
nization domains. On the second level, synchronization do-
mains will be scheduled onto CPUs. The exact strategies
for scheduling synchronization domains can be configured
by the programmer to fit the needs of the application.

When mapping resources to synchronization domains,
the scheduler has to pay attention to not map to many re-
sources to a single synchronization domain, since only one
CPU can process it, and the more resources are mapped to
a single synchronization domain, the more the load of the
processing CPU increases. Hence, to avoid overloading sin-
gle CPUs, the scheduler periodically redistributes the shared
resources onto the synchronization domains, such that the
load on each synchronization domain, and thus CPU, is
balanced.

Based on that, the in-memory Bli"*-tree that we imple-
mented does not require latches for synchronization at all.
Each tree node is statically assigned to a synchronization
domain, and tasks that access a node will always be sched-
uled on the assigned synchronization domain.! Each syn-
chronization domain can be mapped to a CPU core for ex-
ecution by various means in the MXKERNEL. the simplest
mapping being a one-to-one mapping of synchronization
domains to CPU cores.

Fig. 5a, shows the throughput of our B-link tree, using
a static one-to-one mapping of synchronization domains to

! The underlying per-synchronization domain task queues are syn-
chronized algorithmically in a wait-free manner.
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CPU cores, with increasing core count. We implemented
our B-link tree using MxTasks and Intel TBB for compari-
son, where Intel TBB utilizes reader-writer latches. As can
be seen, the reduced synchronization overhead achieved by
this simple strategy can already have performance advan-
tages compared to traditional reader-writer latches.

Yet, it may introduce a new bottleneck that thread-based
execution environments may not suffer from in the same
way: Some tree nodes—the root node in particular—will be
accessed more often than others, causing load imbalances
in the system. B'"*-tree operations are a good example to
demonstrate skew effects that will arise in many environ-
ments.

To mitigate the problem, we implemented a more sophis-
ticated strategy to map synchronization domains to CPU
cores for execution. Knowing that most synchronization do-
mains will only have a few tasks enqueued to them as they
will likely manage the access to a rarely accessed leaf node,
we allow a CPU core to execute tasks from more than one
synchronization domain. Thus, we instantiate more syn-
chronization domains than there are physical cores. The
actual mapping of synchronization domains to a CPU core
is then decided by a work-stealing algorithm, similiar to
that of Cilk, first described by Blumofe and Leierson [3].
The difference here to Cilk’s scheduler is that we do not

MxTasks + CWS ——
MxTasks + OLFIT

0 5 10 15 20 25 30 35
cores

million writes / second
O L N W H~ Ul O
T
"

Fig.6 MXTASKS vs. MXTASKS + work stealing
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steal tasks from other worker’s queues, but instead our al-
gorithm, that we call coarse-grained work stealing steals
a whole synchronization domain, and thus a whole queue
of tasks, from another CPU. This way, the MXKERNEL can
still provide implicit serialization by qeueing and benefit
from the load balancing achieved via work stealing. The
effect of this mechanism is illustrated in Fig. 6.

With or without course-grained work stealing, the ques-
tion which tree nodes to co-assign to the same core (or
domain) may affect performance, particularly in NUMA
environments. Intuitively, it may be desirable to assign en-
tire sub-trees to the same CPU core, so as to avoid the
cost of invoking tasks across cores. In experiments [29] we
showed that deliberately migrating to a new core for each
level of a B'"k-tree traversal may be a better choice. Task
invocation happens asynchronously in MXKERNEL and is
thus cheap, whereas distributing the tree along its levels
results in better load balancing across cores. These results
confirm that there are trade-offs between synchronization
and data locality, which we plan to investigate further.

For larger core counts, exclusive data access—as pro-
vided by implicit serialization—will still limit the achiev-
able scalability. High-performance B'"*-tree implemen-
tations therefore adapt object versioning as a lock-less
concurrency protocol that permits parallel reads (e.g.,
OLFIT [8] or Bw-trees [21]). Therefore, we adopted object
versioning with optimistic reader execution as additional
synchronization method in MXKERNEL.

To allow the easy usage of this method in an application,
MXKERNEL provides an abstract object type with version
numbering as a foundation for user-defined data types and
tasks that can be annotated as optimistic.

The scheduler then implements the OLFIT protocol in
the following way. Each time an optimistic task is sched-
uled, the scheduler runs it in parallel to other tasks, access-
ing the same resource, if it is a reader. While enqueing it
in the corresponding synchronization domain and increas-
ing the resource’s version number after execution, if it is
a writer.
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Since the protocol for object versioning is directly im-
plemented in the scheduler, the programmer has not to deal
with the intricacies of implementing such a protocol for
her data structures and algorithms. All she needs to do is
deriving her data structures needing synchronization from
the abstract object type, provided by the MXKERNEL, and
annotating each task that access them as optimistic.

In early experiments, we could show that our task-based
scheduling can benefit from this optimistic approach (see
Fig. 5b). Current (B'"*-tree) implementations, however, still
put the responsibility of such protocols on the developer of
the data structure and on the application developer, who
has to choose the right abstraction for the particular use
case without much awareness of the underlying hardware
characteristics.

6 Conclusions

The experiments, which we conducted with the MXKER-
NEL prototype, have shown that there are benchmarks and
sample applications for which we can improve the state-
of-the-art in two ways: First, we gain better performance
by exploiting the task-based execution model, which gives
us much information about memory access patterns, syn-
chronization constraints, and inherent parallelism of data
management operations in advance, i.e. without the need
for vague predictions. Second, the design and implemen-
tation of application, database, and operating system com-
ponents is simplified, because the underlying MXKERNEL
already provides the necessary abstractions and strategies
to fully make use of a modern, i.e. parallel and heteroge-
neous, computing platform. We thus believe that we are
on the right track. The proposed techniques actually work
and further exciting discoveries are to be expected. Based
on these insights and the MXKERNEL prototype, which is
a solid platform for further experiments, we can now dig
deeper and prove our claims for other and especially for
more complex application scenarios.
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