
Calc. Var.           (2021) 60:77 
https://doi.org/10.1007/s00526-020-01907-1 Calculus of Variations

Higher integrability for variational integrals with
non-standard growth

Mathias Schäffner1

Received: 13 May 2020 / Accepted: 30 November 2020
© The Author(s) 2021

Abstract
We consider autonomous integral functionals of the form

F[u] :=
∫

Ω

f (Du) dx where u : Ω → R
N , N ≥ 1,

where the convex integrand f satisfies controlled (p, q)-growth conditions. We establish
higher gradient integrability andpartial regularity forminimizers ofF assuming q

p < 1+ 2
n−1 ,

n ≥ 3. This improves earlier results valid under the more restrictive assumption q
p < 1+ 2

n .

Mathematics Subject Classification 49N60 · 35J70

1 Introduction

In this note, we study regularity properties of local minimizers of integral functionals

F[u] :=
∫

Ω

f (Du) dx, (1)

where Ω ⊂ R
n , n ≥ 3, is a bounded domain, u : Ω → R

N , N ≥ 1 and f : RN×n → R is a
sufficiently smooth integrand satisfying (p, q)-growth of the form

Assumption 1 There exist 0 < ν ≤ L < ∞ such that f ∈ C2(RN×n) satisfies for all
z, ξ ∈ R

N×n

{
ν|z|p ≤ f (z) ≤ L(1 + |z|q),
ν|z|p−2|ξ |2 ≤ 〈∂2 f (z)ξ, ξ 〉 ≤ L(1 + |z|2) q−2

2 |ξ |2. (2)
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Regularity properties of local minimizers of (1) in the case p = q are classical, see, e.g.,
[24]. A systematic regularity theory in the case p < q was initiated by Marcellini in [27,28],
see [31] for an overview (for a more up-to-date overview see the introduction in [30]). In
particular, Marcellini [29] proves (among other things):

(A) If N = 1, 2 ≤ p < q and q
p < 1 + 2

n , then every local minimizer u ∈ W 1,p
loc (Ω) of (1)

satisfies u ∈ W 1,∞
loc (Ω).

Local boundedness of the gradient implies that the non-standard growth of f and ∂2 f in
(1) becomes irrelevant and higher regularity (depending on the smoothness of f ) follows by
standard arguments, see e.g. [27, Chapter 7].

Only very recently,Bella and the author improved in [6] the result (A) in the sense that ’n’ in
the assumption on the ratio q

p can be replaced by ’n−1’ for n ≥ 3 (to be precise, [6] considers
the non-degenerate version (4) of (2)). The argument in [6] relies on scalar techniques, e.g.,
Moser-iteration type arguments, and thus cannot be extended to the vectorial case N > 1.

For the vectorial case N > 1, Esposito, Leonetti and Mingione showed in [18] that

(B) If 2 ≤ p < q and q
p < 1 + 2

n , then every local minimizer u ∈ W 1,p
loc (Ω,RN ) of (1)

satisfies u ∈ W 1,q
loc (Ω,RN ).

To the best of our knowledge, there is no improvement of (B) with respect to the relation
between the exponents p, q and the dimension n available in the literature. Here we provide
such an improvement for n ≥ 3.

Before we state the results, we recall a standard notion of local minimizer in the context
of functionals with (p, q)-growth

Definition 1 We call u ∈ W 1,1
loc (Ω) a local minimizer of F given in (1) iff

f (Du) ∈ L1
loc(Ω)

and ∫
suppϕ

f (Du) dx ≤
∫
suppϕ

f (Du + Dϕ) dx

for any ϕ ∈ W 1,1(Ω,RN ) satisfying supp ϕ � Ω .

The main result of the present paper is

Theorem 2 LetΩ ⊂ R
n, n ≥ 3, and suppose Assumption 1 is satisfied with 2 ≤ p < q < ∞

such that

q

p
< 1 + 2

n − 1
. (3)

Let u ∈ W 1,1
loc (Ω,RN ) be a local minimizer of the functional F given in (1). Then, u ∈

W 1,q
loc (Ω,RN ).

Higher gradient integrability is a first step in the regularity theory for integral functionals
with (p, q)-growth, see [7,11,19,20] for further higher integrability results under (p, q)-
conditions. Clearly, we cannot expect to improve from W 1,q

loc to W 1,∞
loc for N > 1, since this

even fails in the classic setting p = q , see [34]. Direct consequences of Theorem 2 are higher
differentiability and a further improvement in gradient integrability in the form:
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(i) (Higher differentiability). In the situation of Theorem 2 it holds |∇u| p−2
2 ∇u ∈

W 1,2
loc (Ω), see Theorem 5.

(ii) (Higher integrability). Sobolev inequality and (i) imply ∇u ∈ Lκ p
loc(Ω,RN×n) with

κ = n
n−2 . Note that κ p > q provided q

p < 1 + 2
n−2 .

A further, on first glance less direct, consequence of Theorem 2 is partial regularity of
minimizers of (1), see, e.g., [1,7,10,32], for partial regularity results under (p, q)-conditons.
For this, we slightly strengthen the assumptions on the integrand and suppose

Assumption 3 There exist 0 < ν ≤ L < ∞ such that f ∈ C2(RN×n) satisfies for all
z, ξ ∈ R

N×n

{
ν|z|p ≤ f (z) ≤ L(1 + |z|q),
ν(1 + |z|2) p−2

2 |ξ |2 ≤ 〈∂2 f (z)ξ, ξ 〉 ≤ L(1 + |z|2) q−2
2 |ξ |2. (4)

In [7], Bildhauer and Fuchs prove partial regularity under Assumption 3 with q
p < 1 + 2

n
( [7] contains also more general conditions including, e.g., the subquadratic case). Here we
show

Theorem 4 LetΩ ⊂ R
n, n ≥ 3, and suppose Assumption 3 is satisfied with 2 ≤ p < q < ∞

such that (3). Let u ∈ W 1,1
loc (Ω,RN ) be a local minimizer of the functional F given in (1).

Then, there exists an open set Ω0 ⊂ Ω with |Ω \ Ω0| = 0 such that ∇u ∈ C0,α(Ω0,R
N×n)

for each 0 < α < 1.

Wedonot know if (3) inTheorems2 and4 is optimal. Classic counterexamples in the scalar
case N = 1, see, e.g., [23,28], show that local boundedness of minimizers can fail if q

p is to
large depending on the dimension n. In fact, [28, Theorem 6.1] and the recent boundedness
result [26] show that 1

p − 1
q ≤ 1

n−1 is the sharp condition ensuring local boundedness in
the scalar case N = 1 (for sharp results under additional structure assumptions, see, e.g.,
[14,22]).

For non-autonomous functionals, i.e.,
∫
Ω

f (x, Du) dx , rather precise sufficiently & nec-
essary conditions are established in [20],where the conditions on p, q andn has to be balanced
with the (Hölder)-regularity in space of the integrand. However, if the integrand is sufficiently
smooth in space, the regularity theory in the non-autonomous case essentially coincides with
the autonomous case, see [10]. Currently, regularity theory for non-autonomous integrands
with non-standard growth, e.g. p(x)-Laplacian or double phase functionals are a very active
field of research, see, e.g., [2,12,13,15–17,25,33].

Coming back to autonomous integral functionals: In [11] higher gradient integrability is
proven assuming so-called ’natural’ growth conditions, i.e., no upper bound assumption on
∂2 f , under the relation q

p < 1 + 1
n−1 . Moreover, in two dimensions we cannot improve the

previous results on higher differentiability and partial regularity of, e.g., [7,18], see [8] for
a full regularity result under Assumption 3 with n = 2 and q

p < 2. Finally, we mention
the recent paper [3] where optimal Lipschitz-estimates with respect to a right-hand side are
proven for functionals with (p, q)-growth.

Let us briefly describe the main idea in the proof of Theorem 2 and from where our
improvement compared to earlier results comes from. The main point is to obtain suitable a
priori estimates for minimizers that may already be inW 1,q

loc (Ω,RN ). The claim then follows
by a known regularization and approximation procedure, see, e.g., [18]. For minimizers
v ∈ W 1,q

loc (Ω,RN ) a Caccioppoli-type inequality∫
η2|D(|Dv| p−2

2 Dv)|2 �
∫

|∇η|2(1 + |Dv|q) (5)
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is valid for all sufficiently smooth cut-off functions η, see Lemma 1. Very formally, the Cac-
cioppoli inequality (5) can be combined with Sobolev inequality and a simple interpolation
inequality to obtain

‖Dv‖p
Lκ p � ‖D(|Dv| p−2

2 Dv)‖2L2 � ‖Dv‖qLq � ‖Dv‖qθ
Lκ p‖Dv‖(1−θ)q

L p ,

where θ =
1
p − 1

q
1
p − 1

κ p
∈ (0, 1) and κ = n

n−2 . The ‖Dv‖Lκ p -factor on the right-hand side

can be absorbed provided we have qθ
p < 1, but this is precisely the ’old’ (p, q)-condition

q
p < 1+ 2

n , this type of argument was previously rigorously implemented in, e.g., [7,19]. Our
improvement comes from choosing a cut-of function η in (5) that is optimized with respect
to v, which enables us to use Sobolev inequality on n − 1-dimensional spheres wich gives
the desired improvement, see Sect. 3. This idea has its origin in joint works with Bella [4,5]
on linear non-uniformly elliptic equations.

With Theorem 2 at hand, we can follows the arguments of [7] almost verbatim to prove
Theorem 4. In Sect. 4, we sketch (following [7]) a corresponding ε-regularity result from
which Theorem 4 follows by standard methods.

2 Preliminary results

In this section, we gather some known facts. We begin with a well-known higher differentia-
bility result for minimizers of (1) under the assumption that u ∈ W 1,q

loc (Ω,RN ):

Lemma 1 Let Ω ⊂ R
n, n ≥ 2, and suppose Assumption 1 is satisfied with 2 ≤ p < q <

∞. Let v ∈ W 1,q
loc (Ω,RN ) be a local minimizer of the functional F given in (1). Then,

|Dv| p−2
2 Dv ∈ W 1,2

loc (Ω,RN×n) and there exists c = c( L
ν
, n, N , p, q) ∈ [1,∞) such that

for every Q ∈ R
N×n and every η ∈ C1

c (Ω)

∫
Ω

η2|D(|Dv| p−2
2 Dv)|2 dx ≤ c

∫
Ω

(1 + |Dv|2) q−2
2 |Dv − Q|2|∇η|2 dx . (6)

The Lemma 1 is known, see e.g. [7,18,28]. Since we did not find a precise reference for
estimate (6), we included a prove here following essentially the argument of [18].

Proof of Lemma 1 Without loss of generality, we suppose ν = 1 the general case ν > 0
follows by replacing f with f /ν (and thus L with L/ν). Throughout the proof, we write �
if ≤ holds up to a multiplicative constant depending only on n, N , p and q .

Thanks to the assumption v ∈ W 1,q
loc (Ω,RN ), the minimizer v satisfies the Euler-

Largrange equation
∫

Ω

〈∂ f (Dv), Dϕ〉 dx = 0 for all ϕ ∈ W 1,q
0 (Ω,RN ) (7)

(for this we use that the convexity and growth conditions of f imply |∂ f (z)| ≤ c(1 +
|z|q−1) for some c = c(L, n, N , q, ) < ∞). Next, we use the difference quotient method,
to differentiate the above equation: For s ∈ {1, . . . , n}, we consider the difference quotient
operator

τs,hv := 1
h (v(· + hes) − v) where v ∈ L1

loc(R
n,RN ).
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Fix η ∈ C1
c (Ω). Testing (7) with ϕ := τs,−h(η

2(τs,h(v − 
Q))) ∈ W 1,q
0 (Ω), where 
Q(x) =

Qx , we obtain

(I ) :=
∫

Ω

η2〈τs,h∂ f (Dv), τs,h Dv〉 dx

= − 2
∫

Ω

η〈τs,h∂ f (Dv), τs,h(v − 
Q) ⊗ ∇η〉 dx =: (I I ).

Writing τs,h∂ f (Dv) = 1
h ∂ f (Dv + thτs,h Dv)

∣∣t=1
t=0, the fundamental theorem of calculus

yields
∫

Ω

∫ 1

0
η2〈∂2 f (Dv + thτs,h Dv))τs,h Dv, τs,h Dv〉 dt dx = (I )

=(I I ) = −2
∫

Ω

∫ 1

0
η〈∂2 f (Dv + thτs,h Dv)τs,h Dv, (τs,hv − Qes) ⊗ ∇η〉 dt dx, (8)

where we use τh,s
Q = Qes . Youngs inequality yields

|(I I )| ≤ 1
2 (I ) + 2(I I I ), (9)

where

(I I I ) :=
∫

Ω

∫ 1

0
〈∂2 f (Du + thτs,h Du)(τs,hv − Qes) ⊗ ∇η, (τs,hv − Qes) ⊗ ∇η〉 dt dx .

Combining (8), (9) with the assumptions on ∂2 f , see (2), with the elementary estimate

|τs,h(|Dv| p−2
2 Dv)|2 �

∫ 1

0
|Dv + thτs,h Dv| p−2

2 |τs,h Dv|2 dt

for h > 0 sufficiently small (see e.g. [18, Lemma 3.4]), we obtain
∫

Ω

η2|τs,h(|Dv| p−2
2 Dv)|2 dx

�
∫

Ω

∫ 1

0
η2|Dv + thτs,h Dv| p−2

2 |τs,h Dv|2 dt dx ≤ (I )

≤4(I I I ) ≤ 4L
∫

Ω

∫ 1

0
(1 + |Dv + thτs,h Dv|q−2)|∇η|2|τs,hv − Qes |2 dt dx . (10)

Estimate (10), the fact v ∈ W 1,q
loc (Ω) and the arbitrariness of η ∈ C1

c (Ω) and s ∈ {1, . . . , n}
yield |Dv| p−2

2 Dv ∈ W 1,2
loc (Ω). Sending h to zero in (10), we obtain

∫
Ω

η2|∂s(|Dv| p−2
2 Dv)|2 dx � L

∫
Ω

(1 + |Dv|q−2)|∇η|2|∂sv − Qes |2 dx

the desired estimate (6) follows by summing over s. 
�
Next, we state a higher differentiability result under the more restrictive Assumption 3

which will be used in the proof of Theorem 4.

Lemma 2 Let Ω ⊂ R
n, n ≥ 2, and suppose Assumption 3 is satisfied with 2 ≤ p < q < ∞.

Let v ∈ W 1,q
loc (Ω,RN ) be a local minimizer of the functional F given in (1). Then, h :=
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(1+|Dv|2) p
4 ∈ W 1,2

loc (Ω) and there exists c = c( L
ν
, n, N , p, q) ∈ [1,∞) such that for every

Q ∈ R
N×n

∫
Ω

η2|∇h|2 dx ≤ c
∫

Ω

(1 + |Dv|2) q−2
2 |Dv − Q|2|∇η|2 dx for all η ∈ C1

c (Ω). (11)

A variation of Lemma 2 can be found in [7] and we only sketch the proof.

Proof of Lemma 2 With the same argument as in the proof of Lemma 1 but using (4) instead
of (2), we obtain v ∈ W 2,2

loc (Ω,RN ) and the Caccioppoli inequality
∫

Ω

η2(1 + |Dv|2) p−2
2 |D2v|2 dx ≤ c

∫
Ω

(1 + |Dv|2) q−2
2 |Dv − Q|2|∇η|2 dx (12)

for all η ∈ C1
c (Ω), where c = c( L

ν
, n, N , p, q) < ∞. Formally, the chain-rule implies

|∇h|2 ≤ c(1 + |Dv|2) p−2
2 |D2v|2, (13)

where c = c(n, p) < ∞, and the claimed estimate (11) follows from (12) and (13). In
general, we are not allowed to use the chain rule, but the above reasoning can be made
rigorous: Consider a truncated version hm of h, where hm := Θm(|Dv|) with

Θm(t) :=
{

(1 + t2)
p
4 if 0 ≤ t ≤ m

(1 + m2)
p
4 if t ≥ m

.

For hm we are allowed to use the chain-rule and (12) together with (13) with h replaced
by hm imply (11) with h replaced by hm . The claimed estimate follows by taking the limit
m → ∞, see [7, Proposition 3.2] for details. 
�

The following technical lemma is contained in [6] (see also [4, proof of Lemma 2.1,
Step 1]) and plays a key role in the proof of Theorem 2

Lemma 3 ( [6],Lemma 3) Fix n ≥ 2. For given 0 < ρ < σ < ∞ and v ∈ L1(Bσ ), consider

J (ρ, σ, v) := inf

{∫
Bσ

|v||∇η|2 dx | η ∈ C1
0 (Bσ ), η ≥ 0, η = 1 in Bρ

}
.

Then for every δ ∈ (0, 1]

J (ρ, σ, v) ≤ (σ − ρ)−(1+ 1
δ
)

(∫ σ

ρ

(∫
∂Br

|v| dHn−1
)δ

dr

) 1
δ

. (14)

For convenience of the reader we include a short proof of Lemma 3

Proof of Lemma 3 Estimate (14) follows directly by minimizing among radial symmetric
cut-off functions. Indeed, we obviously have for every ε ≥ 0

J (ρ, σ, v)

≤ inf

{∫ σ

ρ

η′(r)2
(∫

∂Br
|v| dHn−1 + ε

)
dr | η ∈ C1(ρ, σ ), η(ρ) = 1, η(σ ) = 0

}

=:J1d,ε.
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For ε > 0, the one-dimensional minimization problem J1d,ε can be solved explicitly and we
obtain

J1d,ε =
(∫ σ

ρ

(∫
∂Br

|v| dHn−1 + ε

)−1

dr

)−1

. (15)

To see (15), we observe that using the assumption v ∈ L1(Bσ ) and a simple approximation
argument we can replace η ∈ C1(ρ, σ ) with η ∈ W 1,∞(ρ, σ ) in the definition of J1d,ε. Let
η̃ : [ρ, σ ] → [0,∞) be given by

η̃(r) := 1 −
(∫ σ

ρ

b(r)−1 dr

)−1 ∫ r

ρ

b(r)−1 dr , where b(r) :=
∫

∂Br
|v| + ε.

Clearly, η̃ ∈ W 1,∞(ρ, σ ) (since b ≥ ε > 0), η̃(ρ) = 1, η̃(σ ) = 0, and thus

J1d,ε ≤
∫ σ

ρ

η̃′(r)2b(r) dr =
(∫ σ

ρ

b(r)−1 dr

)−1

.

The reverse inequality follows by Hölder’s inequality. Next, we deduce (14) from (15): For

every s > 1, we obtain by Hölder inequality σ − ρ = ∫ σ

ρ
( bb )

s−1
s ≤

(∫ σ

ρ
bs−1

) 1
s
(∫ σ

ρ
1
b

) s−1
s

with b as above, and by (15) that

J1d,ε ≤ (σ − ρ)−
s

s−1

(∫ σ

ρ

(∫
∂Br

|v| + ε

)s−1

dr

) 1
s−1

.

Sending ε to zero, we obtain (14) with δ = s − 1 > 0. 
�

3 Higher integrability - Proof of Theorem 2

In this section, we prove the following higher integrability and differentiability result which
clearly contains Theorem 2

Theorem 5 LetΩ ⊂ R
n, n ≥ 2, and suppose Assumption 1 is satisfied with 2 ≤ p < q < ∞

such that q
p < 1+min{ 2

n−1 , 1}. Let u ∈ W 1,1
loc (Ω,RN ) be a local minimizer of the functional

F given in (1). Then, u ∈ W 1,q
loc (Ω,RN ) and |Du| p−2

2 Du ∈ W 1,2
loc (Ω,RN×n). Moreover, for

χ = n − 1

n − 3
if n ≥ 4 χ ∈ (

1

2 − q
p

,∞) if n = 3 and χ := ∞ if n = 2. (16)

there exists c = c( L
ν
, n, N , p, q, χ) ∈ [1,∞) such that for every BR(x0) � Ω

−
∫
B R

2
(x0)

|Du|q dx + R2−
∫
B R

2
(x0)

|D(|Du| p−2
2 Du)|2 dx ≤ c

(
−
∫
BR(x0)

1 + f (Du) dx

) αq
p

(17)

where

α := 1 − q
χ p

2 − q
p − 1

χ

. (18)
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Proof of Theorem 5 Without loss of generality, we suppose ν = 1 the general case ν > 0
follows by replacing f with f /ν. Throughout the proof, we write � if ≤ holds up to a
multiplicative constant depending only on L, n, N , p and q .

Following, e.g., [7,18,19], we consider the perturbed integral functionals

Fλ(w) :=
∫

Ω

fλ(Dw) dx, where fλ(z) := f (z) + λ|z|q with λ ∈ (0, 1). (19)

We then derive suitable a priori higher differentiability and integrability estimates for local
minimizers of Fλ that are independent of λ ∈ (0, 1). The claim then follows with help of a
by now standard double approximation procedure in spirit of [18].
Step 1. One-step improvement.

Let v ∈ W 1,1
loc (Ω,RN ) be a local minimizer of the functionalFλ defined in (19), B1 � Ω ,

and let χ > 1 be defined in (16). We claim that there exists c = c(L, n, N , p, q, χ) ∈ [1,∞)

such that for all 1
2 ≤ ρ < σ ≤ 1 and every λ ∈ (0, 1]
∫
B1

1 + fλ(Dv) +
∫
Bρ

|D(|Dv| p−2
2 Dv)|2 dx

≤
c

(∫
B1

1 + fλ(Dv)

) χ
χ−1 (1− q

χ p )

(σ − ρ)
1+ q

p

×
(∫

B1
1 + fλ(Dv) +

∫
Bσ

|D(|Dv| p−2
2 Dv)|2 dx

) χ
χ−1 (

q
p −1)

(20)

with the understanding ∞
∞−1 = 1 and

∫
Bρ

|D(|Dv| p−2
2 Dv)|2 dx � 1

(σ − ρ)2

1

λ

∫
Bσ

1 + fλ(Dv) dx . (21)

The growth conditions of fλ and the minimality of v imply v ∈ W 1,q
loc (Ω,RN ) and thus by

Lemma 1
∫

Ω

|D(|Dv| p−2
2 Dv)|2η2 dx �

∫
Ω

(1 + |Dv|2) q−2
2 |Dv|2|∇η|2 dx (22)

for all η ∈ C1
c (Ω). Estimate (21) follows directly from (22) for η ∈ C1

c (Bσ )with 0 ≤ η ≤ 1,
η ≡ 1 on Bρ and |∇η| ≤ 2

σ−ρ
, combined with |z|q ≤ 1

λ
fλ(z) and λ ∈ (0, 1].

Hence, it is left to show (20). For this, we use a technical estimate which follows from
Lemma 3 and Hölders inequality: For given 0 < ρ < σ < ∞ and w ∈ Lq(Bσ ) it holds

J (ρ, σ, |w|q) ≤

(∫
Bσ \Bρ

|w|p
) χ

χ−1 (1− q
χ p )

(σ − ρ)
1+ q

p

(∫ σ

ρ

‖w‖p
Lχ p(∂Br )

dr

) χ
χ−1 (

q
p −1)

, (23)

where J is defined as in Lemma 3. We postpone the derivation of (23) to the end of this step.

Combining (22) with (1 + |Dv|2) q−2
2 |Dv|2 ≤ (1 + |Dv|)q and estimate (23) with w =

1 + |Dv|, we obtain
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∫
Bρ

|D(|Dv| p−2
2 Dv)|2 dx

�

(∫
Bσ \Bρ

(1 + |Dv|)p dx
) χ

χ−1 (1− q
χ p )

(σ − ρ)
1+ q

p

(∫ σ

ρ

‖1 + |Dv|‖p
Lχ p(∂Br )

dr

) χ
χ−1 (

q
p −1)

. (24)

Next, we use the Sobolev inequality on spheres to estimate the second factor on the right-hand
side in (24): For n ≥ 2 there exists c = c(n, N , χ) ∈ [1,∞) such that for all r > 0

‖Dv‖p
Lχ p(∂Br )

≤cr (n−1)( 1
χ

−1)
(∫

∂Br
|Dv|p dHn−1 + r2

∫
∂Br

|D(|Dv| p−2
2 Dv)|2 dHn−1

)
. (25)

Combining (25) with elementary estimates and assumption 1
2 ≤ ρ < σ ≤ 1, we obtain

∫ σ

ρ

‖1 + |Dv|‖p
Lχ p(∂Br )

dr �
∫ σ

ρ

1 + ‖Dv‖p
Lχ p(∂Br )

dr

�
∫ σ

ρ

1 +
(∫

∂Br
|Dv|p + |D(|Dv| p−2

2 Dv)|2 dHn−1
)
dr

�
∫
Bσ \Bρ

1 + |Dv|p + |D(|Dv| p−2
2 Dv)|2 dx . (26)

Combining (24) and estimate (26), we obtain∫
Bρ

|D(|Dv| p−2
2 Dv)|2 dx

≤
c

(∫
B1

(1 + |Dv|)p dx
) χ

χ−1 (1− q
χ p )

(σ − ρ)
1+ q

p

(∫
Bσ

1 + |Dv|p + |D(|Dv| p−2
2 Dv)|2 dx

) χ
χ−1 (

q
p −1)

,

The claimed estimate (20) now follows since |z|p ≤ f (z) ≤ fλ(z),
χ

χ−1 (1− q
χ p + q

p − 1) =
q
p ≥ 1 and

∫
B1

1 + fλ(Dv) dx ≥ |B1|.
Finally, we present the computations regarding (23): Lemma 3 yields

J (σ, ρ, |w|q) ≤

(∫ σ

ρ
‖w‖qδ

Lq (∂Br )
dr

) 1
δ

(σ − ρ)1+ 1
δ

for every δ > 0.

Using two times the Hölder inequality, we estimate
(∫ σ

ρ

‖w‖qδ

Lq (∂Br )
dr

) 1
δ ≤

(∫ σ

ρ

‖w‖θqδ

L p(∂Br )
‖w‖(1−θ)qδ

Lχ p(∂Br )
dr

) 1
δ

where
θ

p
+ 1 − θ

χ p
= 1

q

≤
(∫ σ

ρ

‖w‖θqδ s
s−1

L p(∂Br )
dr

) s−1
sδ

(∫ σ

ρ

‖w‖(1−θ)qδs
Lχ p(∂Br )

dr

) 1
δs

for every s > 1.

Inequality (23) follows with the admissible choice

δ = p

q
and s = 1

1 − θ

(
recall 1 − θ =

1
p − 1

q
1
p − 1

χ p

and p < q

)
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which ensures θqδ s
s−1 = (1 − θ)qδs = p.

Step 2. Iteration.
We claim that there exists c = c(L, n, N , p, q, χ) ∈ [1,∞) such that

∫
B 1
2

|Dv|p + |D(|Dv| p−2
2 Dv)|2 dx ≤c

(∫
B1

1 + fλ(Dv) dx

)α

, (27)

where α is defined in (18). For k ∈ N ∪ {0}, we set

ρk = 3

4
− 1

41+k
and Jk :=

∫
B1

1 + fλ(Dv) +
∫
Bρk

|D(|Dv| p−2
2 Dv)|2 dx .

Estimate (21) and the choice of ρk imply for λ ∈ (0, 1]

sup
k∈N

Jk ≤
∫
B1

1 + fλ(Dv) +
∫
B 3
4

|D(|Dv| p−2
2 Dv)|2 dx � 1

λ

∫
B1

1 + fλ(Dv) dx < ∞.

(28)

From (20) we deduce the existence of c = c(L, n, N , p, q, χ) ∈ [1,∞) such that for every
k ∈ N

Jk−1 ≤ c4(1+ q
p )k

(∫
B1

1 + fλ(Dv)

) χ
χ−1 (1− q

χ p )

J
χ

χ−1
q−p
p

k . (29)

Assumption q
p < 1 + min{1, 2

n−1 } and the choice of χ yield

χ

χ − 1

q − p

p
(16)=

⎧⎪⎨
⎪⎩

q
p − 1 if n = 2
χ

χ−1
q−p
p if n = 3

n−1
2 (

q
p − 1) if n ≥ 4

< 1,

where we use for n = 3 that χ
(16)
> 1

2− q
p

> 0 and

χ

χ − 1

q − p

p
< 1 ⇔ q − p

p
< 1 − 1

χ
⇔ 1

χ
< 2 − q

p
.

Hence, iterating (29) we obtain (using the uniform bound (28) on Jk and
χ

χ−1
q−p
p < 1)

∫
B 1
2

|Dv|p + |D(|Dv| p−2
2 Dv)|2 dx ≤ J0 �

(∫
B1

1 + fλ(Dv)

) χ
χ−1 (1− q

χ p )
∑∞

k=0(
χ

χ−1
q−p
p )k

(30)

and the claimed estimate (27) follow from

α = χ

χ − 1
(1 − q

χ p
)

∞∑
k=0

(
χ

χ − 1

q − p

p
)k .

Step 3. Conclusion.
We assume B1 � Ω and show that there exists c = c(L, n, N , p, q, χ) ∈ [1,∞)

∫
B 1
8

|Du|q dx ≤ c

(∫
B1

1 + f (Du) dx

) αq
p

, (31)
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where α is given as in (18) above. Clearly, standard scaling, translation and covering argu-
ments yield

−
∫
B R

2
(x0)

|Du|q dx ≤ c

(
−
∫
BR(x0)

1 + f (Du) dx

) αq
p

for all BR(x0) � Ω and c = c(L, n, N , p, q, χ) ∈ [1,∞). The claimed estimate (17) then
follows from Lemma 1.

Following [18], we introduce in addition to λ ∈ (0, 1) a second small parameter ε > 0
which is related to a suitable regularization of u. For ε ∈ (0, ε0), where 0 < ε0 ≤ 1 is such
that B1+ε0 � Ω , we set uε := u ∗ ϕε with ϕε := ε−nϕ( ·

ε
) and ϕ being a non-negative,

radially symmetric mollifier, i.e. it satisfies

ϕ ≥ 0, supp ϕ ⊂ B1,

∫
Rn

ϕ(x) dx = 1, ϕ(·) = ϕ̃(| · |) for some ϕ̃ ∈ C∞(R).

Given ε, λ ∈ (0, ε0), we denote by vε,λ ∈ uε + W 1,q
0 (B1) the unique function satisfying

∫
B1

fλ(Dvε,λ) dx ≤
∫
B1

fλ(Dv) dx for all v ∈ uε + W 1,q
0 (B1). (32)

Combining Sobolev inequality with the assumption q
p < 1+ 2

n−2 and estimate (27), we have

(∫
B 1
8

|Dvε,λ|q dx
) p

q

�
∫
B 1
8

|Dvε,λ|p + |D(|Dvε,λ|
p−2
2 Dvε,λ)|2 dx

(27)
�

(∫
B1

1 + fλ(Dvε,λ) dx

)α

(19),(32)≤
(∫

B1
1 + f (Duε) + λ|Duε|q dx

)α

≤
(

|B1| +
∫
B1+ε

f (Du) dx + λ

∫
B1

|Duε|q dx
)α

, (33)

where we used Jensen’s inequality and the convexity of f in the last step. Similarly,∫
B1

|Dvε,λ|p dx
(2)≤

∫
B1

f (Dvε,λ) dx
(19)(32)≤

∫
B1

f (Duε) + λ|Duε|q dx

≤
∫
B1+ε

f (Du) dx + λ

∫
B1

|Duε|q dx . (34)

Fix ε ∈ (0, ε0). In view of (33) and (34), we find wε ∈ uε + W 1,p
0 (B1) such that as λ → 0,

up to subsequence,

vε,λ⇀wε weakly in W 1,p(B1),

Dvε,λ⇀Dwε weakly in Lq(B 1
8
).

Hence, a combination of (33), (34) with the weak lower-semicontinuity of convex functionals
yield

‖Dwε‖Lq (B 1
8
) ≤ lim inf

λ→0
‖Dvε,λ‖Lκ p(B 1

8
) �

(∫
B1+ε

f (Du) dx + 1

) α
p

(35)
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∫
B1

|Dwε|p dx ≤
∫
B1

f (Dwε) dx ≤
∫
B1+ε

f (Du) dx . (36)

Since wε ∈ uε + W 1,q
0 (B1) and uε → u in W 1,p(B1), we find by (36) a function w ∈

u + W 1,p
0 (B1) such that, up to subsequence,

Dwε⇀Dw weakly in L p(B1).

Appealing to the bounds (35), (36) and lower semicontinuity, we obtain

‖Dw‖Lq (B 1
8
) �

(∫
B1

f (Du) dx + 1

) α
p

(37)

∫
B1

f (Dw) dx ≤
∫
B1

f (Du) dx . (38)

Inequality (38), strict convexity of f and the fact w ∈ u + W 1,p
0 (B1) imply w = u and thus

the claimed estimate (31) is a consequence of (37). 
�

4 Partial regularity - Proof of Theorem 4

Theorem 4 follows from, the higher integrability statement Theorem 2, the ε-regularity
statement of Lemma 4 below and a well-known iteration argument.

Lemma 4 Let Ω ⊂ R
n, n ≥ 3, and suppose Assumption 3 is satisfied with 2 ≤ p < q < ∞

such that q
p < 1+ 2

n−1 . Fix M > 0. There exists C∗ = C∗(n, N , p, q, L
ν
, M) ∈ [1,∞) such

that for every τ ∈ (0, 1
4 ) there exists ε = ε(M, τ ) > 0 such that the following is true: Let

u ∈ W 1,1
loc (Ω,RN ) be a local minimizer of the functional F given in (1). Suppose for some

ball Br (x) � Ω

|(Du)x,r | ≤ M,

where we use the shorthand (w)x,r := −
∫
Br (x)

w dy, and

E(x, r) := −
∫
Br (x)

|Du − (Du)x,r |2 dy + −
∫
Br (x)

|Du − (Du)x,r |q dy ≤ ε,

then

E(x, τr) ≤ C∗τ 2E(x, r).

With the higher integrability of Theorem 5 and the Caccioppoli inequality of Lemma 2 at
hand, we can prove Lemma 4 following almost verbatim the proof of the corresponding result
[7, Lemma 4.1], which contain the statement of Lemma 4 under the assumption q

p < 1 + 2
n

(note that in [7] somewhat more general growth conditions including also the case 1 < p < q
are considered). Thus, we only sketch the argument.

Proof of Lemma 4 FixM > 0. Suppose that Lemma4 iswrong.Then there exists τ ∈ (0, 1
4 ), a

local minimizer u ∈ W 1,1
loc (Ω,RN ), which in view of Theorem 2 satisfies u ∈ W 1,q

loc (Ω,RN ),
and a sequence of balls Brm (xm) � BR satisfying

|(Du)xm ,rm | ≤ M, E(xm, rm) =: λm with lim
m→∞ λm = 0, (39)
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E(xm, τrm) > C∗τ 2λ2m, (40)

where C∗ is chosen below. We consider the sequence of rescaled functions given by

vm(z) := 1

λmrm
(u(xm + rmz) − am − rm Amz),

where am := (u)xm ,rm and Am := (Du)xm ,rm . Assumption (39) implies supm |Am | ≤ M and
thus, up to subsequence,

Am → A ∈ R
N×n .

The definition of vm yields

Dvm(z) = λ−1
m (Du(xm + rmz) − Am), (vm)0,1 = 0, (Dvm)0,1 = 0 (41)

Assumptions (39) and (40) imply

−
∫
B1

|Dvm |2 dz + λ
q−2
m −

∫
B1

|Dvm |q dz = λ−1
m E(xm, rm) = 1, (42)

−
∫
Bτ

|Dvm − (Dvm)0,τ |2 dz + λ
q−2
m −

∫
Bτ

|Dvm − (Dvm)0,τ |q dz > C∗τ 2. (43)

The bound (42) together with (41) imply the existence of v ∈ W 1,2(B1,R
N ) such that, up

to extracting a further subsequence,

vm⇀v in W 1,2(B1,R
N ),

λmDvm → 0 in L2(B1,R
N×n) and almost everywhere

λ
1− 2

q
m vm⇀0 in W 1,q(B1,R

N ).

The function v satisfies the linear equation with constant coefficients
∫
B1

〈∂2 f (A)Dv, Dϕ〉 dz = 0 for all ϕ ∈ C1
0 (B1),

see, e.g., [21] or [7, Proposition 4.2]. Standard estimates for linear elliptic systems with
constant coefficients imply v ∈ C∞

loc(B1,R
N ) and existence of C∗∗ < ∞ depending only on

n, N and the ellipticity contrast of ∂2 f (A) (and thus on L
ν
, p, q, and M) such that

−
∫
Bτ

|Dv − (Dv)0,τ |2 ≤ C∗∗τ 2. (44)

Choosing C∗ = 2C∗∗ we obtain a contradiction between (43) and (44) provided we have as
m → ∞

Dvm → Dv in L2
loc(B1), (45)

λ
1− 2

q
m Dvm → 0 in Lq

loc(B1). (46)

Exanctly as in [7, Proposition 4.3] (with μ = 2 − p, see also [9, Section 3.4.3.2] for a more
detailed presentation of the proof), we have for all ρ ∈ (0, 1),

lim
m→∞

∫
Bρ

∫ 1

0
(1 − s)

(
1 + |Am + λm(Dv + sDwm)|2

) p−2
2 |Dwm |2 dz = 0, (47)
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where w := vm − v, and thus the local L2-convergence (45) follows. It is left to prove (46).
For this, we introduce for ρ ∈ (0, 1) and T > 0 the sequence of subsets

Um := Um(ρ, T ) := { z ∈ Bρ : λm |Dvm | ≤ T }.
The local Lipschitz regularity of v, q > 2 and (45) imply for all ρ ∈ (0, 1) and T > 0

lim sup
m→∞

∫
Um (ρ,T )

λ
q−2
m |Dvm |q dz � lim sup

m→∞

∫
Um (ρ,T )

λ
q−2
m |Dwm |q dz

� lim sup
m→∞

∫
Bρ

(Mq−2 + λ
q−2
m |Dv|q−2)|Dwm |2 dz

=0,

where here and for the rest of the proof � means ≤ up to a multiplicative constant depending
only on L, n, N , p and q . Hence, it is left to show that there exists T > 0 such that

lim sup
m→∞

∫
Bρ\Um (ρ,T )

λ
q−2
m |Dvm |q dz ≤ 0 for all ρ ∈ (0, 1).

As in [7], we introduce a sequence of auxiliary functions

ψm := λ−1
m

[
(1 + |Am + λmDvm |2) p

4 − (1 + |Am |2) p
4

]
,

which satisfy

lim sup
m→∞

‖ψm‖W 1,2(Bρ) � c(ρ) ∈ [1,∞) for all ρ ∈ (0, 1). (48)

Indeed, by Theorem 2 and Lemma 2, we have for every ρ ∈ (0, 1) and every Q ∈ R
N×n

∫
Bρrm (xm )

|∇(1 + |Du(x)|2) p
4 |2 dx � r−2

m c(ρ)

∫
Brm (xm )

(1 + |∇u(x)|)q−2|Du(x) − Q|2 dx

and thus by rescaling and setting Q = Am

∫
Bρ

|∇ψm |2 dz � c(ρ)

∫
B1

(1 + |A|q−2 + |λmDvm |q−2))|Dvm |2 dz
(42)
� c(ρ)(1 + Mq−2).

The identity ψm = λ−1
m

∫ 1
0

d
dt Θ(Am + tλmvm) dt with Θ(F) := (1 + |F |2) p

4 implies

|ψm | ≤ c(|Dvm | + λ
p−2
2

m |Dvm | p
2 )

(see [7, p. 555] for details) and thus with help of (47), we obtain

lim sup
m→∞

∫
Bρ

|ψm |2 dz � c(ρ).

For T sufficiently large (depending on M) there exists c > 0 such that for all z ∈ Bρ \
Um(ρ, T )

ψm(z) ≥ cλ−1
m λ

p
2
m |Dvm(z)| p

2 and thus λ
2(1+ q

p )

m ψ

2q
p

m (z) ≥ c
2q
p λ

q−2
m |Dvm(z)|q
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Estimate (48) and Sobolev embedding imply lim supm→∞ ‖ψm‖
L

2n
n−2 (Bρ)

� c(ρ) ∈ [1,∞).

Hence, using assumption q
p < 1+ 2

n−1 (and thus 2q
p < 2n

n−2 ), we obtain for every ρ ∈ (0, 1)

lim sup
m→∞

∫
Bρ\Um (ρ,T )

λ
q−2
m |Dvm |q dz � λ

2(1+ q
p )

m

∫
Bρ

ψ

2q
p

m (z) dz � c(ρ) lim sup
m→∞

λ
2(1+ q

p )

m = 0,

which finishes the proof. 
�
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