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Abstract
An isotropic gradient-enhanced damage model is applied to shape optimisation in order to establish a computational optimal
design framework in view of optimal damage distributions. The model is derived from a free Helmholtz energy density
enriched by the damage gradient contribution. The Karush–Kuhn–Tucker conditions are solved on a global finite element
level by means of a Fischer–Burmeister function. This approach eliminates the necessity of introducing a local variable,
leaving only the global set of equations to be iteratively solved. The necessary steps for the numerical implementation in
the sense of the finite element method are established. The underlying theory as well as the algorithmic treatment of shape
optimisation are derived in the context of a variational framework. Based on a particular finite deformation constitutive model,
representative numerical examples are discussed with a focus on and application to damage optimised designs.

Keywords Non-local damage · Gradient enhanced model · Large deformation · Shape optimisation · Sensitivity analysis

1 Introduction

The application of finite element simulations has become a
well established framework to circumvent costly experiments
in the industrial environment and to computationally predict
material and structural behaviour. The accurate prediction of
the evolution of deformation and material properties for dif-
ferent fields of application, ranging from e.g. simple forming
processes to complex crash tests, requires advanced models
capable of simulating inelastic effects of the particular mate-
rial considered. In view of industrial applications, damage
evolution and accumulation play a crucial role. To this end,
the framework of continuum damage mechanics is adopted,
where damage is defined as the degradation of effectivemate-
rial properties which evolve after the initiation of defects,
such as microcracks, see e.g. [30]. Different damage models
have been proposed in the literature and the interested reader
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is referred to, e.g., [30] for a detailed overview of different
approaches. This work adopts the well-established [1 − d]
approach in the context of a Lemaitre-type damage model
which captures the coupling of elasticity and damage, see
[27].

A common problem of all damage models, if embed-
ded into the finite element method, is the mesh dependency
of the simulation response together with a possible loss
of ellipticity of the underlying governing equations. Vari-
ous non-local damage formulations have been established
to obtain regularised, mesh independent results. In [5,6] a
non-local damage variable is defined as an integral value
of a pointwise defined damage quantity, while in [10,40]
regularisation is obtained by introducing additional gradi-
ent terms. Alternatively, regularisation can be achieved by
means of rate dependent damage evolution equations, see
e.g. [14] or the more recent works in [2,26]. Moreover, dif-
ferent gradient-enhancement strategies have been established
in the literature. A popular approach introduces a non-local
quantity, e.g. non-local damage, coupled to a local quantity
and only takes the gradient of the non-local quantity into
account as proposed in [33], later adopted in [11,38] and
denoted micromorphic approach in [17]. The approach has
been successfully extended to anisotropic damage formula-
tions, see e.g. [41], and coupled to plasticity [8,12,24] to
name but a few references. Implementation of this concept
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into commercial FEM software, e.g. Abaqus, by exploiting
the similarity to the heat equation is presented in [32]. An
alternative approach directly incorporates the gradient of the
local quantity, see e.g. [34] introducing a quasi non-local
energy release rate. Thereby, in the context of a finite ele-
ment implementation, the underlying equations have to be
solved at the global level, e.g. with an active-set strategy,
see [28]. The drawback of using an active-set strategy is a
non-constant size of the global system of equations. Alterna-
tively, the underlying set of equations can be solved bymeans
of a Fischer–Burmeister approach, see [16]. The Fischer–
Burmeister approach has been proposed in [37] as a practical
method of solving the Karush–Kuhn–Tucker (KKT) condi-
tions in material modelling and was later applied to different
modelling problems, see e.g. [3,9,13,23,24].

The application of optimisation techniques to damage
mechanics can be traced in the literature in different forms
of application. In [1] a numerical implementation of the
Francfort–Marigomodel of damage evolution in brittlemate-
rials is proposed. At each time step, the sum of an elastic
energy and a Griffith-type dissipated energy is minimised.
The interface between healthy and damaged phases is mod-
elled by a level set function that is transported according to
the shape derivative of the minimised total energy. Initially,
the damaged zone is nucleated by using the so-called topo-
logical derivative. The overall algorithm is able to predict
crack propagation, including kinking and branching. Fur-
thermore, optimisation algorithms are applied to identify
damage in an existing structure. The research focuses for
example on the algorithmic aspects of nonlinear program-
ming approaches and the formulation of the optimisation
problem, cf. [35]. Another investigation highlights the bene-
fits of sensitivity-based structural damage detection by using
the matrix spectral decomposition theory, cf. [44].

While shape optimisation is generally broadly applied,
its application to optimise damage accumulation and evolu-
tion is largely unexplored. Most construction parts contain
stress concentrations at some changes in cross section or
boreholes. One possible reason for failure are fatigue phe-
nomena, especially in the case of dynamic loading. Fatigue
is observed at load levels below the macroscopic yield stress.
On amacroscopic scale the structural behaviour is elastic, but
on a microscale plasticity is found at inclusions and other
types of defects within the material. Based on a continuum
damage mechanics model, shape optimisation minimising
a cost function modelling fatigue has been successfully
applied by [19]. An engineering definition of lifetime based
on load-cycle counts has been maximised and verified by
experiments. In [4] a local damage model for finite strains
was used to optimise geometries in order to reduce dam-
age. Thereby, the focus is set on the treatment of internal
variables within the context of a variational approach of the
sensitivities.

Similarly to shape optimisation, advancements of topol-
ogy optimisation regarding damage are limited, while other
nonlinear material effects, such as finite strain plasticity or
viscoplasticity, c.f. [21,43], see increased research in the
field of topology optmisation. A continuummicromechanics
based approach for assessing changes in elastic properties
and in the strength of the structure attributed to chemical
reactions is proposed in [36]. It is found that the damage
progression rate is mostly dependent on relative rates of sul-
fate ingress and calcium leaching. The relations between the
factors and the damage progression rate are observed to be
significantly nonlinear. A level set based topology optimi-
sation approach to design structures exhibiting resistance to
damage is outlined in [31]. As the damage process is irre-
versible, the structural responses are path-dependent and this
dependency is accounted for in the sensitivity analysis. In
[39] topology optimisation is applied to high-cycle fatigue.
By constraining the maximum damage at each element via
the p-norm of the damage values, improved topologies are
generated by utilising sensitivities derived using an adjoint
method.

The paper is structured as follows: A brief overview of
the nonlinear kinematics is addressed in Sect. 2 with regard
to the extension concerning the intrinsic formulation. There-
after, the material model is discussed. The implementation of
the model in the context of the finite element method is elab-
orated in Sect. 3 and the focus is set on the implementation
of the Fischer–Burmeister approach. Sect. 4 deals with the
optimisation approach and gives a brief overview of shape
optimisation, the necessary derivations and the implementa-
tion for the numerical framework. To show the possibilities
of the model in combination with the optimisation frame-
work, Sect. 5 discusses representative numerical examples as
well as optimised geometries with regards to reduced dam-
age accumulation. Finally, Sect. 6 gives a summary and an
outlook on possible future research work.

2 Material model

This section presents the underlying theories for the damage
model. The nonlinear kinematics for large deformations are
briefly described and enhanced for later use regarding the
calculation of the sensitivities. This enhancement, together
with the introduction of the intrinsic formulation allows the
decoupling of the quantities from the design and, as such,
easier derivation. The material model for the non-local, gra-
dient enhanced damage will then be derived.

2.1 Kinematics

The kinematics are presented here for later application, and
to give a brief overview to the reader regarding the notation.
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Fig. 1 General kinematics (left)
and enhanced kinematics (right)

(a)

(b)

Since only a broad overview is given, the reader is referred
to [7] for the general kinematics, as well as [4,29] regarding
the intrinsic formulation.

We consider a body in an undeformed, referential state
with configurationB0 ⊂ R

m with referential position vectors
of material points X ∈ B0. Any of these referential position
vectors X can be mapped to position vectors x ∈ Bt in the
deformed, current configuration Bt ⊂ R

m at time t ∈ [0, T ]
by the nonlinear mapping ϕ, see Fig. 1a, i.e.

ϕ :
{
B0 −→ Bt

X �→ x = ϕ(X, t)
. (1)

For any differentiable function (•) the gradient and diver-
gence operations with respect to the reference configuration
read

Grad(•) = ∇X (•) and Div(•) = ∇X · (•), (2)

whereas the operations with respect to the current configura-
tion read

grad(•) = ∇x (•) and div(•) = ∇x · (•). (3)

Based on this, the deformation gradient is then expressed
by

F := ∇Xϕ = ∂(X + u)

∂X
, (4)

with u = x − X as the displacement vector field. The defor-
mation gradient transforms an infinitesimal line element dX
of the referential configuration, to the line element dx in the
current configuration. The corresponding Jacobian J maps
an infinitesimal volume element dV of the undeformed con-
figuration to the deformed volume element dv, i.e.

J = det(F) = dv

dV
. (5)

Furthermore, we introduce the right Cauchy-Green tensor as

C = Ft · F. (6)

For the derivation of the quantities necessary for the
structural optimisation the introduction of the intrinsic for-
mulation is helpful, which enhances the above setting by the
domain Bζ ⊂ R

n as illustrated in Fig. 1b. Therein, a new
coordinate Θ ∈ Bζ is introduced, which allows the (suffi-
ciently smooth) mapping to the parameter space in order to
calculate the derivatives without any dependencies of the ref-
erential configuration. This leads to the additional operations

GRAD(•) = ∇Θ(•) and DIV(•) = ∇Θ · (•). (7)

The additional mappings read

κ :
{
Bζ −→ B0

Θ �→ X = κ(Θ)
(8)

for the nonlinear mapping from the parameter space to the
reference configuration, as well as

μ :
{
Bζ −→ Bt

Θ �→ x = μ(Θ, t)
(9)

for the mapping from the parameter space to the current
configuration. Following the derivation of the deformation
gradient, the counterparts for the parameter space, as well as
their Jacobians J•, are defined as

K := ∇Θκ and JK = det(K ), (10)

respectively

M := ∇Θμ and JM = det(M). (11)
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Combining the twomappings into amultiplicative decom-
position of the deformation gradient

F = ∂x
∂Θ

· ∂Θ

∂X
= M · K−1 (12)

simplifies the derivation of the total variation for the defor-
mation gradient. For further detailed background information
the reader is referred to the references cited above.

2.2 Constitutive relations

In this section the material model, combining isotropic
elasticity with isotropic damage, is derived. For the gradient-
enhanced model a Helmholtz free energy is proposed as

ψ = ψvol(F, d) + ψ iso(F, d) + ψgrd(∇Xd), (13)

where d is the scalar variable associated to isotropic damage.
The elastic energy is additively split into a volumetric ψvol

and an isochoric ψ iso contribution. Gradient enhancement is
captured in the term ψgrd. The damage variable d deterio-
rates the elastic properties of thematerial model via so-called
damage functions f •, i.e.

ψvol + ψ iso = f vol(d)ψ̄vol(F) + f iso(d)ψ̄ iso(F). (14)

The damage functions f • are a generalisation of the well-
known [1−d]-approach commonly found in literature. They
map the damage variable d ∈ [0,∞[ to the interval ]0, 1],
i.e.

f • :
{
R

+
0 →]0, 1] | f •(0) = 1, lim

d→∞ f •(d) = 0

}
, (15)

such that no additional constraints to limit the value of d
are necessary. Following the framework of generalised stan-
dard dissipative materials together with the framework of the
introduction of a non-locality residual, the Clausius–Duhem
inequality reads

D = P : Ḟ − ψ̇ + P
= [P − ∂Fψ] : Ḟ − ∂dψ ḋ − ∂∇Xdψ

˙∇Xd + P ≥ 0,
(16)

with the Piola stresses P . Thereby, P denotes the non-
locality residual, see [15,22,28,34]. Moreover, the notation
•̇ represents the material time derivative of the quantity •.
The non-locality residual accounts for the energy exchange
between the particles in the damaged area Bd and has to sat-
isfy the insulation condition

∫
Bd

P dV = 0, (17)

which states that no energy is exchanged between particles
inside and outside the damaged area. In the elastic domain
Be := B\Bd the non-locality residual has to be pointwise
zero, i.e.

P = 0 in Be. (18)

With the definition of the stresses and driving forces

P := ∂ψ

∂F
, Y := −∂ψ

∂d
, Y := − ∂ψ

∂∇Xd
, (19)

the dissipation inequality (16) reduces to

Dred = Y ḋ + Y · ˙∇Xd + P ≥ 0. (20)

Since d and ∇Xd cannot evolve independently from each
other, the reduced dissipation inequality is assumed to take
the bilinear form

Dred = Ȳ ḋ ≥ 0. (21)

Comparing both forms of the reduced dissipation, (20) and
(21), yields an expression for the non-locality residual in the
form of

P = Ȳ ḋ − Y ḋ − Y · ˙∇Xd. (22)

Combining the insulation condition (17) with the vanishing
non-locality residual in the elastic domain (18) renders the
integral ofP over thewhole domainB to vanish.Additionally
applying integration by parts and the Gauss theorem leads to∫
B
P dV =

∫
B
[Ȳ − Y ]ḋ dV −

∫
B
Y · ˙∇Xd dV

=
∫
B
[Ȳ + ∇X · Y − Y ]ḋ dV

−
∫

∂B
[Y · N]ḋ dA = 0,

(23)

with N being the referential outward unit normal vector.
Since (23) has to be fulfilled for arbitrary damage rates ḋ
one obtains the following conditions

Ȳ = Y − ∇X · Y in B, (24)

Y · N = 0 on ∂B. (25)

The quantity Ȳ can be interpreted as a non-local driving
force. Consequently, damage potential φd—governing onset
and evolution of the damage variable d in this associated
framework—is formulated in terms of Ȳ such that the elastic
domain is introduced as

E := {Ȳ | φd(Ȳ ) ≤ 0}. (26)

123



Computational Mechanics (2020) 65:1105–1124 1109

Homogeneous Neumann boundary conditions are applied to
the total boundary and no Dirichlet boundary conditions are
considered, see (25). The constrained minimisation problem
ensuing from the postulate of maximum dissipation is solved
with the Lagrange functional, i.e.

L = −Dred + λφd = −Ȳ ḋ + λφd → stat., (27)

with Lagrange parameter λ ≥ 0. This leads to the Karush–
Kuhn–Tucker (KKT) conditions. The evolution equation for
the damage variable is obtained as

ḋ = λ
∂φd

∂Ȳ
(28)

and the loading/unloading conditions are

φd ≤ 0, λ ≥ 0, λφd = 0. (29)

In this work, the elastic free Helmholtz energy is chosen to be
of Neo-Hookean type, whereas the gradient part is a simple
quadratic form, i.e.

ψ̄vol = 1

2
K

[
1

2
[J 2 − 1] − ln(J )

]
,

ψ̄ iso = 1

2
μ

[
tr(C iso) − 3

]
,

ψgrd = 1

2
cd ‖∇Xd‖2,

(30)

where K is the bulk modulus, μ the shear modulus, cd shall
be denoted as regularisation parameter and ‖ • ‖ = √• · •.
Moreover, C iso = J− 2

3 C is the isochoric part of the right
Cauchy-Green tensor C . The conditions for the damage
function f • are fulfilled by the exponential function. We
choose

f •(d) := exp(−η• d), (31)

where ηvol and ηiso are material parameters controlling the
speed of deterioration of the elastic properties. The stresses
and driving forces are then given by

Pvol = f vol(d)

[
1

2
K [J 2 − 1] F−t

]
,

P iso = f iso(d)

[
J− 2

3 μ

[
F − tr(C)

3
F−t

]]
,

P = Pvol + P iso,

Y = ηvol f
vol(d) ψ̄vol(F) + ηiso f iso(d) ψ̄ iso(F),

Y = − cd ∇Xd.

(32)

Finally, damage potential φd is chosen as

φd = Ȳ − y0, (33)

so that damage driving force Ȳ is compared to a constant
threshold value y0. This results in the evolution equation

ḋ = λ, (34)

cf. (28). The quantity d is introduced as a field variable in the
algorithmic setting and the Lagrange multiplier λ is solved
for by the implicit Backward–Euler scheme, which leads to
the discrete update at time step n + 1

λn+1 = dn+1 − dn
Δt

, (35)

with the incremental time step Δt = tn+1 − tn . This means
that the loading/unloading conditions cannot be fulfilled by
an evolution of the damage variable d at integration point
level within the finite element formulation discussed as this
work proceeds—instead, the loading/unloading conditions
need to be solved globally.

3 Finite element implementation

The previously described material model shall now be incor-
porated into a boundary value problem. Therefore, the strong
and weak forms of the mechanical problem are briefly sum-
marised and the governing equation for the damage field is
derived. Afterwards, the coupled problem is discretised and
linearised in the context of the finite element method.

3.1 Weak formulation

In order to derive the weak form of the quasi-static mechan-
ical problem, the strong form is used as the starting point,
i.e.

∇X · P + ρ0B = 0 in B0, (36)

P · N = T̄ on ∂B0. (37)

Here, B denotes the body forces, ρ0 the referential mass
density, and T the traction forces applied on the surface.
Multiplication of (36) with test function ηϕ and integration
over the body B0, as well as the application of Gauss’s the-
orem and integration by parts, leads to the weak form of the
mechanical problem

rϕ =
∫
B0

P : ∇Xηϕ dV −
∫

∂B0

ηϕ · T̄ dA

− ρ0

∫
B0

ηϕ · B dV = 0, (38)
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which is used later on for the finite element implementa-
tion. The damage and field variable d is governed by the
KKT-conditions (29). In order to formulate a single gov-
erning equation for the whole domain, without splitting the
domain into a damage domain and an elastic domain [28],
the problem is restated with the help of Fischer–Burmeister
functions [3,9,16,37], i.e.

√[
φd

]2 + λ2 + φd − λ = 0, (39)

so that the inequality constraints are transformed to an equa-
tion. However, solving (39) in weak form—in analogy to the
mechanical problem—requires the evaluation of the second
gradient of the damagefield d in the non-local driving force Ȳ
(24). Instead, damage potentialφd , cf. (33, 24), andLagrange
multiplier λ are multiplied with test functions ηφ and ηλ

respectively and integrated over the domain B0, identical to
the approach in [28]. Inserting (33) and using integration by
parts and Gauss’s theorem results in

rφ :=
∫
B0

ηφ [Y − ∇X · Y − y0] dV ,

=
∫
B0

Y · ∇Xηφ + ηφ [Y − y0] dV

−
∫

∂B0

ηφ [Y · N] dA ≤ 0, ∀ ηφ > 0, (40)

rλ :=
∫
B0

ηλ λ dV ≥ 0, ∀ ηλ > 0, (41)

with the last integral of (40) vanishing due to the boundary
condition (25). The second derivative of damage field d, as
present within the expression ∇X · Y , is no longer explicitly
required. This framework is only applicable if the damage
potential φd is linear in the non-local driving force Ȳ . The
global form of the loading/unloading conditions (40) and
(41) are now enforced by means of the Fischer–Burmeister
complementarity function which results in

rd =
√

[rφ]2 + [rλ]2 + rφ − rλ = 0. (42)

Finally, this leads to the coupled problem, the residual form
of which takes the representation

R =
[
rϕ

rd

]
=

[
0
0

]
. (43)

3.2 Discretisation

For the finite element implementation, domain B0 is discre-
tised by nel finite elements and nnp nodes, i.e.

B0 ≈ Bh
0 =

nel⋃
e=1

Be, (44)

where each finite element is characterised by nϕ
en nodes

with three displacement degrees of freedom and nden nodes
with one non-local damage degree of freedom. Applying
the isoparametric concept, the geometry description X , the
placements ϕ and the damage field d are approximated by
using the nodal values of the field and the shape functions
N •, so that one obtains

X ≈ Xh =
nϕ
en∑
J

X J N
X
J , ϕ ≈ ϕh =

nϕ
en∑
J

ϕ J N
ϕ
J ,

d ≈ dh =
nden∑
L

dL N
d
L ,

(45)

and the values for their respective gradients as

∇Xϕ ≈ ∇Xϕh =
nϕ
en∑
J

ϕ J ⊗ ∇X N
ϕ
J ,

∇Xd ≈ ∇Xd
h =

nden∑
L

dL∇X N
d
L . (46)

According to the Bubnov–Galerkin approach, the above
approximations are also applied to the variations, respec-
tively test functions, as well as their gradients, i.e.

δX ≈ δXh =
nϕ
en∑
I

δX I N
X
I , ηϕ ≈ ηϕ h =

nϕ
en∑
I

η
ϕ
I N

ϕ
I ,

ηφ ≈ ηφ h =
nden∑
K

η
φ
K Nd

K , ηλ ≈ ηλ h =
nden∑
K

ηλ
K Nd

K ,

(47)

and

∇XδX ≈ ∇XδXh =
nϕ
en∑
I

δX I ⊗ ∇X N
X
I ,

∇Xηϕ ≈ ∇Xηϕ h =
nϕ
en∑
I

η
ϕ
I ⊗ ∇X N

ϕ
I ,

∇Xηφ ≈ ∇Xηφ h =
nden∑
K

η
φ
K∇X N

d
K ,

∇Xηλ ≈ ∇Xηλ h =
nden∑
K

ηλ
K∇X N

d
K . (48)
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Inserting the above approximations into (38) yields the
mechanical residual in element e connected to element node
I ,

η
ϕ
I ·

[ ∫
Be
0

P · ∇X N
ϕ
I dV

−
∫
Be
0

Nϕ
I B dV −

∫
∂Be

0

Nϕ
I T̄ dA

]
= 0, (49)

where the first integral can be identified as the internal forces
f inteI and the sum of the latter integrals as the external forces
f exteI . Since the (49) has to be fulfilled for any variation η

ϕ
I ,

the residual can be written as

rϕ
eI := f inteI − f exteI = 0 ∀ I = 1, . . . , nϕ

en . (50)

The same discretisation is applied to the global forms of the
loading/unloading conditions (40) and (41), i.e.

rφ
eK =

∫
Be
0

[
Nd
KY + ∇X N

d
K · Y − Nd

K y0
]
dV ≤ 0 (51)

rλ
eK =

∫
Be
0

Nd
Kλn+1 dV ≥ 0, (52)

where the test functions are already removed. The element
residuals rϕ

eI , r
φ
eK and rλ

eK are now assembled into their
respective global finite element residuals, i.e.

rϕ =
nel

A
e

rϕ
eI , rφ =

nel

A
e

rφ
eK , rλ =

nel

A
e

rλ
eK . (53)

After assembling, residuals rφ and rλ are used to compute the
Fischer–Burmeister residual for every global node point to

rdk :=
√

[rφk ]2 + [rλk ]2 + rφk − rλk = 0 ∀ k = 1, . . . , ndnp.

(54)

3.3 Linearisation

To solve the nonlinear system of equations an iterative
Newton–Raphson scheme is employed. A Taylor series
expansion at iteration step m—terms of order higher than
linear are neglected—yields

rϕ
m+1 = rϕ

m + Δrϕ
m = 0, (55)

rdm+1 = rdm + Δrdm = 0, (56)

where the nodal increments of the residual are given by

Δrϕ
i =

nϕ
np∑

j=1

drϕ
i

dϕ j
· Δϕ j +

ndnp∑
l=1

drϕ
i

ddl
Δdl , (57)

Δrdk =
nϕ
np∑

j=1

drdk
dϕ j

· Δϕ j +
ndnp∑
l=1

drdk
ddl

Δdl , (58)

with Δϕ j = ϕ j m+1 − ϕ j m and Δdl = dl m+1 − dl m being
the increments of the nodal degrees of freedom. Defining the
global stiffness matrix as

K :=
[
Kϕϕ Kϕd

Kdϕ Kdd

]
(59)

enables the entries connected to the total derivative of the
mechanical residual, Kϕϕ and Kϕd , to be computed via the
assembly of the element stiffness matrices, i.e.

Kϕϕ :=
nel

A
e

[
Kϕϕ

eI J

]
, Kϕd :=

nel

A
e

[
Kϕd

eI L

]
, (60)

with the element stiffness matrices given by

Kϕϕ
eI J :=

∫
Be
0

[
I ⊗ ∇X N

ϕ
I

] : dP
dF

· ∇X N
ϕ
J dV ,

I , J = 1, . . . , nϕ
en, (61)

Kϕd
eI L :=

∫
Be
0

[
I ⊗ ∇X N

ϕ
I

] : dP
dd

Nd
L dV ,

I = 1, . . . , nϕ
en, L = 1, . . . , nden, (62)

with I being the identity tensor of second order. The entries
in the stiffness matrix connected to the damage residual need
to be treated in a different manner due to the modification
of the assembled residual in (54). Using the chain rule, the
incremental form of the damage residual takes the represen-
tation

drdk = ∂rdk
∂rφk

[
drφk
dϕ j

· dϕ j + drφk
ddl

ddl

]
+ ∂rdk

∂rλk

drλk
ddl

ddl . (63)

Setting up diagonal matrices for the partial derivatives of the
Fischer–Burmeister function in the form of

KFBφ =
[

∂rdk
∂rφk

]
, KFBλ =

[
∂rdk
∂rλk

]
, (64)

and computing the total derivatives from the assembly of the
element stiffness matrices, i.e.

Kφϕ := drφ

dϕ
=

nel

A
e

[Kφϕ
eK J ], (65)

Kφd := drφ

dd
=

nel

A
e

[K φd
eK L ], (66)

Kλd := drλ

dd
=

nel

A
e

[K λd
eK L ], (67)
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allows the specification of the global stiffness entries Kdϕ

and Kdd as

Kdϕ := KFBφ · Kφϕ, (68)

Kdd := KFBφ · Kφd + KFBλ · Kλd . (69)

The element stiffness matrices Kφϕ
eK J , K

φd
eK L and K λd

eK L can
be computed per element by

Kφϕ
eK J :=

∫
Be
0

Nd
K

dY

dF
· ∇X N

ϕ
J dV ,

J = 1, . . . , nϕ
en, K = 1, . . . , nden, (70)

K φd
eK L :=

∫
Be
0

Nd
K
dY

dd
Nd
L

+ ∇X N
d
K · dY

d∇Xd
· ∇X N

d
L dV ,

K , L = 1, . . . , nden, (71)

K λd
eK L :=

∫
Be
0

Nd
K
dλ

dd
Nd
L dV ,

K , L = 1, . . . , nden . (72)

The total derivatives of the stresses and driving forces are
given in Appendix A. Finally, this leads to the system of
linear equations to be solved in every iteration of theNewton–
Raphson scheme

[
rϕ

rd

]
+ K ·

[
Δϕ

Δd

]
.= 0. (73)

Due to the application of the Fischer–Burmeister function
for the nodal residual of the damage evolution, the above
system of equations remains of constant size—in contrast to
other solution methods, like the active-set method, where
this is not always the case. This is due to the fact, that
the Fischer–Burmeister framework does not explicitly dis-
tinguish between “active” and “inactive” constraints of the
KKT-conditions (29) but rather transforms the inequality
constraints to equations.

Remark 1 Due to the Fischer–Burmeister approach solving
the underlying set of equations on global finite element level,
the nodal residuals have to be calculated before the final
stiffness matrix can be correctly assembled, see (69). This
has to be taken into account especially when integrating this
model into established FEM-programs, since modifications
affecting program parts beside element and material model
formulation are necessary.

4 Optimisation

In this section the focus is set on the shape optimisation
including the previously described material model. The sen-
sitivities will be derived by making use of the enhanced
kinematics presented in Sect. 2.1. Finally, the sensitivities
are used for the objective functions and constraints to allow
shape optimisation to reduce and control damage for optimal
designs with reduced damage accumulation.

4.1 Sensitivities

In the sense of the structural optimisation, not only are the
field variables ϕ and d allowed to change, but the design—
the initial geometry X—is also allowed to change over the
course of the optimisation. This expansion can be pictured
mathematically, i.e. the residual term in (43) has to always
be fulfilled, even if a change in geometry is determined. This
leads to the requirement

δR = δϕR + δd R + δX R = 0, (74)

because a change in any of the three variables ϕ, d and X has
to yield a physical admissible solution R = 0. The additional
variations δd R and δX R require the enhancements made in
Sect. 2.1. The specific expressions for the additional varia-
tions are given for the mechanical residual by

δXr
ϕ = δX

[∫
Bζ

∇Xηϕ : P JK dVζ

]

=
∫
Bζ

[ [−∇Xηϕ · ∇XδX
] : P

+ ∇Xηϕ : dP
dF

: δX F
]
JK dVζ

+
∫
Bζ

∇Xηϕ : P [∇X · δX]JK dVζ , (75)

where the body forces and traction forces are omitted. The
additional variations of the damage residual are given by

δXr
d = ∂rd

∂rφ
δXr

φ + ∂rd

∂rλ
δXr

λ, (76)

where the variation of the KKT-condition (40) is obtained as

δXr
φ =

∫
Bζ

[
ηφ ∂Y

∂F
: δX F − [∇Xηφ · ∇XδX] · Y

− ∇Xηφ · [Y · ∇XδX]

]
JK dVζ

123



Computational Mechanics (2020) 65:1105–1124 1113

+
∫
Bζ

[ηφY + ∇Xηφ · Y

− ηφ y0]JK∇X · δX dVζ (77)

and the variation of condition (41) as

δXr
λ =

∫
Bζ

ηλλ JK∇X · δX dVζ . (78)

Applying the finite element discretisation introduced in
Sect. 3.2, leads to the following nodal quantities of the
pseudo-load matrix. Like the stiffness matrix, the pseudo-
load matrix can be split into two parts, i.e the mechanical
part

Pϕ
eI J =

∫
Be
0

−P · ∇X N
X
J ⊗ ∇X N

ϕ
I dV

+
∫
Be
0

[
I ⊗ ∇X N

ϕ
I

] : dP
dF

:
[
H ⊗ ∇X N

X
J

]
dV

+
∫
Be
0

P · ∇X N
ϕ
I ⊗ ∇X N

X
J dV , (79)

where H = ∇Xu, and the damage parts

Pφd
eK J =

∫
Be
0

[Nd
KY + ∇X N

d
K · Y

− Nd
K y0] ∇X N

X
J dV

+
∫
Be
0

[−Y · ∇X N
X
J ∇X N

d
K

− ∇X N
X
J · ∇X N

d
K Y ] dV

+
∫
Be
0

Nd
K
dY

dF
:
[
H ⊗ ∇X N

X
J

]
dV , (80)

Pλd
eK J =

∫
Be
0

Nd
K

[
dn+1 − dn

Δt

]
∇X N

X
J dV . (81)

The special dyadic product ⊗ is defined as

[
A⊗ a

] · b := [A · b] ⊗ a, (82)

with A as any arbitrary tensor of second order and a and b
as arbitrary vectors.

In the same fashion as the stiffnessmatrix, the pseudo-load
matrices can be assembled, i.e.

Pϕ :=
nel

A
e

[Pϕ
eI J ], (83)

Pφd :=
nel

A
e

[Pφd
eK J ], (84)

Pλd :=
nel

A
e

[Pλd
eK J ], (85)

where the damage quantities are then multiplied with the
Fischer–Burmeistermatrices, see (64), to obtain the complete
damage part of the pseudo-load matrix, i.e.

Pd := KFBφ · Pφd + KFBλ · Pλd . (86)

The the global pseudo-load matrix is then defined as

P :=
[
Pϕ

Pd

]
P ∈ R

n×m, (87)

wheren = [nϕ
dim+1] nnp is equal to thedimensionof the stiff-

ness matrixK andm = nϕ
dim = nX

dim. Since the derivatives of
the Fischer–Burmeister function are required, the respective
residuals have to be calculated and enter the calculation of the
pseudo-load matrix as well. In addition, Remark 1 regarding
the numerical implementation of the stiffness matrix K also
applies here for the calculation of the pseudo-load matrix P.

Variation of (74) inmatrix representation can then be sum-
marised as

δr = K ·
[

δϕ

δd

]
+ P · δX = 0. (88)

Rearranging the above equation allows the introduction of
the sensitivity matrix S

[
δϕ

δd

]
= −K−1 · P · δX = S · δX =

[
Sϕ

Sd

]
· δX, (89)

which describes the response of the field variables ϕ and d
at each node, when a change in the referential geometry is
made.

Remark 2 For the optimisation, Computer Aided Geometric
Design (CAGD) is used to define the shapes for the optimisa-
tion. Henceforth, the control points of those shapes are used
as the design variables s, which can be incorporated into the
sensitivity matrix by means of the chain rule, i.e.

S̃ = S · Q = S · ∂X
∂s

. (90)

With this, Bézier-surfaces are defined to generate the shape
for the optimisation problem in order to allow shape optimi-
sation.

Here, the direct differentiation sensitivity analysis is con-
ducted. One could also choose the adjoint method which is
generally usedwhen problems involvemany design variables
and fewconstraints are applied, cf. [20,25]. In this paper how-
ever, the problem is of opposite type, i.e. few design variables
in comparison to a large number of constraints, e.g. (100).
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4.2 Objective functions and constraints

For the optimisation, objective functions and constraints are
necessary to generate geometries with specific properties.
Since the central aim of this work is to generate struc-
tures with reduced damage, damage variable d is of main
importance with regard to the minimisation of damage. The
reduction of damage can be incorporated either by directmin-
imisation of the overall accumulated damage or by utilising
the nodal damage values as a side constraint.

Starting with the direct minimisation, an objective func-
tion of scalar value is chosen. To be specific, the 2-norm of
the damage vector d—d is the vector with all nodal dam-
age values, see (73) for comparison—is chosen in order to
generate the scalar valued function

J = ‖d(s)‖ =

√√√√√ ndnp∑
i

di (s)2. (91)

The derivativewith respect to the design variables can then be
calculated by utilising the chain rule as well as the sensitivity
matrix S, to be specific

∂‖d(s)‖
∂s

= d(s)
‖d(s)‖ · Sd . (92)

For the indirect damage minimisation, damage variable d is
restricted at every FEM-node by the constraint

di (s) ≤ dcrit, i = 1, . . . , ndnp. (93)

The derivatives for these constraints are stored in the damage
part Sd of the sensitivity matrix.

To incorporate the indirect damageminimisation, any suit-
able objective function may be chosen, e.g. the compliance,
or compliance-like quantity since typically the factor 2 is
multiplied in the linear elastic case, cf. [18]. It is equivalent
to the negative energy, such that

J = C(s) = −Π(s) = −
nel∑
e=1

∫
Be
0

Ψ vol + Ψ iso + Ψ grd dV ,

(94)

where the external part is neglected, since no external
forces are applied to the example problems. Other defini-
tions of compliance exist, see e.g. [42], which gives a brief
overview of additional compliance definitions and possible
alternatives. Minimisation of the compliance is equivalent to
maximising the stiffness of a given design and as such leads
to a stiffer structural response. The derivative only requires
known quantities and the discretised form results in

[
∂C

∂s

]
eJ

= −
∫
Be
0

[ [
P iso + Pvol

]
:
[
H ⊗ ∇X N

X
J

]

− cd ∇X N
X
J · ∇Xd ∇Xd + Ψ ∇X N

X
J

]
dV , (95)

which is assembled in the standard manner within the FEM.
To additionally control the design during the optimisa-

tion, the volume is constrained to allow comparison between
the different designs, which is of special interest regarding
the compliance minimisation, since the initial volume of the
reference design shall not be exceeded.

The volume is calculated by the sum of the element vol-
umes

V (s) =
nel∑
e=1

∫
Be
0

dV (96)

leading to the discretised derivative

[
∂V

∂s

]
eJ

=
∫
Be
0

∇X N
X
J dV . (97)

With such objective functions at hand, the general min-
imisation problem can be represented as

minimise
sl≤s≤su

J(s)

subject to V (s) ≤ Vmax

di (s) ≤ dcrit, i = 1, . . . , ndnp.

(98)

5 Examples

First, the capabilities of the gradient enhanced model regard-
ing the mesh-independence are presented. Afterwards, the
given example of a plate with a hole is optimised with the
aim of damage reduction. By choosing the damage as the
objective function, or as the constraint in the optimisation of
another objective function, the damage accumulation in the
optimised structure can be reduced. Finally, the generated
geometries are tested by 3d-printing the structures to gener-
ate experimental results of the optimised geometries so as to
(qualitatively) validate the results of the simulations.

5.1 Regularisation behaviour

For all results presented in the following, a plate with a hole
is used as the representative example, with its design leading
to an inhomogeneous deformation and stress state. The plate
is depicted in Fig. 2. Width w and height h are set to 10mm,
while the thickness t is set to 1mm. The radius of the inner
hole is equal to r = 2.5mm. For the load, a prescribed dis-
placement of upre = 0.5mm is applied at the top and bottom
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Fig. 2 Illustration of the plate with a hole used in the simulations and
optimisations. Only the meshed part of the plate is modelled, with the
appropriate boundary conditions applied

Table 1 Material parameters for the simulations regarding mesh inde-
pendence

K (MPa) μ (MPa) ηvol (–) ηiso (–) y0 (MPa) cd (N)

1.75 × 105 8.077 × 104 0.2 0.2 50 3

of the specimen. Due to its symmetric properties, it is suffi-
cient to reduce the simulation to the meshed part in Fig. 2,
by applying appropriate boundary conditions. The parame-
ters used for the model in the mesh independence study are
presented in Table 1.

To analyse the mesh-independent features of the model,
three different mesh sizes with 1350, 3750, and 7350 hexa-
hedral elements with linear shape functions (displacements
and damage) are used. For the initial comparison, gradi-
ent parameter cd is kept at the value denoted in Table 1.
The results are presented in Figs. 3 and 4a. The differ-
ent meshes show a nearly identical response behaviour,
demonstrating the regularising effect on the damage evolu-
tion.

Figures 4b and 5 demonstrate the influence of the gradi-
ent parameter cd on the material behaviour, as it governs the
damage regularisation. As expected, lowering the parameter

value leads to amore localised evolution,while increasing the
parameter value leads to a wider band of damage evolution.

For this set of material parameters and for the design of
the underlying problem, small values of the gradient param-
eter (cd < 1) lead to localising models, which cannot be
solved by means of a standard Newton–Raphson scheme but
which need the application of solvers such as the arc-length
method to follow the solution path. Increasing the cd value
leads to a stable solution process and displays the impact of
the parameter regarding the regularisation behaviour but also
leads towider damage bands, whichmay be inappropriate for
the desired material to be modelled.

5.2 Optimisation

5.2.1 Damageminimisation

So far, only the structural response and the capabilities of the
damage model have been analysed. Now, the same exem-
plary plate problem is used for optimisation purposes. For
the optimisation, the initial design has to be enhanced by
CAGD in order to automatically generate new geometries
during the optimisation. The initial design, along with its
structural response and the CAGD, are presented in Fig. 6.
A 3d model is used for the optimisation as well, how-
ever the thickness is omitted for optimisation purposes and
remains constant. Since the results are compared to phys-
ical 3d-prints in Sect. 5.2.3, the material parameters are
adapted for a better match of the behaviour of PLA (polylac-
tide), see Table 2. Since the model can at this stage only
capture damage effects, rather than an additional combi-
nation with plasticity better capturing the behaviour of the
particular material considered, the response of the refer-
ence sample could not be matched perfectly. As such, the
parameters were chosen such that the final reaction force
behaviour is similar to the experiments within the region of
steady damage evolution. The initial elastic stiffness does
therefore not perfectly match with the experimental results,
see Fig. 13a in the validation section. The optimisation is
conducted with a sequential quadratic programming (SQP)
algorithm.

Two different minimisation problems are presented and
compared in this section. For the first optimisation, the
overall damage is minimised with a constraint regarding
the volume, which shall not exceed the initial volume of
V0 = 10.052mm3. This results in the minimisation problem

minimise
sl≤s≤su

‖d(s)‖
subject to V (s) ≤ V0.

(99)

In the second optimisation, the problem is enhanced by
additionally constraining themaximumdamage at each node,
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Fig. 3 Damage distribution for three different meshes: 1350 elements, 3750 elements and 7350 elements
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Fig. 4 Reaction forces over the prescribed displacements. The left picture shows the mesh-independent properties of the model for three different
mesh sizes with constant cd = 3N. The right picture displays the effect of the gradient parameter cd in N

Fig. 5 Damage distribution for different gradient parameters (from left to right): cd = 1N, cd = 3N and cd = 10N

i.e. the damage value shall not exceed a critical damage value,
here chosen as dcrit = 0.8, which is lower than the maximum
damage value of dmax = 1.140, see Fig. 7, of the first optimi-
sation. This allows the additional indirect minimisation for

each node, while simultaneously reducing the overall dam-
age evolution in the given structure. In addition, this value
can also be interpreted as a critical damage value which may
lead to failure in a physical specimen. The related optimisa-
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Fig. 6 The initial CAGD with the control points in red. The dashed lines show the possible locations for the control points during the optimisation.
The right picture shows the final damage state for the initial design. (Color figure online)

Table 2 Material parameters for the optimisation

K (MPa) μ (MPa) ηvol (–) ηiso (–) y0 (MPa) cd (N)

388.889 291.667 0.9 0.9 2.2 3

tion problem can be stated as

minimise
sl≤s≤su

‖d(s)‖
subject to V (s) ≤ V0

di (s) ≤ dcrit, i = 1, . . . , ndnp.

(100)

The optimised designs for the two optimisations are pre-
sented in Fig. 7. The overall reduction in the damage
accumulation, compared to the damage state in the refer-
ence design, is directly distinguishable. The general shape of
the two optimised designs are very similar at the top and the
right region of the plate. The hole in the centre is generally
enlarged and a curvature on the right border is generated. The
enlargement of the centre hole by thinning the upper part of
the plate is simply restricted by the initial CAGD and the
allowed design space for the control points. The main dif-
ference between the two designs lies in the lower part of the
hole. While the first design leads to a kink in the lower left
area, the second design generates a smoother shape which
leads to the desired fulfilment of the damage constraint. The
first design reduces the maximum damage from the initial
value of drefmax = 1.741 to dmax = 1.140 which can be further
reduced to the chosen critical value of dmax = dcrit = 0.8 in
the second design.

The force-displacement curves of the new designs are pre-
sented in Fig. 8a. While the two new designs show a softer
initial response, the damage evolution is delayed and leads to
an ultimately higher stiffness due to the reduced overall dam-
age after complete loading. The additional constraint for the
second design, as based on (100), has no visible impact on the
final stiffnesswhich can be seen in Fig. 8b, where the value of
the objective functionwith respect to the number of iterations

is shown. The objective functions of both designs are more
than halved with respect to the initial value of Jinit = 27.37
to Jmin = 10.75 in the first design and Jmin = 10.99 in the
second design. Due to the small difference in the values both
objective functions take in the respective optimised states,
the structural responses of both optimised structures are very
similar. In addition, due to the additional damage constraint,
the solution of the second optimisation problem is found after
only seven steps, whereas the first problem requires 23 steps
for the optimal design.

5.2.2 Compliance minimisation

The second type of optimisation is the damage controlled
minimisation.Here, the compliance is chosen as the objective
function in order to generate stiffer structures. For compari-
son, the first optimisation is carried out without any damage
constraints and only the volume is constrained in order to
allow the comparison of the different designs generated with
compliance optimisation, i.e.

minimise
sl≤s≤su

C(s)

subject to V (s) ≤ V0.
(101)

The second problem is then enhanced to take the dam-
age reduction into account, i.e. the damage is constrained at
each node point, as it was done for the second design in the
previous section. In order to compare the results, the volume
constraint is applied as well, which results in

minimise
sl≤s≤su

C(s)

subject to V (s) ≤ V0

di (s) ≤ dcrit, i = 1, . . . , ndnp.

(102)

Figure 9 shows the generated optimal designs. Due to the
different constraints for complianceoptimisation, i.e.without
andwith constraining damage, the changes in design are dras-
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Fig. 7 Optimised geometries for the two approaches of two objective functions related to damage minimisation: the volume constrained on the left
and the volume and damage constrained on the right. The contour plots show the undeformed design with the damage state after load application
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Fig. 8 Structural response for the two direct damage optimisation problems. The left graph shows the reaction forces over the prescribed dis-
placements with the initial reference behaviour in red. The right graph shows the value of the objective function over the number of iterations

tically different from one another. The first problem results
in a shape which allows a higher load bearing capacity in the
direction of the applied load, due to an increase of the cross
section in loadingdirection and a reduction of the volumeper-
pendicularly to it. This leads to a stretched hole in the centre
with the right side of the plate remaining almost flat. Even
though the damage is not directly controlled in this problem,
the maximum damage is reduced to a value of dmax = 1.542
compared to the initial value of drefmax = 1.741. Furthermore,
the norm of damage reaches a value of ‖d‖ = 25.491 which
is a little lower than the initial value of ‖d‖ = 27.37. The
second design, however, leads to a solution that is compara-
ble to the second one of the direct damage minimisation in
Fig. 7. The right side shows a similar curvature, but the hole

in the centre is smaller than the one in the direct minimisa-
tion. In addition, while the right side of the plate is similar to
the damage minimisation, the complete section is shifted to
the left and shows a bulkier design and a larger cross section
in loading direction. The norm of the damage is almost half
of the initial value with ‖d‖ = 14.395.

A look at the graphs in Fig. 10a shows the desired
increase in stiffness.Both problemsgenerate an overall stiffer
response than the initial value. Interestingly enough, the sec-
ond design yields a lower stiffness during elastic loading
compared to the first design, but after initiation of damage a
higher stiffness remains. The green curve also displays the
behaviour of the direct damage minimisation curves, where
the damage evolution after initiation is reduced, yielding the
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Fig. 9 Results for the compliance optimisation. The left contour plot shows the volume constrained problem, whereas the right is based on the
objective function that constrains damage to a maximum value of dcrit = 0.8
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Fig. 10 The left graph shows the structural response for the compliance optimisation with the reference response in red. On the right, the graphs
illustrate the values of the objective functions with respect to the number of iterations. (Color figure online)

stiffer final response. Since the mathematical optimisation is
gradient based, the solver may only find a local solution. Due
to the additional constraint in the nodal damage values, the
second problem is artificially pushed to a more suitable local
minimum which leads to the stiffer response after complete
loading. This is also visible in the evolution of compliance
over the iterations in Fig. 10b, where the second problem
finally results in a lower value of C = −19.5016 J than C =
−18.6253 J for the first compliance optimisation problem.

Remark 3 Asmentioned above, the result of the optimisation
according to (101) unexpectedly results in a (local) minimum
with higher compliance than the additionally constrained
problem (102). To further investigate this, the optimisation

problem (101) is recalculated with an initial design cho-
sen identical to the result of optimisation problem (102).
One would expect the new optimal compliance to be lower
than the compliance of either of the two previously achieved
designs. However, using the same algorithm, i.e. SQP, unex-
pectedly results in the same solution as the original design
problem, namely optimisation problem (101) with reference
geometry as initial design. Other algorithms can be applied,
e.g. based on theMatlab fmincon toolbox. To be specific, the
active-set method converges into a result with a lower com-
pliance, as expected, see Figs. 15, 16 and 17 in the Appendix.
The validation discussed in Sect. 5.2.3, however, considers
the original result of optimisation problem (101). Further-
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Fig. 11 3d-printed specimens. The geometries from left to right:
reference, damage optimised with volume and damage constraint, com-
pliance optimised with volume constraint, and compliance optimised
with volume and damage constraint

more, the detailed investigation of the effect of different
optimisation algorithms on the solution exceeds the scope
of this paper but constitutes future research in the context of
continuum damage mechanics.

5.2.3 Validation

With the optimised geometries at hand, physical specimens
are created by means of 3d printing with PLA. Thereby,
the simulated response shall be validated with experimental
data. A photo of the specimens is displayed in Fig. 11. The
physically printed specimens match the numerically deter-
mined geometry, but have a longer section attached to the
discretised domain in order to clamp the specimens in the
micro-tension device, see Fig. 12. The specimens are loaded
by displacement controlled monotonous tension. Due to the
limitations of the material model considered at this stage,
the accurate behaviour of PLA cannot be reproduced exactly
in the simulations. The material parameters used during the
optimisation are manually fitted by using the experimen-
tal data of the reference geometry in such a way that the
point of damage initiation and evolution of damage can
be predicted, see Fig. 13a, see the previous Table 2. The
experimental specimens are generated from the optimised
CAGD by exporting stl-files—a file-format often used in 3d-
printing—which are then used to generate the data for the 3d
printer.

During optimisation, the maximum prescribed displace-
ment in the simulation is upre = 0.5mm. However, the
samples in the experiments are loaded until failure. In order
to enable a proper comparison, the simulations are contin-
ued until a prescribed displacement of upre = 1.5mm is
reached.

The results for the comparison of the damage optimised
sample is presented in Fig. 13b. The validation of the
geometries obtained from the damage minimisation focuses
solely on the geometry resulting from the optimisation with

Fig. 12 Micro tensile machine used for the experiments of the 3d-
printed specimens

constrained damage, since both shapes of the optimised
geometries from damage minimisation only differ slightly.
Qualitatively, the response of the simulation shows a good
agreement with the experimentally obtained result. Espe-
cially in comparison to the reference geometry, the same
trend in the force–displacement response can be observed.
The stiffness is reduced slightly, while the point of peak force
is reached at higher (displacement) loading level. In addi-
tion, the force peak becomes less sharp, albeit not as much
as in the experiments. The small force plateau observed in
the experimental data can most likely be attributed to plastic
effects which, however, are not considered in the simula-
tion.

The compliance optimised results in Fig. 14 show the
desired increased stiffness. The experimental data of the
test with the geometry corresponding to the compliance
optimisation without the damage constraint in Fig. 14a
displays an even higher stiffness than predicted by the sim-
ulation. However, while the maximum reaction forces are
drastically increased, damage seemingly starts to evolve
very quickly leading to fracture shortly after damage ini-
tiation. This cannot be directly predicted by the model,
where only a steady loss of stiffness can be modelled. Con-
cerning the tendency of the force-displacement response
in comparison with the reference geometry, a good agree-
ment between experiments and simulation for the geometry
with optimised compliance subject to a damage constraint
is obtained, see Fig. 14b. The initial stiffness of reference
and optimised geometry nearly coincide and the maxi-
mum reaction forces also reach a similar value. However,
the plateau observed in the experimental response can-
not be predicted with this model. Overall, the comparison
between reference and optimised geometries reveals—with
limited applicability of the material model towards PLA—a
good validation of the optimisation response. The analysed
optimised geometries all confirm the tendencies of the sim-
ulations.
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Fig. 13 Experimental results for the validation with the corresponding simulation displayed in red. The figure on the left shows the results for the
reference geometry, the one on the right shows the results for the damage optimisation with the additional damage constraint
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Fig. 14 Experimental results for the validation of the compliance optimisation. The figure on the left shows the results for minimisation with
volume constraint, the one on the right with the additional damage constraint

6 Summary

In this work, an isotropic non-local gradient enhanced dam-
age model for large deformations was derived and used to
generate optimised geometries in order to reduce damage
accumulation. The damage formulation is regularised by
adding an additional term to the free energy incorporating
the gradient of the damage field variable. By introducing a
nonlocality residual and applying the insulation condition,
an enhanced damage driving force is generated and used
to determine damage evolution. The corresponding Karush–

Kuhn–Tucker conditions were solved globally by means of
a Fischer–Burmeister approach. The overall computational
framework avoids the necessity of additional internal dam-
age variables and local iteration schemes to determine their
evolution in time. Deducing the final FEM problem, how-
ever, leads to some additional assembly procedures after
the standard FEM assembly, which has to be accounted for.
By means of a variational approach, utilising the concept
of an intrinsic formulation, the analytical gradients for the
mathematical optimisation were derived, and the numerical
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aspects presented. The additional analytical work allows a
faster computation time, bypassing numerical gradients.

The applicability of the model was presented for the inho-
mogeneous plate with a hole boundary value problem for
which the desired regularisation abilities were shown yield-
ing identical results for different mesh sizes. Application
to shape optimisation allowed for new designs with opti-
mised damage properties. Direct minimisation of damage,
by choosing a scalar valued objective function that incorpo-
rates damage, allowed for direct reduction of damage in the
structure. This led to newgeometric designswith less damage
and stiffer structural responses under maximum load. Using
the nodal damage values as a side constraint in the direct
minimisation of damage or by using another objective func-
tion such as the compliance, allowed further enhancement of,
and more control within, the optimisation problem. To vali-
date the optimised designs, specimens were 3d-printed and
subjected to tensile loading. The experimental results were
compared to simulations. Even though the exact behaviour
of the 3d-printed material was not reproduced by the consid-
ered material model, the obtained simulation results showed
similar behaviour compared to those obtained from the exper-
iments considered.

For future work, the formulation allows for an enhance-
ment regarding the modelling of material behaviour such
as plasticity, viscosity or anisotropy. Other effects such as
reduced damaging under pressure can also be of interest.
Moreover, the general framework established in thiswork can
be extended and combined with load optimisation in order
to generate not only optimised structures but also optimised
loads and loading paths to generate less damaged designs.
Since the results of compliance optimisations discussed in
this paper (may) differ for different solution strategies, the
influence and choice of the particular algorithm should be
further investigated in the context of continuum damage
mechanics and constitutes future research.
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Appendix

A Derivatives

The calculation of the residual and stiffness terms in Sect. 2
require the total derivatives of the stresses and driving forces
given in (19). These derivatives are split into a mechanical
and a damage part in the following. The derivatives of the
mechanical part read

dP
dF

= dP iso

dF
+ dPvol

dF
, (103)

dPvol

dF
= f vol(d) K

[
J 2F−t ⊗ F−t

+ 1

2

[
J 2 − 1

]
F−t ⊗ F−t

]
, (104)

dP iso

dF
= f iso(d) μ J− 2

3

[
−2

3

[
F − tr(C)

3
F−t

]
⊗ F−t

+ I ⊗ I − 1

3

[
2 F−t ⊗ F + tr(C) F−t ⊗ F−t]] ,

(105)

dP
dd

= −ηiso f iso(d) P iso − ηvol f
vol(d) Pvol (106)

where the special dyadic products are defined via

[A⊗ B] : C := A · C · Bt (107)

[A⊗ B] : C := A · C t · Bt (108)

with A, B,C being second order tensors, respectively. The
derivatives for the damage parts result in

dY

dF
= ηiso f iso(d) P iso + ηvol f

vol(d) Pvol, (109)

dY
d∇Xd

= −cd I, (110)

dY

dd
= −η2iso f iso(d) ψ̄ iso − η2vol f

vol(d) ψ̄vol, (111)

dλ

dd
= 1

Δt
. (112)

B Fischer–Burmeister derivatives

In addition, the derivatives of the Fischer–Burmeister resid-
ual rd are required for the FEM-implementation, as well as
in the derivation of the sensitivity matrix. The specification
of these results in
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Fig. 15 Contour plot of the damage variable for the new optimised
design based on optimisation problem (101) with starting configuration
basedon the solutionof optimisationproblem (102) and algorithmbased
on the active-set method from the Matlab fmincon toolbox
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Fig. 16 Structural response as shown in Fig. 10 together with the result
referred to the design shown in Fig. 15 (Volume New)

∂rd

∂rφ
= rφ√[rφ]2 + [rλ]2 + 1,

∂rd

∂rλ
= rλ√[rφ]2 + [rλ]2 − 1.

(113)

These (two) derivatives lead to numerical difficulties when
the denominator becomes zero, e.g. in the first inelastic step.
One straightforward approach to circumvent this algorithmic
singularity is to add a small constant ε � 1 to the denomi-
nator, such that the denominators in the above equations are
replaced by

√[rφ]2 + [rλ]2 + ε.

C Additional optimisation results

Figures 15, 16 and 17 depict the result of optimisation prob-
lem (101), where the initial design is chosen identical to the
result of problem (102), as obtained by the active-set method
from the Matlab fmincon toolbox.

Fig. 17 Values of the objective functions as shown in Fig. 10 together
with the result referred to the design shown in Fig. 15 (Volume New)
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