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1 INTRODUCTION

1. Introduction

Dose-response or concentration-response studies are aimed at assessing the effects of the
exposure of some condition, e.g. the treatment with a specific compound, on living beings
or on cells. The central goal in toxicological assays, where concentrations are considered,
is to find an alert concentration, where a pre-specified effect level is attained or exceeded
by the response variable of interest. For this purpose, measurements are taken for several
increasing concentrations of the specific compounds. Additionally, response values for
the negative control, corresponding to the concentration 0, are usually measured. In
the context of clinical studies, the equivalent is given by dose-finding studies, in which
different doses of a compound and their effect on patients are considered.

Depending on the type of response data measured, different statistical tests can be
conducted to compare results of the considered concentrations to the results obtained
for the control. For a continuous response variable, the Dunnett procedure (Dunnett,
1955) and the Williams procedure (Williams, 1971) are two established methods. In
both procedures, responses for multiple concentrations are simultaneously compared
against the control, with the Williams procedure summarising several concentrations to
determine trends in the data. When the response is given by binary data, i.e. proportions,
the Cochran-Armitage test (Cochran, 1954; Armitage, 1955) allows statistical testing to
find trends in the data that are similar to a set of pre-specified scores.

When considering the measured concentrations only, alert concentrations as the no ob-
served effect concentration (NOEC), which is the highest of the measured concentrations
where no significant effect can be observed, or the lowest observed effective concentration
(LOEC), which is the lowest of the measured concentrations where a significant effect
can be estimated, are calculated (Delignette-Muller et al., 2011). When, instead of the
significant effect required by the LOEC, only an absolute effect is of interest, the cor-
responding concentration is called the absolute lowest observed effective concentration
(ALOEC) (Grinberg, 2017). An obvious drawback of these alert concentrations is the
limitation of potential alert concentrations to the set of measured concentrations.

In contrast to these situations, where the concentration or dose is assumed to be a
qualitative factor, in modelling, it is assumed to be a quantitative variable. A parametric,
usually non-linear function is assumed to describe the relationship between concentration
and response. Typical functions to describe this relationship are, among others, given by
the family of log-logistic functions, the family of log-normal functions, and the Weibull
functions (e.g. Ritz et al., 2019, pp. 178-186). In this thesis, only the family of log-logistic
functions, specifically the four-parameter log-logistic function, is considered.

In toxicology, typical continuous response variables are the viability of cells, and gene
expression values. The viability of cells is usually measured and normalised to obtain
percentages, thus asymptote values of 100% and 0% of the fitted function are plausible re-
sults. Additionally, it is typically known in advance whether the concentration-response
effect shows an increasing or a decreasing pattern. Gene expression values, however,
have no fixed values for upper and lower asymptote, or for the interval of covered val-
ues. The direction of the pattern is usually not known either. This leads to the fact
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1 INTRODUCTION

that, depending on the application, different definitions of the alert concentrations are
required.

One family of alert concentrations that are often used, especially for cytotoxicity assays,
is given by the effective concentrations (EC values). It is differentiated in absolute and
relative EC values. For λ ∈ (0, 100), the absolute EC value ECλ indicates the concen-
tration where the response attains the specific response value λ% or 100 − λ%, while
the relative EC value ECλ corresponds to the concentration where λ% of the maximal
observed effect are attained (Ritz et al., 2019, pp. 173-174). Both values coincide in
cases where the upper and lower asymptote of a fitted curve correspond to values of
100% and 0%, respectively. While the absolute EC values are considered especially for
curves indicating viability, where the assumption of asymptotes corresponding to 100%
and 0% are sensible, estimation of the relative EC values heavily depends on the actual
observed values of the asymptotes.

A similar approach to the calculation of relative effective concentrations is the benchmark
dose (BMD) methodology, dating back to Crump (1984). Calculation of the BMD is
based on the definition of a benchmark risk (BMR), i.e. a small increase above the
observed background risk. Depending on the specific scenario regarding the type of
response data and the type of risk considered (e.g. excess risk or additional risk), the
BMD is calculated as concentration where the curve attains a response value that is
determined by a linkage of the BMR and the background risk. The lower limit of the
confidence interval for the BMD then serves as estimate for the point of departure, which
is defined as the lowest concentration where a response that differs from the background
risk is observed (Jensen et al., 2019). Usually, the BMR is chosen by a low percentage,
e.g. 10% above the normal response. Zeller et al. (2017) propose different methods to
define the BMR based on the evaluation of historical control data. Basing the estimation
of relevant alert concentrations on a curve instead of an individual concentration has the
additional advantage that the entire information of the concentration-response profile is
mathematically included in the estimation of the curve (Izadi et al., 2012).

In clinical dose-finding studies, a different alert is usually considered. The minimum
effective dose (MED), dating back to Ruberg (1995), is defined as the smallest dose where
the modelled response value exceeds the modelled response of the lowest concentration
considered plus some biologically relevant threshold. Bretz et al. (2005) propose three
estimators for the MED that take the confidence interval of the modelled response value
and the biologically relevant threshold into account.

Three specific aspects of calculating alert concentrations from concentration-response
data are considered in this thesis. The first topic is the handling of deviating control
values in cytotoxicity assays. This describes the phenomenon that response values for
the negative control deviate from the response values observed for the lowest measured
concentrations. Hence, an upper asymptote is obtained that does not correspond to a
viability of 100% when fitting a parametric curve to this data (Krebs et al., 2018). When
the alert concentration of interest is given by absolute EC values, interpretation of these
values becomes meaningless when the upper asymptote does not correspond to 100%, or
calculation of the respective EC value may even become impossible. The extent of this
problem is found to be relevant by an extensive literature review.

2



1 INTRODUCTION

Four methods are proposed to deal with this problem, all pursuing the goal to obtain
a curve whose upper asymptote, or in one exception the maximum value of the curve,
corresponds to a viability of 100%. These methods include one method that is based on
a re-normalisation procedure, one method where the upper asymptote is forced to attain
a value of 100%, one method where the controls are completely omitted and one method
where negative deviations are included in the modelling. The first three methods yield
monotonously decreasing curves, but the fourth method may yield a curve that shows
an increase before it is monotonously decreasing. These four methods are compared in
a controlled simulation study, where the goal is the most precise estimation of different
EC values. Results are interpreted with respect to the proportions of estimates that are
acceptably close to the true underlying value, and with respect to the number of times
each method yields the most precise estimate. Based on the results, a set of concrete
recommendations, which method to use in which case, is derived.

In the second topic, gene expression data are considered. The observation-based alert
concentration LOEC determines the lowest concentration where the fold change, i.e. the
mean difference in gene expression, in comparison to the control, exceeds a pre-specified
threshold. This alert concentration is well-established in this context. The ALOEC is
the alternative when only absolute exceedance of the threshold is of interest. When
moving to continuous, model-based alert concentrations, the absolute lowest effective
concentration (ALEC) can be calculated as equivalent to the ALOEC (Jiang, 2013). In
this thesis, a continuous equivalent to the LOEC, called lowest effective concentration
(LEC) is proposed. For this alert concentration, a model-based statistical test, based
on previous work by Grinberg (2017), is introduced and the alert concentration itself is
determined making use of a search algorithm.

This yields four methods for calculating alert concentrations, two of which only consider
the actually measured concentrations as potential alert concentrations, and two of which
are based on fitting a curve, such that every positive concentration is a potential alert
concentration. In each case, one of the methods considers absolute exceedance of the
threshold only and the other additionally takes significance into account. These methods
are compared in a simulation study covering several scenarios. Generally, the methods
that are based on fitting a curve, ALEC and LEC, less drastically overestimate the
underlying true alert concentrations. At the same time, the number of results that are
lower than the true underlying alert concentration is not too high. In particular, all
methods based on statistical testing maintain the respective significance level.

The third topic also deals with gene expression data. Concentration-response profiles,
where the response is given by gene expression values, are measured simultaneously for
thousands of genes in microarray analyses. Two approaches are presented that are aimed
at sharing information across these genes and thus potentially improve the estimation
of the parameter indicating the half-maximal effect. The idea to share information
across genes is a relaxation of the approach of common parameters, where several curves
are simultaneously estimated under the assumption that one or several parameters are
equal for all curves (Feller et al., 2017). The first approach for information sharing is
to employ a meta-analysis strategy for several fitted curves, as proposed by Jiang and
Kopp-Schneider (2014). For each gene individually, the set of other genes to be included

3



1 INTRODUCTION

into the meta-analysis is defined by similarity in terms of correlation. Considering the
entire set of genes as potential similar genes, however, has the effect of adding noise
rather than information to improve the fit. Thus, the set of potential similar genes
is restricted to a small group of genes that share some biological properties. Still, in
simulation studies, the meta-analysis approach does not show an improvement in the
estimation.

The second approach is based on an empirical Bayes method. For each gene, a direct
estimate of the parameter of interest is calculated. In essence, a weighted mean of this
direct estimate and the mean of all estimates of the entire set of genes is calculated as
result of the Bayes method. The weights are determined based on the standard error of
the direct estimation and the variance of the estimates of the entire set. This method
is assessed in three simulation studies that differ in their degree of similarity to a real
situation on the one hand and the degree to which the required assumptions are fulfilled
on the other hand. Generally, the Bayes method leads to an improvement of the mean
squared errors in all situations, while the coverage probability of the obtained credible
intervals is not decreased in comparison to the coverage probability of the confidence
intervals for the direct estimate.

The topic about the handling deviating controls occurs in the context of cytotoxicity
data, and the other two topics in the context of gene expression data. For all three topics,
the different methods proposed in this thesis are compared in controlled simulation
studies. Additionally, the methods are applied to real-data situations and interpreted
with respect to the results from the simulation studies. One cytotoxicity and one gene-
expression dataset are considered, where for both datasets, the respective response is
measured for increasing concentrations of the compound valproic acid. Since in contrast
to controlled simulation studies, the underlying true effect is not known in this case,
application of the methods to the real datasets leads to results where the methods can
only be compared with each other.

The methods and results regarding the handling of deviating controls are published in

F. Kappenberg, T. Brecklinghaus, W. Albrecht, J. Blum, C. van der Wurp,
M. Leist, J. G. Hengstler, and J. Rahnenführer. Handling deviating control
values in concentration-response curves. Archives of Toxicology, 94(11):3787
– 3798, 2020.

The contributions of the authors, referred to by the respective first letter of first name
and surname, are as follows:

• Formulating and discussing the problem: FK, CW, ML, JR

• Defining the set of criteria for the literature review: FK, TB, WA, JH, JR

• Performing the literature review: TB, WA, JB

• Analysing the literature review: FK

• Designing the simulation studies: FK, CW, JR

• Providing the real data: TB, JH
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• Executing the simulation studies and the real data analysis: FK

• Interpreting all results: FK, ML, JH, JR

• Writing the initial version of the manuscript: FK

• Supervision of the project: JR

• All authors read, corrected and approved the manuscript.

The methods and results regarding the identification of alert concentrations are published
in

F. Kappenberg, M. Grinberg, X. Jiang, A. Kopp-Schneider, J. G. Hengstler,
and J. Rahnenführer. Comparison of observation-based and model-based
identification of alert concentrations from concentration-expression data. Bio-
informatics, 2021. btab043.

The contributions of the authors, referred to by the respective first letter of first name
and surname, are as follows:

• Formulating and discussing the problem: FK, MG, XJ, AKS, JR

• Providing the statistical basis for the new methods: MG, XJ, AKS, JR

• Deriving the statistical methods: FK, JR

• Designing the simulation studies: FK, MG, JR

• Providing the real data: JH

• Executing the simulation studies and the real data analysis: FK

• Interpreting all results: FK, JR

• Writing the initial version of the manuscript: FK

• Supervision of the project: JR

• All authors read, corrected and approved the manuscript.

This thesis is structured as follows: In Chapter 2, a detailed introduction for each of
the three topics covered in this work is given. The underlying problem or challenge is
explained, without getting too specific regarding the statistics, and background from
already published literature is given. The statistical methods are explained heuristically
and the specific goals with respect to the applications are presented. The used datasets
and the biological background are introduced in Chapter 3. In particular, the Affymetrix
GeneChip® data with the RMA pre-processing algorithm are presented.

The statistical methods used throughout this thesis are introduced in Chapter 4. This
chapter starts with an introduction into the basics of concentration-response analysis,
by introducing the Dunnett procedure, modelling concentration-response curves for the
specific example of log-logistic models, and giving an overview over alert concentrations
of interest. The specific methods used for the three topics addressed in this thesis are
explained separately, beginning with the methods for handling deviating control values.
Next, the four different alert concentrations compared in the second topic are introduced
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and summarised while emphasising their similarities and differences. Finally, the two
approaches for sharing information across genes are introduced together with the concept
of plasmode simulation studies that are used for this topic. This chapter ends by giving
a short overview over the software used for the analyses conducted in this thesis.

The results for the three topics considered in this thesis are presented in three separate
chapters. In Chapter 5, the results regarding the handling of deviating control values
are presented. Results comprise the results from the literature review, the setup of the
simulation study, results of the simulation study, and, based on these results, a concrete
set of recommendations which method to use in which case. Finally, the methods are
applied to a real cytotoxicity dataset. Results regarding the identification of alert con-
centrations are summarised in Chapter 6. This chapter is structured into the three parts
setup of the simulation study, results from the simulation study and the application to
a real concentration-expression dataset.

The results regarding the sharing of information across genes are presented in Chapter 7.
This chapter starts with an extensive descriptive analysis of a real dataset. Next, the
simulation results for the meta-analysis are presented, followed by the simulation results
for the empirical Bayes method. Finally, the meta-analysis and the Bayes method are
both applied to a real dataset. This thesis is concluded by a summary of all the observed
results in Chapter 8 and by an outlook how to extend the methods introduced here.
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2 OBJECTIVES

2. Objectives

Three different aspects of calculating alert concentrations from a concentration-response
curve, fitted to toxicological in vitro data, are discussed in this thesis. These aspect are
introduced in detail in this chapter. The first aspect is the occurrence and the handling
of deviating control values. This is a biological phenomenon occurring in cytotoxicity
assays, where response values of the negative control and the lowest tested concentrations
differ from each other. The second topic deals with different methods of determining
alert concentrations, mainly in the context of gene-expression data. An observation-
based and a model-based approach are compared. The approaches are evaluated in
two ways each, determining both an absolute alert concentration and a significant alert
concentration. In the third topic, the goal is to exploit similarities in many concentration-
gene expression profiles, measured for the same compound but a large set of genes, to
achieve a higher-quality fit of a curve with respect to the parameter that corresponds to
the half-maximal concentration.

2.1. Handling deviating control values

The problem of deviating control values in cytotoxicity assays was brought up by Krebs
et al. (2018). The problem occurs in the situation of assays in which a cell function,
such as viability, is assessed for a (negative) control and increasing concentrations of a
compound. Typically, all response values are normalised with respect to the control in
order to obtain percentages. The mean response value for the control then corresponds
to a response of 100%. A concentration-response model is fitted to the data and based on
this model, relevant concentrations such as effective concentrations (see Chapter 4.1.4)
are calculated.

Problems may occur when the response values of the control and the response values
for the lowest tested concentrations differ from each other. This situation is known as
deviating controls. In that case, the upper asymptote of a fitted concentration-response
curve may not correspond to 100%, since the responses for the lowest tested concentra-
tions indicate a value smaller or larger than 100%. This leads to an inability to properly
calculate and interpret the effective concentrations of interest.

In an extreme case, one might be interested in the concentration that corresponds to a
viability of, say, 90%. Negatively deviating controls can then lead to the case in which
an upper asymptote of a fitted model takes a value that is smaller than 90%, so that
the concentration of interest cannot be calculated. However, the problem becomes clear
already in less extreme cases: If due to deviating controls the upper asymptote does
not correspond to a concentration of 100%, the intersection of the fitted curve with a
pre-specified fixed response becomes meaningless.

An intuitive approach may be to force the upper asymptote to take a value of 100%, after
normalising the data with respect to the response of the control values. A typical problem
with this approach is illustrated in Figure 2.1, where a hypothetical example is shown:
The viability of cells is assessed for a narrow series of concentrations and the responses

7
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Figure 2.1: Hypothetical example illustrating a possible problem when forcing the upper
asymptote of a fitted curve to 100%: In the left plot, the data is modelled as it is, and
for higher concentrations, a good fit of the responses can be obtained. In the right
plot, the upper asymptote is forced to take a value of 100%, which results in a poor
fit also for higher concentrations.

of the lowest measured concentrations quite clearly define the upper asymptote. The
response for the control, however, is (strongly) deviating from the values of the lowest
measured concentrations.

In the left plot, a sigmoidal curve is fitted to the data and the value of the upper
asymptote is only determined by the data. The asymptote of the fitted curve neither
perfectly describes the responses for the lowest measured concentrations nor corresponds
to a value of 100%. Still, for higher concentrations the curve offers a very good fit of the
observed viabilities. In the right plot, however, the upper asymptote is forced to attain a
value of 100%, while the other parameters (lower asymptote, inflection point and slope)
are determined by the data. It becomes obvious that forcing the upper asymptote to
attain a value of 100% has an effect on the entire course of the fitted curve, which in
this example does not fit the data well. This method of forcing the upper asymptote to
take a value of 100% places a lot of weight on the response values of the controls, as the
data is normalised with respect to these values and then the asymptote is determined
only on the basis of these values.

Looking at this quite extreme example, the next intuitive idea might be to simply omit
the obviously deviating response value of the controls. In general, this is a difficult
recommendation to give, as omitting the controls requires high-quality data for the
measured concentrations. A loss in information is deliberately accepted when omitting
the controls, and in some situations, information obtained by (slightly) deviating controls
can still be valuable in receiving a higher-quality fit of the concentration-response curve.
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2 OBJECTIVES 2.1 Handling deviating control values

Krebs et al. (2018) propose a solution to the problem of deviating controls that is based
on a re-normalisation approach for the curve fitting: In a first step, it is visually decided
whether the controls are to be kept or omitted. Afterwards, a model with a data-driven
value of the upper asymptote is fitted, the data is re-normalised with respect to the
upper asymptote and a new model is fitted in which the upper asymptote is forced to
take a value of 100%. This proposal combines and extends the two intuitive ideas of
omitting the controls or forcing the upper asymptote to take a value of 100%.

The problem of deviating controls, together with the three briefly introduced ideas of
addressing this problem, is further illustrated in Figure 2.2. This figure makes use of a
part of the real-data example that is explained in more detail in Chapter 5.5. A subset
of the dataset, where the viability of cells treated with increasing concentrations plus a
negative control of the compound valproic acid is observed, is shown there. The subset
consists of five increasing concentrations with three replicates each. Four non-linear
sigmoidal models are fitted to the data.

The top-left plot shows the data normalised to the mean of the response values for the
control, with a model fitted to the data as it is. A slight deviation of the controls
in the direction that their response value is larger than the response value of the two
lowest concentrations can be observed. The three other plots show different methods of
dealing with the deviating controls. The concentration of interest in this example is the
concentration where the fitted curve attains a value of 80%, this value is called EC20
(see Chapter 4.1.4).

The top-right plot works with the re-normalisation procedure as proposed by Krebs et al.
(2018), in which the data is normalised with respect to the upper asymptote after an
initial fit. In the bottom-left plot, the upper asymptote is forced to attain a value of
100% and in the bottom-right plot, the control values are omitted from the model fit.
These methods are explained in more detail in Chapter 4.2. A difference both in the
course of the asymptote relative to the data points and in the concentration where a
value of 80% is attained can be observed across the three plots. This difference illustrates
the influence of the fitting procedure on the resulting curve and its derived parameters.
Therefore, a comparison of possible methods in a controlled simulation study is required.

Since deviating controls can only be identified when the upper asymptote defined by the
low- or no-toxicity concentrations is known, a careful experimental design is necessary.
In cases where not enough measurements in a concentration range with no toxicity of the
compound are available, the value of the upper asymptote can only be derived by the rest
of the dataset and deviating controls cannot be identified with certainty. The biological
reasons behind deviating controls in cases with a sensible experimental design are not
entirely clear, but several guesses exist. In Kappenberg et al. (2020), the following list
of reasons is stated:

• Random variation of data points due to experimental imperfections

• Errors during the performance of the experiments, e.g. in producing the stock
solutions

• Variation in the concentration of solvents between samples
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Figure 2.2: Exemplary presentation of the influence of the fitting procedure on the final
curve and on derived parameters. The dataset is an excerpt of a real dataset in which
the effect of increasing concentrations of VPA on the viability of cells is measured.
Four different methods are used to fit a model to the data.

• Systematic deviation of endpoint readouts according to their position on culture
plates or in analytical devices

• Systematic deviations due to the timing of sample preparation (e.g. incubation of
cells, storage of solutions or during analysis, etc.)

In Krebs et al. (2018), the observation is made, based on a small study, that despite
a frequent occurence of the deviating controls, this is not considered when fitting a
model to the data. The study consisted of 100 posters that were assessed with regard
to deviating controls at a toxicology meeting. In extension of this small study, an
extensive literature review in three leading toxicological journals (Archives of Toxicology,
Toxicological Sciences, Toxicology in Vitro) is conducted and presented in Chapter 5.1
of this thesis. This literature review serves to answer the questions how often this
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phenomenon of deviating controls actually occurs in the published literature and how
strong the deviations of the controls are in these cases.

Building on the proposal of Krebs et al. (2018) and the intuitive ideas how to handle
the problem of deviating controls in the statistical analysis, four different methods are
introduced in Chapter 4.2 and compared in a systematic simulation study (Chapter 5.3).
Basic ideas of the four models are:

• Re-normalising the data after an initial fit, similar to the method described in
Krebs et al. (2018)

• Forcing the upper asymptote to take a value of 100%

• Omitting the controls

• Taking the deviations into account when modelling the concentration-response
curve

The goal is to derive a set of recommendations, which of the methods to use in which
situation. These recommendations are explicitly stated in Chapter 5.4. All four methods
are finally evaluated on a real cytotoxicity dataset, in which the effect of the compound
valproic acid on the viability of cells is examined (Chapter 5.5). This dataset is intro-
duced in detail in Chapter 3.2.1.

The results concerning the problems of deviating control values are published in Kap-
penberg et al. (2020). Analyses published there are extended by several aspects in this
work: The literature review is analysed in more detail. In the simulation studies, ad-
ditional simulation scenarios and an additional alert concentration are considered. Fur-
thermore, an additional real cytotoxicity dataset is evaluated, and all analyses regarding
real datasets are performed in more detail.

2.2. Identification of alert concentrations

An important aspect when modelling concentration-response curves is the determination
of an alert concentration, i.e. the concentration where a specific level of the response is
attained. In contrast to cytotoxicity data, where response values typically range from
100% to 0%, upper and lower limits of gene expression data are usually not pre-specified
and may differ between genes. Therefore, specifying absolute response values that need
to be attained is less straight-forward. Instead, response values depending on the actual
values of the upper and lower limit need to be considered.

One possibility to define the concentration of interest is to consider the concentration
where the fold change, i.e. the difference in gene expression between two concentrations,
in comparison to the control exceeds a pre-specified level. A typical situation is the case
where an effect level for the fold change is pre-specified and the smallest concentration
is of interest, where this effect level is attained or exceeded when comparing to the
control. In the context of concentration-gene expression data, considering the measured
concentrations as potential alert concentrations is still more common than fitting a
parametric curve to the data. A curve, however, allows any positive concentration
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as alert concentration, in contrast to solely considering the often only few measured
concentrations.

The two approaches of considering measured concentrations only or first fitting a para-
metric model are referred to as observation-based and model-based approaches, respec-
tively. A further differentiation is given by whether an effect level only needs to be
attained or needs to be significantly exceeded. This differentiation is referred to as
absolute exceedance in contrast to significant exceedance of the effect level.

The observation-based approach where only absolute exceedance of the effect level is
required can be determined by simply calculating the fold changes between the responses
for each measured concentrations and the control. If additionally significance is required,
some statistical testing needs to be carried out, for example a two-sample t-test or the
Dunnett procedure. The latter is a common procedure in toxicology for simultaneous
comparisons of several concentration versus a control and is introduced in detail in
Chapter 4.1.1.

For the model-based approaches, each positive concentration is a potential alert concen-
tration. For absolute exceedance of the effect level, the concentration is sought where
the parametric curve attains the respective value. This concentration can be calculated
via the inverse of the function or with numeric methods. When additionally significance
is required, the approach is less straight-forward than for the observation-based meth-
ods. Grinberg (2017) introduced a first version of a test statistic together with a search
algorithm, aimed at finding the model-based alert concentration that takes significance
into account. In this work, the test statistic is introduced in a modified way.

In Grinberg (2017), a simulation study is conducted to compare the different methods
for calculating alert concentrations briefly introduced above. A test based on the fitting
of a log-logistic model is derived to find the concentration where the pre-specified effect
level is significantly exceeded. Four different situations of concentration-gene expres-
sion profiles are considered. Results suggest that model-based alert concentrations are
generally observed at lower concentrations than observation-based ones. For curves in
which the pre-specified effect level is not exceeded or for curves with a clear sigmoidal
shape, strictly better results are achieved with the model-based method. However, in
situations where the concentration-gene expression profile is an unsaturated curve, the
newly proposed method fails more often in yielding a valid estimate in comparison to
classical observation-based approaches.

In this work, this simulation study is resumed and changed with respect to aspects
regarding both the underlying methodology and the simulation itself. Concerning the
methodology, the log-logistic model-based test is improved by incorporating a covariance
term: In Grinberg (2017), a test statistic is introduced that aims at finding the concen-
tration x where an effect level of λ is significantly exceeded, based on the assumption
that the lower asymptote of the fitted curve attains a value of 0. The test statistic is
based on the idea of calculating a confidence interval for the effect level calculated as a
parametric function of the concentration. Only the variance of the fitted function at the
specific concentration x is considered and the covariance between the fitted function at
the concentration x and the concentration 0 is not taken into account.
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This concept is broadened to any value for the lower asymptote c in finding a concen-
tration x, where the difference of the function evaluated at x and the difference of the
function evaluated at 0, yielding the response value c, significantly exceeds a pre-specified
effect level. The covariance term between the function evaluated at both concentrations
x and 0 cannot be neglected in general and is therefore included in calculating the test
statistic.

The search algorithm introduced in Grinberg (2017), a version of the bisection algorithm,
to find the smallest concentration x where the effect level is significantly exceeded is
adopted for this work. The setup of the simulation study differs from the one conducted
in Grinberg (2017) in several aspects:

• The true underlying curves of the simulation study are chosen slightly differently.
In Grinberg (2017), four scenarios are considered. Only three of these scenarios
are represented in this work and they are possibly slightly adjusted:

– The first scenario corresponds to the ‘null hypothesis’, where the true under-
lying curve never exceeds the threshold. A similar scenario is chosen in this
work as well, but with the inflection point of the curve at a higher concentra-
tion.

– The second scenario is chosen in a way that the curve exceeds the threshold,
but the upper limit is not reached within the range of considered concentra-
tions. This scenario is adopted here as it is.

– The third scenario describes the situation of a saturated sigmoidal curve. The
basic idea of this curve is retained, but the specific parameters are chosen
differently.

– The fourth scenario forms a compromise between the first and the second
scenario and is given by a curve with an upper asymptote close to the chosen
threshold. No such scenario is considered in this work.

• For calculating the observation-based alert concentration that takes significance
into account, Grinberg (2017) employs the limma methodology (Ritchie et al.,
2015). This is an empirical Bayes approach in which combined information of all
considered genes, typically several thousands, is used to adjust the individual vari-
ance estimates of genes. The goal of this work is to give recommendations on the
choice of observation-based vs. model-based methods independently on the num-
ber of genes included in the dataset. Therefore, in this work, instead of the limma
approach a simple t-test and the Dunnett procedure introduced in Chapter 4.1.1
are used for calculating observation-based alert concentrations.

• In Grinberg (2017), concentration-wise standard deviations are chosen from the
set of observed standard deviations in the gene expression dataset from Krug et al.
(2013), introduced in this work in Chapter 3.2.2. Analysis of this dataset shows
some dependency of the standard deviation on the range of gene expression values.
Therefore, instead of choosing the standard deviation individually for each simu-
lated gene, in this analysis fixed standard deviations that depend on the range of
the gene expression observed for each scenario are chosen.
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• In Grinberg (2017), the simulation study is conducted considering 3, 6 and 10
replicates per concentration, with the observation that increasing the sample size
affects model-based estimates more than observation-based estimates (Grinberg,
2017). In this work, the simulation study is restricted to the case of 3 replicates
per concentration.

The four different alert concentrations are introduced in detail in Chapter 4.3 with most
emphasis on the new log-logistic model-based test (Chapter 4.3.3). These methods are
compared in a simulation study whose setup is explained in Chapter 6.1 and the re-
sults are analysed in Chapter 6.2. The goal of this simulation study is the assessment
of the quality of the estimated alert concentrations: The numbers of valid estimates,
i.e. estimates that are in the range of considered concentrations, are compared between
methods. Furthermore, the number of ‘false positive’ alerts, i.e. alerts found at lower
concentrations than the alert concentration of the true underlying curve of the simu-
lation study, are compared. Differences in the performance between the different true
underlying curves considered in the simulation study are evaluated.

Finally, the methods are applied to a real gene expression dataset, where concentration-
gene expression data for the compound valproic acid is collected (Chapter 6.3). This
dataset is introduced in detail in Chapter 3.2.2.

The results concerning the identification of alert concentrations for concentration gene-
expression data are published in Kappenberg et al. (2021). Analyses published there are
extended by more details regarding the comparison of the LOEC based on the t-test and
based on the Dunnett procedure in this work. Additionally, for the choice of the probe
sets from the entire gene expression dataset, two different variants are calculated and
compared in this thesis, while in the paper, only one variant is considered.

2.3. Information sharing across genes

Microarray technologies allow measurements of gene expression values for tens of thou-
sands of genes simultaneously. Measuring gene expression values for several increasing
concentrations of the same compound yields a concentration-response dataset. When
fitting a parametric curve to such a dataset, the quality of the fit improves with an
increasing number of concentrations and replicates. However, adding new replicates of
already considered concentrations or even several replicates of new concentrations is very
expensive. A statistical approach to obtain higher-quality fits of the parametric curves
or of some parameters of the curves is to exploit similarities between genes. Certain
aspects of the fits of several curves are pooled to improve each single fit. That means
that some information sharing is conducted across genes.

The target aspect of each curve that is to be improved is the parameter corresponding
to the concentration where the half-maximal effect is reached: The curves considered
have a left-sided asymptote for concentration values tending towards zero and a right-
sided asymptote for concentration values tending towards infinity. The parameter of
interest indicates the concentration where exactly the center between the response values
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corresponding to the two asymptotes is reached. This concentration value is a reasonable
indicator for a relevant expression effect of the gene considered.

The first idea is to pool information of ‘similar’ genes in a meta-analytic way. The ap-
plication of meta-analysis to concentration-response data is based on Jiang and Kopp-
Schneider (2014), and is explained in this work in Chapter 4.4.2. Pooling by similarity,
e.g. determined by high correlation values between genes, however, is not enough: A
simulation study is conducted (Chapter 7.3.1), where the entire set of genes is consid-
ered as set of potential similar genes. Actual similar genes are determined by a high
correlation score, and all genes with a correlation higher than a specific threshold are
included in the meta-analysis to improve the estimate for a specific gene. Results show
that neither the coverage probabilities of the resulting confidence interval nor the mean
squared error between estimated and true underlying parameter are improved.

Therefore, in a next step, the biological similarities and therefore ideally similar proper-
ties of the concentration-gene expression profiles are exploited by considering only genes
from a specific Gene Ontology group (GO group, see Chapter 3.3) as potential set of
neighbours. In a simulation study, GO groups of different sizes and of different coher-
ences in terms of the similarities of the genes are considered. These simulation studies
are presented in Chapter 7.3.2.

The second idea is to consider the entire dataset to obtain the distribution of the pa-
rameters of the parametric curve. Based on this distribution, a weighted mean of actual
estimated parameters and the entire distribution can be calculated. Thus, estimates are
shrunk towards the most plausible value. This is achieved by employing an empirical
Bayes method under normality assumptions, where a prior distribution of the parameter
is calculated based on observations on the entire dataset. The posterior distribution
is then also given by a normal distribution, where the posterior mean is a weighted
mean of the observed value and the prior mean. This method is introduced in detail in
Chapter 4.4.3.

The main idea of the method is to improve the estimation of the parameter corresponding
to the half-maximal effect in terms of the difference to the true parameter. In cases where
the concentration-response data of one single gene does not allow a high-quality fit of the
curve and therefore much too large estimates result, shrinking the estimate toward the
empirical mean value makes use of the knowledge about the true distribution to ensure
a more plausible fit.

With the limma procedure (Ritchie et al., 2015), one empirical Bayes methodology is
already established in the field of microarray analysis. The goal of the methodology
is to simultaneously analyse comparisons between samples in high-dimensional gene-
expression data. That means that it is aimed at analysing fold changes of genes, i.e. the
difference in gene expression for different samples, while the methodology introduced in
this work is aimed at giving statements about the concentration where some relevant
change in expression can be observed.

The Bayesian shrinkage method is investigated in several simulation studies that are
similar to each other in the basic ideas but differ in their resemblance to a real data
situation. Main properties of the curves examined in these studies are derived from
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the gene expression dataset introduced in Chapter 3.2.2. In the first simulation study,
however, the underlying parameters of the curve are completely randomly sampled from
normal distributions. For the second simulation study, parameters as observed in the
real dataset are considered, but only after some normalisation is applied that ensures
that the assumption of the normal distribution holds. In the third study, the parameters
are taken from the real dataset as it is. The simulation studies with their results are
presented in Chapter 7.4.

For both approaches, a deep understanding of the distribution of the parameters of the
fitted curves is required. Therefore, in a first step, a detailed descriptive analysis of the
parameters for all genes satisfying certain requirements of significance is conducted. This
analysis is presented in Chapter 7.1. Since for the meta-analysis approach, GO-groups
play a central role, their properties are also described in detail in Chapter 7.2.

Finally, the methods are applied to the real gene expression dataset, on which all simu-
lation studies are based. The results are presented in Chapter 7.5.
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3 DATA AND BIOLOGICAL BACKGROUND

3. Data and biological background

This chapter gives the biological background needed to understand the different types of
datasets considered throughout this work. The respective biological background is ex-
plained as well as the methods to obtain a raw dataset. Some pre-processing is needed,
such that the raw data is transformed to normalised data that can then be statistically
analysed. These steps are first introduced in general for a cytotoxicity assay that re-
sults in viability measurements, thus also called viability assay, and for an Affymetrix
microarray analysis that results in gene expression values.

After the general background, the specific datasets considered in this work are intro-
duced. One cytotoxicity dataset and one gene expression dataset, both evaluating the
effect of the compound valproic acid on cells, are described in detail.

Finally, a short introduction into the Gene Onotology is given, which is an initiative to
represent and unify the meaning of genes with respect to their biological functions. The
result is the Gene Ontology database, in which genes are structured according to their
biological process, their molecular function or their cellular component.

In this work, the influencing variable considered always is a concentration instead of a
dose. By concentration, the amount of a compound in a mixture that is applied to cells
is described, while the dose is the total amount of a compound that is administered to
tissue (Duffus et al., 2007). Data considered here are results from in vitro assays. The
term in vitro (from lat. ‘in glass’) refers to a study or a toxicological assay conducted
in the laboratory with tissue or cells, while in vivo (from lat. ‘in the living body’) refers
to a study with living organisms (Duffus et al., 2007).

3.1. Different types of data

Different methods for assessing the cytotoxicity of a compound by measuring the viability
of cells exist. One possible method is the Cell-Titer-Blue (CTB) assay, that works by
measuring a fluorescent component and deriving the viability based on these fluorescence
values. This assay is explained in more detail in Chapter 3.1.1.

The Affymetrix GeneChip® technology is a high-troughput microarray technology to
simultaneously measure expression values for tens of thousands of genes. This technology
is briefly introduced in Chapter 3.1.2, together with the biological basics needed for
understanding gene expression data and with the normalisation procedure yielding the
gene expression values in the form that is considered in this thesis.

3.1.1. Cytotoxicity data

The CTB assay is described here according to the Standard Operating Procedure 3A of
Gu et al. (2018). Only an overview of the method is given here with omission of many
details regarding proper preparation and handling of the cells, as this would exceed the
scope of this work.
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The basic idea of the CTB assay is to measure the fluorescence of cells to which the
solvent control (i.e. none of the considered compound) and increasing concentrations of
the considered compound are given. For this, the CTB medium containing the dark
blue indicator dye resazurin is added to cells for measuring their metabolic capacity.
Vital cells can reduce resazurin into the pink and highly fluorescent dye resofurin. Non-
viable cells have a reduced capacity for the metabolization of resazurin. Therefore, lower
fluorescence is observed. In the case of completely dead cells, no resazurin can be reduced
to resofurin at all.

Preparation of the cells consists of seeding them in 96-well plates with 50000 cells per
well and the beginning of treatment 16-20 hours later. Cells are exposed to the respective
concentration of a compound for a pre-specified time. After this time, replacement of
the medium is conducted where the CTB reagent is added to the new medium.

The cells with this reagent are incubated for about 3 hours at 37°C. After this incubation
time, the fluorescent intensity is read out, in the specific example considered here using
the Tecan Infinite M200 Pro plate reader (i- control software, version 1.7.1.12). This
results in a fluorescence value for each well of the plate.

Together with the fluorescence values for the cells treated with the compound and then
with the CTB medium, a background fluorescence value is calculated from CTB medium
that has not been in contact with the cells. This background value is subtracted from
each measurement, or, if several background fluorescence values were calculated, the
mean of these values is subtracted from each measurement. The untreated cells are used
as a reference corresponding to a viability to 100% and the data normalised in this way
is ready for statistical analysis.

3.1.2. Affymetrix gene expression data

In order to understand the data obtained by Affymetrix GeneChip® technology, a basic
understanding of the structure and the function of genes is necessary. Thus, this chap-
ter starts by giving a short introduction into the biology behind gene expression data.
Then the microarray technology is explained, and finally the pre-processing, necessary
to transform raw data to gene expression values for statistical analysis, is introduced.

A gene is a segment of the DNA (deoxyribonucleic acid), storing genetic information
that codes for a protein. The human genome consists of about 21000 genes that are
separated in the DNA by noncoding segments. The DNA itself consists of long strands
of nucleotides, each of which contains a sugar, a base and a phosphate group. Four
different bases occur, they are called adenine (A), guanine (G), thymine (T), and cytosine
(C). Two such strands are stabilized by hydrogen bonds between the bases, forming the
double-helix structure of the DNA, with the sugar and the phosphate facing outwards
and the bases facing inwards. The bases are always paired up in the same way, A is only
paired with T and G is only paired with C. This is called complementary base-pairing
and is an important feature of the DNA for expressing genetic information, as one strand
can completely be replicated when knowing the other one (Fletcher and Hickey, 2012,
pp. 1-6).
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Genetic information stored in the DNA allows reproduction of cells and organisms. The
process of transferring the genetic information from DNA for protein synthesis is called
gene expression. RNA (ribonucleic acid) is a one-stranded chain of nucleotids that
differ from the DNA nucleotids in the specific sugar. Additionally, the base thymine is
replaced by uracil (U). Gene expression is a three-step procedure, with the steps RNA
transcription, RNA processing, and translation (Fletcher and Hickey, 2012, pp. 6, 13).

In the first step, the process of transcription, the base sequence of the DNA is copied
into a corresponding RNA sequence, yielding a mRNA (messenger RNA) transcript.
This transcript is processed by removing non-coding segments. Finally, the mRNA is
translated into proteins (Fletcher and Hickey, 2012, p. 16).

The Affymetrix GeneChip® is a high-density chip, called microarray, for the analysis
of gene expression data. A gene expression microarray consists of sequences of 25 nu-
cleotides, called probes, that are complementary to the gene that is targeted by the
measurements. Usually, 11 to 20 of these probes correspond to one given gene, forming
the so called probe set. In the Human Genome U133 Plus 2.0 chip used for the data
analysed in this thesis, 54675 probe sets are used to analyse expression levels of more
than 47000 transcripts (Bolstad, 2004; Affymetrix, 2003b).

Two pairs of probes can be found on a GeneChip. A perfect match (PM) is a probe that
is exactly complementary to the sequence of interest. For each PM, there exist some
partner probes that differ from the PM only by the 13th base, which is the middle of the
sequence of nucleotids, called a mismatch (MM). Thus, no or at least weaker binding
of the target sequences to the respective MM is achieved, allowing the quantification of
background signal detected by the PM probe (Bolstad et al., 2003; Bolstad, 2004).

For details regarding the biological procedure of measuring gene expression data, the
reader is referred to Bolstad (2004) and Affymetrix (2003a). The basic idea is to bring
a transcribed version of the target mRNA in contact with the microarray, such that
fragments bind to their respective complementary probes on the microarray. Fragments
bound to the microarray emit some fluorescent light which is measured by a laser scanner,
yielding intensity values.

Intensities of the single probe sets need to be transferred to expression values. This step is
called pre-processing, and one of the algorithms used most often is the robust-multi array
analysis (RMA) (Irizarry et al., 2003a). This algorithm yields an expression measure
that is motivated by a log-scale linear additive model, where a transformation of the
PM is given by the sum of log2-scale expression values found on the arrays, the log-scale
effects for the respective probes and an error term. The transformation corresponds to
background correction, normalisation and log-transformation.

Hence, the RMA algorithm is a three-step procedure with the steps of background cor-
rection, normalisation and summarising data to one value. Background correction is
performed for each microarray individually. Irizarry et al. (2003b) show that the intu-
itive method of background correction, where MM are subtracted from PM, is not the
best possible method. Instead, only PM is modelled by the sum of background noise
and the signal of interest. By exploiting distribution assumption for both summands,
the signal can be estimated.
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Normalisation is needed for experiments with multiple microarrays, in order to deal
with variation between microarrays that stems from the practical aspects of executing
the experiments. In the RMA algorithm, quantile normalisation is performed. The goal
of this procedure is to obtain normalised probe values, whose distributions are identi-
cal across microarrays. This method is motivated by quantile-quantile plots, in which
sample quantiles of two distributions are plotted against each other. If the data points
plotted there form a straight diagonal, the distributions are the same. Thus, quantile
normalisation is performed by substituting the data from the original observation by a
mean quantile, see Bolstad et al. (2003) for more details.

The final step is then again summarising the normalised intensity values to one expression
value per probe set. This is achieved by employing a linear model as indicated above,
that is, for a fixed probe set, specifically given by

T (PM)ij = ei + aj + εij ,

with T being the transformation that conducts background correction, normalisation
and log2-transformation of the PM intensities. The index i = 1, . . . , I corresponds to
the microarrays and j = 1, . . . , J refers to the j-th probe of the specific probe set
considered. The log2-scale expression value of the probe set on microarray i is denoted
by ei and aj denotes the probe effect for the j-th probe. εij is an error term. The term
ei, estimated by a robust linear fitting procedure, is the corresponding gene expression
value per probe of interest and referred to as RMA (Irizarry et al., 2003a).

A disadvantage of the RMA algorithm is that the final two steps are dependent on the set
of microarrays normalised. Thus, when measurements for additional microarrays shall
be pre-processed, the entire set of microarrays needs to be pre-processed again. Harbron
et al. (2007) propose an extension of the RMA algorithm, implemented in the R-package
RefPlus. The idea is to apply the RMA algorithm to a reference set of microarrays
and to save the resulting parameters from the quantile normalisation and the final linear
model. The microarrays of interest are then pre-processed using the parameters obtained
from pre-processing the reference set.

The reference set is obtained by dividing the set of all microarrays into two sets: the
reference set and the set of all other microarrays. In a first step, RMA is applied to the
reference set, while remembering the quantiles and the probe effects estimated from the
linear model. Then, the other microarrays are background-corrected individually. For
the quantile normalisation, saved values of the quantiles are used and the final expression
value of the probe set is calculated under the assumption that probe effects are equal
for the reference set and the other microarrays (Harbron et al., 2007).

Often, when working with gene expression values, the fold change (FC) is the measure
of interest. The FC is given by the difference of gene expression for one specific gene
and two concentrations of interest. Usually, the FC between a concentration and the
control, corresponding to concentration 0, is considered. Since the data considered here
is log2-transformed, the logarithmised FC is considered: Denote by xConc and xCtrl the
(not logarithmised, but potentially averaged across several replicates) gene expression
values for a concentration Conc and the control Ctrl. Averaging is conducted using the
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geometric mean, which corresponds to the arithmetic mean when considering logarith-
mised expression values. The logarithmised FC between the expression values for the
two concentrations is then given by

log2(FC) = log2(xConc) − log2(xCtrl) = log2

(
xConc

xCtrl

)
.

3.2. Datasets

The two datasets considered and explained in detail in the following two chapters are
based on some response (viability or gene expression) of cells when treated with increas-
ing concentrations of the compound valproic acid (VPA). VPA is a compound used in
a clinical context among other for treatment of epilepsy. However, it is known that
it triggers reproductive toxicity, specifically developmental neurotoxicity, in humans as
well as in animals (Krug et al., 2013).

3.2.1. VPA cytotoxicity dataset

The dataset presented here was originally created for Kappenberg et al. (2020) and is
analysed there as well.

For the VPA cytotoxicity dataset, a Cell-Titer-Blue assay was conducted as described
in Chapter 3.1.1, using cells of the HepG2 cancer cell line. HepG2 cells are frozen
cells coming from the liver tissue of a 15 year old Caucasian male that suffered from
hepatocellular carcinoma1. These cells were cultivated in Dulbecco’s Modified Eagle’s
Medium (DMEM) with 25 mM glucose. VPA (CAS number 99-66-1; Sigma Aldrich;
product number: PHR1061-1G) was directly dissolved in the culture medium to generate
the concentrations indicated below so that no solvent was required.

Viability of cells was measured for a negative control and for 12 increasing concentrations
from 0.1 mM to 56.2 mM that differ approximately by a factor of 1.78 ≈ 101/4. The
concentrations were chosen in order to obtain results with no toxicity for the lowest
concentrations, and high toxicity, i.e. a viability of 0%, for the highest concentration.
For each concentration, response values for three biological replicates with seven technical
replicates each were measured. In total, this leads to 91 measurements for each of the
three biological replicates. No observations are missing for this dataset.

3.2.2. VPA gene expression dataset

The dataset presented here was originally created in the context of a case study to
investigate the development of human embryonic stem cells (hESC) to neuroectoderm
(Krug et al., 2013). The study was carried out within the framework of the European
Commission-funded research consortium ESNATS. This consortium targeted prediction

1https://www.lgcstandards-atcc.org/products/all/HB-8065.aspx, accessed on 24.8.2020, origi-
nally published in Knowles et al. (1980)
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of toxicity of drug candidates (specifically VPA and methylmercury, which is not con-
sidered here) for the use of embryonic stem cell-based novel alternative tests.

The VPA dataset was created via the Affymetrix microchip technology, as presented
in Chapter 3.1.2. The Affymetrix Human Genome U133 Plus 2.0 GeneChip was used,
resulting in gene expression values for 54675 probe sets.

Cells were treated in vitro with VPA at the eight increasing concentrations 25, 150, 350,
450, 550, 650, 800, and 1000 μM with three replicates each. Additionally, six replicates
for untreated cells, serving as negative control, in the following also referred to as the
concentration 0, were created. The data is pre-processed using the RMA algorithm with
the RefPlus extension as introduced in Chapter 3.1.2. The same parameters as used by
Krug et al. (2013) are used for pre-processing.

Grinberg (2017) notes that the samples corresponding to a concentration of 650 μM
show a high variability when a principal component analysis based on the 100 probe sets
with highest variance across all samples is conducted. As stated there, data quality can
be improved by excluding these samples. Based on this observation, the three samples
corresponding to a concentration of 650 μM are left out of all analyses in the present
thesis. Thus, the considered VPA gene expression dataset consists of measurements for
54675 probesets, measured in 7 increasing concentrations and a negative control, leading
to 27 samples in total.

3.3. Gene Ontology

An ontology is a system to summarise some data, while representing relationships be-
tween the single data points. The Gene Ontology Consortium (2000) developed a system
to summarise functions of all known genes in three so-called gene ontologies (GO). The
three ontologies are based on the biological processes, molecular functions or cellular
components of genes and are independent from each other.

In this work, only the GO summarising biological processes is considered. The biolog-
ical process refers to some biological goal, such as ‘cell growth and maintenance’ when
considering a very broad term or ‘translation’ when considering more specific terms.
Typically, in a process some transformation is conducted, such that initial product and
end product differ. Since the GO summarises genes not only for humans, but for all
animals, plants and fungi, the information about the genes does not refer to specific
organs, but to the general processes only (Gene Ontology Consortium, 2000).

A GO is a directed acyclic graph with a hierarchical structure. In the case of biological
process, each node corresponds to a process. The node consists of all genes annotated to
the specific process. Nodes rather on top of the graph correspond to high-level biological
processes, whereas nodes further down the graph correspond to more specific processes.
All genes included in a specific node are also included in the parent node, thus the size
of the nodes becomes smaller when the biological process becomes more specific. The
nodes of the GO are referred to as GO groups.
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4. Statistical Methods

In this chapter, the statistical methods used throughout the analyses of this thesis are
presented. The first section deals with the basics of concentration-response analysis,
specifically the modelling of concentration-response curves is introduced in detail. These
results are needed for all the following methods. The following three sections introduce
the special methods derived for the three objectives of this thesis, handling deviat-
ing control values, identification of alert concentrations, and information sharing across
genes, as introduced in Chapter 2, in detail. In the final section, the software used for
conducting the analyses is introduced.

4.1. Basics of concentration-response analyses

In the first part, the multiple comparison procedure by Dunnett is introduced. After
that, the focus is laid on the modelling of curves: First the considered models are in-
troduced. The following section explains the assumptions made on the data for fitting
these curves and the numerical fitting process itself. An overview over potential alert
concentrations derived from fitted curves is given and finally, the MCP-Mod methodol-
ogy, which combines a multiple comparison step and a modelling step for several models
at the same time, is shortly introduced.

4.1.1. The Dunnett procedure

The Dunnett procedure is a multiple-comparison approach to simultaneously test for
significant differences between increasing concentrations of a compound and a negative
control, while adjusting for multiplicity. It was initially proposed by Dunnett (1955) and
is introduced here using Hothorn (2015, pp. 25-26) as additional source.

Let p ∈ N be the number of treatments to be compared to a negative control. Therefore,
p + 1 sets of observations are made with ni ∈ N observations each for i = 0, . . . , p. The
index i refers to the different groups, with i = 0 referring to the control group and
i = 1, . . . , p to the treatment groups. The observations Xij , i = 0, . . . , p, j = 1, . . . , ni

are assumed to be independently normally distributed with E[Xij ] = μi. Mean values
of the observations Xij in each treatment group i are denoted by X̄0, X̄1, . . . , X̄p and
the respective realisations are denoted by x̄0, x̄1, . . . , x̄p. The standard deviation σ is
assumed to be equal for all groups. It is estimated in a pooled way across all groups,
the estimate is denoted by S with realisation s.

Significance statements for the p differences μl − μ0, l = 1, . . . , p are simultaneously
calculated while correcting for multiplicity, i.e. the family-wise error rate is bounded by a
pre-specified significance level α by incorporating the correlation between the differences.
When considering the p one-sided null hypotheses H0 : μl − μ0 ≤ 0, the probability of
having at least one type I error, i.e. a rejection of at least one true null hypothesis, is
smaller than or equal to α. The procedure is introduced here only for the one-sided case
where finding a significant increase in the response is of interest, the opposite direction
works analogously.
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The Dunnett procedure can be formulated as a multiple contrast test. The l-th contrast
is given by

∑p
i=0 cliX̄i for l = 1, . . . , p. The corresponding test statistics are given by the

standardised contrasts and take the following form:

Tl =
∑p

i=0 cliX̄i

S
√∑p

i=0 c2
li/ni

The specific contrast matrix corresponding to the Dunnett procedure is given by

C = (cli) =

⎛⎜⎜⎜⎜⎝
−1 1 0 . . . 0
−1 0 1 . . . 0
...

...
... . . . ...

−1 0 0 . . . 1

⎞⎟⎟⎟⎟⎠ ∈ Rp×(p+1),

which leads to the following simplification of the test statistics:

Tl =
X̄l − X̄0

S
√

1/n0 + 1/nl

Under the null hypothesis, the p-dimensional vector (T1, . . . , Tp)� of test statistics follows
a joint multivariate t-distribution with df =

∑p
i=0 (ni − 1) degrees of freedom. The

matrix R = (ρij) ∈ Rp×p of correlations between the contrasts is given by

ρij =
√

1
(1 + n0/ni) (1 + n0/nj)

, for 1 ≤ i, j ≤ p.

For a significance level α > 0, the lower limits of simultaneous, one-sided (1 − α)100%
confidence intervals are given by

δ̂low
l = x̄l − x̄0 − tp,1−α(df, R) s

√
1
nl

+
1
n0

,

where tp,1−α(df, R) is the (1 − α) quantile of the p-variate t-distribution with df degrees
of freedom and correlation matrix R. It is chosen in a way that if q = tp,1−α(df, R),
then the probability that any of the absolute values of the observed test statistics, |tl|,
is larger than q is given by α.

4.1.2. The family of log-logistic models

The family of log-logistic models is one of the most commonly used model classes for
fitting concentration-response curves, not only in the area of toxicological in vitro data,
but also for ecotoxicology (van der Vliet and Ritz, 2013) or for modelling the hazard
rate for the survival of a patient after a severe medical diagnosis, as in this case typically
an initially increasing and later decreasing mortality can be observed (Nussbeck, 2014).
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Given a concentration x ≥ 0 and a parameter vector φ = (φ(b), φ(c), φ(d), φ(e))� with
φ(e) > 0, the four-parameter log-logistic model (4pLL model) is defined by (e.g. Ritz
et al., 2019, pp. 178-179)

f(x, φ) = φ(c) +
φ(d) − φ(c)

1 + exp
{
φ(b) [log(x) − log(φ(e))

]} (1)

= φ(c) +
φ(d) − φ(c)

1 + (x/φ(e))φ(b) . (2)

The parameters φ(c) and φ(d) correspond to the lower and the upper asymptotes of
the model, where the assignment depends on the slope of the curve and on the sign
of the slope parameter φ(b). Typically, φ(c) is the lower and φ(d) the upper asymptote.
Specifically, for φ(b) > 0 it holds

lim
x→0

f(x, φ) = φ(d) and lim
x→∞ f(x, φ) = φ(c).

Equivalently, for φ(b) < 0 it holds

lim
x→0

f(x, φ) = φ(c) and lim
x→∞ f(x, φ) = φ(d),

see Appendix A.1 for the exact calculation.

The parameter φ(e) corresponds to the concentration where the half-maximal effect (i.e.
a response value of φ(d)+φ(c)

2 ) can be observed. For display of the 4pLL model on a
logarithmic x-axis and φ(b) �= 0, this parameter also corresponds to the inflection point
of the curve. When the model is displayed on an untransformed x-axis, an inflection
point is only present if |φ(b)| > 1, and the respective concentration is given by

x =
(

φ(b) − 1
φ(b) + 1

) 1
φ(b)

φ(e),

see Appendix A.2 for the detailed calculations.

φ(b) is proportional to the actual slope at the concentration φ(e), which is given by

−
φ(b) ·

(
φ(d) − φ(c)

)
4φ(e) .

When considering a logarithmic x-axis, the slope at concentration φ(e) is given by

−1
4

· φ(b) ·
(
φ(d) − φ(c)

)
,

which differs from the function above only by the factor φ(e) in the denominator. For
exact calculations of the slopes, see Appendix A.3.
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Often, and especially for small datasets with less than 15 to 20 data points, the re-
parametrisation φ(e)∗ := log(φ(e)) should be preferred (Ritz et al., 2019, p. 179).

Fixing one or two of the parameters to take a pre-specified value yields a model with only
three or two parameters. In the context of response data corresponding to proportions,
often the lower asymptote is fixed to take a value of 0, or the upper asymptote is
fixed to take a value of 100% or 1, or even both. These models are then called three-
parameter log-logistic model (3pLL model) or two-parameter log-logistic model (2pLL
model), respectively.

The fits achieved with these models are monotonously decreasing or monotonously in-
creasing and, if a logarithmic x-axis is considered, point symmetrical around the in-
flection point. The 2pLL model is equivalent to a logistic regression using a logit-link
function with log(x) as the only explanatory variable (Ritz et al., 2019, p. 179).

In the literature, the 4pLL model is sometimes called differently and presented in dif-
ferent parametrisations, such as the sigmoidal Emax model (sigEmax, e.g. Bornkamp
et al., 2009), parametrised by

f(x) = E0 +
Emaxxh(

EC50h + xh
) , (3)

with E0 describing the effect for concentration 0, Emax describing the maximal effect,
that is maxx (f(x) − E0), EC50 describing the half-maximal effect with respect to E0
and Emax, and h describing the slope. It is also sometimes called the Hill-model, which
dates back to Hill (1910), who introduced a model equivalent to the 2pLL model in the
context of the binding of haemoglobin molecules. Equivalence of the sigEmax model to
the 4pLL model presented in (2) can easily be shown (see Appendix A.4), and the slope
parameter in these models is still sometimes called the Hill parameter.

The 4pLL model can be extended by a fifth parameter φ(f) to result in an asymmetric,
non-monotonous model. The five-parameter log-logistic model (5pLL model) was initially
proposed by Finney (1979) and is given by

f(x, φ) = φ(c) +
φ(d) − φ(c)(

1 + exp
{
φ(b) [log(x) − log(φ(e))

]})φ(f) .

Another, often desired property of a concentration-response model is the ability to model
a hormesis effect, that is a stimulating effect of the compound in low concentrations
followed by the regular inhibition for higher concentrations (Calabrese and Baldwin,
2003). The consequence is a non-monotonic course of a concentration-response curve.
In the case where inhibition leads to a decrease in the considered endpoint, the hormesis
effect can be seen as an inverted U-shape, that is an increase in the curve before it
decreases.

One possible model incorporating a hormesis effect is the Brain-Cousens model (Brain
and Cousens, 1989), which results from the 4pLL model by incorporating a fifth param-
eter φ(f) in the following way:
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f(x, φ) = φ(c) +
φ(d) − φ(c) + φ(f)x

1 + exp
{
φ(b) [log(x) − log(φ(e))

]}
Cedergreen et al. (2005) recommend restricting the parameters φ(b) and φ(f) of the
Brain-Cousens model to φ(b) > 1 and φ(f) > 0, as for a negative value of φ(f) a U-shape
instead of the desired inverted U-shape can be observed for the fitted model. For a value
of φ(b) < 1, the limit of the fitted model for x → ∞ approaches infinity as well. In
their work it is however stated that these restrictions can in general not be observed in
publications and thus will also not be made in this thesis.

In contrast to the 4pLL model, the Brain-Cousens model does not incorporate an explicit
parameter for the concentration inhibiting the half-maximal effect, also there is no closed
formula for calculating it. This concentration therefore needs to be computed numeri-
cally. Direct interpretations of the parameters φ(b) and φ(e) as in the 4pLL model are not
possible, but φ(c) and φ(d) still correspond to the asymptotes of the model (Cedergreen
et al., 2005).

Extensions of the Brain-Cousen model exist, e.g. a model proposed by Cedergreen et al.
(2005) that replaces the term φ(f)x in the Brain-Cousens model by φ(f) exp(−1/xα) for
some fixed α ≥ 0. In the present work, modelling a hormesis effect is restricted to the
Brain-Cousens model.

4.1.3. The numerics of curve-fitting

For x ≥ 0 a concentration and Y a response value corresponding to this concentration,
where Y is subject to sampling variation, it is assumed that

E[Y ] = f(x, φ).

f is a function describing the relationship between the concentration and the response,
e.g. one of the functions presented in Chapter 4.1.2. The function f is completely known,
except for the model parameters φ (Ritz et al., 2015).

Estimation of the model parameters requires assumptions regarding the distribution of
the response values. Let x1, . . . , xn be the concentration values (whereby equal concen-
trations may occur) with corresponding response values y1, . . . , yn. The response values
are assumed to be observations of normally distributed random variables Yi with mean
f(xi, φ) and equal variances σ2. In this case, the parameters φ are estimated using
the nonlinear least squares method, which, for a normally distributed response vari-
able, is equivalent to the maximum likelihood method. Estimates for φ are obtained by
minimising the following sum of squared errors:

n∑
i=1

w2
i (yi − f(xi, φ))2 (4)

The wi are weights that are specified for each application separately, e.g. when con-
sidering a proportion as response value, they are set to the number of observations for
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the unique concentrations. Usually for normally distributed response data, and in this
thesis as well, all of them are chosen equal to 1 (Ritz et al., 2019, p. 162).

The minimisation of the sum in (4) needs to be conducted by a numerical optimisation
algorithm. Here, the Gauss-Newton algorithm is chosen for optimisation. An important
step for the optimisation algorithm is the choice of appropriate starting values for the
model parameters. This choice does not only affect whether convergence of the algorithm
can be achieved, but also, whether a global or only a local optimum of parameters is
found by the optimisation algorithm (Ritz et al., 2015).

The starting values are chosen either using information obtained from previous, similar
experiments or in a data-driven way. For the 4pLL model in the parametrisation using
φ(e)∗ , the starting values for the parameters φ(c) and φ(d), describing the asymptotes, are
calculated by taking the minimum and the maximum of all response values and adding
or subtracting 0.001, respectively. For the parameters φ(b) and φ(e), the following linear
model is fitted to the data:

φ(d) − Y

Y − φ(c) = β0 + β1 log(x)

The parameters are then given by φ(b) = β1 and φ(e)∗ = exp(−β0/β1). In the Brain-
Cousens model, the starting value for the additional parameter φ(f) is equal to 1 (Ritz
et al., 2015).

Although log(0) is undefined and limx→0 log(x) = −∞, no addition of a very small
number to the concentration value x = 0 is needed for fitting the curves. This is ensured
by incorporating the asymptote values into the model-function, yielding well-defined
response values for concentration 0 as well (Ritz et al., 2015).

In estimating the model parameters φ some constraints are directly or indirectly made
to the parameters: In the 4pLL model, the parameter φ(e) corresponds to a specific
concentration and therefore needs to take a value φ(e) ≥ 0. By the choice of starting
values, it is indirectly ensured that the parameter φ(b) takes a negative value for increas-
ing curves. In practice, however, in some cases it can be observed that φ(b) is positive
for increasing curves or negative for decreasing curves, and the typical assignment of
the parameters φ(d) and φ(d) to upper and lower asymptote is swapped accordingly. The
estimation procedure may be combined with any restriction of the range of one or several
parameters if this is needed for any application-based reason (Ritz et al., 2015).

The covariance matrix Σ̂ := Σ̂(φ̂) of the estimated parameter values is obtained as the
scaled inverse of the observed information matrix, i.e.

Σ̂ = σ̂2

⎛⎝{
∂2f̂

∂φ̂p1∂φ̂p2

}
p1,p2∈{1,...,p}

⎞⎠−1

= σ̂2
(

∂2f̂

∂φ̂p1∂φ̂p2

)−1

. (5)
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Diagonal entries of Σ̂ are the estimated squared standard errors of the entries of pa-
rameter vector φ, i.e. Σ̂ii = v̂ar[φ̂pi ] = ŝe(φ̂pi)2, pi ∈ {1, . . . , p}. Here, in general,
φ = (φ1, . . . , φp). The information matrix itself is approximated numerically (Ritz et al.,
2019, p. 163). σ̂2 denotes the squared residual standard error. It is estimated as the
residual standard error for the linear regression, which is typically estimated as

σ̂2 =
1

n − p − 1

n∑
i=1

(yi − ŷi)2,

with p denoting the numbers of parameters in the model (without the intercept) and
ŷi = f̂(xi, φ̂) the fitted values. The denominator n − p − 1 is used instead of n in order
to achieve an unbiased estimate of the variance (Hastie et al., 2009, p. 47). In the case
of a 4pLL model, this translates to

σ̂2 =
1

n − 4

n∑
i=1

(
yi − f̂(xi, φ̂)

)2
. (6)

The (1 − α)100% confidence interval for parameter φp ∈ {φ(b), φ(c), φ(d), φ(e), φ(e)∗} is
calculated as φ̂p ± K · ŝe(φ̂p). In the case considered in this work, the response values are
assumed to follow a normal distribution. Thus, the value of the constant K is chosen as
the (1 − α/2)-quantile of a t-distribution. The degrees of freedom equal the number of
response values minus the number of parameters, i.e. minus four in the case of a 4pLL
model. As this calculation leads to intervals that are symmetric around the estimate,
implausible lower bounds, such as negative values for parameter φ(e), may occur. A
simple approach to deal with this problem is to truncate lower limits at 0 (Ritz et al.,
2019, p. 172).

The fitting methods presented here are implemented in the R-package drc (Ritz et al.,
2015), which is used for all curve-modelling applications in this thesis.

4.1.4. Overview of alert concentrations

Different specific concentrations that correspond to some pre-specified property of the
response value often are of interest after the fitting of a parametric curve. In the 4pLL
model, one such concentration is already incorporated into the model function as the
parameter φ(e). This parameter corresponds to the concentration where the half-maximal
effect can be observed, i.e. the concentration that corresponds to a response of φ(c)+φ(d)

2 .

Broadening this concept to any other percentage of the maximal effect yields the so-
called relative effective concentrations. The effective concentration corresponding to a
response of (100γ)% for 0 < γ < 1 is denoted by EC100γ and defined as the solution for

f (EC100γ, φ) = (1 − γ) lim
x→0

f(x, φ) + γ lim
x→∞ f(x, φ),
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which, for the models considered in this work, typically translates to

f (EC100γ, φ) =
{

(1 − γ)φ(c) + γφ(d) for an increasing curve,
(1 − γ)φ(d) + γφ(c) for a decreasing curve.

In particular, the limits are thus always well-defined (Ritz et al., 2019, p. 173).

For cytotoxicity data, where viability of cells is considered, in theory the upper and lower
limits of a modelled concentration-response curve should correspond to 100% and 0%,
respectively. In practice, values of the upper asymptote might differ due to deviating
controls (see Chapter 2.1), although this can be addressed by different methods (see
Chapter 4.2). However, it may happen that the observed viability for the highest tested
concentration does not yet correspond to a viability of 0% and testing of higher concen-
trations is not possible due to problems with the solubility of the considered compound
in higher concentrations.

In these cases, where indirectly a lower asymptote of 0% is assumed, but cannot be
observed, instead of relative effective concentrations, the absolute effective concentrations
are preferred. For 0 < λ < 100 and a decreasing curve, the effective concentration
corresponding to an absolute response of (100 − λ)% viability is denoted by ECλ and
defined as the solution of

f (ECλ, φ) = 100 − λ.

It can only be calculated for λ ∈ (φ(c), φ(d)) or λ ∈ (φ(d), φ(c)), depending on the relation
between the asymptote values (Ritz et al., 2019, p. 174). In this work, for brevity when
considering absolute effective concentrations for several values of λ, they are referred to
as EC values.

Absolute and relative effective concentrations coincide in the case of upper and lower
asymptotes of 100% and 0%, respectively. In that case, the parameter φ(e) also corre-
sponds to the definition of the EC50 as given above.

For a 4pLL model, an absolute effective concentration is explicitly calculated using the
inverse of the model function f :

ECλ = exp
(
φ(e)∗)(φ(d) − (100 − λ)

(100 − λ) − φ(c)

)1/φ(b)

For the BC model, no such closed formula for calculating absolute effective concentra-
tions exists, these concentrations therefore need to be calculated numerically using an
optimisation algorithm. Confidence intervals for the EC values are obtained as for the
absolute lowest effective concentration, as explained in Chapter 4.3.2.

In the context of gene expression data, usually no fixed value for the upper or lower
asymptote of a modelling curve can be assumed and the range of the expression values
may differ vastly. Therefore, neither the concept of relative nor that of absolute effective
concentrations fits the requirements for an alert concentration perfectly. Instead, as
one solution, the absolute lowest effective concentration can be considered. Further
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details regarding this and other alert concentrations for gene expression data are given
in Chapter 4.3.

Further different alert concentrations exist, for example the benchmark dose method-
ology, where the lowest concentration with a noticeable effect compared to the normal
response is identified (Jensen et al., 2019). This and further alert concentrations are not
within the scope of this work and are therefore not considered further.

4.1.5. The MCP-Mod methodology

The Multiple Comparison Procedure and Modelling (MCP-Mod) approach is a two-
step approach for analysing concentration-response data and was originally developed
by Bretz et al. (2005) in the context of dose-finding studies in pharmaceutical drug
development. These studies typically have two goals, the first being the Proof of Concept
(PoC), in which it is shown that changes in the administered dose of a drug lead to the
desired change in the considered endpoint. If this PoC is shown, a dose-finding step
follows, in which a model is fitted to the data and some alert concentration is calculated
from this model (Bornkamp et al., 2009). MCP-Mod combines both steps into a single
procedure.

Several candidate models are assessed at once with the MCP-Mod procedure, forming the
set of candidate models. Using contrast tests, each model in this set of candidate models
is tested while adjusting for mulitplicity, more specifically while preserving the family-
wise error rate. A PoC is established if at least one of the models yields a significant
result. The final concentration-response profile and possible alert concentrations are
calculated using either the ‘best’ model in some way or an average of all models that
passed the PoC (Bornkamp et al., 2009). In the application considered in this thesis,
only the calculation of a p-value for a single model, namely the 4pLL model, is of interest.
Therefore, in the introduction of the MCP-Mod procedure, emphasis is put on the PoC
step and the modelling step is only explained shortly for completeness.

The MCP-Mod procedure is introduced here according to Bretz et al. (2005). As the
original applications are dose-finding studies for a Phase II clinical study, the notation
suggests the presence of different dose-levels instead of concentrations. However, Duda
(2019) shows that simultaneous application of the MCP-Mod methodology to a high-
dimensional concentration-gene expression dataset yields valid results.

Consider increasing dose levels d2 < . . . < dk of a compound and the negative control
denoted as d1. The number of replicates per dose level is given by ni, i = 1, . . . , k with
the total number of patients, or replicates in the application considered here, given by
N = n1 + . . . + nk. The dose-response relationship, with Yij denoting the response, is
then modelled as

Yij = μi + εij = f(di, θ) + εij , εij
iid∼ N (0, σ2),

with j = 1, . . . , ni denoting the number of the replicate within dose group i, and homoge-
nous variances σ2 > 0. θ denotes the vector of model parameters and μ = (μ1, . . . μk)
the vector of unknown means per dose.
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The first step of the MCP-Mod procedure is the MCP-step, in which the candidate
models from set M = {M1, . . . , MM } of pre-specified models are simultaneously assessed
using multiple contrast tests. A PoC is established for those models where the test yields
a significant result and they are further considered for modelling.

The equivalent model to the 4pLL model introduced before in the parametrisation of the
MCP-Mod approach is the sigmoid Emax (sigEmax) model (see Appendix A.4, where
equivalence of both models is shown). It is parametrised as introduced in formula (3).
This model and all other possible models describing the dose-response or concentration-
response relationship can be reformulated as

f(d, θ) = θ0 + θ1f0(d, θ0),

where θ0 is the location parameter, θ1 the scale parameter and f0(d, θ0) is the standard-
ized version of the model. In the case of a sigEmax model, this standardized model is
specifically given as

f0(d, θ0) =
dh

(EC50h + dh)
,

i.e. θ0 = E0 and θ1 = Emax.

In order to perform the contrast test, initial values for the paramter vector θ0 are re-
quired, further called guesstimates. In the originally intended application of this method,
namely dose-finding clinical studies of Phase II, prior knowledge of the dose-response be-
haviour based on biological properties or previous studies usually is available. Here, in
the application to gene expression data, the same guesstimates are used for all genes.

The optimal contrast test assesses the null hypothesis Hm
0 : cT

mμm = 0 versus the alterna-
tive hypotheses Hm

1 : cT
mμm �= 0, with m denoting the m-th model of the set of candidate

models with mean response vector μm = (μm1, . . . , μmk) and cm = (cm1, . . . , cmk)T the
vector of contrast coefficients with

∑k
i=1 cmi = 0.

A contrast for model m is calculated aiming at maximizing power under the assumption
that μ is the true model shape. Contrasts fulfilling this goal are given as

cmi ∝ ni(μ0
mi − μ̄0

m), i = 1, . . . , k,

where μ0
mi = f0

m(di, θ0
m) and μ̄0

m =
∑k

i=1 niμ
0
mi/n. A unique solution is then obtained by

standardisation, i.e. cm/||cm||, where ||cm|| =
(∑k

i=1 c2
mi

) 1
2 .

The test statistics Tm, m = 1, . . . , M for the optimal contrasts as above are given by

Tm =
∑k

i=1 cmiȲi

S
√∑k

i=1 c2
mi/ni

, m = 1, . . . , M.

Ȳi is the sample mean at dose di and S =
∑k

i=1
∑ni

j=1 (Yij−Ȳi)2/(N−k) denotes the mean
squared error. Under H0 and the distribution assumptions, the vector of test statistics
(T1, . . . , TM )T follows a central multivariate t-distribution with N −k degrees of freedom
and a correlation matrix R depending on sample sizes and the optimal contrast vectors.
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The maximum of the observed test statistics, tmax is compared to q1−α, where q1−α

is the equicoordinate (1 − α)-quantile of the corresponding multivariate t-distribution.
If tmax > q1−α, a dose-response signal is present in the data. The set of models with
established PoC is formed by all models with tm > q1−α The family-wise error rate is
strictly controlled at level α using this approach.

Modelling is only performed if at least one model passes the MCP-step and a PoC is
established. As in this thesis only the p-values obtained from the MCP-step are of
interest, the specifics of the model selection, model averaging and the modelling itself
are not explained here.

The MCP-Mod methodology is implemented in the R-package DoseFinding (Bornkamp,
2019).

4.2. Handling deviating control values

Here, four methods are proposed to deal with deviating control values when fitting a
concentration-response curve to the data. All methods are based on the family of log-
logistic models (see Chapter 4.1.2). Three of them pursue the goal to obtain a function
fitted to the data with an upper asymptote that corresponds to 100%. In the fourth
method, sometimes a maximum value is attained by the curve, and if this is the case,
this maximum value shall correspond to 100% instead of the upper asymptote. The
methods were first proposed in Kappenberg et al. (2020).

When applying these methods, it is assumed that data are available in raw format and
only normalised with respect to background correction, but unnormalised with respect
to the control values. The four methods and their acronyms used throughout this thesis
are:

• 4pLL

– In a first step, a 4pLL-model is fitted to the original data. The value of the
upper asymptote (usually φ(d) for decreasing curves) is extracted.

– All data points are normalised with respect to the value of the upper asymp-
tote.

– A new 4pLL model is fitted to the normalised data.

• 3pLL

– The data is normalised with respect to the mean response values of the con-
trols.

– A 3pLL model with a fixed value of 100% for the upper asymptote is fitted.

• No Ctrl

– In this method, all control values are omitted from the analysis.

– A 4pLL model is fitted to the original data without the controls. The value
of the upper asymptote (usually φ(d) for decreasing curves) is extracted.
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– All data points are normalised with respect to the value of the upper asymp-
tote.

– A new 4pLL model is fitted to the normalised data without the controls.

• BC

– A Brain-Cousens model is fitted to the original data.

– Depending on whether a hormesis effect can be observed, the data is nor-
malised with respect to the upper asymptote of the fit (if no hormesis effect
is present) or the maximal value of the fitted curve (if a hormesis effect is
present).

– A new Brain-Cousens model is fitted to the normalised data.

Additionally, the approaches are illustrated in Figure 4.1, where the steps of applying
all four methods to a fictional viability assay are shown. For 4pLL, No Ctrl and BC,
the respective left plot shows the initial fit to the unnormalised data. The controls are
omitted for No Ctrl. For BC, a hormesis effect can be observed. The respective values
of the upper asymptote or of the maximal value, that are used for normalisation, are
indicated in the plot. In the right plot, the final fit after normalisation of the data is
shown together with the respective values of the EC20. For 3pLL, only the single fit to
the already normalised data is shown.

In theory, the refit-step in the methods 4pLL, No Ctrl and BC would not be needed:
After normalising the data, only the values of the asymptotes φ(c) and φ(d) (and φ(f)

for BC) change according to the normalisation, while the values of the parameters φ(b)

and φ(e) remain unchanged. In practice, it was observed that this is not always the
case: Starting values of the fitting procedure are range-dependent (Ritz et al., 2015)
and therefore, due to numerical issues having to do with the choice of starting values,
slightly different results may be obtained.

BC is the only method that can model a non-monotonous concentration-response re-
lationship and is therefore mostly aimed at handling negatively deviating controls. In
these cases, response values for the lowest tested positive concentrations are larger than
the response values, which can be modelled by incorporating a hormesis effect into the
model. Instead of only finding a way to deal with deviating controls via some normali-
sation, this model actually incorporates the deviation into the model fit.

The other three models only allow monotonously decreasing curves. They differ in the
relevance of the control: No Ctrl completely omits the response values for the controls,
therefore they have no weight at all when modelling the data. Conversely, 3pLL first
normalises all data points with respect to the response values of the controls and then
takes the mean of the normalised responses of the controls, i.e. 100%, as the true value
of the upper asymptote. Therefore, the course of the fitted curve is crucially influenced
by the response values of the controls. In between these extremes, the 4pLL model
normalises the data with respect to an asymptote that is determined by the response
values of the controls and of other low concentrations. To some extent, a mean value
of the response values of the controls and the low concentrations is therefore used for
normalisation of the data and the controls are neither omitted nor relied upon entirely.
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BC: Fit a model to the original data
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Figure 4.1: Graphical illustration of the approaches in all four proposed methods of
dealing with deviating controls, with resulting estimates of the EC20.
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For the methods 4pLL, 3pLL and No Ctrl, a fit with an upper asymptote of 100% is
the result of the procedure. For BC, this is only the case if no hormesis effect is present,
otherwise instead the maximum value of the fitted curve corresponds to a response of
100% and the upper asymptote may take any value smaller than 100%.

4.3. Model-based and observation-based alert concentrations

For concentration-gene expression data, upper and lower limits of the fitted curves differ
from gene to gene. Considering an absolute response value that needs to be attained in
order to define an alert concentration is therefore not meaningful in this context. Instead,
an absolute change in gene expression with respect to the left asymptote is of interest:
The four methods presented in this chapter aim at determining a concentration where
the fold change (FC) between this concentration and the control exceeds a pre-specified
effect level λ > 0.

The methods are divided into two observation-based approaches, in which only the mea-
sured concentrations are potential alert concentrations, and two model-based approaches,
where any concentration may be the alert concentration. Additionally, a differentiation
in whether absolute or significant exceedance of the effect level λ is of interest is made.
The acronyms of the four methods indicate which type of exceedance is considered:
Both methods where only absolute exceedance is required contain the letter ‘A’ and
both observation-based methods contain the letter ‘O’.

The four methods are first described in detail, with most emphasis on the model-based
approach that takes significance into account (Chapter 4.3.3). Then these four methods
are summarised and the conditions needed to be fulfilled are compared and for easier
understanding, they are displayed visually.

4.3.1. (Absolute) lowest observed effective concentration: ALOEC and LOEC

The observation-based alert concentrations are called the ‘Absolute Lowest Observed
Effective Concentration’ (ALOEC) and the ‘Lowest Observed Effective Concentration’
(LOEC). They are introduced here according to Grinberg (2017) with the difference,
that significance testing is not conducted with the limma procedure as proposed there,
but using a t-test or the Dunnett procedure.

The ALOEC is the smallest of the observed concentrations, where the difference in
average gene expression between all samples for this concentration and the average gene
expression for the negative control samples exceeds the threshold λ. For an increasing
concentration-gene expression profile, this means that the FC needs to be larger than λ,
and for a decreasing profile, the FC needs to be smaller than −λ. No significance testing
is performed for this approach.

The LOEC additionally takes significance into account. Therefore, for increasing pro-
files, it is the smallest concentration where the difference in average gene expression
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between all samples for this concentration and the average gene expression for the neg-
ative controls samples significantly exceeds λ. Accordingly, for decreasing profiles, this
difference needs to be significantly smaller than −λ.

To test for significance, the easiest method is to perform a two-sample t-test for each
concentration, taking the different variances of both samples into account, also called
a Welch-test (Welch, 1947). Since several tests are performed, the problem of multiple
testing arises. Therefore, a potential alternative is the Dunnett procedure (see Chap-
ter 4.1.1), a methodology often used in the area of toxicology that adjusts for multiplicity.

In the general case, the direction of the gene expression profile (i.e. whether it is increas-
ing or decreasing) is not known. For both alert concentrations, a reasonable restriction
is to only calculate an alert concentration if the direction of the concentration gene-
expression profile is unambiguous: If for one concentration-gene expression profile both
a concentration where the difference to the control is (significantly) larger than λ and
a concentration where the difference is (significantly) smaller than −λ are found, no
(A)LOEC is reported for the respective gene.

For the LOEC, two tests are performed per concentration to test in both directions. Both
tests yield a p-value: The test assuming an increasing concentration-response pattern,
where significant exceedance of λ is tested, yields the p-value called pinc and the test
assuming a decreasing concentration-response pattern yields pdec. The final p-value is
then calculated by 2 · min(pinc, pdec).

4.3.2. Absolute lowest effective concentration: ALEC

The ‘Absolute Lowest Effective Concentration’ (ALEC) is a measure for the toxicity
of a test compound that depends on a regression function y = f(x, φ) fitted to the
concentration-response data. For such a model function, the ALEC is defined as the
concentration x where the fitted curve f(x, φ) attains a pre-specified effect level γ, i.e.
f(ALEC, φ) = γ (Jiang, 2013).

In the situation considered here, where the regression function is given by the 4pLL
function, the ALEC is directly estimated from the inverse function by defining the func-
tion h(φ) as the inverse of the model function f . This is analogous to calculating an
absolute effective concentration. Accordingly, the ALEC can only be calculated for an
effect level γ that lies within the range of lower and upper asymptote of the function.

h(φ̂) := h(φ̂, γ) := ÂLEC = f−1
(
γ, φ̂

)
= φ̂(e)

(
φ̂(d) − γ

γ − φ̂(c)

)1/φ̂(b)

(7)

In the context of gene expression data as response value, upper and lower asymptotes
of the fitted 4pLL curve differ from gene to gene. Therefore, no absolute value of the
threshold can be specified in advance. Instead, the threshold of interest is composed of
the value of the left asymptote of the curve, f0 := f̂(0, φ̂) and the value λ that needs to
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be exceeded in comparison to the asymptote. Again, a differentiation into increasing and
decreasing profiles is required: For increasing profiles, the threshold γ is then defined by
γ = f0 + λ and for decreasing profiles by γ = f0 − λ. As only one of these values lies
within the range of lower and upper asymptote of the fitted function, calculation of the
ALEC is straightforward using the inverse formula.

To quantify uncertainties, Jiang (2013) derived several methods to calculate confidence
intervals of the ALEC. One approach is to use the delta method (Vaart, 1998, p. 25) to
approximate the variance of h(φ), yielding

Var[h(φ)] ≈ ∇h(φ)�Σ∇h(φ), (8)

with Σ denoting the covariance matrix of the parameter vector φ and ∇h(φ) the gradient
of h with respect to the parameter vector φ:

∇h(φ) =
(

∂h(φ)
∂φ(b) , ∂h(φ)

∂φ(c) , ∂h(φ)
∂φ(d) , ∂h(φ)

∂φ(e)

)�

= h(φ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
φ(b) log

(
φ(d)−γ
γ−φ(c)

)
1

φ(b)(γ−φ(c))
1

φ(b)(φ(d)−γ)
1

φ(e)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
See Jiang (2013) and Grinberg (2017) for a detailed derivation. By plugging in the
estimated parameter vector φ̂ and the estimated covariance matrix Σ̂ into formulas (7)
and (8), the estimated value ÂLEC with corresponding variance v̂ar[ÂLEC] are obtained
(Jiang, 2013).

The (1 − α)100% confidence interval for the ALEC is then given by

ÂLEC ± t(1−α/2),ν

√
v̂ar[ÂLEC],

with t(1−α/2),ν being the (1 − α/2)-quantile of a t-distribution with ν degrees of freedom.
In the case of a 4pLL model, ν = n − 4 with n denoting the number of data points.

A problem with this method is that lower confidence limits may attain negative values.
As the ALEC is a concentration and can therefore only take positive values, this can lead
to implausible results and a method for determining the confidence interval for the ALEC
based on the variance on the logarithm of the ALEC may therefore be more appropriate.
Again, the delta method is used for approximating the variance of log(ALEC). Then, a
(1−α)100% confidence interval CI for the ALEC can be obtained by back transformation
(Jiang, 2013):
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log(ALEC) = log(h(φ)) = log(φ(e)) +
1

φ(b) log
(

φ(d) − γ

γ − φ(c)

)

Var[log(h(φ))] ≈ ∇ log(h(φ))�Σ∇ log(h(φ))

CI = exp
(

log(ÂLEC) ± t(1−α/2),ν

√
v̂ar[log(ÂLEC)]

)

Further methods, such as the profile likelihood method or different Bootstrap approaches,
are compared to the two methods introduced above in a simulation study in Jiang (2013).
Results show that Bootstrap-based confidence intervals have a low coverage probability
and are therefore not an appropriate approach for determining confidence intervals.
Both delta-method based intervals performed almost identically and sufficiently good.
So although the profile likelihood method performed better especially in situations with
missing concentrations in the lower range of the curve, in this work, for simplicity,
calculation of the confidence interval for the ALEC is based on the logarithmic confidence
interval based on the delta method.

4.3.3. Lowest effective concentration: LEC

The model-based approach that additionally takes significance into account yields the
‘Lowest Effective Concentration’ (LEC) as alert concentration. In order to determine
this concentration, a test procedure is required to assess whether the difference of func-
tion values of a fitted curve f(·, φ) for a concentration x and the concentration 0 signifi-
cantly exceeds a pre-specified threshold λ. This test is first introduced in a general form
where the difference of function values for any two concentrations x1 > 0 and x2 > 0
are considered, and then applied to the special case of finding the LEC. A bisection
algorithm from Grinberg (2017) is presented, which is a search algorithm to actually
determine the LEC making use of the newly introduced test statistic. The new test
statistic is published in Kappenberg et al. (2021) and is based on a first version of this
test from Grinberg (2017).

In the general case, for two concentrations x1 and x2 with x1 ≥ 0, x2 ≥ 0, and x1 �= x2,
and f(·, φ) a 4pLL modell with parameter vector φ, the hypotheses of interest are given
by

H0 : f(x1, φ) = f(x2, φ),

H1 : f(x1, φ) �= f(x2, φ).

The observed test statistic is formulated as

t4pLL := t4pLL(x1, x2, φ̂) =
f̂
(
x1, φ̂

)
− f̂

(
x2, φ̂

)
√

v̂ar
[
f̂
(
x1, φ̂

)
− f̂

(
x2, φ̂

)] . (9)
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The variance term in (9) can be re-written as

Var
[
f̂
(
x1, φ̂

)
− f̂

(
x2, φ̂

)]
= Var

[
f̂(x1, φ̂)

]
+ Var

[
f̂(x2, φ̂)

]
− 2 · Cov

[
f̂(x1, φ̂), f̂(x2, φ̂)

]
.

As f̂(x1, φ̂) and f̂(x2, φ̂) are highly correlated, the covariance term in calculating the
variance of the difference does not vanish and needs to be taken into account. Using the
delta rule, the variance term in (9) is approximated as follows:

Var
[
f̂
(
x1, φ̂

)
− f̂

(
x2, φ̂

)]
= Var

[
f̂(x1, φ̂)

]
+ Var

[
f̂(x2, φ̂)

]
− 2 · Cov

[
f̂(x1, φ̂), f̂(x2, φ̂)

]
≈ ∇f̂(x1, φ̂)TΣ∇f̂(x1, φ̂) + ∇f̂(x2, φ̂)TΣ∇f̂(x2, φ̂)

− 2 · ∇f̂(x1, φ̂)TΣ∇f̂(x2, φ̂) (10)

Σ denotes the covariance matrix of the parameters and ∇f(x, φ) denotes the gradient of
f with respect to the parameter vector φ, see Grinberg (2017) for a detailed derivation:

∇f(x, φ) =
(

∂f(x,φ)
∂φ(b) , ∂f(x,φ)

∂φ(c) , ∂f(x,φ)
∂φ(d) , ∂f(x,φ)

∂φ(e)

)�

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(φ(d)−φ(c))

(
log

(
x

φ(e)

))(
x

φ(e)

)φ(b)

[
1+

(
x

φ(e)

)φ(b)]2

1 −
⎡⎢⎣ 1

1+
(

x

φ(e)

)φ(b)

⎤⎥⎦
1

1+
(

x

φ(e)

)φ(b)

φ(b)(φ(d)−φ(c))
(

x

φ(e)

)φ(b)

φ(e)

[
1+

(
x

φ(e)

)φ(b)]2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Under the null hypothesis, it asymptotically holds that the test statistic is normally
distributed with mean 0 and variance 1. Therefore the null hypothesis is rejected at
level α if the observed value t4pLL exceeds z1−α/2 or is smaller than zα/2. zq denotes the
q-quantile of the standard normal distribution.

When applying this test to the situation where the goal is to find the LEC as alert
concentration, only one concentration x > 0 is considered in comparison to the concen-
tration 0. Two null hypotheses are formulated, for an increasing and for a decreasing
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concentration-gene expression profile. For a pre-defined threshold λ > 0 they are as
follows:

H0 : f(x, φ) − f(0, φ) ≤ λ for an increasing curve (11)
H0 : f(x, φ) − f(0, φ) ≥ −λ for a decreasing curve (12)

If for the gene of interest the direction of the curve is known beforehand from the bio-
logical background, only the respective hypothesis needs to be tested. The assumptions
regarding the distribution of the two test statistics presented below remain the same as
in the general case.

The test statistic for an increasing curve is given by

t4pLL; inc := t4pLL; inc(x, φ̂, λ) =
f̂(x, φ̂) −

(
f̂(0, φ̂) + λ

)
√

v̂ar[f̂(x, φ̂) − f̂(0, φ̂)]
.

The corresponding p-value is calculated as 1 − Φ(t4pLL; inc) with Φ denoting the distri-
bution function of the standard normal distribution.

The test statistic for a decreasing curve is analogously given by

t4pLL; dec := t4pLL; dec(x, φ̂, λ) =
f̂(x, φ̂) −

(
f̂(0, φ̂) − λ

)
√

v̂ar[f̂(x, φ̂) − f̂(0, φ̂)]

with corresponding p-value calculated as Φ(t4pLL; dec).

Since in general, the direction of the curve is not known in advance, both test statistics
are calculated independently and their respective p-values are determined. A two-sided
p-value is then calculated as

2 · min (1 − Φ(t4pLL; inc), Φ(t4pLL; dec)) . (13)

In the special case considered for finding the LEC, for φ(b) > 0 the left asymptote is
given by φ(d), and for φ(b) < 0 the left asymptote is given by φ(c). The corresponding
values of the gradient ∇f(0, φ) simplify to

∇f(0, φ) = (0, 0, 1, 0)� for φ(b) > 0,

∇f(0, φ) = (0, 1, 0, 0)� for φ(b) < 0.

This means that in the limit of x → 0, only parameter φ(c) or φ(d), respectively, has an
influence on the function value. The exact calculation is given in Appendix A.5. The
second summand in the variance term (10) therefore simplifies to Σ33 for φ(b) > 0 and to
Σ22 for φ(b) < 0. Diagonal entries of the covariance matrix Σ correspond to the squared
standard error of the estimated coefficients φ, i.e. Σ̂22 = ŝe(φ̂(c))2 and Σ̂33 = ŝe(φ̂(d))2.

A search algorithm is required to find the LEC as the smallest concentration x > 0 in
the tested concentration range where testing any or both hypotheses (11) and (12) yields
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a significant result. A significant result is identified by a p-value smaller than α = 0.05.
In the data example considered here, the tested concentration range goes from 0 μM to
1000 μM. The search algorithm presented here is a version of a bisection algorithm and
was published by Grinberg (2017).

As a first step, a p-value as in (13) is calculated for the highest concentration in the
range of considered concentrations and compared to the prespecified significance level α.
Since the 4pLL curve that is the basis for this alert concentration is monotonously
increasing or decreasing, this test result already determines whether the LEC exists: If
this test for exceedance of the effect level λ does not yield a significant result even for the
highest concentration, no LEC can be determined. Otherwise, the bisection algorithm
is conducted.

The first interval is limited by the lowest and highest concentration considered. The first
concentration considered is the mean concentration of this interval. A p-value as in (13)
is calculated and compared to α. If the p-value is smaller than α, then the concentration
considered is not the smallest concentration fulfilling the criteria for the LEC, therefore
the parameter space is restricted to the lower half of the considered interval. In the
other case, where the p-value is larger than α, significant exceedance of the threshold
is only achieved for higher concentrations and the parameter space is restricted to the
upper half of the interval.

This procedure of conducting the 4pLL model based test for the respective mean of the
considered interval is repeated until the length of the remaining interval is smaller than
a small pre-specified threshold ε > 0. The last concentration for which the test was
conducted is then taken as the LEC.

4.3.4. Summary of all four alert concentrations

To give a definitive overview how the four alert concentrations introduced in the previ-
ous sections differ from each other and how they are referred to throughout this thesis,
the four methods are summarised in Table 4.1. The letter ‘O’ in the names ALOEC

Table 4.1: Comparison of the four methods for estimating alert concentrations from
concentration-gene expression data. The cutoff critera that either a foldchange value
is exceeded (FC) or that additionally it is significantly exceeded (FC & p-value) are
indicated in the rows. The columns indicate the methods for estimating fold changes,
either using a t-test / the Dunnett procedure or a 4pLL model.

Observation-based Model-based
t-test / Dunnett 4pLL

FC ALOEC ALEC
FC & p-value LOEC LEC
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Figure 4.2: Hypothetical example illustrating the four different alert concentrations for
concentration gene-expression data.

and LOEC indicates that in comparison to ALEC and LEC, only the observed concen-
trations are potential alert concentrations. The letter ‘A’ in the names ALOEC and
ALEC indicates that in comparison to LOEC and LEC, only absolute exceedance of the
threshold without assessing the significance is required.

The four methods are finally visualised in Figure 4.2. In this plot, a hypothetical ex-
ample of concentration-response data is visualised in two ways: Left, concentration-wise
means of the response are depicted in a barplot and additionally, the standard deviation
is indicated. The response value for the control is denoted as f0, therefore the concen-
trations are of interest, where f0 + λ is absolutely and significantly exceeded, yielding
the ALOEC and the LOEC respectively, as indicated.

On the right side, a 4pLL model is fitted to the data. Denoting the value of the lower
asymptote by f0, the ALEC is the concentration where the curve attains the value of
f0 + λ. The display of the LEC is to be understood rather heuristically: While the plot
shows a confidence interval for a concentration x that completely lies above the response
given by f0 + λ, in the test statistics introduced in the previous chapter the variance of
the difference between the function evaluated at concentration x and at concentration 0
is of interest.

4.4. Information sharing across genes

Two methods are presented, how information are shared across genes in order to improve
the estimation of the parameter φ(e)∗. This improvement is assessed with respect to the
difference to the true underlying parameter in a simulation situation and with respect
to the coverage probabilities of the associated confidence intervals.

The first method is the concept of meta-analyses, that is introduced in the general case
and in the specific application of concentration-response curves in Chapter 4.4.2. The
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second method is an empirical Bayes approach, where parameters are shrunk based on a
normal-normal model. This approach is introduced together with the basics of Bayesian
statistics in Chapter 4.4.3. All methods again are based on the assumption of a sigmoidal
relationship between concentration and gene expression that can be modelled by a 4pLL
model.

Both methods are evaluated by simulation studies in different scenarios. Regarding the
performance of the methods, biological structures represented in relationships between
the four parameters of the 4pLL model play a major part. Therefore, a fully theoretical
simulation study may miss out on important observations and is an unsuitable basis
for giving recommendations about the best approach to share information across genes.
Instead, a simulation study based on real data is conducted. This approach is called
plasmode and is introduced in the following Chapter 4.4.1.

4.4.1. Plasmode simulation study

The basic idea of using plasmode data is to base the simulation study on a real data
situation while at the same time manipulating the data in a way that true effects are
known. Vaughan et al. (2009) define a plasmode dataset by stating three conditions that
need to be fulfilled: The dataset needs to be “the result of a real biological process”,
instead of being simulated by a computer only and is modified or constructed in a way
that “at least some aspect of the ‘truth’ of the data generating process is known” (both
from Vaughan et al., 2009).

In this work, the analyses regarding the information sharing across genes are performed
based on the VPA gene expression dataset introduced in detail in Chapter 3.2.2. For the
plasmode simulation studies, a subset of probe sets from this dataset is selected. The
values from an initial fit of the 4pLL model are considered as true underlying values. That
way, relationships between the values of the parameters are retained. Based on these
parameters, new concentration-response data are simulated. The methods introduced
in the following chapters are then evaluated on these data, leading to results applicable
to actual data and not only to theoretic situations. The simulation studies constructed
based on this idea are each introduced in more detail in Chapters 7.3 and 7.4.

4.4.2. Summarising parameters using meta-analysis

A meta-analysis is a statistical procedure often applied in the context of clinical studies
that allows the combination of several studies that are aimed at answering the same
question, thus yielding a pooled estimate with a narrower confidence interval. There are
several approaches possible to combine the data, e.g. via p-values or via the effect of
interest. The latter version is considered in this work, where the effect of interest is the
parameter φ(e), or φ(e)∗.

In the general case, let θ̂i for i = 1, . . . , k be the estimated effect of the i-th experiment,
usually the i-th study considered. The basic assumption is the normality of θi, i.e.
θi ∼ N (θ, τ2 + σ2

i ), with θ denoting the true underlying mean, τ2 denoting the true
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variance between experiments and σ2
i the true variance within the experiment (Hartung

and Knapp, 2001b).

A distinction is made between the case in which τ2 = 0, i.e. the experiments are homo-
geneous, and the case in which τ2 > 0, i.e. there is additional heterogeneity between
the experiments. The first case is called fixed effects model and the second case random
effects model (Hartung and Knapp, 2001b).

The estimation of the parameter θ is based on a weighted mean of the single estimates
θ̂i, where the weights depend on estimates σ̂2

i and, in the random effects model only,
on τ̂2

i . A variety of methods for estimating τ2 exist. The estimator by DerSimonian
and Laird (1986) is used in this work and is explained later explicitly in the context
considered here. The application of the general meta-analysis to the specific situation
of summarising parameters from a 4pLL model is presented according to Jiang and
Kopp-Schneider (2014). Specifically, summarising parameters φ(e) estimated from several
curves is introduced there.

Consider the situations with k datasets with concentration-response data to each of which
a 4pLL model is fitted. The estimate of φ(e) obtained by each of the models is denoted
by φ

(e)
i for i = 1, . . . , k. Jiang and Kopp-Schneider (2014) propose the use of a random-

effects model in order to explain both the sampling variance and the heterogeneity
between the experiments leading to the different datasets. Under the assumption of
independence for a set φ

(e)
i , i = 1, . . . , k of estimates, the model is formulated as

φ
(e)
i = θi + εi = μ + μi + εi, (14)

with θi denoting the true value of the parameter φ(e) in the i-th experiment and εi de-
noting the normally distributed, heteroscedastic sampling error εi ∼ N (0, σ2

i ). μ denotes
the true average of the estimates and μi is the random-effect term that represents the
deviation of θi from the true value μ. It is assumed that μi ∼ N (0, τ2), i.e. the unex-
plained variability of θi is purely random. τ2 is the variance indicating the variability of
the true estimates.

Under the assumption of independence of μi and εi, it holds φ
(e)
i ∼ N (μ, τ2 + σ2

i ).
The goal of the meta-analysis is the estimation of μ and the standard error se(μ) in
model (14), leading to a pooled estimate of parameter φ(e). The estimation of μ is
conducted using a weighted least squares estimator. The meta-analysis model (14) is
rewritten as

φ
(e)
i = μ + ε∗

i , (15)

with ε∗
i ∼ N (0, τ2 + σ2

i ). Weights wi are defined as wi = 1/(τ2+σ2
i ), where σ2

i is the
squared estimated standard error of φ(e). The best linear unbiased estimator for μ in
model (15) is then given by

μ̂ =
∑k

i=1 ŵiφ
(e)
i∑k

i=1 ŵi

, (16)

with Var[μ̂] = 1/
∑k

i=1 ŵiφ
(e)
i , with ŵi denoting the estimate of wi (Jiang and Kopp-

Schneider, 2014).
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As the weight wi is dependent on the unknown parameter τ2, a two-step approach is
required for estimation of μ in formula (15), where in the first step, τ2 is estimated and
then based on this estimate, the value of μ is estimated by μ̂. Jiang and Kopp-Schneider
(2014) propose several variants to estimate τ2, while in this work only the version by

DerSimonian and Laird (1986) is considered. Let mi = 1/σ̂2
i and φ(e)

m =
∑k

i=1 miφ
(e)
i∑k

i=1 mi

.

The proposed estimate of τ2 in model (15) is given by

τ̂2 = max

⎧⎪⎨⎪⎩0,

∑k
i=1 mi

(
φ

(e)
i − φ(e)

m

)2 − (k − 1)∑k
i=1 mi − ∑k

i=1 mi
2/
∑k

i=1 mi

⎫⎪⎬⎪⎭ . (17)

Jiang and Kopp-Schneider (2014) propose four variants of calculating confidence intervals
for the estimate μ̂. The first three take the classic form μ̂ ± q1−α/2ŝe(μ̂), where α is the
pre-specified effect level and q1−α/2 the upper α/2-quantile of some distribution that is
specified later. The standard error of μ̂ is estimated by ŝe(μ̂) =

√
1∑k

i=1 ŵi

.

Under the assumption of asymptotic normality for μ̂, the choice of q1−α/2 as z1−α/2,
i.e. the upper α/2-quantile of the standard normal distribution yields an approximate
100(1 − α)% confidence interval. The coverage probability may be improved using a
t-distribution instead, as the assumption of asymptotic normality may not be fulfilled
for a small number k of experiments and additionally, uncertainty in the estimation of
τ2 may affect the estimation of ŝe(μ̂), as this depends on τ2 via ŵi. Therefore, for the
second and the third variant, choosing t-distributions with k − 1 and k − 2 degrees of
freedom, respectively, is proposed (Jiang and Kopp-Schneider, 2014).

The fourth variant is based on a modified Wald statistic proposed by Hartung and Knapp
(2001a,b), where the corresponding 100(1 − α)% confidence interval is calculated as

μ̂ ± tk−1,1−α/2

√√√√√∑k
i=1 ŵi

(
φ

(e)
i − μ̂

)2

(k − 1)
∑k

i=1 ŵi

,

with tk−1,1−α/2 denoting the upper α/2-quantile of the t-distribution with k − 1 degrees
of freedom (Jiang and Kopp-Schneider, 2014).

All four variants are compared in different simulation scenarios by Jiang and Kopp-
Schneider (2014). The results show that the confidence interval based on the normal
distribution performs worst in terms of coverage probability and the fourth variant,
which is based on the modified Wald statistic, performs best.

Although the meta-analysis is presented here for the parameter φ(e) itself, it is applied to
φ(e)∗ in this work, as for the size of the dataset considered, the assumption of normality
is rather fulfilled for this re-parametrised variant.
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4.4.3. Shrinkage of parameters using an empirical Bayes method

Before the shrinkage of parameters itself is explained, a short introduction into Bayesian
statistics is given. Specifically, the concept of empirical Bayes statistics is introduced,
where prior distributions are estimated from the observed data itself. Main emphasis
is put on the normal-normal model, which is used throughout the analyses. The ap-
plication of these methods to the situation considered in this work, where shrinkage of
the parameter φ(e)∗ = log(φ(e)) is of interest, is explained in detail. As in one of the
simulation studies presented in this work, normalised values of the parameter φ(e)∗ are
examined, the concept of quantile normalisation is explained as well.

The fundament of Bayesian statistics is Bayes’ theorem. Let A and B be two different
events with P[B] > 0. Then Bayes’ theorem states

P[A|B] =
P[B|A]P[A]

P[B]
,

where P[A|B] and P[B|A] denote the conditional probability of A, given that B is true
and vice versa. This theorem allows calculation of the probability of an event given an
other event, when among other the probability of the reverse condition is known.

In the context of Bayesian inference, let X = (X1, . . . , Xn), n ∈ N be the random vari-
able leading to observations (x1, . . . , xn). The density function f(X, θ), called like-
lihood function, depends on the fixed, but unknown value of the parameter vector
θ = (θ1, . . . , θp), p ∈ N. The goal of Bayesian inference is the estimation of the pa-
rameter vector θ that is considered to be a random variable. The specification of a prior
distribution π(θ) is required in order to be able to apply Bayes’ rule (Reich and Ghosh,
2019, p. 21).

Under the assumptions described above, a posterior distribution of θ, conditional on X
is given by

p(θ|X) =
f(X|θ)π(θ)∫
f(X|θ)π(θ)dθ

∝ f(X|θ)π(θ), (18)

i.e. the posterior distribution is proportional to the product of likelihood function and
prior distribution (Reich and Ghosh, 2019, p. 21).

The intuition is that first, the prior distribution captures uncertainty about the param-
eters before any data is observed. In formula (18), the posterior distribution captures
uncertainty that remains after both accounting for the acutal observed data and the
prior knowledge (Reich and Ghosh, 2019, p. 21).

To describe uncertainty of the estimated posterior parameter, in the context of Bayes
statistics, credible intervals are calculated. A (1−α)100% credible interval is any interval
(l, u) with the property that P[l < θ < u|X] = 1 − α. Infinitely many such intervals can
be calculated from a given posterior distribution. The easiest way, which is also employed
in this work, is to set l = zα/2 and u = z1−α/2, with zq denoting the q%-quantile of the
posterior distribution. Regarding the interpretation of a credible interval, for a given
prior and the observed data, the (1−α)100% credible interval (l, u) covers the true value
of the parameter θ with a probability of (1 − α)100% (Reich and Ghosh, 2019, p. 26).
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One important step in Bayesian analyses is the choice of a prior distribution. Depending
on this distribution, more or less weight is put on the prior or on the observed data. If
knowledge about the parameters, e.g. from previous experiments, is present, the prior
should reflect this knowledge. If, however, no such knowledge is available, then the prior
should be uninformative, e.g. by choosing a prior that has a uniform distribution. Addi-
tionally, the functional form of the prior influences the functional form of the resulting
posterior distribution.

In this work, an empirical prior is chosen. This is a prior that makes use of the data to
estimate the actual prior distribution, e.g. by plugging in estimated parameters from the
dataset to the specific functional form of a distribution. Despite the problem with this
approach, where the data is considered twice in estimating the posterior distribution,
this is a useful approach especially for high-dimensional data sets as considered here
(Reich and Ghosh, 2019, pp. 62-63).

Certain combinations of likelihood functions and prior distributions lead to closed forms
of the posterior distributions that can be analytically calculated and do not need to be
simulated. A pair of prior distribution and likelihood function is called conjugate, if prior
and resulting posterior distribution stem from the same family of distributions (Reich
and Ghosh, 2019, p. 42). One specific example of such a conjugate pair of prior and
likelihood function, the normal-normal model, is used in this work.

Let X|θ ∼ N (θ, σ2) with the prior distribution π(θ) given by θ ∼ N (μ, τ2). Denote by
x ∈ R the observed value of X. Then the posterior distribution p(θ|x) from equation (18)
is given by

θ|x ∼ N
(

τ2x + σ2μ

τ2 + σ2 ,
τ2σ2

τ2 + σ2

)
, (19)

see Appendix A.6 for a detailed calculation.

In the specific application considered here, the parameter φ(e)∗ is assumed to be normally
distributed with mean θ and variance σ2. A large number n of genes is considered
simultaneously, yielding estimates φ̂(e)∗

1, . . . , φ̂(e)∗
n, based on which the parameters μ and

τ2 of the prior distribution are calculated.

The first possibility to estimate these parameters is to use the maximum-likelihood
estimation

μ̂ML = m̂ean(φ̂(e)∗
i ) and τ̂2

ML = v̂ar(φ̂(e)∗
i ).

The second possibility is to use robust measures

μ̂rob = m̂edian(φ̂(e)∗
i ) and τ̂2

rob = (1.4826 · M̂AD(φ̂(e)∗
i ))2.

MAD denotes the median absolute deviation, and multiplication with the factor 1.4826
ensures consistency for normally distributed data, i.e. convergence to the true variance
for increasing sample sizes. The parameter σ2 is individually estimated for each gene as
the squared standard error of φ(e)∗, calculated as presented in equation (6).

To ensure that the normality assumption for φ(e)∗ holds, one simulation scenario is con-
sidered where the distribution of this parameter for the set of genes considered is made
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equal to a normal distribution. Specifically, this means that the original data are manip-
ulated to form the normalised dataset with normally distributed values of φ(e)∗. This is
achieved by applying quantile normalisation, a procedure that was originally developed
for the normalisation of gene expression data (Bolstad et al., 2003). A quantile-quantile-
plot (qq-plot) is considered, in which sample quantiles and theoretical quantiles of the
normal distribution are plotted against each other.

Specifically, quantile normalisation for a set of observations of φ(e)∗ is conducted by
calculating the theoretical quantiles in a qq-plot corresponding to the sample quantiles.
Then the values of the sample quantiles are set to the respective values of the theoretical
quantiles, yielding values that follow a standard normal distribution. Multiplying with
the standard distribution of the originally observed set of φ(e)∗ and adding the mean
value finally yields a dataset that follows a normal distribution with the same mean and
standard deviation as the originally observed sample.

4.5. Software

All analyses in this thesis are conducted using the statistical programming software R (R
Core Team, 2020), version 4.0.0. For curve-fitting and the calculation of p-values based
on the MCP-Mod approach, the packages drc (Ritz et al., 2015) and DoseFinding
(Bornkamp, 2019) are used. The Dunnett procedure is conducted using the function
glht from the multcomp-package (Hothorn et al., 2008). GO groups are calculated
using the package topGO (Alexa and Rahnenführer, 2020), and meta-analyses are con-
ducted using the package metafor (Viechtbauer, 2010). Plots are created using basic
R-functions and the package ggplot2 (Wickham, 2016), making use of the package
gridExtra (Auguie, 2017).
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5. Handling deviating control values

In the context of deviating control values for cytotoxicity data, first the results from
a literature review aiming at giving an overview of the extent of the problem in real
published data are presented in Chapter 5.1. Four approaches for handling deviating
controls, called 4pLL, 3pLL, No Ctrl, and BC, are introduced in Chapter 4.2. These
methods are compared in a controlled simulation study that is based on several scenar-
ios regarding the choice of concentrations considered. Additionally, different standard
deviations of the replicates and deviations of the controls are assumed. The setup of the
simulation study is presented in Chapter 5.2 and results from the simulation study are
shown in Chapter 5.3. Specific recommendations, which method to use in which situa-
tion, are derived from the results and explicitly stated in Chapter 5.4. Finally, the four
methods compared in the simulation study are applied to a real cytotoxicity dataset.
The results are shown in Chapter 5.5.

Most results for the literature review, the simulation study and the real data study pre-
sented here are published in Kappenberg et al. (2020). Especially the recommendations
are clearly expressed there. Results from Kappenberg et al. (2020) are extended by
several aspects in this work: The literature review is analysed in more detail. In the
simulation studies, additional simulation scenarios and an additional alert concentration
are considered. Furthermore, an additional real cytotoxicity dataset is evaluated, and
all analyses regarding real datasets are performed in more detail.

Many of the plots shown in this chapter are also already published in Kappenberg et al.
(2020) and are only slightly adjusted regarding notation or the division into different
figures. The Figures already published in the same or a similar form are: Figures 5.1
to 5.10, 5.12, B.5 to B.7, B.20 to B.22, B.32, and B.33.

5.1. Literature review

A literature review was conducted to investigate the frequency and the extent of the prob-
lem of deviating controls2. Three leading international toxicological journals, namely
‘Archives of Toxicology’ (ArchTox, all issues from 2016 to 2018), ‘Toxicological Sciences’
(ToxSci, all issues from 2017 to 2018) and ‘Toxicology in Vitro’ (ToxVitro, all issues
from 2015 to 2017) were chosen as the basis of the review. The goal of the review was
to answer the following two questions:

• How often does the problem of deviating controls occur?

• How strong are the deviations in these cases?

Additionally, further information about published and modelled concentration-response
data was collected, including information about the number of concentrations, the order
of magnitude of the standard deviations for each concentration, and about the chosen

2The literature review was conducted by W. Albrecht, T. Brecklinghaus and J. Blum, co-authors of
Kappenberg et al. (2020).
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models fitted to the data. The research was restricted to viability assays, where via-
bility was defined in a broad sense including (mostly mitochondrial) activity, motility,
contraction, or mitotic activity.

A set of necessary criteria was defined for curves resulting from these assays to be
included in the analysis set. These criteria are:

• A concentration-response model is fitted to the data.

• Measurements for a negative control are available.

• Measurements for at least four positive concentrations (i.e. additional to the con-
trol) are available.

• When neglecting the control, the response values are monotonously decreasing with
increasing concentration.

• For at least two of the concentrations other than control, no effect can be observed,
i.e. the difference between the corresponding response values is smaller than 10%
of the response value for the lowest concentration.

• For every concentration, at least three replicate values are available, regardless of
whether these are technical or biological replicates.

For curves fulfilling these criteria, the average values of the controls and the value of an
upper asymptote when omitting the controls were both looked up in the corresponding
publication or estimated from the plots. Deviation of the controls was calculated in
percent based on a value of 100% for the asymptote. Let Control be the average of all
individual control values and Fit be the value of the upper asymptote for very small
concentrations when omitting the controls. Then the deviation Δ is calculated by

Δ =
Control − Fit

Fit
· 100. (20)

Additional information collected for each curve includes the response values and the
standard deviation of the replicates for each concentration, as well as the number of
replicates and the type of model fitted to the data. The standard deviation was deter-
mined by estimating the values from the plotted data. For response values measured in
percent values, if a standard deviation is smaller than 1, the value is set to 1. An average
standard deviation for an entire curve is calculated as the median of the standard devi-
ations for all concentrations except the control and is denoted by σ̂med. If a standard
error is plotted instead of a standard deviation, the standard deviation is calculated by
multiplying the standard error with the square root of the number of replicates. For some
curves, it is not explicitly stated in the paper whether standard deviations or standard
errors are used as measure of dispersion. These curves are still analysed regarding the
deviation of the controls, but omitted from analyses regarding the standard deviation of
the concentration-wise response values.

In total, 2199 papers were reviewed. Table 5.1 summarises key figures of the literature
review: The total number of papers published in the respective timespan per journal is
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indicated as well as the number of papers in which modelled curves of concentration-
response data are presented. This is followed by the number of papers with at least one
curve fulfilling the criteria. The total number of curves in the respective journal and
the number of curves fulfilling the criteria are indicated as well as the number of curves
for which it is explicitly stated whether the standard deviation or the standard error is
plotted in the respective figure.

Even when adjusting for the shorter time period considered, the fewest papers with
curves were found in ToxSci and the most in ToxVitro. The most curves in total were
observed for ArchTox with 440 curves fulfilling the criteria, but only 266 come with an
explicit statement about the measure of dispersion. The number of curves per paper is
in the range from 1 to 204, with 8 papers containing only one curve. The median value
of curves per paper fulfilling all criteria is 6 and the mean value is 17.04, with standard
deviation 33.31. The three papers with the most curves fulfilling all criteria contain 204,
91, and 57 such curves.

All curves considered have in common that the response values of the controls are nor-
malised to correspond to a response of 100%. The only exception is given by curves from
Gu et al. (2018, ArchTox), where the 4pLL method as explained in Chapter 4.2 was
applied in the curve fitting procedure. Thus, the values of the asymptote are guaranteed
to attain 100% and the controls are normalised accordingly.

Results from the literature review do not allow a precise analysis regarding the choice of
models in published literature. From observation of the plotted curves, it becomes clear
that models yielding non-linear sigmoidal curves are the most popular choice. However,
in many publications a clear statement regarding the chosen model is missing, and only
the software used for model fitting is stated. Often, this software is GraphPad Prism
(GraphPad Software) in various versions, which allows fitting of several different models.
Among the clear statements regarding the choice of models, the family of log-logistic
models occurs most frequently. Specifically, the 4pLL model or a constraint version, in

Table 5.1: Key figures of the literature review summarising the total number of papers
in the respective timespans for the three journals considered. Additionally, the number
of papers and curves fulfilling different criteria are stated.

ArchTox
(2016 - 2018)

ToxSci
(2017 - 2018)

ToxVitro
(2015 - 2017)

Total number of papers 810 592 797
Number of papers with curves 31 7 37
Number of papers with at least 15 6 26
one curve fulfilling the criteria
Number of curves 702 65 345
Fulfilling the criteria 440 56 213
Number of curves with 266 56 202
indicated measure of dispersion
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Figure 5.1: Histograms of the estimated standard deviation σ̂med (top) and the estimated
deviation of the controls Δ (bottom) in the literature review.

which the upper or both the upper and the lower asymptote are fixed to 100% and 0%,
respectively, are often chosen.

Only curves with at least four positive concentrations in addition to the control are
considered for analysis. The maximum number of concentrations observed is 18. Out of
all 709 considered curves, only for 30 curves 10 or more concentrations are measured.
Most often (for 187 curves), 6 concentrations are considered, followed by 5, 8 and 7
concentrations with 151, 149 and 137 curves, respectively.

The observed values of the deviation Δ and the standard deviation σ̂med are summarised
for each journal individually by histograms in Figure 5.1. The standard deviation is in
the range between 0 and 10 for 85% (ArchTox), 88% (ToxSci) and 91% (ToxVitro) of
the curves and between 0 and 20 for 99%, 100% and 99% of the curves, respectively.

A deviation of the control is considered to be essentially negligible if |Δ| ≤ 2. This
occurs only for 47% (ArchTox), 38% (ToxSci) and 31% (ToxVitro) of the curves. For
80%, 88% and 79% of the curves, respectively, it holds that |Δ| ≤ 10. This observation
is also used for the design of the simulation study (Chapter 5.2), in which the considered
deviation of the controls varies in this range. Except for four curves (three in ArchTox,
one in ToxVitro), for all values of the deviation Δ it holds that |Δ| ≤ 40.
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The direction of the deviation of the controls differs across the three journals. A deviation
is defined to be negative if Δ < −2 and positive if Δ > 2. For ArchTox, negative
deviations occur for 34% and positive deviations for 19% of the curves. For ToxSci,
negative deviations occur for 21% and positive deviations for 41% of the curves, and
for ToxVitro, negative deviations occur for 23% and positive deviations for 46% of the
curves.

All in all, results from the literature review show that the problem of deviating con-
trol values occurs in a notable number of curves. Positively and negatively deviating
controls are observed about equally often, and values of the deviations as calculated in
formula (20) are smaller than 10 in approximately 80% of cases. Median values of the
concentration-wise standard deviation of the replicates are mostly smaller than 10.

5.2. Setup of the simulation study

A controlled simulation study is conducted to compare the four methods introduced
in Chapter 4.2 in different scenarios where deviating controls occur. The goal of the
methods is to yield the best possible estimate of the effective concentrations EC10, EC20
and EC50 that are of interest in many toxicological applications. Therefore, for each
simulated curve, the four methods are applied, the EC values are calculated, and they
are compared with the known true EC value of the underlying curve used for simulation.

The shape of the true concentration-response curve is based on the real dataset intro-
duced in Chapter 3.2.1. A 4pLL curve is chosen as underlying models with parameters
φ(b) = 1.462, φ(c) = 0, φ(d) = 100, and φ(e) = 4.22. Since the upper and lower asymp-
totes take the values 100% and 0%, respectively, the value of the parameter φ(e) coincides
with the EC50. The corresponding curve is displayed in Figure 5.2. The EC10, EC20 and
EC50 are indicated in this curve and take the values 0.94, 1.63 and 4.22, respectively.

Different scenarios regarding the choice of concentrations, where the viability is mea-
sured, are considered. The three main scenarios considered consist of 5 concentrations
and the concentration 0 as control value each, with 3 replicates per concentration. These
scenarios are subsequently labelled ‘easy’, ‘medium’ and ‘difficult’ and are visualised in
Figure 5.3. Main properties of these scenarios are:

‘Easy’: The concentration values cover the entire range of the curve. Especially the
upper asymptote is well-covered by concentrations, with two concentrations in
the range of no or low toxicity. One concentration corresponds to a viability
of approximately 60% and the two highest concentration are in a range of high
toxicity.

‘Medium’: Even for the lowest measured positive concentration, the viability has already
dropped by 10%, so no concentration in the range of no toxicity exists. Two
concentrations are in the middle range of the curve and two concentrations in a
range of high toxicity, corresponding to viabilities smaller than 10%.

‘Difficult’: The responses for all five concentration values are in the range between 80%
and 10% viability, such that neither the upper nor the lower asymptote are covered.
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Figure 5.2: True underlying 4pLL model of the simulation study with indicated values
of EC10, EC20 and EC50.
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Figure 5.3: The three main scenarios ‘easy’, ‘medium’ and ‘difficult’ for the simulation
study. The red triangles indicate the concentrations where the viability is measured,
together with the corresponding response value based on the true underlying curve.

In addition to these scenarios, three scenarios consisting of more or less than five concen-
trations are included in the analysis. The scenario with the most concentrations consists
of 12 equidistant concentrations (on log-scale) that cover the entire range of the curve.
The second scenario consists of seven concentrations, three of which are in the no- or
low-toxicity range of the curve, two in the middle range and two in the high-toxicity
range. The last scenario considered consists only of four concentrations, two in the no-
toxicity range and two in the medium range, such that the range of high toxicity is not
covered. These scenarios are shown in Figure B.1 in Appendix B.1.

For the simulation of datasets, three replicates for each of the concentrations in the
respective scenario are independently drawn from a normal distribution with mean μ = 0.
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An equal value of the standard deviation σ is chosen across all concentrations, with four
different values of σ, specifically σ ∈ {2, 4, 8, 12}, considered. A deviation Δ is added to
the three response values of the control, with Δ ∈ {−10, −8, −6, −4, −2, 0, 2, 4, 6, 8, 10}.

This leads to 44 parameter combinations per scenario. For each parameter combination
and each scenario, 5000 datasets are simulated. Four concentration-response curves are
fitted to each dataset, using each of the four methods 4pLL, 3pLL, No Ctrl and
BC. The EC values EC10, EC20, and EC50 are estimated from these fitted curves and
compared to the known true EC values of the underlying curve.

5.3. Results from the simulation study

The simulation study is analysed in two different ways: First, the proportions of esti-
mated EC values that are in an acceptable range around the true EC value are calculated
and compared across the methods. The specific definition of the acceptable range de-
pends on the EC value considered and is explained in more detail below. Second, the
method with the smallest absolute difference between estimated and true EC value is
determined. This method is subsequently referred to as the ‘winner’. Determination of
the winner method is restricted to those iterations of the simulation where at least one
method leads to an acceptable result.

Both analyses thus require a definition of the acceptable range. An estimate of the
respective EC value is considered to be acceptable, if it does not differ from the true EC
value by more than a pre-specified, fixed factor. This factor defines an interval around
the true EC value which is the acceptable range. Note that a factor is used for defining
the acceptable range instead of an additive term as the concentrations are considered
on log-scale and in this way, the acceptable range is a symmetric interval (again on
log-scale) around the true value.

The choice of the factor differs for the three different EC values. The EC10 and EC20 are
much more influenced by a potential deviation of the controls and by the design of the
corresponding scenario than the EC50. Therefore, better results are generally expected
for the EC50. To retain comparability between the three EC values and to avoid a perfect
proportion of acceptable results for the EC50 in all cases considered, a smaller factor and
resulting from that a narrower acceptable range is chosen for the EC50 than for EC10
and EC20.

The factors are chosen in a way that ensures about 3000 acceptable results even in the
‘difficult’ scenario for the largest value of the standard deviation, σ = 12, for very small
deviations, i.e. |Δ| ≤ 2. Specifically, a factor of 1.3 is chosen for EC10 and EC20, leading
to acceptable ranges of [0.72, 1.22] and [1.25, 2.12] around the true values EC10 = 0.94
and EC20 = 1.63. For the EC50, a smaller factor of 1.1 is chosen, leading to an acceptable
range of [3.84, 4.64] around the true value EC50 = 4.22.

Proportions of acceptable estimates for the EC20 in the three scenarios ‘easy’, ‘medium’
and ‘difficult’ are shown in Figures 5.4, 5.5 and 5.6. Corresponding plots for EC10
and EC20 and for the additional three scenarios are shown in Figures B.2 to B.16 in
Appendix B.1. Each cell of one plot corresponds to one combination of the parameters
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Figure 5.4: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC20 in the ‘easy’ scenario. Columns correspond
to the different standard deviations σ and rows to the deviations of the controls Δ.
Each cell corresponds to one combination of the simulation parameters σ and Δ and
shows, from left to right, the results for 4pLL, 3pLL, No Ctrl and BC. The factor
defining the acceptable range is chosen as 1.3.

σ and Δ, with the standard deviation in the columns, increasing from left to right and
the deviation of the controls in the rows, with decreasing values from top to bottom
and no deviation in the middle row. The bars indicate the percentage of acceptable
estimate for the four methods, from left to right 4pLL, 3pLL, No Ctrl, BC for the
5000 iterations of the simulation per cell.

Results are first described for the EC20 for the three main scenarios as shown in Fig-
ures 5.4, 5.5 and 5.6. Then, EC10 and EC50 are considered and finally description of the
results is broadened to the three further scenarios.

In the ‘easy’ scenario (Figure 5.4), in the range of essentially negligible deviations, i.e.
|Δ| ≤ 2, all methods perform similar. Overall, the methods 4pLL and No Ctrl achieve
the highest proportions of acceptable estimates. Especially for large Δ > 6, No Ctrl
also outperforms 4pLL. For not or negatively deviating controls, i.e. Δ ≤ 2, results for
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Figure 5.5: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC20 in the ‘medium’ scenario and are structured
as explained in Figure 5.4.

BC are competitive with those of 4pLL and No Ctrl. The method 3pLL performs
clearly worse than all of the other methods, especially for large absolute values of Δ,
where only a very small percentage of estimates is acceptable. Results for No Ctrl are
not influenced by different values of Δ, since responses for control values are omitted for
this method. For increasing values of the standard deviation σ, the overall percentage
of acceptable estimates decreases. While for σ = 2, about 100% of the estimates for No
Ctrl are acceptable, for σ = 12 this percentage becomes less than 50%, with comparable
results for the other methods.

Results for the ‘medium’ scenario (Figure 5.5) show a stronger influence of the standard
deviation σ on the percentage of acceptable results for No Ctrl. While No Ctrl leads to
acceptable estimates in almost all iterations for σ = 2, this percentage strongly decreases
as σ increases, and for σ ≥ 8, No Ctrl only outperforms the other methods in the one
combination of parameters σ = 8 and Δ = 10. For |Δ| ≤ 6, the three methods 4pLL,
3pLL and BC perform similar and for σ ≥ 4 in this range of Δ, they outperform No
Ctrl. For small σ ≤ 4 and large deviations with |Δ| ≥ 8, No Ctrl still outperforms the
other methods.
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Figure 5.6: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC20 in the ‘difficult’ scenario and are structured
as explained in Figure 5.4.

In the ‘difficult’ scenario (Figure 5.6), the results are in general very similar to those from
the ‘medium’ scenario, with an overall worse performance of No Ctrl, which only leads
to acceptable results most often for σ = 2 and Δ = 10 or Δ = −10. The performance
of 3pLL, 4pLL and BC is basically the same for |Δ| ≤ 6 across all values of σ. For
large Δ > 6, however, BC performs slightly worse and for strongly negatively deviating
controls with Δ < −6, it leads to acceptable results more often than 4pLL and 3pLL.

When considering the EC10 instead of EC20 (Figures B.2, B.3, B.4), the most striking
difference is the performance of BC, which is much worse than before in all three of the
main scenarios, especially for small values of σ. Overall, the percentage of acceptable
estimates is lower for EC10 than for EC20 in all three scenarios, but the comparability
of the methods 4pLL, 3pLL and No Ctrl remains as described above.

The results for the EC50 are shown in Figures B.5, B.6 and B.7. It can be observed that
overall, the percentage of acceptable estimates slightly decreases in comparison to the
results for EC10 and EC20. Due to the different factors defining the acceptable range,
this observation is not meaningful. It is more relevant to note that for the comparison
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of the methods, similar conclusions can be drawn as in the previous cases. The only
exception is BC in the ‘easy’ scenario, which leads to an acceptable result more often
also for Δ > 2, although BC is designed to mainly handle negatively deviating controls.

Results for the three further scenarios introduced in Figure B.1 are only briefly reported
here. In the scenario with 12 concentrations (Figures B.8, B.11, B.14), the main obser-
vations for all three alert concentrations are that 4pLL and No Ctrl perform similarly
well with high percentages of acceptable estimates. 3pLL leads to acceptable estimates
notably often only for |Δ| ≤ 2. The only difference between the alert concentration is
again formed by the method BC, which leads to clearly worse results for the EC10 in
this scenario but is performing similarly to the other methods for EC20 and EC50.

The same basic observations can be made for the scenario with 7 concentrations (Fig-
ures B.9, B.12, B.15), including the results for BC. In some way surprising results are
observed for the scenario with only 4 concentrations (Figures B.10, B.13, B.16). Again,
No Ctrl is by definition not affected by the deviations of the controls and, at least
for σ ≤ 4, leads to acceptable results considerably often. While for EC10 and EC20,
for Δ > 2, the three other methods never or only very seldom result in an acceptable
estimate, BC performs extremely well for negative values of Δ. In particular, acceptable
results are observed more often than in the ‘easy’ scenario, respectively. For EC50, this
result can also be observed, but for this alert concentration, all methods perform well
for positive values of Δ.

As the individual fitted curves are not assessed, no clear explanation of this effect re-
garding BC can be given. However, in the real data application (Chapter 5.5) it can
be observed that this method sometimes leads to biologically implausible results. One
possible explanation for the results obtained here is that the missing concentration in the
high-toxicity range in comparison to the ‘easy’ scenario allows more flexible, but biologi-
cally implausible modelling of the Brain-Cousens curve, which actually results in a better
estimate of the respective effective concentration. In any case, fitting a Brain-Cousens
curve, comprising 5 parameters, to a dataset consisting of only four concentrations plus
a control is numerically difficult and therefore not recommended. Thus, these results
need to interpreted with immense caution and should not lead to the conclusion that
BC actually performs best in these cases.

For the second analysis, the number of winners for the EC20 in the ‘easy’, ‘medium’
and ‘difficult’ scenario are shown in Figures 5.7, 5.8, and 5.9. Corresponding plots for
EC10 and EC50 and for the additional three scenarios are shown in Figures B.17 to B.31
in Appendix B.1. The ‘winner’ is the method yielding the smallest absolute difference
between estimated and true EC value, with the difference calculated on log-scale. Again,
each cell corresponds to one combination of σ and Δ, sorted in the same way as explained
above. Additionally, the number in each cell states the number of iterations in which at
least one method (i.e. at least the winner) leads to an acceptable estimate of the true
EC value. Only these iterations are considered for determining a winner.

As for the analysis regarding the percentage of acceptable estimates, results are first
described for the EC20 for the three main scenarios as shown in Figures 5.7, 5.8 and 5.9.
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Figure 5.7: Number of times each method is the winner, i.e. leads to the smallest absolute
difference between true and estimated EC value. Results are shown here for the EC20
in the ‘easy’ scenario. Columns correspond to the different standard deviations σ and
rows to the deviations of the controls Δ. Each cell corresponds to one combination
of the simulation parameters σ and Δ and shows, from left to right, the results for
4pLL, 3pLL, No Ctrl and BC. The number in each cell indicates the number of
simulation iterations where at least one method yields an acceptable result, with the
factor defining such a result chosen as 1.3.

Then, EC10 and EC50 are considered, and finally the description of the results is extended
to the three further scenarios.

In the ‘easy’ scenario (Figure 5.7), it can clearly be seen that No Ctrl is the winning
method most often, especially for small σ ≤ 4. But also for σ > 4 and large deviations
with |Δ| > 6, No Ctrl again is the winner notably more often than the other methods.
The number of iterations in which the respective methods are the winner are more equally
distributed for σ > 4 and |Δ| ≤ 6. A remarkable observation is that No Ctrl is the best
method even for |Δ| ≤ 2, where the controls do not deviate and are therefore expected to
help in obtaining a good fit. For σ = 2, 4pLL also leads to the best estimate considerably
often, while 3pLL and BC fail more often. BC is only competitive in comparison to
No Ctrl for σ = 12 and Δ < 6.
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Figure 5.8: Number of times each method is the winner, i.e. leads to the smallest absolute
difference between true and estimated EC value. Results are shown here for the EC20
in the ‘medium’ scenario and are structured as explained in Figure 5.7.

Results for the ‘medium’ scenario (Figure 5.8) are very similar to the ‘easy’ scenario.
Differences can be seen in the performance of the method BC, which is the winning
method here most often for σ ≥ 8 and Δ ≤ 0. The method 3pLL performs worst again,
and for small |Δ| ≤ 4, 4pLL is also competitive. In particular, for σ = 2 and Δ = 0, in
contrast to the ‘easy’ scenario, no longer No Ctrl but 4pLL and BC are the winning
methods most often.

In the ‘difficult’ scenario (Figure 5.9), results are similar for σ ≥ 8 across all values of Δ:
No Ctrl only very rarely is the best method and overall, the other three methods are the
winner similarly often, with BC being slightly better than 4pLL and 3pLL for Δ < 0.
Only for σ ≤ 4, Δ ≥ 6 and for σ = 2, Δ ≤ −8, No Ctrl remains the best method. For
moderate values of Δ, 4pLL is competitive to BC, and BC clearly dominates the other
methods in the other cases.

When considering the EC10 instead of the EC20, in all three main scenarios very similar
results can be observed (Figures B.17, B.18, B.19). Only a slight difference can be seen
with regard to 4pLL, which performs slightly better in comparison to BC in the cases
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Figure 5.9: Number of times each method is the winner, i.e. leads to the smallest absolute
difference between true and estimated EC value. Results are shown here for the EC20
in the ‘difficult’ scenario and are structured as explained in Figure 5.7.

with negatively deviating controls. For the EC50, an increase in the number of times that
3pLL is the winner is noticeable (Figures B.20, B.21, B.22). Especially in the ‘difficult’
and in the ‘medium’ scenario for |Δ| ≤ 2, 3pLL is the winner most often, followed by
No Ctrl (mainly in the ‘medium’ scenario) and BC (mainly in the ‘difficult’ scenario).
In comparison to results for EC10 and EC20, 4pLL is the winner only very rarely.

In the scenarios with 12 concentrations (Figures B.23, B.26, B.29) and with 7 concentra-
tions (Figures B.24, B.27, B.30), similar results with No Ctrl as the winning method
most often for EC10 and EC20 can be observed. These methods are followed by 4pLL
for σ ≤ 4 and 3pLL for σ ≥ 8. For the EC50, No Ctrl less obviously dominates the
other methods, with BC as winning method for Δ < 0 more often than for EC10 and
EC20. Still, BC is the winning method less often than No Ctrl. For |Δ| ≤ 2, 3pLL is
competitive to No Ctrl and it is the winner most often for these Δ and σ ≥ 6.

A differentiation between results for EC10 and EC20 and results for EC50 is also necessary
for the scenario with 4 concentrations (Figures B.25, B.28, B.31). For EC10 and EC20,
clearly BC leads to the best results for Δ < 0 and No Ctrl to the best results for
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Δ > 2. For the EC50, as observed before in other scenarios, 3pLL performs similarly
well as No Ctrl for 0 ≤ Δ ≤ 6. For Δ < 0, No Ctrl is the winner more often than for
EC10 and EC20. For σ = 2 it even is the winner most often, followed by BC.

The analyses with regard to the number of winners have one main point of criticism:
Consider the case in which a first method only slightly dominates a second method in
most of the cases, but this second method is far better than the first one in the remaining
minority of cases. Using the second method would then be preferred over using the first
one, but the analysis only considering the number of winners would suggest otherwise.
Therefore, a cautious interpretation of this analysis is required and recommendations,
which method to use in which case, should mainly follow the results from the analysis
regarding the percentage of acceptable estimates.

5.4. Recommendations

Main results from the simulation study are summarised here. Most emphasis is put on
the three main scenarios ‘easy’, ‘medium’, and ‘difficult’ that are chosen to represent
frequently occurring scenarios in real-data studies. Based on these results, a set of
recommendations is given, which of the four methods 4pLL, 3pLL, No Ctrl and BC
should be used in which scenario. These recommendations are explicitly stated in an
algorithmic procedure. General results summarising the performance of the four methods
for the other scenarios are briefly stated as well.

• In the ‘easy’ scenario, No Ctrl performs best, both when considering the per-
centage of acceptable estimates and the number of winners. The method 4pLL
is competitive when considering acceptable estimates, especially for smaller values
of the deviation Δ. However, for small standard deviations and large values of Δ,
No Ctrl is clearly better.

• In the ‘medium’ scenario, a more strict distinction between the analysis regarding
the number of acceptable results and the analysis regarding the number of winners
is required: While the latter indicates a good performance of No Ctrl, the former
shows that especially for larger values of σ, No Ctrl leads to acceptable results
least often. Only for EC50 and |Δ| ≤ 4, 3pLL is competitive with respect to the
number of winners.

• In the ‘difficult’ scenario, for moderate values of the deviation, 4pLL is compet-
itive. Only for large positive values of Δ, No Ctrl leads to better results, while
for large negative values of Δ, BC performs better. Again only when considering
the EC50, for moderate values of Δ, 3pLL is also competitive.

• In scenarios with more than five concentrations, all methods except 3pLL per-
form similarly well with respect to the percentage of acceptable estimates. When
considering the number of winners, No Ctrl performs best.

• In the scenario with only four concentrations, for negative deviations of the con-
trols, BC seems to lead to the best results, and for positive deviations, No Ctrl
performs best.
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A problem with giving concrete guidelines based on these simulation results, that work
with specific values of the standard deviation σ and the deviation of the controls Δ, is
that the true scenario is unknown in real-data situations. Especially in situations where
no high-quality fit of the upper asymptote is possible using only the concentrations that
are not the control, a reliable estimation of Δ is not straightforward possible. Estimation
of the concentration-wise standard deviation, however, is easily possible.

Only approximate methods for assigning a real dataset to one of the three main scenarios
can be given. In the ‘easy’ scenario, two no-effect concentrations are available, based
on which a determination of the value of the upper asymptote without the controls and
an estimation of the deviation are possible. This is no longer the case in the ‘medium’
and the ‘difficult’ scenario. These scenarios can be distinguished from another by the
fact that the two highest measured concentrations correspond to a high toxicity in the
‘medium’ scenario, while still a clear decrease in viability for the highest two measured
concentrations is observable in the ‘difficult’ scenario. In the ‘difficult’ scenario, an
observation of response values for the controls that are only slightly larger than response
values of the lowest measured concentrations is an indicator for negatively deviating
control values.

All recommendations regarding the choice of which method to use are based on the
assumption that the true concentration-response relationship can be described by a
monotonously decreasing sigmoidal-shaped curve. In general for these cases, 4pLL works
well with respect to the estimation of all three examined EC values. If the response values
of the low concentrations allow a high-quality fit of the asymptote, the replicates have
low variances and the controls are (strongly) deviating, then No Ctrl clearly leads to
good results. If the concentrations measured cover only a medium range of the response
and values are missing both in the range of low and of high toxicity, 4pLL and BC
lead to the best results and should therefore both be considered. Strictly speaking,
in these cases, the assay should be repeated with more appropriate concentrations of
the compound of interest, covering the entire range of viability. However, if this is
not possible, the mentioned methods still allow for the best possible estimation of the
respective EC value. In these cases, a plausibility check for BC is required, as this
method may lead to biologically implausible results in the case of positively deviating
controls.

Although it is the best method considerably often for the EC50 in the three main scenar-
ios, the use of the method 3pLL is strongly discouraged. It performs much worse when
considering the percentage of acceptable estimates for EC10 and EC20 in comparison to
the other three methods. In the scenarios where 3pLL is the best method most often,
4pLL and BC lead to acceptable results equally often.

In Kappenberg et al. (2020), an algorithmic procedure is proposed as practical guideline
which method to use in which case. The procedure is based on the three scenarios
‘easy’, ‘medium’ and ‘difficult’ as analysed in the simulation study, and it relies on the
same assumptions regarding the shape of the underlying relationship as stated above.
Figure 5.10 summarises this algorithmic procedure.
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• Normalise all response values with respect to the mean response values of the controls.

• Estimate the standard deviation σ by σ̂med, which is the median of the estimated
standard deviations for all concentrations.

• Estimate the relative difference d of the response values between the two lowest
concentrations (e.g. if the lowest tested concentration gives a value of 98% and the sec-
ond lowest concentration gives a value of 88%, then d would be 100− 88

98×100 = 10.2%).

• Use the 4pLL model, with the followings three exceptions:

1. EASY case: When there are at least two concentrations in the no-effect range
(identified by a small value of d, e.g. d ≤ 5):

(a) Estimate the deviation of the controls Δ: If Control represents the average
response values of all individual controls and Asymp represents the mean of the
response values observed at the lowest two concentrations, then the deviation
is Δ = (Control - Asymp)/Asymp ∗ 100.

(b) If σ̂med ist small, e.g. σ̂med ≤ 8, and Δ ist large, e.g. Δ ≥ 6, use the method
No Ctrl.

2. MEDIUM case: When there are less than two concentrations in the no-effect range
(identified by a large value of d, e.g. d > 5), but there are two concentrations in
the high-toxicity range (identified by small response values, e.g. below 12%), and
σ̂med is very small, e.g. σ̂med ≤ 2, then use No Ctrl.

3. DIFFICULT case: When there are less than two concentrations in the no-effect
range (identified by a large value of d, e.g. d > 5) and less than two concentrations
in the high-toxicity range, use 4pLL or BC.
Note that in this case the correct solution would be to repeat the experiment with
further low concentrations, as Δ cannot be estimated in this situation. If BC is
chosen, the plausibility of the fit needs to be checked visually. If an implausible fit
is obtained with BC, then choose 4pLL instead.

Figure 5.10: Algorithmic procedure summarising which method to use when fitting
concentration-response curves to toxicological data from viability assays with poten-
tial deviations of the negative controls. Figure slightly modified from Kappenberg
et al. (2020).

5.5. Application to a real dataset

All four methods are applied to a real dataset that is introduced in detail in Chap-
ter 3.2.1. Viability of cells is measured for 12 concentration and a negative control for
three biological replicates (subsequently called ‘donors’) with seven technical replicates
per concentration. The complete dataset with a 4pLL model fitted to each of the donors
(Don1, Don2 and Don3) separately is shown in Figure 5.11.

From these complete datasets, subsets corresponding to the three main scenarios in
terms of chosen concentrations and number of replicates are taken. As the concentra-
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Figure 5.11: Complete dataset measuring viability of cells treated with the compound
VPA, with 4pLL models fitted to each of the donors separately. Grey dots indicate
the individual measurements and black dots the concentration-wise mean values.

tions and parameters of the simulation study are chosen based on the concentrations
and the general profile of this dataset, taking the concentrations corresponding to the
main scenarios is straightforward. Three replicates per concentration are obtained by
randomly sampling three out of the seven replicates available for each concentration.

The concentration-response curves in Figure 5.11 suggest slightly positively deviating
controls for Don1 and slightly negatively deviating controls for Don2. For Don3, the
responses measured for the lowest concentrations do not allow a high-quality fit of the
upper asymptote. Thus, no clear statement regarding potential deviations of the controls
can be made. For further analysis, only Don1 and Don2 are considered.

Figure 5.12 shows curves obtained by applying the four methods 4pLL, 3pLL, No
Ctrl, and BC to the dataset for Don1, when choosing the subset that resembles the
‘easy’ scenario. Corresponding plots for the ‘medium’ and the ‘difficult’ scenarios are
shown in Figures B.32 and B.33 in Appendix B.1. In all plots, estimates of the EC20 are
indicated by red lines. Differences in the normalisation procedures are illustrated well in
the four plots in Figure 5.12. All four plots have in common that the upper asymptote
corresponds to a value of 100%. For the methods 4pLL and BC, the mean value of
the responses for the lowest positive measured concentration lies almost exactly on the
curve. For 3pLL, this same mean value lies below the asymptote with a distance of
about 5% and for No Ctrl, the mean value lies above the asymptote.

In the ‘medium’ and ‘difficult’ scenario, the different normalisation for the method No
Ctrl in contrast to the other three methods is striking: While in the ‘medium’ scenario,
for 4pLL, 3pLL and BC, the mean response value for the lowest tested concentration is
well below the fitted curve, for No Ctrl this concentration decisively influences the value
of the asymptote. Therefore, the mean value is much closer to the fitted curve. In the
‘difficult’ scenario, the lowest concentration approximately coincides with the EC20 for
4pLL, 3pLL and BC, while for No Ctrl, the second lowest concentration corresponds
to a viability of about 80%.
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Figure 5.12: Application of the four methods to the original dataset, Don1, resembling
the ‘easy’ scenario. The EC20 obtained by each of the four methods is indicated by
red lines.

In addition, in the two scenarios ‘medium’ and ‘difficult’, implausible behaviour of the
curve fitted with the BC method can be observed: At first, the curve is monotonously de-
creasing without modelling a hormesis effect. Then, around the highest tested concentra-
tion, the curve starts increasing again, yielding asymptote values even higher than 100%.
This behaviour is very implausible from a biological point of view, and the reason why
in the recommendations, a visual check of the fitted curves is strongly recommended.

Concentration-wise standard deviations of the three replicates differ slightly across the
four methods. This is due to the different normalisation procedures that lead to different
response values. Median values across the concentrations in the ‘easy’ scenario are
around 5.3 for 4pLL, No Ctrl and BC, and they are slightly smaller for 3pLL. For the
‘medium’ scenario, median standard deviations range from 5.2 (No Ctrl) to 6.0 (4pLL)
and for the ‘difficult’ scenario, median standard deviations are very similar for 4pLL,
3pLL and No Ctrl with values around 5.8, with a larger value of 6.7 for No Ctrl.
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It can be seen in Figure 5.12 that the estimated values of the EC20 differ considerably,
with 3pLL yielding the smallest value of 2.63 and No Ctrl yielding the largest value
of 3.61. All resulting EC values, i.e. EC10, EC20 and EC50, in the ‘easy’ scenario for all
four methods are summarised in Table 5.2. For 4pLL, 3pLL and No Ctrl, upper and
lower limits of 95% confidence intervals are shown. For BC, calculation of the confidence
limits is not easily possible, as optimisation procedures are conducted when estimating
EC values from curves that do not show a clear hormesis effect. Corresponding results
for ‘medium’ and ‘difficult’ scenario are given in Tables C.1 and C.2 in Appendix C.

In the ‘easy’ scenario, for EC20 and EC50, 3pLL yields the smallest estimate, whereas
the estimate from BC is slightly smaller than that of 3pLL for the EC10. For the EC50,
however, BC leads to the largest estimate, while for EC10 and EC20, No Ctrl leads to
the largest estimate. The estimated results differ at most by a factor of 1.63 (EC10), 1.37
(EC20) and 1.34 (EC50). These differences become larger for the ‘medium’ and ‘diffi-
cult’ scenario, where estimated results differ by at most 3.25, 2.25 and 1.26, respectively
(‘medium’ scenario) and 2.21, 1.74 and 1.24, respectively (‘difficult’ scenario). Overall,
the most similar results across the four methods in all three scenarios are obtained for
the EC50. In the ‘difficult’ scenario, only results for No Ctrl strongly differ from those
for the other three methods that lead to very similar results, only differing by a very
small factor.

For the ‘easy’ and the ‘medium’ scenario, the lengths of the confidence intervals are
decreasing for increasing value of λ ∈ {10, 20, 50} for the calculation of ECλ. In the
‘difficult’ scenario, for 4pLL and 3pLL, the confidence interval for EC50 is wider than
those for EC10 and EC20. The broadest confidence interval observed for any of the
estimates is yielded by No Ctrl for EC10 with a length of 10.7, while for EC20 and
EC50, only lengths of 4.6 and 2.1 are observed.

True underlying EC values of the curve are not known, therefore the quality of fit cannot
be evaluated based on the comparison of the estimated with the true EC values. Instead,
the sum of the squared differences between the fitted curve and the response values for
all replicates of all concentrations, except the control, are considered. These values are
summarised in Table 5.3 for all three main scenarios.

Table 5.2: EC10, EC20, and EC50 values together with corresponding limits of 95% confi-
dence intervals for the four methods in a real data study resembling the ‘easy’ scenario
for Don1.

EC10 EC20 EC50
Est. Lower Upper Est. Lower Upper Est. Lower Upper

4pLL 2.22 1.35 3.66 3.25 2.24 4.71 6.23 4.77 8.13
3pLL 1.68 0.88 3.21 2.63 1.70 4.08 5.62 4.16 7.60

No Ctrl 2.54 1.50 4.28 3.61 2.43 5.37 6.58 5.02 8.63
BC 1.56 3.11 7.53
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Table 5.3: Sum of squared differences between fitted curve and response values for all
replicates of all concentrations, except the controls, in the three main scenarios for
Don1.

4pLL 3pLL No Ctrl BC
‘Easy’ 887.00 1342.66 864.17 828.00

‘Medium’ 818.72 909.72 605.21 682.04
‘Difficult’ 510.25 507.71 667.19 463.59

In the ‘easy’ scenario, BC leads to the smallest value, followed by No Ctrl and 4pLL.
The value for 3pLL is much larger than values for the three other methods. For the
‘medium’ scenario, No Ctrl leads to the best result and again, 3pLL yields the largest
value. Only for the ‘difficult’ scenario, No Ctrl yields the largest value and not 3pLL,
which yields a value similar to that of 4pLL. BC performs best in this case.

The recommendations from Figure 5.10 suggest the use of 4pLL or No Ctrl, depending
on the estimated values of σ̂med and Δ. The observed value for σ̂med is about 5.3, and
from Figure 5.12 a notable deviation between the imaginary asymptote derived from the
responses of the two lowest positive concentrations and the response of the controls can
be seen. In that case, the recommended method is No Ctrl, resulting in comparatively
large estimates of the effective concentrations, but the lowest value for the sum of squared
differences between the fitted curve and the response values.

In the ‘medium’ scenario as seen here, use of 4pLL or, for a low median standard
deviation, No Ctrl is suggested. Although the standard deviation is not as low as
recommended in the algorithm, No Ctrl seems to lead to the best result in this case.
In the ‘difficult’ scenario, BC or 4pLL are recommended. The visual check of the
curve fitted by the method BC does indeed suggest a biologically implausible result.
This coincides with the additional knowledge about the entire curve, instead of only the
subset chosen to represent the ‘difficult’ scenario, in this case: Don1 rather is an example
of positively deviating controls, a scenario for which BC is not suitable. Therefore, 4pLL
should be chosen, and the sum of squared differences for this method is sufficiently low.

In addition to Don1, for which Figure 5.11 suggests slightly positive deviations of the
controls, Don2 is considered, where rather slightly negative deviations are present. Fig-
ure 5.13 shows fits obtained by applying the four methods to a part of the dataset for
Don2, resembling the ‘easy’ scenario. Corresponding plots for the ‘medium’ and the
‘difficult’ scenarios are shown in Figures B.34 and B.35 in Appendix B.1.

In contrast to the results for Don1, a clear hormesis effect is modelled by BC in the
‘easy’ scenario. In the ‘medium’ and ‘difficult’ scenarios on the other hand, BC also
yields a curve that is monotonously decreasing in (almost) the entire range of concen-
trations considered. In the ‘easy’ scenario, the different normalisation procedures can
be recognized when comparing the mean responses for the two lowest concentrations to
the value of the upper asymptote: This value corresponds to a viability of 100% for all
methods except for BC, where the curve is normalised in a way that the maximal value
instead of the asymptote corresponds to a viability of 100%. For 4pLL and 3pLL, mean
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Figure 5.13: Application of the four methods to the original dataset, Don2, resembling
the ‘easy’ scenario. The EC20 obtained by each of the four methods is indicated in
red.

values of the responses for the two lowest concentrations lie above the asymptote. For
No Ctrl and BC, those response values lie almost exactly on the curve, but the profiles
of the curves differ.

In the ‘medium’ scenario, hardly any visual difference can be perceived between the
curves. In the ‘difficult’ scenario, 4pLL, 3pLL and BC lead to similar curves, when the
profiles are only compared up to the highest tested concentrations. The profile of the
curve for BC differs from the ones for 4pLL and 3pLL in the range of high toxicity,
with more plausible results for BC. The normalisation for No Ctrl strongly differs from
the other three methods.

As explained above, values of the concentration-wise standard deviations depend on the
method used and are calculated here for all concentrations without the control. Median
values across the concentrations in the ‘easy’ scenario range from 4.4 (BC) to 5.2 (3pLL
and No Ctrl). In the ‘medium’ scenario, 4pLL, 3pLL and BC correspond to values
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Table 5.4: EC10, EC20 and EC50 values together with corresponding limits of 95% confi-
dence intervals for the four methods in a real data study resembling the ‘easy’ scenario
for Don2.

EC10 EC20 EC50
Est. Lower Upper Est. Lower Upper Est. Lower Upper

4pLL 1.22 0.72 2.07 2.03 1.39 2.97 4.86 3.61 6.54
3pLL 1.61 0.93 2.79 2.54 1.70 3.82 5.53 3.84 7.96

No Ctrl 0.98 0.58 1.66 1.72 1.20 2.47 4.49 3.59 5.63
BC 1.33 1.86 4.13

of 3.7 and No Ctrl to 6.4. This pattern is repeated in the ‘difficult’ scenario with values
around 6.2 for 4pLL, 3pLL and BC and a value of 7.9 for No Ctrl.

Estimates for all EC values with corresponding confidence intervals in the ‘easy’ scenario
are summarised in Table 5.4. Corresponding results for the ‘medium’ and the ‘difficult’
scenario are summarised in Tables C.3 and C.4 in Appendix C. In the ‘easy’ scenario,
except for the EC50, No Ctrl always leads to the smallest estimate and for the EC50, it
leads to the second smallest estimate after BC. For all three EC values, 3pLL leads to
the largest estimate, but overall the results do not differ strongly between the methods.
The maximal factors by with the methods differ are 1.64 (EC10), 1.48 (EC20) and 1.34
(EC50).

Differences between the four methods are in a similar range for the ‘medium’ scenario
(maximal factors of 1.52, 1.25 and 1.06, respectively), but with No Ctrl always leading
to the maximal estimate here. Only in the ‘difficult’ scenario, estimates differ more
strongly between the methods: Again, No Ctrl always leads to the largest estimate
and the other three methods to very similar estimates. The estimates differ at most
by factors 3.02, 2.09 and 1.22 respectively. In all three scenarios, differences between
methods are smallest for estimating the EC50.

As for Don1, generally a decrease in the width of the confidence interval for an increase of
λ ∈ {10, 20, 50} can be observed. An exception is given by the methods 4pLL and 3pLL
in the ‘difficult’ scenario, where confidence intervals for the EC50 are much broader than
for EC10 and EC20.

Again, sum of squared differences between the fitted curves and the response values for
all replicates of all concentrations except for the control are calculated in the three main
scenarios. Values of these squared differences are summarised in Table 5.5. In the ‘easy’
scenario, 3pLL clearly leads to the largest sum of squared differences, which is about
five times as large as the sum of squared differences for No Ctrl, yielding the smallest
result in this scenario. Results in the ‘medium’ and ‘difficult’ scenario are quite similar
across the three methods 4pLL, 3pLL and No Ctrl with the smallest sum of squared
error obtained in both scenarios by BC.

Following the recommendations from Figure 5.10, in the ‘easy’ scenario the medium value
for the standard deviation is smaller than 8, while at the same time a notable value of Δ
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Table 5.5: Sum of squared differences between fitted curve and response values for all
replicates of all concentrations, except the controls, in the three main scenarios for
Don2.

4pLL 3pLL No Ctrl BC
‘Easy’ 457.31 1530.96 300.64 330.13

‘Medium’ 447.55 448.03 463.86 398.86
‘Difficult’ 713.10 704.61 753.47 547.25

can be observed. Therefore, the recommended method to use is No Ctrl. The standard
deviation for the ‘medium’ scenario is not smaller than 2, so the recommendation is to
use the 4pLL model, which leads to very similar estimates as 3pLL and specifically BC
as well, which is the model with the smallest sum of squared errors. In the ‘difficult’
scenario, 4pLL or BC are suggested, and the visual check shows that BC leads to a
plausible concentration-response curve with slightly larger estimates than 4pLL and at
the same time a smaller sum of squared errors.
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6. Identification of alert concentrations

In Chapter 4.3, four methods for calculating alert concentrations from concentration-
gene expression data are introduced. The four alert concentrations are called ALOEC,
LOEC, ALEC, and LEC. The LOEC can be calculated in two different ways, based on
the two-sample t-test and on the Dunnett procedure. These methods are compared in
a controlled simulation study with three underlying scenarios describing three different
concentration-gene expression profiles with respective true ALEC values. In Chapter 6.1,
the setup of the simulation study with the choice of sensible standard deviations for
the simulated gene expression values is explained in detail. Then the results for the
simulation study in the different scenarios are presented in Chapter 6.2. Finally, the
four methods for calculating alert concentrations are applied to a real concentration-
gene expression dataset and compared. The results are shown in Chapter 6.3.

The results concerning the identification of alert concentrations for concentration-gene
expression data are published in Kappenberg et al. (2021). Analyses presented there are
extended here by more details regarding the comparison of the two variants of the LOEC.
Additionally, for the choice of the probe sets from the entire gene expression dataset,
two different variants are calculated and compared here, while in the publication, only
one variant is considered.

Many of the plots shown in this thesis are also published in Kappenberg et al. (2021),
with only slight adjustments regarding the titles or notation. The figures published there
are Figures 6.1, 6.3 to 6.5, 6.8, B.36 to B.38, B.41, and B.42.

6.1. Setup of the simulation study

Properties of the true underlying curves in the simulation study are derived from the real
concentration-gene expression dataset introduced in Chapter 3.2.2, where gene expres-
sion values for 54675 probe sets were measured for a negative control and 7 increasing
concentrations of the compound VPA. In the simulation study, three different scenarios
corresponding to the true underlying concentration-response profiles are considered. All
three scenarios are based on 4pLL models. They are shown in Figure 6.1.

For all curves, the lower asymptote corresponds to a response value of 0. Thus, the
gene expression value that needs to be attained for the true underlying ALEC is equal
to the critical effect level λ. The value of λ that needs to be attained or significantly
exceeded to yield the respective alert concentration is chosen to represent a fold change
(FC) of 1.5. Since data in the VPA gene expression dataset, which is supposed to be
resembled by the simulation study, are log2-transformed, a FC of 1.5 corresponds to the
critical effect level λ = log2(1.5) ≈ 0.585.

The range of concentrations considered is the interval [0, 1000] with response values eval-
uated for the concentrations (0, 25, 150, 350, 450, 550, 800, 1000), where concentration 0
refers to the negative control. Three replicates per concentration are considered, yielding
n = 24 data points in total. Specifically, the parameters and the respective ALEC values
in the three simulation scenarios are chosen as follows:
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Figure 6.1: Visualisation of the three scenarios used as true underlying curves for the
simulation study. The threshold that needs to be (significantly) exceeded is given by
λ = log2(1.5) ≈ 0.585 and is indicated by a red line. In Scenarios II and III, the
value of the true underlying ALEC is indicated by a blue line.

Scenario I: The parameters of the 4pLL model are

φ(b) = −6, φ(c) = 0, φ(d) = 0.58, φ(e) = 450,

yielding a curve that never crosses the threshold, i.e. a true ALEC cannot be calcu-
lated. Therefore, this scenario serves as null hypothesis for the methods requiring
significance. Only for approximately 5% of the simulated genes, calculation of
LOEC and LEC should yield a valid result when choosing a significance level of
α = 0.05.

Scenario II: The parameters of the 4pLL model are

φ(b) = −3, φ(c) = 0, φ(d) = 4, φ(e) = 900,

yielding a curve that clearly exceeds the threshold with a true ALEC value of 500.
However, the curve is not saturated in the range of concentrations considered. The
parameter φ(e), which corresponds to the concentration where the half-maximal
effect is attained, takes the high value of 900.

Scenario III: The parameters of the 4pLL model are

φ(b) = −3, φ(c) = 0, φ(d) = 1.16, φ(e) = 400,

yielding a curve that also clearly crosses the threshold with a true ALEC value of
400. This curve is saturated, i.e. the response values for the higher concentrations
tend towards the value of the upper asymptote.

The left asymptote of the true underlying curves of all three scenarios attains a value of 0.
However, since the observed value of the lower asymptote or the observed response value
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Figure 6.2: Graphical display of the relationship between absolute values of the observed
ranges and the median values of concentration-wise standard deviations for a sample
of 20000 probe sets from the VPA gene expression dataset. The specific linear model
is stated in the plot. The ranges and resulting standard deviations are indicated by
red dots.

at concentration 0 for the simulated gene is considered, these scenarios can be generalised
to any value of the lower asymptote. Although only increasing profiles are considered in
the three scenarios, all analyses are conducted in a two-sided way. Thus, generalisation
to situations where the true direction of the profiles is not known in advance, is possible.
In Scenarios II and III, where a true ALEC is present, this ALEC does not coincide
with any observed concentration. Therefore, in Scenario II, the optimal result for the
observation-based methods is 550, and in Scenario III, the optimal result is 450.

For each concentration x ≥ 0, gene expression data is sampled from a normal distribution
with f(x, φ) as mean value. f is a 4pLL model and φ the parameter vector from the
respective Scenario I, II or III. Analysis of the real dataset shows that concentration-wise
standard deviations positively correlate with the range of the expression values. For a
random sample of 20000 probe sets from the VPA gene expression dataset, ranges of the
gene expression profiles are calculated as FC between the highest concentration 1000 μM
and the control. The median of concentration-wise standard deviations is calculated for
each probe set. Then, a linear model with intercept is fitted to the data, with the
median standard deviation as dependent variable and the absolute value of the range as
regressor. The relationship between range and standard deviation with indicated linear
model is shown in Figure 6.2. For very high ranges, this linear model does not explain
the relationship between ranges and standard deviations well, but for smaller ranges the
linear model seems to be well-fitting.
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The three scenarios considered correspond to ranges of 0.58 (Scenario I), 2.31 (Scenario
II) and 1.16 (Scenario III). Note that only the actual observed range, when each curve
is considered up to its highest measured concentration, is calculated, not the range of
the entire curve given by |φ(d) − φ(c)|. The corresponding estimated standard devia-
tions are 0.189, 0.261 and 0.213. These are referred to as ‘medium’ standard devia-
tions (‘medium’ SD). Additional standard deviations are achieved from multiplying the
‘medium’ values with the factor 0.5 (yielding ‘small’ values (0.095, 0.131, 0.107)) and the
factor 2 (yielding ‘large’ values (0.379, 0.522, 0.427)). These additional situations are
referred to as ‘small’ SD and ‘large’ SD. The values corresponding to these situations
are still observed remarkably often in Figure 6.2 and are thus sensible choices as well.

For each scenario and each of the respective standard deviations, the simulation pro-
cedure is repeated 1000 times. This yields nine datasets comprising concentration-gene
expression profiles for 1000 simulated genes and 24 concentrations, respectively. All
four alert concentrations are calculated for each gene, whereby for the LOEC both the
t-test procedure and the Dunnett procedure are performed. The LEC follows from the
iterative algorithm based on the newly proposed 4pLL-test.

6.2. Results from the simulation study

Main interest of the simulation study lies in the comparison of the different alert con-
centrations obtained by the four different methods with respect to their accuracy in
estimating the true alert concentration. Some simulated genes have to be excluded from
the analysis due to numerical reasons: In some cases, estimation of the covariance ma-
trix Σ yields negative diagonal entries. Since these entries correspond to variances of
the parameter estimators, negative values for these variances are not meaningful and
are an indicator of numerical difficulties instead. Calculation and interpretation of the
4pLL-model based test is then severely impaired, therefore the genes are excluded from
further analysis.

In the situation with ‘small’ standard deviation, the number of excluded genes is 0 in
Scenario I, 1 in Scenario II and 0 in Scenario III. When considering a ‘medium’ standard
deviation, 14, 4 and 2 genes are excluded, respectively and in the situation with ‘large’
standard deviation, 112, 8 and 16 genes are excluded. As explained in Chapter 4.3.1,
in the observation-based approaches, alert concentrations are only calculated if the di-
rection of the concentration-response profile is unambiguous. In the case of ambiguous
profiles in the sense defined there, neither LOEC nor ALOEC are calculated. This does
not impair possible results for the LEC and the ALEC. Throughout the analysis, the
term ‘valid estimate’ describes an unambiguously resulting alert concentration that lies
within the range of considered concentration, i.e. in the interval from 0 to 1000 in the
situations considered here.

Main results of the simulation study are summarised graphically in Figures 6.3 (situation
with ‘small’ SD), 6.4 (situation with ‘medium’ SD) and 6.5 (situation with ‘large’ SD).
For the results shown in these plots, the t-test is used for determining the LOEC. Cor-
responding results obtained by using the Dunnett procedure for determining the LOEC
are shown in Figures B.36, B.37 and B.38 in Appendix B.2.
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Figure 6.3: Results of the simulation study for ‘small’ SD. Columns correspond to sce-
narios and are divided into the criteria FC (left) and FC & p-value (right). The top
row depicts the observation-based methods, the middle row the model-based methods
and the bottom row shows empirical distribution functions for both methods. True
underlying values of the ALEC are indicated by red lines for Scenarios II and III.
The number in each of the cells indicates the number of valid estimates in the range
of concentrations considered, while the number in the respective columns’ title corre-
sponds to the total number of genes considered after exclusion of genes with negative
diagonal entries of the covariance matrix.

The figures are structured as follows: Each figure is divided into three columns, which
represent from left to right Scenario I, II and III. Then, each column is subdivided into
two further columns, where in the first of these columns, the AL(O)EC is displayed
and in the second column, the L(O)EC. ALOEC and LOEC, i.e. the observation-based
alert concentrations, are summarised in the top row for the three scenarios, respectively.
ALEC and LEC, i.e. the model-based alert concentrations, are summarised in the middle
row. All results are summarised together in the bottom row, where distribution functions
for a direct comparison between both measures ALOEC/ALEC and LOEC/LEC are
depicted. The number in the title of each of the three columns indicates the numbers of
genes considered after excluding the genes with negative entries of the covariance matrix.

Specifically, the Figures 6.3 - 6.5 and Figures B.36 - B.38 that correspond to the same
choice of standard deviation differ only in the method for assessing the significance
when calculating the LOEC. Therefore, only the two panels of the plot per scenario
corresponding to the LOEC or the comparison of LOEC and LEC (top right and bottom
right for each scenario, respectively) are different.
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Figure 6.4: Results of the simulation study for ‘medium’ SD, with the same structure as
Figure 6.3.
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Figure 6.5: Results of the simulation study for ‘large’ SD, with the same structure as
Figure 6.3.
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Table 6.1: Summary statistics for the distributions of the ALEC and the LEC. The total
number of alerts (n), the median (Med) and the standard deviation (Standard Dev.)
are presented for small, medium and large values of the standard deviation in each of
the three scenarios.

n Med Standard Dev.
Small Medi. Large Small Medi. Large Small Medi. Large

ALEC
Scen. I 453 532 575 745.3 651.6 553.5 105.0 131.0 207.8
Scen. II 999 996 989 498.0 500.7 510.9 23.7 45.9 95.7
Scen. III 1000 998 970 403.8 396.0 373.0 28.9 61.1 136.1

LEC
Scen. I 19 33 44 889.3 768.3 687.3 88.1 98.0 194.2
Scen. II 999 996 988 542.3 585.5 674.1 23.3 46.8 92.8
Scen. III 1000 976 607 456.9 507.4 543.6 32.3 73.3 147.0

Additionally, summary statistics of the key figures for the modelling-based alert concen-
trations are summed up in Table 6.1. For the ALEC (top part of the table) and the
LEC (bottom part of the table), the total number of valid alerts, the median value of
the alerts and the standard deviation of the alerts are presented for ‘small’, ‘medium’
and ‘large’ values of the standard deviation in each of the three scenarios considered.

Based on the figures and the tables, it can be seen that the total number of valid alerts
differs from the number of considered genes. For ALOEC and LOEC, this may come
from excluding ambiguous genes or simply because for none of the concentrations, the
FC (significantly) exceeds the pre-defined threshold λ. For ALEC and LEC, the obvious
reasons are that the upper asymptote does not exceed the threshold or an estimate is
outside of the range of considered concentrations. However, another possible reason is
that the curve-fit does not converge due to numerical issues and thus, no resulting curve
can be calculated.

A true ALEC can only be calculated for Scenarios II and III, since in Scenario I the effect
level of λ = 0.585 is never reached by the curve. Every alert concentration identified by
any of the methods is therefore a false positive in this scenario. In Scenarios II and III, an
alert concentration is considered to be false positive if it is smaller than the true ALEC
value. Total numbers of false positive alerts for all three scenarios for absolute exceedance
of the threshold (top rows) and significant exceedance of the threshold (bottom rows)
are summarised in Table 6.2.

Main results from these figures and tables are presented for each scenario separately.

Scenario I: In Scenario I, all alerts are false positive alerts. The number of alerts for
the methods assessing absolute exceedance of the threshold only ranges from 453 (ÂLEC
for ‘small’ SD) to 679 (ÂLOEC for ‘large’ SD), with generally fewer false positives for
the ÂLEC than for the ÂLOEC. For the methods taking significance into account, the
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Table 6.2: Total numbers of false positive alerts, i.e. estimates below the true ALEC
value, and in Scenario I, all identified alerts. The first three rows correspond to the
cutoff criterion where an alert is identified when the FC is reached exactly. Since
no testing is performed in these cases, the differentiation in t-test and Dunnett is
meaningless. The last three rows correspond to significant exceedance of the threshold.

Scenario I Scenario II Scenario III
t-test Dunn. 4pLL t-test Dunn. 4pLL t-test Dunn. 4pLL

AL(O)EC
Small 599 453 112 541 78 455
Medium 627 532 251 491 262 536
Large 679 575 419 444 430 587

L(O)EC
Small 22 8 19 1 0 34 0 0 28
Medium 33 12 33 5 0 35 0 0 42
Large 38 4 44 8 0 36 12 1 50

number of false positive alerts accounts for less than 5% of all simulated genes, thus all
methods maintain the significance level of α = 0.05. For these three methods, the L̂OEC
based on the Dunnett procedure yields the fewest alerts, while the L̂OEC based on the
t-test and the L̂EC based on the 4pLL-test yield comparatively many alerts.

The summary statistics show that median values of the ÂLEC are smaller, the larger
the SD considered is, while the standard deviation of the alert concentrations becomes
larger with larger SD. This can also be seen in the histograms for the ÂLEC. While for
‘small’ SD, the smallest alert concentration takes a value of about 500, for the ‘medium’
SD the smallest alert concentration takes a value of about 375 and for the ‘large’ SD
even a value of 0.

Since an estimated ÂLEC close to 0 seems implausible at first glance, the courses of the
three simulated genes yielding the smallest ÂLEC values for the ‘large’ SD are shown in
Figure 6.6. All three courses are very similar: The mean response value for the control
takes a value of approximately −0.5. The response for the lowest measured concentration
and all following concentrations are at the same level of about 0.5. Thus a very steep
increase of the curve between the concentration 0 and the concentration 25 is present,
leading to the observed very small values of the ÂLEC. Only for the third example gene,
a valid L̂EC can be calculated, with a value of 318. The ÂLOEC of all three genes is 25,
but a L̂OEC based on the t-test can again only be calculated for the third gene, yielding
a result of 800. No L̂OEC based on the Dunnett procedure can be calculated for either
of the genes.

The same structure of results as for the ÂLEC can be observed in the barplots depicting
the ÂLOEC: For the ‘small’ SD, most alerts are observed at the concentration 800,
followed by 1000 and only very few alerts for lower concentrations. For ‘medium’ SD,
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Example 2 with an ALEC near 0
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Example 3 with an ALEC near 0
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Figure 6.6: Three simulated genes with very low values of the ALEC. Grey dots show
the individual simulated response values per concentration and black dots depict the
concentration-wise means of the responses.

still most alerts are observed at the concentration 800, but followed by the concentration
550 and only then the concentration 1000. Finally, for ‘large’ SD, the ÂLOEC yields
most alerts at the concentration 550 but all in all, the observed alert concentrations cover
the entire set of possible values. Detailed comparison of the methods that additionally
assess the significance is not meaningful due to the very small sample sizes.

The distribution functions of ÂLOEC and ÂLEC have a very similar profile in terms of
their endpoint, their slope, and the concentrations where the respective curves start to
increase for all three possible values of the SD. Again, comparison of the distribution
functions of L̂OEC and L̂EC is not possible due to the small sample size.

Scenario II: For Scenario II, the true value of the ALEC is given by 500. About half of
all simulated genes, with the largest number for the ‘small’ SD, lead to a false positive
alert for the ÂLEC. This number is far higher than the number of false positive alerts
for ÂLOEC in the cases of ‘small’ and ‘medium’ SD and still higher by 25 for ‘large’ SD.
For the L̂OEC based on the t-test, less than 10 genes lead to false positive alerts and for
the L̂OEC based on the Dunnett procedure, no false positive alert is observed. For the
L̂EC, the number of false positive alerts is between 33 and 36 and is therefore below the
significance level of 5%.

For ‘small’ and ‘medium’ SD, except for 2 genes in the estimation of the ÂLOEC for
‘medium’ SD, all genes lead to valid estimates of ÂLOEC, ÂLEC, both versions of L̂OEC
and L̂EC. In the situation with ‘large’ SD, this is not the case: While for the model-
based methods, all genes except for 2 or 3 yield a valid estimate, only 832 valid estimates
are obtained for the ÂLOEC and only 783 and 848 for the t-test and Dunnett procedure
based L̂OEC, respectively.

The median values of the ÂLEC for all three situations regarding the SD are very close
to the true value of 500, with larger standard deviations of the alert concentrations in
the situations with larger SD. Median values of L̂EC are consistently larger than those of
ÂLEC with an increasing difference as SD increases, but with very comparable values of
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the standard deviations. These observations are supported by the histograms for ÂLEC
and L̂EC: The histograms for the ÂLEC are centered around the true value indicated
by the red line, while for the L̂EC a bias towards higher values can be observed. For
larger values of the SD, the range of observed values becomes larger: For ‘small’ SD, the
ÂLEC ranges from about 410 to about 570. For ‘medium’ SD, it ranges from about 350
to about 630 and even from about 180 to about 800 for ‘large’ SD.

For the ÂLOEC and all three values of SD, most alerts are observed at the concentration
550, which is the smallest concentration that is larger than the true value of the ALEC.
Thus, this is the best possible result for this method. In none of the three situations
regarding the SD, any observation for an ÂLOEC of 1000 is made. The distribution
of the observed alerts across the possible measured concentrations becomes broader for
larger SD, spanning all measured concentrations from 25 to 800 for ‘large’ SD.

For the L̂OEC, most alerts yield a value of 800 for ‘small’ and ‘medium’ SD and a value
of 1000 for ‘large’ SD, irrespective of the method used for calculation of the L̂OEC.
A direct comparison of the values of L̂OEC using the t-test and using the Dunnett
procedure is given by Table 6.3. In the situation with ‘small’ SD, alert concentrations
mostly coincide for both methods. Only in 29 cases does the Dunnett procedure yield a
smaller concentration, and in 95 cases the t-test yields a smaller alert than the respective
other method. For ‘medium’ SD, more than 800 observations coincide with a value of 800,
which is observed in total in 950 cases for the Dunnett procedure. For the t-test, 100 of
these genes yield the higher value of 1000 and 42 yield smaller values. For ‘large’ SD, the
alerts are more spread out, mainly across the alerts 800, 1000 and also ‘No Alert’. The
alert concentrations of more than half of the genes still coincide at the three mentioned
values.

The distribution functions for ‘small’ and ‘medium’ SD show that model-based alerts
generally take lower values than observation-based alerts, and this discrepancy becomes
larger for the methods taking significance into account. This observation holds for the
comparison of L̂OEC and L̂EC in the situation with ‘large’ SD as well. However, for
ÂLOEC and ÂLEC, first there are more observation-based alerts for lower concentra-
tions, then the distribution functions intersect and more model-based alerts are observed
starting at concentration 500.

Scenario III: The true value of the ALEC is given by 400 in Scenario III. For the
ÂLOEC, the number of false positive alerts ranges from 78 for ‘small’ SD to 430 for
‘large’ SD, and the number of false positive alerts is even higher with numbers from
455 to 587 for the ÂLEC. For the methods taking significance into account, again the
number of false positive alerts accounts for less than five percent of all simulated genes.
The L̂OEC in both versions yields false positive alerts in the situation with ‘large’ SD
only.

Summary statistics for ÂLEC and L̂EC show that median values of the ÂLEC are smaller
than the true value of 400 with a difference that increases with increasing SD. Median
values of the L̂EC are again larger and increasing with increasing SD. For ‘large’ SD,
only 607 simulated genes yield a valid estimate of the L̂EC, while in all other cases, none
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Table 6.3: Comparison of the alert concentrations L̂OEC based on the t-test (rows) and
on the Dunnett procedure (columns) for Scenario II. ‘NA’ indicates the case in which
no valid alert concentration can be determined.

LOEC Dunnett
‘small’ SD ‘medium’ SD

550 800 1000 NA 550 800 1000 NA
150 0 0 0 0 0 0 0 0
350 0 0 0 0 0 0 0 0

LOEC 450 1 0 0 0 2 3 0 0
t-test 550 80 94 0 0 17 39 0 0

800 29 795 0 0 10 808 7 0
1000 0 0 0 0 0 100 10 0
NA 0 0 0 0 0 0 0 0

LOEC Dunnett
‘large’ SD

550 800 1000 NA
150 0 0 0 1
350 0 3 0 0

LOEC 450 0 3 1 0
t-test 550 6 23 4 2

800 0 232 99 17
1000 0 76 275 41
NA 0 27 99 83

or only few genes yield no alert concentration. The histograms of ÂLEC and L̂EC show
the same structure as described for Scenario II for ‘small’ and ‘medium’ SD. For ‘large’
SD, apart from the different number of valid alert concentrations in the case of the L̂EC,
the histograms are comparatively broader with heavier tails.

For the observation-based methods for calculating the alert concentration, 450 would
be the best result. This is also the alert concentration that is obtained most often
by the ÂLOEC for the situations with ‘small’ and ‘medium’ SD. For ‘large’ SD, the
concentration observed most often is 350, but then followed by 450, 550 and 800. In
this situation, all possible concentrations are observed as ÂLOEC for at least 15 simu-
lated genes, respectively. The results span across the concentrations 150 to 800 for the
‘medium’ SD and only across 350, 450, and 550 for ‘small’ SD. The L̂OEC vastly over-
estimates the true value of the ALEC, with 800 as most frequent result. In the situation
with ‘medium’ SD, the second most alerts are also calculated for the concentration 1000.
However, the number of valid estimates is only 627 or 607 in this situation and even
smaller with 238 and 143 estimates only for ‘large’ SD.

85



6.2 Results from the simulation study 6 ALERT CONCENTRATIONS

Table 6.4: Comparison of the alert concentrations L̂OEC based on the t-test (rows) and
on the Dunnett procedure (columns) for Scenario III. ‘NA’ indicates the case in which
no valid alert concentration can be determined.

LOEC Dunnett
‘small’ SD ‘medium’ SD

450 550 800 1000 NA 450 550 800 1000 NA
350 0 0 0 0 0 0 0 0 0 0
450 34 40 19 0 0 12 8 17 2 2

LOEC 550 14 277 92 2 0 1 72 39 20 13
t-test 800 3 101 333 4 0 4 12 170 34 58

1000 0 9 42 9 0 1 6 31 79 46
NA 0 2 18 1 0 0 10 42 47 272

LOEC Dunnett
‘large’ SD

350 450 550 800 1000 NA
350 1 0 3 2 1 5
450 0 4 1 4 1 13

LOEC 550 0 1 12 3 6 23
t-test 800 0 0 4 33 7 45

1000 0 0 1 6 20 42
NA 0 0 8 14 11 713

A direct comparison of both variants of the L̂OEC is given in Table 6.4. For ‘small’ SD,
most of the alerts coincide at the same concentrations, and about equally many genes
yield a smaller alert for the Dunnet variant and for the t-test variant, respectively. For
‘medium’ SD, the alerts in the direct comparison are more scattered, but still with most
alerts coinciding at the same concentration or deviating by only one level. However,
some genes with a low alert concentration in either of the variants do not yield a valid
alert in the other variant. In the situation with ‘large’ SD, most observations coincide
at yielding no alert. For the Dunnett procedure, apart from the coinciding genes, about
130 additional genes do not yield a valid alert, and the respective alerts for these genes
in the t-test variant scatter across all concentrations from 350 to 1000.

All in all, the observations regarding the comparison of t-test and Dunnett procedure for
estimating the L̂OEC for both Scenario II and III show that not one of these methods
is generally more conservative. In most cases, the alerts coincide, but in the other cases
none of these methods structurally yields the smaller results, even though in the Dunnett
procedure it is accounted for multiple testing.

Comparison of the distribution functions for ÂLEC and ÂLOEC shows generally slightly
smaller alerts for the ÂLEC. For the comparison of L̂EC and L̂OEC, this difference is
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Table 6.5: Coverage Probabilities of the 95% CIs for the ALEC in Scenario II and III.
Only those CI, whose length is less than or equal to 1000, are taken into account. The
number of these CI is indicated as well.

Scenario II Scenario III
n CP n CP

‘Small’ SD 999 0.83 1000 0.83
‘Medium’ SD 996 0.83 998 0.84
‘Large’ SD 979 0.86 920 0.77

larger. Especially for ‘medium’ and ‘large’ SD, the different numbers of valid estimates
is again illustrated by these distribution functions.

To summarise these results, the model-based approaches ALEC and LEC perform better
than the observation-based approaches ALOEC and LOEC. Fewer false positive alerts
are calculated by the model-based approaches in Scenario I, where the underlying curve
is chosen such that it does not exceed the critical threshold. In Scenarios II and III,
where a true ALEC value can be calculated based on the true underlying curve, model-
based alert concentrations less drastically overestimate this true value and estimates are
overall closer to the true value of the ALEC, as can be seen by the steepness of the
distribution functions. A drastic difference especially for Scenario III is given by the
number of valid estimates yielded by the model-based methods, where mostly for almost
all simulated genes an alert can be calculated, and the observation-based approaches,
where far fewer genes yield a valid estimate.

In addition to the analyses presented above, 95% confidence intervals (CIs) are calculated
for the ALEC in the log-transformed version introduced in Chapter 4.3.2. Based on these
CIs, coverage probabilities (CPs) are calculated as the proportion of cases in which
the true value of the ALEC lies inside the CI. These CPs can only be calculated for
Scenarios II and III, since for Scenario I, no true value of the ALEC is given. For the
calculation of the CPs, only CIs that are not wider than 1000 are taken into account.
The CPs for all three situations regarding the SD are summarised in Table 6.5. Most
of these CPs yield results between 0.83 and 0.86, with the exception of Scenario III,
‘large’ SD, where the CP takes only a value of 0.77. Generally, these values are quite
low, as one would expect a result of approximately 0.95 for the 95% CIs considered here.

6.3. Application to a real dataset

The four methods for calculating alert concentrations are applied to the real dataset
introduced in Chapter 3.2.2. Briefly summarised, this dataset consists of (adequately
pre-processed) gene expression values, measured for 54675 probe sets in 7 increasing
concentrations with three replicates each and a negative control with six replicates.
In order to reduce the dimension of the considered dataset, only those probe sets are
considered that have a significant change in response value for at least one concentration:
An anova procedure is applied to each of the probe sets and only those probe sets are
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further considered that lead to an unadjusted p-value smaller than 0.001. This way, only
9460 of the initial 54675 probe sets remain in the dataset.

An alternative to applying anova is the application of the MCP-Mod methodology as
explained in Chapter 4.1.5 and considering only those probe sets for which a PoC can be
established. For comparability, the same level α = 0.001 is chosen. The set of candidate
models only consists of the sigEmax model in this context, with chosen guesstimate
priors of EC50 = 450 and h = 5.117. These values are based on the assumptions that
the half-maximal effect might be observed at concentration 450, and already 95% of the
maximal effect is observed at concentration 800. The parameter h is then calculated
from this pair of assumptions. These heuristic guesstimates that are equal for all genes
are used, since for the many thousand probe sets considered simultaneously, individual
guesstimates are not practicable.

Applying the MCP-Mod procedure with the guesstimate specified above yields 15306
probe sets with a p-value smaller than 0.001, with 9188 in the overlap of the probe sets
selected by anova and MCP-Mod. This leaves only 272 probe sets considered significant
by anova and not by MCP-Mod and 6118 probe sets vice versa. Out of the 6118 probe
sets pre-selected only by the MCP-Mod approach, estimation of the covariance matrix
yields negative diagonal entries for 215 probe sets. For the remaining 5903 probe sets,
an ÂLOEC can only be calculated for 2265 of them. For the L̂OEC, this number is
even higher, with 5746 and 5888 probe sets that do not yield a valid L̂OEC for the
two variants, respectively. Similar results can be observed for the model-based versions
with 3905 probe sets without a valid ÂLEC and even 5497 probe sets without a valid
L̂EC. Due to this very high number of probe sets without valid alert concentrations, no
additional information is gained by choosing the larger set of pre-selected probe sets for
further analysis. The following analyses are therefore restricted to the set of probe sets
pre-selected by the anova procedure.

Again, all probe sets with diagonal entries for the estimated covariance matrix are ex-
cluded from further analysis. This applies to 286 probe sets, keeping 9174 out of the
9460 probesets in the analysis. The ÂLOEC yields 7074 valid estimates and the ÂLEC
6811. For the methods taking significance into account, the number of valid estimates
is smaller with 4126 and 3648 valid estimates for the L̂OEC (t-test and Dunnett-based,
respectively) and 4929 valid estimates for the L̂EC.

Since for this dataset the true underlying values of the ALEC are not known, univariate
considerations of the resulting alert concentrations are less meaningful than the direct
comparison of observation- and model-based methods with or without assessing signif-
icance, respectively. Figure 6.7 shows the relationship between estimated ÂLOEC and
ÂLEC for the probe sets from the VPA dataset: Values of the ÂLEC alert concentra-
tion, stratified by corresponding values of the ÂLOEC, are summarised by boxplots.
The ÂLOEC is also indicated by a red dot in each boxplot for easier comparison of
observation-based and model-based alert concentrations. Numbers in the bottom row
indicate the number of probe sets with the corresponding value of the alert concentra-
tion ÂLOEC, numbers in the top row indicate the number of genes with a corresponding
ÂLOEC but without a valid result for the ÂLEC.
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Figure 6.7: Results of the analysis of the VPA dataset for methods considering absolute
exceedance of the threshold. The boxplots summarise values of the ÂLEC values,
stratified by corresponding ÂLOEC values, which are also visualized by red dots.
Numbers in the bottom row indicate total numbers of ALOEC alerts, and numbers
in the top row indicate cases with ALEC alert outside the permitted range, i.e. each
boxplot comprises alert concentrations for ‘bottom number - top number’ probe sets,
e.g. for an ÂLOEC of 350 this corresponds to 1350 − 41 = 1309 probe sets.

Except for the smallest ÂLOEC of 25, the boxes summarising the ÂLEC are below the
indicated points, meaning that in more than 75% of the cases, the model-based approach
yields lower alert concentrations than the observation-based approach. The difference
between ÂLOEC and ÂLEC becomes larger with larger value of the ÂLOEC. For an
ÂLOEC of 800, about 88% of the observed values of the ÂLEC take a value smaller than
800, and for an ÂLOEC of 1000, all observed values of the ÂLEC are smaller. Thereby,
the number of invalid alert concentrations is not larger here than for an ÂLOEC of 800.

Of the 2127 probe sets yielding no valid alert concentration for the ÂLOEC, 1970 do not
yield a valid ÂLEC either. The quartiles of the ÂLEC concentrations for the remain-
ing 157 probe sets are given by 603 and 957. For the ÂLOECs 550, 800 and 1000, the
number of probe sets without a valid ÂLEC ranges from 84 to 102, with less missing
alert concentrations for smaller ÂLOEC. Most ÂLOECs are observed at concentration
800, followed by 450, 550 and 1000, which have similar numbers. Quartiles of the distri-
bution of all ÂLECs are 374 and 694 with a median value of 523, so that all in all, the
ÂLEC yields smaller values than the ÂLOEC.
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Figure 6.8: Results of the analysis of the VPA dataset for L̂OEC based on the t-test and
L̂EC. The structure of the plot is the same as Figure 6.7.

Additionally, the results are considered separately for increasing and decreasing probe
sets. The direction of the concentration-gene expression profile is determined based
on the direction of the fitted curve, yielding 4949 probe sets with increasing and 4225
probe sets with decreasing profiles. Figures B.39 and B.40 in Appendix B.2 show the
same boxplots as introduced above, once only for the increasing and once only for the
decreasing probe sets. Generally, the results are very similar to the ones described for the
entire set of probe sets, with about equally many probe sets yielding ÂLOECs between
450 and 1000, respectively. For decreasing probe sets, the concentrations obtained by
the ÂLEC are comparatively slightly larger than for increasing probe sets, but all in all
the same statements as for the entire dataset can be made.

The same analyses are conducted for the methods taking significance into account. Fig-
ure 6.8 shows the same boxplots as introduced above for the comparison of L̂EC and the
L̂OEC based on the t-test, and Figure 6.9 the corresponding comparison for the L̂OEC
based on the Dunnett procedure. The first observation is that the number of probe sets
that do not yield a valid estimate for either of the L̂OECs is far higher than for the
ÂLOEC. Out of the approximately 5000 or 5500 probe sets not yielding an estimate for
the respective L̂OEC, (slightly) more than 1000 still yield a valid estimate for the L̂EC,
with estimates spread quite broadly across the range of considered concentrations.

Again, the concentration 800 is the one where most alerts can be observed for the L̂OEC.
Quartiles of the L̂EC are given by 433 and 746 with a median of 587. All of these values
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Figure 6.9: Results of the analysis of the VPA dataset for L̂OEC based on the Dunnett
procedure and L̂EC. The structure of the plot is the same as Figure 6.7.

are larger by about 60 than the corresponding values for the ÂLEC. Generally, in
comparison with the respective L̂OEC, the L̂EC is far smaller. For the L̂OEC based
on the Dunnett procedure, except for the concentration 150, not only the box of the
boxplot for the respective L̂ECs, but the box and the whiskers are below the displayed
red dot that indicates the corresponding L̂OEC. For the L̂OEC based on the t-test, the
red dot approximately lies at the center of the upper whisker.

Analogously to the results for the ÂLEC and the ÂLOEC, Figures B.41 to B.44 in
Appendix B.2 show the respective boxplots for both variants of the L̂OEC separated
into probe sets with increasing and with decreasing profiles. For the L̂OEC based on the
t-test and on the Dunnett procedure, in the subset of probe sets with decreasing profile,
only very few alerts are observed at concentrations 25, 150 and 350. For increasing
profiles, more observations are made for the concentrations 150 and 350. No probe sets
results in a L̂OEC of 25, regardless of the direction of the profile. Apart from these
observations, results for these probe sets separated into the direction of the curve are
analogous to the ones for the entire dataset.
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7 INFORMATION SHARING

7. Information sharing across genes

Two methods for information sharing, meta-analysis and an empirical Bayes method, are
introduced in Chapters 4.4.2 and 4.4.3. In simulation studies, estimating the parameter
φ(e)∗ from a 4pLL model making use of these methods is compared to the direct estima-
tion of φ(e)∗. These simulation studies heavily depend on the structure and biological
properties of the underlying true dataset. Thus, plasmode datasets are used to capture
the biological properties. A plasmode dataset is obtained by using real data that is
manipulated in a way that the true effects are known, while retaining the basic prop-
erties of the real dataset (see Chapter 4.4.1). The underlying VPA dataset, introduced
in Chapter 3.2.2, is used as basis for these plasmode simulation studies. This dataset
is first described in detail. Results regarding the parameter distribution for fitted 4pLL
curves are presented in Chapter 7.1 and results regarding the GO groups are presented
in Chapter 7.2.

First, two simulation studies for the meta-analysis approach are conducted and presented
in Chapter 7.3. The first simulation study is based on the entire set of considered genes,
and the setup and the results are summarised in Chapter 7.3.1. In the second simulation
study, biological similarities are taken into account by considering individual GO groups.
The setup and the results are presented in Chapter 7.3.2. The simulation studies to
investigate the empirical Bayes approach are presented in Chapter 7.4. The general
setup of the simulation studies is explained there as well. In the three Chapters 7.4.1,
7.4.2, and 7.4.3, results from the three specific simulation studies that are based on
different underlying datasets are shown. The datasets are increasingly similar to the
real VPA dataset while moving further away from fulfilling all assumptions.

Finally, the methods are applied to the real VPA dataset where no simulation takes
place. Results are shown in Chapter 7.5, with the results for the meta-analysis, where
only two GO groups from the dataset are considered, shown in Chapter 7.5.1, and the
results for the empirical Bayes method shown in Chapter 7.5.2.

7.1. Descriptive analysis of the parameter distributions for a real dataset

The VPA dataset comprises gene expression results, measured for 54675 probe sets
in the seven increasing concentrations 25, 150, 350, 450, 550, 800, and 1000 μM in three
replicates each, and for the negative control with six replicates. A 4pLL model is fitted
to each probe set, resulting in a parameter vector φ = (φ(b), φ(c), φ(d), φ(e)∗) for each
probe set. Additionally, p-values are calculated for each probe set making use of the
MCP-Mod procedure. The set of candidate models consists only of the sigEmax model
with chosen priors of 450 as EC50 and h = 5.117, analogously to Chapter 6.3. Both an
upward and a downward profile are assessed, leading to two p-values per probe set.

Out of the 54675 probe sets in the dataset, no model fit can be achieved for 29 probe sets
that are removed for further analysis, leaving 54646 probe sets in the analysis. Calcula-
tion of MCP-Mod based p-values is possible for each of the probe sets. Results are first
presented univariately for each parameter, and in a second step, bivariate relationships
are analysed.
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Figure 7.1: Histograms of φ(b) for 4 different cutoffs of the MCP-Mod based p-values.

First, the parameter φ(b) is considered. This parameter indicates the slope of the curve,
but is only proportional to the actual value of the slope. Still, a value of φ(b) close to
zero indicates a curve that is not very steep, and therefore usually covers only a small
interval of expression values in the range of considered concentrations. Histograms in
Figure 7.1 show the distribution of the parameter φ(b) for all probesets where the p-value
for the upward or the downward direction is smaller than a specific cutoff. The cutoffs
are chosen as 0.01, 0.1, 0.2 and 0.5.

For the small cutoff of 0.01, 20791 probe sets yield a significant result, for a cutoff of 0.1,
32120 probe sets yield a significant results, and 38791 probe sets yield a significant
results for a cutoff of 0.2. All probe sets yield a p-value smaller than 0.5 for increasing
or decreasing profiles. The striking property of the distribution of φ(b) in the case of
the smallest cutoff is the crater around the value of 0. This indicates that this value is
only very rarely observed in probe sets for which a PoC at level 0.01 is established. For
increasing p-values, however, the number of probe sets with φ(b) ≈ 0 drastically increases,
up to the point where in the histogram, the other observations seem negligible.

Figure B.45 in Appendix B.3 shows histograms of parameter φ(b) for all probe sets, where
only the test aimed at finding descending profiles (left) or aimed at finding increasing
profiles (right) yields p-values smaller than the cutoffs 0.01 or 0.2, respectively. For
basically all probe sets corresponding to decreasing profiles, it holds φ(b) > 0 and for
basically all probe sets corresponding to increasing profiles, it holds φ(b) < 0, although a
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Figure 7.2: Histograms of φ(c) for 4 different cutoffs of the MCP-Mod based p-values.

few exceptions exist. The number of probe sets with φ(b) ≈ 0 is comparable for increasing
and decreasing profiles when considering a p-value of 0.2.

Corresponding histograms for parameter φ(c) are shown in Figure 7.2 and Figure B.46
in Appendix B.3. Most values can be observed in a range between 3 and 12. Differences
between the four cutoff values for the p-values can mainly be seen in the comparison
of values smaller than 6 and larger than 6: For low p-values, similar numbers can be
observed. For increasing p-values, the ratio of probe sets with φ(c) < 6 increases in
comparison to the ratio of probe sets with φ(c) > 6. Values larger than 15 are basically
never observed, while many values smaller than 0 occur. Considering increasing profiles
only, no or almost no negative values of the parameter φ(c) are observed, depending
on the chosen p-value. Negative values only occur for decreasing profiles. Apart from
these observations, the distribution of parameter φ(c) differs only little between probe
sets with increasing and with decreasing profiles.

Histograms for parameter φ(d) are shown in Figure 7.3 and Figure B.47 in Appendix B.3.
Most observed values are in a range between 3 and 12, while basically no values smaller
than 2 are observed, but substantially many values larger than 15. The left-sided slope
of the histograms become steeper with increasing p-value. Analogously to the results
for parameter φ(c), large values for φ(d) are only observed for increasing profiles, while
basically no values larger than 15 are observed for decreasing profiles. The distributions
of φ(d) in the mainly observed range between 3 and 12 are very similar for increasing
and decreasing profiles when considering the same cutoff values.
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Figure 7.3: Histograms of φ(d) for 4 different cutoffs of the MCP-Mod based p-values.

Finally, the distribution of parameter φ(e)∗ is shown in Figure 7.4, with the correspond-
ing histograms of the increasing and decreasing profiles separately in Figure B.48 in
Appendix B.3. The histograms for the observations divided into increasing and de-
creasing probe sets seem virtually identical to the ones for the entire set of probe sets,
therefore no further emphasis is put on these plots.

For further analysis, φ(e)∗ is the most important parameter, as this is the parame-
ter that indicates the alert concentration of interest for the application of informa-
tion sharing considered here. Since the parameter φ(e)∗ = log(φ(e)) is considered here,
the actual concentration is obtained from φ(e)∗ by applying the exponential function
for back transformation. The largest concentration considered in the VPA dataset is
1000 μM. For a curve with observed half-maximal effect at this concentration, it holds
φ(e)∗ = log(1000) = 6.91. Further measured concentrations and their respective values
of φ(e)∗, together with multiples of the maximal tested concentration up to a factor of 5,
with their respective values φ(e)∗, are summarised in Table 7.1. Values of φ(e)∗ that are
larger than 10 or even 12 are observed for all four cutoffs of the p-value, corresponding
to unrealistic high half-maximal effect concentrations, which are not meaningful for bi-
ological interpretation of the concentration-gene expression profiles. Most observations,
however, are in the range between 3 and 10, with the lower boundary decreasing for
increasing cutoffs of the p-value.

The distribution of φ(e)∗ seems to be bimodal for small cutoffs and trimodal for a cut-
off of 0.5. The by far highest peak of the histograms is centred around values slightly
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Figure 7.4: Histograms of φ(e)∗ for 4 different cutoffs of the MCP-Mod based p-values.

larger than 6 and is followed by a low point at around 7. This low point corresponds
to curves with half-maximal effect concentrations around the highest measured concen-
tration, which apparently is only seldom observed. A second, smaller peak is observed
at values slightly smaller than 8, and, only for large cutoff values, a third, narrow peak
is observed at values around 4. For small cutoffs, the distribution of φ(e)∗ observed is
right-skewed, but appears more symmetric for large cutoffs.

In terms of bivariate analyses, only the relationship between φ(b) and φ(e)∗ as well as the
relationship between φ(c) and φ(d) are examined, as no or almost no relation between
the other pairs of parameters can be observed. The relations are only shown for one
fixed cutoff value of 0.01, since for larger cutoffs and the resulting larger sample size, the
relationships are no longer recognizable in the plots. Figure 7.5 shows the relationships
between these parameters for the cutoff 0.01.

The relationship between φ(b) and φ(e)∗ is symmetric, while the specific properties of the
distributions as seen in the histograms are recognizable. For very large or small values

Table 7.1: Measured concentrations of the VPA dataset and multiples of the maximal
measured concentration together with the respective value of φ(e)∗.
Conc. 25 150 350 450 550 800 1000 2000 3000 4000 5000
φ(e)∗ 3.22 5.01 5.86 6.11 6.31 6.68 6.91 7.60 8.01 8.29 8.52
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Figure 7.5: Relationships between parameters φ(b) and φ(e)∗ (left) and between φ(c) and
φ(d) (right) for all probe sets with a p-value smaller than 0.01.

of φ(e)∗, corresponding values of φ(b) are close to 0. The largest values of φ(b) correspond
to values of φ(e)∗ around 6. In the plot depicting φ(c) and φ(d), most observations lie in
an area shaped like a triangle. Apart from very few exceptions, φ(d) is larger than φ(c).
Extreme values of one of the parameters typically correspond to values of the other
parameter that are in the range of values observed most often.

The results shown here are based on the MCP-Mod p-values, since these values allow
stratification into increasing and decreasing profiles. However, the following simulation
studies are based on the set of probe sets already considered in Chapter 6.3, where
9460 probe sets are selected from the entire dataset. These probe sets yield a p-value
smaller than 0.001 when individually applying anova, without adjusting for multiplicity.
Additional to this requirement for statistical significance, the biological relevance is
assessed. Of the 9460 selected probe sets, only those that result in a valid ALOEC
(Chapter 4.3.1), i.e. that cover a range of at least 0.585, are considered further. This
leaves 7191 probe sets to be considered for further analysis. Figure 7.6 shows histograms
of the distributions of the four parameters φ(b), φ(c), φ(d) and φ(e)∗, when fitting 4pLL
models to these 7191 selected probe sets individually. The main observations about the
distributions are the same as before, such that no detailed description is given here.

7.2. Descriptive analysis of the GO groups for a real dataset

Out of the 7191 probe sets that are chosen according to the criteria statistical significance
and biological relevance, 5775 probe sets can be annotated to a GO group and can thus
be used in the analysis. For the resulting GO graph, only groups with a minimum size
of 15 are considered. The final graph contains 3807 nodes and 8360 edges between these
nodes. The sizes of the GO groups are summarised in the histogram in Figure 7.7. Only
GO groups with sizes up to 100 are considered there. The number of groups with a
specific size decreases as the size increases, with most observations for size 15.
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Figure 7.6: Histograms of the four parameters φ(b), φ(c), φ(d) and φ(e)∗, when considering
only those 7191 probesets that fulfil both the criterium of statistical significance and
biological relevance.

For analyses taking biological similarities into account, only selected GO groups are
considered. These GO groups are chosen from the sets of all groups containing 15 or 30
probe sets, with a total number of 56 and 147 groups, respectively. Three groups with
size 15 and three groups with size 30 are chosen. They are chosen in a way that one
group consists of rather similar probe sets, one group consists of probe sets that are
rather different from each other and the third group lies in between these extremes,
respectively.

To assess for similarity, a correlation score is calculated for each GO group as follows:
For each probe set, concentration-wise means of the three replicates (six for the control)
are calculated. Pairwise correlations, using Pearson’s correlation coefficient, between
the resulting vectors of mean expression values are calculated. The correlation score for
the entire group is the mean value of these pairwise correlations, without considering
the correlation results of each probe set with itself. Histograms of the correlation scores
obtained this way are shown in Figure 7.8. For both sizes of the groups considered,
positive or only slightly negative correlation scores are observed. The largest values
observed are higher for groups of size 15, but the lowest values observed are similar.

For each of the sizes, three groups are chosen for the simulation study taking biological
similarities into account. One group is chosen with the respective highest correlation
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Figure 7.7: Histograms of the sizes of the GO groups when considering groups between
sizes of 15 and 100 only.
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Figure 7.8: Histograms of the correlation scores for all GO groups of size 15 (left) and
size 30 (right).

score, one with a medium value of the correlation score, and one group with the respective
lowest correlation score is chosen. Additionally, a fourth group of size 15 and of size 30 is
randomly sampled from all available probe sets, respectively. The eight groups obtained
this way, together with their respective correlation score and the biological process are
summarised in Table 7.2.

The specific courses of the probe sets in the selected GO groups are shown in Figures B.49
and B.50 in Appendix B.3. These plots show fitted curves for the 15 or 30 probe
sets, respectively, together with the half-maximal effect concentration, corresponding to
parameter φ(e). This concentration is only indicated if it is in the range of concentrations
considered, i.e. if φ(e) < 1000. Different patterns of the distribution of φ(e) can be
observed across the groups: sometimes, many similar values are attained and sometimes,
only very few of the values are actually shown in the plot.

100



7 INFORMATION SHARING 7.3 Summarising parameters using meta-analysis

Table 7.2: Summary of the eight GO groups chosen for the simulation study taking
biological similarities into account. The name of the chosen group, the correlation
score observed for the probe sets in this group and the corresponding biological process
are stated. Four groups of size 15 are chosen and four groups of size 30, whereby on
group, respectively, consists of randomly sampled probe sets.
Name Corr. Score Biological process

GO groups of size 15
GO:0001916 0.923 Positive regulation of T cell mediated cytotoxicity
GO:0030255 0.408 Macrophage differentiation
GO:0045601 −0.068 Regulation of endothelial cell differentiation
Random group −0.050 −

GO groups of size 30
GO:0034110 0.751 Regulation of homotypic cell-cell adhesion
GO:0097006 0.220 Regulation of plasma lipoprotein particle levels
GO:0048596 −0.031 Embryonic camera-type eye morphogenesis
Random group −0.029 −

7.3. Summarising parameters using meta-analysis

Two different types of simulations study are conducted for the meta-analysis approach for
information sharing. The first simulation study is based on the entire set of considered
probe sets at once. Similar probe sets, where similarity is based on correlation values,
are included in a meta-analysis and pooled estimates of φ(e)∗ are calculated. The second
type of simulation study takes biological similarities into account. Instead of the entire
set of probe sets, only subsets of probe sets that are in the same GO group are considered
as potential candidates for a meta-analysis.

7.3.1. Simulation study based on an entire plasmode dataset

The entire set of 7191 probe sets, chosen as described above while taking statistical
significance and biological relevance into account, is considered for this simulation study.
The four parameters obtained by a first fit of a 4pLL model to each of the probe sets
form the set of true underlying probe sets, called ‘gene’ from now on for simplicity. The
following procedure is conducted for each simulation run, with 1000 simulation runs in
total.

The first step is to evaluate the 4pLL models defined by the set of underlying parameters
at the concentrations of the VPA dataset, i.e. 0, 25, 150, 350, 450, 550, 800 and 1000 μM.
Normally distributed noise with mean 0 and standard deviation 0.1 is added in three
replicates to each of the concentrations, with exception of concentration 0, where six
replicates are considered. This yields a concentration-response dataset with 27 obser-
vations for each of the 7191 genes. A 4pLL model is again fitted to the concentration-
response data for each gene. All parameter values and the corresponding standard errors
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are extracted, while the main interest lies on the parameter φ(e)∗. Using the t-distribution
as explained in Chapter 4.1.3, confidence intervals for φ(e)∗ are calculated for each gene.

The next step is to determine similarities between genes via their pairwise correlation
values. For each of the genes, concentration-wise means of the response values for the
three replicates (or six, for concentration 0) are calculated. Pairwise correlation values
between genes, using Pearsons’s correlation coefficient, are determined.

A meta-analysis is calculated for each gene separately. All genes whose correlation value
with the gene under consideration is at least 0.995 form the potential set of genes included
in the meta-analysis. Especially the gene under consideration itself is included into this
set as well. Genes, to which no model can be fitted or calculation of the standard
error of ˆφ(e)

∗
is impossible, are excluded from the set. In the meta-analysis, a pooled

estimate of the individual values of ˆφ(e)
∗

is calculated as explained in Chapter 4.4.2. Up
to four confidence intervals are calculated, whereby the t-distribution-based confidence
intervals can only be calculated in situations where at least two or three genes form the
set considered for the meta-analysis. The number of genes included in the meta-analysis
is stored as additional information. The resulting datasets summarise all the measured
aspects of the simulation study for 7191 genes in 1000 simulation runs.

The first step is to consider the mean squared error (MSE) between the underlying true
value of parameter φ(e)∗ and the respective estimate, calculated directly from the model
fit or calculated by the meta-analysis. For some genes, curve fitting or the calculation of
standard errors of the estimated parameters is impossible in some simulation runs due
to numerical problems. For 7149 out of the 7191 genes, calculation of φ(e)∗ is possible
in all simulation runs, and for the other 42 genes, at most 15 simulation runs yield no
result. More missing estimates are observed for the meta-analysis, with only 5511 genes
with a complete dataset and up to 305 missing values for single genes. However, this is
only rarely observed, all in all 6870 genes have 20 or less missing values from all 1000
simulation runs.

For the gene-wise calculation of the MSE, only those simulation runs are considered
where for both the direct estimate and the meta-analysis a result is obtained. MSEs for
the direct estimate and for the meta-analysis based estimate are compared in Figure 7.9.
Each dot indicates one gene, and the colouring is based on the performance of the direct
estimation and the meta-analysis based estimation: Genes marked in red yield very small
MSEs, smaller than 0.2, for both methods. This set consists of 3957 genes in total, i.e.
more than half of the total number of genes considered. The set of blue genes consists
of 1448 genes, where the MSE based on the meta-analysis is larger than or equal to the
MSE from the direct estimation. For 1786 genes, marked in green, estimation of φ(e)∗

leads to a smaller MSE for the meta-analysis than for the direct estimation.

Therefore, for about one quarter of the genes, results become worse when applying the
meta-analysis in terms of the MSE, and the number of genes for which results improve
is not satisfactorily higher than that. These observations are further substantiated when
considering coverage probabilities (CPs) of the direct estimate in comparison to CPs
obtained from the four variants of confidence intervals for the meta-analysis. Histograms
of the CPs are shown in Figures B.51 (direct estimate) and B.52 (meta-analysis) in
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Figure 7.9: MSE of the direct estimate and the estimate based on the meta-analysis.
Each dot in the plot indicates one gene, for which the MSEs are calculated based
on up to 1000 simulation runs. The colouring is based on the resulting MSEs, with
red dots indicating that both MSEs are smaller than 0.2, blue dots indicating that
the meta-analysis based MSE yields higher results than the direct estimate and green
dots vice versa.

Appendix B.3. The different number of observations for the meta-analysis based CPs
stem from the requirements for the number of genes included in the meta-analysis for
calculation of the t-distributions. Only genes where confidence intervals can be calculated
for at least 900 simulation runs are included in the analysis.

For the 95% confidence intervals calculated here, the CPs for each gene should attain
values of approximately 0.95. However, for the direct estimate, many values are smaller
than 0.95, with the smallest observed values only slightly larger than 0.6. For the
four variants of confidence intervals based on the meta-analysis, results are even worse,
with peaks of the histograms around 0.4 and far more low than high values. Direct
comparisons of the CPs from the direct estimate and the four variants based on the
meta-analysis are shown in Figure 7.10. Again, only those genes are considered where
confidence intervals can be calculated for at least 900 simulation runs. Only those
simulation runs are considered where confidence intervals for both compared methods,
respectively, can be determined.

For none of the four methods does the CP become better for any gene when using the
meta-analysis. Direct comparisons between the four methods need to be interpreted
with caution since the number of genes that are included in these plots differ vastly.
Confidence intervals based on the t-distribution can only be calculated for genes where
at least 2 or 3 genes are included in the meta-analysis, whereas the confidence interval
based on the normal distribution can also be calculated when only one gene is in the
meta-analysis. These genes, where no gene is similar enough to be included in the meta-
analysis, lead to similar confidence intervals for the direct estimate and the meta-analysis
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Figure 7.10: Pairwise comparison of the CP for confidence intervals calculated of the
direct estimate with coverage probabilities from each of the four variants for calcu-
lating confidence intervals from the meta-analysis. Only genes, where the respective
confidence interval can be calculated in at least 900 simulation runs, are considered.

estimate. This explains the apparent better performance of the normal-distribution
based confidence interval in comparison to the other three confidence intervals.

In order to further demonstrate the deterioration of the meta-analysis based CPs for
increasing size of the meta-analysis, for each gene, the median number of genes included
in the meta-analysis across simulation runs is calculated. These median sizes are plotted
against the CPs for confidence intervals from the meta-analysis, using the normal distri-
bution. For comparison, median sizes are plotted against the coverage probabilities for
confidence intervals from the direct estimation as well. Results are shown in Figure 7.11,
with results for the direct estimates in the top and the meta-analysis based CPs in the
bottom plot.

The distribution of the CP for the direct estimate is distributed between 1.0 and 0.6
for very small median sizes of the meta-analysis. For increasing sizes, the spread of
the observed CP becomes narrower, where the values always scatter around 0.95. In
particular, this means that most of the observations with a small CP are from genes
for which there are only few or no similar genes. For the meta-analysis based CPs,
however, a relationship to the median size can be observed: Similar to the direct estimate,
observations are scattered in a range between 0.5 and 1.0 for low median sizes of the
meta-analysis. For increasing median sizes, the corresponding CPs become smaller and
are even approximately 0 relatively often from a median size of 50 and upwards.
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Figure 7.11: Median sizes of the meta-analyses plotted against the coverage probabilities
from the directly estimated confidence interval (top) and the confidence interval
based on the meta-analysis, using a normal distribution (bottom).

All in all, these analyses show that simply relying on similarities between genes without
accounting for any biological reasoning behind these similarities does not improve the
estimation of φ(e)∗ when conducting a meta-analysis including all similar genes. The
MSE is improved only little more often than it is worsened by conducting the meta-
analysis. CPs of resulting confidence intervals for the meta-analysis are clearly lower
than those for the direct estimate. A relationship can be observed between the sizes
of the meta-analyses and the meta-analysis based CPs, specifically, CPs are smaller for
larger sizes.

7.3.2. Simulation studies based on GO groups

Based on the observations from the previous section, biological similarities between genes
are taken into account when looking for potential similar genes. Instead of considering
the entire set of 7191 genes at once, only specific GO groups are selected. Potential
similar genes to be included into the meta-analyses thus are only selected from the genes
annotated to the same GO group as the gene under consideration.

In this simulation study, again, similarity between genes is determined by their respective
correlation. Eight GO groups previously introduced (Chapter 7.2) are considered: Four
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contain 15 genes each and four contain 30 genes each. The four GO groups of one size
are divided into one group with a high correlation score, one group with a medium value
of the correlation score and one group with a low correlation score. Additionally, one
fictional group of the respective size is randomly sampled from all 7191 genes. The
simulation study is conducted as explained in the previous section for each GO group
separately. The main difference is the much smaller set of genes that are potential similar
genes to be included into the meta-analysis. Furthermore, the cutoff of the pairwise
correlation that needs to be exceeded in order to include a gene into the meta-analysis
is varied between 0.915 and 0.995 in steps of 0.2.

The MSE for each individual gene is considered as the first step. This is assessed first
for a fixed correlation cutoff of 0.955. Only those simulation runs are included in the
calculation of the MSE where the direct estimate and the meta-analysis approach both
yield a valid result. No genes are excluded from the analysis here. The MSEs of the
respective 15 genes in the four chosen GO groups of size 15 are shown in Figure 7.12
and the MSEs of the respective 30 genes in the four chosen GO groups of size 30 in
Figure 7.13. In the group of size 15 with a high correlation score, the values of the MSE
are smaller when conducting the meta-analysis. For medium and small correlation scores,
four out of the 15 probe sets considered lead to a (much) larger MSE when conducting
the meta-analysis, respectively, but the MSE is very small for both methods for notably
many probe sets. Assessment of the MSEs in the randomly sampled GO group is made
difficult by one probe set leading to very large values, but for the other probe sets, the
meta-analytis approach actually performs better than the direct estimation.

For all four GO groups of size 30, however, the MSEs are smaller when conducting a
meta-analysis for several probe sets. Only for some probe sets with rather small MSE
for the direct estimate, this MSE is improved by the meta-analysis approach. In the
randomly sampled GO group of size 30, the MSE is improved for many probe sets by
the meta-analysis method. The performance of the respective methods in the eight
groups considered does not follow a clear pattern: While for the groups of size 15,
the meta-analytis method performs comparatively best in the group with the highest
correlation score, it also performs better in the randomly sampled group than in the
two groups with medium and small correlation score. Also for the groups of size 30, the
meta-analysis leads to the most improved results in the randomly sampled group.

While these MSEs are calculated for a fixed value of the correlation cutoff, in the next
step, the MSEs are calculated for varied values of the correlation cutoff. The MSE for
the direct estimate is not directly influenced by the change in the cutoff: Only in the
scenario where a higher cutoff leads to more missing values for the meta-analysis in more
simulation runs, the MSE for the direct estimate also minimally changes. However, these
changes are so small that they are neglected here. Thus, only the changes in the MSE for
the meta-analysis approach for different correlation cutoffs to be exceeded are illustrated.
These resulting MSEs for all four GO groups of size 15 are shown in Figure 7.14. The
corresponding plot for all GO groups of size 30 is shown in Figure B.53 in Appendix B.3.

In the GO group with high correlation score, the MSE becomes larger with increasing
cutoff values, i.e. the more genes are included in the meta-analysis, the better the re-
sulting MSE. For the GO groups with medium and small correlation score, the reverse
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Figure 7.12: Comparison of MSEs obtained from the direct estimate and the meta-
analysis estimate for each probe set in all four GO groups of size 15 considered.
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Figure 7.13: Comparison of MSEs obtained from the direct estimate and the meta-
analysis estimate for each probe set in all four GO groups of size 30 considered.
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Figure 7.14: Different MSEs of the meta-analysis method for the four GO groups of
size 15 when changing the correlation cutoff to be exceeded. The colour of the
respective bar indicates the correlation cutoff to be exceeded and the height of the
bar the resulting MSE for the meta-analysis approach.

relationship can be observed for most genes. However, especially for the genes leading
to a small MSE, the same observation as for the group with high correlation score holds.
For the GO groups of size 30, no clear pattern regarding the improvement or worsening
of the MSE can be observed.

The next step is the analysis of the CP. For the meta-analysis, again four different types
of confidence intervals can be calculated. Three of these types depend on sizes of meta-
analyses of at least 2 or 3, leading to many missing values. Furthermore, the results are
very similar to the results for the confidence intervals based on the normal distribution,
thus, only these results are shown here. The results for the four GO groups of size 15
are summarised in Figure 7.15. Results for the GO groups of size 30 are very similar
and not explicitly shown here. While the CPs for the confidence intervals based on
the direct estimate are mostly in a reasonable range between 0.8 and 1.0, very small
values down to a probability of 0 can be observed for the meta-analysis. Thus, also
when taking biological considerations into account, the meta-analysis method performs
far worse than the direct estimate in terms of CP.

The final step is to directly consider the sizes of the meta-analyses and to set them into
relation with the MSEs from the meta-analysis approach. The size is the number of
genes that are included in the meta-analysis. This is done only for the GO groups of
size 15 with a medium and a high correlation score since the group with a small score
and the randomly sampled group show far smaller sizes of the meta-analysis overall.
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Figure 7.15: Comparison of the coverage probabilities for the confidence interval based
on the direct estimate and the normal-distribution based confidence interval for the
GO groups of size 15.

For a fixed correlation cutoff of 0.955, the gene-wise sizes of the meta-analyses in all
simulation runs considered are shown by boxplots in Figure 7.16. Colours of the boxes
indicate the corresponding value of the MSE.

A direct result from the choice of GO groups is the larger size of meta-analyses in the
group with high correlation score. In this group, for most genes the median size of
meta-analyses across all simulation runs is 8 or higher. However, the range of observed
sizes is very broad for most genes, indicating some simulation runs where almost no
genes are included in the meta-analysis and some simulation runs where almost all
genes are included. The exception from this observation is the eighth gene, where the
resulting meta-analyses always only consist of this gene itself. Except for two genes
with comparatively low sizes and the already discussed eighth gene, the MSEs are low.
Only for the two genes with smaller sizes of the meta-analyses, the MSE is larger. This
coincides with the observations from Figure 7.14, where a smaller cutoff, i.e. more genes
in the meta-analysis, also coincides with a smaller MSE.

For the GO group with median correlation score, the median sizes of the meta-analyses
are consistently smaller than 5, and the observed range of sizes per gene is smaller
overall. No clear pattern in the relationship between size of meta-analysis and MSE
can be observed with some gene, e.g. the eighth and the 15th, leading to a small MSE
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Figure 7.16: Boxplots of the sizes of the meta-analysis for each probe set individually for
the GO groups of size 15 with high (top) and medium (bottom) correlation score.
The colour of the boxes indicate the value of the MSE for the respective gene when
using the meta-analysis method. Note that the genes in both groups are not the
same.

and other gene, e.g. the third or the ninth leading to much larger values despite similar
location and size of the boxes.

To summarise, taking biological similarities into account does not reliably lead to better
results. While the MSE is indeed improved in some of the chosen GO groups when
conducting the meta-analysis, it is not always clear from the choice of GO group, why
this is the case. For some groups, increasing the size of meta-analyses is beneficial
regarding the resulting MSE, in other groups, it is disadvantageous. This leads to the
presumption that improvement of the MSE is randomly obtained and not based on
biological features of the genes. The CP is far worse for almost all genes considered
in comparison to the CP based on the confidence intervals obtained from the direct
estimate. Thus, biological similarities defined by GO groups are not sufficient to base
information sharing using meta-analysis on in order to improve results for the estimation
of the parameter φ(e)∗.
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7.4. Shrinkage of parameters using an empirical Bayes method

For the empirical Bayes method for information sharing across genes, three simulation
studies are conducted. The methodology is equal for all studies, the only difference is the
underlying set of genes on which the simulated datasets are based. First, a completely
synthetic dataset is used, then a normalised version of the VPA dataset is used, and
finally, the simulation study is conducted for the true VPA dataset. In the following,
for simplicity, probe sets are called ‘genes’ again. More details about the format of the
dataset are given in the respective section.

The increasingly realistic choice of datasets is conducted to obtain results both in sit-
uations where all assumptions are fulfilled and in situations that are closest to reality.
The main assumption is given by the normal distribution of parameter φ(e)∗. To recall
the distribution of this parameter, Figure 7.17 shows a histogram of the respective pa-
rameter values. While again the set of 7191 genes that are both statistically significant
and biologically relevant are the basis of this histogram, only those genes are considered
where φ(e)∗

> 0 and φ(e)∗
< log(2000) = 7.6. Thus, genes with inflection points at un-

reasonably high or low concentrations are excluded from this display, leaving 5719 genes.
Additionally, curves for estimated normal distributions are indicated in the plot. The red
curve corresponds to the normal distribution estimated using the maximum-likelihood
(ML) approach. The blue curve corresponds to the normal distribution estimated using
the robust approach, making use of the median and the MAD (Chapter 4.4.3).

0.0

0.3

0.6

0.9

4 5 6 7 8

φ(e)*

D
en

si
ty Normal distribution:

ML estimation

Robust estimation

Figure 7.17: Histogram of the values of parameter φ(e)∗ where φ(e)∗
> 0, truncated at

log(2000) = 7.6 for genes that are statistically significant and biologically relevant.
The density of estimated normal distributions are added for the ML approach (red)
and the robust approach (blue).
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It can be observed that the symmetry in the histogram corresponds to the symmetry of
the estimated normal distributions. The density for the mean value, however, is much
too small for the ML estimation and still a little too small for the robust estimation.
The tails of the actual distribution as seen in the histogram and the estimated normal
distributions do not fit well. In the range closer to the mean, the density of the observed
values is too low, and for values of φ(e)∗ further away from the mean, the density of the
observed values is too high.

The set of genes considered in the respective simulation study is given in the form of the
four parameters of the 4pLL model. The simulation is conducted as follows: For each
simulation run, separately, the first step is to simulate a concentration-response dataset.
This is achieved by evaluating a 4pLL function with the parameters of each gene at the
concentrations of the VPA gene-expression study, i.e. 0, 25, 150, 350, 450, 550, 800, and
1000 μM. Normally distributed noise with mean 0 and standard deviation 0.1 is added
to each of the concentrations in three replicates, with exception of the control, where six
replicates are added. This leads to a dataset with 27 observations for each of the genes
considered.

The next step is to fit a 4pLL model to each gene. All parameter values together with
corresponding standard errors are extracted, with main interest in the parameter φ(e)∗.
Prior mean and prior variance for the empirical Bayes procedure are estimated directly
from the dataset. This is done in two variants: In the first variant, the prior mean and
variance are calculated as sample mean and sample variance of the estimates of φ(e)∗, i.e.
with the ML approach, for all genes in one simulation run. In the second variant, instead
of sample mean and sample variance, the median and the squared MAD are used. Note
that whenever values of the MAD are shown, these are the values after multiplication
with the factor 1.4826 as defined in Chapter 4.4.3. The posterior means and posterior
variances are calculated for each gene individually, making use of the prior values as
explained above, the specific estimate of φ(e)∗, and its standard error.

This procedure is conducted for 1000 simulation runs. The main goal of the simulation
study is a small MSE, where the estimates of the 1000 simulation run for the direct
estimation and the Bayesian estimation are compared to the true underlying value of
φ(e)∗ for each gene. As a second goal, the CPs of the direct confidence interval and the
credible interval from the Bayesian approach are compared.

7.4.1. Simulation study based on a synthetic dataset

The first simulation study is based on a completely synthetic dataset, i.e. the four pa-
rameters determining a 4pLL model are randomly sampled for each gene individually.
All in all, 5000 genes are simulated, while retaining the basic features of the distributions
of the parameters from the VPA dataset.

The parameter φ(b) is simulated using a normal distribution with mean 0 and standard
deviation 4. To account for the fact that only genes with a notable slope shall be
included in the simulation studies, all observations of φ(b) in the range from −0.2 to 0.2
are re-sampled according to the same normal distribution. In the bivariate analysis from
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Chapter 7.1, a correlation between parameters φ(c) and φ(d) can be observed. Therefore,
these parameters are simulated from a bivariate normal distribution with mean values 5
and 8 and the following covariance matrix:(

5 2.7
2.7 4

)

These values are based on the covariance between parameters φ(c) and φ(d) as observed
in the real dataset. Finally, the parameter φ(e)∗ is simulated using a normal distribution
with mean 6.2 and standard deviation 0.9.

Histograms showing the distributions of the four parameters are shown in Figure B.54
in Appendix B.3. The relationship between parameters φ(c) and φ(d) is shown in Fig-
ure B.55, where the gene-wise observations are plotted against each other. It can be
observed that, although the triangle shape is not reproduced here, in the vast majority
of cases, φ(d) is larger than φ(c), analogously to the original VPA dataset.

First, the priors from the Bayes analysis, using both the ML and the robust estimates,
are assessed. Histograms of the priors observed in all 1000 simulation runs are shown
in Figure 7.18. The distribution of the robust estimated prior parameters (bottom) is
much narrower than the distribution of the ML estimations (top), especially for the
measures of dispersions. Empirical mean priors mostly take values between 6.0 and 6.6,
corresponding to concentrations of approximately 400 and 735. The empirical prior
MAD always takes a value around 1, while the smallest observed empirical prior standard
deviations start at 2 and values even larger than 10 are observed.

Since estimation of the posterior distributions depends on the standard error of the
direct estimation, the posterior distribution can only be calculated in the case that
this standard error can be calculated. A total of 523 genes for which estimation of the
posterior distribution is not possible in more than 200 simulation runs are excluded from
further analysis, leaving 4477 genes in the analysis. For calculation of MSE and CPs,
only those simulation runs are taken into account where an estimate is obtained for the
direct estimation and the Bayesian estimations.

The next step is to examine the MSE across all 1000 simulation runs for the 4477 re-
maining simulated genes. These MSEs are calculated once for the estimation stemming
directly from the fitted curve and once for the Bayesian estimates based on ML esti-
mation. The comparison of these MSEs is shown in the left plot of Figure 7.19. The
colours in the plot are chosen as follows: If the MSE from the Bayesian estimation is
smaller than the MSE from the direct estimation, divided by 1.1, the corresponding dot
is coloured green. If the Bayesian MSE is larger than the direct MSE multiplied by 1.1,
the colour is black. The dots in between these margins are blue. Additionally, all dots
where both MSEs are smaller than 0.2, i.e. where the MSEs are essentially negligible,
are coloured in red.

All in all, only 2 dots are coloured black, 38 dots are coloured blue, 1530 dots are coloured
green and the remaining 2907 dots are coloured red. This means that estimation of φ(e)∗

is improved by using the Bayes method with ML estimation for 1530 genes, while results
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Figure 7.18: Histogram of the prior estimates for the empirical Bayes method to estimate
the parameter φ(e)∗. Results for ML estimation are shown at the top, results for
robust estimation at the bottom of the plot.

are worse only for 2 genes. To find patterns in the entire set of genes, indicating whether
an improvement of the fit can be achieved, the true underlying parameters φ(b) and
φ(e)∗ are plotted against each other, shown in the right plot of Figure 7.19. Genes with
improved estimation when using the Bayes methodology have very small values of φ(b)

or rather large values of φ(e)∗. The blue dots, indicating genes where applying the Bayes
method does not lead to better results than the direct estimate, can only be found for
values of φ(e)∗ in the range between 7 and 9.

The final step of the analysis is to consider the CPs of the resulting confidence or
credible intervals. As for the MSE, only those simulation runs are considered where the
direct estimate and the Bayes methods allow calculation of the respective interval. A
histogram of the CP for the confidence intervals obtained by the direct estimate is shown
in Figure 7.20 (left). Most observations scatter around 0.95, indicated by a red vertical
line, which is the probability that should be achieved for the 95% confidence intervals
considered. However, observations go as low as approximately 0.6.

A direct comparison of the CPs for the direct estimate and for the credible intervals
obtained by the Bayes method using ML estimation is shown in the right plot of Fig-
ure 7.20. The dots plotted there are coloured as in Figure 7.19. It can be observed that
the CPs are almost equal for both methods. Higher CPs are observed for genes with
very small MSEs, coloured in red, and lower CPs for genes with larger MSEs, coloured
in green.

Corresponding results for the Bayes method based on the robust estimation are shown in
Figures B.56 and B.57 in Appendix B.3. Briefly, the robust estimation performs worse
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Figure 7.19: Left: Comparison of MSE for the direct and the Bayes estimate, based on
ML estimation. If the Bayesian MSE is smaller than the direct MSE divided by 1.1,
the corresponding dot is coloured green, and the colour is black if the Bayesian
MSE is larger than the direct MSE multiplied with 1.1. The dots in between are
blue. All dots where both MSEs are smaller than 0.2 are coloured in red. Right:
True underlying parameters φ(b) and φ(e)∗ plotted against each other and coloured
according to the comparison of MSEs. These are the results for the synthetic dataset.

Figure 7.20: Left: Histogram showing the CPs for the confidence intervals obtained by
the direct estimate. Right: Comparison of these CPs with the CPs for the credible
intervals obtained by the Bayes method. Colours are the same as in Figure 7.19.
These are the results for the synthetic dataset.

than the ML estimation: For 1423 genes, the MSE for the Bayes estimate is smaller
than the MSE for the direct estimate, but for 181 genes, it is worse. The MSE of the
Bayes method for those genes, where an improvement can be observed, is far smaller
in comparison to the MSE of the direct estimate. The genes where the Bayes method
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does not lead to better results are mainly those with rather large or rather small true
underlying values of φ(e)∗ and corresponding values of φ(b) that are not close to 0. CPs for
the direct and the Bayes estimate are similar to each other, but with a larger dispersion
than observed for the ML method. In few cases, the CP observed for the Bayes method
is far lower, with observations at 0 even, than the one for the direct estimate.

To briefly summarise results from the simulation study for the synthetic dataset, it can be
stated that in terms of MSE, the Bayes method leads to an improvement in comparison
to the direct estimate. This improvement does not come at the cost of lower CPs of the
credible interval. Instead, they are almost equal to the CPs of the confidence intervals
obtained by the direct estimate. In general, the ML estimation of the prior distribution
leads to better results than the robust estimation.

7.4.2. Simulation study based on a normalised plasmode dataset

The second simulation study is based on a set of true underlying parameters that closely
resembles the VPA dataset, while still ensuring that the assumption of normality for
parameter φ(e)∗ is fulfilled. The set of 7191 genes, chosen according to statistical sig-
nificance and biological relevance, as introduced before, is again considered. Similar to
Figure 7.17 only those genes are considered where φ(e)∗

< log(2000). Quantile normali-
sation is applied to all 5723 observations of parameter φ(e)∗, leading to normalised values
that follow a normal distribution with the same mean and variance as the original values.
The other three parameters remain unchanged. The simulation study is conducted as
described before.

Histograms of the distribution of the prior parameters, shown in Figure B.58 in Ap-
pendix B.3, are very similar to those from the synthetic dataset. As for the synthetic
dataset, genes with more than 200 missing estimates are excluded from further analy-
ses. This is true for 373 genes, leaving 5350 genes in the analysis. Again, only those
simulation runs are taken into account where an estimate is obtained for both the direct
estimation and the Bayesian estimations.

The first step again is the comparison of the MSE obtained by the direct estimation and
by the Bayes method using the ML estimation. The MSEs are shown in Figure 7.21
(left), whereby the colours are chosen by the same rules as explained for the synthetic
dataset. 25 dots are coloured in black, corresponding to genes where the Bayes method
performs worse than the direct estimate. On the other hand, for 1851 genes, the Bayes
method performs notably better. 42 dots are coloured in blue and the remaining 3432
dots are coloured red.

The right plot of Figure 7.21 shows the true underlying parameters φ(b) and φ(e)∗ coloured
according to the comparison of MSEs. Since in this simulation study the true underly-
ing set is closer to the real datasets, some artefacts influencing the distribution of the
colours can be observed. As in the previous analyses, almost all genes with a values of
φ(b) close to 0 are coloured in green. The entire set of genes with φ(e)∗ ≈ 7, approx-
imately corresponding to the highest measured concentration 1000, is coloured green.
Additionally, many genes with φ(e)∗ ≈ 4.6, corresponding to a concentration of 100, are
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Figure 7.21: Left: Comparison of MSE for the direct estimate and the Bayes estimate
based on the ML estimation. Right: True underlying parameters φ(b) and φ(e)∗

plotted against each other and coloured according to the comparison of MSEs. These
are the results for the normalised dataset.

coloured green. Black and blue dots occur for the largest and the smallest values of φ(e)∗

where φ(b) is not close to 0.

The CPs from the confidence intervals obtained by the direct estimate and the com-
parison of CPs for the direct estimate and the Bayes method are shown in Figure 7.22,
whereby the colours stem from Figure 7.21. Most of the observed probabilities are
around 0.95, but again values as low as 0.6 are observed. The comparison shows the
very similar results in terms of CPs, that also cluster as described in the previous section
with regards to the colours.

Corresponding results for the Bayes estimation using the robust estimated priors are
shown in Figures B.59 and B.60 in Appendix B.3. As for the synthetic dataset, the
results are notably worse than for the ML estimation. Especially for genes with true
underlying values of φ(e)∗

> 7 or φ(e)∗
< 4.8, the Bayes method often leads to worse

results, in terms of MSE and CP.

7.4.3. Simulation study based on an entire plasmode dataset

The final simulation study is conducted with the original parameters obtained directly
from the VPA dataset as set of underlying genes. Again, the set of 7191 genes fulfilling
the criteria of statistical significance and biological relevance is considered. Only those
genes with φ(e)∗

> log(2000) and the four genes with φ(e)∗
< 0 are excluded from

the analysis, leaving 5719 genes in the analysis. The simulation study is conducted as
described above.
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Figure 7.22: Left: Histogram showing the coverage probabilities for the confidence in-
tervals obtained by the direct estimate. Right: Comparison of this coverage proba-
bility with the coverage probability for the credible intervals obtained by the Bayes
method. Colours are the same as in Figure 7.19. These are the results for the
normalised dataset.

The priors are shown in Figure B.61 in Appendix B.3. The main difference to the priors
for the synthetic and the normalised dataset is that the measures of dispersion take
comparatively smaller values. Only 117 genes are excluded from the analyses for this
dataset due to more than 200 missing values, leaving 5602 genes in the analysis. For
calculation of MSE and CPs, only those simulation runs are taken into account where
an estimate is obtained for all methods.

Comparison of the MSEs is shown in Figure 7.23, together with the true underlying
parameters φ(b) and φ(e)∗, coloured as described before. For 35 genes, the Bayes method
leads to a larger MSE than the direct estimate. However, also the MSE based on the
Bayes method is still comparatively low for these genes. These genes correspond to low
values of φ(e)∗ about 4 or high values of approximately 7.6. Still, for 1687 genes, the MSE
is improved when conducting the Bayes procedure. In comparison, this improvement is
even greater than in the two previous simulation studies. No difference can be observed
for 11 genes and the remaining 3869 genes, coloured in red, lead to very low MSEs for
both methods. The patterns in the data are the same as observed before.

Also the results regarding the CPs, shown in Figure 7.24 first for the direct estimate only
and then for the comparison of direct estimate and Bayes method, are very similar to
the ones observed before. The lowest observed CPs are even higher than for the previous
simulation studies. On the other hand, for very few genes, the Bayes method leads to
lower CPs than the direct estimate. The dots with the largest differences are coloured
green, i.e. the Bayes method performs better than the direct estimate in terms of MSE,
so that the credible intervals resulting from the Bayes method seem to be too narrow
rather than structurally biased.
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Figure 7.23: Left: Comparison of MSE for the direct estimate and the Bayes estimate
based on the ML estimation. Right: True underlying parameters φ(b) and φ(e)∗

plotted against each other and coloured according to the comparison of MSEs. These
are the results for the original plasmode dataset.

Figure 7.24: Left: Histogram showing the coverage probabilities for the confidence in-
tervals obtained by the direct estimate. Right: Comparison of this coverage proba-
bility with the coverage probability for the credible intervals obtained by the Bayes
method. Colours are the same as in Figure 7.19. These are the results for the original
plasmode dataset.

Corresponding results, again very similar to the results observed before, for the Bayesian
method based on robust estimation of the priors are shown in Figures B.62 and B.63 in
Appendix B.3.

The three simulation studies presented above are increasingly closer to the real under-
lying dataset and at the same time moving further away from the assumptions. The
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first simulation study based on the synthetic dataset shows the least genes with a lower
MSE for the Bayesian method in comparison to the direct estimate. However, for this
method, most genes have to be excluded from the analysis due to the inability to esti-
mate the standard error of the estimate and thus preventing the calculation of the Bayes
method. The normalised and the original dataset, retaining more features of the real
VPA datasets, also allow for drastic improvements of the MSE when using the Bayes
method for the vast majority of genes, while only for very few genes, the MSE becomes
larger. The improvement in the simulation study based on the original plasmode dataset
is even greater than for the other two simulation studies. This underlines the impor-
tance of accurately capturing the actual concentration-gene expression profiles observed
in real data. These improvements of the MSE do not yield a decrease in the CPs of the
resulting credible intervals in comparison to the confidence intervals.

7.5. Application to a real dataset

The meta-analysis and the Bayes method are applied to the real VPA gene expression
dataset that is also used as basis for the simulation studies presented above. In contrast
to the simulation studies, no new response data is simulated based on the previously
fitted parameter values. Instead, the concentration-response data as originally measured
is used. Since the true value of φ(e)∗ is not known in this case, only comparisons of
the different estimates can be made. Some probe sets and their respective estimates
are examined individually to see the specific influence of the other probe sets or the
empirical prior distribution on the final estimate in detail.

7.5.1. Meta-analysis for a real dataset

The meta-analysis is assessed in detail for the two GO groups of size 15 that yield a high
and a medium correlation score. These two groups are ‘GO:0001916’ and ‘GO:0030225’.
In the group with high correlation score, with the exception of one probe set, all pairwise
correlations are higher than 0.90 and for far more than half of the comparisons even
higher than 0.95. Only for one probe set, all pairwise correlations with the other probe
sets are between 0.5 and 0.8. In the group with medium correlation, two probe sets
are strongly negatively correlated with the other probe sets. The rest of the pairwise
correlations are slightly smaller than the one in the other group, with a few values larger
than 0.85 and only very few correlations larger than 0.95.

The meta-analysis approach is conducted as explained before for these two datasets,
each comprising 15 probe sets, separately. A cutoff of 0.955 to determine the probe sets
to be included in the meta-analysis is used. Direct comparisons of the direct estimates
and the meta-analysis estimates obtained for both GO groups are shown in Figure 7.25.

In the group with high score, only one probe set yields the same estimate for the meta-
analysis and the direct estimate. This is the probe set with the lowest correlation to each
of the other probe sets, thus no other probe set is included in this meta-analysis. For
the remaining 14 probe sets, the meta-analysis estimate takes values around 5.5, while
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Figure 7.25: Comparison of the estimates obtained using the direct estimate and the
meta-analysis method for the GO group with a high correlation score (left) and the
GO group with a medium correlation score (right). Two probe sets that are examined
in further detail are marked in red.

the direct estimates range from 5.0 to 7.0. At least 7 probe sets are included in each
meta-analysis, and sizes go up to 14. For the GO group with medium score, however,
most estimates are the same or almost the same for the direct estimate and the meta-
analysis. Only for two probe sets, notably smaller values are estimated when using the
meta-analysis in comparison to the direct estimate. The sizes of the meta-analyses are
very small with a maximum size of 4 probe sets and only the size of 1 for 6 probe sets,
i.e. no additional probe sets are included in the meta-analysis.

The two probe sets corresponding to the red dots from Figure 7.25 are examined in more
detail. First the probe set is considered where the direct estimate yields a larger value
than the meta-analysis based estimate. The fitted curve for this probe set together with
the fitted curve of the 8 additional probe sets included in the meta-analysis are shown
in Figure 7.26 (left). In red, the concentration corresponding to the direct estimate of
φ(e)∗ is indicated, which takes a value of 543. The concentration from the meta-analysis,
with a value of 269, is much smaller.

All individual estimates of φ(e)∗ together with their respective confidence intervals and
the resulting estimate from the meta-analysis are summarised in a forest-plot in Fig-
ure 7.26 (right). The probe set under consideration is marked with an asterisk. The
estimates for all additional probe sets in the meta-analysis are smaller than the estimate
for the probe set under consideration. This can also be seen from the fitted curves since
most of them start increasing at smaller concentrations and are already saturated in the
range of concentrations considered. In comparison, the estimate for the considered probe
set is subject to much uncertainty, as indicated by the large confidence interval. Thus,
this estimate has less influence on the result of the meta-analysis than the estimates
from probe sets with a smaller standard error. This results in the far lower estimate for
the meta-analysis than for the direct estimate.
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Figure 7.26: Left: Fitted concentration-response curve of the probe set considered with
concentration-wise means indicated by dots. In grey, all additional probe sets in-
cluded in the meta-analysis are plotted. The red line indicates the concentration
corresponding to the direct estimate of φ(e)∗ and the blue line the concentration cor-
responding to the meta-analysis estimate. Right: Summary of the estimates for all
probe sets included in the meta-analysis together with the 95% confidence interval
based on the normal distribution, and the final random-effects model result. The
original probe set considered is indicated by (∗).
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Figure 7.27: Examination of a specific example probe set with the same structure as
Figure 7.26.

Corresponding results for the second probe set considered are shown in Figure 7.27. The
concentrations corresponding to the direct estimate and the meta-analysis estimate are
close to each other with values of 223 and 260, respectively. Ten probe sets in total
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are included in the meta-analysis, with all of them yielding larger estimates than the
considered probe set. The largest estimate observed for this set of probe sets shows a
very large confidence interval and thus has only very little influence on the final result.
The other estimates are closer to each other and show narrower confidence intervals.
The direct estimate of the considered probe set is subject to little uncertainty, thus it
strongly influences the meta-analysis estimate.

7.5.2. Shrinkage for a real dataset

Finally, the Bayes methodology is applied to the 5719 probe sets considered in the
simulation study based on the original plasmode dataset in Chapter 7.4.3. Here, the
original dataset is used, consisting of 27 observations for each probe set. A 4pLL curve
is fitted for each probe set. The resulting distribution of parameter φ(e)∗ is the same as
shown in Figure 7.17. Based on this distribution, the priors for both variants of the Bayes
method are calculated: The ML estimation results in the prior parameters μ̂ML = 6.218
and τ̂2

ML = 0.361. The robust estimation results in μ̂rob = 6.232 and τ̂2
rob = 0.226, thus

the median is slightly larger than the mean and the squared MAD is smaller than the
variance. Using these prior parameters, the Bayes procedure is conducted for each probe
set individually.

A direct comparison of the estimates obtained using the 4pLL curve directly and applying
the Bayes method is shown in Figure 7.28. The shrinkage of the parameters towards the
prior mean value, indicated by a red line, can clearly be observed there: For probe sets
whose direct estimate is smaller than the respective prior mean, the Bayes estimate is
larger or equal, but never smaller, and for probe sets whose direct estimate is larger than
the respective prior mean, the Bayes estimate is smaller or equal, but never larger than
the direct estimate. The larger values tend to be shrunken more than the smaller values,
indicating more uncertainty in the estimation of φ(e)∗ when this parameter attains a
large value.

In the next step, the lengths of the confidence intervals and credible intervals for each
probe set are directly compared. The lengths of the respective intervals are plotted
against each other in Figure 7.29, for the ML and the robust estimation method both.
For fixed prior values across an entire dataset, as is the case here, the length of the
credible interval only depends on the standard error of the estimate φ(e)∗. Analogously,
for equal sizes of the dataset, the length of the credible interval also depends on this
standard error only. This explains the functional relationship observed between the two
lengths. In general, the credible intervals are far narrower than the confidence intervals,
with maximum lengths observed at approximately 1.5 and 1.2 for the Bayes method,
while lengths larger than 10 are observed for the confidence intervals.

As final step, three probe sets are examined individually in more detail. The three
example probe sets are chosen in a way that for one probe set, the direct estimate is
larger than the prior mean and thus the Bayes estimate is smaller, for one probe set,
the opposite holds , and for the third probe set, almost no difference between the direct
and the Bayes estimate can be observed. The choice of the three examples is illustrated

123



7.5 Application to a real dataset 7 INFORMATION SHARING

Figure 7.28: Comparison of the estimates obtained by the direct estimate and the Bayes
method, with priors estimated using the ML method (left) and priors estimated using
the robust method (right). The blue line indicates the respective prior mean of the
normal distribution.

Figure 7.29: Comparison of the widths of the confidence intervals obtained by the direct
estimation with the width of the credible interval obtained by the Bayes estimation.
Results of the ML estimation are shown left and results of the robust estimation
right.

in Figure 7.30 (top left) which shows the comparison of the estimates as already shown
in Figure 7.28, but with the three chosen probe sets highlighted in red.

The complete concentration-response profiles together with the fitted 4pLL curves, the
concentration corresponding to the direct estimate and the Bayes estimate using the ML
method are shown in the other three plots of Figure 7.30. The first probe set (top right)
has an increasing concentration-response profile. The fitted curve is not yet saturated in
the range of concentrations considered, thus the concentration where the half-maximal
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Figure 7.30: Top left: Comparison of direct estimate and Bayes estimate of φ(e)∗. The
red points indicate the three example probe sets chosen for more detailed examina-
tion. The other three plots show the concentration-response dataset together with
the fitted curve for the three examples chosen. The red vertical line indicates the con-
centration corresponding to the direct estimate and the blue line the concentration
corresponding to the Bayes estimate when using the ML method.

effect is achieved takes the relatively high value of approximately 920. This corresponds
to an estimate of ˆφ(e)

∗
= 6.821 with a squared standard error of 0.701, which is quite

large in comparison to the prior variance. Thus, the prior mean has more influence
on the resulting Bayes estimate than the observation itself, leading to an estimate that
corresponds to a concentration of approximately 620. This value seems more plausible
when only considering the response values of the actually measured concentrations.

The second probe set considered (bottom left) shows a decreasing concentration-response
profile with a right-sided asymptote that corresponds to a value only slightly lower than
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the response for the highest concentration considered, i.e. the curve is almost saturated in
the range of concentrations considered. The direct estimate of ˆφ(e)

∗
= 5.764 corresponds

to a concentration of approximately 320, and the squared standard error takes a value
of 0.234, so it is smaller than τ̂2

ML, leading to more influence of the actual observed value
for the calculation of the Bayes estimate. The Bayes estimate takes a value of 5.943,
corresponding to the concentration of 380 and is larger than the originally observed
value, but smaller than the prior mean.

The third and final probe set considered (bottom right) also has a decreasing profile. The
direct estimate of ˆφ(e)

∗
= 6.223 almost corresponds to the prior mean of 6.218, also the

squared standard error of 0.352 is almost equal to the prior variance of 0.361. Thus, the
Bayes estimate, taking a value of 6.220, is only slightly higher than the observed value.
These values correspond to a half-maximal effect concentration of approximately 500.
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8. Conclusion and Discussion

In this thesis, three different statistical aspects for calculating alert concentrations from
concentration-response data were considered. All three aspects were motivated from an
application-oriented perspective and from problems arising in day-to-day toxicological
work. Two types of concentration-response data were considered, namely cytotoxicity
data, where the response is given by viability of cells, and gene expression data. For all
three aspects, different statistical approaches were introduced and compared in controlled
simulation studies in order to give recommendations regarding the best approach for
analysing the specific type of data. The different methods were also applied to real
datasets and results were compared to each other.

All three aspects were centred around the fitting of concentration-response data with a
parametric curve. Specifically, the 4pLL model was used, which yields a monotonous,
sigmoidal curve. The model function depends on four parameters, two for the upper
and lower asymptote, respectively, one parameter that is proportional to the slope and
one parameter that corresponds to the concentration where the half-maximal effect can
be observed. Different alert concentrations, indicating a biological relevant and/or sta-
tistical significant effect of the compound of interest can be derived from these curves.
The three aspects examined here are aimed at improving the estimation of these alert
concentrations in the specific situations considered.

The first aspect was the problem of deviating controls, occurring in the context of cyto-
toxicity data. The term ‘deviating controls’ describes a situation in which the response
values for the replicates of the negative control and the response values for the lowest
tested positive concentrations differ from each other. Thus, when fitting a 4pLL model
to this data that is normalised with respect to the control values, a curve is obtained
whose upper asymptote does not correspond to a viability of 100%. Alert concentra-
tions of interest are the EC values, where for λ ∈ (0, 100), the ECλ corresponds to the
concentration at which the fitted curve attains a value of 100 − λ%. However, if the
upper asymptote does not correspond to a value of 100%, EC values are meaningless in
interpretation.

Four different methods that deal with the problem of deviating controls were introduced.
In brief, three methods are based on the 4pLL model. For the first method the data
are re-normalised based on the upper asymptote of a preliminary fit, for the second
method the upper asymptote is forced through the value of 100% when normalisation
is conducted with respect to the controls, and for the third method the controls are
completely omitted. The fourth model makes use of the Brain-Cousens (BC) function,
where a hormesis effect can be modelled. In this case, deviating values of the controls
are considered in the model instead of dealing with them by normalisation of all values.

The extent of the problem of deviating controls was assessed by conducting an extensive
literature review in three leading toxicological journals. Approximately 2200 papers were
searched for viability curves fulfilling a set of criteria, and the respective curves were
assessed for deviating controls. In this manner, 709 curves were chosen for analysis,
524 of which could additionally be analysed with respect to standard deviations. The
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standard deviation was smaller than 10 in the majority of cases and smaller than 20 in
almost all cases. Positively and negatively deviating controls occurred equally often with
non-negligible deviations (i.e. deviations larger than 2 or smaller than −2) in far more
than half of the cases and even deviations larger than 10 or smaller than −10 reasonably
often. Thus it was shown that this is a problem occurring frequently in published data.

To really grasp the extent of this problem, however, a review in unpublished data would
be necessary. The worst cases of deviating controls are probably not published, thus a
bias in the results is plausible. Furthermore, the deviations and the standard deviations
were mostly estimated visually, leading to additional sources of variation. Access to raw
data would yield much more precise estimations of the deviations.

The four methods introduced for dealing with this problem were compared in a controlled
simulation study. In this study, several scenarios were examined that differed in terms of
the number of concentrations considered and the choice of the concentrations themselves.
Additionally, different standard deviations of the three replicates per concentrations and
different values of the deviations of the controls were considered. Main results are that
the method where the upper asymptote is forced through the value of 100% performs
worst in terms of the quality of the estimation of EC values. Omitting the controls very
often leads to very good results, especially for large deviations of the controls, and in
situations where the upper asymptote can be estimated well based on the remaining
concentrations. The re-normalisation procedure is also competitive, especially when no
or only few concentrations are measured in a range where no decrease in viability can be
observed. The BC-based method yields good results as well when controls are negatively
deviating, but needs to be visually checked for plausibility in case of positively deviating
controls.

Based on the observations from the simulation study, an algorithm was proposed that
helps to decide which method to use. This algorithm was summarised in Figure 5.10.
The major drawback of the results of the simulation study is the need to know the
specific situation that is reflected by a given curve in order to decide which method
to use. However, without measuring response values for several low concentrations for
which the compound does not yet inhibit viability, estimation of the deviation of the
controls is not possible. This problem was already addressed by the algorithm, where
typical properties of the situations that can actually be observed from a real-data curve
are used for decision making.

One further possibility to address this issue is to average several curves obtained from the
four different methods introduced for dealing with deviating controls. Instead of selecting
only one curve based on which the EC value is calculated, a weighted mean of curves can
be calculated, thus also leading to a weighted mean of EC values as final result. This
procedure is called model averaging in contrast to the model selection performed here.
The weights can be based on some quality criterion of the curve, e.g. the information
criteria AIC and BIC. Including knowledge about the typically observed deviations of
the controls is possible via prior information included in the calculation of the weights
(Link and Barker, 2006). Inference for these model-averaged derived parameters while
controlling the type I error rate is also possible, at least for sufficiently high sample size
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(Jensen and Ritz, 2015). Ongoing research based on calculating the weights via AIC
and no further prior information shows first promising results.

In the second topic, gene expression data was considered. An alert concentration of inter-
est in this context is the concentration, where the fold change (FC, i.e. the difference of
mean response values for two concentrations) in comparison to the control value exceeds
a given threshold λ. Established alert concentrations are given by the ALOEC (abso-
lute lowest observed effective concentration) and the LOEC (lowest observed effective
concentration). These alert concentrations only take the measured concentrations into
account and determine the lowest concentration, where the FC is exceeded (ALOEC)
or significantly exceeded (LOEC). In order to assess the significance for the LOEC, a
two-sample t-test or the Dunnett procedure can be employed.

Results from the (A)LOEC stem from the discrete set of measured concentrations only.
In contrast, fitting a parametric curve to the data and determining alert concentrations
based on this curve allows for any positive concentration as alert concentration. Thus,
two model-based concentrations are examined: The ALEC (absolute lowest effective
concentration) is the continuous equivalent to the ALOEC, and it is calculated as the
concentration where the fitted curve attains the response value f0 ± λ, with f0 denot-
ing the asymptote of the fitted curve for the concentration tending towards 0. The
LEC (lowest effective concentration) correspondingly is the continuous equivalent to the
LOEC and is determined as the concentration where the fitted curve significantly ex-
ceeds the response value f0 ± λ. A statistical test based on the 4pLL model was derived
that, together with a version of the bisection method as search algorithm, allows deter-
mination of the LEC. Methods introduced in this thesis are extensions from the methods
introduced in the same context by Grinberg (2017).

The four different methods to calculate alert concentrations, with (A)LOEC also called
‘observation-based’ and (A)LEC ‘model-based’ methods, were compared in a controlled
simulation study. Three different concentration-response profiles were considered as true
underlying curves, with one scenario representing the null situation where the threshold
is never exceeded and thus no alert concentration can be calculated. Each of these three
scenarios was assessed in three variants regarding the choice of standard deviation for
the simulated datasets. The LOEC was calculated using both the t-test and the Dunnett
procedure.

In all cases considered, the model-based methods performed better than the observation-
based methods, in terms of overestimating the true underlying alert concentrations less
drastically while at the same time not yielding too many false positive results, i.e. re-
sults that underestimate the true alert concentrations. In the scenario where no alert
concentration could be calculated, for all methods taking significance into account the
proportion of false positive alerts was smaller than the significance level of 5%. While
the observation-based methods, especially the LOEC, vastly overestimated the true alert
concentration, the model-based methods lead to narrow distributions around the true
value. Generally, model-based estimates lead to smaller results than observation-based
estimates. Especially for the situations of large variances, more valid estimates were
obtained using the model-based methods.
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Comparison of the LOECs based on the t-test and the Dunnett procedure showed that
both methods lead to very similar results with no structure behind larger or smaller
results for one or the other method. Additionally to these results, coverage probabilities
for the confidence intervals obtained by the ALEC were calculated. These probabilities
were mostly in the same range for all situations considered, but lower than would be
desired for 95% confidence intervals that were calculated.

An advantage of the model-based approaches clearly is the independence of the measured
concentration levels, as any positive concentration is allowed as result. Moreover, in
contrast to alert concentrations as the EC50 that heavily depend on the values of the
asymptotes, (A)LEC values can also be estimated reliably in the case of an incomplete
concentration-response dataset. In such a situation, the right-sided asymptote can still
be extrapolated by fitting a curve, but in doing so, it is accepted that the asymptote
may be slightly biased. Such a biased estimation has only little impact on the (A)LEC
since the threshold λ that is to be exceeded is pre-specified and does not depend on the
values of the asymptotes.

The distribution of the test statistic under the null hypothesis for the newly developed
test based on the 4pLL model is only asymptotically a standard normal distribution.
In typical toxicological applications, the sample size is too small to allow asymptotic
statements. Thus, other methods for calculating p-values to reach a test decision should
be examined, for example resampling-based approximate distributions.

The third topic also dealt with gene expression data, mainly for the specific case of
microarray data where response values are measured for tens of thousands of genes
simultaneously. The goal was to find methods that allow the sharing of information re-
garding the model parameters of fitted 4pLL curves, thus leading to improved estimations
of the model parameters. The parameter indicating the log-transformed concentration
corresponding to the half-maximal effect of the curve, φ(e)∗, was chosen as alert concen-
tration of interest. This is a reasonable indicator for relevant change in the observed
gene expression.

Two different statistical approaches were examined: In the first approach, the assumption
of a normal distribution of parameter φ(e)∗ was exploited to perform a meta-analysis. For
a specific gene, all genes that are similar to this gene in terms of correlation are included
in the meta-analysis. Then a random-effects model, making use of the DerSimonian-
Laird estimator for the heterogeneity, is calculated based on the estimates of φ(e)∗ and
the respective standard errors for all genes considered.

The second approach is an empirical Bayes procedure. A 4pLL model is fitted to each
of the genes in the analysis. The parameter φ(e)∗ is assumed to be normally distributed.
The mean of this normal distribution is assumed to follow an a-priori normal distribution
as well. The mean and the variance for this prior distribution are empirically estimated
from the observed estimates for φ(e)∗. This can be done using the maximum-likelihood
estimators or using median and MAD as robust estimators. Under the assumptions
stated above, the posterior distribution of the parameter for each gene, given the specific
estimate, again follows a normal distribution and can explicitly be calculated. With
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this method, essentially a shrinkage of the estimated parameter value φ(e)∗ towards the
observed mean of all estimated values is performed.

The simulation studies conducted for this topic were all based on true underlying plas-
mode datasets. A dataset where gene expression at seven increasing doses and a negative
control of the compound valproic acid (VPA) was measured for 54675 probe sets was
used as basis of the simulation studies. A smaller set of probe sets was chosen according
to the criteria of statistical significance and biological relevance. Parameters of 4pLL
models fitted to this set of probe sets were used for the simulation studies, in which
datasets were simulated on the basis of these parameters, together with normally dis-
tributed noise. Thus, biological properties in the dataset where retained in the simulation
scenarios.

First, a simulation study based on a large set of probe sets to examine the performance
of the meta-analysis approach was conducted. Targets to assess the performance of this
approach in comparison to directly estimating the parameter φ(e)∗ for each probe set
separately were the MSE and the coverage probability (CP). For about equally many
probe sets, the MSE was smaller or larger, respectively, when comparing meta-analysis
and the direct estimate. The CP was much worse for the meta-analysis than for the direct
estimate, regardless of which specific method for calculating the confidence interval for
the meta-analysis was used.

The negative results for this simulation study were expected. In this analysis, more or
less random noise was added to each probe set, which in most cases lead to biased and
thus worse results than the direct comparison. Thus, simply adding information based
on similarity of genes is not a good approach.

The next step was to restrict the set of probe sets from which potential additional
information are gathered. This was done by considering GO groups, i.e. groups of probe
sets that contribute to the same biological process. Eight GO groups were considered in
total, four of size 15 and four of size 30, with one group with similar probe sets in terms
of correlation, one group with a medium similarity, one group with only little similarity
and one randomly sampled group, respectively.

Results are ambiguous: In some groups, the MSE could be improved by conducting the
meta-analyses, and in some groups, the MSE was worse. This did not follow a clear
pattern. No clear link between the sizes of the meta-analyses and the results could
be observed: In some cases, allowing more probe sets into the meta-analysis lead to
improved values of the MSE, in some cases, to worse values. The CP was worse for
the meta-analysis based confidence intervals than for the direct estimates in all cases
examined.

Therefore, the meta-analysis approach in the way applied in this thesis does not lead
to promising results. A major drawback of the GO group based method would anyway
be given by the fact that all probe sets are assigned to several GO groups. In each
GO group, different probe sets would be included in the meta-analysis, thus leading to
different meta-analysis based estimates of φ(e)∗, depending on the choice of the specific
GO group. However, an extension of this method to find one summary value of φ(e)∗ for
a specific GO group and not the probe sets themselves could be promising.
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Similarity between probe sets was assessed here using the correlations of concentration-
wise means of gene expression only. Considering different criteria would be interesting:
One possibility is the clustering of probe sets according to their concentration-gene
expression profiles. The order-restricted information criterion-based cluster algorithm
‘ORICC’ (Liu et al., 2009) and the order-restricted inference for ordered gene expression
data, ‘ORIOGEN’, (Peddada et al., 2005) are two order-restricted clustering methods
that are specifically aimed at clustering genes according to their concentration-response
profiles. These methods can either be used as a filtering step, additional to the biological
similarities, to reduce the set of probe sets that are potential similar probe sets, or to
establish the set of probe sets considered in the meta-analysis.

The Bayes method was analysed for three situations of true underlying datasets that on
the one hand are more and more similar to the VPA dataset, but on the other hand are
moving away from fulfilling the assumption of normality. In the first simulation study, a
completely simulated dataset was used as basis. The MSE was improved by the Bayesian
method for almost all synthetic probe sets considered, and CPs of the confidence interval
for the direct estimate and the credible interval for the Bayesian method were almost
equal in all cases.

In the second dataset, the parameters from the VPA dataset were used, and only probe
sets where φ(e)∗ did not exceed log(2000) were considered. A quantile normalisation was
applied to the values of parameter φ(e)∗, thus ensuring the assumption of normality. Only
for very few probe sets, the MSE did not improve when applying the Bayes procedure
in comparison to the direct estimate, and the CP was almost equal for both methods,
again.

Lastly, the original parameter estimates from the VPA dataset were used, whereby only
probe sets where φ(e)∗ did not exceed log(2000) = 7.60 and φ(e)∗ was larger than 0
were considered. When using these parameter estimates as true underlying set of probe
sets, again an improvement in the MSE could be observed for most probe sets. Only for
the very low number of 35 probe sets, the MSE was worse. The true underlying values
of φ(e)∗ for these probe sets was either very low or very high, such that the shrinkage
performed by the Bayes method was counter-productive here. For the other probe sets,
however, the Bayes method performed far better than the direct estimate in terms of
MSE and not worse than the direct estimate in terms of CP.

Results regarding the Bayes method stated above referred to the variant where the prior
distribution is estimated using maximum likelihood estimates. When estimating the
prior distribution using robust measures, results were consistently worse, both in terms
of MSE and CP. The variance used in the Bayes method was smaller for the robust
estimation, thus leading to higher influence of the empirical prior mean in comparison
to the observed values. Especially for probe sets with rather large or rather small values
of φ(e)∗, this yields a worsened MSE.

In the simulation studies, the set of true underlying probe sets was restricted to situ-
ations with values of φ(e)∗ that are not unreasonably large in comparison to the range
of concentrations considered. Such large values usually indicate curves that are very
difficult to estimate numerically. In real-data situations, identifying such probe sets in
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advance to exclude them from further fitting is not easily possible. Large estimated
values of φ(e)∗ could even heavily influence the estimation of the prior distribution, thus
leading to biased results.

The Bayes method could be improved by choosing a more appropriate prior distribution
that better fits the actual distribution of φ(e)∗. As summarised in Figure 7.17, the tails of
the actual distribution are heavier than the tails of the estimated normal distributions.
One approach would be the use of a mixture of two normal distribution as prior distribu-
tion. The resulting posterior distribution would be a mixture of normal distributions as
well (Reich and Ghosh, 2019, p. 56). This allows the direct calculation of the posterior,
instead of using algorithms like Markov Chain Monte Carlo methods for simulating the
posterior distributions.

In the VPA dataset, gene expression values are measured for the concentrations 25, 150,
350, 450, 550, 800, and 1000 μM. These concentrations are not equidistant when consid-
ering the concentrations on log-scale, as is done for the 4pLL model. Although this
dataset has a high overall quality and many replicates measured in narrow concentra-
tions, it is not necessarily the ideal dataset to base simulation studies on for any model
where concentrations are considered on log-scale. Especially the results for the informa-
tion sharing heavily depend on the specific structure of the dataset and the interaction
between the substance under consideration and the measured concentrations. Broaden-
ing the results for alert concentrations in the context of gene expression data to more
datasets would be interesting, however, high-quality datasets with enough measurements
are very expensive and time-consuming to generate.

The TG-Gates database (Igarashi et al., 2015) comprises extensive toxicological data
for more than 170 compounds. Among others, microarray data for the same Affymetrix
GeneChip® as used for the VPA dataset can be found there. This data, however, is only
measured for three different concentrations but for a narrow series of incubation times.
This data can be used to perform the same analyses regarding information sharing as for
the VPA dataset using the time instead of the concentration as independent variable.

The three topics considered in this thesis are based on the 4pLL model, and all simulation
studies are based on this model as true underlying model. Sensitivity analyses, in the
sense that different models are used as true underlying models, while the methods are
conducted based on the 4pLL model as presented here, would lead to insights about
the performance of the methods in more general cases. Beyond that, a generalisation
of the methods to other frequently used models in toxicology, e.g. Weibull models or
log-normal models (e.g. Ritz et al., 2019, pp. 183-186), would be a sensible extension.

All analyses were conducted under the assumption of homogeneity, i.e. equal variances
across concentrations. Especially for viability assays, variances of the replicates are
often observed to be decreasing in ranges of high toxicity, i.e. for decreasing viability.
Model fitting is also possible in the case of heteroscedasticity or in the case that the
residuals do not follow a normal distribution (Calderazzo et al., 2019). The problem
of heteroscedasticity can also be addressed by using robust methods to estimate the
standard errors of the parameters. One example for such estimators are the sandwich
variance estimators (Zeileis, 2006).
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For many toxicological assays, and at least the viability assay considered in this thesis
is no exception, the choice of considered concentrations is based on the convention of
using equidistant concentrations. A practical goal, however, would be to achieve a high
precision in estimating the target parameter, while at the same time minimising the
required number of measurements. Statistical design theory gives the background to
create such an optimal experimental design. Holland-Letz and Kopp-Schneider (2015)
give concrete guidance on the calculation of such optimal designs, among others in the
case of log-logistic curves and even provide an online-tool to calculate such designs or
compare specific designs with the optimal one.

In conclusion, it can be said that the combination of curve-fitting with typical toxico-
logical procedures is an exciting field with many statistical questions still unanswered.
High-dimensional data from gene expression experiments offer opportunities to identify
many properties of substances already by conducting in vitro analyses. At the same
time, the statistical handling of these data is a challenge. The three topics covered in
this thesis provide answers to dealing with different tasks and the proposed methods can
be the starting point for many other investigations.
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2.1. Hypothetical example illustrating a possible problem when forcing the
upper asymptote of a fitted curve to 100%: In the left plot, the data is
modelled as it is, and for higher concentrations, a good fit of the responses
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A. Calculations

The 4pLL model in its two parametrisations as introduced in Chapter 4.1.2 used for the
calculations in the following sections is given as

f(x, φ) = φ(c) +
φ(d) − φ(c)

1 + exp
{
φ(b) [log(x) − log(φ(e))

]} (1)

= φ(c) +
φ(d) − φ(c)

1 + ( x
φ(e) )φ(b) . (2)

In the following, first the values of the left-sided and right-sided asymptotes of a 4pLL
model depending on the sign of the parameter φ(b) are calculated. Then the slope is
calculated, both when considering an untransformed and a log-transformed x-axis. The
equivalence of the parameterization of the sigEmax-model from the MCP-Mod approach
to the 4pLL model is shown and finally, the gradient ∇f(0, φ), again depending on the
sign of the parameter φ(b), is calculated. In the final section of this Appendix, the
posterior in a normal-normal model is calculated. This is independent of the 4pLL
function.

A.1. Calculation of the limits of a 4pLL model

The limits of the function f(x, φ) depend on the sign of the parameter φ(b). First, let

φ(b) > 0. Then limx→0
(

x
φ(e)

)φ(b)

= 0, s.t.

φ(c) +
φ(d) − φ(c)

1 +
(

x

φ(e)

)φ(b)

︸ ︷︷ ︸
x→0−→0

x→0−→ φ(c) +
φ(d) − φ(c)

1
= φ(d).

It also follows that limx→∞
(

x
φ(e)

)φ(b)

= ∞, s.t.

φ(c) +
φ(d) − φ(c)

1 +
(

x

φ(e)

)φ(b)

︸ ︷︷ ︸
x→∞−→ ∞

x→∞−→ φ(c).
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Analogously for φ(b) < 0 it holds limx→0
(

x
φ(e)

)φ(b)

= ∞ and limx→∞
(

x
φ(e)

)φ(b)

= 0, s.t.

φ(c) +
φ(d) − φ(c)

1 +
(

x

φ(e)

)φ(b)

︸ ︷︷ ︸
x→0−→∞

x→0−→ φ(c) and

φ(c) +
φ(d) − φ(c)

1 +
(

x

φ(e)

)φ(b)

︸ ︷︷ ︸
x→∞−→ 0

x→∞−→ φ(d).

A.2. Calculation of the inflection point of a 4pLL model

The inflection points are calculated for the original scale and the logarithmic x-axis,
both. Since the parameters φ(c) and φ(d) only change the location of the curve on the
y-axis, they do not influence the inflection point. Thus, without loss of generality, it is
assumed that φ(d) = 1 and φ(c) = 0, yielding the function

f(x, φ) =
1

1 +
(
exp(φ(b)(log(x) − φ(e)∗)

) , (3)

with φ(e)∗ = log(φ(e)).

For the first calculation, the logarithmic x-axis is considered, i.e. with x̃ := log(x), it
needs to be shown that φ(e)∗ is the inflection point of f(x̃, φ) . The necessary criterion
to be shown is that the second derivative of f(x̃, φ) evaluated at φ(e)∗ equals 0, while
the third derivative evaluated at the same concentration is unequal to 0.

The derivatives are only stated here and not calculated in detail, this can be done using
the basic differentiation rules. All throughout the calculations, φ(b) �= 0 is assumed. For
φ(b) = 0, the resulting curve would be flat and thus no inflection point would be present.

f ′(x̃, φ) = −
φ(b) exp

(
φ(b)(x̃ − φ(e)∗)

)
(
1 + exp

(
φ(b)(x̃ − φ(e)∗)

))2

f ′′(x̃, φ) = −
φ(b)2 exp

(
φ(b)(x̃ − φ(e)∗)

)
(
1 + exp

(
φ(b)(x̃ − φ(e)∗)

))2 +
2φ(b)2 exp

(
2φ(b)(x̃ − φ(e)∗)

)
(
1 + exp

(
φ(b)(x̃ − φ(e)∗)

))3
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f ′′′(x̃, φ) = −
φ(b)3 exp

(
φ(b)(x̃ − φ(e)∗)

)
(
1 + exp

(
φ(b)(x̃ − φ(e)∗)

))2 +
6φ(b)3 exp

(
2φ(b)(x̃ − φ(e)∗)

)
(
1 + exp

(
φ(b)(x̃ − φ(e)∗)

))3

−
6φ(b)3 exp

(
3φ(b)(x̃ − φ(e)∗)

)
(
1 + exp

(
φ(b)(x̃ − φ(e)∗)

))4

Insert φ(e)∗ into the second and third derivative:

f ′′(φ(e)∗
, φ) = −

φ(b)2 exp
(
φ(b)(φ(e)∗ − φ(e)∗)

)
(
1 + exp

(
φ(b)(φ(e)∗ − φ(e)∗)

))2 +
2φ(b)2 exp

(
2φ(b)(φ(e)∗ − φ(e)∗)

)
(
1 + exp

(
φ(b)(φ(e)∗ − φ(e)∗)

))3

= −φ(b)2

4
+

2φ(b)2

8
= 0

f ′′′(φ(e)∗
, φ) = −

φ(b)3 exp
(
φ(b)(φ(e)∗ − φ(e)∗)

)
(
1 + exp

(
φ(b)(φ(e)∗ − φ(e)∗)

))2 +
6φ(b)3 exp

(
2φ(b)(φ(e)∗ − φ(e)∗)

)
(
1 + exp

(
φ(b)(φ(e)∗ − φ(e)∗)

))3

−
6φ(b)3 exp

(
3φ(b)(φ(e)∗ − φ(e)∗)

)
(
1 + exp

(
φ(b)(φ(e)∗ − φ(e)∗)

))4

= −φ(b)3

4
+

6φ(b)3

8
− 6φ(b)3

16

=
2φ(b)3

16
�= 0

This shows that φ(e) is the inflection point of the function (3) and thus also of the
general 4pLL model. To calculate the inflection point of function (3) when the x-axis is
non-logarithmic, derivatives of the untransformed functions are calculated. The second
derivative is set to 0 and the resulting concentration is considered to be the inflection
point. A specification of the third derivative is omitted here. It is required that |φ(b)| > 1
for the calculation of an inflection point for the non-logarithmic x-axis, otherwise the
calculation in the last step would yield a non-real result.

f ′(x, φ) = −
φ(b)xφ(b)−1

(
1

φ(e)

)φ(b)

(
1 +

(
x

φ(e)

)φ(b))2
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f ′′(x, φ) = −
(φ(b) − 1)φ(b)xφ(b)−2

(
1

φ(e)

)φ(b)

(
1 +

(
x

φ(e)

)φ(b))2 +
2φ(b)2

x2φ(b)−2
(

1
φ(e)

)2φ(b)

(
1 +

(
x

φ(e)

)φ(b))3

=
−(φ(b) − 1)φ(b)xφ(b)−2

(
1

φ(e)

)φ(b) (
1 +

(
x

φ(e)

)φ(b))
+ 2φ(b)2

x2φ(b)−2
(

1
φ(e)

)2φ(b)

(
1 +

(
x

φ(e)

)φ(b))3

To find the inflection point, the numerator of the last fraction needs to be equal to 0.

After multiplication of the numerator with φ(e)φ(b)

φ(b)xφ(b)−2
, it follows:

−(φ(b) − 1)
(

1 +
(

x

φ(e)

)φ(b))
+ 2φ(b)xφ(b)

( 1
φ(e)

)φ(b)
!= 0

⇒ xφ(b)
(

−φ(b)
( 1

φ(e)

)φ(b)

+
( 1

φ(e)

)φ(b)

+ 2φ(b)
( 1

φ(e)

)φ(b))
!= φ(b) − 1

⇒ xφ(b) !=
φ(b) − 1

(φ(b) + 1)
(

1
φ(e)

)φ(b)

Thus, it follows that the concentration for the inflection point is given by

x =
(

φ(b) − 1
φ(b) + 1

) 1
φ(b)

φ(e).

A.3. Calculation of the slope of a 4pLL model

For calculating the slope of the 4pLL function at concentration φ(e), the first step is to
calculate the general form of the derivative. The parametrisation of f(x, φ) from (2) is
used for this calculation:

d

dx
f(x, φ) =

−
(
φ(d) − φ(c)

)
· φ(b) ·

(
x

φ(e)

)φ(b)−1 · 1
φ(e)(

1 +
(

x
φ(e)

)φ(b))2

=
−
(
φ(d) − φ(c)

)
· φ(b)

φ(e) ·
(

x
φ(e)

)φ(b)−1

(
1 +

(
x

φ(e)

)φ(b))2
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Then, the derivative is evaluated at x = φ(e) what leads to the final result:

d

dx
f(x, φ)

∣∣∣
x=φ(e)

=
−
(
φ(d) − φ(c)

)
· φ(b)

φ(e) ·
(

φ(e)

φ(e)

)φ(b)−1

(
1 +

(
φ(e)

φ(e)

)φ(b))2

= −
φ(b) ·

(
φ(d) − φ(c)

)
4φ(e)

Calculating the slope of f(x, φ) at concentration φ(e) for a logarithmic x-axis is equiva-
lent to calculating the slope of the transformed function f(x̃, φ) with x̃ = log(x) at the
concentration φ(e)∗ = log(φ(e)), so that the transformed function from the parametrisa-
tion in (1) takes the following form:

f(x̃, φ) = φ(c) +
φ(d) − φ(c)

1 + exp
{
φ(b) [x̃ − φ(e)∗]}

First, the general form of the derivative is calculated:

d

dx̃
f(x̃, φ) =

−
(
φ(d) − φ(c)

)
· φ(b) · exp

{
φ(b)

[
x̃ − φ(e)∗]}

(
1 + exp

{
φ(b) [x̃ − φ(e)∗]})2

Then, the derivative is evaluated at x̃ = φ(e)∗ what leads to the final result:

d

dx̃
f(x̃, φ)

∣∣∣
x̃=φ(e)∗ =

−
(
φ(d) − φ(c)

)
· φ(b) · exp

{
φ(b)

[
φ(e)∗ − φ(e)∗]}

(
1 + exp

{
φ(b) [φ(e)∗ − φ(e)∗]})2

=
−
(
φ(d) − φ(c)

)
· φ(b) · 1

(1 + 1)2

= −1
4

· φ(b) ·
(
φ(d) − φ(c)

)
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A.4. Equivalence of the sigEmax-model from the MCP-Mod approach and
the 4pLL model

The sigEmax model from the MCP-Mod approach is parametrised as

f(x, θ) = E0 +
Emaxxh

(EC50h + xh)
,

with E0 describing the effect for concentration 0, Emax describing the maximal effect,
i.e. maxx (f(x) − E0), EC50 describing the half-maximal effect with respect to E0 and
Emax, and h > 0 describing the slope (Bornkamp et al., 2009).

To show the equivalence between the sigEmax and the 4pLL model, it needs to be
distinguished into the case where φ(b) < 0 and where φ(b) < 0. Without loss of generality,
it is assumed that φ(d) > φ(c).

In the first scenario it holds φ(b) < 0, which corresponds to an increasing curve under
the aforementioned assumptions. Setting φ(b) := −h, φ(c) := E0, φ(d) := E0 + Emax and
φ(e) := EC50 yields

f(x, θ) = E0 +
Emaxxh

(EC50h + xh)

= E0 +
Emax

1 +
(EC50

x

)h

∧= φ(c) +
φ(d) − φ(c)

1 +
(

φ(e)

x

)−φ(b)

= φ(c) +
φ(d) − φ(c)

1 +
(

x
φ(e)

)φ(b)

= f(x, φ)

in the parametrisation (2).

In the second scenario with φ(b) > 0, this corresponds to a decreasing curve for φ(d) >
φ(c). Setting φ(b) := h, φ(d) := E0, φ(c) := E0 + Emax and φ(e) := EC50 yields

f(x, θ) = E0 +
Emaxxh

1 +
(EC50

x

)h

∧= φ(d) +
φ(c) − φ(d)

1 +
(

φ(e)

x

)φ(b)

158



=
φ(d) + φ(d)

(
φ(e)

x

)φ(b)

+ φ(c) − φ(d)

1 +
(

φ(e)

x

)φ(b)

=
φ(d)

(
φ(e)

x

)φ(b)

+ φ(c)

(
1 +

(
φ(e)

x

)φ(b)
)

− φ(c)
(

(φ(e)

x

)φ(b)

1 +
(

φ(e)

x

)φ(b)

= φ(c) +
(φ(d) − φ(c))

(
φ(e)

x

)φ(b)

1 +
(

φ(e)

x

)φ(b)

= φ(c) +
φ(d) − φ(c)

1 +
(

x
φ(e)

)φ(b)

= f(x, φ)

in the parametrisation (2). Note that here, Emax < 0.

The standardised version of the sigEmax model, f0(x, θ) and the corresponding parametri-
sation as introduced for the 4pLL model are given as

f0(x, θ0) =
xh

EC50h + xh

=
1

1 +
(EC50

x

)h

∧=
1

1 +
(

x
φ(e)

)φ(b) ,

that means that the location parameter θ0 is given by θ0 = φ(c) and the scale parameter
θ1 is given by θ1 = φ(d) − φ(c).
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A.5. Calculation of ∇f(0, φ)

The following calculations show that

∇f(0, φ) = (0, 0, 1, 0)T for φ(b) > 0,

∇f(0, φ) = (0, 1, 0, 0)T for φ(b) < 0

where

∇f(x, φ) =
(

∂f(x,φ)
∂φ(b) , ∂f(x,φ)

∂φ(c) , ∂f(x,φ)
∂φ(d) , ∂f(x,φ)

∂φ(e)

)T

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(φ(d)−φ(c))

(
log

(
x

φ(e)

))(
x

φ(e)

)φ(b)

[
1+

(
x

φ(e)

)φ(b)]2

1 −
⎡⎢⎣ 1

1+
(

x

φ(e)

)φ(b)

⎤⎥⎦
1

1+
(

x

φ(e)

)φ(b)

φ(b)(φ(d)−φ(c))
(

x

φ(e)

)φ(b)

φ(e)

[
1+

(
x

φ(e)

)φ(b)]2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As log( x
φ(e) ) cannot be calculated for x = 0, instead the limit limx→0 ∇f(x, φ) is con-

sidered for each partial derivative individually. To calculate the limits, in some cases
L’Hôpital’s rule will be employed, that is introduced here according to Forster (2016, p.
190).

Theorem (L’Hôpital’s rule). Let f, g : I → R two differentiable functions on the open
interval I = (a, b) with −∞ ≤ a < b ≤ ∞. Assume ∀x ∈ I, g′(x) �= 0 and the limit
limx↘a

f ′(x)
g′(x) := c ∈ R exists. Then:

1. If limx↘a g(x) = limx↘a f(x) = 0, then ∀x ∈ I it holds g(x) �= 0 and

lim
x↘a

f(x)
g(x)

= c.

2. If limx↘a g(x) = ±∞, then ∃x0 with a < x0 < b s.t. ∀x ≥ x0, g(x) �= 0 and

lim
x↘a

f(x)
g(x)

= c.
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First, the gradient ∇f(0, φ) is calculated for φ(b) > 0, i.e. with limx→0 f(x, φ) = φ(d).

• ∂f(x,φ)
∂φ(b) = −

(φ(d)−φ(c))
(

log
(

x

φ(e)

))(
x

φ(e)

)φ(b)

[
1+

(
x

φ(e)

)φ(b)]2

First, consider the denominator:

lim
x→0

[
1 +

(
x

φ(e)

)φ(b)

︸ ︷︷ ︸
x→0
−→0

]2

= 1

Then consider the nominator while momentarily dismissing the term
(
φ(d) − φ(c)

)
,

using L’Hôpital’s rule:

lim
x→0

(
log

(
x

φ(e)

))(
x

φ(e)

)φ(b)

= lim
x→0

log
(

x
φ(e)

)
(

x
φ(e)

)−φ(b)

= lim
x→0

d
dx log

(
x

φ(e)

)
d

dx

(
x

φ(e)

)−φ(b)

= lim
x→0

1
x

−φ(b)
(

x
φ(e)

)−φ(b)−1

= lim
x→0

− 1
φ(b)

(
φ(e)

)φ(b)−1 · xφ(b)︸ ︷︷ ︸
x→0−→0

= 0 (4)

All in all it follows:

lim
x→0

−

(
φ(d) − φ(c)

)
x→0
−→0︷ ︸︸ ︷(

log
(

x

φ(e)

))(
x

φ(e)

)φ(b)

[
1 +

(
x

φ(e)

)φ(b)

︸ ︷︷ ︸
x→0
−→0

]2 = −
(
φ(d) − φ(c)

)
· 0

(1 + 0)2 = 0.

• ∂f(x,φ)
∂φ(c) = 1 −

⎡⎢⎣ 1

1+
(

x

φ(e)

)φ(b)

⎤⎥⎦
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The limit for x → 0 is given by:

lim
x→0

1 −

⎡⎢⎢⎢⎢⎢⎣
1

1 +
(

x

φ(e)

)φ(b)

︸ ︷︷ ︸
x→0−→0

⎤⎥⎥⎥⎥⎥⎦ = 1 − 1
1 + 0

= 0

• ∂f(x,φ)
∂φ(d) = 1

1+
(

x

φ(e)

)φ(b)

The limit for x → 0 is given by:

lim
x→0

1

1 +
(

x

φ(e)

)φ(b)

︸ ︷︷ ︸
x→0−→0

=
1

1 + 0
= 1

• ∂f(x,φ)
∂φ(e) =

φ(b)(φ(d)−φ(c))
(

x

φ(e)

)φ(b)

φ(e)

[
1+

(
x

φ(e)

)φ(b)]2

The limit for x → 0 is given by:

lim
x→0

φ(b)
(
φ(d) − φ(c)

)
x→0−→0︷ ︸︸ ︷(
x

φ(e)

)φ(b)

φ(e)

[
1 +

(
x

φ(e)

)φ(b)

︸ ︷︷ ︸
x→0−→0

]2 =
φ(b)

(
φ(d) − φ(c)

)
· 0

φ(e)(1 + 0)2 = 0

All in all it follows that for φ(b) > 0, ∇f(0, φ) = (0, 0, 1, 0)T.

Then, the gradient ∇f(0, φ) is calculated for φ(b) < 0, i.e. with limx→0 f(x, φ) = φ(c).

• ∂f(x,φ)
∂φ(b) = −

(φ(d)−φ(c))
(

log
(

x

φ(e)

))(
x

φ(e)

)φ(b)

[
1+

(
x

φ(e)

)φ(b)]2
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The limit for x → 0 is given by:

−
(
φ(d) − φ(c)

) (
log

(
x

φ(e)

)) (
x

φ(e)

)φ(b)

[
1 +

(
x

φ(e)

)φ(b)]2
(∗)
> −

(
φ(d) − φ(c)

) (
log

(
x

φ(e)

)) (
x

φ(e)

)φ(b)

[(
x

φ(e)

)φ(b)]2 ,

lim
x→0

−
(
φ(d) − φ(c)

) (
log

(
x

φ(e)

)) (
x

φ(e)

)φ(b)

[(
x

φ(e)

)φ(b)]2 = lim
x→0

−
(
φ(d) − φ(c)

) (
log

(
x

φ(e)

))
[(

x
φ(e)

)φ(b)]
From (4) it is known that this converges towards 0 as x → 0. Since all quotients
are strictly smaller than 0 and with (∗) holding as φ(e) > 0, it then follows that
the limit of the derivative is given by 0 as well.

• ∂f(x,φ)
∂φ(c) = 1 −

⎡⎢⎣ 1

1+
(

x

φ(e)

)φ(b)

⎤⎥⎦
The limit for x → 0 is given by:

lim
x→0

1 −

⎡⎢⎢⎢⎢⎢⎣
1

1 +
(

x

φ(e)

)φ(b)

︸ ︷︷ ︸
x→0−→∞

⎤⎥⎥⎥⎥⎥⎦ = 1 − 0 = 1

• ∂f(x,φ)
∂φ(d) = 1

1+
(

x

φ(e)

)φ(b)

The limit for x → 0 is given by:

lim
x→0

1

1 +
(

x

φ(e)

)φ(b)

︸ ︷︷ ︸
x→0−→∞

= 0

• ∂f(x,φ)
∂φ(e) =

φ(b)(φ(d)−φ(c))
(

x

φ(e)

)φ(b)

φ(e)

[
1+

(
x

φ(e)

)φ(b)]2
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The limit for x → 0 is given by:

φ(b)
(
φ(d) − φ(c)

) (
x

φ(e)

)φ(b)

φ(e)
[
1 +

(
x

φ(e)

)φ(b)]2
(∗)
<

φ(b)
(
φ(d) − φ(c)

) (
x

φ(e)

)φ(b)

φ(e)
[(

x
φ(e)

)φ(b)]2 ,

lim
x→0

φ(b)
(
φ(d) − φ(c)

) (
x

φ(e)

)φ(b)

φ(e)
[(

x
φ(e)

)φ(b)]2 = lim
x→0

φ(b)
(
φ(d) − φ(c)

)
φ(e)

[(
x

φ(e)

)φ(b)

︸ ︷︷ ︸
x→0−→∞

] = 0

⇒ lim
x→0

φ(b)
(
φ(d) − φ(c)

) (
x

φ(e)

)φ(b)

φ(e)
[
1 +

(
x

φ(e)

)φ(b)]2 = 0,

since all quotients considered are strictly larger than 0 and with (∗) holding as
φ(e) > 0.

A.6. Calculation of the posterior in a normal-normal model

Let X|θ ∼ N (θ, σ2) with the prior distribution π(θ) given by θ ∼ N (μ, τ2). Then the
posterior distribution p(θ|X) from equation (19) in Chapter 4.4.3 is given by

θ|x ∼ N
(

τ2x + σ2μ

τ2 + σ2 ,
τ2σ2

τ2 + σ2

)
.

According to formula (18) it holds

p(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

.

Start by calculating f(x|θ)π(θ):

f(x|θ)π(θ) =
1√

2πτ2

1√
2πσ2

exp

⎛⎝−1
2

[
(θ − μ)2

τ2 +
(x − θ)2

σ2

]2
⎞⎠

(∗)
=

1√
2π

√
2πτ2σ2

exp

⎛⎝−1
2

1
τ2σ2

τ2+σ2

[
θ − τ2x + σ2μ

τ2 + σ2

]2
⎞⎠ exp

(
−1

2
(μ − x)2

τ2 + σ2

)

164



=
1√

2π τ2σ2
τ2+σ2

exp

⎛⎝−1
2

1
τ2σ2

τ2+σ2

[
θ − τ2x + σ2μ

τ2 + σ2

]2
⎞⎠

︸ ︷︷ ︸
Density of a N

(
τ2x+σ2μ

τ2+σ2 , τ2σ2
τ2+σ2

)
distribution

× 1√
2π(τ2 + σ2)

exp
(

−1
2

(μ − x)2

τ2 + σ2

)

Thus it holds:

p(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

=
1√

2π(τ2+σ2)
exp

(
−1

2
(μ−x)2

τ2+σ2

)
1√

2π(τ2+σ2)
exp

(
−1

2
(μ−x)2

τ2+σ2

)

×

1√
2π τ2σ2

τ2+σ2

exp
(

−1
2

1
τ2σ2

τ2+σ2

[
θ − τ2x+σ2μ

τ2+σ2

]2
)

∫ 1√
2π τ2σ2

τ2+σ2

exp

⎛⎝−1
2

1
τ2σ2

τ2+σ2

[
θ − τ2x + σ2μ

τ2 + σ2

]2
⎞⎠dθ

︸ ︷︷ ︸
=1

=
1√

2π τ2σ2
τ2+σ2

exp

⎛⎝−1
2

1
τ2σ2

τ2+σ2

[
θ − τ2x + σ2μ

τ2 + σ2

]2
⎞⎠ ,

which is the density of a N
(

τ2x+σ2μ
τ2+σ2 , τ2σ2

τ2+σ2

)
distribution, what was to be shown.

It remains to show that (∗) holds. Therefore the following equation needs to be proved:

(θ − μ)2

τ2 +
(x − θ)2

σ2 =
1

τ2σ2
τ2+σ2

(
θ − τ2x + σ2μ

τ2 + σ2

)2

+
(μ − x)2

τ2 + σ2

Start on the left side:

(θ − μ)2

τ2
σ2

σ2 +
(x − θ)2

σ2
τ2

τ2 =
θ2(τ2 + σ2) − 2θμσ2 + μ2σ2 − 2θxτ2 + x2τ2

τ2σ2

=
θ2(τ2 + σ2)

τ2σ2︸ ︷︷ ︸
(1)

− 2θμσ2 + 2θxτ2

τ2σ2︸ ︷︷ ︸
(2)

+
x2τ2 + μ2 + σ2

τ2σ2︸ ︷︷ ︸
(3)
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Continue on the right side:

1
τ2σ2

τ2+σ2

(
θ − τ2x + σ2μ

τ2 + σ2

)2

+
(μ − x)2

τ2 + σ2

=
τ2 + σ2

τ2σ2

(
θ(τ2 + σ2) − (τ2x + σ2μ)

τ2 + σ2

)2

+
(μ2 − 2μx + x2)(τ2σ2)

(τ2 + σ2)(τ2)(σ2)

=
1

τ2σ2
1

τ2 + σ2

(
θ(τ2 + σ2) − 2θ(τ2 + σ2)(τ2x + σ2μ) + (τ2x + σ2μ)

)
+

μ2τ2σ2 − 2μxτ2σ2 + x2τ2σ2

(τ2 + σ2)(τ2)(σ2)

=
θ2(τ2 + σ2)

τ2σ2︸ ︷︷ ︸
(1)

− 2θμσ2 + 2θxτ2

τ2σ2︸ ︷︷ ︸
(2)

+
τ4x2 + 2τ2xσ2μ + σ4μ2 − 2τ2σ2μx + τ2σ2x2

(τ2 + σ2)(τ2σ2)︸ ︷︷ ︸
= x2τ2(τ2+σ2)+μ2σ2(τ2+σ2)

(τ2+σ2)(τ2σ2) = x2τ2+μ2+σ2
τ2σ2 =(3)

This completes the calculation of the posterior distribution for the given likelihood and
prior distribution.
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B. Figures

B.1. Handling deviating control values
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Figure B.1: Three additional scenarios considered in the simulation study with 12, 7 and
4 concentrations, respectively. The true underlying curve is the same as presented in
Figure 5.2.
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Figure B.2: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC10 in the ‘easy’ scenario and are structured
as explained in Figure 5.4.
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Figure B.3: Percentages of acceptable estimates for the 5000 iterations of the simula-
tion study. Results are shown here for the EC10 in the ‘medium’ scenario and are
structured as explained in Figure 5.4.
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Figure B.4: Percentages of acceptable estimates for the 5000 iterations of the simula-
tion study. Results are shown here for the EC10 in the ‘difficult’ scenario and are
structured as explained in Figure 5.4.
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Figure B.5: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC50 in the ‘easy’ scenario and are structured
as explained in Figure 5.4 with the exception of the factor defining the acceptable
range, which is chosen as 1.1 here.
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Figure B.6: Percentages of acceptable estimates for the 5000 iterations of the simula-
tion study. Results are shown here for the EC50 in the ‘medium’ scenario and are
structured as explained in Figure 5.4 with the exception of the factor defining the
acceptable range, which is chosen as 1.1 here.

σ = 2 σ = 4 σ = 8 σ = 12

Δ = 10

Δ = 8

Δ = 6

Δ = 4

Δ = 2

Δ = 0

Δ = −2

Δ = −4

Δ = −6

Δ = −8

Δ = −10

4pLL 3pLL No Ctrl BC 4pLL 3pLL No Ctrl BC 4pLL 3pLL No Ctrl BC 4pLL 3pLL No Ctrl BC

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

Method

Pe
rc

en
ta

ge

Percentage of accepted estimates − EC50, Factor 1.1, 'Difficult' Scenario

Figure B.7: Percentages of acceptable estimates for the 5000 iterations of the simula-
tion study. Results are shown here for the EC50 in the ‘difficult’ scenario and are
structured as explained in Figure 5.4 with the exception of the factor defining the
acceptable range, which is chosen as 1.1 here.
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Figure B.8: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC10 in the scenario with 12 concentrations
and are structured as explained in Figure 5.4.
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Figure B.9: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC10 in the scenario with 7 concentrations and
are structured as explained in Figure 5.4.
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Figure B.10: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC10 in the scenario with 4 concentrations
and are structured as explained in Figure 5.4.
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Figure B.11: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC20 in the scenario with 12 concentrations
and are structured as explained in Figure 5.4.
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Figure B.12: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC20 in the scenario with 7 concentrations
and are structured as explained in Figure 5.4.
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Figure B.13: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC20 in the scenario with 4 concentrations
and are structured as explained in Figure 5.4.
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Figure B.14: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC50 in the scenario with 12 concentrations
and are structured as explained in Figure 5.4 with the exception of the factor defining
the acceptable range, which is chosen as 1.1 here.
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Figure B.15: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC50 in the scenario with 7 concentrations and
are structured as explained in Figure 5.4 with the exception of the factor defining
the acceptable range, which is chosen as 1.1 here.
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Figure B.16: Percentages of acceptable estimates for the 5000 iterations of the simulation
study. Results are shown here for the EC50 in the scenario with 4 concentrations and
are structured as explained in Figure 5.4 with the exception of the factor defining
the acceptable range, which is chosen as 1.1 here.
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Figure B.17: Number of times each method is the winner. Results are shown here for
the EC10 in the ‘easy’ scenario and are structured as explained in Figure 5.7.
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Figure B.18: Number of times each method is the winner. Results are shown here for
the EC10 in the ‘medium’ scenario and are structured as explained in Figure 5.7.
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Figure B.19: Number of times each method is the winner. Results are shown here for
the EC10 in the ‘difficult’ scenario and are structured as explained in Figure 5.7.
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Figure B.20: Number of times each method is the winner. Results are shown here for
the EC50 in the ‘easy’ scenario and are structured as explained in Figure 5.7 with
the exception of the factor defining the acceptable rangen, which is chosen as 1.1
here.
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Figure B.21: Number of times each method is the winner. Results are shown here for the
EC50 in the ‘medium’ scenario and are structured as explained in Figure 5.7 with
the exception of the factor defining the acceptable rangen, which is chosen as 1.1
here.

177



N = 2465

N = 3194

N = 4153

N = 4811

N = 4978

N = 5000

N = 4987

N = 4840

N = 4428

N = 3930

N = 3748

N = 2022

N = 2681

N = 3479

N = 4163

N = 4641

N = 4781

N = 4646

N = 4344

N = 3902

N = 3417

N = 3048

N = 2129

N = 2549

N = 2941

N = 3265

N = 3477

N = 3566

N = 3598

N = 3442

N = 3202

N = 2947

N = 2717

N = 2125

N = 2361

N = 2543

N = 2629

N = 2711

N = 2780

N = 2820

N = 2721

N = 2652

N = 2486

N = 2332

σ = 2 σ = 4 σ = 8 σ = 12

Δ = 10

Δ = 8

Δ = 6

Δ = 4

Δ = 2

Δ = 0

Δ = −2

Δ = −4

Δ = −6

Δ = −8

Δ = −10

4pLL 3pLL No Ctrl BC 4pLL 3pLL No Ctrl BC 4pLL 3pLL No Ctrl BC 4pLL 3pLL No Ctrl BC

0

2500

5000

0

2500

5000

0

2500

5000

0

2500

5000

0

2500

5000

0

2500

5000

0

2500

5000

0

2500

5000

0

2500

5000

0

2500

5000

0

2500

5000

Method

N
um

be
r o

f w
in

ne
rs

Number of winners − EC50, Factor 1.1, 'Difficult' Scenario

Figure B.22: Number of times each method is the winner. Results are shown here for
the EC50 in the ‘difficult’ scenario and are structured as explained in Figure 5.7 with
the exception of the factor defining the acceptable rangen, which is chosen as 1.1
here.
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Figure B.23: Number of times each method is the winner. Results are shown here for
the EC10 in the scenario with 12 concentrations and are structured as explained in
Figure 5.7.
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Figure B.24: Number of times each method is the winner. Results are shown here for
the EC10 in the scenario with 7 concentrations and are structured as explained in
Figure 5.7.
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Figure B.25: Number of times each method is the winner. Results are shown here for
the EC10 in the scenario with 4 concentrations and are structured as explained in
Figure 5.7.
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Figure B.26: Number of times each method is the winner. Results are shown here for
the EC20 in the scenario with 12 concentrations and are structured as explained in
Figure 5.7.
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Figure B.27: Number of times each method is the winner. Results are shown here for
the EC20 in the scenario with 7 concentrations and are structured as explained in
Figure 5.7.
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Figure B.28: Number of times each method is the winner. Results are shown here for
the EC20 in the scenario with 4 concentrations and are structured as explained in
Figure 5.7.
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Figure B.29: Number of times each method is the winner. Results are shown here for
the EC50 in the scenario with 12 concentrations and are structured as explained in
Figure 5.7 with the exception of the factor defining the acceptable rangen, which is
chosen as 1.1 here.
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Figure B.30: Number of times each method is the winner. Results are shown here for
the EC50 in the scenario with 7 concentrations and are structured as explained in
Figure 5.7 with the exception of the factor defining the acceptable rangen, which is
chosen as 1.1 here.
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Figure B.31: Number of times each method is the winner. Results are shown here for
the EC50 in the scenario with 4 concentrations and are structured as explained in
Figure 5.7 with the exception of the factor defining the acceptable rangen, which is
chosen as 1.1 here.
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Figure B.32: Application of the four methods to the original dataset, Don1, resembling
the ‘medium’ situation.
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Figure B.33: Application of the four methods to the original dataset, Don1, resembling
the ‘difficult’ situation.
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Figure B.34: Application of the four methods to the original dataset, Don2, resembling
the ‘medium’ situation.
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Figure B.35: Application of the four methods to the original dataset, Don2, resembling
the ‘difficult’ situation.
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B.2. Identification of alert concentrations
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Figure B.36: Results of the simulation study for ‘small’ SD, with the same structure as
Figure 6.3, when using the Dunnett procedure for the LOEC.
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Figure B.37: Results of the simulation study for ‘medium’ SD, with the same structure
as Figure 6.3, when using the Dunnett procedure for the LOEC.
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Figure B.38: Results of the simulation study for ‘large’ SD, with the same structure as
Figure 6.3, when using the Dunnett procedure for the LOEC.
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Figure B.39: Results of the analysis of the VPA dataset for methods considering absolute
exceedance of the threshold, only for increasing probe sets. The structure of the plot
is the same as Figure 6.7.
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Figure B.40: Results of the analysis of the VPA dataset for methods considering absolute
exceedance of the threshold, only for decreasing probe sets. The structure of the
plot is the same as Figure 6.7.
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Figure B.41: Results of the analysis of the VPA dataset for L̂OEC based on the t-test
and L̂EC, only for increasing probe sets. The structure of the plot is the same as
Figure 6.7.
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Figure B.42: Results of the analysis of the VPA dataset for L̂OEC based on the t-test
and L̂EC, only for decreasing probe sets. The structure of the plot is the same as
Figure 6.7.
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Figure B.43: Results of the analysis of the VPA dataset for L̂OEC based on the Dunnett
procedure and L̂EC, only for increasing probe sets. The structure of the plot is the
same as Figure 6.7.
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Figure B.44: Results of the analysis of the VPA dataset for L̂OEC based on the Dunnett
procedure and L̂EC, only for decreasing probe sets. The structure of the plot is the
same as Figure 6.7.
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B.3. Information sharing across genes
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Figure B.45: Histograms of parameter φ(b) for 2 different cutoffs of the MCP-Mod based
p-values for increasing profiles (left) and decreasing profiles (right).
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Figure B.46: Histograms of parameter φ(c) for 2 different cutoffs of the MCP-Mod based
p-values for increasing profiles (left) and decreasing profiles (right).
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Figure B.47: Histograms of parameter φ(d) for 2 different cutoffs of the MCP-Mod based
p-values for increasing profiles (left) and decreasing profiles (right).
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Figure B.48: Histograms of parameter φ(e)∗ for 2 different cutoffs of the MCP-Mod based
p-values for increasing profiles (left) and decreasing profiles (right).
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Figure B.49: Fitted curves for the 15 genes, respectively, for four GO-groups selected
specifically. Red dotted lines indicates the concentration where the half-maximal
effect is observed.
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Figure B.50: Fitted curves for the 30 genes, respectively, for four GO-groups selected
specifically. Red dotted lines indicates the concentration where the half-maximal
effect is observed.
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Figure B.51: Histogram of the coverage probability for the direct estimation of parameter
φ(e)∗ for the simulation study based on the large set of probe sets..
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Figure B.52: Histogram of the coverage probability for the four variants of calculating
confidence intervals from a meta-analysis.
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Figure B.53: Different MSEs of the meta-analysis method for the four GO-groups of
size 30 when changing the correlation cutoff to be exceeded. The color of the re-
spective bar indicates the correlation cutoff to be exceeded and the height of the bar
the resulting MSE for the meta-analysis approach.
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Figure B.54: Histograms of the four simulated parameters for the synthetic dataset.

Figure B.55: Relationship between φ(c) and φ(d) in the synthetic dataset.
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Figure B.56: Left: Comparison of MSE for the direct estimate and the Bayes estimate
based on the robust estimation. Right: True underlying parameters φ(b) and φ(e)∗

plotted against each other and colored according to the comparison of MSEs.

Figure B.57: Left: Histograms of the coverage probability for the credible intervals based
on the robust estimation. Right: Comparison of the coverage probabilities from the
direct estimate and the coverage probability shown in the left. Colors are chosen
according to the comparison of MSE from Figure B.56.
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Figure B.58: Histogram of the prior estimates for the empirical Bayes method to estimate
the parameter φ(e)∗. Results for ML estimation are shown in the top, results for
robust estimation in the bottom of the plot.

Figure B.59: Left: Comparison of MSE for the direct estimate and the Bayes estimate
based on the robust estimation. Right: True underlying parameters φ(b) and φ(e)∗

plotted against each other and colored according to the comparison of MSEs.
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Figure B.60: Left: Histograms of the coverage probability for the credible intervals based
on the robust estimation. Right: Comparison of the coverage probabilities from the
direct estimate and the coverage probability shown in the left. Colors are chosen
according to the comparison of MSE from Figure B.56.
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Figure B.61: Histogram of the prior estimates for the empirical Bayes method to estimate
the parameter φ(e)∗. Results for ML estimation are shown in the top, results for
robust estimation in the bottom of the plot.
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Figure B.62: Left: Comparison of MSE for the direct estimate and the Bayes estimate
based on the robust estimation. Right: True underlying parameters φ(b) and φ(e)∗

plotted against each other and colored according to the comparison of MSEs.

Figure B.63: Left: Histograms of the coverage probability for the credible intervals based
on the robust estimation. Right: Comparison of the coverage probabilities from the
direct estimate and the coverage probability shown in the left. Colors are chosen
according to the comparison of MSE from Figure B.56.
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C. Tables: Handling deviating control values

Table C.1: EC10, EC20 and EC50 values together with corresponding limits of 95% con-
fidence intervals for the four methods in a real data study resembling the ‘medium’
scenario for Don1.

EC10 EC20 EC50
Est. Lower Upper Est. Lower Upper Est. Lower Upper

4pLL 1.43 0.58 3.54 2.45 1.37 4.37 6.02 4.42 8.21
3pLL 0.89 0.48 1.65 1.77 1.20 2.59 5.45 3.78 7.85

No Ctrl 2.90 1.92 4.39 3.99 3.08 5.16 6.90 5.24 9.08
BC 1.00 1.96 6.13

Table C.2: EC10, EC20 and EC50 values together with corresponding limits of 95% con-
fidence intervals for the four methods in a real data study resembling the ‘difficult’
scenario for Don1.

EC10 EC20 EC50
Est. Lower Upper Est. Lower Upper Est. Lower Upper

4pLL 0.98 0.60 1.59 1.87 1.29 2.73 5.34 2.87 9.93
3pLL 0.96 0.69 1.34 1.85 1.37 2.50 5.31 2.90 9.72

No Ctrl 2.12 0.65 6.93 3.23 1.50 6.95 6.57 4.53 9.53
BC 1.00 1.91 5.50

Table C.3: EC10, EC20 and EC50 values together with corresponding limits of 95% con-
fidence intervals for the four methods in a real data study resembling the ‘medium’
scenario for Don2.

EC10 EC20 EC50
Est. Lower Upper Est. Lower Upper Est. Lower Upper

4pLL 1.60 1.00 2.55 2.57 1.87 3.53 5.76 4.63 7.16
3pLL 1.50 1.06 2.11 2.46 1.96 3.07 5.65 4.62 6.91

No Ctrl 1.86 1.07 3.24 2.87 1.95 4.24 6.02 4.79 7.57
BC 1.22 2.30 5.88
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Table C.4: EC10, EC20 and EC50 values together with corresponding limits of 95% con-
fidence intervals for the four methods in a real data study resembling the ‘difficult’
scenario for Don2.

EC10 EC20 EC50
Est. Lower Upper Est. Lower Upper Est. Lower Upper

4pLL 1.40 0.74 2.63 2.54 1.52 4.25 6.51 2.67 15.91
3pLL 1.28 0.84 1.94 2.39 1.45 3.95 6.40 2.51 16.30

No Ctrl 3.87 2.54 5.91 5.00 3.76 6.64 7.83 6.27 9.79
BC 1.41 2.83 7.09
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