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Kurzfassung
Diese Dissertation beinhaltet eine Studie zur Entdeckung von Physik jenseits des Standard
Modells (BSM) geleitet durch die Flavor-Anomalien. Mit dem Ziel, den Top-Quark Bereich
der Standard Model Effective Field Theory (SMEFT) mit den Anomalien in b→ s Übergän-
gen zu verbinden, führen wir zunächst einen globalen Fit an Top-Quark Messungen durch,
in dem wir die Gültigkeit des SMEFT-Ansatzes sowie Vorteile und Herausforderungen, die
in der Kombination verschiedener Datensätze entstehen, diskutieren. Anschließend führen
wir eine erste kombinierte Analyse von Top-Quark und Beauty Daten durch und fitten drei
SMEFT Wilson Koeffizienten an tt̄γ and b → sγ Daten. Wir beschreiben die notwendigen
Schritte für die Analyse und zeigen, wie Unterschiede in der Sensitivität die Resultate deutlich
verbessern. Wir erweitern diese Studie und betrachten semileptonische Operatoren, die im
starken Zusammenhang zu den Anomalien in b→ sµ+µ− Messungen stehen, in einem Fit an
Top-Quark, Zbb, und B-Physik Observablen im Kontext aktueller Messungen sowie mehrerer
Zukunftsszenarien für HL-LHC, Belle II, und einem Lepton Collider. Unsere Analyse zeigt
eine starke Verbindung von Top-Quark und Beauty Observablen auf, die neue Möglichkeiten
für modellunabhängige Fits ermöglichen. Um unsere Analyse abzurunden, untersuchen wir
den Fall, dass BSM Physik am LHC produziert werden könnte. Diese neue Physik kann sowohl
die Anomalien in den magnetischen Momenten der Leptonen erklären als auch mehrere Prob-
leme des Standard Modells beheben. Wir betrachten dazu zwei asymptotisch sichere Modelle
mit vektorartigen Leptonen und Skalaren mit einer nicht-trivialen Falvorstruktur und führen
eine detaillierte Analyse für eine Entdeckung am LHC durch. Wir konstruieren Nulltests und
stellen fest, dass der Run 2 Datensatz ausreichen könnte, um BSM Physik zu entdecken.

Abstract
This thesis comprises a study on opportunities for physics beyond the Standard Model (BSM)
guided by the flavor anomalies. Aiming at linking the top-quark sector of the Standard Model
Effective Field Theory (SMEFT) to the anomalies in b→ s transitions, we perform a global fit
to top-quark data detailing on the validity of the SMEFT framework, and highlight benefits
and challenges of combining multiple measurements in a combined fit. To combine top-quark
and beauty data we perform a first joined fit of three SMEFT Wilson coefficients to tt̄γ and
b → sγ data. We work out the steps needed for linking top-quark and B physics within
SMEFT, and demonstrate how the complementarity of both sectors enhances constraints
significantly. Extending our setup, we analyze semileptonic four-fermion operators, which
are of high interest in the context of anomalies seen in b → sµ+µ− data, in a combined fit
to top-quark, Zbb, and B-physics observables using present data as well as future scenarios
of HL-LHC, Belle II, and a future lepton collider. We observe powerful synergies between
top-quark and beauty physics, which open new directions for model-independent searches. To
complement our analysis, we investigate the possibility that BSM physics can be well within
the reach of the LHC while still accommodating the anomalies within the lepton anomalous
magnetic moments and lifting several shortcomings of the Standard Model (SM). The models
are an asymptotically safe extension of the SM featuring potentially light vector-like leptons
and additional scalars with a non-trivial flavor structure. We perform a detailed study of
implications for discovery at the LHC exploiting unique flavor signatures to construct null-
tests of the SM, and find that Run 2 data can be sufficient to detect BSM physics, indicating
that new physics might be just around the corner.
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1 Introduction

In the past decades, both theoretical and experimental efforts have led to the formulation of
the Standard Model (SM) of particle physics. This theory allows to describe matter and its
interactions at a fundamental level including three of the four fundamental interactions known
today. These comprise the strong, weak and electromagnetic interactions, and only gravity
remains yet to be included into a fundamental particle theory. A milestone for particle
physics was reached in 2012 with the direct detection of a scalar resonance at the Large
Hadron Collider (LHC) by the ATLAS and CMS experiments [1, 2]. In subsequent analyses
this resonance has been found to be compatible with the SM Higgs boson [3–5]. This direct
detection completed the SM, and so far further investigations of the properties of the Higgs
couplings by ATLAS and CMS are found to be in agreement with the SM predictions [6].

In the future, measurements at the LHC are scheduled to put the SM under further tests
by colliding protons at center-of-mass energies of 13 and 14 TeV. This extensive program will
necessarily push our knowledge of particle physics into yet unexplored territories. In this
regard, two complementary approaches in the hunt for physics beyond the Standard Model
(BSM) can be applied to enrich our fundamental understanding of nature. First, direct
searches for resonances allow to discover a particle not included in the SM. Such an event
would be truly revolutionary, and would certainly be the starting point for the formulation
of a completely new ”Standard Model”. If, however, no such resonance can be found, indirect
searches allow to test significantly higher energies by comparing SM predictions to precision
measurements. Any significant discrepancy would be a sign of virtual contributions from BSM
physics too heavy to be produced with present collider setups. Similarly to a direct detection,
any significant deviation from the SM discovered in indirect searches would be an outstanding
event, and would serve as a beacon for both model building and further experimental analyses
in the hunt for BSM physics.

The situation faced nowadays in particle physics is that various measurements are in good
agreement with SM predictions. In addition, no evidence for direct detection of BSM particles
is found within present data. However, despite this overall agreement there is a broad range
of both hints for BSM physics and known shortcomings of the SM. Starting off with the
latter, the SM describes only visible matter. Thus, it lacks any suitable explanation for the
existence of both dark energy and dark matter, which have to be included in the description
of the energy content and the acceleration of the expansion of the universe. Nor can the SM
sufficiently describe the matter-antimatter asymmetry present in the Universe. Furthermore,
the SM suffers from several theoretical shortcomings, such as the breakdown of perturbation
theory at high energy scales or the lack of explanation for the patterns observed in both the
masses of SM particles and their mixing parameters.

Besides these shortcomings of the SM, there are several indications within data for the
presence of BSM physics. While experiments at high-energy colliders have yet to report a
direct detection of BSM physics, various hints for deviations from the SM can be found within
in the flavor sector. One example, which has raised significant attention in the last years, is
found in the B sector. Along with discrepancies in angular distributions of b→ sµ+µ− tran-
sitions, the so-called B anomalies hint at lepton flavor non-universality, see e.g. [7–12]. This
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is in stark contrast to the universal couplings in the SM. While deviations in each observable
are (on their own) not significant enough to represent evidence for BSM physics, they seem
to draw a consistent pattern over several processes. This makes them an interesting guideline
for the construction of models explaining the origin of these anomalies. Another example are
discrepancies between data and SM predictions observed in the anomalous magnetic moments
(AMMs) of both the electron and the muon [13–16]. Similarly to the B anomalies, the AMMs
also hint at BSM physics in interactions of charged leptons.
After the successful construction and confirmation of the SM, particle physics has entered

an era of searches for BSM physics, which are presently guided by the flavor anomalies. It is to
be expected that direct discovery of BSM physics is a prospect of future colliders. The pattern
observed in data indicates that the scale of BSM physics can be separated from the scales
in the SM. While present data could also be a result of new physics being only very weakly
(i.e. feebly) interacting or having properties that are not detectable with present search
strategies, the possibility that BSM physics could be heavier than energy scales of present
experiments is of special interest. The reason is that a decoupling of new physics allows to
apply indirect searches in the hunt for BSM physics. However, such indirect searches are in
fact highly non-trivial. Any BSM model meant to explain a deviation from the SM found in
data must, at the same time, pass constraints from measurements that show agreement with
the SM. This raises the question whether there is an efficient method that simultaneously tests
multiple observables in one consistent framework and also allows to compare as many models
as possible to the results of such an analysis. The answer to this question is found within
the concept of effective field theories (EFTs), in particular the Standard Model Effective Field
Theory (SMEFT). This EFT consists of the SM Lagrangian and additional higher-dimensional
operators built out of SM fields. Required to be consistent with the SM symmetries, these
operators parametrize BSM physics model-independently for energies below the scale of new
physics. The only assumptions needed in the construction refer to the particle content and
the symmetries at a given scale. In the case of the SMEFT, we assume that only the SM
particle content is present below the electroweak scale, and thus the operators are required to
be invariant under SM symmetry group, SU(3)C × SU(2)L × U(1)Y . In this regard, special
focus has been placed on the top-quark sector, which has entered a precision era at the LHC.
The top quark is too heavy to apply low-energy EFTs, which describe physics below the
electroweak scale. Thus, it is the perfect starting point for global SMEFT fits.
However, the true significance of the SMEFT framework has a deeper reasoning than simply

performing model-independent fits to data of top-quark physics or other sectors. Instead, it
allows to combine observables from various physical processes in a single analysis [17–24].
Furthermore, matching the SMEFT Lagrangian onto low-energy EFTs relates observables
measured at different energy scales [21–24]. In particular, this procedure enables us to link
the flavor sector, where presently the most promising hints for BSM are found, to top-quark
data, which is only very recently considered in model-independent fits. In this spirit, the top-
quark sector is truly the ideal starting point for such a combined fit, as SU(2)L invariance
relates top-quark and beauty physics. Combining top and beauty is the first step towards
a global fit to various physical processes, leaving no stone unturned in the quest for BSM
physics.
In this thesis, which is based on Refs. [23–26], we follow the guidance of the flavor anoma-

lies, and perform a combined analysis of top-quark and beauty data linking anomalies in
b → s transitions to top-quark observables. To do so, we start by introducing the SM La-
grangian in Chapter 2. We explain how this theory is constructed employing the concept
of gauge symmetries. We discuss its parameters and field content, which is also used in the
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construction of the SMEFT Lagrangian. In Chapter 3, we explain the framework of EFTs,
and consider in particular the SMEFT Lagrangian. We discuss specific implications for low-
energy observables induced by SU(2)L invariance. Furthermore, we introduce the concept of
global fits within the SMEFT framework, in particular to the top-quark sector, which is stud-
ied throughout this thesis. In Chapter 4, we perform a first global fit to data from t-channel
single top-quark production and top-quark decay, describing in detail our fitting procedure.
In addition, we discuss the validity of the SMEFT expansion as well as benefits and challenges
of the combination of different datasets. In Chapter 5, we set the stage for a combined fit
to top-quark and beauty data using the example of tt̄γ production and b → sγ transitions.
We investigate the feasibility of such a combination, and detail the steps needed to perform
a fit to observables measured at different energy scales within the SMEFT framework. In
Chapter 6, we build up on this analysis, and perform a global fit to top-quark and beauty
data. In particular, we include semileptonic four-fermion operators, which are of special in-
terest regarding the anomalies in b→ s transitions. We further demonstrate how present data
provides the opportunity to probe contact interactions of leptons and top quarks, which are
only weakly constrained by LHC data [27]. We discuss the interplay of constraints derived
from top-quark and beauty observables in present data and at future colliders. We place
special emphasis on top-quark physics at a future lepton collider. In Chapter 7, we use a
complementary approach in the search for BSM physics: direct production of BSM particles.
BSM physics does not need to to be significantly separated in energy from the SM content
to accommodate flavor anomalies seen in the lepton AMMs as well as lifting several short-
comings of the SM [28–30] Thus, flavorful new physics, i.e. vector-like leptons and additional
scalars which are matrices in flavor space, can be just around the corner and well within reach
of direct searches at the LHC. We study how such models can be tested at present colliders
beyond the framework of global fits. Furthermore, we construct novel observables employing
model-specific features. These observables allow for precision tests of the SM and open new
directions in the search for direct detection of such flavorful BSM physics at the LHC. We
conclude in Chapter 8. Furthermore, various appendices provide information on the param-
eters, the theoretical framework of EFTs and the different tools used for the description of
particle physics at colliders, and give further insights into the topics discussed throughout
this thesis.
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2 The Standard Model and beyond

In this chapter, we introduce the SM of particle physics in Sec. 2.1. We detail on its construc-
tion employing the concept of gauge symmetries and the particle content that is described
with this theory. The concept of renormalization is introduced in Sec. 2.2. In Sec. 2.3, we
discuss several shortcomings of the SM, and give examples which motivate the need for BSM
physics. Special care is devoted to the flavor anomalies in Sec. 2.3.3.

2.1 The Standard Model of particle physics
In the SM, the three fundamental interactions emerge from the principle of symmetries.
Each of the three interactions is encoded in a local gauge group. The SU(3)C group is the
underlying gauge group of quantum chromodynamics (QCD), which is the gauge theory of
strong interactions [31–34]. The electroweak (EW) interactions are described by the SU(2)L×
U(1)Y symmetry group [35–37].

The matter content of the SM can be divided into two classes: fermions, which are spin-1/2
particles, and bosons, which are, in the SM, spin-0 and spin-1 particles. Bosons of spin 0 are
referred to as scalars, while bosons of spin 1 are called vector bosons. The fermions can be
further divided into quarks and leptons (and their corresponding antiparticles). Only quarks
are charged under the SU(3)C gauge group and have three different color charges.

There are six different flavors of quarks: up u, down d, charm c, strange s, beauty, or
bottom, b and top t. Two of these quarks together form a so-called generation of quarks.
The first generation contains u and d, the second c and s, and the third one t and b. Within
one generation, the quarks are divided into two classes: those with electric charge Q = 2/3
(u, c, t), called up-type or up-sector quarks, and those with Q = −1/3 (d, s, b), referred to
as down-type or down-sector quarks. In the absence of quark masses, these three generations
are exact copies of one another.

The other class of fermions are leptons, which are distinguished into charged leptons and
neutrinos. Charged leptons have an electric charge of Q = −1 while neutrinos are neutral
particles. There are three different charged leptons, the electron e−, the muon µ−, and the tau
τ−. Similarly, there are three different neutrinos: νe, νµ and ντ . Similarly to the quarks, the
leptons are divided in three generations: the first generation contains e− and νe, the second
µ− and νµ, and the third τ− and ντ . Only the charged leptons are massive while the neutrinos
are massless. Again, neglecting the charged lepton masses these three generations are exact
copies of one another. An overview on the different fermions in the SM is given in Tab. 2.1.
As in any gauge theory, only interactions that are invariant under gauge transformations are
allowed in the SM Lagrangian. In the following, we discuss the concept of gauge symmetries,
and apply this framework to construct the SM Lagrangian, which we give in Eq. 2.1.50.

2.1.1 The principle of gauge invariance

The principle of gauge invariance under a symmetry group restricts a Lagrangian to a certain
kind of allowed interactions. As an example, we consider a fermion field ψαi that transforms
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Particle SU(3)C SU(2)L Y Q I3(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

3 2 1/6
2/3
−1/3

1/2
−1/2

uR , cR , tR 3 1 2/3 2/3 -
dR , sR , bR 3 1 −1/3 −1/3 -(

νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

1 2 −1/2 0
−1

1/2
−1/2

eR , µR , τR 1 1 −1 −1 -

Table 2.1: Fermion content of the SM. 3, 2 and 1 denote triplet, doublet and singlet rep-
resentations under the different gauge groups, respectively. We work with the convention
Y = Q− I3, where I3 denotes the third component of the isospin.

under an infinitesimal symmetry transformation as1

ψαi → ψαi + iθATAαβψ
β
i , (2.1.1)

with a set of independent and constant matrices TA and real, infinitesimal parameters θA,
which, in general, depend on time t and space x, called x in the following. If these symmetry
transformations are part of a Lie group, the matrices TA obey the Lie algebra[

TA, TB
]
= ifCABTC , (2.1.2)

where the real constants fABC are called the structure constants of the symmetry group. In
the following, we mostly consider the case of SU(N) with A = 1, ..., N2 − 1. The structure
constants define the adjoint representation of the Lie group

(TAa )BC = −ifBCA , (2.1.3)

which is the representation with the same dimension as the Lie group itself. The free La-
grangian of the fermion field reads

L0 = ψ̄αi (i/∂ −mi)ψ
α
i , (2.1.4)

where we use Einstein’s sum convention and sum over all repeated indices. We use the
notation /a = γµaµ, where γµ are the Dirac matrices. The field ψ̄αi is defined as ψ̄αi = (ψαi )

†γ0.
As long as the infinitesimal parameter θA is constant, L0 is invariant under the symmetry
transformation in Eq. (2.1.1). This is called global gauge invariance. Under a local gauge
transformation with θA = θA(x) the symmetry transformation in Eq. (2.1.1) does not leave
the free Lagrangian invariant anymore. Instead, L0 transforms as

L0 → L0 + i
(
∂µθ

A(x)
)
ψ̄αi γ

µTAαβψ
β
i . (2.1.5)

According to the Noether theorem, the additional term is called the conserved current of the
symmetry transformation

JAµ ≡ ψ̄αi γµTAαβψ
β
i , with ∂µJAµ = 0 . (2.1.6)

1Note that in this convention the gauge coupling is absorbed into the generators and structure constants.
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To render L0 invariant under a local gauge transformation (2.1.1), we need to include a new
field GAµ , which transforms under local gauge transformations in a way that the additional
term ∼ ∂µθA in Eq. (2.1.5) is canceled. Since GAµ carries an index A, it undergoes a transfor-
mation in the adjoint representation of the symmetry group. The infinitesimal transformation
of the field GAµ reads

GAµ → GAµ + ∂µθ
A + i θB (TBa )AC G

C
µ = GAµ − ∂µθA − θBfACBGCµ , (2.1.7)

This field GAµ , called the gauge field of the symmetry group, allows us to construct a covariant
derivative:

Dµψ
α
i = ∂µψ

α
i + iGAµ T

A
αβ ψ

β
i . (2.1.8)

With Eqs. (2.1.1), (2.1.7) and (2.1.2) the covariant derivative transforms under a local gauge
transformation as

Dµψ
α
i →Dµψ

α
i + i (∂µ θ

A)TAαβ ψ
β
i −G

A
µ T

A
αβ (∂µθ

B)TBβγ ψ
γ
i − i ∂µ θ

A TAαβ ψ
β
i

− i θB fACB GCµ TAαβ ψ
β
i

=Dµ ψ
α
i + i θA TAαβ Dµ ψ

β
i ,

(2.1.9)

so that Dµψ
α
i transforms just as ψαi . This means that the Lagrangian constructed with the

covariant derivative

L = ψ̄αi (i /D −mi)ψ
α
i , (2.1.10)

is invariant under local symmetry transformations. This Lagrangian includes interactions
between ψαi and the gauge field GAµ . To construct a physical theory with propagating fields
GAµ the kinetic terms of the gauge field have to be included. From the gauge transformation
in Eq. (2.1.7) we can see that a mass term ∼ GAµG

Aµ violates invariance under a symmetry
transformation. Hence, the gauge field has to be massless. For the kinetic term, the only
gauge- and Lorentz-invariant term that can be constructed at mass dimension ≤ 4 without
being a total derivative is

FAµνF
Aµν , with FAµν = ∂µG

A
ν − ∂νGAµ + fABcGBµG

C
ν . (2.1.11)

The tensor Fµν is also referred to as field strength tensor and can be connected to the covariant
derivative in Eq. (2.1.8) via

Fµν = i [Dµ, Dν ] = ∂µ Gν ∂ν Gµ − i [Gµ, Gν ] = TA FAµν , (2.1.12)

with Gµ = TAGAµ . The components FAµν transform under the infinitesimal gauge transfor-
mation as

FAµν → FAµν − fABCθBFCµν , (2.1.13)
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for both a local and a global gauge transformation. Imposing parity conservation, we can
construct the gauge-invariant Lagrangian as

L = −1

4
FAµνF

Aµν + ψ̄i(i /D −mi)ψi

= −1

4
FAµνF

Aµν + ψ̄αi (i/∂ −mi)ψ
α
i + iψ̄αi /G

A
TAαβψ

β
i ,

(2.1.14)

where we left the contraction of the α indices of the fermion fields implicit in the first line of
Eq. (2.1.14).
For completeness, under a finite gauge transformation the fermion fields transform as

ψi → Uψi = exp
(
iθATA

)
ψi , (2.1.15)

where U is a unitary matrix with detU = 1. Again, the summation over the indices α is left
implicit in Eq. (2.1.15). With this matrix U , the transformation of the gauge field GAµ and
the field strength tensor FAµν can be written as

TAGAµ → UTAGAµU
† − i (∂µU)U † , TAFAµν → UTAFAµνU

† , (2.1.16)

and it can be shown that the covariant derivative of ψi transforms as ψi itself:

Dµψi → UDµψi . (2.1.17)

With these properties it can directly be seen that the Lagrangian (2.1.14) is invariant under
a finite gauge symmetry transformation.

2.1.2 The Standard Model as a gauge theory

The gauge symmetry group of the SM is SU(3)C × SU(2)L × U(1)Y . To describe under
which representation the fields transform, we need to introduce right- and left-handed fields
ψR/L = PR/Lψ = 1/2(1± γ5)ψ with γ5 = iγ0γ1γ2γ3. These fields transform in the same way
under SU(3)C , but differently under SU(2)L×U(1)Y . Based on the principles introduced in
Sec. 2.1.1 we determine both the transformations under symmetry transformations as well as
the phenomenological predictions such as particle content, the form of allowed interactions,
and the coupling strength.
QCD is described by the underlying SU(3)C gauge symmetry. From the different fermions

only the quarks transform non-trivially as a triplet under SU(3)C . Thus, each of the six
quarks has three possible color charges. The quarks qf with f = {u, d, c, s, t, b} transform
in the following way:

qf → U qf = exp
(
iθA TA

)
qf , (2.1.18)

where, in the fundamental representation, the generators are given as TA = λA/2, with λA

being the Gell-Mann matrices and A = 1, ..., 8 in the fundamental representation of SU(3)C .
The corresponding gauge fields GAµ are colored vector bosons and are called gluons. As they
transform in the adjoint representation of SU(3)C , there are in total eight different gluons,
which transform according to Eq. (2.1.16) with U given in Eq. (2.1.18):

TAGAµ → U TAGAµU
† +

i

gs
(∂µU)U † . (2.1.19)
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The parameter gs is called the strong coupling constant and parametrizes the strength of the
strong interaction. The corresponding field strength tensor GAµν is given as

GAµν = ∂µG
A
ν − ∂ν GAµ + gsG

B
µ G

C
ν f

ABC , (2.1.20)

where fABC are the totally antisymmetric and real structure constants of SU(3)C . Quarks
and gluons form the particle content of the QCD Lagrangian

LQCD =− 1

4
GAµν G

Aµν + q̄f

(
i/∂ − gs /G

A
TA
)
qf −mf q̄f qf ,

=− 1

4

(
∂µG

A
ν − ∂ν GAµ

) (
∂ν GAµ − ∂µGAν

)
+ gs f

ABC
(
∂µG

A
µ

) (
GBµGCν

)
− g2s

4
fABC fADE GBµ G

C
ν G

DµGEν + q̄f

(
i/∂ − gs /G

A
TA
)
qf −mf q̄f qf .

(2.1.21)

Due to the non-abelian structure of SU(3)C we find not only interaction between quarks and
gluons, but also gluon self interactions with both triple and quartic vertices. Without these
self interactions QCD would formally be identical to quantum electrodynamics (QED).

The EW interactions are realized in the SM with an SU(2)L × U(1)Y symmetry group.
In contrast to SU(3)C , all fermions, i.e. quarks and leptons, transform under this symmetry
group. In the case of SU(2)L, there are two different kinds of representation for left- and right-
handed fields: as an isospin-doublet, called qL and lL for quarks and leptons, respectively, in
the fundamental representation and as a singlet, called uR, dR and eR for up-type quarks,
down-type quarks and charged leptons, respectively, in the trivial representation (see also
Tab. 2.1). SU(2)L-doublets ΨL (with Ψ = q, l) and singlets ψR (with ψ = u, d, e) transform
in the following way under a finite SU(2)L × U(1)Y gauge transformation:

ΨL → ULUYΨL = exp
(
iθI τ I

)
exp (iθYL)ΨL , (2.1.22)

ψR → UY ψR = exp (iθ YR)ψR , (2.1.23)

where Y denotes the (weak) hypercharge and τ I with I = 1, 2, 3 are the generators of SU(2)L.
In the fundamental representation these matrices are given as τ I = σI/2, where σI are
the Pauli matrices. To render the free Lagrangian invariant under local SU(2)L × U(1)Y
transformations we introduce the gauge fields W I

µ with I = 1, 2, 3 and Bµ. These transform
as

W I
µτ

I → ULW
I
µ τ

I U †
L +

i

g
(∂µ UL )U

†
L , Bµ → Bµ −

1

g′
∂µθ , (2.1.24)

where g, g′ are the gauge couplings of SU(2)L and U(1)Y , respectively. The field strength
tensors are defined as

W I
µν = ∂µW

I
ν − ∂νW I

µ − gW J
µ W

K
ν εIJK , Bµν = ∂µBν − ∂ν Bµ , (2.1.25)

where εIJK are the totally antisymmetric structure constants of SU(2)L, which are identical
to the epsilon tensor with ε123 = +1. To introduce the covariant derivatives we construct
SU(2)L doublets for quarks and leptons as:

qL =

(
uL
dL

)
, lL =

(
νL
eL

)
, (2.1.26)
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and analogously for the second and third generation. With these definitions of the doublets
the covariant derivatives are given as

DµΨL =
(
∂µ + igW I

µ τ
I + ig′ Y Bµ

)
ΨL , DµψR =

(
∂µ + ig′ Y Bµ

)
ψR . (2.1.27)

With the covariant derivatives the Lagrangian that describes the SU(2)L×U(1)Y interactions
can be written as:

LEW =− 1

4
W I
µνW

Iµν − 1

4
Bµν B

µν + iq̄iL /DqiL + il̄iL /DliL + iūiR /DuiR + id̄iR /DdiR

+ iēiR /DeiR ,
(2.1.28)

where i = 1, 2, 3 denotes the three fermion generations. In contrast to the SU(3)C , local
SU(2)L × U(1)Y gauge invariance forbids the inclusion of fermion mass terms.

2.1.3 The Yukawa sector

To include fermion masses as well as vector boson masses the concept of spontaneous symmetry
breaking (SSB) has to be employed. In the SM, a new complex scalar field ϕ, which transforms
as an SU(2)L doublet under SU(2)L × U(1)Y with Y = 1/2, has to be included in the
Lagrangian in Eq. (2.1.28). This model is also referred to as the Weinberg-Salam model [35–
37].
In general, SSB occurs if the Lagrangian is invariant under a certain symmetry while the

vacuum state is not. In the case of the SM, consider the Lagrangian [3–5]

Lϕ = −1

4
W I
µνW

Iµν − 1

4
Bµν B

µν + (Dµ ϕ) (D
µ ϕ)− V (ϕ)

= −1

4
W I
µνW

Iµν − 1

4
Bµν B

µν + (Dµ ϕ) (D
µ ϕ)− µ2 ϕ† ϕ− λ

(
ϕ† ϕ

)2
,

(2.1.29)

Dµϕ =
(
∂µ + ig ′W I

µ τ
I + ig′Bµ

)
ϕ . (2.1.30)

For parameters µ2 < 0, λ > 0 in the potential V we find an infinite number of minima at

|ϕ|2 = ϕ† ϕ =
−µ2

2λ
= v2 , (2.1.31)

where v is the vacuum expectation value (VEV) of the field ϕ. In general, the complex SU(2)L
doublet ϕ describes four real fields ϕi with i = 1, ..., 4. Expanding ϕ around v we can rewrite
it as

ϕ(x) =

(
ϕ1(x) + iϕ2(x)
ϕ3(x) + iϕ4(x)

)
= exp

(
i
πI(x)√

2v
τ I
)(

0
v+h(x)√

2

)
, (2.1.32)

where πI with I = 1, 2, 3 are three massless fields called Goldstone bosons [38, 39], and h is
referred to as the Higgs boson. Inserting this parametrization into Eq. (2.1.29) we see that a
mass term for the field h with m2

h = −µ2 is dynamically generated. The field ϕ transforms
as a doublet under local SU(2)L × U(1)Y transformations, similarly to Eq. (2.1.22). Thus,
we can choose a specific gauge to set πI = 0 fixing the values of three of the four parameters
θI and θ. This procedure is called gauge fixing, and the corresponding gauge is referred to
as unitary gauge. In this gauge, studying the theory is simpler as no propagating Goldstone
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bosons occur.
In unitary gauge, we find that three mass terms for three massive gauge bosons are gener-

ated (this is also referred to as: ’the gauge bosons eat the Goldstone bosons’):

(Dµϕ) (D
µϕ) = g2

v2

8

[
(W 1

µ)
2 + (W 2

µ)
2 +

(
g′

g
Bµ −W 3

µ

)2
]
. (2.1.33)

Defining

W±
µ =

1

2

(
W 1
µ ∓ iW 2

µ

)
,

Zµ = cos θwW 3
µ − sin θw Bµ ,

Aµ = sin θwW 3
µ + cos θw Bµ ,

(2.1.34)

with the Weinberg angle θw given as

tan θw =
g′

g
, (2.1.35)

we see that Eq. (2.1.33) describes three massive and one massless vector bosons with masses

mW = g
v

2
, mZ = g

v

2 cos θw
=

mW

cos θw
, mA = 0 . (2.1.36)

The massless particle described by Aµ is the photon, while W±
µ and Zµ correspond to the

massive W and Z bosons, respectively. Furthermore, it follows that the Z boson should be
heavier than the W bosons. An alternative way to formulate this connection is (at tree level)

ρ =
m2
W

m2
Z cos2 θw

= 1 , (2.1.37)

fixed in the Weinberg-Salam model. Defining the electromagnetic coupling strength as

e = g sin θw = g′ cos θw , (2.1.38)

and expanding the W I
µνW

Iµν term we see that the W± bosons have indeed charge ±1.
The dynamical generation of fermion masses is realized in a similar way. Including the

Higgs field allows to construct additional interaction terms invariant under SU(2)L×U(1)Y .
Focusing on quark masses, we introduce the quark Yukawa couplings

LYuk = −Y u
ij q̄

i
L ϕ̃ u

j
R − Y

d
ij q̄

i
L ϕd

j
R + h.c. , (2.1.39)

with ϕ̃ = iσ2ϕ
∗ and the Yukawa matrices Y u and Y d for up-type and down-type quarks,

respectively, with generation indices i, j. We observe that each of the terms is invariant
under a local SU(3) × SU(2) × U(1) transformation. After electroweak symmetry breaking
(EWSB) the Yukawa interactions in Eq. (2.1.39) generate mass terms for the quarks:

Lmass = −
v√
2

(
Y u
ij ū

i
L u

j
R + Y d

ij d̄
i
L d

j
R

)
+ h.c. . (2.1.40)

In general, the Yukawa matrices are not diagonal. To diagonalize the mass terms we employ
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the singular value decomposition of the Yukawa matrices as

Y u = SuLMu S
u†
R , Y d = SdLMd S

d†
R , (2.1.41)

with two diagonal matrices Mu,d and unitary matrices Su,dL,R. Absorbing these four rotation
matrices into the quark fields defines the mass basis as

u′L/R = Su†L/R uL/R , d′L/R = Sd†L/R dL/R . (2.1.42)

This allows us to diagonalize the mass terms in Lmass. The change from the so-called flavor
basis (ui, di) to the mass basis (u′i, d′i) has important consequences for the gauge interactions
in Eq. (2.1.28). In the flavor basis, the interactions between the gauge bosons and quarks are
written as

LEW ⊇
(
ūL d̄L

)i [
(
g

2
/W

3
σ3 + g′Yq /B) +

g

2
/W

1
σ1 +

g

2
/W

2
σ2
](uL

dL

)i
+ ūiR g

′ Yu /B uiR + d̄iR g
′ Yd /B diR

=
e

sin θw
Zµ JZµ + eAµ JEM

µ +
g√
2

(
ūiLW

+
µ γµ diL + d̄iLW

−
µ γµ uiL

) (2.1.43)

with σ± = 1/2(σ1 ∓ iσ2) and W±, Z and A defined in Eq. (2.1.34). The neutral currents JZ
and JEM are defined as

JZµ =
1

cos θw
(
J3
µ − sin2 θw JEM

µ

)
, (2.1.44)

J3
µ = ψ̄iL γµ T

3 ψiL , (2.1.45)
JEM
µ = Qi

(
ψ̄iL γµ ψ

i
L + ψ̄iR γµ ψ

i
R

)
, (2.1.46)

where T 3 = τ3 in the fundamental representation, giving 0 when acting on right-handed
states, Q = T 3 + Y , and ψi = ui, di. We can see that all interactions between the gauge
bosons and the quarks are diagonal in the flavor basis. Rotating to the mass basis leaves the
neutral currents (as well as the gluon-quark interactions) invariant as each class of quarks
uiL/R, d

i
L/R has the same quantum numbers regardless of i. The charged-current interactions,

however, do not remain diagonal in the mass basis [40]:

LCC =
g√
2

(
ū′iLW

+
µ γµ Vij d

′j
L + d̄i′LW

−
µ γµ

(
V †
)
ij
u′jL

)
, (2.1.47)

where we introduced the unitary matrix V = (SuL)
† SdL known as the Cabibbo-Kobayashi-

Maskawa (CKM) matrix [41, 42]. This matrix has in total four degrees of freedom, i.e. three
angles θ12, θ13, and θ23, and one phase δ. It can be parametrized as [43]:

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s23s13 eiδ c12 c23 − s12 s23 s13 eiδ s23 c13
s12 s23 − c12 c23 s13eiδ −c12 s23 − s12 c23 s13 eiδ c23 c13

 ,

(2.1.48)

with cij = cos θij and sij = sin θij . As long as the phase δ is non-zero CP violation is implied
by the CKM matrix.
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Similarly to Eq. (2.1.39), Yukawa interactions of charged leptons and left-handed neutrinos
can be written as

LYuk,l = −Y e
ij l̄

i
L ϕe

j
R + h.c. , (2.1.49)

since right-handed neutrinos are not observed and not included in the SM Lagrangian. It
follows that no mass terms for neutrinos are included in the SM, even though it is known
today that at least two neutrinos are indeed massive [44–46].

To summarize the discussions about SM gauge symmetries and the particle content of the
SM, the SM Lagrangian before SSB reads

LSM =− 1

4
GAµν G

Aµν − 1

4
W I
µνW

Iµν − 1

4
Bµν B

µν + (Dµ ϕ)
†(Dµ ϕ)

− µ2 ϕ† ϕ− λ(ϕ† ϕ)2

+ i
(
l̄L /D lL + ēR /DeR + q̄L /D qL + ūR /DuR + d̄R /DdR

)
−
(
Y u q̄L ϕ̃ uR + Y d q̄L ϕdR + Y e l̄L ϕeR + h.c.

)
,

(2.1.50)

where we leave the summation over all contracted color, isospin and generation indices im-
plicit. The covariant derivatives are defined as

DµqL =
(
∂µ + ig′ Y Bµ + ig τ IW I

µ + igs T
AGAµ

)
qL , (2.1.51a)

DµuR =
(
∂µ + ig′ Y Bµ + igs T

AGAµ
)
uR , (2.1.51b)

DµdR =
(
∂µ + ig′ Y Bµ + igs T

AGAµ
)
dR , (2.1.51c)

DµlL =
(
∂µ + ig′ Y Bµ + ig τ IW I

µ

)
lL , (2.1.51d)

DµeR =
(
∂µ + ig′ Y Bµ

)
eR . (2.1.51e)

In Tab. 2.1 we summarize the representations for all fermion fields in the SM. In this work,
we use the convention Y = Q− I3.

2.2 The concept of renormalization and running of couplings

In perturbation theory, predictions for observables are computed by expanding them in powers
of small coupling constants. Contributions beyond tree-level processes are called loop contri-
butions. These have to be considered when computing higher-order corrections, depending on
the level of accuracy that is needed for the computation. In general, loop diagrams yield di-
vergences from the ultraviolet (UV) region of the momentum integrals. In the process referred
to as renormalization these infinities are removed by absorbing them into the bare parameters
(i.e. coupling constants, masses, fields) in the Lagrangian. By doing so, all parameters of the
theory are expressed in terms of renormalized parameters. Examples for these renormalized
parameters are couplings and masses measured in experiments.

The process of renormalization has a more physical interpretation beyond the purpose of
absorbing infinities: as renormalization connects the bare parameters in the Lagrangian with
physical observables, it would also be necessary in theories with convergent integrals. For
example, a renormalized field is defined by the condition that its propagator has the same
behavior near its pole as the free field, while the renormalized mass refers to the position of
this pole. In actual calculations it is, however, simplest to infer that all infinities occurring
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at a given expansion order cancel when all parameters are expressed in terms of renormalized
quantities.
To renormalize the parameters of the Lagrangian and cancel all infinities occurring in

intermediate steps of calculations a regularization scheme is employed. This regulator is
introduced to make divergences explicit in the calculations. In all physical predictions, the
explicit dependence on the regulator must drop out. In this work, we compute diagrams in
4 − ε dimension, and divergences occur as poles ∼ 1/ε for ε → 0. This process is referred
to as dimensional regularization. In addition, all couplings include a factor µ−ε/2 in the
relation between renormalized and bare couplings so that renormalized couplings remain
dimensionless. The parameter µ itself has dimension of mass and is called the renormalization
scale or substraction point [47, 48]. In explicit calculations, we apply minimal subtraction
(MS), i.e. absorbing only divergent parts, followed by the rescaling µ2 → µ2eγ/4π with
Euler’s constant γ = 0.577... . This scheme is called the MS scheme.
Theories, in which all UV divergences can be removed by a finite number of parameter

redefinitions, are called renormalizable theories. To fix these parameters only a finite number
of experimental inputs is needed. The requirement of renormalizability played a crucial role
in the formulation of the SM. However, cancellation of UV divergences does not necessarily
depend on renormalizability. As long as all of the infinite number of interactions allowed
by symmetries are included in the Lagrangian UV divergences are still canceled. In this
sense, ’non-renormalizable theories’ are just as renormalizable as ’renormalizable theories’.
Generalizing this terminology to individual interactions, we distinguish between three kinds
of interactions depending on the mass dimension of the couplings: Interactions of dimension
d = 0 are referred to as marginal, those with dimension d > 0 as relevant and those with
dimension d < 0 as irrelevant. Non-renormalizable interactions are those of mass dimension
d < 0.
However, fixing all parameters in a non-renormalizable theory would require an infinite

number of experimental inputs. This would certainly render non-renormalizable theories
completely unpredictive. However, in fact non-renormalizable theories remain predictive [49]
as long as we are only interested in physics at low energies. Here, low energies refers to
energies smaller than the mass scale Λ appearing in the irrelevant couplings. In the case
E � Λ, only a limited number of non-renormalizable interactions are important and can be
fixed with a finite number of measurements. In this sense, non-renormalizable theories remain
predictive at low energies as long as a finite theoretical precision is sufficient.
One interpretation of this behavior is that theories used to describe physics at a given energy

scale are in fact EFTs. These theories can be understood as low-energy approximations
to a more fundamental, underlying theory, and necessarily include an infinite number of
non-renormalizable interactions. At sufficiently low energies these interactions are strongly
suppressed, and the renormalizable parts of the theory retain their special status, even though
for reasons different from the original idea of renormalizability.
A simple example for a renormalizable theory is QED. The Lagrangian is given as

LQED = −1

4
F (0)
µν F

(0)µν + iψ̄(0) γµ(∂µ − ie(0)A(0)
µ )ψ(0) −m(0)

e ψ̄(0) ψ(0) , (2.2.1)

where we denote the bare fields, couplings and masses with the superscript (0) and F (0)
µν =

∂µA
(0)
ν − ∂ν A(0)

µ . We refer to the parameters as bare masses and fields as they are not the
quantities measured by experiments. Instead, couplings and masses measured in experiments
are quantities computed taking all higher-order corrections into account. The bare quantities
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refer to the fact that e.g. vertices are stripped from all loops. To connect the bare parameters
in the Lagrangian to physical observables, we define the renormalized fields and parameters
as:

ψ =
1√
Zψ

ψ(0) , Aµ =
1√
ZA

A(0)
µ , e =

1

Ze
µ−ε/2 e(0) , me =

1

Zm
m(0) , . (2.2.2)

Rewriting LQED in terms of renormalized fields yields

LQED =− 1

4
Fµν F

µν + iψ̄γµ(∂µ − iµ−ε/2 eAµ)ψ −meψ̄ψ

− 1

4
(ZA − 1)Fµν F

µν + i(Zψ − 1)ψ̄ γµ ∂µ ψ

+ (
√
ZA Zψ Ze − 1)µ−ε/2 e ψ̄ γµAµ ψ − (Zψ Zm − 1)me ψ̄ ψ ,

(2.2.3)

where terms in the second and third line are called counterterms. Requiring time-ordered
products of renormalized fields (i.e. Green’s functions) to be free of divergences by expressing
them in terms of renormalized couplings and masses fixes the renormalization constants Zi.
The exact way how the Zi are chosen is referred to as subtraction scheme. As stated previously,
we employ the MS scheme and choose

Zi = 1 +
∞∑
m=1

Zi,m(e)

εm
, (2.2.4)

with coefficients Zi,m independent of ε, and rescale µ2 → µ2eγ/(4π). The parameters Zi can,
at any given order in the coupling constant, be computed considering loop diagrams together
with counterterms requiring that all divergences cancel. As an example, at next-to leading
order (NLO) in QED the constant ZA is computed schematically from the condition

finite = + , (2.2.5)

where the left Feynman diagram is the one-loop vacuum polarization correction to the photon
propagator, and the right diagram is the counterterm corresponding to −1/4 (ZA−1)Fµν Fµν .
To be finite for ε→ 0 at O(e2) the constant is defined as

ZA = 1− 8

3

(
e2

16π2ε

)
+O(e3) . (2.2.6)

In a very similar way, Zψ and Zm are fixed by considering higher-order contributions to the
electron propagator:

finite = + . (2.2.7)

The first diagram corresponds to vacuum polarization contributions, and the second dia-
gram denotes counterterm contributions from i(Zψ − 1)ψ̄ γµ ∂µ ψ − (Zψ Zm − 1)me ψ̄ ψ. The
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computation yields

Zψ = 1− 2
e2

16π2ε
+O(e3) , Zm = 1− 6

e2

16π2ε
+O(e3) . (2.2.8)

Considering vertex corrections

finite = + , (2.2.9)

fixes the remaining renormalization constant, Ze, to be

Ze = 1 +
4

3

(
e2

16π2ε

)
. (2.2.10)

Note that up to O(e2) we find Ze = 1/
√
ZA. With this result, we can now write the bare

coupling in Eq. (2.2.2) as

e(0) = µε/2 e

(
1 +

4

3

e2

16π2ε

)
. (2.2.11)

Since the bare coupling (as all bare parameters) is independent of the renormalization scale
µ, we can infer:

de(0)

d lnµ
= 0 = µε/2 eZe

(
ε

2
+

1

e

de

d lnµ
+

1

Ze

dZe
d lnµ

)
, (2.2.12)

⇔1

e

de

d lnµ
= − ε

2
− 1

Ze

dZe
d lnµ

. (2.2.13)

This differential equation allows us to define the beta function of the renormalized coupling
as

β(e) =
de

d lnµ
= − ε

2
e− e2

12π2
+O(e3) ε→0

= − e2

12π2
+O(e3) , (2.2.14)

and the beta function is finite for ε→ 0. This function describes the scale dependence of the
renormalized coupling. A typical choice is µ2 ∼ s, where s is the center of mass energy of the
process considered. This value minimizes higher-order terms neglected in the perturbative
expansion which scale like ∼ e2n lnm(µ2/s) with m ≤ n. To solve the renormalization group
equation (RGE) (2.2.14) we define

αe =
e2

4π
. (2.2.15)

Rewriting the RGE (2.2.14) in terms of αe yields

β(α) =
dα

d lnµ
= −2α

(
ε

2
+

α

4π
β0 +

α2

(4π)2
β1 + ...

)
, (2.2.16)

with β0 = −4/3 in QED and d = 4 dimensions. Solving the RGE we find for the running of
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Figure 2.1: Scale dependence of the SM gauge couplings g′, g and gs, the top-quark Yukawa
coupling yt and the Higgs quartic coupling λ. The parameters are defined in the MS scheme.
The running is computed at the three-loop level [50].

the coupling αe:

αe(µ) =
2π

β0

1

ln
(

µ
ΛQED

) , (2.2.17)

where the scale ΛQED is determined from the measured value of the coupling constant. Taking
for example αe(me) = 1/137 we obtain ΛQED ≈ 10286 eV. As αe is required to be a positive
number, we see that for β0 < 0 the coupling grows with rising energy. At the scale µ = ΛQED
the solution (2.2.17) diverges, so that ΛQED is referred to as the Landau pole of the theory.
An equivalent solution of Eq. (2.2.16) is

αe(µ) =
αe(µ0)

1 + β0αe(µ0)
2π ln

(
µ
µ0

) , (2.2.18)

which is the same as Eq. (2.2.17) in the case µ0 = ΛQED. Again, one measurement of αe at
a scale µ0 fixes the running of the coupling.

In the SM, there are multiple couplings that show a scale dependence: the gauge couplings
g′, g and gs, the Yukawa couplings yi and the couplings in the Higgs potential. This makes the
computation of beta functions a non-trivial task, especially at higher orders. In the literature,
the SM beta functions for the gauge couplings, the largest Yukawa couplings yt, yb, and yτ
of the top quark, bottom quark and tau lepton, respectively, as well as the Higgs couplings
have been computed at three-loop level in Ref. [50]. In Fig. 2.1 we give the scale dependence
of the three gauge couplings, the top-quark Yukawa coupling and the Higgs quartic coupling
computed using the results in Ref. [50]. First of all, we see a unique feature of the Higgs quartic
coupling λ: at scales µ ∼ 1010 GeV the coupling becomes negative, rendering the vacuum
configuration of the Higgs potential metastable given present measurements of the top-quark
and Higgs masses [50, 51]. Note that λ is the only coupling which can show this behavior,
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since not all terms in the beta function βλ are proportional to λ itself [50]. In addition, we can
identify two distinct behaviors for the gauge couplings. The coupling g′ of the U(1)Y gauge
group grows with energy and diverges at the Landau pole, similarly to the QED coupling in
Eq. (2.2.17). This pole lies beyond the Planck scale MPl ∼ 1019 GeV, where quantum gravity
effects are expected to arise. In contrast, the SU(3)C gauge coupling gs diverges for µ → 0.
The exact position of the QCD Landau pole is determined by measurements of the strong
coupling constant, and is set to be about ΛQCD ∼ O(100) MeV [13]. The exact value of ΛQCD
depends on the number of quarks active at the energy scale µ (active refers to quarks with
masses mq < µ). The divergence at low energies is referred to as confinement, and ΛQCD is
also called confinement scale. Thus, at low energies, O(1) GeV, QCD with quarks as degrees
of freedom is no longer a perturbative theory. Instead, EFTs are used in this energy range,
essentially treating the bound states as the new degrees of freedom since non-perturbative
effects become important. In this regime, the spectrum of physical states consists of so-called
hadrons, which are color-singlet states. The two simplest ways a color singlet can be formed
out of quarks are mesons (quark-antiquark pairs) and baryons (three-quark bound states). At
high energies E → ∞ the strong couplings constant shrinks and asymptotically approaches
0. This behavior is referred to as asymptotic freedom and can be traced back to the sign of
the β0 coefficient in the QCD equivalent of Eq. (2.2.18). While in QED we find β0 < 0, in
QCD we have [31–34]

βQCD
0 =

1

3
(33− 2nf ) , (2.2.19)

where nf denotes the number of quark flavors. As long as the number of flavors is below
nf = 17 we find βQCD

0 > 0. In the SM, the number of flavors is nf = 6, which yields a
positive value for βQCD

0 . With this we see from Eq. (2.2.17) that for µ→∞ the value of αs
decreases. The fundamental differences between QED and QCD stem from SU(3)C being a
non-abelian gauge group. Thus, in the Lagrangian we find both triple and quartic gluon self
interactions, which affect the renormalization of αs.

2.3 Motivation for physics beyond the Standard Model

Despite its theoretically elegant and compact formulation and the lack of any direct detection
of particles not included in the SM, there is a strong physical motivation for BSM physics.
While indeed the SM is in good agreement with various measurements, the particle content
governed by this theory describes only about 5% of the energy content of the Universe. Thus,
the SM lacks suitable dark matter candidates. Another issue is that neutrinos are assumed to
be massless in the formulation of the SM. Even though a direct determination of the neutrino
masses has yet to be performed, there is an indication for the existence of neutrino masses
by the so-called neutrino oscillations [44]. Experimentally, neutrino oscillations have been
confirmed by the Sudbury Neutrino Observatory [45] and the Super-Kamiokande [46]. In
addition, the SM has both theoretical shortcomings such as the presence of a Landau pole in
the running of the fundamental coupling constants or the lack of an explanation for EWSB
and the patterns observed in the fermion sector. Furthermore, present data hints at deviations
from the SM in several observables. In the following, we present sectors representative for both
theoretical and phenomenological shortcomings of the SM, and highlight how the inclusion
of BSM physics can accommodate these discrepancies.
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2.3.1 Landau poles and asymptotic safety

The appearance of a Landau pole is connected to the breakdown of perturbation theory.
In the case of QCD, the Landau pole appears at very small energies. As stated above, the
physical interpretation is that, at low energies, bound states of quarks become the new degrees
of freedom of the theory. In contrast, in QED and also in the U(1)Y in the SM (see Fig. 2.1)
the Landau pole arises at high energies. Thus, perturbation theory breaks down at high
energies, which results in incomplete theories as scattering amplitudes cannot be computed
at all scales.

As we have seen in Sec. 2.2, QCD does not have a Landau pole at high energies due to
the asymptotically free behavior of the coupling. While asymptotic freedom is an important
feature of QCD, it is in fact a special case of a more fundamental concept of RGE fixed points.
Here, the basic idea is to find UV fixed points in the RGE evolution of the couplings so that
the theory remains predictive up to highest energy scales [52, 53]. Such fixed points g∗ of the
beta function β(g) are defined by the condition

β(g∗) = 0 . (2.3.1)

In the SM, this is for example the case for gs of SU(3)C . As this fixed point is found at g∗ = 0,
it is called non-interacting and the theory is asymptotically free [31, 34]. This type of fixed
point is also called a Gaussian fixed point. However, high-energy fixed points can in principle
also be interacting, i.e. g∗ 6= 0. This scenario is referred to as asymptotic safety[54, 55],
where, in contrast to asymptotic freedom, non-vanishing interactions remain at arbitrarily
high energies. Asymptotic safety has applications in the context of quantum gravity [56–
62]. In the recent years, there has been development to establish asymptotic safety as a new
concept for phenomenology-driven model building [28–30, 63, 64]. In this regard, the case of
weakly coupled theories is particularly interesting as it allows to apply perturbation theory.
For these theories general theorems have been developed [65–70]. To sketch the origin of
asymptotic safety in perturbation theory, we consider a general coupling α with the beta
function [65]

dα

d lnµ
= β(α) = Aα−B α2 , (2.3.2)

where the coefficients A and B are numbers that stem from loop-level calculations. There are
two fixed points, α∗ = 0 and α∗ = A/B, where only the latter is interacting and non-trivial.
For perturbation theory to be still applicable we impose A/B � 1. Solving the RGE around
the fixed points yields

α− α∗ =
(µ
Λ

)θ
, (2.3.3)

where Λ is a characteristic scale of the theory (similarly to ΛQCD), and the scaling index θ is
defined as

θ =
∂β

∂α

∣∣∣∣
α=α∗

. (2.3.4)

For the non-trivial fixed point of Eq. (2.3.2) we find θ = −A. Thus, as long as A > 0 we
have θ < 0, and deviations from the fixed point become smaller with increasing µ. As such,
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Figure 2.2: Schematic visualization of mass hierarchies in the flavor sector [13]. Quark
masses are shown in the MS scheme. Numerical values are given in App. A.1.

the interacting fixed point lies in the UV. If also B > 0, we find α∗ > 0. In contrast, for the
trivial fixed point we have θ = A. Thus, for A > 0 we have θ > 0 so that the Gaussian fixed
point becomes an infrared (IR) fixed point.
In gauge-Yukawa theories with A = 0 we obtain from the leading order (LO) result in

Eq. (2.3.2) a degenerated fixed point at α∗ = 0. This is a UV fixed point for B > 0 and
the theory is asymptotically free. However, including higher-order corrections a non-trivial
fixed point with 0 < α∗ � 1 can be found. Denoting such higher-order contributions with a
coefficient C we find in the case A = 0 for the RGE

β(α) = −B α2 + C α3 . (2.3.5)

With these additional contributions a non-trivial fixed point is found at α∗ = B/C. For
B/C � 1, this fixed point is perturbative. If now B < 0 and C < 0, the fixed point lies in
the UV, and the theory becomes asymptotically safe.

2.3.2 Flavor puzzle

The SM Lagrangian in Eq. (2.1.50) has in total 18 free parameters: the three gauge couplings,
the two parameters of the scalar potential, 6 quark masses, three lepton masses (neglecting
neutrino masses) and three angles as well as one phase in the CKM matrix. As such, most of
the free parameters are in the so-called flavor sector of the SM, namely the fermion masses
and the CKM matrix elements. As shown schematically in Fig. 2.2, the fermion masses show
an enormous hierarchy with the heaviest particle, the top quark, being almost 106 times
heavier than the lightest lepton, the electron. However, there is not only a hierarchy between
quarks and leptons but also among the quarks themselves as the mass of the top quark is
about five orders of magnitude larger than the mass of the up quark.
Aside from the mass hierarchy, the quark sector shows an other pattern in the structure of

the CKM matrix in Eq. (2.1.48). Written in terms of the Wolfenstein parameter λ [71], this
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Figure 2.3: Examples for Feynman diagrams at lowest order for flavor changing neutral
current b→ s`+`− (left) and charged current b→ c`ν̄` (right) transitions in the SM.

matrix shows a hierarchical structure

|V | ∼

1− λ2

2 λ λ3

λ 1− λ2

2 λ2

λ3 λ2 1

+O(λ4) , λ = sin θ12 ∼ 0.2 . (2.3.6)

The exact origin of this pattern as well as the mass hierarchy in the quark sector remains
unknown.

Flavor symmetries allow to explain the observed fermion masses and the structure of the
CKM matrix. As different symmetries and extensions of the SM allow to explain these
patterns, the solutions are not unambiguous. These extensions differ by the exact breaking
of the flavor symmetries via new couplings and the experimental signatures. One well-known
example is the minimal supersymmetric SM, where additional masses and mixing of scalar
quark and lepton partners (called squarks and sleptons, respectively) are present.

In an alternative extension, patterns are based on a symmetry consisting of a U(1)FN
Froggatt-Nielsen symmetry [72] combined with a discrete non-abelian symmetry A4 [73], and
have been worked out for leptoquark extensions of the SM [74–76]. These leptoquarks are
particles which can couple to leptons and quarks simultaneously, and have been studied in
the context of lepton flavor violation as well as lepton flavor non-universality (see e.g. [7, 11,
12, 74, 77–79]).

Instead of imposing a flavor symmetry small Yukawa couplings and CKM mixing angles
can be explained by RGE evolution in the IR. As typically Yukawa couplings have only weak
logarithmic energy dependence, the RGE flow alone cannot explain the hierarchy even in
strongly coupled theories. However, in theories with an almost scale-invariant gauge coupling
the running of the Yukawa couplings can be enhanced [80]. By combining the SM gauge group
with an additional conformal sector the flavor hierarchy can be generated by strong dynamics
of the conformal sector [81, 82]. Alternatively, the RGE running of the Yukawa couplings can
be enhanced close to RGE fixed points which also allows to explain the hierarchies in the SM
[83].

2.3.3 Hints for New Physics: flavor anomalies

Several measurements of B-decay observables hint at deviations from the SM predictions.
These deviations, also referred to as anomalies, are found both in flavor changing neutral
current (FCNC) transitions b → s`+`− as well as charged current b → c`−ν̄` transitions.
Examples for Feynman diagrams in the SM are shown in Fig. 2.3. In total, the anomalies can
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be divided into four groups:

• Suppression of branching ratios of exclusive b → sµ+µ− FCNC transitions [84, 85].
Here, uncertainties are dominated by hadronic form factors [86–88].

• Deviations in the B → K∗µ+µ− angular observables from their SM predictions [89–93].
Hadronic uncertainties are smaller but still dominant [94, 95].

• Deviations from lepton flavor universality (e, µ) in b→ s`+`− transitions in B → K`+`−

and B → K∗`+`− [96–98]. Theoretical uncertainties are small [99] and sensitivity is
still limited by statistical uncertainties.

• Deviations from lepton flavor universality (both e, τ and µ, τ) in b→ c`−ν̄` transitions
[100–106]. Interestingly, e − µ universality holds at the percent level [107–109]. The
uncertainties are dominated by experimental uncertainties [110–113].

Especially null tests are a powerful way to keep theoretical uncertainties under control. The
B-decay observables RD(∗) and RK(∗) test lepton-flavor universality violation in b → c and
b→ s transitions, respectively. These observables are defined as

RD(∗) =

∫
dq2dBR(B → D(∗)τντ )/dq

2∫
dq2dBR(B → D(∗)eνe)/dq2

, RK(∗) =

∫
dq2dBR(B → K(∗)µ+µ−)/dq2∫
dq2dBR(B → K(∗)e+e−)/dq2

, (2.3.7)

and have been measured by the LHCb [96–98, 105, 106, 114, 115], Belle [102, 104, 115–117]
and BaBar [100, 101] collaborations and show a tension with the SM predictions [99, 112,
113, 118–120] at the level of about ∼ 2−3σ. Note that the latest Belle measurement of RD(∗)

is in agreement with the SM at the level of 1.2σ.
While deviations in b→ sµµ transitions can in principle be explained by statistical fluctu-

ations or an underestimation of hadronic uncertainties, they also allow for an interpretation
with BSM contributions [121–127]. In simplified models, the anomalies can be explained
simultaneously by a single mediator particle (see e.g. [7–12]).
The AMM of a particle refers to contributions to the magnetic moment of a particle arising

at higher loop orders. These AMMs offer an ideal opportunity to test the SM since the electron
AMM is among the most precisely measured observables in particle physics. Simultaneously,
it is computed to the highest precision available in todays calculations. The magnetic moment
of a charged lepton can be via

p1 p2

q

= −ieū(p2)
(
F1

(
q2

m2
`

)
γµ +

iσµν

2m`
qνF2

(
q2

m2
`

)
u(p1)

)
, (2.3.8)

where the Fi are so-called form factors. The values at tree level are given as

F1 = 1 , F2 = 0 . (2.3.9)

Computations at one-loop level yield additional contribution to F1 and F2 at O(αe). Contri-
butions to the form factor F1 modify the lepton-photon coupling eAµψ̄γµψ and renormalize
the electric charge. Besides introducing a scale dependence no additional effects arise. In
contrast, contributions to F2 have exactly the structure of a magnetic moment. Given that
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Figure 2.4: Representative Feynman diagrams for higher-order contributions to the muon
anomalous magnetic moment aSM

µ in the SM. The first diagram shows QED contributions,
the second and third diagram show electroweak contributions at lowest order and the fourth
diagram shows lowest-order hadronic contributions.

at tree level we find F2 = 0 one obtains g = 2, as predicted by the Dirac equation. Higher
order contributions, however, lead to small deviations O(αe). Considering the QED one-loop
contributions in the first diagram in Fig. 2.4 we find for the form factor at q2 = 0:

F2(0) =
αe
2π

. (2.3.10)

Including these corrections, the magnetic moment reads

g = 2 + 2F2(0) = 2 +
αe
π
. (2.3.11)

Defining the AMM as

a` =
g` − 2

2
, (2.3.12)

parametrizes all deviations from g` = 2 (` = e, µ, τ).
In the SM, additional EW and hadronic contributions have to be considered. In Fig. 2.4

we give examples for lowest diagrams for EW (second and third diagram) and hadronic
(fourth diagram) contribution to the AMM. Especially the latter give rise to sizable theoretical
uncertainties.

Measurements of the electron and muon AMMs are found to be in tension with the SM
prediction. In the case of the muon, the discrepancy is [13]

∆aµ = aexp
µ − aSM

µ = 268(63)(43) · 10−11 , (2.3.13)

where the first and second uncertainty correspond to experimental and theory uncertainties,
respectively. Adding both uncertainties in quadrature this value corresponds to a deviation
of 3.5σ from the SM. Recent theory predictions [128, 129] find even larger deviations of 4.1σ.
At the same time, a computation of the hadronic vacuum polarization from lattice QCD [130]
possibly eliminates the anomaly. As this result is in tension with EW data [131, 132] and
previous lattice calculations, further investigations are required [133]. Similarly, for the AMM
of the electron the difference between experimental and theory value reads

∆ae = aexp
e − aSM

e = −88(28)(23) · 10−14 , (2.3.14)
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which translates into a deviation of 2.4σ from the SM [14, 15].
Note that the anomalies have an opposite sign comparing electron and muon AMMs. Thus,

various models, which introduce additional particles such as light scalars [134–137] or super-
symmetric partners [138–140], assume explicit breaking of lepton flavor universality. Con-
versely, the asymptotically safe extensions in Refs. [28, 30] offer an alternative and simpler
explanation of the AMMs. In particular, no further breaking of lepton flavor universality
besides the different lepton masses is needed. As discussed in detail in Chapter. 7, the ex-
tension of the SM introduce new VLLs and flavorful scalars, which couple to the SM leptons.
Both AMMs can be accommodated using a superposition of two effects: one scales linearly
with the lepton mass, the other one quadratically. Thus, the different lepton masses in the
SM together with the additional particles suffice to explain both AMMs without any explicit
flavor universality violation.

– 24 –



3 Effective field theories

Present data at the LHC suggest that the next discovery of a new fundamental particle
is a prospect of future colliders with higher energy scales. Given the lack of significant
deviations from the SM in direct searches, new physics might be separated in scales from
the scales of the SM (∼ mW ,mh,mt). Facing such a scenario, indirect searches for BSM
physics take a leading role. However, knowledge from indirect searches is usually ambiguous
in the sense that measurements can be explained by multiple models. As such, a framework is
needed to identify deviations from the SM in both a global and model-independent way and
to remove as many theoretical ambiguities as possible from the analysis. A tool providing
all these properties is an EFT. This framework allows to systematically study large sets of
experimental data and offers an efficient approach to test particular models given some degree
of separation between the scales of BSM and SM physics. The theorem which ensures the
validity of the concept of EFTs is called the decoupling theorem [141]. It states that, up to a
few exceptions, heavy degrees of freedom decouple at energies significantly below their mass.
In this regard, decoupling means that contributions from such heavy particles are suppressed
by inverse powers of their mass scale (except for logarithmic contributions).

The basic idea of the EFT framework is to describe physical processes considering only
the relevant degrees of freedom. By doing so, heavy states relevant at larger energies do not
appear explicitly. An example for such a situation is the decay of the muon, for which the
W boson cannot be produced on shell. Instead of the complete SM an EFT is used in which
the W boson is integrated out. If the complete theory is known and perturbative, EFTs offer
in most cases simplifications for the computation as contributions from decoupled degrees of
freedom are contained in the coupling parameters of the low-energy Lagrangian. Additional
benefits arise when dealing with large logarithms since EFTs allow to apply renormalization
improved perturbation theory, in which such large logarithms are summed to all orders.
This significantly enhances the precision of the theory prediction compared to fixed-order
calculations. Similarly, EFTs allow to sum IR logarithms of the underlying theory to all
orders by converting them into UV logarithms, which can than be summed by integrating the
RGEs. Thus, EFTs are to be considered as a theory constructed out of dynamical degrees
of freedom relevant for the physical situation that has to be described. The corresponding
RGEs serve to sum logarithms of ratios of different scales to all orders.

Not in all cases can the EFT be derived from an underlying theory, i.e. when the underlying
theory is not known or not perturbative. Exactly in these situations employing EFTs turns
from a convenient simplification of calculations into a necessity. EFTs provide an efficient
method to parametrize the unknown interactions in terms of effective operators and their
corresponding Wilson coefficients. Within this framework, the underlying theory is encoded
within the structure of the operators and the corresponding interactions among the light
states. Fitting this parametrization to experimental data allows to systematically study large
sets of measurements and to determine the size of the interactions. Different models can be
matched onto the EFT, and values for the parameters such as masses and couplings can be
derived from values of the Wilson coefficients determined in global analyses. One additional
advantage of this method is that a successful explanation of any deviation from the SM is
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automatically required to be consistent with the remaining dataset. Even in the case that no
significant deviation from the SM is observed in the data, fits in the EFT framework allow
to encode the global dataset in a model-independent form. This provides efficient tests of
BSM models. Thus, EFTs allow to perform model-independent searches for BSM physics by
comparing the SM prediction for these coefficients to the experimental values.

In this chapter, we discuss the concept of EFTs and related topics such as RGEs and
the resummation of large logarithms at the example of Fermi’s theory in Sec. 3.1. We also
introduce the weak effective theory (WET), which provides a complete basis of operators for
physics below the electroweak scale. In Sec. 3.2, we introduce the SMEFT Lagrangian, which
has been widely employed in the recent years in the search for BSM physics. In Sec. 3.3, we
consider the top-quark sector of SMEFT, introduce the parametrization of matrix elements
within the SMEFT framework. We also give a short overview on recent achievements in this
field. In Sec. 3.4, we comment on a more general EFT which describes a scalar sector different
to both the SM and the SMEFT. Our fitting setup is introduced in detail in Sec. 3.5.

3.1 Effective theories below the electroweak scale

Fermi’s theory [142] is an EFT that describes the weak interactions in the SM at energies
E � mW . In this theory, the massiveW and Z bosons are not present and the SM Lagrangian
(2.1.50) is not used to describe processes at low energy scales. Instead, an effective Lagrangian

LFermi = −
4GF√

2
J†
µ J

µ +O
(
p2

m2
W

)
, (3.1.1)

has to be constructed, where p is a four-momentum characteristic for the process considered
and GF =

√
2g2/(8m2

W ) is called the Fermi constant. The current Jµ is defined as

Jµ =
∑
ij

Vij ūi γµ PL dj +
∑
i

ν̄i γµ PL li , (3.1.2)

with i, j running over all flavors present at that energy scale. Even though we express Fermi’s
constant GF in terms of parameters of the underlying theory, the theory was originally con-
structed to describe weak interactions at low energies without any information on the EW
theory In the formulation of the Lagrangian (3.1.1) we have, however, neglected contributions
from forces other than the weak interactions that can contribute beyond tree level. Consider
for example the decay of the muon which is at tree level described by the following part of
the Lagrangian in Eq. (3.1.1):

Leff = −4GF√
2

[ν̄µ γα PL lµ]
[
l̄e γ

α PL νe
]
. (3.1.3)

Beyond tree level, we have to introduce a coefficient C that parametrizes radiative corrections:

Leff = −4GF√
2
C

(
mW

µ
, αe(µ)

)
(ν̄µ γα PL lµ)

(
l̄e γ

α PL νe
)
. (3.1.4)
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The exact value of C depends on the scale µ and the value of the electromagnetic coupling
αe. Loop corrections at the scale mW lead to deviations in the value of C:

C (1, αe(mW )) = 1 +O(αe(mW )) . (3.1.5)

The scale dependence is canceled by the dependence of the effective operator so that physical
quantities do not depend on µ. In this case, the coefficient C is indeed µ independent (in
the limit of vanishing me,µ), and hence potentially large logarithms of m2

W /µ2 do not occur
in the expansion1. However, even when the corrections are non-vanishing the QED coupling
is sufficiently small, so that products with large logarithms remain small and perturbation
theory can be applied. In turn, for strong interactions this is no longer true and the large
logarithms need to be resummed to all orders using RGE evolution. This is discussed in the
following.

Consider a general EFT Lagrangian

Leff =
∑
d

1

Λd−4

∑
i

C
(d)
i (µ)O

(d)
k (µ) , (3.1.6)

where Λ is the separation scale between long-distance and short-distance effects, µ is the
scale considered for the process, C(d)

i are coefficients containing short-distance effects and
O

(d)
i denote effective operators. With d we denote the dimension of the operator. For a

simpler notation, we drop the (d) superscript in the following. As the scale µ is arbitrary, the
theory must not depend on its exact value. Thus, we obtain

d(Ci(µ)Oi(µ))

d lnµ
= 0 =

dCi(µ)

d lnµ
Oi(µ) + Ci(µ)

dOi(µ)

d lnµ
. (3.1.7)

Similarly to the renormalization of fields in Sec. 2.2, we define bare operators as

O
(0)
i = Zij Oj , (3.1.8)

where j is summed over. As the bare operator is µ independent, the derivative

dO
(0)
i

d lnµ
= 0 =

dZij
d lnµ

Oj + Zij
dOj
d lnµ

(3.1.9)

vanishes. We conclude

dOi
d lnµ

= − 1

Zki

dZkj
d lnµ

Oj = −γijOj , (3.1.10)

where the matrix γij is called the anomalous dimension matrix (ADM). The µ dependence
of the ADM stems solely from the fact that γij depends on the coupling constant α(µ). With
the ADM, it follows from Eq. (3.1.7) that

dCi
d lnµ

= γjiCj =
(
γT
)
ij
Cj , (3.1.11)

1A simple explanation follows from Fierz identities that allow to rewrite the operator in Eq. 3.1.4 as
(ν̄µγαPLνe)

(
l̄eγ

αPLlµ
)
. Since neutrinos are not charged under QED, and the charged lepton current

is conserved in the limit me,µ = 0 and does not get renormalized, no renormalization has to be applied to
the effective operator.
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where we use the fact that the operators Oi are independent. Often, both the ADM and
the coefficient can be expanded in powers of the coupling α. For the Wilson coefficients this
expansion at the scale Λ reads

Ci(Λ, α) =
∑
k

A
(k)
i

( α
4π

)k
. (3.1.12)

The ADM can be expanded as

γij(α) =
∑
k

γ
(k)
ij

( α
4π

)k+1
. (3.1.13)

At arbitrary scales µ we can write the coefficient as

Ci(µ, α) = B
(00)
i

+B
(11)
i

( α
4π

)
ln
(
Λ

µ

)
+B

(10)
i

( α
4π

)
+B

(22)
i

( α
4π

)2
ln2
(
Λ

µ

)
+B

(21)
i

( α
4π

)2
ln
(
Λ

µ

)
+B

(20)
i

( α
4π

)2
+ ... .

(3.1.14)

For µ = Λ all the logarithms vanish and we find B
(k0)
i = A

(k)
i . As the logarithms can

potentially become sizable if α is not too small, as is the case in QCD, they need to be
resummed. This is taken care of by solving the RGEs in Eq. (3.1.11). Using the first non-
vanishing terms in the expansion of γij and the beta function of the coupling α defined in
Eq. (2.2.16) we find for the case of a single operator

Ci(µ, α) = B
(00)
i

(
α(Λ)

α(µ)

)γ(0)/(2β(0))

. (3.1.15)

If there are multiple operators, the ADM are diagonalized before solving the RGEs in the new
basis where γ is diagonal before transforming back for the general solution. This solution of
the RGEs contains all contributions from the first column in Eq. (3.1.11), i.e. all contributions
proportional to Bkk

i where the logarithm and the coupling appear at the same order are
resummed. This approximation is called the leading logarithm approximation. In order to
go beyond this approximation the second term in the ADM expansion, γ(1)ij , as well as the
coefficient B(10)

i have to be considered. Solving the RGEs at this order resums the second
column in addition to the first one, i.e. all contributions with coefficients B(kk−1)

i . This also
requires a matching at the scale Λ at one-loop level.
An example for this procedure is present in Fermi’s theory. Consider the weak interaction

process q1q̄3 → q2q̄4 described by the effective Lagrangian

Leff = −4GF√
2

(C1O1 + C2O2) . (3.1.16)

The operators read

O1 = (q̄α2 γµPLq
α
1 )
(
q̄β2 γ

µPLq
β
4

)
, O2 =

(
q̄β2 γµPLq

α
1

)(
q̄α2 γ

µPLq
β
4

)
, (3.1.17)
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where α, β denote color indices that are summed over. We determine the Wilson coefficients
by comparing Feynman diagrams in the EFT with the same diagrams in the full theory. At
the scale µ = mW , at which the W boson is integrated out, we find

C1(mW , αs(mW )) = 1 +O(αs(mW )) , C2(mW , αs(mW )) = 0 +O(αs(mW )) . (3.1.18)

The ADM at lowest order is calculated at one-loop level:

γ =
αs
2π

(
−1 3
3 −1

)
. (3.1.19)

As this matrix is not diagonal, mixing between the operators occurs during the RGE evolution.
To solve the RGEs we diagonalize the ADM by introducing new coefficients

C± = C1 ± C2 . (3.1.20)

In this basis, the ADM is diagonal and we find for the lowest order entries in the expansion
(3.1.13)

γ
(0)
+ = 4 , γ

(0)
− = −8 . (3.1.21)

With these entries we can employ the solution in Eq. (3.1.15) and find

C+(µ) =
1

2

(
α(mW )

α(µ)

)6/(33−2nf )

, C−(µ) =
1

2

(
α(mW )

α(µ)

)−12/(33−2nf )

. (3.1.22)

Further information on the general concept of EFTs can be found in Refs. [143–149].
In general, at scales below the mass of the W boson only particles with masses mi < mW

are considered as physical degrees of freedom. A general low-energy theory describing physics
below the EW scale is, as in Fermi’s theory, constructed by integrating out the W , Z and
Higgs boson, the top quark and any heavy BSM particles. Thus, effective operators in the
WET Lagrangian parametrize both SM and potential BSM contributions. The WET has
been used excessively in the literature for a variety of low-energy physics, such as B decays
or Kaon physics. In fact, FCNCs such as b→ s transitions impose strong constraints on the
flavor sector of BSM physics. Note that in the literature the term low-energy EFT (LEFT)
is also used for this EFT.

The gauge group of WET is SU(3)C ×U(1)Q and only particles lighter than the W boson
are included in this theory. Effective operators arise at dimension three, five and higher
dimensions and are added to the SU(3)C × U(1)Q invariant Lagrangian

L =− 1

4
FµνF

µν − 1

4
GAµνG

Aµν + θQED
e2

32π2
FµνF̃

µν + θQCD
g2s

32π2
GAµνG̃

Aµν

+ ψ̄i /Dψi + ψ̄imiψi ,

(3.1.23)

where F̃µν = 1/2εµναβF
αβ, G̃Aµν = 1/2εµναβG

Aαβ, and ε0123 = +1. Here, the covariant
derivative reads Dµ = ∂µ + igsT

AGAµ + ieQAµ, and Fµν and GAµν are field strength tensors of
U(1)Q and SU(3)C , respectively.

In recent years, a complete basis of the WET Lagrangian up to dimension-six operators has
been constructed [150]. The corresponding one-loop ADM of this basis has been computed
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in Ref. [151]. In App. B.4, we list the number of operators found in the same reference up to
dimension six. For certain processes, such as b → s transitions, the QCD running in WET
has been computed to significantly higher orders. For example, the matching of the SM onto
the WET for b→ sγ transitions is known at three-loop level, while the ADM is computed at
four-loop level [152–156].

3.2 The Standard Model Effective Field Theory
The SMEFT is a generalization of the SM. It allows to parametrize possible deviations from
the SM and to test for signatures of BSM physics in global fits. To construct the SMEFT
Lagrangian two assumptions have to be made:

• Possible extensions of the SM are separated in mass from the SM content i.e. the new
particles involved are heavier than the measured value of the Higgs VEV v = 246 GeV

• The observed Higgs boson belongs to an SU(2)L doublet so that the EW symmetry is
linear realized.

The SMEFT is a toolbox that allows to study low-energy signatures of BSM theories in
a consistent, model-independent (besides the assumptions stated earlier) way. At energies
below the scale of BSM physics the SMEFT provides a consistent characterization of the low
energy limit of BSM physics. Motivated by the large set of precision measurements at the
LHC as well as LEP, different groups have performed analyses in the SMEFT framework [20,
157–175].
The SMEFT Lagrangian is constructed by considering the SM Lagrangian as the lowest

order term of an expansion in 1/Λ, where Λ is interpreted as the scale at which the BSM
particles have been integrated out:

LSMEFT = LSM +

∞∑
d=5

L(d) , L(d) =
∑
j

1

Λd−4
C

(d)
j O

(d)
j . (3.2.1)

Here, O(d) denotes higher dimensional operators of dimension d > 4 and C(d), are the cor-
responding Wilson coefficients that parametrize BSM couplings. At each dimension d the
higher dimensional operators are suppressed by d− 4 powers of the high scale Λ. This means
that at energies E < Λ BSM contributions are stronger suppressed for higher dimensions.
The effective operators are constructed out of SM fields only and are required to be invariant
under the gauge symmetries of the SM. The number of independent operators in L(5) to L(8)
are known [176–183]. In addition, a general algorithm [182–185] allows to construct operator
bases at dimensions d > 8 defining the SMEFT Lagrangian at all orders in 1/Λ. The SMEFT
Lagrangian is a QFT which is renormalizable order by order in 1/Λ in the sense that at each
order all infinities in loop-diagrams cancel when all operators allowed by gauge symmetries
are taken into account in the computation. Note that only even-dimensional operators can
conserve lepton and baryon number [186, 187].

3.2.1 Operator basis
In the search for BSM physics the leading contributions arise at dimension five. For one
generation of fermions, there is only one operator in L(5) which generates Majorana masses
for neutrinos after EWSB [176] and violates lepton-number conservation. Thus, the leading
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contributions for phenomenological studies of BSM signatures at the LHC are generated
at dimension six. A first categorization of dimension-six operators has been provided in
Ref. [178], listing in total 80 operators assuming baryon- and lepton-number conservation.
However, it turned out that this set is overcomplete as some of the operators are related after
applying the equations of motions. The first non-redundant basis of dimension-six operators
has been given in Ref. [179] and is referred to as Warsaw basis. For one generation of fermions,
this basis contains 59 independent operators conserving lepton and baryon number, which we
give in App. B.1. This basis can be divided in eight classes of operators: X3, ϕ6, ϕ4D2, X2ϕ2,
ψ2ϕ3, ψ2Xϕ, ψ2ϕ2D and ψ4. In this notation, X denotes the insertion of a field strength
tensor, ϕ the insertion of the Higgs doublet, D a covariant derivative, and ψ a fermion field.

Although there are only 59 independent operators at dimension six that conserve baryon
and lepton number, fermion fields in these operators carry additional generation indices. In
full flavor generality there are 2499 parameters at dimension six, 1350 CP -even and 1149
CP -odd ones. The ADM at one loop has been computed in Refs. [188–192] building up on
results of Refs. [193–214]. For the Warsaw basis, it has been shown that the ADM closes at
one loop. The ADM of dimension-six operators can be written as

dCi
d lnµ

= γijCj . (3.2.2)

In this notation, γij denotes a 8 × 8 block matrix, where indices refer to the eight operator
classes. In the SMEFT, there is a large amount of mixing present in the ADM, which
plays an important role when computing observables at the electroweak scale in terms of
Wilson coefficients given at the high scale Λ. As a consequence, effects such as CP violation
are propagated through the Lagrangian. For example, X2ϕ2 operators give CP violating
contributions to dipole operators, and thus they are constrained by measurements of electric
dipole moments.

The structure of γij can best be understood using Naive Dimensional Analysis (NDA)
[215] and a set of rescaled operators O′

i which are defined as g3X3, ϕ6, ϕ4D2, g2X2ϕ2,
yψ2ϕ3, gyψ2Xϕ, ψ2ϕ2D and ψ2. In this rescaling, each insertion of a field strength tensor X
receives an insertion of a gauge coupling g, and each helicity-flipping term ψ2ϕ3 and ψ2Xϕ
is rescaled with an insertion of a Yukawa coupling y. The two bases are related via

L(6) = 1

Λ2

∑
i

CiOi =
1

Λ2

∑
i

C ′
iO

′
i . (3.2.3)

The RGEs can be rewritten as

dC ′
i

d lnµ
= γ′ijC

′
j , (3.2.4)

where the ADMs γij and γ′ij are related by the insertion of gauge and Yukawa couplings and
their derivatives. For the rescaled operators, the ADM has the following structure for its
entries [188]:

γ′ij ∼
(

λ

(4π)2

)nλ
(

y2

(4π)2

)ny
(

g2

(4π)2

)ng

, (3.2.5)

so that the perturbative order of the ADM is defined as N = nλ + ny + ng. The classes of
operators can be distinguished by their NDA weight wi: g3X3 operators have weight w1 = −1,
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ϕ6 operators weight w2 = 2, g2X2ϕ2 and gyψ2Xϕ operators weight w4,6 = 0, and operators
in the remaining classes weight w3,5,7,8 = 1. Using the NDA weights, N can be computed for
each block in γ′ij as [216]

N = 1 + ωi − ωj . (3.2.6)

In the ADM blocks with N < 0 vanish and blocks on the diagonal always have N = 1.
However, in the explicit results even blocks with N ≥ 0 can vanish. The detailed structure
of the ADM is given in Ref. [190].

3.2.2 Redefinition of parameters and their relations

Considering the SMEFT as a generalization of the SM, predictions of the SM are altered due
to the additional contributions from higher-dimensional operators. This affects the definitions
of both fields and parameters in the Lagrangian, which is discussed in detail in Ref. [190]. As
an example, we consider in App. B.2 BSM contributions at dimension six to the gauge fields.
In order to define the numerical values of the parameters in the Lagrangian a set of input

parameters is needed. Denoting these input parameters and those that are inferred from
them as θ̌i we find additional SMEFT contributions which alter the SM relations among
these parameters. In the case of the theoretical predictions of the electroweak parameters, the
leading contributions arise at dimension six and depend on the choice of the input parameter
scheme. In the literature, two schemes are present: {α̌e, m̌Z , ǦF } and {m̌W , m̌Z , ǦF }. In
App. B.3, we give the relations among the parameters of the SMEFT Lagrangian in both
input schemes.
Comparing both schemes, the {m̌W , m̌Z , ǦF } input scheme has several advantages. First

of all, even though the measurement of α̌e at the low scale has a significantly higher precision,
this benefit is lost due to large errors introduced in the running, especially in the region of
dominant hadronic resonances. Second, the use of m̌W has advantages in the development of
one-loop results in the SMEFT framework, as discussed in detail in Refs. [217–220]. As a final
point, for phenomenological applications at the LHC the input scales in the {m̌W , m̌Z , ǦF }
scheme are closer. This results in a reduction of logarithmic enhancements present when
using α̌e. In addition, the related running of corresponding SMEFT contributions is reduced
as well.

3.2.3 Spontaneous symmetry breaking

In the SMEFT Lagrangian, higher-dimensional operators are naturally written in the flavor
basis. However, computations of observables which are compared to experimental measure-
ments are performed in the mass basis. As shown in Eq. (2.1.42), mass and flavor bases are
related by the rotation matrices Su/dL/R. In most cases, these rotations can just be absorbed in
the definition of Wilson coefficients which in turn defines the coefficients in the mass basis.
Consider as a simple example the operator Oijeu where additional superscripts denote the gen-
eration of quark fields. Rotating the quarks from the flavor basis to the mass basis we find
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for the operator and the corresponding Wilson coefficient:

CijeuO
ij
eu = Cijeu (ēRγµeR)

(
ūiRγ

µujR

)
= Cijeu (ēRγµeR)

((
SuR

)†
ki
ū′kRγ

µ
(
SuR

)
jl
u′lR

)
= Cijeu

(
SuR

)†
ki

(
SuR

)
jl
(ēRγµeR)

(
ū′kRγ

µu′lR

)
= Ĉkleu (ēRγµeR)

(
ū′kRγ

µu′lR

)
= ĈkleuÔ

kl
eu .

(3.2.7)

Here, we denote by Ĉkleu and Ôkleu the Wilson coefficients and effective operators, respectively,
in the mass basis. In this case, the rotation matrices can simply be absorbed in the definition
of the coefficients. In general, as long as the effective operator does not contain an SU(2)L
quark doublet, rotation matrices can be absorbed in the definition of the coefficients, giving
rise to Wilson coefficients in the mass basis. However, if at least one quark doublet is present
in the operator, flavor rotations have non-trivial effects. As an example, consider the operator
Oeq and its corresponding Wilson coefficient:

CijeqO
ij
eq = Cijeq (ēRγµeR)

(
q̄iLγ

µqjL

)
= Cijeq (ēRγµeR)

(
ūiLγ

µujL + d̄iLγ
µdjL

)
= Cijeq (ēRγµeR)

((
SuL

)†
ki
ū′kLγ

µ
(
SuL

)
jl
u′lL +

(
SdL

)†
mi
d̄′mL γµ

(
SdL

)
jn
d′nL

)
= Cijeq

(
SuL

)†
ki

(
SuL

)
jl
(ēRγµeR)

(
ū′kLγ

µu′lL + V †
mkVlnd̄
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L γµd′nL

)
= Ĉkleq (ēRγµeR)

(
ū′kLγ

µu′lL + V †
mkVlnd̄

′m
L γµd′nL

)
= ĈkleqÔ

kl
eq .

(3.2.8)

In the third to last line we used the relation(
SdL

)
ij
= δik

(
SdL

)
kj

=
(
SuL

)
il

(
SuL

)†
lk

(
SdL

)
kj

=
(
SuL

)
il
Vlj . (3.2.9)

As demonstrated in Eq. (3.2.8), even after the absorption of the rotation matrices in the
Wilson coefficients residual CKM matrix elements remain. The exact position of the CKM
matrix elements depends on the choice which rotation matrices are absorbed in the coefficients:
if elements from SuL are absorbed, the CKM matrix elements appear in front of left-handed
down-type quarks and vice versa. Wilson coefficients in different absorption schemes2 are
related via CKM matrix elements [221]. As an example, if we choose to absorb the SdL
matrices in Eq. (3.2.8), the Wilson coefficients C̄kleq obtained are related to the coefficients Ĉkleq
simply by

Ĉijeq = VikV
∗
jlC̄

kl
eq . (3.2.10)

2Here we refer with ’absorption scheme’ to the choice whether elements from Su
L or Sd

L are absorbed in the
coefficients.
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Figure 3.1: Schematic description of the matching and running procedure using both SMEFT
and WET. At the high scale Λ Wilson coefficients in the SMEFT are generated. These
coefficients are evolved to the EW scale µW using the SMEFT RGE and matched onto the
WET Lagrangian. In order to compute observables at the low scale µb the WET RGEs are
employed.

Thus, even if the Wilson coefficients are diagonal in the mass basis FCNCs appear in both
definitions: either in the up sector (C̄i diagonal) or in the down sector (Ĉi diagonal). The
explicit expressions for Wilson coefficients in both definitions can be found in Ref. [221]. In
this work, we consider the up-mass basis Ĉi where up-quark flavor and mass basis are identical
and flavor mixing is entirely in the down sector.

3.2.4 Linking physics at different scales

The one-loop running in WET and SMEFT together with the tree-level matching of the
SMEFT basis onto the WET allows to consider SMEFT as the high-energy theory. With this
procedure, low-energy observables can be computed in terms of SMEFT Wilson coefficients.
By doing so, it is implicitly assumed that BSM physics follows the EWSB mechanism of the
SM. Then, a set of SMEFT operators at a given scale can be chosen as a starting point and
evolved down to the EW scale µW where SMEFT is matched onto WET. The WET RGEs
can be employed to run the operators from the scale µW to the scale of low-energy experi-
mental observables, µb ∼ mb. This procedure is shown schematically in Fig. 3.1. Considering
operators that are induced from SMEFT operators up to dimension six, only some contribu-
tions arise at tree level. The complete matching is provided in Ref. [150] and the number of
operators is summarized in App. B.4.
Considering SMEFT as the underlying theory of WET has interesting implications for flavor

physics. Observables and parameters, such as GF , and their relation to other parameters in
the SM, e.g. to v, are altered in SMEFT due to dimension-six contributions. In addition,
SU(2) invariance of SMEFT relates coefficients of different processes. For example, b → s
transitions allow to constrain BSM contributions to t → c FCNCs [222]. Similarly, linking
dilepton and dineutrino couplings in charm physics allows to probe lepton flavor conservation
and lepton universality [223]. In addition, this allows to include observables measured at
different energy scales in one combined fit to experimental data, see Refs. [21–24] for recent
examples.
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Dropping the requirement that BSM physics respect the SM EWSB mechanism, the com-
plete basis of WET operators at the scale µW can be considered as a starting point and can
be evolved to the low scale. The procedure relaxes constraints on WET coefficients imposed
by the SMEFT Lagrangian, which are not necessarily satisfied in BSM scenarios. This allows
to test the structure of the EWSB.

3.3 The top-quark sector

In the recent years, the SMEFT approach has been employed to study physics both at the LHC
as well as lepton colliders [20, 157–175], with the most prominent one being the top-quark
sector [18, 163, 224–238]. These searches provide information essential for global SMEFT
analyses of LHC data and for BSM signatures in the top-quark sector.

The top quark is special for several reasons: It is the only fermion with a Yukawa coupling
of O(1), and thus plays an important role in BSM scenarios aiming to explain the origin of the
EWSB. In addition, due to its short lifetime the top quark decays before it hadronizes. Thus,
properties such as the spin information are transferred to the decay products allowing for
studies of the properties of a bare quark. At the same time, top-quark physics has entered a
precision era as a variety of measurements of production and decay properties of the top quark
have been performed at the LHC. Furthermore, significant progress in precise calculations of
observables at up to next-to-next-to leading order (NNLO) in the SM has been achieved.

In analyses of the top-quark sector of SMEFT leading BSM contributions arise at dimension
six. While there are 59 dimension-six operators at one generation and 2499 parameters for
all three generations [179], only a significantly smaller subset of operators contributes to top-
quark observables. The exact number parameters to be constrained in the analysis depends
on the physical process as well as the order in the EFT expansion that is considered. As
an example, six Wilson coefficients of operators involving a top quark give contributions at
O(Λ−2) to tt̄ production at the LHC, while five more coefficients contribute at O(Λ−4) [237].
Different orders of BSM contributions stem from possible interference terms of dimension-six
operators with the SM process. Consider an amplitude M with contributions MSM and
MBSM

i from SM processes and dimension-six operators Oi, respectively. Physical observables
depend on the squared matrix element

|M|2 =
∣∣∣∣MSM +

Ci
Λ2
MBSM

i

∣∣∣∣2
=
∣∣∣MSM

∣∣∣2 + 2
1

Λ2
Re
(
CiMSM

(
MBSM

i

)†)
+
CiC

∗
j

Λ4
MBSM

i (MBSM
j )† .

(3.3.1)

As can be seen, only BSM-SM interference terms generate a contribution at O(Λ−2). For
certain operators, these interference terms are suppressed e.g. by helicity selection rules [239]
or by small SM contributions as in the case of FCNCs. In this case, dimension-six operators
do not generate leading contributions at O(Λ−2) but instead at O(Λ−4). Formally, squared
contributions from dimension-six operators contribute at the same order in the EFT expan-
sion as interference terms of the SM with dimension-eight operators neglected in Eq. (3.3.1).
Nevertheless, as for some operators the interference term is suppressed, the squared terms is
the dominant contributions. An analysis strategy [163] is to repeat the fit twice, both with
and without inclusion of quadratic EFT contributions. This procedure can show for which
operators the leading contributions do indeed arise in the form of the linear terms. Especially
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for four-fermion operators quadratic terms receive an energy enhancement compared to linear
terms both at dimension six an eight [22, 163, 237]. In addition, after identifying the inde-
pendent linear combinations of Wilson coefficients, referred to as degrees of freedom, inclusion
of the quadratic dimension-six terms removes flat directions that are otherwise present in the
linear fit.
Restricting the operator set to those that generate an interference term with the SM at

tree level not suppressed by small fermion masses mi (i 6= t) leaves only the real part of
the potentially complex valued Wilson coefficients (if the operators is not hermitian) as a
free parameter in the analysis. For example, consider a combined fit to tt̄, single-top, and
tt̄Z/W/γ production together with top-quark decay observables. Including only operators
that contribute atO(Λ−2) leaves eleven degrees of freedom in the fit [231]. Further considering
NLO SMEFT contributions as well as operators that do not interfere with the SM process
leads to a larger set of 22 operators [237]. The largest set of operators constrained in a global
fit to top-quark data consisted of 34 SMEFT operators [234]. In this analysis, constraints on
the Wilson coefficients are derived in a fit to data from single top-quark production, top-quark
decay, top-quark pair and associated production, tt̄H, tt̄tt̄, and tt̄bb̄ production.

3.4 Higgs Effective Field Theory

In the construction of both the SM and the SMEFT the existence of scalar complex field ϕ
is assumed for two reasons:

• To correctly describe EWSB by introducing three Goldstone boson, i.e. the longitudinal
components of the EW gauge bosons,

• To introduce a singlet scalar h, which corresponds to the Higgs boson and ensures exact
unitarity at all energies when computing scattering amplitudes with external Goldstone
bosons, see e.g. Refs. [240–242]

While the first argument is necessary for a correct description of EWSB, the second assump-
tion can be relaxed by requiring that the theory is unitary only up to a cut-off scale at which
the EFT expansion breaks down. An EFT where the second assumptions is relaxed is the
so-called Higgs EFT (HEFT). In this theory, the low-energy degrees of freedom comprise
the massive SM fermions, SM gauge bosons, and, instead of the SM Higgs field, a singlet
scalar h with free couplings to the SM states. The construction of the HEFT Lagrangian is
based on the Callan-Coleman-Weiss-Zumino formalism [243, 244] and parametrizes the scalar
sector with minimal assumptions. This approach has been used to construct several simple
parametrizations, see e.g. Refs. [245–248], as well as a complete and self-consistent EFT [245,
249–265]. The HEFT is of particular interest in BSM scenarios in which the Higgs is assumed
to be a pseudo-Goldstone boson of a larger spontaneously broken symmetry group. Examples
are Technicolor models [266–268] or composite Higgs models [269–274].
The most distinct difference between SMEFT and HEFT lies in the different assumptions

on the scalar structure. Any deviation from SMEFT expectations that rely on the doublet
structure of the Higgs field is a hint for a description of the scalar sector completely different
to both SM and SMEFT. Thus, these deviations carry information on the UV nature of BSM
physics, see e.g. Ref. [275] for a review on this regard. Since presently no deviation from the
SM indicates that the Higgs is not part of an SU(2)L doublet, we use the SMEFT framework
throughout this work.
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3.5 EFTfitter : fitting effective theories to data
Constraining SMEFT Wilson coefficients requires a consistent treatment of both correlations
between uncertainties of the various measurements included in the fit. To do so, we employ a
new implementation of the EFTfitter tool [164] based on the Bayesian Analysis Toolkit BAT.jl
[276, 277] to derive constraints on the SMEFT Wilson coefficients in the form of posterior
probability distributions using a Bayesian interpretation.

In Bayesian statistics, information about free parameters λ of a physical model M is ex-
pressed in terms of the posterior distribution p(λ|x) for a given dataset x. Following the
equation of Bayes and Laplace [278], the posterior distribution can be expressed as

p(λ|x) = p(x|λ) · p(λ)
p(x) , (3.5.1)

where p(x|λ) is the likelihood, p(λ) is the prior probability distribution of the parameters λ
and p(x) is the normalization

p(x) =
∫

dλ p(x|λ) · p(λ) . (3.5.2)

Throughout this work, we consider a uniform distribution for the prior. In EFTfitter, con-
straints on the parameters are derived from a set of physical observables y = y(λ), which are
formulated as functions of the parameters λ, given a set of measurements x of these observ-
ables. For a set of N observables yi (i = 1, ..., N) based on n measurements xi (i = 1, ..., n),
the likelihood p(x|y) reads

−2 ln p(x|λ) =
n∑

i,j=1

(x− Uy(λ))iM
−1
ij (x− Uy(λ))j . (3.5.3)

Here, the n×N matrix U is unity if xi is a measurement of yj and zero otherwise, andM is
the positive-semidefinite covariance matrix

Mij = cov(xi, xj) =
L∑
k=1

cov(k)(xi, xj) , (3.5.4)

where k iterates over all L sources of uncertainties considered. In EFTfitter, the posterior
distribution is evaluated using Markov Chain Monte Carlo (MCMC) sampling in BAT.jl and
marginalization which yields the distributions shown in this thesis.
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4 Global fit to top-quark data

Global fits in the SMEFT framework offer a systematic and model-independent way to test
for signatures of BSM physics in a variety of observables simultaneously. In recent years,
the top-quark sector of the SMEFT Lagrangian has been studied in various analyses, as
discussed in Sec. 3.3. It builds the starting point for our analysis of BSM signatures in
processes involving third-generation quarks aiming to link top-quark data to present flavor
anomalies in the beauty sector, see Sec. 2.3.3. As a first proof of concept of our fit setup,
we consider the example of t-channel single top-quark production and top-quark decay. This
set of processes has the benefit that only a small number of SMEFT coefficients generates
leading contributions at O(Λ−2). However, the reasons for considering this dataset goes way
beyond constructing a simple fit setup and presenting a first toy example for a global fit:
Firstly, as this sector has been considered in previous analyses [18, 163, 230–232, 234–237],
it gives us the opportunity to validate results from our analysis. Secondly, as the number
of operators is rather small, we can study in detail the impact of quadratic terms in the
EFT expansion. These are formally of higher order in the EFT expansion, O(Λ−4), and
should give negligible contributions in regions where the EFT is valid. Finally, the dataset
of single top-quark production and top-quark decay data allows to study the impact of yet
undetermined correlations of uncertainties, since it covers multiple experiments as well as total
rates and differential distributions. As shown recently in Ref. [279], measurements at different
energies and by different energies can have sizable correlation coefficients, which have yet to be
determined and included in global fits. While the determination of such correlations cannot
be performed without exact knowledge of the experimental setups, it is a key task to work out
how these correlations can affect the fit, and if they can safely be neglected. We demonstrate
the interplay of constraints on SMEFT Wilson coefficients obtained from different datasets.
Modeling BSM contributions with different parametrizations, we investigate the impact of
higher-order terms in the EFT expansion on the outcome of the fit. Furthermore, we consider
different scenarios for the correlation of uncertainties to study their impact on the fit results.

This chapter, which is based on Ref. [25], is organized as follows: We describe which
dimension-six operators contribute to single top-quark production and top-quark decay, and
identify the coefficients to be constrained in this fit in Sec. 4.1. In Sec. 4.2, we describe our
fit setup. We detail on the computation of both SM and BSM contributions for observables
and outline our fitting procedure. Special care is devoted to the parametrization of BSM con-
tributions and the different correlation setups studied in this chapter. In Sec. 4.3, we present
results from various fits, and show how changes in the correlation setup affect constraints on
SMEFT coefficient. We summarize our results in Sec. 4.4.
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Figure 4.1: Contributions from two-fermion coefficients C̃(3)
ϕq and C̃uW (left, middle) and the

four-quark coefficient C̃qq to single top-quark production and top-quark decay.

4.1 Effective operators
Leading BSM contributions to single top-quark production with the SM process arise at
dimension six from the following operators:

O(3)
ϕq = i

(
ϕ†←→D I

µϕ
) (
q̄Lγ

µτ IqL
)
, OuW =

(
q̄Lσ

µντ IuR
)
ϕ̃W I

µν ,

O(1)
qq = (q̄LγµqL) (q̄Lγ

µqL) , O(3)
qq =

(
q̄Lγµτ

IqL
) (
q̄Lγ

µτ IqL
)
,

(4.1.1)

where uR and qL denote SU(2)L singlet and doublet quarks, respectively, of the third gen-
eration in O(3)

ϕq , OuW , and first and third generation ones in O(1)
qq , O(3)

qq . The quark flavor is
specified in the additional superscripts on Wilson coefficients in Eq. (4.1.2). In this analysis,
three linear combinations of coefficients can be constrained:

C̃(3)
ϕq , C̃uW , C̃qq = C̃(3)1133

qq +
1

6

(
C̃(1)1331
qq − C̃(3)1331

qq

)
, (4.1.2)

where we introduced, as is custom, the rescaled coefficients

C̃i = Ĉiv
2/Λ2 . (4.1.3)

Note that, as outlined in Sec. 3.2.3, we work in the up-mass basis, in which up-quark flavor and
mass bases are identical, and additional CKM-matrix elements arise in interactions involving
down-type quarks. In addition, OuW is not hermitian, and thus C̃uW can be complex valued.
Since only the real part generates contributions O(Λ−2) to observables considered here, we
make the simplifying assumption that C̃uW is real. Contributions from the three coefficients
to single top-quark production and top-quark decay are illustrated in Fig. 4.1.

4.2 Fit setup
In our analysis, we include data from ATLAS [280–285], CMS [286–293], CDF, and D0 [294–
296], given in Tab. 4.1. Each bin of differential distributions is considered as an independent
observable. In total, we include 55 measurements of 41 different observables. If differential
cross sections are presented in terms of normalized distributions, we reconstruct absolute
distributions by multiplying with total cross sections.
Following Eq. (3.3.1), observables such as total cross sections can be expressed as

σ = σSM +
∑
i

C̃iσ
int
i +

∑
i≤j

C̃iC̃jσ
BSM
ij , (4.2.1)

where σint
i and σBSM

ij denote interference terms between SM and dimension-six operators and
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Process
√
s Luminosity Experiment Observable Reference

Single top 7TeV
4.59 fb−1

1.17 fb−1(µ)
1.56 fb−1(e)

ATLAS
CMS
CMS

σ(tq/t̄q), dσ(tq/t̄q)/dpT
σ(tq + t̄q)
σ(tq + t̄q)

[280]
[286]
[286]

Single top 8TeV
20.2 fb−1

19.7 fb−1

19.7 fb−1

ATLAS
CMS
CMS

σ(tq/t̄q), dσ(tq/t̄q)/dpT
σ(tq/t̄q/tq + t̄q)
dσ/d|y(t/t̄)|

[281]
[287]
[289]

Single top 13TeV
3.2 fb−1

2.2 fb−1

2.3 fb−1

ATLAS
CMS
CMS

σ(tq), σ(t̄q)
σ(tq/t̄q/tq + t̄q)
dσ/d|y(t/t̄)|

[282]
[288]
[290]

Top decay 1.96TeV
2.7 fb−1

8.7 fb−1

5.4 fb−1

CDF
CDF
D0

F0

F0

F0

[294]
[295]
[296]

Top decay 7TeV 1.04 fb−1

5.0 fb−1
ATLAS
CMS

F0, FL
F0, FL

[284]
[291]

Top decay 8TeV
20.2 fb−1

20.2 fb−1

19.7 fb−1

ATLAS
ATLAS
CMS

Γt
F0, FL
F0, FL

[283]
[285]
[292]

Top decay 13TeV 19.8 fb−1 CMS F0, FL [293]

Table 4.1: The experimental measurements of top-quark production and decay considered
in this analysis. For both processes, we indicate the center of mass energy

√
s, the integrated

luminosity, the experiment, the observables included in the analysis and the publication
reference.

purely BSM terms, respectively. Using cross sections computed for different values of Wilson
coefficients (4.1.2) as sampling points we perform an interpolation according to Eq. (4.2.1) to
obtain numerical values for the σi terms. This allows us to compute a parametrization for all
cross sections as a function of the three coefficients. Computations of total and differential
cross sections follow the general guideline presented in Sec. D.3. We employ the dim6top_LO
[163] Universal FeynRules Output (UFO) model [297] and interface it with the Monte Carlo
(MG) generator MadGraph5_aMC@NLO [298]. This allows us to compute total and differ-
ential cross sections at parton level at LO QCD for different values of Wilson coefficients.
As measurements in Tab. 4.1 are at parton level, a simulation of events at parton level is
sufficient and neither hadronization nor detector simulation is needed. For BSM contribu-
tions, we allow for only one insertion of an effective operator at a time. For each cross section
computed with MadGraph5_aMC@NLOwe generate 50000 events. In all computations we use
the MSTW2008lo [299] parton distribution function (PDF) set (see also App. D.2).

In Fig. 4.2 we give examples for sampling points together with the interpolation calculated
at all sampling points. Aiming to reduce the impact of higher-order QCD corrections we
include NLO contributions to the SM predictions. In the case of differential distributions,
we apply k-factors taken from the experimental analyses presented in Refs. [280, 281, 289,
290]. NLO corrections to total cross sections are computed in MadGraph5_aMC@NLO with
the MSTW2008nlo [299] PDF set and validated with the CT10nlo [300] and NNPDF23_nlo [301]
sets. The same PDF sets are used to reproduce the k-factors of the differential distribu-
tions. In the computation, renormalization and factorization scales are set to µR,F = mt and
varied in the interval mt/2 ≤ µR,F ≤ 2mt to estimate higher-order effects neglected here.
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Figure 4.2: Examples for samplig points and the interpolation for the single-top productions
cross section at

√
s = 7 TeV. We show slices of the parameter space where two coefficients

are set to zero and the remaining one is varied.

The maximal variation is taken as the uncertainty. PDF uncertainties are computed within
MadGraph5_aMC@NLO with the PDF sets mentioned previously. In our analysis, central
values obtained with MadGraph5_aMC@NLO are considered as the theory estimate for the
observables. The theory uncertainty is calculated by adding statistical, PDF uncertainties
and scale variation uncertainties in quadrature.
Top-quark decay observables impose additional constraints on the Wilson coefficients con-

sidered here. We include measurements of the decay width Γt and the W boson helicity
fractions F0,L. We only consider operators affecting the Wtb vertex (OuW and O(3)

ϕq ), as con-
tributions from four-quark operators are suppressed. Since the helicity fractions are defined
as ratios and Q(3)

ϕq simply rescales the SM contributions, the Fi depend only on contributions
from C̃uW . In principle, four-fermion operators can also affect t→ b`+ν` and t→ bqq̄′ transi-
tions. However, contributions are very small due to on-shell production of theW boson in the
SM process [302]. In addition, in measurements of the helicity fractions only events where the
invariant mass of the two jets or the lepton and the neutrino equals mW are considered. This
results in an additional suppressions of four-fermion operators. In our analysis, we include
SM and BSM contributions at NNLO [303, 304] and LO [305], respectively. In contrast to
Ref. [305], we also include quadratic contributions from C̃uW to the helicity fractions F0 and
FL.
For the fit, we employ EFTfitter to determine constraints on the three coefficients using a

Bayesian ansatz, as described in Sec. 3.5. As a prior, we choose a uniform distribution over
the interval −1 ≤ C̃i ≤ 1. We consider three different parametrizations of BSM contributions
to study the impact of higher-order EFT corrections, O(Λ−4), on the fit: a linear ansatz, a
quadratic ansatz, and a third one called ’linear + δEFT’. In the following, we discuss each
ansatz at the example of a total cross section. In the linear ansatz we parametrize BSM
observables as

σ = σSM +
∑
i

C̃iσi , (’linear’) , (4.2.2)

where we consider only LO interference terms at O(Λ−2) between SM and BSM and omit
quadratic BSM contributions induced by dimension-six operators. The quadratic ansatz reads

σ = σSM +
∑
i

C̃iσi +
∑
i≤j

C̃iC̃jσij , (’quadratic’) , (4.2.3)
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where we include the purely BSM contributions, which are formally of higher order in the
EFT expansion. In the third ansatz (’linear + δEFT’) we aim at estimating the quadratic
contributions neglected in the linear ansatz, and model higher order EFT effects by adding a
relative uncertainty δEFT to each observable. The numerical value of this uncertainty is the
measured value times δEFT = v2/Λ2 ∼ 0.06, where we consider Λ = 1 TeV as a conservatively
small value for the scale of BSM physics.

In our fit, we consider three different types of uncertainties: statistical uncertainties, sys-
tematic uncertainties and theory uncertainties, where the first two types correspond to ex-
perimental uncertainties. In the case of statistical uncertainties, correlations arise if different
observables are measured from the same dataset. For the measurements in Tab. 4.1, this is
the case for differential distributions and helicity fractions. These correlations are typically
provided by the experimental collaborations and can be included in the fit without further
assumptions. In contrast, correlation matrices of both systematic and theory uncertainties
are mostly undetermined. Due to the large number of undetermined entries in the 55 × 55
dimensional matrices, a simple parametrization of the correlation setup is needed to study
the impact of undetermined correlations on the fit results. We model these matrices by in-
troducing effective correlation coefficients ρsys and ρth which parametrize correlations from
all sources of systematic and theory uncertainties, respectively. The exact choice of the cor-
relation coefficients as well as the parametrization of the matrices is motivated by a recent
combined analysis by ATLAS and CMS [279].

Starting with the systematic uncertainties, we expect strong correlations between mea-
surements performed by the same experiment and at the same energy as these uncertainties
are expected to stem from the same source. Therefore, we set the corresponding entries in
the correlation matrix to ρsys. For measurements by the same experiment but at different
energies, we expect smaller correlations of uncertainties and set the corresponding entries to
ρsys/2. This aims at modeling changes in the detector and Monte-Carlo (MC) settings as well
as energy-depend uncertainties (e.g. energy resolution). We consider all bins of differential
distributions with the same correlation coefficient. This is a simplifying assumption since
bin-to-bin migration effects can appear making the situation very complicated. A complete
parametrization of these effects clearly requires input from experiments and should ideally
be provided to take these effects into account. Here, we aim for a first simplistic ansatz, and
thus the inclusion of bin-to-bin migration effects goes beyond the scope of this work.

Theory uncertainties are expected to be mostly independent of the experiment and to
depend only on the energy of the process considered. Therefore, we correlate all measurements
at the same energy with a coefficient ρth. For uncertainties of measurements at different
energies, we assume a weaker correlation of ρth/2. This represents energy dependence in both
theoretical results and MC uncertainties. We neglect a more profound energy dependence of
uncertainties for the sake of a simplistic parametrization. In general, correlations of theory
uncertainties depend on the energy of the collision and become weaker when the energy
separation becomes larger. However, without input from the experiments it is not possible
to exactly estimate this dependence. Numerically, we find that these correlations have a very
small impact on the results relative to correlations of systematic uncertainties. Therefore,
we simplify our ansatz by considering only two kinds of coefficients, ρth and ρth/2. In fits
with the ’linear + δEFT’ ansatz an additional correlation matrix for the EFT uncertainties
has to be considered. We use the same ansatz as for the theory uncertainties, since a similar
reasoning applies, and parametrize the entries with ρEFT and ρEFT/2. However, note that this
ansatz only parametrizes the energy dependence of the correlation coefficients and does not
aim to describe correlations between observables in different physical processes. An explicit
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example considering five measurements is discussed in App. E.
In contrast to the other observables, the two helicity fractions F0 and FL are always con-

sidered to be anticorrelated, since they are required to add up to 1 − FR. Because of the
V − A structure of the weak interactions, the SM prediction reads FR = 0 + O(m2

b/m
2
t ),

and contributions from OuW are also suppressed by m2
b/m

2
t . Additional contributions from

dimension-six operators not considered here are suppressed by a factor mb/mt. Therefore,
we neglect these contributions in our fit, and consider only F0 and FL.
We demonstrate the impact of correlations on results of SMEFT fits by varying ρsys and

ρth independently in the interval [0, 1]. Typically, we expect correlations to be positive but
we also explore the possibility of negative values. We find that for values ρsys,th < −0.075
the correlation matrix remains no longer positive semi-definite, and thus do not consider this
part of the parameter space in the following. While we scan the complete parameter space
for the correlation coefficients we highlight two benchmark scenarios: In the first scenario,
called ’no correlation’ scenario, we neglect all undetermined correlations, similar Refs. [231,
233, 234]

ρsys = ρth = 0 . (’no correlation’) (4.2.4)

The second scenario is the ’best guess’ scenario with

ρsys = 0.9 , ρth = 0.9 , (’best guess’) . (4.2.5)

where we assume very strong correlations [279], similarly to Ref. [279]. In this analysis by
ATLAS and CMS, correlations of systematic uncertainties between ATLAS and CMS are set
to zero (except for the integrated luminosity) while correlations of theory uncertainties are
assumed to be maximal. In a similar matter, we neglect correlations of systematic uncer-
tainties between different experiments. We have checked numerically that their impact is
negligible by replacing all zeros in the correlation matrices of systematic uncertainties with
ρz and varying this parameter between −0.25 6= ρz 6= 0.25. Shifts in the results of the ’best
guess’ scenario are at the level of few percent and covered by the smallest intervals containing
95% of the posterior probability.
We do not assume maximal correlation of theory uncertainties for observables measured

at the same energy, because the effects of such uncertainties depend on the experiment. In
particular, the exact impact depends on the detector simulation and varies between different
experiments. We do not make any attempts to address the issue of EFT contributions to
background processes. This topic would require a reanalysis of the data, since the measure-
ments are performed with SM assumptions for the background processes and goes beyond the
scope of this work. In order to demonstrate our parametrization, we consider in App. E an
example of five measurements and present correlation matrices for all kinds of uncertainties.

4.3 Fits to data

In the following, we present constraints on the coefficients (4.1.2) obtained from fits to data in
Tab. 4.1. Fits are repeated multiple times, with the quadratic ansatz (4.2.3), the linear ansatz
(4.2.2), and the ’linear + δEFT’ ansatz. We consider constraints in both the ’no correlation’
scenario (4.2.4) and the ’best guess’ scenario (4.2.5), and compare results from both fits.
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Figure 4.3: Results from the fit with the quadratic ansatz in the ’no correlation’ scenario
(4.2.4). Plots on the diagonal show the one-dimensional posterior distribution for each coef-
ficient. Plots on the lower left show the two-dimensional posterior distributions from fits to
total cross sections only (light blue), differential cross sections only (blue), helicity fractions
only (grey) and the combined dataset (dark blue). Plots in the upper right show the two-
dimensional posterior distributions from the fit to the combined dataset but zoomed in. Stars
denote the SM point. Colored areas correspond to the smallest intervals containing 95% of
the posterior probability.

4.3.1 Constraints on Wilson coefficients

In Fig. 4.3 we show the smallest intervals containing 95% of the posterior probability obtained
in a fit with the quadratic ansatz (4.2.3) to the data in Tab. 4.1 in the ’no correlation’ scenario
(4.2.4). The different colors denote results derived from different subsets of observables.
We find that the SM is included in the smallest intervals containing 95% of the posterior
probability in all projections. As shown in the three plots in the lower left, the W boson
helicity fractions strongly constrain C̃uW to a level of O(10−2). In contrast, C̃(3)

ϕq and C̃qq are
not probed by measurements of F0,L. Instead, these two coefficients are strongly constrained
by measurements of differential cross sections, especially C̃qq. This is expected since four-
fermion contact interactions generate a distribution completely different from the SM one,
while C̃(3)

ϕq simply rescales the SM distribution. C̃qq is constrained at the level of O(10−2),
similar to C̃uW . Constraints on C̃(3)

ϕq are slightly weaker, about 5× 10−2. In the plots in the
upper right we see that C̃(3)

ϕq and C̃qq are correlated, which stems from interference of linear
contributions. We obtain very similar results for both the linear and the ’linear + δEFT’
ansatz, as shown in Figs. F.1 and F.2, respectively, in App. F.1.

In Fig. 4.4 we show results obtained in fits to data in Tab. 4.1 using the quadratic ansatz
(4.2.3) in the ’best guess’ scenario (4.2.5). Similarly to the ’no correlation’ scenario, C̃uW
is strongly constrained at the level of O(10−2) by measurements of the helicity fractions.
Results for C̃qq are dominated by differential cross sections and about O(10−2). In contrast,
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Figure 4.4: Same as Fig. 4.3, but in the ’best guess’ scenario (4.2.5).

for C̃(3)
ϕq the size of the interval is about 8×10−2 and the central value shows discrepancies with

the SM at the level of 4.7σ. As can be seen in the two-dimensional projections, deviations
stem from measurements of differential cross sections. Conversely, constraints from helicity
fractions and total cross sections include the SM point. This is understood, as differential cross
sections can be strongly correlated, and thus results for coefficients can change significantly
depending on the correlation scenario. Similarly, in the fit to differential cross sections C̃uW
shows deviations from the SM, but in the combined fit helicity fractions fix C̃uW to be close
to the SM value. In the case of C̃qq, constraints are stronger and deviations due to additional
correlations are less pronounced.
Again, results with the linear and the ’linear + δEFT’ ansatz are qualitatively very similar

and are shown in Figs. F.3 and F.4 in App. F.2, respectively.
In Fig. 4.5 compare results of fits in both the ’no correlation’ (4.2.4) (left) and the ’best

guess’ scenario (4.2.5) (right) to data in Tab. 4.1 using different parametrizations of BSM
contributions. Numerical values of these results are given in Tab. 4.2. The central value (i.e.
the global mode) lies for all coefficients in the center of the intervals.
In the ’no correlation’ scenario we find agreement with the SM for all three parametriza-

tions. The linear and the quadratic ansatz give very similar results for all coefficients, while
those obtained with the ’linear + δEFT’ ansatz show differences. For C̃qq, this ansatz yields
the same constraints as the linear and quadratic ansatz, while for C̃uW the central value has
a different sign and the interval is slightly larger. In general, for these two coefficients the
results from all three fits are in agreement at the level of 95% intervals. In the case of C̃(3)

ϕq ,
constraints obtained with the ’linear + δEFT’ ansatz differ from those obtained with the linear
and the quadratic ones by about 1.2σ. The central value is shifted away from the SM and
the size of the interval grows.
In the ’best guess’ scenario fits with the quadratic and linear ansatz show good agreement

with each other. Conversely, the ’linear + δEFT’ shows differences: The intervals of C̃uW
and C̃(3)

ϕq are larger, and the central value of C̃(3)
ϕq is shifted away from the SM. For C̃(3)

ϕq , this
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Figure 4.5: The one-dimensional posterior distribution of the coefficients C̃i obtained in fits
with the ’no correlation’ scenario(4.2.4) (left) and the ’best guess’ scenario (4.2.5) (right).
Dots and lines denote the central value (i.e. the global mode) and the smallest intervals
containing 95% of the posterior probability, respectively. The SM is indicated by the vertical
dashed line.

Operators Linear Linear + δEFT Quadratic
’No correlation’

C̃
(3)
ϕq [−0.049, 0.014] [−0.096, 0.000] [−0.050, 0.013]

C̃uW [−0.012, 0.014] [−0.026, 0.018] [−0.012, 0.014]
C̃qq [−0.013, 0.009] [−0.013, 0.010] [−0.013, 0.009]

’Best guess’
C̃

(3)
ϕq [−0.127, −0.055] [−0.214, −0.118] [−0.135, −0.056]

C̃uW [−0.011, 0.029] [−0.012, 0.029] [−0.005, 0.024]
C̃qq [−0.012, 0.002] [−0.013, 0.002] [−0.012, 0.002]

Table 4.2: Marginalized smallest intervals containing 95% of the posterior probability ob-
tained in fits in the ’no correlation’ scenario Eq. (4.2.4) and the ’best guess’ scenario Eq. (4.2.5)
to the data in Tab. 4.1 shown in Fig. 4.5. The central value is in the center of these intervals.

results in deviations from the other two parametrizations of about 3σ. This shows that for
both correlation scenarios the quadratic terms are only a subleading source of uncertainty in
the fit, and that an overall EFT uncertainty overestimates their impact.

Comparing results in the ’no correlation’ scenario with those in the ’best guess’ scenario
we find that correlations have a significant impact on results of the fit. For C̃qq, correlations
affect the constraints only slightly by shifting the central value towards negative values and
shrinking the size of the interval. Similarly, additional correlations shift the central value
of C̃uW slightly towards positive values. While these two coefficients are less affected, and
results in the ’best guess’ scenario still show good agreement with those in the ’no correlation’
scenario, we find significant changes in the case of C̃(3)

ϕq . In all three BSM parametrizations
the central value is shifted away from the SM towards negative values while the width of the
interval grows by about 10%. This results in deviations of about 4.7σ (linear/quadratic)
and 6.6σ (’linear + δEFT’). The aforementioned differences can be understood as follows:
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Figure 4.6: Central values of C̃(3)
ϕq for correlation parameters ρsys, ρth = 0.0, 0.3, 0.6, 0.9

in the three EFT-implementations from a fit to the data given in Tab. 4.1. We vary both
correlation parameters independently of each other. The upper-left and lower-right corner
correspond to the ’no correlation’ (4.2.4) and the ’best guess’ scenario (4.2.5), respectively.
Central values below and to the right of the grey line are in conflict with the SM at more
than 2 σ.

Large discrepancies in C̃
(3)
ϕq stem from differential cross sections, as shown in Fig. 4.4. In

contrast, considering C̃uW we find that the intervals are only slightly shifted away from the SM
towards positive values, since helicity fractions strongly impose strong constraints. Finally,
the shrinking of the interval of C̃qq is understood, because additional correlations deform the
posterior distribution in the three-dimensional parameter space: while the intervals for C̃(3)

ϕq

and C̃uW grow, the interval for Cqq shrinks; an effect which typically arises when correlations
are included.
Exploring the parameter space of the correlation coefficients ρsys and ρth beyond the

two benchmark scenarios, we give in Fig. 4.6 the central value of C̃(3)
ϕq for different values

ρsys, ρth = 0.0, 0.3, 0.6, 0.9. We consider only this coefficient, since it shows by far the
strongest effects when additional correlations are turned on. Over the range of the different
correlation coefficients the size of the 95% interval varies by a factor of up to 1.5, which we do
not show for the sake of legibility. Instead, we indicate with a grey line central values which
deviate by more than 2σ from the SM. The linear and quadratic BSM parametrizations show
very similar results. Increasing values of the ρi leads to stronger deviations from the SM. In
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EFT-implementations for correlation parameters ρsys = ρth ∈ [0, 0.9] from a fit to the data
given in Tab. 4.1.

the ’linear + δEFT’ scenario we find the same behavior but deviations from the SM are more
pronounced and all values besides ρsys = ρth = 0 do not agree with the SM at the 2σ level.
Comparing both kinds of uncertainties we find that correlations of systematic uncertainties
have a larger impact on the results of the fit. This can be seen by considering ρsys = 0, where
we find for all four values of ρth agreement with the SM. In contrast, for ρth = 0 the central
value deviates by more than 2σ from the SM for ρsys ≥ 0.6 In general, deviations from the
SM are stronger for rising values of ρsys than for ρth, as indicated by the central values.

Considering the main diagonal of the heatmaps in more detail, we give in Fig. 4.7 the
central value of C̃(3)

ϕq for ρsys = ρth varied in the interval [0, 0.9]. Over the whole range we see
a consistent and continuous behavior where stronger correlations lead to stronger deviations
from the SM.

Within our parametrizations of correlation matrices larger values of the correlation coef-
ficients lead to stronger deviations from the SM. The strongest deviations can be found in
the ’best guess’ scenario. To validate our results, we alter the ’best guess’ scenario by adding
uniformly distributed random numbers u with |u| ≤ 0.03 to all non-zero entries in the corre-
lation matrices. We vary each element individually requiring the matrices to remain positive
semi-definite, and perform 1000 fits to the data in Tab. 4.1. The results obtained in fits with
the linear BSM implementation are shown as histograms in Fig. 4.8 for C̃(3)

ϕq . We find that the
distribution of the central value is symmetric and slightly shifted towards values closer to the
SM with a clear peak close to the result of the ’best guess scenario’. In the case of the width
of the interval, the distribution is asymmetric favoring smaller values and the peak is slightly
shifted away from the ’best guess’ scenario towards smaller intervals. Both distributions show
a sharp peak around the values of the best ’best guess’ scenario, indicating that our fit is
stable against small perturbations. Very similar results are obtained for the quadratic and
’linear + δEFT’ parametrizations and are not shown.

To summarize, correlations among uncertainties alter the results of the fit. For C̃uW and
C̃qq effects are small, and shifts in the central value are covered by the smallest intervals
containing 95% of the posterior probability. In contrast, shifts in C̃(3)

ϕq are significantly larger:
we found agreement with the SM in the ’no correlation’ scenario, but strong deviations of
about 4.7σ (linear and quadratic fit) and 6.6σ (’linear + δEFT’) arise in the ’best guess’
scenario due to strong correlations among differential cross sections. While we consider large
values ρi = 0.9 in the ’best guess’ scenario (4.2.5), discrepancies larger than 2σ arise already
for fairly small values ρi ∼ 0.3 (see Fig. 4.7). Lastly, from the various fits considered here
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Figure 4.8: Histograms of the central value and the size of the smallest intervals containing
95% of the posterior probability of C̃(3)

ϕq for correlation parameters varied randomly around
the ’best guess’ scenario from a fit to data given in Tab. 4.1. Black lines denote results
from the ’best guess’ scenario in Eq. (4.2.5). We show as an example results in the linear
EFT-implementation.

we learn that quadratic and linear parametrizations of BSM contributions give very similar
results indicating that quadratic dimension-six contributions are indeed a subleading source of
uncertainty, as expected in regions where the EFT expansion is valid. Conversely, the ’linear
+ δEFT’ with a relative uncertainty of ∼ 6% clearly overestimates the effect of quadratic
terms.

4.3.2 Comparison to literature

To validate our results in the different BSM parametrizations, we compare constraints ob-
tained in fits with the ’no correlation’ scenario to a recent global SMEFT analysis [237],
in which 95% confidence level intervals (CL) from a fit to single top-quark production and
top-quark decay data are derived for the coefficients in Eq. (4.1.2). The dataset used in
Ref. [237] is comparable to our set in Tab. 4.1 but differs in two points: differential cross
sections of single-top production are not considered, and additional s-channel, tW -channel,
and tZ-channel cross sections are included in Ref. [237]. In addition, NLO QCD corrections
are included for the BSM contributions while we compute them at LO. In order to compare
the results of this analysis with ours, we repeat our fits in the ’no correlation’ scenario without
including differential cross sections. However, note that smallest intervals containing 95% of
the posterior probability in a Bayesian fit do not necessarily agree with 95% confidence level
intervals, as they are obtained using different statistical frameworks. Nevertheless, we expect
them to give at least comparable results regarding the order of magnitude.
Results from both the analysis in Ref. [237] and our fits are shown in Tab. 4.3. Note that

constraints in Ref. [237] are derived employing a quadratic ansatz. In contrast, we show
results within all three parametrizations of BSM physics and find that they are in good
agreement with each other, especially when comparing the linear and quadratic ansatz. For
all three coefficients, we find that the intervals are almost symmetric around the SM value,
except for C̃uW in the ’linear + δEFT’ scenario. Here, the interval is shifted towards negative
values and is larger by about 50% compared to the other scenarios due the additional EFT
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Operators 95% CL [237] Linear Linear + δEFT Quadratic
C̃

(3)
ϕq [−0.29, 0.081] [−0.30, 0.27] [−0.30, 0.28] [−0.33, 0.25]

C̃uW [−0.029, 0.029] [−0.013, 0.013] [−0.029, 0.015] [−0.013, 0.013]
C̃qq [−0.031, 0.0069] [−0.115, 0.095] [−0.12, 0.095] [−0.112, 0.090]

Table 4.3: Constraints on the coefficients in Eq. (4.1.2) presented as 95% confidence levels
from Ref. [237] from a fit to single top-quark total cross sections and top-quark decay data
together with the smallest intervals containing 95% of the posterior probability obtained in
fits in the ’no correlation’ scenario (4.2.4) to the data in Tab. 4.1 excluding differential cross
sections.

uncertainties and their correlations. In case of the helicity fractions F0,L, which yield strong
constraints on C̃uW , this additional uncertainty can be larger than both experimental and
SM theory uncertainties. Thus, it can dominate the total uncertainty, which is the case for
measurements in Refs. [285, 292, 293].

Comparing results obtained in our fits to those derived in Ref. [237] we find differences
for all three coefficients, but overall the result are in reasonable agreement. For C̃(3)

ϕq the
95% CL in Ref. [237] is both antisymmetric favoring negative values (similar to results in
our best-guess scenario) while the size of the interval is smaller by about 35% compared
to our results. As C̃(3)

ϕq rescales the SM, we expect that additional NLO QCD corrections
have a very strong impact on constraints on this coefficients. In addition, this coefficient also
contributes to observables from s-channel single top-quark production. Constraints on C̃uW
in Ref. [237] are weaker by a factor of two compared to our results. This can be explained by
the additional measurements of the helicity fractions included in our analysis, namely those
by CDF, DO and CMS. In particular, we find that the measurement by CMS in Ref. [293]
imposes strong constraints. Excluding these measurements from our fit with the quadratic
ansatz we obtain an interval about 50% larger than the one reported in Tab. 4.3. Considering
constraints on C̃qq we find that results in Ref. [237] are stronger by a factor of five relative
to ours. However, in in Ref. [237] a global U(2)q ×U(2)u ×U(2)d symmetry for the first two
generations is assumed, and thus contributions from second-generation quarks are included
in C̃qq. In contrast, in our analysis we only consider couplings to first-generation quarks. In
addition, s-channel observables are very sensitive to contributions from C̃qq due to an energy
enhancement when compared to the t-channel process [237]. The additional QCD corrections
also affect the constraints on this coefficient. In total, we expect that these reasons explain
the stronger constraints reported in Ref. [237].

Overall, results from our fit and results in Ref. [237] show reasonable agreement. Differences
can be explained by additional s-channel observables and NLO QCD corrections considered
in Ref. [237], the additional measurements of the helicity fractions, and the overestimated
BSM contributions in our ’linear + δEFT’ scenario. Note again that we did not expect to find
exactly the same results as we are comparing the smallest intervals containing 95% of the
posterior probability obtained in a Bayesian fit with 95% confidence-level limits.

4.3.3 Future scenarios

As shown in Fig. 4.5 correlations have a major impact on the results. At future experiments
theoretical and systematic uncertainties and their correlations will become even more impor-
tant since statistical uncertainties will be further suppressed at higher integrated luminosity.
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Figure 4.9: Same as Fig. 4.5, but with statistical uncertainties of the data in Tab. 4.1
scaled to 300 fb−1 and assuming present central values, systematic uncertainties and theory
uncertainties.

Operators Linear Linear + δEFT Quadratic
’No correlation’

C̃
(3)
ϕq [−0.043, 0.009] [−0.100, −0.012] [−0.044, 0.009]

C̃uW [−0.009, 0.002] [−0.028, 0.010] [−0.009, 0.002]
C̃qq [−0.012, 0.005] [−0.012, 0.007] [−0.012, 0.005]

’Best guess’
C̃

(3)
ϕq [−0.190, −0.138] [−0.331, −0.256] [−0.211, −0.148]

C̃uW [0.011, 0.036] [0.024, 0.074] [0.011, 0.036]

C̃qq [−0.011, −0.004] [−0.009, 0.000] [−0.011, 0.004]

Table 4.4: Results from fits in the ’no correlation’ scenario Eq. (4.2.4) and the ’best guess’
scenario Eq. (4.2.5) to the data in Tab. 4.1 with statistical uncertainties scaled to 300 fb−1

(see Fig. 4.9). Constraints are shown as smallest intervals containing 95% of the posterior
probability obtained in fits within the different parametrizations of BSM contributions. The
central value is in the center of these intervals.

To demonstrate this, we repeat the fit to the data in Tab. 4.1 but scale all statistical uncer-
tainties according to the luminosity of two future scenarios: LHC Run 3 and High-Luminosity
(HL-)LHC with integrated luminosities of 300 fb−1 and 3000 fb−1 [306], respectively. Results
are shown in Fig. 4.9 for the 300 fb−1 scenario, with numerical values given in Tab. 4.4. We
find that constraints become stronger when changing the luminosity of the measurements
in Tab. 4.1 from up to 20 fb−1 to 300 fb−1 and scaling statistical uncertainties accordingly.
Increasing the luminosity further by one order of magnitude does not improve the constraints
significantly (see Fig. F.5 in App. F.3) as systematic and theory uncertainties already dom-
inate at 300 fb−1. Numerically, constraints on all coefficients are the same up to percent
level when comparing results with 300 fb−1 with those from 3000 fb−1 in the ’no correlation’
scenario. In the ’best guess’ scenario the results change by up to 5% for C̃(3)

ϕq and up to 15%
for C̃uW and C̃qq. The only exception is the ’linear + δEFT’ scenario, where we find larger
changes for C̃uW , see App. F.3. In the light of higher integrated luminosity results for the
three coefficients depend strongly on the correlation scenario, even more than in fits to present
data. In the ’no correlation’ scenario the constraints remain almost the same: Compared to
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Fig. 4.5 central values are slightly shifted while the size of the intervals shrinks by a factor of
1.2, 3, and 1.3 for C̃(3)

ϕq , C̃uW , and C̃qq, respectively. In contrast, in the ’best guess’ scenario
C̃

(3)
ϕq , C̃uW , and C̃qq deviate from the SM by up tp 3.8σ (4σ), 5σ (5σ), and about 12.5σ

(16.0σ) in the linear and quadratic (’linear + δEFT’) fit, respectively.
To further estimate the impact of correlations in the light of higher integrated luminosities

we repeat the analysis in Fig. 4.6 and vary the two correlation parameters independently
in the interval ρsys, ρth = 0.0, 0.3, 0.6, 0.9. Again, we find that correlations of systematic
uncertainties have a stronger impact on the results of the fit than correlations of theory
uncertainties. The heatmaps are shown in App. F.3.

4.4 Summary
In this chapter, we performed a global fit to the top-quark sector of SMEFT considering
t-channel single top-quark production and top-quark decay. We have detailed both our pro-
cedure to compute BSM contributions to cross sections at the LHC as well as angular distri-
butions, i.e. the W boson helicity fractions, and outlined the setup of our fitting procedure.
Going beyond a simple first toy example for our fitting procedure, we studied in detail the
impact of higher-order corrections, O(Λ−4), in the EFT expansion on the constraints on Wil-
son coefficients employing three different parametrizations: a linear ansatz (4.2.2) including
only interference terms at O(Λ−2) between SM and BSM contributions, a quadratic ansatz,
in which we also consider purely BSM contributions C̃iC̃j , and a third ansatz (’linear +
δEFT’), in which we model higher order corrections with an additional relative uncertainty
δEFT = (v/1 TeV)2. We found that both the linear and quadratic ansatz give almost identical
results. Conversely, the ’linear + δEFT’ ansatz yields deviations from the other two scenarios,
see Fig. 4.5. This indicates that quadratic contributions from dimension-six operators are
indeed negligible, and that an additional EFT uncertainty overestimates their impact.

Going beyond present global fits available in literature, the dataset of single top-quark
production and top-quark decay observables gave us the opportunity to investigate the im-
pact of yet undetermined correlations of measurements on results of global fits. To do so,
we parametrized corresponding correlation matrices using two parameters: ρsys and ρth for
correlations of systematic experimental and theory uncertainties, respectively. Studying the
concrete examples of two benchmark scenarios with either vanishing (’no correlation’ (4.2.4))
or strong (’best guess’ (4.2.5)) correlations, we saw that correlations can alter results signifi-
cantly. While we found agreement with the SM in the ’no correlation’ scenario, one coefficient,
C̃

(3)
ϕq , showed deviations of about 5σ from the SM in the ’best guess’ scenario, see Fig. 4.5. We

further investigated these effects in the context of higher integrated luminosity experiments,
scaling present data according to the expected integrated luminosities of 300 fb−1 (LHC Run
3) 3000 fb−1 (HL-LHC). In these projections, even stronger deviations of up to 16σ from the
SM are present.

Our findings highlight the importance of opening new ways to improve fits to the top-quark
sector of SMEFT by linking it to beauty physics, even without considering the presence of the
flavor anomalies. In Chapter 5, we explore implications of a combined fit of top-quark and
B-physics data in the SMEFT framework and investigate the feasibility of this approach.
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5 Exploring combinations of top and beauty

As we saw in Chapter 4, global fits to the top-quark sector of SMEFT allow to search for
BSM signatures in top-quark data in a model-independent and systematic way. However,
applying the SMEFT framework goes way beyond fits to a single sector of physics, and
additional constraints on effective operators with third-generation up-type quarks arise from
processes involving beauty quarks [222, 307, 308]. In particular, FCNCs like b→ s transitions
allow to test BSM physics with high precision [121–127] since they are suppressed in the
SM by the Fermi constant, small CKM matrix elements, and loop-factors. As we saw in
Sec. 4.3, including additional uncorrelated observables and measurements in the fit is desired
to reduce the impact of undetermined correlations. This alone already motivates the inclusion
of additional observables from beauty physics. However, the inclusion of b → s data has an
even stronger physical motivation, which goes way beyond simply making global fits more
model-independent: Present data hints at anomalies in the B-physics sector, see Sec. 2.3.3,
as well as in interactions of beauty quarks with Z bosons [309], indicating that the third
generation might be special, and that charged leptons might not be as equal as assumed in
the SM [310].

In this chapter, which is based on Ref. [23], we perform a first combined fit to top-quark
and B-physics data at the example of tt̄γ cross section and B̄ → Xsγ branching ratio mea-
surements. In the following, we present the steps necessary for a combined fit of BSM contri-
butions to top-quark interactions. We highlight possible pitfalls of the procedure and provide
a detailed analysis of the dependence of the observables on the Wilson coefficients. To do
so, we introduce in Sec. 5.1 the SMEFT operators considered in this analysis. In Sec. 5.2,
we detail on the matching of the SMEFT Lagrangian onto the WET Lagrangian, which is
employed to parametrize SM and BSM contributions to B-physics observables. In Sec. 5.3,
we present the measurements included in the fit. We discuss the computation of the theory
predictions in Sec. 5.4. The results of the fit to the different observables are discussed in
detail in Sec. 5.5. In Sec. 5.6, we summarize our findings.

5.1 Effective theories at different scales
In order to derive constraints on SMEFT coefficients from measurements of observables below
the EW scale µW , different EFTs have to be employed and linked with each other. In the
following, we identify dimension-six operators relevant for tt̄γ production and describe the
EFT approach used to describe b→ s transitions in terms of SMEFT coefficients.

In Fig. 5.1 we give examples for Feynman diagrams for tt̄γ production in the SM (top row)
and including insertions of an effective operator (bottom row). We consider only operators
involving third generation quarks and bosonic fields affecting the tt̄γ production:

OuB = (q̄L σ
µν uR) ϕ̃ Bµν ,

OuG =
(
q̄L σ

µν TAuR
)
ϕ̃GAµν ,

OuW =
(
q̄L σ

µν τ IuR
)
ϕ̃W I

µν .

(5.1.1)
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Figure 5.1: Examples for lowest order Feynman diagrams contributing to tt̄γ production in
pp-collisions in the SM (upper row) and including dimension-six operators (lower row). We
denote insertion of an effective operator from Eq. (5.1.1) with a black dot.

The operator OuW has already been defined in Eq. (4.1.1) and is given here for the sake of
completeness. Contributions from dipole operators with right-handed b quarks are suppressed
by a factor of mb/mt compared to those with right-handed top-quark fields. Therefore, we
neglect contributions from down-type dipole operators in this analysis. Since all operators in
Eq. (5.1.1) are non-hermitian, the corresponding Wilson coefficients can be complex valued.
However, only the real part can contribute to the observables at O(Λ−2), and thus we assume
all coefficients to be real for simplicity. In principle, four-quark operators can also affect tt̄γ
productions via diagrams similar to the third diagram in the second row in Fig. 5.1 replacing
gluons with a quark and an antiquark. At the LHC, tt̄ production is dominated by the gluon-
gluon channel (75% at 8 TeV and 90% at 13 TeV [231]), and thus we neglect contributions
from four-fermion operators. Note that we explicitly allow for BSM contributions to the
top-quark decay1 from OuW (see Fig. 5.1).
As described in Sec. 3.1, to describe both SM and BSM physics at energies below µW ∼ mW

a low-energy EFT is used, which parametrizes possible BSM deviations in effective operators
invariant under the SU(3)C ×U(1)Q gauge group. In our analysis, we consider contributions
of operators (5.1.1) to b → sγ transitions. Therefore, the SMEFT operators have to be
matched onto the WET Lagrangian in Eq. C.1.1 in App. C. Here, we neglect contributions
suppressed by small CKM matrix elements Vub as well as the strange-quark mass.

5.2 Matching at the electroweak scale

SMEFT contributions to physics below the electroweak scale µW are described by matching
the SMEFT Lagrangian onto the WET Lagrangian. The general procedure for a combined
analysis of top-quark and B measurements is visualized in Fig. 5.2. SMEFT Wilson coef-
ficients at the scale µt ∼ mt are constrained by top-quark measurements. Similarly, WET
coefficients are constrained by B measurements at the scale µb ∼ mb. In order to translate
these results into constraints on SMEFTWilson coefficients, three steps have to be performed,
extending the formalism described in Ref. [221]: Firstly, the SMEFT RGEs are employed to
evolve SMEFT Wilson coefficients from the scale µt to the scale µW . Secondly, the SMEFT
Lagrangian is matched onto the WET Lagrangian. As a last step, WET RGE evolution from
the scale µW to µb is performed. This procedure allows to express BSM contributions to
WET coefficients at the scale µb in terms of SMEFT coefficients Ci(µt) at the scale µt. With

1The operator O(3)
ϕq can generate BSM contributions only to the top-quark decay and is neglected here because

this operator merely rescales the SM decay width without changing angular distributions.
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Figure 5.2: Illustration of the energy scales, effective theories and measurements relevant
for the combined analysis of top-quark and B measurements. At the high energy scale Λ,
the UV theory is matched onto the SMEFT Lagrangian. Measurements of the top quark are
described by evolving the dimension-six Wilson coefficients in LSMEFT to the scale µt ∼ mt

using the SMEFT RGEs. For comparison with measurements of B physics, the SMEFT is
matched onto the WET at the scale µW ∼ mW . To describe BSM contributions to B-physics
measurements at the scale µb ∼ mb the WET coefficients are evolved using the WET RGEs.

this, BSM contributions to observables such as BR(B̄ → Xsγ) can be parametrized using
SMEFT Wilson coefficients Ci(µt).

In order to describe the running and mixing of the operators in Eq. (5.1.1) we include the
following operators:

Ouϕ =
(
ϕ† ϕ

)
(q̄L uR ϕ̃) , OϕG =

(
ϕ† ϕ

)
GAµν G

Aµν , OϕG̃ =
(
ϕ† ϕ

)
G̃Aµν G

Aµν . (5.2.1)

To identify LO contributions at O(αs) in the ADM we rescale the coefficient according to the
procedure described in Sec. 3.2.1:

O′
uB = yg′ (q̄L σ

µν uR) ϕ̃ Bµν , O′
uW = yg

(
q̄L σ

µν τ I uR
)
ϕ̃W I

µν ,

O′
uG = ygs

(
q̄L σ

µν TA uR
)
ϕ̃GAµν , O′

ϕG = g2s

(
ϕ† ϕ

)
GAµν G

Aµν ,

O′
uϕ = y

(
ϕ† ϕ

)
(q̄L uR ϕ̃) , O′

ϕG̃
= g2s

(
ϕ† ϕ

)
G̃Aµν G

Aµν .

(5.2.2)

Similarly, the Wilson coefficients are rescaled with inverse powers of the couplings. We can
now write the RGE at LO as [188–192]

d

d lnµ



C ′
uG

C ′
uW

C ′
uB

C ′
uϕ

C ′
ϕG

C ′
ϕG̃


=
αs
4π

4

3



1 0 0 0 −3 −3i
2 2 0 0 0 0
10
3 0 2 0 0 0
−24 0 0 −6 0 0
0 0 0 0 0 0
0 0 0 0 0 0





C ′
uG

C ′
uW

C ′
uB

C ′
uϕ

C ′
ϕG

C ′
ϕG̃


=
αs
4π
γ(0)



C ′
uG

C ′
uW

C ′
uB

C ′
uϕ

C ′
ϕG

C ′
ϕG̃


. (5.2.3)
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Figure 5.3: Examples of one-loop diagrams for b → sγ and b → sg transitions. Black dots
denote the insertion of a SMEFT operator.

Note that γ(0) is not closed: both O′
ϕG and O′

ϕG̃
give mixing contributions to the running of

O′
dG = ygs

(
q̄L σ

µν TA dR
)
ϕGAµν , (5.2.4)

while O′
uG contributes to

O
′(1)
quqd = (qiLuR)εij(q

j
LdR) , O

′(8)
quqd = (qiLT

AuR)εij(q
j
LT

AdR) , (5.2.5)

where i, j are isospin indices. The corresponding entries in the ADM are neglected here as they
are suppressed by small down-type Yukawa couplings. In addition, we see from Eq. (5.2.3)
that C ′

ϕG and C ′
ϕG̃

do not run at O(αs). As these operators have no sizable effect on the
observables considered here [231], we assume them to be vanishing and consider only effective
operators including a top quark. Similarly, the operator O′

uϕ does not generate phenomeno-
logically relevant contributions to the observables. In NLO calculations this operator has
to be included to absorb UV divergences in top-quark mass corrections stemming from O′

uG

[302]. Since we consider SMEFT contributions at LO only, we neglect O′
uϕ in the following.

The RGE are solved following the algorithm in App. B.5.

To match the SMEFT operators onto the WET Lagrangian we use the results presented
in Ref. [221]:

∆C
(0)
7 =

√
2mt

mW

[
C̃uWE

uW
7 (xt) + C̃∗

uWF
uW
7 (xt)

+
cos θw
sin θw

(
C̃uBE

uB
7 (xt)C̃

∗
uBF

uB
7 (xt)

)]
,

(5.2.6)

∆C
(0)
8 =

√
2mt

mW

[
C̃uWE

uW
8 (xt) + C̃∗

uWF
uW
8 (xt)

− . g
gs

(
C̃uGE

uG
8 (xt) + C̃∗

uGF
uG
8 (xt)

)]
,

(5.2.7)

with xt = m2
t /m

2
W . With ∆Ci we denote BSM contributions to WET coefficients in (C.1.1)

and C̃i are the rescaled SMEFT coefficients defined in Eq. (4.1.3). The xt-dependent functions
EuW7 , F uW7 , EuW8 , and F uW8 are taken from Ref. [221] and listed in App. A.2. Examples for
corresponding one-loop Feynman diagrams are shown in Fig. 5.3.

Similarly to BSM contributions from dimension-six operators, the SM is also matched onto
the WET Lagrangian at the scale µW . Using the WET RGEs we evolve the coefficients C̄i
from µW to µb resumming large logarithms to all orders in perturbation theory. In order to
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Observable Measurement SM prediction
σfid

ATLAS(tt̄γ, 1`) 521± 9 (stat.)± 41 (syst.) fb [313] 495± 99 fb [313, 314]
σfid

ATLAS(tt̄γ, 2`) 69± 3 (stat.)± 4 (syst.) fb [313] 63± 9 fb [313, 314]
BR(B̄ → Xsγ) (332± 15)× 10−6 [315] (336± 23)× 10−6 [316]

Table 5.1: Measurements and SM predictions of the fiducial cross sections of tt̄γ production
and the B̄ → Xsγ branching ratio with a minimal photon energy of Eγ ≥ 1.6 GeV.

compute the B̄ → Xsγ branching ratio we use the effective coefficients [311, 312]

Ceff
i =


C̄i for i = 1, ..., 6

C̄7 +
∑6

j=1 yjC̄j for i = 7

C̄8 +
∑6

j=1 zjC̄j for i = 8

, (5.2.8)

with y = (0, 0,−1/3,−4/9,−20/3,−80/9) and z = (0, 0, 1,−1/6, 20,−10/3) [152] in the MS
scheme with fully anticommuting γ5. The WET RGEs for the effective coefficients

d

d lnµ
Ceff
i (µ) = γeff

ji (µ)C
eff
j (µ) , (5.2.9)

are solved expanding both γeff and Ceff
i in powers of αs, according to Eqs. (3.1.12) and (3.1.13):

γeff(µ) =
αs(µ)

4π
γ(0)eff +

α2
s(µ)

(4π)2
γ(1)eff +

α3
s(µ)

(4π)3
γ(2)eff + ... , (5.2.10)

Ceff
i (µ) = C

(0)eff
i (µ) +

αs(µ)

4π
C

(1)eff
i (µ) +

α2
s(µ)

(4π)2
C

(2)eff
i (µ) + ... . (5.2.11)

The matrices γ(0,1)eff are given in Ref. [152], and γ(2)eff is specified in Ref. [153]. SM values
for the coefficients Ceff

i at the scale µW are calculated at up to NNLO in QCD [154–156].
Again, we employ the procedure in App. B.5 to solve the RGEs.

Note that, obviously, considering simply the matching at the scale µb without RGE evo-
lution leads to completely different and wrong results: prefactors of C̃i in the matching
conditions change by a factor of up to 40, and mixing effects are not included at all.

5.3 Measurements included in the analysis

Both ATLAS and CMS have measured the tt̄γ production cross section [313, 317–319] at
different center-of-mass energies. In this analysis, we include the latest ATLAS measurements
of fiducial cross sections for final states containing one or two leptons at 13 TeV [313], referred
to as single-lepton and dilepton channel, respectively. Here, leptons are either muons or
electrons (and their antiparticles). Both measurements agree well with the SM prediction at
NLO [313, 314].

In the case of BR(B̄ → Xsγ), multiple measurements by Belle [320–322], BaBar [323–325],
and Cleo [326] are combined in an averaged value by the Heavy Flavor Averaging Group
(HFLAV) [327]. In this combination, differences in the minimal photon energy Eγ are taken
into account by performing an interpolation according to Ref. [328]. The combined value is
given at the minimal photon energy Eγ ≥ 1.6 GeV and is in good agreement with the SM
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prediction computed at NNLO [316].

5.4 Computation of observables

The computation of tt̄γ production cross sections follows the principle described in Sec. 4.2
and is presented in detail in App. G. Cross sections at parton level are parametrized according
to Eq. (4.2.1). Sampling points for the interpolation are computed with the dim6top_LO UFO
model using MadGraph5_aMC@NLO. Samples are generated as 2→ 7 processes for both the
single-lepton and dilepton channel with a phase space similar to the one described in Ref. [313],
allowing for one insertion of a dimension-six operator at a time.
Following the general procedure outlined in App. D.3, we employ PYTHIA 8 [329] and

apply parton showering to the events and perform an event selection at particle-level using
MadAnalysis [330–332] in order to compute the fiducial acceptance. Jets (see App. D.1)
are clustered with the anti-kt algorithm [333] using FastJet [334]. BSM contributions also
affect the fiducial acceptance A and not just the production cross section. Including effects
of dimension-six operators the acceptance can be written as

A =
ASMσSM +

∑
i C̃iA

interf.
i σinterf.

i +
∑

i≤j C̃iC̃jA
BSM
ij σBSM

ij

σSM +
∑

i C̃iσ
interf.
i +

∑
i≤j C̃iC̃jσ

BSM
ij

. (5.4.1)

The denominator is simply the parametrization of the total cross section σ. Including BSM
effects in A accounts for changes in the kinematics due to BSM contributions. As the σi are
already determined, a least squares fit using fiducial acceptances from the generated events as
sampling points can be performed. The results of the interpolation are discussed in App. G.
In order to include NLO corrections to SM cross sections we apply k factors to the LO SM

result. Parametrizations of fiducial cross sections in the single-lepton and dilepton channel
are shown in Fig. 5.4. For both channels, the results look very similar and cross sections show
a comparable sensitivity to all three coefficients.
We consider the most recent calculation at NNLO [316] following the general procedure

described in Ref. [156] to compute the branching ratio BR(B̄ → Xsγ) . In addition to SM
contributions we also include BSM contributions at LO. The branching ratio can be written
as

BR(B̄ → Xsγ) =BR(B̄ → Xceν̄)exp

∣∣∣∣V ∗
tsVtb
Vcb

∣∣∣∣2 6αeπC
(P (E0) +N(E0)) , (5.4.2)

where E0 = 1.6 GeV is the minimal photon energy, and P (E0) and N(E0) denote perturbative
and non-perturbative corrections, respectively. The prefactor C is defined as

C =

∣∣∣∣VubVcb

∣∣∣∣2 Γ(B̄ → Xceν̄)

Γ(B̄ → Xueν̄)
, with Cexp = 0.568± 0.007± 0.01 [335] . (5.4.3)

The perturbative part P (E0) can be parametrized as

P (E0) =

8∑
i,j=1

Ceff
i (µb)C

eff
j (µb)Kij(E0, µb) , (5.4.4)
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Figure 5.4: Parametrizations of observables included in the analysis: fiducial tt̄γ cross sec-
tions for the single-lepton channel (left) and the dilepton channel (middle) and BR(B̄ → Xsγ).
(right) We show slices of the phase space varying only one of the Wilson coefficient at a time,
while the other coefficients are set to zero. The blue and grey bands indicate the experimental
measurements (see Tab. 5.1).

where the matrix K can be perturbatively expanded in powers of αs:

Kij(E0, µb) = δi7δj7 +
αs(µb)

4π
K

(1)
ij +

α2
s(µb)

(4π)2
K

(2)
ij +O(α3

s(µb)) . (5.4.5)

The coefficients K(i)
ij are known at approximate NNLO [156, 336–343]. For the computation

of non-perturbative corrections N(E0) we include results from [344–346].
The branching ratio for different values of SMEFT coefficients C̃i(µt) is shown in the plot

on the right side of Fig. 5.4. We find that C̃uB has a significantly larger impact compared
to the other two. This is expected, as we find numerically that ∆C̄

(0)
7 = 0.093 C̃uW (µW ) −

2.354 C̃uB(µW ), while C̃uG is of higher order in αs. We validate our results using flavio [347]
together with the wilson [348] package and the matching in Eqs. (5.2.6) and (5.2.7) and find
good agreement for all three coefficients.

5.5 Constraints on SMEFT coefficients

We fit the parametrizations of the fiducial cross sections and the branching ratio to the data
in Tab. 5.1 to derive constraints on the SMEFT Wilson coefficients. We employ EFTfitter to
obtain marginalized posterior probability distribution and include experimental as well as
theory uncertainties. As our focus lies on combining observables at different energy scales, we
assume all uncertainties to be uncorrelated for simplicity. This assumption is reasonable for
correlations between top-quark and B-physics observables as well as for statistical uncertain-
ties between the two top-quark observables. However, correlations between systematic and
theory uncertainties of top-quark observables can arise. Following the reasoning in Sec. 4, we
investigate the impact of unknown correlations performing several fits varying entries in the
correlation matrices. We assume a uniform distribution over the interval −1 ≤ C̃i ≤ 1 as the
default prior.

In Fig. 5.5 we give the posterior probability distributions obtained in fits of all SMEFT
Wilson coefficients to B-physics observables (left) and top-quark observables (middle, right).
In the fit to BR(B̄ → Xsγ) only C̃uB can be constrained while the other two coefficients remain
unconstrained. This behavior can be understood considering the dependence of BR(B̄ →
Xsγ) on the three coefficients (see Fig. 5.4). Contributions from C̃uB have a significantly larger
impact on the branching ratio than the other two coefficients. In the posterior distribution of
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Figure 5.5: Posterior probability distributions for the fit of all three Wilson coefficients
using only measurements of BR(B̄ → Xsγ) (left) and σ(tt̄γ) (middle, right). Shown are (left,
middle) the distribution of C̃uB together with the corresponding smallest interval containing
90% of the probability (colored region) and (right) the smallest interval containing 90% of
the posterior probability for the two-dimensional marginalized distribution in the C̃uG-C̃uW
plane. The SM values are indicated.

C̃uB we find two regions around C̃uB ∼ 0 and C̃uB ∼ −0.5 to be allowed by data, as expected
considering Fig. 5.4. Without further input this ambiguity cannot be resolved.
Fitting the coefficients to top-quark data yields comparable constraints on all three coef-

ficients, as shown in Fig. 5.5 in the one-dimensional posterior distribution of C̃uB (second
plot) and the two-dimensional distribution in the C̃uG-C̃uW plane (rightmost plot). The
smallest intervals containing 90% of the posterior probability are comparable for all three
coefficients, as expected considering Fig. 5.4. We validate our results performing fits to either
the single-lepton of the dilepton channel and obtain very similar results in both cases.
In Fig. 5.6 we compare two-dimensional projections of the posterior distribution obtained

in fits to different datasets. For the sake of a better legibility of the plots, the 90% interval
from the fit to top-quark data are shown as contours. Most noticeably, we find that combining
top-quark and B-physics data allows to remove the ambiguity in C̃uB present in the fit to
BR(B̄ → Xsγ) only: in the combined fit the non-SM branch is excluded. Even though
the fit to the branching ratio constrains only C̃uB, the combination with tt̄γ cross sections
imposes significantly stronger constraints on all three coefficients compared to top-quark data
only. The size of the posterior region is reduced by one order of magnitude in the C̃uB-C̃uG
and C̃uB-C̃uW planes, see Fig. 5.6 (upper row). This significant reduction stems from the
orthogonality of the constraints from the different observables. Even in the C̃uG-C̃uW plane
(lower row), where no constraints from BR(B̄ → Xsγ) are present, we observe a reduction
of the size of the smallest intervals. In the combined fit, the region shrinks by a factor of
1.9 relative to results from top-quark data only. This effect is understood as the smallest
intervals of the posterior distribution are reduced in the three-dimensional parameter space,
and Fig. 5.6 shows only two-dimensional projections.
In Fig. 5.7 we show an alternative representation of the results of our fits in terms of the

one-dimensional projections of the smallest intervals. In the individual fit, in which only
one coefficient is varied at a time, constraints show a behavior similar to the fit with all
three coefficients. Overall, constraints are stronger since no interferences between the linear
terms of different coefficients occur. It is recognizable that the combination of top-quark
and B-physics data does not only remove the second solution for C̃uB present in the fit to
BR(B̄ → Xsγ) but also removes a second solution for C̃uW present in the fit to σ(tt̄γ). In
both cases, the close-to-SM branch is supported in the combination. Conversely, the second
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Figure 5.6: The two-dimensional projections of the smallest intervals containing 90% of the
posterior probability distributions for the fits of all three Wilson coefficients using only the
measurement of BR(B̄ → Xsγ) (grey), only the measurements of σ(tt̄γ) (light blue) and for
the combination (blue). The SM values are indicated.

solution for C̃uG remains even in the combination of both datasets.
As mentioned above, we estimate the impact of correlations between systematic and theory

uncertainties of the single-lepton and dilepton channels of σ(tt̄γ) by varying corresponding
entries in the correlation matrices. In the case of systematic uncertainties, the entries are
varied between −0.9 and 0.9, as in principle negative correlations could occur. For theoretical
uncertainties, we do not expect any negative correlations and consider coefficients up to 0.9.
Comparing the sizes of the smallest regions in the different correlation scenarios we observe
only minor changes in the distributions in the C̃uB-C̃uG and C̃uBC̃uW planes, about 4%. In
contrast, the distribution in the C̃uG-C̃uW plane shows larger effects, about 30%. This is
expected, since constraints from top-quark data dominate. From these findings we conclude
that correlations leave our general findings unchanged.

Note that we focus here on demonstrating the steps necessary for a combined analysis
using only two different observables as a proof of concept. Thus, we do not obtain the
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Figure 5.7: The smallest intervals containing 90% probability of the one-dimensional
marginalized posterior distribution for the fits using only BR(B̄ → Xsγ) (grey), only σ(tt̄γ)
(light blue) and using their combination (blue). Shown are the intervals for (left) the on-
dimensional marginalized posterior distributions and (right) for individual fits of each Wilson
coefficient where the other two coefficients are fixed to zero.

strongest constraints on the coefficients considered (compared to global fits, e.g. in Ref. [237]).
Including additional observables and measurements would certainly allow to derive stronger
constraints on BSM contributions. For example, tt̄ production and the W boson helicity
fractions strongly constrain C̃uG and C̃uW , respectively. Similarly, b → s`+`− transitions
constrain C̃uB and remove the ambiguity present in fits to BR(B̄ → Xsγ) only. We study
these effect in Chapter 6.

5.6 Summary
In the SMEFT framework, measurements from both the precision-flavor and the high-energy
frontiers can be combined in one analysis. In this chapter, we demonstrated this by exploiting
synergies between B-physics and top-quark measurements from flavor factories and the LHC,
respectively. To do so, we considered measurements of the B̄ → Xsγ branching ratio and
fiducial tt̄γ production cross sections. We combined these measurements within the SMEFT
framework detailing the steps required to connect measurements at different energy scales.
Wed pointed out that matching beyond tree level is necessary for the analysis. We employed
MC generators together with an event selection at particle level to compute cross sections of
tt̄γ production and the fiducial acceptance for different values of Wilson coefficients. This
allowed us to perform an interpolation, which parametrizes the dependence of both cross
sections and acceptance on the coefficients.
We highlighted how the different sensitivities of the observables on the dimension-six oper-

ators allow to significantly improve constraints on the Wilson coefficients. In particular, their
combination removed ambiguities present in fits to either the branching ratio or the fiducial
cross sections due to the complementarity of the constraints from the different observables
(see Fig. 5.6). Our findings demonstrate the benefits of global analyses combining top-quark
and flavor physics measurements. They motivate us to link top-quark and beauty physics,
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in particular in the context of several anomalies in the beauty sector, in a global fit. This is
present in detail in Chapter 6.
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6 Synergies of top and beauty

In Chapter 5, we highlighted how top-quark and B-physics observables can be combined in a
single analysis in order to constrain BSM contributions to top-quark physics. We found that
top-quark and B-physics observables offer complementary sensitivities to the three Wilson
coefficients considered. This significantly tightens the constraints. Motivated by the success
of this analysis, we extend our setup to analyze sensitivities to four-fermion operators. We
link the top-quark sector of SMEFT to the flavor anomalies, which presently hint at BSM
physics in semileptonic b→ s decays [310, 349]. In addition, semileptonic operators give rise
to contact interactions of top-quarks and leptons, which are only very weakly constrained
by present data [27]. Conversely, they could be studied with high precision at future lepton
colliders [350–361], such as the International Linear Collider (ILC) [362, 363], the Compact
Linear Collider (CLIC) [364], or the Future Circular Collider (FCC) [365].

To study the interplay of top-quark and beauty physics in the context of the flavor anoma-
lies, we work out constraints on two-fermion and four-fermion operators. The former are
operators with gauge bosons, while the later introduce contact interactions. We consider
top-quark pair-production processes, Z → bb̄ transitions, and b → s FCNCs for three dif-
ferent stages. Firstly, we study present data, considering measurements at the LHC1, the
Large Electron-Positron Collider (LEP), and B factories. Secondly, we consider a near-future
scenario, further including projections for measurements at HL-LHC and Belle II. Thirdly,
we add in a far-future scenario measurements at a lepton collider at the concrete example of
CLIC. We investigate how such measurements at a future lepton collider affect constraints
on SMEFT coefficients and open up new directions in the hunt for BSM physics.

This chapter, which is based on Ref. [24], is structured as follows. In Sec. 6.1, we specify
the dimension-six operators considered in this analysis, and detail on the matching conditions
and RGEs used to express B-physics observables in terms of SMEFT coefficients. In Sec. 6.2,
we present the observables included in our fits and discuss their sensitivity to the different
SMEFT operators. The analysis of the measurements of top-quark and B-physics data as well
as the constraints on the SMEFT coefficients derived from fits to these datasets are shown in
Sec. 6.3. In Sec. 6.4, we determine how the projections for the different future colliders affect
the constraints on the coefficients. In Sec. 6.5, we summarize our results.

6.1 Dimension-six operators

We focus on operators which give leading contributions at O(Λ−2) to one of the following
processes: top-quark pair-production processes at the LHC, top-quark decay, and tt̄ produc-
tion at a future electron-positron collider. We consider operators that affect interactions of

1Further including CMS data on tt̄`+`− production in Ref. [27] is desirable, but requires detector-level
simulations and is beyond the scope of this work.
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third-generation quarks with the gauge bosons:

O(1)
ϕq =

(
ϕ†i
←→
D µϕ

)
(q̄Lγ

µqL) , O(3)
ϕq =

(
ϕ†i
←→
D I

µϕ
) (
q̄Lτ

IγµqL
)
,

OuB = (q̄Lσ
µνuR) ϕ̃Bµν , OuW =

(
q̄Lσ

µντ IuR
)
ϕ̃W I

µν ,

OuG =
(
q̄Lσ

µνTAuR
)
ϕ̃GAµν , Oϕu =

(
ϕ†i
←→
D µϕ

)
(ūRγ

µuR) ,

(6.1.1)

as well as semileptonic four-fermion operators:

O
(1)
lq =

(
l̄LγµlL

)
(q̄Lγ

µqL) , O
(3)
lq =

(
l̄Lγµτ

I lL
) (
q̄Lγ

µτ IqL
)
,

Oqe = (q̄LγµqL) (ēRγ
µeR) , Oeu = (ēRγµeR) (ūRγ

µuR) ,

Olu =
(
l̄LγµlL

)
(ūRγ

µuR) .

(6.1.2)

Here, we repeat the definitions of dipole operators and O
(3)
ϕq , which are already defined in

Eqs. (4.1.1) and (5.1.1), respectively, for the sake of completeness. Dipole operators OdX
with X = B,W,G and right-handed down-type quarks contribute only at subleading order,
i.e. contributions are suppressed by a factor mb/mt relative to up-type dipole operators. We
neglect such contributions as well as those that arise from other operators with right-handed
down-type quarks. Scalar and tensor four-fermion operators O(1,3)

lequ and Oledq (see Tab. B.2),
which do not generate contributions at O(Λ−2) to the processes considered here [18, 21, 361,
366], are not included in our analysis. Contributions from four-quark operators to top-quark
pair-production processes are neglected in our approach since pair production is dominated by
the gluon-gluon channel (90% at 13 TeV LHC [231]). Note that this argument only holds for
total cross sections, since four-quark operators can dominate in tails of distributions due to an
energy enhancement [237]. However, bin-to-bin correlations are not available, yet important
for the fit [25], and thus we do not consider such observables. Furthermore, lepton dipole
operators, which alter interactions of leptons with the Z boson, are not considered since they
are already strongly constrained by Z data [309].
Note that dipole operators are non-hermitian and can in general have complex-valued

Wilson coefficients. However, only the real part contributes to the leading interference terms,
and thus we consider only real-valued coefficients for the sake of simplicity.

6.1.1 Coefficients in the mass basis

As discussed in Sec. 3.2.3, the operators in Eqs. (6.1.1) and (6.1.2) are written in the flavor
basis. Quark flavor qiL/R and mass basis q′iLR

are connected via the rotation matrices SqL/R
with q = u, d and flavor indices i = 1, 2, 3, see Eq. (2.1.42). As shown in Sec. 3.2.3, rotation
matrices SqR can simply be absorbed in the flavor basis coefficients Ci. This gives rise to
the coefficients in the mass basis, denoted by Ĉi (3.2.7). Conversely, rotations SqL of quark
doublets relate different physical processes by SU(2)L symmetry (3.2.8). As an example,
consider the C(1)

ϕq O
(1)
ϕq terms, which involve a quark doublet current. With quark flavor indices

written explicitly the terms read

C(1)ij
ϕq O(1)ij

ϕq = Ĉ(1)kl
ϕq

(
ϕ†i
←→
D µϕ

)(
ū′kLγ

µu′lL + V †
mkVlnd̄

′m
L γµd′nL

)
, (6.1.3)

where we work in the up-mass basis, in which flavor mixing is entirely in the down-sector. In
general, C(1)ij

ϕq , and similarly all operators with quark-doublet currents, induce contributions
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to both ui − uj and di − dj transitions irrespective of the choice of mass basis. In the up-
mass basis, the latter are proportional to CKM matrix elements. Operators such as C(3)

ϕq O
(3)
ϕq ,

which have a triplet structure, involve an additional minus sign between up- and down-sector
currents:

C(3)ij
ϕq O(3)ij

ϕq = Ĉ(3)kl
ϕq

(
ϕ†i
←→
D µϕ

)(
ū′kLγ

µu′lL − V
†
mkVlnd̄

′m
L γµd′nL

)
. (6.1.4)

Thus, up-type and down-type quarks receive contributions from different linear combinations
of C(1)

i and C
(3)
i , which has already been exploited recently in the context of lepton flavor

universality and transitions involving neutrinos [223]. Further information on the definition
of Wilson coefficients and operators in the mass basis are given in App. H.1.

In this analysis, we consider only BSM contributions proportional to coefficients with third
generation up-type quarks, Ĉ33

i . Such hierarchies can arise in top-philic scenarios where BSM
particles couple dominantly to third-generation quarks [163]. As can be seen in Eq. (6.1.3),
flavor mixing relates contributions from coefficients Ĉ33

i to top-quark production and diL → djL
transitions with i 6= j. These are proportional to VtiV ∗

tj , similar to the SM. Here, we focus
on BSM contributions to b → s FCNC data. Additional s → d data does presently no
yield significantly stronger constraints [21], and is not considered further. This leaves eleven
coefficients for our fit:

Ĉ33
uB , Ĉ

33
uG , Ĉ

33
uW , Ĉ(1)33

ϕq , Ĉ(3)33
ϕq , Ĉ33

ϕu , Ĉ
33
eu , Ĉ

33
lu , Ĉ

33
qe , Ĉ

(1)33
lq , Ĉ

(3)33
lq . (6.1.5)

Considering fits to present data, no assumptions regarding lepton universality are needed
as B-physics data is dominated by distributions with muons. Belle II is expected to test
both b → se+e− and b → sµ+µ− distributions, and thus provides further insights in the
present hints for lepton flavor non-universality, see Sec. 2.3. Even further in the future, tt̄
data from an e+e− collider can be combined with results from b → se+e−, while B-physics
data with muons can be combined with data from a muon collider. This allows to perform
lepton-specific fits. In addition, lepton flavor violating contributions could be included in the
future. Conversely, assumptions regarding lepton flavor are needed when dineutrino data is
included in the fit because branching ratios are measured flavor-inclusively:

BR(b→ sνν̄) =

3∑
i,j=1

BR(b→ sνiν̄j) . (6.1.6)

Assuming universality, the total branching ratio is simply given by BR(b→ sνν̄) = 3BR(b→
sνiν̄i) with flavor indices fixed. We assume lepton flavor universality for fits in future scenarios
including dineutrino data.

Similarly to Chapters 4 and 5, we use rescaled Wilson coefficients C̃i = v2/Λ2Ĉ33
i . In

addition, we introduce the linear combinations

C̃±
ϕq = C̃(1)

ϕq ± C̃(3)
ϕq , C̃±

lq = C̃
(1)
lq ± C̃

(3)
lq , (6.1.7)

to highlight the SU(2)L complementarity of top and beauty, which is illustrated in Fig. 6.1.
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Figure 6.1: Sensitivities to C̃±
lq and C̃±

ϕq in top-quark (upper row) and down-type quark
(lower row) interactions. The black circles denote insertion of dimension-six operators.

6.1.2 Matching conditions

In order to describe physics below the EW scale µW in terms of SMEFT coefficients, the
SMEFT Lagrangian has to be matched onto the WET Lagrangian describing the correspond-
ing process. In addition, the RGEs of both SMEFT and WET have to be employed to include
the effects of running and mixing. The exact procedure is described in detail in Ref. [23] and
Sec. 5.2 and adapted here. In contrast to fits in Chapters 4 and 5, we determine constraints
on Wilson coefficients at the scale µ = 1TeV. We choose this scale to include RGE effects,
which have to be considered when matching a concrete UV model with particles at the TeV
scale onto the SMEFT and can have a significant impact on the results of the fit. In the
following, we summarize the steps necessary for our analysis.

We consider the RGEs of the SMEFT coefficients (6.1.5) at leading order in the strong
coupling αs given in Refs. [188–190]. For the coefficients C̃uB, C̃uW , and C̃uG, the running at
O(αs) is discussed in detail in Sec. 5.2. Here, we include the complete running at one-loop
level by employing the wilson package [348].

Operators which include two SU(2)L quark doublets contribute at tree level to b → s

transitions due to the flavor rotations. At tree level, contributions from O
(1)
ϕq , O(3)

ϕq , Oqe, O(1)
lq ,

and O
(3)
lq to coefficients of semileptonic WET operators O9,10,L, given in App. C, arise [21,

221, 367]:

∆Ctree
9 =

π

α

[
C̃

(1)
lq + C̃

(3)
lq + C̃qe +

(
−1 + 4 sin2 θw

) (
C̃(1)
ϕq + C̃(3)

ϕq

)]
' π

α

[
C̃+
lq + C̃qe

]
,

∆Ctree
10 =

π

α

[
−C̃(1)

lq − C̃
(3)
lq + C̃qe +

(
C̃(1)
ϕq + C̃(3)

ϕq

)]
=
π

α

[
−C̃+

lq + C̃qe + C̃+
ϕq

]
,

∆Ctree
L =

π

α

[
C̃

(1)
lq − C̃

(3)
lq + C̃(1)

ϕq + C̃(3)
ϕq

]
=
π

α

[
C̃−
lq + C̃+

ϕq

]
,

(6.1.8)

where we neglected in the second step for ∆C9 the suppressed Z contributions because of the
smallness of the Z’s vector coupling (sin2 θw = 0.223) to charged leptons [368].

In addition to dominant tree-level contributions, SMEFT operators contribute at one-
loop level to WET dipole operators O7,8, semileptonic operators O9,10,L, and Bs mixing (see
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App. C) [21, 221, 366, 369–371]:

∆C loop
7 =

√
2mt

mW

[
C̃uWE

uW
7 (xt) + C̃∗

uWF
uW
7 (xt) +

cos θw
sin θw

(
C̃uBE

uB
7 (xt)

+ C̃∗
uBF

uB
7 (xt)

)]
+ Eϕq7 (xt)C̃

(1)
ϕq + E

ϕq(3)
7 (xt)C̃

(3)
ϕq

(6.1.9)

∆C loop
8 =

√
2mt

mW

[
C̃uWE

uW
8 (xt) + C̃∗

uWF
uW
8 (xt)−

g

gs

(
C̃uGE

uG
8 (xt)

+ C̃∗
uGF

uG
8 (xt)

)]
+ Eϕq8 (xt)C̃

(1)
ϕq + E

ϕq(3)
8 (xt)C̃

(3)
ϕq ,

(6.1.10)

∆C loop
9 =

√
2
mt

mW

[(
YuW (xt)

sin2 θw
− ZuW (xt)

)
Re(C̃uW )− cos θw

sin θw
ZuB(xt)Re(C̃uB)

]
+

1

sin2 θw

{
I1(xt)

[
C̃eu + C̃lu + (−1 + 4 sin2 θw)C̃ϕu

]
+ I2(xt)

[
C̃qe + C̃

(1)
lq

]
+ I lq(xt)C̃

(3)
lq +

[
(−1 + 4 sin2 θw)I2(xt)C̃(1)

ϕq

+ Iϕq1 (xt)C̃
(3)
ϕq

]}
(6.1.11)

∆C loop
10 =−

√
2

sin2 θw
mt

mW
YuW (xt)Re(C̃uW )

+
1

sin2 θw

{
I1(xt)

[
C̃eu − C̃lu + C̃ϕu

]
+ I2(xt)

[
C̃qe − C̃(1)

lq

]
−I lq(xt)C̃(3)

lq +
[
I2(xt)(xt)C̃

(1)
ϕq + Iϕq2 (xt)C̃

(3)
ϕq

]} (6.1.12)

∆C loop
L =IνuWRe(C̃uW ) + Iν(1)ϕq C̃(1)

ϕq + Iν(3)ϕq C̃(3)
ϕq + Iνlu(C̃ϕu + C̃lu) + I

ν(1)
lq C̃

(1)
lq

+ I
ν(3)
lq C̃

(3)
lq ,

(6.1.13)

∆Cmix, loop
1,tt =+

√
2
mt

mW
Re(C̃uW )

9xt
4

(
xt + 1

(xt − 1)2
− 2xt

(xt − 1)3
logxt

)
+ 4S0(xt)C̃

(3)
ϕq

+H1(xt)C̃
(1)
ϕq +H2(xt)C̃

(3)
ϕq ,

(6.1.14)

where xt = m2
t /m

2
W . The expressions for the functions can be found in Refs. [221, 369–371].

In addition, we give them in App. A.2 for the sake of completeness.

Note that contributions at loop level are present also in the absence of CKM-mixing. We
find sensitivity at one-loop level to contributions from semileptonic operatorsOlu andOeu with
up-type quark singlets. However, such contributions are parametrically suppressed compared
to those of semileptonic operators with quark doublets. Numerical values of the matching
conditions at µW = mW are given in App. H.2. In the actual analysis, RGE effects both in
SMEFT and WET are taken into account as well.

In order to compute the WET coefficients at the scale µb, we employ flavio [347] together
with the wilson package. Exceptions are the operators describing the Bs mixing, since the
observables are formulated in terms of coefficients Ci(µW ) [372], and those needed for b→ sνν̄
transitions, whose running is negligible.
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6.2 Observables

In the following, we discuss the contributions from dimension-six operators to the different
observables. In Sec. 6.2.1, we present the computation of observables for top-quark pair-
production processes, top-quark decay, Z → bb̄ transitions, and b→ s FCNCs. In Sec. 6.2.2,
we discuss the sensitivities of the different sets to contributions from SMEFT coefficients.

6.2.1 Computation of observables

We follow the procedure already employed in Secs. 4.2 and 5.4 to compute cross sections for
top-quark pair-production processes at the LHC. Inclusive cross sections of tt̄ and tt̄Z produc-
tion at the LHC and tt̄ production at CLIC are computed using MadGraph5_aMC@NLO to-
gether with the dim6top_LO UFOmodel. BSM contributions are parametrized with a quadratic
ansatz (see Eq. (4.2.3))

σ = σSM +
∑
i

C̃iσ
int
i +

∑
i≤j

C̃iC̃jσ
BSM
ij , (6.2.1)

where σint and σBSM denote interference and purely BSM terms, respectively. Fiducial cross
sections of tt̄γ production are computed according to Sec. 5.4 as 2 → 7 processes and in-
clude BSM contributions in the top-quark decay. The forward-backward asymmetry in tt̄
production considered at CLIC is defined as

AFB =
σFB
σ

, σFB =

∫ 1

−1
d cos θ sign(cos θ) dσ

d cos θ
, (6.2.2)

with θ denoting the angle between the top-quark and positron three-momenta defined in the
center-of-mass frame. BSM contributions are parametrized according to Eq.(4.2.1) and are
included in both numerator and denominator.
Helicity fractions are computed according to Ref. [305] including also quadratic terms. As

discussed in Sec. 4.2, only C̃uW gives contributions at O(Λ−2). Similarly, the top-quark decay
width is computed following Ref. [302] including contributions from quadratic terms.
For Z → bb̄ observables we employ MadGraph5_aMC@NLO and the dim6top_LO UFO

model for the computation. We consider the forward-backward asymmetry A0,b
FB and the

ratio of partial width for Z → ff̄

Rb =
Γbb̄
Γhad

, Γ = ΓSM +
∑
i

C̃iΓ
int
i +

∑
i≤j

C̃iC̃jΓ
BSM
ij . (6.2.3)

BSM contributions to A0,b
FB are computed using Eq. 6.2.2, and for Rb we include BSM con-

tributions in both numerator and denominator.
In the case of b → s transitions, the matching conditions in Eqs. (6.1.8)-(6.1.14) together

with SMEFT RGE evolution from the scale µ to µW enable us to compute B-physics ob-
servables in terms of SMEFT Wilson coefficients C̃i(µ) with µ = 1 TeV. For b → sγ and
b → s`+`− transitions we employ flavio and wilson to compute SM predictions and BSM
contributions in terms of the WET coefficients ∆Ci at the scale µW = mW . We consider
BSM contributions at LO in αs and employ wilson to run the coefficients from the scale µW
down to the scale µb. In the case of b→ sνν̄ transitions, the branching ratio of B → K(∗)νν̄
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amounts to [367]

BR(B → K(∗)νν̄) = BR(B → K(∗)νν̄)SM
|∆CL(µb)− CL(µb)SM|

CL(µb)SM
. (6.2.4)

The SM values are given as [367]

BR(B+ → K+νν̄)SM = (4.0± 0.5)× 10−6 , (6.2.5)
BR(B0 → K∗0νν̄)SM = (9.2± 1.0)× 10−6 , (6.2.6)

where CL(µb)SM = Xs

sin2 θw
and Xs = 1.469± 0.017. For Bs − B̄s mixing we consider the mass

difference between the two mass eigenstates [372]

∆Ms = ∆MSM
s

∣∣∣∣∣1 + ∆Cmix
1,tt (µW )

S0(xt)

∣∣∣∣∣ , (6.2.7)

where S0 denotes the Inami–Lim function [373], and ∆MSM
s is the SM value, for which we

consider ∆MSM
s =

(
18.4+0.7

−1.2

)
ps−1 [372].

6.2.2 Sensitivity to Wilson coefficients

In Tab. 6.1 we summarize BSM contributions to the different observables included in our
analysis. We illustrate the order at which contributions arise with the following notation:
contributions at tree level are denoted by C̃i, contributions at one-loop level are indicated via
[C̃i], and {C̃i} shows contributions arising via mixing at O(αs). Furthermore, with additional
asterisks C̃(∗)

i and C̃(∗∗)
i we identify coefficients whose tree-level definitions are altered when

including loop-level effects. Such effects are suppressed by at least one order of magnitude,
see Eqs.(6.2.8),(6.2.9), and App. H.2.

At the LHC, observables from top-quark pair-production processes and top-quark decay
allow to constrain the three dipole coefficients C̃uX with X = B,G,W , C̃(1)

ϕq , C̃(3)
ϕq , and C̃ϕu 2.

Interestingly, measurements of tt̄Z production allow to test the only the linear combination
C̃−
ϕq. Thus, inclusion of the top-quark decay width, which is sensitive to C̃uW and C̃

(3)
ϕq ,

is paramount to constrain C̃
(1)
ϕq and C̃

(3)
ϕq simultaneously. Note that C̃uG contributes only

through mixing and running to B-physics and lepton-collider observables.
For Z → bb̄, BSM contributions arise through C̃+

ϕq. The remaining coefficients in (6.1.5)
do not contribute to this process as they do not alter the Zbb vertex.

BSM contributions to b → sγ transitions do not arise at tree level, and are induced only
at one-loop level through C̃uB, C̃uG, C̃uW , and C̃

(3)
ϕq . Observables measured in b → s`+`−

processes receive BSM contributions at tree level from C̃+
lq , C̃

+
ϕq, and C̃qe. For the later

operator, contributions cancel in the left-chiral combination ∆C9 −∆C10, which dominates
the interference term with the SM in semileptonic B decays. Conversely, Bs → µ+µ− is
sensitive to ∆C10, which highlights the importance of including this process. At one-loop
level, all eleven coefficients (6.1.5) contribute to ∆C9,10 (C̃uG only through RGE mixing).
Contributions from C̃lu, C̃eu, C̃qe, C̃+

lq , C̃
(1)
ϕq , and partially C̃(3)

ϕq can be absorbed in the tree-

2Additional constraints arise from single-top production, see Chapter 4 and Ref. [237]. However, bin-to-bin
correlations can be sizable [25], but are yet unknown, and thus we do not consider these observables here.
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Process Observable Two-fermion operators Four-fermion operators

pp→ tt̄ σinc C̃uG -
pp→ tt̄γ σfid C̃uB, C̃uW , C̃uG -
pp→ tt̄Z σinc C̃uB, C̃uW , C̃uG, C̃−

ϕq, C̃ϕu -
t→ bW F0,L C̃uW -

Top decay Γt C̃
(3)
ϕq , C̃uW -

Z → bb̄ AbFB, Rb, σhad C̃+
ϕq -

b→ sγ BR
[
C̃uB

]
,
[
C̃uW

]
,
{
C̃uG

}
,
[
C̃

(3)
ϕq

]
-

b→ s`+`−
BR, AFB, P (′)

i ,
Si, FL, dBR/dq2

[
C̃uB

]
,
[
C̃uW

]
,
{
C̃uG

}
, C̃+(∗)

ϕq ,
[
C̃

(3)
ϕq

]
C̃

+(∗)
lq , C̃(∗)

qe

b→ sνν̄ BR C̃
+(∗∗)
ϕq C̃

−(∗)
lq

Mixing ∆Ms

[
C̃uW

]
,
{
C̃uG

}
,
[
C̃

(1)
ϕq

]
,
[
C̃

(3)
ϕq

]
-

e+e− → tt̄ σ, AFB C̃uB, C̃uW ,
{
C̃uG

}
, C̃−

ϕq, C̃ϕu C̃eu, C̃qe, C̃lu, C̃−
lq

Table 6.1: Sensitivity to SMEFT coefficients for the various processes considered. Coeffi-
cients C̃i without any additional markings denote contributions at tree level. With additional
parentheses [C̃i] and {C̃i} we mark coefficients that contribute at one-loop level and through
RGE mixing at O(αs) only, respectively. Asterisks C̃(∗)

i and C̃(∗∗)
i show for which coefficients

additional contributions at one-loop level alter their tree-level definitions, see Eqs. (6.2.8) and
(6.2.9).

level definitions of the fit degrees of freedom

C̃
+(∗)
lq = C̃+

lq +
α

π sin2 θw

(
I1(xt)C̃lu + I2(xt)C̃

+
lq

)
,

C̃(∗)
qe = C̃qe +

α

π sin2 θw

(
I1(xt)C̃eu + I2(xt)C̃qe

)
,

C̃+(∗)
ϕq = C̃+

ϕq +
α

π sin2 θw

(
I1(xt)C̃ϕu + I2(xt)C̃

+
ϕq

)
.

(6.2.8)

Further contributions from C̃
(3)
ϕq , C̃uB, C̃uG, and C̃uW cannot be absorbed and additional

degrees of freedom arise, see Eqs. (6.1.9)-(6.1.12). However, such contributions are paramet-
rically suppressed by at least one order of magnitude compared to tree-level ones. Considering
b→ sνν̄ transitions, contributions at tree level are proportional to C̃−

lq+C̃
+
ϕq. One-loop match-

ing gives rise to contributions from C̃uW , C̃(1)
ϕq , C̃(3)

ϕq , C̃ϕu, C̃(1)
lq , C̃(3)

lq , and C̃lu, which can be
absorbed into C̃+(∗∗)

ϕq and C̃−(∗)
lq

C̃+(∗∗)
ϕq = C̃+

ϕq −
√
2
αmt

πmW
IνuW C̃uW −

α

π
Iν(3)ϕq (xt)C̃

(3)
ϕq +

α

π

(
Iνlu(xt)C̃ϕu + Iν(1)ϕq C̃(1)

ϕq

)
,

C̃
−(∗)
lq = C̃−

lq +
α

π

(
Iνlu(xt)C̃lu + I

ν(1)
lq (xt)C̃

(1)
lq

)
+
α

π
I
ν(3)
lq (xt)C̃

(3)
lq .

(6.2.9)

In the case of Bs mixing, BSM contributions from C̃uW , C̃uG (through O(αs) SMEFT RGE
evolution only), C̃(1)

ϕq , and C̃(3)
ϕq arise at one-loop level (6.1.14).EW RGE effects both within
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(3)
lq

C̃lu C̃eu e+e− → tt̄

Zbb̄

Top at LHC

B data

Figure 6.2: Schematic overview of dominant contributions from SMEFT coefficients to the
different sets of observables considered here. Subleading one-loop contributions as well as
mixing-induced ones from C̃uG are neglected.

WET [374] and SMEFT are taken into account in the numeric fits but omitted here for the
sake of clarity.

To summarize, while all eleven coefficients contribute to the B-physics observables consid-
ered here, most of these effects arise at one-loop level. The only exceptions are contributions
at tree level from C̃+

ϕq, C̃+
lq , C̃qe, and C̃

−
lq , which stem from flavor rotations. In addition, effects

from C̃uB are important as they dominate in ∆C7 [23]. Thus, we expect strong constraints
on these operators from B physics, while others are expected to be much less constrained.

Top-quark physics at a future lepton collider is sensitive to contributions from nine SMEFT
coefficient. These comprise five two-fermion coefficients C̃uB, C̃uG (through mixing only),
C̃uW , C̃−

ϕq, and C̃ϕu, as well as four four-fermion ones: C̃eu, C̃lu, C̃qe, and C̃−
lq . Two-fermion

operators affect both the ttZ and ttγ vertices, while four-fermion operators introduce con-
tact interactions. Combining `+`− → tt̄ observables with top-quark ones at LHC, Z → bb̄
transition observables, and B-physics ones allows to test the complete eleven-dimensional
parameter space. This combination is particularly beneficial for C̃eu and C̃lu, which remain
only poorly constrained by Belle II and (HL-)LHC, even when considering the recent analysis
by CMS [27]. The sensitivities to dominant BSM contributions are illustrated in Fig. 6.2.

6.3 Fits to present data

We employ EFTfitter to constrain SMEFT and WET Wilson coefficients using a Bayesian
interpretation. For all fits, we assume a uniform distribution over the interval −1 ≤ C̃i ≤ 1 as
the prior, unless otherwise specified. We include both experimental uncertainties, for which
we add statistical and systematic uncertainties in quadrature, and theory uncertainties. In
our fits, all uncertainties are assumed to follow a Gaussian distribution, see Sec. 3.5 and
Refs.[23, 25, 164] for details. Contributions of dimension-six operators are parametrized
according to Sec. 6.2. Purely BSM contributions ∼ C̃iC̃j are formally of higher order in the
EFT expansion, O(Λ−4). However, it has been shown in Chapter 4 as well as Ref. [234] that
these contributions are only a subleading source of uncertainty as long as the linear terms in
the EFT expansion dominate, as expected in regions where the EFT is valid.

We include measurements of observables from top-quark pair-production processes, top-
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Process Observable
√
s Int. luminosity Experiment Ref. SM Ref.

tt̄γ
σfid(tt̄γ, 1`)
σfid(tt̄γ, 2`)

13 TeV 36.1 fb−1 ATLAS [313] [313, 314]

tt̄Z σinc(tt̄Z) 13 TeV 77.5 fb−1 CMS [376] [377–379]
tt̄ σinc(tt̄) 13 TeV 36.1 fb−1 ATLAS [380] [381]

F0 , FL 8 TeV 20.2 fb−1 ATLAS [285] [303]
Γt 8 TeV 20.2 fb−1 ATLAS [283] [304]

Table 6.2: List of observables and measurements for top-quark processes at the LHC together
with the references of the experimental analyses and the SM predictions.

quark decay, Z → bb̄ transitions, and b→ s transitions. Measurements of the same observable
from different experiments and at different energies can in principle be correlated [279]. If
correlations are provided, they are included, comprising bin-to-bin correlations in b → s an-
gular distributions and those between W boson helicity fractions. Unknown correlations can
alter the results of fits significantly, as discussed in Ref. [25] and Chapter 4. Hence, in order to
minimize the impact of these unknown correlations, we follow the approach in Refs. [18, 237]
and include only the most precise measurement of an observable in the fit. In particular, as
no complete correlation matrices for kinematic distributions measured in top-quark processes
are provided by experiments, we do not include them. Instead, we consider only measure-
ments of total cross sections in the analysis, as well as measurements of W -boson helicity
fractions. For angular distributions of b → sµµ transitions complete correlation matrices of
experimental uncertainties are provided. Therefore, we include these measurements in our
analysis. In addition, various measurements of B-physics observables have been combined
by the HFLAV collaboration. Wherever possible, we include these averaged experimental
values in our analysis. One notable exception is the Bs → µ+µ− branching ratio for which
we consider the latest measurement by LHCb instead [375] presented at 55th Rencontres de
Moriond 2021. For all remaining unknown correlations we make the simplifying assumption
that the measurements are uncorrelated.
In Sec. 6.3.1, we present constraints from fits to individual sets of top-quark measurements,

Z → bb̄ data, and B-physics measurements. In Sec. 6.3.2, we perform a global fit, and discuss
how different sensitivities of individual observables enhance the constraints.

6.3.1 Fits to individual sets

In Tab. 6.2 we summarize the observables and measurements of top-quark processes at
the LHC considered in this analysis. We include measurements of fiducial cross sections
σfid(tt̄γ, 1`) and σfid(tt̄γ, 2`) of tt̄γ production in the single lepton and dilepton channel,
respectively. We further add inclusive cross sections σinc(tt̄Z) and σinc(tt̄) of tt̄Z and tt̄
production, respectively, measurements of the W boson helicity fractions F0,L, and data on
the top-quark decay width. SM predictions at NLO for tt̄γ cross sections are taken from
Refs. [313, 314], and predictions for tt̄Z cross sections include are computed at NLO QCD
including EQ corrections [377–379]. The SM predictions for tt̄ cross sections, W boson he-
licity fractions, and the total decay width at NNLO QCD are taken from Refs. [380, 381],
Ref. [303], and Ref. [304] respectively.
In Fig. 6.3 we show results obtained in a fit to the data in Tab. 6.2, which allows to test

six SMEFT coefficients. The strongest constraints are found for C̃uG and C̃uW , whose width
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Figure 6.3: Constraints on SMEFT coefficients C̃i from a fit of six coefficients to top-quark
data in Tab. 6.2. Shown are the position (left) and the total width (right) of the marginalized
smallest intervals containing 90% of the posterior probability.

of the smallest intervals is about (6 − 7) × (10−2). In case of C̃uG, constraints arise from
the tt̄ production cross section, while for C̃uW they are dominated by measurements of the
helicity fractions. Constraints on C̃uB stem mostly from tt̄γ cross sections and are at the
level of O(10−1). While measurements of the top-quark decay width allow to test C̃(3)

ϕq , the
constraints are very weak, O(1), and are currently limited by experimental uncertainties.
In contrast, both C̃

(1)
ϕq and C̃ϕu are barely constrained by tt̄Z measurements, O(1), due to

sizable correlations between their contributions. Additional information on the shape of the
posterior distribution is shown in Fig. H.1 in App. H.3 where we show one-dimensional and
two-dimensional projections of the posterior distribution.

Precision measurements of Z-pole observables have been performed at LEP1 and SLC
[309, 382]. We consider observables sensitive to BSM contributions to the Zbb vertex, i.e.
measurements of the forward-backward asymmetry and the ratio of partial Z → ff̄ width
[382]

A0,b
FB

Exp = 0.0996± 0.0016 , Rb
Exp = 0.21629± 0.00066 . (6.3.1)

Corresponding SM predictions read [309, 382]

A0,b
FB

SM = 0.1030± 0.0002 , RSM
b = 0.21581± 0.00002 . (6.3.2)

The results of a fit of one (C̃+
ϕq) and two (C̃(1)

ϕq , C̃(3)
ϕq ) coefficients to Z → bb̄ data are shown in

Fig. 6.4 for C̃+
ϕq (left) and in the C̃(1)

ϕq -C̃(3)
ϕq plane (right). The dataset constraint C̃+

ϕq to about
10−3, and we observe deviations from the SM at the 2σ level induced by the discrepancy
in A0,b

FB. As expected, when considering results in the C̃(1)
ϕq -C̃(3)

ϕq plane, we observe a flat
direction and strong correlations between the coefficients. Only a very small slice of the
two-dimensional parameter space (corresponding to C̃(1)

ϕq ∼ −C̃(3)
ϕq ) is allowed by data.

In Tab. 6.3 we summarize measurements of observables for b→ s transitions considered in
our analysis. This set comprises inclusive and exclusive branching ratios of b→ sγ processes,
total and differential branching ratios, angular distributions in b → sµ+µ− transitions, and
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Figure 6.4: Results of fits to Zbb̄ data considering C̃+
ϕq (left) and C̃

(1)
ϕq and C̃(3)

ϕq (right) as de-
grees of freedom. Shown are the one-dimensional (left) and two-dimensional (right) projection
of the posterior distribution obtained in fits of one and two coefficients, respectively. Colored
areas correspond to the smallest intervals containing 90% of the posterior distribution.

Process Observable q2 bin [GeV2] Experiment Ref. SM Ref.
B̄ → Xsγ BREγ>1.6 GeV - HFLAV [315] [316]
B0 → K∗γ BR - HFLAV [315] [347]
B+ → K∗+γ BR - HFLAV [315] [347]
B̄ → Xs`

+`− BR [1, 6] BaBar [385] [386]
AFB [1, 6] Belle [387] [386]

Bs → µ+µ− BR - LHCb [375] [347]

B0 → K∗µ+µ−
FL , P1 , P2 , P3 ,
P ′
4 , P

′
5 , P

′
6 , P

′
8

[1.1, 6] LHCb [90] [347]

B0 → Kµ+µ− dBR/dq2 [1, 6] LHCb [84] [347]
B+ → K+µ+µ− dBR/dq2 [1, 6] LHCb [84] [347]
B+ → K+∗µ+µ− dBR/dq2 [1, 6] LHCb [84] [347]
Bs → φµ+µ− FL , S3 , S4 , S7 [1, 6] LHCb [85] [347]
Λb → Λµ+µ− dBR/dq2 [15, 20] LHCb [388] [347]
Bs − B̄s mixing ∆Ms - HFLAV [315] [372]

Table 6.3: B-physics measurements included in the fit. For observables measured in q2

bins (where q2 denotes the squared invariant dilepton mass), we include only one bin due to
unknown correlations between different bins.

inclusive branching ratios and asymmetries of b → `+`− transitions. Corresponding SM
predictions and theory uncertainties are computed with flavio. Furthermore, we include
the Bs − B̄s mass difference ∆Ms, whose SM prediction is taken from Ref. [372]. In addition
to these measurements, upper limits on B → K(∗)νν̄ branching ratios have been derived by
Belle[383] and BaBar[384]. However, as there is currently no possibility to include such upper
limits in EFTfitter, we do not consider them at this point.
In Fig. 6.5 we give results for the WET coefficients ∆Ci(µW ) at the matching scale (upper

plots) derived from a fit to data in Tab. 6.3. As can be seen, the strongest constraints are
obtained for ∆C7 and ∆Cmix

1 , where the size of the interval is about (4 − 6) × 10−1. In
contrast, C̃8 is only very weakly constrained, O(1), since this coefficient contributes only via
mixing with ∆C7. Thus, we find a strong correlation between these two coefficients. In the
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Figure 6.5: Results for WET coefficients ∆Ci at the scale µW (upper plots) and SMEFT
coefficients (lower plots) from a fit of five WET and eight SMEFT coefficients to B data in
Tab. 6.3. Shown are the position (left) and the total width (right) of the smallest intervals
containing 90% of the posterior probability. The results are obtained assuming a uniform
distribution over the interval −2 ≤ ∆Ci ≤ 2 (−1 ≤ C̃i ≤ 1) as the prior for the WET
(SMEFT) coefficients.

case of ∆C10, weaker constraints are imposed compared to those on ∆C7 and ∆Cmix
1 and

the size of the interval is about 1.8 times larger. For ∆C9, we find a similar size of the
90% interval, about 8 × 10−1. However, in contrast to the remaining WET coefficients, we
find deviations from the SM in ∆C9. This effect can be traced back to the measurements of
angular distributions included in our fit. Especially P ′

5 shows deviations from the SM, which
is widely known and discussed in the literature, see e.g. Ref. [389] for a detailed discussion.
Results for WET coefficients can be translated into constraints on SMEFT coefficients, which
turn out to be strongly correlated due to matching conditions, see Eqs. 6.1.8-(6.1.14). The
results from a fit of eight SMEFT coefficients (compare Tab. 6.1 and Eq. (6.3.3)) to B data
in Tab. 6.3 are shown in Fig. 6.5 (lower plots). Strong constraints at the level of O(10−2)
are obtained for the semileptonic four-fermion coefficients C̃qe and C̃+

lq . Constraints on the
remaining coefficients are about one to two orders of magnitude weaker. Note that deviations
from the SM, which are present in ∆C9 in Fig. 6.5, can not be seen in the one-dimensional
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Figure 6.6: Results from a fit of eight SMEFT coefficients (6.3.3) to data in Tabs. 6.2 and 6.3
and Zbb data. Shown are the position (left) and the total width (right) of the marginalized
smallest intervals containing 90% of the posterior probability.

projections of the SMEFT coefficients due to the correlations induced by matching conditions.

6.3.2 Combined fit to present data

Fits to the combined set of top-quark, Z → bb̄, and B-physics data allow to test a larger
number of coefficients compared to fits to the individual datasets. Here, measurements in
Tabs. 6.2 and 6.3 together with Zbb data constrain eight coefficients:

C̃uB , C̃uG , C̃uW , C̃(1)
ϕq , C̃(3)

ϕq , C̃ϕu , C̃qe , C̃+
lq . (6.3.3)

Results of the fit are shown in Fig. 6.6. Additional information on the two-dimensional
projections of the posterior distribution is provided in Fig. H.3. The strongest constraints
are found for C̃qe and C̃+

lq , whose width of the interval is around (5− 6)× 10−3. Such strong
constraints are expected, as both coefficients give sizable contributions to ∆C9,10 at tree
level (6.1.8), see also Fig 6.5 (lower plots). As can be seen, the SM is not included in the
interval of C̃qe. This is shown in more detail for both four-fermion coefficients in Fig. 6.8.
In the case of C̃uB, C̃uG, C̃uW , C̃(1)

ϕq , and C̃(3)
ϕq , constraints are about one order of magnitude

weaker, (5 − 7) × 10−2. Results for C̃uG and C̃uW coincide with those obtained from fits to
top-quark data only. Conversely, for the other coefficients we see a significant tightening of
the constraints. For C̃uB, this enhancement stems from the orthogonal sensitivities of top-
quark and B data, as already seen in Sec. 5.5. Here, the effect is more pronounced due to the
additional observables included in the fit. The effect of the different sensitivities is exemplified
in Fig. 6.7 (left plot) where we compare constraints in the C̃uB-C̃uW plane obtained in fits
to different datasets. Similarly, the combination of Zbb data, which strongly constraints C̃+

ϕq

(see Fig. 6.4), with top-quark and B-physics observables, which strongly constrain C̃
(3)
ϕq as

shown in Fig. 6.7 (right), significantly tightens the constraints. For both C̃(1)
ϕq and C̃(3)

ϕq , the
combined set yields constraints of about 5 × 10−2, and the SM is included in the smallest
interval, see Fig. H.4. Conversely, constraints on C̃ϕu are significantly weaker, O(1), since
tt̄Z data provides only a limited sensitivity and contributions to B-physics observables are
strongly suppressed. The fit yields two solutions for C̃uB, C̃(1)

ϕq , C̃(3)
ϕq , C̃qe, and C̃+

lq , one of
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Figure 6.7: Two examples for two-dimensional projections of the posterior distribution from
fits of eight coefficients to top-quark data in Tab. 6.2 (light blue), B-physics data in Tab. 6.3
(grey) and the combined dataset (blue) in the C̃uW -C̃uB plane (left) and C̃uW -C̃(3)

ϕq plane
(right). Shown are the marginalized smallest regions containing 90% of the posterior proba-
bility of coefficients in Eq. (6.3.3).
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Figure 6.8: One-dimensional (left, middle) and two-dimensional (right) projections of the
posterior distribution for C̃qe and C̃+

lq (lower row). Results are obtained for a fit to the
combined set of present top-quark, Zbb̄, and B-physics data. The star in the rightmost plot
denotes the SM point.

which is SM like, while the other deviates from the SM. The reason for two solutions is
the quadratic ansatz (4.2.3), which in general allows for two solutions, as we already saw
in Sec. 5.5. In addition, correlations among several coefficients arise from the matching of
SMEFT onto WET. Since the number of degrees of freedom in WET is smaller than in
SMEFT these correlations can not be completely removed. Without inclusion of further
observables with a different sensitivity, this ambiguity can not be resolved. To validate our
fit, we compare our result to a recent study of b→ sµ+µ− data in Ref. [390]. In this analysis,
operators are defined in the basis with diagonal down-type Yukawa couplings, and thus an
additional factor 1/(VtbV

∗
ts) has to be included. Taking this factor into account, the results

in Ref. [390] correspond to C̃qe, C̃+
lq ∼ 10−3, which is consistent with our results in Fig. 6.6.

As a different number of degrees of freedom is considered in this analysis, we repeated our fit
considering C̃qe and C̃+

lq only and found agreement with Ref. [390].
Additional constraints, particularly on four-fermion operators, arise from Drell–Yan pro-

cesses. Amongst the operators considered here, this affects C̃+
ϕq, C̃qe, and C̃+

lq , similar to
b → s`+`− and Zbb data. Constraints on semileptonic four-fermion operators with b quarks
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derived from present Drell–Yan data and a future 3000 fb−1 projection are at the level of
O(10−2) [22, 391], and weaker compared to our combined fit, see Fig. 6.6. Note also that
the flavor of the initial quark in the pp collision is undetermined, which permits an actual
measurement of flavor-specific coefficients. A detailed study of the impact of Drell–Yan data
in the context of global fits is beyond the scope of this work.

6.4 Constraints at future colliders
In the future, both HL-LHC at 14 TeV and 3000 fb−1 and Belle II at 50 ab−1 are going to
test the SM with significantly higher precision. In Sec. 6.4.1, we investigate the impact of
measurements at these future facilities on constraints on SMEFT Wilson coefficients.
In addition, measurements of top-quark observables at a future lepton collider provide ad-

ditional tests of SMEFT coefficients [361]. A first projection of the expected precision at
the CLIC has been provided in Ref. [364]. CLIC is a proposed electron-positron collider
with a longitudinal polarization of ±80% for the electron beam and an unpolarized positron
beam. This collider is intended to operate at three different center-of-mass energies: 380 GeV,
1.4 TeV, and 3 TeV. We consider the forseen precision of top-quark pair-production measure-
ments at such a collider, and investigate the impact of these measurements on the SMEFT
coefficients in Sec. 6.4.2.
In Sec. 6.4.3, we combine projections for HL-LHC, Belle II, and CLIC with existing data

and work out constraints on the Wilson coefficient in a global fit.

6.4.1 Constraints in the near-future scenario
For the expected experimental uncertainties at HL-LHC and Belle II we adopt estimates by
ATLAS, CMS and Belle II [392–396]. If no estimate of the expected systematic uncertainties
are given, we assume that they shrink by a factor of two relative to present data. For the
observables considered here, this is the case for tt̄ and tt̄Z cross sections, theW boson helicity
fractions, and the top-quark decay width. Similarly, in order to simulate improvements of
MC predictions and higher-order calculations, we assume that theory uncertainties shrink
by a factor of two compared to current SM computations. Observables and references for
expected experimental and theory precision are given in Tab. 6.4. To investigate the impact
of the hints for BSM physics in present b → sµ+µ− angular distributions in the light of
higher luminosity runs at future experiments, we consider central values of present data for
the future projections. If no measurement is available, we consider the SM value instead.
For measurements of fiducial cross sections of tt̄γ production, the analysis in Refs. [392,

393] provides expected uncertainties for different final-state channels. For both the single-
lepton and dilepton cross sections we estimate the precision considering the channel with the
largest experimental uncertainty. In the case of tt̄Z production, we assume that statistical
uncertainties scale according to the integrated luminosity, following the analysis in Refs. [393,
394]. For simplicity, systematic uncertainties are assumed to shrink by a factor of two, as
a more profound estimate requires detector-level simulations which are beyond the scope of
this work. To estimate the expected precision of tt̄ production cross sections we consider
the study of differential tt̄ cross sections in Refs. [393, 395], and use the same assumptions
for the uncertainties as for tt̄Z. Since no projections for W boson helicity fractions and the
top-quark decay width are provided, we follow the procedure for tt̄ and tt̄Z cross sections.
Our future projection for b→ s measurements is based on Ref. [396]. For inclusive branch-

ing ratios of b → sγ, we consider the expected precision of BR(B̄ → Xsγ)Eγ>1.9 GeV and
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Process Observable q2 bin [GeV2] Experiment Ref. SM Ref.
tt̄γ σfid(tt̄γ, 1`) , σfid(tt̄γ, 2`) - ATLAS [392, 393] [313, 314]
tt̄Z σinc(tt̄Z) - CMS [393, 394] [377–379]
tt̄ σinc(tt̄) - CMS [393, 395] [381]

F0 , FL - - - [303]
Γt - - - [304]

B̄ → Xsγ BREγ>1.6 GeV - Belle II [396] [316]
B0 → K∗γ BR - Belle II [396] [347]
B+ → K+∗γ BR - Belle II [396] [347]
B̄ → Xs`

+`− BR, AFB [3.5, 6] Belle II [396] [386]

B0 → K∗µ+µ−
FL , P1 , P2 , P3 ,
P ′
4 , P

′
5 , P

′
6 , P

′
8

[1.1, 2.5], [2.5, 4], [4, 6] Belle II [396] [347]

B0 → K(∗)νν̄ BR - Belle II [396] [347]

Table 6.4: Overview of future HL-LHC and Belle II projections for observables included in
our analysis. For each process, we give the references for the experimental projection and the
SM prediction. For the 1.1 GeV2 ≤ q2 ≤ 2.5 GeV2 bin in B0 → K∗µ+µ− angular observables,
we consider the Belle II estimate for the experimental precision for the 1.0 GeV2 ≤ q2 ≤
2.5 GeV2 bin.
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Table 6.5: Constraints on coefficients C̃i obtained from fits of nine coefficients to present
measurements in Tabs. 6.2 and 6.3 (blue) and from present measurements and projections
of top-quark and B observables in Tabs. 6.2-6.4 (red). Shown are the position (left) and
the total width (right) of the marginalized smallest intervals containing 90% of the posterior
probability.

assume that the same uncertainty applies for Eγ > 1.6 GeV. For exclusive branching ra-
tios, we take into account estimates for B(+) → K∗(+)γ, and include projections for the
3.5 GeV2 ≤ q2 ≤ 6 GeV2 bin for both the branching ratio and the forward-backward asym-
metry of B̄ → Xs`

+`− transitions. For the latter, we explicitly checked that other bins offer
a very comparable sensitivity. For B → K∗µ+µ− observables, we include projections for
the angular distribution observables in three different q2 bins, and investigate implications of
anomalies found within present data.

The combined fit to present data and projections for top-quark and B-physics observables
at HL-LHC and Belle II, respectively, allows to probe nine SMEFT coefficients, as shown
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Figure 6.9: Two-dimensional projection of the posterior distribution in the C̃(1)
lq -C̃(3)

lq plane
obtained in fits of nine coefficients in the near future projection including top-quark observ-
ables and all beauty observables except b→ sνν̄ ones (light blue), top-quark observables and
only b→ sνν̄ ones (grey), and the combined set (dark blue). Colored areas correspond to the
smallest intervals containing 90% of the posterior distribution.

in Fig. 6.5. To obtain these constraints, we used a smaller interval −0.1 ≤ C̃i ≤ 0.1 for
the prior of the four-fermion coefficients. A larger interval would lead to convergence issues
due to the small size of the posterior distribution. We explicitly checked that no solutions
are lost using this ansatz. At this point, we do not include subleading contributions of C̃lu
and C̃eu, which are studied in Sec. 6.4.3. As can be seen in Fig. 6.5, the observables at HL-
LHC and Belle II data yield strong constraints on all coefficients with the exception of C̃ϕu.
This coefficient is only weakly constrained, O(1), due to low sensitivities in both tt̄Z and B-
physics observables. In contrast, the projections yield strong constraints on the four-fermion
coefficient, about (4−14)×10−3, where the strongest ones are obtained for C̃qe. In particular,
C̃

(1)
lq and C̃

(3)
lq can be tested simultaneously because the inclusion of b → sνν̄ observables

provides a orthogonal sensitivity compared to b → s`+`− observables. This is shown in
Fig. 6.9 where it also becomes obvious that constraints in the combined fit are significantly
stronger than expected from simply overlaying constraints from individual sets. The reason
for this enhancement is not directly visible in two-dimensional projections of the posterior
distribution: Constraints from different observables are combined in the multi-dimensional
parameter space, which removes flat directions present in fits to individual datasets and
reduces correlations between coefficients, as already seen in Sec. 5.5. Interestingly, we find two
solutions for both C̃(1)

lq and C̃(3)
lq ; one of which is SM-like, while the other one implies C̃(1)

lq ∼
−C̃(3)

lq ∼ 10−3 and deviates strongly from the SM. This is shown in more detail in Fig. H.5 in
App. H.4 where we give the one- and two-dimensional projections of the posterior distribution
for both coefficients. Without further input, this ambiguity cannot be resolved. Constraints
on the reaming coefficients C̃uB, C̃uG, C̃uW , C̃(1)

ϕq , and C̃(3)
ϕq are about (2.5− 4.5)× 10−2. For

C̃uB (C̃uW ) the improved precision of tt̄γ and b→ sγ observables (helicity fractions) enhances
the constraints by a factor of 1.5 (2.2), and for the remaining coefficients constraints remain
mostly unchanged compared to Fig. 6.6.
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√
s Observable Polarization (e−, e+) Ref. experiment SM Ref.

380 GeV σtt̄ (±80%, 0) [364] [361]
AFB (±80%, 0) [364] [361]

1.4 TeV σtt̄ (±80%, 0) [364] [361]
AFB (±80%, 0) [364] [361]

3 TeV σtt̄ (±80%, 0) [364] [361]
AFB (±80%, 0) [364] [361]

Table 6.6: Observables at different energies and polarizations for tt̄ production at CLIC
[364]. The SM prediction considered in this analysis are taken from [361].
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Table 6.7: Results from a fit of nine coefficients to CLIC future projections in Tab. 6.6.
Constraints on the coefficients C̃i are shown as the position (left) and the total width (right)
of the smallest intervals containing 90% of the posterior probability.

6.4.2 Constraints in the far-future scenario

Top-quark observables for CLIC projections are listed in Tab. 6.6. This set includes total
cross sections of top-quark pair production and forward-backward asymmetries for different
beam polarizations and energy stages [364]. SM predictions are computed at NLO [361], and
we use these predictions as nominal values for the observables.

The results of the fit to observables in Tab. 6.6 are shown in Fig. 6.7. The constraints
are derived using a smaller interval |C̃i| ≤ 0.1 for the prior distribution of the four-fermion
coefficients in order to avoid convergence issues. These arise due to the small size of the
posterior region, and we explicitly checked that no solution is lost when applying a smaller
interval. As can be seen, the strongest constraints are found for the four-fermion coefficients,
whose width of the smallest interval is (2−6)×10−4. Constraints on the remaining coefficients
are weaker, as expected, since contributions from four-fermion operators receive an energy
enhancement compared to both the SM and other operators. For C̃uB and C̃uW the width
of the interval is 7 × 10−3 and 10−2, respectively. Constraints on C̃−

ϕq and C̃ϕu are about
one order of magnitude weaker due to interference between their contributions. The weakest
constraints of about 4×10−1 are found for C̃uG, whose contributions are mixing-induced only.

Note that C̃(1)
lq and C̃(3)

lq evolve differently under the RGE flow. This introduces corrections
at the level of O(1)%. This allows to constrain both coefficients simultaneously at the level
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Figure 6.10: Constraints on coefficients C̃i from fits of eleven coefficients to top-quark and
B-physics data and near-future projections in 6.2-6.4 (light blue), to CLIC projections in
Tab. 6.6 (grey) and the combined set (blue). For all fits, we give the marginalized smallest
intervals containing 90% of the posterior probability.
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Figure 6.11: Two examples for two-dimensional projections of the posterior distribution
from fits of eleven coefficients to top-quark and B-physics data and near-future projections
in Tabs. 6.2-6.4 (light blue), CLIC projections in Tab. 6.6 (grey) and the combined set (blue)
in the C̃(1)

ϕq -C̃(3)
ϕq plane (left) and the C̃(1)

lq -C̃(3)
lq plane (right). Shown are the marginalized

smallest regions containing 90% of the posterior probability.

of O(10−2) using only CLIC observables, see Fig. 6.10 for details.

6.4.3 Combined fit

Combining present data (Tabs. 6.2 and 6.3 and Zbb data), near-future projections for HL-LHC
and Belle II (Tab. 6.4), and far-future projections for CLIC (Tab. 6.6) allows to constrain all
SMEFT Wilson coefficients considered in this analysis. In Fig. 6.10 we compare results from
three fits: a fit to present data and HL-LHC and Belle II projections (light blue), a fit to
CLIC projections (grey), and a fit to the combined set (blue). All eleven coefficients can be
constrained in the combined fit and flat directions in the posterior distribution are removed.
The strongest constraints are obtained for the four-fermion coefficient, O(10−4). Constraints
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Figure 6.12: One-dimensional (left, middle) and two dimensional (right) projections of the
posterior distribution of C̃(1)

lq and C̃(3)
lq obtained in the fit of eleven coefficients to the combined

set of present data, HL-LHC and Belle II projections, and CLIC projections. The colored
areas show the smallest intervals containing 90% of the posterior distribution, and the star
denotes the SM.

on the remaining coefficients are at the level of O(10−2) for C̃uB, C̃uG, C̃uW , C̃(1)
ϕq , and C̃3

ϕq,
and O(10−1) for C̃ϕu.

As already seen in Sec. 6.3.2, stronger constraints arise in the combination of different
observables. For both C̃(1)

ϕq and C̃(3)
ϕq , which are already strongly constrained by present data

and near future projections, CLIC observables yield constraints that are orthogonal to those
from the remaining observables, see Fig. 6.11 (left). This complementarity strengthens the
constraints by a factor of two and allows to remove the non-SM branch leaving only one
region in the posterior distribution. However, a strong correlation between both coefficients
remains. The combined fit yields particularly strong constraints on C̃

(1)
lq and C̃

(3)
lq , whose

intervals shrink by almost two orders of magnitude compared to the fit in the near-future
scenario (see Fig. 6.5). Again, the second solution is excluded. While b→ sνν̄ and b→ s`+`−

observables allow to probe both coefficients simultaneously, the inclusion of CLIC observables
is paramount to remove the second solution around C̃(1)

lq ∼ −C̃
(3)
lq ∼ 10−2, as shown in detail

in Fig. 6.11 (right). Again, constraints are significantly stronger in the combined fit than
expected considering the overlay of constraints from individual sets. The reason is that
the combined fit removes flat directions in the parameter space and Fig. 6.11 shows only
two-dimensional projections. Correlations between C̃

(1)
lq and C̃

(3)
lq , which stem from CLIC

observables, are still present in the combined fit and sizeable deviations from the SM can be
found. This is shown in more detail in Fig. 6.12. These deviations arise due to deviations in
angular distributions of b→ sµ+µ−, in particular from assuming that Belle II confirms central
values of LHCb data. While CLIC observables yield strong constrains on C̃−

lq (assuming SM
predictions for central values), the position of the smallest interval in the C̃(1)

lq ∼ C̃
(3)
lq subspace

depends on results from Belle II, see Fig. 6.12. Assuming SM values for Belle II observables,
we find agreement with the SM in C̃(1)

lq and C̃(3)
lq , see Fig. H.6.

As discussed in Sec. 6.1.1, results in the global fit including present data, HL-LHC and
Belle II projections, and CLIC projections are obtained assuming lepton flavor universality.
In BSM scenarios with different couplings to the lepton generations, our results cannot be
applied directly, however, the findings on the orthogonality of the constraints from different
datasets as well as the synergies between top and beauty continue to hold.
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6.5 Summary
In this chapter, we performed fits within the SMEFT framework to observables from top-
quark pair-production processes, Zbb data, and b→ s transitions. We pointed out how each
individual set of observables constrains a different subset of coefficients (See Fig. 6.2) affecting
top-quark physics (6.1.5) at present and future colliders. We extended the work presented in
Chapter 5, and included semileptonic four-fermion operators. These are strongly connected to
the flavor anomalies seen in current B data, see Sec. 2.3.3, and are only weakly constrained
by present top-quark data [27]. Exploiting SU(2)L invariance of the SMEFT Lagrangian,
we related top-quark and beauty physics, a well-known procedure with recent application in
other semileptonic processes [223], and applied this link to top-quark and beauty observables
at present and future colliders. A global fit to top-quark data in Tab. 6.2, Zbb data, and B-
physics data in Tab. 6.3 yields constraints on eight SMEFT Wilson coefficients, see Fig. 6.6.
The complementarity of constraints from individual datasets significantly improves the fits,
as shown in Fig. 6.7, and removes flat directions in the parameter space. Considering future
scenarios beyond present data, we studied implications of measurements at HL-LHC, BelleII,
and a future lepton collider at the example of CLIC. Measurements of top-quark observables
at HL-LHC test the same set of coefficients already probed by present data. In contrast,
qualitative improvements are implied by additional measurements of b → sνν̄ transitions
at Belle II, which, assuming lepton flavor universality, allow to test four-fermion operators
in new ways. Constraints derived from these transitions are orthogonal to those obtained
from b → sµ+µ−, and offer a sensitivity similar to contact interactions of charged leptons
and top quarks, see Fig. 6.1. Including these future projections allows to test nine SMEFT
coefficient with a sensitivity shown in Fig. 6.5. Further including top-quark observables at a
future lepton collider, which probe C̃ϕu, C̃lu, and C̃eu, see Fig. 6.7, allows to test all eleven
coefficients considered here 6.1.5, as shown in Fig. 6.10. In particular, the second solution
for C̃(1)

lq and C̃(3)
lq present in fits in the near future scenario can be removed when including

lepton-collider measurements, as shown in Fig. 6.11. Expected constraints on coefficients of
four-fermion operators are at the level ofO(10−4). Interestingly, despite the strong constraints
derived from CLIC observables, the fate of deviations from the SM in C̃(1)

lq and C̃(3)
lq implied by

present LHCb data depends on measurements at Belle II, as shown in Fig. 6.12. Again, this is
due to the complementarity of the constraints derived from the different sets of observables.
To summarize, SU(2)L relations between top and beauty as well as different collider setups

have to be employed to derive the strongest constraints on SMEFT coefficients relevant for
top-quark physics and anomalies found in beauty data. This procedure allows to remove
flat directions in the parameter space and to test all possible sources of BSM contributions
simultaneously. In particular, this analysis highlights the strong BSM physics impact of a
future lepton collider.
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7 Asympotic safety confronts collider physics

The SMEFT framework allows to search for deviations from the SM in a systematic way,
which is both efficient and (almost) model independent. In this bottom-up approach, the
SMEFT Lagrangian is constructed assuming that BSM particles are significantly heavier
than energy scales available in present experiments. As not necessarily all extensions of the
SM feature particles with masses of about 1 TeV or above, the SMEFT framework cannot
always be employed to constrain BSM models. Furthermore, experimental analyses designed
to explicitly test specific features of extensions of the SM are typically more sensitive to
contributions of such BSM models. Thus, constraints on the parameters of these models are
typically stronger compared to those derived in global SMEFT fits.

Additional guidance from top-down theory frontiers allows to extend the SM to accom-
modate a specific set of its theoretical shortcomings and to explain anomalies observed in
AMMs of both electron and muon, see Sec. 2.3.3. In this regard, asymptotic safety has raised
new opportunities for model building, keeping the theory fundamental and predictive at ar-
bitrarily high energy scales. Asymptotically safe extensions of the SM include new flavorful
scalars and vector-like leptons (VLLs)[63, 64], which can be searched for at colliders. The
new scalars are special in the sense that they transform as singlets under the SM gauge group
and carry two flavor indices. This makes them a matrix in flavor space, and allows for dis-
tinct flavorful signatures when connected to the SM via Yukawa interactions. As shown in
Refs. [28–30], asymptotically safe models predicting three generations of VLLs and a BSM
sector including flavor and Higgs portals to the SM leptons can explain the AMMs of both
the electron and the muon. Most noticeably, these models do not necessarily introduce lep-
ton flavor non-universality and explain both anomalies for regions of the parameter space
where the VLLs can have masses as light as a few hundred GeV while passing bounds from
several precision observables. Therefore, it is promising to search for such VLLs at colliders.
First analyses at LEP [397] have excluded heavy leptons with masses below 100 GeV, while
a search by ATLAS [398] for VLLs transforming as singlets under SU(2)L excluded masses
in the range 114-176 GeV at 95% CL. Constraints on a simple extension of the SM featuring
one generation of SU(2)L doublet VLLs with couplings to third-generation leptons only are
found to be even stronger by a recent CMS analysis [399], where VLLs within the mass region
of 120-790 GeV are excluded at 95% CL [400].

However, these constraints are derived considering simplified models and do not directly
translate into constraints on the singlet and doublet models in [28–30]. Thus, in this chapter,
which is based on Ref. [26], we present the phenomenological implications of these models
in Sec. 7.1. We compare signatures of VLLs to present data [400] in Sec. 7.2. We highlight
how specific features such as lepton-flavor-violating-like decays enable us to construct new
observables, which allow for null tests of the SM, in Sec. 7.3. We consider the distributions of
these observables at the expected integrated luminosity of the complete LHC Run 2 (150 fb−1),
and discuss implications for HL-LHC (3000 fb−1) [306]. In addition, we study regions in the
parameter space that do not accommodate the muon AMM. In Sec. 7.4 we summarize our
results.
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7.1 Asymptotically safe vector-like leptons

The models considered in the following are presented in detail in Ref. [28–30] and feature
three generations of colorless VLLs ψL,R, which are either SU(2)L doublets with hypercharge
Y = −1/2 (doublet model) or SU(2)L singlets with Y = −1 (singlet model). In the doublet
model components of the SU(2) doublet are referred to as

ψL,R = (ψ0
L,R, ψ

−
L,R)

T . (7.1.1)

In both models, the VLLs carry a lepton flavor index i = 1, 2, 3. In addition to the VLLs, the
models include a set of nine singlet complex scalars Sij carrying two flavor indices i, j = 1, 2, 3.
In the interaction basis, the BSM Yukawa sectors can be written as

Lsinglet
Y = −κl̄LϕψR − κ′ēRS†ψL − y ψLSψR + h.c. ,

Ldoublet
Y = −κēRϕ†ψL − κ′ ēRSψR − y ψLSψR + h.c. ,

(7.1.2)

where flavor and gauge indices are contracted implicitly. As can be seen, both the singlet
and the doublet model provide Higgs and BSM scalar portal interactions. Following [28], we
assume an SU(3) flavor symmetry and identify the symmetry of the leptons with the one
of the VLLs. This leads to conservation of lepton flavor and universal couplings with BSM
Yukawas y, κ, κ′, which become single couplings instead of tensors. While the coupling y is
crucial in the asymptotically safe framework [30, 65], its implications for phenomenology are
less relevant and neglected here. Instead, we focus on interactions connecting the SM and
BSM sectors via the portal couplings κ and κ′. As discussed in Refs. [28, 30], the VLLs and
SM leptons mix after SSB. In the singlet model, mass eigenstates are defined as(

ψmL,R
emL,R

)
=

(
cos θL,R sin θL,R
− sin θL,R cos θL,R

)(
ψL,R
eL,R

)
, (7.1.3)

with mixing angles θL,R. Mass eigenstates in the doublet model are defined similarly with
rotation angels θ−L,R (θ0L) for the charged (neutral) leptons. In the following, we drop the
additional superscripts on the mass eigenstates, and continue to use our notion referring to
the three light mass eigenstates as leptons and the three heavy eigentstates as VLLs. Since
mixing affects the couplings of the Z boson to leptons, measurements of the decay Z → `+`−

[13] constrain the mixing angles [30], see [401] for recent fits. In the singlet (doublet) model,
the Z-decay data demands mixing angles of left-handed (right-handed) leptons as small as
θL(R) ' kv/(

√
2MF ) < O(10−2), where we assume that all VLLs (all flavor and SU(2)L

components) have approximately the same mass MF . Since we find that θ, κ � 1, we can
employ a small-angle approximation. At leading order in κ the interactions in the mass basis
in the singlet model read

Lsinglet
int =− eψ̄γµψAµ +

g

cos θw
ψ̄γµZµ +

(
− κ√

2
ēLψR h− κ′ēRS†ψL

+ gS ēRS
†eL + gZ ēLγ

µψL Zµ + gW ν̄γµψLW
+
µ + h.c.

)
,

(7.1.4)
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where the couplings gi are defined as

gS =
κ′κ√
2

v

MF
, gZ = − κg

2
√
2 cos θw

v

MF
, gW =

κg

2

v

MF
. (7.1.5)

Similarly, the interactions in the doublet model are given as

Ldoublet
int =− eψ̄−γµψ− +

g

2 cos θw
[
(2 sin2 θw − 1)ψ̄−γµψ− + ψ̄−γµψ0

]
Zµ

+

(
g√
2
ψ̄−γµψ0W−

µ −
κ√
2
ēRψ

−
L h− κ

′ēLSψ
−
R − κ

′ν̄Sψ0
R

+ gS ēLS eR + gZ ēRγ
µψ−

R Zµ + gW ēRγ
µψ0

RW
−
µ + h.c.

)
,

(7.1.6)

with couplings

gS =
κ′κ√
2

v

MF
, gZ =

κg

2
√
2 cos θw

v

MF
, gW = −κg

2

v

MF
. (7.1.7)

The ν̄ψ−
LW

+ vertex is present only at higher order and is not considered here, see Ref. [30]
for details. As shown in Refs. [28, 30], these models accommodate both the muon and the
electron g− 2 anomalies (2.3.13) and (2.3.14), respectively. In the case of the muon anomaly,
the experimental result can be explained via

∆aµ =
κ′2

32π2
m2
µ

M2
F

f

(
M2
S

M2
F

)
, (7.1.8)

with f(t) = (2t3 + 3t2 − 6t2 ln t− 6t+ 1)/(t− 1)4 being positive for any t, and f(0) = 1. In
order to accommodate ∆ae at one-loop level the coupling κ is mandatory. However, since
∆ae also depends on parameters of the scalar sector, κ is less constrained. Here, in order
to prevent large contributions to Z-decay observables and to accommodate both AMMs, we
choose to set κ = 10−2κ′ for simplicity.

The scalar sector [28, 30, 402] includes in total four interaction terms with three quartic cou-
plings and a Higgs portal one δS†Sϕ†ϕ. This allows for EWSB as well as non-trivial VEVs vs
for the flavor-diagonal scalars Sii with two different configurations: a universal ground state,
where all three diagonal scalars obtain the same VEV, and a configuration where only one fla-
vor direction obtains a VEV, see [28, 30] for details. The phenomenological implications of δ
and vs at a pp collider are negligible, and thus we do not include them in this analysis. In total,
the singlet (doublet) model comprise three flavors of VLL singlets (7.1.4) (doublets (7.1.6))
and nine scalar singlets. Assuming VLLs (scalars) to have degenerate masses MF (MS) and
neglecting small isospin splitting ∆M = Mψ−1 −Mψ0 = g2/4π sin2 θwMZ/2 ≈ 0.4 GeV [30]
between ψ0 and ψ− in the doublet model (induced by electromagnetic interactions), our set
of parameters reads

MF , MS , κ′ , κ = 10−2κ′ , (7.1.9)

where we use Eq. (7.1.8) together with the muon AMM data (2.3.13) to express κ′ as a function
of MF and MS , κ′ = κ′(MF ,MS). This enables us to compute the numerical predictions for
collider signatures in terms of the two masses of the BSM sector. A more general scenario,
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Figure 7.1: Branching ratios of the on-shell decays of the VLLS in the singlet model (left)
and the doublet model (right) as a function of the mass, with MS = 500 GeV. ForMF < MS ,
only electroweak decays are possible. As we fix κ = 10−2 κ′ branching ratios are independent
of κ′. Larger values of κ/κ′ lead to larger branching ratios for the electroweak decays.

where we consider κ′ as a free parameter, is discussed in Sec. 7.3.4.
Note that the simplified version (7.1.9) of the complete higher-dimensional parameter space

succeeds in describing the leading signatures of the model relevant for a pp-collider study.
For a complete investigation of the stability of the RGE flow to the Planck scale a dedicated
analysis of the couplings and their interplay has to be provided. In Ref. [30], a detailed study is
provided for a wide range of BSM coupling parameters andMF = 1000 GeV,MS = 500 GeV.
While not every point in the complete BSM parameter space is necessarily asymptotically
safe, the initial conditions on MF and MS in the range 100-1000 GeV have only a subleading
effect on the RGE evolution. Hence, specific choices of BSM Yukawas and quartic couplings
allow to find Planck safe trajectories using the methods described in [28, 30].
The phenomenology of VLL production at a hadron collider is outlined in Ref. [30] (together

with implications for a lepton collider) and discussed in more detail in App. I.1. At the
LHC, VLLs can be produced through electroweak and Yukawa interactions via single and
pair production. Considering a benchmark scenario with MS = 500 GeV, we find that
pair-production cross sections are, in both models, about three orders of magnitude larger
than single-production ones, regardless of MF . The reason is that pair production depends
only on the quantum numbers of the VLLs and is completely independent of κ and κ′. In
contrast, single production is only induced by mixing (7.1.3) and is strongly suppressed due
the aforementioned Z-decay constraints.
The VLLs can decay into SM particles via mixing-induced terms or via portal interactions

in Eqs. (7.1.4) and (7.1.6). If the VLLs are lighter than the BSM scalars (MF < MS), they
decay either into an electroweak or Higgs boson and a charged or neutral lepton. In contrast,
if kinematically allowed by the mass hierarchy of the BSM sector (MF > MS), decays into
new scalars and a SM lepton dominate due to large values of κ′ needed to accommodate ∆aµ.
In the singlet model the VLL decay rates are given as [30]:

Γ(ψi → h`−i ) = κ2
MF

64π
(1− r2h)2 , (7.1.10a)

Γ(ψi → S ∗
ij `

−
j ) = κ′ 2

MF

32π
(1− r2S)2 (j fixed) , (7.1.10b)
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Γ(ψi →W−νi) = g2W
MF

32π
(1− r2W )2(2 + 1/r2W ) , (7.1.10c)

Γ(ψi → Z`−i ) = g2Z
MF

32π
(1− r2Z)2(2 + 1/r2Z) , (7.1.10d)

with rX =MX/MF . Similarly, decay rates in the doublet model read

Γ(ψ−
i → h`−i ) = κ2

MF

64π
(1− r2h)2 , (7.1.11a)

Γ(ψ−
i → Sji `

−
j ) = κ′ 2

MF

32π
(1− r2S)2 (j fixed) , (7.1.11b)

Γ(ψ0
i → Sji νj) = κ′ 2

MF

32π
(1− r2S)2 (j fixed) , (7.1.11c)

Γ(ψ−
i → Z`−i ) = g2Z

MF

32π
(1− r2Z)2(2 + 1/r2Z) , (7.1.11d)

Γ(ψ0
i →W+`−i ) = g2W

MF

32π
(1− r2W )2(2 + 1/r2W ) . (7.1.11e)

As can be seen, in both the singlet and doublet model the decays into Sij are proportional to κ′
and dominate over decays into Higgs bosons (electroweak bosons) for κ′ & κ/

√
6 (κ′ & κ/

√
3).

The corresponding branching ratios are shown in Fig. 7.1 for a benchmark scenario with
MS = 500 GeV. The enhancement of the BSM scalar channel is caused by the potentially
large values of the coupling κ′ needed to accommodate the muon AMM (7.1.8), since matrix
elements of the processes ψ(−)

i → S∗
ij`

−
j and ψ0

i → S∗
ijνj are proportional to κ′. Conversely,

matri elements for decays into SM bosons are proportional to κ = 10−2κ′.
Decays into BSM scalars are a distinct feature of the models and set them apart from other

theories with VLLs, e.g. [399, 403–405]. In particular, we highlight the cascade decays

ψi → S∗
ij `

−
j → `−i `

+
j `

−
j , (7.1.12)

in the singlet model and

ψ−
i → Sji `

−
j → `−i `

+
j `

−
j , ψ0

i → Sji νj → `−i `
+
j νj . (7.1.13)

in the doublet model. If VLLs are heavier than the scalars on-shell decays in Eqs. (7.1.12) and
(7.1.13) allow for final states with three leptons, and in particular a different-flavor dilepton
pair with opposite sign and an invariant mass centered at MS . While this signature seems
to be flavor violating, the decay Sji → `−i `

+
j is actually flavor conserving, since the BSM

scalars carry two flavor indices. These flavor-violating-like decays of the BSM scalars are
a distinct feature of the models (7.1.4) and (7.1.6), and provide a clean signature of BSM
physics. Note that the scalars can also decay into diboson final states at one-loop level and,
depending on the mass hierarchy of the BSM sector, into two VLLs or one VLL and a SM
lepton at tree level, see Ref. [30]. Here, these channels are considered to be negligible due
to loop suppression and the fact that scalars are only produced in decays of VLLs which
kinematically forbids a decay of BSM scalars into VLLs.
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State Decay modes
ψ
(−)
1 e−e+e−, e−µ+µ−, e−τ+τ−

ψ
(−)
2 µ−µ+µ−, µ−e+e−, µ−τ+τ−

ψ
(−)
3 τ−e+e−, τ−µ+µ−

ψ0
1 e−e+νe , e

−µ+νµ
ψ0
2 µ−µ+νµ , µ

−e+νe

Table 7.1: Decay modes of the VLLs (see Eqs. (7.1.12) and (7.1.13)) which can give rise
to a final state with four light leptons after the VLLs are pair produced. Pair production of
ψ0
3 cannot generate such a 4L final state due to the presence of either four neutrinos or two

neutrinos and two taus.

7.2 Present tests of parameter space

We focus on constraints from CMS data [400] on both the singlet (7.1.4) and the doublet
(7.1.6) model. In Ref. [400], different final states with two light leptons, three light leptons,
and at least four light leptons are considered in order to search for deviations from the
SM. To do so, the missing transverse momentum pmiss

T and the scalar sum of the transverse
momenta of the light leptons (e, µ) with the highest transverse momentum LT are used as
a discriminator. Dominant background processes arise in the form of diboson, tt̄, tt̄Z, and
triboson production, which are generated using MC generators. Distributions at particle level
are computed applying a full detector simulation and additional reweighting, which accounts
for differences between data and simulation. Several control regions are defined for each of the
final-state channels allowing for fits of the distributions to the data taken in these regions. The
fitted background distributions are applied to the signal regions of the LT distributions, and
the statistical analysis of the data in these regions allows to set constraints on the simplified
models in Ref. [399].
In our work, we focus on final states with at least four light leptons, referred to as 4L,

because we expect the largest contributions from decays of three generations of VLLs in both
models in this channel. The reason is that non-trivial flavor structure of the BSM sector allows
for various VLL production channels with at least for light leptons (see Tab. 7.1), enriching
contributions from BSM processes to the signal regions of the CMS analysis. Hence, the
dataset taken by CMS allows to constrain both the singlet and doublet models considered
here.
In order to generate events and study production and decay of VLLs at the LHC, we

employ the steps outlined in Sec. D.3. In particular, SM background processes, including
ZZ, ttZ and triboson production, are generated at LO using MadGraph5_aMC@NLO. We
also consider contributions from ZZj final states using multijet merging with PYTHIA 8,
since programs describe parton radiation using MCMC techniques, which is formally only
correct in the limit of soft and collinear emissions. For production of hard jets the complete
tree-level matrix elements have to be included, which diverge for soft or collinear partons.
Hence, both techniques have to be employed together and, to avoid double counting, multijet
merging has to be used [406, 407]. Contributions from virtual photons via pp → γ∗γ∗, γ∗Z
are taken into account at LO. We require pairs of leptons (regardless of their charge or flavor)
to have an invariant mass of at least m`` ≥ 12 GeV to suppress contributions from quarkonia
resonances and to reproduce the CMS settings. Furthermore, we include gluon-induced ZZ
production gg → ZZ at one-loop level to the total cross section of ZZ production. Higher-
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Figure 7.2: Examples for Feynman diagrams for production of final states with at least four
light leptons in the singlet (7.1.4) and doublet (7.1.6) model. Single-production contributions
(c) and final states with jets (a) are only possible for first and second generation vector-like
leptons.

order corrections for the cross sections are taken into account applying k-factors [377, 378,
408–413]. Signal processes are generated at LO with MadGraph5_aMC@NLO. In all cases,
we employ PYTHIA 8 for showering and DELPES 3 [414] for the fast detector simulation. For
all samples we use a set of cuts to define a signal region very similar to the one considered in
the CMS analysis, see Tab. I.1. The settings and details on the generation process are listed
in App. I.2.

7.2.1 Production of final states with at least four light leptons

In both models single and pair production of VLLs allows for 4L final states. Examples
for Feynman diagrams are shown in Fig. 7.2. In the singlet model, 4L final states can be
generated via the following processes:

pp→ ψiψ̄i → `−i `
+
i `

+
j `

−
j `

+
k `

−
k for i, j, k = 1, 2, 3 , (20) (7.2.1a)

pp→ ψiψ̄i → `−i `
+
i qj q̄j`

+
k `

−
k for i, k = 1, 2 , (15× 4) (7.2.1b)

pp→ ψiψ̄i → `−i `
+
i `

+
j `

−
j νkν̄k for i, j = 1, 2, k = 1, 2, 3 , (12) (7.2.1c)

pp→ ψiψ̄i → νi`
+
i `

+
j `

−
j `

−
k ν̄k for i, j, k = 1, 2 , (8) (7.2.1d)

pp→ ψiψ̄i → `−i ν̄i`
+
j `

−
j `

+
k νk for i, j, k = 1, 2 , (8) (7.2.1e)

pp→ ψi`
+
i → `−i `

+
j `

−
j `

+
i for i, j = 1, 2 , (4) (7.2.1f)

pp→ ψ̄i`
−
i → `+i `

+
j `

−
j `

−
i for i, j = 1, 2 , (4) (7.2.1g)

where i, j, k denote flavor indices and ql denotes all quarks except the top quark (quarks
stem from decays of SM bosons only). Between parentheses we give the number of 4L final
states for each decay chain (summed over all indices). In the first decay chain, 4L final states
occur only if at most one of the three flavor indices is equal to 3 (see Tab. 7.1).

In the doublet model, the negatively charged VLLs decay as in Eq. (7.2.1) except for decays
with multiplicity eight in Eq. 7.2.1 (from ψ−

i → νi`
−
j ν̄j) because the ψ−νW vertex is only

subleading. Additional contributions from the neutral VLLs via the following decay chains
arise:

pp→ ψ0
i ψ

0
i → νjνk`

+
j `

−
i `

+
i `

−
k for i, j, k = 1, 2 , (8) (7.2.2a)

– 95 –



200 400 600 800 1000
MF [GeV]

10 8

10 6

10 4

10 2

100

10 7

10 5

10 3

10 1
 [p

b]
Singlet, 4L @LHC 13 TeV

200 400 600 800 1000
MF [GeV]

10 8

10 6

10 4

10 2

100

10 7

10 5

10 3

10 1

101

 [p
b]

Doublet, 4L @LHC 13 TeV

Figure 7.3: Cross sections for BSM production of final states with at least four light leptons
at a pp collider with

√
s = 13 TeV in the singlet (left) and the doublet (right) model for differ-

ent VLL masses with MS = 500 GeV. The red curves correspond to the VLL models (7.1.4)
and (7.1.6), while the blue curves correspond to third-generation VLL models such as in [399]

pp→ ψ−
i ψ

0
i → `−i `

+
i νj`

−
j `

+
k `

−
k for i, j, k = 1, 2 , (8) (7.2.2b)

pp→ ψ0
i ψ

+
i → `−i `

+
i `

+
j νj`

+
k `

−
k for i, j, k = 1, 2 , (8) (7.2.2c)

pp→ ψ−
i ψ

0
i → `−i `

+
i qjqj`

+
k `

−
k for i, k = 1, 2 , (15× 4) (7.2.2d)

pp→ ψ0
i ψ

+
i → `−i `

+
i qjqj`

+
k `

−
k for i, k = 1, 2 . (15× 4) (7.2.2e)

Note that third-generation VLLs ψ(−)
3 can generate 4L final states only via the first process

in Eq. (7.2.1) since a τ+τ− pair has to be be produced due to flavor conservation.
In Fig. 7.3 we illustrate cross sections for production of 4L final states at 13 TeV via

processes in Eqs. (7.2.1) and (7.2.2). Shown are results for both the singlet model (left) and
the doublet model (right) for MS = 500 GeV as a function of MF . We compare cross sections
computed for the models in Eqs. (7.1.4) and (7.1.6) (red) with results from the models in
Ref. [399] featuring one generation of VLLs with couplings to third-generation leptons only.
In general, models (7.1.4) and (7.1.6) with an enriched flavor structure generate cross sections
about two (MF < MS) to four orders (MF & MS) of magnitude larger when compared to
those in Ref. [399]. Reasons for this enhancement are the additional generation of the VLLs
as well as the on-shell production of the new scalars: Production of ψ1,2 allows for additional
4L final states, while the decay into BSM scalars, which produces two leptons and increases
the number of 4L states, dominates if kinematically allowed (see Fig. 7.1).

7.2.2 Constraints from transverse momentum distributions

Distributions of the scalar sum of the transverse momenta have been studied in the CMS
analysis [400] to test the doublet model in Ref. [399]. In order to derive constraints on
the MF − MS parameter space of the singlet and doublet model (with κ′ fixed according
to Eq. (7.1.8)), we perform an event generation at detector level and compare the resulting
LT distributions to CMS data for 4L final states with pmiss

T < 50 GeV. Distributions are
computed for various values of MF and MS and fixed BSM couplings. We also consider the
SM background processes of ZZ, ttZ and triboson production. We include the control region
veto of two dilepton pairs (same flavor) with invariant masses 76 GeV < m2` < 106 GeV and
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Figure 7.4: Different benchmark values of the VLL mass MF and the BSM scalar mass
MS with κ′ fixed to explain the (g − 2)µ anomaly using Eq. (7.1.8). Points are marked as
’allowed’ (green, yellow) if all bins in the sum of transverse momenta LT of the 4L final states
fall within 1σ of central values measured by CMS [400]. Points marked in yellow serve as
benchmark scenarios in our study of the collider signatures and observables defined in Sec. 7.3.
For scenarios highlighted with a black circle, we show LT distributions in Figs. 7.5 and I.3.
Values above the green line denote scenarios where κ′ is non-perturbative.

set the LT bin width to 150 GeV matching settings in [400].
We find that our SM simulation for the LT distribution shows small differences relative to

the CMS background. This is expected, since we perform an event generation at LO and only
a fast detector simulation is publicly available. In addition, we cannot perform a fit of the SM
background to a control region similar to the CMS analysis. Thus, even though a recasting
of CMS data in the context of the models (7.1.2) is desired, these differences prohibit at
detailed interpretation, which can only be obtained from a dedicated experiment analysis.
Nevertheless, we find that our simulation reproduce both the shape of the LT distribution
and the number of events in each of the bins reasonably well. Considering the differences in
the SM background, we refer to scenarios as ’excluded’ if the LT distributions rise above the
1σ range of the CMS data in at least one of the bins.

The findings are summarized in Fig. 7.4 where we show which points in the parameter space
are allowed by CMS data (green and yellow circles) or excluded (purple circles) together with
illustrative exclusion limits (purple area). Furthermore, the green dashed line indicates mass
configurations for which the coupling κ′ computed via Eq. (7.1.8) becomes non-perturbative.
This line presents an upper limit on the parameter space. While a complete scan over the
whole parameter space is beyond the scope of this analysis, we find the following pattern.
In both models points with MF ∼ MS are excluded. This is a result of the enhancement
of cross sections around the S resonance (see peak in red curves in Fig. 7.3). In the singlet
model, most of the parameter space departing from theMF ∼MS line remains unconstrained,
and VLLs can be as light as a few hundred GeV. In contrast, in the doublet model points
with MF < 800 GeV are excluded due to the larger production cross sections (see Fig. 7.3)
regardless of MS in addition to the MF ∼ MS area, as already expected from the CMS
analysis. Still, areas with both light (MS . 600 GeV) and heavy scalars (MS & 1000 GeV)
are still in agreement with CMS data for MF & 800 GeV. In general, constraints on the
parameter space of the singlet model are weaker relative to the doublet one, since cross
sections are smaller by at least one order of magnitude.
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Figure 7.5: Scalar sum of transverse momenta LT in the singlet (left) and the doublet
model (right). Shown are distributions for SM background processes and different benchmark
scenarios with different configurations of MF and MS . The observables are computed for an
integrated luminosity of 77.4 fb−1 with subsequent detector simulation and the bin width is
set to 150 GeV. CMS data from [400] is indicated as black dots and the upper limit of the
1σ interval is shown by the grey line.

In the following, we consider for each model three representative scenarios marked as bench-
marks in Fig. 7.4 (yellow dots), which serve as examples for our analysis procedure. We give
the LT distributions obtained in these benchmark scenarios in Fig. 7.5 together with the SM
background and the CMS data. In both models, we include at least one case with MF > MS

and one with MS < MF . As can be seen, the VLL contributions do not rise above the
experimental 1σ range in any of the benchmark scenarios, regardless of the mass hierarchy.
To illustrate the LT distribution for further hierarchies in the BSM sector, we present LT
distributions for additional mass configurations (see Fig. 7.4, black rings) in App. I.3.
In summary, while both models can explain the electron and muon AMM anomalies within a

very similar parameter space [28, 30], CMS data already excludes a large part of the parameter
space of the doublet model. In contrast, the singlet model remains mostly untested by the
LT distributions of the 4L channel.

7.3 Additional observables with null test potential

While LT distributions allows to probe the parameter space of both the singlet and the doublet
model, they are not sensitive to mass hierarchies of the BSM sector. Thus, we design novel
observables targeting specific flavor features of the models. These offer new ways to search for
flavorful scalars and VLLs and can serve as null tests of the SM. The observables represent
invariant masses which aim to reconstruct the masses of BSM scalars and VLLs. The latter
are reconstructed via their decay into a neutral SM boson or, if kinematically allowed, into
the new scalars. As final states with neutrinos offer only a very limited resolution when
reconstructing invariant masses they are discarded by cuts on the missing transverse energy
(see Tab. I.1). Given MF > MS , the decay of VLLs into BSM scalars becomes the dominant
mode (see Fig. 7.1). However, due to large values of κ′ contributions from BSM scalars can
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be sizable even in the case of off-shell decays. In this regard, the production modes
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(7.3.1)

in the singlet and doublet model, respectively, allow for a reconstruction of the new scalars
from two leptons with opposite charge and same flavor (OCSF) as well as leptons with
opposite charge and different flavor (OCDF). Combining these two leptons with a third
charged lepton allows us to reconstruct the VLLs. This additional lepton is required to carry
opposite charge and same flavor as one of the leptons in the initial pair. Similarly to the Sij ,
SM Higgs and Z bosons can be reconstructed from both dilepton and dijet pairs. We refer
to masses reconstructed from two and three final-state particles as m2` and m3`, respectively.
The subsets of these invariant masses reconstructed from OCDF leptons are referred to as
m2`_diff and m3`_diff, respectively.

In order to reconstruct the BSM scalars Sij with i 6= j we consider only OCDF leptons. We
include invariant masses from events where we find two invariant masses which are the same
within a small window ∆MS = 5 GeV (see Tab. I.1) assuming a rather narrow width for BSM
scalars. With this procedure we are able to find on-shell contributions from BSM scalars. If
two scalars are found, the VLLs can be reconstructed by requiring flavor-conservation. As-
suming perfect reconstruction of final-state particles these flavor conditions allow to suppress
SM background processes. Therefore, processes in Eq. (7.3.1) are the ’golden channels’ of our
analysis.

7.3.1 Definition of observables
In the following, we discuss the algorithm employed to compute the masses mi(_diff). We
start with the reconstruction of SM bosons and new scalars by computing all possible sets of
invariant dijet and dilepton (combinations of leptons with opposite charge only) masses. For
each event, we include at most one pair of invariant masses in the observable m2`. In order
to be included, the dilepton or dijet masses must fulfill one of the following requirements:

a) We find two invariant masses reconstructed from different dijet or OCSF dilepton pairs
that are equal to either mZ ± ∆mZ or mh ± ∆mh (see Tab. I.1). This allows to
reconstruct SM Z and Higgs bosons.

b) Two invariant OCSF dilepton masses (reconstructed from different lepton pairs) differ
by less than ∆MS (see Tab. I.1). This allows to reconstruct Sii scalars. If multiple
combinations fulfill this criteria, only the pair with the smallest difference is included.

c) Two invariant dilepton masses differ by less than ∆MS (see Tab. I.1) where at least one
of them is reconstructed from a OCDF lepton pair. This step reconstructs Sij scalars
with i, j = 1, 2, 3.

We test for each of these conditions in the order (a → b → c). If one of the conditions is
fulfilled, we stop and consider the next event. The observable m2`_diff contains the subset
of masses found in step c). Note that the conditions are designed in a way that they are only
sensitive to scalar contributions if two scalars are found within the same event. However, as
the VLL pair-production cross section is significantly larger than the single-production one
(see Fig. I.2) and VLLs decay almost exclusively into BSM scalars (as soon as kinematically
allowed, see Fig. 7.1), this is an excellent approximation.
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After we found suitable candidates of two-particle states, we reconstruct VLLs by adding
an additional lepton to the dilepton and dijet states. Within each event, we search for a pair
of three-particle states and add them to m3` if they pass one of the following conditions:

1) We add an additional lepton to each of the invariant masses reconstructed in step a).
The invariant masses of the two three-particle states are required to agree within a mass
window ∆MF (see Tab. I.1). If multiple combinations are found, we consider only the
one with the smallest mass difference.

2) Additional leptons are added to the two dilepton states reconstructed in step b). The
additional leptons are required to have the same flavor as the leptons in the dilepton pair.
The two invariant masses reconstructed from these lepton combinations are required
to have the same mass within a mass window ∆MF (see Tab. I.1). Again, only the
combination with the smallest mass difference is included in m3`.

3) For dilepton masses reconstructed in step c) we add a third lepton depending on the
flavor structure of the dilepton state. If the state contains two OCSF leptons, the third
lepton is required to have the same flavor as the other two leptons. If the state is a
OCDF dilepton state, the third lepton is required to have the same flavor but different
charge than one of the leptons in the dilepton state. Furthermore, considering the six
leptons we require flavor conservation. For all events, at most one combination fulfills
these requirements and is added to m3` and m3`_diff.

In the last two steps flavor requirements representing flavor conservation in decays of BSM
scalars allow to reconstruct the VLLs. In particular, in the last step no assumption about
the width of the VLLs has to be made. This requirement allows to reconstruct VLLs even in
the case MF �MS where the width of the VLLs becomes significantly larger than ∆MF . As
this flavor requirement cannot be fulfilled by SM processes (given perfect reconstruction), the
mi_diff observables present null tests of the SM. Thus, they offer the opportunity to detect
deviations from the SM even if only a few events are detected at the LHC.

7.3.2 Distributions at Run 2
We study the distributions of the observables m2`(_diff) and m3`(_diff) for the benchmark
scenarios shown in Fig. 7.5. For each scenario, we generate 5 × 104 events and rescale the
distributions to an integrated luminosity of 150 fb−1 (this leads to small statistical fluctuations
in the distributions).
The distributions of the invariant masses mi(_diff) at parton level in the singlet model

are shown in Figs. 7.6. Corresponding distributions in the doublet model are very similar
and are given in Fig. I.4 in App. I.4. In general, the number of events is larger compared
to the singlet model due to enhanced cross sections. The main features are that mi_diff
observables are significantly cleaner compared to the mi ones, since the SM background is,
as expected, suppressed. In particular, this can be seen at the rejection of invariant masses
around the Z mass in the m2`_diff distribution (plot in the upper right), and at the fact that
the m3`_diff distribution (plot in the lower right) is free of any SM background. In both
the m2` and m2`_diff distributions, scalar resonances appear as narrow peaks for scenarios
with MF > MS (black curve in Fig. 7.6), with O(101) events in the peak bins. In contrast,
the m3`(_diff) distributions present very broad resonances, with O(1) events per bin. In the
inverse scenario with MF < MS , the m2` distributions show peaks with O(102) events per
bin at the mass of the Z boson. These peaks are strongly depleted by about two orders of
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Figure 7.6: Parton-level distributions of invariant masses m2`, m2`_diff, m3`, and m3`_diff
for the singlet model for different benchmark masses of the VLLs and the BSM scalars at a
luminosity of 150 fb−1 and

√
s = 13 TeV. The coupling κ′ is fixed according to Eq. (7.1.8).

magnitude in the m2`_diff distributions, similar to the SM background. While the peaks fall
below the SM background in both distributions, BSM signatures can in principle be detected
in the tails form2`(_diff) & 500 GeV. However, the number of events is at the level of O(10−1)
only. VLL resonance appear as narrow peaks inm3` distributions withO(102) (O(101)) events
per bin for MF = 300 GeV (MF = 600 GeV) (blue (red) curves in Fig. 7.6). These peaks are
again strongly suppressed by more than an order of magnitude in the m3`_diff distribution,
since the S cannot contribute on shell in the decay of the VLLs.

In order to estimate the effects of both hadronization and a finite detector resolution,
we apply parton showering with PYTHIA 8 and a fast detector simulation using Delphes 3
with the CMS default card to the events at parton level. The corresponding distributions
of the mi(_diff) observables at particle level are shown in Figs. 7.7 and 7.8 for the singlet
and the doublet model, respectively. A general feature of the particle-level distributions is
the depletion of all distributions, which is more pronounced in the peaks than in the rest of
the distributions. Depending on the mass hierarchy of the BSM sector and the observables
considered, the number of events in the peaks bins is reduced by around one to two orders
of magnitude. In particular, peak bins in the m2` and m2`_diff distributions at the masses
of the electroweak bosons and the new scalars become broader, and the number of events in
the peak bins is reduced by around one order of magnitude to a level of up to a few events in
the signal peaks. Similarly, we find that peaks in the m3`(_diff) distributions become both
smaller and broader, similar to the m2`(_diff) ones. Given MF < MS , which is the case
for MF = 300 GeV, 600 GeV (blue and red curves) and MF = 800 GeV (red curve) in the
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Figure 7.7: Distributions of invariant masses m2`, m2`_diff, m3`, and m3`_diff at 150 fb−1

and
√
s =13 TeV in the singlet model for selected benchmark scenarios after detector simu-

lation.
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Figure 7.8: Same as Fig. 7.7 but for the doublet model.
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Model MF (GeV) MS (GeV) m2` m2`_diff m3` m3`_diff
Singlet 300 800 1/8* 1/3* 1/22 1/19
Singlet 600 800 1/6* 1/5* 1/18 1/16
Singlet 800 500 1/12 1/17 1/17** 1/19**
Doublet 850 500 1/14 1/17 1/16** 1/20**
Doublet 800 1200 1/16* 1/6* 1/60 1/15
Doublet 1000 800 1/36 1/48 1/27** 1/34**

Table 7.2: Scaling factors f = Npeak, det/Npeak for the different benchmarks of our models.
We denote by Npeak, det (Npeak) the number of events at the peaks after (before) detector
simulation and compute the scaling factors for all four observables. The values correspond to
observables computed at

√
s = 13 TeV and a luminosity of 150 fb−1. Peaks which fall below

the SM background (resonances are broad) are marked with * (**).

singlet and doublet model, respectively, the number of events in the peak bins in the m3`

distributions is suppressed by roughly one order of magnitude. For low VLLs masses, which
is the case for MF = 300 GeV in the singlet model (blue curve), we find O(1) events in the
peak bins. For the other two scenarios with heavier VLLs and scalars the number of events
in the peak bin is at the level of O(10−1). Benchmark scenarios with the inverse hierarchy
MF > MS show a similar suppression of the number of events, about one order of magnitude.
For MF = 800 GeV in the singlet model (black curve) and MF = 850 GeV, 1000 GeV in the
doublet model (red and black curves), we find O(10−1) events in the peak bins. In contrast
to distributions with a narrow peak, the suppression is an overall rescaling of the resonances
and their width is unaffected.

The findings for the suppression of the number of events in the peak bins are summarized
in Tab. 7.2 in the form of scaling factors f = Npeak, det/Npeak, which are defined as the ratio
of numbers of events in the peaks after ( Npeak, det) and before (Npeak) detector simulation.
The scaling factors are at the level of O

(
10−1 − 10−2

)
and are typically larger in the m2` and

m2`_diff distributions in the case MF < MS . This pattern, as well as the strong suppres-
sion of peaks compared to the rest of the distributions, is understood. The detector energy
resolutions scales like ∆E ∼

√
E, and thus the high-m2(3)`(_diff) bins show larger differ-

ences when comparing distributions before and after detector simulation. Similarly, peaks of
distributions become broader due to bin-to-bin migration and are more affected, since more
events propagate out of the peak bins than into them from adjacent bins due to the signif-
icantly larger number of events in the peak bins. As the resolution depends on the energy
of the particles, effects of bin-to-bin migration are asymmetric and have a stronger effect
on the high-energy region. Therefore, the distributions are shifted towards smaller values
of mi(_diff) and the bins around peaks show an asymmetric shape. The scaling factors in
Tab. 7.2 reflect the energy dependence. For example, the MF = 1000 GeV scenario in the
doublet model shows a stronger suppression than the MF = 850 GeV one. Similarly, scaling
factors for theMF = 850 GeV benchmark point in the doublet model do almost coincide with
those of the MF = 800 GeV scenario in the singlet model.

7.3.3 Distributions at higher luminosities
As we have shown in Sec. 7.3.2, the discovery of VLLs and new scalars featuring a non-trivial
flavor structure is a challenging task given present detector resolution and the integrated
luminosity collected in LHC Run 2. Future measurements at the HL-LHC will benefit from
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Figure 7.9: Distributions of the observables m2`, m2`_diff, m3`, and m3`_diff after detector
simulation for the singlet model. We show results for different benchmark scenarios at a
luminosity of 3000 fb−1 and

√
s = 14 TeV. The coupling κ′ is fixed according to Eq. (7.1.8).

both upgraded detectors and a higher integrated luminosity, and thus they provide a peerless
opportunity for BSM searches. In order to estimate the potential of the observables mi(_diff)
in future analyses, we study distributions of the previously discussed benchmark scenarios at
the HL-LHC at

√
s = 14 TeV and 3000 fb−1 [306]. For the fast detector simulation, we employ

Delphes 3 with the HL-LHC default card instead of the CMS one. The distributions of the
new observables mi(_diff) at particle level are shown in Figs. 7.9 and 7.10 for benchmark
scenarios in the singlet and doublet model, respectively. The corresponding parton-level
distributions are given in Figs. I.5 and I.6.
As expected, we find a significantly higher rate of events due to the higher integrated lumi-

nosity at HL-LHC, which enhances event rates by a factor of about 3000/150 = 20. Despite
the differences in center of mass energies and detector settings, distributions at 3000 fb−1

look like scaled-up version of the 150 fb−1 distributions in Figs. 7.7 and 7.8. Similarly, the
scaling factors given in Tab. I.2 are also comparable to the LHC Run 2 ones in Tab. 7.2. In
general, HL-LHC scaling factors are slightly larger due to improved detector settings.
In both mass hierarchies, the number of events in the peaks in the m2` distributions is

at the level of O(101 − 102). In the m2`_diff distributions, peaks around masses of SM
bosons are strongly suppressed, while at scalar masses contain O(101 − 102) events. For
both hierarchies, bins with m2`(_diff) & 500 GeV allow to distinguish BSM signals from SM
background and to search for on- and off-shell production of BSM scalars. The m3` and
m3`_diff distributions show a sizable number of events for all benchmark scenarios. The m3`

distributions of benchmark scenarios with MF < MS show peaks with O(101) events per bin
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Figure 7.10: Same as Fig. 7.9 but for the benchmark scenarios in the doublet model.

for MF = 600 GeV (singlet) and MF = 800 GeV (doublet), and O(102) events in the peak
bin for MF = 300 GeV (singlet). In all cases, peaks are strongly depleted in the m3`_diff
distributions with up to single events in the peak bins for light VLLS (MF = 300 GeV,
600 GeV in the singlet model). In contrast, benchmark scenarios with the inverse hierarchy
MF > MS have broad resonances in both the m3` and m3`_diff distributions, with O(1)
events in the peak bins. In these scenarios, which are the ones with MF = 800 GeV (black
curves) andMF = 800 GeV, 1000 GeV (blue, black curves) in the singlet and doublet models,
respectively, the m3`_diff distributions turn out to be the ideal probe for VLL signatures. To
summarize, data at LHC Run 2 can in principle allow for a detection of specific points in the
MF - MS plane, and HL-LHC will allow to further probe the parameter space and to extract
mass hierarchies.

7.3.4 Benchmark scenarios beyond g − 2

While κ is necessarily small due to bounds from measurements of Z-decay properties, the exact
size of κ′ is unconstrained by electroweak data. In order to explain the muon AMM, we fixed
κ′ according to Eq. (7.1.8). Since the deviations in the muon AMM are subject to debate in
the literature [130–132], we investigate the possibility that the tension between SM prediction
and data is reduced in the future. Therefore, we drop the condition in Eq. (7.1.8) and consider
κ′ as a free parameter. Since values of κ′ needed to accommodate ∆aµ tend to be rather large,
we study a more moderate value κ′ = 1. This scenario implies a less pronounced dominance
of decays into BSM scalars plus SM leptons. We consider distributions in the singlet model
only as in this model the MF , MS parameter space is largely untested by present CMS data
(see Fig 7.4). However, when fixing κ′ = 1 the constraints on the parameter space change
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Figure 7.11: Distributions of invariant masses m2`, m2`_diff, m3` and m3`_diff for the
singlet model with fixed κ′ = 1 and including the effects of parton shower and detector simu-
lation. The observables are computed for the different benchmark scenarios for a luminosity
of 150 fb−1 and

√
s = 13 TeV.

slightly. For example, the benchmark scenario with MF = 800 GeV, MS = 500 GeV is now
in conflict with data distributions provided by CMS, and we choose to replace this scenario
with the MF = 900 GeV, MS = 500 GeV scenario (see Fig. I.7).
The distributions of the mi(_diff) observables after detector simulation at 150 fb−1 and√
s = 13 TeV are shown in Fig. 7.11. Both the m2` and m2`_diff distributions turn out to

be very similar to the g − 2 benchmarks, shown in the upper row of Fig. 7.7. For MF < MS

(MF > MS), we find peaks at the masses of electroweak bosons (BSM scalars S) in the m2`

distribution. For the latter (black curve), the m2`_diff distribution shows a peak with a few
events, while for MF < MS peaks are depleted by about one order of magnitude compared
to the m2` distributions. The m3`(_diff) distributions show a striking difference compared
to the g − 2 scenarios (lower row of Fig. 7.7): we find peaks in the m3` distributions in all
three scenarios, regardless of the hierarchy of the BSM sector. The only difference is that
the resonance shows a slightly broader peak in the case MF > MS , as seen at the benchmark
pointMF = 900 GeV (black curve), compared to the scenarios with the inverse mass hierarchy
and MF = 300 GeV, 600 GeV (blue and red curves). The m3`_diff distributions show peaks
for MF > MS with a similar number of events compared to the m3` one, O(1). In contrast,
for scenarios with MF < MS the number of events in the peak is suppressed by about two
orders of magnitude relative to the m3` distribution.
To conclude, the presence of two peaks in distributions of both m2`_diff and m3`_diff

allows to estimate the size of the aforementioned coupling: if κ′ is too large, the peak in the
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m3`_diff distribution would turn into a very broad resonance. Thus, if two peaks are found
simultaneously, the coupling κ′ has to be as small as κ′ ∼ 1.

Note that in scenarios with κ′ = 0 the models would still provide lepton-flavor-violating-like
signatures for y 6= 0. In this case, ψi → Sij`j would happen at order yθ, and the decay Sij →
`−i `

+
j at order yθ2v/MF plus additional suppression from small lepton Yukawa couplings

to the Higgs boson. As mixing angles are necessarily small due to Z-data constraints, the
mi_diff observables would be strongly suppressed down to the level of statistical noise. Similar
results apply to scenarios with other representations of VLLs under SU(2)× U(1)Y without
the ψ − S − ` coupling, or scenarios with very large values of MS . Without any SM-BSM
portal couplings (κ = κ′ = 0) the phenomenology of VLLs would be completely different and
is discussed for various scenarios in Ref. [64].

7.4 Summary

The LHC provides a unique opportunity to study signatures of a BSM sector consisting of
VLLs and new scalars Sij carrying two flavor indices [28, 30]. Here, we considered models with
either SU(2)L singlet or doublet VLLs (7.1.2) explaining the AMMs of the electron and the
muon while providing a UV completion of the SM that is asymptotically safe. The additional
BSM Yukawa sector features couplings of the VLLs to new scalars and SM particles via
portal couplings κ and κ′. As the BSM scalars carry two flavor indices, the decay Sij → `+i `

−
j

produces a OCDF dilepton state without explicit lepton flavor violation. This lepton-flavor-
violating-like decay provides a signature that allows for the construction of null tests of the
SM.

Fixing κ′ according to Eq. (7.1.8) in order to explain the AMMs we derived constraints
on the MF -MS parameter space by comparing distributions of the scalar sum of transverse
momenta in the four-light-lepton channel to CMS data [400] (see Fig. 7.4). We found that
in the singlet model only scenarios with MF ∼ MS are in tension with data by CMS due to
the enhancement from on-shell scalar production (purple area). Constraints on the doublet
model are significantly stronger due the larger cross sections, and VLL massesMF < 800 GeV
and scenarios with MF ∼MS are already excluded by CMS. Requiring κ′ to be small enough
to allow for perturbation theory further restricts the parameter space, as it places an upper
limit on both MF and MS at the level of O(1) TeV.

To probe the specific signatures of the models we defined new observables m2`, m2`_diff,
m3`, andm3`_diff. These invariant masses allow to search for both scalar (in the dilepton dis-
tributions) and for VLL resonances (in the three-particle invariant masses). The m2(3)`_diff
distributions provide a suppression of the SM background. The suppression is particularly
efficient in the case of m3`_diff, which is in fact a null test of the SM. Fixing κ′ according to
Eq. (7.1.8) we find that m2` distributions after detector simulation normalized to 150 fb−1

show peaks at either the mass of the electroweak bosons given MF < MS , or at the mass
of the scalars for MF > MS . Only in the latter case, we also find peaks in the m2`_diff
distributions. For both observables, the number of events in the peaks is at the level of O(1).
For MS & 500 GeV we can separate SM and BSM signals for both on- and off-shell scalar
production. In case of the m3` distributions, we find narrow peaks with O(1) events per bin
at the mass of the VLLs as long as the decay into BSM scalars is kinematically forbidden
(MF < MS). If BSM mass hierarchies allow for decays of VLLs into BSM scalars (MF > MS),
the peaks in the m3`(_diff) distributions become very broad resonances due to large values
of κ′ required to explain the muon AMM. . Even though we find similar resonances in the
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m3`_diff distributions, the number of events in the bins is at the level of O(0.1) events only.
While the observables allow to distinguish different mass hierarchies of the BSM sector (in

contrast to the LT distribution), present integrated luminosities and detector performance
render the discovery of both the singlet and doublet model very challenging. As the distri-
butions would extremely benefit from a higher event count, we considered the potential of
experiments at the HL-LHC. We found that the number of events in the peaks rises by more
than one order of magnitude for all benchmark scenarios considered. This would allow to
detect BSM signatures and to infer information on the mass hierarchy of the BSM sector.
Dropping the explanation of the muon AMM allowed us to choose κ′ with more freedom.

In the case of κ′ = 1, narrow peaks in the m3` and m3`_diff distributions (see Fig. 7.11) are
present also for MF > MS with again O(1) events per bin after detector simulation.
Thus, the observables considered here do not only allow to search for direct-detection

signatures of VLLs, but provide a method to distinguish between different mass hierarchies
of the BSM sector. In addition, they also allow to estimate the size of the coupling κ′.
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8 Conclusion

This thesis presents opportunities for searches for BSM physics in both the framework of
EFTs as well as a specific model for BSM physics motivated by flavor anomalies. We focused
on the top-quark sector of the SMEFT Lagrangian, and studied synergies of top-quark and
beauty observables related by SU(2)L invariance.

To set up our model-independent analysis in the SMEFT framework, we started in Chap-
ter 4 with a global fit of three Wilson coefficients to data from t-channel single top-quark
production and top-quark decay. Originally intended as a testing ground for our fit setup,
it further enabled us to tackle two questions in the context of global fits in SMEFT. These
comprise the impact of quadratic contributions of dimension-six operators, O(Λ−4), and of
undetermined correlations of uncertainties on the fit. The former turned out to be a sub-
leading source of uncertainty only, as fits with linear and quadratic ansatz are found to be
in agreement. Conversely, correlations have a significant impact on the fit: Results for the
coefficients can either show agreement with the SM (neglecting correlations (4.2.4)) or deviate
by around 5σ from the SM (strong correlations (4.2.5)), see Fig. 4.5.

With our fit setup in place, we proceeded to link top-quark physics to the beauty sector.
This allows us to circumvent the issue of undetermined correlations, and, more importantly,
to include the hints for BSM physics in b→ s transitions in our global analysis. In this regard,
we presented in Chapter 5 a first step in the direction of combined fits to top-quark and B-
physics data. We considered tt̄γ production cross sections and B → Xsγ branching ratios
and constrained three SMEFT coefficients of top-quark dipole operators given in (5.1.1). The
constraints on the SMEFT Wilson coefficients were found to be significantly enhanced in
the fit to the combined dataset due to the complementarity of sensitivities of the individual
observables. The size of the posterior regions is reduced by up to one order of magnitude
compared to the individual fit to top-quark or B-physics data (see Fig. 5.6). In addition,
ambiguous solutions present in individual fits can be removed in the combined fit.

In Chapter6, we extended our setup and turned our attention to semileptonic four-fermion
operators. These are of special interest regarding their relation to the flavor anomalies seen
within present data on b→ s transitions. In addition, they provide top-quark contact inter-
actions with leptons which could be studied at future lepton colliders. Up-type and down-
type quark sectors are related via SU(2)L symmetry, and exploiting this link we combined
top-quark and beauty observables at present colliders as well as future scenarios for HL-
LHC, Belle II, and CLIC. We highlighted how combining data of top-quark pair production,
Z → bb̄ transitions, and b→ s transitions enables us to constrain eight SMEFT Wilson coef-
ficients, including two four-fermion ones that indicate deviations from the SM, see Figs. 6.3
and 6.8. Going beyond present data, we studied several future scenarios with projections
for measurements at HL-LHC, Belle II, and CLIC. While inclusion of Belle II measurements
already increases the sensitivity, see Fig. 6.9, a combination with observables at a future lep-
ton collider is paramount to constrain the complete eleven-dimensional parameter space, see
Fig. 6.10. In addition, we found that the fate of deviations from the SM found within present
b → sµ+µ− data is decided by Belle II measurements, even if CLIC data confirms the SM
predictions. This is due to the orthogonality of the sensitivities, see Fig. 6.11.
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Anomalies in present flavor data drive the hunt for BSM physics, and not in all cases BSM
physics is required to be at the TeV scale or above. Thus, direct detection of new physics can
be in the reach of experiments at the LHC offering an approach complementary to indirect
searches. In this regard, we considered in Chapter 7 an asymptotically safe extension of the
SM [28–30] featuring vector-like leptons and new scalars with a non-trivial flavor structure.
This model is again related to flavor anomalies, in this case the AMMs of the electron and the
muon. Considering two SU(2)L realizations of this model, we found that present data only
excludes a small region of the parameter space given that vector-like leptons transform as
SU(2)L singlets. In contrast, the doublet model is already strongly constrained, see Fig. 7.4.
To improve searches for these models, we proposed new observables exploiting the flavor
structure of the BSM sector. We showed that luminosities of Run 2 can, depending on the
mass hierarchy of the BSM sector and the values of the coupling constants (see Figs. 7.7 and
7.8), be sufficient to find signals of BSM physics in distributions of the observables. In the
future, the higher integrated luminosity at HL-LHC allows to discern hierarchies in the BSM
sector, see Fig. 7.9.
To conclude this thesis, our work opens up a new route for global fits to the top-quark

sector of SMEFT by combining data from top-quark and beauty physics, linking top-quark
physics to the flavor anomalies. We highlighted how this combination of observables improved
constraints on several SMEFT operators, and how it enabled us to test additional coefficients
removing ambiguities and flat directions present in fits to individual datasets. Especially in
the light of future measurements at (HL-)LHC and Belle II or proposed high-energy lepton
colliders, the increased precision will allow to pursue the quest for BSM physics with global
searches in top-quark and flavor-physics data. Furthermore, it will shed light on the question
whether BSM physics truly has the properties hinted at by present anomalies. However,
indirect searches are just one of two pillars of wisdom: Despite the versatility and model-
independence of global fits, direct searches for BSM physics have to be employed to test
for new particles whenever they are light enough to be directly produced. As anomalies
within data of electron and muon AMMs hint at the possibility that BSM physics can be
just around the corner, direct searches for new particles offer a complementary approach.
Even though standard tools in direct searches may already be pushed to their limits, novel
observables exploiting flavor-specific features of BSM physics open new directions in the
pursuit of BSM physics. In the era of searches for BSM signatures, only the combination of
these two approaches - direct and indirect searches - will ultimately drive our fundamental
understanding of nature into new territories.
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A Parameters and loop functions

In the following, we summarize the default values for SM parameters used in the analysis and
list analytic formulas of loop functions.

A.1 Input parameters

In our analysis, we use the following numerical values for the SM parameters [13]

mt = (173.1± 0.4)GeV ,
mt(mt) =

(
160+5

−4

)
GeV ,

mb(mb) =
(
4.18+0.04

−0.03

)
GeV ,

mc(mc) =
(
1.275+0.025

−0.035

)
GeV ,

ms(2GeV) =
(
0.095+0.009

−0.008

)
GeV ,

mZ = 91.188GeV ,
mW = 80.4GeV ,
αs(mZ) = 0.1181 ,

αe = 7.29735257× 10−3 ,

sin2 θw(mZ) = 0.2313 ,

GF = 1.166379× 10−5GeV−2 .

The relevant CKM matrix elements are given in Refs. [415, 416]

Vtb = 0.999097± 0.000024 ,

Vts = (−0.04156± 0.00056) exp[(1.040± 0.035)°] ,
Vcb = 0.04255± 0.00069 .

In addition, the experimental input for our explicit computation of BR(B̄ → Xsγ) reads [335,
417]

C = 0.568± 0.007± 0.01 ,

BR(B̄ → Xceν̄)exp = 0.1061± 0.0017 .

Note that these values are the default values for our analyses. However, for some compu-
tations we use numerical values slightly different from the ones specified above to match ex-
perimental analyses. In addition, whenever we employ tools such as MadGraph5_aMC@NLO,
flavio, or DELPHES 3 we apply the default values used in these tools if not stated otherwise.
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A.2 Loop functions

The functions EuW7 , F uW7 , EuW8 , and F uW8 relevant for the matching of the SMEFT operators
OuB, OuB, and OuB (see Eq. (5.1.1)) onto O7 and O8 (see Eq. (C.1.2)) are given as [221]

EuW7 (xt) =
−9x3t + 63x2t − 61xt + 19

48 (xt − 1)3
+

(
3x4t − 12x3t − 9x2t + 20xt − 8

)
ln (xt)

24 (xt − 1)4

+
1

8
ln
(
m2
W

µ2W

)
,

(A.2.1a)

F uW7 (xt) =
xt (2− 3xt) ln (xt)

4 (xt − 1)4
− 3x3t − 17x2t + 4xt + 4

24 (xt − 1)3
, (A.2.1b)

EuB7 (xt) = −
1

8
ln
(
m2
W

µ2W

)
− (xt + 1)2

16 (xt − 1)2
− x2t (xt − 3) ln (xt)

8 (xt − 1)3
, (A.2.1c)

F uB7 (xt) = −
1

8
, (A.2.1d)

EuW8 (xt) =
3x2t − 13xt + 4

8 (xt − 1)3
+

(5xt − 2) ln (xt)
4 (xt − 1)4

, (A.2.1e)

F uW8 (xt) =
x2t − 5xt − 2

8 (xt − 1)3
+

3xt ln (xt)
4 (xt − 1)4

, (A.2.1f)

EuG8 (xt) = EuB7 (xt) , (A.2.1g)
F uG8 (xt) = F uB7 (xt) , (A.2.1h)

with xt = m2
t /m

2
W .

The following functions relevant for the matching of up-type dipole operators on C9 and
C10 are taken from Ref. [221] and read

YuW (xt) =
3xt

4(xt − 1)
− 3xt

4(xt − 1)2
ln (xt) , (A.2.2)

ZuW (xt) =
99x3t − 136x2t − 25xt + 50

36(xt − 1)3
− 24x3t − 45x2t + 17xt + 2

6(xt − 1)4
ln (xt) , (A.2.3)

ZuB(xt) = −
x2t + 3xt − 2

4(xt − 1)2
+

3xt − 2

2(xt − 1)3
ln (xt) . (A.2.4)

The following functions parametrize contributions from both four-fermion operators and op-
erators with two Higgs bosons [371]

K0(x, µ) = −
x

32

[
ln µ2

m2
W

+
3(x+ 1)

2(x− 1)
− x2 − 2x+ 4

(x− 1)2
lnx
]
, (A.2.5)

K1(x, µ) =
x

16

[
ln µ2

m2
W

+
x− 7

2(x− 1)
− x2 − 2x− 2

(x− 1)2
lnx
]
, (A.2.6)

K2(x, µ) = −
x

8

[
ln µ2

m2
W

+ 1− lnx
]
, (A.2.7)

J2(x) =
x

8
, (A.2.8)
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J3(x, µ) = −
3

16
xt

[
ln µ2

m2
W

+
xt + 3

2(xt − 1)
− x2t + 1

(xt − 1)2
lnxt

]
, (A.2.9)

B(x) =
3

16
x

[
1

x− 1
− 1

(x− 1)2
lnx
]
, (A.2.10)

D(x) = −2

9
lnx− x

72

[
82x2 − 151x+ 63

(x− 1)3
− 10x3 + 59x2 − 138x+ 63

(x− 1)4
lnx
]
. (A.2.11)

With these definitions, functions relevant for the matching of SMEFT to C9 and C10 read
[371]

I1(xt) = −J2(xt)− 2K0(xt, µW )

=
xt
16

[
ln µ2

m2
W

− xt − 7

2(xt − 1)
− x2t − 2xt + 4

(xt − 1)2
lnxt

]
.

(A.2.12)

I2(xt) =J2(xt) +K2(xt, µw) +K0(xt, µ)

=− xt
32

(
5 ln

µ2W
m2
W

+
3(xt + 1)

2(xt − 1)
− 5x2t − 10xt + 8

(xt − 1)2
lnxt

)
,

(A.2.13)

I lq(xt) =− J2(xt) +K2(xt, µw) +K0(xt, µ)

=− xt
32

(
8 + 5 ln

µ2W
m2
W

+
3(xt + 1)

2(xt − 1)
− 5x2t − 10xt + 8

(xt − 1)2
lnxt

)
,

(A.2.14)

Iϕq1 (xt) =(−1 + 4 sin2 θw) (J2(xt) + 2J3(xt)−K1(xt)− 3K0(xt, µ))

+ 2
(
B(xt) + 2 sin2 θwD(xt)

)
=(−1 + 4 sin2 θw)

xt
32

(
4− 11 ln

µ2W
m2
W

− 5xt + 13

2(xt − 1)
+

11x2t + 2xt − 4

(xt − 1)2
lnxt

)
+

3

8
x

[
1

xt − 1
− 1

(xt − 1)2
lnxt

]
+ sin2 θw

{
−8

9
lnxt

− xt
18

[
82x2t − 151xt + 63

(xt − 1)3
− 10x3t + 59x2t − 138xt + 63

(xt − 1)4
lnxt

]}
,

(A.2.15)

Iϕq2 (xt) = (J2(xt) + 2J3(xt)−K1(xt)− 3K0(xt, µ)) + 2B(xt)

=
xt
32

(
4− 11 ln

µ2W
m2
W

− 5xt + 37

2(xt − 1)
+

11x2t + 2xt + 8

(xt − 1)2
lnxt

)
,

(A.2.16)

where we neglected CKM-suppressed contributions ∼ |Vts|2,∼ |Vtd|2, which are smaller by a
factor of at least ∼ 10−3.

Contributions from C̃
(1)
ϕq and C̃(3)

ϕq to Cmix
1 are parametrized with the functions Hi as [369]

H1(xt) = −
xt − 7

4(xt − 1)
− x2t − 2xt + 4

2(xt − 1)2
lnxt , (A.2.17)

H1(xt) = +
7xt − 25

4(xt − 1)
− x2t − 14xt + 4

2(xt − 1)2
lnxt . (A.2.18)

Finally, functions relevant for the matching of SMEFT coefficients onto CL at one-loop
level are taken from [370]. In the following, we give results with evanescent coefficients set to
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1:

IνuW =
mt

mW sin2 θw

(
− 3(xt − 2)

4
√
2(xt − 1)

− 3xt lnxt√
2(xt − 1)2

)
, (A.2.19)

Iν(1)ϕq =
1

sin2 θw

xt
8
− 3xt(xt + 1)

32(xt − 1)
−
xt(x

2
t − 2xt + 4) ln µ2W

m2
t

16(xt − 1)2
+

3xt ln
µ2W
m2

W

16 (xt − 1)2

+
(2m2

W +m2
Z)

8m2
W

−
3xt ln

µ2W
m2

t

8

 ,

(A.2.20)

Iν(3)ϕq =
1

sin2 θw

−xt
8

+
5xt(xt − 7)

32(xt − 1)
+
xt(7x

2
t − 2xt − 20) ln µ2W

m2
t

16(xt − 1)2
−

3xt(4xt − 9) ln µ2W
m2

W

16 (xt − 1)2

+
19m2

W +m2
Z

8m2
W

−
3 ln mu2W

m2
W

8
+

3m2
W ln µ2W

m2
W

4mW

 ,

(A.2.21)

Iνlu =
1

sin2 θw

−xt(xt − 7)

32(xt − 1)
+

(x3t − 2x2t + 4xt) ln µ2w
m2

t

16(xt − 1)2
−

3xt ln µ2w
m2

W

16(xt − 1)2

 , (A.2.22)

I
ν(1)
lq =

1

sin2 θw

xt
8
− 3xt(xt + 1)

32(xt − 1)
−
xt(x

2
t − 2xt + 4) ln µ2W

m2
t

16(xt − 1)2
+

3xt ln
µ2W
m2

W

16 (xt − 1)2

+
11(2m2

W +m2
Z)

48m2
W

+
(2m2

W +m2
Z) ln

µ2W
m2

Z

8mW

 ,

(A.2.23)

I
ν(3)
lq =

1

sin2 θw

xt
8
− 3xt(xt + 1)

32(xt − 1)
−
xt(x

2
t − 26xt + 28) ln µ2W

m2
t

16(xt − 1)2
+

3xt(8xt − 9) ln µ2W
m2

W

16 (xt − 1)2

+
−154m2

W − 11m2
Z

48m2
W

−
3 ln mu2W

m2
W

2
−

(2m2
W +m2

Z) ln
µ2W
m2

Z

8mW

 .

(A.2.24)
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B SMEFT Lagrangian at dimension six

In this appendix, we provide additional information about the SMEFT Lagrangian at dimen-
sion six. In App. B.1, we list the dimension-six operators in the Warsaw basis. In App. B.2,
we discuss the redefinitions of SM parameters induced by dimension-six operators at the ex-
ample of the gauge sector. The relations among the parameters in the SMEFT Lagrangian in
the two input schemes {α̌e, m̌Z , ǦF } and {m̌W , m̌Z , ǦF } are shown in App. B.3 In App. B.4,
we discuss implications for the WET Lagrangian which arise when SMEFT is considered as
the underlying theory.

B.1 Basis of dimension-six operators

ϕ6

Oϕ (ϕ†ϕ)3

ϕ4D2

Oϕ� (ϕ†ϕ)�(ϕ†ϕ)

OϕD

(
ϕ†Dµϕ

)∗ (
ϕ†Dµϕ

)
ψ2ϕ3

Oeϕ (ϕ†ϕ)(l̄LeRϕ)

Ouϕ (ϕ†ϕ)(q̄LuRϕ̃)

Odϕ (ϕ†ϕ)(q̄LdRϕ)

X2ϕ2

OϕG ϕ†ϕGA
µνG

Aµν

OϕG̃ ϕ†ϕ G̃A
µνG

Aµν

OϕW ϕ†ϕW I
µνW

Iµν

OϕW̃ ϕ†ϕW̃ I
µνW

Iµν

OϕB ϕ†ϕBµνB
µν

OϕB̃ ϕ†ϕ B̃µνB
µν

OϕWB ϕ†τ IϕW I
µνB

µν

OϕW̃B ϕ†τ IϕW̃ I
µνB

µν

ψ2Xϕ

OeW (l̄Lσ
µνeR)τ

IϕW I
µν

OeB (l̄Lσ
µνeR)ϕBµν

OuG (q̄Lσ
µνTAuR)ϕ̃G

A
µν

OuW (q̄Lσ
µνuR)τ

I ϕ̃W I
µν

OuB (q̄Lσ
µνuR)ϕ̃ Bµν

OdG (q̄Lσ
µνTAdR)ϕG

A
µν

OdW (q̄Lσ
µνdR)τ

IϕW I
µν

OdB (q̄Lσ
µνdR)ϕBµν

ψ2ϕ2D

O
(1)
ϕl (ϕ†i

←→
D µϕ)(l̄Lγ

µlL)

O
(3)
ϕl (ϕ†i

←→
D I

µϕ)(l̄Lτ
IγµlL)

Oϕe (ϕ†i
←→
D µϕ)(ēRγ

µeR)

O
(1)
ϕq (ϕ†i

←→
D µϕ)(q̄Lγ

µqL)

O
(3)
ϕq (ϕ†i

←→
D I

µϕ)(q̄Lτ
IγµqL)

Oϕu (ϕ†i
←→
D µϕ)(ūRγ

µuR)

Oϕd (ϕ†i
←→
D µϕ)(d̄Rγ

µdR)

Oϕud i(ϕ̃†Dµϕ)(ūRγ
µdR)

X3

OG fABCGAν
µ GBρ

ν GCµ
ρ

OG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

OW εIJKW Iν
µ W Jρ

ν WKµ
ρ

OW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

Table B.1: List of dimension-six operators other than four-fermion operators in the SMEFT
Lagrangian. With � we denote the contraction DµD

µ of two covariant derivatives.
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(R̄R)(R̄R)

Oee (ēRγµeR)(ēRγ
µeR)

Ouu (ūRγµuR)(ūRγ
µuR)

Odd (d̄RγµdR)(d̄Rγ
µdR)

Oeu (ēRγµeR)(ūRγ
µuR)

Oed (ēRγµeR)(d̄Rγ
µdR)

O
(1)
ud (ūRγµuR)(d̄Rγ

µdR)

O
(8)
ud (ūRγµT

AuR)(d̄Rγ
µTAdR)

(L̄L)(R̄R)

Ole (l̄LγµlL)(ēRγ
µeR)

Olu (l̄LγµlL)(ūRγ
µuR)

Old (l̄LγµlL)(d̄Rγ
µdR)

Oqe (q̄LγµqL)(ēRγ
µeR)

O
(1)
qu (q̄LγµqL)(ūRγ

µuR)

O
(8)
qu (q̄LγµT

AqL)(ūRγ
µTAuR)

O
(1)
qd (q̄LγµqL)(d̄Rγ

µdR)

O
(8)
qd (q̄LγµT

AqL)(d̄Rγ
µTAdR)

(L̄L)(L̄L)

Oll (l̄LγµlL)(l̄Lγ
µlL)

O
(1)
qq (q̄LγµqL)(q̄Lγ

µqL)

O
(3)
qq (q̄Lγµτ

IqL)(q̄Lγ
µτ IqL)

O
(1)
lq (l̄LγµlL)(q̄Lγ

µqL)

O
(3)
lq (l̄Lγµτ

I lL)(q̄Lγ
µτ IqL)

(L̄R)(R̄L)

Oledq (l̄jLeR)(d̄Rq
j
L)

(L̄R)(L̄R)

O
(1)
quqd (q̄jLuR)εjk(q̄

k
LdR)

O
(8)
quqd (q̄jLT

AuR)εjk(q̄
k
LT

AdR)

(L̄R)(L̄R)

O
(1)
lequ (l̄jLeR)εjk(q̄

k
LuR)

O
(3)
lequ (l̄jLσµνeR)εjk(q̄

k
Lσ

µνuR)

Table B.2: List of dimension-six four-fermion operators in the SMEFT Lagrangian. In some
operators we give explicitly the contracted isospin indices j, k.

Assuming baryon number conservation, the SMEFT Lagrangian at dimension six consists
of 59 different operators. They are listed in Tabs. B.1 and B.2 in the Warsaw basis [179]. Note
that not all of these operators are hermitian, and the hermitian conjugate of the operator is
added to the SMEFT Lagrangian together with the conjugated Wilson coefficient.
Many of these operators carry additional flavor indices, especially the four-fermion op-

erators. This dramatically increases the number of operators and Wilson coefficients. In
full flavor generality, the SMEFT Lagrangian consists of 2499 different operators (with 1350
CP -even and 1149 CP -odd couplings).
Dropping the assumption of baryon number conservation, four additional four-fermion op-

erators arise. In the Warsaw, basis these operators read

Oudq = εαβγεjk

[
(dαR)

T CuβR

] [(
qγjL

)T
ClkL

]
, (B.1.1a)

Oqqu = εαβγεjk

[(
qαjL

)T
CqβkR

] [(
uγR
)T
CeR

]
, (B.1.1b)

Oqqq = εαβγεjnεkm

[(
qαjL

)T
CqβkL

] [(
qγmL

)T
ClnL

]
, (B.1.1c)
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Oduu = εαβγ
[
(dαR)

T CuβR

] [(
uγR
)T
CeR

]
, (B.1.1d)

where C denotes the charge conjugation matrix.

B.2 Redefinition of SM parameters: the gauge sector

As discussed in detail in Ref. [190], definitions of fields as well as parameters (i.e. masses,
couplings) in the Lagrangian are modified by the presence of higher-dimensional operators.
As an example, we consider here the gauge part of the Lagrangian including contributions
from both the SM and higher-dimensional operators:

L(6)gauge =
CϕG
Λ2

ϕ†ϕGAµνG
Aµν +

CϕW
Λ2

ϕ†ϕW I
µνW

Iµν +
CϕB
Λ2

ϕ†ϕBµνB
µν

+
CϕWB

Λ2
ϕ†τ IϕW I

µνB
µν +

CG
Λ2

fABCGAνµ GBρν GCµρ +
CW
Λ2

εIJKW Iν
µ W Jρ

ν WKµ
ρ .

(B.2.1)

After SSB, these dimension-six operators give additional contributions to the kinetic terms of
the gauge fields in the SM Lagrangian in Eq. (2.1.50), and thus the gauge fields are no longer
canonically normalized. To solve this issue, the first step is to redefine the gauge fields:

GAµ = GAµ
(
1 +

CϕGv
2
T

Λ2

)
, W I

µ =WI
µ

(
1 +

CϕW v
2
T

Λ2

)
, Bµ = Bµ

(
1 +

CϕBv
2
T

Λ2

)
,

(B.2.2a)

where vT denotes the SMEFT Higgs VEV:

vT =

(
1 +

3CHv
2

8λΛ2

)
v . (B.2.3)

In addition, the gauge couplings are modified as

ḡs = gs

(
1 +

CϕGv
2
T

Λ2

)
, ḡ = g

(
1 +

CϕW v
2
T

Λ2

)
, ḡ′ = g′

(
1 +

CϕBv
2
T

Λ2

)
. (B.2.4)

Note that products such as gsGAµ = ḡsGAµ are unchanged by these redefinitions. While these
definitions take care of the gluon terms, the EW terms need additional care due to the addi-
tional mixing between B and W 3 introduced in Eq. (B.2.1). We define the mass eigenstates
as [418] (

W3
µ

Bµ

)
=

(
1 −v2tCϕWB

2Λ2

−v2tCϕWB

2Λ2 1

)(
cos θ̄ sin θ̄
− sin θ̄ cos θ̄

)(
Zµ
Aµ

)
, (B.2.5)

where the rotation angle θ̄ is defined as

tan θ̄ = ḡ′

ḡ
+
v2TCϕWB

2Λ2

(
1− ḡ′2

ḡ2

)
, (B.2.6a)

sin θ̄ = ḡ′√
ḡ′2 + ḡ2

(
1 +

v2TCϕWB

2Λ2

ḡ

ḡ′
ḡ2 − ḡ′2

ḡ2 + ḡ′2

)
, (B.2.6b)
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cos θ̄ = ḡ√
ḡ′2 + ḡ2

(
1−

v2TCϕWB

2Λ2

ḡ′

ḡ

ḡ2 − ḡ′2

ḡ2 + ḡ′2

)
. (B.2.6c)

With these definitions, the gauge boson masses are defined as:

m2
W =

ḡ2v2T
4

, m2
Z =

v2T
4

(
ḡ2 + ḡ′2

)
+
v4TCϕD
8Λ2

(
ḡ2 + ḡ′2

) v4TCϕWB

2Λ2
ḡḡ′ , (B.2.7)

which changes the ρ parameter at tree level to

ρ = 1 +
v2TCϕWB

2Λ2
. (B.2.8)

The effective couplings of the photon and the Z boson are given as

ē = ḡ sin θ̄ − ḡ cos θ̄
v2TCϕWB

2Λ2
, ḡZ =

ē

sin θ̄ cos θ̄

(
1
ḡ2 + ḡ′2

2ḡḡ′
v2TCϕWB

Λ2

)
. (B.2.9)

Note that the quantities θ̄i coincide with the SM ones θi when they are multiplied with a term
from the dimension-six Lagrangian up to corrections ∼ Λ−4 which are neglected. For more
details regarding this topic as well as the complete list of SMEFT redefinitions see Ref. [190].

B.3 Input scheme dependence

Considering the {αe,mZ , GF } scheme the tree level SM relations

ě =
√
4παe , ǧ′ =

ě

cos θ̌
, ǧ =

ě

sin θ̌
,

v̌2T =
1√
2ǦF

, m̌2
W = m̌2

Z cos2 θ̌ , sin2 θ̌ = 1

2

[
1−

√
1− 4πα̌e√

2ǦF
m̌2
Z

]
,

(B.3.1)

receive additional BSM contributions. Using the notation of Ref. [419] we write the shifts in
the following way:

δθi = θ̄i − θ̌i . (B.3.2)

The SM limit (Ci → 0) is identified as δθi → 0. We define short-hand notations for conve-
nience where additional superscripts denote the generation index of the fermion fields in the
effective operators:

δGF =
1

2ǦFΛ2

(
C

(3)11
ϕl C

(3)22
ϕl −

C2112
ll + C1221

ll

2

)
, (B.3.3a)

δm2
h =

m̌2
h√

2ǦFΛ2

[
−3Cϕ

2λ
+ 2
√
2ǦF v̄

2
T

(
Cϕ� −

1

4
CϕD

)]
, (B.3.3b)

δm2
Z =

1

2
√
2

m̌2
ZCϕD

ǦFm2
Z

+

√√
2α̌em̌ZCϕWB

Ǧ
3
2
FΛ

2
, (B.3.3c)

δm2
W = m̌2

W

(√
2δGF +

2δg

ǧ

)
. (B.3.3d)
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Using this notation, we find the following relations:

δv2T =
δGF

ǦF
, (B.3.4a)

δg′ =
ǧ′

2 cos 2θ̌

[
sin2 θ̌

(√
2δGF +

δm2
Z

m̌2
Z

)
+ cos2 θ̌ sin 2θ̌v̄2T

CϕWB

Λ2

]
, (B.3.4b)

δg =
−ǧ

2 cos 2θ̌

[
cos2 θ̌

(√
2δGF +

δm2
Z

m̌2
Z

)
+ sin2 θ̌ sin 2θ̌v̄2T

CϕWB

Λ2

]
, (B.3.4c)

δ sin2 θ = 2 cos2 θ̌ sin2 θ̌
(
δg

ǧ
+
δg′

ǧ′

)
+ v̄2T sin 2θ̌ cos 2θ̌

CϕWB

2Λ2
. (B.3.4d)

In the {α̌e, m̌Z , ǦF } we find {ᾱe, m̄Z} = {α̌e, m̌Z} while for EW processes ḠF is defined as
ḠF = 1/

√
2v̄2T .

In the {m̌W , m̌Z , ǦF } scheme the SM relations in Eq. (B.3.1) are altered to

ě = 2m̌W

√√
2ǦF sin θ̌ , ǧ = 2m̌W

√√
2ǦF , sin2 θ̌ = 1−

m̌2
W

m̌2
Z

.

ǧ′ = 2m̌Z

√
√
2ǦF

(
1−

m̌2
W

m̌2
Z

)
, v̌2T =

1√
2ǦF

,

(B.3.5)

In this input parameter scheme,
{
δGF , δm

2
h

}
are the same as in Eq. (B.3.3). The remaining

shifts read:

δαe
2α̌e

= −δGF√
2

+
δm2

Z

m̌2
Z

m̌2
W

2
(
m̌2
W − m̌2

Z

) − sin θ̌
m̌WCϕWB√
2m̌ZǦFΛ2

, (B.3.6a)

δ sin2 θ̌ = 2 cos2 θ̌ sin2 θ̌
(
δg′

ǧ′
− δg

ǧ

)
+ v̄2T

sin 2θ̌ cos 2θ̌CϕWB

2Λ2
, (B.3.6b)

δm2
Z

m̌2
Z

=
CϕD

2
√
2ǦFΛ2

+

√
2m̌WCϕWB

ǦF m̌ZΛ2

√
1−

m̌2
W

m̌2
Z

, (B.3.6c)

δm2
W

m̌2
W

= 0 , (B.3.6d)

δg′ = − ǧ
′δGF√
2
− ǧ1

δm2
Z

2 sin2 θ̌m̌2
Z

, (B.3.6e)

δg = − ǧδGF√
2

. (B.3.6f)

B.4 Implications for the low-energy Lagrangian

In the WET Lagrangian, effective operators arise already at dimension three. In the following,
we summarize the number of effective operators in the WET Lagrangian that are added to
the Lagrangian in Eq. 3.1.23 in the case of three (one) fermion generation up to dimension
six [150].

At dimension three, there are six independent operators plus their hermitian conjugates
(1 + 1 for one generation). These operators introduce Majorana mass terms for neutrinos
and violate lepton number by ∆L = 2. At dimension five, 35 independent dipole operators
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plus their conjugates (5 + 5) with ∆B = ∆L = 0 can be defined, where ∆B denotes changes
of the baryon number. In addition, 3 + 3 (1+1) Majorana-neutrino dipole operators with
∆L = 2 are present. At dimension six, the number of operators is significantly larger in the
case of three generations of fermions. There are in total 3631 (80) ∆B = ∆L = 0 operators,
600 + 600 (14 + 14) ∆L = ±2 ones, 6 + 6 (1 + 1) with ∆L = ±4, 288 + 288 (9 + 9) operators
that have ∆B = ∆L = ±1, and 228 + 228 (7 + 7) operators with ∆B = −∆L = ±1.
Considering WET as the low-energy limit of the SMEFT Lagrangian allows only for cer-

tain operators in the WET Lagrangian. Dimension-three WET operators are induced by
dimension-five operators in the SMEFT. From the WET dimension-five operators only those
with ∆B = ∆L = 0 receive contribution from dimension-six SMEFT operators of the class
ψ2Xϕ. Matching SMEFT operators to dimension-six WET operators is done by dividing the
ψ4 into subclasses with different chirality (L/R) and the dirac structure (scalar/vector/ten-
sor). This choice is, however, not unique and operators of one subclass can be converted into
operators of another by applying Fierz identities. In the δB = ∆L = 0 class, the triple-gluon
operators already exist in SMEFT while from the four-fermion operators receive contribu-
tions from both SMEFT four-fermion operators as well as contributions from diagrams with
the exchange of a heavy boson. Only for some operators with the (L̄L)(R̄R), (L̄R)(R̄L),
and (L̄R)(L̄R) chirality structure there are no contributions at dimension-six in the SMEFT.
WET ∆L = ±4 operators and ∆L = ±2 operators are induced in SMEFT after sponta-
neous symmetry breaking. However, such contributions stem from Higgs exchange diagrams
suppressed by small Yukawa couplings and are formally of higher order. In contrast, not all
∆B = ∆L = ±1 operators receive contributions from SMEFT at tree level (in total 36 plus
their hermitian conjugates), while ∆B = −∆L = ±1 operators do not receive any tree-level
contributions from SMEFT. The matching results can be found in Tabs. 9-21 of Refs. [150].

B.5 Solving renormalization group equations

The RGEs for Wilson coefficients can be written as

d

d lnµ
Ci = γji(µ)Cj , (B.5.1)

with the ADM γ. In the following, we consider contributions proportional to the strong
coupling αs only. The perturbative expansion of γ in powers of αs is given as

γ(µ) =
αs(µ)

4π
γ(0) +

α2
s(µ)

(4π)2
γ(1) +

α3
s(µ)

(4π)3
γ(2) + ... . (B.5.2)

Analogously, the coefficients expanded in powers of αs read

Ci(µ) = C
(0)
i (µ) +

αs(µ)

4π
C

(1)
i (µ) +

α2
s(µ)

(4π)2
C

(2)
i (µ) + ... . (B.5.3)

Given the values of the coefficients at a scale µ0 the RGE are used to evolve the coefficients
to the low-energy scale. The solution to Eq. (B.5.1) reads [420]

C(0)(µ) = U (0)(µ, µ0)C
(0)(µ0) , (B.5.4)
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C(1)(µ) =
4π

αs(µ)

(
U (0)(µ, µ0)

αs(µ0)

4π
C(1)(µ0) +

αs(µ)

4π
J (1)U (0)(µ, µ0)C

(0)(µ0)

−αs(µ0)
4π

U (0)(µ, µ0)J
(1)C(0)(µ0)

)
,

(B.5.5)

C(2)(µ) =
α2
s(µ0)

α2
s(µ)

U (0)(µ, µ0)C
(2)(µ0) +

αs(µ0)

αs(µ)
J (1)U (0)(µ, µ0)C

(1)(µ0)

− α2
s(µ0)

α2
s(µ)

U (0)(µ, µ0)J
(1)C(1)(µ0) + J (2)U (0)(µ, µ0)C

(0)(µ0)

− α2
s(µ0)

α2
s(µ)

U (0)(µ, µ0)(J
(2) − (J (1))2)C(0)(µ0)

− αs(µ0)

αs(µ)
J (1)U (0)(µ, µ0)J

(1)C(0)(µ0) .

(B.5.6)

and similarly for C(i) with i > 2. The matrices U (0), J (1) and J (2) are given as

U (0)(µ, µ0) = V diag
[(

αs(µ0)

αs(µ)

)ai]
V −1 , (B.5.7)

J (i) = V S(i)V −1 , (B.5.8)

with (
V −1

(
γ(0)eff

)T
V

)
ij

= 2β0aiδij , (B.5.9)

and

S
(1)
ij =

β1
β0
aiδij −

G
(1)
ij

2β0(1 + ai − aj)
, (B.5.10)

S
(2)
ij =

(
β2
2β0
− β21

2β0

)
aiδij +

∑
k

2β1aiδik −G
(1)
ik

2β0(2 + ai − aj)
S
(1)
kj +

β1G
(1)
ij − β0G

(2)
ij

2β20(2 + ai − aj)
, (B.5.11)

G(i) = V −1
(
γ(i)eff

)T
V . (B.5.12)

The coefficients βi are taken from the expansion of the beta function of the QCD coupling
with β0 = 11− 2/3nq, β1 = 102− 38nq/3 and β2 = 2857/2− 5033/18nq + 325/54n2q with nq
being the number of active quarks.
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C Weak effective theories

In the following, we list the WET Lagrangians used throughout this work.

C.1 b → sγ and b → s`+`− transitions

The Lagrangian that describes b → sγ and b → s`+`− transitions was originally formulated
as the weak effective Hamiltonian [152, 311] and is given as

Lb→s
WET =

4GF√
2
V ∗
ts Vtb

8∑
i=1

C̄iQi . (C.1.1)

Here, Qi are effective operators and C̄i are the correspondingWilson coefficients parametrizing
both SM and BSM contributions. The operators relevant for b→ s transitions are [152, 311]

Q1 = (s̄L γµ T
a cL)(c̄L γ

µ T a bL) , Q2 = (s̄L γµ cL)(c̄L γ
µ bL) ,

Q3 = (s̄L γµ bL)
∑
q

(q̄ γµ q) , Q4 = (s̄L γµ T
a bL)

∑
q

(q̄ γµ T a q) ,

Q5 = (s̄L γµ γν γσ bL)
∑
q

(q̄ γµ γν γσ q) , Q6 = (s̄L γµ γν γσ T
a bL)

∑
q

(q̄ γµ γν γσ T a q) ,

Q7 =
e

16π2
mb(s̄L σ

µν bR)Fµν , Q8 =
gs

16π2
mb(s̄L σ

µν T a bR)G
a
µν ,

Q9 =
e2

16π2
(s̄L γµ bL)

(
¯̀γµ `′

)
, Q10 =

e2

16π2
(s̄L γµ bL)

(
¯̀γµ γ5 `′

)
,

(C.1.2)
where L(R) denote chiral left (right) projection operators, and Fµν is the photon field strength
tensor.

C.2 b → sνν̄ transitions

The effective Lagrangian describing b→ sν̄ν transitions reads:

LνWET =
4GF√

2
V ∗
tsVtb (CL(µ)QL(µ) + CR(µ)QR(µ)) , (C.2.1)

where the effective operators are defined as

Qνν
′

L =
e2

16π2
(s̄LγµbL)(ν̄γ

µ(1− γ5)ν ′) , Qνν
′

R =
e2

16π2
(s̄RγµbR)(ν̄γ

µ(1− γ5)ν ′) . (C.2.2)
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C.3 Bs − B̄s mixing
The last process we consider here is Bs− B̄s mixing. The part of the Lagrangian relevant for
our work reads [366]

Lmix
WET =

G2
Fm

2
W

16π2
Qmix

1 |VtbV ∗
ts|

2Cmix
1,tt , (C.3.1)

where

Qmix
1 = (s̄γµPLb) (s̄γ

µPLb) . (C.3.2)
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D Search for physics beyond the Standard
Model at colliders

Measurement at colliders provide a unique opportunity to test the SM and to search for signa-
tures of BSM physics. In order to compute SM and BSM predictions for observables, a variety
of tools has to be employed, regardless of the new-physics model considered. In addition, in
order to determine the values of the parameters allowed by experimental measurements, a
consistent statistical framework has to be employed.

We present tools employed for the computation of SM and BSM contributions to observ-
ables at colliders and the statistical and theoretical framework applied in this work to derive
constraints on the parameter space of the model considered in the analysis. We first intro-
duce the concept of jets in Sec. D.1 and discuss why they necessarily arise. Afterwards, we
present the theoretical concept of the parton distribution functions used for computation of
observables at hadron colliders in Sec. D.2 In Sec. D.3, we give the different steps needed for
the computation of observables at colliders.

D.1 Final state radiation and the notion of jets

In computations of higher-order contributions to scattering processes such as e+e− → µ+µ−

in QED virtual corrections to the tree-level process have to be included in the computa-
tion. Consider the virtual vertex corrections to the tree-level process shown in Fig. D.1 (for
simplicity, we consider contributions proportional to the muon coupling only). While the
counterterm contributions from the second diagram cancel all occurring UV divergences, IR
divergences do still occur in the computation. Introducing a photon mass mγ as a regulator
for the divergences we find for the virtual correction to the total cross section [421]:

σV =
e2

8π2
σ0

(
− ln2

m2
γ

q2
− 3 ln

m2
γ

q2
− 7

2
+
π2

3

)
, (D.1.1)

where σ0 is the tree-level result for the cross section, and e refers to the renormalized coupling.
The logarithm ln2(m2

γ/q
2) is called Sudakov double logarithm [422] and is a characteristic

feature of IR divergences. As such, the divergent logarithms ∼ ln2 remain in the computation
even when comparing two cross sections at different scales. The solution to this issue is
to include final-state radiation from real-emission diagrams as shown in Fig. D.2. Squaring
these diagrams gives contributions at the same order in the coupling as interference terms
between tree-level diagrams and virtual-correction diagrams. Computing these diagrams
we encounter two kinds of divergences which occur when the product of the four-vectors,
pγpµ± = EγEµ± cos θ, of the emitting particle and the photon vanishes: those with Ei → 0
are called soft singularities, and singularities with cos θ → 1 (photon and emitting particle
are in same direction) are referred to as collinear singularities. Again, divergences can be
regulated with a photon mass, and we find for the real-emission contributions to the cross
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e−

e+

µ−

µ+

e−

e+

µ−

µ+

Figure D.1: Virtual corrections to the tree level process of e−e+ → µ−µ+ scattering at NLO
in the muon coupling.

section [421]

σR =
e2

8π2
σ0

(
− ln2

m2
γ

q2
− 3 ln

m2
γ

q2
+ 5− π2

3

)
. (D.1.2)

While both the virtual corrections as well as the real-emission contributions are IR divergent
their sum is finite:

σV + σR = σ0
3e2

16π2
. (D.1.3)

The physical interpretation of this finding is that a final state particle such as the muon can
not be distinguished from a particle with an additional arbitrary number of soft or collinear
photons. The reason is that there are always lower limits Elow and θlow on the resolution
of the energy and the angle between a photon and a particle, respectively. Objects, which
describe such final states, are called jets. In general, any experimental resolution parameter
can act as an IR regulator.
Almost every final state of a scattering process at high-energy colliders contains such a

collection of collimated particles. The most prominent example for jets and also the one
that is mostly observed experimentally are QCD jets. Here, we would replace the muon with
a quark and the photon with a gluon in the example discussed above. The quark radiates
gluons which split into additional gluons and quark-antiquark pairs. However, an important
difference arises in QCD compared to QED. Due to the different energy dependence of the
coupling constants (see also Fig. 2.1) quarks are not observed as free particles at colliders.
Instead, at distances larger than the length scale Λ−1

QCD (anti-)quarks and gluons hadronize
into bound states. These hadrons continue to decay into (meta-)stable particles such aus
pions which are then measured by the experiment. As the radiation happens dominantly in
the direction of the original hard parton, the hadrons are grouped together in a jet. The
four-momentum of the jet than serves as an approximation for the four-momentum of the
original parton. In experiments, the exact reconstruction of jets, and thus of the hard parton,
are defined by the jet algorithm used to cluster the particles into one jet. One example is the
anti-kt algorithm [333], where essentially soft particles within a cone with radius R around a
hard particle are clustered together with the hard particle to form a jet.
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Figure D.2: Real emission diagrams process of e−e+ → µ−µ+ scattering.

D.2 Parton distribution functions

Similarly to the higher-order corrections to the final-state particles, IR divergences occur in
the case of initial state radiation. Again, the sum of virtual vertex corrections and initial-state
radiation contributions is IR finite. The physical interpretation, however, is fundamentally
different. These infrared divergences occur in the propagators ∼ 1/(pe− pγ)2 of intermediate
states as this propagator can develop soft and collinear divergences. In QED, there are no
massless charged particles, and thus the collinear singularities are regulated by the particle
mass so that large logarithms ∼ lnm2

e/E
2 appear. In contrast, collinear divergences can

appear in QCD as the massless gluons carry charge and can emit other gluons. Such IR
divergences can be canceled when a probabilistic distribution of initial states is assumed
[423–425].

One example for such a distribution of initial states are PDFs fi(x,Q2). These functions
parametrize the probability of finding a parton i inside the proton carrying fraction x of
the proton momentum, and Q denotes the energy scale of the hard process. PDFs allow to
compute observables such as cross sections in terms of partons by convolving cross sections at
parton level with the distribution functions. Consider as an example the total cross section
of proton-proton scattering

σ(pp→ X) =
∑
q,q′

∫
dx1dx2fq(x1, Q

2)fq′(x2, Q
2)σ̂(qq′ → X) , (D.2.1)

where σ̂ denotes the cross section computed at parton level, and q, q′ run over all quarks,
antiquarks and gluons. As such, making predictions for processes at hadron colliders such as
the LHC requires precise knowledge of the PDFs. However, QCD makes no predictions about
the parton content of the proton, and as such the PDFs are determined from fits to data.
In these fits, observables from a large variety of processes are used employing the DGLAP
evolution equation [426–429] named after Dokshitzer, Gribov, Lipatov, Altarelli and Parisi.
At leading order these equations read

dfi(x, µ)

d lnµ
=
∑
j

αs
π

∫ 1

x
d ln ξfj(ξ, µ)Pij

(
x

ξ

)
, (D.2.2)

where the Pij are DGLAP splitting functions and i, j run over quarks, antiquarks and gluons.
The DGLAP evolution equations allow to predict the evolution of the PDFs from a scale µ0
within perturbative QCD. However, as stated above, solving the DGLAP equations does not
make any predictions about the x dependence of the PDFs at a given scale Q2. Several groups
determine the PDFs from fits to data from fixed-target experiments, HERA, Tevatron and
LHC, see Refs. [430–435] for recent examples of PDF determinations at NNLO.
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Model FeynRules

Feynman rules UFO

Parton level MadGraph5_aMC@NLO

Hadron level PYTHIA 8

Detector level DELPHES 3

Figure D.3: List of steps and related tool needed in an analysis of collider signatures of a
model. See text for details.

D.3 Related tools
Computing observables in scattering processes at colliders requires different steps, as shown
in Fig. D.3 In the following, we discuss each of these five steps.

Model: The first step is to provide a definition of a physical model in the form of fields,
a Lagrangian, and the parameters of the model. This information can be implemented in
FeynRules [436] which allows to calculate the Feynman rules.

Feynman rules: The Feynman rules are than provided in the UFO format [297] for autom-
atized matrix-element generators. This format is designed to be compatible with a variety of
generators. In addition, it is generic in the sense that no assumptions are made about the
structures appearing in the model.

Parton level: MC generators are used for a variety of applications, e.g. predicting event rates
or simulating backgrounds. Especially, MC event generators allow to compute cross sections
of the hard scattering processes including initial and final state radiation. An example for such
a MC generator is MadGraph5_aMC@NLO [298] which allows the automatic computation of
tree level and NLO cross sections well as the matching to parton-shower simulations.

Hadron level: After the generation of the parton-level events the effects of final and initial
state radiation have to be included, see also App. D.1. As such, the parton configuration is
hadronized and followed by decays of the unstable particles. Typically, a MC generator, e.g.
PYTHIA 8 [329], is used for this step. This process is, in contrast to the previous step, to the
largest part non-perturbative and requires modeling and parameterization of data, especially
for the decays. At the end of this step, realistic events which could be observed by a detector
are obtained.

Detector level: As a final step of phenomenological studies, the effects of detectors have to
be included in the analysis. This is done by performing a detector simulation. Full simulations
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performed by experimental collaborations are very time-consuming. An example for a toolkit
for such simulations is Geant4 [437]. Most phenomenological studies, however, do not need
a complete detector simulation, and a fast parametrization of the detector response can be
employed to obtain a sufficient precision. In this approach, which is used in the software
toolbox DELPES 3 [414], the detector response at the particle level is parametrized allowing
to e.g. treat pile-up, b tagging, or jet and missing energy resolution.
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E Toy example for correlation matrices

In order to demonstrate the general shape of the correlation matrices introduced in in Sec. 4.2,
we consider an example with five measurements: two measurements of total cross sections at
7 TeV of single-top (σ(tq)A

7 ) and single-antitop production (σ(t̄q)A
7 ) by ATLAS, two measure-

ment of single-top production cross section at 8 TeV by ATLAS (σ(tq)A
8 ) and CMS (σ(tq)C

8 ),
and one measurement of the total decay width by ATLAS (Γt). Within our parametrization,
the correlation matrix of systematic uncertainties reads



σ(tq)A
7 σ(t̄q)A

7 σ(tq)A
8 σ(tq)C

8 Γt

σ(tq)A
7 1 ρsys

ρsys
2 0 0

σ(t̄q)A
7 ρsys 1

ρsys
2 0 0

σ(tq)A
8

ρsys
2

ρsys
2 1 0 0

σ(tq)C
8 0 0 0 1 0

Γt 0 0 0 0 1


, (E.0.1)

while the matrix for theory uncertainties is given by



σ(tq)A
7 σ(t̄q)A

7 σ(tq)A
8 σ(tq)C

8 Γt

σ(tq)A
7 1 ρth

ρth
2

ρth
2 0

σ(t̄q)A
7 ρth 1 ρth

2
ρth
2 0

σ(tq)A
8

ρth
2

ρth
2 1 ρth 0

σ(tq)C
8

ρth
2

ρth
2 ρth 1 0

Γt 0 0 0 0 1


. (E.0.2)

As can be seen, we do not include correlations among observables from single top production
and top-quark decay. While single-top production is indeed a background process for tt̄
production where the decay width of the top quark is measured, we do not include this
kind of correlation. The reason is that in all experimental analyses background processes are
assumed to be SM like. Thus, in order to include additional correlations the measurements
would have to be reanalyzed without assumptions on the background.

In the fit with the ’linear + δEFT’ ansatz an additional matrix for the EFT uncertainties
has to be considered, which has the same structure as the matrix of theory uncertainties:



σ(tq)A
7 σ(t̄q)A

7 σ(tq)A
8 σ(tq)C

8 Γt

σ(tq)A
7 1 ρEFT

ρEFT
2

ρEFT
2 0

σ(t̄q)A
7 ρEFT 1 ρEFT

2
ρEFT
2 0

σ(tq)A
8

ρEFT
2

ρEFT
2 1 ρEFT 0

σ(tq)C
8

ρEFT
2

ρEFT
2 ρEFT 1 0

Γt 0 0 0 0 1


. (E.0.3)
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Note that we do not include correlations between measurements of observables from different
physical processes, which are single-top production and top-quark decay since all three coef-
ficients affect t-channel single top-quark production, while only two, namely C̃(3)

ϕq and C̃uW ,
give contributions to top-quark decay observables. Contributions at O(Λ−2) from C̃qq are in
principle present for t→ bjj but are strongly suppressed, since theW boson can be produced
on-shell [227, 302]. In addition, while quadratic contributions do not suffer from this kind
of suppression, their contributions are still negligible, because in experimental analyses the
W boson is reconstructed out of its decay particles. Thus, only a small kinematic window
for contributions from four-fermion operators remains. In our analysis, the general shape of
the correlation matrices serves for a parametrization of the energy dependence of correlation
coefficients only. An inclusion of the additional correlation among different observables lies
beyond the scope of this ansatz. In all fits with the ’linear + δEFT’ ansatz we set ρEFT = 0.9
as strong correlations among the measurements are expected.
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F Constraints in different correlation scenarios

In this appendix, we present additional information for fits of the coefficients (4.1.2) to data
in Tab. 4.1.

F.1 ’No correlation’ scenario
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Figure F.1: Results from the fit with the linear ansatz in the ’no correlation’ scenario (4.2.4).
Plots on the diagonal show the one-dimensional posterior distribution for each coefficient.
Plots on the lower left show the two-dimensional posterior distributions from fits to total cross
sections only (light blue), differential cross sections only (blue), helicity fractions only (grey)
and the combined dataset (dark blue). Plots in the upper right show the two-dimensional
projections from the fit to the combined dataset but zoomed in. Stars denote the SM point.
Colored areas show the smallest intervals containing 95% of the posterior probability.

Results for fits in the ’no correlation’ scenario (4.2.4) with both the linear and ’linear +
δEFT’ ansatz are shown in Figs. F.1 and F.2, respectively. In the fit with the linear ansatz, we
obtain results very similar to those found in the fit with the quadratic ansatz (Fig. 4.3). For
all coefficients we find agreement with the SM within the smallest intervals containing 95%
of the posterior probability. The helicity fractions strongly constrain C̃uW while constraints
on C̃(3)

ϕq and C̃qq are dominated by differential cross sections. This also leads to correlations
among the coefficients seen in the two-dimensional posterior distributions.

In fits to the different datasets with the ’linear + δEFT’ ansatz, we find again agreement
with the SM within the 95% intervals for all coefficients. However, in the case of C̃(3)

ϕ , the
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Figure F.2: Same as Fig. F.1 but with the ’linear + δEFT’ ansatz.

SM point is barely included in the interval. Again, constraints on C̃uW are driven by helicity-
fraction measurements, while differential cross sections dominate constraints on the other two
coefficients.

F.2 ’Best guess’ scenario
In Figs. F.3 and F.4 we show results from fits in the ’best guess’ scenario (4.2.5) with the
linear and ’linear + δEFT’ ansatz, respectively. We find that the constraints obtained from
differential cross sections deviate from the SM and from results from fits the other two sub-
sets. This leads to deviations from the SM for C̃(3)

ϕq , which are even larger in the ’linear +
δEFT’ scenario due to the additional correlations. In the case of C̃uW , the fit to differential
cross sections shows deviations from the SM. However, constraints are dominated by helicity
fraction measurements which result in an interval around the SM value. Interestingly, even
though constraints on C̃qq are dominated by differential cross sections this dataset fixes C̃qq
to values around the SM. The reason is that C̃qq strongly contributes to these observables
and thus only small values are allowed by the data. Again, we observe a correlation between
C̃

(3)
ϕq and C̃qq in the two-dimensional posterior distribution.
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Figure F.3: Results from the fit with the linear ansatz in the ’best guess’ scenario (4.2.5).
Plots on the diagonal show the one-dimensional projection of posterior distribution for each
coefficient. Plots on the lower left show the two-dimensional posterior distributions from
fits to total cross sections only (light blue), differential cross sections only (blue), helicity
fractions only (grey) and the combined dataset (dark blue). Plots in the upper right show
the two-dimensional posterior distributions from the fit to the combined dataset but zoomed
in. Stars denote the SM point. Colored areas correspond to the smallest intervals containing
95% of the posterior probability.
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Figure F.4: Same as Fig. F.3 but with the ’linear + δEFT’ ansatz.
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F.3 Constraints in future scenarios
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Figure F.5: The one-dimensional representation of the posterior distribution of the coeffi-
cients C̃i from fits to data in Tab. 4.1 but with statistical uncertainties scaled to 3000 fb−1.
We show results in both the ’no correlation’ scenario (4.2.4) and the ’best guess’ scenario
(4.2.5) within different BSM parametrizations. Dots denote the central value and lines the
smallest intervals containing 95% of the posterior probability. The SM is indicated by the
vertical dashed line.

Operators Linear Linear + δEFT Quadratic
’No correlation’

C̃
(3)
ϕq [−0.043, 0.008] [−0.100, −0.010] [−0.044, 0.008]

C̃uW [−0.009, 0.002] [−0.030, 0.010] [−0.009, 0.002]
C̃qq [−0.012, 0.005] [−0.012, 0.006] [−0.012, 0.005]

’Best guess’
C̃

(3)
ϕq [−0.196, −0.146] [−0.330, −0.250] [−0.20, −0.140]

C̃uW [0.014, 0.039] [0.005, 0.045] [0.015, 0.040]

C̃qq [−0.010, −0.004] [−0.008, 0.000] [−0.010, 0.003]

Table F.1: Numerical values of the smallest intervals containing 95% of the posterior prob-
ability shown in Fig. F.5. The central value lies in the center of these intervals.

In Fig. F.5 we give results obtained in fits to data in Tab. 4.1 but with statistical uncer-
tainties scaled to an integrated luminosity of 3000 fb−1. The numerical values of the these
intervals are shown in Tab. F.1. In general, in the linear and quadratic fits the constraints
on the coefficients do not significantly improve when compared to the 300 fb−1 scenario (see
Fig. 4.9 and Tab. 4.4). Changes in the ’no correlation’ scenario are at the level of a few
percent, while those in the ’best guess’ scenario are at most around 15%. In contrast, re-
sults obtained in fits within the ’linear + δEFT’ parametrizations can be different at higher
luminosities. While in the ’no correlation’ scenario the results agree for all coefficients up to
percent-level corrections, large effects are found in the ’best guess’ scenario. For C̃(3)

ϕq and C̃qq
the size of the smallest intervals changes by about 3% and 10%, respectively. In contrast,
for C̃uW the size of the intervals shrinks by about 20%. In addition, the interval is shifted
closer to the SM. In the 300 fb−1 future scenario the deviation of the central value from the
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Figure F.6: Central values of C̃(3)
ϕq for correlation parameters ρsys, ρth = 0.0, 0.3, 0.6, 0.9

in the three EFT-implementations from a fit to the data given in Tab. 4.1 with statistical
uncertainties scaled to 300 fb−1, assuming present central values, systematic uncertainties
and theory uncertainties. Central values below and to the right of the grey line are in conflict
with the SM at more than 2 σ.

SM was at the level of 4σ. Conversely, in the 3000 fb−1 future scenario this deviation is only
at the level of 2.5σ. We expect that this change is due to the fact that constraints on C̃uW
are dominated by helicity fractions, which in turn receive sizable uncertainties (compared to
experimental and theory uncertainties) in the ’linear + δEFT’ fit. While indeed statistical un-
certainties are already suppressed in the 300 fb−1 future scenario, this suppression is enhanced
in the 3000 fb−1 scenario, and thus changes in the results of the fit are to be expected.

The central values of C̃(3)
ϕq obtained in the 300 fb−1 scenario are shown in Fig. F.6 for

different values of the correlation parameters ρth and ρsys. ly to the results from fits to current
data (see Fig. 4.6), we find that correlations of systematic uncertainties have a stronger impact
on the results of the fit than theory uncertainties. For ρsys 6= 0 C̃

(3)
ϕq deviates from the SM by

more than 2σ in all three EFT implementations regardless of ρth. In contrast, for ρsys = 0 and
ρth ≤ 0.6 we find agreement with the SM at the level of 2σ in the linear and quadratic ansatz.
In the ’linear + δEFT’ ansatz, all values of the correlation coefficients result in deviations of
more than 2σ from the SM. As expected, stronger correlations lead to stronger deviations
from the SM.
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G Fiducial cross sections within SMEFT
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Figure G.1: The tt̄γ cross section for different values of the coefficients C̃uG, C̃uW , and
C̃uZ (see Eq. G.0.1). For each coefficient we show sampling points and the result of the
interpolation represented as slices of the phase space where only one of the Wilson coefficient
is varied at a time.

In order to compute the fiducial cross sections of tt̄γ production, we parametrize the cross
sections at parton level with the ansatz in Eq. (4.2.1). To do so, we use cross sections
computed with MadGraph5_aMC@NLO for different vlaues of the coefficients C̃i in Eq. (5.1.1).
The simulations are performed employing the dim6top_LO UFO model where, for the sake
of the computation, we set Λ = 1 TeV. To ensure that our computation is suitable for a
comparison to the measurement in Ref. [313] we generated samples similar to those described
in the experimental analysis. The sampling points are generated with the dim6top_LO UFO
model varying the three coefficients CuG, CuW , and CuZ . The latter is defined as the linear
combination

CuZ = cos θwCuW − sin θwCuB , (G.0.1)

and is used in the UFO model instead of CuB. We first parametrize the cross sections in
terms of these three coefficients, and later switch to the equivalent basis formulated in terms
of C̃uG, C̃uW and C̃uB.

In total we choose 201 different sampling points and generate 50000 events for each point.
The interpolation with the ansatz in Eq. (4.2.1) is performed using a least squared fit with
the Levenberg–Marquardt algorithm provided in the LsqFit.jl package [438]. Results for
the tt̄γ cross section at parton level and examples for sampling points are shown in Fig. G.1.
We find that the interpolation describes the cross sections simulated at parton level with
MadGraph5_aMC@NLO very well, as the relative differences between interpolation and sam-
pling points have a standard deviation as small as 0.2%.

Fiducial acceptances are computed by employing PYTHIA 8 to shower the parton-level
events previously generated with MadGraph5_aMC@NLO and performing an event selec-
tion at particle level with MadAnalysis. Jets are clustered with the anti-kt algorithm with a
radius parameter of R = 0.4 using the FastJet package. Following the selection described in
Ref. [313], we apply an event selection with MadAnalysis at each sampling point. Comparing
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Figure G.2: The fiducial acceptance of the single-lepton channel A(1`) for different values of
the Wilson coefficients. We show both the sampling points and the result of the interpolation.
For each coefficient we consider slices of the parameter space where only one coefficient is
considered to be different from zero.
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Figure G.3: Same as Fig:G.2 but for the dilepton channel.

our results for the SM with those given in the experimental analysis we find the same value
for the dilepton channel and only small deviation of 3% for the single-lepton channel. In
addition, we find that applying the fiducial cuts directly to the parton-level simulation does
not serve as a first approximation of our results, since the LO SM predictions deviate by
25% and 50% from the values quoted in Ref. [313] for the dilepton and single-lepton channel,
respectively.
The fiducial acceptance is parametrized according to Eq. (5.4.1). The results for σi can

directly be inferred from the interpolation of the total cross section leaving only the accep-
tances Ai as free parameters. We perform a least squares fit of the ansatz in Eq. (5.4.1) to
the fiducial acceptance computed at every sampling point. The results of these interpolations
are shown together with the sampling points in Figs. G.2 and G.3 for the single-lepton and
dilepton channel, respectively. Comparing the results of the interpolation with the sampling
points we find only small deviations in both channels: In the single-lepton channel the stan-
dard deviation of the relative difference between sampling points and interpolation is 1.3%,
while in the dilepton channel the standard deviation is 3.9%. With these results, the fiducial
cross sections at LO are obtained multiplying the interpolations of the fiducial acceptance
and the total cross sections. In order to include NLO corrections for the SM predictions we
use k-factors [313, 314].
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H Linking top and beauty

In this appendix, we give additional information for the analysis of constraints on the top-
quark sector of SMEFT derived from observables at present and future colliders. We first
discuss the definition of both SMEFT coefficients and effective operators in the mass basis
in Sec. H.1. In App. H.2, we give the numerical values of the matching conditions linking
SMEFT and WET coefficients. In App. H.3 we provide additional information on the poste-
rior distribution obtained in fits to present data in Sec. 6.3. Results from fits in the far future
scenario in Sec. 6.4.3 are shown in more detail in App. H.4.

H.1 Coefficients and operators in the mass basis

As discussed in Sec. 3.2.3, we define Wilson coefficients in the up-mass basis, in which the
flavor mixing is entirely in the down-sector. With this convention, the coefficients of the
operators (6.1.1) in the mass basis are

Ĉ(1)ij
ϕq = Ĉ(1)kl

ϕq

(
Su†L

)
ik

(
SuL

)
lj
, Ĉ(3)ij

ϕq = Ĉ(3)kl
ϕq

(
Su†L

)
ik

(
SuL

)
lj
,

ĈijuB = ĈkluB

(
Su†L

)
ik

(
SuR

)
lj
, ĈijuW = ĈkluW

(
Su†L

)
ik

(
SuR

)
lj
,

ĈijuG = ĈkluG

(
Su†L

)
ik

(
SuR

)
lj
, Ĉijϕu = Ĉklϕu

(
Su†R

)
ik

(
SuR

)
lj
.

Similarly, results for the four-fermion operators (6.1.2) read

Ĉ
(1)ij
lq = C

(1)kl
lq

(
Su†L

)
ik

(
SuL

)
lj
, Ĉ

(3)ij
lq = C

(3)kl
lq

(
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)
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(
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)
lj
,
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(
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)
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(
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)
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(
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)
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(
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)
lj
,

Ĉijlu = Ckllu

(
Su†R

)
ik

(
SuR

)
lj
.

With the definition of the coefficients in the up-mass basis, we find for the effective operators
in Eq. (6.1.1)

Ĉ(1)ij
ϕq Ô(1)ij

ϕq =Ĉ(1)ij
ϕq

(
ϕ† i←→Dµ ϕ

)(
ū′iL γ
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)(
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)
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W 3
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– 141 –



Ĉijϕu Ô
ij
ϕu =Ĉijϕu

(
ϕ† i←→Dµ ϕ

)(
ūiR γ

µ ujR

)
.

Similarly, we find for four-fermion operators:

Ĉ
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(3)ij
lq

(
l̄L γµ τ

3 lL
) (
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These results are in agreement with Ref. [221].

H.2 Numerical results for matching

The numerical values of the tree-level matching conditions in Eq. (6.1.8) at µW = mW read:

∆Ctree
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ϕq

]
.

(H.2.1)

For the contributions at one-loop level presented in Eqs. (6.1.9) to (6.1.14), we obtain

∆C loop
7 =− 2.310C̃uB + 0.09251C̃uW − 0.0946C̃(1)

ϕq + 0.7951C̃(3)
ϕq , (H.2.2)

∆C loop
8 =− 0.6687C̃uG + 0.2709C̃uW + 0.2839C̃(1)

ϕq + 0.7568C̃(3)
ϕq , (H.2.3)
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ϕq + 0.1484C̃ϕu

− 1.898
(
C̃eu + C̃lu

)
− 2.242

(
C̃

(1)
lq − C̃qe
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ϕq − 3.431C̃(3)
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(
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(H.2.5)

∆C loop
L =− 2.876C̃uW + 12.76C̃(1)

ϕq + 0.3324C̃(3)
ϕq − 1.898

(
C̃ϕu + C̃lu

)
+ 4.622C̃

(1)
lq

+ 1.033C̃
(3)
lq ,

(H.2.6)

∆Cmix, loop
1,tt =4.120C̃uW + 14.76C̃(1)

ϕq + 11.60C̃(3)
ϕq + 3.150C̃ϕu . (H.2.7)

Note that these results are just the numerical versions of the matching conditions at the
scale µW = mW in Eqs. (6.1.8)-(6.1.14). On both sides of the equations Wilson coefficients
are evaluated at the same scale. For actual predictions for observables the effects of RGE
evolution have to be included.
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Figure H.1: The posterior distribution for the coefficients C̃i obtained in fits of six coefficients
to measurements of top-quark observables at the LHC shown in Tab. 6.2. We give the one-
dimensional (on-diagonal plots) and two-dimensional projections (off-diagonal plots) of the
smallest intervals containing 90% of the posterior probability.

H.3 Fits to present data

In the following, we give additional information on the results of fits to top-quark data in
Tab. 6.2, B-physics data in Tab. 6.3 and to the combined dataset.

H.3.1 Fits to top-quark data

In Fig. H.1, we give additional information of the one-dimensional (on-diagonal plots) and
two-dimensional (off-diagonal plots) projections of the posterior distribution obtained in a fit
of C̃uB, C̃uG, C̃uW , C̃(1)

ϕq , C̃(3)
ϕq , and C̃ϕu to top-quark data in Tab. 6.2. As already seen in

Fig. 6.3, we observe a strong correlation between C̃(1)
ϕq and C̃ϕu induced by tt̄Z data. Thus,

constraints on these coefficients are weaker compared to those of C̃(3)
ϕq and especially C̃uB,

C̃uG, and C̃uW , which are less correlated.
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Figure H.2: The posterior distribution for the WET coefficients ∆Ci obtained in fits of
five WET coefficients to measurements of B-physics observables in Tab. 6.3. We give the
one-dimensional (on-diagonal plots) and the two-dimensional projections (off-diagonal plots)
of the smallest intervals containing 90% of the posterior probability. Results are derived with
a uniform distribution over the interval −2 ≤ ∆Ci ≤ 2 as the prior.

H.3.2 Constraints from beauty data
In Fig. H.2, we give additional information on the posterior distribution obtained in fits of
WET coefficients to B-physics data in Tab. 6.3. As already indicated in the one-dimensional
projections in Fig. 6.5, we find strong correlation between ∆C7 and ∆C8 induced by RGE
mixing. Correlations of these two coefficients with ∆C9,10 are smaller, because the latter are
constrained by a different set of observables: results for ∆C7,8 are dominated by b→ sγ data,
while constraints on ∆C9,10 arise only through b→ s`+`− observables. In contrast, ∆Cmix

1 is
completely uncorrelated.

H.3.3 Combining top and beauty
In Fig. H.3, we show the results from fits to top-quark data in Tab. 6.2 (blue), Zbb data
(light blue), B-physics data in Tab. 6.3 (grey) and the combined set (dark blue). For several
coefficients we find that the different sensitivities of the individual datasets strengthen the
constraints, as seen in Fig. 6.7. In addition, we find deviations from the SM in the C̃qe-C̃+

lq

plane, which can also be seen in the one-dimensional projection for C̃qe. These deviations
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Figure H.3: Constraints on the coefficients in Eq. (6.3.3) obtained in fits of eight coefficients
to four datasets: top-quark data (blue), Zbb data (light blue), B data (grey), and the com-
bined set (dark blue). Constraints from Zbb data are only shown in the C̃(1)

ϕq -C̃(3)
ϕq plane, as

only these two coefficients contribute to Z → bb̄ transitions. Shown are the one-dimensional
(on-diagonal plots) two-dimensional (off-diagonal plots) projections of the smallest intervals
containing 90% of the posterior probability. The SM is indicated by the star.

stem from discrepancies found within present data of b → sµ+µ− transitions, in particular
in the angular distributions. This is shown in more detail in Fig. 6.8 where we show results
from the combined fit. In contrast, C̃(1)

ϕq and C̃
(3)
ϕq , which deviate from the SM in fits to

Zbb data only, are found to be in agreement with the SM in the combined fit, see Fig. H.4.
We also observe secondary solutions for C̃uB, C̃(1)

ϕq , C̃(3)
ϕq , C̃qe, and C̃+

lq . As indicated in
the two-dimensional projections for these coefficients both the orientation of the ellipses and
the position of the solutions indicate sizeable correlations among several coefficients. These
correlations are induced by the matching of the SMEFT basis onto the WET one, which can
be inferred from the results of the fit to beauty data only.
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Figure H.4: Same as Fig. 6.8, but for C̃(1)
ϕq and C̃(3)

ϕq .

H.4 Constraints in future scenarios
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Figure H.5: One-dimensional (left, middle) and two-dimensional (right) projections for the
posterior distribution of C̃(1)

lq and C̃(3)
lq obtained in a fit of nine coefficients in the near-future

scenario. Colored areas indicate the smallest intervals containing 90% and the star denotes
the SM.
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Figure H.6: Same as Fig. 6.12, but assuming SM predictions for projections of Belle II
measurements.

In Fig. H.5 show in detail the results for the four-fermion coefficients C̃(1)
lq and C̃(3)

lq obtained
in a fit to present data and HL-LHC and Belle II projections. We give the smallest intervals
containing 90% in both the one-dimensional projection for both C̃(1)

lq and C̃(3)
lq as well as in

the C̃(1)
lq − C̃

(3)
lq plane.

In Fig. H.6, we show results from a fit combining present data and projections for HL-
LHC, Belle II, and CLIC observables considering SM predictions for central values of future
projections. As can be seen, both coefficients show agreement with the SM.
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I Vector-like leptons at hadron colliders
In the following, we present additional information on our analysis of signatures of VLLs
at the LHC. Properties of production of VLLs at pp colliders are provided in App. I.1. In
App. I.2, we summarize the MadGraph5_aMC@NLO settings for our event generation and
for the showering and detector simulation. Distributions of the scalar momentum sum LT
for several points in the MF , ,MS plane (see Fig. 7.4) are provided in App. I.3. In addition,
we provide numerical values of the settings for the event reconstruction and the computation
of observables mi(_diff). In App. I.3, we present distributions of the scalar momentum sum
LT for different benchmark scenarios. The mi(_diff) distributions at parton level for Run 2
and HL-LHC are presented in App. I.4. Finally, in App. I.5 we give further information on
benchmark scenarios where we consider κ′ = 1 instead of fixing it according to Eq. (7.1.8).

I.1 Production of vector-like leptons

q

q̄

ψ

ψ̄

γ, Z

a)

d

ū

ψ−

ψ̄0

W

b)

q

q̄

κ(κ′)

ψ−

`+

h(S)

c)

q

q̄

gZ

ψ−

`+

Z

d)

d

ū

gW

ψ−/`−

ν̄/ψ̄0

W

e)

Figure I.1: Examples of Feynman diagrams for pair (upper row) and single (lower produc-
tion) production of vector-like leptons at pp colliders. Final states ψ−ν (`−ψ0) shown in
diagram e) are only possible in the singlet (doublet) model.

In Fig. I.1 we give examples for Feynman diagrams describing single and pair production
at the LHC. As shown, pair production is possible via s-channel photon or Z boson diagrams
(a), and in the doublet model through a W boson (b), while single production occurs via
diagrams with s-channel Higgs and S (c) induced by Higgs-scalar mixing [30], Z (d) or W
(e) bosons. Phenomenologically, contributions from Higgs and scalar diagrams to matrix
elements are suppressed by at least two orders of magnitude by both small quark Yukawa
couplings and PDFs compared to electroweak contributions and are neglected.

Cross sections for single and pair production of VLLs in both the singlet (left) and doublet
(right) model are shown in Fig. I.2 for the different final states varying the VLL mass while
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Figure I.2: Cross sections at
√
s = 13 TeV pp collider for ψi single production (upper row)

and pair production (lower row) for different vector-like lepton masses in the singlet (left)
and doublet model (right). For the computation we fix ε = 10−2 while κ′ is computed for
each value of MF according to Eq. (7.1.8).

settingMS = 500 GeV. For this choice of parameters, pair-production cross sections are about
three orders of magnitude larger than the single-production ones, since pair production at
hadron colliders is independent of the portal couplings and depends only on the quantum
numbers of the VLLs. In contrast, single-production cross sections depend on the values of
gZ and gW , which are proportional to BSM coupling κ and VLL masses MF (see Eqs. 7.1.5
and (7.1.7)). Since κ is required to be small to pass constraints from Z-decay data, the cross
section is strongly suppressed.

I.2 Madgraph settings

For the event generation we follow the steps outlined in Sec. D.3: Feynman rules at LO
are computed employing FeynRules and implemented into UFO models. These models are
interfaced to MadGraph5_aMC@NLO, which is applied to compute cross sections at parton
level, while MadSpin [439] is employed for decays of on-shell particles. For each process we
generate 5 × 104 events using the NNPDF3.0 PDF set. The corresponding PDF and scale
variation uncertainties are computed within MadGraph5_aMC@NLO, where scale variation
uncertainties are estimated varying factorization and renormalization scales independently
between 0.5µ0 ≤ µF/R ≤ 2µ0. Here, µ0 is computed in MadGraph5_aMC@NLO with four
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Parameters Cuts Reconstruction
αs(mZ) = 0.118 Emiss

T < 50 GeV ∆mZ = 15 GeV
mZ = 91.188 GeV |η| ≤ 2.5 ∆MS = 5 GeV
mh = 125 GeV R = 0.5 ∆mh = 5 GeV
mW = 80.379 GeV Nll ≥ 4 ∆MF = 100 GeV
mt = 172 GeV pjet

T ≥ 20 GeV -
mb = 4.7 GeV p`T ≥ 20 GeV -
- m`` ≥ 12 GeV -

Table I.1: Parameters used in the event generation, detector simulation and the reconstruc-
tion algorithm.

different schemes, and we consider the maximal difference of the cross section computed
in different schemes as the scheme variation uncertainty. The complete theory uncertainty
is computed adding PDF uncertainties, scale variation uncertainties, and scheme variation
uncertainties in quadrature.

We adapt settings for the event generation similar to those used in the recent CMS study
[400]. We focus on 4L final states with a cut on the missing transverse momentum of pmiss

T <
50GeV to resemble the signal region considered by CMS. This allows to suppress contributions
from neutrinos stemming from the decay of electroweak bosons. In addition, we require light
leptons to have a minimal transverse momentum of pT > 20 GeV. Setting κ = 10−2κ′ we
consider masses of the new scalars and vector-like leptons in the range MS = 300−1200 GeV
and MF = 100 − 1000 GeV, respectively, and fix κ′ according to Eq. (7.1.8). The dominant
SM background processes of ZZ, ttZ, and triboson production are computed at LO with
MadGraph5_aMC@NLO. We include ZZj production at LO and perform a multijet matching
with PYTHIA 8. In addition, contributions from gg → ZZ transitions are computed at one-
loop level and are included in the total production cross section. Higher order corrections are
considered applying k factors taken from literature [377, 378, 408–413]. Finally, we include
contributions from virtual photons to the pp→ `+`−`+`− process at LO in QCD, and require
that (regardless of flavor or sign) invariant masses from any dilepton pair, m``, are larger
than 12 GeV, similar to the CMS analysis.

The parton-level events are hadronized and showered with PYTHIA 8. For the fast detec-
tor simulation we employ Delphes 3 and cluster jets with the anti-kt algorithm using the
FastJet package. We take into account all criteria from the CMS default card for simplicity.
The parameters used in the event generation and the detector simulation are summarized in
Tab. I.1.

I.3 Distributions of the scalar transverse momentum sum

In Fig. I.3 we show several distributions for scenarios marked as green and purple dots with
a black in Fig. 7.4 with MS = 1000 GeV (upper row) and MS = 500 GeV (lower row) for
both the singlet (left) and doublet model (right). The CMS data from Ref. [400] is indicated
in all plots together with the upper limit of the 1σ range of the data (grey lines). Given
MF < MS with MS = 1000 GeV (upper row), we see that in the singlet model masses as low
as MF . 600 GeV are not yet excluded by CMS data. In contrast, in the doublet model VLL
masses below 800 GeV are excluded by CMS, as expected. In the case of the inverse mass
hierarchy MF > MS with MS = 500 GeV (lower row), CMS data is expected to exclude VLL
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Figure I.3: Scalar sum of transverse momenta LT in the singlet (left) and the doublet model
(right). Shown are distributions for SM background processes and different masses of vector-
like fermions with MS = 1000 GeV (upper row) and MS = 500 GeV. The observables are
computed for an integrated luminosity of 77.4 fb−1 with subsequent detector simulation. CMS
data from [400] is indicated (black dots) together with the upper limit of the 1σ interval (grey
line).

masses of MF < 800 GeV and MF < 850 GeV in the singlet and doublet model, respectively.

I.4 Novel observables at parton level

The distributions of the mi(_diff) observables at parton level for benchmark scenarios in
the doublet model are shown in Fig. I.4. Similarly to the distributions in the singlet model
(Fig. 7.6), the mi_diff observables are significantly cleaner compared to the mi ones. In
the m2` distributions we find peaks at the mass of the Z boson (new scalars) for the mass
hierarchy MF < MS (MF > MS). In both cases, the number of events in the peak bins is
O(101 − 102). In contrast, peaks in the SM background and the distribution with MF < MS

(MF = 800 GeV, red curve) are depleted by two orders of magnitude in m2`_diff. For
scenarios with on-shell S production (MF = 850 GeV, 1000 GeV) we still find peaks with a
comparable number of events in the peak bins (blue, black curve). As in the singlet model, in
the m3` distributions of the doublet model we find peaks (broad resonances) for benchmarks
with MF < MS (MF > MS), with O(10) (O(1)) events in the peak bins. While the peaks are
strongly suppressed by two orders of magnitude in the m3`_diff distribution (MF = 800 GeV,
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Figure I.4: Parton-level distributions of invariant masses m2`, m2`_diff, m3`, and m3`_diff
for the singlet model for different benchmark masses of the VLLs and the BSM scalars at a
luminosity of 150 fb−1 and

√
s = 13 TeV. The coupling κ′ is fixed according to Eq. (7.1.8).

red curve), the broad resonances are still present with O(1) events in the peak bins.
Parton-level distributions of the observables for the HL-LHC scenario with

√
s = 14 TeV

and 3000 fb−1 before detector simulation are shown in Figs. I.5 and I.6. For all benchmark
scenarios we find a significant increase in the number of events in all signal distributions
as well as in the SM background, according to ∼ 3000/150 = 20. Considering m2` and
m2`_diff, we see that we can separate SM and BSM distributions sufficiently in the region
m2`(_diff) & 500 GeV. This region allows to test for both off-shell and on-shell production
of BSM scalars. In the case of on-shell production, we observe narrow peaks in the mass
distribution at MS while for off-shell production the distributions show a peak around the
mass of the SM bosons (O(102 − 103) events per bin) which lies significantly below the SM
background. The peak bins around the mass of the BSM scalars contain O(103) events in the
m2`_diff distribution for both singlet and doublet model benchmark scenarios. In contrast,
bins around the mass of SM bosons are strongly suppressed both for SM background and signal
distributions. The m3` and m3`_diff distributions allow in both models for a good separation
between the signal process and SM background, especially for m3`_diff which is completely
background free. In the case MF < MS , we find narrow peaks in the m3` distribution. In
the singlet model, these peaks have O(102 − 103) events for scenarios with MF = 600 GeV
and MF = 300 GeV (red and blue curves). Similarly, in the doublet model the narrow peak
contains O(103) events (MF = 800 GeV, red curve). In the m3`_diff distribution, the number
of events per is reduced to O(1) events in the peak bin for all these scenarios. In contrast,
for on-shell S-production (MF = 850, 1000 GeV) distributions in both m3` and m3`_diff
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Figure I.5: Distributions of the invariant masses m2`, m2`_diff, m3`, and m3`_diff (see
Sec. 7.3.1 for details) for the singlet model. We consider different benchmark scenarios for
the masses of the VLLs and the BSM scalars at a luminosity of 3000 fb−1 and

√
s = 14 TeV.

The coupling κ′ is fixed according to Eq. (7.1.8).
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Figure I.6: Same as Fig. I.5 but for the benchmark scenarios in the doublet model.
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Model MF (GeV) MS (GeV) m2` m2`_diff m3` m3`_diff
Singlet 300 800 1/7* 1/3* 1/20 1/10
Singlet 600 800 1/5* 1/6* 1/15 1/12
Singlet 800 500 1/10 1/12 1/14** 1/16**
Doublet 850 500 1/10 1/16 1/15** 1/17**
Doublet 800 1200 1/14* 1/4* 1/40 1/15
Doublet 1000 800 1/20 1/26 1/19** 1/22**

Table I.2: Scaling factors f = Npeak, det/Npeak for the different benchmarks of our models.
The values correspond to observables computed at

√
s = 14 TeV and a luminosity of 3000 fb−1.

Peaks which fall below the SM background (resonances are broad) are marked with * (**).

show very broad resonances for the benchmark scenarios (blue, black curves). The number of
events in each of the peak bins reaches O(10). Scaling factors comparing number of events in
the peak bins after and before detector simulation with Delphes 3 using the HL-LHC default
card are shown in Tab. I.2. The results are very similar to those in Tab. 7.2, with slightly
larger scaling factors in the HL-LHC scenario due to enhanced detector performance.

I.5 More general benchmark scenarios
In Fig. I.7 we give the LT distributions for different benchmark scenarios in the singlet model
with κ′ = 1. The distributions are computed at 13 TeV at an integrated luminosity of 77.4
fb−1 and include effects of the subsequent detector simulation. The benchmark models are
the same as in the case where κ′ is fixed according to Eq. (7.1.8) with one exception: for
κ′ = 1 we find that the scenario with MF = 800 GeV, MS = 500 GeV is in tension with
the high-LT bins of the CMS data. However, a very similar scenario with MF = 900 GeV,
MS = 500 GeV is still allowed by present data.

Parton-level distributions of the observables m2`, m2`_diff, m3` and m3`_diff for the dif-
ferent benchmark scenarios are shown in Fig. 7.11. The m2` and m2`_diff distributions look
essentially like the g − 2 benchmarks (see Fig. 7.6) and show peaks at the mass of the BSM
scalars for on-shell production (black curve). Considering the m3` distributions we observe
peaks for all benchmark scenarios, which is in contrast to the g − 2 distributions in Fig. 7.6.
The only difference between on- and off-shell S-production is that in the case MF > MS

the peak is broader. Scenarios with MF = 300 GeV and MF = 900 GeV show peaks with
O(10 − 102) events. In the scenario with MF = 600 GeV the number of events is one order
of magnitude smaller due to the smaller cross section. In the m3`_diff distributions we find
a peak with similar number of events per bin compared to the m3` distribution at the mass
of the VLLs only for MF > MS (black curve). This makes m3`_diff the optimal observable
for scenarios with this mass hierarchy. Distributions of the other benchmark scenarios are
strongly suppressed compared to m3` while the SM background is completely absent.
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Figure I.7: Scalar sum of transverse momenta LT in the singlet model for SM background
processes and for different masses of vector-like fermions and new scalars with κ′ = 1. The
observables are shown for an integrated luminosity of 77.4 fb−1 and subsequent detector
simulation. We show as well CMS data from [400].
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Figure I.8: Distributions of invariant masses m2`, m2`_diff, m3` and m3`_diff for the singlet
model with fixed κ′ = 1 at parton level. The observables are computed for the different
benchmark scenarios for a luminosity of 150 fb−1 and

√
s = 13 TeV.
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