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Abstract. This note is concerned with the application of Finite Element Methods (FEM)
and Newton-Multigrid solvers for the simulation of thixotropic flow problems.
The thixotropy phenomena are introduced into viscoplastic material by taking into ac-
count the internal material micro structure using a scalar structure parameter. Firstly, the
viscoplastic stress is modified to include the thixotropic stress dependent on the structure
parameter. Secondly, an evolution equation for the structure parameter is introduced to
induce the time-dependent process of competition between the destruction (breakdown)
and the construction (buildup) inhabited in the material. Substantially, this is done sim-
ply by introducing a structure-parameter-dependent viscosity into the rheological model
for yield stress material. The modified thixotropic viscoplastic stress w.r.t. the structure
parameter is integrated in quasi-Newtonian manner into the generalized Navier-Stokes
equations and the evolution equation for the structure parameter constitutes the main
core of full set of modeling equations, which are creditable as the privilege answer to
incorporate thixotropy phenomena. A fully coupled monolithic finite element approach
has been exercised which manages the material internal micro structure parameter, ve-
locity, and pressure fields simultaneously. The nonlinearity of the corresponding problem,
related to the dependency of the diffusive stress on the material parameters and the non-
linear structure parameter models on the other hand, is treated with generalized Newton’s
method w.r.t. the Jacobian’s singularities having a global convergence property. The lin-
earized systems inside the outer Newton loops form a typical saddle-point problem which
is solved using a geometrical multigrid method with a Vanka-like smoother taking into
account a stable FEM approximation pair for velocity and pressure with discontinuous
linear pressure and biquadratic velocity spaces. We examine the accuracy, robustness and
efficiency of the Newton-Multigrid FEM solver throughout the solution of thixotropic
viscoplastic flow problems in Couette device and in 4:1 contraction.
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1 Introduction

We consider thixotropic viscoplastic (TVP) constitutive law based on Bingham modelσ = 2ηD(u) + τ
D(u)

||D(u)||
, if ||D(u)|| 6= 0,

||σ|| ≤ τ, if ||D(u)|| = 0,

(1)

where D(u) denotes the strain rate tensor. The norm for a tensor Λ is given by ||Λ|| =√
Tr(Λ2). We use ||D(u)|| and ||D|| alternately. η denotes plastic viscosity, and τ defines

a yield stress that is a threshold parameter from which the material start yielding. The
shear stress has two contributions: a viscous part, and a strain rate independent part.
Thixotropic phenomena, as a competition of two processes, build up and breakdown, are
introduced into rheological model for yield stress material through a structure-parameter.
A class of models for plastic viscosity and yield stress w.r.t. sturcure parameter is given
in the table 1. The initial plastic viscosity and yield stress are denoted by η0 and τ0,

Table 1: Some relations between rheological parameters and the structure parameter

η(||D|| , λ) τ(||D|| , λ)
Worrall and Tulliani [4] λ η0 τ0

Coussot et al.[6] λg η0

Hous̆ka [5] (η0 + η1λ) ||D||n−1 (τ0 + τ1λ)

Mujumbar et al. [7] (η0 + η1λ) ||D||n−1 λg+1G0Λc

Burgos et al. [8] η0 λη0

Dullaert & Mewis [9] λη0 λG0(λ ||D||)Λc

respectively, in the absence of any thixotropic phenomena. η1 and τ1 represent the rates
of changes of plastic viscosity and yield stress, respectively, w.r.t. structure parameter. Λc

is the critical elastic strain (either constant or variable) and G0 is the elastic modulus of
unyielded material. The time-dependent process of competition between the destruction
(breakdown) and the construction (buildup) inhabited in the material is given by the
following structure-parameter equation(

∂

∂t
+ u · ∇

)
λ = F − G (2)

where, F and G are two nonlinear functions for buildup and breakdown. The table 2
shows different thixotropic models. a and b are rate constants for creation (buildup) and
breakage (breakdown), and g, p,m, n are rate indices.

The quasi-Newtonian modeling approach for thixotropic flows is based on a viscos-
ity approach for yield stress flows in which an extended viscosity is introduced µ(·, ·)
dependent on the strain rate and the structure parameter. Indeed, let us introduce the
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Table 2: Some expressions for buildup and breakdown functions of structure evolution equation

F G
Worrall and Tulliani [4] a(1− λ) ||D|| bλ ||D||
Coussot et al. [6] a bλ ||D||
Hous̆ka [5] a(1− λ) bλm ||D||
Mujumbar et al.[7] a(1− λ) bλ ||D||
Burgos et al. [8] a(1− λ) bλ ||D|| exp(g ||D||)
Dullaert & Mewis [9] (a1 + a2 ||D||)(1− λ)tp bλ ||D|| t−p

second invariant of the strain rate tensor D
II

= 1
2

(
D(u) : D(u)

)
, and define the regularized

viscosity, as for instance [14]:

µ(D
II
, λ) = η(D

II
, λ) + τ(D

II
, λ)

√
2

2

1√
D

II

(
1− e−k

√
D
II

)
(3)

A general system of the governing equations in primitive variables u, p, and λ for the
flow of thixotropic material is described as follows:

(
∂

∂t
+ u · ∇

)
u−∇ ·

(
2µ(D

II
, λ)D(u)

)
+∇p = 0 in Ω

∇ · u = 0 in Ω(
∂

∂t
+ u · ∇

)
λ−F(D

II
, λ) + G(D

II
, λ) = 0 in Ω

(4)

The viscous term in (4) exhibits infinitely high viscosity in the limit of low/vanishing
shear rates. Additionally, the accuracy of the solution is strongly dependent on the
regularization parameter k. In order to obtain an accurate solution, the value of k needs
to be very high which deteriorates the solver on the other hand.

2 Finite element discretization

To derive the variational form for thixotropic flows, we consider the spaces T :=
L2(Ω),V := (H2

0 (Ω))2, and Q := L2
0(Ω) associated, respectively, with the corresponding

L2-norm, ||·||0, H1-norm, ||·||1, and L2-norm, ||·||0. Let ũ := (λ,u, p) ∈ (T ∩ H1(Ω))×V×Q,
and ṽ := (ξ,v, q) ∈ T×V×Q be a test function. The weak formulation for the thixotropic
flows reads: Find ũ ∈ (T ∩ H1(Ω))× V×Q s.t.

aλ(ũ)(λ, ξ) =0, ∀ξ ∈ V
au(ũ)(u,v) + b(v, p) =0, ∀v ∈ V
b(u, q) =0, ∀q ∈ Q

(5)

Or, equivalently: Find ũ ∈ (T ∩ H1(Ω))× V×Q s.t.

aλ(ũ)(λ, ξ) + au(ũ)(u,v) + b(v, p)− b(u, q) = 0 ∀ṽ ∈ T× V×Q, (6)
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where aλ(ũ)(·, ·), au(ũ)(·, ·), and b(·, ·) are given as follows

aλ(ũ)(λ, ξ) =

∫
Ω

(
−F(D

II
, λ) + G(D

II
, λ)
)
ξ dΩ +

∫
Ω

u · ∇λ ξ dΩ, (7)

au(ũ)(u,v) =

∫
Ω

2µ(D
II
, λ)D(u) : D(v) dΩ +

∫
Ω

u · ∇uv dΩ, (8)

b(v, q) =−
∫

Ω

∇ · v q dΩ. (9)

The finite element approximations of the problem (6) have to take care of its saddle point
character, due to the bilinear form (9). Furthermore, since thixotropic flows are usually
slow, the only remaining issue is the control/continuity of the bilinear form (7) in the
norm of space T.
We opt for the higher order stable pair biquadratic for velocity and piecewise linear
discontinuous for the pressure, Q2/P

disc
1 , and higher order quadratic for structure pa-

rameter Q2 with the appropriate stabilization terms [12, 13]. Indeed, let the domain
Ω be partitioned by a grid K ∈ Th which are assumed to be open quadrilaterals such
that Ω = int

(⋃
k∈Th K

)
. For an element K ∈ Th, we denote by E(K) the set of all 1-

dimensional edges of K. Let Ei :=
⋃
k∈Th E(K) be the set of all interior element edges of

the grid Th.
We define the conforming finite element spaces Th ⊂ T, Vh ⊂ V, and Q ⊂ Qh such

that:
Th =

{
ξh ∈ T, ξh|K ∈ Q2(K)∀ K ∈ Th

}
Vh =

{
vh ∈ V,vh|K ∈ (Q2(K))2 ∀ K ∈ Th, vh = 0 on ∂Ωh

}
Qh =

{
qh ∈ Q, qh|K ∈ P disc

1 (K)∀ K ∈ Th
} (10)

The approximate problem reads: Find ũ ∈ Th × Vh ×Qh s.t.
aλ(ũ)(λ, ξ) + jλ(λ, ξ) = 0, ∀ξ ∈ Th
au(ũ)(u,v) + b(v, p) = 0, ∀v ∈ Vh

b(u, q) = 0, ∀q ∈ Qh

(11)

Or, equivalently: Find ũ ∈ Th × Vh ×Qh s.t.

aλ(ũ)(λ, ξ) + jλ(λ, ξ) + au(ũ)(u,v) + b(v, p)− b(u, q) = 0, ∀ṽ ∈ Th × Vh ×Qh (12)

where the stabilization term jλ(·, ·) is given as follows

jλ(λ, ξ) =
∑
E∈Ei

γλ|E|
∫
E

[∇λ] [∇ξ] dσ (13)

The stabilization (13) is consistent and makes the coercivity and continuity match in Th
associated with the norm |||·|||, where

|||ξ|||2 = ||ξ||20 + jλ(ξ, ξ)
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3 Generalized discrete Newton

We use the Newton method to approximate the nonlinear residuals. Let R(ũ) =
(Rλ(ũ),Ru(ũ),Rp(ũ)) =

(
R(λ,u)(ũ),Rp(ũ)

)
denote the residuals for the system (12).

The nonlinear iteration is updated with the correction δũ, ũk+1 = ũk + δũ. Then, the
Newton linearization gives the following approximation for the residuals:

R(ũl+1) =R(ũl + δũ)

'R(ũl) +

[
∂R(ũl)

∂ũ

]
δũ

(14)

The Newton’s method iterations, assuming invertible Jacobians, are given as follows

ũl+1 = ũl − ωl
[
∂R(ũl)

∂ũ

]−1

R(ũl) (15)

The damping parameter ωl ∈ (0, 1) is chosen such that∣∣∣∣R(ũl+1)
∣∣∣∣ ≤ ∣∣∣∣R(ũl)

∣∣∣∣ (16)

The damping parameter is not sufficient for the convergence of this type of highly nonlin-
ear problem, mainly due to the presence of Jacobian’s singularities related to the problem
or simply by being out of the domain of Newton’s convergence [11, 12]. We use a gen-
eralized Newton’s method which consists of using approximate Jacobians far away from
the quadratic convergence range or close to singularities and accurate Jacobians in the
quadratic region of convergence in an adaptive way [2, 11]. Indeed, based on a priori
analysis of Jacobian’s property, let the Jacobian be written as follows(

∂R(ũl)

∂ũ

)
=

(
∂R̃(ũl)

∂ũ

)
+ δl

(
∂R̂(ũl)

∂ũ

)
(17)

The Jacobian is splitted to a direct sum of corresponding operators with different prop-
erties. The parameter δl ∈ (0, 1) is solely dependent on the rate of actual residual conver-
gence [11]. It is worth mentioning that the operator-related damped Jacobian method (17)
is related to the continuous Newton’s method. Furthermore, for the analysis of adaptive
discrete Newton’s method where the Jacobian is evaluated using the divided difference
we refer to [2]. The Jacobian approximation is only dependent on the rate of the actual
residual convergence

(∣∣∣∣Rl
∣∣∣∣/∣∣∣∣Rl−1

∣∣∣∣). This generalized Newton’s method assures a global
nonlinear convergence [2, 11].
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4 Monolithic multigrid linear solver

To develop an appropriate linear solver, we segregate the Jacobian as follows

(
∂R(ũ)

∂ũ

)
=


∂R(λ,u)(ũ)

∂(λ,u)

∂Ru(ũ)

∂p

∂Rp(ũ)

∂u
0

 (18)

which is a saddle point problem. Then, the resulting linear system is treated with a
Multilevel Pressure Schur Complement (MPSC) approach with Vanka-like smoother, i.e.

ũk+1 = ũk − ωk
∑
K∈Th

((
∂R(ũl)

∂ũ

)
|K

)−1

R(ũl)|K (19)

In (19), we solve exactly on real element, K, and perform an outer Gauß-Seidel iteration
[3, 17]. We use standard geometric multigrid solver for linearized system with standard
Q2 and P disc

1 restriction and prolongation operators.
The combination of a stable finite element approximations, Q2/P

disc
1 , for Stokes problem

together with multigrid results in a high numerically accurate, flexible, and efficient FEM-
multigrid solver.

5 Numerical Results and Discussions

We investigate thixotropic phenomena as a competition of two processes; build up
and breakdown. From archetypical thixotropic models given in Table (1-2), we employ
Hous̆ka’s material model.

Two numerical experiments involving the thixotropic materials are considered: Our
first test is related to the simulation of thixotropic material in Couette device. Here, we
examine the liquid-/solid transitions of shear-localization and shear-banding in terms of
the thixotropy breakdown parameter. Our second numerical experiment pertains to entry
flow of thixotropic material in 4:1 contraction. Here, we investigate the shape and extent
of unyielded zones in terms of thixotropic yield stress parameter.

Clearly, tracking the true unyielded/yielded zone in any flow configuration is regu-
larization dependent and requires relatively large values for k to accurately capture the
yielded/unyielded regions. It is worth emphasizing here that our solver is so robust that
the solutions with big values of the regularization parameter are possible in the flow
situations where material departures from being simple visocplastic and approaches to
thixo-viscoplastic. However, the analysis of solver statistics requires more investigations
which go beyond the scope of this short note. The choice of regularization parameter in
viscosity function is k = 104, since the solutions remain intact for further increment in k
[1].
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5.1 Thixotropic flows in Couette device

For numerical solutions for thixotropic flows in Couette device, we consider two con-
centric cylinders with an inner and an outer radii rin and rout defined as rin = ζ/(1 − ζ)
and rout = 1/(1 − ζ); where ζ denotes the radii ratio. The inner cylinder is made under
rotation speed, u = u(rin)eθ; u(rin) = 1 RPM, while the outer cylinder is kept static,
rout = 0RPM [10, 15].
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Figure 1: Thixotropic flows in Couette device: The radial solutions profiles i.e. at lines, θ = c; c ∈
[0, 2π], for thixotropic flows in Couette device w.r.t. breakdown parameters, b, for two different values
b = 0.5 and b = 2.0. While the other parameters are set to constants η0 = η1 = 1.0, τ0 = 2.0, τ1 = 1,
a = 1.0, and k = 104.

Figure 1 shows the radial solutions profiles, velocity, structure parameter, shear rate,
and viscosity w.r.t. breakdown parameter. A smooth transition from the flowing regimes
to static ones is given with a small values of the breakdown parameter. The model
allows for very sharp transitions as well for higher breakdown parameter. The structure
parameter which controls the buildup and the breakdown regions matches perfectly with
the flowing and plug zones indicated by the shear rate. Furthermore, the velocity on one
hand and the shear rate and structure parameter on the other hand come into contact
perfectly in the transition points for both “localization” (lower breakdown parameter,
b = 0.5) and “shear banding” (higher breakdown parameter b = 2.0). The viscosity shows
a discontinuity jump to infinity which is specific to thixotropic yield stress rather than
the continuously diverging as for a simple yield stress [16].
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5.2 Thixotropic flows in contractions

In this section, we analyse the simulations of thixo-viscoplastic flows in a 4:1 curved
contraction. Information on the considered computational domain is displayed in Fig-
ure 2. The fully-developed flow conditions according to Hous̆ka thixotropic model are
imposed at entry and exit together with no-slip on the top and bottom walls of reservoir
and downstream channel. Our emphasis is to examine the impact of thixotropic yield
stress on morphology of unyielded zones, which plays a key role for preserving the main
rheological characteristics of materials with yield stress. Furthermore, we investigate the
transitions in shape and extent of the flowing/rigid zones w.r.t breakdown parameter on
isobands of material micro-structuring level λ.

Figure 2: 4:1 Contraction domain and the corresponding coarse mesh

In Figure 3, we present progressive escalation of solid (unyielded) regions in flow do-
main as a function of thixotropic yield-stress parameter. The solid (unyielded) zones are
distinguished from yielded ones by shading in Figure 3. Three distinct unyielded regions
are formed inside 4to1 enclosure filled by thixo-viscoplastic material: (a) rigid zone close
to the inlet containing an envelope of stagnant/unyielded material, (b) unyielded dead
spaces near the corners of reservoir, and (c) an unyielded region containing (nearly) stag-
nant material which occupies the zone formed by the cross-section change, henceforth
called downstream channel unyielded region. It is observed that thixotropic plasticity
has quite strong effect to give rise to the thickness of envelope of the solid zones, which
are much bigger in the reservoir than the downstream channel, and this trend is readily
understood due to relatively slow flow (hence stress level) in the reservoir. Moreover,
the unyielded regions near the corner also stretches in the axial direction by increasing

8
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yield-stress intensity. Consequently, for extreme values of τ1 only the large gradient area
close to the corners of entrance zone remain yielded.
In Figure 4, we present the spatial distribution of material structuring level to illus-
trate the impact of thixotropy breakdown parameter b. It is worth-mentioning here that
pipeline design involves the pipe sections with contractions/expansions shapes, for in-
stance pipeline fittings. A better understanding of material inherent thixotropy helps in
circumventing the flow restarts issues, and allows for a cost-friendly equipment designs. It
is clear from Figure 4, that increasing the breakdown parameter induces more beakdown
layers close to the walls of downstream channel preventing the material from rest inside
long pipelines.

Figure 3: Thixotropic flows in contractions: The progressive growth of unyielded regions as a
function thixotropic yield stress parameter τ1 for thixotropic flow s in 4:1 contractions. While the other
parameters are set to constants η0 = η1 = 1.0, τ0 = 0.0, a = b = 1.0, and k = 104.

9
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(i) Upstream channel (ii) Downstream channel

Figure 4: Thixotropic flows in contractions: The structuring level of material λ for thixotropic flows
in 4:1 contractions w.r.t. breakdown parameters, b, for two different values b = 1.0 (Top) and b = 2.0
(Bottom). While the other parameters are set to constants η0 = η1 = 1.0, τ0 = 0.0, a = 1.0,τ1 = 2.0, and
k = 104.

6 Summary

We presented a Newton-multigrid FEM solver for the quasi-Newtonian modeling ap-
proach for thixotropic flows. Based on a two-fields Stokes solver, we used higher order
stable Q2/P

disc
1 FE approximations for velocity and pressure and higher order Q2 FE ap-

proximation for the structure parameter field with appropriate stabilization term. The
combination of a stable finite element approximation, Q2/P

disc
1 , for Stokes problem to-

gether with multigrid results in high numerically accurate, flexible and efficient FEM-
multigrid solver.

The quasi-Newtonian model for thixotropic flows is highly nonlinear due to the de-
pendency of the extended viscosity on the material parameters (shear rate and structure-
parameter) and the regularization parameter. The nonlinearity is handled with gener-
alized Newton’s method w.r.t. the Jacobian’s singularities having a global convergence
property.

We analyzed the application of using the quasi-Newtonian modeling approach for
thixotropic flows, and the accuracy, robustness and efficiency of the Newton-Multigrid
FEM solver throughout the solution of the thixotropic flows using two configurations of
thixotropic flows in Couette device and contraction domains.

Very high values for regularization are required to achieve accurate solutions. Fortu-
nately, the solver is so robust that the solutions are obtained for higher values for regular-
ization parameter. Consequently, some very important characteristics of thixotropic flows
were captured with the quasi-Newtonian thixotropic model; as for instance, localization,
shear banding, and discontinuous jump to infinity for viscosity.

10
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7 Future outlook

It is interesting to observe that unyielded zones in upstream and downstream parts of
contraction domain do not merge at all. Physically, this happens because the unyielded
material in the vicinity of center of reservoir becomes more rigid due to its inelastic
nature. That means, the material has no capability to deform elastically. Thus, when
the material elements cross the contraction zone, they are not able to undergo even a
small scale elastic crosswise extension and remain disconnected and travel like a rigid-
body in downstream channel. Further investigation is to consider the nonzero flow below
the critical yield stress limit. In our current settings of employed model, the rheological
manifestation of thixotropy is limited to viscoplastic materials. Therefore, we anchor the
future modification of constitutive law towards thixotropic elasto-viscoplastic (TEVP)
model that could accommodate both elastic and plastic characteristics of material in
single backbone.
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