
fakultät
statistik

Dissertation

in partial fulfillment of the requirements for the degree of

Doktor der Naturwissenschaften

Sign Depth for Parameter Tests in Multiple

Regression

by

M.Sc. Melanie Horn

Referees: Prof. Dr. Christine Müller

Prof. Dr. Roland Fried

Commission chairperson: Prof. Dr. Jörg Rahnenführer

Assessor: Dr. Uwe Ligges

Submitted: March 23, 2021

Day of Oral Exam: July 13, 2021

Department of Statistics

Statistics with Applications in the Field of Engineering Sciences

TU Dortmund University

Abstract

This thesis deals with the question how the sign depth test can be applied in the

case of multiple regression. Because the result of this test depends on the ordering

of the residuals and most times no inherent order is available for multidimensional

values one has to think about suitable methods to order these values. In this thesis

13 different ordering methods are described, analyzed and compared with respect to

characteristics, computational behavior and performance when using them in the

context of sign depth tests. For the last one, several simulations of power functions

for many different settings have been carried out. In the simulations different data

situations as well as different multiple regression models and different parameters of

the sign depth were examined. It is shown in this thesis that a group of so-called

”distance based ordering methods” performs best and leads to satisfying results of the

sign depth test. Also compared to other tests for regression parameters like the Wald

test or the classical sign test the sign depth test performs satisfyingly and especially

in the case of testing for model checks it performs clearly better. In addition, this

thesis describes the contents and functionality of the R-package GSignTest which

was written for this thesis and contains implementations of the sign depth, the sign

depth test and the different ordering methods.

Table of Contents

1 Motivation 1

1.1 Structure of the Thesis . 3

1.2 Used Computational Tools . 4

2 Estimators and Tests for (Robust) Regression 5

2.1 General Notations and Definitions . 5

2.2 Regression Models . 7

2.3 Classical Robust Estimators and Tests in the Context of Linear

Regression . 8

2.4 Robust Estimators Based on Data Depth 14

2.5 Estimators and Tests Based on Sign Depth 15

2.6 Comparison of the Robust Estimators and Tests in the Context of

Linear Regression . 20

2.7 Problem of the Sign Depth in the Context of Multiple Regression . . 24

2.8 Aim of this Thesis . 27

3 Methods for Ordering Multidimensional Data 29

3.1 Naive Methods . 31

3.1.1 Taking the Order of the Data Set 32

3.1.2 Taking a Random Order . 33

3.2 Scalarization Based Methods . 35

3.2.1 Taking a Norm of Each Regression Vector 36

3.2.2 Taking the Median of Each Regression Vector 39

3.2.3 Taking Only One Component of Each Regression Vector . . . 42

3.2.4 Taking a Weighted Sum of Each Regression Vector 44

3.2.5 Taking an Orthogonal Projection of Each Regression Vector . 46

3.3 Orders Based on Partial Sorting . 48

3.3.1 Partial Sorting via Nondominated Sorting 51

3.3.2 Partial Sorting via Convex Hulls 55

3.3.3 Partial Sorting via Tukey’s Halfspace Depth 62

3.4 Distance Based Methods . 66

3.4.1 Ordering on the Basis of the Exact Solution of the Shortest

Path Problem . 67

3.4.2 Ordering on the Basis of an Approximate Solution of the

Shortest Path Problem . 72

3.4.3 Ordering on the Basis of a Hierarchical Clustering 75

3.5 Summary and Comparison of the Described Ordering Methods 81

4 Developed Software 85

4.1 Implementation of the Sign Depth . 85

4.2 Implementation of the Sign Depth Test 96

4.3 Implementation of the Ordering Methods 98

4.4 The R-package GSignTest . 101

5 Results and Analysis of the Power of the Sign Depth Test 103

5.1 Description of the Simulations . 103

5.2 Results of Model y = θ1x·1 + θ2x·2 + e 105

5.2.1 Effect of the Number of Data Points on the Results 106

5.2.2 Effect of the Data Set on the Results 113

5.2.3 Effect of the Error Distribution on the Results 121

5.2.4 Effect of the Parameter K on the Results 126

5.2.5 Effect of Hyper-Parameters of the Ordering Methods on the

Results . 133

5.2.6 Further Analysis and Summary of the Results 139

5.3 Results of the Distance Based Methods for Other Models 145

5.3.1 Linear Models with Intercept 145

5.3.2 Linear Models with Interactions 153

5.3.3 Quadratic Regression . 161

5.3.4 High Dimensional Linear Models 166

5.4 Choice of Vectors Used for Ordering 170

5.5 Comparison to Other Tests for Multiple Regression 173

5.6 Sign Depth Test for Model Checks . 189

5.7 Application of the Sign Depth Test on Data from a Bridge

Monitoring . 192

6 Conclusion and Outlook 199

6.1 Conclusion . 199

6.2 Outlook . 208

A Theorems and Algorithms 213

B Further Implementations 215

C Further Results and Graphics 221

C.1 Further Results and Graphics of Chapter 3 221

C.2 Further Results and Graphics of Chapter 4 227

C.3 Further Results and Graphics of Chapter 5 228

Bibliography 231

Chapter 1

Motivation

Many questions and problems in science cannot be solved when it is looked for

solutions only in the respective area of expertise. Often, thinking out of the box is

necessary to find solutions in other areas of expertise or get inspired by problems in

other fields. Some sub-areas of science are strongly connected to each other anyway:

For example, the statistics could even not exist without mathematics and, in the

last decades, also not without computer science. On the other hand, nearly all

sub-areas of science need statistics. A good current example of this is the handling

of the ongoing pandemic in politics and medicine. All actions are based on the

analysis of the current infection numbers, hospitalization rates, numbers of deaths

and vaccination rates. Also, for finding a vaccine statistics was/is very important

for executing and analyzing the necessary clinical studies. But also in other fields of

science statistics is very important: For example in the field of engineering sciences

when analyzing the fatigue process of buildings and constructions. Or in economics

when analyzing and predicting stock values. Further usage and applications of

statistics can be found in nearly all fields of science: Biology, chemistry, physics,

psychology, social sciences, sports (including e-sports) and many more. But also

many methods in statistics and related sciences are inspired from different fields of

science, not only for applications in the respective fields itself. Good examples of this

are (optimization) algorithms in computer science which are inspired by processes

from biology: Evolutionary algorithms, genetic algorithms, ant algorithms, neural

networks and some more. Another example is the generation of random numbers.

These methods are often inspired by physical processes like radioactive decay or

thermal noise.

1

2 Chapter 1. Motivation

Also the statistical problem which led to this thesis could not be solved by staying

completely in the field of statistics. The aim of this thesis sounds simple: Finding

a way to apply the sign depth test to multiple regression. The sign depth test

and the sign depth itself have their origins in the field of robust statistics, more

precisely in the sub-area of data depths. Data depths were invented to have a more

powerful generalization of the median, for example in the multivariate case. The first

approach of this can be found in Tukey (1975) who proposed the so-called ”halfspace

depth”. Over the years many extensions of the halfspace depth have been proposed

and many further data depth concepts were developed. One of these concepts is

the simplicial depth of Liu (1990), which was later applied to linear regression by

Rousseeuw and Hubert (1999) and to generalized linear regression by Müller (2005).

Rousseeuw and Hubert (1999) already noticed for the case of simple linear regression

that the simplicial depth can also be obtained by counting the number of 3-tuples

in the residuals which have alternating signs. This was generalized and proven for

linear and non-linear regression and autoregression by Kustosz et al. (2016a). They

have shown that for calculating the simplicial depth it is sufficient to count the

number of alternating (K + 1)-tuples in the residuals when having a K-dimensional

parameter vector in the regression model. Leckey et al. (2020) defined this concept

more generally as sign depth or K-sign depth. This K-sign depth can easily be used

for testing on parameters in regression: If there are too few K-tuples with alternating

signs in the residuals the parameter is not fitting the data. So far, this so-called sign

depth test or K-sign depth test could only be applied in cases with an inherent order

of the residuals, for example simple regression or time-series because the sign depth

heavily depends on the order of the residuals. In situations without inherent order,

for example multiple regression, the sign depth test was not applicable. This thesis

will solve this problem. For this, suitable methods for ordering multidimensional

data have to be found and it quickly became clear that the solution to this problem

will not be found in the field of statistics, but in computer science. Ordering the data

according to a shortest path through all data points leads to a good power of the sign

depth test in all considered situations. Finding such a path is a transformation of the

Traveling Salesman Problem which is well-known in computer science. As this thesis

will show, this approach with origins in computer science has many advantages and

is the most promising one compared with all other approaches which are presented

in this thesis. So, this thesis will solve a problem of the sign depth test in many

applications. This would not have been possible when not thinking out of the box

and finding the solution for this statistical problem in the field of computer science.

Chapter 1. Motivation 3

1.1 Structure of the Thesis

This thesis is divided in six chapters. After this introductory chapter, in Chapter 2

robust estimators and tests for multiple linear regression are described. For this, at

first an introduction of the notation in this thesis and for multiple linear regression

itself is given. Afterwards, classical robust estimators and tests in the context of

linear regression are described. This includes for example estimators and tests based

on M- and MM-regression. In Section 2.4 the concept of using data depths for robust

estimations and regressions is presented. This leads to the definition of the sign depth

and the sign depth test in Section 2.5. All presented approaches for estimating and

testing parameters of regression models are visualized and compared in the context

of simple regression in Section 2.6. At the end of Chapter 2 the problem of the sign

depth and the sign depth test in the context of multiple regression is described and

the aim of this thesis is given.

In Chapter 3, 13 different ordering methods for multidimensional data are described

and compared. These 13 methods can be assigned to four different ways of ordering:

Naive ordering methods, scalarization based ordering methods, ordering methods

based on partial sorting and ordering methods based on the pairwise distances of

the regression vectors. All approaches have different advantages and disadvantages

which will be shown in this chapter. Furthermore, it is looked at the theoretical

time complexity and the empirical runtimes of these methods for ordering different

numbers of multidimensional values in different numbers of dimensions.

Chapter 4 deals with the software which was developed as part of this thesis. For this

software package the sign depth, the sign depth test and all ordering methods had to

be implemented. As it can be read in Section 4.1, implementing the sign depth can

be challenging. For this, it has to be paid attention to the computational runtimes of

the implementations because calculating the sign depth has a large time complexity

when using simple ways of implementation. Also, implementing the different ordering

methods is challenging for some of them, see Section 4.3.

Afterwards, Chapter 5 shows, describes and analyzes the performance of the different

ordering methods when applying them to the sign depth test in different situations.

For this, power functions of the sign depth test are simulated. The simulations are

described in Section 5.1. Afterwards, in Section 5.2 the simulated power functions

are compared for all of the different ordering methods. For this, a rather simple

4 Chapter 1. Motivation

multiple regression model is chosen, for which simulated power functions are shown

in several situations: The effects of the number of data points, of the underlying data

set, of the error distribution in the model and of hyper-parameters of the sign depth

test and the ordering methods are analyzed. This section will show that only the

distance based ordering methods lead to completely satisfying power functions of the

sign depth test. Because of this, in Section 5.3 only these methods are considered.

In this section, the power of the sign depth test is analyzed for some more multiple

regression models, for example models with interactions or with non-linear regressors.

Afterwards, the power of the sign depth test is compared to three classical tests for

parameters of multiple regression models and the performance of the sign depth test

in the context of model checks is shown. At the end of this chapter, the sign depth

test is applied on real data of a bridge monitoring.

All results obtained in Chapters 2 to 5 will be summarized in Chapter 6. Furthermore,

an outlook to open questions and unsolved problems regarding the sign depth test is

given.

1.2 Used Computational Tools

The simulations in this thesis were performed on the High Performance Cluster

LiDO3 1 (Linux Cluster Dortmund, 3. Generation). LiDO3 consists of 366 nodes

with overall 8 160 CPU cores which have a performance of up to 2.4 GHz and at

least 64 GB RAM per node.

The simulations were executed in R (R Core Team, 2019) with the help of the

package batchtools (Lang et al., 2017). Runtime measurements were performed

with the package microbenchmark (Mersmann, 2019). Graphics were mostly made

with ggplot2 (Wickham, 2016) and tikzDevice (Sharpsteen and Bracken, 2019).

Furthermore, the packages BBmisc (Bischl et al., 2017), cowplot (Wilke, 2019),

gridExtra (Auguie, 2017), rgl (Adler and Murdoch, 2020), scales (Wickham and

Seidel, 2019) and xtable (Dahl et al., 2019) were used.

1https://www.lido.tu-dortmund.de/cms/en/home/index.html

https://www.lido.tu-dortmund.de/cms/en/home/index.html

Chapter 2

Estimators and Tests for (Robust)

Regression

This chapter describes tools for estimating and testing parameters in multiple linear

regression models, especially in the context of robust regression, i.e. when having

outliers in the design matrix and/or in the response vector of a linear model. After

describing linear models in general, several approaches for robust linear models are

presented. When a (robust) linear model is fitted to some data, usually the goodness

of the fitted model is of interest. Therefore, classical tests on the parameter vector of

the model like the F -test, the Wald test or the sign test can be used. In this thesis,

more precisely in Section 2.5, the so-called sign depth test for multiple regression is

presented. The sign depth test is a robust test on the parameter vector of a regression

model which could be used so far only for simple regression models with only one

regressor or models which have an inherent order in the data like time-series. In this

thesis the sign depth test will be extended to multiple regression.

2.1 General Notations and Definitions

Before describing linear models in the next section, the general notation in this thesis

is given. Here, the following notation is used: Normal written letters describe scalar

values, where letters in lower case in most cases are indices or components of a vector.

Lower case bold letters describe vectors and upper case bold letters describe matrices

5

6 Chapter 2. Estimators and Tests for (Robust) Regression

Letter / Symbol Meaning

D ∈ N Number of dimensions in a data set

K ∈ N with K ≥ 2 Parameter of the sign depth

N ∈ N Number of data points in a data set

e = (e1, . . . , eN)> ∈ RN Vector of errors in a regression model

xn = (xn1, . . . , xnD)> ∈ RD A single regression vector

x·d = (x1d, . . . , xNd)
> ∈ RN A single regressor vector

y = (y1, . . . , yN)> ∈ RN Response vector in a regression model

θ = (θ1, . . . , θD)> ∈ RD Parameter vector of a regression model

θ̂ = (θ̂1, . . . , θ̂D)> ∈ RD Estimated parameter vector

X = (x·1, . . . ,x·D) ∈ RN×D Design matrix in a regression model

zn = (yn, x
>
n)> ∈ RD+1 Regression vector with its response

Z = (z1, . . . ,zN)> ∈ RN×(D+1) Complete design matrix and responses

ê(θ) = (ê1(θ), . . . , êN(θ))> ∈ RN Vector of residuals in a regression model

1 : R→ {0, 1} Indicator function

ϕ : RN → {0, 1} A statistical test

γ : RD → [0, 1] The power function of a statistical test

α ∈ (0, 1) Level of a statistical test

Θ0 ⊂ RD Set of parameters in H0

θ0 ∈ RD Single parameter vector in H0

O(·) Big-O-Notation

N (µ, σ2) Normal distribution

Cau(s, t) Cauchy distribution

U(a, b) Uniform distribution

Bin(N, p) Binomial distribution

FA,B F -distribution

χ2
A χ2-distribution

Table 2.1: Letters and symbols with a fixed meaning in this thesis.

and (data) sets. Some letters and symbols have a fixed meaning in the whole thesis.

These letters and symbols are described in Table 2.1.

In the context of programming, software and its packages are written in teletype

font. For indicating functions the function name is followed by round brackets. The

Chapter 2. Estimators and Tests for (Robust) Regression 7

theoretical time complexity of algorithms is denoted with the Big-O-Notation, which

is defined in Definition 2.1 below.

Definition 2.1. Let f and g be real-valued functions and x ∈ R. Then the following

set can be defined (see Knuth (1976)):

f ∈ O(g)⇔ ∃C > 0 ∃x0 > 0 ∀x > x0 : |f(x)| ≤ C · |g(x)|.

2.2 Regression Models

At first, a definition of a linear regression model is given:

Definition 2.2. Let N, D ∈ N and

• xn = (xn1, . . . , xnD)> ∈ RD a regression vector,

• y = (y1, . . . , yN)> ∈ RN a response vector,

• e = (e1, . . . , eN)> ∈ RN an error vector,

• θ = (θ1, . . . , θD)> ∈ RD a parameter vector,

• X = (x·1, . . . ,x·D) ∈ RN×D with x·d = (x1d, . . . , xNd)
> ∈ RN a design matrix.

Then, a multiple linear regression model is given by

y = Xθ + e,

where the errors e1, . . . , eN are realizations of stochastically independent random

variables E1, . . . , EN .

When defining zn := (yn, x
>
n)> ∈ RD+1 and Z := (z1, . . . , zN)>, the residual relating

to zn and a parameter vector θ is given by ên(θ) := yn − x>nθ.

If the model includes an intercept θ0, θ is given by (θ0, θ1, . . . , θD−1)> and the design

matrix has components (1, x·1, . . . ,x·D−1). Furthermore, components in the design

matrix may also be transformations of other components, i.e. the design matrix would

be X = (x·1, . . . ,x·R, g1(x·1, . . . ,x·R), . . . , gD−R(x·1, . . . ,x·R)) with R ∈ N, R < D

and functions g1, . . . , gD−R.

Transformation functions can be for example functions to generate interactions or

non-linear components, like quadratic regressors. Both will be appear in this thesis,

especially in Subsections 5.3.2 and 5.3.3.

8 Chapter 2. Estimators and Tests for (Robust) Regression

Ordinary Least-Squares-Regression assumes that the errors follow a normal distri-

bution with expected value zero, i.e. En ∼ N (0, σ2) with σ2 > 0. In this case, the

least-squares estimator θ̂ of θ is given by θ̂ = (X>X)−1X>y if rank(X) = D. For

the classical scenario of least-squares-regression, well-known tests exist for testing

the parameter vector of the regression model. When using the normal distribution of

the errors, testing the hypothesis H0 : θ = θ0 vs. H1 : θ 6= θ0 for a fixed vector θ0 is

done with the F -test, see Theorem A.1 on page 213. A generalization of the F -test

is the Wald test, see Theorem 2.1 on page 14. In the context of non-parametric

tests, the classical sign test can be used for this testing problem, see Theorem A.2

on page 213.

When having outliers in the data, the normal distribution assumption of the errors

is violated. In the field of robust statistics, several approaches of modeling the

errors exist. One idea is to use a more heavy-tailed distribution for modeling the

errors, especially a t-distribution with only a few degrees of freedom seems to be

a meaningful choice, see for example Lange et al. (1989) and Gelman et al. (2003).

Another parametric approach is to use a ”contaminated normal distribution”, i.e.

En ∼ (1− ε)N (0, σ2) + εN (0, cσ2), where c > 1 and ε ∼ Bin(1, p), normally with

a rather small value for p. Also, non-parametric approaches for robust regression

exist. Popular methods are regression on the basis of M-estimators, S-estimators,

MM-estimators or LTS-estimators. Some of these approaches are described in more

detail in the next section.

2.3 Classical Robust Estimators and Tests in the

Context of Linear Regression

In ordinary least-squares-regression, the estimator θ̂ is the solution of the optimization

problem

θ̂ = arg min
θ∈RD

N∑
n=1

(yn − x>nθ)2 = arg min
θ∈RD

N∑
n=1

ên(θ)2. (2.1)

The solution of this optimization problem 2.1 can be heavily affected by only a

single outlier because the impact of a single large squared residual can be arbitrarily

large. Because of this, many robust regression approaches use different underlying

optimization problems for their models.

Chapter 2. Estimators and Tests for (Robust) Regression 9

The oldest approach was already used in basic form by Galileo in the 17th century:

the so-called L1-estimation, see for example Dodge (2008). Instead of minimizing

the sum of the squared residuals, this approach minimizes the sum of the absolute

residuals

θ̂ = arg min
θ∈RD

N∑
n=1

|yn − x>nθ| = arg min
θ∈RD

N∑
n=1

|ên(θ)|. (2.2)

Although this approach is intuitive and more robust than the ordinary least-squares

method, very large outliers can still have a huge effect on the optimization problem.

Also, the solution of the optimization problem 2.2 cannot be given as a explicit

formula, but has to be derived iteratively with specialized algorithms.

Another approach is called least-trimmed-squares-regression (LTS-regression) and

is described for example in Rousseeuw and Leroy (1987, p. 15). When denoting

ê2
(n)(θ) as the nth smallest squared residual, the optimization problem of the ordinary

least-squares-regression can be written as θ̂ = arg minθ∈RD

∑N
n=1 ê

2
(n)(θ). For LTS-

regression, a hyper-parameter L < N is needed which describes how many residuals

should be taken into account for the optimization. In fact, only the L smallest

residuals matter for the optimization, whereas the N−L larger residuals are neglected.

Consequently, the optimization problem of LTS-regression is

θ̂ = arg min
θ∈RD

L∑
n=1

ê2
(n)(θ). (2.3)

Since it depends on the fitted model which residuals are the largest, also for this

robust regression method no simple solution of the optimization problem 2.3 can be

given, but the solution has to be computed iteratively with specialized algorithms,

for example the Fast LTS algorithm proposed by Rousseeuw and Driessen (1999).

Furthermore, the choice of L affects the solution of the optimization problem, which

means that it should be clear how many outliers are in the data before applying this

method to the data.

Furthermore, Huber (1964) proposed the so-called M-estimators as robust location

estimators, which can be also used for robust regression. An M-estimator for

regression models can be derived by the solution of the optimization problem

θ̂ = arg min
θ∈RD

N∑
n=1

ρ(ên(θ)), (2.4)

where ρ is a symmetric function (i.e. ρ(x) = ρ(−x) for all x ∈ R) with an unique

minimum at zero (Rousseeuw and Leroy, 1987, p. 12). If ρ is differentiable with

10 Chapter 2. Estimators and Tests for (Robust) Regression

ψ := ρ′, the optimization problem 2.4 can be written as finding a vector θ for which

N∑
n=1

ψ(ên(θ))xn = 0 (2.5)

holds. In the literature, many different choices for ρ and ψ are proposed, especially

the ordinary least-squares-regression and the L1-regression are special cases of M-

estimation. Often used ψ-functions for robust regression are for example the Huber

function (Huber, 1964)

ψ(x) =

x, |x| ≤ k

k sign(x), |x| > k
, k > 0, (2.6)

Tukey’s bisquare function (Beaton and Tukey, 1974)

ψ(x) =

x
(

1−
(x
k

)2
)2

, |x| ≤ k

0, |x| > k

, k > 0, (2.7)

the Hampel function (Hampel et al., 1986, p. 150)

ψ(x) =



x, |x| ≤ a

a sign(x), a < |x| ≤ b

a sign(x) c−|x|
c−b , b < |x| ≤ c

0, c < |x|

, 0 < a < b < c, (2.8)

an ”optimal” function by Yohai and Zamar (1998)

ψ(x) =



x,
∣∣x
c

∣∣ ≤ 2

c
(
−1.944x

c
+ 1.728

(
x
c

)3
2 <

∣∣x
c

∣∣ ≤ 3

− 0.312
(
x
c

)5
+ 0.016

(
x
c

)7
)
,

0,
∣∣x
c

∣∣ > 3

, c > 0 (2.9)

and an ”optimal” function by Maronna et al. (2006, p. 145)

ψ(x) = sign(x) max

{
0, −φ

′(|x|) + c

φ(|x|)

}
, c ≥ 0, (2.10)

where φ describes the standard-normal density function. Since the above mentioned

equation 2.5 is not easily solvable for most choices of ψ, specialized algorithms have

to be used, for example Newton-Raphson algorithms or Iteratively Re-Weighted

Chapter 2. Estimators and Tests for (Robust) Regression 11

Least Squares algorithms. The found solution of these algorithms can heavily depend

on the starting point of the algorithm, so that a ”good” initial estimator of θ

should be used as a starting point. Furthermore, the solution of M-estimators of

course depends on the chosen ψ-function and its hyper-parameters, although for all

above mentioned functions meaningful choices for the hyper-parameters exist in the

respective literature. Normally, the hyper-parameters are chosen so that a specific

efficiency and/or breakdown point is achieved.

While M-estimators reach good performance when having outliers in the response

variable of a linear model, they perform poorly in case of leverage points (i.e. outliers

in the regressors), see for example Rousseeuw and Leroy (1987, p. 13). Because of

this, some other types of estimators, like S-estimators, were invented. S-estimators

(Rousseeuw and Yohai, 1984) estimate the parameter vector θ by minimizing the

dispersion of the residuals. Formally written,

θ̂ = arg min
θ∈RD

s(ê(θ)), (2.11)

where s(ê(θ)) is the solution of

1

N

N∑
n=1

ρ

(
ên(θ)

s(ê(θ))

)
= EΦ(ρ). (2.12)

Here, EΦ(ρ) describes the expected value of the function ρ in case of standard-normal

inputs. For this, ρ must be symmetric and continuously differentiable with ρ(0) = 0

and there must be a c > 0 for which ρ is strictly increasing on [0, c] and constant

on [c, ∞). Remembering that ψ = ρ′ holds, the requirements for ψ are that ψ is

positive on [0, c) and zero on [c, ∞) with ψ(−x) = −ψ(x) for all x ∈ R (so-called

redescending ψ-functions). While above mentioned Tukey’s bisquare function, the

Hampel function and the optimal functions fulfill these requirements, for example

the Huber function is not possible in this case.

Another extension of the M-estimators are the MM-estimators invented by Yohai

(1987). MM-estimators are defined in three steps. At first, an initial estimator θ̂
∗

with high breakdown point (i.e. a high number of outliers is needed before the

estimator gets arbitrarily affected) is computed. For this, often an LTS-estimator is

used. In the second step, an S-estimator sθ̂∗ on the obtained residuals of the initial

estimation is computed. Finally, in the third step, the MM-estimator is defined as

12 Chapter 2. Estimators and Tests for (Robust) Regression

any solution of

N∑
n=1

ψ

(
ên(θ)

sθ̂∗

)
xn = 0 (2.13)

which fulfills S(θ) ≤ S(θ̂
∗
) where S(θ) is defined via

S(θ) :=
N∑
n=1

ρ

(
ên(θ)

sθ̂∗

)
. (2.14)

For this, the function ρ and its derivative ψ must fulfill the same conditions as for

S-estimations, which are mentioned above.

All above described methods are implemented in different R-packages for practical

usage. The ordinary least-squares-regression can be found in the function lm() in

the package stats which is part of R and automatically loaded when starting R. The

robust methods can mostly be found in the package robustbase (Maechler et al.,

2019a). In this package, the central function for robust regression is lmrob(). By

default, it computes an MM-estimator with settings described in Koller and Stahel

(2011). Further functions are lmrob.lar() for L1-regression, lmrob..M..fit() for

M-estimation, lmrob.S() for S-estimation and ltsReg() for LTS-regression. Another

implementation of MM-estimation for robust regression can be found in the package

robust (Wang et al., 2019). Its function lmRob() in default uses different settings

than the function lmrob() in robustbase, especially the choice of the ψ-function is

different: While lmrob() uses the so-called ”linear-quadratic-quadratic” ψ-function

described in Koller and Stahel (2011), lmRob() uses the above mentioned ”optimal”

ψ-function of Yohai and Zamar (1998). An example of the different regression

methods is given in Section 2.6.

In the literature, there exist also some classical robust tests on parameters of linear

regression. A good overview can be found in Chapter 7 of Hampel et al. (1986), where

for example the so-called τ -test and R2
n-test are described. These tests are mostly

extensions of likelihood ratio tests which robustify classical tests. The classical Wald

test can also be used directly for asymptotically normally distributed estimators,

like M -estimators. For this, only a robust estimation of the covariance matrix of

the estimated parameter vector is needed. In the literature, there exist several

approaches for estimating this covariance matrix, see for example Rousseeuw and

Leroy (1987, p. 130) or Maronna et al. (2006, p. 139). Since in Chapter 5 a Wald test

based on the estimators provided by the R-function lmRob() of the package robust

Chapter 2. Estimators and Tests for (Robust) Regression 13

is used as a comparison method, in the following its estimation of the covariance

matrix is described in more detail. A complete description of the procedure used by

lmRob() can be found in Yohai et al. (1991) and TIBCO Software Inc. (2010). As

mentioned above, lmRob() estimates the parameter of a linear regression model by

MM-estimation, for which the optimal ψ-function of Yohai and Zamar (1998) is used

by default. In the following, let θ̃ be the estimator obtained in the second step of

the MM-estimation process (i.e. the S-estimation step) and σ̃ its estimator of the

dispersion, i.e.

θ̃ = arg min
θ∈RD

s(ê(θ)) (2.15)

and

σ̃ = min
θ∈RD

s(ê(θ)). (2.16)

Let ẽn, n = 1, . . . , N be the standardized residuals obtained in this step, i.e.

ẽn =
yn − x>n θ̃

σ̃
, n = 1, . . . , N (2.17)

and

wn =
ψ(ẽn)

ẽn
, n = 1, . . . , N. (2.18)

Then, the estimated covariance matrix of the final parameter vector θ̂ is

Σ̂ =
1

N
Ĉ
−1
σ̃2τ̂ (2.19)

with

Ĉ =

(
N∑
n=1

wn

)−1

·
N∑
n=1

wnxnx
T
n (2.20)

and

τ̂ =

(
1

N

N∑
n=1

ψ′(ẽn)

)−2

· 1

N

N∑
n=1

ψ(ẽn)2. (2.21)

The estimated parameter vector θ̂ and the estimated covariance matrix Σ̂ obtained

by lmRob() can then be used in a classical Wald test, which is described below in

Theorem 2.1.

14 Chapter 2. Estimators and Tests for (Robust) Regression

Theorem 2.1. The Wald test

Let y = Xθ+e be a linear model with rank(X) = D < N , θ̂ an estimator for θ and

Σ̂ a consistent estimator for the covariance matrix of θ̂. Assume that
√
N(θ̂ − θ0)

follows asymptotically a normal distribution with expected value 0 and covariance

matrix Σ̂, i.e.
√
N(θ̂ − θ0)→ N (0, Σ̂). The hypothesis H0 : θ = θ0 vs. H1 : θ 6= θ0

can be rejected to the level α ∈ (0, 1) if

(θ̂ − θ0)>(Σ̂/N)−1(θ̂ − θ0) > χ2
D,1−α,

where χ2
D,1−α denotes the (1− α)-quantile of the χ2-distribution with D degrees of

freedom.

Remark 2.1.

(a) Since the χ2-distribution of the test statistic under H0 only holds asymptotically,

the Wald test may not maintain the level α for finite sample sizes.

(b) The Wald test can be used as soon as the assumption
√
N(θ̂ − θ0)→ N (0, Σ̂)

holds. This is the case for many types of estimators, like for example maximum-

likelihood estimators or M-estimators.

2.4 Robust Estimators Based on Data Depth

Next to the above presented approaches for robust regression, there also exist further

non-parametric and semi-parametric approaches. One branch in the field of robust

estimation and testing deals with so-called data depths. Many different types of data

depths exist, but they all have in common that they aim to find an estimator which

is ”deep” in the data.

The first approach in the context of data depths was presented by Tukey (1975) who

proposed the so-called halfspace depth for location estimation. A description of the

halfspace depth in a bit more detail can be found in Subsection 3.3.3. This halfspace

depth has many extensions. Most of them concern multivariate data, see, for example

simplicial depth of Liu (1990), zonoid depth treated in Mosler (2002), Mahalanobis

depth as used in Hu et al. (2011) or functional data depths as in López-Pintado

and Romo (2009), Claeskens et al. (2014) and Agostinelli (2018). Not all of them

provide robust methods and most of them concern only estimation, but no testing.

Also, there exist not many extensions of the halfspace depth in the context of robust

Chapter 2. Estimators and Tests for (Robust) Regression 15

regression. One approach, called regression depth, was presented by Rousseeuw and

Hubert (1999). They defined the regression depth as the minimal number of data

points that have to be removed from the data set to make a fitted regression model

a so-called non-fit. A more formal definition of the regression depth is given in

Van Aelst et al. (2002). There, with the notation given in Table 2.1 on page 6, the

regression depth is defined via

dR(ê(θ)) := min
u,v

(#{ên(θ) ≥ 0 and x>nu < v} +

#{ên(θ) ≤ 0 and x>nu > v}),
(2.22)

where the minimum is over all unit vectors u ∈ RD and all v ∈ R with x>nu 6= v.

Estimating the parameter vector θ in a regression model can be done by searching

the parameter vector which has maximal regression depth, i.e.

θ̂ = arg max
θ∈RD

dR(ê(θ)). (2.23)

In general, this is a hard to solve optimization problem, for which a fast exact

algorithm only exists for simple regression. For multiple regression, an approximate

algorithm is described in Van Aelst et al. (2002), which is also implemented in the

function rdepthmedian() in the R-package mrfDepth (Segaert et al., 2020).

The regression depth is an extension of Tukey’s halfspace depth, but also Liu’s

simplicial depth can be extended to regression. A first approach of this was already

given in Rousseeuw and Hubert (1999), but over the last years the research on this

topic was pushed ahead, especially by Christine Müller and some of her co-workers,

which has recently led to the definition of sign depth. Since this thesis is based on

the sign depth, in the following this depth is described in detail.

2.5 Estimators and Tests Based on Sign Depth

As Rousseeuw and Hubert (1999) noticed for simple linear regression and Kustosz et al.

(2016a) proved in the context of linear and non-linear regression and autoregression,

the simplicial depth often reduces to what is called the K-sign depth. Hence, under

certain conditions, the K-sign depth, with K ≥ 2, can be seen as a generalization

of the simplicial regression depth introduced by Müller (2005) for generalized linear

models. The K-sign depth is defined as follows:

16 Chapter 2. Estimators and Tests for (Robust) Regression

Definition 2.3. Let x1, ...,xN be ordered according to some criteria and K ∈ N with

2 ≤ K ≤ N . Then the K-sign depth dKS of a parameter θ in the data set Z with

residuals ê(θ) = (ê1(θ), . . . , êN(θ))> is defined via

s(1)
nk

:= 1{ênk
(θ) · (−1)k > 0}

s(2)
nk

:= 1{ênk
(θ) · (−1)k < 0}

s(3)
nk

:= 1− 1{ênk
(θ) 6= 0}

dKS (ê(θ)) :=

(
N

K

)−1 ∑
1≤n1<n2<...<nK≤N

(
K∏
k=1

s(1)
nk

+
K∏
k=1

s(2)
nk

+
K∏
k=1

s(3)
nk

)
,

where 1{. . .} denotes the indicator function, which is one if the condition in the curly

braces holds and zero otherwise.

Remark 2.2. In the case that P (En = 0) = 0 ∀n = 1, . . . , N holds, the K-sign depth

is almost surely equal to

dKS (ê(θ)) =

(
N

K

)−1 ∑
1≤n1<n2<···<nK≤N

(
K∏
k=1

s(1)
nk

+
K∏
k=1

s(2)
nk

)
,

which corresponds to the definition given in Leckey et al. (2020).

In short, the K-sign depth is the relative number of ordered K-tuples with alternating

signs of the residuals. It can be used as soon as a given ordering of the residuals is

available. An example of calculating the 3-sign depth can be found in Figure 2.1.

In nearly all parts of this thesis, multiple linear regression is used with the condition

P (En > 0) = P (En < 0) = 0.5, which means that no residuals with value zero should

occur, but the median of the errors is zero. Especially, this condition means that

no normal distribution assumption on the errors is needed when applying the sign

depth since the sign depth only deals with the signs of the residuals but not with the

values itself.

In simple regression, the data has an inherent order according to the values of the

only regressor. So, the K-sign depth can easily be applied. Like the regression depth

of Rousseeuw and Hubert, the sign depth can be used for estimating the parameter

vector θ of a regression model via searching the parameter vector which leads to the

maximal depth, i.e. θ̂ = arg maxθ∈RD dKS (ê(θ)). So far, no specialized algorithm for

computing the parameter vector which leads to the maximal sign depth has been

Chapter 2. Estimators and Tests for (Robust) Regression 17

0

alternating signs

0

alternating signs

0

no alternating signs

0

no alternating signs

0

Figure 2.1: Example of calculating the K-sign depth with parameter K = 3. The topmost

figure shows four residuals of an arbitrary model, the lower figures show the(
4
3

)
= 4 combinations of 3-tuples of these residuals. Here, two out of four

3-tuples have alternating signs, so the 3-sign depth is 0.5.

developed. However, a naive approximate algorithm with large time complexity (i.e.

O(
(
N
D

)
)) is available for linear models. This algorithm fits a hyperplane through

all
(
N
D

)
possibilities of choosing D regression vectors from all N regression vectors,

calculates the sign depth of the residuals and takes the parameter vector which has

led to the maximal sign depth. A formal description of this procedure for simple

regression y = θ0 + θ1x·1 + e can be found in Algorithm A.1 on page 214.

In the last years, a lot of research has been done in the field of sign depths.

The sign depth can be seen as a generalization of the simplicial regression depth

for generalized linear models proposed already by Müller (2005). A few years

ago, Kustosz et al. (2016b) showed that the values of the standardized version

N · (dKS (ê(θ)) − (1
2
)K−1) of the distribution of the K-sign depth converges for

K = 3 to an asymptotic distribution of which for example quantiles can be generated

of. Kustosz et al. (2016b) also dealt with some simplified versions of the K-sign

depth which are easier to compute and converge to the standard normal distribution.

18 Chapter 2. Estimators and Tests for (Robust) Regression

Recently, Malcherczyk (2021+) found some efficient ways to compute the K-sign

depth. Furthermore, a test on parameters of a regression model based on the sign

depth has been developed, see below. But one problem has remained all the years:

The sign depth and tests based on it could only be used when there is only one

regressor in the regression model because the sign depth needs ordered data according

to the values of the regressor. When there is more than one regressor, there is no

inherent order in the data anymore and the values of the K-sign depth may change

drastically when ordering the values according to different criteria. This problem

will be discussed in more detail in Section 2.7.

By now, the K-sign depth has only been used for estimation of regression parameters.

But, it can also easily be used for testing on the parameters. In the following, this

will be explained in detail.

In the context of robust multiple regression, there exist already some tests on the

parameter vector of a regression model. Widely used is the non-robust F -test

(see Theorem A.1 on page 213), which depends on the assumption of normally

distributed errors. Also for robust models which estimators are asymptotically

normally distributed (like M-estimators) the F -test can be applied. As explained

in the previous section, there exist also robust generalizations of the F -test which

are based, for example, on M-estimators. Also the Wald test (see Theorem 2.1 on

page 14) can be based on M-estimators which robustifies this test clearly. One

approach for this was described in the previous section. In the field of non-parametric

tests the sign test (see Theorem A.2 on page 213) is often used which is basically

a binomial test on the number of positive (or negative) residuals to check whether

they occur with probability 0.5 or not.

All three classical tests have some disadvantages: the F -test as well as the Wald

test need the normal distribution, the robust Wald test is laborious to compute

because of the robust estimation of θ̂ and Σ̂ and the sign test has low power in

many situations because it only looks at the number of positive residuals, but not on

the order of the residuals. Because of this, an obviously non-fitting model could be

regarded as a good model by the sign test if it has the same number of positive and

negative residuals. The K-sign depth also only needs the signs of the residuals, but

in contrast to the test statistic of the sign test also pays attention to the order of

the signs. Because of this, the sign depth has great potential to be the basis of a

powerful test. In addition, for the sign depth no assumption on the distribution of

the errors is needed as long as the median of the errors is zero.

Chapter 2. Estimators and Tests for (Robust) Regression 19

The basis of the K-sign depth test is the following: If the fitted parameter vector of

a model is correct, the residuals scatter independently of each other around zero. In

contrast, if the fitted parameter vector is not correct, the independence of the signs of

the residuals is often violated and the residuals do not scatter independently around

zero. This leads to fewer K-tuples with alternating signs and hence to a smaller

K-sign depth. When the value of the K-sign depth is smaller than the α-quantile of

the distribution of the corresponding K-sign depth, it is shown significantly to the

level α ∈ (0, 1) that the considered model does not fit the data. The K-sign depth

test can be written as follows:

Theorem 2.2. K-Sign Depth Test

Let α ∈ (0, 1) and K ∈ N be fixed with 2 ≤ K ≤ N , where N is the number of data

points in the data set Z and ê(θ) denotes the vector of residuals when fitting a model

to Z with parameter θ. Let qK,Nα denote the α-quantile of the distribution of the

K-sign depth for N data points. Then, the test

ϕK(ê(θ)) = 1

{
sup
θ∈Θ0

dKS (ê(θ)) < qK,Nα

}
is a test to the level α for H0 : θ ∈ Θ0 vs. H1 : θ /∈ Θ0.

In this thesis, only the case of a single valued Θ0 is considered. In this case the

K-sign depth test can be simplified as follows:

Corollary 2.1. K-Sign Depth Test for single valued Θ0

Let α ∈ (0, 1) and K ∈ N be fixed with 2 ≤ K ≤ N , where N is the number of data

points in the data set Z and ê(θ) denotes the vector of residuals when fitting a model

to Z with parameter θ. Let qK,Nα denote the α-quantile of the distribution of the

K-sign depth for N data points. Then, the test

ϕK(ê(θ)) = 1
{
dKS (ê(θ0)) < qK,Nα

}
is a test to the level α for H0 : θ = θ0 vs. H1 : θ 6= θ0.

Hence, the K-sign depth test rejects its null-hypothesis if the K-sign depth of all

parameters θ of the null-hypothesis is too small. For a proof of this simple test

strategy, see Müller (2005). The K-sign depth test also is a generalization of the

classical sign test since the 2-sign depth test is equivalent to the classical sign test,

see Leckey et al. (2020). In addition, Kustosz et al. (2016b), Kustosz et al. (2016a)

and Leckey et al. (2020) showed for several examples that the 3-sign depth test and

20 Chapter 2. Estimators and Tests for (Robust) Regression

the 4-sign depth test are much more powerful than the classical sign test and reach

the power of the classical non-robust tests based on least-squares of the residuals.

A small drawback of the sign depth test is the need of a quantile whose value depends

on the number of data points as well as on the parameter K of the sign depth.

Indeed, Kustosz et al. (2016b) showed that the standardized values of the 3-sign

depth converge for large N to an asymptotic distribution of which quantiles can

be generated of, but for smaller values of N or other values of K this distribution

cannot be used. As described in Section 4.2, the quantiles of the distributions of the

K-sign depth for smaller values of N have to be simulated.

2.6 Comparison of the Robust Estimators and Tests in

the Context of Linear Regression

This section compares the different robust and non-robust estimators and tests on the

basis of a given data set. For this, we will look at the Hertzsprung-Russell diagram

data of star cluster CYG OB1 given in the data set starsCYG in the R-package

robustbase and firstly described in Rousseeuw and Leroy (1987, p. 27). This data

set contains the logarithm of the effective temperature at the surface of each star

(Te) and the logarithm of its light intensity. Overall, values of 47 stars are in the

data set, of which four are so-called ”giants”, which have a much smaller temperature

and a slightly higher light intensity than the other stars and so can be declared as

outliers.

At first, the classical (robust) estimators for linear regression described in Section 2.3

are compared. When looking at Figure 2.2, it can be seen that the ordinary least-

squares model is heavily affected by the four outliers. Although there is a positive

correlation between the temperature and the light intensity of the stars (when

neglecting the giants), the slope of the regression line is negative. The same holds

for the L1-regression, since the outliers are quite large and so the L1-regression is

although heavily affected by them. As written in Section 2.3, the M-estimation leads

to bad results in case of leverage points. Since the four giants have a much smaller

temperature and only a slightly higher light intensity, they can be seen as leverage

points and so it is not surprising that the M-estimator also is heavily affected by

these points. All other robust estimators are not or not much affected by the outliers.

Chapter 2. Estimators and Tests for (Robust) Regression 21

4.0

4.5

5.0

5.5

6.0

3.50 3.75 4.00 4.25 4.50

log.Te

lo
g.

li
gh

t

Model

OLS

L1

LTS

M (Hampel)

S (Bisquare)

MM (robust)

MM (robustbase)

Figure 2.2: (Robust) linear regression models fitted to the Hertzsprung-Russell diagram

data of star cluster CYG OB1. Here, OLS means the non-robust ordinary least-

squares-regression and L1 means regression based on least absolute deviations.

The hyper-parameters of the other regression models are chosen as their default

values given in their respective R-functions. In particular, for LTS L = 0.5N

is chosen, the Hampel M-estimator has parameters a = 1.3521, b = 3.1549,

c = 7.2112 and the S-estimator is based on Tukey’s bisquare function with

k = 4.69. The MM-estimator in package robust is called via lmRob() with its

default values (”optimal” ψ-function) and the MM-estimator in robustbase is

called via lmrob() with its default values described in Koller and Stahel (2011).

Their slopes are positive and fit the data of the 43 ”normal” stars quite well. Indeed,

the MM-estimator implemented in the R-package robustbase fits a slightly different

line than the three other methods, whose results are quite similar. Especially, it can

be seen that the hyper-parameters of the regression methods can have a significant

effect on the result, since the two MM-estimators come to quite different results.

Next, it is looked at the estimators based on data depth and sign depth described in

Sections 2.4 and 2.5. The regression depth of Rousseeuw and Hubert can be easily

fit to the Hertzsprung-Russel diagram data, whereas for the sign depth a value of

K has to be chosen in advance. This parameter is often set to K = 3, especially

for simple linear regression, where the 3-sign depth corresponds to Liu’s simplicial

depth, see Kustosz et al. (2016a). Because of this, in the following the sign depth is

computed with parameter K = 3.

22 Chapter 2. Estimators and Tests for (Robust) Regression

4.0

4.5

5.0

5.5

6.0

3.50 3.75 4.00 4.25 4.50

log.Te

lo
g.

li
gh

t
Model

OLS

L1

LTS

M (Hampel)

S (Bisquare)

MM (robust)

MM (robustbase)

Regression Depth

3-Sign Depth

Figure 2.3: (Robust) linear regression models fitted to the Hertzsprung-Russell diagram

data of star cluster CYG OB1. The regression depth is fitted with the help

of the R-function rdepthmedian() from the package mrfDepth. The fit on

the basis of the 3-sign depth is computed with self-written R-code based on

Algorithm A.1 shown on page 214 and the function calcDepth() of the package

GSignTest (Horn, 2021). For information on the other regression models and

its hyper-parameters see Figure 2.2.

When using data depths for fitting a regression line to the Hertzsprung-Russel

diagram data, it can be seen in Figure 2.3 that the regression depth of Rousseeuw

and Hubert as well as the 3-sign depth are robust against the four outlying giants.

But in detail, the fits of both models are different. Especially, the fit of the 3-sign

depth has a smaller value of the slope than the line fitted by the regression depth

and also than the lines of the LTS- and S-estimation and the MM-estimation given

by the package robust. Indeed, the 3-sign depth fits nearly the same model as the

MM-estimation by the package robustbase. Overall, both added regression models

fit the data satisfyingly.

In the next step, the goodness of the fits of the different regression models can be

analyzed. For this, the classical sign test and the sign depth test with parameter

K = 3 will be used. All nine fitted regression models can be tested with both tests

to analyze whether the respective models fit the data well. Table 2.2 shows the

values of the regression parameters of the nine models. As already noted before, six

slopes are positive, whereas the slopes of the ordinary least-squares regression, the

Chapter 2. Estimators and Tests for (Robust) Regression 23

Parameter 3-Sign Depth Test Sign Test

Model Intercept Slope Statistic p-value Statistic p-value

OLS 6.7935 -0.4133 0.1973 0.0067 27 0.3817

L1 8.1492 -0.6932 0.2065 0.0138 24 1.0000

LTS -8.5001 3.0462 0.2566 0.6062 28 0.2430

M (Hampel) 6.9307 -0.4385 0.1973 0.0067 27 0.3817

S (Bisquare) -9.5708 3.2904 0.2514 0.4147 26 0.5601

MM (robust) -7.7140 2.8717 0.2617 0.8640 26 0.5601

MM (robustbase) -4.9694 2.2532 0.2609 0.8205 25 0.7709

Regression Depth -10.3161 3.4848 0.2257 0.0613 22 0.7709

3-Sign Depth -5.1548 2.2955 0.2615 0.8540 26 0.5601

Table 2.2: Table of regression parameters as well as values of the test statistic and p-values

of the 3-sign depth test and the classical sign test for nine models which fit the

Hertzsprung-Russel diagram data.

L1-regression and the Hampel-M-estimation are negative because they are affected

by the values of the giants and so, do not describe the remaining 43 data points

well. Also, in Table 2.2 the test statistic of the classical sign test and the associated

p-values are shown. It can be seen that the number of positive residuals (which is the

test statistic of the sign test) of all models is about half of the number of observations

(which is N = 47). All p-values are much larger than the usual level of α = 0.05,

which means that all models are regarded as well fitting models for the sign test.

Furthermore, Table 2.2 shows the test statistics and the p-values of the 3-sign depth

test for the nine models. Here, it can be seen that the 3-sign depths (i.e. the test

statistic) of the OLS-, L1- and M-regression are smaller than the depths of the other

methods. The largest depth of course has been obtained by the 3-sign depth method,

since this method is constructed by finding the parameter vector with the largest

3-sign depth. The p-values of the 3-sign depth tests show that the null-hypothesis

H0: ”the fitted parameter vector describes the data well” can be rejected for α = 0.05

for the OLS-, L1- and M-regression. For the other six models, the null-hypothesis is

not rejected which corresponds to the visual impression that all of these six models

fit the data satisfyingly.

This section has shown that the sign depth and sign depth test work well in the case

of simple linear regression. While even some robust regression methods were affected

24 Chapter 2. Estimators and Tests for (Robust) Regression

by four outliers in the used data set, the regression line based on the maximal 3-sign

depth has fitted the data quite well, like some of the other robust regression methods

have also done. But in contrast to most of the other methods, the sign depth method

needs less assumptions on the data and has less hyper-parameters. Furthermore,

the sign depth test was able to detect the obviously non-fitting models whereas the

classical sign test came to the conclusion that all fitted models describe the data

well. But, as mentioned in the previous section, the sign depth and sign depth test

have a problem in the case of multiple regression because this method needs ordered

data and in multiple regression, often there is no inherent order of the data. This

problem is described in detail in the next section.

2.7 Problem of the Sign Depth in the Context of

Multiple Regression

In the context of multiple regression, there may occur a problem when applying the

sign depth and sign depth test. As stated in Definition 2.3 on page 16, the sign

depth needs ordered regression vectors or residuals respectively. In some applications

there is an inherent order of the regression vectors although there may be more than

one regressor, for example in the context of time-series or sometimes in the field of

design of experiments, but often there is no inherent order in the data set. For these

situations, a suitable and unique ordering has to be applied to the data because

ordering the data on the basis of different ordering methods can have a crucial effect

on the sign depth and the sign depth test. In the following, this is described in more

detail based on a simple example.

Let y = Xθ + e be a linear regression model with xn = (1, xn1, xn2)
>, where

xn1, xn2 ∈ [−1, 1], θ = (θ0, θ1, θ2)
> and En

i.i.d∼ N (0, 0.01). The true model has

the parameter vector θtrue = (0, 1, 1)>. Here, N = 16 data points of this model

are given. To these data points, a regression model with the parameter vector

θ̂ = (−0.05, −0.5, 1)> is fitted. A visualization of the data points and the fitted

model can be found in Figure 2.4. It can be seen that the fitted model produces

eight positive residuals and eight negative residuals. A possible method for ordering

the regression vectors is to order the vectors according to the values of only one

regressor and neglect the values of all others (see Subsection 3.2.3). In this example,

this would lead to two possible orders which are shown in Figure 2.5.

Chapter 2. Estimators and Tests for (Robust) Regression 25

Figure 2.4: Visualization of the 16 data points (red) and the fitted model (dark grey).

(a) Ordering the regression vectors according

to the values of x·1.

(b) Ordering the regression vectors according

to the values of x·2.

Figure 2.5: Visualization of two possible orders for the 16 data points. The orders are

marked as orange lines.

As discussed below, these two orders lead to very different values of the K-sign depth.

When ordering according to the values of x·1, only one sign change in the residuals

occurs. Ordering according to the values of x·2 leads to seven sign changes. This has

crucial effect on all K-sign depths with K ≥ 3, as it can be seen in Table 2.3. Like

the K-sign depth also the K-sign depth test depends on the ordering of the regression

vectors in the case of multiple regression. The 16 two-dimensional regression vectors

26 Chapter 2. Estimators and Tests for (Robust) Regression

d2
S(ê(θ̂)) d3

S(ê(θ̂)) d4
S(ê(θ̂)) d5

S(ê(θ̂))

(a) 0.533 0 0 0

(b) 0.533 0.286 0.176 0.088

Table 2.3: K-sign depth with K ∈ {2, 3, 4, 5} for the orders (a) and (b) of Figure 2.5.

K = 2 K = 3 K = 4 K = 5

(a) 1 0 0 0

(b) 1 0.8516 0.9903 0.8375

Table 2.4: p-values of K-sign depth tests with K ∈ {2, 3, 4, 5} for the orders (a) and (b) of

Figure 2.5. Values of the corresponding K-sign depths can be found in Table 2.3.

were ordered in two different ways, so that the fitted model with its eight positive and

eight negative residuals led to one sign change in the residual vector in case (a) and

seven sign changes in the residual vector in case (b). When testing the hypothesis

whether the data is sufficiently fitted by the model, the p-values of different K-sign

depth tests show the crucial dependance of the test on the ordering. Table 2.4

shows the p-values of the K-sign depth tests for both orderings and K ∈ {2, 3, 4, 5}.
As Leckey et al. (2020) already noted, the 2-sign depth test is equivalent to the

classical sign test which explains why both 2-sign depth tests have an p-value of

one independently of the ordering. For K ≥ 3, the sign depth and so the p-value of

the sign depth test of ordering (a) is zero because there is only one sign change in

the residual vector and for getting a positive value of the sign depth, at least K − 1

sign changes are necessary. Hence, the sign depth test comes independently of K to

the conclusion, that the model does not fit the data well which corresponds to the

visual impression of the model and the data. On the other hand, ordering (b) has led

to seven sign changes within the 16 data points which implies a large value of the

K-sign depth and so a large value of the p-value. On the basis of this ordering, the

parameters of the obviously non-fitting model cannot be rejected to any appropriate

level α.

This example shows how important the order of the multidimensional data is for

getting meaningful results of the K-sign depth test. So far, this problem in the

context of multiple regression is unsolved. This thesis aims to change this.

Chapter 2. Estimators and Tests for (Robust) Regression 27

2.8 Aim of this Thesis

As in the previous sections described, a lot of research was made in the field of

sign depths and sign depth tests in the past years. Many questions in this field

are already answered: An asymptotic distribution of the 3-sign depth is known

(Kustosz et al., 2016b), efficient algorithms for computing the (asymptotic) sign

depth were developed by Dennis Malcherczyk and Kevin Leckey and it was shown

that the sign depth test has similar power to classical tests like the F -test in many

situations and outperforms the classical sign test nearly always (Leckey et al., 2020).

But, until now, one major drawback exists: The sign depth test can only be used

when the regression vectors follow an inherent order, which is, for example, the

case for time-series or simple regression, but most times not for multiple regression.

Section 2.7 has shown that the order of the regression vectors and residuals has a

crucial effect on the result of the sign depth and the sign depth test. This thesis will

focus on this aspect of the sign depth. It has the aim to find a way of using the sign

depth test for multiple regression, so that the test has the largest possible power.

Facing this goal, several research questions can be formulated which will be answered

in this thesis:

1. Which possibilities exist for ordering multidimensional data? For each method,

especially the following aspects are of interest:

(a) Which types of data can be ordered? Only metric data or also ordinal

and nominal values?

(b) Is the result of the ordering affected by linear transformations of the data

points?

(c) Does the method obtain the inherent order of the data if there is one (for

example, in the one-dimensional case)?

(d) What is the time complexity to compute the order and how large are the

empirical runtimes?

(e) Which further advantages and disadvantages do the methods have?

2. How can the sign depth, the sign depth test and the ordering methods be

efficiently implemented in R? How can these implementations be made usable

for other people?

28 Chapter 2. Estimators and Tests for (Robust) Regression

3. Which type(s) of ordering methods produce satisfying simulated power func-

tions? Which ordering method is the best? Especially, the following aspects

are of interest:

(a) Different numbers of data points,

(b) different values of the parameter K of the sign depth test,

(c) different data sets,

(d) different error distributions in the simulated data,

(e) different hyper-parameters of the ordering methods (if there are some),

(f) different linear models, especially with different numbers of dimensions.

4. How does the sign depth test perform in the different situations in contrast to

the F -test, a robust Wald test and the classical sign test?

5. How does the sign depth test perform on real data?

Chapter 3

Methods for Ordering

Multidimensional Data

As described in Section 2.7, the result of the calculation of the sign depth and sign

depth test depends on the order of the given values. In the context of multiple

regression, the value of the sign depth changes when the regression vectors (and so

the residuals) are ordered differently. It can be thought of many possible ways to

order the regression vectors of a statistical model. This chapter presents 13 methods

of ordering multidimensional data which can be assigned to four different approaches

for ordering. At first, two naive methods are described. Afterwards, some possibilities

of scalarization of the multidimensional values are presented because the data can

be easily ordered according to scalarized values. Another approach is to use partial

sorting of the multidimensional data. The last presented approach is to use the

pairwise distances of the values for ordering.

In the context of regression, it can be thought about two different ways of ordering:

Either only the values of each design vector can be ordered or the complete regression

vectors (i.e. including intercept and features which are derived from other features,

for example quadratic terms or interactions) can be used for ordering. As an example,

let the considered model be y = θ0 + θ1x·1 + θ2x·2 + θ3x·1x·2 + e. In the first case,

the values of the vectors (xn1, xn2)>, n = 1, . . . , N would be ordered. In the second

case, (1, xn1, xn2, xn1xn2)>, n = 1, . . . , N would be used for ordering. For this thesis,

the second possibility was chosen. Reasons for this choice and a small simulation

study on the effects of the different ways of ordering can be found in Section 5.4.

29

30 Chapter 3. Methods for Ordering Multidimensional Data

LHS Grid Spiral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.1: Visualization of the three data sets used in this chapter for comparing the

presented ordering methods.

In this chapter the 13 ordering methods are described and visualized. For visual-

izations three different two-dimensional data sets with 25 data points each were

chosen. The first one is created via Latin Hypercube Sampling (LHS). The so-called

maximin LHS has the aim to maximize the minimal distance between its values

(Stein, 1987). For creation of this data set the R-package lhs (Carnell, 2019) is

used. The second data set consists of equidistant values to which a small noise is

added, in this chapter called Grid-data. At last, a data set with values arranged as

spiral is chosen. This data set is created with the help of the R-package mlbench

(Leisch and Dimitriadou, 2010). While the first two data sets show designs which

are often used in the field of Design of Experiments and therefore also in the context

of (linear) regression, the third data set is chosen for visualization because it has an

inherent order and so it can be analyzed which ordering methods preserve this order.

Figure 3.1 shows the three described data sets.

Furthermore, in this chapter it is looked at the computational runtimes of the methods,

both theoretically as well as empirically. For the theoretical time complexity, the Big

O-Notation is used, whose definition can be found in Definition 2.1 on page 7. For the

empirical runtimes, artificial data sets with different numbers of regression vectors

N and dimensions D are used. Every data set contains N ∈ {100, 200, . . . , 1 000}
uniformly sampled values in [0, 1]D with D ∈ {1, 2, 3, 4, 10, 20, 50, 100}. For each

combination of N and D 100 data sets are created and the respective times for

ordering these data sets with each method is determined and visualized with the

help of boxplots in every subsection.

Chapter 3. Methods for Ordering Multidimensional Data 31

Many of the approaches which will be presented in this chapter need some sorting or

ordering. Hence, the algorithms and runtimes for sorting in R are mentioned here.

As one can read on the help page of the function sort(), R uses different sorting

algorithms for different situation. For less than N = 200 values an insertion sort

(Knuth, 1998, pp. 80–83) is used, which has a time complexity of O(N2). Otherwise,

for numeric vectors of length N < 231 a radix sort (Knuth, 1998, pp. 168–177) is

used, which has an asymptotic time complexity of O(N). If the vector for sorting is

an integer of length N < 100 000 (e.g. an index vector for ordering) a modification

of the radix sort is used which is faster but also has complexity O(N). For all used

sorting algorithms the sort is stable. This means, that if two or more values are

equal, the order of the ties is preserved. As a conclusion, one can say that sorting or

ordering values in R has an asymptotic time complexity of O(N).

The next sections and subsections describe 13 different ordering methods in detail.

An overview and summary of the 13 ordering methods with its characteristics,

advantages, disadvantages and worst case time complexity can be found in Section 3.5

and especially in Table 3.1 on page 82.

3.1 Naive Methods

When thinking about possible ordering methods for multidimensional data, at first it

can be thought about simple approaches. If the simple approaches already perform

well, one has not to think about more complicated methods. On the other hand, if

the naive approaches perform poorly, these methods can be seen as baseline for other

ordering methods.

The two presented methods, taking the order the regression vectors appear in the

data set and using a random order, do not depend on the values of the regression

vectors itself but only on its indices. This has the advantage that these methods

can be used for any type of regressors, having only metric values is not necessary.

Furthermore, the values in the data set can be transformed in an arbitrary way

(additively and/or multiplicatively) without changing the order. But the dependance

only on the indices has also the disadvantage that no information from the values are

used for ordering and so, at least, these methods do not perform well in the special

case of only one-dimensional data because the inherent order one-dimensional data

has cannot be used.

32 Chapter 3. Methods for Ordering Multidimensional Data

3.1.1 Taking the Order of the Data Set

The most naive approach one can think of is using the order the regression vectors

appear in the data set. If the regression vectors have an inherent order and are

placed in the data set according to this order, this may be useful. In Figure 3.2,

a visualization of this method is given. While this method does not provide a

reasonable order on the LHS-data, the obtained orders of the two other data sets

seem promising, especially the inherent order of the Spiral-data is preserved.

LHS Grid Spiral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.2: Visualization of the obtained orders when using the order the regression vectors

appear in the data set.

Since nearly nothing has to be done for applying this method to data sets, the

computational time complexity of this approach is obviously O(1), i.e. the runtime

should be independent of the number of regression vectors and dimensions. When

looking at Figure 3.3, it can be seen that although the runtimes are very small, there

seems to be a small linear trend in the number of regression vectors N as well as in

the number of dimensions D. This is no contradiction to the constant runtime in

theory. It can be easily explained with the implementation of the ordering methods

in R. The function multiSorting() of the self-written package GSignTest, which is

used here, always returns the sorted data and the permutation vector of the indices

(see Section 4.3) and creating the index vector 1:N and returning it together with

the data set has linear runtime in N and D. But despite of the overhead of the

multiSorting()-function, it can be seen that the runtimes are very small (only

small fractions of seconds). When using this ordering method there occur absolutely

no problems because of large runtimes.

Chapter 3. Methods for Ordering Multidimensional Data 33

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0.0005

0.0010

0.0015

0.0020

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

8 0
0

90
0

1 0
00

10
0

20
0

30
0

40
0

5 0
0

60
0

7 0
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

8 0
0

90
0

10
00

10
0

20
0

30
0

40
0

5 0
0

60
0

70
0

80
0

9 0
0

1 0
00

0.001

0.002

0.003

Number of regression vectors N

Figure 3.3: Empirical runtimes when ordering the data according to their appearance in

the data set.

When looking again at Figure 3.3 it is noticeable that there are several outliers in

the runtime data. This can be explained by the used HPC-Cluster LiDO3 for the

runtime measurements. The nodes of this HPC-Cluster have different characteristics

and different maximal speed. The simulations were distributed on the different nodes

randomly, so that some simulation runs have taken slightly longer. This effect can

only be seen for such small runtimes as in this subsection. For larger runtimes, this

small overhead cannot be seen anymore.

3.1.2 Taking a Random Order

The second naive ordering method is using a random order. This method is very

similar to using the order the regression vectors appear in the data set, especially

when the regression vectors in the data set are already randomly ordered. An

34 Chapter 3. Methods for Ordering Multidimensional Data

LHS Grid Spiral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.4: Visualization of the obtained orders when using a random order.

advantage of this method in contrast to the first naive method is that possibly

unwanted orders in the data set are destroyed. For example, take a look at the

Grid-data in Figure 3.4. One can easily think of this data being a design of a planned

study. In this case, the order presented in the former subsection in Figure 3.2 may be

unwanted because probably there is no reason why the regression vectors are ordered

along the first axis and only afterwards along the second axis. But there are also

two major disadvantages of the random order in contrast to the order the regression

vectors appear in the data set: Firstly, the inherent order of the Spiral-data obviously

gets destroyed, what is most probably unwanted. And secondly, generating a random

order can lead to different orderings for the same data set when not using a seed in

the procedure for generating the random order. Also, even if using a seed, the order

may completely change when adding or removing only a single regression vector.

The time complexity for generating a random permutation of the index vector

(1, . . . , N)> is O(N) when using the Fisher-Yates-algorithm (Durstenfeld, 1964),

which is used in R by the function sample(). Since this is all what has to be done

for generating a random order of the regression vectors, the overall time complexity

of this ordering method is also O(N). As it can be seen in Figure 3.5, the empirical

runtimes of this ordering method are almost as small as the runtimes when using the

order the regression vectors appear in the data set (for a more accurate comparison

take a look at Table C.1 on page 221 which shows the median empirical runtimes of

all presented ordering methods). Furthermore, the outliers and the increase of the

runtimes in the number of dimensions D can be explained the same way as in the

previous subsection.

Chapter 3. Methods for Ordering Multidimensional Data 35

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0.0005

0.0010

0.0015

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

8 0
0

90
0

1 0
00

10
0

20
0

30
0

40
0

5 0
0

60
0

7 0
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

8 0
0

90
0

10
00

10
0

20
0

30
0

40
0

5 0
0

60
0

70
0

80
0

9 0
0

1 0
00

0.001

0.002

0.003

Number of regression vectors N

Figure 3.5: Empirical runtimes for generating a random order.

3.2 Scalarization Based Methods

As it can be seen later in Chapter 5, the naive methods do not perform well in most

cases. Because of this, it has to be thought of further ordering methods. One general

approach is to calculate a single value out of each multidimensional regression vector

and order the vectors according to this value. In the following subsections, five

scalarization based ordering methods are described.

In general, an advantage of these methods is their fast runtime and easy understanding

of the ordering approaches. A disadvantage most of the five presented methods have

in common is that they can only be used for purely metric data. In regression, also

categorical features are often part of a regression vector. In this case, these methods

cannot be applied.

36 Chapter 3. Methods for Ordering Multidimensional Data

3.2.1 Taking a Norm of Each Regression Vector

A purely metric vector containing the values of a single regression vector can be

scalarized by calculating an arbitrary vector norm. The vector norm of a vector xn

is defined via

||xn||p :=


(

D∑
d=1

|xnd|p
) 1

p

, 1 ≤ p <∞

max
d=1,...,D

|xnd|, p =∞
. (3.1)

Vectors which are near to the coordinate system origin get small values, whereas

vectors which are far away from the coordinate system origin get large values.

Thereby, since vector norms are not robust, only a single large value of a component

of the regression vector can lead to a large vector norm. Furthermore, ordering the

regression vectors according to their vector norm, might lead to an order where the

distance between two consecutive regression vectors is large. This can be seen and

explained in Figure 3.6, where the obtained orders for p ∈ {1, 2, ∞} are shown.

When looking at the Grid-data and p = 1 and p = 2, it is obvious that the regression

vectors in the corners of the grid have the largest values of the norm, so that they

are placed one after the other in the ordering, although they are as far away from

each other as it can be. In Figure 3.6 it can also be seen that the inherent order of

the Spiral-data is preserved only for p = 2, whereas in the other parts of Figure 3.6

no real structure of the ordering can be seen.

A big disadvantage of this method for ordering multidimensional data is that the

obtained order completely changes if the data is additively transformed. While

multiplicative transformation of the data changes the norm of every regression vector

by the same factor so that the order is preserved (except it is multiplied by zero),

additive transformation affects the regression vectors differently. This can be seen

in Figure 3.7. In this figure, the obtained orders of the three data sets are shown

when ordering according to the values of the euclidean norm (p = 2) and adding

the value one to every component of every regression vector in the data sets. When

comparing Figure 3.7 with the middle row of Figure 3.6, it can be seen that the

orders are completely different. Even the inherent order of the Spiral-data is not

there anymore. Although this problem could be solved by always transforming the

regression vectors to a given interval (i.e. [0, 1]D or [−1, 1]D), this might destroy an

inherent order which is in the non-transformed data. For example, when saying all

Chapter 3. Methods for Ordering Multidimensional Data 37

LHS Grid Spiral

p
=

1
p

=
2

p
=
∞

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.6: Visualization of the obtained orders when using different vector norms for

scalarization. The upper row shows orderings according to the manhattan

norm (p = 1), the middle row shows ordering according to the euclidean norm

(p = 2) and the lower row shows orderings according to the maximum norm

(p =∞).

data is transformed to [0, 1]D the inherent order of the two-dimensional Spiral-data,

which is given on [−1, 1]2, would be destroyed when calculating the euclidean norm.

Another disadvantage of this ordering method is that the inherent order of the values

in the one-dimensional case is not obtained when both positive and negative values

exist.

38 Chapter 3. Methods for Ordering Multidimensional Data

LHS Grid Spiral

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Figure 3.7: Visualization of the obtained orders when using the euclidean norm (p = 2)

for scalarization and transforming the data by adding the value one to every

component of every regression vector.

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0.001

0.002

0.003

0.004

0.005

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

7 0
0

80
0

9 0
0

10
00

10
0

2 0
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1 0
00

10
0

20
0

30
0

4 0
0

50
0

6 0
0

70
0

80
0

90
0

1 0
00

10
0

20
0

30
0

40
0

50
0

60
0

7 0
0

80
0

90
0

10
00

0.003

0.006

0.009

0.012

Number of regression vectors N

Figure 3.8: Empirical runtimes when using an euclidean norm for ordering. Since computing

any vector norm needs linear runtime in D, the empirical runtimes would not

change much when using a different vector norm.

Chapter 3. Methods for Ordering Multidimensional Data 39

An advantage of this ordering method is its rather small time complexity. Calcu-

lating an arbitrary norm of a single D-dimensional regression vector needs linear

runtime in D because every component of the vector is used once for calculation.

When doing this N times, the time complexity for calculating all needed norms is

O(ND). As mentioned above, sorting these N values has approximately linear time

complexity, i.e. O(N), so that the overall time complexity of this sorting method is

O(ND +N) ∈ O(ND).

Empirical runtimes of this ordering method can be found in Figure 3.8. The linear

runtime in the number of regression vectors N can be clearly seen, whereas the rise in

D is very small. Overall, the runtimes are very small (clearly smaller than a second),

but they are approximately ten times larger than the runtimes of the naive ordering

methods (see also Table C.1 on page 221).

3.2.2 Taking the Median of Each Regression Vector

Since ordering according to the values of a vector norm of the regression vectors is not

robust against outliers (even if they occur only in one component of the regression

vector), it was thought about a more robust ordering method. The result is an

ordering where the median of every regression vector is calculated and the ordering

process is done according to these medians. Here, the median of a D-dimensional

vector xn is defined as follows:

x̃n :=

xn(k), k = D+1
2

and D is odd,

1
2
(xn(k) + xn(k+1)), k = D

2
and D is even,

(3.2)

where xn(1), . . . , xn(D) describe the ordered components of the vector xn. In theory,

large outliers do not affect the ordering method. In practice, this is only the case if

all components of the regression vectors have the same scale. For example, if one

regressor of a linear model is the intercept (which is always one), a second regressor

has values in the range [10, 20] and a third regressor has values in the range [100, 200],

for ordering only the values from the second regressor would be used. And if there

is an outlier in the second regressor with, for example, value 50, this outlier affects

the ordering. Furthermore, this ordering method does only make sense for three

or more dimensions, since the median in the two-dimensional case is the mean of

both components which is not robust against outliers. Last but not least, it has to

40 Chapter 3. Methods for Ordering Multidimensional Data

be ensured that the median of not all regression vectors is the intercept component

since then all median values would be the same.

Besides all the disadvantages, this ordering method has the advantage that the

inherent order in the one-dimensional case is preserved. Also, in the two-dimensional

case when one component is an intercept, the inherent order is preserved. Furthermore,

the data can be transformed additively as well as multiplicatively without changing

its order because such transformations affect all regression vectors equally and so

the medians are also affected the same way.

Figure 3.9 shows the obtained orders for the three presented data sets. The upper

row of Figure 3.9 shows the orders in the two-dimensional case, where the median of

every regression vector is the mean of the two components. In the lower row, every

regression vector has an additional third component: A constant of value one, which

is not shown in the plots and corresponds to an intercept in a regression model. Since

the first two components have values in the range [−1, 1], the median of the three

LHS Grid Spiral

w
ith

ou
t

in
tercep

t
w

i th
in

tercep
t

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.9: Visualization of the obtained orders when using the median as ordering method.

The upper row shows the ordering for the presented two-dimensional cases

and in the lower row every regression vector has an additional (not shown)

intercept of value one.

Chapter 3. Methods for Ordering Multidimensional Data 41

values is the larger value of the first two components and the smaller one does not

affect the ordering in this case.

Calculating a median in R is done via partial sorting.1 This partial sorting has

linear time complexity (Blum et al., 1973), i.e. the time complexity for calculating

a median of a D-dimensional regression vector is O(D). Consequently, computing

all needed medians has time complexity O(ND) and ordering these values has time

complexity O(N), so that the overall time complexity of this ordering method is

O(N +ND) ∈ O(ND).

1Please note, that here ”partial sorting” does not mean the same as in Section 3.3. While in

Section 3.3 this terms means sorting multidimensional values as far as possible, here ”partial sorting”

means sorting several one-dimensional values only as far as necessary, i.e. only as long as the median

value has been found, the rest of the data may be remained unsorted.

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0.01

0.02

0.03

0.04

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

4 0
0

50
0

60
0

70
0

8 0
0

90
0

10
00

10
0

20
0

30
0

4 0
0

50
0

60
0

70
0

80
0

9 0
0

10
00

10
0

2 0
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1 0
00

0.02

0.04

0.06

Number of regression vectors N

Figure 3.10: Empirical runtimes when using medians for ordering.

42 Chapter 3. Methods for Ordering Multidimensional Data

The empirical runtimes are shown in Figure 3.10. Overall, the runtimes are quite

small, clearly smaller than a second, but they are larger than the runtimes of the

former presented methods. The linear trend in the number of regression vectors N

can be clearly seen, whereas the linear trend in D cannot be seen very well, especially

because the runtimes for D = 2 and D = 4 are larger than the runtimes for D = 1

and D = 3. This phenomenon can be explained by the fact that for even numbers

of dimensions the mean of two values has to be calculated. While calculating the

mean of two values is done in a very small constant runtime, finding these two values

instead of finding only one value when the number of dimensions is odd takes some

more time. Here, it is remarkable that the runtimes of the two-dimensional case

are comparatively large, because it could be thought that the R-function median()

would be quicker in this case, since it has not to search for the two values of which

the mean has to calculated, but apparently this is not the case.

3.2.3 Taking Only One Component of Each Regression Vector

One of the most intuitive ordering methods may be an ordering according to only

one component of each regression vector by neglecting all other components. The

advantages of this ordering method are clear: it is easy to understand, easy to

compute and the inherent order when having only one dimension will be preserved.

Furthermore, nominal and ordinal components in the regression vectors are allowed, if

they are not chosen for the ordering and additive and multiplicative transformations

of the data do not affect the ordering. Also, the disadvantages are obvious: the

information of D − 1 components of the regression vectors gets lost and the ordering

heavily depends on the selection of the component for ordering. This may have crucial

effect on the sign depth and the sign depth test, see Section 2.7. Figure 3.11 shows

the obtained orders on the three given data sets when choosing the first component

of each regression vector for ordering.

The time complexity of this ordering method is easy to determine. Since sorting N

values has an approximate linear time complexity (see beginning of this chapter for

explanation), the time complexity of this method is O(N). In practice, Figure 3.12

shows that the runtimes are very small, indeed they are not much larger than the

runtimes of the naive ordering methods. The linear trend in the number of regression

vectors N can be seen well, but as in Subsections 3.1.1 and 3.1.2 there seems to

be also a linear trend in the number of dimensions D which should not be there in

Chapter 3. Methods for Ordering Multidimensional Data 43

LHS Grid Spiral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.11: Visualization of the obtained orders when using only the first component of

each regression vector for ordering.

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0.0005

0.0010

0.0015

0.0020

0.0025

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1 0
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1 0
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

9 0
0

10
00

10
0

20
0

30
0

40
0

50
0

6 0
0

70
0

80
0

90
0

1 0
00

0.001

0.002

0.003

0.004

Number of regression vectors N

Figure 3.12: Empirical runtimes when using the first component of each regression vector

for ordering.

44 Chapter 3. Methods for Ordering Multidimensional Data

theory. As in Subsection 3.1.1 explained, the increasing runtimes in D are overhead

from the implementation of the sorting function in R.

3.2.4 Taking a Weighted Sum of Each Regression Vector

A generalization of taking only one component of each regression vector for ordering

is to take several components, possibly with different weightings. This leads to an

ordering method where the order is determined by the values of a weighted sum of

each regression vector.

LHS Grid Spiral

w
=

(2,
1) >

w
=

(1,
1) >

w
=

(1,
2) >

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.13: Visualization of the obtained orders when using different weighted sums for

ordering.

Chapter 3. Methods for Ordering Multidimensional Data 45

For this, let w ∈ RD with ∀d ∈ {1, . . . , D} : wd ≥ 0 and ∃d ∈ {1, . . . , D} : wd > 0.

Then, the ordering is done on the basis of the values of w>xn, calculated for each

n = 1, . . . , N . If only one component of w is positive, the obtained order is the same

as in the previous subsection. If all components of w have the same value, in the

two-dimensional case the ordering is the same as in subsection 3.2.2 (the middle

row of Figure 3.13 is the same as the upper row of Figure 3.9). Advantages of this

ordering method are the easy and understandable calculation and the possibility to

rescale all components of the regression vectors to the same level via the magnitude

of the components of the weight vector. Furthermore, additive and multiplicative

transformations do not affect the ordering and the inherent order for D = 1 is

preserved. A big disadvantage is that the ordering heavily depends on the choice of

the weight vector w. This can also be seen in Figure 3.13, where orderings with three

different weight vectors are shown. In addition, only metric values in the regression

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0.001

0.002

0.003

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

7 0
0

80
0

90
0

1 0
00

10
0

20
0

30
0

40
0

50
0

60
0

7 0
0

80
0

90
0

1 0
00

10
0

20
0

30
0

4 0
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

4 0
0

50
0

60
0

70
0

80
0

9 0
0

10
00

0.002

0.004

0.006

Number of regression vectors N

Figure 3.14: Empirical runtimes when using a weighted sum (with weight vector

w = (1, . . . , 1)> ∈ RD) for ordering.

46 Chapter 3. Methods for Ordering Multidimensional Data

vectors are possible. Even if the corresponding weight is zero the component of the

regression vector is not allowed to be ordinal or nominal because then w>xn cannot

be calculated anymore.

Calculating w>xn has time complexity O(D) for a single regression vector xn since

w and xn are both D-dimensional. Consequently, calculating all weighted sums has

time complexity O(ND), so that the overall time complexity including the sorting of

the weighted sums is O(ND +N) ∈ O(ND).

Figure 3.14 shows that the empirical runtimes are as small as the runtimes of the

naive methods. Also, a small linear increase in N and D can be seen in Figure 3.14,

which is independent of the choice of the weight vector w.

3.2.5 Taking an Orthogonal Projection of Each Regression Vector

A further generalization of the described methods in Subsections 3.2.3 and 3.2.4 is

to project all regression vectors orthogonal on a line and order the regression vectors

according to these values. Given a location vector u ∈ RD and a direction vector

v ∈ RD the orthogonal projection on the line u+λv, λ ∈ R of each regression vector

xn can be determined via

λn =
(xn − u)>v

v>v
=
x>nv

v>v
− u

>v

v>v
, n = 1, . . . , N. (3.3)

Obviously, calculating the value of λn for every xn and ordering the regression vectors

according to their values of λn is sufficient for this ordering method. Based on the

formula for calculating λn, it can be seen that the location vector u is completely

irrelevant for the obtained orders, since u affects only the second summand which

is independent from xn and so, the second summand is the same constant value

for every regression vector xn. In fact, this ordering method is equivalent to an

ordering according to a weighted sum, see Subsection 3.2.4, if the direction vector

consists of non-negative values. In contrast to the weights of an ordering according

to the values of a weighted sum, here negative values in the direction vector are

allowed. The only reason for the requirement of non-negative weights in the previous

subsection is the general understanding that weights are non-negative. If one would

allow negative weights in the weighted sums, the projection method would have no

additional benefit compared with the weighted sum method. On the contrary, the

projection method is more difficult to understand. Apart from that, this ordering

Chapter 3. Methods for Ordering Multidimensional Data 47

method has the same advantages and disadvantages as the weighted sum method,

since it is mostly the same ordering method.

Figure 3.15 shows the ordering on the three presented data sets with two different

location and direction vectors. The lower row of Figure 3.15 shows the ordering

according to the orthogonal projection on the bisecting line, which leads to the same

ordering as an ordering according to a weighted sum with equal weights for every

component of the regression vectors (see middle row of Figure 3.13). It can be seen

that the choice of the direction vector v has a crucial effect on the obtained order.

Computing the value of a single λn has time complexity O(D) because it consists

of addition and multiplication of D-dimensional vectors. So, as for the weighted

sum method, the overall time complexity for computing all λn and sorting them is

O(ND + N) ∈ O(ND) because linear time complexity in N and D is needed for

computing all values of λn and additionally it takes linear time complexity in N for

sorting these values.

LHS Grid Spiral

u
=

(0,
1) >

,
v

=
(−

1,
1) >

u
=

(0,
0) >

,
v

=
(1,

1) >

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.15: Visualization of the obtained orders when using different orthogonal pro-

jections for ordering. The upper row shows orderings based on orthogonal

projections on the line (0
1) +λ · (−1

1) and the lower row shows orderings based

on orthogonal projections on the line (0
0) + λ · (1

1).

48 Chapter 3. Methods for Ordering Multidimensional Data

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0.002

0.004

0.006

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

7 0
0

80
0

90
0

10
00

10
0

2 0
0

30
0

40
0

5 0
0

60
0

70
0

80
0

90
0

1 0
00

10
0

20
0

30
0

4 0
0

50
0

6 0
0

70
0

80
0

90
0

10
00

10
0

2 0
0

30
0

40
0

50
0

60
0

7 0
0

80
0

90
0

10
00

0.005

0.010

Number of regression vectors N

Figure 3.16: Empirical runtimes when using a projection on the bisecting line for ordering

(u = (0, . . . , 0)> ∈ RD, v = (1, . . . , 1)> ∈ RD).

But, as it can be seen in Figure 3.16, the empirical runtimes are slightly larger than

the runtimes in the previous subsection. So, as a conclusion, this ordering method

has not much additional benefit compared with the weighted sum method, but it is

less understandable and slower to compute.

3.3 Orders Based on Partial Sorting

Multidimensional values cannot only be sorted with the help of scalarizations, but it

is also possible to order these values directly. However, in the multidimensional case

often it is not possible to determine if a specific vector is smaller or greater than

another, these vectors are then called incomparable. For example, it might be easy to

say that the vector (1, 2)> is smaller than the vector (2, 3)>, but it is not possible to

Chapter 3. Methods for Ordering Multidimensional Data 49

compare the vectors (1, 2)> and (2, 1)>. So, it is possible to rank multidimensional

values, but the ranks are not unique. All incomparable values get the same rank.

This procedure is called partial sorting.

For our purpose, we need a clear sorting, so the incomparable values have also be

ordered somehow. Three different methods for partial sorting and tie-breaking are

described in the following subsections. All three methods have in common that they

need metric data, ordinal or nominal values are not allowed.

A detailed description of the three ordering methods can be found in the following

subsections, but because a big disadvantage of these methods applies to all of the

three methods, it is described below and because of this a short overview of the

methods is given at this point. The first presented method is an ordering on the basis

of a nondominated sorting. The nondominated sorting has its origin in the context

of multicriteria optimization. It defines a multidimensional value to be smaller than

another multidimensional value if it is smaller or equal in all components of the

regression vector and smaller in at least one component of the regression vector. The

second presented method is an ordering according to convex hulls. For this method,

repetitively convex hulls of the multidimensional values are computed as long as

every value belongs to exactly one hull. The third method is an ordering according

to the values of Tukey’s halfspace depth. The halfspace depth aims to give every

multidimensional value a one-dimensional value describing how ”deep” the value is in

the data set, so that values ”on the edge” of the data set get small values and values

”in the center” of the data set get the largest values.

The above mentioned big disadvantage all three methods have in common, is the

following: When the number of dimensions D is growing, more and more multidimen-

sional values get incomparable. This leads to the fact that many (or nearly all) values

get the same rank (usually the first rank) and the partial sorting has no benefit,

since a tie-breaking with nearly all values has to be applied. Figure 3.17 shows this

behavior. For this figure, N = 100 random D-dimensional points were created and all

three ordering methods were applied. This was made 100 times independently. The

left plot shows the number of different ranks in the data. The lines are the means

of the 100 independent simulation runs and the ribbons describe minimums and

maximums. It can be seen that whereas for two dimensions the 100 multidimensional

values get split in mean in more than 15 groups for the nondominated sorting method,

in more than 10 groups for the convex hull method and in more than 30 groups for

the halfspace depth method, in higher dimensions the number of groups (i.e. the

50 Chapter 3. Methods for Ordering Multidimensional Data

0

10

20

30

2 4 6 8 10 12

Number of Dimensions D

N
u
m

b
er

of
ra

n
k
s

0.00

0.25

0.50

0.75

1.00

2 4 6 8 10 12

Number of Dimensions D

P
er

ce
n
ta

ge
of

va
lu

es
w

it
h

ra
n
k

1

Method Convex Hull Halfspace Depth Nondominated Sorting

Figure 3.17: Visualization of the characteristics in high dimensions of the three presented

partial sorting methods. The left plot shows how many different ranks were

assigned and the right plot shows the percentage of values which have gotten

the first rank. Here, N = 100 multidimensional values are used and the values

in the plots are the means, minimums and maximums of 100 independent

simulation runs.

number of different ranks) decreases very fast. In five dimensions, the nondominated

sorting method and the convex hull method split the data in less than five groups

in mean and in twelve dimensions, there is not a single simulation run of the both

methods which has split the data in more than two groups. Although the halfspace

depth method performs slightly better (i.e. it splits the data nearly always in more

groups than the other methods), it shows the same behavior. Moreover, there were

simulation runs of all three methods where all values got the same rank, so that

the partial sorting had absolutely no benefit. The right plot of Figure 3.17 shows

the percentage of values, which got rank 1. It can be seen that this percentage

increases very fast to a value near one. This means, that not only the number of

groups decreases, but also nearly all values are assigned to the first group and the

remaining groups contain nearly no values. Overall, all three methods are in practice

not useful for more than four or five dimensions.

Chapter 3. Methods for Ordering Multidimensional Data 51

3.3.1 Partial Sorting via Nondominated Sorting

Nondominated sorting is a technique which has its origin in the context of multicriteria

optimization. It bases on the concept of pareto dominance. A regression vector xn is

said to dominate another regression vector xm if all components of xn are at most

as large as the respective components of xm and at least one component of xn is

smaller than the respective one of xm. Formally written, pareto dominance can be

defined via (see for example Emmerich and Deutz (2018)):

xn ≺ xm :⇔ ∀d ∈ {1, . . . , D} : xnd ≤ xmd ∧ ∃d ∈ {1, . . . , D} : xnd < xmd. (3.4)

If xn ⊀ xm and xm ⊀ xn, xn and xm are incomparable or nondominated. A

partial order can now obtained when finding groups where all regression vectors in

the respective group are incomparable, but all regression vectors in the first group

dominate all regression vectors in the second group and all regression vectors in the

second group dominate all regression vectors in the third group and so on. This

procedure is called nondominated sorting.

Algorithm 3.1 Nondominated sorting algorithm as described in Deb et al. (2000).

Input: (Data) Set of multidimensional values X = {x1, . . . ,xN}
Output: Sets of nondominated values F 1, F 2, . . .

1: F 1 = ∅
2: for all xn ∈X do

3: mxn = 0; Sxn = ∅
4: for all xm ∈X with xn 6= xm do

5: if xn ≺ xm then

6: Sxn = Sxn ∪ {xm}
7: else if xm ≺ xn then

8: mxn = mxn + 1

9: end if

10: end for

11: if mxn = 0 then

12: F 1 = F 1 ∪ {xn}
13: end if

14: end for

15: i = 1

16: while F i 6= ∅ do

17: H = ∅
18: for all xn ∈ F i do

19: for all xm ∈ Sxn do

20: mxm = mxm − 1

21: if mxm = 0 then

22: H = H ∪ {xm}
23: end if

24: end for

25: end for

26: i = i+ 1

27: F i = H

28: end while

29: return F 1, F 2, . . .

52 Chapter 3. Methods for Ordering Multidimensional Data

The state-of-the-art algorithm for nondominated sorting was invented two decades

ago by Deb et al. (2000). A pseudocode of this algorithm is given in Algorithm 3.1.

Its idea is to first compute for every regression vector xn a set Sxn of values which

are dominated by xn and a number mxn of values which dominate xn (see lines 2

to 10 of Algorithm 3.1). All regression vectors xn which are not dominated by any

other regression vector (i.e. mxn = 0) build the first group F 1 (see line 11 to 13).

The while-loop from line 16 to 28 builds iteratively further sets F i. Basically, all

regression vectors xn with the smallest positive value mxn build the second group

F 2, all regression vectors xn with the next larger value of mxn build the third group

F 3 and so on.

A visualization of the values of mxn for the three presented data sets (LHS, Grid and

Spiral) can be found in Figure 3.18. Since mxn describes the number of regression

vectors which dominate a specific regression vector xn, in every case there must

be at least one regression vector with mxn = 0. These regression vectors (marked

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

mxn

0

4

7

14

18

21

23
-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

mxn

0

3

7

12

19

23

24

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

mxn

0

4

10

15

18

22

Figure 3.18: Visualization of the values of mxn for the three presented data sets - LHS,

Grid and Spiral. The value mxn specifies the number of regression vectors

which dominate the respective regression vector xn.

Chapter 3. Methods for Ordering Multidimensional Data 53

with red in the plots) build the respective group F 1. The respective groups F 2 are

marked with blue in every plot, even though they have slightly different values of

mxn . While every blue marked regression vector in the Grid data is dominated by

three red marked regression vectors, in the other two data sets every blue marked

regression vector is dominated by four red marked regression vectors. Overall, the

LHS-data and the Grid-data are split into seven groups and the Spiral-data is split

into six groups.

When having obtained the partial order, one has to decide how to order the incompa-

rable values. Basically, for this, one can use every other ordering method presented

in this chapter. Figure 3.19 shows the obtained orders on the three presented data

sets with two different approaches for tie-breaking. The plots in the upper row show

the orders when ordering the incomparable regression vectors according to their

LHS Grid Spiral

tie-b
reak

in
g:

ob
servation

in
d
ex

t ie-b
reak

in
g:

fi
rst

com
p

on
en

t

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.19: Visualization of the obtained orders when using nondominated sorting for

partial sorting. The upper row shows the obtained orders when the incompa-

rable regression vectors get ordered according to their appearance in the data

set (see Subsection 3.1.1) and the lower row shows the obtained orders when

ordering the incomparable regression vectors according to the value of their

first component (see Subsection 3.2.3).

54 Chapter 3. Methods for Ordering Multidimensional Data

appearance in the data set (see Subsection 3.1.1) and the plots in the lower row show

the orders when ordering the incomparable regression vectors according to the value

of their first component (see Subsection 3.2.3). It can be seen that the tie-breaking

method has definitely an effect on the orders. Even though the approximate order is

given in both rows through the same partial ordering, in detail the obtained orders

differ a lot.

Next to the before mentioned problem of this ordering method in high dimensions,

also the great dependance on the tie-breaking method is a big disadvantage. Further-

more, the obtained orders may change when transforming the data. While additive

transformation does not change the obtained partial order (but possibly the order of

the incomparable regression vectors depending on the chosen tie-breaking method),

multiplying the data with negative values will change the obtained partial order.

But, for one-dimensional data the inherent order of the data is preserved when using

nondominated sorting, which is an advantage of this ordering method.

The time complexity for the nondominated sorting is quite large. In Deb et al. (2000)

the time complexity of the presented algorithm for nondominated sorting is given

by O(DN2). This time complexity can easily be comprehended when looking at

Algorithm 3.1. The two loops in lines 2 to 14 compare all N ·(N−1) pairs of regression

vectors. For comparing them, every time (up to all) D components of the respective

two regression vectors have to be compared. This results in a time complexity of

O(DN(N − 1)) ∈ O(DN2) for the first 14 lines of the algorithm. The worst case

time complexity for the remaining lines of Algorithm 3.1 will be reached when all

N regression vectors are comparable and so N sets F 1, . . . ,FN are created. In this

case, the while-loop makes N iterations, the for-loop beginning at line 18 makes one

iteration and the for-loop beginning at line 19 makes N − i iterations for set F i. This

results in O(N2) iterations where the individual iterations have constant runtime.

So overall, the time complexity of this algorithm is O(DN2 +N2) ∈ O(DN2).

The quadratic increase in N can be seen pretty well in the empirical runtimes shown

in Figure 3.20. Also, an increase of the runtimes for larger values of D can be seen.

Furthermore, it can be seen that the runtimes are much larger than the runtimes in

Sections 3.1 and 3.2. While in previous sections the runtimes always were fractions

of seconds, the runtimes of the nondominated sorting are more than two minutes

when having several hundred regression vectors and a small number of dimensions.

For the case D = 100, the runtimes are larger than half an hour for several hundreds

of regression vectors. Remembering that for such large numbers of dimensions the

Chapter 3. Methods for Ordering Multidimensional Data 55

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0

50

100

150

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1 0
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0

500

1000

1500

2000

2500

Number of regression vectors N

Figure 3.20: Empirical runtimes when using a nondominated sorting for ordering. Here,

tie-breaking is made according to the observation index (see Subsection 3.1.1)

which has time complexity O(1), so that the shown runtimes are obtained

solely by the nondominated sorting algorithm.

nondominated sorting will have no real benefit because (nearly) all multidimensional

values will have the same rank these large runtimes are not acceptable.

Overall, this ordering method has large runtimes and many further disadvantages,

but not many advantages. So, the usability of this ordering method can be regarded

as low in contrast to other ordering methods.

3.3.2 Partial Sorting via Convex Hulls

Another approach for partial sorting multidimensional values is to use convex hulls.

The convex hull of a (data) set X which consists of N D-dimensional regression

56 Chapter 3. Methods for Ordering Multidimensional Data

vectors x1, . . . ,xN is defined via (see for example Rockafellar (1970))

conv X :=

{
N∑
n=1

λn · xn
∣∣∣∣xn ∈X,

N∑
n=1

λn = 1, λn ≥ 0

}
. (3.5)

In Büning (1991), convex hulls were used for detecting outliers in multidimensional

data sets. For this, the convex hull of the data set is computed and all values which

are on the edge of the convex hull are marked as outliers. This strategy will now be

adapted for our purpose: We compute the convex hull of our data set and assign all

regression vectors on the edge of the hull to the first group of vectors. Afterwards,

we eliminate these regression vectors from the data set and repeat the procedure.

This is done until all regression vectors are assigned to a specific group.

For calculating convex hulls in two dimensions, there exist many different algorithms

(for an overview see for example Preparata and Shamos (1990)). In higher dimensions,

the problem is more complex. One of the few convex hull algorithms that work

also for more than two dimensions is the Quickhull Algorithm which was invented

by Barber et al. (1996). Below, a pseudocode and visualization of the Quickhull

algorithm in two dimensions is given, the generalization to more dimensions can be

looked up in above mentioned article of Barber et al.

Algorithms 3.2 and 3.3 show the recursive procedure of the Quickhull algorithm

in two dimensions. For better understanding the procedure of this algorithm is

visualized in Figure 3.21 based on the LHS data. At first, the regression vectors with

minimal and maximal values of their first component are detected. These values

are added to the span of the convex hull. The line which goes through these values

Algorithm 3.2 Quickhull algorithm for computing convex hulls in two dimensions.

The used procedure FindHull can be found in Algorithm 3.3.

Input: A (data) set X with N two-dimensional regression vectors

Output: The values which span the convex hull of X

1: In X, find values x̃1 with minimal value of the first component and x̃2 with

maximal value of the first component. Add them to the hull.

2: Divide X in two sets X1 and X2, where X1 contains all values above the line

from x̃1 to x̃2 and X2 contains all values below the line from x̃1 to x̃2.

3: FindHull(X1, x̃1, x̃2)

4: FindHull(X2, x̃1, x̃2)

5: return All values which span the convex hull of X.

Chapter 3. Methods for Ordering Multidimensional Data 57

Algorithm 3.3 Procedure FindHull which is necessary for the Quickhull algorithm

presented in Algorithm 3.2.

Input: A (data) set X; Values x̃1 and x̃2

Output: Values which belong to the convex hull of X

1: if X = ∅ then

2: return ∅
3: end if

4: Find the value with the maximal distance to the line from x̃1 to x̃2 and name it

x̃3. Add it to the hull.

5: Delete all values inside the triangle x̃1, x̃2, x̃3 from X.

6: Divide the remaining values in X in two groups X1 and X2, where X1 contains

all values which are ”outside” the line from x̃1 to x̃3 and X2 contains all values

which are ”outside” the line from x̃2 to x̃3.

7: FindHull(X1, x̃1, x̃3)

8: FindHull(X2, x̃2, x̃3)

divides the data set in two groups: One group with regression vectors above the

line and one group with regression vectors below the line. Plot 1 of Figure 3.21

and lines 1 and 2 of Algorithm 3.2 show this. Afterwards, the procedure FindHull

described in Algorithm 3.3 is recursively executed on both groups. For this, at first

the regression vector with the farthest distance to the above mentioned line has to

be found. This regression vector belongs to the span of the convex hull and builds a

triangle together with the two values which were before added to the span of the

convex hull. This triangle can be seen in Plot 2 of Figure 3.21 and is described in

line 4 of Algorithm 3.3. All values inside the triangle obviously do not belong to

the span of the convex hull and can be deleted from the data set. The regression

vectors outside the triangle are split in two groups again: One group of regression

vectors outside the one edge of the triangle and one group with regression vectors

outside the other edge of the triangle (all design outside the third edge of the triangle

are irrelevant in this step of the recursion). If no regression vectors are left outside

an edge of the triangle, the recursion breaks up. In Figure 3.21 this can be seen in

Plots 2 and 3. In Plot 2, there are no regression vectors left on the one edge of the

triangle, so that FindHull has to be called recursively only on the other edge. This

can be seen in Plot 3. Plots 4 to 8 of Figure 3.21 show the recursive procedure on

the values below the first line. At the end the convex hull has been found.

58 Chapter 3. Methods for Ordering Multidimensional Data

1.

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

2.

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

3.

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

4.

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

5.

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

6.

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

7.

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

8.

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

All

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Figure 3.21: Visualization of the Quickhull algorithm based on the LHS data. Plots 1 to 8

show the procedure of the algorithm, where the black line shows the current

status of the convex hull, the red points show values which are (possibly) part

of the span of the convex hull and light red points show values which are

inside the convex hull. The plot in the right bottom corner shows all convex

hulls which can be found in the data set.

The plot in the bottom right corner of Figure 3.21 shows all convex hulls that can be

found in the LHS data. These hulls define the groups on which the partial sorting is

based on. In contrast to the partial sorting via nondominated sorting presented in

Subsection 3.3.1, the regression vectors within every group have an inherent order

along the edges of the convex hull. Unfortunately, Quickhull returns the regression

vectors on the edges of the convex hull not in this inherent order. Finding the inherent

Chapter 3. Methods for Ordering Multidimensional Data 59

order is a Traveling Salesman Problem (TSP), which cannot be solved exactly in

polynomial runtime so far (see Subsection 3.4.1), but methodologically the problem

is simple. Another problem might be methodological more complex: Where do the

respective groups start and end? Since a circle has no inherent start and end, one has

to think about good cutpoints of the convex hulls for good transitions from one group

to the next in the ordering process. In the best case, the transition from one group

to another should be done where the distance between two points of the respective

groups is the smallest. But this is really a hard problem since the transition from the

first group (the most outer convex hull) to the second group conditions all further

transitions because when the starting point in a specific hull is fixed, also the end

point in this hull is fixed. Also, the question comes up whether the regression vectors

in every hull should be visited left around or right around? And what does ”left

around” and ”right around” mean for more than two dimensions? Since this problem

is methodological rather complex and a small investigation of the performance of

this ordering method has shown that it does not perform very well in the context

of sign depth tests, no great effort was made on the solution of this problem and

the most easy solution has been chosen: The regression vectors in every group are

ordered according to the order the TSP-solver returns the values. This solution does

not care about good transitions between the groups and it is random whether the

regression vectors in every hull are visited left around or right around.

Figure 3.22 shows the obtained orders on the three data sets. It can be seen that the

cutpoints between the partial ordered groups are random as well as the direction the

regression vectors in every group are visited.

LHS Grid Spiral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.22: Visualization of the obtained orders when using convex hulls for partial sorting.

60 Chapter 3. Methods for Ordering Multidimensional Data

In contrast to the nondominated sorting, this ordering method does not need a

criterion how to order the values within a partial ordered group because applying

a TSP-solver to every group leads to a good order of every group. But, since the

cutpoints and the direction of a tour of a TSP are arbitrary and might be even

random, there may be different orders when applying this ordering method twice

to the same data. Although the obtained order does not change when transforming

the data additively or multiplicatively, the fact that the order might change without

external influence is a big disadvantage. Furthermore, it cannot be guaranteed that

the inherent order in the one-dimensional case will be obtained. Although in the

one-dimensional case all values are assigned to a single hull and the TSP-solver orders

the regression vectors according to their values, the cutpoint of the TSP-tour is not

necessarily between the smallest and the largest value. Remembering the before

mentioned disadvantage that in higher dimensions (nearly) all regression vectors

are part of a single hull, this ordering method has much more disadvantages than

advantages.

The time complexity of this ordering method composes of the time complexity for

detecting all convex hulls in the data and finding the inherent order of the regression

vectors in each hull. Barber et al. (1996) calculate the time complexity of finding a

convex hull with their Quickhull algorithm when in every step of the algorithm the

remaining values are split in two equal sized groups. This average time complexity

is given as O(N log(N)) for two and three dimensions and O(N bD/2c/ bD/2c!) for

higher dimensions. A proof of the average time complexity of the presented two

dimensional case can be found in Proof C.1 starting on page 224. Also in Proof C.1 it

is shown that in the two-dimensional case the time complexity degenerates to O(N2)

in the worst case which is given when in every step all regression vectors are assigned

to one group and the other group is empty. It is hard to say how many convex hulls

have to be built for ordering all regression vectors. This depends strongly on the

number of dimensions and also on the number of regression vectors and the structure

of the given data set. But, as it can be seen in Figure 3.17 on page 50, already for

a single-digit number of dimensions (nearly) all regression vectors are assigned to

a single hull, so that the number of hulls in the data is not as important as the

time complexity for finding the order in the most outer hull. As it can be read

in Subsection 3.4.1, the worst case time complexity for exactly solving a Traveling

Salesman Problem is O(DN2 +N22N), which is much larger than the time complexity

for finding several convex hulls. As a conclusion it can be said that for only a little

Chapter 3. Methods for Ordering Multidimensional Data 61

number of dimensions the time complexity seems to be polynomial whereas the worst

case time complexity in the higher dimensional case is exponential.

Figure 3.23 shows the empirical runtimes of this ordering method. It can be seen

that the runtimes are much larger than the runtimes of the naive and scalarization

based methods, but smaller than the empirical runtimes of the nondominated sorting

(except for D = 10). Also, it can be seen in the upper row of Figure 3.23 that the

runtimes and also the variance of the runtimes increase for larger D and that the

increase in N is more than linear and maybe more like N2 than N log(N). The

lower row of 3.23 shows some strange behavior: The runtimes of the 10-dimensional

case are very large, whereas the runtimes for D = 20 and D = 50 are much smaller.

Moreover, the runtimes for D = 100 are missing. The missing runtimes can be easily

explained: The Quickhull algorithm needs much memory for its calculations. For

a small number of dimensions, a few gigabyte of RAM are sufficient, but for larger

dimensions, calculations are not possible with home computers anymore. Some of the

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0

5

10

15

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1 0
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0

1000

2000

3000

4000

Number of regression vectors N

Figure 3.23: Empirical runtimes when using convex hulls for ordering.

62 Chapter 3. Methods for Ordering Multidimensional Data

simulation runs for D = 10, D = 20 and D = 50, have needed up to 64 GB RAM and

for D = 100 not a single simulation run was possible even with 200 GB RAM. This

shows that this ordering method can only be used for small numbers of dimensions

(less than ten) where the size of the RAM of a normal home computer is sufficient.

This is also said by the developers of the Quickhull algorithm. The documentation of

their implementation Qhull, which is also used in this thesis, states: ”For convex hulls

(...), Qhull may be used for 2-D up to 8-D. (...) In higher dimensions, the size of the

output grows rapidly and Qhull does not work well with virtual memory.”2 Although

no final explanation for the decrease of the runtimes for D = 20 and D = 50 in

contrast to D = 10 could be found, the fact that the Quickhull algorithm is optimized

only up to eight dimensions, may be responsible for the strange behavior of the

runtimes. It is hard to say whether the obtained results in the high dimensional

cases are sensible and correct, but since Figure 3.17 on page 50 shows that in high

dimensions (nearly) always all regression vectors are assigned to a single convex hull,

it may be correct, that the runtimes decrease because the Quickhull algorithm has

to be applied only once to the data to find all convex hulls.

Overall, this ordering method has many disadvantages and large runtimes. In contrast

to the nondominated sorting method, it has no further hyper-parameters which have

to be chosen and it has smaller empirical runtimes in most cases, but the partial

sorting leads more quickly to only one group of incomparable values, see Figure 3.17.

Furthermore, in high dimensions, this ordering method needs a lot of memory for its

computation. This makes this ordering method in many cases unusable.

3.3.3 Partial Sorting via Tukey’s Halfspace Depth

Another approach for partial sorting multidimensional data is to use data depths. Its

idea is to determine how ”deep” a specific value is in the data set, so that regression

vectors ”in the center” of the data set get the largest values whereas regression

vectors ”on the edge” of the data set get small values, see also Section 2.4 for this.

Tukey (1975) invented the so-called halfspace depth or location depth for getting a

robust location estimator by finding the value(s) in the data set with the maximal

depth value. The halfspace depth of a specific regression vector xn describes the

minimal number of values which are in any closed halfspace with boundary hyperplane

through xn. Optionally, this number is divided by N to obtain the minimal fraction

2http://www.qhull.org/html/index.htm#when, accessed on July 22, 2020.

http://www.qhull.org/html/index.htm#when

Chapter 3. Methods for Ordering Multidimensional Data 63

of values in any halfspace. Formally written, the halfspace depth value of a regression

vector xn relative to a data set X can be calculated via (see for example Struyf and

Rousseeuw (1999))

hd(xn, X) =
1

N
min
||u||=1

#{i : u>xi ≤ u>xn}, (3.6)

where u ∈ RD. The halfspace depth has some relations to convex hulls. One can

easily prove that all regression vectors on the span of the convex hull of the data set

have a halfspace depth value of 1
N

, since there always exist halfspaces where only the

respective value itself is in.

For ordering multidimensional data the halfspace depth can be used by using the

depth values for a partial sorting. All regression vectors with the same value of the

halfspace depth have to be ordered afterwards. Since this ordering method has many

similarities to an ordering according to convex hulls (see Subsection 3.3.2), it makes

sense to use the same method for ordering regression vectors with the same values

of the halfspace depth as for convex hulls. Because of this, a TSP-solver is applied

to every group of values. As in the previous subsection, it is not cared about good

transitions from one group to the next because this would be a hard optimization

problem which it is not worth to be solved because the performance of this ordering

method in the context of sign depth tests is much worse than the performance of

some other ordering methods.

Figure 3.24 shows the obtained orders of this ordering method for the three data sets.

It can be seen that the regression vectors on the convex hull of the data sets are first

LHS Grid Spiral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.24: Visualization of the obtained orders when using Tukey’s halfspace depth for

partial sorting.

64 Chapter 3. Methods for Ordering Multidimensional Data

in the ordering, but afterwards the ordering is much more messy than the ordering

of the convex hull method. This is because one can easily prove that the regression

vectors on all following convex hulls do not necessarily have the same values of the

halfspace depth.

Since this ordering method is very similar to an ordering according to convex

hulls, it has similar advantages and disadvantages. The data can be additively and

multiplicatively transformed without changing the obtained order, but the inherent

order in the one-dimensional case is not preserved, since the regression vectors with

minimal value of the halfspace depth are the regression vectors with minimal and

maximal value. Furthermore, the before mentioned disadvantage of partial sorting in

high dimensions applies also to this ordering method, see Figure 3.17 on page 50.

The time complexity of this ordering method depends on some details. For a

given vector u ∈ RD and a fixed regression vector xn, determining how many

regression vectors are in the respective halfspace has time complexity O(DN) because

calculations with N D-dimensional vectors have to be carried out. Doing this for

all N regression vectors leads to a time complexity of O(DN2). For an exact

calculation of the halfspace depth
(
N
D

)
different vectors u have to be looked at. This

would lead to an overall time complexity of determining all halfspace depths of

O(
(
N
D

)
DN2). Since

(
N
D

)
gets too large very quickly for a computation in acceptable

runtime, in this thesis an approximate version of the halfspace depth invented by

Cuesta-Albertos and Nieto-Reyes (2008) is computed. The so-called Random Tukey

Depth determines the halfspace depth as the minimum univariate halfspace depth of

the data, which is projected on lines in a fixed number of directions. Here, 100 000

directions were chosen, so that the factor
(
N
D

)
of the time complexity decreases

to a (large) constant, what leads to an overall time complexity of computing all

approximate halfspace depths of O(DN2). In addition to the time complexity of

computing all halfspace depths, as in the previous subsection, the time complexity

of computing the solution of the Traveling Salesman Problem is needed, which is

O(DN2 +N22N) in the worst case. So, the overall time complexity of this ordering

method is O(DN2 +DN2 +N22N) ∈ O(DN2 +N22N).

Figure 3.25 shows the empirical runtimes of this ordering method. It can be seen

that the runtimes increase quadratically in the number of regression vectors N . Also

a small increase in the number of dimensions D is visible. The exponential runtime

of computing the TSP seems to be empirical negligible. In Figure 3.25, the runtimes

for N = D = 100 are missing because the used implementation for computing the

Chapter 3. Methods for Ordering Multidimensional Data 65

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0

50

100

150

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0

50

100

150

200

Number of regression vectors N

Figure 3.25: Empirical runtimes when using Tukey’s halfspace depth for ordering.

halfspace depth requires that N > D. In comparison to the similar ordering method

via convex hulls, this ordering method is much slower for D ≤ 4 and much quicker

for D ≥ 10 (see also Table C.1 in the appendix for comparison of the runtimes).

Overall, this ordering method has large runtimes and several further disadvantages.

Its inherent order in the one-dimensional case is not preserved and when the number

of dimensions gets large, (nearly) all regression vectors have the same value of the

halfspace depth. Although its runtimes are faster for D ≥ 10 than the runtimes of

the two other partial sorting methods, in comparison to the other ordering methods,

this method has no real benefit.

66 Chapter 3. Methods for Ordering Multidimensional Data

3.4 Distance Based Methods

An intuitive idea when ordering multidimensional data may be that values which

are similar shall be near to each other in the ordering. Here, similar means that

the distance between the values is small. Consequently, values which have a large

distance to each other shall not get ordered one after the other.

This section describes three different distance based ordering methods even though

one of the three presented methods is only an approximation of another presented

ordering method. Since all three methods base on the pairwise distances of the

regression vectors, the actual values of the regression vectors do not matter for

the ordering anymore. This leads to the fact that not only pure metric regression

vectors can be ordered, but also regression vectors which have ordinal or even

nominal components, since distance measures also exist for these values and also

for mixtures of metric, ordinal and nominal regression vectors. For example, for

this the so-called Gower’s distance can be used which bases on Gower’s coefficient

(Gower, 1971). Furthermore, all three presented methods allow to transform the

regression vectors additively and multiplicatively without changing the order, since

additive transformations do not change the pairwise distances at all and multiplicative

transformations preserve the proportion of the pairwise distances.

All three presented methods need to calculate a distance matrix of pairwise distances.

Because of this, the time complexity for computing this distance matrix is given at

this point. Although we are working nearly always with the euclidean distance, also

nearly all other distance measures need to look at every component of both regression

vectors once for calculating the distance between two regression vectors. This leads to

a time complexity of O(D) for computing the distance between two given regression

vectors of dimension D. Overall, N(N−1)
2

distances have to be computed because the

needed distance matrix has N2 entries of which N entries are zero (the N distances

of a regression vector to itself) and all other entries occur twice because distance

measures are symmetric. This leads to an overall time complexity of O(DN2) for

calculating the needed distance matrix.

Chapter 3. Methods for Ordering Multidimensional Data 67

3.4.1 Ordering on the Basis of the Exact Solution of the Shortest

Path Problem

The idea that regression vectors which have a small distance to each other shall

be also near to each other in the ordering leads to the problem of finding a path

through all regression vectors with minimal path length. If starting point and end

point would be the same, the problem is well known in computer science as Traveling

Salesman Problem (TSP). Here, starting point and end point should not be the same.

This problem is known as Shortest Hamiltonian Path Problem (SHP) and is a quite

simple variation of the TSP.

For the TSP, several definitions and formulations of the problem exist. One popular

possible formulation was invented by Dantzig et al. (1954). They represented the

TSP as the solution of a linear programming problem:

Definition 3.1. Let V ∈ {0, 1}N×N with entries

vmn =

1, the path goes from regression vector xm to regression vector xn

0, otherwise
.

Let cmn ∈ R+
0 be the fixed distance between regression vector xm and xn. Then the

solution of the TSP is

min
V

N∑
m=1

N∑
n=1,m 6=n

vmncmn

under the conditions

1.
∑N

m=1,m 6=n vmn = 1 (every regression vector has exactly one predecessor),

2.
∑N

n=1,m 6=n vmn = 1 (every regression vector has exactly one successor),

3.
∑

m∈Q
∑

n∈Q,m 6=n vmn ≤ |Q| − 1 ∀Q ({1, . . . N}, |Q| ≥ 2 (ensures that there

exist no subtours, but only a single tour with all regression vectors is computed).

The TSP can now be transformed to a SHP when adding another regression vector

to the data which has distance zero to all other regression vectors, i.e. cmn = 0 if

m = N + 1 or n = N + 1, see for example Applegate et al. (2006). This ”dummy

value” allows the solver to go once from an arbitrary regression vector to another

with zero distance when visiting the dummy value in-between. When cutting the

obtained tour at the dummy value, one has obtained the Shortest Hamiltonian Path.

68 Chapter 3. Methods for Ordering Multidimensional Data

Many different algorithms for solving the TSP (and SHP) exist, for example dy-

namic programming approaches, branch-and-bound approaches and branch-and-

cut approaches. A good overview of many different approaches can be found in

Applegate et al. (2006). The state-of-the-art solver for the TSP is called Concorde

(Applegate et al., 2004), a branch-and-cut algorithm, which is also described in above

mentioned book.

For our purpose, taking the solution of the SHP as ordering criterion has many

advantages. Not only the before mentioned fact that ordinal and nominal components

in the regression vectors are allowed, but also the fact that in the one-dimensional

case the inherent order is preserved. Furthermore, the idea of this ordering method

is easy to understand and the ordering method does not depend on further hyper-

parameters which affect the solution of the ordering process (except of the choice

of the distance measure, but in this thesis this is said to be always the euclidean

distance). In addition, additive and multiplicative transformations of metric data

can be done without changing the result of the ordering process.

Figure 3.26 shows the obtained orders on the three data sets. It can be seen that

the inherent order of the Spiral-data is preserved and in general, that there is no

”disorder” in the data.

A big disadvantage of this ordering method is its time complexity. Imagine the most

simple solving algorithm for a TSP which is trying all possible tours through the

data and selecting the shortest one. This combinatorial problem has N ! possible

solutions (basically it is the enumeration of all possible permutations of the numbers

LHS Grid Spiral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.26: Visualization of the obtained orders when using a Shortest Hamiltonian Path

for ordering.

Chapter 3. Methods for Ordering Multidimensional Data 69

1 to N). A time complexity of O(N !) is not practical, since it gets very large already

at very small N . For example, for trying all possible combinations of one of our

data sets with N = 25 data points more than 1.5 · 1025 iterations would be necessary.

In general, the TSP belongs to the NP-hard problems, which means that it is no

algorithm known which solves the problem exactly in polynomial time complexity.

The smallest known worst case time complexity for solving the TSP is O(N22N)

which was reached for a dynamic programming approach presented by Held and

Karp (1962). Although the time complexity of the Concorde-solver apparently has

never been analyzed, here it is assumed that its time complexity is not larger than

O(N22N) because it is the only solver so far which could solve a TSP-problem with

85 900 values3 (Applegate et al., 2006). Combining the time complexity for creating

the necessary distance matrix and the time complexity of solving a TSP with N + 1

3http://www.math.uwaterloo.ca/tsp/pla85900/index.html

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0

300

600

900

1200

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1 0
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0

25

50

75

Number of regression vectors N

Figure 3.27: Empirical runtimes when using the Shortest Hamiltonian Path for ordering.

http://www.math.uwaterloo.ca/tsp/pla85900/index.html

70 Chapter 3. Methods for Ordering Multidimensional Data

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0.1

1.0

10.0

100.0

1000.0

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

6 0
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

7 0
0

80
0

9 0
0

10
00

10
0

20
0

3 0
0

40
0

50
0

6 0
0

70
0

80
0

90
0

10
00

0.1

1.0

10.0

100.0

Number of regression vectors N

Figure 3.28: Empirical runtimes when using the Shortest Hamiltonian Path for ordering.

Here, the values are plotted on a logarithmic scale.

regression vectors (N real regression vectors and one dummy value), computing the

SHP has a time complexity of O(DN2 + (N + 1)22N+1) ∈ O(N2(D + 2N)).

Figure 3.27 shows the empirical runtimes of this ordering method. Because the

runtimes have different magnitudes for different values of D, the same runtimes are

also plotted on a logarithmic scale for better visibility in Figure 3.28. Looking at

these plots, two things are remarkable: Firstly, the runtimes are much larger than

the runtimes of most other so far presented ordering methods (except the runtimes

of the ordering according to a nondominated sorting and according to convex hulls).

Secondly, strangely the runtimes in the two-dimensional case are much larger than

the other runtimes and also the runtimes of the four-dimensional case are smaller

than the runtimes of the three-dimensional case. So far, no real explanation for

this behavior has been found. Since the Concorde-solver is called with the before

calculated distance matrix and not with the regression vectors itself, the structure

Chapter 3. Methods for Ordering Multidimensional Data 71

0.0

0.2

0.4

0.6

0.8

0.0 2.5 5.0 7.5 10.0

pairwise distances

d
en

si
ty

D = 2

D = 3

D = 4

D = 10

D = 20

D = 50

D = 100

Figure 3.29: Estimated densities of the values in the distance matrices when using the

euclidean distance for 1 000 uniformly sampled values in [−1, 1]D.

and characteristics of the values in the distance matrix have to be responsible for this

behavior. When looking at the characteristics of the pairwise distances in Figure 3.29,

it can be seen that the values of the euclidean distance get larger in higher dimensions,

which is not surprising since the euclidean distance of two regression vectors xm and

xn is calculated via d(xm, xn) =
√∑D

d=1(xmd − xnd)2 and so the maximal distance

of values in the range [−1, 1]D is 2 ·
√
D which is increasing in D. Since the minimal

distance is zero independent from the number of dimensions, the range of the distance

values gets larger when D is increasing. Because of this, the presumption is that

the branch-and-cut algorithm implemented in Concorde has to look at less possible

orderings because it can cut many branches with nonsensical solutions very quickly

when the pairwise distances have a larger range.

However, the runtimes of this ordering method are quite large, especially in the

two-dimensional case. But this seems to be the only disadvantage of this ordering

method. Besides the runtime, ordering the regression vectors according to a Shortest

Hamiltonian Path has many advantages like the easy understanding of this method

or the possibility to have ordinal and nominal components in the regression vectors.

72 Chapter 3. Methods for Ordering Multidimensional Data

3.4.2 Ordering on the Basis of an Approximate Solution of the

Shortest Path Problem

Since the only obvious disadvantage of an ordering according to the solution of

a Shortest Hamiltonian Path is its runtime, one can try to decrease the runtime

by using approximate solutions of the Shortest Hamiltonian Path Problem. Many

different approximations of the TSP (and SHP) exist, see for example Laporte (1992).

Here, we focus on the nearest neighbor approach because it is one of the most intuitive

heuristics and many theoretical aspects of this algorithm are known like the maximal

deviation from the optimal solution.

Although the nearest neighbor heuristic for computing a SHP can be represented as

the nearest neighbor heuristic for computing a TSP with an additional dummy value,

Algorithm 3.4 shows a more intuitive version of the nearest neighbor algorithm for

computing a SHP. The characteristics and time complexity of the presented version

and the version with dummy value are the same. The idea behind this heuristic is

quite easy: it is started at an arbitrary regression vector and from this regression

vector on, a tour through the data set is computed by always going to the nearest (i.e.

smallest distance) not so far visited regression vector until all regression vectors are

visited once. This procedure is done N times with each regression vector as starting

vector once and the tour with shortest tour length is chosen at the end. This method

is described in Algorithm 3.4.

Figure 3.30 shows the obtained orders when using the nearest neighbor approximation

for ordering. It can be seen that the data seems to be ”ordered” although there are

some crossings in the orders which is easy to prove cannot occur when computing the

exact solution of the SHP. But the approximation also preserves the inherent order of

the Spiral data. Overall, it can be proven that the tour length of the nearest neighbor

approximation is at most longer than the optimal tour by a factor of 1
2
dlog2(N)e+ 1

2

(Rosenkrantz et al., 1977).

The time complexity of the nearest neighbor heuristic is quite easy to determine

when looking at Algorithm 3.4. As mentioned before, calculating the distance

matrix in line 1 has time complexity O(DN2). Finding the successor of a specific

regression vector in line 8 needs to look at a specific row (or column) of the N ×N
distance matrix, which has consequently time complexity O(N). All other lines

within the while-loop have constant time complexity. The while-loop itself makes

Chapter 3. Methods for Ordering Multidimensional Data 73

Algorithm 3.4 Nearest neighbor heuristic for computing a Shortest Hamiltonian

Path.

Input: A data set X, which consists of N regression vectors

Output: Ordered data set on the basis of the nearest neighbor heuristic

1: Compute the distance matrix with the pairwise distances of all N regression

vectors.

2: opt tour length :=∞
3: for all xn ∈X do

4: S = X \ {xn}
5: x̃ = xn

6: tour length = 0

7: while S 6= ∅ do

8: Find regression vector x̃tmp in S which has minimal distance to x̃.

9: tour length = tour length + distance from x̃ to x̃tmp

10: S = S \ {x̃}
11: x̃ = x̃tmp

12: end while

13: if tour length < opt tour length then

14: opt tour length = tour length

15: Cache the tour with the current optimal tour length.

16: end if

17: end for

18: return Tour (i.e. ordered data) with minimal tour length

LHS Grid Spiral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.30: Visualization of the obtained orders when using a nearest neighbor approxi-

mation of the SHP for ordering.

74 Chapter 3. Methods for Ordering Multidimensional Data

N − 1 iterations within every iteration of the outer for-loop because S has N − 1

entries at the beginning and is reduced by one element in every iteration. Since the

outer for-loop obviously has to made N iterations and except the while-loop all lines

within in the for-loop have constant time complexity, the time complexity of lines 3

to 17 of Algorithm 3.4 is O(N · (N − 1) ·N) ∈ O(N3). Overall, the time complexity

of the nearest neighbor approximation is O(DN2 +N3).

Since the empirical runtime of calculating a distance matrix is rather small, in

Figure 3.31 almost exclusively the cubic increase of the loop can be seen. But

this cubic increase can be seen very well and is independent from the number of

dimensions D. Overall, the runtimes are quite large. Computing the nearest neighbor

approximation for 1 000 regression vectors can take up to approximately two minutes.

Although the variability of the runtimes is not as large as the variability of the

runtimes of the exact solution of the SHP, it can be seen that the runtimes have

the same magnitude. Rather, the median runtimes of the approximation are larger

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0

30

60

90

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0

25

50

75

100

Number of regression vectors N

Figure 3.31: Empirical runtimes when using the nearest neighbor heuristic for ordering.

Chapter 3. Methods for Ordering Multidimensional Data 75

than the median runtimes of the exact solution for three and more dimensions, see

Table C.1 on page 221 and following. This is a clear disadvantage compared with

computing the exact solution. For sure, the runtime of the exact solver will increase

more quickly than the runtime of the approximate solver and so the exact solver

will need longer runtimes when N gets very large, but as it can be seen, for several

hundreds of regression vectors, there is no need to take the approximate solver.

Overall, this ordering method has the same advantages as the exact solver described

in the previous subsection: it is easy to understand, it does not depend on hyper-

parameters (when choosing always the euclidean distance as distance measure), it

is able to deal with ordinal and nominal components in the regression vectors, it

preserves the inherent order in the one-dimensional case and the regression vectors

can be transformed additively and multiplicatively without changing the result of the

ordering process. Furthermore, this method can be easily self-implemented, whereas

computing the exact solution in acceptable runtime needs specialized solver which are

sometimes not easy to connect to the used software. But if the exact Concorde-solver

is useable, it should be used when having only several hundreds of regression vectors,

since its empirical median runtime is smaller than the empirical median runtime of

the approximate solver.

3.4.3 Ordering on the Basis of a Hierarchical Clustering

The last presented ordering method is an ordering on the basis of a hierarchical

clustering. Actually, hierarchical clustering is a method for unsupervised machine

learning, but we can adapt this method for our purpose of ordering multidimensional

data. A common way of visualizing the result of a hierarchical clustering of a given

data set is to plot a dendrogram, which shows the single steps of the clustering

process as a tree. The leafs of the tree are the single regression vectors (i.e. clusters

of size one) and the order the dendrogram uses for arranging the regression vectors

can be used for our purpose.

At first, the hierarchical clustering itself is described, as it is described for example

in Hastie et al. (2009). The clustering process depends on two things: The chosen

distance measure for calculating the pairwise distances and a dissimilarity measure for

calculating the dissimilarity of two clusters. Since in this thesis always the euclidean

distance is used, we will not focus on the distance measure any longer. For computing

76 Chapter 3. Methods for Ordering Multidimensional Data

the dissimilarity of two clusters, several measures exist. Here, three of them (the

complete linkage (CL), the average linkage (AL) and the single linkage (SL)) are

described. Let d(xm, xn) be the pairwise euclidean distance of regression vector xm

and xn, m, n ∈ {1, . . . , N} and G and H two clusters of regression vectors. Then

the dissimilarity of the clusters G and H is given via

uCL(G, H) := max
xm∈G,xn∈H

d(xm, xn),

uAL(G, H) :=
1

|G| · |H|
∑
xm∈G

∑
xn∈H

d(xm, xn),

uSL(G, H) := min
xm∈G,xn∈H

d(xm, xn).

(3.7)

One approach for hierarchical clustering, called agglomerative clustering, is a bottom-

up procedure, which means that it starts with every regression vector being an own

cluster and in every step the two clusters with the smallest dissimilarity get merged

until only one cluster of all regression vectors is left. This approach is formalized in

Algorithm 3.5.

Algorithm 3.5 Agglomerative hierarchical clustering.

Input: Data set X with N regression vectors; dissimilarity measure u

Output: Result of a hierarchical clustering

1: Compute the distance matrix with entries d(xm, xn), m, n ∈ {1, . . . , N}.
2: Initialize N clusters with one regression vector each.

3: while # clusters > 1 do

4: Find the two clusters with smallest dissimilarity u and merge them to a single

cluster.

5: end while

6: return All cluster partitions from all N iterations.

A visualization of this clustering procedure can be found in Figure 3.32. There,

the clustering is shown on the LHS data set with complete linkage. The regression

vectors are displayed as numbers which represent in which iteration the respective

regression vector has been used for clustering the last time. It can be seen that until

iteration 7 the clustering exclusively merges two regression vectors in every step. In

iteration 8, the first time a cluster with three regression vectors occur. This cluster

consists of the two regression vectors which were merged in iteration 2 already and a

third regression vector. This process goes on and the single clusters get larger and

larger until in iteration 25 the two remaining clusters get merged to a single one.

Chapter 3. Methods for Ordering Multidimensional Data 77

1

1
1

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1

1

1

1

1

1

1
1

5

2
6

3

2

1

1

1

1

4

1

1
4

5

3

1
1

1

1

6

1

1

1

1
1

5

8
6

3

8

1

11

10

9

4

7

1
4

5

3

1
8

9

1

6

1

11

1

10
7

13

8
16

16

8

12

11

10

9

12

15

14
12

13

16

15
8

9

13

16

14

11

1

10
15

19

20
16

16

20

18

21

18

20

18

21

19
18

19

16

21
20

20

19

16

19

21

20

18
21

1

2
1

1

2

1

1

1

1

1

1

1
1

1

1

1
1

1

1

1

1

1

1

1
1

5

2
6

3

2

1

1

1

1

4

7

1
4

5

3

1
1

1

1

6

1

1

1

1
7

5

8
6

3

8

12

11

10

9

12

7

1
12

5

3

1
8

9

1

6

1

11

1

10
7

13

8
16

16

8

12

11

10

17

12

15

14
12

13

16

15
8

17

13

16

14

11

17

10
15

19

22
22

22

22

18

21

18

22

18

21

19
18

19

22

21
22

22

19

22

19

21

22

18
21

1

2
1

3

2

1

1

1

1

1

1

1
1

1

3

1
1

1

1

1

1

1

1

1
1

5

8
6

3

8

1

1

1

1

4

7

1
4

5

3

1
8

1

1

6

1

1

1

1
7

13

8
6

3

8

12

11

10

9

12

7

1
12

13

3

1
8

9

13

6

1

11

1

10
7

13

8
16

16

8

18

11

18

17

18

15

14
18

13

16

15
8

17

13

16

14

11

17

18
15

23

22
22

22

22

23

21

23

22

23

21

23
23

23

22

21
22

22

23

22

23

21

22

23
21

1

2
1

3

2

1

1

1

1

4

1

1
4

1

3

1
1

1

1

1

1

1

1

1
1

5

8
6

3

8

1

1

1

9

4

7

1
4

5

3

1
8

9

1

6

1

1

1

1
7

13

8
6

3

8

12

11

10

9

12

7

14
12

13

3

1
8

9

13

6

14

11

1

10
7

19

8
16

16

8

18

11

18

17

18

15

19
18

19

16

15
8

17

19

16

19

11

17

18
15

23

24
24

24

24

23

24

23

24

23

24

23
23

23

24

24
24

24

23

24

23

24

24

23
24

5

2
1

3

2

1

1

1

1

4

1

1
4

5

3

1
1

1

1

1

1

1

1

1
1

5

8
6

3

8

1

1

10

9

4

7

1
4

5

3

1
8

9

1

6

1

1

1

10
7

13

8
6

3

8

12

11

10

9

12

15

14
12

13

3

15
8

9

13

6

14

11

1

10
15

19

20
16

16

20

18

11

18

20

18

15

19
18

19

16

15
20

20

19

16

19

11

20

18
15

25

25
25

25

25

25

25

25

25

25

25

25
25

25

25

25
25

25

25

25

25

25

25

25
25

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1
.0

-0
.5

0.
0

0.
5

1.
0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.32: Visualization of the agglomerative hierarchical clustering on the LHS data

when using complete linkage. The regression vectors are displayed as numbers

which describe in which iteration the respective regression vector has been

used the last time. Regression vectors marked in red are the values which are

merged to a single cluster in the respective iteration.

When having done the clustering, the dendrogram of the clustering process can be

created. For this, it is started at the latest partition of the data set. All regression

vectors belonging to the first cluster go to the left branch of the dendrogram and

all regression vectors belonging to the second cluster go to the right branch. This

procedure is continued with the previous partitions the clustering process has been

done until every regression vector belongs to its own cluster. The only question in

each partition is: Which cluster goes to the left branch of the dendrogram and which

78 Chapter 3. Methods for Ordering Multidimensional Data

8 24
6

10 13
19

1 14
12 21

7 2 2
1 6

11 25
4 1 5

3 2 0
17

2 5
2 3

9 18

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16
17

18

19

20

21

22

23

24
25

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Figure 3.33: Dendrogram of the hierarchical clustering with complete linkage of the LHS

data on the left and the obtained order according to the order in the dendro-

gram on the right. The regression vectors of the data set are represented as

unique numbers.

cluster to the right? To this question, several meaningful solutions exist. Here, we

will use the solution R uses for its hierarchical clustering function hclust(): ”The

algorithm used in hclust() is to order the subtree so that the tighter cluster is on the

left (the last, i.e., most recent, merge of the left subtree is at a lower value than the

last merge of the right subtree). Single observations are the tightest clusters possible,

and merges involving two observations place them in order by their observation

sequence number.” (cited from the R help page of hclust().) Figure 3.33 shows

the obtained dendrogram of the hierarchical clustering with complete linkage on

the LHS data set. Looking at the dendrogram bottom-up, the clustering process

visualized in Figure 3.32 is visible: For example, the first seven merges are merges

of two regression vectors respectively, before the first time a larger cluster occurs.

On the left hand side of Figure 3.33, a scatterplot of the data set is shown with the

obtained order. It can be seen that the regression vectors are ordered according to

the order of the leafs of the dendrogram.

Chapter 3. Methods for Ordering Multidimensional Data 79

Figure 3.34 shows the obtained orders not only for the LHS data with complete

linkage, but also for the two other data sets and also with average linkage and single

linkage. It can be seen that the obtained orders highly depend on the choice of the

dissimilarity measure. Furthermore, it can be seen that nearly all orders are much

more ”in a mess” than the obtained orders in the two previous subsections, apart from

the Spiral data with single linkage where the inherent order of the data is preserved.

The dependance of the dissimilarity function is a disadvantage of this ordering

method. But, besides of this disadvantage, there are many advantages: Like the

other distance based ordering methods, this ordering method can be applied to ordinal

LHS Grid Spiral

C
om

p
lete

L
in

kage
A

v erage
L

in
kage

S
in

gle
L

in
kage

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3.34: Visualization of the obtained orders when using hierarchical clustering with

different dissimilarity measures for ordering.

80 Chapter 3. Methods for Ordering Multidimensional Data

and nominal data, metric data can be transformed additively and multiplicatively

without changing the order and in the one-dimensional case the inherent order of the

data is preserved.

The time complexity of the hierarchical clustering approach presented in Algorithm 3.5

is O(DN3). This can be quite easy seen when realizing that line 4 of the algorithm

(finding the two clusters with smallest dissimilarity) has runtime O(DN2) since a

matrix with pairwise dissimilarities of D-dimensional regression vectors has to be

computed and that this matrix can have size up to N ×N . Since this has to be done

N − 1 times, the time complexity of this ”naive” algorithm is O(DN3). As shown

for example in Manning et al. (2008), the time complexity of the agglomerative

hierarchical clustering can be reduced toO(N2 log(N)) when using updating strategies

for the dissimilarity matrices. Together with the time complexity of calculating a

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

D = 1 D = 2 D = 3 D = 4

0.00

0.02

0.04

0.06

0.08

D = 10 D = 20 D = 50 D = 100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

8 0
0

90
0

1 0
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

9 0
0

10
00

10
0

2 0
0

30
0

4 0
0

50
0

60
0

70
0

8 0
0

90
0

1 0
00

10
0

20
0

3 0
0

40
0

50
0

60
0

7 0
0

80
0

9 0
0

10
00

0.0

0.2

0.4

0.6

Number of regression vectors N

Figure 3.35: Empirical runtimes when using a hierarchical clustering with complete linkage

for ordering.

Chapter 3. Methods for Ordering Multidimensional Data 81

pairwise distance matrix at the beginning, the time complexity of this ordering

method can be given as O(N2 · (D + log(N)).

Figure 3.35 shows the empirical runtimes of this ordering method when using a

complete linkage. The quadratic increase of the runtimes can be seen very well.

Remarkably, the empirical runtimes are very small, only fractions of a second. This is

a big difference to the other distance based ordering methods and a big advantage of

this method. Although the theoretical time complexity is rather large, the hierarchical

clustering can be done so efficiently that the empirical runtimes are very small.

3.5 Summary and Comparison of the Described

Ordering Methods

In the previous sections 13 different ordering methods were described. Their char-

acteristics, advantages and disadvantages were explained and their theoretical and

empirical computational runtimes were analyzed. In this section, the obtained

knowledge gets summarized and compared. For this, especially Table 3.1 is useful.

This table shows that additive and multiplicative transformations do not change the

obtained orders of most methods. Only, ordering the regression vectors according to

a vector norm and the nondominated sorting method get affected by data transfor-

mations. Furthermore, most of the scalarization based ordering methods (except the

ordering according to a vector norm) are affected by multiplicative transformations

in the way that multiplying all regression vectors with the same negative value will

lead to a reversed order.

Most ordering methods need purely metric data to be able to compute an ordering.

Nominal and ordinal data can only be ordered by the naive methods and the distance

based methods which do not need the values of the regression vectors for ordering

but only the indices of the regression vectors in the data set or the pairwise distances,

respectively. Also, some nominal and ordinal components are allowed when using only

one component of the regression vector for ordering, as long as a metric component

of the regression vector is chosen for the ordering process.

Another aspect considered in this chapter is whether the described ordering methods

obtain the inherent order of the data in the one-dimensional case. This is the case for

82 Chapter 3. Methods for Ordering Multidimensional Data

Method
Transfor-

mation
Data Runtime

a
d
d

it
iv

e

m
u
lt

ip
li
ca

ti
v
e

n
o
m

in
a
l

o
rd

in
a
l

m
e t

ri
c

I n
h

er
en

t
O

rd
er

fo
r
D

=
1

T
h
eo

re
ti

ca
l

(W
o
rs

t
C

a
se

)

E
m

p
ir

ic
a
l

(M
a
g
n

it
u
d

e)

Order of the Data Set 3 3 3 3 3 7 O(1) 10−4 sec

Random Order 3 3 3 3 3 7 O(N) 10−4 sec

Norm 7 3 7 7 3 7 O(ND) 10−3 sec

Median 3 (3) 7 7 3 3 O(ND) 10−2 sec

Taking only one Regressor 3 (3) (3) (3) 3 3 O(N) 10−4 sec

Weighted Sum 3 (3) 7 7 3 3 O(ND) 10−3 sec

Orthogonal Projection 3 (3) 7 7 3 3 O(ND) 10−3 sec

Nondominated Sorting 3 7 7 7 3 3 O(N2D) 103 sec

Convex Hull 3 3 7 7 3 7 O(N2 · (D + 2N)) 102 sec

Halfspace Depth 3 3 7 7 3 7 O(N2 · (D + 2N)) 102 sec

Shortest Hamiltonian Path 3 3 3 3 3 3 O(N2 · (D + 2N)) 102 sec

Nearest Neighbor Heuristic 3 3 3 3 3 3 O(DN2 +N3) 102 sec

Hierarchical Clustering 3 3 3 3 3 3 O(N2 · (D + log(N))) 10−2 sec

Table 3.1: Summary of the characteristics and runtimes of the 13 ordering methods. The

”Transformation” columns describe whether the order is preserved when trans-

forming the data, where (3) means that the order is inverse when multiplying

with negative values (but this does not affect the value of an arbitrary sign

depth). The ”Data” columns describe which levels of measurement the data

may have for the respective method, where (3) means that nominal and ordinal

components of regression vectors are allowed if they are not chosen for order-

ing. ”Inherent Order for D = 1” means that the respective methods order the

regression vectors according to their values in the one-dimensional case and the

”Runtime” columns describe the theoretical worst case time complexity and the

magnitude of the empirical runtimes.

only eight of the 13 ordering methods. Both naive ordering methods do not obtain

this inherent order since the ordering is achieved by looking at the order in the data

set or by randomly permuting the index vector. Also, when the ordering is based on

the values of a vector norm, the inherent order is not obtained if both positive and

negative values are in the data set because all vector norms in the one-dimensional

case reduce to taking the absolute value of the respective value. Furthermore, two

of the three presented ordering methods based on partial sorting do not obtain the

inherent order in the one-dimensional case. Although the ordering method based on

convex hulls obtains the correct sequence of regression vectors, its obtained order

Chapter 3. Methods for Ordering Multidimensional Data 83

does not necessarily start with the smallest value. Additionally, the partial sorting

based on the values of Tukey’s halfspace depth orders the one-dimensional values

from the extremes of the data to the ”center” of the data.

The computational runtimes are quite different among the 13 ordering methods.

The smallest theoretical worst-case time complexity has the ordering according

to the indices of the data set, which has a constant runtime. The largest time

complexity has been calculated for all methods which need an exact solution of

the Traveling Salesman Problem, i.e. the convex hull method, the halfspace depth

method and the SHP method which have an exponential runtime increase in the

number of regression vectors. Most methods also have a linear runtime increase

in the number of dimensions, but this is empirically in most cases negligible. In

general, the empirical runtimes showed in this chapter do not necessarily match

the theoretical time complexity. The expected increases were visible very well in

most cases, but this does not necessarily mean anything for the magnitude of the

empirical runtimes. Especially, the hierarchical clustering ordering method has very

small empirical runtimes whereas the time complexity is more than quadratic in

the number of regression vectors. The smallest empirical runtimes are obtained by

the naive ordering methods. Also, the scalarization based methods and the before

mentioned hierarchical clustering method have very small empirical runtimes. In

contrast, the partial sorting methods and the two others distance based ordering

methods have quite large runtimes.

Overall, it can be said that all ordering methods have advantages and disadvantages.

The performance of the ordering methods in the context of the sign depth test will

be discussed in Chapter 5. There, it will be seen which characteristics of the ordering

methods are important for a good performance and which can be neglected.

84 Chapter 3. Methods for Ordering Multidimensional Data

Chapter 4

Developed Software

As part of this thesis, all ordering methods as well as the sign depth and the sign

depth test were implemented in R (R Core Team, 2019). The following sections de-

scribe these implementations and the self-written R-package GSignTest (Horn, 2021).

Particular attention is paid to the time complexities and empirical runtimes of the

implementations because especially implementing the sign depth is challenging.

4.1 Implementation of the Sign Depth

As it can be seen in Remark 2.2 on page 16, the sign depth in the case P (En = 0) = 0

is defined via a quite easy formula:

s(1)
nk

:= 1{ênk
(θ) · (−1)k > 0}

s(2)
nk

:= 1{ênk
(θ) · (−1)k < 0}

dKS (ê(θ)) :=

(
N

K

)−1 ∑
1≤n1<n2<···<nK≤N

(
K∏
k=1

s(1)
nk

+
K∏
k=1

s(2)
nk

) (4.1)

The case P (En = 0) > 0 will not be considered in this chapter because this thesis

deals with multiple regression with metric values where the probability of having a

residual with value zero is zero. Looking at this formula, it quickly becomes clear

that there is a very simple way of implementing the sign depth via nested loops. This

naive way of implementing the sign depth is formalized in Algorithm 4.1. As it can be

seen, this algorithm has two drawbacks: Firstly, the algorithm has to be implemented

for every value of K separately because the number of loops depends on the value

85

86 Chapter 4. Developed Software

Algorithm 4.1 Naive way of computing the K-sign depth.

Input: Vector of residuals ê(θ) of length N ; parameter K of the sign depth

Output: The value of the K-sign depth

1: Determine the vector r of the signs of ê(θ).

2: result = 0

3: for all n1 = 1 to n1 = N −K + 1 do

4: for all n2 = n1 + 1 to n2 = N −K + 2 do

5:
... # Altogether K loops

6: for all nK = nK−1 + 1 to nK = N do

7: if rn1 , . . . , rnK
are alternating then

8: result = result+ 1

9: end if

10: end for

11:
...

12: end for

13: end for

14: result = result /
(
N
K

)
15: return result

of K. And secondly, since it has to be checked
(
N
K

)
times whether K residuals are

alternating, the time complexity of this algorithm is O
(
K ·

(
N
K

))
∈ O

(
K ·NK

)
.

The first problem can be avoided by calculating all combinations of residuals before

checking whether they are alternating. In R, the function combn() can be used for

creating a matrix with all needed combinations of indices. With the help of this

function, a general implementation of the K-sign depth for all values of K is possible

in R. Such an implementation is given in Code 4.1. Besides the drawback of the

large time complexity, the approach of calculating all needed combinations of indices

beforehand has another disadvantage: Storing the complete combination matrix

needs a lot of memory space. In R, the maximal length of a vector (and so the

maximal number of entries in each dimension of a matrix) is 231 − 1.1 Since combn()

in Code 4.1 builds a matrix with K rows and
(
N
K

)
columns, especially for larger

values of K the number of residuals N is very limited. Furthermore, in practice it

is hardly possible to create such large matrices because the random access memory

(RAM) of private used computers is too small for such matrices. On 32bit-Windows

machines, the maximal size an R-object is allowed to have is 2 GB. Although the

1see help page of Memory-limits in R

Chapter 4. Developed Software 87

1 signDepth <- function(residuals , K) {

2 N <- length(residuals)

3 r <- sign(residuals)

4 comb <- combn(N, K)

5 result <- apply(comb , 2, function(x) {

6 all(r[x] == rep(c(1, -1), length.out = K) |

7 all(r[x] == rep(c(-1, 1), length.out = K)))

8 })

9 return(mean(result))

10 }

Code 4.1: First implementation of the K-sign depth in R.

limit for 64bit-Windows machines and Unix-like computers is larger, it is not realistic

to work with objects which are larger than a few gigabyte. Since combn() creates an

integer matrix and every integer in R needs 4 bytes memory space, in every gigabyte

approximately 228 integers can be stored.2 Here, it has to be counted in that every

column of the matrix consists of K rows. Table 4.1 shows the maximal number of

residuals depending on the value of K that can be used in Code 4.1. It can be seen

that for practical purpose this implementation reaches its limit very fast, especially

for larger values of K. Since it seems not realistically possible to compute the sign

depth of only a few hundreds of residuals, this implementation is unusable in practice.

21 gigabyte =̂ 1 024 megabyte =̂1 0242 kilobyte =̂1 0243 byte. Since one gigabyte are 1 0243 = 230

bytes and a single integer needs 4 bytes disc space, in one gigabyte disc space 230/4 = 228 integers

can be stored (Overhead, for example from creating a vector in R, is not counted in).

Size of the matrix

K theoretically 1 GB 2 GB 4 GB

3 2 345 813 1 025 1 291

4 477 201 239 284

5 193 93 107 122

Table 4.1: Maximal number of residuals whose combination matrix can be stored in R.

The theoretical values can be obtained by solving maxN∈N
(
N
K

)
< 231 − 1 for

fixed values of K and the values for the three right columns are determined via

maxN∈NK ·
(
N
K

)
< γ · 228 for fixed values of K and γ ∈ {1, 2, 4}.

88 Chapter 4. Developed Software

Moreover, not only the limited memory space is problematic, but also the time to

create such large matrices which often amounts to several minutes.

Because of these drawbacks it is necessary to calculate the combinations one after

the other, so that storing the complete combination matrix is not necessary. For this,

it has to be thought about an algorithm to compute all combinations without being

forced to remember and store all previous ones. Algorithm 4.2 shows a pseudocode

for computing a new combination vector on the basis of an old combination vector.

The idea behind this algorithm is to increase the value in the last position of the

given vector by one. If this is not possible because this value is already the maximal

allowed value N , the value in the previous position is increased. Here, the maximal

allowed value is N − 1. If this is also not possible, it is again taken the value in the

previous position, and so on. All values before this position stay the same. The

value at the determined position is increased by one and all following values are

larger by one than the previous. Starting with the vector (1, . . . ,K)> calling this

Algorithm 4.2 Pseudocode for computing a new combination vector n on the basis

of an old one o. Iteratively calling this function starting with the vector (1, . . . , K)>

will give all
(
N
K

)
vectors of possible combinations. Name this function nextComb()

for usage in Algorithm 4.4.

Input: Vector of combinations o of length K; Maximal possible value in the combi-

nation vector N

Output: Vector of combinations n

1: Initialize vector n of length K.

2: j = K

3: while oj == N −K + j do

4: j = j − 1

5: end while

6: for all i = 1 to j − 1 do

7: ni = oi

8: end for

9: nj = oj + 1

10: for all i = j + 1 to K do

11: ni = ni−1 + 1

12: end for

13: return n

Chapter 4. Developed Software 89

function iteratively will give all possible combinations in the same order combn() is

computing the combinations.

Another disadvantage of the first implementation of the sign depth in Code 4.1 is

that always all K signs are checked, even if for example the first two residuals in

the given K-tuple are positive, nevertheless it is looked at all following residuals in

the tuple. By going iteratively through the vector of residuals one can stop checking

the respective vector when two residuals with the same sign one after the other have

been found. A pseudocode of this rather simple procedure is shown in Algorithm 4.3.

If all residuals have the same sign, in each iteration only one comparison between

the first two elements of each K-tuple is needed for detecting that the respective

tuple has no alternating signs. And also if the probability of each residual is 0.5 to

be positive, it follows from the geometric distribution that in the expected value

only two comparisons are needed to detect a non-alternating tuple. This can be

explained by understanding that the probability of a sign change is also 0.5 when

every residual is positive with probability 0.5. So, the probability of having no sign

change within two successive residuals is 0.5, too. Since the geometric distribution

describes the probability of getting a specific event the first time when the event

occurs independently with probability p in every step and the expected value of

the geometric distribution is 1
p
, here the expected first occurrence of two successive

residuals with equal signs happens after 1
0.5

= 2 comparisons.

Algorithm 4.3 Efficiently checking for alternating signs in a vector v. Name this

function signSwitch() for usage in Algorithm 4.4.

Input: Vector v ∈ RK

Output: 1, if v has alternating signs, 0 otherwise

1: Compute the vector r of signs of v.

2: result = 1

3: for all i = 2 to i = K do

4: if ri == ri−1 then

5: result = 0

6: break

7: end if

8: end for

9: return result

90 Chapter 4. Developed Software

Algorithm 4.4 Pseudocode for computing the K-sign depth when creating iteratively

index vectors and efficiently checking for alternating signs in the vector of residuals.

Input: Vector of residuals ê(θ); Parameter K of the sign depth

Output: The value of the K-sign depth

1: N = length of vector ê(θ)

2: o = (1, . . . , K)T

3: Check whether o has alternating signs with the help of Algorithm 4.3:

c =switchSign(o)

4: for all i = 1 to i =
(
N
K

)
do

5: n = newComb(o, N)

6: c = c+ switchSign(n)

7: o = n

8: end for

9: return c/
(
N
K

)

1

2

3

1

2

4

1

2

5

1

3

4

1

3

5

1

4

5

2

3

4

2

3

5

2

4

5

3

4

5

Figure 4.1: Visualization of needed comparisons when calculating iteratively the 3-sign

depth with five residuals.

A pseudocode for computing the K-sign depth in this way is given in Algorithm 4.4. In

addition, an example of calculating the 3-sign depth with five residuals is visualized in

Figure 4.1. For this, the iterative computation of the index vectors from Algorithm 4.2

is used and additionally, the second and third residual of each 3-tuple is only checked

for alternating signs if the first and second residual were alternating. The drawn

tree shows the residual indices of the five residuals and every branch of the tree

corresponds to one step of the algorithm. By looking at the tree from the left to the

right the procedure of the algorithms gets clear: At first the index vector (1, 2, 3)>

is created and checked for alternating signs. Therefore, the residuals with indices

Chapter 4. Developed Software 91

1 and 2 are compared and if they are alternating, residuals 2 and 3 are compared.

In the next step, the index vector (1, 2, 4)> is examined, and so on until the index

vector (3, 4, 5)> is reached.

Of course, this theoretical approach has been implemented in R. Indeed, both the

implementation of the iterative way to create combination vectors and the sign depth

itself were written in C++ and connected to R with the help of the package Rcpp

(Eddelbuettel and Balamuta, 2017). The code of the implementation of Algorithm 4.2

can be found in Code B.3 in the appendix on page 217. The C++-code for checking

iteratively the signs of the residuals is given in Code B.2. Also in Appendix B the C++-

implementation of the sign depth with the help of above mentioned implementations

can be found. It is given in Code B.4. The programming language C++ instead

of R has been chosen for these implementations because of the above mentioned

problem with the large time complexities of the sign depth calculation. In most cases,

implementations in C++ are faster than the same implementations in R.

Although this implementation of the sign depth reduces the time complexity from

O(K ·
(
N
K

)
) to O(2·

(
N
K

)
) in the average, there are still some non-necessary comparisons.

Imagine there are five residuals for which the 3-sign depth should be computed and

the first two residuals are positive. Then the comparison of the first two residuals is

done three times because the index-tuples (1, 2, 3)>, (1, 2, 4)> and (1, 2, 5)> are

checked independently of each other. To avoid these non-necessary comparisons one

can compute the sign depth recursively by looking only at the jth element of a tuple

if all j − 1 elements before have alternating signs. If the residual at position j has

the same sign as the residual at position j − 1, the recursion breaks up for all tuples

which contain the same values until the jth position. This strategy is formalized in

Algorithms 4.5 and 4.6 and implemented in Code B.5 and B.6 in Appendix B. As

before, the implementations were written in C++ and afterwards connected to R to

speed up the calculations. The loop in line 4 to 6 of Algorithm 4.6 computes the

number of K-tuples with alternating signs starting at each index separately. This is

done because in the first line of recFun() (Algorithm 4.5) it is checked whether the

sign of the current residual is the same as the sign of the previous residual and since

there is no previous residual at the beginning of a tuple the previous sign is set to

zero (see the last parameter in the call of recFun() in line 5 of Algorithm 4.6). If

the current and the previous sign are the same, recFun() returns zero which means

that the recursion breaks up because all tuples with the respective previous and

current sign cannot be alternating. If the previous and the current sign are not the

92 Chapter 4. Developed Software

Algorithm 4.5 Pseudocode for function recFun() used in Algorithm 4.6.

Input: Vector of signs r; length of considered tuples K; index j; sign of previous

residual rj−1

Output: Number of alternating K-tuples starting at index j

1: if rj == rj−1 then

2: return 0

3: end if

4: if K == 1 then

5: return 1

6: end if

7: N = length of vector r

8: result = 0

9: for all i = j + 1 to i = N −K + 2 do

10: result = result+ recFun(r, K − 1, i, rj)

11: end for

12: return result

Algorithm 4.6 Algorithm for computing the sign depth which reduces the number of

K-tuples to be checked for alternating signs.

Input: Vector of residuals ê(θ); Parameter K of the sign depth

Output: The value of the K-sign depth

1: N = length of vector ê(θ)

2: Determine the vector r of the signs of the residuals ê(θ).

3: c = 0

4: for all i = 1 to i = N −K + 1 do

5: c = c+ recFun(r, K, i, 0)

6: end for

7: return c/
(
N
K

)

Chapter 4. Developed Software 93

same, recFun() is called recursively on the next indices with the former current sign

now as previous sign. Since the remaining tuple is smaller by one recFun() is called

with argument K − 1. If the recursion has not broken up when reaching K = 1,

an alternating tuple has been found for which one is returned (see line 4 to 6 in

Algorithm 4.5).

During this thesis the three above mentioned implementations of the sign depth

were developed: The primitive R-implementation, the iterative C++-implementation

and the recursive C++-implementation. While the primitive R-implementation always

needs K ·
(
N
K

)
comparisons independent of the data situation, the number of needed

comparisons gets smaller with the C++-implementations. In the algorithm’s best

case, when all residuals have the same sign, the iterative algorithm needs only one

comparison for every tuple. This leads to a best case runtime of O(1 ·
(
N
K

)
). As

mentioned above, the average runtime of the iterative algorithm is O(2 ·
(
N
K

)
), if

every residual is positive with probability 0.5. An upper bound for the runtime can

be given by O((K − 1) ·
(
N
K

)
). This number of comparisons would be reached if every

tuple has strictly alternating signs, which is impossible.

In this scenario, the recursive algorithm would make
∑K−2

k=0

(
N−k
K−k

)
∈ O(

(
N
K

)
) compar-

isons, for understandig see Figure 4.2. This figure shows the recursion tree when

computing the 3-sign depth with five residuals. It can be seen that the first entry

of a triple is residual number 1, 2 or 3 and that they are compared with residual

numbers 2, 3 and 4 in the first step. This leads to 6 =
(

4
2

)
=
(

5−1
3−1

)
comparisons. In

1

2

3 4 5

3

4 5

4

5

2

3

4 5

4

5

3

4

5

Figure 4.2: Visualization of needed comparisons when calculating recursively the 3-sign

depth with five residuals.

94 Chapter 4. Developed Software

the second step, the respective second entry of these six tuples gets compared with

residual numbers 3, 4 and 5, which leads to 10 =
(

5
3

)
comparisons. So overall, in this

example, an upper bound for the number of comparisons is
(

5
3

)
+
(

4
2

)
= 16.

Assumed that every entry has probability 0.5 for being positive, the number of

comparisons reduces in the average to
∑K−2

k=0 (1
2
)K−2−k ·

(
N−k
K−k

)
∈ O((1

2
)K−2 ·

(
N
K

)
)

because the probability of going a layer deeper in the recursion tree is everytime 0.5.

Specifically, that means that the comparisons between the first two entries of every

tuple are made for sure, i.e. with probability 1. The comparison of the second and

third entry of the tuple is only made if the first two entries had alternating signs

which occured with probability 0.5. For K > 3, the comparison of the third and

fourth entry is only made if both previous comparisons showed alternating signs,

i.e. this event has probability 0.5 · 0.5 = 0.25, and so on. In the example tree in

Figure 4.2 the number of comparisons reduces in the average to 1 ·
(

4
2

)
+ 1

2
·
(

5
3

)
= 11

comparisons.

The smallest time complexity of the recursive algorithm will be reached when all

residuals have the same sign. In this case, only the comparisons between the residuals

in the first and second layer of the recursion tree have to be done, which are(
N−(K−2)
K−(K−2)

)
=
(
N−K+2

2

)
= 1

2
· (N −K + 1) · (N −K + 2) ∈ O((N −K)2) comparisons.

Best Case Average Case Worst Case

Primitive R O
(
K ·

(
N
K

))
O
(
K ·

(
N
K

))
O
(
K ·

(
N
K

))
Iterative C++ O

(
1 ·
(
N
K

))
O
(
2 ·
(
N
K

))
O
(
(K − 1) ·

(
N
K

))
Recursive C++ O ((N −K)2) O

((
1
2

)K−2 ·
(
N
K

))
O
(
1 ·
(
N
K

))
Table 4.2: Overview of the time complexities of the three presented algorithms for com-

puting the sign depth. ”Best Case” means that all residuals have the same sign,

”Average Case” means that every residuals has probability 0.5 to be positive and

”Worst Case” means that all
(
N
K

)
tuples are have strictly alternating signs. Since

the worst case cannot occur, the values for the worst case have to be interpreted

as upper bound for the time complexities of the algorithms.

Chapter 4. Developed Software 95

An overview of the theoretical time complexities of the three different algorithms

can be found in Table 4.2.

Empirical runtimes of the algorithms can be found in Figure 4.3 and Table C.2. For

these results 100 times N ∈ {20, 40, 60, 80, 100} residuals were drawn independently

from a U(−1, 1) distribution. This simulates the above mentioned ”Average Case”.

Figure 4.3 clearly shows the differences in the runtimes of the three algorithms (please

note the logarithmic y-axis). While the primitive R-implementation needs about

seven minutes in median for computing the 5-sign depth with 100 residuals (and

several Gigabytes of RAM), the recursive C++-implementation needs only about a

third of a second for the same setting. In general, the runtimes increase with larger

K and the iterative C++-implementation always is much faster than the primitive

R-implementation and the recursive C++-algorithm is much faster than the iterative

one.

K = 3 K = 4 K = 5

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

0.001

0.100

10.000

1000.000

Number of residuals N

R
u
n
ti

m
e

(i
n

se
co

n
d
s)

primitive R iterative C++ recursive C++

Figure 4.3: Empirical Runtimes of the three algorithms for computing the sign depth with

K ∈ {3, 4, 5}. For these results 100 times N residuals were drawn indepen-

dently from a U(−1, 1) distribution, so that every residual has probability 0.5

to be positive which refers to the above mentioned ”Average Case”. Please note

the logarithmic scale on the y-axis. A table of the median of these runtimes

can be found in Table C.2 on page 227.

96 Chapter 4. Developed Software

Although the recursive C++-implementation seems to be quite fast, a time complexity

which has a factor of
(
N
K

)
in it becomes large when N or K gets large. For example,

calculating the sign depth for 1 000 residuals needs 3.9 seconds for the 3-sign depth,

7 minutes for the 4-sign depth and 11 hours for the 5-sign depth in the median.

Computing the sign depth for K ∈ {10, 50} needs 1 and 38 hours respectively for

N = 100 residuals. Because of this, Kevin Leckey, Dennis Malcherczyk and Christine

Müller worked on implementations of the sign depth which are linear in N . So

far, two linear implementations were developed, one is an asymptotically equivalent

implementation of the sign depth. For this implementation also exact solutions are

available for K ∈ {3, 4, 5}. This asymptotically equivalent form of the K-sign depth

bases on the fact that the sign depth can be written as a sum of products of sign

functions with some additional terms for K > 3, which converge almost surely to zero

for large values of N . For K ∈ {4, 5}, Dennis Malcherczyk found a way of calculating

these terms also in linear time complexity, so that an exact implementation of

the sign depth for these values of K is available. The additional terms for larger

values of K cannot be calculated in linear time complexity so far, but for practical

purpose the general asymptotically equivalent implementation of the K-sign depth

in linear time complexity is sufficient and will be used in Subsection 5.3.4, whereas

the exact linear implementation will be used in all other parts of Chapter 5. The

second developed implementation in linear time complexity computes the sign depth

exactly for all values of K. This so-called ”block-implementation” is explained in

the dissertation of Dennis Malcherczyk (Malcherczyk, 2021+) and has even smaller

empirical runtimes than the above mentioned implementation and is numerically

more stable. Unfortunately, when performing the simulations of Chapter 5 and

writing this thesis, this implementation was not yet available and so, in this thesis

only the above mentioned implementation in linear time complexity could be used.

Because of this, in the following and especially in Chapter 5 also all interpretations

of the results are written as if the block-implementation would not exist.

4.2 Implementation of the Sign Depth Test

With the help of the sign depth, in linear models hypotheses of the form

H0 : θ ∈ Θ0 vs. H1 : θ /∈ Θ0

Chapter 4. Developed Software 97

can be tested when a linear models is defined via y = Xθ + e. Since in this thesis it

is focused on hypotheses of the form

H0 : θ = θ0 vs. H1 : θ 6= θ0,

the implementation of this case is described further on. When looking at the definition

of the sign depth test in Section 2.5, it can be seen that the general case can be

obtained by calculating the sign depth for every θ ∈ Θ0 and taking the supremum of

the obtained sign depths, so that the described implementation for a null-hypothesis

consisting of only one element can also be used for the general case if the largest

depth in H0 was calculated beforehand.

When looking at the definition of the sign depth test in Theorem 2.2 in Section 2.5,

it can be seen that the test statistic of the sign depth test is compared with qK,Nα , the

α-quantile of the distribution of the K-sign depth with N residuals. For implementing

the sign depth test, these quantiles have to be computed beforehand. Since for large

N the distribution of N ·(dKS (ê(θ))−(1
2
)K−1) converges to an asymptotic distribution,

especially the quantiles and distributions for small N are of interest. For this purpose,

the exact distribution of the K-sign depth for K ∈ {2, 3, 4, 5} and N ∈ {K, . . . , 25}
has been computed. This is done by calculating the K-sign depth of all 2N possible

sign combinations, which are up to 225 = 33 554 432. For larger values of N the

distribution of the K-sign depth is approximately computed by calculating the K-sign

depth of one million random sign combinations of length N .

When having the distribution of the K-sign depth, calculating the K-sign depth test

with given residuals is quite easy. A pseudocode of this procedure can be found in

Algorithm 4.7. Here, the K-sign depth of the residuals is computed and afterwards

the p-value of the test is calculated via the probability function of the distribution of

the K-sign depth. If no residuals but data and a model are given, the procedure is

the same with the difference that the residuals have to be computed beforehand. For

Algorithm 4.7 Pseudocode of the K-sign depth test when input is a vector of residuals.

Input: Vector of residuals ê(θ); Parameter K of the sign depth

Output: p-value of the K-sign depth test

1: Calculate the test statistic dKS , which is the K-sign depth of ê(θ).

2: Calculate the p-value of the test via the formula p = FK,N(dKS), where FN,K

denotes the probability function of the K-sign depth for N residuals.

3: return p

98 Chapter 4. Developed Software

Algorithm 4.8 Pseudocode of the K-sign depth test when input is a data set and a

model.

Input: Formula f of the model to be fitted; Data Set Z; Vector θ0 to be tested on;

An ordering method; Parameter K of the sign depth

Output: p-value of the K-sign depth test

1: Extract the design matrix X and the response vector y of Z with the help of f.

2: Order the values in X and y via the given ordering method.

3: Compute the residuals under H0: ê(θ0) = y −Xθ0.

4: Calculate the test statistic dKS , which is the K-sign depth of ê(θ0).

5: Calculate the p-value of the test via the formula p = FK,N(dKS), where FN,K

denotes the probability function of the K-sign depth for N residuals.

6: return p

this, the values in the design matrix X and the response vector y have to be ordered

according to a given ordering method (see Chapter 3 and Section 4.3) before the

residuals under H0 can be calculated. This procedure is described in Algorithm 4.8.

4.3 Implementation of the Ordering Methods

All ordering methods described in Chapter 3 are implemented in R, partly with the help

of different R-packages. The self-written R-function multiSorting() (available in the

package GSignTest) gets a data set (as data.frame), a character-string describing

the ordering method and possibly further control arguments of the ordering methods

as input and returns the ordered data set and an index vector which describes the

permutation of the original data set.

The naive ordering methods are easy to implement: For taking the order of the data

set only the index vector 1:N has to be created. For a random ordering this index

vector has to be shuffled. This is done with the help of the function sample().

The scalarization based methods are also quite easy to implement. The scalarized

values are computed via standard R-functions and the index vector of the ordered

data set is obtained with the help of the function order(). Since these ordering

methods depend on different hyper-parameters, these parameters can be set via the

control-argument of the function multiSorting(). This applies for the parameter

p of the vector norm, for the choice of the component to be ordered on when ordering

Chapter 4. Developed Software 99

only according one component is conducted, for the weights of a weighted sum of

the regression vectors and for the position vector and the direction vector of the line

on which the regression vectors are orthogonal projected on. When not setting any

specific parameter, the defaults are used, which are set to p = 2 (i.e. euclidean norm)

for an ordering according to a vector norm. For an ordering according to only one

component of the regression vectors, the first component is used as default with a

possible ordering according to the second component for regression vectors which

have the same value in the first component and an ordering according to the third

component if ties also occur in the second component and so on. If two regression

vectors are completely equal, here (and for all other ordering methods) the order the

regression vectors appear in the data set is used. The default value for the weights of

an ordering according to a weighted sum of the regression vectors is a vector where

all values are one, which means that all components of the regression vectors get

equal weights. And for the projecting method the default is an orthogonal projection

on the bisecting line, i.e. the location vector consists of entries with all values zero

and the direction vector is a vector where all entries have value one.

The ordering methods based on partial sorting use some specialized R-packages.

When using nondominated sorting as method for partial sorting the R-function

fastNonDominatedSorting() from the R-package nsga2R (Tsou, 2013) is used. For

ordering the regression vectors which got the same rank in the nondominated sorting

process any other ordering method can be used. This can be set via the control-

argument of the multiSorting() function, the default uses the order the regression

vectors appear in the data set. For using convex hulls for partial sorting the function

convhulln() from the package geometry (Habel et al., 2019) is repeatedly used.

When assigned the regression vectors to the different convex hulls, the order of the

regression vectors in every hull has to be determined. Because convhulln() does

not return the regression vectors of a hull in an inherent order (i.e. an order which

runs along the edges of the hull) the regression vectors in every hull have to be

ordered manually. For example, the usage of the solution of a Traveling Salesman

Problem leads to the wanted order, see below. The same holds for the ordering

according to Tukey’s halfspace depth. The regression vectors with the same value of

the halfspace depth can be ordered with a Traveling Salesman Problem solver. For

determining the values of the halfspace depth the function depth.halfspace() of

the package ddalpha (Pokotylo et al., 2019) is used. Here, an approximate solution

of the halfspace depth with 100 000 uniformly distributed directions is used because

100 Chapter 4. Developed Software

computing the exact solution with
(
N
D

)
directions would be computationally too

expensive in many cases.

Making the distance based ordering methods usable is partially rather difficult.

Computing the Shortest Hamiltonian Path and the nearest neighbor approximation

is done with the R-package TSP (Hahsler and Hornik, 2019) which can be used for

solving a Traveling Salesman Problem. This package also provides a function for

including a dummy value with distance zero to every other regression vector, so

that the Traveling Salesman Problem can be transformed to a Shortest Hamiltonian

Path problem. While the nearest neighbor approximation can be computed solely

with the TSP-package, the exact solution of the Shortest Hamiltonian Path needs

the connection to an external solver written in C. This solver is not available or

connected to R directly, but everybody has to do this on his/her own when wanting

to use this solver. The Concorde TSP Solver (Applegate et al., 2004) uses a cutting-

plane method which bases on linear optimization for solving the Traveling Salesman

Problem, see Applegate et al. (2006) and Applegate et al. (2001). For running the

linear optimization within the solving process it is recommended to use the QSopt

Linear Programming Solver (Applegate et al., 2003). Compiling this rather old

C-code can be challenging, especially when using Windows computers because the

code is optimized for Windows 98/ME/NT/2000/XP, but it is possible even for new

Windows 10 computers. The Concorde-solver is called by the R-function solve_TSP()

of the TSP-package when setting the option method = "concorde". When setting

the option method = "repetitive_nn" the nearest neighbor approximation is used.

Since the solution of the Traveling Salesman Problem and the Shortest Hamiltonian

Path problem is based on the pairwise distances of the regression vectors a distance

matrix has to be computed beforehand. This is done via the function dist(). All

hyper-parameters of the dist()-function (like the distance measure) can be set via

the control-argument of multiSorting(). When using the default the euclidean

distance is used. Also via the control-argument the path of the executables of the

Concorde-solver and the precision parameter (i.e. the number of decimal places used

for the internal representation of distances in Concorde) can be set. On the other

hand, the implementation of the hierarchical clustering for ordering is quite easy.

For this, the function hclust() is applied on the distance matrix of the pairwise

distances and the indices of the permutation are given in the list entry order of the

returned object. The hyper-parameter for specifying the dissimilarity function can

be given via the control-argument of multiSorting(). The default value for this

is the complete linkage function.

Chapter 4. Developed Software 101

4.4 The R-package GSignTest

For easy usage of the sign depth and the sign depth test including the ordering

methods the R-package GSignTest (Horn, 2021) has been written as part of this

thesis. Writing this package was made with the help of several R-packages: devtools

(Wickham et al., 2019b) for technical infrastructure, testthat (Wickham, 2011) for

testing the written functions on correctness, roxygen2 (Wickham et al., 2019a) for

documentation and checkmate (Lang, 2017) for argument checks in the written

functions. Next to the sign depth, the sign depth test and the ordering methods,

GSignTest provides also functions for computing the F -test and the classical sign

test as well as the density function, the probability function and the quantiles of the

distribution of the sign depth with K ∈ {2, 3, 4, 5} and a function for visualization

of computed multidimensional orders.

The sign depth is implemented three times in the package GSignTest. The first and

oldest implementation can be found in the function calcDepth_old(), which contains

the recursive implementation presented in Algorithms 4.5 and 4.6 in Section 4.1. The

function calcDepth_asymp() uses the before mentioned asymptotic implementation

in linear time complexity in N based on the work of Dennis Malcherczyk, Kevin

Leckey and Christine Müller. In default, the argument exact of this function is

set to TRUE, which means that the exact solution of the sign depth based on the

asymptotic version is computed for K ∈ {3, 4, 5}. If K /∈ {3, 4, 5}, this function

computes the asymptotic sign depth. The third function for computing the sign

depth in GSignTest is named calcDepth() and contains the recently developed

block-implementation.

As mentioned in Section 4.2 the sign depth test is implemented for two different

situations: Either input of a vector of residuals or input of a data set and a model

description. The function depth.test() is written as S3-method, so that both

variants can be addressed via the same interface. The output of depth.test() is

an object of class htest like most in R implemented tests. This was chosen on the

one hand because of consistency to other tests implemented in R and on the other

hand because for class htest there exists already some useful methods (for example

a print()-method) which can be used for depth.test().

The package contains a table of values of the K-sign depth for each K ∈ {2, 3, 4, 5}
respectively. These four tables cannot be addressed directly, but are internally used

102 Chapter 4. Developed Software

for the functions qdepth(), ddepth() and pdepth() which return quantiles, values

of the density function and values of the probability function of the distribution of

the K-sign depth. As mentioned in Section 4.2, up to N = 25 the sign depth of all

possible combinations of signs of residuals were computed and for 25 < N ≤ 100

one million random sign combinations were used for approximating the values of

the distribution of the sign depth. Since R-packages should not be too large, it was

decided to include for every N and K only 10 001 values, so that all quantiles from

zero to one with four decimal places are available. The function qdepth() directly

accesses the respective table in which in each column the sorted values (i.e. quantiles)

for one specific number of residuals are available. The values of the probability

function are calculated with the help of the function ecdf() and the values of the

density function are approximated via density(). All three functions have the

possibility to return the transformed values N · (dKS (ê(θ))− (1
2
)K−1).

As mentioned in Section 4.3 the function multiSorting() provides all ordering

methods described in Chapter 3. For visualization of computed orders the function

plotMultiSorting() can be applied to an object returned by multiSorting().

This function draws the regression vectors via ggplot2 in a two-dimensional scat-

terplot and connects the points with lines which describe the ordering. When the

ordered regression vectors have more than two dimensions the argument dims in

plotMultiSorting() can be used to determine which two dimensions shall be shown

in the plot.

The F -test and the sign test can be found in the self-written functions f.test() and

sign.test(). Like the sign depth test, the sign test is implemented as S3-method

for input of residuals as well as input of model description and data. Since the

F -test in the context of regression is not defined for residuals only, but bases on an

estimation of the parameter vector θ, the input of the function f.test() has always

be a model description and a data set. Both, f.test() and sign.test(), return an

object of class htest like depth.test() also does.

The whole package GSignTest can be found on the development platform Github via

the address https://github.com/melaniehorn/GSignTest. The implementation

of all mentioned functions can be found there. GSignTest can be freely downloaded,

installed and used. The easiest way to install the package in R is to use the command

devtools::install_github("melaniehorn/GSignTest").

https://github.com/melaniehorn/GSignTest

Chapter 5

Results and Analysis of the Power of

the Sign Depth Test

This chapter shows, describes and analyzes the power of the sign depth test in many

different situations of multiple linear regression and with different ordering methods.

Most of the results are based on simulations which are described in the first section of

this chapter. The simulated power functions and further comparisons of the different

ordering methods are presented in the following sections. In addition, the sign depth

test will be compared to classical (robust) tests in the context of parameter testing

as well as for model checks. At the end of the chapter the sign depth test will be

applied to real data from a bridge monitoring.

5.1 Description of the Simulations

For examining the behavior of the sign depth test when applying different ordering

methods and in comparison to other tests, many simulations have been carried out.

These simulations have examined many different aspects of the test, the data and

the linear regression model. The aim of the simulations is to get empirical power

functions of the sign depth test for the different situations and compare them. While

the theoretical power function of a test is defined as the expected value of the test in

dependance of the unknown parameter θ, i.e. γ(ϕ) = Eθ(ϕ) = Pθ(ϕ = 1), one can

obtain empirical power functions by replacing the expected value of the test by the

relative number of rejections of the null-hypothesis among several simulation runs.

103

104 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Overall, ten different regression models will be examined. In Section 5.2, the model

y = θ1x·1 + θ2x·2 + e will be used and the results will be evaluated in detail. This

model is the only possible multiple linear regression model with only two para-

meters. Because of this, it is possible to look at the simulated three-dimensional

power functions directly without being forced to summarize the results any further.

In Subsection 5.3.1 to 5.3.3 the summarized results of five further models with

higher dimensional parameter vectors θ will be shown. These models will belong to

three groups: Simple linear models with intercept (y = θ0 + θ1x·1 + θ2x·2 + e and

y = θ0 + θ1x·1 + θ2x·2 + θ3x·3 + e), models with interactions without and with inter-

cept (y = θ1x·1 + θ2x·2 + θ3x·1x·2 + e and y = θ0 + θ1x·1 + θ2x·2 + θ3x·1x·2 + e)

and a quadratic regression model (y = θ0 + θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e). In

Subsection 5.3.4, four high-dimensional models will be analyzed. These models have

the form y =
∑D

d=1 θdx·d + e with D ∈ {10, 20, 40, 80}.

The entries of the error vector e are chosen to be independent copies from a normal

distribution with parameters µ = 0 and σ = 0.2 in all simulations. Note that the

choice µ = 0 is necessary to have a median of zero in the errors whereas the standard

deviation is chosen arbitrarily and could be replaced by any other positive value.

In addition, the model in Section 5.2 is also analyzed for errors with a Cauchy

distribution and a uniform distribution in order to examine the effect of the error

distribution on the sign depth test. Both distributions were set up to have median

zero and the same interquartile range as the normal distribution to make the results

more comparable. Hence, if u0.75 denotes the 75% quantile of the standard normal

distribution then the parameters of the Cauchy distribution were chosen as s = 0

and t = 0.2 · u0.75 ≈ 0.135 while the ones of the uniform distribution were set to be

a = −0.2 · 2 · u0.75 ≈ −0.27 and b = 0.2 · 2 · u0.75 ≈ 0.27.

Regarding the underlying data set X, overall three different types of data sets have

been used. Basically, in Section 5.2 the same data sets as in Chapter 3 were used:

A data set where the design vectors are arranged as a spiral, a data set where the

design vectors are arranged as a grid and a data set with random design vectors. For

comparison see Figure 3.1 on page 30. All three data sets have values in the interval

[−1, 1]2. In Section 5.3 only the data set with random design vectors has been used

because this data set can easily be extended to more than two dimensions if there

are more than two regressors in the regression model. The simulations were carried

out with two different numbers of data points: Rather small data sets with N = 25

and medium data sets with N = 100 data points.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 105

The sign depth test itself depends on the ordering method and the parameter K. In

Section 5.2 all ordering methods presented in Chapter 3 will be shown and compared

whereas in Section 5.3 only the best performing ordering methods will be used. The

simulation study is mostly focused on the parameter choices K ∈ {3, 4, 5} since for

these values the sign depth can be computed exactly in linear time complexity. In

Subsection 5.3.4, also K ∈ {11, 21} is considered because of the high dimensions of

the models. For this, only an asymptotic implementation of the sign depth in linear

time complexity can be used.

For the simulations the statistical hypothesis H0 : θ = 0 vs. H1 : θ 6= 0 is used. In

Section 5.2, the power functions of the tests are simulated on the interval [−1, 1] for

each of the two components of θ. For this, the interval is discretized to the values

θ ∈ {−1, −0.95, −0.9, . . . , 0.9, 0.95, 1}2. In Subsections 5.3.1 to 5.3.3 the power

functions are only simulated on the interval {−0.5, −0.45, −0.4, . . . , 0.4, 0.45, 0.5}D

because it turned out in the previous section that this is sufficient to see the general

behavior of the test and thus the runtime can be reduced significantly by considering

less points, especially because the dimension of θ can be up to four in this section.

In contrast, in Subsection 5.3.4, the power functions are simulated in the range of -1

to 1 with a step width of 0.02 because in this subsection only two one-dimensional

aspects of the power functions are of interest and not the whole power functions

and so it is computationally possible to simulate the power functions on a larger

interval with a smaller step width. Computing the whole power functions in this

section is not possible because of the high dimensions. This would computationally

too expensive.

All power functions are simulated by conducting the tests 1 000 times on independently

generated data sets and calculating the relative number of simulation runs which

have rejected the null-hypothesis. In this thesis, always α = 0.05 for the level of the

tests is used.

5.2 Results of Model y = θ1x·1 + θ2x·2 + e

We will start with the most simple multiple regression model y = θ1x·1 + θ2x·2 + e.

When having only a two-dimensional parameter vector θ, it is possible to look at the

simulated three-dimensional power functions in detail. In the following subsections,

every aspect which could have an effect on the power of the sign depth test will get

106 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

analyzed: The number of data points, the underlying data set, the distribution of

the errors and the parameter K of the sign depth test. Afterwards, some further

analysis of the results and a summary of them is given.

5.2.1 Effect of the Number of Data Points on the Results

At first, the effect of the number of data points on the simulated power functions gets

analyzed. It should be not surprising that, usually, the power increases in the area

of the alternative hypothesis when the number of data points (and so the number of

regression vectors) gets larger. So, the number of data points will have a large effect

on the power and the power functions of the sign depth test.

In the following, it is looked at simulated power functions with N = 25 and N = 100

regression vectors in the underlying data set. Because it would be too much to

present really all results in detail, only the power functions on the data set with

random values in the regression vectors x·1 and x·2, with normally distributed errors

e and with parameter K = 3 of the sign depth test are shown. As it will be shown

in the next subsections, the data set and the error distribution do not have a large

effect on the power of the test anyway and the parameter K = 3 for the test is chosen

because for the two-dimensional parameter vector θ the 3-sign depth is equivalent to

the simplicial depth which was one of the origins for the research about sign depths.

Figure 5.1 shows the simulated power functions for both naive ordering methods

presented in Section 3.1. Since the power functions are three-dimensional, the power

is shown as color in the two-dimensional plots from black (low power) to white (high

power), a so-called ”heatmap”. In addition, points which have a simulated power

less than or equal to the level α = 0.05 are marked in red. A ”good” power function

would have a power less than or equal to α at H0 and the power would increase in

every direction and converge to one in the area of the alternative hypothesis. As

it can be seen in Figure 5.1, these characteristics do not apply to the simulated

power functions of the naive ordering methods. Here, the power is always about

0.05, independent of the values of θ1 and θ2 and the number of data points. It is not

surprising that both methods behave the same here since the underlying data set

consists of random values and so, shuffling these values again for getting a ”Random

Order” has no effect on the power function. All in all, it can be seen that the naive

ordering methods perform very poorly and should not be used when applying the

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 107

Order of the Data Set Random Order
N

=
25

N
=

100

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.1: Simulated power functions of the naive ordering methods presented in

Section 3.1 for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying data

set consists of random values in the range [−1, 1] for x·1 and x·2 and the error

distribution of the vector e is a normal distribution. The parameter K of the

sign depth test is set to 3. The red squares denote a simulated power of 0.05

(= α) or less which should occur only when θ is zero (H0).

sign depth test to some data. This is an important result because it shows that

one has to think about the ordering of the regression vectors when using the sign

depth test. Additionally, it shows that this thesis is important for the possibility of

applying the sign depth test in the context of multiple regression. It clearly shows

that thinking about the ordering method is necessary and a simple random order is

not sufficient for getting a good test. Also, taking the order the regression vectors

appear in the data set is bad, at least when the regression vectors do not follow an

inherent order.

When looking at Figure 5.2, which shows the simulated power functions for the

scalarization based methods described in Section 3.2, it can be seen that ordering

108 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Euclidean Norm Median Values of First Component

N
=

25
N

=
100

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.2: Simulated power functions of the scalarization based ordering methods pre-

sented in Section 3.2 for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying

data set consists of random values in the range [−1, 1] for x·1 and x·2 and

the error distribution of the vector e is a normal distribution. The parameter

K of the sign depth test is set to 3. The red squares denote a simulated

power of 0.05 (= α) or less which should occur only when θ is zero (H0).

The ordering methods based on calculating a weighted sum and projecting all

regression vectors orthogonal on a line are not plotted here because the results

are identical to calculating the median when setting all weights to an equal

value or all entries in the direction vector have equal values, respectively.

the regression vectors according to the values of a vector norm leads to the same bad

results as the naive ordering methods. Here, and in all following subsections, the

vector norms are calculated with parameter p = 2 which leads to the euclidean norm.

Choosing different values for p would have led to similar results, see Figure 5.18 on

page 134. The small power of the euclidean norm in Figure 5.2 can be explained

by the fact that the underlying data set has values in the range [−1, 1]2 and so the

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 109

smallest values of the norm are in the center of the data set and the largest values

are on the edge of the data set. Because of this, the distance between the regression

vectors which are ordered next to each other gets larger and larger and the ordering

looks more like a random order without any sorting in it, for this see also the left

plot in the middle row of Figure 3.6 on page 37. If the same data would be shifted

to the range [0, 2]2 (see left plot of Figure 3.7 on page 38), the power function of

the sign depth test would look different, see middle plot of Figure C.1 on page 228.

This shows that it is important to think about the ordering method one wants to use

because some ordering methods are very sensitive to the underlying data set. More

on this topic can be read in Subsection 5.2.2.

In the middle column of Figure 5.2, the simulated power functions for ordering the

regression vectors according to their median value can be seen. One can easily realize

that in the case where θ is only two-dimensional, an ordering according to the median

values leads to the same ordering like an ordering according to a weighted sum when

all weights are equal and like an ordering based on an orthogonal projection of the

regression vectors when the direction vector consists of equal values. Because of

this, the results for an ordering according to a weighted sum and according to an

orthogonal projection are not shown in Figure 5.2. It can be seen that the power

functions do look better than the power functions of the naive methods and the

euclidean norm. But the power is not only at θ = 0 less than or equal to 0.05, but

also on a line which is orthogonal to the ”direction of ordering”. If we look at the

upper row of Figure 3.9 on page 40 for example, it can be seen that the ordering

starts at the the lower left corner of the plot and ends at the upper right corner of

the plot (or vise versa). Such a ”direction of ordering” leads to the fact that the test

has low power in the orthogonal direction. When looking at Figure 2.5 on page 25

this behavior is getting clear: The model (marked as dark gray plane in this figure)

can be rotated around a specific line without changing the signs of the residuals (or

nearly all signs are changed simultaneously). So, there is always a line with power

values about α = 0.05 in all power functions which have this ”direction of ordering”

which is a big disadvantage of these ordering methods. Since ordering according to

the values of the median has no further hyper-parameters, this line is always located

where it can be seen in Figure 5.2, whereas the direction of this line can be affected

by the hyper-parameters of an ordering according to a weighted sum or an orthogonal

projection, see Figure 5.20 on page 136. When changing the weights in a weighted

sum or the direction of the projection, the line with low power runs differently. This

can be also seen when looking at the right column of Figure 5.2. Here, an ordering

110 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

according to only the first component of every regression vector is made and the

values of the second component are neglected. Also, this ordering method can be

regarded as an ordering according to a weighted sum (all but one of the weights are

zero) or an ordering according to an orthogonal projection (projecting all regression

vectors on a line parallel to the first axis) and it can be seen that the line with low

power runs in a different direction than it does when using the median.

In both columns of Figure 5.2, the middle column and the right column, it can be

seen that outside above mentioned line the power functions have greater power values

when the number of data points is greater. Also, the line with low power values gets

tighter the more data points are available. So, in contrast to all former described

results, here the number of data points has a crucial effect on the power functions.

In Figure 5.3 the power functions of the methods based on partial sorting are shown.

The left column shows the simulated power functions when using a nondominated

sorting as ordering method. Like the scalarization based methods (except the

ordering according to the euclidean norm) the nondominated sorting has a ”direction

of ordering” (see Figure 3.19 on page 53). Because of this, also these power functions

have a direction with low power values. While for N = 25, in general the power

values seem to be smaller than the respective power values of both scalarization

based methods, for N = 100 the power function looks better than the ones of the

scalarization based methods. Especially the number of points with power less than

or equal to 0.05 is smaller. This is caused by the fact that there is a little bit more

”mess” in the ordering than it is for the scalarization based methods. Because of this,

the model cannot be rotated so much without affecting the signs of single residuals.

The power functions of the convex hull method and the ordering according to the

values of Tukey’s halfspace depth look very different than the power functions of

the nondominated sorting method. The power is everywhere really low and often

less than 0.05. This is a phenomenon quite similar to it was for the euclidean norm

method: The ordering starts at the edges of the data set and ends in the center (or

vise versa). Because of this, there is no real structure in the ordering and the power

gets low. In contrast to the ordering on the basis of the euclidean norm, here the

data cannot be shifted to a different interval of values for increasing the power of the

sign depth test because the ordering does not depend on the location of the values

directly. Interestingly, the power values get smaller when the number of data points

increases. This is a behavior which is totally undesirable, but it can be explained

logically: For a rather small number of data points (e.g. N = 25), there are less

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 111

Nondominated Sorting Convex Hull Tukey’s Halfspace Depth

N
=

25
N

=
100

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2
0.00 0.25 0.50 0.75 1.00

power
power ≤ 0.05

Figure 5.3: Simulated power functions of the ordering methods based on partial sorting

presented in Section 3.3 for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying

data set consists of random values in the range [−1, 1] for x·1 and x·2 and the

error distribution of the vector e is a normal distribution. The parameter K of

the sign depth test is set to 3. The red squares denote a simulated power of

0.05 (= α) or less which should occur only when θ is zero (H0). The regression

vectors with the same rank of the nondominated sorting method are ordered

according to their appearance in the data set, which is a random order here.

different ranks (i.e. less convex hulls or regression vectors with the same value of

Tukey’s halfspace depth) than for a larger number of data points (e.g. N = 100).

Because of this, for fewer data points the ”mess” in the order is not as large as it

is for larger numbers of data points because not so many transitions between the

regression vectors with different ranks are needed. But because this behavior is

totally undesirable, these both ordering methods should not be used when applying

the sign depth test to data.

112 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

In Figure 5.4 the power functions of the distance based ordering methods are shown.

As it can be seen, all three methods produce satisfying results. The power is about

α = 0.05 at H0 for all power functions and the power increases the larger the absolute

values of θ1 and θ2 are. Obviously, the power in the area of H1 is greater for N = 100

than for N = 25, which is the desired behavior. The best of the three methods seems

to be the Shortest Hamiltonian Path method whose power values are (slightly) greater

than the values of the hierarchical clustering and the nearest neighbor approximation.

Hierarchical Clustering Nearest Neighbors Shortest Hamiltonian Path

N
=

25
N

=
100

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.4: Simulated power functions of the distance based ordering methods presented

in Section 3.4 for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying data

set consists of random values in the range [−1, 1] for x·1 and x·2 and the

error distribution of the vector e is a normal distribution. The parameter K

of the sign depth test is set to 3. The red squares denote a simulated power

of 0.05 (= α) or less which should occur only when θ is zero (H0). For the

hierarchical clustering method a complete linkage was chosen to order the

regression vectors.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 113

But overall, all three power functions are satisfying which was not the case for any

other ordering method.

As a conclusion, it can be said that the number of data points has a crucial effect on

most of the ordering methods. The effect on the convex hull method and the ordering

according to the values of Tukey’s halfspace depth is the opposite of the desired

effect that the power should increase when the number of data points increases. So,

these ordering methods perform really badly in this situation. The effect of the

number of data points on the naive ordering methods and on the ordering according

to the values of the euclidean norm is rather small or even non-existent. The other

scalarization based methods and the nondominated sorting perform better, but have

a direction in which the power is low, independent of the number of data points.

Only the distance based methods produce really good results. The power functions

of these methods fulfill all criteria to be satisfying power functions of a statistical

test. Here, the method based on the exact solution of the Shortest Hamiltonian Path

problem performs best.

5.2.2 Effect of the Data Set on the Results

In this subsection the effect of the underlying data set on the sign depth test gets

analyzed. A good statistical test should perform well independently from the data

set, but as it could be guessed from the results of the previous subsection the results

of at least some ordering methods will get affected by the fact whether there is an

inherent order in the data set or not. In this subsection all data sets consist of

N = 100 data points, the model has normally distributed errors and the parameter

of the sign depth test is set to K = 3. The three used data sets have different

characteristics each: The ”Random” data set consists of purely random regression

vectors, the ”Grid” data set arranges its regression vectors on a two-dimensional grid

and the ”Spiral” data set arranges all regression vectors on a two-dimensional spiral.

While there is no inherent order in the ”Random” data set, the ”Spiral” data set has

an inherent two-dimensional order. Although the regression vectors in the ”Grid”

data set also have a structure, there are only one-dimensional inherent orders in both

dimensions, but the data set has no inherent two-dimensional order.

Figure 5.5 shows the simulated power functions of the naive ordering methods for

these three different types of data sets. Taking the order the regression vectors appear

114 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Order of the Data Set Random Order
R

an
d
om

G
rid

S
p
iral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.5: Simulated power functions of the naive ordering methods presented in

Section 3.1 for the test H0 : θ = 0 vs. H1 : θ 6= 0. All data sets con-

sists of N = 100 data points. The error distribution of the vector e is a normal

distribution. The parameter K of the sign depth test is set to 3. The red

squares denote a simulated power of 0.05 (= α) or less which should occur only

when θ is zero (H0).

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 115

in the data set leads to bad results when having random regression vectors, this was

also seen in the previous subsection. How the regression vectors of the ”Grid” data

set are arranged can be seen in Figure 3.2 on page 32. As described in the previous

subsection, there is a ”direction of ordering” in this arrangement which is the reason

for the low power in the orthogonal direction of this direction of ordering. But in all

other directions the power is quite large. The regression vectors of the ”Spiral” data

set are arranged according to their inherent order in the data set. So, all ordering

methods which find this inherent order in this data set will have the same power

function. Unfortunately, this power function has also large areas with low power.

But this phenomenon can be easily explained when looking at Figure 5.6. Here, the

data situation for the sign depth test is visualized for a parameter vector from the

alternative hypothesis (θ1 = −1 and θ2 = 0). For a better visualization the error

vector e is neglected in this figure. The null-hypothesis (θ1 = θ2 = 0) is displayed as

gray plane. It can be seen that there are only four sign changes in the residuals when

ordering the regression vectors according to their inherent order. Because of this,

there are many 3-tuples of residuals with alternating signs and so the 3-sign depth

Figure 5.6: Visualization of the situation for the sign depth test in case the regression

vectors are arranged according to a spiral and y = −1 ·x·1 + 0 ·x·2 holds. The

null-hypothesis H0 : θ = 0 is visualized as gray plane.

116 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

has a quite large value. To avoid a large value of the sign depth and so a low power

of the sign depth test, there are two possibilities: The number of data points can be

increased or the parameter K of the sign depth can be increased. When having more

data points the relative number of alternating tuples decreases and so the value of

the sign depth decreases. And when increasing the parameter K, more alternating

residuals are needed for increasing the value of the sign depth which also leads to

a lower value of the sign depth in this situation. The effect of both, the number of

data points N and the parameter K, is visualized in Figure C.2 on page 229. There,

it can be seen that the power functions get better when increasing N and/or K and

that N = 100 data points and a value of K = 4 is sufficient to obtain a good power

function.

So, although the power of the 3-sign depth test for the ”Spiral” data set is not the

best in Figure 5.5, the simulated power function is still better than for many other

ordering methods. For example, it can be also seen in Figure 5.5 that destroying an

inherent order by ordering the regression vectors randomly is a very bad idea. For

the ”Grid” data set and the ”Spiral” data set nearly all simulated power values are

less than or equal to α which leads to very bad power functions.

Figure 5.7 shows the results for the scalarization based methods. As in the previous

subsection the results of the ordering according to a weighted sum and according to

an orthogonal projection are not shown because they are identical to an ordering

according to the median values. The figure shows the expected result: The ordering

according to the median value and according to only one component of each regression

vector have a direction with low power values and all other areas of the alternative

hypothesis have rather great power values. Although the number of points with

power less than or equal to α is smaller for the ”Random” data set than for the other

two data sets, the areas with rather small power values are approximately the same

size for all three data sets. The transition from low to great power values is more

sudden for the ”Grid” data set and the ”Spiral” data set because there is less variance

in the data sets than in the ”Random” data set. The euclidean norm method performs

very poorly for the ”Random” data set and the ”Grid” data set. Especially the power

values for the ”Grid” data set are nearly always less than or equal to α which shows

that the obtained order in this data set is rather messy (for this see also Figure 3.6

on page 37). For the ”Spiral” data the euclidean norm works perfectly, at least it

finds the inherent order of the data set. As mentioned before, unfortunately finding

this inherent order leads to a power function which is not completely satisfying.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 117

Euclidean Norm Median Values of First Component

R
an

d
om

G
rid

S
p
iral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.7: Simulated power functions of the scalarization based ordering methods pre-

sented in Section 3.2 for the test H0 : θ = 0 vs. H1 : θ 6= 0. All data sets

consist of N = 100 data points. The error distribution of the vector e is a

normal distribution. The parameter K of the sign depth test is set to 3. The

red squares denote a simulated power of 0.05 (= α) or less which should occur

only when θ is zero (H0). The orderings according to a weighted sum and

projecting all vectors orthogonal on a line are not plotted here because the

results are identical to calculating the median when setting all weights to an

equal value or all entries in the direction vector have equal values, respectively.

118 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Nondominated Sorting Convex Hull Tukey’s Halfspace Depth

R
an

d
om

G
rid

S
p
iral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.8: Simulated power functions of the ordering methods based on partial sorting

presented in Section 3.3 for the test H0 : θ = 0 vs. H1 : θ 6= 0. All data sets

consist of N = 100 data points. The error distribution of the vector e is a

normal distribution. The parameter K of the sign depth test is set to 3. The

red squares denote a simulated power of 0.05 (= α) or less which should occur

only when θ is zero (H0). The regression vectors with the same rank of the

nondominated sorting method are ordered according to their appearance in

the data set.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 119

In Figure 5.8 the simulated power functions for the ordering methods based on partial

sorting are shown. It can be seen that the nondominated sorting method performs

comparatively well. Of course it has low power in the orthogonal direction of the

”direction of ordering”, but in all other directions the power values are quite satisfying.

The power functions of the orderings based on convex hulls and on Tukey’s halfspace

depth are very bad for the ”Random” data set and the ”Grid” data set. As mentioned

before this is because of the ”mess” in the orders. The power functions for the ”Spiral”

data set are much better. Here, the structure of the data set is an advantage for

these two ordering methods because these methods order the data from the edges

to the center of a data set and so there is rather little mess in the obtained orders.

Interestingly, for both ordering methods there are some values in the power functions

of the ”Spiral” data which are much lower than the values next to them. This can

be explained by the fact that both methods need rather complicated algorithms

for calculating their results which may not converge in single cases. It seems that

this was the case for single values here which is the reason for the clearly lower

power values at some random values. Furthermore, it can be seen that the convex

hull method seems to perform a little bit better than the halfspace depth method.

But overall, both methods cannot be recommended to use when applying the sign

depth test to some data. Also, the nondominated sorting method cannot be fully

recommended, especially because its power functions are not better than some of the

scalarization based methods but the computational runtime for computing the order

based on a nondominated sorting is much larger than the runtime of all scalarization

based methods, see for example Table C.1 starting on page 221.

A better performance is achieved by the distance based methods. Its simulated

power functions can be found in Figure 5.9. It can be seen that all three methods

achieve satisfying power functions for the ”Random” data set and the ”Grid” data

set. The best performance is achieved by the Shortest Hamiltonian Path method.

Its approximation and the hierarchical clustering method perform slightly worse, but

are overall very satisfying. The results on the ”Spiral” data set are quite interesting.

It is no surprise that the Shortest Hamiltonian Path method finds the inherent order

in the data set and so the power function is not fully satisfying. Also the nearest

neighbor approximation has a similar power function. It is quite surprising that

this power function is slightly different than the power function of the exact method

because for this data situation the nearest neighbor algorithm should always find the

inherent order in the data set. In some rare simulation runs this was obviously not

the case which is quite interesting and cannot be explained so far. But the majority

120 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Hierarchical Clustering Nearest Neighbors Shortest Hamiltonian Path

R
an

d
om

G
rid

S
p
iral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.9: Simulated power functions of the distance based ordering methods presented

in Section 3.4 for the test H0 : θ = 0 vs. H1 : θ 6= 0. All data sets consist

of N = 100 data points. The error distribution of the vector e is a normal

distribution. The parameter K of the sign depth test is set to 3. The red

squares denote a simulated power of 0.05 (= α) or less which should occur only

when θ is zero (H0). For the hierarchical clustering method a complete linkage

was chosen to order the regression vectors.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 121

of the simulation runs has found the inherent order and so the power functions of

both methods are nearly identical. The power function of the hierarchical clustering

method is very interesting. For the clustering a complete linkage is used. As it can

be seen in Figure 3.34 on page 79, this method does not find the inherent order of

the data set. But, since there is rather little mess in the order, the simulated power

function is really satisfying. This order avoids the above mentioned problem with the

few sign changes in the ordered residual vector. So, as it can be seen here, finding the

inherent order in the data leads not necessarily to the best performance (although

the problem with the inherent order in this data set can be solved by increasing the

number of data points or the parameter K of the sign depth, as mentioned above).

As a conclusion for this subsection, it can be said that the choice of the data set can

have an effect on the performance of the sign depth test. The ordering methods which

perform quite well (i.e. the distance based methods) are barely affected. However,

the performance on the ”Spiral” data set is somehow special because here finding the

inherent order only leads to good performances when increasing the number of data

points and/or the value of the parameter K of the sign depth. Regarding the ordering

methods based on a partial sorting, only the performance of the nondominated sorting

method is not much affected by the data set, whereas the convex hull method and

the halfspace depth method show different behavior for each of the three data sets.

But overall, all three methods cannot be recommended because they have areas with

low power. The same holds for the scalarization based methods. While an ordering

according to the median values and according to only one component of the regression

vectors perform similar for all three data sets, an ordering according to the euclidean

norm only leads to satisfying results for the ”Spiral” data set. The performance of the

naive ordering methods is quite bad and especially the performance of an ordering

according to the order the regression vectors appear in the data set depends heavily

on the data set. So, overall, only the distance based methods can be recommended

to use when applying the sign depth test.

5.2.3 Effect of the Error Distribution on the Results

Next, the effect of the error distribution on the simulated power functions will get

analyzed. For this, the entries of the error vector e in the simulations will follow

three different distributions: A normal distribution N (µ, σ2) with parameters µ = 0

and σ2 = 0.22 = 0.04, a Cauchy distribution Cau(s, t) with parameters s = 0 and

122 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Order of the Data Set Random Order
C

au
ch

y
N

orm
al

U
n
iform

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.10: Simulated power functions of the naive ordering methods presented in

Section 3.1 for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying

data set consists of N = 100 random values in the range [−1, 1] for x·1 and

x·2. The parameter K of the sign depth test is set to 3. The red squares

denote a simulated power of 0.05 (= α) or less which should occur only when

θ is zero (H0).

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 123

Euclidean Norm Median Values of First Component

C
au

ch
y

N
orm

al
U

n
iform

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.11: Simulated power functions of the scalarization based ordering methods pre-

sented in Section 3.2 for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying

data set consists of N = 100 random values in the range [−1, 1] for x·1 and

x·2. The parameter K of the sign depth test is set to 3. The red squares

denote a simulated power of 0.05 (= α) or less which should occur only when

θ is zero (H0). The orderings according to a weighted sum and projecting all

regression vectors orthogonal on a line are not plotted here because the results

are identical to calculating the median when setting all weights to an equal

value or all entries in the direction vector have equal values, respectively.

124 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Nondominated Sorting Convex Hull Tukey’s Halfspace Depth

C
au

ch
y

N
orm

al
U

n
iform

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.12: Simulated power functions of the ordering methods based on partial sorting

presented in Section 3.3 for the test H0 : θ = 0 vs. H1 : θ 6= 0. The

underlying data set consists of N = 100 random values in the range [−1, 1]

for x·1 and x·2. The parameter K of the sign depth test is set to 3. The red

squares denote a simulated power of 0.05 (= α) or less which should occur

only when θ is zero (H0). The regression vectors with the same rank of the

nondominated sorting method are ordered according to their appearance in

the data set, which is a random order here.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 125

Hierarchical Clustering Nearest Neighbors Shortest Hamiltonian Path

C
au

ch
y

N
orm

al
U

n
iform

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.13: Simulated power functions of the distance based ordering methods presented

in Section 3.4 for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying data

set consists of N = 100 random values in the range [−1, 1] for x·1 and x·2.

The parameter K of the sign depth test is set to 3. The red squares denote a

simulated power of 0.05 (= α) or less which should occur only when θ is zero

(H0). For the hierarchical clustering method a complete linkage was chosen

to order the regression vectors.

126 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

t = 0.2 · u0.75 and a uniform distribution U(a, b) with parameters a = −0.2 · 2 · u0.75

and b = 0.2 · 2 · u0.75, where u0.75 denotes the 75%-quantile of the standardnormal

distribution. All entries in the vector e are stochastically independent of each other.

The parameters of all three distributions are set so that the distributions have median

zero and the same interquartile range. This choice shall increase the comparability

of the power values and the simulated power functions.

The Figures 5.10 - 5.13 show the simulated power functions on the ”Random” data

set with parameter K = 3 and N = 100 data points for all ordering methods. Since

the sign depth test only depends on the signs of the residuals and not on the values

itself, in Figures 5.10 - 5.13 no real differences between the power functions with

the different error distributions can be seen. Small differences are due to simulation

stochastics.

Overall, these simulated power functions show the same behavior and have the same

characteristics as described in the previous subsections: The naive ordering methods

including the ordering according to the values of the euclidean norm perform quite

poorly, the scalarization based methods including the nondominated sorting method

have a direction with low power, the remaining ordering methods based on partial

sorting are quite bad and the distance based methods perform very well. Again,

the ordering method based on the exact solution of the Shortest Hamiltonian Path

problem seems to perform best. It is slightly better than the ordering methods based

on the nearest neighbor approximation and on the hierarchical clustering.

Although this result could be expected, these power functions clearly state that the

error distribution does not have an effect on the power of the sign depth test which

is a big advantage of the sign depth test in contrast to other robust and non-robust

tests.

5.2.4 Effect of the Parameter K on the Results

The parameter K of the sign depth and the sign depth test may have a crucial effect

on the power of the sign depth test. As seen before for the ”Spiral” data set in

Figure 5.6 on page 115 and Figure C.2 on page 229, the parameter K can change the

characteristic of the power function. Also, in Section 5.5 it will be shown that the

classical sign test is much worse than the sign depth test, where the classical sign

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 127

test is equivalent to the sign depth test with parameter K = 2 which also shows that

there has to be an effect of this parameter on the power values of the sign depth test.

In the following, the simulated power functions of the different ordering methods

with K ∈ {3, 4, 5} will get analyzed. For this, the power functions on the ”Random”

data set with N = 100 data points and normally distributed errors will be shown.

Figure 5.14 shows the simulated power functions for the naive ordering methods. As

it can be seen, no differences between the power functions are visible. So, in this

case, the parameter K of the sign depth test seems to have no effect on the power of

the test. But since it could be seen in the previous subsections that a rather messy

order of the regression vectors leads to bad power functions, it seems reasonable

that this behavior cannot be changed by the length of the tuples which are used for

calculating the sign depth.

The same holds for the euclidean norm method in Figure 5.15. But for both other

scalarization based ordering methods an effect can be seen: The areas with low power

are wider for K = 4 than for K = 3 and K = 5. The reason for this phenomenon is

not finally known so far, but Leckey et al. (2020) showed that the sign depth has

different characteristics for odd and even values of K. In this situation, odd values of

K seem to perform better than even values of K. Unfortunately, there is no second

even value of K to compare the results for K = 4 with, but when looking at the

results for K = 3 and K = 5, it seems that increasing K has no big effect on the

results, neither positive nor negative. The direction with low power will remain for

all reasonable values of K and increasing the number of data points will have more

positive effect on the size of this area with low power than changing the value of K.

The same phenomenon can be nicely seen for the nondominated sorting method in

Figure 5.16 since this ordering method behaves similarly to most of the scalarization

based methods. For the convex hull method, an improvement of the power function

can be seen when increasing K. But since this improvement is on a very low level,

it is regarded as non-relevant here when looking for ”good” power functions. The

simulated power function for K = 5 is still very bad, only the number of simulated

points where the power is less than or equal to α has decreased. Interestingly, the

power function of the halfspace depth method seems to be worse for K = 4 than

for the other values of K like most of the scalarization based methods and the

nondominated sorting method, although the ordering method is quite similar to an

128 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Order of the Data Set Random Order
K

=
3

K
=

4
K

=
5

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.14: Simulated power functions of the naive ordering methods presented in

Section 3.1 for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying

data set consists of N = 100 random values in the range [−1, 1] for x·1 and

x·2. The error distribution of the vector e is a normal distribution. The red

squares denote a simulated power of 0.05 (= α) or less which should occur

only when θ is zero (H0).

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 129

Euclidean Norm Median Values of First Component

K
=

3
K

=
4

K
=

5

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.15: Simulated power functions of the scalarization based ordering methods pre-

sented in Section 3.2 for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying

data set consists of N = 100 random values in the range [−1, 1] for x·1 and

x·2. The error distribution of the vector e is a normal distribution. The red

squares denote a simulated power of 0.05 (= α) or less which should occur

only when θ is zero (H0). The orderings according to a weighted sum and

projecting all vectors orthogonal on a line are not shown because the results

are identical to calculating the median when setting all weights to an equal

value or all entries in the direction vector have equal values, respectively.

130 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Nondominated Sorting Convex Hull Tukey’s Halfspace Depth

K
=

3
K

=
4

K
=

5

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.16: Simulated power functions of the ordering methods based on partial sorting

presented in Section 3.3 for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying

data set consists of N = 100 random values in the range [−1, 1] for x·1 and

x·2. The error distribution of the vector e is a normal distribution. The red

squares denote a simulated power of 0.05 (= α) or less which should occur

only when θ is zero (H0). The regression vectors with the same rank of the

nondominated sorting method are ordered according to their appearance in

the data set, which is a random order here.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 131

ordering according to convex hulls. But since this ordering method is even worse

than an ordering according to convex hulls, this result also is not relevant here.

Figure 5.17 shows the simulated power functions for the distance based methods.

Here, it can be seen that the power functions get better when K increases. Especially,

the hierarchical clustering method and the nearest neighbor approximation get better

when increasing K from 3 to 4. The Shortest Hamiltonian Path method performs

best and is very good already for K = 3, although its power also increases for greater

values of K. In general, all of these simulated power functions are very satisfying.

As a conclusion it can be said that the parameter K has an effect on the power

of the sign depth test. But the general behavior of the test is not changed by this

parameter: if the test performs badly/well for small values of K, its performance is

also bad/good for larger values. There seem to be three groups of ordering methods

which are affected differently: The first group consists of ordering methods which

are apparently not or not much affected by the parameter K. These are both naive

ordering methods and the ordering according to the euclidean norm. The second

group consists of ordering methods which are better for odd values of K than for

even values. These are all scalarization based methods (except the ordering according

to the euclidean norm), the nondominated sorting method and the halfspace depth

method. But, whereas the scalarization based methods and the nondominated sorting

method have low power only in one direction, the power functions of the halfspace

depth method are very bad. The last group consists of ordering methods whose

performance increases for larger values of K. These are all distance based ordering

methods and the ordering according to convex hulls. But only the power functions of

the distance based methods are really satisfying whereas the performance of the sign

depth test when using convex hulls for ordering is very poor. Probably, also these

ordering methods behave differently for odd and even values of K, but this effect is

not as pronounced as for the scalarization based methods and cannot be seen in the

simulated power functions. Overall, only the distance based ordering methods can

be recommended to use and for them larger values of K perform better, but also

the performance for K = 3 is satisfying. In former times when calculating the sign

depth had time complexity O(NK), it would be totally sufficient to use K = 3 to

save computational runtime and get good results nevertheless, at least for models

with a relatively low number of parameters. Today, when calculating the sign depth

can be done in linear time complexity in N , larger values of K can also be used and

should be used since the performance increases for larger values of K.

132 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Hierarchical Clustering Nearest Neighbors Shortest Hamiltonian Path

K
=

3
K

=
4

K
=

5

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.17: Simulated power functions of the distance based ordering methods presented

in Section 3.4 for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying data set

consists of N = 100 random values in the range [−1, 1] for x·1 and x·2. The

error distribution of the vector e is a normal distribution. The red squares

denote a simulated power of 0.05 (= α) or less which should occur only when

θ is zero (H0). For the hierarchical clustering method a complete linkage was

chosen to order the regression vectors.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 133

5.2.5 Effect of Hyper-Parameters of the Ordering Methods on the

Results

At last, the effect of any hyper-parameters of the ordering methods will be shown.

Not all ordering methods have hyper-parameters which is an advantage of them,

but for those who have some, the question arises which hyper-parameters are best

or does the choice of the hyper-parameters has an effect at all? In general, most

choices of hyper-parameters will be best for some (data) situation, so here no final

answer about the best hyper-parameters can be given, but it is looked at a specific

situation to get an impression of the effect of the specific hyper-parameter. For this

subsection, the simulated power functions obtained by the 3-sign depth test on the

”Random” data set with N = 100 data points and normally distributed error vector

e are considered.

The naive ordering methods do not have any hyper-parameters. An ordering according

to the appearance of the regression vectors in the data set is not affected by any

parameters and taking a random order is also not. Of course, the result of the

random order is affected by the specific algorithm which is used and the starting

point (i.e. seed) of the algorithm, but these are no real hyper-parameters which can

be optimized.

Most scalarization based methods have hyper-parameters. Solely the ordering ac-

cording to the median of each regression vector has none (neglecting the fact that

there are different possibilities to calculate the median of an even number of values

which will have no real effect on the power of the sign depth test). The ordering

according to a vector norm of the regression vectors is based on the parameter p of

the norm. In all previous subsections p was set to 2, i.e. the euclidean norm was

calculated. But every other positive value for p would also be possible. Figure 5.18

shows the simulated power functions for p = 1 (Manhattan norm), p = 2 (euclidean

norm) and p =∞ (maximum norm). As it can be seen, no differences between the

power functions are visible, so the value of this hyper-parameter seems to have no

effect. Indeed, the effect is also very small when shifting the regression vectors to

only positive values (as shown in Figure C.1 on page 228) because then there would

be a ”direction of ordering” for all norms which would lead to a direction with low

power in the power function independent of the value of p.

134 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

p = 1 p = 2 p =∞

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.18: Simulated power functions of the ordering according to different vector norms

for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying data set consists

of N = 100 random values in the range [−1, 1] for x·1 and x·2. The error

distribution of the vector e is a normal distribution. The parameter K of the

sign depth test is set to 3. The red squares denote a simulated power of 0.05

(= α) or less which should occur only when θ is zero (H0).

In contrast, of course the choice of the component of the regression vector whose

values are ordered when ordering only to one component of the regression vector

has an effect on simulated the power function of the sign depth test. This can be

seen in Figure 5.19. By changing the component whose values are ordered, the

”direction of ordering” changes and so the direction with low power values in the

power function is different. But, of course, when the values of all components have

the same characteristics, like here, it does not matter which component is chosen.

Here, in both cases the area with low power values has the same size and in general,

when rotating one of the power functions, both simulated power functions would look

very similar (small differences are due to simulation stochastics). On the other hand,

when the characteristics of the components of the regression vectors are different, for

example when there are outliers in some components, the choice of the component

for ordering may have more effect. But since this effect is data dependent, no general

rule for choosing the component for ordering can be given.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 135

Taking the first component Taking the second component

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.19: Simulated power functions of the ordering according to different components of

the regression vectors for the test H0 : θ = 0 vs. H1 : θ 6= 0. The underlying

data set consists of N = 100 random values in the range [−1, 1] for x·1 and

x·2. The error distribution of the vector e is a normal distribution. The

parameter K of the sign depth test is set to 3. The red squares denote a

simulated power of 0.05 (= α) or less which should occur only when θ is zero

(H0).

The next figure, Figure 5.20, shows the simulated power functions when using an

orthogonal projection on different lines for ordering. The figure mentions the different

direction vectors v of the line to project on, but not the location vectors u because

(as shown in Subsection 3.2.5) the location vector has no effect on the ordering. The

vectors v could also be regarded as weight vectors for an ordering according to a

weighted sum when neglecting the fact that negative weights are not allowed there,

so that the middle plot in Figure 5.20 could not be obtained by using the weighted

sum method. The figure shows the expected result: Each power function has a

direction with low power which lays orthogonal to the ”direction of ordering” which

is here also the orthogonal direction to the line on which the regression vectors are

projected on. This behavior cannot be prevented when using this ordering method.

There is no parameter value which performs better than others, so there is no

general recommendation which parameter value to use for this ordering method. As

mentioned before for the ordering according to only one component of each regression

vector, the choice of the line to project on should depend on the characteristics of

the underlying data. If there are outliers in some components, it could be a good

136 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

v = (1, 1)> v = (1, −1)> v = (1, 10)>

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.20: Simulated power functions of the ordering according to projections on different

lines for the test H0 : θ = 0 vs. H1 : θ 6= 0. The location vector of the lines

is always u = (0, 0)>. The underlying data set consists of N = 100 random

values in the range [−1, 1] for x·1 and x·2. The error distribution of the

vector e is a normal distribution. The parameter K of the sign depth test

is set to 3. The red squares denote a simulated power of 0.05 (= α) or less

which should occur only when θ is zero (H0).

idea to choose a line which gives the respective components no or only little influence

on the ordering process.

From the ordering methods based on partial sorting only the nondominated sorting

method has a hyper-parameter. Both other methods do not have hyper-parameters

because the regression vectors which have the same rank will get ordered with a

Traveling Salesman algorithm. Of course, it could be discussed whether this is the

only meaningful way and also whether the Traveling Salesman algorithm itself has

hyper-parameters or not (see below), but for our purpose we assume that there

are no hyper-parameters for the convex hull method and the ordering on the basis

of Tukey’s halfspace depth. But the nondominated sorting method has a hyper-

parameter for ordering the regression vectors which got the same rank in the partial

sorting process. This hyper-parameter describes an arbitrary other ordering method

for multidimensional data. In Figure 5.21 the power functions obtained with two

different tie-breaking methods are shown. In the left plot an ordering according to the

appearance of the regression vectors in the data set is done. Since the data set is the

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 137

Order of the data set Taking the second component

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.21: Simulated power functions of the ordering according to a nondominated sorting

for the test H0 : θ = 0 vs. H1 : θ 6= 0. The tie-breaking for regression vectors

with the same rank is done in two different ways. The underlying data set

consists of N = 100 random values in the range [−1, 1] for x·1 and x·2. The

error distribution of the vector e is a normal distribution. The parameter K

of the sign depth test is set to 3. The red squares denote a simulated power

of 0.05 (= α) or less which should occur only when θ is zero (H0).

”Random” data set, this describes a random ordering of the regression vectors with

the same rank. In the right plot, an ordering according to only a single component

of the regression vectors is done. As seen above, the choice of the component does

not matter. Here, the second component was chosen. Other tie-breaking methods

are also possible of course, but these two seemed the most meaningful choices, at

least for this two-dimensional case. When the number of dimensions is larger, also an

ordering according to the solution of the Shortest Hamiltonian Path problem could

be reasonable as long as there are not too many regression vectors with the same

rank because of the possibly large computational runtime of this ordering method.

Figure 5.21 shows that there are no big differences between both power functions.

But in detail, it can be seen that the usage of the random ordering for tie-breaking

is slightly worse than using one component of each regression vector for ordering. At

least the power is less than or equal to α only at H0 when using one component for

ordering whereas this is the case for some more points when using the random order.

So, it seems that in detail the tie-breaking hyper-parameter of the nondominated

138 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

sorting method is relevant for the power of the sign depth test: An ordering which

leads to less ”mess” in the ordering is preferable.

From the distance based ordering methods only the hierarchical clustering method

has a hyper-parameter when neglecting the fact that also the choice of the distance

measure could be a possible hyper-parameter. Since in this thesis only the euclidean

distance is considered, the distance measure is not considered as a hyper-parameter

here. The distance measure may become of more interest when looking at models

with not only metric regressors, but also with ordinal or nominal regressors since then

the euclidean distance is no longer a possible choice. When neglecting the distance

measure, the Shortest Hamiltonian Path method and its approximation only have

technical hyper-parameters like a precision parameter for the TSP-solver ”Concorde”.

But a hierarchical clustering always depends on the choice of the linkage function.

Three possible linkage functions are described in Subsection 3.4.3 and also shown in

Figure 5.22: A single linkage, an average linkage and a complete linkage. It can be

Single Average Complete

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.22: Simulated power functions of the ordering according to a hierarchical clustering

with different linkage functions for the test H0 : θ = 0 vs. H1 : θ 6= 0. The

underlying data set consists of N = 100 random values in the range [−1, 1]

for x·1 and x·2. The error distribution of the vector e is a normal distribution.

The parameter K of the sign depth test is set to 3. The red squares denote a

simulated power of 0.05 (= α) or less which should occur only when θ is zero

(H0).

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 139

seen that the choice of the linkage function has an effect on the power of the sign

depth test here. The power function of the ordering with single linkage is slightly

worse than the other two power functions. In Figure 3.34 on page 79 it can be seen

that the single linkage leads to more ”mess” in the order than the other two linkage

functions which is the explanation for the slightly worse power values here. Since

this is a general behavior of an ordering when using the single linkage function for a

hierarchical clustering, it should be recommended to use one of the other two linkage

functions.

All in all, it can be said that hyper-parameters only have very little effect on the

performance of the sign depth test. In most cases, hyper-parameter either have

no visible effect or they are only changing the direction with low power for the

ordering methods which have such a direction. A small effect could be seen for

the tie-breaking method of the nondominated sorting. Here, an ordering method

should be use which produces as little ”mess” as possible in the resulted ordering.

The same holds for the choice of the linkage function in the hierarchical clustering.

Here, a single linkage leads to slightly worse power values than using different linkage

functions. So, overall, it was shown in this subsection that the sign depth test can be

used without having to worry too much about hyper-parameters. Especially, because

ordering methods which lead to very good results of the sign depth test do not have

real hyper-parameters at all, like an ordering according to the solution of the Shortest

Hamiltonian Path problem or its approximation.

5.2.6 Further Analysis and Summary of the Results

The previous subsections have led to much understanding about the different ordering

methods and their behavior. In this subsection, some more results will be shown and

a summary of all results so far will be given.

As a general result, it can be said that the ordering method has a crucial effect on

the power of the sign depth test. Also, the number of data points in the data set

and the parameter K of the sign depth and the sign depth test have some effect

whereas the error distribution, the structure of the underlying data set and possible

hyper-parameters of the ordering methods have no or only little effect on the power

of the test. Because of this, the different ordering methods will get analyzed once

again relating the numbers of data points and the parameter K. For this, the power

140 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

functions of all ordering methods on the ”Random” data set and with normally

distributed errors are simulated once again. This time, the power functions are

simulated only on the interval θ ∈ {−0.4, −0.38, −0.36, . . . , 0.36, 0.38, 0.4}2, so

only in a small area around the null-hypothesis H0 : θ = 0. So, we have 412 = 1 681

different parameter values of θ, from which 1 680 are from the alternative hypothesis

H1 : θ 6= 0. The power functions are simulated for all N ∈ [10, 100] ∩ N and for

K ∈ {3, 4, 5}. An ideal power function would have power less than or equal to

α = 0.05 at H0 and larger power values in H1 which go to the value of one very

quickly. While in the previous subsections it could be seen that obtaining a power

value of about α at H0 is no problem for every ordering method, the power in H1

does not always reach values greater than α. Because of this, in the following it is

looked at the percentage of simulated power values in H1 which have a power of at

least α = 0.05 for all ordering methods and all values of N and K. In addition, it is

also looked at the percentages of power values in H1 which are at least 0.5 and 0.95.

Figure 5.23 shows these results. In this figure, the results of the naive ordering

methods are displayed as greenish points, the results of the scalarization based

methods are bluish (where the color of the ordering according to the median, according

to a weighted sum and according to an orthogonal projection is the same), the results

of the ordering methods based on partial sorting are yellowish and the results of the

distance based methods are displayed as reddish points.

In general, for being a satisfying test all power values in H1 should be larger than

α = 0.05. At least the percentage of values which are at least 0.05 should increase

when the number of data points in the data set N gets larger. As it can be seen in

the left column of Figure 5.23, this is the case for most of the ordering methods, but

not for all. The naive ordering methods and the ordering according to the values

of the euclidean norm have independently of N and K (nearly) always around half

of the power values greater than or equal to 0.05. Only for very small N (smaller

than approximately 25), the percentage is even smaller. This behavior could also be

seen in the visualizations of the power functions in the previous subsections where it

was visible that for these ordering methods all power values are about 0.05 and it

is random whether they are slightly less or greater than α. Also, the values of the

convex hull method and the ordering according to the values of Tukey’s halfspace

depth show an undesired behavior: The percentage of values greater or equal than

0.05 decreases for larger N . This behavior was also visible in Figure 5.3 on page 111,

but here it can be seen more clearly. In general, the percentage of values greater or

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 141

power ≥ 0.05 power ≥ 0.5 power ≥ 0.95

K
=

3
K

=
4

K
=

5

25 50 75 100 25 50 75 100 25 50 75 100

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Number of data points N

P
er

ce
n
ta

ge
Order of the Data Set

Random Order

Euclidean Norm

Median

Values of First Component

Weighted Sum

Orthogonal Projection

Nondominated Sorting

Convex Hull

Tukey’s Halfspace Depth

Hierarchical Clustering

Nearest Neighbor

Shortest Hamiltonian Path

Figure 5.23: Percentage of power values in H1 of all ordering methods which are at least

0.05, 0.5 and 0.95. The tested hypothesis is H0 : θ = 0 vs. H1 : θ 6= 0 in

the model y = θ1x·1 + θ2x·2 + e. The power is simulated on the interval

θ ∈ {−0.4, −0.38, −0.36, . . . , 0.36, 0.38, 0.4}2. The underlying data set con-

sists of N random values in the range [−1, 1] for x·1 and x·2. The error

distribution of the vector e is a normal distribution.

equal than 0.05 is larger for the convex hull method than for the ordering according

to the halfspace depth which was also visible in the previous subsections. But now,

it can be seen that the decrease of the power values is much bigger for increasing N

for the ordering according to the halfspace depth than for the convex hull method.

For the convex hull method the decrease is rather slow and for larger values of K

the percentage of values greater or equal than 0.05 is nearly one. On the other

142 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

hand, for the ordering according to the halfspace depth the values decrease very fast,

although for very small N and K ∈ {4, 5} the percentage of values greater or equal

than 0.05 is quite large. But, all in all, the behavior of these two methods is highly

undesired. The third ordering method based on partial sorting, the nondominated

sorting method, behaves similar to the scalarization based methods (except the

above mentioned ordering according to the euclidean norm). These methods have

percentages which are nearly one. The percentages will never be exactly one because

the power is less than or equal to α on a specific line, but except these few values

all power values are at least 0.05. The distance based methods are even better than

the scalarization based methods. Here, the values are most times exactly one, so all

power values in the area of the alternative hypothesis are at least 0.05. This holds

for all three distance based methods and all values of N and K. So, overall, the left

column of Figure 5.23 shows that the distance based methods are best, but also most

scalarization based methods and the ordering according to the nondominated sorting

have quite satisfying performance.

In the middle row of Figure 5.23 the percentages of power values which are at least

0.5 are visualized. The first thing one notices is that only the distance based methods,

the scalarization based methods (except the ordering according the values of the

euclidean norm) and the nondominated sorting method have values which are greater

than zero. All methods which have already performed poorly in the left column of

Figure 5.23 cannot produce any power value which is at least 0.5, for no value of N

and no value of K. Furthermore, it can be seen that the three distance based methods

behave similarly and the scalarization based methods including the nondominated

sorting method also behave similarly. For the scalarization based methods including

the nondominated sorting method it can be nicely seen that they behave differently

for K = 4 than for K = 3 and K = 5. But, it always holds that an ordering according

to only one component of all regression vectors is slightly better than an ordering

according to the median, according to a weighted sum and according to an orthogonal

projection. The nondominated sorting method is always the worst of these methods.

But indeed, the ordering according to only one component is not better than the

other scalarization based methods. It seems like this because the direction with low

power for this ordering method is parallel to a coordinate axis and for the other

methods it is diagonal to the coordinate axes and so when simulating the power

functions on a square there are less points with low power for the ordering according

to only one component than for the other methods. But the slightly lower values for

the nondominated sorting method are an important result because they show that

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 143

this method produces slightly wider areas with low power than the scalarization based

methods. In general, the distance based methods perform best and especially, the

ordering according to the exact solution of the Shortest Hamiltonian Path problem

is the best of the three methods. Interestingly, for K = 3 the hierarchical clustering

method performs better than the nearest neighbor approximation whereas it is the

other way round for K = 4 and K = 5. Generally, the scalarization based methods

including the nondominated sorting method as well as the distance based methods

have some power values which are at least 0.5 already for very small numbers of data

points, i.e. less than 25 data points. This holds especially for K = 5, but also for

K = 3 and K = 4.

The right column of Figure 5.23 shows the percentages of simulated points with

a power of at least 0.95. In general, most findings from the middle column also

hold for this column: Only the scalarization based methods (except the ordering

according to the euclidean norm), the nondominated sorting method and the distance

based methods have some power values which are at least 0.95. In addition, for

the scalarization based methods including the nondominated sorting method K = 4

is worse than K = 3 and K = 5, whereas for the distance based methods larger

values of K are better than smaller values. Of course, for reaching a power of at

least 0.95 more data points are needed than for reaching a power of at least 0.5.

The scalarization based methods including the nondominated sorting method need

approximately 25 data points for K = 3 and K = 5 and about 50 data points for

K = 4 whereas the distance based methods need approximately 100 data points for

K = 3, 75 data points for K = 4 and 50 data points for K = 5. It is remarkable that

the scalarization based methods do need less data points for reaching some points

with power of at least 0.95 than the distance based methods. But when N increases

or a larger interval of θ is looked at, at some point the distance based methods will

be always better than all other methods because the distance based methods have

no directions with low power.

As a conclusion from this and all previous subsections it can be said that the distance

based methods are by far the best choice when ordering multidimensional values for

applying the sign depth test to some data. The naive ordering methods, the ordering

according to the values of the euclidean norm of each regression vector, the ordering

on the basis of convex hulls and the ordering on the basis of Tukey’s halfspace depth

perform very poorly and should not be used at all. All other scalarization based

methods have some advantages and some areas with very high power already for small

144 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

numbers of data points, but since there is always a direction in the power function

with power values about α, these methods cannot be fully recommended. The

nondominated sorting method is slightly worse than the scalarization based methods.

In addition, in Subsection 3.3.1 and Figure 3.17 on page 50 it is explained why this

ordering method cannot be used for data in high dimensions and Figure 3.20 on

page 55 and Table C.1 in the appendix show that this ordering method has very large

computational runtimes. So, overall this ordering method and in general all ordering

methods based on partial sorting should not be used for applying the sign depth test.

The best choices when applying the sign depth test to some multidimensional data

are the distance based methods. All three methods have performed really well in the

simulations. Here, the best was using the exact solution of the Shortest Hamiltonian

Path problem. But this ordering method has a very large time complexity and also

the empirical runtimes of this ordering method are rather large, see for example

Table C.1 in the appendix. Also the runtimes of the approximate solution of the

Shortest Hamiltonian Path problem are large and indeed often larger than the

runtimes of the exact solution. Because of this, using the approximate solver of

this problem is not always recommendable. The hierarchical clustering method has

performed slightly worse in most cases than the methods based on the shortest path

problem, but its empirical runtime is very small. So, also this ordering method can be

fully recommended. In general, the distance based methods have many advantages,

for this see also Table 3.1 on page 82. The data points can be linearly transformed

without changing the obtained order and the ordering methods can also be used

when having ordinal or nominal components in the regression vectors. So, as a

general recommendation from the results so far it can be said that for small and

medium numbers of data points the exact solution of the Shortest Hamiltonian Path

problem should be used for ordering the data and for large numbers of data points a

hierarchical clustering (with average or complete linkage) should be used.

Because of these results, in the following only the distance based methods will be

used. In addition, it is focused on the ”Random” data set and normally distributed

errors because the results have shown that both things have only little effect on the

power of the sign depth test.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 145

5.3 Results of the Distance Based Methods for Other

Models

In the following, the power of the sign depth test is analyzed for some more models:

Models with intercept, models with interactions and models with non-linear terms.

In addition, in Subsection 5.3.4 high-dimensional models with up to 80 dimensions

will be considered. Because the results on the simple model y = θ1x·1 + θ2x·2 + e

in the previous section have shown that only the distance based ordering methods

perform really satisfyingly, from now on only these methods are considered.

5.3.1 Linear Models with Intercept

Of course, linear models with intercept are of interest. Probably they are more

relevant in the everyday life of a statistician than models without intercept. Because

of this, in this subsection it is looked at the two models y = θ0 + θ1x·1 + θ2x·2 + e

and y = θ0 + θ1x·1 + θ2x·2 + θ3x·3 + e, where e is normally distributed with the

same parameters as in the previous section, i.e. the components of e are independent

and identically distributed with µ = 0 and σ2 = 0.22 = 0.04. The underlying data

set consists of N random regression vectors in the interval [−1, 1]2 and [−1, 1]3,

respectively.

Model y = θ0 + θ1x·1 + θ2x·2 + e

At first, it is looked at the linear model with two regressors and an intercept, i.e.

y = θ0 + θ1x·1 + θ2x·2 + e. Because the visualizations in the previous section have

shown that the area with low power is rather small for the distance based methods,

here the power functions are simulated only on the interval θ ∈ [−0.5, 0.5]3 to save

computational runtime. Figure 5.24 shows the results of the simulated power functions

for θ1, θ2 and an extract of θ0. The four-dimensional power functions are visualized

three-dimensionally (two-dimensions for θ1 and θ2 plus the color for the power values)

for five different values of θ0. Since it could be seen in Subsection 5.2.4 that K = 5

performs better than K = 3 and K = 4 for the distance based ordering methods,

here the power functions are plotted for K = 5. Furthermore, the underlying data

set consists of N = 100 random regression vectors in [−1, 1]2. It can be seen in

146 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

θ0 = −0.1 θ0 = −0.05 θ0 = 0 θ0 = 0.05 θ0 = 0.1

S
h
ortest

H
am

ilton
ian

P
ath

N
earest

N
eigh

b
or

H
ierarch

ical
C

lu
sterin

g

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.24: Simulated power functions of the distance based ordering methods presented

in Section 3.4 for the test H0 : θ = 0 vs. H1 : θ 6= 0 and the model

y = θ0 + θ1x·1 + θ2x·2 + e. The underlying data set consists of N = 100

random values in the range [−1, 1] for x·1 and x·2. The error distribution of

the vector e is a normal distribution. The parameter K of the sign depth test

is set to 5. The red squares denote a simulated power of 0.05 (= α) or less

which should occur only when θ is zero (H0). For the hierarchical clustering

method a complete linkage was chosen to order the regression vectors.

Figure 5.24 that the power functions of all three methods are very satisfying. Indeed,

when θ0 is zero, the power functions (of course) look the same as in the previous

section. But only small changes in θ0 lead to large power values. So, the test seems

to be very sensitive regarding deviations in the intercept.

All in all, no big differences are visible between the three ordering methods in

Figure 5.24. For analyzing whether there are differences and also analyzing the

effect of the number of data points and the parameter K, a similar graphic is

made as in Subsection 5.2.6. Figure 5.25 shows the percentages of power values in

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 147

power ≥ 0.05 power ≥ 0.5 power ≥ 0.95

25 50 75 100 25 50 75 100 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Number of data points N

P
er

ce
n
ta

ge
Ordering Method

Shortest Hamiltonian Path

Nearest Neighbor

Hierarchical Clustering

K

3

4

5

Figure 5.25: Percentages of power values in H1 of all distance based ordering methods

which are at least 0.05, 0.5 and 0.95. The tested hypothesis is H0 : θ = 0 vs.

H1 : θ 6= 0 in the model y = θ0 + θ1x·1 + θ2x·2 + e. The power is simulated

on the interval θ ∈ {−0.4, −0.35, −0.3, . . . , 0.3, 0.35, 0.4}3. The underlying

data set consists of N random values in the range [−1, 1] for x·1 and x·2.

The error distribution of the vector e is a normal distribution.

H1 : θ 6= 0 which are at least 0.05, 0.5 and 0.95 for different numbers of data points

(N ∈ {10, 20, . . . , 100}) and K ∈ {3, 4, 5}. It can be nicely seen that (nearly) all

power values in H1 are greater than or equal to 0.05, independent of the number of

data points and the value of K. Furthermore, for all three values of K also nearly

all power values have a value of at least 0.5 when N is not too small. For N = 10,

interestingly only the power functions simulated with parameter K = 3 have some

values which are at least 0.5 whereas for K = 4 and K = 5 no simulated power

values are greater than or equal to 0.5. This is caused by the fact that N has to be

sufficiently larger than K to be able to reject the null-hypothesis in the sign depth

test because otherwise too few K-tuples exist and the necessary α-quantile of the

distribution of the K-sign depth is identical to the minimum. Obviously, for K = 4

and K = 5 more than N = 10 data points are necessary to be able to reject the

null-hypothesis. But already for N = 20 all ordering methods and all values of K

lead to power functions where more than half of the power values are at least 0.5.

And for all numbers of data points N ≥ 20, K = 5 is best and K = 3 is worst, but for

148 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

sufficient large N (N ≥ 50 approximately) this is not relevant anymore because then

(nearly) all power values are greater than or equal to 0.5, independent of the value of

K and the ordering method. In general, it can be seen that the hierarchical clustering

method performs worse than the methods based on the Shortest Hamiltonian Path,

where the exact solution is always better than the approximate one. This holds also

for the percentages of power values which are at least 0.95. In this plot, it can also

be seen that K = 3 is much worse than K = 4 and K = 5 (but K = 3 still leads to

satisfying power functions). Interestingly, for N = 20 and N = 30, K = 4 is better

than K = 5. It seems that there is a trade-off between the number of data points,

the value K and the achieved power: The fewer data points one has, the better the

small values of K perform, but on the other hand, the larger the power values in

H1 should be, the better are larger values of K. Overall, all three ordering methods

perform really well. For K ∈ {4, 5} and N = 100 nearly all power values in the

interval θ ∈ {−0.4, −0.35, −0.3, . . . , 0.3, 0.35, 0.4}3 (excluding H0 : θ = 0) are 0.95

or larger.

Model y = θ0 + θ1x·1 + θ2x·2 + θ3x·3 + e

Next, the same analysis is made for a linear model with one regressor more, i.e.

y = θ0 + θ1x·1 + θ2x·2 + θ3x·3 + e. The parameters of the simulation are the same

as before: Normally distributed errors and random regression vectors in [−1, 1]3.

At first it is looked at the simulated power functions when setting the parameter

K to 5 and having N = 100 data points. Since the power functions plots are now

five-dimensional (θ ∈ R4 plus the power value), again only an extract, displayed as

some layers of the power functions, can be shown. It was decided to show the power

functions for θ0 ∈ {−0.1, −0.05, 0, 0.05, 0.1} and θ1 ∈ {−0.2, −0.1, 0, 0.1, 0.2}
because Figure 5.24 has already shown that the sign depth test is very sensitive

regarding deviations in the intercept, but for getting nicely visible differences in other

components of θ slightly larger deviations from H0 are necessary. For θ2 and θ3 all

power values in the range from −0.5 to 0.5 are shown.

The Figures 5.26, 5.27 and 5.28 show these simulated power functions for the exact

and approximate ordering methods based on the Shortest Hamiltonian Path and the

hierarchical clustering method, respectively. It can be seen that all three ordering

methods perform really well. Again, the best results were obtained by ordering the

regression vectors according to the exact solution of the Shortest Hamiltonian Path.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 149

θ0 = −0.1 θ0 = −0.05 θ0 = 0 θ0 = 0.05 θ0 = 0.1

θ
1

=
−

0.2
θ

1
=
−

0.1
θ

1
=

0
θ

1
=

0.1
θ

1
=

0.2

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ2

θ 3

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.26: Simulated power functions of the ordering method based on the Shortest

Hamiltonian Path for the test H0 : θ = 0 vs. H1 : θ 6= 0 and the model

y = θ0 + θ1x·1 + θ2x·2 + θ3x·3 + e. The underlying data set consists of

N = 100 random values in the range [−1, 1] for x·1, x·2 and x·3. The error

distribution of the vector e is a normal distribution. The parameter K of the

sign depth test is set to 5. The red squares denote a simulated power of 0.05

(= α) or less which should occur only when θ is zero (H0).

150 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

θ0 = −0.1 θ0 = −0.05 θ0 = 0 θ0 = 0.05 θ0 = 0.1

θ
1

=
−

0.2
θ

1
=
−

0.1
θ

1
=

0
θ

1
=

0.1
θ

1
=

0.2

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ2

θ 3

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.27: Simulated power functions of the ordering method based on the nearest

neighbor approximation for the test H0 : θ = 0 vs. H1 : θ 6= 0 and the

model y = θ0 + θ1x·1 + θ2x·2 + θ3x·3 +e. The underlying data set consists of

N = 100 random values in the range [−1, 1] for x·1, x·2 and x·3. The error

distribution of the vector e is a normal distribution. The parameter K of the

sign depth test is set to 5. The red squares denote a simulated power of 0.05

(= α) or less which should occur only when θ is zero (H0).

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 151

θ0 = −0.1 θ0 = −0.05 θ0 = 0 θ0 = 0.05 θ0 = 0.1

θ
1

=
−

0.2
θ

1
=
−

0.1
θ

1
=

0
θ

1
=

0.1
θ

1
=

0.2

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ2

θ 3

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.28: Simulated power functions of the ordering method based on a hierarchical

clustering with complete linkage for the test H0 : θ = 0 vs. H1 : θ 6= 0 and

the model y = θ0 +θ1x·1 +θ2x·2 +θ3x·3 +e. The underlying data set consists

of N = 100 random values in the range [−1, 1] for x·1, x·2 and x·3. The

error distribution of the vector e is a normal distribution. The parameter K

of the sign depth test is set to 5. The red squares denote a simulated power

of 0.05 (= α) or less which should occur only when θ is zero (H0).

152 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

The simulated power is less than or equal to α = 0.05 only when θ is zero, i.e. at H0,

and anywhere else the power is larger than α. The power converges in every direction

to one and it can nicely be seen that this convergence is faster for θ0 than for the

other components of θ. This phenomenon can easily be explained: When increasing

the intercept, all residuals get smaller by the same value and possibly many residuals

which were positive are now negative. And the change of only some residuals from

positive to negative (or vice versa) can have crucial effect on the sign depth test. On

the other hand, changing the value of any other component of θ, i.e. changing a

slope of the model, affects the residuals differently: Some will get larger and some

will get smaller and so the effect on the sign depth test is different. The results

of the approximate solution of the Shortest Hamiltonian Path and the hierarchical

clustering are similar to those of the exact solution of the Shortest Hamiltonian Path,

but the areas with low power are slightly larger for these two methods which means

that they perform slightly worse.

This can also be seen when looking at Figure 5.29 which shows the percentages of

power values for this model which are at least 0.05, 0.5 and 0.95. This figure looks

very similar to Figure 5.25 on page 147, which has shown these percentages for a

model with one regressor less. As in Figure 5.25 it can be seen in Figure 5.29 that

(nearly) all power values in H1 have a value of at least 0.05, independent of the

number of data points, the parameter K and the ordering method. Also as seen

before, the percentages of power values which are at least 0.5 are larger for K = 3

than for K = 4 and K = 5 when having only 10 data points. A difference here in

comparison to Figure 5.25 is the smaller percentage of power values which are at

least 0.5 for the nearest neighbor method when K is set to 3. But for sufficient large

value of N this number also converges to one. In addition, when having only 20 or

30 data points, K = 4 has a larger percentage of values which are 0.95 or greater

than K = 3 and K = 5 for all ordering methods. But as it was visible before, overall

the ordering method based on the exact solution of the Shortest Hamiltonian Path

performs best and for sufficient large values of N always K = 5 is best.

Overall, it has become clear in this subsection that the sign depth test performs very

well for this type of linear regression models when using the distance based ordering

methods. Since this type of linear regression models, models with an intercept and

some linear regressors, is very much used in practice, the results of this subsection

are very valuable. They have shown that the sign depth test is a good alternative to

other robust and non-robust tests in case of standard multiple regression.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 153

power ≥ 0.05 power ≥ 0.5 power ≥ 0.95

25 50 75 100 25 50 75 100 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Number of data points N

P
er

ce
n
ta

ge
Ordering Method

Shortest Hamiltonian Path

Nearest Neighbor

Hierarchical Clustering

K

3

4

5

Figure 5.29: Percentages of power values in H1 of all distance based ordering methods

which are at least 0.05, 0.5 and 0.95. The tested hypothesis is H0 : θ = 0 vs.

H1 : θ 6= 0 in the model y = θ0 + θ1x·1 + θ2x·2 + θ3x·3 + e. The power is

simulated on the interval θ ∈ {−0.4, −0.35, −0.3, . . . , 0.3, 0.35, 0.4}4. The

underlying data set consists of N random values in the range [−1, 1] for x·1,

x·2 and x·3. The error distribution of the vector e is a normal distribution.

5.3.2 Linear Models with Interactions

Next, it is looked at the power of the sign depth test when having interactions

in the model. For this, two models will get analyzed in this subsection: One

without intercept, i.e. y = θ1x·1 + θ2x·2 + θ3x·1x·2 + e, and one with intercept, i.e.

y = θ0 + θ1x·1 + θ2x·2 + θ3x·1x·2 + e.

Model y = θ1x·1 + θ2x·2 + θ3x·1x·2 + e

An extract of the simulated power functions for the model without intercept for

θ3 ∈ {−0.5, −0.25, 0, 0.25, 0.5} can be found in Figure 5.30. It can be seen that

all three ordering methods perform satisfyingly, although in the direction of the

parameter of the interaction (θ3) values which are quite far away from H0 are needed

for getting large power values. So, very small deviations from the null-hypothesis

may not be detected in this case. As in the previous subsection, the ordering method

154 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

θ3 = −0.5 θ3 = −0.25 θ3 = 0 θ3 = 0.25 θ3 = 0.5

S
h
ortest

H
am

ilton
ian

P
ath

N
earest

N
eigh

b
or

H
ierarch

ical
C

lu
sterin

g

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.30: Simulated power functions of the distance based ordering methods presented

in Section 3.4 for the test H0 : θ = 0 vs. H1 : θ 6= 0 and the model

y = θ1x·1 + θ2x·2 + θ3x·1x·2 + e. The underlying data set consists of

N = 100 random values in the range [−1, 1] for x·1 and x·2. The error

distribution of the vector e is a normal distribution. The parameter K of

the sign depth test is set to 5. The red squares denote a simulated power

of 0.05 (= α) or less which should occur only when θ is zero (H0). For the

hierarchical clustering method a complete linkage was chosen to order the

regression vectors.

based on the exact solution of the Shortest Hamiltonian Path problem seems to

perform best. Its area with low power is the smallest of the three methods. And

the nearest neighbor method seems to have smaller areas with low power than the

hierarchical clustering method.

This visual impression can be verified when looking at Figure 5.31. It shows the per-

centages of power values in the interval θ ∈ {−0.4, −0.35, −0.3, . . . , 0.3, 0.35, 0.4}3

which are at least 0.05, 0.5 and 0.95. It can be seen that this figure looks different

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 155

power ≥ 0.05 power ≥ 0.5 power ≥ 0.95

25 50 75 100 25 50 75 100 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Number of data points N

P
er

ce
n
ta

ge
Ordering Method

Shortest Hamiltonian Path

Nearest Neighbor

Hierarchical Clustering

K

3

4

5

Figure 5.31: Percentages of power values in H1 of all distance based ordering methods

which are at least 0.05, 0.5 and 0.95. The tested hypothesis is H0 : θ = 0

vs. H1 : θ 6= 0 in the model y = θ1x·1 + θ2x·2 + θ3x·1x·2 + e. The power is

simulated on the interval θ ∈ {−0.4, −0.35, −0.3, . . . , 0.3, 0.35, 0.4}3. The

underlying data set consists of N random values in the range [−1, 1] for x·1
and x·2. The error distribution of the vector e is a normal distribution.

than the figures from the previous subsection where no interaction was modeled in

the simulations. Here, there is much more deviation between the different values.

When looking at the left plot it can be seen that for K = 4 and N = 10 data points

not all values have at least a value of 0.05 (the value of the Shortest Hamiltonian

Path method is nearly the same as the nearest neighbor method and therefore cannot

be seen). In Subsection 5.2.4 it could be seen that the sign depth test can behave

differently for odd and even values of K, but this was mostly the case for the scalar-

ization based methods and not for the distance based methods. In addition, this

phenomenon can only be seen in this specific case when N is 10 and it is looked at

the percentage of values which is at least 0.05. For larger values of N or larger power

values, always K = 5 is best and K = 3 is worst. In addition, always the ordering

method based on the exact solution of the Shortest Hamiltonian Path problem is

best. This holds for the percentage of values which is at least 0.5 as well as for the

percentage of values which is at least 0.95. But it can be seen that the values are

smaller than the values in the previous subsection. While in the previous subsection

156 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

nearly all values of the Shortest Hamiltonian Path method were at least 0.95 (and so

also greater than or equal to 0.5) for sufficient large values of N , here the percentages

are clearly smaller than one. This can be explained by the above mentioned fact that

quite large deviations from H0 in the direction of the parameter of the interaction

are needed to obtain great power values. Of course, the power values also get greater

when N gets larger. For getting at least some power values which are greater than or

equal to 0.5, here N = 20 data points are sufficient, for getting power values which

are at least 0.95 N = 40 data points are needed for K = 5, N = 60 data points for

K = 4 and N = 90 data points for K = 3. For the other two distance based ordering

methods, it is not clear which one is better. When looking at the percentages of

values which are at least 0.5 or 0.95, at least for K = 3 the hierarchical clustering

is better than the nearest neighbors approximation. On the other hand, for K = 4

and K = 5 the nearest neighbor method is better than the hierarchical clustering.

But both methods are clearly worse than the Shortest Hamiltonian Path method.

All in all, it can be said that interactions in a model make it harder for the sign

depth test to reach great power values than it is for models without interactions.

But the results are satisfying, nevertheless. The power functions of all methods have

satisfying characteristics with areas with low power only near the null-hypothesis

and great power values far away from the null-hypothesis.

Model y = θ0 + θ1x·1 + θ2x·2 + θ3x·1x·2 + e

In the following, an intercept will be added to the model used before, which

leads to the model y = θ0 + θ1x·1 + θ2x·2 + θ3x·1x·2 + e. Extracts of the sim-

ulated power functions for this model can be found in Figures 5.32, 5.33 and

5.34. The power functions are visualized for θ0 ∈ {−0.1, −0.05, 0, 0.05, 0.1} and

θ3 ∈ {−0.5, −0.25, 0, 0.25, 0.5}. The values for θ1 and θ2 are shown in the complete

interval from −0.5 to 0.5. These figures show the expected behavior: In the direction

of the parameter of the interaction (θ3) relatively large deviations from H0 are needed

to get great power values, whereas this is not the case in the direction of the intercept

(θ0). For the intercept, small shifts from H0 are sufficient to get great power values.

This behavior could also be seen in the previous subsection and of course, it also

holds here in a model with an interaction. Furthermore, again it can be seen that

the ordering method based on the exact solution of the Shortest Hamiltonian Path

problem seems to perform best.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 157

θ0 = −0.1 θ0 = −0.05 θ0 = 0 θ0 = 0.05 θ0 = 0.1

θ
3

=
−

0.5
θ

3
=
−

0.25
θ

3
=

0
θ

3
=

0.25
θ

3
=

0.5

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.32: Simulated power functions of the ordering method based on the Shortest

Hamiltonian Path for the test H0 : θ = 0 vs. H1 : θ 6= 0 and the model

y = θ0 + θ1x·1 + θ2x·2 + θ3x·1x·2 + e. The underlying data set consists

of N = 100 random values in the range [−1, 1] for x·1 and x·2. The error

distribution of the vector e is a normal distribution. The parameter K of the

sign depth test is set to 5. The red squares denote a simulated power of 0.05

(= α) or less which should occur only when θ is zero (H0).

158 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

θ0 = −0.1 θ0 = −0.05 θ0 = 0 θ0 = 0.05 θ0 = 0.1

θ
3

=
−

0.5
θ

3
=
−

0.25
θ

3
=

0
θ

3
=

0.25
θ

3
=

0.5

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.33: Simulated power functions of the ordering method based on the nearest

neighbor approximation for the test H0 : θ = 0 vs. H1 : θ 6= 0 and the model

y = θ0 + θ1x·1 + θ2x·2 + θ3x·1x·2 + e. The underlying data set consists

of N = 100 random values in the range [−1, 1] for x·1 and x·2. The error

distribution of the vector e is a normal distribution. The parameter K of the

sign depth test is set to 5. The red squares denote a simulated power of 0.05

(= α) or less which should occur only when θ is zero (H0).

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 159

θ0 = −0.1 θ0 = −0.05 θ0 = 0 θ0 = 0.05 θ0 = 0.1

θ
3

=
−

0.5
θ

3
=
−

0.25
θ

3
=

0
θ

3
=

0.25
θ

3
=

0.5

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.34: Simulated power functions of the ordering method based on a hierarchical

clustering with complete linkage for the test H0 : θ = 0 vs. H1 : θ 6= 0 and

the model y = θ0 + θ1x·1 + θ2x·2 + θ3x·1x·2 + e. The underlying data set

consists of N = 100 random values in the range [−1, 1] for x·1 and x·2. The

error distribution of the vector e is a normal distribution. The parameter K

of the sign depth test is set to 5. The red squares denote a simulated power

of 0.05 (= α) or less which should occur only when θ is zero (H0).

160 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

power ≥ 0.05 power ≥ 0.5 power ≥ 0.95

25 50 75 100 25 50 75 100 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Number of data points N

P
er

ce
n
ta

ge

Ordering Method

Shortest Hamiltonian Path

Nearest Neighbor

Hierarchical Clustering

K

3

4

5

Figure 5.35: Percentages of power values in H1 of all distance based ordering methods

which are at least 0.05, 0.5 and 0.95. The tested hypothesis is H0 : θ = 0 vs.

H1 : θ 6= 0 in the model y = θ0 + θ1x·1 + θ2x·2 + θ3x·1x·2 + e. The power is

simulated on the interval θ ∈ {−0.4, −0.35, −0.3, . . . , 0.3, 0.35, 0.4}4. The

underlying data set consists of N random values in the range [−1, 1] for x·1
and x·2. The error distribution of the vector e is a normal distribution.

This can also be seen when looking at Figure 5.35. Although the differences between

the ordering methods are not as large as they were for the model without intercept.

Having an intercept in the model, for which small deviations from H0 are sufficient

for getting large power values, of course has a crucial effect on the percentages. But

overall, the result stays the same: The Shortest Hamiltonian Path method with

parameter K = 5 performs best. All methods and all values of K lead to power

functions where (nearly) all power values in H1 have values of at least 0.05. As in

the previous subsection, it can be seen that for very small N , K = 3 performs better

than K = 4 and K = 5 when looking at the percentages of power values which are

at least 0.5. And when looking at the percentages of values which are at least 0.95,

K = 4 is best for N = 20 and N = 30. In this plot it can also be seen very well that

overall K = 3 is worse than K = 4 and K = 5. Its values are clearly smaller than

the other values.

Overall, this subsection has shown that the sign depth test performs satisfyingly

when having interactions in the model. Although for getting large power values in

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 161

the directions of the parameters of the interactions quite large deviations from H0

and/or large numbers of data points are necessary. The best results always were

obtained when using the exact solution of the Shortest Hamiltonian Path problem

for ordering.

5.3.3 Quadratic Regression

Next, the power of the sign depth test in case of polynomial regression is ana-

lyzed. Here, it is focused on quadratic regression, i.e. it is looked at the model

y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e. Adding an intercept to that model would

lead to the same phenomenon as in the previous subsections: In the direction of

the parameter of the intercept the power values are quite large already for small

deviations from H0. Because of this and because the parameter vector θ is already

four-dimensional in this model, the intercept is omitted here.

The simulated power functions of the sign depth test applied with the three distance

based ordering methods can be found in Figures 5.36, 5.37 and 5.38. It can be seen that

these power functions look a little different to the before seen power functions. In these

figures the power functions are only shown for θ3, θ4 ∈ {−0.5, −0.25, 0, 0.25, 0.5}
which are the two parameters for the quadratic terms. Interestingly, the power values

of all three simulated power functions are lower when θ3 = −θ4 holds. This can be

explained by the fact that these parameters cancel each other out in this specific

situation. Here, everything is symmetrically simulated: The model is symmetric

in x·1 and x·2 and the data points in the data set consist of random values in

the interval [−1, 1], which means that they are also relatively symmetric around

zero. And when θ3 and θ4 are canceling each other out, it is hard for every test to

detect deviations from the null-hypothesis if θ1 and θ2 have also values in the area of

the null-hypothesis. This phenomenon of lower power values can also be seen in a

weakened way when |θ3 + θ4| = 0.25 because then the deviation between θ3 and −θ4

is relatively small. In general, it can be seen in Figures 5.36, 5.37 and 5.38 that all

three power functions are quite satisfying, although the best power function again is

obtained when using the exact solution of the Shortest Hamiltonian Path problem

for ordering. Especially, the hierarchical clustering method has larger areas with

lower power values than the two other methods. But when |θ3 + θ4| > 0.25, all three

methods produce very large power values, independently of θ1 and θ2 which is a very

good result.

162 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

θ3 = −0.5 θ3 = −0.25 θ3 = 0 θ3 = 0.25 θ3 = 0.5

θ
4

=
−

0.5
θ

4
=
−

0.25
θ

4
=

0
θ

4
=

0.25
θ

4
=

0.5

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.36: Simulated power functions of the ordering method based on the Shortest

Hamiltonian Path for the test H0 : θ = 0 vs. H1 : θ 6= 0 and the model

y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e. The underlying data set consists

of N = 100 random values in the range [−1, 1] for x·1 and x·2. The error

distribution of the vector e is a normal distribution. The parameter K of the

sign depth test is set to 5. The red squares denote a simulated power of 0.05

(= α) or less which should occur only when θ is zero (H0).

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 163

θ3 = −0.5 θ3 = −0.25 θ3 = 0 θ3 = 0.25 θ3 = 0.5

θ
4

=
−

0.5
θ

4
=
−

0.25
θ

4
=

0
θ

4
=

0.25
θ

4
=

0.5

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.37: Simulated power functions of the ordering method based on the nearest

neighbor approximation for the test H0 : θ = 0 vs. H1 : θ 6= 0 and the model

y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e. The underlying data set consists

of N = 100 random values in the range [−1, 1] for x·1 and x·2. The error

distribution of the vector e is a normal distribution. The parameter K of the

sign depth test is set to 5. The red squares denote a simulated power of 0.05

(= α) or less which should occur only when θ is zero (H0).

164 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

θ3 = −0.5 θ3 = −0.25 θ3 = 0 θ3 = 0.25 θ3 = 0.5

θ
4

=
−

0.5
θ

4
=
−

0.25
θ

4
=

0
θ

4
=

0.25
θ

4
=

0.5

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.38: Simulated power functions of the ordering method based on a hierarchical

clustering with complete linkage for the test H0 : θ = 0 vs. H1 : θ 6= 0 and

the model y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e. The underlying data set

consists of N = 100 random values in the range [−1, 1] for x·1 and x·2. The

error distribution of the vector e is a normal distribution. The parameter K

of the sign depth test is set to 5. The red squares denote a simulated power

of 0.05 (= α) or less which should occur only when θ is zero (H0).

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 165

power ≥ 0.05 power ≥ 0.5 power ≥ 0.95

25 50 75 100 25 50 75 100 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Number of data points N

P
er

ce
n
ta

ge
Ordering Method

Shortest Hamiltonian Path

Nearest Neighbor

Hierarchical Clustering

K

3

4

5

Figure 5.39: Percentages of power values in H1 of all distance based ordering methods

which are at least 0.05, 0.5 and 0.95. The tested hypothesis is H0 : θ = 0 vs.

H1 : θ 6= 0 in the model y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e. The power is

simulated on the interval θ ∈ {−0.4, −0.35, −0.3, . . . , 0.3, 0.35, 0.4}4. The

underlying data set consists of N random values in the range [−1, 1] for x·1
and x·2. The error distribution of the vector e is a normal distribution.

In Figure 5.39 the percentages of power values which are at least 0.05, 0.5 and 0.95

are shown for this model. This figure is quite similar to Figure 5.31 on page 155

which has shown the percentages for the model y = θ1x·1 + θ2x·2 + θ3x·1x·2 + e.

Like there, here no intercept is modeled which leads to similar characteristics of

both figures. For example, it can be again seen that for N = 10 data points and

parameter K = 4 not all power values are at least 0.05 which is the case for all other

values of N and K. And for N = 10 no power values are greater than or equal to

0.5, independently of the ordering method and the value of K. But for N ≥ 20, all

ordering methods and all values of K have some power values which are at least 0.5.

The percentages are increasing for all ordering methods and all values of K until for

N = 100 all percentages are near the value of one, which means that nearly all power

values in H1 have a value of at least 0.5. This is different to Figure 5.31. Also, it is a

large difference that all ordering methods and all values of K are able to produce

power values of 0.95 or greater for sufficient large N . In Figure 5.39 it can be seen

that for N ≥ 50 this is reached. Interestingly, this plot shows that for K = 3 the

166 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

hierarchical clustering method has larger percentages of power values which are at

least 0.95 than the other two methods. For K = 4 and K = 5 this is obviously not

the case. Here, again the exact solution of the Shortest Hamiltonian Path is clearly

the best and the hierarchical clustering method is the worst method of these three

methods. And again it can be seen that K = 5 is better than K = 4 which is again

better than K = 3.

Overall, the results of the simulated power functions are really satisfying. Applying

the sign depth test to models with quadratic terms is possible and leads to good

results. In general, already small deviations from the null-hypothesis are sufficient to

get large power values of the test, especially in the directions of the quadratic terms,

unless some parameters cancel each other out. In this case the power of the test is

rather low, especially for small deviations from the null-hypothesis, but in any case

it is larger than α.

5.3.4 High Dimensional Linear Models

So far, models with two-, three-, and four-dimensional parameter vector θ were

analyzed. In this subsection it will be looked at models with much more regressors,

especially for looking whether in this case the sign depth test has the same power

as in models with less regressors and whether rather small values of K are still

sufficient for getting great power values. It is expected that small values of K lead

to rather bad results in the case of high dimensional models and that the value of K

should have at least the same magnitude as D for getting great power values in the

alternative hypothesis.

For answering this question in this subsection the model y =
∑D

d=1 θdx·d + e is

considered with D ∈ {10, 20, 40, 80} and N = 100 random regression vectors in the

interval [−1, 1]D each. For K the usual values 3, 4 and 5 are used and additionally

K = 11 and K = 21 will be considered for having values which have the same

magnitude as D in two of four cases. Considering larger values of K for having

also values with the same magnitude for D = 40 and D = 80 is unfortunately not

possible due to three reasons. Firstly, for these large values of K the values of the

sign depth are so small that there may occur numerical problems and instability

when computing the sign depth and the needed quantile of the sign depth test which

leads to results that are not reliable. Secondly, as written in Chapter 4, an exact

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 167

implementation of the sign depth in linear runtime was available at the moment of the

simulation execution only for K ≤ 5 and computing the exact sign depth for larger

K had time complexity of O(
(
N
K

)
) which is too much to calculate the sign depth for

the test and especially for simulating the needed quantile. Of course, for this the

asymptotic implementation of Dennis Malcherczyk which is also implemented in the

R-package GSignTest could be used (which was made for K = 11 and K = 21), but

is it not clear how large the deviations from the exact values are for such large values

of K. This would again lead to non-reliable results. And thirdly, the sign depth and

sign depth test cannot work when N is too small in comparison to K: When N is

not much larger than K, the required α-quantile for the sign depth test is the same

as the minimum of the respective distribution and so the test cannot work. As a

rule of thumb, the number of data points N should be at least two to three times as

large as the value of K. Of course, for avoiding the third reason, the number of data

points could be enlarged for these simulations, but this would have no effect on the

first and second reason. Because of this, in this subsection only K ∈ {3, 4, 5, 11, 21}
is considered.

Figures 5.40 and 5.41 show extracts of the simulated power functions for the four

high-dimensional models and the five values of K. The sign depths for the tests were

computed exactly for K ∈ {3, 4, 5} and asymptotically for K ∈ {11, 21}. Figure 5.40

shows the power functions for θ1 ∈ {−1, −0.98, −0.96, ..., 0.96, 0.98, 1}, all other

components of θ are set to zero and Figure 5.41 shows the power functions for

θ1 = . . . = θD = γ with γ ∈ {−1, −0.98, −0.96, ..., 0.96, 0.98, 1}. Due to the high

dimensionality it was not possible to compute and show the whole power functions

and because of this it was decided to focus on these two aspects of the power functions

only. The first aspect shows the behavior of the power functions when only one

component of θ is different from the null-hypothesis H0 : θ = 0. Because of the

symmetry of the model in the components of θ, the power functions would look the

same when choosing any other component than the shown θ1 for the x-axis of the

plots. The second aspect shows the behavior of the power functions when varying all

components of θ by the same factor, i.e. it describes the behavior on the diagonal

line through the D-dimensional hyperspace.

The two Figures 5.40 and 5.41 show very interesting results. Although all power

functions seem to have a power of about α at H0 and larger power values in the area

of H1, there are great differences between the single power functions. Interestingly,

for K ∈ {3, 4, 5} for all four models the hierarchical clustering ordering method is

168 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

D = 10 D = 20 D = 40 D = 80

K
=

3
K

=
4

K
=

5
K

=
11

K
=

21

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

θ1

p
ow

er

Shortest Hamiltonian Path

Nearest Neighbor

Hierarchical Clustering

Figure 5.40: Extracts of the simulated power functions of the sign depth test for the model

y =
∑D

d=1 θdx·d + e, where the vector e has a normal distribution. The

hypothesis H0 : θ = 0 vs. H1 : θ 6= 0 is tested. Here, the power functions

are only shown for θ1 ∈ {−1, −0.98, −0.96, ..., 0.96, 0.98, 1}, all other values

of θ are zero. For the sign depth test the distance based ordering methods

presented in Section 3.4 are used, where for the hierarchical clustering method

a complete linkage was chosen. The sign depths were computed exactly for

K ∈ {3, 4, 5} and asymptotically for K ∈ {11, 21}. The gray dashed line

shows the level of the test α = 0.05.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 169

D = 10 D = 20 D = 40 D = 80

K
=

3
K

=
4

K
=

5
K

=
11

K
=

21

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

θ1 = . . . = θD = γ, γ ∈ [−1, 1]

p
ow

er
Shortest Hamiltonian Path

Nearest Neighbor

Hierarchical Clustering

Figure 5.41: Extracts of the simulated power functions of the sign depth test for the model

y =
∑D

d=1 θdx·d + e, where the vector e has a normal distribution. The hypo-

thesis H0 : θ = 0 vs. H1 : θ 6= 0 is tested. Here, the power functions are only

shown for θ1 = . . . = θD = γ with γ ∈ {−1, −0.98, −0.96, ..., 0.96, 0.98, 1}.
For the sign depth test the distance based ordering methods presented in

Section 3.4 are used, where for the hierarchical clustering method a complete

linkage was chosen. The sign depths were computed exactly for K ∈ {3, 4, 5}
and asymptotically for K ∈ {11, 21}. The gray dashed line shows the level of

the test α = 0.05.

170 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

better than the exact solution of the Shortest Hamiltonian Path problem. But this is

not the case for K ∈ {11, 21} where again the Shortest Hamiltonian Path is better

than the hierarchical clustering. Furthermore, it can be seen that the sign depth test

has quite low power when K is smaller than D. In contrast, the power values are

much better when K and D have the same magnitude and the power values are very

good when K is larger than D, i.e. K = 21 and D = 10. In addition, it can be seen

that the behavior for the first aspect is slightly different than for the second aspect:

While for the first aspect in Figure 5.40 the power values seem to increase a little

bit slower, for the second aspect the increase of the power values in the area of H1

is quite steep. But the power values then remain at values which are much smaller

than one if K is smaller than D. The value on which the power values remain is

smaller the larger the difference D −K is. Especially, for D = 80 and K = 3, the

power values are not much larger than α = 0.05 anymore.

These results have clearly shown that the value of K has a crucial effect on the

power of the sign depth test. Especially, K should not be smaller than the number of

dimensions D, but at least be at the same magnitude. The best would be to have a

value of K which is larger than D. But, one has to think about the fact that due to

numerical issues the sign depth and its distribution cannot be calculated for arbitrary

K, but only for small and medium values at the moment. Also, it is not possible

to choose a value of K which is not sufficiently smaller than N because then the

required quantile of the distribution of the sign depth is the same as the minimum

value of this distribution. So, when having a high-dimensional model for which only

values of K are possible which are smaller than D, the sign depth test may have no

large power. In addition, the results in this subsection have shown that in the case

where K is smaller than D a hierarchical clustering as ordering method for the sign

depth test performs best. But as soon as K has at least the same magnitude as D,

the exact solution of the Shortest Hamiltonian Path should be used for ordering the

regression vectors.

5.4 Choice of Vectors Used for Ordering

Especially in the context of the considered models in Section 5.3 one question arises:

Which components of the regression vectors should be used for ordering the data?

Only the so-called design vectors (xn1, xn2)>, n = 1, . . . , N or the complete regression

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 171

vectors, e.g. (1, xn1, xn2, xn1xn2)> for the model y = θ0 +θ1x·1 +θ2x·2 +θ3x·1x·2 +e

or (xn1, xn2, x
2
n1, x

2
n2)> for the model y = θ1x·1 + θ2x·2 + θ3x

2·1 + θ4x
2·2 + e?

In this thesis, the second possibility was chosen: Always the complete regression

vectors were used for multidimensional ordering. There are several reasons for this

decision: Firstly, this way of ordering uses all available information about the data

and the model and not only the information provided by the design vectors. Secondly,

it is easier and less error-prone to implement the sign depth test in R when using the

complete regression vectors for ordering. As described in Algorithm 4.8 on page 98

and in Section 4.4 the function depth.test() in the package GSignTest can be used

with a model description (i.e. a formula) and a data set (i.e. a data.frame) as

input. The complete design matrix (which contains row-wise the regression vectors)

can then be easily extracted with the help of the function model.matrix() whereas

it would be more difficult to distinguish between components which belong to the

design vectors and other components in this case. And thirdly, the best performing

ordering method, the Shortest Hamiltonian Path, has smaller empirical runtimes

when having higher dimensional data, see Figure 3.27 on page 69. Especially, in

the two-dimensional case the runtimes are quite large. Because of this it seems

advantageous to use all components of the regression vectors for ordering.

To show exemplary the differences of both choices of used vectors for ordering, in

the following the polynomial model with quadratic terms from Subsection 5.3.3 is

used, i.e. y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e. Figure 5.42 shows the different

ordering variants for the three data sets used in Chapter 3 (LHS-data, Grid-data

and Spiral-data) when using the exact solution of the Shortest Hamiltonian Path

problem for ordering, which is the best performing ordering method. In the upper

row the design vectors (xn1, xn2)>, n = 1, . . . , N are ordered and in the lower row

the regression vectors (xn1, xn2, x
2
n1, x

2
n2)
>, n = 1, . . . , N are ordered. It can be

seen that the obtained orders differ slightly for the LHS-data and the Grid-data,

although both ordering variants lead to orders which have no real ”disorder” in the

obtained orderings. The inherent order of the Spiral-data is obtained in both cases.

The previous sections have shown that the sign depth test performs well as long as

there is not too much ”mess” in the ordering. Obviously, this is the case for both

ordering variants. So, although the orders may differ slightly (dependent on the data

set) and so the results of the sign depth test may differ slightly, it can be expected

that both ordering variants will lead to satisfying results.

172 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

LHS Grid Spiral

(x
n

1 ,
x
n

2) >
(x

n
1 ,
x
n

2 ,
x

2n
1 ,
x

2n
2) >

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 5.42: Visualization of the obtained orders when using a Shortest Hamiltonian Path

for ordering. In the upper row the data points are ordered two-dimensionally

according to the plotted values. In the lower row the data points are ordered

four-dimensionally according to the plotted values as well as their squared

values.

This expected result can be seen when looking at Figure 5.43. This figure shows the

percentages of power values which are at least 0.05, 0.5 and 0.95 for the quadratic

regression model when using the distance based ordering methods and the sign depth

test with parameter K = 5. It can be seen that both ordering variants, ordering the

design vectors as well as ordering the regression vectors, lead to satisfying results

which are very similar. Both variants have always a power of at least 0.05 in H1

and both variants need at least 20 data points for having power values which are

at least 0.5 and 40 data points for having power values which are at least 0.95.

Especially, the values for an ordering according to the exact solution of the Shortest

Hamiltonian Path problem are very similar, whereas there is slightly more difference

for the nearest neighbor method and the hierarchical clustering method. All results

show that ordering the design vectors leads to slightly better results than ordering

the regression vectors, but when increasing the number of data points, the differences

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 173

power ≥ 0.05 power ≥ 0.5 power ≥ 0.95

25 50 75 100 25 50 75 100 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Number of data points N

P
er

ce
n
ta

ge
Ordering Variables

(xn1, xn2)>

(xn1, xn2, x
2
n1, x

2
n2)>

Ordering Method

Shortest Hamiltonian Path

Nearest Neighbor

Hierarchical Clustering

Figure 5.43: Percentages of power values in H1 of all distance based ordering methods

which are at least 0.05, 0.5 and 0.95. The tested hypothesis is H0 : θ = 0 vs.

H1 : θ 6= 0 in the model y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e. The power is

simulated on the interval θ ∈ {−0.4, −0.35, −0.3, . . . , 0.3, 0.35, 0.4}4. The

underlying data set consists of N random values in the range [−1, 1] for x·1
and x·2. The error distribution of the vector e is a normal distribution. The

parameter K of the sign depth test is set to 5.

get smaller. It can be assumed that this behavior will be on-going for N > 100 and

the differences will be (nearly) disappear.

So, as an result it can be said that ordering the design vectors instead of the regression

vectors may have led to slightly better results of the power functions in this thesis,

but when considering also the above mentioned advantages of ordering the regression

vectors, it seems acceptable making it this way.

5.5 Comparison to Other Tests for Multiple Regression

An important thing to do is comparing new methods to established ones. Of course,

this is also done in this thesis. As seen in the previous sections, the best ordering

method when applying the sign depth test in the context of multiple regression

is an ordering according to the solution of a Shortest Hamiltonian Path problem.

174 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Because of this, in this section this method is compared with some classical robust

and non-robust tests for testing parameters in (multiple) regression problems.

For comparison with the sign depth test three established tests were chosen: The

classical sign test, the F -test when using the parameters of an ordinary least-squares

regression for estimation and a Wald test when using the parameters of a robust

model estimated via MM-estimation for estimation. Especially, it is of interest

whether and in which situations the sign depth test performs better than the F -test

and the classical sign test and whether the sign depth test can reach a power level

similar to the robust Wald test. The F -test is the optimal test for testing parameters

in a linear regression model when having normally distributed errors under H0.

Its definition can be found in Theorem A.1 on page 213. As it can be seen there,

the F -test needs an estimated parameter vector θ̂. Here, this parameter vector is

estimated via ordinary least-squares regression. The sign test is a non-parametric

alternative whose definition can be found in Theorem A.2 on page 213. In contrast

to the F -test, the sign test has no requirements regarding the error distribution,

except of having errors with median zero. Furthermore, like for the sign depth test,

no explicit estimator θ̂ is needed because the tests are solely based on the residuals

under H0. In addition, it can be easily shown that the sign test is equivalent to the

sign depth test with parameter K = 2. As a third method for comparison, a robust

Wald test is chosen. Like the F -test, the Wald test is based on an estimator θ̂. In

Section 2.3 the MM-estimation for regression is described. An often used variant of

this MM-estimation is implemented in the function lmRob() in the R-package robust.

Because of this, this method will be used here and the estimated parameters will be

used for the Wald test which is defined in Theorem 2.1 on page 14.

At first, the performance of these three methods and the sign depth test with ordering

according to the solution of the Shortest Hamiltonian Path problem will be shown

for the simplest model y = θ1x·1 + θ2x·2 + e which was also analyzed in Section 5.2.

Since Subsection 5.2.4 has shown that the sign depth test performs best for the

distance based ordering methods when using parameter K = 5, in this subsection

always this parameter is used for comparison. Here, it is looked at the performance of

these comparison methods for different numbers of data points, different underlying

data sets and different error distributions of the vector e. Again, the simulation

setting of Section 5.2 is used, see Section 5.1 for details. Furthermore, as before, the

tested hypothesis is H0 : θ = 0 vs. H1 : θ 6= 0.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 175

Effect of the error distribution

Sign Test F -Test Robust Wald Test Sign Depth Test

C
au

ch
y

N
orm

al
U

n
iform

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.44: Simulated power functions of the comparison methods for the test H0 : θ = 0

vs. H1 : θ 6= 0 in the model y = θ1x·1 + θ2x·2 + e. The underlying data set

consists of N = 100 random values in the range [−1, 1] for x·1 and x·2. The

sign depth test is conducted with an ordering according to the exact solution

of the Shortest Hamiltonian Path problem and parameter K = 5. The red

squares denote a simulated power of 0.05 (= α) or less which should occur

only when θ is zero (H0).

Figure 5.44 shows the results of the three comparison methods and the sign depth

test when using an ordering according to the solution of the Shortest Hamiltonian

Path problem for different error distributions of the vector e. It can be seen that two

of the three comparison methods perform satisfyingly. Of course, the F -test is best

when having normally distributed errors. But also the robust Wald test performs

176 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

very well. In contrast to the F -test, this test is also a very powerful test when having

Cauchy distributed errors. On the other hand, the classical sign test performs very

poorly. Nearly all simulated power values are less than or equal to 0.05. But this

behavior can easily be explained: In this data situation always about half of the

residuals are negative and half are positive because no intercept is modeled and the

regression vectors are randomly drawn from the interval [−1, 1]2. And since the

sign test only is counting the number of positive residuals and checks whether this

number is about half of the number of data points, in this model and this specific

data situation the sign test can nearly never reject the null-hypothesis. Because the

sign test is equivalent to the sign depth test when using parameter K = 2, these

results show once more that the power of the sign depth test is smaller for smaller

values of K and that K = 2 should not be used at all, but at least K = 3 is necessary

to obtain satisfying results. All in all, the sign depth test performs much better than

the sign test and the F -test when having Cauchy distributed errors. When having

normally distributed errors or uniformly distributed errors, the F -test and the robust

Wald test perform slightly better than the sign depth test, but overall the sign depth

test and the robust Wald test perform satisfying in all situations.

Effect of the number of data points

Next, the effect of the number of data points is analyzed. For this, as in Subsec-

tion 5.2.1 the power functions are simulated with N = 25 data points as well as

with N = 100 data points. Because it is clear that the F -test is always best when

having normally distributed errors, in Figure 5.45 and all following figures the tests

are simulated with Cauchy distributed errors to show the case where the normality

assumption is violated. But it should not be forgotten that the F -test is always the

best test in the special case of normally distributed errors. This figure shows the

expected results: The sign test performs badly and also the F -test has relatively low

power values because of the Cauchy distributed errors, but the sign depth test and

the robust Wald test perform very well. Of course, the power values in H1 are larger

when having more data points, but also for N = 25 both tests have satisfying results.

The robust Wald test seems to be a little bit better for N = 25 whereas there are no

big differences for N = 100.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 177

Sign Test F -Test Robust Wald Test Sign Depth Test

N
=

25
N

=
100

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2
0.00 0.25 0.50 0.75 1.00

power
power ≤ 0.05

Figure 5.45: Simulated power functions of the comparison methods for the test H0 : θ = 0

vs. H1 : θ 6= 0 in the model y = θ1x·1 + θ2x·2 + e. The underlying data

set consists of N ∈ {25, 100} random values in the range [−1, 1] for x·1 and

x·2. The sign depth test is conducted with an ordering according to the exact

solution of the Shortest Hamiltonian Path problem and parameter K = 5.

The error distribution of the vector e is a Cauchy distribution. The red

squares denote a simulated power of 0.05 (= α) or less which should occur

only when θ is zero (H0).

Effect of the data set

The next figure, Figure 5.46, shows the simulated power functions of the comparison

methods and the sign depth test for different underlying data sets. The data sets

are the same as in Subsection 5.2.2: The ”Random” data set, the ”Grid” data set

and the ”Spiral” data set. Again, it can be seen that the sign test performs poorly

and also the F -test is quite bad when having Cauchy distributed errors. On the

other hand, the sign depth test and the robust Wald test perform very well. The

sign depth test is slightly worse than the Wald test on the ”Spiral” data set, but in

the other situations there are no big differences visible. The problems of the sign

178 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Sign Test F -Test Robust Wald Test Sign Depth Test

R
an

d
om

G
rid

S
p
iral

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.46: Simulated power functions of the comparison methods for the test H0 : θ = 0

vs. H1 : θ 6= 0 in the model y = θ1x·1 + θ2x·2 + e. All data sets consist

of N = 100 data points. The sign depth test is conducted with an ordering

according to the exact solution of the Shortest Hamiltonian Path problem

and parameter K = 5. The error distribution of the vector e is a Cauchy

distribution. The red squares denote a simulated power of 0.05 (= α) or less

which should occur only when θ is zero (H0).

depth test on the ”Spiral” data were analyzed in Subsection 5.2.2. Obviously the

robust Wald test and also the other tests are not affected by these problems because

they do not depend on an ordering of the data set.

So, as an interim conclusion it can be said that the sign depth test is competitive

with the established tests. It is much better than the classical sign test and since

it is not affected by the distribution of the errors also often better than the F -test.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 179

Of course, when having normally distributed errors, the F -test is always the best

test. In all considered situations the sign depth test performs about as good as the

robust Wald test. But is should not be forgotten that the Wald test and the F -test

depend on estimated parameter vectors θ̂ which is not the case for the sign test and

the sign depth test. During the fitting process numerical instability can occur or the

optimization algorithms needed for the MM-regression may not converge. Especially,

the latter case happened several times during the simulations. So, the dependance of

these tests of a fitted regression model is a large disadvantage in contrast to the sign

test and the sign depth test which only need the residuals under H0.

In the following, the sign depth test is also compared to the established tests for

some of the other models analyzed in Section 5.3. It is of interest how the established

tests perform on models with intercept, with interaction, with quadratic regressors

and in high dimensions in contrast to the sign depth test.

Model y = θ0 + θ1x·1 + θ2x·2 + e

When adding an intercept to the model, i.e. y = θ0 + θ1x·1 + θ2x·2 +e, the simulated

power functions are visualized in Figure 5.47. It can be seen that all four tests

have greater power values when θ0 is not zero which is the desired behavior since

the null-hypothesis is H0 : θ = 0. Also, it can be seen that the sign test and the

F -test perform rather badly, whereas the sign depth test and the robust Wald test

perform very well. In the case of the F -test, the rather bad performance is of course

caused by the Cauchy distributed errors which were used for simulating the power

functions. Because of this the power is rather low and there is a quite large area

of values around H0 which has power values of α or less. The performance of the

sign test would also be bad for normally distributed errors, but this test behaves

differently than the F -test. While the F -test has low power values in all directions

of the power function, the sign test is able to detect at least changes in the intercept.

Its power function has areas with larger power values when θ0 is not zero. On the

other hand, there seem to be no big differences between the sign depth test and the

robust Wald test, both methods perform very satisfyingly. So, also for linear models

with intercept the sign depth test is competitive with the established methods.

180 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

θ0 = −0.1 θ0 = −0.05 θ0 = 0 θ0 = 0.05 θ0 = 0.1

S
ign

T
est

F
-T

est
R

ob
u
st

W
ald

T
est

S
ign

D
ep

th
T

est

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.47: Simulated power functions of the comparison methods for the test H0 : θ = 0

vs. H1 : θ 6= 0 and the model y = θ0 + θ1x·1 + θ2x·2 + e. The underlying

data set consists of N = 100 random values in the range [−1, 1] for x·1 and

x·2. The error distribution of the vector e is a Cauchy distribution. The

sign depth test is conducted with an ordering according to the exact solution

of the Shortest Hamiltonian Path problem and parameter K = 5. The red

squares denote a simulated power of 0.05 (= α) or less which should occur

only when θ is zero (H0).

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 181

Model y = θ1x·1 + θ2x·2 + θ3x·1x·2 + e

Next, it is looked at the model with an interaction and without intercept, i.e.

y = θ1x·1 + θ2x·2 + θ3x·1x·2 + e. The simulated power functions of the sign depth

θ3 = −0.5 θ3 = −0.25 θ3 = 0 θ3 = 0.25 θ3 = 0.5

S
ign

T
est

F
-T

est
R

ob
u
st

W
ald

T
est

S
ign

D
ep

th
T

est

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.48: Simulated power functions of the comparison methods for the test H0 : θ = 0

vs. H1 : θ 6= 0 and the model y = θ1x·1 + θ2x·2 + θ3x·1x·2 + e. The

underlying data set consists of N = 100 random values in the range [−1, 1] for

x·1 and x·2. The error distribution of the vector e is a Cauchy distribution.

The sign depth test is conducted with an ordering according to the exact

solution of the Shortest Hamiltonian Path problem and parameter K = 5.

The red squares denote a simulated power of 0.05 (= α) or less which should

occur only when θ is zero (H0).

182 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

test with an ordering according to the exact solution of the Shortest Hamiltonian

Path problem and the three comparison methods are shown in Figure 5.48. It can

be seen that again the sign test and the F -test perform rather badly, whereas the

sign depth test and the robust Wald test perform really well. Here, the robust Wald

test is better than the sign depth test, although the performance of the sign depth

test is also satisfying. As mentioned in Subsection 5.3.2, the sign depth test needs

relatively large deviations from H0 in the direction of the parameter of the interaction

for getting great power values. This seems to be different for the robust Wald test.

But although the sign depth test obviously is not the best test in this situation, its

performance is quite good, so that one gets satisfying results when applying it in

such situations.

Model y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e

Next, it is looked at the model with quadratic terms from Subsection 5.3.3, i.e.

y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e. The simulated power functions of the three

comparison methods can be found in Figures 5.49, 5.50 and 5.51. The simulated

power function of the sign depth test when using the exact solution of the Shortest

Hamiltonian Path problem for ordering can be found in Subsection 5.3.3 in Figure 5.36

on page 162. In contrast to the three comparison methods in this section, the

sign depth test in Subsection 5.3.3 was simulated with normally distributed errors,

whereas here the power functions are simulated with Cauchy distributed errors, but

as mentioned before the error distribution has no effect on the performance of the

sign depth test as long as the median of the errors is zero. So, there is no problem in

comparing the methods with each other.

In Figure 5.49 it can be seen that the sign test has clearly lower power values when

|θ3 + θ4| is small, like it is also the case for the sign depth test. But in contrast to

the sign depth test the sign test has clearly lower power and the power function is

not only at H0 less than or equal to α. Overall, the results of the sign test are not

satisfying because of the large areas with low power values. The same holds for the

F -test shown in Figure 5.50. Here, no simulated power values are less than or equal

to α, but all power values are rather small, also for large values of |θ3 + θ4|. The

simulated power function of the robust Wald test in Figure 5.51 looks much better.

Here, the area with low power is very small, also when |θ3 + θ4| is small or even zero.

So, here the robust Wald test is clearly the best test, also better than the sign depth

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 183

θ3 = −0.5 θ3 = −0.25 θ3 = 0 θ3 = 0.25 θ3 = 0.5

θ
4

=
−

0.5
θ

4
=
−

0.25
θ

4
=

0
θ

4
=

0.25
θ

4
=

0.5

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.49: Simulated power functions of the sign test for the test H0 : θ = 0 vs.

H1 : θ 6= 0 and the model y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e. The

underlying data set consists of N = 100 random values in the range [−1, 1] for

x·1 and x·2. The error distribution of the vector e is a Cauchy distribution.

The red squares denote a simulated power of 0.05 (= α) or less which should

occur only when θ is zero (H0).

184 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

θ3 = −0.5 θ3 = −0.25 θ3 = 0 θ3 = 0.25 θ3 = 0.5

θ
4

=
−

0.5
θ

4
=
−

0.25
θ

4
=

0
θ

4
=

0.25
θ

4
=

0.5

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.50: Simulated power functions of the F -test for the test H0 : θ = 0 vs. H1 : θ 6= 0

and the model y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 +e. The underlying data set

consists of N = 100 random values in the range [−1, 1] for x·1 and x·2. The

error distribution of the vector e is a Cauchy distribution. The red squares

denote a simulated power of 0.05 (= α) or less which should occur only when

θ is zero (H0).

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 185

θ3 = −0.5 θ3 = −0.25 θ3 = 0 θ3 = 0.25 θ3 = 0.5

θ
4

=
−

0.5
θ

4
=
−

0.25
θ

4
=

0
θ

4
=

0.25
θ

4
=

0.5

-0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3 -0.3 0.0 0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

-0.3

0.0

0.3

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.51: Simulated power functions of the robust Wald test for the test H0 : θ = 0

vs. H1 : θ 6= 0 and the model y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e. The

underlying data set consists of N = 100 random values in the range [−1, 1] for

x·1 and x·2. The error distribution of the vector e is a Cauchy distribution.

The red squares denote a simulated power of 0.05 (= α) or less which should

occur only when θ is zero (H0).

186 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

test. But both tests, the sign depth test and the robust Wald test are satisfying at

the end.

Model y =
∑D

d=1 θdx·d + e

At last, it is looked at the high-dimensional models of Subsection 5.3.4. Here, the

10-, 20-, 40- and 80-dimensional linear models are tested with all three comparison

methods as well as the sign depth test with K = 5 and K = 21. As in Subsection 5.3.4

explained for K = 21 only an asymptotic implementation of the sign depth is available.

In addition, these power functions are here simulated only for the same two aspects

as in Subsection 5.3.4: Firstly, when varying only θ1 and all other components of θ

are zero, and secondly the power on the diagonal line through the D-dimensional

hyperspace is considered. Furthermore, the results are simulated for these models

with normally distributed errors as well as with Cauchy distributed errors to show

the effect of the error distribution to the tests when plotting the power functions

two-dimensional and not three-dimensional as always before.

Figures 5.52 and 5.53 show the extracts of the simulated power functions for both

considered aspects. These figures show several interesting things. Firstly, the sign

depth test performs better for K = 21 than for K = 5 which is no surprise since in

Subsection 5.3.4 it was pointed out that K should have at least the same magnitude

as D to reach good results of the sign depth test. Secondly, the robust Wald test

performs satisfyingly for D = 10 and D = 20, but for D = 40 the level is not

maintained, i.e. the power values are much larger than α = 0.05 at H0 and for

D = 80 the robust Wald test cannot be carried out at all. Indeed, it is not the

Wald test itself which causes the problems, but the underlying MM-estimation. The

R-function lmRob() always throws an error when trying to calculate the estimator

for D = 80 dimensions and N = 100 data points which says that internally a matrix

cannot be inverted because of numerical singularity. In contrast to this, the sign

depth tests remains computable for such large number of dimensions, although the

value of K has to be smaller than D and so the power of the sign depth test is not

very good. Of course, the F -test performs best when having normally distributed

errors, but also for Cauchy distributed errors its performance is best for very large

D in the second aspect (although near the null-hypothesis the sign depth test is

better). For the first aspect shown in Figure 5.52, the sign depth test is better than

the F -test. The classical sign test performs poorly independent from the number

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 187

D = 10 D = 20 D = 40 D = 80

C
au

ch
y

N
orm

al

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

θ1

p
ow

er
Robust Wald Test

F -Test

Sign Test

Sign Depth Test (K = 21)

Sign Depth Test (K = 5)

Figure 5.52: Extracts of the simulated power functions of the comparison methods for the

model y =
∑D

d=1 θdx·d + e. Here, the power functions are only shown for

θ1 ∈ {−1, −0.98, −0.96, ..., 0.96, 0.98, 1}, all other values of θ are zero. The

sign depth test is conducted with an ordering according to the exact solution

of the Shortest Hamiltonian Path problem. The gray dashed line shows the

level of the test α = 0.05.

of dimensions. Its power is always about 0.05. Furthermore, the case D = 10 and

K = 21 shows that the sign depth test can keep up with the robust Wald test and

the F -test (for normally distributed errors) when K is sufficient large in comparison

to D.

So, overall it can be said that in the case of high-dimensional models the sign depth

test may not be optimal when D is larger than K, but also the robust Wald test has

problems with the high-dimensionality. While the sign depth test can be computed

for high dimensions and relatively few data points, this is not possible for the robust

Wald test. In addition, its power values are larger than α at H0 for D = 40 which

188 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

D = 10 D = 20 D = 40 D = 80

C
au

ch
y

N
orm

al

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

θ1 = . . . = θD = γ, γ ∈ [−1, 1]

p
ow

er

Robust Wald Test

F -Test

Sign Test

Sign Depth Test (K = 21)

Sign Depth Test (K = 5)

Figure 5.53: Extracts of the simulated power functions of the comparison methods for the

model y =
∑D

d=1 θdx·d + e. Here, the power functions are only shown for

θ1 = . . . = θD = γ with γ ∈ {−1, −0.98, −0.96, ..., 0.96, 0.98, 1}. The sign

depth test is conducted with an ordering according to the exact solution of

the Shortest Hamiltonian Path problem. The gray dashed line shows the level

of the test α = 0.05.

is not the case for any other of the considered tests. Again, of course the F -test is

best for normally distributed errors. Also, this test has no problems with the high

dimensions. The sign test performs badly for all numbers of dimensions.

As a conclusion, it can be said that the sign depth test is always better than the

classical sign test in the situations considered here. This is no surprise since the

sign test is equivalent to the sign depth test when choosing K = 2 and this chapter

has shown that in general greater values of K are better than smaller ones. The

sign depth test is also better than the F -test when the assumption of normally

distributed errors is violated. For normally distributed errors, of course the F -test is

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 189

the best test one can choose. But in the context of possibly non-normally distributed

errors, the sign depth test performs clearly better than the F -test. The robust Wald

test via MM-estimation has performed similar to the sign depth test and in some

situations it was better than the sign depth test, especially when having interactions

or polynomial regressors in the model. But the Wald test has a major disadvantages

the sign depth test has not: The Wald test needs the assumption of asymptotically

normally distributed errors under H0. This is achieved here by using MM-estimation,

but when this assumption is violated or the optimization(s) needed for fitting the

MM-estimator do not converge, this test can fail. In addition, for high dimensions

the MM-estimation needed for the robust Wald test cannot be computed anymore.

The sign depth test can be used more universally: Its only assumption is that the

median of the errors is zero under H0. Furthermore, the sign depth test is easy to

understand and to implement. It has shown no numerical problems whereas for the

Wald test a parameter θ̂ and an associated covariance matrix have to be estimated

and in case of the covariance matrix also inverted and the inversion of matrices can

be numerically challenging.

So, although the Wald test has proven to be a very good test in the considered

situations, also the sign depth test performs very well. For having an easier to

understand and implement test with less computational and numerical challenges

which can also be used more universally than a Wald test, the sign depth test has

slightly less power in some situations and needs some more computational runtime.

All in all, both tests can be used in the context of multiple regression, each with

individual advantages and disadvantages.

5.6 Sign Depth Test for Model Checks

So far, the sign depth test and the comparison methods were used only for testing

parameters in a known model. In real life, often the regressors of a linear model

are not known and the correct model class has to be found first before a testing on

parameters is possible at all. For this, techniques for model and variable selection

are known. Most methods are based on testing whether a fitted model describes the

data sufficiently or not. For this, next to some established tests like the Wald test,

also the sign depth test can be used.

190 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

In this section, the performance of the sign depth test in contrast to the robust Wald

test will be shown and analyzed in the case of testing for model checks. For this,

data will be simulated from two different models: y = θ1x·1 + θ2x·2 + θ3x·1x·2 + e

and y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e with N = 100 random regression vectors

in the interval [−1, 1] for x·1 and x·2 each. But the tests will be testing only for a

significant influence of θ1 and θ2, i.e. H0 : θ = 0 vs. H1 : θ 6= 0 for θ = (θ1, θ2)>. So,

a possible influence of θ3 (and θ4) is ”forgotten” here. This will be done in dependance

of the value(s) of θ3 (and θ4) and the power of the sign depth test and the robust

Wald test will be compared. i.e. it is looked how large the ”forgotten” parameter(s)

have to be to detect this with the respective tests. For the sign depth test an ordering

according to the exact solution of the Shortest Hamiltonian Path problem is used

and the value K of the sign depth is set to 5.

0.00

0.25

0.50

0.75

1.00

-1.0 -0.5 0.0 0.5 1.0

θ3

p
ow

er

Robust Wald Test

Sign Depth Test

Figure 5.54: Power of the sign depth test and the robust Wald test when testing on a

significant influence of θ1 and θ2 in the model y = θ1x·1 + θ2x·2 + e, but the

data is generated from the model y = θ1x·1 + θ2x·2 + θ3x·1x·2 + e, where e

is normally distributed and x·1 and x·2 consist of N = 100 random values in

the range [−1, 1] each. For the sign depth test an ordering according to the

exact solution of the Shortest Hamiltonian Path problem is chosen and K is

set to 5. The dashed gray line denotes the level of the test, i.e. α = 0.05.

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 191

Figure 5.54 shows the power of the sign depth test and the robust Wald test when

the data is generated from the model y = θ1x·1 + θ2x·2 + θ3x·1x·2 + e and it is

tested only on a significant influence of θ1 and θ2 in the model y = θ1x·1 + θ2x·2 + e.

It can be seen that the sign depth test in this situation performs much better than

the robust Wald test. Although both tests have power values which are greater than

or equal to α = 0.05 for most values of θ3 except θ3 = 0, the power values for the

sign depth test are always much greater than the power values of the robust Wald

test. This phenomenon can be easily explained by the fact that the sign depth test

does not need to compute an estimator for the model, but only needs the parameter

θ0 from the null-hypothesis for testing the model. In contrast, the robust Wald test

needs to compute an estimator first, here obtained by an MM-regression, which leads

to less power of the test because the estimation process leads to models which are

considered as fitting for the Wald test as long as the parameter θ3 differs not too

much from zero. So, in this case of testing for model checks and ”forgetting” an

interaction in the model the sign depth test is clearly preferable to the robust Wald

test.

The same tests are then also carried out for a second model check. Again, it is tested

on a significant influence of θ1 and θ2 in the model y = θ1x·1 + θ2x·2 + e, but this

time the data is generated from the model y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e,

so here two parameters θ3 and θ4 were ”forgotten”. The power of these tests in

dependance of the values of θ3 and θ4 can be found in Figure 5.55. As before, it

can be seen that the performance of the sign depth test is much better than the

performance of the robust Wald test. In general, the power values are much greater

and also the area with power values of α or less is much smaller for the sign depth

test. As seen in Subsection 5.3.3, the power of the sign depth test in this model is

lower on a line where θ3 and θ4 cancel each other out. But apart from that line the

power of the sign depth test is quite large, whereas the power of the robust Wald test

is nearly everywhere quite low. So, as before, this has shown that testing for model

checks can be better carried out with the sign depth test than with the established

robust Wald test.

This section has shown that the sign depth test has very good performance when

making model checks. In contrast to all previous sections where the robust Wald

test was on the same performance level like the sign depth test or even better, here

we have a clear advantage of the sign depth test.

192 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Robust Wald Test Sign Depth Test

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

θ3

θ 4

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure 5.55: Power of the sign depth test and the robust Wald test when testing on a

significant influence of θ1 and θ2 in the model y = θ1x·1 + θ2x·2 + e, but

the data is generated from the model y = θ1x·1 + θ2x·2 + θ3x
2·1 + θ4x

2·2 + e,

where e is normally distributed and x·1 and x·2 consist of N = 100 random

values in the range [−1, 1] each. For the sign depth test an ordering according

to the exact solution of the Shortest Hamiltonian Path problem is chosen and

K is set to 5. The red squares denote a simulated power of 0.05 (= α) or less.

5.7 Application of the Sign Depth Test on Data from a

Bridge Monitoring

Finally, in this section, an application of the sign depth test is shown. So far, the sign

depth test was analyzed on simulated data with testing hypotheses which had only

little practical usage. Now, the sign depth test will be used in a setting which is more

relevant: A multiple regression model is fit to some data and the goodness of the

fit should be found out, i.e. the hypothesis H0 : θ = θ̂ vs. H1 : θ 6= θ̂ is considered

where θ̂ describes the estimator of the fitted model. As seen in the previous section

for such a testing for model checks the sign depth test is a very good choice. For

this, at first the application is described and afterwards two different models are fit

and the fits are tested on their goodness.

As part of the SFB 823: Statistical modelling of nonlinear dynamic processes the

project B5: Statistical Methods for Damage Processes under Cyclic Load deals with

fatigue damage processes in concrete structures and especially with data obtained

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 193

from a bridge monitoring. The monitored highway bridge in Bochum has showed

significant deficits of fatigue strength and several cracks in the concrete with widths

up to 0.5 mm in a routine bridge inspection in 2016. Because of this, a monitoring of

the cracks was installed in June 2016 and has run until the demolition of the bridge

in October 2017 (first roadway) and November 2018 (second roadway), respectively.

Overall, 16 cracks were monitored to detect a potential increase of crack widths as

early as possible since an increase of crack widths may indicate a damage due to

fatigue in the cracked areas. For each of the 16 monitored cracks, every two seconds

the width of the crack was measured. But the crack widths are not constant over

time or slowly increasing but are affected by several things: Firstly, the temperature.

The warmer the air (and so the bridge) is, the larger is the crack. Secondly, the traffic.

When heavy vehicles, like the tram or trucks, pass the bridge the respective crack

widths change rapidly. And thirdly, some anomalous sequences with large variance

0.25

0.30

0.35

0.40

0.45

0.50

0.55

15

20

25

30

12:00 AM 06:00 AM 12:00 PM 06:00 PM 12:00 AM

Time at 5th June 2016

C
ra

ck
W

id
th

(i
n

m
m

) T
em

p
eratu

re
(in

◦C
)

Temperature measured on the top of the bridge

Temperature measured at the bottom of the bridge

Crack width

Figure 5.56: Extract of the crack width measurements for the largest crack (called WWN2)

at 5th June 2016. In addition, two temperature measurements are shown, one

measured on the top of the bridge and one measures at the bottom of the

bridge.

194 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

in the measured crack widths whose reason is unknown, but probably were caused

by technical issues of the measuring devices. All three influence factors can be nicely

seen in Figure 5.56, where the crack widths of the largest crack (called WWN2)

are shown at 5th June 2016. Additionally, two temperatures are displayed. One

temperature is measured at the top of the bridge, which means that this measurement

is highly affect by the weather, especially by the sun. The second temperature is

measured at the bottom of the bridge, which means that this measuring device is

always in the shade and so is not as much affected by the weather and the sun as

the first temperature measurement. In Figure 5.56 the dependance of the crack

width from the temperature can be nicely seen, although the crack width reacts

with a delay on changes in the temperature. Also, a longer time period with these

anomalous sequences in the crack width measurement can be seen in the evening.

And the traffic causes many small peaks in the measurement. The two large peaks

in the early morning were caused by a heavy test load which was conducted at this

day by using a mobile crane of 48 tons.

Further description of the monitoring data and several approaches how to eliminate

the anomalous sequences from the data can be found in Abbas et al. (2019). The

complete data of the monitoring can be found on the website of the SFB 8231.

As mentioned before, the major aim of this bridge monitoring was to detect significant

increases in the crack widths. But such an increase would be clearly smaller than the

normal range the crack width has over day and also smaller than the peak a single

tram or truck causes. Because of this, such a permanent change in the width of the

crack is very difficult to detect and could not be done timely to the measurements,

but has to be done now after completion of the monitoring. In the last years since

the monitoring started in 2016, many approaches were taken to model the crack

widths. For this, the temperature measurements are of high importance since they

caused the large changes in the widths of the cracks. For the other two influencing

factors, the traffic and the anomalous sequences, a simple smoothing of the data is

sufficient to eliminate these effects.

For finding a good model for the crack width in dependance of the temperature the

sign depth test can be used. As mentioned above, it can decide whether a model fits

the data or not. Although we have a multiple regression problem here, the monitoring

data has an inherent order since it is a time-series, so the sign depth test could be

1https://www.statistik.tu-dortmund.de/1938.html

https://www.statistik.tu-dortmund.de/1938.html

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 195

applied without ordering the regression vectors. But Section 5.2 has shown that

using the sign depth test with an ordering according to only one component of the

regression vectors (here: the time) may lead to worse results of the test than when

using all components of the regression vectors for an ordering of the data points. So,

the research question for this section is: Does an ordering according to the exact

solution of the Shortest Hamiltonian Path problem lead to different results of the

sign depth test than using the inherent order of the data in the context of finding a

good description of the crack width of the bridge monitoring? If yes, how does this

effect look like?

To answer this question, some preprocessing of the data is necessary. It was decided

to use the largest crack WWN2 here for the analysis and to neglect the temperature

measurement on the top of the bridge because it is too much affected by the weather.

Furthermore, the crack values and the value of the temperature measurements at the

bottom of the bridge were smoothed by taking the mean of the values for intervals

of 15 minutes each. So, for every day 24 · 4 = 96 observations of the crack width, the

temperature and the time are available. Here, the values of exactly one year, from

1st June 2016 to 31st May 2017, are used. Furthermore, not one big model shall be

fitted, but several smaller models to have several values for the goodness of fit which

can be compared. Because of this, it was decided to fit a model for every time of the

day separately, so that at the end 96 models are fitted, each with up to 365 data

points. As regressors of the models the date (transformed to numeric values), the

crack width 24 hours ago, the temperature and an intercept were chosen. Taking also

the crack width 24 hours ago in consideration seems meaningful since we are here in

the context of time-series where the actual crack width may depend on the previous

value of the crack width. For the temperature not the values of the respective point

in time were used but the temperature four hours ago, since the bridge reacts with a

delay of several hours to changes in the temperature and a short analysis has shown

that four hours seem to be a good estimator for the delay. In addition, the mean

of the temperature at the bottom of the bridge of the last week was added to the

model. This regressor shall describe the level of the temperatures and so the season

of the year. So, overall the models look like

Crack width = θ0 + θ1 · Crack width 24 hours ago + θ2 · Date +

θ3 · Temperature four hours ago +

θ4 · Mean of temperatures of the last seven days + e.

196 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

Since the crack widths and the temperatures have different scales, it was decided to

transform the values of all regressors and the crack width by dividing all values through

the standard deviation of the respective regressor to avoid numerical instability in

the fitting process. The fitting process itself is done with two different methods:

An ordinary least-squares-regression and an MM-regression made by the function

lmRob() from the R-package robust. The latter one was chosen because although the

data was smoothed there are some outliers in the data and especially the crack widths

have different variances in the different seasons of the year. The residuals of the fitted

model are then tested with the sign depth test for the hypothesis H0 : the model

fits the data vs. H1 : the model fits not the data. Firstly, the residuals are ordered

according to their inherent order, the date. And secondly, the residuals are ordered

according to the order obtained by the Shortest Hamiltonian Path when using all

regressors (the intercept, the crack width 24 hours ago, the date, the temperature

four hours ago and the mean of temperatures of the last seven days) for ordering.

Figure 5.57 shows the p-values of the sign depth tests. Every point denotes a pair of

p-values for a model with observations from a specific time of every day. So, overall

for each model type, 96 pairs of p-values are available. The first thing that can be

noticed is that the robust MM-regression fits the data much better than the ordinary

least-squares regression. For the ordinary least-squares regression, all p-values are

very small and clearly smaller than 0.05 which means that the models are regarded

as non-fitting models when testing to the level α = 0.05 independently from the

ordering method. On the other hand, the p-values of the MM-regression are much

larger and many of them are greater than 0.05 so that many models are regarded as

fitting models. This shows that in general an ordinary least-squares-regression is less

suitable for fitting the monitoring data than robust approaches. Next, it is remarkable

that most of the points are located above the bisecting line which means that the

fitting is regarded as better when the regression vectors are ordered according to the

solution of the Shortest Hamiltonian Path problem than when ordered according to

their inherent order. This is a very interesting result: It shows that the ordering

has an effect on the result of the sign depth test at all when applying to real data.

Additionally, it can be seen in Figure 5.57 that some p-values are smaller than 0.05

when ordering according to the date, but greater than 0.05 when ordering according

to the Shortest Hamiltonian Path. However, the reverse case occurs only once. Since

it has been shown in Section 5.2 that an ordering according to the solution of the

Shortest Hamiltonian Path problem leads to larger power of the sign depth test,

using such an ordering although when having an inherent order in the data seems

Chapter 5. Results and Analysis of the Power of the Sign Depth Test 197

0.0

0.2

0.4

0.6

0.0 0.1 0.2 0.3

Ordering according to the Date

O
rd

er
in

g
ac

co
rd

in
g

to
th

e
S
h
or

te
st

H
am

il
to

n
ia

n
P

at
h

Ordinary Least Squares Robust Fitted Model

Figure 5.57: p-values of the sign depth test with K = 3 for fitted ordinary least-squares

models as well as for robust fitted models via MM-regression. Every point

describes a pair of p-values for a fitted model at a specific time of the day.

The solid gray line describes the bisecting line which denotes which p-values

are smaller and which larger when using the Shortest Hamiltonian Path for

ordering instead of the inherent order of the data. The dashed gray lines

denote the level α = 0.05 of the sign depth test.

meaningful. Of course, this example cannot be generalized to all data situations

and in every application it has to be thought again about sensible ways of ordering

the regression vectors. But this thesis has shown that using the sign depth test

in combination with an ordering according to the exact solution of the Shortest

Hamiltonian Path problem is a good idea.

For better comprehension of the data situation, four of the overall 96 fitted models

are shown as examples in the appendix in Figure C.3 on page 230. In addition, here

in Figure 5.58 the regression coefficients of the 96 robust fitted models are shown. It

can be seen that all coefficients are relatively constant over time, so that all fitted

models are similar which is a nice result. Furthermore, it is very interesting that the

coefficient of the date is always positive because this means that all models predict

198 Chapter 5. Results and Analysis of the Power of the Sign Depth Test

0.0

0.5

1.0

1.5

2.0

12:00 AM 06:00 AM 12:00 PM 06:00 PM 12:00 AM

Time of the Day

C
o
effi

ci
en

t
Parameter

Intercept

Crack width 24 hours ago

Date

Temperature four hours ago

Mean of temperatures of the last seven days

Figure 5.58: Coefficients of the 96 fitted models via MM-regression.

the crack width to grow over time. This is an indicator for the progressive damage

of the (in the meantime demolished) bridge.

Chapter 6

Conclusion and Outlook

In this thesis much understanding and many results were achieved about the sign

depth test in the context of multiple linear regression. This chapter summarizes

the results of all chapter once again and gives an outlook about open problems and

future questions in this field.

6.1 Conclusion

The aim of this thesis was to make the sign depth test applicable for multiple

regression. The sign depth test describes a statistical test for testing on parameters of

regression models by counting the number of K-tuples in the vector of residuals which

have alternating signs. In contrast to other tests for this situation, the sign depth

test needs less assumptions. While for example the F -test needs the assumption of

normally distributed errors, the sign depth test only needs the assumption of the

median of the errors being zero. Because of this, the sign depth test can be used

more generally and especially in the context of robust regression. But the sign depth

test had one big disadvantage: In the past, it could not be applied in the context

of multiple regression because the sign depth and the sign depth test depend on

the ordering of the residuals and while the residuals in simple regression follow an

inherent order this is often not the case in the context of multiple regression. This

thesis has found a suitable way to apply the sign depth test also in this situation.

In Chapter 2 the sign depth and sign depth test were described in the context of

robust regression. In addition, the problem of the sign depth test in the context of

199

200 Chapter 6. Conclusion and Outlook

multiple regression was described in detail and the aim of this thesis was presented.

For this, at first some classical robust estimators and tests for linear regression

models were described, like the L1-regression, the LTS-regression and the M-, S- and

MM-regression. Afterwards, the field of data depths was introduced. In this context,

also the sign depth and the sign depth test were defined and its characteristics were

described, see Definition 2.3 on page 16 and Theorem 2.2 on page 19. Furthermore,

in Section 2.7 an example was provided about the problem of the sign depth test in

the context of multiple regression and how crucial the effect of different orderings of

the residuals on the sign depth test may be. At the end of this chapter the aim of this

thesis was described and several research questions for this thesis were formulated.

These questions were answered in Chapters 3, 4 and 5 and will now be summarized

in this chapter.

The first research question in Section 2.8 deals with the possibilities of ordering

multidimensional data. It is asked which methods exist and which characteristics

each method has. Especially, it is of interest which data types can be ordered

(Question 1(a)), whether the orderings are affected by linear transformations of the

data points (Question 1(b)), whether the methods preserve an inherent order in the

data if there is one (Question 1(c)), how large the theoretical and empirical runtimes

of the different ordering methods are (Question 1(d)) and whether there are further

advantages or disadvantages of the ordering methods (Question 1(e)). All these

questions were answered in Chapter 3 where overall 13 different ordering methods for

multidimensional data were described. In particular, reference is made to Table 3.1

on page 82 which summarized the characteristics of the different ordering methods.

But to answer the questions here in a bit more detail, at first it has to be said that

the 13 found ordering methods can be assigned to four groups whose methods have

similar characteristics: Two naive ordering methods, five scalarization based ordering

methods, three ordering methods based on partial sorting and three distance based

ordering methods.

The naive ordering methods were presented in Section 3.1. These methods describe

an ordering according to the appearance of the regression vectors in the data set and

on the other hand a random ordering of the regression vectors. Both methods have

the advantage that the orderings do not depend on the values of the regression vectors

itself, but only on the index numbers of the regression vectors and because of this,

all data types (including nominal and ordinal data) can be ordered and the orderings

are not affected by (linear) transformations of the data points. Furthermore, the

Chapter 6. Conclusion and Outlook 201

theoretical and empirical runtimes of these ordering methods are very small. On the

other hand, only the ordering according to the appearance of the regression vectors

in the data set preserves an inherent order in the data and this is also only the case

if the regression vectors are already ordered according to that inherent order in the

data set. If this is not the case or a random order is chosen, a possible inherent order

in the data set is not preserved.

The scalarization based methods were described in Section 3.2. Its way to order

multidimensional regression vectors is to scalarize each regression vector and order the

regression vectors according to these scalarized values. Two of the described methods

are only special cases of a third one: Taking only the values of one component

of each regression vector for ordering and taking a weighted sum of the values of

each regression vector can both also be expressed as an ordering according to an

orthogonal projection on a line with different parameters of the line. Also the fourth

method, an ordering according to the median value of each regression vector, is a

special case of the projection method in the two-dimensional case. Only the fifth

method, an ordering according to the values of a vector norm of each regression

vector, is really different to the other methods. All five methods have in common

that they need metric values for ordering. Nominal or ordinal components in the

regression vectors are not allowed, with the only exception that when using only the

values of one component for ordering the data types of the other components do not

matter. The results of all scalarization based methods except the ordering according

to the values of a vector norm are invariant to linear transformations of the data

points. Possibly the obtained orders may be reversed after linear transformation of

the data points, but this does not matter for the sign depth and the sign depth test.

On the other hand, when ordering according to the values of a vector norm the data

points can only be transformed multiplicatively without changing the order, but not

additively. And this ordering method has a further disadvantage to the others: When

having only one-dimensional data the inherent order is not preserved. When having

an inherent order in higher dimensional data, all scalarization based methods do not

preserve this order necessarily. An advantage of all scalarization based methods is

their rather small computational runtime, theoretical as well as empirical. Although

the runtimes are larger than those of the naive ordering methods, all runtimes depend

only linearly on the number of data points and possibly on the number of dimensions.

The ordering methods based on partial sorting of the regression vectors are described

in Section 3.3. These methods order the regression vectors multivariately. Because

202 Chapter 6. Conclusion and Outlook

this only leads to a partial order of the regression vectors, in a second step the

regression vectors with the same rank in the partial sorting process have to be

ordered somehow. In this thesis, three ordering methods based on partial sorting

were described: A partial sorting on the basis of a nondominated sorting, a partial

sorting based on convex hulls and a partial sorting based on the values of Tukey’s

halfspace depth. At the beginning of Section 3.3 a large disadvantage of all three

methods is described: These methods can only be applied in relatively few dimensions.

When the data is higher dimensional the partial sorting does not work anymore

because in this case (nearly) all regression vectors get the same rank. This behavior

is visualized in Figure 3.17 on page 50. Another disadvantage of these methods is

their complexity. While the naive ordering methods and the scalarization based

ordering methods were easily understandable, this is not necessarily the case for the

methods based on partial sorting. In addition, like the scalarization based methods,

these ordering methods need metric data, nominal or ordinal components in the

regression vectors are not possible. Furthermore, the theoretical time complexities

as well as the empirical computational runtimes of these ordering methods are very

large, for the ordering method based on convex hulls and the ordering according to

the values of the halfspace depth up to exponential in the number of data points

in the worst case. But these two methods have the advantage that the data points

can be transformed linearly without changing the resulting order. This is not the

case for the nondominated sorting method: Here, when transforming the data points

multiplicatively the order may change. On the other hand, the nondominated sorting

method is the only method of these three which preserves an inherent one-dimensional

order. But when having an inherent order in higher dimensions, all three methods

may fail to preserve this order.

The last group of presented ordering methods is the group of distance based methods

presented in Section 3.4. The aim of these methods is to order regression vectors

with a small pairwise distance near to each other and regression vectors with a large

pairwise distance far away from each other. This easily understandable concept

is used by three different ordering methods: Firstly, by searching for the exact

solution of the Shortest Hamiltonian Path problem, secondly, by an approximation

of it and thirdly, by using the order of a dendrogram obtained by a hierarchical

clustering process. The approximation of the Shortest Hamiltonian Path problem is

considered here because the computational time complexity of searching for the exact

solution is exponential in the number of data points in the worst case which is a big

disadvantage of this ordering method. Also, the other two ordering methods have

Chapter 6. Conclusion and Outlook 203

relatively large time complexities. The approximation of the Shortest Hamiltonian

Path is cubic in the number of data points and the hierarchical clustering quadratic.

But while the empirical runtimes of both methods based on the Shortest Hamiltonian

Path problem are also relatively large (and indeed have the same magnitude), the

empirical runtimes of the hierarchical clustering are quite small. But besides of the

relatively large computational time complexities, there exist only advantages of these

methods. Firstly, the obtained orders of these methods are not affected by linear

transformations of the data points because the methods do not base on the values

of the regression vectors itself, but only on the pairwise distances. Secondly, this

is also the cause why these ordering methods can be used also for non-metric data

or data where single components are non-metric. As long as a meaningful distance

measure exists and the pairwise distances can be calculated all of these methods are

applicable. Furthermore, these methods usually preserve inherent orders in the data.

Especially, in the one-dimensional case an inherent order will be preserved for sure.

The second research question in Section 2.8 deals with the implementation of the

sign depth, the sign depth test and the ordering methods in R. It is asked how these

things can be efficiently implemented and how these implementations can be made

usable for other people.

This research question is answered in Chapter 4, where the developed software for this

thesis was described. The most challenging task in this regard was implementing the

sign depth since for calculating the sign depth
(
N
K

)
summands have to be calculated.

Although in the meantime Dennis Malcherczyk and Kevin Leckey have found a way

to compute an (asymptotic) version of the sign depth in linear time complexity in

the number of data points, for this thesis three different implementations of the sign

depth were developed before calculating the sign depth in linear time complexity

was possible. These three versions were described in Section 4.1. Although none

of these implementations is able to compute the sign depth in less time complexity

than O(
(
N
K

)
), the empirical runtimes strongly decrease from version one to three,

see Figure 4.3 on page 95. This speed up was obtained by two things: Firstly,

clever summarization of the summands of the sign depth and secondly, using the

programming language C++ instead of R.

In contrast to implementing the sign depth implementing the sign depth test and

the ordering methods was quite easy. These implementations were described in

Sections 4.2 and 4.3. The sign depth test was implemented in two ways: Either

with a vector of residuals as input or with a model description and parameters for

204 Chapter 6. Conclusion and Outlook

testing as input. For both ways of course the distribution of the sign depth has to be

known for getting the necessary quantile for the sign depth test. These quantiles were

simulated for N ≤ 100 and K ≤ 5 for this purpose. Regarding the implementation

of the ordering methods, the only challenging thing in this regard was to connect

the TSP-solver Concorde to R which is needed for computing the exact solution of

the Shortest Hamiltonian Path problem. Unfortunately, every user has to do this on

his/her own when wanting to use the respective ordering method, this could not be

made globally. The twelve other ordering methods could be easily implemented or

extracted from other R-packages.

The last part of the second research question deals with the possibilities to make

the implementations available for other people. For this, in Section 4.4 the R-

package GSignTest is described which was written during this thesis and contains

three implementations of the sign depth (the best one described in Section 4.1, the

asymptotic one in linear time complexity as well as the block-implementation from

Dennis Malcherczyk), the sign depth test, all described ordering methods as well as

the F -test and the classical sign test. For making this package available for other

people this package was uploaded to GitHub where everybody can download it for

free.

The third research question of Section 2.8 deals with the power of the sign depth

test in dependance of the different ordering methods. It is of interest which ordering

method performs best, where the performance is measured by looking at and analyzing

simulated power functions. Especially, the effect of different numbers of data points

(Question 3(a)), different values of the parameter K of the sign depth (Question 3(b)),

different underlying data sets (Question 3(c)), different error distributions in the

simulated data sets (Question 3(d)), different values of possible hyper-parameters of

the ordering methods (Question 3(e)) and different linear models (Question 3(f)) is

of interest.

The research questions 3(a) - 3(e) were answered in Section 5.2. In this section,

power functions were simulated for testing on H0 : θ = 0 vs. H1 : θ 6= 0 in the model

y = θ1x·1 + θ2x·2 + e. In general, the simulated power functions have shown that

the underlying data set, the error distribution in the data and the hyper-parameters

of the ordering methods have no or only little effect on the power of the sign depth

test, independent of the ordering method. Only the hierarchical clustering method is

affected a little bit more by its hyper-parameter which describes the linkage function.

But Subsections 5.2.1 and 5.2.4 showed that the power of the sign depth test depends

Chapter 6. Conclusion and Outlook 205

on the number of data points and the value of the parameter K of the sign depth.

While for K in general larger values are better than smaller ones and odd values are

better than even values, for the number of data points of course the power of the sign

depth test should increase for larger values. But indeed, this was not the case for all

of the ordering methods. For the naive ordering methods and the ordering according

to a vector norm the power is always about α, independent from the number of data

points and for the methods based on convex hulls and on Tukey’s halfspace depth the

power is even decreasing when increasing the number of data points. The eight other

ordering methods have performed better. The four remaining scalarization based

methods and the ordering methods based on a nondominated sorting all produce

power functions which have a direction with low power in it. Although the power in

all other directions is very good this behavior is not desirable. The three distance

based ordering methods instead have performed completely satisfying: Its power

is low only in or near the area of H0 and otherwise quite great. In all considered

situations the ordering based on the exact solution of the Shortest Hamiltonian Path

problem performed best whereas the two other distance based ordering methods

were slightly worse. A good overview of the power of the sign depth test applied

with the different ordering methods in dependance of the number of data points

and the value of K can be found in Figure 5.23 on page 141. As a conclusion from

this section it can be said that the sign depth test is better the less ”mess” there is

in the ordering of the regression vectors. Because of this, only the distance based

ordering methods shall be used when applying the sign depth test in the context

of multiple regression. In particular, if possible, the exact solution of the Shortest

Hamiltonian Path problem shall be used because it leads to the best performance of

the sign depth test.

The research question 3(f) was answered in Section 5.3. In this section the distance

based ordering methods were applied on different linear models: Models with intercept,

models with interactions, a quadratic regression model and really high dimensional

models. The results were in general the same as in the section before: The distance

based ordering methods lead to satisfying simulated power functions, where the

best power is achieved when using the exact solution of the Shortest Hamiltonian

Path problem for ordering. So, the sign depth test can be used independently of the

characteristics of the regressors in the linear model. But, it was noticed that the

power in the direction of parameters of interactions or quadratic terms is slightly

smaller than in other directions. Especially, in the direction of the parameter of an

intercept the power is very great, so that already small deviations from the true

206 Chapter 6. Conclusion and Outlook

intercept are noticed by the sign depth test whereas deviations in interactions or

quadratic terms have to be larger to be noticed by the test. Subsection 5.3.4 has

shown further interesting results regarding different linear models when using the

sign depth test. In this subsection very high dimensional models were considered with

up to 80 dimensions. It has been shown that for these large number of dimensions

relatively small values of K are not sufficient anymore to get a good power of the

sign depth test. Instead, the value of K should have at least the same magnitude as

the number of dimensions and really great power values are only achieved if K is

larger than the number of dimensions.

The fourth research question in Section 2.8 deals with the question how the sign

depth test performs in contrast to other tests on the parameters of linear regression

models. For this, three tests should be considered: The classical sign test, the F -test

and a robust Wald test.

This question was answered in the Sections 5.5 and 5.6. In Section 5.5 the three tests

were compared with the sign depth test in some situations of Sections 5.2 and 5.3,

i.e. for different data and model situations. For comparison in this section always

the exact solution of the Shortest Hamiltonian Path problem was used for ordering

the regression vectors and the parameter K of the sign depth was set to 5 because

the previous sections have shown that in this case the sign depth test performs best.

In general, the classical sign test has performed very badly in all situations and

the F -test of course cannot be beaten when having normally distributed errors, but

performs rather badly when having non-normally distributed errors. In contrast, the

robust Wald test performed very good in all situations and often (slightly) better

than the sign depth test which had also satisfying results in all situations. The only

exception were models with a very large number of dimensions. While the sign depth

test worked in these situations (although the power of the test was rather bad), the

robust Wald test could not be carried out anymore due to numerical reasons. Already

for a medium number of dimensions, the robust Wald test had not maintained the

level of the test anymore which was never the case for the sign depth test. Also

in Section 5.6 the robust Wald test performed quite badly. In this section the sign

depth test was compared to the robust Wald test in the situation of model checks,

i.e. when one or more regressors were not seen in the data. Here, the sign depth test

performed much better than the robust Wald test because the sign depth test does

not depend on an estimation of the parameter vector.

Chapter 6. Conclusion and Outlook 207

The last research question of Section 2.8 asked how the sign depth test performs on

real data. For answering this, in Section 5.7 the sign depth test was applied to data

from a bridge monitoring. It was examined if the crack width of a crack in this bridge

could be sufficiently modeled by the temperature, the date and the previous crack

width. For this, both an ordinary least-squares model and a robust regression model

were used and the fits of the models were compared with the sign depth test. As

seen in Section 5.6 before, the sign depth test performs really satisfying when using

it for such model checks. Although this data can be regarded as time-series with an

inherent order in it, it was also looked at the effect of a multidimensional ordering of

the regression vectors considering all regressors. Here, it was shown that an ordering

according to the exact solution of the Shortest Hamiltonian Path problem leads

to changes in the p-values of the sign depth test in contrast to using the inherent

order, but the general result of the test remained the same: The poorly fitting

ordinary least-squares models were again seen as poorly fitting, whereas the robust

models were mostly considered as good fitting, independent of whether the regression

vectors were ordered according to the exact solution of the Shortest Hamiltonian

Path problem or according to the inherent order. So, in this case, the performance

of the sign depth test was really satisfying.

To summarize the obtained results in this thesis it can be said that the goal making

the sign depth test applicable for multiple regression is fulfilled. For using the sign

depth test in this situation, an ordering of the regression vectors is necessary. For

this, always methods based on pairwise distances of the regression vectors should

be used. If possible, the regression vectors should be ordered according to the exact

solution of the Shortest Hamiltonian Path problem. Although this method has a large

computational time complexity, the empirical runtimes of ordering several hundreds

of regression vectors are not too large. The approximate solution of the Shortest

Hamiltonian Path problem should only be used for ordering when the exact solver

is not available due to technical reasons because its performance is worse than the

performance of the exact solution and an advantage in the empirical runtimes could

not be seen for up to 1 000 data points. If a speed up of the sign depth test is needed

or a data set with a really large number of data points is used, the hierarchical

clustering method should be used for ordering because its empirical runtimes are

very low and although its performance is worse than the one of the exact solution of

the Shortest Hamiltonian Path problem it is still better than all other considered

ordering methods.

208 Chapter 6. Conclusion and Outlook

All in all, the sign depth test is competitive to other tests for multiple regression.

Although its performance is sometimes slightly worse than those of a robust Wald

test or, in case of normally distributed errors, the F -test, it has many advantages

like its general usability and its easy comprehensibility. Furthermore, in the case of

model checks it outperforms the robust Wald test clearly.

6.2 Outlook

This thesis has led to much understanding about the sign depth test in the context

of multiple regression. But although this thesis has answered many questions, some

questions are still open and there is much more potential for research in the field of

sign depths and sign depth tests in the context of multiple regression as well as in

different contexts. This section will give a short overview over open questions and

possible future research topics.

In this thesis a large number of simulations was carried out. Although they cover a

wide range of possible situations, there can be done much more in the future. In the

following, ten possible future research questions are formulated.

Firstly, the simulations in this thesis were limited to up to only 100 data points in the

data sets. There is not much doubt that the sign depth test would perform similarly

when having much more data points, but to be sure and also for analyzing the

empirical runtimes of the sign depth test and the ordering methods in this context,

simulations with larger numbers of data points could be carried out. Of course, for

this at first quantiles of the distribution of the K-sign depth have to be simulated

for the respective number of data points.

Secondly, it could be seen especially in Subsection 5.2.4 that the sign depth test

seems to perform differently when choosing odd or even values for K. The reason for

this behavior is still unknown and an interesting research question. In addition, it is

not cleared why for example the power of the sign depth test is more affected by this

when using scalarization based ordering methods than when using distance based

ordering methods.

Thirdly, by using Cauchy distributed errors in this thesis only the case of outliers

in the response variable was considered. The case of outliers in the regressors (i.e.

leverage points) was neglected. But this case is of big interest in this context,

Chapter 6. Conclusion and Outlook 209

especially because leverage points do also affect the ordering of the regression vectors.

Here, the ordering methods could be analyzed regarding their robustness and the

effect on the power of the sign depth test could be analyzed in this situation.

Fourthly, this thesis has shown that the sign depth test performs best when using

distance based methods for ordering the regression vectors. Three different methods

for this were proposed. But of course, there may be more possible methods. Especially,

in the context of approximate solutions of the Shortest Hamiltonian Path problem

there exist more approaches than the here used nearest neighbor approach, see for

example Rego et al. (2011). Since the results in this thesis have shown that the

nearest neighbor approach has quite large empirical runtimes and its performance is

clearly worse than the performance of the exact solution, it is of great interest whether

some other approximations perform better and have smaller empirical runtimes.

Fifthly, Section 5.4 has shown that there may be small differences in the performance

of the sign depth test when using the design vectors for ordering instead of the

regression vectors. This effect seems to be very small, but was only analyzed

exemplary for one model. Here, some more research about this effect may be useful.

Sixthly, for the simulations in this thesis only metric regressors were considered. As

stated in Section 3.4, the distance based ordering methods could also be used for

non-metric data if pairwise distances between the regression vectors could be still

calculated. This is possible when using for example the so-called Gower’s distance

which is based on Gower’s coefficient (Gower, 1971) and implemented for example in

the function daisy() in the R-package cluster (Maechler et al., 2019b).

Seventhly, in this thesis the sign depth test always was used for testing on a fixed

parameter vector of a linear model. Often, not the complete parameter vector is

of interest, but only the influence of some components. Also in this case the sign

depth test can be used for testing, but its performance in such situations, especially

in contrast to other (robust) tests, has not been examined in detail so far.

Eighthly, the results of Subsection 5.3.4 and Section 5.6 were very interesting and

promising. But in the field of testing high-dimensional models and performing

model checks many more things can be examined. For example, in the context of

high-dimensional models the following questions arise: How much has the value of

K be larger than the number of dimensions to obtain satisfying results? Which is

the largest possible value of K before getting numerical instability of the sign depth

210 Chapter 6. Conclusion and Outlook

values? Does this value also depend on the number of data points? And in the

context of performing model checks with the help of the sign depth test it can be

asked whether this test performs in all situations as well as seen in Section 5.6 or if

there are situations where the test fails.

Ninthly, in this thesis the sign depth test was compared with the classical sign test,

the F -test and a robust Wald test. Of course, in literature there exist more (robust)

tests for testing on parameters in linear models, for example the τ -test (see for

example Section 7.2 of Hampel et al. (1986)). For getting a better impression of the

performance of the sign depth test, its performance should be compared to more

tests in the future.

Tenthly, the application of the sign depth test is not limited to linear regression.

Kustosz et al. (2016a) and Kustosz et al. (2016b) have used the sign depth test for

example for time-series, where because of the inherent order in the data no problem

with ordering regression vectors occurred. But for other model classes there may be

no inherent order of multidimensional regression vectors. For example, there is the

big field of generalized linear models, for which the performance of the sign depth

test could also be analyzed in many different situations.

Of course, the research about sign depths and sign depth tests is not limited to the

mainly simulative approach as in this thesis. Also, theoretically many things about

the behavior and the characteristics of sign depths can be analyzed: consistency of

the tests, structure of the distributions of the sign depths including quantiles and

extremes, cases of failure of the test and much more. In addition, also the time

complexity of the calculation of the sign depths is a current research topic. For this,

several approaches exist, which were developed mainly by Dennis Malcherczyk.

It can be seen that there are many more interesting research questions in the context

of sign depths and sign depth tests. Hopefully, many of them can be answered in the

future. I would be glad by being part of it!

Chapter 6. Conclusion and Outlook 211

Acknowledgment

The author gratefully acknowledge support from the Collaborative Research Center

”Statistical Modelling of Nonlinear Dynamic Processes” (SFB 823, B5) of the German

Research Foundation (DFG).

The author gratefully acknowledge the computing time provided on the Linux HPC

cluster at Technical University Dortmund (LiDO3), partially funded in the course of

the Large-Scale Equipment Initiative by the German Research Foundation (DFG) as

project 271512359.

212 Chapter 6. Conclusion and Outlook

Appendix A

Theorems and Algorithms

Theorem A.1. The F -test for ordinary least-squares regression

Let y = Xθ+ e be a linear model with rank(X) = D < N and θ̂ = (X>X)−1X>y.

The hypothesis H0 : θ = θ0 vs. H1 : θ 6= θ0 can be rejected to the level α ∈ (0, 1) if

N −D
D

(θ̂ − θ0)>(X>X)(θ̂ − θ0)

ê(θ̂)>ê(θ̂)
> FD,N−D,1−α,

where FD,N−D,1−α denotes the (1 − α)-quantile of the F -distribution with D and

N −D degrees of freedom.

Theorem A.2. The sign test

Let y = Xθ+ e be a linear model and N+ the number of positive residuals under the

null-hypothesis, i.e. N+ = #{ê(θ0) > 0}. The hypothesis H0 : θ = θ0 vs. H1 : θ 6= θ0

can be rejected to the level α ∈ (0, 1) if

N+ /∈ [qN,0.5,α/2, qN,0.5,1−α/2],

where qN,0.5,α denotes the α-quantile of the Binomial distribution with parameters N

and 0.5.

213

214 Chapter A. Theorems and Algorithms

Algorithm A.1 Naive algorithm for computing the simple regression model

y = θ0 + θ1x·1 + e with maximal K-sign depth.

Input: Data set Z ∈ RN×3, where one column has constant value 1, one column

consists of the values of the regressor x·1 and the last column consists of the

values of the response variable y; Parameter K of the sign depth

Output: Parameter vector θ̂ = (θ0, θ1)>, which leads the the maximal K-sign depth

1: Compute all
(
N
2

)
combinations of values zn1 and zn2 , n1, n2 = 1, . . . , N .

2: max sign depth = 0

3: for all combinations do

4: θ0 = yn1 − xn1 ·
yn2−yn1

xn2−xn1

5: θ1 =
yn2−yn1

xn2−xn1

6: Compute residuals ê(θ) = y − θ0 − θ1x·1.

7: Compute the K-sign depth current depth of the residuals

8: if current depth > max sign depth then

9: max sign depth = current depth

10: Cache the values of θ0 and θ1

11: end if

12: end for

13: return The last cached values of θ̂ = (θ0, θ1)>

Appendix B

Further Implementations

In this chapter, further implementations are shown. The codes are written in C++

with the help of the R-package Rcpp (Eddelbuettel and Balamuta, 2017).

1 // signC: helper -function: the sign -function

2 // input: double x: the value to determine the sign of

3 // output: int: 1, if x is positive , 0 if x is 0,

4 // -1, if x is negative

5

6 int signC(double x) {

7 if (x > 0) {

8 return 1;

9 } else if (x == 0) {

10 return 0;

11 } else {

12 return -1;

13 }

14 }

Code B.1: A simple sign function which is needed in Code B.2 and Code B.6.

215

216 Chapter B. Further Implementations

1 // calcSwitchSign: helper -function: determines if a vector has

2 // alternating signs

3 // input: NumericVector v: The underlying vector

4 // IntegerVector ind: the indices one wants to look at

5 // (ind has length K)

6 // output: double: 1 if v[ind] has alternating signs , 0 otherwise

7

8 double calcSwitchSign(NumericVector v, IntegerVector ind) {

9 int K = ind.size();

10 double counter = 1;

11 int tmp = signC(v[ind [0]]);

12 for(int i = 1; i < K; i++) {

13 if(signC(v[ind[i]]) == tmp) {

14 counter = 0;

15 break;

16 } else {

17 tmp *= -1;

18 }

19 }

20 return counter;

21 }

Code B.2: Function for checking whether a vector has alternating signs. This function is

needed in Code B.4. A pseudocode of this algorithm is given in Algorithm 4.3

on page 89.

Chapter B. Further Implementations 217

1 // calcNextVec: helper -function: calculates the "next" combination

2 // of values given an old combination

3 // (Ordering is like in the R-function combn())

4 // input: IntegerVector o: an "old" index -vector

5 // int N: the maximal possible value in the output

6 // int K: the length of o

7 // output: IntegerVector: output has length K.

8 // The "next" index -vector

9

10 IntegerVector calcNextVec(IntegerVector o, int N, int K) {

11

12 IntegerVector n(K);

13

14 // Calculate the position for increasing

15 int j = K - 1;

16 while(o[j] == N - K + j)

17 j--;

18

19 // All values before j stay the same

20 for(int i = 0; i < j; i++)

21 n[i] = o[i];

22

23 // Increase the value at j

24 n[j] = o[j] + 1;

25

26 // Increase all following values by one

27 for(int i = j + 1; i < K; i++)

28 n[i] = n[i - 1] + 1;

29

30 return n;

31 }

Code B.3: Computing the ”next” index vector on the basis of an old one. See Algorithm 4.2

on page 88.

218 Chapter B. Further Implementations

1 // calcDepth: calculates the K-sign depth of a given vector of

2 // residuals.

3 //

4 // Input: NumericVector e: the residuals

5 // int K: the K of the sign depth

6 // Output: double: the calculated K-sign depth of e.

7

8 double calcDepth(NumericVector e, int K) {

9

10 int N = e.size();

11 if(N < K)

12 stop("Cannot calculate Depth when K is larger than the numbers

of residuals");

13

14 double num = 0;

15 double denom = Rf_choose(N, K);

16

17 // Create the "first" index vector and check whether it has

18 // alternating signs

19 IntegerVector o(K);

20 for(int i = 0; i < K; i++)

21 o[i] = i;

22 num = calcSwitchSign(e, o);

23

24 // Calculate the numerator of the K-sign depth

25 IntegerVector n(K);

26 for(int i = 1; i < denom; i++) {

27 n = calcNextVec(o, N, K);

28 num += calcSwitchSign(e, n);

29 o = n;

30 }

31

32 return num / denom;

33 }

Code B.4: Computation of the K-sign depth with iteratively computing the index combi-

nations. A pseudocode of this algorithm is given in Algorithm 4.4 on page 90.

Chapter B. Further Implementations 219

1 // recFun: Recursive function used in calcFastDepth () for computing

2 // the sign depth

3 // Input: IntegerVector r: Vector of signs

4 // int K: length of considered tuple

5 // int j: index

6 // int SignOld: sign of previous residual

7 // Output: int: number of alternating K tuples starting at r[j]

8

9 int recFun(IntegerVector r, int K, int j, int signOld) {

10 if (r[j] == signOld) return 0;

11 if (K == 1) return 1;

12 int N = r.size();

13 int result = 0;

14 for (int i = j + 1; i < n - K + 2; i++)

15 result += recFun(r, K - 1, i, r[j]);

16 return result;

17 }

Code B.5: C++-implementation of recFun() described in Algorithm 4.5 on page 92.

1 // calcFastDepth: calculates the K-sign depth of a given

2 // vector of residuals.

3 //

4 // Input: NumericVector e: the residuals

5 // int K: the K of the sign depth

6 // Output: double: the calculated K-sign depth of e.

7

8 double calcFastDepth(NumericVector e, int K) {

9 int N = res.size();

10 if(N < K)

11 stop("Cannot calculate Depth when K is larger than the numbers

of residuals");

12 IntegerVector r = signC(e);

13 int num = 0;

14 for(int i = 0; i < N - K + 1; i++) {

15 num += recFun(r, K, i, 0);

16 }

17 return num / Rf_choose(N, K);

18 }

Code B.6: Recursive implementation of the K-sign depth, see Algorithm 4.6 on page 92.

220 Chapter B. Further Implementations

Appendix C

Further Results and Graphics

C.1 Further Results and Graphics of Chapter 3

Method D N = 200 N = 400 N = 600 N = 800 N = 1 000

1 0.0003 0.0003 0.0003 0.0003 0.0003

2 0.0003 0.0003 0.0003 0.0004 0.0003

3 0.0003 0.0003 0.0004 0.0004 0.0004

Order 4 0.0003 0.0004 0.0004 0.0004 0.0004

of the 10 0.0004 0.0004 0.0004 0.0005 0.0005

Data Set 20 0.0005 0.0005 0.0006 0.0006 0.0006

50 0.0008 0.0008 0.0009 0.0010 0.0010

100 0.0012 0.0013 0.0015 0.0016 0.0017

1 0.0003 0.0003 0.0003 0.0003 0.0003

2 0.0004 0.0004 0.0003 0.0004 0.0004

3 0.0004 0.0004 0.0004 0.0004 0.0004

Random 4 0.0004 0.0004 0.0004 0.0004 0.0004

Order 10 0.0004 0.0004 0.0004 0.0005 0.0005

20 0.0005 0.0005 0.0006 0.0006 0.0006

50 0.0008 0.0009 0.0009 0.0010 0.0011

100 0.0012 0.0013 0.0015 0.0016 0.0017

221

222 Chapter C. Further Results and Graphics

Method D N = 200 N = 400 N = 600 N = 800 N = 1000

1 0.0010 0.0015 0.0019 0.0023 0.0027

2 0.0010 0.0015 0.0020 0.0024 0.0028

3 0.0011 0.0015 0.0020 0.0025 0.0029

Norm 4 0.0011 0.0016 0.0020 0.0025 0.0030

10 0.0012 0.0018 0.0022 0.0029 0.0034

20 0.0016 0.0023 0.0029 0.0036 0.0043

50 0.0021 0.0030 0.0039 0.0048 0.0055

100 0.0029 0.0042 0.0053 0.0065 0.0078

1 0.0061 0.0118 0.0173 0.0229 0.0287

2 0.0078 0.0150 0.0222 0.0294 0.0373

3 0.0064 0.0120 0.0178 0.0235 0.0291

Median 4 0.0078 0.0150 0.0225 0.0296 0.0376

10 0.0081 0.0156 0.0230 0.0307 0.0384

20 0.0087 0.0165 0.0244 0.0323 0.0403

50 0.0098 0.0182 0.0267 0.0350 0.0442

100 0.0112 0.0206 0.0298 0.0398 0.0500

1 0.0004 0.0004 0.0004 0.0005 0.0005

2 0.0005 0.0005 0.0005 0.0005 0.0006

3 0.0005 0.0005 0.0005 0.0006 0.0006

Taking 4 0.0005 0.0005 0.0005 0.0006 0.0006

only One 10 0.0005 0.0006 0.0006 0.0006 0.0007

Component 20 0.0007 0.0007 0.0008 0.0008 0.0009

50 0.0010 0.0011 0.0012 0.0012 0.0013

100 0.0015 0.0016 0.0018 0.0020 0.0021

1 0.0005 0.0005 0.0006 0.0006 0.0006

2 0.0006 0.0007 0.0006 0.0007 0.0007

3 0.0006 0.0006 0.0007 0.0007 0.0007

Weighted 4 0.0007 0.0007 0.0007 0.0008 0.0008

Sum 10 0.0007 0.0008 0.0009 0.0009 0.0010

20 0.0010 0.0011 0.0012 0.0012 0.0013

50 0.0015 0.0017 0.0020 0.0021 0.0024

100 0.0025 0.0029 0.0033 0.0037 0.0042

Chapter C. Further Results and Graphics 223

Method D N = 200 N = 400 N = 600 N = 800 N = 1000

1 0.0012 0.0016 0.0020 0.0024 0.0029

2 0.0013 0.0018 0.0023 0.0027 0.0031

3 0.0013 0.0018 0.0024 0.0028 0.0034

Orthogonal 4 0.0013 0.0019 0.0023 0.0029 0.0034

Projection 10 0.0015 0.0021 0.0026 0.0034 0.0040

20 0.0019 0.0028 0.0035 0.0042 0.0049

50 0.0027 0.0037 0.0047 0.0058 0.0069

100 0.0039 0.0054 0.0070 0.0086 0.0102

1 0.8324 3.3718 7.6705 13.9339 22.1543

2 3.9227 15.9386 35.5911 63.4982 98.8578

3 4.5597 18.5137 41.0351 73.4129 114.7499

Nondominated 4 5.2563 21.1785 47.7421 84.2942 131.2823

Sorting 10 9.5994 38.2405 85.7279 153.4971 240.7873

20 17.0616 68.4228 152.5466 273.1385 425.7929

50 39.4030 157.2094 353.3438 626.3493 979.9437

100 77.2364 307.7078 688.9082 1228.7646 1915.7058

1 0.2899 0.8211 1.6626 2.8087 4.2244

2 0.4803 1.0849 2.0093 2.9377 4.2019

3 0.4699 1.3248 2.8403 4.6583 6.3406

Convex 4 0.5027 1.6008 3.0990 4.7090 6.6732

Hull 10 144.1640 665.3777 1474.4174 2531.3699 3687.5023

20 341.3908 340.2331 343.0663 351.5732 359.3921

50 378.3224 377.7972 387.1958 389.9978 395.6217

100

1 5.1465 19.2338 41.6567 73.9024 117.9331

2 5.6109 19.9908 43.0630 75.0212 113.8194

3 5.6199 20.4481 42.9085 76.8782 119.1387

Halfspace 4 5.8156 19.9264 42.3194 76.8346 114.0558

Depth 10 6.2754 22.0333 48.7999 82.2124 126.2264

20 6.8064 23.1262 51.7690 84.3729 132.3699

50 8.4549 26.6148 55.2507 92.5085 138.5278

100 11.3093 32.5389 64.4420 107.1481 156.0145

224 Chapter C. Further Results and Graphics

Method D N = 200 N = 400 N = 600 N = 800 N = 1000

1 0.2901 0.8708 1.7870 2.9416 4.2861

2 0.7693 5.9061 15.7736 49.4663 83.8316

3 0.9230 3.7431 7.5536 12.7607 21.0504

Shortest 4 0.8121 3.0953 5.8133 8.8990 14.4815

Hamiltonian 10 0.8106 2.9934 5.1815 7.5932 13.3471

Path 20 0.9165 3.0365 5.5343 9.2464 13.7624

50 1.2011 3.4868 5.7618 11.8676 17.3258

100 1.0107 3.5993 7.6992 12.5747 17.2181

1 0.6557 4.1341 13.8947 36.7756 70.5320

2 0.6501 4.2284 14.2549 36.5267 68.2966

3 0.6504 4.1579 14.0209 36.0181 66.6280

Nearest 4 0.6655 4.2079 13.7341 36.2438 68.5275

Neighbor 10 0.6536 4.1425 13.7903 36.5060 68.7059

Heuristic 20 0.6658 4.2924 13.7143 36.2407 66.8821

50 0.6789 4.2368 14.1209 36.1265 69.2928

100 0.6693 4.3258 14.0899 37.5369 67.1088

1 0.0020 0.0063 0.0133 0.0233 0.0377

2 0.0024 0.0072 0.0151 0.0278 0.0433

3 0.0025 0.0079 0.0169 0.0308 0.0478

Hierarchical 4 0.0027 0.0087 0.0192 0.0339 0.0529

Clustering 10 0.0039 0.0133 0.0298 0.0512 0.0819

20 0.0062 0.0214 0.0473 0.0847 0.1304

50 0.0119 0.0435 0.0962 0.1716 0.2678

100 0.0214 0.0803 0.1790 0.3171 0.4949

Table C.1: Median runtime (in seconds) of the ordering methods presented in Chapter 3.

Proof C.1. Time complexity of the Quickhull algorithm (Algorithms 3.2

and 3.3)

a) Average Case (i.e. the groups are divided in equal sized parts):

Let TA(N) the function of the average time complexity of the procedure FindHull

dependent of the number of data points N and let ci, i ∈ N be positive constant

values.

If N = 1, the time complexity of FindHull is constant, i.e. TA(1) = c1.

Chapter C. Further Results and Graphics 225

For N > 1, lines 1 to 3 of Algorithm 3.3 have constant time complexity c1

and lines 4 to 6 have linear time complexity c2 ·N . When the data set is split

in two groups with N/2 data points each, lines 7 and 8 have time complexity

TA(N
2

) each. For all k ∈ N with k ≤ log2(N), this leads to a time complexity

of FindHull of

TA(N) = 2 · TA
(
N

2

)
+ c2N + c1

= 2 ·
(

2 · TA
(
N

22

)
+ c2

N

2
+ c1

)
+ c2N + c1

= 22 · TA
(
N

22

)
+ 2c2N + 2c1 + c1

= 22 ·
(

2 · TA
(
N

23

)
+ c2

N

22
+ c1

)
+ 2c2N + 2c1 + c1

= 23 · TA
(
N

23

)
+ 3c2N + 22c1 + 2c1 + c1

= . . .

= 2k · TA
(
N

2k

)
+ kc2N + c1

k−1∑
i=0

2i

= 2k · TA
(
N

2k

)
+ kc2N + c1 · (2k − 1)

For k = log2(N), the time complexity is

TA(N) = 2log2(N) · TA
(

N

2log2(N)

)
+ log2(N)c2N + c1 · (2log2(N) − 1)

= N · T (1) + c2N log2(N) + c1(N − 1)

= c1N + c1(N − 1) + c2N log2(N)

= c1(2N − 1) + c2N log2(N)

The average time complexity of Quickhull composes of the linear time complexity

of the first two lines of Algorithm 3.2 and two calls of FindHull with N/2 data

points each. This leads to an overall time complexity TQA (N) of

TQA (N) = c3N + 2 · TA
(
N

2

)
= c3N + 2 ·

(
c1

(
2
N

2
− 1

)
+ c2

N

2
log2

(
N

2

))
= c3N + c1(2N − 2) + c2N(log2(N)− 1)

226 Chapter C. Further Results and Graphics

So, the overall average time complexity of Quickhull is O(N log(N)).

b) Worst Case (i.e. in every step all data points are assigned to one

group):

Let TW (N) the function of the worst case time complexity of the procedure

FindHull dependent of the number of data points N and let ci, i ∈ N be positive

constant values.

If N = 1, the time complexity of FindHull is constant, i.e. TW (1) = c1.

For N > 1, lines 1 to 3 of Algorithm 3.3 have constant time complexity c1 and

lines 4 to 6 have linear time complexity c2 ·N . When the data set is split in

two groups where no data points are in the one group and the other N − 1 data

points are in the other group, w.l.o.g. line 7 has constant time complexity c1

and line 8 has time complexity TW (N − 1). For all k ∈ N with k ≤ N − 1, this

leads to a time complexity of FindHull of

TW (N) = TW (N − 1) + c2N + 2c1

= TW (N − 2) + c2(N − 1) + 2c1 + c2N + 2c1

= TW (N − 2) + c2(N − 1) + c2N + 2 · 2c1

= TW (N − 3) + c2(N − 2) + 2c1 + c2(N − 1) + c2N + 2 · 2c1

= TW (N − 3) + c2(N − 2) + c2(N − 1) + c2N + 3 · 2c1

= . . .

= TW (N − k) + c2

k−1∑
i=0

(N − i) + 2kc1

= TW (N − k) + c2

(
Nk −

k−1∑
i=0

i

)
+ 2kc1

= TW (N − k) + c2

(
Nk − (k − 1)k

2

)
+ 2kc1

For k = N − 1, the time complexity is

TW (N) = TW (1) + c2

(
N(N − 1)− (N − 2)(N − 1)

2

)
+ 2(N − 1)c1

= c1 + c2

(
N2 −N − N2

2
+

3N

2
− 1

)
+ 2(N − 1)c1

= (2N − 1)c1 + c2

(
N2

2
+
N

2
− 1

)
The worst case time complexity of Quickhull composes of the linear time com-

plexity of the first two lines of Algorithm 3.2, one call of FindHull with constant

Chapter C. Further Results and Graphics 227

time complexity and one call of FindHull with N − 1 data points. This leads to

an overall time complexity TQW (N) of

TQW (N) = c3N + c1 + TW (N − 1)

= c3N + c1 + (2(N − 1)− 1)c1 + c2

(
(N − 1)2

2
+
N − 1

2
− 1

)
= c3N + 2(N − 1)c1 + c2

(
(N − 1)2

2
+
N − 1

2
− 1

)
So, the overall worst case time complexity of Quickhull is O(N2).

C.2 Further Results and Graphics of Chapter 4

K N primitive R iterative C++ recursive C++

20 0.0058 0.0002 0.0001

40 0.0552 0.0017 0.0002

K = 3 60 0.1832 0.0067 0.0005

80 0.4378 0.0219 0.0012

100 0.8586 0.0382 0.0023

20 0.0263 0.0009 0.0001

40 0.4918 0.0238 0.0008

K = 4 60 2.6177 0.1045 0.0037

80 8.5366 0.3329 0.0159

100 21.2139 0.8291 0.0383

20 0.0893 0.0028 0.0001

40 3.6025 0.1414 0.0027

K = 5 60 30.0921 1.1639 0.0293

80 132.1187 5.1218 0.1113

100 415.9200 15.9729 0.3331

Table C.2: Median empirical runtime (in seconds) of the three algorithms presented in

Section 4.1. For visualization of these values see Figure 4.3 on page 95.

228 Chapter C. Further Results and Graphics

C.3 Further Results and Graphics of Chapter 5

p = 1 p = 2 p =∞

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure C.1: Simulated power function when applying the sign depth test to a data set

with random regression vectors in the range [0, 2]2 and using different vector

norms for ordering. Here, the hypothesis H0 : θ = 0 vs. H1 : θ 6= 0 is tested

in the model y = θ1x·1 + θ2x·2 + e. The power function is simulated with

N = 100 data points, normally distributed errors and parameter K = 3 of the

sign depth test. The red squares denote a simulated power of 0.05 (= α) or

less which should occur only when θ is zero (H0).

Chapter C. Further Results and Graphics 229

K = 3 K = 4 K = 5

N
=

25
N

=
100

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

θ1

θ 2

0.00 0.25 0.50 0.75 1.00
power

power ≤ 0.05

Figure C.2: Simulated power functions for the test H0 : θ = 0 vs. H1 : θ 6= 0 in the

model y = θ1x·1 + θ2x·2 + e, where the vector e follows a normal distribution.

The underlying data set is the ”Spiral” data set and the regression vectors are

ordered according to their inherent order. The red squares denote a simulated

power of 0.05 (= α) or less which should occur only when θ is zero (H0).

230 Chapter C. Further Results and Graphics

12:00 PM 06:00 PM

12:00 AM 06:00 AM

Jul 2016 Oct 2016 Jan 2017Apr 2017 Jul 2016 Oct 2016 Jan 2017Apr 2017

2.5

5.0

7.5

10.0

12.5

2.5

5.0

7.5

10.0

12.5

Date

T
ra

n
sf

or
m

ed
C

ra
ck

W
id

th

True Values Ordinary Least Squares Robust Fitted Model

Figure C.3: Four of the overall 96 fitted models on the monitoring data for the times 12am,

6am, 12pm and 6pm.

Bibliography

Abbas, S., Fried, R., Heinrich, J., Horn, M., Jakubzik, M., Kohlenbach, J., Maurer, R.,

Michels, A., and Müller, C. H. (2019).“Detection of Anomalous Sequences in Crack

Data of a Bridge Monitoring”. In: Applications in Statistical Computing: From

Music Data Analysis to Industrial Quality Improvement. Springer International

Publishing, pp. 251–269.

Adler, D. and Murdoch, D. (2020). rgl: 3D Visualization Using OpenGL. R package

version 0.100.54. url: https://CRAN.R-project.org/package=rgl.

Agostinelli, C. (2018). “Local half-region depth for functional data”. In: Journal of

Multivariate Analysis 163, pp. 67–79.

Applegate, D., Bixby, R., Chvátal, V., and Cook, W. (2001). “TSP Cuts Which

Do Not Conform to the Template Paradigm”. In: Computational Combinatorial

Optimization: Optimal or Provably Near-Optimal Solutions. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 261–303.

Applegate, D., Bixby, R., Chvátal, V., and Cook, W. (2004). Concorde TSP Solver.

url: www.tsp.gatech.edu.

Applegate, D., Bixby, R., Chvátal, V., and Cook, W. (2006). The Traveling Salesman

Problem. Applied Mathematics. Princton University Press.

Applegate, D., Cook, W., Dash, S., and Mevenkamp, M. (2003). QSopt Linear

Programming Solver. url: http://www.math.uwaterloo.ca/~bico/qsopt/

index.html.

Auguie, B. (2017). gridExtra: Miscellaneous Functions for ”Grid” Graphics. R package

version 2.3. url: https://CRAN.R-project.org/package=gridExtra.

231

https://CRAN.R-project.org/package=rgl
www.tsp.gatech.edu
http://www.math.uwaterloo.ca/~bico/qsopt/index.html
http://www.math.uwaterloo.ca/~bico/qsopt/index.html
https://CRAN.R-project.org/package=gridExtra

232 Bibliography

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). “The Quickhull Algorithm

for Convex Hulls”. In: ACM Trans. Math. Softw. 22.4, pp. 469–483.

Beaton, A. E. and Tukey, J. W. (1974). “The Fitting of Power Series, Meaning

Polynomials, Illustrated on Band-Spectroscopic Data”. In: Technometrics 16.2,

pp. 147–185.

Bischl, B., Lang, M., Bossek, J., Horn, D., Richter, J., and Surmann, D. (2017).

BBmisc: Miscellaneous Helper Functions for B. Bischl. R package version 1.11.

url: https://CRAN.R-project.org/package=BBmisc.

Blum, M., Floyd, R. W., Pratt, V. R., Rivest, R. L., and Tarjan, R. E. (1973). “Time

Bounds for Selection”. In: JCSS 7, pp. 448–461.

Büning, H. (1991). Robuste und adaptive Tests. Berlin: de Gruyter.

Carnell, R. (2019). lhs: Latin Hypercube Samples. R package version 1.0.1. url:

https://CRAN.R-project.org/package=lhs.

Claeskens, G., Hubert, M., Slaets, L., and Vakili, K. (2014). “Multivariate functional

halfspace depth”. In: Journal of the American Statistical Association 109.505,

pp. 411–423.

Cuesta-Albertos, J. and Nieto-Reyes, A. (2008). “The random Tukey depth”. In:

Computational Statistics & Data Analysis 52.11, pp. 4979–4988.

Dahl, D. B., Scott, D., Roosen, C., Magnusson, A., and Swinton, J. (2019). xtable:

Export Tables to LaTeX or HTML. R package version 1.8-4. url: https://CRAN.

R-project.org/package=xtable.

Dantzig, G., Fulkerson, R., and Johnson, S. (1954). “Solution of a large-scale traveling

salesman problem”. In: Operations Research 2.4, pp. 393–410.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). “A Fast Elitist Non-

dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II”.

In: Parallel Problem Solving from Nature PPSN VI. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 849–858.

Dodge, Y. (2008). “Least Absolute Deviation Regression”. In: The Concise Encyclo-

pedia of Statistics. New York, NY: Springer New York, pp. 299–302.

https://CRAN.R-project.org/package=BBmisc
https://CRAN.R-project.org/package=lhs
https://CRAN.R-project.org/package=xtable
https://CRAN.R-project.org/package=xtable

Bibliography 233

Durstenfeld, R. (1964). “Algorithm 235: Random Permutation”. In: Commun. ACM

7.7, pp. 420–421.

Eddelbuettel, D. and Balamuta, J. J. (2017). “Extending R with C++: A Brief Intro-

duction to Rcpp”. In: PeerJ Preprints 5, e3188v1.

Emmerich, M. T. and Deutz, A. H. (2018). “A tutorial on multiobjective optimization:

fundamentals, and evolutionary methods”. In: Natural Computing 17, pp. 585–609.

Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2003). Bayesian Data Analysis,

Second Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor &

Francis.

Gower, J. C. (1971). “A General Coefficient of Similarity and Some of Its Properties”.

In: Biometrics 27.4, pp. 857–871.

Habel, K., Grasman, R., Gramacy, R. B., Mozharovskyi, P., and Sterratt, D. C.

(2019). geometry: Mesh Generation and Surface Tessellation. R package version

0.4.5. url: https://CRAN.R-project.org/package=geometry.

Hahsler, M. and Hornik, K. (2019). TSP: Traveling Salesperson Problem (TSP). R

package version 1.1-7. url: https://CRAN.R-project.org/package=TSP.

Hampel, F., Ronchetti, E., Rousseeuw, P., and Stahel, W. (1986). Robust Statistics:

The Approach Based on Influence Functions. New York: Wiley.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical

learning: data mining, inference and prediction. 2nd ed. Springer.

Held, M. and Karp, R. (1962). “A Dynamic Programming Approach to Sequencing

Problems”. In: Journal of the Society for Industrial and Applied Mathematics

10.1, pp. 196–210.

Horn, M. (2021). GSignTest: Robust Tests for Regression-Parameters via Sign Depth.

R package version 1.0.8. url: https://github.com/melaniehorn/GSignTest.

Hu, Y., Wang, Y., Wu, Y., Li, Q., and Hou, C. (2011). “Generalized mahalanobis

depth in the reproducing kernel Hilbert space.” In: Statistical Papers 52.3, pp. 511–

522.

https://CRAN.R-project.org/package=geometry
https://CRAN.R-project.org/package=TSP
https://github.com/melaniehorn/GSignTest

234 Bibliography

Huber, P. J. (1964). “Robust Estimation of a Location Parameter”. In: The Annals

of Mathematical Statistics 35.1, pp. 73–101.

Knuth, D. E. (1976). “Big Omicron and big Omega and big Theta”. In: SIGACT

News, pp. 18–24.

Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: (2Nd Ed.)

Sorting and Searching. Redwood City, CA, USA: Addison Wesley Longman

Publishing Co., Inc.

Koller, M. and Stahel, W. A. (2011). “Sharpening Wald-type inference in robust

regression for small samples”. In: Computational Statistics & Data Analysis 55.8,

pp. 2504–2515.

Kustosz, C., Leucht, A., and Müller, C. H. (2016a). “Tests based on simplicial depth

for AR(1) models with explosion”. In: Journal of Time Series Analysis 37.6,

pp. 763–784.

Kustosz, C., Müller, C. H., and Wendler, M. (2016b). “Simplified simplicial depth

for regression and autoregressive growth processes”. In: Journal of Statistical

Planning and Inference 173, pp. 125–146.

Lang, M. (2017). “checkmate: Fast Argument Checks for Defensive R Programming”.

In: The R Journal 9.1, pp. 437–445.

Lang, M., Bischl, B., and Surmann, D. (2017). “batchtools: Tools for R to work on

batch systems”. In: The Journal of Open Source Software 2.10, p. 135.

Lange, K. L., Little, R. J. A., and Taylor, J. M. G. (1989). “Robust Statistical

Modeling Using the t Distribution”. In: Journal of the American Statistical

Association 84.408, pp. 881–896.

Laporte, G. (1992). “The Traveling Salesman Problem: An overview of exact and ap-

proximate algorithms”. In: European Journal of Operational Research 59, pp. 231–

247.

Leckey, K., Malcherczyk, D., and Müller, C. H. (2020). Powerful generalized sign

tests based on sign depth. Preprint available at https://eldorado.tu-dortmund.

de/bitstream/2003/39099/1/DP_1220_SFB823_Leckey_Malcherczyk_M%c3%

bcller.pdf.

https://eldorado.tu-dortmund.de/bitstream/2003/39099/1/DP_1220_SFB823_Leckey_Malcherczyk_M%c3%bcller.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/39099/1/DP_1220_SFB823_Leckey_Malcherczyk_M%c3%bcller.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/39099/1/DP_1220_SFB823_Leckey_Malcherczyk_M%c3%bcller.pdf

Bibliography 235

Leisch, F. and Dimitriadou, E. (2010). mlbench: Machine Learning Benchmark

Problems. R package version 2.1-1.

Liu, R. (1990). “On a notion of data depth based on random simplices”. In: Annals

of Statistics 18, pp. 405–414.

López-Pintado, S. and Romo, J. (2009). “On the concept of depth for functional

data.” In: Journal of the American Statistical Association 104.486, pp. 718–734.

Maechler, M., Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-

Barrera, M., Verbeke, T., Koller, M., Conceicao, E. L. T., and Anna di Palma,

M. (2019a). robustbase: Basic Robust Statistics. R package version 0.93-5. url:

http://robustbase.r-forge.r-project.org/.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K. (2019b). cluster:

Cluster Analysis Basics and Extensions. R package version 2.1.0.

Malcherczyk, D. (2021+). K-sign depth: Asymptotic distribution, efficient computation

and applications. Dissertation in preparation.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information

Retrieval. Cambridge University Press.

Maronna, R., Martin, D., and Yohai, V. (2006). Robust Statistics: Theory and Methods.

John Wiley & Sons.

Mersmann, O. (2019). microbenchmark: Accurate Timing Functions. R package

version 1.4-7. url: https://CRAN.R-project.org/package=microbenchmark.

Mosler, K. (2002). Multivariate dispersion, central regions and depth. The lift zonoid

approach. Vol. 165. New York, NY: Springer, p. 291.

Müller, C. H. (2005). “Depth estimators and tests based on the likelihood principle

with application to regression”. In: Journal of Multivariate Analysis 95, pp. 153–

181.

Pokotylo, O., Mozharovskyi, P., and Dyckerhoff, R. (2019). “Depth and Depth-Based

Classification with R Package ddalpha”. In: Journal of Statistical Software 91.5,

pp. 1–46.

http://robustbase.r-forge.r-project.org/
https://CRAN.R-project.org/package=microbenchmark

236 Bibliography

Preparata, F. P. and Shamos, M. I. (1990). Computational geometry. Texts and

monographs in computer science. New York: Springer.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing. Vienna, Austria. url: https://www.R-

project.org/.

Rego, C., Gamboa, D., Glover, F., and Osterman, C. (2011). “Traveling salesman

problem heuristics: Leading methods, implementations and latest advances”. In:

European Journal of Operational Research 211.3, pp. 427–441.

Rockafellar, R. T. (1970). Convex analysis. Vol. 28. Princeton mathematical series.

Princton University Press.

Rosenkrantz, D., Stearns, R. E., and II, P. M. L. (1977). “An Analysis of Several

Heuristics for the Traveling Salesman Problem”. In: SIAM Journal on Computing

6.3, pp. 563–581.

Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection.

USA: John Wiley & Sons, Inc.

Rousseeuw, P. and Yohai, V. (1984). “Robust Regression by Means of S-Estimators”.

In: Robust and Nonlinear Time Series Analysis. New York, NY: Springer US,

pp. 256–272.

Rousseeuw, P. and Driessen, K. (1999). “A Fast Algorithm for the Minimum Covari-

ance Determinant Estimator”. In: Technometrics 41, pp. 212–223.

Rousseeuw, P. and Hubert, M. (1999). “Regression Depth”. In: Journal of the Ameri-

can Statistical Association 94, pp. 388–402.

Segaert, P., Hubert, M., Rousseeuw, P., and Raymaekers, J. (2020). mrfDepth: Depth

Measures in Multivariate, Regression and Functional Settings. R package version

1.0.12. url: https://CRAN.R-project.org/package=mrfDepth.

Sharpsteen, C. and Bracken, C. (2019). tikzDevice: R Graphics Output in LaTeX

Format. R package version 0.12.3. url: https://CRAN.R-project.org/packag

e=tikzDevice.

https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=mrfDepth
https://CRAN.R-project.org/package=tikzDevice
https://CRAN.R-project.org/package=tikzDevice

Bibliography 237

Stein, M. (1987). “Large Sample Properties of Simulations Using Latin Hypercube

Sampling”. In: Technometrics 29, pp. 143–151.

Struyf, A. J. and Rousseeuw, P. J. (1999). “Halfspace Depth and Regression Depth

Characterize the Empirical Distribution”. In: Journal of Multivariate Analysis

69.1, pp. 135–153.

TIBCO Software Inc. (2010). TIBCO Spotfire S+ 8.2 Robust Library User’s Guide.

url: https://www.msi.co.jp/splus/download/pdf/robust.pdf.

Tsou, C.-S. (2013). nsga2R: Elitist Non-dominated Sorting Genetic Algorithm based

on R. R package version 1.0. url: https://CRAN.R-project.org/package=

nsga2R.

Tukey, J. W. (1975). “Mathematics and the picturing of data”. In: Proceedings of

the International Congress of Mathematicians (Vancouver, BC, 1974), Volume 2.

Montréal, Québec, Canada: Canadian Mathematical Congress, pp. 523–531.

Van Aelst, S., Rousseeuw, P. J., Hubert, M., and Struyf, A. (2002). “The Deepest

Regression Method”. In: Journal of Multivariate Analysis 81.1, pp. 138–166.

Wang, J., Zamar, R., Marazzi, A., Yohai, V., Salibian-Barrera, M., Maronna, R.,

Zivot, E., Rocke, D., Martin, D., Maechler, M., and Konis., K. (2019). robust: Port

of the S+ ”Robust Library”. R package version 0.4-18.2. url: https://CRAN.R-

project.org/package=robust.

Wickham, H. (2011). “testthat: Get Started with Testing”. In: The R Journal 3,

pp. 5–10.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag

New York.

Wickham, H., Danenberg, P., Csárdi, G., and Eugster, M. (2019a). roxygen2: In-

Line Documentation for R. R package version 7.0.2. url: https://CRAN.R-

project.org/package=roxygen2.

Wickham, H., Hester, J., and Chang, W. (2019b). devtools: Tools to Make Developing

R Packages Easier. R package version 2.2.1. url: https://CRAN.R-project.

org/package=devtools.

https://www.msi.co.jp/splus/download/pdf/robust.pdf
https://CRAN.R-project.org/package=nsga2R
https://CRAN.R-project.org/package=nsga2R
https://CRAN.R-project.org/package=robust
https://CRAN.R-project.org/package=robust
https://CRAN.R-project.org/package=roxygen2
https://CRAN.R-project.org/package=roxygen2
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=devtools

Wickham, H. and Seidel, D. (2019). scales: Scale Functions for Visualization. R

package version 1.1.0. url: https://CRAN.R-project.org/package=scales.

Wilke, C. O. (2019). cowplot: Streamlined Plot Theme and Plot Annotations for

’ggplot2’. R package version 1.0.0. url: https://CRAN.R-project.org/package=

cowplot.

Yohai, V. J. and Zamar, R. H. (1998). “Optimal Locally Robust M-estimates of

Regression”. In: Journal of Statistical Planning and Inference 64, pp. 309–323.

Yohai, V. J., Stahel, W. A., and Zamar, R. H. (1991). “A Procedure for Robust

Estimation and Inference in Linear Regression”. In: Directions in Robust Statistics

and Diagnostics. New York, NY: Springer New York, pp. 365–374.

Yohai, V. (1987). “High Breakdown-Point and High Efficiency Robust Estimates for

Regression”. In: The Annals of Statistics 15.2, pp. 642–656.

https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=cowplot
https://CRAN.R-project.org/package=cowplot

Declaration on Oath

Horn, Melanie

Surname, First name

147305

Matriculation ID

I hereby declare that this dissertation on

Sign Depth for Parameter Tests in Multiple Regression

is solely my original work. I have used only the sources and materials indicated and have not

received any unauthorized assistance from others. All quotations from other works as well as

paraphrases or summaries of other works have been identified as such and properly acknowledged

in the dissertation.

This dissertation or parts thereof have not been submitted to an educational institution in Germany

or abroad as part of an examination or degree qualification.

I hereby certify that the information provided in this declaration is true and correct.

I fully understand the meaning of this declaration on oath as well as the criminal penalties for

submitting a false or incomplete statement.

I hereby confirm that to the best of my knowledge the above statements are true, correct and

complete.

Dortmund, March 23, 2021

Location, Date Signature

	Motivation
	Structure of the Thesis
	Used Computational Tools

	Estimators and Tests for (Robust) Regression
	General Notations and Definitions
	Regression Models
	Classical Robust Estimators and Tests in the Context of Linear Regression
	Robust Estimators Based on Data Depth
	Estimators and Tests Based on Sign Depth
	Comparison of the Robust Estimators and Tests in the Context of Linear Regression
	Problem of the Sign Depth in the Context of Multiple Regression
	Aim of this Thesis

	Methods for Ordering Multidimensional Data
	Naive Methods
	Taking the Order of the Data Set
	Taking a Random Order

	Scalarization Based Methods
	Taking a Norm of Each Regression Vector
	Taking the Median of Each Regression Vector
	Taking Only One Component of Each Regression Vector
	Taking a Weighted Sum of Each Regression Vector
	Taking an Orthogonal Projection of Each Regression Vector

	Orders Based on Partial Sorting
	Partial Sorting via Nondominated Sorting
	Partial Sorting via Convex Hulls
	Partial Sorting via Tukey's Halfspace Depth

	Distance Based Methods
	Ordering on the Basis of the Exact Solution of the Shortest Path Problem
	Ordering on the Basis of an Approximate Solution of the Shortest Path Problem
	Ordering on the Basis of a Hierarchical Clustering

	Summary and Comparison of the Described Ordering Methods

	Developed Software
	Implementation of the Sign Depth
	Implementation of the Sign Depth Test
	Implementation of the Ordering Methods
	The R-package GSignTest

	Results and Analysis of the Power of the Sign Depth Test
	Description of the Simulations
	Results of Model y = t1*x1 + t2*x2 + e
	Effect of the Number of Data Points on the Results
	Effect of the Data Set on the Results
	Effect of the Error Distribution on the Results
	Effect of the Parameter K on the Results
	Effect of Hyper-Parameters of the Ordering Methods on the Results
	Further Analysis and Summary of the Results

	Results of the Distance Based Methods for Other Models
	Linear Models with Intercept
	Linear Models with Interactions
	Quadratic Regression
	High Dimensional Linear Models

	Choice of Vectors Used for Ordering
	Comparison to Other Tests for Multiple Regression
	Sign Depth Test for Model Checks
	Application of the Sign Depth Test on Data from a Bridge Monitoring

	Conclusion and Outlook
	Conclusion
	Outlook

	Theorems and Algorithms
	Further Implementations
	Further Results and Graphics
	Further Results and Graphics of Chapter 3
	Further Results and Graphics of Chapter 4
	Further Results and Graphics of Chapter 5

	Bibliography

