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Introduction

Cointegration analysis is by now a standard tool in multivariate time series analysis with applica-
tion ranging from economics to climate science. The main idea of this concept is the assumption
of underlying stochastic trends in a multivariate stochastic process. If the number of stochastic
trends is smaller than the dimension of the multivariate process, the aim is to find linear com-
binations within the times series, that cancel out the stochastic trends. Knowledge about the
number of the stochastic trends as well as their influence on the observable times series might
then improve prediction performance or validate results from economic theory. Evidence for or
against a common stochastic trend between, e. g., money supply and inflation or money supply
and investment may be of high interest, e. g., from the point of view of a central bank.
Cointegration was first considered by Granger (1981), and further formalized by Soren Johansen
and Katarina Juselius and their co-authors, see, e. g., the monographs Johansen (1995) and Juselius
(2006), who introduced a vector error correction model (VECM) and, thus, chose the class of vector
autoregressive (VAR) processes to model cointegrated processes. This choice may be too restric-
tive, since, e. g., Zellner and Palm (1974) show that VAR processes are not invariant with respect
to marginalization (subsets of variables of a VAR process are not necessarily VAR processes).
Similarly, VAR processes are not invariant with respect to aggregation. An invariant class with
respect to these two operations are the vector autoregressive moving average (VARMA) processes.
These processes, e. g., also occur as linearized solutions to dynamic stochastic general equilibrium
models, compare Campbell (1994).
Note that a VARMA process can be approximated arbitrary closely by a VAR process, such that
no changes should occur in the overall asymptotic results regarding cointegration analysis using
VARMA processes as a model class. However, VARMA models might be more parsimonious in
some cases, which together with the arguments presented above, was enough to justify further
research in this area. The subsequent work led to the completion of this thesis, which consists of
three chapters corresponding to three articles written in collaboration with my co-authors Pro-
fessor Dietmar Bauer, Patrick de Matos Ribeiro and Professor Martin Wagner. In the analysis
we employ the representation of VARMA processes by state space systems, see, e. g., Hannan
and Deistler (1988). The chosen representation decomposes the VARMA process into underlying
components including its stochastic trends, thus, allowing for an intuitive understanding of the
cointegrating properties of the process.
Chapter 1 first focuses on theoretical results regarding the sets of transfer functions corresponding
to VARMA systems with similar cointegrating properties, summarized in the so-called state space
unit root structure. We develop and discuss different parameterizations for vector autoregressive
moving average processes with arbitrary unit roots and (co)integration orders. The detailed anal-
ysis of the topological properties of the parameterizations – based upon the state space canonical
form of Bauer and Wagner (2012) – is an essential input for establishing statistical and numerical
properties of pseudo maximum likelihood estimators as well as, e. g., pseudo likelihood ratio tests
based upon them. The general results are exemplified in detail for the empirically most relevant
cases, the (multiple frequency or seasonal) I(1) and the I(2) case. For these two cases we also
discuss the modeling of deterministic components in detail.
In Chapter 2 we show that the Johansen framework for testing hypotheses on the cointegrating
ranks and spaces for seasonally integrated processes of the multiple frequency I(1)(MFI(1)) type
can be extended to the class of VARMA processes by using a state space error correction rep-
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resentation for MFI(1) processes. The estimated cointegrating vectors are asymptotically mixed
Gaussian and pseudo likelihood ratio tests of linear restrictions on the cointegrating spaces are χ2

distributed. Also, pseudo likelihood ratio tests for the cointegrating ranks have the same distri-
butions under the null hypothesis in the VARMA case as in the VAR case. Hence, no new tables
for critical values are needed. In a simulation study our tests outperform the tests by Johansen
and Schaumburg and the canonical variate analysis subspace tests in small samples in a MFI(1)
setting considerably.
In Chapter 3 we develop estimation and inference techniques for I(2) cointegrated VARMA pro-
cesses cast in state space format. In particular, we derive consistency as well as the asymptotic
distributions of estimators maximizing the Gaussian pseudo likelihood function. As usual, the
parameters corresponding to I(2) and I(1) stochastic trends are estimated super-consistently at
rates T 2 and T respectively, whereas the parameters of the stationary components of the state are
estimated at rate T 1/2. The limiting distributions of the parameters corresponding to the inte-
grated components are mixtures of Brownian motions, the parameters of the stationary subsystem
are asymptotically normally distributed. Furthermore, we discuss hypothesis tests for the state
space unit root structure, leading to the well-known limiting distributions for VAR I(2) processes.
Again, a small simulation study shows favorable results for small samples, with our test leading
to better performance in determining these integer parameters.
All simulations have been performed in Matlab. The code containing the respective procedures
can be obtained from the author upon request.
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ermöglicht hast und gleichzeitig mir und unseren Kindern die Wärme schenkst, als emotionales
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Chapter 1

A Parameterization of Models for
Unit Root Processes: Structure
Theory and Hypothesis Testing

1.1 Introduction

Since the seminal contribution of Clive W.J. Granger (1981) that introduced the concept of coin-
tegration, the modeling of multivariate (economic) time series with models and methods that
allow for unit roots and cointegration has become standard econometric practice with applications
ranging from macroeconomics to finance to climate science.

The most prominent (parametric) model class for cointegration analysis are vector autoregres-
sive (VAR) models, popularized by the important contributions of Søren Johansen and Katarina
Juselius and their co-authors, see, e. g., the monographs Johansen (1995) and Juselius (2006).
The popularity of VAR cointegration analysis stems not only from the (relative) simplicity of the
model class that allows by and large for least squares based estimation, but also from the fact that
the VAR cointegration literature is very well-developed and provides a large battery of tools for
diagnostic testing, impulse response analysis, forecast error variance decompositions and the like.
All this makes VAR cointegration analysis to a certain extent the benchmark in the literature.1

The imposition of specific cointegration properties on an estimated VAR model becomes in-
creasingly complicated as one moves away from the I(1) case. As discussed in Section 1.2, e. g., in
the I(2) case a triple of indices needs to be chosen (fixed or determined via testing) to describe the
cointegration properties. The imposition of cointegration properties in the estimation algorithm
then leads to “switching” type algorithms that come together with complicated parameterization
restrictions with complex inter-relations, compare Paruolo (1996) or Paruolo (2000).2 Mathemat-
ically, these complications arise from the fact that the unit root and cointegration properties are
in the VAR setting related to rank restrictions on the autoregressive polynomial matrix and its
derivatives.

Restricting cointegration analysis to VAR processes may be too restrictive. First, it is well-
known since Zellner and Palm (1974) that VAR processes are not invariant with respect to
marginalization, i. e., subsets of the variables of a VAR process are in general vector autoregressive
moving average (VARMA) processes. Second, similar to the first argument, aggregation of VAR
processes also leads to VARMA processes, an issue relevant, e. g., in the context of temporal ag-

1Note that the original contribution to the estimation of cointegrating relationship has been least squares es-
timation in a non- or semi-parametric regression setting, see, e. g., Engle and Granger (1987). A recent survey of
regression based cointegration analysis is provided by Wagner (2018).

2The complexity of these inter-relations is probably well illustrated by the fact that only Jensen (2013) notes that
“even though the I(2) models are formulated as submodels of I(1) models, some I(1) models are in fact submodels
of I(2) models”.
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gregation and in mixed-frequency settings. Third, the linearized solutions to dynamic stochastic
general equilibrium (DSGE) models are typically VARMA rather than VAR processes, see, e. g.,
Campbell (1994). Fourth, a VARMA model may be a more parsimonious description of the data
generating process (DGP) than a VAR model, with parsimony becoming more important with
increasing dimension of the process.3

If one accepts the above arguments as a motivation for considering VARMA processes in coin-
tegration analysis, it is convenient to move to the – essentially equivalent, see Hannan and Deistler
(1988, Chapters 1 and 2) – state space framework. A key challenge when moving from VAR to
VARMA models – or state space models – is that identification becomes an important issue for the
latter model class, whereas unrestricted VAR models are (reduced-form) identified. In other words,
there are so-called equivalence classes of VARMA models that lead to the same dynamic behavior
of the observed process. As is well-known, to achieve identification, restrictions have to be placed
on the coefficient matrices in the VARMA case, e. g., zero or exclusion restrictions. A mapping
attaching to every transfer function, i.e, the function relating the error sequence to the observed
process, a unique VARMA (or state space) system from the corresponding class of observationally
equivalent systems is called canonical form. Since not all entries of the coefficient matrices in
canonical form are free parameters, for statistical analysis a so-called parameterization is required
that maps the free parameters from coefficient matrices in canonical form into a parameter vector.
These issues, including the importance of the properties like continuity and differentiability of pa-
rameterizations, are discussed in detail in Hannan and Deistler (1988, Chapter 2) and, of course,
are also relevant for our setting in this paper.

The convenience of the state space framework for unit root and cointegration analysis stems
from the fact that (static and dynamic) cointegration can be characterized by orthogonality con-
straints, see Bauer and Wagner (2012), once an appropriate basis for the state vector, which is a
(potentially singular) VAR process of order one, is chosen. The integration properties are governed
by the eigenvalue structure of unit modulus eigenvalues of the system matrix in the state equation.
Eigenvalues of unit modulus and orthogonality constraints arguably are easier restrictions to deal
with or to implement than the interrelated rank restrictions considered in the VAR or VARMA
setting. The canonical form of Bauer and Wagner (2012) is designed for cointegration analysis by
using a basis of the state vector that puts the unit root and cointegration properties to the center
and forefront. Consequently, these results are key input for the present paper and are thus briefly
reviewed in Section 1.3.

An important problem with respect to appropriately defining the “free parameters” in VARMA
models is the fact that no continuous parameterization of all VARMA or state space models of a
certain order n exists in the multivariate case, see Hazewinkel and Kalman (1976). This implies
that the model set, Mn say, has to be partitioned into subsets on which continuous parameter-
izations exist, i. e., Mn =

⋃
Γ∈GMΓ for some multi-index Γ varying in an index set G. Based

on the canonical form of Bauer and Wagner (2012), the partitioning is according to systems – in
addition to other restrictions like fixed order n – with fixed unit root properties, to be precise over
systems with given state space unit root structure. This has the advantage that, e. g., pseudo max-
imum likelihood (PML) estimation can straightforwardly be performed over systems with fixed
unit root properties without any further ado, i. e., without having to consider (or ignore) rank
restrictions on polynomial matrices. The definition and detailed discussion of the properties of
this parameterization is the first main result of the paper.

The second main set of results, provided in Section 1.4, is a detailed discussion of the relation-
ships between the different subsets of models MΓ for different indices Γ and the parameterization
of the respective model sets. Knowledge concerning these relations is important to understand
the asymptotic behavior of PML estimators and pseudo likelihood ratio tests based upon them.

3The literature often uses VAR models as approximations, based on the fact that VARMA processes often can
be approximated by VAR models with the order tending to infinity with the sample size at certain rates. This line
of work goes back to Lewis and Reinsel (1985) for stationary processes and has been extended to (co)integrated
processes by Saikkonen (1992), Saikkonen and Luukkonen (1997) and Bauer and Wagner (2007). In addition
to the issue of the existence and properties of a sequence of VAR approximations, the question whether a VAR
approximation is parsimonious remains.
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In particular the structure of the closures of M , M say, of the considered model set M has to be
understood, since the difference M \M cannot be avoided when maximizing the pseudo likelihood
function4. Additionally, the inclusion properties between different sets MΓ need to be understood,
as this knowledge is important for developing hypothesis tests, in particular for developing hy-
pothesis tests for the dimensions of cointegrating spaces. Hypotheses testing, with a focus on the
MFI(1) and I(2) cases, is discussed in Section 1.5, which shows how the parameterization results
of the paper can be used to formulate a large number of hypotheses on (static and polynomial)
cointegrating relationships as considered in the VAR cointegration literature. This discussion also
includes commonly used deterministic components like intercept, seasonal dummies and linear
trend as well as restrictions on these components.

The paper is organized as follows: Section 1.2 briefly reviews VAR and VARMA models with
unit roots and cointegration and discusses some of the complications arising in the VARMA case
in addition to the complications arising due to the presence of unit roots and cointegration already
in the VAR case. Section 1.3 presents the canonical form and the parameterization based upon
it, with the discussion starting with the multiple frequency I(1) – MFI(1) – and I(2) cases prior
to a discussion of the general case. This section also provides several important definitions like,
e. g., of the state space unit root structure. Section 1.4 contains a detailed discussion concerning
the topological structure of the model sets and Section 1.5 discusses testing of a large number of
hypotheses on the cointegrating spaces commonly tested in the cointegration literature. The dis-
cussion in Section 1.5 focuses on the empirically most relevant MFI(1) and I(2) cases and includes
the usual deterministic components considered in the literature. Section 1.6 briefly summarizes
and concludes. All proofs are relegated to the appendix.

Throughout we use the following notation: L denotes the lag operator, i. e., L({xt}t∈Z) :=
{xt−1}t∈Z, for brevity written as Lxt = xt−1. For a matrix γ ∈ Cs×r, γ′ ∈ Cr×s denotes its
conjugate transpose. For γ ∈ Cs×r with full column rank r ≤ s, we define γ⊥ ∈ Cs×(s−r) of
full column rank such that γ′γ⊥ = 0. Ip denotes the p-dimensional identity matrix, 0m×n the
m times n zero matrix. For two matrices A ∈ Cm×n, B ∈ Ck×l, A ⊗ B ∈ Cmk×nl denotes the
Kronecker product of A and B. For a complex valued quantity x, R(x) denotes its real part, I(x)
its imaginary part and x its complex conjugate. For a set V , V denotes its closure.5 For two sets
V and W , V \W denotes the difference of V and W , i. e., {v ∈ V : v /∈ W}. For a square matrix
A we denote the spectral radius (i. e., the maximum of the moduli of its eigenvalues) by λ|max|(A)
and by det(A) its determinant.

1.2 Vector Autoregressive, Vector Autoregressive Moving
Average Processes and Parameterizations

In this paper we define VAR processes {yt}t∈Z, yt ∈ Rs, as solution of

a(L)yt = yt +

p∑
j=1

ajyt−j = εt + Φdt, (1.1)

with a(L) := Is +
∑p
j=1 ajL

j , where aj ∈ Rs×s for j = 1, . . . , p, Φ ∈ Rs×m, ap 6= 0, a white
noise process {εt}t∈Z, εt ∈ Rs, with Σ := E(εtε

′
t) > 0 and a vector sequence {dt}t∈Z, dt ∈ Rm,

comprising deterministic components like, e. g., the intercept, seasonal dummies or a linear trend.
Furthermore, we impose the non-explosiveness condition det a(z) 6= 0 for all |z| < 1, with a(z) :=
Is +

∑p
j=1 ajz

j and z denoting a complex variable.6

4Below we often use the term “likelihood” as short form of “likelihood function”.
5We are confident that this dual usage of notation does not lead to confusion.
6Our definition of VAR processes differs to a certain extent from some widely-used definitions in the literature.

Given our focus on unit root and cointegration analysis we, unlike Hannan and Deistler (1988), allow for determi-
nantal roots at the unit circle that, as is well known, lead to integrated processes. We also include deterministic
components in our definition, i. e., we allow for a special case of exogenous variables, compare also Remark 2 below.
There is, however, also a large part of the literature that refers to this setting simply as (cointegrated) vector
autoregressive models, see, e. g., Johansen (1995) and Juselius (2006).
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Thus, for given autoregressive order p, with – as defining characteristic of the order – ap 6= 0,
the considered class of VAR models with specified deterministic components {dt}t∈Z is given by
the set of all polynomial matrices a(z) such that (i) the non-explosiveness condition holds, (ii)
a(0) = Is and (iii) ap 6= 0; together with the set of all matrices Φ ∈ Rs×m.

Equivalently, the model class can be characterized by a set of rational matrix functions k(z) :=
a(z)−1, referred to as transfer functions, and the input-output description for the deterministic
variables, i. e.,

Vp,Φ := Vp × Rs×m,

Vp :=

k(z) =

∞∑
j=0

kjz
j = a(z)−1 : a(z) = Is +

p∑
j=1

ajz
j ,det a(z) 6= 0 for |z| < 1, ap 6= 0

 .

The associated parameter space is Θp,Φ := Θp × Rsm ⊂ Rs2p+sm, where the parameters

θ := [θ′a,θ
′
Φ]′ = [vec(a1)′, . . . , vec(ap)

′, vec(Φ)′]′ (1.2)

are obtained from stacking the entries of the matrices aj and Φ, respectively.

Remark 1 In the above discussion the parameters, θΣ say, describing the variance covariance
matrix Σ of εt are not considered. These can be easily included, similarly to Φ by, e.g., parame-
terizing positive definite symmetric s× s matrices via their lower triangular Cholesky factor. This

leads to a parameter space Θp,Φ,Σ ⊂ Rs2p+sm+
s(s+1)

2 . We omit θΣ for brevity, since typically no
cross-parameter restrictions involving parameters corresponding to Σ are considered, whereas as
discussed in Section 1.5 parameter restrictions involving – in this paper in the state space rather
than the VAR setting – both elements of Θp and Φ, to, e.g., impose the absence of a linear trend in
the cointegrating space, are commonly considered in the cointegration literature.7 In the absence
of cross-parameter restrictions involving θΣ, the variance covariance matrix Σ is typically either
estimated from least squares or reduced rank regression residuals (in a VAR setting) or concen-
trated out in pseudo maximum likelihood estimation. Thus, explicitly including θΣ and ΘΣ in the
discussion would only overload notation without adding any additional insights, given the simple
nature of the parameterization of Σ.

Remark 2 Our consideration of deterministic components is a special case of including exoge-
nous variables. We include exogenous deterministic variables with a static input-output behavior
governed solely by the matrix Φ. More general exogenous variables that are dynamically related
to the output {yt}t∈Z could be considered, thereby considering so-called VARX models rather than
VAR models, which would necessitate considering in addition to the transfer function k(z) also a
transfer function l(z), say, linking the exogenous variables dynamically to the output.

For the VAR case, the fact that the mapping assigning a given transfer function k(z) ∈ Vp, to a
parameter vector θa ∈ Θp – the parameterization – is continuous with continuously differentiable
inverse is immediate.8 Homeomorphicity of a parameterization is important for the properties of
parameter estimators, e. g., the ordinary least squares (OLS) or Gaussian PML estimator, compare
the discussion in Hannan and Deistler (1988, Theorem 2.5.3 and Remark 1, p. 65).

For OLS estimation one typically considers the larger set V OLSp without the non-explosiveness
condition and without the assumption ap 6= 0:

V OLSp :=

k(z) =

∞∑
j=0

kjz
j = a(z)−1 : a(z) = Is +

p∑
j=1

ajz
j

 .

7Of course, the statistical properties of the parameter estimators depend in many ways upon the deterministic
components.

8The set Vp is endowed with the pointwise topology, defined in Section 1.3. For now, in the context of VAR
models, it suffices to know that convergence in pointwise topology is equivalent to convergence of the VAR coefficient
matrices a1, . . . , ap in the Frobenius norm.
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Considering V OLSp allows for unconstrained optimization. It is well-known that for {εt}t∈Z as

given above, the OLS estimator is consistent over the larger set V OLSp , i. e., without imposing
non-explosiveness and also when specifying p too high. Alternatively, and closely related to OLS
in the VAR case, the pseudo likelihood can be maximized over Θp,Φ. With this approach, maxima
respectively suprema can occur at the boundary of the parameter space, i. e., maximization effec-
tively has to consider Θp,Φ. It is well-known that the PML estimator is consistent for the stable
case, cf. Hannan and Deistler (1988, Theorem 4.2.1), but the maximization problem is compli-
cated by the restrictions on the parameter space stemming from the non-explosiveness condition.
Avoiding these complications and asymptotic equivalence of OLS and PML in the stable VAR
case explains why VAR models are usually estimated by OLS.9

To be more explicit, ignore deterministic components for a moment and consider the case where
the DGP is a stationary VAR process, i. e., a solution of (1.1) with a(z) satisfying the stability
condition det a(z) 6= 0 for |z| ≤ 1. Define the corresponding set of stable transfer functions by
Vp,•:

Vp,• :=
{
a(z)−1 ∈ Vp : det a(z) 6= 0 for |z| ≤ 1, ap 6= 0

}
.

Clearly, Vp,• is an open subset of Vp. If the DGP is a stationary VAR process, the above-mentioned
consistency result of the OLS estimator over V OLSp implies that the probability that the estimated

transfer function, k̂(z) = â(z)−1 say, is contained in Vp,• converges to one as the sample size tends
to infinity. Moreover, the asymptotic distribution of the estimated parameters is normal, under
appropriate assumptions on {εt}t∈Z.

The situation is a bit more involved if the transfer function of the DGP corresponds to a point
in the set V p,• \ Vp,•, which contains systems with unit roots, i. e., determinantal roots of a(z) on
the unit circle, as well as lower order autoregressive systems – with these two cases non-disjoint.
The stable lower order case is relatively unproblematic from a statistical perspective. If, e. g.,
OLS estimation is performed over V OLSp , while the true model corresponds to an element in Vp∗,•,

with p∗ < p, the OLS estimator is still consistent, since Vp∗,• ⊂ V OLSp . Furthermore, standard
chi-squared pseudo likelihood ratio test based inference still applies. The integrated case, for a
precise definition see the discussion below Definition 1, is a bit more difficult to deal with, as
in this case not all parameters are asymptotically normally distributed and nuisance parameters
may be present. Consequently, parameterizations that do not take the specific nature of unit root
processes into account are not very useful for inference in the unit root case, see, e. g., Sims, Stock
and Watson (1990, Theorem 1). Studying the unit root and cointegration properties is facilitated
by resorting to suitable parameterizations that “zoom in on the relevant characteristics”.

In case that the only determinantal root of a(z) on the unit circle is at z = 1, the system
corresponds to a so-called I(d) process, with the integration order d > 0 made precise in Defini-
tion 1 below. Consider first the I(1) case: As is well-known, the rank of the matrix a(1) equals
the dimension of the cointegrating space given in Definition 3 below – also referred to as the coin-
tegrating rank. Therefore, determination of the rank of this matrix is of key importance. With
the parameterization used so far, imposing a certain (maximal) rank on a(1) implies complicated
restrictions on the matrices aj , j = 1, . . . , p. This in turn renders the correspondingly restricted
optimization unnecessarily complicated and not conducive to develop tests for the cointegrating
rank. It is more convenient to consider the so-called vector error correction model (VECM) repre-
sentation of autoregressive processes, discussed in full detail in the monograph Johansen (1995).
To this end let us first introduce the differencing operator at frequency 0 ≤ ω ≤ π

∆ω :=

{
Is − 2 cos(ω)L+ L2 for 0 < ω < π
Is − cos(ω)L for ω ∈ {0, π} . (1.3)

For notational brevity, we omit the dependence on L in ∆ω(L), henceforth denoted as ∆ω. Using

9Note that in case of restricted estimation, i. e., zero restrictions or cross-equation restrictions, OLS is not
asymptotically equivalent to PML in general.
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this notation, the I(1) error correction representation is given by

∆0yt = Πyt−1 +

p−1∑
j=1

Γj∆0yt−j + εt + Φdt (1.4)

= αβ′yt−1 +

p−1∑
j=1

Γj∆0yt−j + εt + Φdt,

with the matrix Π := −a(1) = −(Is +
∑p
j=1 aj) of rank 0 ≤ r ≤ s factorized into the product of

two full rank matrices α, β ∈ Rs×r and Γj :=
∑p
m=j+1 am, j = 1, . . . , p− 1.

This constitutes a reparameterization, where k(z) ∈ Vp is now represented by the matrices
(α, β,Γ1, . . . ,Γp−1) and a corresponding parameter vector θVECM

a ∈ ΘVECM
p,r . Note that stacking the

entries of the matrices does not lead to a homeomorphic mapping from Vp to ΘVECM
p,s , since for 0 <

r ≤ s the matrices α and β are not identifiable from the product αβ′, since αβ′ = αMM−1β′ = α̃β̃′

for all regular matrices M ∈ Rr×r. One way to obtain identifiability is to introduce the restriction
β = [Ir, β

∗′]′, with β∗ ∈ R(s−r)×r and α ∈ Rs×r. With this additional restriction the parameter
vector θVECM

a is given by stacking the vectorized matrices α, β∗,Γ1, . . . ,Γp−1, similarly to (1.2).

Then ΘVECM

p,r,Φ = ΘVECM
p,r × Rsm ⊂ Rps2−(s−r)2+sm. Note for completeness that the normalization of

β = [Ir, β
∗′]′ may necessitate a re-ordering of the variables in {yt}t∈Z since – without potential

reordering – this parameterization implies a restriction of generality as, e. g., processes, where the
first variable is integrated, but does not cointegrate with the other variables, cannot be represented.

Define the following sets of transfer functions:

Vp,r :=
{
a(z)−1 ∈ Vp : det a(z) 6= 0 for {z : |z| = 1, z 6= 1}, rank(a(1)) ≤ r,

}
,

V RRRp,r :=
{
a(z)−1 ∈ V OLSp : rank(a(1)) ≤ r

}
.

The dimension of the parameter vector θVECM

a depends on the dimension of the cointegrating
space, thus the parameterization of k(z) ∈ Vp,r depends on r. The so-called reduced rank regression
(RRR) estimator, given by the maximizer of the pseudo likelihood over V RRRp,r is consistent, see,
e. g., Johansen (1995, Chapter 6). The RRR estimator uses an “implicit” normalization of β and
thereby implicitly addresses the mentioned identification problem. However, for testing hypotheses
involving the free parameters in α or β, typically the identifying assumption given above is used,
as discussed in Johansen (1995, Chapter 7).

Furthermore, since Vp,r ⊂ Vp,r∗ for r < r∗ ≤ s, with ΘVECM
p,r a lower dimensional subset of

ΘVECM
p,r∗ , pseudo likelihood ratio testing can be used to sequentially test for the rank r, starting

with the hypothesis of a rank r = 0 against the alternative of a rank 0 < r ≤ s, and increasing
the assumed rank consecutively until the null hypothesis is not rejected.

Ensuring that {yt}t∈Z generated from (1.4) is indeed an I(1) process, requires on the one hand
that Π is of reduced rank, i. e., r < s and on the other that the matrix

α′⊥Γβ⊥ := α′⊥

Is − p−1∑
j=1

Γj

β⊥ (1.5)

has full rank. It is well-known that condition (1.5) is fulfilled on the complement of a “thin”
algebraic subset of V RRRp,r , and is therefore ignored in estimation, as it is “generically” fulfilled.10

The I(2) case is similar in structure to the I(1) case, but with two rank restrictions and one
full rank condition to exclude even higher integration orders. The corresponding VECM is given
by

∆2
0yt = αβ′yt−1 − Γ∆0yt−1 +

p−2∑
j=1

Ψj∆
2
0yt−j + εt, (1.6)

10A similar property holds for V RRR
p,r being a “thin” subset of V OLS

p . This implies that the probability that the

OLS estimator calculated over V OLS
p corresponds to an element V RRR

p,r ⊂ V OLS
p is equal to zero in general.
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with α, β as defined in (1.4), Γ as defined in (1.5) and Ψj := −
∑p−1
k=j+1 Γk, j = 1, . . . , p − 2.

From (1.5) we already know that reduced rank of

α′⊥Γβ⊥ =: ξη′, (1.7)

with ξ, η ∈ R(s−r)×m, m < s − r is required for higher integration orders. The condition for the
corresponding solution process {yt}t∈Z to be an I(2) process is given by full rank of

ξ′⊥α
′
⊥

Γβ(β′β)−1(α′α)−1α′Γ + Is −
p−2∑
j=1

Ψj

β⊥η⊥,

which again is typically ignored in estimation, just like condition (1.5) in the I(1) case. Thus,
I(2) processes correspond to a “thin subset” of V RRRp,r , which in turn constitutes a “thin subset”

of V OLSp . The fact that integrated processes correspond to “thin sets” in V OLSp implies that ob-
taining estimated systems with specific integration and cointegration properties requires restricted
estimation based on parameterizations tailor made to highlight these properties.

Already for the I(2) case, formulating parameterizations that allow to conveniently study the
integration and cointegration properties is a quite challenging task. Johansen (1997) contains
several different (re-)parameterizations for the I(2) case and Paruolo (1996) defines “integration
indices”, r0, r1, r2 say, as the number of columns of the matrices β ∈ Rs×r0 , β1 := β⊥η ∈ Rs×r1 and
β2 := β⊥η⊥ ∈ Rs×r2 . Clearly, the indices r0, r1, r2 are linked to the ranks of the above matrices Π
and α′⊥Γβ⊥, as r0 = r and r1 = m and the columns of [β, β1, β2] form a basis of Rs, such that s =
r0+r1+r2. It holds that {β′2yt}t∈Z is an I(2) process without cointegration and {β′1yt}t∈Z is an I(1)
process without cointegration. The process {β′yt}t∈Z is typically I(1) and in this case cointegrates
with {β′2∆0yt}t∈Z to stationarity. Thus, there is a direct correspondence of these indices to the
dimensions of the different cointegrating spaces – both static and dynamic (with precise definitions
given below in Definition 3). 11 Note that again, as already before in the I(1) case, different
values of p and ranks r and m, respectively integration indices r0, r1, r2, lead to parameter spaces
of different dimensions. Furthermore, in these parameterizations matrices describing different
cointegrating spaces are (i) not identified and (ii) linked by restrictions, compare the discussion
in Paruolo (2000, Section 2.2) and (1.7). These facts render the analysis of the cointegration
properties in I(2) VAR systems complicated. Also, in the I(2) VAR case usually some forms of
RRR estimators are considered over suitable subsets V RRRp,r,m of V RRRp,r , again based on implicit
normalizations. Inference, however, again requires one to consider parameterizations explicitly.

Estimation and inference issues are fundamentally more complex in the VARMA case than in
the VAR case. This stems from the fact that unrestricted estimation – unlike in the VAR case –
is not possible due to a lack of identification, as discussed below. This means that in the VARMA
case identification and parameterization issues need to be tackled as the first step, compare the
discussion in Hannan and Deistler (1988, Chapter 2).

In this paper we consider VARMA processes as solutions of the vector difference equation

yt +

p∑
j=1

ajyt−j = εt +

q∑
j=1

bjεt−j + Φdt,

with a(L) := Is +
∑p
j=1 ajL

j , where aj ∈ Rs×s for j = 1, . . . , p, ap 6= 0 and the non-explosiveness

condition det(a(z)) 6= 0 for |z| < 1. Similarly, b(L) := Is +
∑q
j=1 bjL

j , where bj ∈ Rs×s for

j = 1, . . . , q, bq 6= 0 and Φ ∈ Rs×m. The transfer function corresponding to a VARMA process is
k(z) := a(z)−1b(z).

It is well-known that without further restrictions the VARMA realization (a(z), b(z)) of the
transfer function k(z) = a(z)−1b(z) is not identified, i. e., different pairs of polynomial matrices
(a(z), b(z)) can realize the same transfer function k(z). It is clear that

k(z) = a(z)−1m(z)−1m(z)b(z) = a(z)−1b(z)

11Below Example 3 we clarify how these indices are related to the state space unit root structure defined in Bauer
and Wagner (2012, Definition 2) and link these to the dimensions of the cointegrating spaces in Section 1.5.2.
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for all non-singular polynomial matricesm(z). Thus, the mapping π attaching the transfer function
k(z) = a(z)−1b(z) to the pair of polynomial matrices (a(z), b(z)) is not injective.12

Consequently, we refer for given rational transfer function k(z) to the class {(a(z), b(z)) :
k(z) = a(z)−1b(z)} as a class of observationally equivalent VARMA realizations of k(z). To
achieve identification requires to define a canonical form, selecting one member of each class of
observationally equivalent VARMA realizations for a set of considered transfer functions. A first
step towards a canonical form is to only consider left coprime pairs (a(z), b(z)).13 However, left
coprimeness is not sufficient for identification and thus further restrictions are required, leading
to parameter vectors of smaller dimension than Rs2(p+q). A widely-used canonical form is the
(reverse) echelon canonical form, see Hannan and Deistler (1988, Theorem 2.5.1, p. 59), based
on (monic) normalizations of the diagonal elements of a(z) and degree relationships between
diagonal and off-diagonal elements as well as the entries in b(z), which lead to zero restrictions.
The (reverse) echelon canonical form in conjunction with a transformation to an error correction
model has been used in VARMA cointegration analysis in the I(1) case, e. g., in Poskitt (2006,
Theorem 4.1), but, as for the VAR case, understanding the interdependencies of rank conditions
already becomes complicated once one moves to the I(2) case.

In the VARMA case matters are further complicated by another well-known problem that
makes statistical analysis considerably more involved compared to the VAR case. Although there
exists a generalization of the autoregressive order to the VARMA case, such that any transfer
function corresponding to a VARMA system has an order n ∈ N (with the precise definition
given in the next section) it is known since (Hazewinkel and Kalman, 1976) that no continuous
parameterization of all rational transfer functions of order n exists if s > 1. Therefore, if one
wants to keep the above-discussed advantages that continuity of a parameterization provides, the
set of transfer functions of order n, henceforth referred to as Mn, has to be partitioned into sets
on which continuous parameterizations exist, i. e., Mn =

⋃
Γ∈GMΓ, for some index set G, as

already mentioned in the introduction.14 For any given partitioning of the set Mn it is important
to understand the relationships between the different subsets MΓ, as well as the closures of the
pieces MΓ, since in case of misspecification of MΓ points in MΓ \MΓ cannot be avoided even
asymptotically in, e. g., pseudo maximum likelihood estimation. These are more complicated
issues in the VARMA case than in the VAR case, see the discussion in Hannan and Deistler (1988,
Remark 1 after Theorem 2.5.3).

Based on these considerations, the following section provides and discusses a parameterization
that focuses on unit root and cointegration properties, resorting to the state space framework that
– as mentioned in the introduction – provides advantages for cointegration analysis. In particular
we derive an almost everywhere homeomorphic parameterization, based on partitioning the set of
all considered transfer functions according to a multi-index Γ that contains, among other elements,
the state space unit root structure. This implies that certain cointegration properties are invariant
for all systems corresponding to a subset MΓ, i. e., the parameterization allows to directly impose
cointegration properties like the “cointegration indices” of Paruolo (1996) mentioned before.

1.3 The Canonical Form and the Parameterization

As a first step we define the class of VARMA processes considered in this paper, using the differ-
encing operator defined in (1.3):

12Uniqueness of realizations in the VAR case stems from the normalization m(z)b(z) = Is, which reduces the class
of observationally equivalent VAR realizations of the same transfer function k(z) = a(z)−1b(z), with b(z) = Is, to
a singleton.

13The pair (a(z), b(z)) is left coprime if all its left divisors are unimodular matrices. Unimodular matrices are
polynomial matrices with constant non-zero determinant. Thus, pre-multiplication of, e. g., a(z) with a unimodular
matrix u(z) does not affect the determinantal roots that shape the dynamic behavior of the solutions of VAR
models.

14When using the echelon canonical form, the partitioning is according to the so-called Kronecker indices related
to a basis selection for the row-space of the Hankel matrix corresponding to the transfer function k(z), see, e. g.,
Hannan and Deistler (1988, Chapter 2.4) for a precise definition.
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Definition 1 The s-dimensional real VARMA process {yt}t∈Z has unit root structure Ω :=
((ω1, h1), . . . , (ωl, hl)) with 0 ≤ ω1 < ω2 < · · · < ωl ≤ π, hk ∈ N, k = 1, . . . , l, l ≥ 1, if it is
a solution of the difference equation

∆Ω(yt − Φdt) :=

l∏
k=1

∆hk
ωk

(yt − Φdt) = vt, (1.8)

where {dt}t∈Z is an m-dimensional deterministic sequence, Φ ∈ Rs×m and {vt}t∈Z is a linearly
regular stationary VARMA process, i. e., there exists a pair of left coprime matrix polynomials
(a(z), b(z)),det a(z) 6= 0, |z| ≤ 1 such that vt = a(L)−1b(L)(εt) =: c(L)(εt) for a white noise
process {εt}t∈Z with E(εtε

′
t) = Σ > 0, with furthermore c(z) 6= 0 for z = eiωk , k = 1, . . . , l.

� The process {yt}t∈Z is called unit root process with unit roots zk := eiωk for k = 1, . . . , l, the
set F (Ω) := {ω1, . . . , ωl} is the set of unit root frequencies and the integers hk, k = 1, . . . , l
are the integration orders.

� A unit root process with unit root structure ((0, d)), d ∈ N, is an I(d) process.

� A unit root process with unit root structure ((ω1, 1), . . . , (ωl, 1)) is an MFI(1), process.

A linearly regular stationary VARMA process has empty unit root structure Ω0 := {}.
As discussed in (Bauer and Wagner, 2012) the state space framework is convenient for the

analysis of VARMA unit root processes. Detailed treatments of the state space framework are
given in (Hannan and Deistler, 1988) and - in the context of unit root processes - (Bauer and
Wagner, 2012).

A state space representation of a unit root VARMA process is15

yt = Cxt + Φdt + εt,
xt+1 = Axt +Bεt,

(1.9)

for a white noise process {εt}t∈Z, εt ∈ Rs, a deterministic process {dt}t∈Z, dt ∈ Rm and the
unobserved state process {xt}t∈Z, xt ∈ Cn, A ∈ Cn×n, B ∈ Cn×s, C ∈ Cs×n and Φ ∈ Rs×m.

Remark 3 Bauer and Wagner (2012, Theorem 2) show that every real valued unit root VARMA
process {yt}t∈Z as given in (1.8) has a real valued state space representation with {xt}t∈Z real valued
and real valued system matrices (A, B, C). Considering complex valued state space representations
in (1.9) is merely for algebraic convenience, as in general some eigenvalues of A are complex
valued. Note for completeness that Bauer and Wagner (2012) contains a detailed discussion why
considering the A-matrix in the canonical form in (up to reordering) the Jordan normal form is
useful for cointegration analysis. For sake of brevity we abstain from including this discussion
again in the present paper. The key aspect of this construction is its usefulness for cointegration
analysis, which becomes visible in Remark 4, where the “simple” unit root properties of blocks of
the state vector are discussed.

The transfer function k(z) with real valued power series coefficients corresponding to a real
valued unit root process {yt}t∈Z as given in Definition 1 is given by the rational matrix function
k(z) = ∆Ω(z)−1a(z)−1b(z). The (possibly complex valued) matrix triple (A,B,C) realizes the
transfer function k(z) if and only if π(A,B,C) := Is + zC(In − zA)−1B = k(z). Note that, as
for VARMA realizations, for a transfer function k(z) there exist multiple state space realizations
(A,B,C), with possibly different state dimensions n. A state space system (A,B,C) is minimal
if there exists no state space system of lower state dimension realizing the same transfer function
k(z). The order of the transfer function k(z) is the state dimension of a minimal system (A,B,C)
realizing k(z).

15Here and below we will only consider state space systems in so-called innovation representation, with the
same error in both the output equation and the state equation. Since every state space system has an innovation
representation this is no restriction, compare Aoki (1990, Chapter 7.1).
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All minimal state space realizations of a transfer function k(z) only differ in the basis of the
state, cf. Hannan and Deistler (1988, Theorem 2.3.4), i. e., π(A,B,C) = π(Ã, B̃, C̃) for two
minimal state space systems (A,B,C) and (Ã, B̃, C̃) is equivalent to the existence of a regular
matrix T ∈ Cn such that A = TÃT−1, B = TB̃, C = C̃T−1. Thus, the matrices A and Ã are
similar for all minimal realizations of a transfer function k(z).

By imposing restrictions on the matrices of a minimal state space system (A,B,C) realizing
k(z), Bauer and Wagner (2012, Theorem 2) provide a canonical form, i. e., a mapping of the set
Mn of transfer functions with real valued power series coefficients defined below onto unique state
space realizations (A,B, C). The set Mn is defined as

Mn :=

{
k(z) = π(A,B,C)

∣∣∣ λ|max|(A) ≤ 1,
A ∈ Rn×n, B ∈ Rn×s, C ∈ Rs×n, (A,B,C) minimal

}
.

To describe the necessary restrictions of the canonical form the following definition is useful:

Definition 2 A matrix B = [bi,j ]i=1,...,c,j=1,...,s ∈ Cc×s is positive upper triangular (p.u.t.) if
there exist integers 1 ≤ j1 ≤ j2 ≤ · · · ≤ jc ≤ s + 1, such that for ji ≤ s we have bi,j = 0, j <
ji, ji < ji+1, bi,ji ∈ R+. For ji = s+ 1 it holds that bi,j = 0, 1 ≤ j ≤ s, i. e., B is of the form

B =


0 · · · 0 b1,j1 ∗ . . . ∗
0 . . . 0 b2,j2 ∗

0 . . . 0 bc,jc ∗

 ,
where the symbol ∗ indicates unrestricted complex-valued entries.

A unique state space realization of k(z) ∈Mn is given as follows, cf. Bauer and Wagner (2012,
Theorem 2):

Theorem 1 For every transfer function k(z) ∈Mn there exists a unique minimal (complex) state
space realization (A,B, C) such that

yt = Cxt,C + εt,

xt+1,C = Axt,C + Bεt

with:

(i) A := diag(Au,A•) := diag(A1,C, . . . ,Al,C,A•), Au ∈ Cnu×nu ,A• ∈ Rn•×n• , where it holds
for k = 1, . . . , l that

– for 0 < ωk < π:

Ak,C :=

[
Jk 0
0 Jk

]
∈ C2dk×2dk ,

– for ωk ∈ {0, π}:

Ak,C := Jk ∈ Rd
k×dk ,

with Jk :=

zkIdk1
[Idk1

, 0dk1×(dk2−dk1 )] 0 · · · 0

0dk2×dk1
zkIdk2

[Idk2
, 0dk2×(dk3−dk2 )] 0

...

0 0 zkIdk3

. . . 0

...
...

. . .
. . . [Idk

hk−1
, 0dk

hk−1
×(dk

hk
−dk

hk−1
)]

0 0 · · · 0 zkIdk
hk


, (1.10)

where 0 < dk1 ≤ dk2 ≤ · · · ≤ dkhk .
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(ii) B := [B′u,B′•]′ := [B′1,C, . . . ,B′l,C,B′•]′ and C := [Cu, C•] := [C1,C, . . . , Cl,C, C•] are partitioned
accordingly. It holds for k = 1, . . . , l that

– for 0 < ωk < π:

Bk,C :=

[
Bk
Bk

]
∈ C2dk×s and Ck,C :=

[
Ck, Ck

]
∈ Cs×2dk .

– for ωk ∈ {0, π}:

Bk,C := Bk ∈ Rd
k×s and Ck,C := Ck ∈ Rs×d

k

.

(iii) Partitioning Bk,hk in Bk = [B′k,1, . . . ,B′k,hk ]′ as Bk,hk = [B′k,hk,1, . . . ,B
′
k,hk,hk

]′, with Bk,hk,j ∈
C(dkj−d

k
j−1)×s it holds that Bk,hk,j is p.u.t. for dkj > dkj−1 for j = 1, . . . , hk and k = 1, . . . , l.

(iv) For k = 1, . . . , l define Ck = [Ck,1, Ck,2, . . . , Ck,hk ], Ck,j = [CGk,j , CEk,j ], with CEk,j ∈ Cs×(dkj−d
k
j−1)

and CGk,j ∈ Cs×d
k
j−1 for j = 1, . . . , hk, with dk0 := 0. Furthermore, define CEk := [CEk,1, . . . , CEk,hk ] ∈

Cs×d
k
hk . It holds that (CEk )′CEk = Idkhk

and (CGk,j)′CEk,i = 0 for 1 ≤ i ≤ j for j = 2, . . . , hk and

k = 1, . . . , l.

(v) λ|max|(A•) < 1 and the stable subsystem (A•,B•, C•) of state dimension n• = n − nu is in
echelon canonical form, cf. Hannan and Deistler (1988, Theorem 2.5.2).

Remark 4 As indicated in Remark 3 and discussed in detail in (Bauer and Wagner, 2012) con-
sidering complex valued quantities is merely for algebraic convenience. For econometric analysis,
interest is, of course, on real valued quantities. These can be straightforwardly obtained from
the representation given in Theorem 1 as follows. First define a transformation matrix (and its
inverse):

TR,d :=

[
Id ⊗

[
1
i

]
, Id ⊗

[
1
−i

]]
∈ C2d×2d, T−1

R,d :=
1

2

[
Id ⊗

[
1,−i

]
Id ⊗

[
1, i

]] .
Starting from the complex valued canonical representation (A, B, C), a real valued canonical
representation

yt = CRxt,R + εt,

xt+1,R = ARxt,R + BRεt,

with real valued matrices (AR,BR, CR) follows from using the just defined transformation matrix.
In particular it holds that:

AR := diag(Au,R,A•) := diag(A1,R, . . . ,Al,R,A•),
BR := [B′u,R,B′•]′ := [B′1,R, . . . ,B′l,R,B′•]′,
CR := [Cu,R, C•] := [C1,R, . . . , Cl,R, C•],

with

(
Ak,R,Bk,R, Ck,R

)
:=

{(
TR,dkAkT−1

R,dk , TR,dkBk, CkT
−1
R,dk

)
if 0 < ωk < π,(

Ak,Bk, Ck
)

if ωk ∈ {0, π}.

Before we turn to the real valued state process corresponding to the real valued canonical rep-
resentation, we first consider the complex valued state process {xt,C}t∈Z in more detail. This
process is partitioned according to the partitioning of the matrices Ck,C into xt,C := [x′t,u, x

′
t,•]
′ :=

[x′t,1,C, . . . , x
′
t,l,C, x

′
t,•]
′, where

xt,k,C :=

{
[x′t,k, x

′
t,k]′ if 0 < ωk < π,

xt,k if ωk ∈ {0, π},
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with

xt+1,k = Jkxt,k + Bkεt, for k = 1, . . . , l.

For k = 1, . . . , l the sub-vectors xt,k are further decomposed into xt,k := [(x1
t,k)′, . . . , (xhkt,k)′]′, with

xjt,k ∈ Cd
k
j for j = 1, . . . , hk according to the partitioning Ck = [Ck,1, . . . , Ck,hk ].

The partitioning of the complex valued process {xt,C}t∈Z leads to an analogous partitioning of
the real valued state process {xt,R}t∈Z, xt,R := [x′t,u,R, x

′
t,•]
′ := [x′t,1,R, . . . , x

′
t,l,R, x

′
t,•]
′, obtained

from

xt,k,R :=

{
TR,dkxt,k,C if 0 < ωk < π,

xt,k if ωk ∈ {0, π},

with the corresponding block of the state equation given by

xt+1,k,R = Ak,Rxt,k,R + Bk,Rεt.

For k = 1, . . . , l the sub-vectors xt,k,R are further decomposed into xt,k,R := [(x1
t,k,R)′, . . . , (xhkt,k,R)′]′,

with xjt,k,R ∈ R2dkj if 0 < ωk < π and xjt,k,R ∈ Rd
k
j if ωk ∈ {0, π} for j = 1, . . . , hk and Ck,R :=

[Ck,1,R, . . . , Ck,hk,R] decomposed accordingly.

Bauer and Wagner (2012, Theorem 3, p. 1328) show that the processes {xjt,k,R}t∈Z have unit
root structure ((ωk, hk − j + 1)) for j = 1, . . . , hk and k = 1, . . . , l. Furthermore, for j = 1, . . . , hk
and k = 1, . . . , l the processes {xjt,k,R}t∈Z are not cointegrated, as defined in Definition 3 below.

For ωk = 0, the process {xjt,k,R}t∈Z is the djk-dimensional process of stochastic trends of order

h1 − j + 1, while the 2dkj components of {xjt,k,R}t∈Z, for 0 < ωk < π, and the dkj components of

{xjt,l,R}t∈Z, for ωk = π, are referred to as stochastic cycles of order hk−j+1 at their corresponding
frequencies ωk.

Remark 5 Parameterizing the stable part of the transfer function using the echelon canonical
form is merely one possible choice. Any other canonical form of the stable subsystem and suitable
parameterization based upon it can be used instead for the stable subsystem.

Remark 6 Starting from a state space system (1.9) with matrices (A,B, C) in canonical form,
a solution for yt, t > 0 (with the solution for t < 0 obtained completely analogously) – for some
x1 = [x′1,u, x

′
1,•]
′ – is given by

yt =

t−1∑
j=1

CuAj−1
u Buεt−j + CuAt−1

u x1,u +

t−1∑
j=1

C•Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt.

Clearly, the term CuAt−1
u x1,u is stochastically singular and is effectively like a deterministic com-

ponent, which may lead to an identification problem with Φdt. If, the deterministic component
Φdt is rich enough to “absorb” CuAtux1,u, then one solution of the identification problem is to
set x1,u = 0. Rich enough here means, e.g., in the I(1) case with Au = I that dt contains an
intercept. Analogously, in the MFI(1) case dt has to contain seasonal dummy variables corre-
sponding to all unit root frequencies. The term C•At−1

• x1,• decays exponentially and therefore does
not impact the asymptotic properties of any statistical procedure. It is therefore inconsequential
for statistical analysis but convenient (with respect to our definition of unit root processes) to set
x1,• =

∑∞
j=1A

j−1
• B•ε1−j. This corresponds to the steady state or stationary solution of the sta-

ble block of the state equation, and renders {xt,•}t∈N or, when the solution on Z is considered,
{xt,•}t∈Z stationary. Note that these issues with respect to starting values, potential identification
problems and their impact or non-impact on statistical procedures also occur in the VAR setting.

Bauer and Wagner (2012, Theorem 2) show that minimality of the canonical state space realiza-
tion (A, B, C) implies full row rank of the p.u.t. blocks Bk,hk,j of Bk,hk . In addition to proposing
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the canonical form, (Bauer and Wagner, 2012) also provide details how to transform any minimal
state space realization into canonical form: Given a minimal state space system (A,B,C) realiz-
ing the transfer function k(z) ∈ Mn, the first step is to find a similarity transformation T such
that Ã = TAT−1 is of the form given in (1.10) by using an eigenvalue decomposition, compare
(Chatelin, 1993). In the second step the corresponding subsystem (Ã•, B̃•, C̃•) is transformed
to echelon canonical form as described in Hannan and Deistler (1988, Chapter 2). These two
transformations do not lead to a unique realization, because the restrictions on A do not uniquely
determine the unstable subsystem (Au,Bu, Cu).

For example, in the case Ω = ((ω1, h1)) = ((0, 1)), n• = 0, d1
1 < s, such that (Id1

1
,B1, C1) is

a corresponding state space system, the same transfer function k(z) = Is + zC1(1 − z)−1B1 =
Is + C1B1z(1 − z)−1 is realized also by all systems (Id1

1
, TB1, C1T−1), with some regular matrix

T ∈ Cd1
1×d

1
1 . To find a unique realization the product C1B1 needs to be uniquely decomposed into

factors C1 and B1. This is achieved by performing a QR decomposition of C1B1 (without pivoting)
that leads to C′1C1 = I. The additional restriction of B1 being a p.u.t. matrix of full row rank
then leads to a unique factorization of C1B1 into C1 and B1. In the general case with an arbitrary
unit root structure Ω, similar arguments lead to p.u.t. restrictions on sub-blocks Bk,hk,j in Bu and
orthogonality restrictions on sub-blocks of Cu.

The canonical form introduced in Theorem 1 has been designed to be useful for cointegration
analysis. To see this, first requires a definition of static and polynomial cointegration, cf. Bauer
and Wagner (2012, Definitions 3 and 4).

Definition 3 (i) Let Ω̃ = ((ω̃1, h̃1), . . . , (ω̃l̃, h̃l̃)) and Ω = ((ω1, h1), . . . , (ωl, hl)) be two unit

root structures. Then Ω̃ � Ω if

– F (Ω̃) ⊆ F (Ω).

– For all ω ∈ F (Ω̃) for k̃ and k such that ω̃k̃ = ωk = ω it holds that h̃k̃ ≤ hk.

Further, Ω̃ ≺ Ω if Ω̃ � Ω and Ω̃ 6= Ω. For two unit root structures Ω̃ � Ω define the decrease
δk(Ω, Ω̃) of the integration order at frequency ωk , for k = 1, . . . , l, as

δk(Ω, Ω̃) :=

{
hk − h̃k̃ ∃k̃ : ω̃k̃ = ωk ∈ F (Ω̃),

hk ωk /∈ F (Ω̃)
.

(ii) An s-dimensional unit root process {yt}t∈Z with unit root structure Ω is cointegrated of order
(Ω, Ω̃), where Ω̃ ≺ Ω, if there exists a vector β ∈ Rs, β 6= 0, such that {β′yt}t∈Z has unit root
structure Ω̃. In this case the vector β is a cointegrating vector (CIV) of order (Ω, Ω̃).

(iii) All CIVs of order (Ω, Ω̃) span the (static) cointegrating space of order (Ω, Ω̃).16

(iv) An s-dimensional unit root process {yt}t∈Z with unit root structure Ω is polynomially cointe-
grated of order (Ω, Ω̃), where Ω̃ ≺ Ω, if there exists a vector polynomial β(z) =

∑q
m=0 βmz

m,
βm ∈ Rs, m = 0, . . . , q,, βq 6= 0, for some integer 1 ≤ q <∞ such that

– β(L)′({yt}t∈Z) has unit root structure Ω̃,

– maxk=1,...,l‖β(eiωk)‖δk(Ω, Ω̃) 6= 0.

In this case the vector polynomial β(z) is a polynomial cointegrating vector (PCIV) of order
(Ω, Ω̃).

(v) All PCIVs of order (Ω, Ω̃) span the polynomial cointegrating space of order (Ω, Ω̃).

16The definition of cointegrating spaces as linear subspaces, allows to characterize them by a basis and implies a
well-defined dimension. These advantages, however, have the implication that the zero vector is an element of all
cointegrating spaces, despite not being a cointegrating vector in our definition, where the zero vector is excluded.
This issue is well-known of course in the cointegration literature.
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Remark 7 (i) It is merely a matter of taste whether cointegrating spaces are defined in terms
of their order (Ω, Ω̃) or their decrease δ(Ω, Ω̃) := (δ1(Ω, Ω̃), . . . , δl(Ω, Ω̃)), with δk(Ω, Ω̃) as
defined above. Specifying Ω and δ(Ω, Ω̃) contains the same information as providing the
order of (polynomial) cointegration.

(ii) Notwithstanding the fact that CIVs and PCIVs in general may lead to changes of the inte-
gration orders at different unit root frequencies it may be of interest to “zoom in” on only
one unit root frequency ωk, thereby leaving the potential reductions of the integration orders
at other unit root frequencies unspecified. This allows to – entirely similarly as in Defi-
nition 3 – define cointegrating and polynomial cointegrating spaces of different orders at a
single unit root frequency ωk. Analogously one can also define cointegrating and polynomial
cointegrating spaces of different orders for subsets of the frequencies in F (Ω).

(iii) In principle the polynomial cointegrating spaces defined so far are infinite-dimensional as
the polynomial degree is not bounded. However, since every polynomial vector β(z) can be
written as β0(z)+βΩ(z)∆Ω(z), where by definition {∆Ωyt}t∈Z has empty unit root structure,
it suffices to consider PCIVs of polynomial degree smaller than the polynomial degree of
∆Ω(z). This shows that it is sufficient to consider finite dimensional polynomial cointegrating
spaces. When considering, as in item (ii), (polynomial) cointegration only for one unit root it
similarly suffices to consider polynomials of maximal degree equal to hk−1 for real unit roots
and 2hk− 1 for complex unit roots. Thus, in the I(2) case it suffices to consider polynomials
of degree one.

(iv) The argument about maximal relevant polynomial degrees given in item (iii) can be made
more precise and combined with the decrease in Ω achieved. Every polynomial vector β(z)
can be written as β0(z) + βωk,δk(z)∆δk

ωk
(z) for δk = 1, . . . , hk. By definition it holds that

{∆δk
ωk
yt}t∈Z has integration order hk−δk at frequency ωk. Thus, it suffices to consider PCIVs

of polynomial degree smaller than δk for ωk ∈ {0, π} or 2δk for 0 < ωk < π when considering
the polynomial cointegrating space at ωk with decrease δk. In the MFI(1) case therefore,
when considering only one unit root frequency, again only polynomials of degree one need
to be considered. This space is often referred to in the literature as dynamic cointegration
space.

To illustrate the advantages of the canonical form for cointegration analysis consider

yt =
l∑

k=1

hk∑
j=1

Ck,j,Rxjt,k,R + C•xt,• + Φdt + εt.

By Remark 4, the process {xjt,k,R}t∈Z is not cointegrated. This implies that β ∈ Rs, β 6= 0,
reduces the integration order at unit root zk to hk − j if and only if β′[Ck,1,R, . . . , Ck,j,R] = 0 and
β′Ck,j+1,R 6= 0 or equivalently β′[Ck,1, . . . , Ck,j ] = 0 and β′Ck,j+1 6= 0 (using the transformation to
the complex matrices of the canonical form, as discussed in Remark 4, and that β′[Ck, Ck] = 0 if
and only if β′Ck = 0). Thus, the CIVs are characterized by orthogonality to sub-blocks of Cu.

The real valued representation given in Remark 4 used in its partitioned form just above
immediately leads to necessary orthogonality constraint for polynomial cointegration of degree
one:

β(L)′(yt) = β(L)′(Cu,Rxt,u,R + C•xt,• + Φdt + εt)

= β′0Cu,Rxt,u,R + β′1Cu,Rxt−1,u,R + β(L)′(C•xt,• + Φdt + εt)

= β′0Cu,R(Au,Rxt−1,u,R + Bu,Rεt−1) + β′1Cu,Rxt−1,u,R + β(L)′(C•xt,• + Φdt + εt)

= (β′0Cu,RAu,R + β′1Cu,R)xt−1,u,R + β′0Cu,RBu,Rεt−1 + β(L)′(C•xt,• + Φdt + εt)

= (β′0CuAu + β′1Cu)xt−1,u + β′0CuBuεt−1 + β(L)′(C•xt,• + Φdt + εt)

follows. Since all terms except the first are stationary or deterministic, a necessary condition for a

reduction of the unit root structure is the orthogonality of [ β′0 β′1 ]′ to sub-blocks of

[
Cu,RAu,R
Cu,R

]
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or sub-blocks of the complex matrix

[
CuAu

Cu

]
. Note, however, that this orthogonality condition is

not sufficient for [β′0, β
′
1]′ to be a PCIV, because it does not imply maxk=1,...,l‖β(eiωk)‖δk(Ω, Ω̃) 6= 0.

For a detailed discussion of polynomial cointegration, when considering also higher polynomial
degrees, see Bauer and Wagner (2012, Section 5).
The following examples illustrate cointegration analysis in the state space framework for the
empirically most relevant, i. e., the I(1), MFI(1) and I(2) cases.

Example 1 (Cointegration in the I(1) case) In the I(1) case, neglecting the stable subsystem
and the deterministic components for simplicity, it holds that

yt = C1xt,1 + εt, yt, εt ∈ Rs, xt,1 ∈ Rd
1
1 , C1 ∈ Rs×d

1
1 ,

xt+1,1 = xt,1 + B1εt, B1 ∈ Rd
1
1×s.

The vector β ∈ Rs, β 6= 0, is a CIV of order ((0, 1), {}) if and only if β′C1 = 0.

Example 2 (Cointegration in the MFI(1) case with complex unit root zk) In the MFI(1)
case with unit root structure Ω = ((ωk, 1)) and complex unit root zk, neglecting the stable subsystem
and the deterministic components for simplicity, it holds that

yt = Ck,Rxt,k,R + εt

= [ Ck Ck ]

[
xt,k
xt,k

]
+ εt,

yt, εt ∈ Rs, xt,k,R ∈ R2dk1 , xt,k ∈ Cd
k
1 , Ck,R ∈ Rs×2dk1 , Ck ∈ Cs×d

k
1 ,[

xt+1,k

xt+1,k

]
=

[
zkIdk1

0

0 zkIdk1

] [
xt,k
xt,k

]
+

[
Bk

Bk

]
εt, Bk ∈ Cd

k
1×s.

The vector β ∈ Rs, β 6= 0, is a CIV of order (Ω, {}) if and only if

β′Ck = 0 (and thus β′Ck = 0).

The vector polynomial β(z) = β0 + β1z, with β0, β1 ∈ Rs, [β′0, β′1]′ 6= 0, is a PCIV of order (Ω, {})
if and only if

[β′0, β
′
1]

[
zkCk zkCk
Ck Ck

]
= 0, (1.11)

which is equivalent to

(zkβ
′
0 + β′1)Ck = 0.

The fact that the matrix in (1.11) has a block structure with two blocks of conjugate complex
columns implies some additional structure also on space of PCIVs, here with polynomial degree one.
More specifically it holds that if β0 +β1z is a PCIV of order (Ω, {}), also −β1 +(β0 +2 cos(ωk)β1)z
is a PCIV of order (Ω, {}). This follows from

(zk(−β1)′ + (β0 + 2 cos(ωk)β1)′)Ck = (β′0 + (2R(zk)− zk)β′1)Ck
= (β′0 + zkβ

′
1)Ck

= zk(zkβ
′
0 + β′1)Ck = 0.

Thus, the space of PCIVs of degree (up to) one inherits some additional structure emanating from
the occurrence of complex eigenvalues in complex conjugate pairs.
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Example 3 (Cointegration in the I(2) case) In the I(2) case, neglecting the stable subsystem
and the deterministic components for simplicity, it holds that

yt = CE1,1xEt,1 + CG1,2xGt,2 + CE1,2xEt,2 + εt,

yt, εt ∈ Rs, xEt,1, xGt,2 ∈ Rd
1
1 , xEt,2 ∈ Rd

1
2−d

1
1 , CE1,1, CG1,2 ∈ Rs×d

1
1 , CE1,2 ∈ Rs×(d1

2−d
1
1),

xEt+1,1 = xEt,1 + xGt,2 + B1,1εt,

xGt+1,2 = xGt,2 + B1,2,1εt,

xEt+1,2 = xEt,2 + B1,2,2εt, B1,1 ∈ Rd
1
1×s,B1,2,1 ∈ Rd

1
1×s,B1,2,2 ∈ R(d1

2−d
1
1)×s.

The vector β ∈ Rs, β 6= 0 is a CIV of order ((0, 2), (0, 1)) if and only if

β′CE1,1 = 0 and β′[CG1,2, CE1,2] 6= 0.

The vector β ∈ Rs, β 6= 0, is a CIV of order ((0, 2), {}) if and only if

β′[CE1,1, CG1,2, CE1,2] = 0.

The vector polynomial β(z) = β0 +β1z, with β0, β1 ∈ Rs is a PCIV of order ((0, 2), {}) if and only
if

[β′0, β
′
1]

[
CE1,1 CE1,1 + CG1,2 CE1,2
CE1,1 CG1,2 CE1,2

]
= 0 and β(1) = β0 + β1 6= 0.

The above orthogonality constraint indicates that the two cases CG1,2 = 0 and CG1,2 6= 0 have to be

considered separately for polynomial cointegration analysis. Consider first the case CG1,2 = 0. In

this case the orthogonality constraints imply β′0CE1,1 = 0, β′1CE1,1 = 0 and (β0 + β1)′CE1,2 = 0. Thus,
the vector β0 +β1 is a CIV of order ((0, 2), {}) and therefore β(z) = β0 +β1z is of “non-minimum”
degree, one in this case rather than zero (β0 + β1). For a formal definition of minimum degreee
PCIVs see Bauer and Wagner (2003, Definition 4). In case CG1,2 6= 0 there are PCIVs of degree
one that are not simple transformations of static CIVs. Consider β(z) = β0 +β1z = γ1(1−z)+γ2

such that {γ′1(yt−yt−1)+γ′2yt}t∈Z is stationary. The integrated contribution to {γ′1(yt−yt−1)}t∈Z
is given by γ′1(1 − L)({CE1,1xEt,1}t∈Z) = {γ′1CE1,1xGt−1,2 + γ′1CE1,1B1,1εt−1}t∈Z, with γ′1CE1,1 6= 0. This

term is eliminated by {γ′2CG1,2xGt,2}t∈Z in {γ′2yt}t∈Z, if γ′1CE1,1 + γ′2CG1,2 = 0, which is only possible

if CG1,2 6= 0. Additionally, γ′2[CE1,1, CE1,2] = 0 needs to hold, such that there is no further integrated
contribution to {γ′2yt}t∈Z. Neither γ1 nor γ2 are CIVs since both violate the necessary conditions
given in the definition of CIVs, which implies that β(z) is indeed a “minimum degree” PCIV.

As has been shown above, the unit root and cointegration properties of {yt}t∈Z depend on
the sub-blocks of Cu and the eigenvalue structure of Au. We therefore define the more encom-
passing state space unit root structure containing information on the geometrical and algebraic
multiplicities of the eigenvalues of Au, cf. Bauer and Wagner (2012, Definition 2).

Definition 4 A unit root process {yt}t∈Z with a canonical state space representation as given in
Theorem 1 has state space unit root structure

ΩS :=
(
(ω1, d

1
1, . . . , d

1
h1

), . . . , (ωl, d
l
1, . . . , d

l
hl

)
)

where 0 ≤ dk1 ≤ dk2 ≤ · · · ≤ dkhk ≤ s for k = 1, . . . , l. For {yt}t∈Z with empty unit root structure
ΩS := {}.

Remark 8 The state space unit root structure ΩS contains information concerning the integra-
tion properties of the process {yt}t∈Z, since the integers dkj , k = 1, . . . , l, j = 1, . . . , hk describe
(multiplied by two for k such that 0 < ωk < π) the numbers of non-cointegrated stochastic trends
or cycles of corresponding integration orders, compare again Remark 4. As such, ΩS describes
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properties of the stochastic process {yt}t∈Z – and therefore the state space unit root structure ΩS
partitions unit root processes according to these (co-)integration properties. These (co-)integration
properties, however, are invariant to a chosen canonical representation, or more generally in-
variant to whether a VARMA or state space representation is considered. For all minimal state
representations of a unit root process {yt}t∈Z these indices – being related to the Jordan normal
form – are invariant.

As mentioned in Section 1.2, Paruolo (1996, Definition 3) introduces integration indices at
frequency zero as a triple of integers (r0, r1, r2). These correspond to the numbers of columns of the
matrices β, β1, β2 in the error correction representation of I(2) VAR processes, see, e. g., Johansen
(1997, Section 3). Here, r2 is the number of stochastic trends of order two, i. e., r2 = d1

1. Further, r1

is the number of stochastic trends of order one that do not cointegrate with β′2∆0{yt}t∈Z and hence
r1 = d1

2 − d1
1. Therefore, the integration indices at frequency zero are in one-one correspondence

with the state space unit root structure ΩS = ((0, d1
1, d

1
2)) for I(2) processes and the dimension

s = r0 + r1 + r2 of the process.
The canonical form given in Theorem 1 imposes p.u.t. structures on sub-blocks of the matrix

Bu. The occurrence of these blocks – related to dkj > dkj−1 – is determined by the state space unit
root structure ΩS . The number of free entries in these p.u.t.-blocks, however, is not determined
by ΩS . Consequently, we need structure indices p ∈ Nnu0 indicating for each row the position of a
potentially restricted positive element, as formalized below:

Definition 5 (Structure indices) For the block Bu ∈ Cnu×s of the matrix B of a state space
realization (A,B, C) in canonical form, define the corresponding structure indices p ∈ Nnu0 as

pi :=

 0 if the i-th row of Bu is not part of a p.u.t. block,
j if the i-th row of Bu is part of a p.u.t. block

and its j-th entry is restricted to be positive.

Remark 9 Since sub-blocks of Bu corresponding to complex unit roots are of the form Bk,C =

[B′k,B
′
k]′, the entries restricted to be positive are located in the same columns and rows of both

Bk and Bk. Thus, the structure indices pi of the corresponding rows are identical for Bk and
Bk. Therefore, it would be possible to omit the parts of p corresponding to the blocks Bk. It is,
however, as will be seen in Definition 9, advantageous for the comparison of unit root structures
and structure indices that p is a vector with nu entries.

Example 4 Consider the following state space system:

yt =
[
CE1,1 CG1,2 CE1,2

]
xt + εt yt, εt ∈ R2, xt ∈ R3, CE1,1, CG1,2, CE1,2 ∈ R2×1 (1.12)

xt+1 =

[
1 1 0
0 1 0
0 0 1

]
xt +

[ B1,1

B1,2,1

B1,2,2

]
εt, x0 = 0, B1,1,B1,2,1,B1,2,2 ∈ R1×2.

In canonical form B1,2,1 and B1,2,2 are p.u.t. matrices and B1,1 is unrestricted. If, e. g., the second
entry b1,2,1,2 of B1,2,1 and the first entry b1,2,2,1 of B1,2,2 are restricted to be positive, then

B =

[ ∗ ∗
0 b1,2,1,2

cB1,2,2,1 ∗

]
,

where the symbol ∗ denotes unrestricted entries. In this case p = [0, 2, 1]′.

For given state space unit root structure ΩS the matrix Au is fully determined. The parame-
terization of the set of feasible matrices Bu for given structure indices p and of the set of stable
subsystems (A•,B•, C•) for given Kronecker indices α•, cf. Hannan and Deistler (1988, Chap-
ter 2.4) is straightforward, since the entries in these matrices are either unrestricted, restricted to
zero or restricted to be positive. Matters are a bit more complicated for Cu. One possibility to
parameterize the set of possible matrices Cu for a given state space unit root structure ΩS is to
use real and complex valued Givens rotations, cf. Golub and van Loan (1996, Chapter 5.1).
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Definition 6 (Real Givens rotation) The real Givens rotation Rq,i,j(θ) ∈ Rq×q, θ ∈ [0, 2π) is
defined as

Rq,i,j(θ) :=


Ii−1 0

cos(θ) 0 sin(θ)
0 Ij−1−i 0

− sin(θ) 0 cos(θ)
0 Iq−j

 .
Remark 10 Givens rotations allow to transform any vector v = [v1, v2, ..., vq]

′ ∈ Rq into a vector
of the form [ṽ1, 0, ..., 0]′ with ṽ1 ≥ 0. This is achieved by the following algorithm:

1. Set j = 1, v
(1)
1 = v1 and v(1) = v.

2. Represent [v
(j)
1 , vq−j+1]′ using polar coordinates as [v

(j)
1 , vq−j+1]′ = [rj cos(θq−j), rj sin(θq−j)]

′,
with rj ≥ 0 and θq−j ∈ [0, 2π). If rj = 0, set θq−j = 0, cf. Otto (2011, Chapter 1.5.3, p. 39).

Then R2,1,2(θq−j)[v
(j)
1 , vq−j+1]′ = [v

(j+1)
1 , 0]′ such that v(j+1) = Rq,1,q−j+1(θq−j)v

(j) =

[v
(j+1)
1 , v2, . . . , vq−j , 0, . . . , 0]′, with v

(j+1)
1 ≥ 0.

3. If j = q − 1, stop. Else increment j by one (j → j + 1) and continue at step 2.

This algorithm determines a unique vector θ = [θ1, ..., θq−1]′ for every vector v ∈ Rq.

Remark 11 The determinant of real Givens rotations is equal to one, i. e., det(Rs,i,j(θ)) = 1 for
all s, i, j ∈ N and all θ ∈ [0, 2π). Thus it is not possible to factorize a orthonormal matrix Q
with det(Q) = −1 into a product of Givens rotations. This obvious fact has implications for the
parameterization of C-matrices as is detailed below.

Definition 7 (Complex Givens rotation) The complex Givens rotation Qq,i,j(ϕ) ∈ Cq×q,
ϕ := [ϕ1, ϕ2]′ ∈ ΘC := [0, π/2]× [0, 2π), is defined as

Qq,i,j(ϕ) :=


Ii−1 0

cos(ϕ1) 0 sin(ϕ1)eiϕ2

0 Ij−1−i 0
− sin(ϕ1)e−iϕ2 0 cos(ϕ1)

0 Iq−j

 .
Remark 12 Complex Givens rotations allow to transform any vector v = [v1, v2, ..., vq]

′ ∈ Cq into
a vector of the form [ṽ1, 0, ..., 0]′ with ṽ1 ∈ C. This is achieved by the following algorithm:

1. Set j = 1, v
(1)
1 = v1 and v(1) = v.

2. Represent [v
(j)
1 , vq−j+1]′ using polar coordinates as [v

(j)
1 , vq−j+1]′ = [aje

iϕa,j , bje
iϕb,j ]′, with

aj , bj ≥ 0 and ϕa,j , ϕb,j ∈ [0, 2π). If v
(j)
1 = 0, set ϕa,j = 0 and if vq−j+1 = 0, set ϕb,j = 0,

cf. Otto (2011, Chapter 8.1.3, p. 222).

3. Set

ϕq−j,1 =


tan−1

(
bj
aj

)
if aj > 0,

π/2 if aj = 0, bj > 0,

0 if aj = 0, bj = 0,

ϕq−j,2 = ϕa,j − ϕb,j mod 2π.

Then Q2,1,2(ϕq−j)[v
(j)
1 , vq−j+1]′ = [v

(j+1)
1 , 0]′ such that v(j+1) = Qq,1,q−j+1(θq−1)v(j) =

[v
(j+1)
1 , v2, . . . , vq−j , 0]′, with v

(j+1)
1 ∈ C.
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4. If j = q − 1, stop. Else increment j by one (j → j + 1) and continue at step 2.

This algorithm determines a unique vector ϕ = [ϕ1,1, ϕ1,2, ..., ϕq−1,2]′ for every vector v ∈ Cq.

To set the stage for the general case, we start the discussion of the parameterization of the set
of matrices (A,B, C) in canonical form with the MFI(1) and I(2) cases. These two cases display all
ingredients required later for the general case. The MFI(1) case illustrates the usage of either real
or complex Givens rotations, depending on whether the considered C-block corresponds to a real or
complex unit root. The I(2) case highlights recursive orthogonality constraints on the parameters
of the C-block, which are related to the polynomial cointegration properties (cf. Example 3).

1.3.1 The Parameterization in the MFI(1) Case

The state space unit root structure of an MFI(1) process is given by ΩS = ((ω1, d
1
1), . . . , (ωl, d

l
1)).

For the corresponding state space system (A,B, C) in canonical form, the sub-blocks of Au are
equal to Jk = zkIdk1 , the sub-blocks Bk of Bu are p.u.t. and C′kCk = Idk1 , for k = 1, . . . l.

Starting with the sub-blocks of Cu, it is convenient to separate the discussion of the param-

eterization of Cu-blocks into the real case, where ωk ∈ {0, π} and Ck ∈ Rs×dk1 , and the complex

case with 0 < ωk < π and Ck ∈ Cs×dk1 . For the case of real unit roots the two cases dk1 < s and
dk1 = s have to be distinguished. For brevity of notation refer to the considered real block simply
as C ∈ Rs×d. Using this notation, the set of matrices to be parameterized is

Os,d := {C ∈ Rs×d|C ′C = Id}.

The parameterization of Os,d is based on the combination of real Givens rotations, as given in
Definition 6, that allow to transform every matrix in Os,d to the form [Id, 0

′
(s−d)×d]

′ for d < s.

For d = s, Givens rotations allow to transform every matrix C ∈ Os,s either to Is or I−s :=

diag(Is−1,−1), since, compare Remark 11, for the transformed matrix C̃(s) it holds that det(C) =
det(C̃(s)) ∈ {−1, 1}. This is achieved with the following algorithm:

1. Set j = 1 and C(1) = C.

2. Transform the entries [cj,j , . . . , cj,d] in the j-th row of C(j), to [c̃j,j , 0, . . . , 0], c̃j,j ≥ 0. Since
this is a row vector, this is achieved by right-multiplication of C(j) with transposed Givens
rotations and the required parameters are obtained via the algorithm described in Remark 10.
The first j− 1 entries of the j-th row remain unchanged. Denote the transformed matrix by
C(j+1).

3. If j = d− 1 stop. Else increment j by one (j → j + 1) and continue at step 2.

4. Collect all parameters used for the Givens rotations in steps 1 to 3 in a parameter vector
θR. Steps 1-3 correspond to a QR decomposition of C′ = QC̃′, with an orthonormal matrix
Q given by the product of the Givens rotation. Note that the first j − 1 entries of the j-th
column of C̃ = C(d) are equal to zero by construction.

5. Set j = 0 and C̃(0) = C̃.

6. Collect the entries in column d − j of C̃(j) which have not been transformed to zero by
previous transformations into the vector [cd−j,d−j , cd+1,d−j , . . . , cs,d−j ]

′. Using the algorithm
described in Remark 10 transform this vector to [c̃d−j,d−j , 0, . . . , 0]′ by left-multiplication of

C̃(j) with Givens rotations. Since Givens rotations are orthonormal, the transformed matrix
C̃(j+1) is still orthonormal implying for its entries c̃d−j,d−j = 1 and c̃i,d−j = 0 for all i < d−j.
An exception occurs if d = s. In this case cd−j,d−j ∈ {−1, 1} and no Givens rotations are
defined.

7. If j = d− 1 stop. Else increment j by one (j → j + 1) and continue at step 6.
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8. Collect all parameters used for the Givens rotations in steps 5 to 7 in a parameter vector
θL.

The parameter vector θ = [θ′L,θ
′
R]′, contains the angles of the employed Givens rotations and

provides one way of parameterizing Os,d. The following Lemma 1 demonstrates the usefulness of
this parameterization.

Lemma 1 (Properties of the parameterization of Os,d) Define for d ≤ s a mapping θ →
CO(θ) from ΘR

O := [0, 2π)d(s−d) × [0, 2π)d(d−1)/2 → Os,d by

CO(θ) :=

 d∏
i=1

s−d∏
j=1

Rs,i,d+j(θL,(s−d)(i−1)+j)

′ [ Id
0(s−d)×d

]d−1∏
i=1

i∏
j=1

Rd,d−i,d−i+j(θR,i(i−1)/2+j)


:= RL(θL)′

[
Id

0(s−d)×d

]
RR(θR),

with θ := [θ′L,θ
′
R]′, where θL := [θL,1, . . . , θL,d(s−d)]

′ and θR := [θR,1, . . . , θR,d(d−1)/2]′. The
following properties hold:

(i) Os,d is closed and bounded.

(ii) The mapping CO(·) is infinitely often differentiable.

For d < s, it holds that

(iii) For every C ∈ Os,d there exists a vector θ ∈ ΘR
O such that

C = CO(θ) = RL(θL)′
[

Id
0(s−d)×d

]
RR(θR).

The algorithm discussed above defines the inverse mapping C−1
O : Os,d → ΘR

O.

(iv) The inverse mapping C−1
O (·) – the parameterization of Os,d – is infinitely often differentiable

on the pre-image of the interior of ΘR
O. This is an open and dense subset of Os,d.

For d = s, it holds that

(v) Os,s is a disconnected space in Rs×s with two disjoint non-empty closed subsets O+
s,s := {C ∈

Rs×s|C ′C = Is, det(C) = 1} and O−s,s := {C ∈ Rs×s|C ′C = Is, det(C) = −1}.

(vi) For every C ∈ O+
s,s there exists a vector θ ∈ ΘR

O such that

C = CO(θ) = RL(θL)′
[
Id
]
RR(θR) = RR(θR).

In this case, steps 1-4 of the algorithm discussed above define the inverse mapping C−1
O :

O+
s,s → ΘR

O.

(vii) Define v := [π, . . . , π]′ ∈ Rs(s−1)/2. Then a parameterization of Os,s is given by

C±O (C) =

{
v + C−1

O (C) if C ∈ O+
s,s

−(v + C−1
O (CI−s )) if C ∈ O−s,s

The parameterization is infinitely often differentiable with infinitely often differentiable in-
verse on an open and dense subset of Os,s.
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Remark 13 The following arguments illustrate why C−1
O is not continuous on the pre-image of

the boundary of ΘR
O: Consider the unit sphere O3,1 = {C ∈ R3|C ′C = ‖C‖2 = 1}. One way to

parameterize the unit sphere is to use degrees of longitude and latitude. Two types of discontinu-
ities occur: After fixing the location of the zero degree of longitude, i. e., the prime meridian, its
anti-meridian is described by both 180◦W and 180◦E. Using the half-open interval [0, 2π) in our
parametrization causes a similar discontinuity. Second, the degree of longitude is irrelevant at the
north pole. As seen in Remark 10, with our parameterization a similar issue occurs when the first
two entries of C to be compared are both equal to zero. In this case the parameter of the Givens
rotation is set to zero, although every θ will produce the same result. Both discontinuities clearly
occur on a thin subset of Os,d.

As in the parametrization of the VAR I(1)-case in the VECM framework, where the restriction
β = [Is−d, β

∗]′ can only be imposed when the upper (s − d) × (s − d) block of the true β0 of the
DGP is of full rank,

cf. Johansen (1995, Chapter 5.2), the set where the discontinuities occur can effectively be
changed by a permutation of the components of the observed time series. This corresponds to
redefining the locations of the prime meridian and the poles.

Remark 14 Note that the parameterization partitions the parameter vector θ into two parts θL ∈
[0, 2π)d(s−d) and θR ∈ [0, 2π)(d−1)d/2. Since changing the parameter values in θR does not change
the column space of CO(θ), which, as seen above, determines the cointegrating vectors, θL fully
characterizes the (static) cointegrating space. Note that the dimension of θL is d(s− d) and thus
coincides with the number of free parameters in β in the VECM framework, cf. Johansen (1995,
Chapter 5.2).

Example 5 Consider the matrix

C =

 0 1√
2

−1√
2

1
2

1√
2

1
2


with d = 2 and s = 3. As discussed, the static cointegrating space is characterized by the left kernel
of this matrix. The left kernel of a matrix in R3×2 with full rank two is given by a one-dimensional
space, with the corresponding basis vector parameterized, when normalized to length one, by two
free parameters. Thus, for the characterization of the static cointegrating space two parameters are
required, which exactly coincides with the dimension of θL given in Remark 14. The parameters in
θR correspond to the choice of a basis of the image of C. Having fixed the two-dimensional subspace
through θL, only one free parameter for the choice of an orthonormal basis remains, which again
coincides with the dimension given in Remark 14. To obtain the parameter vector, the starting
point is a QR decomposition of C ′ = RR(θR)C̃ ′. In this example RR(θR) = R2,1,2(θR,1), with θR,1
to be determined. To find θR,1, solve [ 0 1√

2
]R2,1,2(θR,1)′ = [ r 0 ] for r ≥ 0 and θR,1 ∈ [0, 2π).

In other words, find r ≥ 0 and θR,1 ∈ [0, 2π) such that [ 0 1√
2

] = r[ cos(θR,1) sin(θR,1) ],

which leads to r = 1√
2

, θR,1 = π
2 . Thus, the orthonormal matrix RR(θR) is equal to R2,1,2

(
π
2

)
and the transpose of the upper triangular matrix C̃ ′ is equal to:

C̃ = C̃(0) = C ·R2,1,2

(π
2

)′
=

 0 1√
2

−1√
2

1
2

1√
2

1
2

[ 0 −1
1 0

]
=

 1√
2

0
1
2

1√
2

1
2
− 1√

2

 .
Second, transform the entries in the lower 1 × 2-sub-block of C̃(0) to zero, starting with the last
column. For this find θL,2 ∈ [0, 2π) such that R3,2,3(θL,2)[ 0 1√

2
− 1√

2
]′ = [ 0 1 0 ]′, i. e.,

[ 1√
2
− 1√

2
]′ = r[ cos(θL,2) sin(θL,2) ]. This yields r = 1, θL,2 = 7π

4 . Next compute C̃(1) =

R3,2,3( 7π
4 )C̃(0):

C̃(1) = R3,2,3

(
7π

4

)
· C ·R2,1,2

(π
2

)′
=

 1 0 0
0 1√

2

−1√
2

0 1√
2

1√
2

 0 1√
2

−1√
2

1
2

1√
2

1
2

[ 0 −1
1 0

]
=

 1√
2

0

0 1
1√
2

0

 .
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In the final step find θL,1 ∈ [0, 2π) such that R3,1,3(θL,1)[ 1√
2

0 1√
2

]′ = [ 1 0 0 ]′, i. e.,

[ 1√
2

1√
2

]′ = r[ cos(θL,1) sin(θL,1) ]. The solution is r = 1, θL,1 = π
4 . Combining the trans-

formations leads to

R3,1,3

(π
4

)
·R3,2,3

(
7π

4

)
· C ·R2,1,2

(π
2

)′
= 1√

2
0 1√

2

0 1 0
−1√
2

0 1√
2

 1 0 0
0 1√

2

−1√
2

0 1√
2

1√
2

 0 1√
2

−1√
2

1
2

1√
2

1
2

[ 0 −1
1 0

]
=

[
1 0
0 1
0 0

]
.

The parameter vector for this matrix is therefore θ = [θ′L,θ
′
R]′ =

[[
π
4 ,

7π
4

]
,
[
π
2

]]′
with θ = C−1

O (C).

In case of complex unit roots, referring for brevity again to the considered block Ck simply as
C ∈ Cs×d, the set of matrices to be parameterized is

Us,d := {C ∈ Cs×d|C ′C = Id}.

The parameterization of this set is based on the combination of complex Givens rotations, as given
in Definition 7, which can be used to transform every matrix in Us,d to the form [Dd, 0

′
(s−d)×d]

′

with a diagonal matrix Dd whose diagonal elements are of unit modulus. This transformation is
achieved with the following algorithm:

1. Set j = 1 and C(1) = C.

2. Transform the entries [cj,j , . . . , cj,d] in the j-th row of C(j), to [c̃j,j , 0, . . . , 0]. Since this is
a row vector, this is achieved by right-multiplication of C with transposed Givens rotations
and the required parameters are obtained via the algorithm described in Remark 12. The
first j − 1 entries of the j-th row remain unchanged. Denote the transformed matrix by
C(j+1).

3. If j = d− 1 stop. Else increment j by one (j → j + 1) and continue at step 2.

4. Collect all parameters used for the Givens rotations in steps 1 to 3 in a parameter vector
ϕR. Step 1-3 corresponds to a QR decomposition of C′ = QC̃′, with a unitary matrix Q
given by the product of the Givens rotations. Note that the first j − 1 entries of the j-th
column of C̃ = C(d) are equal to zero by construction.

5. Set j = 0 and C̃(0) = C̃.

6. Collect the entries in column d − j of C̃(j) which have not been transformed to zero by
previous transformations into the vector [cd−j,d−j , cd+1,d−j , . . . , cs,d−j ]

′. Using the algorithm
described in Remark 12 transform this vector to [c̃d−j,d−j , 0, . . . , 0]′ by left-multiplication of

C̃(j) with Givens rotations. Since Givens rotations are unitary, the transformed matrix C̃(j+1)

is still unitary implying for its entries |c̃d−j,d−j | = 1 and c̃i,d−j = 0 for all i < d − j. An
exception occurs if d = s. In this case |cd−j,d−j | = 1 and no Givens rotations are defined.

7. If j = d− 1 stop. Else increment j by one (j → j + 1) and continue at step 6.

8. Collect all parameters used for the Givens rotations in steps 5 to 7 in a parameter vector
ϕL.

9. Transform the diagonal entries of the transformed matrix C̃(d) = [Dd, 0
′
(s−d)×d]

′ into polar
coordinates and collect the angles in a parameter vector ϕD.

The following lemma demonstrates the usefulness of this parameterization.
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Lemma 2 (Properties of the parametrization of Us,d) Define for d ≤ s a mapping ϕ →
CU (ϕ) from ΘC

U := Θ
d(s−d)
C ×Θ

(d−1)d/2
C × [0, 2π)d → Us,d by

CU (ϕ) :=

 d∏
i=1

s−d∏
j=1

Qs,i,d+j(ϕL,(s−d)(i−1)+j)

′ [ Dd(ϕD)
0(s−d)×d

]d−1∏
i=1

i∏
j=1

Qd,d−i,d−i+j(ϕR,i(i−1)/2+j)


:= QL(ϕL)′

[
Dd(ϕD)
0(s−d)×d

]
QR(ϕR),

with ϕ := [ϕ′L,ϕ
′
R,ϕ

′
D]′, where ϕL = [ϕL,1, . . . , ϕL,d(s−d)]

′, ϕR := [ϕR,1, . . . , ϕR,d(d−1)/2]′ and
ϕD := [ϕD,1, . . . , ϕD,d] and where Dd(ϕD) = diag(eiϕD,1 , . . . , eiϕD,d). The following properties
hold:

(i) Us,d is closed and bounded.

(ii) The mapping CU (ϕ) is infinitely often differentiable.

(iii) For every C ∈ Us,d a vector ϕ ∈ ΘC
U exists such that

C = CU (ϕ) = QL(ϕL)′
[
Dd(ϕD)
0(s−d)×d

]
QR(ϕR).

The algorithm discussed above defines the inverse mapping C−1
U : Us,d → ΘR

U .

(iv) The inverse mapping C−1
U (·) – the parameterization of Us,d – is infinitely often differentiable

on an open and dense subset of Us,d.

Remark 15 Note that using the partitioning of the parameter vector ϕ into the parts ϕL,ϕD and
ϕR. The component ϕL fully characterizes the column space of CU (ϕ), i.e., ϕL determines the
cointegrating spaces.

Example 6 Consider the matrix

C =

[ 1−i
2

1−i
2

1+i
2

−1−i
2

0 0

]
.

The starting point is again a QR decomposition of C ′ = QR(ϕR)C̃ ′ = Q2,1,2(ϕR,1)C̃ ′. To find a
complex Givens rotation such that [ 1−i

2
1−i

2 ]Q2,1,2(ϕR,1)′ = [ reiϕa 0 ] with r > 0, transform

the entries of [ 1−i
2

1−i
2 ]′ into polar coordinates. The equation [ 1−i

2
1−i

2 ]′ = [ aeiϕa beiϕb ]′

has the solutions a = b = 1√
2

and ϕa = ϕb = 7π
4 . Using the results of Remark 12, the parameters

of the Givens rotation are ϕR,1,1 = tan−1( ba ) = π
4 and ϕR,1,2 = ϕa − ϕb = 0. Right-multiplication

of C with Q2,1,2

([
π
4 , 0
])′

leads to

C̃ = CQ2,1,2

([π
4
, 0
])′

= C

[
1√
2

1√
2

−1√
2

1√
2

]′
=


1−i√

2
0

0 −1−i√
2

0 0

 =

[
D2(ϕD)

01×2

]
.

Since the entries in the lower 1×2-sub-block of C̃ are already equal to zero, the remaining complex
Givens rotations are Q3,2,3([0, 0]) = Q3,1,3([0, 0]) = I3. Finally the parameter values correspond-
ing to the diagonal matrix D2(ϕD) = diag(eiϕD,1 , eiϕD,2) = diag( 1−i√

2
, −1−i√

2
) are ϕD,1 = 3π

4 and

ϕD,2 = 5π
4 .

The parameter vector for this matrix is therefore ϕ = [ϕ′L,ϕ
′
R,ϕ

′
D]′ =

[
[0, 0, 0, 0],

[
π
4 , 0
]
,
[

3π
4 ,

5π
4

]]′
,

with ϕ = C−1
U (C).
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Components of the Parameter Vector

Based on the results of the preceding sections we can now describe the parameter vectors for
the general case. The dimensions of the parameter vectors of the respective blocks of the system
matrices (A,B, C) depend on the multi-index Γ, consisting of the state space unit root structure ΩS ,
the structure indices p and the Kronecker indices α• for the stable subsystem. A parameterization
of the set of all systems in canonical form with given multi-index Γ for the MFI(1) case therefore
combines the following components:

� θB,f := [θ′B,f,1, ...,θ
′
B,f,l]

′ ∈ ΘB,f = RdB,f , with:

θB,f,k :=


[bk

1,pk1+1
, bk

1,pk1+2
, . . . , bk1,s, b

k
2,pk2+1

, . . . , bk
dk1 ,s

]′ for ωk ∈ {0, π},
[R(bk

1,pk1+1
), I(bk

1,pk1+1
),R(bk

1,pk1+2
), . . . , I(bk1,s),R(bk

2,pk2+1
), . . . , I(bk

dk1 ,s
)]′

for 0 < ωk < π,

for k = 1, . . . , l, with pkj denoting the j-th entry of the structure indices p corresponding
to Bk. The vectors θB,f,k contain the real and imaginary parts of free entries in Bk not
restricted by the p.u.t. structures.

� θB,p := [θ′B,p,1, ...,θ
′
B,p,l]

′ ∈ ΘB,p = RdB,p+ : The vectors θB,p,k :=

[
bk
1,pk1

, . . . , bk
dk1 ,p

k

dk1

]′
con-

tain the entries in Bk restricted by the p.u.t. structures to be positive reals.

� θC,E := [θ′C,E,1, ...,θ
′
C,E,l]

′ ∈ ΘC,E ⊂ RdC,E : The parameters for the matrices Ck as discussed
in Lemma 1 and Lemma 2.

� θ• ∈ Θ•,α ⊂ Rd• : The parameters for the stable subsystem in echelon canonical form for
Kronecker indices α•.

Example 7 Consider an MFI(1) process with ΩS = ((0, 2), (π2 , 2)), p = [1, 3, 1, 2, 1, 2]′, n• = 0,
and system matrices

A = diag(1, 1, i, i,−i,−i),

B =


1 −1 2
0 0 2

1 1 + i 1− i
0 2 i

1 1− i 1 + i
0 2 −i

 , C =

 0 1√
2

1−i
2

1−i
2

1+i
2

1+i
2

−1√
2

1
2

1+i
2

−1−i
2

1−i
2

−1+i
2

1√
2

1
2

0 0 0 0

 ,

in canonical form. For this example it holds that θB,f = [[−1, 2], [1, 1, 1,−1, 0, 1]]′, θB,p =
[[1, 2], [1, 2]] and

θC,E =

[[[
π

4
,

7π

4

]
,
[π

2

]]
,

[
[0, 0, 0, 0],

[π
4
, 0
]
,

[
3π

4
,

5π

4

]]]′
,

with parameter values corresponding to the C-blocks collected in θC,E considered in Examples 5
and 6.

1.3.2 The Parameterization in the I(2) Case

The canonical form provided above for the general case has the following form for I(2) processes
with unit root structure Ωs = ((0, d1

1, d
1
2)):

A =


Id1

1
Id1

1
0 0

0 Id1
1

0 0

0 0 Id1
2−d1

1
0

0 0 0 A•

 , B =


B1,1

B1,2,1

B1,2,2

B•

 , C =
[
CE1,1 CG1,2 CE1,2 C•

]
,
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where 0 < d1
1 ≤ d1

2 ≤ s, B1,2,1 and B1,2,2 are p.u.t., CE1,1 ∈ Os,d1
1
, CE1,2 ∈ Os,d1

2−d1
1
, (CE1,1)′CE1,2 =

0d1
1×d1

2
, (CE1,1)′CG1,2 = 0d1

1×d1
1
, (CE1,2)′CG1,2 = 0(d1

2−d1
1)×d1

1
and (A•,B•, C•) is in echelon canonical

form with Kronecker indices α•. All matrices are real valued.
The parameterizations of the p.u.t. matrices B1,2,1 and B1,2,2 are as discussed above. The

entries of B1,1 are unrestricted and thus included in the parameter vector θB,f containing also the
free entries in B1,2,1 and B1,2,2. The subsystem (A•,B•, C•) is parameterized using the echelon
canonical form.

The parameterization of CE1,1 ∈ Os,d1
1

proceeds as in the MFI(1) case, using C−1
O (CE1,1). The

parameterization of CE1,2 has to take the restriction of orthogonality of CE1,2 to CE1,1 into account,
thus the set to be parameterized is given by

Os,d1
2−d1

1
(CE1,1) := {CE1,2 ∈ Rs×(d1

2−d
1
1)|(CE1,1)′CE1,2 = 0d1

1×(d1
2−d1

1), (CE1,2)′CE1,2 = Id1
2−d1

1
}.(1.13)

The parameterization of this set again uses real Givens rotations. For C ∈ Os,d1
2−d1

1
(CE1,1) it follows

that RL(θL)C = [0′
d1

1×(d1
2−d1

1)
, C̃′]′ for a matrix C̃ such that C̃′C̃ = Id1

2−d1
1

with RL(θL) corresponding

to CE1,1. The matrix C̃ is parameterized as discussed in Lemma 1.

Corollary 1 (Properties of the parameterization of Os,d1
2−d1

1
(CE1,1)) Define for d1

1 < d1
2 ≤

s a mapping θ̃ → CO,d1
2−d1

1
(θ̃;CE1,1) from ΘR

O,d1
2

:= [0, 2π)(d1
2−d

1
1)(s−d1

2)×[0, 2π)(d1
2−d

1
1)(d1

2−d
1
1−1)/2 →

Os,d1
2−d1

1
(CE1,1) by

CO,d1
2−d1

1
(θ̃; CE1,1) := RL(θL)′

[
0d1

1×(d1
2−d1

1)

CO(θ̃)

]
,

where θL denotes the parameter values corresponding to [θ′L,θ
′
R]′ = C−1

O (CE1,1) as defined in
Lemma 1. The following properties hold:

(i) Os,d1
2−d1

1
(CE1,1) is closed and bounded.

(ii) The mapping CO,d1
2−d1

1
(θ̃; CE1,1) is infinitely often differentiable.

For d1
2 < s, it holds

(iii) For every CE1,2 ∈ Os,d1
2−d1

1
(CE1,1) there exists a vector θ̃ = [θ̃

′
L, θ̃

′
R]′ ∈ ΘR

O,d1
2−d1

1
such that

CE1,2 = CO,d1
2−d1

1
(θ̃; CE1,1) = RL(θL)′

 0d1
1×(d1

2−d1
1)

RL(θ̃L)′
[

Id1
2−d1

1

0(s−d1
2)×(d1

2−d1
1)

]
RR(θ̃R)

 .
The algorithm discussed above Lemma 1 defines the inverse mapping C−1

O,d1
2−d1

1
.

(iv) The inverse mapping C−1
O,d1

2−d1
1
(·; CE1,1) – the parameterization of Os,d1

2−d1
1
(CE1,1) – is infinitely

often differentiable on the pre-image of the interior of ΘR
O,d1

2−d1
1
. This is an open and dense

subset of Os,d1
2−d1

1
(CE1,1).

For d1
2 = s, it holds that

(v) Os,s−d1
1
(CE1,1) is a disconnected space with two disjoint non-empty closed subsets:

O+
s,s−d1

1
(CE1,1) :=

{CE1,2 ∈ Rs×(s−d1
1)|(CE1,1)′CE1,2 = 0d1

1×(s−d1
1), (CE1,2)′CE1,2 = Is−d1

1
,det([CE1,1, CE1,2]) = 1},

O−
s,s−d1

1
(CE1,1) :=

{CE1,2 ∈ Rs×(s−d1
1)|(CE1,1)′CE1,2 = 0d1

1×(s−d1
1), (CE1,2)′CE1,2 = Is−d1

1
,det([CE1,1, CE1,2]) = −1}.
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(vi) For every O+
s,s−d1

1
(CE1,1) there exists a vector θ̃ ∈ ΘR

O,d1
2−d1

1
such that

CE1,2 = CO,s−d1
1
(θ̃; CE1,1) = RR(θ̃R).

Steps 1-4 of the algorithm discussed above Lemma 1 define the inverse mapping C−1
O,s−d1

1
(·; CE1,1) :

O+
s,s−d1

1
(CE1,1)→ ΘR

O,s−d1
1
.

(vii) Define v := [π, . . . , π]′ ∈ R(s−d1
1)(s−d1

1−1)/2. Then a parameterization of Os,s−d1
1
(CE1,1) is

given by

C±
O,s−d1

1
(CE1,2; CE1,1) =

{
v + C−1

O,s−d1
1
(CE1,2; CE1,1) if C ∈ O+

s,s−d1
1
(CE1,1)

−(v + C−1
O,s−d1

1
(CE1,2I−s−d1

1
; CE1,1)) if C ∈ O−

s,s−d1
1
(CE1,1)

The parameterization is infinitely often differentiable with infinitely often differentiable in-
verse on an open and dense subset of Os,s.

The proof of Corollary 1 uses the same arguments as the proof of Lemma 1 and is therefore
omitted. It remains to provide a parameterization for CG1,2 restricted to be orthogonal to both CE1,1
and CE1,2. Thus, the set to be parametrized is given by

Os,G(CE1,1, CE1,2) := {CG1,2 ∈ Rs×d
1
1 |(CE1,1)′CG1,2 = 0d1

1×d1
1
, (CE1,2)′CG1,2 = 0(d1

2−d1
1)×d1

1
}.

The parameterization of Os,G(CE1,1, CE1,2) is straightforward: Left multiplication of CG1,2 with RL(θL)

as defined in Lemma 1 and of the lower (s−d1
1)×d1

1- block with RL(θ̃L) as defined in Corollary 1
transforms the upper d1

2×d1
1-block to zero and collects the free parameters in the lower (s−d1

2)×d1
1-

block. Clearly this is a bijective and infinitely often differentiable mapping on Os,G(CE1,1, CE1,2) and

thus a useful parameterization, since the matrix CG1,2 is only multiplied with two constant invertible
matrices. The entries of the matrix product are then collected in a parameter vector as shown in
Corollary 2.

Corollary 2 (Properties of the parameterization of Os,G(CE1,1, CE1,2)) Define for given ma-

trices CE1,1 ∈ Os,d1
1

and CE1,2 ∈ Os,d1
2−d1

1
(CE1,1) a mapping λ→ CO,G(λ; CE1,1, CE1,2) from Rd1

1(s−d1
2) →

Os,G(CE1,1, CE1,2) by

CO,G(λ; CE1,1, CE1,2) := RL(θL)′



0d1
1×d1

1

RL(θ̃L)′


0(d1

2−d1
1)×1 · · · 0(d1

2−d1
1)×1

λ1 · · · λd1
1

λd1
1+1 . . . λ2d1

1

...
...

λd1
1(s−d1

2−1)+1 · · · λd1
1(s−d1

2)




,

where θL denotes the parameter values corresponding to [θ′L,θ
′
R]′ = C−1

O (CE1,1) as defined in

Lemma 1 and θ̃L denotes the parameter values corresponding to [θ̃
′
L, θ̃

′
R]′ = C−1

O,d1
2−d1

1
(CE1,2; CE1,1)

as defined in Corollary 1. The set Os,G(CE1,1, CE1,2) is closed and both CO,G as well as C−1
O,G(·) - the

parameterization of Os,G(CE1,1, CE1,2) - are infinitely often differentiable.

Components of the Parameter Vector

In the I(2) case, the multi-index Γ contains the state space unit root structure ΩS = ((0, d1
1, d

1
2)),

the structure indices p ∈ Nd
1
1+d1

2
0 , encoding the p.u.t. structures of B1,2,1 and B1,2,2, and the

Kronecker indices α• for the stable subsystem. The parameterization of the set of all systems in
canonical form with given multi-index Γ for the I(2) case uses the following components:
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� θB,f := θB,f,1 ∈ ΘB,f = RdB,f : The vector θB,f,1 contains the free entries in B1 not
restricted by the p.u.t. structure, collected in the same order as for the matrices Bk in the
MFI(1) case.

� θB,p := θB,p,1 ∈ ΘB,p = RdB,p+ : The vector θB,p,1 :=

[
b1
d1−d1

h1
+1,p1

d1−d1
h1

+1

, . . . , b1
d1

1,p
1

d1
1

]′
contains the entries in B1 restricted by the p.u.t. structures to be positive reals.

� θC,E := [θ′C,E,1,1,θ
′
C,E,1,2]′ ∈ ΘC,E ⊂ RdC,E : The parameters for the matrices CE1,1 as in the

MFI(1) case and CE1,2 as discussed in Corollary 1.

� θC,G ∈ ΘC,G = RdC,G : The parameters for the matrix CG1,2 as discussed in Corollary 2.

� θ• ∈ Θ•,α ⊂ Rd• : The parameters for the stable subsystem in echelon canonical form for
Kronecker indices α•.

Example 8 Consider an I(2) process with ΩS = ((0, 1, 2)), p = [0, 1, 1]′, n• = 0 and system
matrices

A =

[
1 1 0
0 1 0
0 0 1

]
, B =

[ −1 2 −2
1 −1 3
2 0 1

]
, C =

 0 −1 1√
2

−1√
2

1√
2

1
2

1√
2

1√
2

1
2

 .
In this case, θB,f,1 = [−1, 2,−2,−1, 3, 0, 1]′, θB,p,1 = [1, 2]′. It follows from

R3,1,2

(
7π

4

)
R3,1,3

(π
2

)
CE1,1 = [ 1 0 0 ]′,

R3,1,2

(
7π

4

)
R3,1,3

(π
2

)
CE1,2 =

[
0 1√

2
−1√

2

]′
and R2,1,2

(
7π

4

)[ 1√
2
−1√

2

]
=

[
1
0

]
,

R3,1,2

(
7π

4

)
R3,1,3

(π
2

)
CG1,2 =

[
0 1 1

]′
and R2,1,2

(
7π

4

)[
1
1

]
=

[
0√
2

]
,

that θC,E = [θ′C,E,1,1,θC,E,1,2]′ =
[[
π
2 ,

7π
4

]
,
[

7π
4

]]′
and θC,G = [

√
2].

1.3.3 The Parameterization in the General Case

Inspecting the canonical form shows that all relevant building blocks are already present in the
MFI(1) and the I(2) cases and can be combined to deal with the general case: The entries in Bu are
either unrestricted or follow restrictions according to given structure indices p, and the parameter
space is chosen accordingly, as discussed for the MFI(1) and I(2) cases. The restrictions on the
matrices Cu and its blocks Ck require more sophisticated parameterizations of parts of unitary or
orthonormal matrices as well as of orthogonal complements. These are dealt with in Lemmas 1
and 2 and Corollaries 1 and 2 above. The extension of Corollaries 1 and 2 to complex matrices
and to matrices which are orthogonal to a larger number of blocks of Ck is straightforward.

The following theorem characterizes the properties of parameterizations for sets MΓ of transfer
functions with (general) multi-index Γ and describes the relations between sets of transfer functions
and the corresponding sets ∆Γ of triples (A,B, C) of system matrices in canonical form, defined
below. Discussing the continuity and differentiability of mappings on sets of transfer functions
and on sets of matrix triples also requires the definition of a topology on both sets.

Definition 8 (i) The set of transfer functions of order n, Mn, is endowed with the pointwise
topology Tpt: First, identify transfer functions with their impulse response sequences. Then,
a sequence of transfer functions ki(z) = Is +

∑∞
j=1Kj,iz

j converges in Tpt to k0(z) = Is +∑∞
j=1Kj,0z

j if and only if for every j ∈ N it holds that Kj,i
i→∞→ Kj,0.
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(ii) The set of all triples (A,B, C) in canonical form corresponding to transfer functions with
multi-index Γ is called ∆Γ. The set ∆Γ is endowed with the topology corresponding to the
distance d((A1, B1, C1), (A2, B2, C2)) := ‖A1 −A2‖Fr + ‖B1 −B2‖Fr + ‖C1 − C2‖Fr.

Note that in the definition of the pointwise topology convergence does not need to be uniform
in j and moreover, the power series coefficients do not need to converge to zero for j → ∞ and
hence the concept can also be used for unstable systems.

Theorem 2 The set Mn can be partitioned into pieces MΓ, where Γ := {ΩS , p, α•}, i. e.,

Mn =
⋃

Γ={ΩS ,p,α•}|nu(ΩS)+n•(α•)=n

MΓ,

where nu(ΩS) :=
∑l
k=1

∑hk
j=1 d

k
j δk, with δk = 1 for ωk ∈ {0, π} and δk = 2 for 0 < ωk < π is

the state dimension of the unstable subsystem (Au,Bu, Cu) with state space unit root structure ΩS
and n•(α•) :=

∑s
i=1 α•,i is the state dimension of the stable subsystem with Kronecker indices

α• = (α•,1, . . . , α•,s), α•,i ∈ N0.
For every multi-index Γ there exists a parameter space ΘΓ ⊂ Rd(Γ) for some integer d(Γ), endowed
with the Euclidean norm, and a function φΓ : ∆Γ → ΘΓ, such that for every (A,B, C) ∈ ∆Γ the
parameter vector θ := φΓ(A,B, C) ∈ ΘΓ is composed of:

� The parameter vector θB,f = [θ′B,f,1, ...,θ
′
B,f,l]

′ ∈ ΘB,f = RdB,f , collecting the (real and
imaginary parts of) non-restricted entries in Bk, k = 1, . . . , l as described in the MFI(1)
case.

� The parameter vector θB,p = [θ′B,p,1, ...,θ
′
B,p,l]

′ ∈ ΘB,p = RdB,p+ , collecting the entries in
Bk, k = 1, . . . , l, restricted by the p.u.t. forms to be positive reals in a similar fashion as
described for B1 in the I(2) case.

� The parameter vector

θC,E = [θ′C,E,1, ...,θ
′
C,E,l]

′ ∈ ΘC,E ⊂ RdC,E , θC,E,k = [θ′C,E,k,1, . . . ,θ
′
C,E,k,hk

]′

collecting the parameters θC,E,k,j for all blocks CEk,j, k = 1, . . . , l and j = 1, . . . , hk, obtained
using Givens rotations (see Lemmas 1 and 2 and Corollary 1 and its extension to complex
matrices).

� The parameter vector

θC,G = [θ′C,G,1, ...,θ
′
C,G,l]

′ ∈ ΘC,G = RdC,G , θC,G,k = [θ′C,G,k,2, . . . ,θ
′
C,G,k,hk

]′

collecting the parameters θC,G,k,j (real and imaginary parts for complex roots) for CGk,j,
k = 1, . . . , l and j = 2, . . . , hk, subject to the orthogonality restrictions (see Corollary 2 and
its extension to complex matrices).

� The parameter vector θ• ∈ Θ• ⊂ Rd• collecting the free entries in echelon canonical form
with Kronecker indices α•.

(i) The mapping ψΓ : MΓ → ∆Γ that attaches a triple (A,B, C) in canonical form to a transfer
function in MΓ is continuous. It is the inverse (restricted to MΓ) of the Tpt-continuous function
π : (A,B,C) 7→ k(z) = Is + zC(In − zA)−1B.
(ii) Every parameter vector θ = [θ′B,f ,θ

′
B,p,θ

′
C,E ,θ

′
C,G,θ

′
•]
′ ∈ ΘΓ ⊂ ΘB,f × ΘB,p × ΘC,E ×

ΘC,G × Θ• corresponds to a triple (A(θ),B(θ), C(θ)) ∈ ∆Γ and a transfer function k(z) =
π(A(θ),B(θ), C(θ)) ∈MΓ. The mapping φ−1

Γ : θ → (A(θ),B(θ), C(θ)) is continuous on ΘΓ.
(iii) For every multi-index Γ the set of points in ∆Γ, where the mapping φΓ is continuous, is open
and dense in ∆Γ.

As mentioned in Section 1.2, the parameterization of Φ is straightforward. The s×m entries
of Φ are collected in a parameter vector d. Thus, there is a one-to-one correspondence between
state space realizations (A,B, C,Φ) ∈ ∆Γ×Rs×m and parameter vectors τ = [θ′,d′]′ ∈ ΘΓ×Rsm.
The same holds true for parameters used for the symmetric, positive definite innovation matrix
Σ ∈ Rs×s obtained, e. g., from a lower triangular Cholesky factor of Σ.
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1.4 The Topological Structure

The parameterization of Mn in Theorem 2 partitions Mn into subsets MΓ for a selection of multi-
indices Γ. To every multi-index Γ there exists a corresponding associated parameter set ΘΓ.
Thus, in practical applications, maximizing the pseudo likelihood requires choosing the multi-
index Γ. Maximizing the pseudo likelihood over the set MΓ effectively amounts to including also
all elements in the closure of MΓ, because of continuity of the parameterization. It is thus necessary
to characterize the closures of the sets MΓ.

Moreover, maximizing the pseudo likelihood function over all possible multi-indices is time-
consuming and not desirable. Fortunately, the results discussed below show that there exists a
generic multi-index Γg such that Mn ⊂ MΓg . This generic choice corresponds to the set of all
stable systems of order n corresponding to the generic neighborhood of the echelon canonical form.
This multi-index therefore is a natural starting point for estimation.

However, in particular for hypotheses testing, it will be necessary to maximize the pseudo
likelihood over sets of transfer functions of order n with specific state space unit root structure
ΩS , denoted as M(ΩS , n•) below, where n• denotes the dimension of the stable part of the state.
We show below that also in this case there exists a generic multi-index Γg(ΩS , n•) such that
M(ΩS , n•) ⊂MΓg(ΩS ,n•).

The main tool to obtain these results is investigating the properties of the mappings ψΓ, that
map transfer functions in MΓ to triples (A,B,C) ∈ ∆Γ, as well as the analyzing the closures
of the sets ∆Γ. The relation between parameter vectors θ ∈ ΘΓ and triples of system matrices
(A,B,C) ∈ ∆Γ is easier to understand than the relation between ∆Γ and MΓ, due to the results
of Theorem 2. Consequently, this section focuses on the relations between ∆Γ and MΓ – and their
closures – for different multi-indices Γ.

To define the closures we embed the sets ∆Γ of matrices in canonical form with multi-indices Γ
corresponding to transfer functions of order n into the space ∆n of all conformable complex matrix
triples (A,B,C) with A ∈ Cn×n, where additionally λ|max|(A) ≤ 1. Since the elements of ∆n are

matrix triples, this set is isomorphic to a subset of the finite dimensional space Cn2+2ns, equipped
with the Euclidean topology. Note that ∆n also contains non-minimal state space realizations,
corresponding to transfer functions of lower order.

Remark 16 In principle the set ∆n also contains state space realizations of transfer functions
k(z) = Is +

∑∞
j=1Kjz

j with complex valued coefficients Kj. Since the subset of ∆n of state space
systems realizing transfer functions with real valued Kj is closed in ∆n, realizations corresponding
to transfer functions with coefficients with non-zero imaginary part are irrelevant for the analysis
of the closures of the sets ∆Γ.

After investigating the closure of ∆Γ in ∆n, denoted by ∆Γ, we consider the set of corresponding
transfer functions π(∆Γ). Since we effectively maximize the pseudo likelihood over ∆Γ, we have
to understand for which multi-indices Γ̃ the set π(∆Γ̃) is a subset of π(∆Γ). Moreover, we find a
covering of π(∆Γ) ⊂

⋃
i∈IMΓi . This restricts the set of multi-indices Γ that may occur as possible

multi-indices of the limit of a sequence in π(∆Γ) and thus the set of transfer functions that can
be obtained by maximization of the pseudo likelihood.

The sets MΓ, are embedded into the vector space M of all causal transfer functions k(z) =
Is +

∑∞
j=1Kjz

j . The vector space M is isomorphic to the infinite dimensional space Πj∈NRs×sj

equipped with the pointwise topology. Since, as mentioned above, maximization of the pseudo
likelihood function over MΓ effectively includes MΓ, it is important to determine for any given
multi-index Γ, the multi-indices Γ̃ for which the set MΓ̃ is a subset of MΓ. Note that MΓ is not
necessarily equal to π(∆Γ). The continuity of π, as shown in Theorem 2 (i), implies the following
inclusions:

MΓ = π(∆Γ) ⊂ π(∆Γ) ⊂MΓ.

In general all these inclusions are strict. For a discussion in case of stable transfer functions see
Hannan and Deistler (1988, Theorem 2.5.3).
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We first define a partial ordering on the set of multi-indices Γ. Subsequently we examine the
closures ∆Γ in ∆n and finally we examine the closures MΓ in M .

Definition 9 (i) For two state space unit root structures ΩS and Ω̃S with corresponding ma-
trices Au ∈ Cnu×nu and Ãu ∈ Cñu×ñu in canonical form, it holds that Ω̃S ≤ ΩS if and only
if there exists a permutation matrix S such that

SAuS′ =

[
Ãu J̃12

0 J̃2

]
.

Moreover, Ω̃S < ΩS holds if additionally Ω̃S 6= ΩS.

(ii) For two state space unit root structures ΩS and Ω̃S and dimensions of the stable subsystems
n•, ñ• ∈ N0 we define

(Ω̃S , ñ•) ≤ (ΩS , n•) if and only if Ω̃S ≤ ΩS , ñ• ≤ n•.

Strict inequality holds, if at least one of the two inequalities above holds strictly.

(iii) For two pairs (ΩS , p) and (Ω̃S , p̃) with corresponding matrices Au ∈ Cnu×nu and Ãu ∈
Cñu×ñu in canonical form, it holds that (Ω̃S , p̃) ≤ (ΩS , p) if and only if there exists a per-
mutation matrix S such that

SAuS′ =

[
Ãu J̃12

0 J̃2

]
, S p =

[
p1

p2

]
,

where p1 ∈ Nñu0 and p̃ restricts at least as many entries as p1, i. e., p̃i ≥ (p1)i holds for all
i = 1, . . . , ñu. Moreover, (Ω̃S , p̃) < (ΩS , p) holds if additionally (Ω̃S , p̃) 6= (ΩS , p).

(iv) Let α• = (α•,1, . . . , α•,s), α•,i ∈ N0 and α̃• = (α̃•,1, . . . , α̃•,s), α̃•,i ∈ N0. Then α̃• ≤ α• if
and only if α̃•,i ≤ α•,i, i = 1, . . . , s. Moreover, α̃• < α• holds, if at least one inequality is
strict, compare Hannan and Deistler (1988, Section 2.5).

Finally define

Γ̃ = (Ω̃S , p̃, α̃•) ≤ Γ = (ΩS , p, α•) if and only if (Ω̃S , p̃) ≤ (ΩS , p) and α̃• ≤ α•.

Strict inequality holds, if at least one of the inequalities above holds strictly.

This partial ordering is convenient for the characterization of the closure of ∆Γ.

1.4.1 The Closure of ∆Γ in ∆n

Note that the block-structure of A implies that every system in ∆Γ can be separated in two
subsystems (Au,Bu, Cu) and (A•,B•, C•). Define ∆ΩS ,p := ∆(ΩS ,p,{}) as the set of all state space
realizations in canonical form corresponding to state space unit root structure ΩS , structure indices
p and n• = 0. Analogously define ∆α• := ∆({},{},α•) as the set of all state space realizations in

canonical form with ΩS = {} and Kronecker indices α•. Examining ∆ΩS ,p and ∆α• separately
simplifies the analysis.

The Closure of ∆ΩS ,p

The canonical form imposes a lot of structure, i. e., restrictions on the matrices A, B and C.
By definition ∆ΩS ,p = ∆AΩS ,p × ∆BΩS ,p × ∆CΩS ,p and the closures of the three matrices can be

analyzed separately. ∆AΩS ,p and ∆CΩS ,p are very easy to investigate. The structure of A is fully

determined by ΩS and consequently ∆AΩS ,p consists of a single matrix A which immediately implies

that ∆AΩS ,p = ∆AΩS ,p. The matrix C, compare Theorem 1 is composed of blocks CEk that are
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sub-blocks of unitary (or orthonormal) matrices and blocks CGk that have to fulfill (recursive)
orthogonality constraints. The corresponding sets have been shown to be closed in Lemmas 1 and

2 and Corollaries 1 and 2. Thus, ∆CΩS ,p = ∆CΩS ,p.

It remains to discuss ∆BΩS ,p. The structure indices p defining the p.u.t. structures of the
matrices Bk restrict some entries to be positive. Combining all the parameters - unrestricted
with complex values parameterized by real and imaginary part and the positive entries - into a
parameter vector leads to an open sub-set of Rm for some m. For convergent sequences of systems
with fixed ΩS and p, limits of entries restricted to be positive may be zero. When this happens,
two cases have to be distinguished. First, all p.u.t. sub-matrices still have full row rank. In this
case the limiting system, (A0,B0, C0) say, is still minimal and can be transformed to a system in
canonical form (Ã0, B̃0, C̃0) with fewer unrestricted entries in B̃0.

Second, if at least one of the row ranks of the p.u.t. blocks decreases in the limit, the limiting
system is no longer minimal. Consequently, (Ω̃S , p̃) < (ΩS , p) in the limit.
To illustrate this point consider again Example 4 with equation (1.12) rewritten as

xt+1,1 = xt,1 + xt,2 + B1,1εt, xt+1,2 = xt,2 + B1,2,1εt, xt+1,3 = xt,3 + B1,2,2εt,

If B1,2,1 = [0, b1,2,1,2] 6= 0 and B1,2,2 = [b1,2,2,1, b1,2,2,2] 6= 0, b1,2,2,1 > 0, it holds that {yt}t∈Z is an
I(2) process with state space unit root structure ΩS = ((0, 1, 2)).
Now consider a sequence of systems with all parameters except for b1,2,1,2 constant and b1,2,1,2 → 0.
The limiting system is then given by

yt = CE1,1xt,1 + CG1,2xt,2 + CE1,2xt,3 + εt,[
xt+1,1

xt+1,2

xt+1,3

]
=

[
1 1 0
0 1 0
0 0 1

][
xt,1
xt,2
xt,3

]
+

[
b1,1,1 b1,1,2

0 0
cB1,2,2,1 b1,2,2,2

]
εt, x1,1 = x1,2 = x1,3 = 0.

In the limiting system xt,2 = 0 is redundant and {yt}t∈Z is an I(1) process rather than an I(2)
process. Dropping xt,2 leads to a state space realisation of the limiting system {yt}t∈Z given by

yt = CE1,1xt,1 + CE1,2xt,3 + εt = C̃x̃t + εt, x̃t ∈ R2,

x̃t+1 =

[
xt+1,1

xt+1,3

]
=

[
1 0
0 1

] [
xt,1
xt,3

]
+

[
b1,1,1 b1,1,2

cB1,2,2,1 b1,2,2,2

]
εt = x̃t + B̃εt, x1,1 = x1,3 = 0.

In case B̃ has full rank, the above system is minimal. Since b1,2,2,1 > 0, the matrix B̃ needs to
be transformed into p.u.t. format. By definition all systems in the sequence, with b1,2,1,2 6= 0,
have structure indices p = [0, 2, 1]′ as discussed in Example 1.12. The limiting system - in case of
full rank of B̃ - has indices p̃ = [1, 2]′. To relate to Definition 9 choose the permutation matrix

S =

[
1 0 0
0 0 1
0 1 0

]
to arrive at

SAuS′ =

[
1 0 1
0 1 0
0 0 1

]
=

[
I2 J̃12
0 J̃2

]
, Sp =

[
0
1
2

]
=

[
(p1)1
(p1)2
p2

]
.

This shows that (p̃)i > (p1)i, i = 1, 2 and thus the limiting system has a smaller multi-index Γ
than the systems of the sequence. In case B̃ has reduced rank equal to one a further reduction in
the system order to n = 1 along similar lines as discussed is possible, again leading to a limiting
system with smaller multi-index Γ.

The discussion shows that the closure of ∆BΩS ,p is related to lower order systems in the sense
of Definition 9. The precise statement is given in Theorem 3 after a discussion of the closure of
the stable subsystems.
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The Closure of ∆α•

Consider a convergent sequence of systems {(Aj ,Bj , Cj)}j∈N in ∆α• and denote the limiting system
by (A0, B0, C0). Clearly, λ|max|(A0) ≤ 1 holds true for the limit A0 of the sequence {Aj}j∈N with
λ|max|(Aj) < 1 for all j. Therefore, two cases have to be discussed for the limit:

� If λ|max|(A0) < 1, the potentially non-minimal limiting system (A0, B0, C0) corresponds to a
minimal state space realization with Kronecker indices smaller or equal to α•, cf. (Hannan
and Deistler, 1988, Theorem 2.5.3).

� If λ|max|(A0) = 1, the limiting matrix A0 is similar to a block matrix Ã = diag(J̃2, Ã•),

where all eigenvalues of J̃2 have unit modulus and λ|max|(Ã•) < 1.

The first case is well understood, compare Hannan and Deistler (1988, Chapter 2), since the limit
in this case corresponds to a stable transfer function. In the second case the limiting system can
be separated into two subsystems (J̃2, B̃u, C̃u) and (Ã•, B̃•, C̃•), according to the block diagonal
structure of Ã. The state space unit root structure of the limiting system (A0, B0, C0) depends on
the multiplicities of the eigenvalues of the matrix J̃2 and is greater (in the sense of Definition 9)
than the empty state space unit root structure. At the same time the Kronecker indices of the
subsystem (Ã•, B̃•, C̃•) are smaller than α•, compare again Hannan and Deistler (1988, Chapter 2).
Since the Kronecker indices impose restrictions on some entries of the matrices Aj and thus also

on A0, the block J̃2 and consequently also the limiting state space unit root structure might be
subject to further restrictions.

The Conformable Index Set and the Closure of ∆Γ

The previous subsection shows that the closure of ∆Γ does not only contain systems corresponding
to transfer functions with multi-index smaller or equal to Γ, but also systems that are related in
a different way that is formalized below.

Definition 10 (Conformable index set) Given a multi-index Γ = (ΩS , p, α•), the set of con-
formable multi-indices K(Γ) contains all multi-indices Γ̃ = (Ω̃S , p̃, α̃•), where:

� The pair (Ω̃S , p̃) with corresponding matrix Ãu in canonical form extends (ΩS , p) with cor-
responding matrix Au in canonical form, i. e., there exists a permutation matrix S such
that

S ÃuS′ =

[
Au 0

0 J̃2

]
and S p̃ =

[
p
p̃2

]
,

� α̃• ≤ α•.

� ñu + ñ• = nu + n•.

Note that the definition implies Γ ∈ K(Γ). The importance of the set K(Γ) is clarified in the
following theorem:

Theorem 3 Transfer functions corresponding to state space realizations with multi-index Γ̃ ≤ Γ
are contained in the set π(∆Γ). The set π(∆Γ) is contained in the union of all sets MΓ̌ for Γ̌ ≤ Γ̃
with Γ̃ conformable to Γ, i. e.,⋃

Γ̃≤Γ

MΓ̃ ⊂ π(∆Γ) ⊂
⋃

Γ̃∈K(Γ)

⋃
Γ̌≤Γ̃

MΓ̌.

Theorem 3 provides a characterization of the transfer functions corresponding to systems in
the closure of ∆Γ. The conformable set K(Γ) plays a key role here, since it characterizes the set
of all minimal systems that can be obtained as limits of convergent sequences from within the set
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∆Γ. Conformable indices extend the matrix Au corresponding to the unit root structure by the
block J̃2.

The second inclusion in Theorem 3 is potentially strict, depending on the Kronecker indices
α• in Γ. Equality holds, e. g., in the following case:

Corollary 3 For every multi-index Γ with n• = 0 the set of conformable indices consists only of
Γ, which implies π(∆Γ) =

⋃
Γ̃≤ΓMΓ̃.

1.4.2 The Closure of MΓ

It remains to investigate the closure of MΓ in M . Hannan and Deistler (1988, Theorem 2.6.5 (ii)
and Remark 3, p. 73) show that for any order n, there exist Kronecker indices α•,g = α•,g(n)
corresponding to the generic neighborhood Mα•,g for transfer functions of order n such that

M•,n :=
⋃

α•|n•(α•)=n

Mα• ⊂ Mα•,g ,

where Mα• := π(∆α•). Here M•,n denotes the set of all transfer functions of order n with state
space realizations (A,B,C) satisfying λ|max|(A) < 1. Every transfer function in M•,n can be
approximated by a sequence of transfer functions in Mα•,g .

It can be easily seen that a generic neighborhood also exists for systems with state space unit
root structure ΩS and without stable subsystem: Set the structure indices p to have a minimal
number of elements restricted in p.u.t. sub-blocks of Bu, i. e., for any block Bk,hk,j ∈ Cnk,hk,j×s,
or Bk,hk,j ∈ Rnk,hk,j×s in case of a real unit root, set the corresponding structure indices to p =
[1, . . . , nk,hk,j ]. Any p.u.t. matrix can be approximated by a matrix in this generic neighborhood
with some positive entries restricted by the p.u.t. structure tending to zero. Combining these
results with Theorem 3 implies the existence of a generic neighborhood for the canonical form
considered in this paper:

Theorem 4 Let M(ΩS , n•) be the set of all transfer functions k(z) ∈Mnu(ΩS)+n• with state space
unit root structure ΩS. For every ΩS and n•, there exists a multi-index Γg := Γg(ΩS , n•) such
that

M(ΩS , n•) ⊂ MΓg . (1.14)

Moreover, it holds that M(ΩS , n•) ⊂Mα•,g(n) for every ΩS and n• satisfying nu(ΩS) + n• ≤ n.

Theorem 4 is the basis for choosing a generic multi-index Γ for maximizing the pseudo likelihood
function. For every ΩS and n• there exists a generic piece that – in its closure – contains all
transfer functions of order nu(ΩS)+n• and state space unit root structure ΩS : The set of transfer
functions corresponding to the multi-index with the largest possible structure indices p in the sense
of Definition 9 (iii) and generic Kronecker indices for the stable subsystem. Choosing these sets
and their corresponding parameter spaces as model sets is therefore the most convenient choice
for numerical maximization, if only ΩS and n• are known.

If, e. g., only an upper bound for the system order n is known and the goal is only to obtain
consistent estimators, using α•,g(n) is a feasible choice, since all transfer functions in the closure of
the set Mα•,g(n) can be approximated arbitrarily well, regardless of their potential state space unit
root structure ΩS , nu(ΩS) ≤ n. For testing hypotheses, however, it is important to understand
the topological relations between sets corresponding to different multi-indices Γ. In the following
we focus on the multi-indices Γg(ΩS , n•) for arbitrary ΩS and n•.

The closure of M(ΩS , n•) contains also transfer functions that have a different state space unit
root structure than ΩS . Considering convergent sequences of state space realizations (Aj , Bj , Cj)j∈N
of transfer functions in M(ΩS , n•), the state space unit root structure of

(A0, B0, C0) := lim
j→∞

(Aj , Bj , Cj)

may differ in three ways:
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� For sequences (Aj ,Bj , Cj)j∈N in canonical form rows of Bu,j can tend to zero, which reduces
the state space unit root structure as discussed in Section 1.4.1.

� Stable eigenvalues of Aj may converge to the unit circle, thereby extending the unit root
structure.

� Off-diagonal entries of the sub-block Au,j of Aj = TjAjT
−1
j may be converging to zeros in

the sub-block Au,0 of the limit A0 = T0A0T
−1
0 in canonical form, resulting in a different

attainable state space unit root structure. Here Tj ∈ Cn×n for all j ∈ N are regular matrices
transforming Aj to canonical form and T0 ∈ Cn×n transforms A0 accordingly.

The first change of ΩS described above results in a transfer function with smaller state space
unit root structure according to Definition 9 (ii). The implications of the other two cases are
summarized in the following definition:

Definition 11 (Attainable unit root structures) For given n• and ΩS the set A(ΩS , n•) of
attainable unit root structures contains all pairs (Ω̃S , ñ•), where Ω̃S with corresponding matrix Ãu
in canonical form extends ΩS with corresponding matrix Au in canonical form, i. e., there exists
a permutation matrix S such that

S ÃuS′ =

[
Ǎu J12

0 J2

]
,

where Ǎu can be obtained by replacing off-diagonal entries in Au by zeros and where ñ• := n•−dJ
with dJ the dimension of J2 ∈ CdJ×dJ .

Remark 17 It is a direct consequence of the definition of A(ΩS , n•) that (Ω̃S , ñ•) ∈ A(ΩS , n•)
implies A(Ω̃S , ñ•) ⊂ A(ΩS , n•).

Theorem 5 (i) MΓ is Tpt-open in MΓ.
(ii) For every generic multi-index Γg corresponding to ΩS and n• it holds that

π(∆Γg ) ⊂
⋃

Γ̃∈K(Γg)

⋃
Γ̌≤Γ̃

MΓ̌

⊂
⋃

(Ω̃S ,ñ•)∈A(ΩS ,n•)

⋃
(Ω̌S ,ň•)≤(Ω̃S ,ñ•)

M(Ω̌S , ň•) = MΓg .

Theorem 5 has important consequences for statistical analysis, e. g., PML estimation, since –
as stated several times already – maximizing the pseudo likelihood function over ΘΓ effectively
amounts to calculating the supremum over the larger set MΓ. Depending on the choice of Γ the
following asymptotic behavior may occur:

� If Γ is chosen correctly and the estimator of the transfer function is consistent, openness of
MΓ in its closure implies that the probability of the estimator being an interior point of MΓ

tends to one asymptotically. Since the mapping attaching the parameters to the transfer
function is continuous on an open and dense set, consistency in terms of transfer functions
therefore implies generic consistency of the parameter estimators.

� If the multi-index is incorrectly chosen to equal Γ, estimator consistency is still possible if the
true multi-index Γ0 < Γ, as in this case MΓ0

⊂MΓ. This is in some sense not too surprising
and something that is also well-known in the simpler VAR framework where consistency of
OLS can be established when the true autoregressive order is smaller than the order chosen
for estimation. Analogous to the lag number in the VAR case, thus, a necessary condition
for consistency is to choose the system order larger or equal to the true system order.

Finally, note that Theorem 5 also implies the following result relevant for the determination
of the unit root structure, further discussed in Sections 1.5.1 and 1.5.2:

Corollary 4 For every pair (Ω̃S , ñ•) ∈ A(ΩS , n•) it holds that

M(Ω̃S , ñ•) ⊂ M(ΩS , n•).
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1.5 Testing Commonly Used Hypotheses in the MFI(1) and
I(2) Cases

This section discusses a large number of hypotheses, respectively restrictions, on cointegrating
spaces, adjustment coefficients and deterministic components often tested in the empirical liter-
ature. Similarly to the VECM framework, as discussed for the I(2) case in Section 1.2, testing
hypotheses on the cointegrating spaces or adjustment coefficients may necessitate different repa-
rameterizations.

1.5.1 The MFI(1) Case

The two by far most widely used cases of MFI(1) processes are I(1) processes and seasonally (co-)
integrated processes for quarterly data with state space unit root structure ((0, d1

1), (π/2, d2
1), (π, d3

1)).
In general, assuming for notational simplicity ω1 = 0 and ωl = π, it holds that for t > 0 and
x1,u = 0

yt =

l∑
k=1

Ck,Rxt,k,R + C•xt,• + Φdt + εt

= C1xt,1 +

l−1∑
k=2

(Ckxt,k + Ckxt,k) + Clxjt,l + C•xt,• + Φdt + εt

= C1B1

t−1∑
j=1

εt−j + 2

l−1∑
k=2

R

CkBk t−1∑
j=1

(zk)j−1εt−j

+ ClBl
t−1∑
j=1

(−1)j−1εt−j

+C•
t−1∑
j=1

Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt

= C1B1

t−1∑
j=1

εt−j + 2

l−1∑
k=2

t−1∑
j=1

(
R(CkBk) cos(ωk(j − 1)) + I(CkBk) sin(ωk(j − 1))

)
εt−j

+ClBl
t−1∑
j=1

(−1)j−1εt−j + C•
t−1∑
j=1

Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt.

The above equation provides an additive decomposition of {yt}t∈Z into stochastic trends and cycles,
the deterministic and stationary components. The stochastic cycles at frequency 0 < ωk < π are,
of course, given by the combination of sine and cosine terms. For the MFI(1) case this can also be
directly from considering the real valued canonical form discussed in Remark 4, with the matrices

Ak,R for k = 2, . . . , l − 1, given by Ak,R = Idk1 ⊗
(

cos(ωk) − sin(ωk)
sin(ωk) cos(ωk)

)
in this case.

The ranks of CkBk are equal to the integers dk1 in ΩS = ((ω1, d
1
1), . . . , (ωl, d

l
1)). The number of

stochastic trends is equal to d1
1, the number of stochastic cycles at frequency ωk is equal to 2dk1

for k = 2, . . . , l − 1 and equal to dl1 if k = l, as discussed in Section 1.3.
Moreover, in the MFI(1) case, dk1 is linked to the complex cointegrating rank rk at frequency

ωk, defined in (Johansen, 1991) and (Johansen and Schaumburg, 1999) in the VECM case as the
rank of the matrix Πk := −a(zk). For VARMA processes with arbitrary integration orders the
complex cointegrating rank rk at frequency ωk is rk := rank(−k−1(zk)), where k(z) is the transfer
function, with rk = s−dk1 in the MFI(1) case. Thus, in the MFI(1) case, determination of the state
space unit root structure corresponds to determination of the cointegrating ranks in the VECM
case.

In the VECM setting, the matrix Πk is usually factorized into Πk = αkβ
′
k, as presented for the

I(1) case in Section 1.2. For ωk = {0, π} the column space of βk gives the cointegrating space of
the process at frequency ωk. For 0 < ωk < π the relation between the column space of βk and the
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space of CIVs and PCIVs at the corresponding frequency is more involved. The columns of βk
are orthogonal to the columns of Ck, the sub-block of C from a state space realization (A,B, C) in
canonical form corresponding to the VAR process. Analogously, the column space of the matrix
αk, containing the so-called adjustment coefficients, is orthogonal to the row space of the sub-block
Bk of B.

Both integers dk1 and rk are related to the dimensions of the static and dynamic cointegrating
spaces in the MFI(1) case: For ωk ∈ {0, π}, the cointegrating rank rk = s − dk1 coincides with
the dimension of the static cointegrating space at frequency ωk. Furthermore, the dimension of
the static cointegrating space at frequency 0 < ωk < π is bounded from above by rk = s − dk1 ,
since it is spanned by at most s − dk1 vectors β ∈ Rs orthogonal to the complex valued matrix
Ck. The dimension of the dynamic cointegrating space at 0 < ωk < π is equal to 2rk = 2(s− dk1).
Identifying again β(z) = β0 + β1z with the vector [β′0, β

′
1]′, a basis of the dynamic cointegrating

space at 0 < ωk < π is then given by the column space of the product[
γ0 γ̃0

γ1 γ̃1

]
:=

[
Is 0s×s

− cos(ωk)Is sin(ωk)Is

] [
R(βk) I(βk)
−I(βk) R(βk)

]
,

with the columns of βk ∈ Cs×(s−dk1 ) spanning the orthogonal complement of the column space of Ck,
i. e., βk is of full rank and β′kCk = (R(βk)′− iI(βk)′)Ck = 0. This holds true, since both factors are
of full rank and [γ′0, γ

′
1]′ satisfies (zkγ

′
0 + γ′1)Ck = 0, which corresponds to the necessary condition

given in Example 2 for the columns of [γ′0, γ
′
1]′ to be PCIVs. The latter implies (zkγ̃

′
0 + γ̃′1)Ck = 0

also for [γ̃′0, γ̃
′
1]′, highlighting again the additional structure of the cointegrating space emanating

from the complex conjugate pairs or eigenvalues (and matrices) as discussed in 2.
In the MFI(1) setting the deterministic component typically includes a constant, seasonal

dummies and a linear trend. As discussed in Remark 6, a sufficiently rich set of deterministic
components allows to absorb non-zero initial values x1,u.

Testing Hypotheses on the State Space Unit Root Structure

Using the generic sets of transfer functions MΓg presented in Theorem 4, we can construct
pseudo likelihood ratio tests for different hypotheses H0 : (ΩS , n•) = (ΩS,0, n•,0) against cho-
sen alternatives. Note, however, that by the results of Theorem 5 the null hypothesis includes
all pairs (ΩS , n•) ∈ A(ΩS,0, n•,0) as well as all pairs (ΩS , n•) that are smaller than a pair

(Ω̃S , ñ•) ∈ A(ΩS,0, n•,0).
As common in the VECM setting, first consider hypotheses at a single frequency ωk. For an

MFI(1) process, the hypothesis of a state space unit root structure equal to ΩS,0 = ((ωk, d
k
1,0))

corresponds to the hypothesis of the cointegrating rank rk at frequency ωk being equal to r0 =

s − dk1,0. Maximization of the pseudo likelihood function over the set M(((ωk, dk1,0)), n− δkdk1,0)
– with a suitably chosen order n – leads to estimates that may be arbitrary close to transfer
functions with different state space unit root structures ΩS . These include ΩS with additional

unit root frequencies ωk̃, with the integers dk̃1 restricted only by the order n. Therefore focusing
on a single frequency ωk does not rule out a more complicated true state space unit root structure.
Assume n ≥ δks with δk = 1 for ωk ∈ {0, π} and δk = 2 else. Corollary 4 shows that

M({}, n) ⊃M(((ωk, 1)), n− δk) ⊃ · · · ⊃M(((ωk, s)), n− sδk)

since, e. g., (((ωk, 1)), n− δk) ∈ A({}, n).
Analogously to the procedure of testing for the cointegrating rank rk in the VECM setting,

these inclusions can be employed to test for dk1 : Start with the hypothesis of dk1 = s against the
alternative of 0 ≤ dk1 < s and decrease the assumed dk1 consecutively until the test does not reject
the null hypothesis.

Furthermore, one can formulate hypotheses on dk1 jointly at different frequencies ωk. Again,
there exist inclusions based on the definition of the set of attainable state space unit root structures
and Corollary 4, which can be used to consecutively test hypotheses on ΩS .
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Testing Hypotheses on CIVs and PCIVs

(Johansen, 1995) considers in the I(1) case three types of hypotheses on the cointegrating space
spanned by the columns of β that are each motivated by examples from economic research: The
different cases correspond to different types of hypotheses related to restrictions implied by eco-
nomic theory.

(i) H0 : β = Hϕ, β ∈ Rs×r, H ∈ Rs×t, ϕ ∈ Rt×r, r ≤ t < s: The cointegrating space is known
to be a subspace of the column space of H (which is of full column rank).

(ii) H ′0 : β = [b, ϕ], β ∈ Rs×r, b ∈ Rs×t, ϕ ∈ Rs×r−t, 0 < t ≤ r: Some cointegrating relations are
known.

(iii) H
′′

0 : β = [H1ϕ1, . . . ,Hcϕc], β ∈ Rs×r, Hj ∈ Rs×tj , ϕj ∈ Rtj×rj , rj ≤ tj ≤ s, for j = 1, . . . , c
such that

∑c
j=1 rj = r. Cointegrating relations are known to be in the column spaces of

matrices Hk (which are of full column rank).

As discussed in Example 1, cointegration at ωk = 0 occurs if and only if a vector βj satisfies
β′jC1 = 0. In other words, the column space of C1 is the orthocomplement of the cointegrating
space spanned by the columns of β and hypotheses on β restrict entries of C1.

The first type of hypothesis, H0, implies that the column space of C1 is equal to the orthocom-
plement of the column space of Hϕ. Assume w.l.o.g. H ∈ Os,t, ϕ⊥ ∈ Ot,t−r and H⊥ ∈ Os,s−t,
such that the columns of [Hϕ⊥, H⊥] form an orthonormal basis for the orthocomplement of the
cointegrating space. Consider now the mapping:

Cr1(θ̌L,θR) :=

[
H · ŘL(θ̌L)′

[
It−r

0r×(t−r)

]
, H⊥

]
·RR(θR), (1.15)

where ŘL(θ̌L) :=
∏t−r
i=1

∏r
j=1Rt,i,t−r+j(θL,r(i−1)+j) ∈ Rt×t and RR(θR) ∈ R(s−r)×(s−r) as in

Lemma 1. From this one can derive a parameterization of the set of matrices Cr1 corresponding
to H0, analogously to Lemma 1. The difference of the number of free parameters under the null
hypothesis and under the alternative is the difference between the number of free parameters in
θL ∈ [0, 2π)r(s−r) and θ̌L ∈ [0, 2π)r(t−r), implying a reduction of the number of free parameters of
r(s−t) under the null hypothesis. This necessarily coincides with the number of degrees of freedom
of the corresponding test statistic in the VECM setting, cf. Johansen (1995, Theorem 7.2).

The second type of hypothesis, H ′0, is also straightforwardly parameterized: In this case a
subspace of the cointegrating space is known and given by the column space of b ∈ Rs×t. Assume
w.l.o.g. b ∈ Os,t. The orthocomplement of β = [b, ϕ] is given by the set of matrices C1 satisfying
the restriction b′C1 = 0, i. e., the set Os,d1

(b) defined in (1.13). The parameterization of this set has
already been discussed. The reduction of the number of free parameters under the null hypothesis
is t(s− r) which again coincides with the number of degrees of freedom of the corresponding test
statistic in the VECM setting, cf. Johansen (1995, Theorem 7.3).

Finally, the third type of hypothesis ,H ′′0 , is the most difficult to parameterize in our setting.
As an illustrative example consider the case H

′′

0 : β = [H1ϕ1, H2ϕ2], β ∈ Rs×r, H1 ∈ Rs×t1 , H2 ∈
Rs×t2 , ϕ1 ∈ Rt1×r1 , ϕ2 ∈ Rt2×r2 , rj ≤ tj ≤ s and r1 + r2 = r. W.l.o.g. choose Hb ∈ Os,tb such
that its columns span the tb-dimensional intersection of the column spaces of H1 and H2 and
choose H̃j ∈ Os,t̃j (Hb), j = 1, 2 such that the columns of H̃j and Hb span the column space of Hj .

Define H̃ := [H̃1, H̃2, Hb] ∈ Os,t̃, with t̃ = t̃1 + tb + t̃2. Let w.l.o.g. H̃⊥ ∈ Os,s−t̃(H̃) and define

pj := min(rj , t̃j , qj := max(rj , t̃j) for j = 1, 2 and pb = q1 − t̃1 + q2 − t̃2. A parameterization of
βr ∈ Os,r satisfying the restrictions under the null hypothesis can be derived from the following
mapping:

βr(θH ,θR,β) := H̃ ·RH(θH)′


Ip1

0p1×p2
0p1×pb

0(q1−r1)×p1
0(q1−r1)×p2

0(q1−r1)×pb
0p2×p1

Ip2
0p2×pb

0(q2−r2)×p1
0(q2−r2)×p2

0(q2−r2)×pb
0pb×p1 0pb×p2 Ipb

0(t̃−q1−q2)×p1
0(t̃−q1−q2)×p2

0(t̃−q1−q2)×pb

 ·RR(θR,β),
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where RR(θR,β) ∈ Rr×r as in Lemma 1 and

RH(θH) := RH ((θH1
,θH2

,θHb)) := RH1
(θH1

)RH2
(θH2

)RHb(θHb) ∈ Rt̃×t̃

is a product of Givens rotations corresponding to the entries in the blocks highlighted by bold
font. The three matrices are defined as follows:

RH1
(θH1

) :=

p1∏
i=1

t̃−q2−r1∏
j=1

Rt,i,δH1
(j)+j(θH1,(t̃−q2−r1)(i−1)+j),

δH1
(j) :=

{
p1 if j ≤ q1 − r1

t̃1 + t̃2 + pb else,

RH2
(θH2

) :=

p2∏
i=1

t̃−q1−r2∏
j=1

Rt,p1+i,δH2
(j)+j(θH2,(t̃−q1−r2)(i−1)+j),

δH2
(j) :=

{
t̃1 + p2 if j ≤ q2 − r2

t̃1 + t̃2 + pb else,

RHb(θHb) :=

pb∏
i=1

t̃−q1−q2∏
j=1

Rt,p1+p2+i,t̃1+t̃2+pb+j
(θHb,(t̃−q1−q2)(i−1)+j).

Consequently, a parameterization of the orthocomplement of the cointegrating space is based on
the mapping:

Cr1(θH ,θR,C) :=H̃ ·RH(θH)′



0p1×(q1−r1) 0p1×(q2−r2) 0p1×(t̃−q1−q2)

Iq1−r1 0(q1−r1)×(q2−r2) 0(q1−r1)×(t̃−q1−q2)

0p2×(q1−r1) 0p2×(q2−r2) 0p2×(t̃−q1−q2)

0(q2−r2)×(q1−r1) Iq2−r2 0(q2−r2)×(t̃−q1−q2)

0pb×(q1−r1) 0pb×(q2−r2) 0pb×(t̃−q1−q2)

0(t̃−q1−q2)×(q1−r1) 0(t̃−q1−q2)×(q2−r2) It̃−q1−q2

 , H̃⊥

 ·RR(θR,C),

where RH(θH) ∈ Rt̃×t̃ as above and RR(θR,C) ∈ R(s−r)×(s−r) as in Lemma 1. Note that for all
θH , θR,β and θR,C it holds that βr(θH ,θR,β)′Cr1(θH ,θR,C) = 0r×(s−r). The number of parameters

restricted under H ′′0 is equal to r1(q1−r1)+r2(q2−r2)+(r1 +r2)(t̃−q1−q2)+(s−r)(s−r+1)/2,
and thus, through q1 and q2, depends on the dimension tb of the intersection of the columns spaces
of H1 and H2. The reduction of the number of free parameters matches the degrees of freedom of
the test statistics in Johansen (1995, Theorem 7.5), if β is identified, which is the case if r1 ≤ t̃1
and r2 ≤ t̃2.

Using the mapping βr(·) as a basis for a parameterization allows to introduce another type of
hypotheses of the form:

(iv) H
′′′

0 : β⊥ = C1 = [H1ϕ1, . . . ,Hcϕc], β⊥ ∈ Rs×(s−r), Hj ∈ Os,tj , ϕj ∈ Otj ,rj , rj ≤ tj ≤ s, for
j = 1, . . . , c such that

∑c
j=1 rj = s− r. The ortho-complement of the cointegrating space is

contained in the column spaces of the (full rank) matrices Hk.

This type of hypothesis allows, e. g., to test for the presence of cross-unit cointegrating relations
in, e. g., multi-country data sets, cf. Wagner and Hlouskova (2009, Definition 1),.

Hypotheses on the cointegrating space at frequency ωk = π can be treated analogously to
hypotheses on the cointegrating space at frequency ωk = 0.

Testing hypotheses on cointegrating spaces at frequencies 0 < ωk < π has to be discussed in
more detail, as one also has to consider the space spanned by PCIVs, compare Example 2. There
are 2(s− dk1) linearly independent PCIVs of the form β(z) = β0 + β1z. Every PCIV corresponds
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to a vector zkβ0 + β1 ∈ Cs orthogonal to Ck and consequently hypotheses on the space spanned

by PCIVs can be transformed to hypotheses on the complex column space of Ck ∈ Cs×dk1 .
Consider, e. g., an extension of the first type of hypothesis of the form

Hk
0 :

[
γ0 γ̃0

γ1 γ̃1

]
=

[
Is 0s×s

− cos(ωk)Is sin(ωk)Is

] [
(H̃0φ̃0 − H̃1φ̃1) (H̃0φ̃1 + H̃1φ̃0)

−(H̃0φ̃1 + H̃1φ̃0) (H̃0φ̃0 − H̃1φ̃1)

]
=

[
Is 0s×s

− cos(ωk)Is sin(ωk)Is

] [
H̃0 H̃1

−H̃1 H̃0

] [
φ̃0 φ̃1

−φ̃1 φ̃0

]
,

with H̃0, H̃1 ∈ Rs×t, φ̃0, φ̃1 ∈ Rt×r, r ≤ t < s, which implies that the column space of Ck is equal
to the orthocomplement of the column space of (H̃0 + iH̃1)(φ̃0 + iφ̃1). This general hypothesis
encompasses, e. g., the hypothesis [γ′0, γ

′
1]′ = Hφ = [H ′0, H

′
1]′φ, withH ∈ R2s×t, H0, H1 ∈ Rs×t, φ ∈

Rt×r, by setting φ̃0 := φ̃1 := φ̃, H̃0 := H0 and H̃1 := −(cos(ωk)H0+H1)/ sin(ωk). The extension is
tailored to include the pairwise structure of PCIVs and to simplify transformation into hypotheses
on the complex matrix Ck used in the parameterization. The parameterization of the set of matrices
corresponding to Hk

0 is derived from a mapping of the form given in (1.15), with ŘL(θ̌L) and
RR(θR) replaced by Q̌L(ϕ̌L) :=

∏t−r
i=1

∏r
j=1Qt,i,t−r+j(ϕL,r(i−1)+j) ∈ Rt×t and Dd(ϕD)QR(ϕR)

as in Lemma 2.
Similarly, the three other types of hypotheses on the cointegrating spaces considered above

can be extended to hypotheses on the space of PCIVs in the MFI(1) case. They translate into
hypotheses on complex valued matrices βk orthogonal to Ck. To parameterize the set of matrices
restricted according to these null hypotheses, Lemma 2 is used. Thus, the restrictions implied by
the extensions of all four types of hypotheses to hypotheses on the dynamic cointegrating spaces
at frequencies 0 < ωk < π for MFI(1) processes can be implemented using Givens rotations.

A different case of interest is the hypothesis of at least m linearly independent CIVs bj ∈ Rs,
j = 1, . . . ,m with 0 < m ≤ s− dk1 , i. e., an m-dimensional static cointegrating space at frequency
0 < ωk < π, which we discuss as another illustrative example to the procedure for the case of
cointegration at complex unit roots.

For the dynamic cointegrating space, this hypothesis implies the existence of 2m linearly in-
dependent PCIVs of the form β1(z) = bj and β2(z) = bjz, j = 1, . . . ,m. In light of the discussion
above the necessary condition for these two polynomials to be PCIVs is equivalent to b′jCk = 0,
for j = 1, . . . ,m. This restriction is similar to H ′0 discussed above, except for the fact that the
cointegrating vectors bj are not fully specified. This hypothesis is equivalent to the existence of
an m-dimensional real kernel of Ck. A suitable parameterization is derived from the following
mapping

C(θb,ϕ) := RL(θb)

[
0m×dk1
CU (ϕ)

]
,

where θb ∈ [0, 2π)m(s−m) and CU (ϕ) := CU (ϕL,ϕD,ϕR) ∈ Us−m,dk1 as in Lemma 2. The dif-
ference in the number of free parameters without restrictions and with restrictions is equal to
m(s−m).

The hypotheses can also be tested jointly for the cointegrating spaces of several unit roots.

Testing Hypotheses on the Adjustment Coefficients

As in the case of hypotheses on the cointegrating spaces βk, hypotheses on the adjustment coef-
ficients αk are typically formulated as hypotheses on the column spaces of αk. We only focus on
hypotheses on the real valued α1 corresponding to frequency zero. Analogous hypotheses may be
considered for αk at frequencies ωk 6= 0, using the same ideas.

The first type of hypothesis on α1 is of the form Hα : α1 = Aψ,A ∈ Rs×t, ψ ∈ Rt×r and
therefore can be rewritten as B1Aψ = 0. W.l.o.g. let A ∈ Os,t and A⊥ ∈ Os,s−t. We deal with
this type of hypothesis as with H0 : β = Hϕ in the previous section by simply reversing the roles
of C1 and B1. We therefore consider the set of feasible matrices B′1 as a subset in Os,s−r and use
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the mapping B′1(θ̌L,θR) = [AŘL(θ̌L)′[It−r, 0r×(t−r)]
′, A⊥]RR(θR) to derive a parameterization,

while C′1 is restricted to be a p.u.t. matrix and the set of feasible matrices C′1 is parameterized
accordingly.

As a second type of hypothesis Juselius (2006, Section 11.9, p. 200) discusses H ′α : α1,⊥ = Hψ,
H ∈ Rs×t, ψ ∈ Rt×(s−r), linked to the absence of permanent effects of shocks H⊥εt on any of the
variables of the system. Assume w.l.o.g. H⊥ ∈ Os,s−t. Using the parameterization of Os−r(H⊥)
defined in (1.13) for the set of feasible matrices B′1 and the parameterization of the set of p.u.t.
matrices for the set of feasible matrices C′1, implements this restriction.

The restrictions on Hα reduce the number of free parameters by r(s − t) and the restrictions
implied by H ′α lead to a reduction by t(s− r) free parameters, compared to the unrestricted case,
which matches in both cases the number of degrees of freedom of the corresponding test statistic
in the VECM framework.

Restrictions on the Deterministic Components

Including an unrestricted constant in the VECM equation ∆0yt = εt + Φ0 leads to a linear trend
in the solution process yt =

∑t
j=1(εj + Φ0) + y1 =

∑t
j=1 εj + y1 + Φ0t, for t > 1. If one restricts

the constant to Φ0 = αΦ̃0, Φ̃0 ∈ Rr in a general VECM equation as given in (1.4), with Π = αβ′

of rank r, no summation to linear trends in the solution process occurs, while a constant non-
zero mean is still present in the cointegrating relations, i. e., the process {β′yt}t∈Z. Analogously
an unrestricted linear trend Φ1t in the VECM equation leads to a quadratic trend of the form
Φ1t(t− 1)/2 in the solution process, which is excluded by the restriction Φ1t = αΦ̃1t.

In the VECM framework, compare Johansen (1995, Section 5.7, p. 81), five restrictions related
to the coefficients corresponding to the constant and the linear trend are commonly considered:

1. H(r) : Φdt = Φ1t+ Φ0, i. e., unrestricted constant and linear trend,

2. H∗(r) : Φdt = αΦ̃1t+ Φ0, i. e., unrestricted constant, linear trend restricted to
cointegrating relations,

3. H1(r) : Φdt = Φ0, i. e., unrestricted constant, no linear trend,

4. H∗1 (r) : Φdt = αΦ̃0, i. e., constant restricted to cointegrating relations,
no linear trend,

5. H2(r) : Φdt = 0, i. e., no deterministic components present,

with Φ0,Φ1 ∈ Rs and Φ̃0, Φ̃1,∈ Rr and the following consequences for the solution processes: Un-
derH(r) the solution process contains a quadratic trend in the direction of the common trends, i. e.,
in {β′⊥yt}t∈Z, and a linear trend in the direction of the cointegrating relations, i. e., in {β′yt}t∈Z.
Under H∗(r) the quadratic trend is not present. H1(r) features a linear trend only in the direc-
tions of the common trends, H2(r) a constant only in these directions. Under H∗1 (r) the constant
is also present in the directions of the cointegrating relations.

In the state space framework the deterministic components can be added in the output equation
yt = Cxt+Φdt+εt, compare (1.9). Consequently, the above considered hypotheses can be imposed
by formulating linear restrictions on Φ. These can be directly parameterized by including the
following deterministic components in the five considered cases:

1. H(r) : Φdt = C1Φ̃2t
2 + Φ1t+ Φ0,

2. H∗(r) : Φdt = Φ1t+ Φ0,

3. H1(r) : Φdt = C1Φ̃1t+ Φ0,
4. H∗1 (r) : Φdt = Φ0,

5. H2(r) : Φdt = C1Φ̃0,

where Φ0,Φ1 ∈ Rs and Φ̃0, Φ̃1, Φ̃2 ∈ Rd1
1 . The component C1Φ̃0 captures the influence of the initial

value C1x1,1 in the output equation.
In the VECM framework for the seasonal MFI(1) case, with Πk = αkβ

′
k of rank rk for 0 <

ωk < π, the deterministic component usually includes restricted seasonal dummies of the form
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αkΦ̃kz
t
k + αkΦ̃k(zk)t, Φ̃k ∈ Crk to avoid summation in the directions of the stochastic trends.

The state space framework allows to straightforwardly include seasonal dummies in the output
equation in the form of Φkz

t
k+Φk(zk)t, Φk ∈ Cs. Again, it is of interest whether these components

are unrestricted or whether they take the form of CkΦ̃kz
t
k+CkΦ̃k(zk)t, Φ̃k ∈ Cdk1 , similarly allowing

for a reinterpretation of these components as influence of the initial values x1,k on the output.

Note that Φkz
t
k + Φk(zk)t is equivalently given by Φ̌k,1 sin(ωkt) + Φ̌k,2 cos(ωkt) using real

coefficients Φ̌k,1, Φ̌k,2 ∈ Rs and the desired restrictions can be implemented accordingly.

1.5.2 The I(2) Case

The state space unit root structure of I(2) processes is of the form ΩS = ((0, d1
1, d

1
2)), where the

integer d1
1 equals the dimension of xEt,1, and d1

2 equals the dimension of [(xGt,2)′, (xEt,2)′]′. Recall
that the solution for t > 0 and x1,u = 0 of the system in canonical form in this setting is given by

yt = CE1,1xEt,1 + CG1,2xGt,2 + CE1,2xEt,2 + C•xt,• + Φdt + εt

= CE1,1B1,2,1

t−1∑
k=1

k∑
j=1

εt−j + (CE1,1B1,1 + CG1,2B1,2,1 + CE1,2B1,2,2)

t−1∑
j=1

εt−j

+C•
t−1∑
j=1

Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt.

For VAR processes integrated of order two the integers d1
1 and d1

2 of the corresponding state space
unit root structure are linked to the ranks of the matrices Π = αβ′ (denoted as r = r0) and
α′⊥Γβ⊥ = ξη′ (denoted as m = r1) in the VECM setting, as discussed in Section 1.2. It holds that
r = s−d1

2 and m = d1
2−d1

1. The relation of the state space unit root structure to the cointegration
indices r0, r1, r2 was also discussed in Section 1.3.

Again, both the integers d1
1 and d1

2 and the ranks r,m, and consequently also the indices
r0, r1 and r2, are closely related to the dimensions of the spaces spanned by CIVs and PCIVs.
In the I(2) case the static cointegrating space of order ((0, 2), (0, 1)) is the orthocomplement of
the column space of CE1,1 and thus of dimension s − d1

1. The dimension of the space spanned by

CIVs of order ((0, 2), {}) is equal to s− d1
2 − rc,G, where rc,G denotes the rank of CG1,2, since this

space is the orthocomplement of the column space of [CE1,1, CG1,2, CE1,2]. The space spanned by the
PCIVs β0 + β1z of order ((0, 2), {}) is of dimension smaller or equal to 2s − d1

1 − d1
2, due to the

orthogonality constraint on [β′0, β
′
1]′ given in Example 3.

Consider the matrices β,β1 and β2 as defined in Section 1.2. From a state space realization
(A,B, C) in canonical form corresponding to a VAR process it immediately follows that the columns
of β2 span the same space as the columns of the sub-block CE1,1. The same relation holds true for

β1 and the sub-block CE1,2. With respect to polynomial cointegration, (Bauer and Wagner, 2012)

show that the rank of CG1,2 determines the number of minimum degree polynomial cointegrating

relations, as discussed in Example 3. If CG1,2 = 0, then there exists no vector γ, such that {γ′yt}t∈Z
is integrated and cointegrated with {β′2∆0yt}t∈Z. In this case {β′yt}t∈Z is a stationary process.

The deterministic components included in the I(2) setting are typically a constant and a linear
trend. As in the MFI(1) case, identifiability problems occur, if we consider a non-zero initial state
x0,u: The solution to the state space equations for t > 0 and x1,u 6= 0 is given by:

yt =

t−1∑
j=1

CAj−1Bεt−j + CE1,1(xE1,1 + xG1,2(t− 1)) + CG1,2xG1,2 + CE1,2xE1,2 + C•At−1
• x1,• + Φdt + εt.

Hence, if Φdt = Φ0 + Φ1t, the output equation contains the terms CE1,1xE1,1 + CG1,2xG1,2 + CE1,2xE1,2 −
CE1,1xG1,2 + Φ0 and (CE1,1xG1,2 + Φ1)t. Again, this implies non-identifiability, which is resolved by
assuming x1,u = 0, compare Remark 6.
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Testing Hypotheses on the State Space Unit Root Structure

To simplify notation we use

M(d1
1, d

1
2) :=


M(((0, d1

1, d
1
2)), n− d1

1 − d1
2) if d1

1 > 0,

M(((0, d1
2)), n− d1

2) if d1
1 = 0, d1

2 > 0,

M•,n if d1
1 = d1

2 = 0,

with n ≥ d1
1 + d1

2. Here M(d1
1, d

1
2) for d1

1 + d1
2 > 0 denotes the closure of the set of transfer

functions of order n that possess a state space unit root structure of either ΩS = ((0, d1
1, d

1
2)) or

ΩS = ((0, d1
2)) in case of d1

1 = 0, while M(0, 0) denotes the closure of the set of all stable transfer
functions of order n.

Considering the relations between the different sets of transfer functions given in Corollary 4
shows that the following relations hold (assuming s ≥ 4; the columns are arranged to include
transfer functions with the same dimension of Au):

M(0, 0) ⊃ M(0, 1) ⊃ M(1, 0)
∪

M(0, 2) ⊃ M(1, 1) ⊃ M(2, 0)
∪ ∪

M(0, 3) ⊃ M(1, 2)
∪

M(0, 4)

Note that M(d1
1, d

1
2) corresponds to Hs−d1

2,d
1
2−d1

1
= Hr,r1 in (Johansen, 1995). Therefore, the

relationships between the subsets match the ones in Johansen (1995, Table 9.1) and the ones
found by (Jensen, 2013). The latter type of inclusions appear for instance for M(0, 2), containing
transfer functions corresponding to I(1) processes, which is a subset of the set M(1, 0) of transfer
functions corresponding to I(2) processes.

The same remarks as in the MFI(1) case also apply in the I(2) case: When testing for H0 :
ΩS = ((0, d1

1,0, d
1
2,0)), all attainable state space unit root structures A(((0, d1

1,0, d
1
2,0))) have to be

included in the null hypothesis.

Testing Hypotheses on CIVs and PCIVs

(Johansen, 2006) discusses several types of hypotheses on the cointegrating spaces of different
orders. These deal with properties of β, joint properties of [β, β1] or the occurrence of non-trivial
polynomial cointegrating relations.

We commence with hypotheses of the form H0 : β = Kϕ and H ′0 : β = [b, ϕ] just as in the
MFI(1) case at unit root one, since hypotheses on β correspond to hypotheses on its orthocom-
plement spanned by [CE1,1, CE1,2] in the VARMA framework:

Hypotheses of the form H0 : β = Kϕ,K ∈ Rs×t, ϕ ∈ Rt×r imply ϕ′K ′[CE1,1, CE1,2] = 0. W.l.o.g.
let K ∈ Os,t and K⊥ ∈ Os,s−t. As in the parameterization under H0 in the MFI(1) case at unit
root one, compare (1.15), use the mapping

[CE,r1,1 , C
E,r
1,2 ](θ̌L,θR) :=

[
K · ŘL(θ̌L)′

[
It−r

0r×(t−r)

]
, K⊥

]
·RR(θR),

to derive a parameterization of the set of feasible matrices [CE1,1, CE1,2], i. e., a joint parameterization

of both sets of matrices CE1,1 and CE1,2, where [CE1,1, CE1,2] ∈ Os,s−r.
Hypotheses of the form H ′0 : β = [b, ϕ], b ∈ Rs×t, ϕ ∈ Rs×(r−t), 0 < t ≤ r are equivalent to

b′[CE1,1, CE1,2] = 0. Assume w.l.o.g. b ∈ Os,t and parameterize the set of feasible matrices CE1,1
using Os,d1

1
(b) as defined in (1.13) and the set of feasible matrices CE1,2 using Os,d1

2−d1
1
([b, CE1,1]).

Alternatively, parameterize the set of feasible matrices jointly as elements [CE1,1, CE1,2] ∈ Os,s−r(b).
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Applications using the VECM framework allow for testing hypotheses on [β, β1]. In the
VARMA framework, these correspond to hypotheses on the orthogonal complement of [β, β1],
i. e., CE1,1. Implementation of different types of hypotheses on [β, β1] proceeds as for similar hy-

potheses on β in the MFI(1) case at unit root one, replacing [CE1,1, CE1,2] by CE1,1.
The hypothesis of no minimum degree polynomial cointegrating relations implies the restriction

CG1,2 = 0, compare Example 3. Therefore, we can test all hypotheses considered in (Johansen, 2006)
also in our more general setting.

Testing Hypotheses on the Adjustment Coefficients

Hypotheses on α and ξ as defined in (1.6) and (1.7) correspond to hypotheses on the spaces
spanned by the rows of B1,2,1 and B1,2,2. For VAR processes integrated of order two, the row
space of B1,2,1 is equal to the orthogonal complement of the column space of [α, α⊥ξ], while the
row space of B1,2 := [B′1,2,1,B′1,2,2]′ is equal to the orthogonal complement of the column space
of α. The restrictions corresponding to hypotheses on α and ξ can be implemented analogously
to the restrictions corresponding to hypotheses on α1 in Section 1.5.1, reversing the roles of the
relevant sub-blocks in Bu and Cu accordingly.

Restrictions on the Deterministic Components

The I(2) case is, with respect to the modeling of deterministic components, less well studied
than the MFI(1) case. In most theory papers they are simply left out, with the notable exception
(Rahbek, Kongsted and Jorgensen, 1999), dealing with the inclusion of a constant term in the I(2)-
VECM representation. The main reason for this appears to be the way deterministic components
in the defining vector error correction representation translate into deterministic components in
the corresponding solution process. An unrestricted constant in the VECM for I(2) processes leads
to a linear trend in {β′1yt}t∈Z and a quadratic trend in {β′2yt}t∈Z, while an unrestricted linear trend
results in quadratic and cubic trends in the respective directions. Already in the I(1) case discussed
above five different cases – with respect to integration and asymptotic behavior of estimators and
tests – need to be considered separately. An all encompassing discussion of the restrictions on the
coefficients of a constant and a linear trend in the I(2) case requires the specification of even more
cases. As an alternative approach in the VECM framework, deterministic components could be
dealt with by replacing yt with yt−Φdt in the VECM equation. This has recently been considered
in (Johansen and Nielsen, 2018) and is analogous to our approach in the state space framework.

As before, in the MFI(1) or I(1) case, the analysis of (the impact of) deterministic components is
straightforward in the state space framework, which effectively stems from their additive inclusion
in the Granger-type representation, compare (1.9). Choose, e. g., Φdt = Φ0 + Φ1t, as in the I(1)
case. In analogy to Section 1.5.1, linear restrictions of deterministic components in relation to the
static and polynomial cointegrating spaces can be embedded in a parameterization. Focusing on
Φ0, e. g., this is achieved by

Φ0 = [CE1,1, CE1,2]φ0 + C̃1,2φ̃0 + C⊥φ̌0,

where the columns of C̃1,2 are a basis for the column space of CG1,2, which does not necessarily
have full column rank, and the columns of C⊥ span the orthocomplement of the column space of
[CE1,1, CE1,2, C̃1,2]. The matrix Φ1 can be decomposed analogously. The corresponding parametriza-
tion then allows to consider different restricted versions of deterministic components and to study
the asymptotic behavior of estimators and tests for these cases.

1.6 Summary and Conclusions

Vector autoregressive moving average (VARMA) processes, which can be cast equivalently in the
state space framework, may be useful for empirical analysis compared to the more restrictive class
of vector autoregressive (VAR) processes for a variety of reasons. These include invariance with
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respect to marginalization and aggregation, parsimony as well as the fact that the log-linearized
solutions to DSGE models are typically VARMA processes rather than VAR processes. To realize
the potential of these advantages necessitates, in our view, to develop cointegration analysis for
VARMA processes to a similar extent as it is developed for VAR processes. The necessary first
steps of this research agenda are to develop a set of structure theoretical results that allow to
subsequently develop statistical inference procedures. (Bauer and Wagner, 2012) provides the
very first step of this agenda by providing a canonical form for unit root processes in the state
space framework, which is shown in that paper to be very convenient for cointegration analysis.

Based on the earlier canonical form paper this paper derives a state space model parameteriza-
tion for VARMA processes with unit roots using the state space framework. The canonical form
and a fortiori the parameterization based upon it are constructed to facilitate the investigation
of the unit root and (static and polynomial) cointegration properties of the considered process.
Furthermore, the paper shows that the framework allows to test a large variety of hypotheses on
cointegrating ranks and spaces, clearly a key aspect for the usefulness of any method to analyze
cointegration. In addition to providing general results, throughout the paper all results are devel-
oped for or discussed in detail for the multiple frequency I(1) and I(2) cases, which cover the vast
majority of applications.

Given the fact that, as shown in Hazewinkel and Kalman (1976), VARMA unit root processes
cannot be continuously parameterized, the set of all unit root processes (as defined in this paper)
is partitioned according to a multi-index Γ that includes the state space unit root structure. The
parameterization is shown to be a diffeomorphism on the interior of the considered sets. The topo-
logical relationships between the sets forming the partitioning of all transfer functions considered
are studied in great detail for three reasons: First, pseudo maximum likelihood estimation effec-
tively amounts to maximizing the pseudo likelihood function over the closures of sets of transfer
functions, MΓ in our notation. Second, related to the first item, the relations between subsets
of MΓ have to be understood in detail as knowledge concerning these relations is required for
developing (sequential) pseudo likelihood-ratio tests for the numbers of stochastic trends or cy-
cles. Third, of particular importance for the implementation of, e. g., pseudo maximum likelihood
estimators, we discuss the existence of generic pieces. In this respect we derive two results: First,
for correctly specified state space unit root structure and system order of the stable subsystem
– and thus correctly specified system order – we explicitly describe generic indices Γg(ΩS , n•)
such that MΓg(ΩS ,n•) is open and dense in the set of all transfer functions with state space unit
root structure ΩS and system order of the stable subsystem n•. This result forms the basis for
establishing consistent estimators of the transfer functions – and via continuity of the parameter-
ization – of the parameter estimators when the state space unit root structure and system order
are known. Second, in case only an upper bound on the system order is known (or specified), we
show the existence of a generic multi-index Γα•,g(n) for which the set of corresponding transfer

functions MΓα•,g(n)
is open and dense in the set Mn of all non-explosive transfer functions whose

order (or McMillan degree) is bounded by n. This result is the basis for consistent estimation (on
an open and dense subset) when only an upper bound of the system order is known. In turn this
estimator is the starting point for determining ΩS , utilizing the subset relationships alluded to
above in the second point. For the MFI(1) and I(2) cases we show in detail that similar subset
relations (concerning cointegrating ranks) as in the cointegrated VAR MFI(1) and I(2) cases hold,
which suggests constructing similar sequential test procedures for determining the cointegrating
ranks as in the VAR cointegration literature.

Section 1.5 is devoted to a detailed discussion of testing hypotheses on the cointegrating spaces,
again for both the MFI(1) and the I(2) case. In this section particular emphasis is put on modeling
deterministic components. The discussion details how all usually formulated and tested hypotheses
concerning (static and polynomial) cointegrating vectors, potentially in combination with (un-
)restricted deterministic components, in the VAR framework can also be investigated in the state
space framework.

Altogether, the paper sets the stage to develop pseudo maximum likelihood estimators, inves-
tigate their asymptotic properties (consistency and limiting distributions) and tests based upon
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them for determining cointegrating ranks that allow to perform cointegration analysis for coin-
tegrated VARMA processes. The detailed discussion of the MFI(1) and I(2) cases benefits the
development of statistical theory dealing with these cases undertaken in a series of companion
papers.
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Chapter 2

Inference on Cointegrating Ranks
and Spaces of Multiple Frequency
I(1) Processes: A State Space
Approach

2.1 Introduction

For empirical macroeconomic research two of the most important toolkits are dynamic stochastic
general equilibrium (DSGE) models and cointegrated vector autoregressive (VAR) models.
The DSGE approach is firmly rooted in economic theory and mathematically consists of solving
dynamic stochastic optimization problems with well-defined objective functions of the different
agents (i.e., individuals, firms, the government, the central bank) as well as resource constraints.
Typically this leads to a state space system and solutions of these systems of equations are in
general vector autoregressive moving average (VARMA) processes, see, e. g., Campbell (1994).
The cointegrated VAR approach of Johansen on the other hand is a well developed method to
analyze long-run relationships between economic time series, see, e. g., Johansen (1996). In this
context one has to consider the different asymptotic properties of standard estimators, e. g., the
OLS estimator, caused by the presence of stochastic trends. To gain insight on economic informa-
tion one typically investigates the number of stochastic trends present in the data, which is even
more of a challenge if seasonal dependencies in the data come into play.
Hylleberg, Engle, Granger and Yoo (1990) first proposed the analysis of seasonal (co-)integration.
Different papers confirm the presence of seasonal unit roots in common macroeconomic time series,
compare, e. g., Hylleberg, Jorgensen and Sorensen (1993). Although a commonly used approach
when dealing with seasonal data is to perform seasonal adjustment, studies such as Lof and Franses
(2001) suggest that this practice leads to a loss of valuable information, such that for instance the
forecasting performance tends to be inferior to forecasts from seasonal cointegration models. To
accomodate such seasonal cointegration properties, Johansen and Schaumburg (1999) extend the
vector error correction model from I(1) processes to models for seasonal cointegration.
However, the VAR framework is not as flexible as the VARMA setting. Therefore, it is a natural
question whether the procedures already developed for cointegration analysis in VAR models can
be adapted to (pseudo) maximum likelihood estimation in a VARMA model or the – in a certain
sense – equivalent state space framework. Apart from economic interest in handling DSGE models,
one important motive for such a generalization is the fundamentalness of VARMA models. Since
subsets of variables jointly characterized as a VAR process are in general VARMA processes, see,
e. g., Zellner and Palm (1974), a state space framework appears to be the more appropriate choice
in some situations. A further advantage lies in the identification of structural shocks, which cannot
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necessarily be recovered from VAR models, but can be analyzed employing state space models.
Finally the state space framework allows for a factor-like structure and potentially reduces the
number of parameters in particular for processes with moderate or large dimension.
A recent development in the analysis of cointegrated state space systems was the introduction
of the state space error correction model by Ribarits and Hanzon (2014), mimicking the error
correction formulation of VAR processes. Earlier approaches by Lütkepohl and Claessen (1997)
and Poskitt (2003) formulated the error correction model in the VARMA setting.
Bauer and Wagner (2012) examined state space systems involving unit roots, introducing a canon-
ical form which highlights the cointegrating properties of the corresponding solution processes.
Bauer, Matuschek, de Matos Ribeiro and Wagner (2020, Section 2) extend the discussion by an
extensive comparison between VARMA and VAR cointegration models. They propose parameteri-
zations which also include restrictions corresponding to different types of hypotheses and illustrate
subset relations between sets with different so-called state space unit root structure, thus, setting
a basis for applying likelihood ratio-type tests.
In the companion paper de Matos Ribeiro, Bauer, Matuschek and Wagner (2020) the authors
derive the consistency of the pseudo maximum likelihood estimator for state space MFI(1) sys-
tems and provide the asymptotic distribution of the suitably standardized parameters, laying the
ground work for statistical inference.
In this paper we combine these results to develop tests for hypotheses on cointegrating ranks at
the unit roots and linear hypotheses on cointegrating relations by employment of Johansen-style
(pseudo) likelihood ratio tests. It turns out that a suitable extension of the Ribarits and Hanzon
(2014) error correction formulation to the MFI(1) situation can be used to obtain analogous results
for state space processes as the ones presented by Johansen (1996) for I(1) and by Johansen and
Schaumburg (1999) for MFI(1) VAR processes. The underlying idea in this respect is the formu-
lation of the error correction representation which for state space processes takes the same form
as in the VAR framework except for a different inclusion of the stationary regressors: In the VAR
setting lags of (seasonal) differences are used while in the state space framework filtered versions
of the differences take the same role. We link these representations to the pseudo likelihood ratio
tests in the VARMA setting and show that going from VAR to VARMA models the traditional
tools from the Johansen framework are applicable in the investigation. We especially focus on the
treatment of complex unit roots, observing that simulation results indicate advantages over the
standard VAR approach in seasonal data. The treatment of deterministics is stated only briefly
for the sake of completeness.
This paper is structured as follows: In Section 2 the data generating process dealt with in this
paper is investigated. This also includes a discussion of the parameterization used and the struc-
ture of the state space representation for unit root processes. In Section 3 the state space error
correction model by Ribarits and Hanzon (2014) is used to develop tests on the cointegrating rank
and the cointegrating space in the I(1) case. This contains already all the complexity needed
for the MFI(1) case which is dealt with in Section 4. The rank tests are compared to those by
Johansen and Schaumburg (1999) and the CCA subspace tests by Bauer and Buschmeier (2016)
in a small simulation study in Section 5. Section 6 summarizes and concludes this paper. All
proofs are relegated to the appendix.
Notation in the paper is as follows: L denotes the lag operator, i. e., L({xt}t∈Z) := {xt−1}t∈Z,
for brevity written as Lxt = xt−1. For a square matrix X we denote the spectral radius (i.e.,
the maximum of the modulus of its eigenvalues) by λ|max|(X). With R(M) we denote the real

part of a complex matrix M ∈ Ck×l and with I(M) its imaginary part. For a m × n matrix X
of full rank, with n < m, X⊥ denotes an m × (m − n) matrix of full rank such that X ′X⊥ = 0.
For a matrix or vector X the matrix or vector with complex conjugated entries is denoted by X.
For finite sequences {at}t=1,...,T , {bt}t=1,...,T , we define 〈at, bt〉 := T−1

∑T
t=1 atb

′
t. Convergence in

distribution is denoted by
d→ and convergence in probability by

p→.



49

2.2 Definitions

2.2.1 Unit Root Processes and Cointegration

Most of the literature regarding integrated processes consider the so-called vector error correction
model (VECM) representation of autoregressive processes, discussed for processes integrated of
order one and two in full detail in the monograph Johansen (1996). Bauer et al. (2020, Section 2)
contains a detailed discussion on the necessity of the VECM for a suitable parameterization of
integrated processes in the VAR framework, again exemplifying the arguments for integrated
processes of order one and two only. The same arguments also hold for seasonally integrated VAR
processes.
In this paper we use the following differencing operators:

∆S := 1− LS

∆S,k :=
z̄k∏

j 6=k(1− z̄jzk)

∏
j 6=k

(1− z̄jL)

where

S ∈ N, zk := exp (iωk) , ωk :=
k − 1

S
2π for k = 1, . . . , S.

For notational brevity, we omit the dependence on L in ∆S(L) and ∆S,k(L). Using this notation,
the error correction representation of a seasonally integrated VAR process of order p is given by

∆Syt =

S∑
k=1

Πk∆S,kyt−1 +

p−S∑
j=1

Γj∆Syt−j + εt (2.1)

=

S∑
k=1

αkβ
′
k∆S,kyt−1 +

p−S∑
j=1

Γj∆Syt−j + εt,

where Π1 ∈ Rs×s, Πk ∈ Cs×s for k = 2, . . . , S, Γj ∈ Rs×s for j = 1, . . . , p− S and αk, βk ∈ Cs×rk
of full (column) rank rk, for k = 1, . . . , S. As additional assumptions, impose Πk = ΠS+2−k for
all k = 2, . . . , S, such that the imaginary part of the right hand side of equation (2.1) is zero.1

The integer rk, equal to the rank of Πk, is called cointegrating rank at frequency ωk. Clearly the
VECM can be transformed to a VAR(p) representation of the form

yt +

p∑
j=1

aiyt−i = εt t ∈ Z,

with coefficients aj ∈ Rs×s dependent on Πk, k = 1, . . . , S and Γj , j = 1, . . . , p− S. Conversely it
holds that Πk = −a(zk) for k = 1, . . . , S, with a(z) = Is +

∑p
j=1 ajz

j .
Analogous to Bauer et al. (2020), for given restrictions on some of the ranks rk, namely the ranks
r̃j of a(eiω̃j ), for 0 ≤ ω̃1 < · · · < ω̃l ≤ π, we formally define different sets of transfer functions
a−1(z) by

V (p, {(ω̃1, r̃1), . . . , (ω̃l, r̃l)}) :=

{
a−1(z) :

a(z) = Is +
∑p
j=1 ajz

j , ap 6= 0,

rank(a(eiω̃j )) ≤ r̃j < s, for j = 1, . . . , l

}
.

Having established useful notation for the VECM we now proceed to the discussion of integrated
VARMA processes. We refer to a process {yt}t∈Z as a VARMA process if we have integers p and

1Moreover, let (αk)′⊥(Is −
∑S

l 6=k Πl∆S,l,kzk −
∑p−S

j=1 Γj∆S,kz
j
k)(βk)⊥ be of full rank, where ∆S,l,k := z̄l(1 −

z̄kzl)
−1

∏
j 6=k,l(1 − z̄jzl)−1(1 − z̄jzk) and ∆S,k :=

∏
j 6=k(1 − z̄jzk). This ensures that {yt}t∈Z is not of higher

integration order, compare again the discussion of integrated process of order one and two in Bauer et al. (2020,
Section 2).
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q, matrices aj ∈ Rs×s, j = 1, . . . , p, bj ∈ Rs×s, j = 1, . . . , q, D ∈ Rs×m, a deterministic process
{st}t∈Z, st ∈ Rm and a white noise process {εt}t∈Z, εt ∈ Rs with E(εtε

′
t) = Σ > 0 such that

yt −Dst +

p∑
j=1

aj(yt−j −Dst−j) = εt +

q∑
j=1

bjεt−j , t ∈ Z. (2.2)

Note that by this definition VARMA processes are not required to be stationary.
The pair (a(z), b(z)), where a(z) = Is +

∑p
j=1 ajz

j and b(z) = Is +
∑q
j=1 bjz

j are matrix
polynomials, is called a VARMA system corresponding to the process {yt}t∈Z. The function
k(z) := a(z)−1b(z) is called the transfer function of the process.
It is well known – see, for instance, Hannan and Deistler (1988, Chapter 1) – that for given matrix
polynomials (a(z), b(z)), (2.2) always has a solution. If det(a(z)) 6= 0 for |z| ≤ 1 the transfer
function k(z) has a convergent power series expansion in a disk containing the closed unit disk. In
this case (2.2) has a unique stationary and causal solution ỹt = yt−Dst =

∑∞
j=0Kjεt−j where Kj

are the coefficients from the power series expansion of k(z), compare, e. g., Hannan and Deistler
(1988, pp. 9-11).
Defining the operator ∆ω, we ar now ready to introduce multiple frequency I(1), short MFI(1),
processes, compare Bauer and Wagner (2012, Definition 1):

Definition 12 � The difference operator at frequency 0 ≤ ω ≤ π is defined by

∆ω :=

{
1− 2 cos(ω)L+ L2, for 0 < ω < π,

1− cos(ω)L, for ω ∈ {0, π}.
(2.3)

For notational brevity, we again omit the dependence on L in ∆ω(L).

� The s-dimensional process {yt}t∈Z is called MFI(1) process with set of unit root frequencies
Ω := {ω̃1, . . . , ω̃l} with 0 ≤ ω̃1 < ω̃2 < · · · < ω̃l ≤ π, if it is a solution of the difference
equation

∆Ω(yt −Dst) :=

l∏
k=1

∆ω̃k(yt −Dst) = vt, t ∈ Z, (2.4)

where {st}t∈Z is a deterministic process, st = E(st), st ∈ Rm×1 and D ∈ Rs×m, and
{vt}t∈Z is a stationary VARMA process, thus, there exists a pair of left coprime matrix
polynomials (a(z), b(z)), det(a(z)) 6= 0 for |z| ≤ 1, det(b(z)) 6= 0 for |z| < 1 such that
{vt}t∈Z = a(L)−1b(L){εt}t∈Z =: c(L){εt}t∈Z with c(z̃k) 6= 0 for z̃k = eiω̃k , k = 1, . . . , l, for
a white noise process {εt}t∈Z with E(εtε

′
t) = Σ > 0.

� An MFI(1) process with set of unit root frequencies Ω := {0} is called integrated process of
order one, short I(1) process.

� A stationary VARMA process {yt −Dst}t∈Z = c(L){εt}t∈Z is said to have an empty set of
unit root frequencies Ω0 := {}.

� An MFI(1) process with set of unit root frequencies Ω := {ω̃1, . . . , ω̃l} is called seasonally
integrated, if there exists S ∈ N such that eiω̃kS = 1 for all k = 1, . . . , l. In this case it holds
that Ω ⊂ {ω1, . . . , ωS}.

Remark 18 As in de Matos Ribeiro et al. (2020) the symbol Ω in this paper is used for the set
of frequencies and not for the unit root structure. In Bauer and Wagner (2012) for an MFI(1)
process the unit root structure is denoted as ((ω̃1, 1), ..., (ω̃l, 1)). Since in this paper we only deal
with MFI(1) processes the simpler notation of only listing the unit root frequencies suffices.
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Every VARMA system with det(a(z)) 6= 0 for all z with |z| ≤ 1 has a unique stationary solution
on Z depending only on the transfer function k(z) and the process {εt}t∈Z – see, e. g., Hannan
and Deistler (1988), who also show that this solution can be represented as a solution of a state
space system

yt = Cxt +Dst + εt (2.5)

xt+1 = Axt +Bεt,

where A ∈ Cn×n, B ∈ Cn×s, C ∈ Cs×n and D ∈ Rs×m. This result is generalized to MFI(1)
processes and more general unit root processes in Bauer and Wagner (2012, Theorem 1), compare
Proposition 1 below. By Hannan and Deistler (1988, Theorem 1.2.2) the roots of det(a(z)) are
equal to the inverses of the non-zero eigenvalues of A. Consequently the condition det(a(z)) 6=
0, |z| ≤ 1 is equivalent to λ|max|(A) < 1. By the same argument the unit roots correspond to
eigenvalues of A with modulus 1. The state space representation of a process {yt}t∈Z is not
unique. There are two sources of non-uniqueness: First, there exist representations with different
state dimension n. Second, for given minimal state dimension, the basis of the state space can
still be chosen arbitrarily as the state is not directly observed. Technically, state space realizations
(A,B,C) and (Ã, B̃, C̃) are called observationally equivalent if they describe the same transfer
function k(z) = π(A,B,C) = Is +

∑∞
j=1 CA

j−1Bzj . We call the state space realization (A,B,C)

controllable if the controllability matrix C = [B,AB, . . . , An−1B] is of full rank, and observable if
the observability matrix O′ = [C ′, A′C ′, . . . , (An−1)′C ′] is of full rank. The state space realization
(A,B,C) is called minimal if it is both observable and controllable. If a state space realization
is minimal, there is no observationally equivalent realization with a lower state dimension. The
state dimension of a minimal realization is called the order of the state space system, see, e.g.,
Hannan and Deistler (1988, Chapter 2.3).
The following theorem, compare Bauer and Wagner (2012, Theorem 1), describes the relation
between state space systems and MFI(1) processes.

Proposition 1 Let {yt}t∈Z be an MFI(1) process as given in Definition 12. Then there ex-
ists a solution {yt,h}t∈Z of the homogeneous equation ∆Ωyt,h = 0, t ∈ Z, such that the process
{yt,p}t∈Z := {yt − yt,h}t∈Z is the particular solution given by

yt,p = Cuxt,u + C•xt,• +Dst + εt

xt,u =

{ ∑t−1
j=1A

j−1
u Buεt−j , t ≥ 1

−
∑0
j=tA

j−1
u Buεt−j , t < 1,

(2.6)

xt,• =

∞∑
j=1

Aj−1
• B•εt−j

to a minimal state space system (A,B,C) with A = diag(Au, A•), where all eigenvalues of Au
are simple (i.e., their algebraic and geometric multiplicity coincide) and have unit modulus and
λ|max|(A•) < 1 and B = [B′u, B

′
•]
′ and C = [Cu, C•] are partitioned accordingly.

Conversely, every process {yt,p}t∈Z defined through (2.6) for a minimal state space system (A,B,C)
satisfying λ|max|(A) = 1 and λ|max|(A−BC) ≤ 1 is an MFI(1) process.

Thus, in this paper we consider multivariate data yt, t = 1, . . . , T , from a process {yt}t∈Z fulfilling
the following assumptions:

Assumption 1 (DGP) The seasonally integrated process {yt}t∈Z with a set of unit root frequen-
cies Ω = {ω̃1, . . . , ω̃l}, with Ω ⊂ {ω1, . . . , ωS} for an even integer S, is a solution of a state space
system

yt = Cxt +Dst + εt (2.7)

xt+1 = Axt + Bεt,
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where A ∈ Cn×n, B ∈ Cn×s, C ∈ Cs×n and D ∈ Rs×m for a deterministic sequence st ∈ Rm
containing a constant, a linear trend and seasonal dummies.
(State Space System:) The state space system (A,B, C) is minimal and of the following form:

� A = diag(A1,C, ...,Al,C,A•) where Aj,C = diag(eiω̃jIc̃j , e
−iω̃jIc̃j ) for 0 < ω̃j < π or Aj,C =

eiω̃jIc̃j for ω̃j ∈ {0, π}. All eigenvalues of A• are smaller than 1 in modulus.

� B = [B′1,C, ...,B′l,C,B′•]′,Bj,C = [B′j ,Bj
′
]′,Bj ∈ Cc̃j×s for zj 6= ±1 and Bj,C = Bj ∈ Rc̃j×s else,

where Bj for j = 1, . . . , l are positive upper triangular matrices.

� C = [C1,C, ..., Cl,C, C•], Cj,C = [Cj , Cj ], Cj ∈ Cs×c̃j for zj 6= ±1 and Cj,C = Cj ∈ Rs×c̃j else,
where C′jCj = Ic̃j for j = 1, . . . , l.

� x′t = [x′t,1,C, ..., x
′
t,l,C, x

′
t,•]
′, xt,j,C = [x′t,j , xt,j

′]′, xt,j ∈ Cc̃j for zj 6= ±1 and xt,j ∈ Rc̃j else

such that x1,j = 0, x1,• =
∑∞
j=0A

j
•B•ε−j.

� |λmax(A− BC)| < 1 (strict minimum-phase assumption).

(Deterministics:) The deterministic term Dst is of the form

� Dst := d1 +
∑S̃−1
k=2

[
drk cos(ωk(t− 1)) + dik sin(ωk(t− 1))

]
+ dS̃(−1)t−1 + dS+1t

where S̃ := S/2 + 1, d1, dS̃ , dS+1 ∈ Rs, and drk, d
i
k ∈ Rs, for k = 2, . . . , S̃ − 1.

(Noise process:) The noise process {εt}t∈Z fulfills the following assumptions:

� {εt}t∈Z is a strictly stationary martingale difference sequence.

� E(εtε
′
t) = E(εtε

′
t|Ft−1) = Σ.

� E(‖εt‖4) <∞.

Here Ft−1 is the σ-algebra spanned by {εj}j∈Z,j<t.

Collecting the integers c̃k together with their frequencies the state space unit root structure is
defined as

ΩS := {(ω̃1, c̃1), . . . , (ω̃l, c̃l)} .

The transfer function associated with the state space system is given by k(z) =
∑∞
j=0Kjz

j =

Is+zC(In−zA)−1B. We are now ready to define the set M(ΩS , n•) of transfer functions of given
state space unit roots structure ΩS as

M(ΩS , n•) :=

k(z) :
k(z) = Is + zC(In − zA)−1B,

A ∈ Rn×n, B, C ′ ∈ Rn×s, as in Proposition 1
with Au corresponding to ΩS and A• ∈ Rn•×n•

 .

Defining nu(ΩS) :=
∑l
k=1 δkck with δk = 1 if ω̃k ∈ {0, π} and δk = 2 if 0 < ω̃k < π, the order of a

transfer function k(z) ∈M(ΩS , n•) is equal to n = nu(ΩS) + n•.
Inserting εt = yt − Cxt − Dst into the equation of the state xt+1, the system given in (2.5) is
alternatively expressed as

yt = Cxt +Dst + εt

xt+1 = Axt +B(yt −Dst) A := A−BC.

Analogously, for the inverse transfer function k−1(z) =
∑∞
j=0K

−
j z

j it holds that K−0 = Is and

K−j = −CAj−1B and, thus, k−1(z) = Is−zC(In−zA)−1B. For a transfer function corresponding
to a seasonally integrated process with unit root frequencies Ω ⊂ {ω1, . . . , ωS}, define Πk :=
−k−1(eiωk) ∈ Cs×s, k = 1, . . . , S and let rk be the rank of Πk, with ck := s−rk. The matrix Πk is
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of full rank s if ωk /∈ Ω. If ωk = ω̃j ∈ Ω, the rank of Πk is equal to rk = s− c̃j and, consequently,
there exists a decomposition Πk = αkβ

′
k with αk, βk ∈ Cs×rk . The definition of Πk dependent on

the inverse transfer function k−1(z) corresponding to a VARMA process is such that it coincides
with the matrices of the VECM in (2.1) in case of VAR processes and it holds that

V (p, {(ω̃1, r̃1), . . . , (ω̃l, r̃l)}) ⊂M(ΩS , n•)

with ΩS = {(ω̃1, c̃1), . . . , (ω̃l, c̃l)} and n• such that c̃j = s− r̃j and nu(ΩS) + n• ≥ ps. Moreover,
the column space of βk is orthogonal to the column space of the matrix Ck of the canonical form
and the columns space αk is orthogonal to the row space of Bk, which follows by comparing (2.6)
with the Granger representation of MFI(1) processes, compare Johansen and Schaumburg (1999,
Theorem 3).
The column spaces of Ck and βk are closely related to the cointegrating properties of the process
{yt}t∈Z:

Definition 13 (i) An MFI(1) process {yt}t∈Z with set Ω = {ω1, ..., ωl} of unit root frequencies
is called statically cointegrated at ωk, if there exists a vector β ∈ Rs such that the set of
unit root frequencies of the process {β′yt}t∈Z does not contain ωk. In this case β is called a
cointegrating vector (CIV) at ωk.
For an MFI(1) process the cointegrating space at frequency ωk is spanned by all cointegrating
vectors βk at ωk.

(ii) An MFI(1) process {yt}t∈Z with set Ω = {ω1, ..., ωl} is called dynamically cointegrated at ωk
for 0 < ωk < π, if there exist vectors β0, β1 ∈ Rs such that the set of unit root frequencies of
the process {β′0yt − β′1yt−1}t∈Z does not contain ωk. In this case β(L) = β0 + β1L is called
a polynomial cointegrating vector (PCIV) of degree one at ωk.
For an MFI(1) process the polynomial cointegrating space at frequency ωk is spanned by all
polynomial cointegrating vectors β(L) of degree one at ωk.

Combining the equations in Proposition 1 and using the block structure of (Au,Bu, Cu) we get

yt =

l∑
k=1

Ck,C

t−1∑
j=1

Aj−1
k,C Bk,Cεt−j

+ C•

t−1∑
j=1

Aj−1
• B•εt−j+

+ CAt−1x1 +Dst. (2.8)

Example 1 and 2 of Bauer et al. (2020) show that for real ωk ∈ {0, π} the cointegrating space at
ωk is spanned by the columns of βk which fulfill β′kCk = 0 and for 0 < ωk < π the cointegrating
space is spanned by the vectors γ ∈ Rs which fulfill γ′Ck = 0. Moreover, there is a close relation
between the columns of βk ∈ Cs and the polynomial cointegrating vectors of degree one at ωk. It
holds that the space of PCIVs – considered as a subspace of R2s, identifying γ(z) = γ0 + γ1z with
the vector [γ′0, γ

′
1]′ – is spanned by the columns of[

Is 0s×s
−R(zk)Is I(zk)Is

] [
R(βk) I(βk)
−I(βk) R(βk)

]
.

For this reason the matrices Ck and βk contain all information on the cointegrating spaces.
Bauer et al. (2020) provide a parameterization of the sets M(ΩS , n•). The parameterization
partitions the set into subsets with one ’generic’ subset open and dense inM(ΩS , n•). Furthermore,
Bauer et al. (2020) define a parameterization of this open and dense subset of M(ΩS , n•) by
establishing a real valued parameter space and a bijective mapping attaching parameters to transfer
functions. Furthermore, Bauer et al. (2020) clarify the relations between sets of transfer functions
for different sets M(ΩS , n•).
In the following let Θn denote the parameter space corresponding to M({}, n) and let Θc,ω

n denote
the parameter space corresponding to M({(ω, c)}, n− c) if ω ∈ {0, π} and to M({(ω, c)}, n− 2c)
if 0 < ω < π, for a given unit root ω.
In this setting de Matos Ribeiro et al. (2020) investigate the asymptotic properties of the pseudo
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maximum likelihood estimator using the Gaussian likelihood function: Let the parameter vector
θ ∈ Θ correspond to a system (A(θ),B(θ), C(θ)) and the transfer function k(z, θ) = Is+zC(θ)(In−
zA(θ))−1B(θ). Let Sσ denote a parameter space corresponding to the set of all positive definite
symmetric matrices Σ ∈ Rs×s and σ ∈ Sσ. Then the logarithm of the Gaussian likelihood function
under the assumption that x1 = 0 is given (up to a constant) as:

LT (θ,D, σ) = −T
2

log |Σ(σ)| − 1

2

T∑
t=1

εt(θ,D)′Σ−1(σ)εt(θ,D)

εt(θ,D) = yt −Dst − C(θ)xt(θ,D)

xt+1(θ,D) = A(θ)xt(θ,D) + B(θ)(yt −Dst), x1(θ,D) = 0, A(θ) := A(θ)− B(θ)C(θ).

The estimators maximizing this function are shown to be weakly consistent in de Matos Ribeiro
et al. (2020, Theorem 1):

Proposition 2 (Consistency of PML) Let {yt}t∈Z be a real valued MFI(1) process generated
by a system of the form (2.6) with state space unit root structure ΩS and dimension n• of the
stable subsystem (A•, B•, C•). Let (k◦(z), D◦, σ◦) denote the transfer function and parameters
corresponding to {yt}t∈Z.
Let φ : M → Θ be a parameterization of a set M of transfer functions and let k◦(z) ∈M .

Let (θ̂, D̂, σ̂) denote the pseudo maximum likelihood estimator, i. e., the maximizer of LT (θ,D, σ),

over Θ × Rs×(S+1) × Sσ. Then (k(z, θ̂), D̂, σ̂) is consistent for (k◦(z), D◦, σ◦) and k(z, θ̂) = Is +∑∞
j=1Kj(θ̂)z

j converges in probability to the true transfer function k◦(z) = Is +
∑∞
j=1Kj,◦z

j

with rate T 1/2, i.e. T γ‖Kj(θ̂) − Kj,◦‖ → 0 in probability for all j ∈ N and all 0 < γ < 1/2.
Furthermore,

T γ‖k−1(eiω̃j , θ̂)Cj,◦‖ → 0, j = 1, . . . , l

in probability for all 0 < γ < 1, where Cj,◦ is the respective subblock of the system matrix C◦
corresponding to k◦(z).

Note that here the pseudo log-likelihood function is defined for x1 = 0 whereas the data generating
process assumes that x1,• corresponds to the stationary distribution of the stable part of the state.
It can be shown that the difference in the corresponding pseudo log-likelihood functions is negligible
in the sense that the asymptotic distributions of the corresponding estimators coincide, compare
Theorem 2 in (de Matos Ribeiro et al., 2020).
Note that the crucial component of the Gaussian likelihood is εt(θ,D) = k−1(L; θ)(yt − Dst)
with the convention that yt − Dst = 0, t ≤ 0. This representation indicates that a power series
representation around the unit roots leads to similar expressions as in the VAR case. The main
insight lies in the fact, that this power series development in the state space case only differs in the
definition of the contribution by (seasonally) differenced terms compared to the VAR situation.
This observation first has been made in the I(1) case by Ribarits and Hanzon (2014) leading
to their state space error correction model (SSECM). The next section, thus, first discusses the
simpler case of I(1) processes, while Section 2.4 focuses on cointegration analysis at complex unit
roots in SSECMs for seasonal cointegrating processes.

2.3 I(1) processes

2.3.1 Error Correction Representation in the State Space Framework

Ribarits and Hanzon (2014) developed a state space error correction model for I(1) processes. At
the heart of their approach lies a Beveridge Nelson decomposition of the inverse transfer function
k−1(z). We note that

k−1(z) = k−1(1)z + (1− z)k
−1(z)− k−1(1)z

1− z



55

which for state space systems translates into (for example, by comparing the power series coeffi-
cients)

k−1(z) =

∞∑
j=0

K−j z
j = Is − zC

∞∑
j=0

(Az)jB

=
(
Is − C(In −A)−1B

)
z + (1− z)

Is + zC(In −A)−1A

∞∑
j=0

(Az)jB


= −Πz +

( ∞∑
i=0

K̃−i z
i

)
(1− z) = −Πz + k̃−(z)∆1(z).

Truncating the power series at power t we obtain for every state space system (A,B,C) that (using
y0 = 0)

t−1∑
j=0

K−j yt−j = −Πyt−1 +

t−1∑
i=0

K̃−i ∆1yt−i.

This builds the cornerstone of the state space error correction model (SSECM): As will be shown
in Theorem 6, for every state space system (A,B,C) the residuals

εt(A,B,C) =

t−1∑
j=0

K−j (yt−j −Dst−j)

where K−0 = Is,K
−
j = −CAj−1B, j ∈ N have the following representation:

∆1(yt −Dst) = Π(yt−1 −Dst−1) + Cvt + εt(A,B,C) (2.9)

vt+1 = Avt − (In −A)−1AB∆1(yt −Dst), v1 = x1,

Π = −Is + C(In −A)−1B.

If the process {yt}t∈Z fulfills the assumptions stated in Assumption 1 with corresponding system
(A◦, B◦, C◦), then for D = D◦

εt(A◦, B◦, C◦) = εt.

Furthermore, let the deterministics be given as Dst := [d1, d2][1, t]′. For a system (A,B,C) assume

that −Π = k−1(1) := −αβ′, where α, β ∈ Rs×r and define Ψ := ∂k−1(z)
∂z

∣∣∣
z=1

= −C(In − A)−2B.

The state space error correction model (SSECM) then is given by

∆1yt = Π(yt−1 + d1 + d2t)−Ψd2 + Cvt + ε̃t(A,B,C,D), (2.10)

vt+1 = Avt − (In −A)−1AB∆1yt, (2.11)

v1 = x1 + (In −A)−1Bd1 − (In −A)−2Bd2 + (In −A)−1Bd2,

Π = −Is + C(In −A)−1B,

where again

ε̃t(A◦, B◦, C◦, D◦) = εt.

Note that if A is nilpotent, the solutions of the system correspond to VAR processes as then
An = 0. Also in this case our approach differs from Johansen’s VECM which considers the pseudo
log-likelihood function conditional on the first k−1 values. Therefore, only T −k+1 equations are
considered in the likelihood analysis in the Johansen framework while the above model considers
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T equations but assumes a zero starting state.
Further, note that there are two ways to include deterministic terms: Either they are modelled
as additive components to the process yt, such that yt is replaced by yt −Dst in the state space
model as in (2.9), with deterministics present in both the output equation and the modified
state equation. Alternatively, deterministics can be included as regressors in the error correction
formulation, as is done in the Johansen framework. This corresponds to choosing v1 independent
of d1 and d2, since the influence of starting values v1 on the output is negligible for large t, such
that deterministics are only present in the output equation (2.10). Also note that the presence of
a linear trend term in the solutions process when introducing the deterministics via regressors in
the error correction representation is ascertained by including a restricted linear trend term of the
form αρt in the error correction equation.
Note that – apart from the treatment of the starting values – the SSECM takes the same form as
the VECM in the VAR framework: The right hand side essentially features the matrix Π multiplied
by yt−1 plus a stationary process and potentially deterministics as regressors. The main difference
to the Johansen framework lies in the fact that the regressors here depend on parameters that are
also determining the matrix Π. The next subsections describes two different approaches to deal
with these interdependencies.

2.3.2 Concentration of the Gaussian Pseudo Log-Likelihood Function

Consider for the moment the simpler case with no deterministic terms present neither in the data
generating process nor in the model, that is D = D◦ = 0. Then for the I(1) model given in
Assumption 1 the Gaussian pseudo log-likelihood function for x1 = 0 is equal to

LT (θ, σ) = −T
2

log |Σ(σ)| − 1

2

T∑
t=1

εt(θ)
′Σ−1(σ)εt(θ)

εt(θ) = ∆1yt −Π(θ)yt−1 − C(θ)vt(θ)

vt+1(θ) = A(θ)vt(θ)− (In −A(θ))−1A(θ)B(θ)∆1yt, v1(θ) = 0.

Concentrating out the noise variance parameter σ we obtain (up to the constant −Ts/2):

LT (θ) = −T
2

log
∣∣∣Σ̂T (θ)

∣∣∣ = −T
2

log |〈εt(θ), εt(θ)〉| .

Note that vt(θ) depends on the parameter vector only via the pair (A,B). The equation used for
estimation equals

∆1yt = Π(θ)yt−1 + C(θ)vt(θ) + εt(θ).

where Π(θ) = −Is + C(I −A)−1B depends on (A,B) and C.
We are interested in the specification of the number of cointegrating relations as well as on inference
on the cointegrating vectors. This information is encoded in the matrix Π(θ). Our aim is, therefore,
to find an expression of LT depending on the rank and the kernel of Π. Let us first define an
expanded version of the likelihood function for general Π ∈ Rs×s, C ∈ Rs×n not necessarily
respecting the constraints Π = Π(θ), C = C(θ), as

LexT (Π, C, θ) := −T
2

log |〈∆1yt −Πyt−1 − Cvt(θ),∆1yt −Πyt−1 − Cvt(θ)〉| .

Let θ̂ denote the pseudo maximum likelihood estimator of θ over a parameter space Θ. Note that
the following relations hold

LT (θ̂) = max
θ∈Θ

LT (θ) ≤ max
[Π, C] ∈ Rs×(s+n)

Π = −Is + C(In −A(θ̂))−1B(θ̂)

LexT (Π, C, θ̂) ≤ max
(Π,C)∈Rs×(s+n)

LexT (Π, C, θ̂).
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We will show that the solutions to these three problems are related. Solutions to the rightmost
problem with the fewest restrictions will be called unrestricted concentration approach, while
the solutions to the problem in the middle will be termed restricted concentration approach.
Thus, consider the unrestricted concentration approach which maximizes LexT (Π, C, θ) for given θ
and subject to rank(Π) = r. Here as usual the matrix C can be concentrated out using simple
regression techniques leading to a reduced model R0,t(θ) = ΠR1,t(θ) + εUt (θ), where

R0,t(θ) := ∆1yt − 〈∆1yt, vt(θ)〉 〈vt(θ), vt(θ)〉−1
vt(θ)

R1,t(θ) := yt−1 − 〈yt−1, vt(θ)〉 〈vt(θ), vt(θ)〉−1
vt(θ).

Next, rewriting Π = αβ′, α, β ∈ Rs×r, concentrate out α for given β, where the maximizer is
given by the corresponding OLS-estimator 〈R0,t(θ), β

′R1,t(θ)〉 〈β′R1,t(θ), β
′R1,t(θ)〉−1

. Using the
notation of Johansen (1996), define:

S00(θ) := 〈R0,t(θ), R0,t(θ)〉 S10(θ) := 〈R1,t(θ), R0,t(θ)〉 =: S10(θ)′

S11(θ) := 〈R1,t(θ), R1,t(θ)〉 S11,0(θ) := S11(θ)− S10(θ)S00(θ)−1S01(θ).

Consequently, the unrestricted concentration approach leads to the maximization of the function

Lex,UT (β, θ) : = −T
2

log |S00(θ)− S01(θ)β(β′S11(θ)β)−1β′S10(θ)|

= −T
2

log

(
|S11(θ)| |β

′S11,0(θ)β|
|β′S11(θ)β|

)
.

The solution of this reduced rank regression problem is well known in the I(1) literature.
The alternative restricted concentration approach takes the relation between Π, C and θ into
account. This approach has been pioneered by Ribarits and Hanzon (2014). Note that αβ′ =
−Is + C(In − A(θ))−1B(θ) is equivalent to Is = CB(θ)− αβ′ where B(θ) := (In − A(θ))−1B(θ).
This defines a linear restriction between the matrices C and α for given B(θ) and β.
Note that if B(θ) does not have full column rank, not all matrices β allow for solutions. This
will be the case for example if n < s. A necessary assumption for θ and β to be compatible is
for B̃(β, θ) := [B(θ)′,−β]′ to be of full (column) rank. Otherwise, there exists a vector γ 6= 0,
γ ∈ Rs, such that B̃(β, θ)γ = 0. This in turn implies γ = Isγ = CB(θ)γ − αβ′γ = 0, leading to a
contradiction. If B̃(β, θ) is of full rank, B(θ)(β)⊥ is of full rank and a solution Č for CB(θ)(β)⊥ =
(β)⊥ exists (which is not necessarily unique). Setting α = (ČB(θ) − Is)β(β′β)−1, the set of
matrices C and α for given θ, β fulfilling the restrictions is not empty.
For true θ◦ and Π◦ = α◦β

′
◦ the matrix B̃(β◦, θ◦) needs to be of full column rank for Is = C◦B(θ◦)−

α◦β
′
◦ to hold. Note also that if n ≥ s, the set of parameter vectors θ such that B(θ) and, thus,

B̃(β, θ) for arbitrary β has full column rank is generic2. Hence, a pair of estimates θ, β will allow
for a solution fulfilling the restrictions with probability one.
In light of the above discussion, the problem to be solved is to maximize

LexT (αβ′, C, θ)

subject to

Is =
[
C α

]
B̃(β, θ), where B̃(β, θ) :=

[
B(θ)
−β′

]
,

for given θ and β ∈ B(r, θ) := {β ∈ Rr×s : B̃(β, θ) of full column rank} ⊂ Rr×s. Solving for C
and α, we arrive at a system of first order equations of the form[ [

Ĉ α̂
]

Λ̂
] [〈V ext (β, θ), V ext (β, θ)〉 B̃(β, θ)

B̃(β, θ)′ 0

]
=
[
〈∆1yt, V

ex
t (β, θ)〉 Is

]
,

2In the sense that the set of vectors θ such that B(θ) has full row rank is an open and dense subset of the
parameter set Θ using the parameterization of de Matos Ribeiro et al. (2020); this follows since the set of matrices
B with full row rank is generic within the set of all matrices in Rn×s and A is stable due to the assumptions such
that In −A is non-singular.
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where Λ̂ is the Lagrange multiplier matrix and V ext (β, θ) := [vt(θ)
′, (β′yt−1)′]′. Next, define the

inverse [
H11(β, θ) H12(β, θ)
H21(β, θ) H22(β, θ)

]
:=

[
〈V ext (β, θ), V ext (β, θ)〉 B̃(β, θ)

B̃(β, θ)′ 0

]−1

.

Existence is due to Lemma 3 in the appendix. Using these definitions Ribarits and Hanzon (2014)
obtain the following residuals after concentrating out C and α (respecting the linear restriction):

εRt (β, θ) := ∆1yt − (〈∆1yt, V
ex
t (β, θ)〉H11(β, θ)−H21(β, θ))V ext (β, θ),

which yields the following concentrated pseudo log-likelihood function

Lex,RT (β, θ) := −T
2

log
∣∣〈εRt (β, θ), εRt (β, θ)

〉∣∣ .
2.3.3 Inference on Cointegrating Spaces

Let β̂ := β̂(θ) denote a maximizer of the respective pseudo log-likelihood function given θ such
that

Lex,UT (β̂, θ) = max
β∈Rs×r

Lex,UT (β, θ).

This maximizer is not unique, as β̂M , where M ∈ Rr×r is an invertible but otherwise arbitrary
matrix, also maximizes the pseudo log-likelihood function. Define

β̄◦ := β◦(β
′
◦β◦)

−1 β̃ := β̃(θ) := β̂(θ)(β̄′◦β̂(θ))−1

such that β′◦(β̃− β◦) = 0. This introduces a normalization of β̂, since β̂(β̄′◦β̂)−1 = β̂M(β̄′◦β̂M)−1.
Analogously, for given θ, we define β̃R := β̃R(θ) as the normalized maximizer of the pseudo
log-likelihood function under the restricted concentration step

Lex,RT (β, θ) = −T
2

log
∣∣〈εRt (β, θ), εRt (β, θ)

〉∣∣ ,
under the condition of B̃(β, θ) being of full column rank. Under appropriate assumptions, made

precise in Theorem 7 below, the estimators β̃(θ̂), β̃R(θ̂) ∈ Rs×r are consistent and their asymptotic
distribution is asymptotically mixed Gaussian:

TC ′1,◦(β̃(θ̂)− β◦)
TC ′1,◦(β̃

R(θ̂)− β◦)

}
d→
(∫ 1

0

FF ′du

)−1 ∫ 1

0

F (dV )′

where F = B1,◦W , V = (α′◦Σ
−1α◦)

−1α′◦Σ
−1W , where W is a s−r-dimensional standard Brownian

motion.
We discuss three different options to obtain inference on the cointegrating spaces:

1. (Pseudo-)Likelihood ratio testing in the unrestricted model using a PML estimator θ̂.

2. (Pseudo-)Likelihood ratio testing in the restricted model using a PML estimator θ̂.

3. (Pseudo)-likelihood ratio testing in the state space framework using two PML estimators θ̂0

and θ̂1 over appropriately chosen sets.

Let us discuss the second option in more detail. Considering inference on the cointegrating spaces,
the above convergence result for β̃R(θ̂) implies that pseudo likelihood ratio test statistics regarding
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linear hypotheses on the long-run coefficients – e. g., of the type H0 : β = Hϕ with H ∈ Rs×t,
ϕ ∈ Rt×(s−c), t < s – are asymptotically χ2, i. e., under the null hypothesis it holds that

τ cT := 2
(
Lex,RT (β̃R(θ̂cn), θ̂cn)− Lex,RT (β̃H(θ̂cn), θ̂cn)

)
d→ χ2

m,

where β̃H(θ̂cn) denotes the normalized maximizer of Lex,RT (β, θ̂cn) under the restrictions of the null

hypothesis and θ̂cn is the pseudo maximum likelihood estimator over the parameter space Θc
n.

Denote by Θh
n ⊂ Θc

n the set of the parameter vectors in Θc
n fulfilling the restrictions of the null

hypothesis. Under the null hypothesis, θ̂hn := argmaxθ∈Θhn
LT (θ) = argmaxθ∈Θcn

Lex,RT (β̃H(θ), θ) is
also a consistent estimator of the true parameter vector, and it holds that

τhT := 2
(
Lex,RT (β̃R(θ̂hn), θ̂hn)− Lex,RT (β̃H(θ̂hn), θ̂hn)

)
d→ χ2

m.

Both these variants of the second option imply that the same result holds for the third option, i. e.,
the pseudo likelihood ratio test statistic of the null hypothesis H0 : θ ∈ Θh

n against the alternative
H1 : θ ∈ Θc

n \Θh
n. Thus, under the null hypothesis

τLRT := 2
(
Lex,RT (β̃R(θ̂cn), θ̂cn)− Lex,RT (β̃H(θ̂hn), θ̂hn)

)
= 2

(
LT (θ̂cn)− LT (θ̂hn)

)
d→ χ2

m,

since Lex,RT (β̃R(θ̂cn), θ̂cn) > Lex,RT (β̃R(θ̂hn), θ̂hn) and Lex,RT (β̃H(θ̂cn), θ̂cn) < Lex,RT (β̃H(θ̂hn), θ̂hn) imply

τhT ≤ τLRT ≤ τ cT .

To compute LT (θ̂hn), the reparameterizations presented in de Matos Ribeiro et al. (2020, Sec-
tion 5.1.2) for different types of hypotheses on the cointegrating space at frequency zero can be
directly implemented, avoiding computations of the SSECM. The degrees of freedom m are derived
analogously to the results in the VECM model. It follows that each of the three approaches can
be used for inference that is asymptotically equivalent to using the pseudo-likelihood ratio tests
in the sense of jointly accepting or rejecting under the null hypothesis.

2.3.4 Inference on Cointegrating Ranks

The maximum of the pseudo log-likelihood function LT can alternatively be described explicitly
as a function dependent on r:

max
β∈Rs×r,α∈Rs×r

Lex,UT (αβ′, θ) = −T
2

log

(
|S00(θ)|

r∏
i=1

(1− λi(θ))

)
,

where λ1(θ) ≥ λ2(θ) ≥ · · · ≥ λs(θ) ≥ 0 are the ordered solutions of

|λS11(θ)− S10(θ)S00(θ)−1S01(θ)| = 0.

For the restricted concentration step a closed form solution does not exist in general. In this case
define

LrankT (r, θ) := max
β∈B(r,θ)

−T
2

log
∣∣〈εRt (β, θ), εRt (β, θ)

〉∣∣ .
The likelihood ratio test statistics for the hypothesis H(r) : rk(Π) = r versus H(s) : rk(Π) = s as
functions dependent on θ in the unrestricted and the restricted approach are given below:

−2 logQUT (H(r)/H(s), θ) := −T
s∑

i=r+1

log(1− λi(θ)),

−2 logQRT (H(r)/H(s), θ) := LrankT (s, θ)− LrankT (r, θ).
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Under appropriate assumptions on the choice of θ (see Theorem 8 below), both rank test statistics
have limiting distributions which can be expressed in terms of an s − r-dimensional standard
Brownian motion W as

tr

(∫ 1

0

(
dW

)
W ′
(∫ 1

0

WW ′du

)−1 ∫ 1

0

WdW ′

)
.

Below it is shown that this convergence of the likelihood ratio test holds for a number of different
estimators θ̂. In particular it holds for the pseudo maximum likelihood estimator θ̂n obtained by
maximizing the likelihood over the parameter set Θn. Choosing this parameter space does not
impose any restrictions on the rank of k−1(1) or equivalently on the number of eigenvalues at 1
for the matrix A in the state space realisation in the sense that the closure of the corresponding
set of transfer functions contains all transfer functions corresponding to I(1) processes of order at
most n.
Alternatively we can use the pseudo maximum likelihood estimator θ̂s−r,0n obtained from maxi-
mizing the pseudo likelihood over Θs−r,0

n . Note that

LrankT (s, θ̂n) = LT (θ̂n) and LrankT (r, θ̂s−r,0n ) = LT (θ̂s−r,0n ),

Therefore,

−2 logQRT (H(r)/H(s), θ̂s−r,0n ) = −2
(
LrankT (r, θ̂s−r,0n )− LrankT (s, θ̂s−r,0n )

)
≤ −2

(
LT (θ̂s−r,0n )− LT (θ̂n)

)
≤ −2

(
LrankT (r, θ̂n)− LrankT (s, θ̂n)

)
= −2 logQRT (H(r)/H(s), θ̂n).

Since the left and the right hand side of this chain of inequalities converge to the same limiting
distribution, the pseudo likelihood ratio test statistic

−2
(
LT (θ̂s−r,0n )− LT (θ̂n)

)
has the same asymptotic limit, similarly to the discussion at the end of the previous section.
If we include deterministic variables and use a SSECM the limiting distribution changes in accor-
dance to the findings of Johansen (1996).

2.4 MFI(1) processes

2.4.1 Error Correction Representation in the State Space Framework

In this section the results for the I(1) case are extended to the MFI(1) case. This turns out to be
notationally more complicated. However, the main ideas remain the same as in the I(1) case: First
the SSECM is given which is subsequently used for the pseudo likelihood maximization relating
the PML estimation to the framework of Johansen and Schaumburg (1999).
Thus, consider a seasonally integrated MFI(1) process {yt}t∈Z with its unit root frequencies con-
tained in the set {ωk := k−1

S 2π : k = 1, . . . , S̃ := S/2 + 1} for some even integer S and recall
zk := eiωk . Let {yt}t∈Z be generated by a minimal state space system according to the assumptions
stated in Assumption 1. Analogously to the I(1) case we obtain an SSECM representation:

Theorem 6 (SSECM-MFI(1)) For every state space system (A,B,C), satisfying det(In −
AS) 6= 0, the residuals

εt(A,B,C) =

t−1∑
j=0

K−j (yt−j −Dst−j)
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with K−0 = Is,K
−
j = −CAj−1B, j ∈ N, have the following representation (using ỹt := yt −Dst):

∆S ỹt =

S∑
k=1

ΠkX
(k)
t + Cvt + εt(A,B,C), X

(k)
t := ∆S,kỹt−1

vt+1 = Avt − (In −AS)−1ASB∆S ỹt, v1 = x1,

Πk =
(
−Is + zkC(In − zkA)−1B

)
.

If the process {yt}t∈Z fulfills the assumptions stated in Assumption 1 with corresponding system
(A0, B0, C0) then for D = D◦

εt(A◦, B◦, C◦) = εt.

Furthermore, let the deterministics be rewritten as Dst = [d1, . . . , dS , dS+1][st,1, . . . , st,S , t]
′ where

st,k = zk
t−1 and dk := 1/2(drk + idik) and dS+2−k := 1/2(drk − idik) for k = 2, . . . S̃ − 1. Choose

a factorization Πk := −k−1(zk) = αkβ
′
k, where αk, βk ∈ Cs×r, and define Ψ = ∂k−1(z)

∂z

∣∣∣
z=1

=

−C(In −A)−2B.
The state space error correction model (SSECM-MFI(1)) is then given by

∆Syt =

S∑
k=1

ΠkX
(k)
t + Cvt + ζ1 +

S∑
k=2

αkζ
′
kst,k + α1ζS+1t+ ε̃t(A,B,C,D) (2.12)

vt+1 = Avt − (In −AS)−1ASB∆Syt,

v1 = x1 −
S∑
k=1

zk(In − zkA)−1Bdk − (In −A)−2BdS+1 + (In −A)−1BdS+1,

Πk =
(
−Is + zkC(In − zkA)−1B

)
,

where ζ1 := Π1d1 + ΨdS+1, αkζk = Πkdk, for k = 2, . . . , S, α1ζS+1 = Π1dS+1 and

ε̃t(A◦, B◦, C◦, D◦) = εt.

The theorem is proven in the appendix. The SSECM is a special case for S = 1.
If {yt}t∈Z is cointegrated at frequency ωk this implies that the matrix Πk is of reduced rank rk
such that it is common to write Πk = αkβ

′
k with two matrices αk, βk ∈ Cs×rk . Note that by

definition of a seasonally integrated process not all frequencies ωk for k = 0, . . . , S need to be unit
root frequencies. For those ωk which are not unit root frequencies we have rk = s. The real unit
roots z = ±1 correspond to indices 1 and S̃.

2.4.2 Concentration of the Gaussian Pseudo Log-Likelihood Function

In the following we start with D = D◦ = 0 to simplify the already complex notation. Consider
the MFI(1) error correction representation

∆Syt =

S∑
k=1

ΠkX
(k)
t + Cvt(θ) + εt(θ)

= Π1X
(1)
t +

S̃−1∑
k=2

2R(ΠkX
(k)
t ) + ΠS̃X

(S̃)
t + Cvt(θ) + εt(θ)

Assume that we are interested in the cointegrating relations at frequency ω0 = k0−1
S 2π, k0 ∈ N

with 1 < k0 < S/2 + 1, such that 0 < ω0 < π and eiω0 is a complex unit root. In order to parallel
the standard notation introduced by Johansen and Schaumburg (1999) we introduce real valued
notation for the complex quantities:
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Definition 14 For a matrix M ∈ Ck×l define

[M ]R :=

[
R(M) −I(M)
I(M) R(M)

]
and note that for N ∈ Cl×m the mapping also preserves multiplication [MN ]R = [M ]R[N ]R.
Furthermore for a vector X ∈ Cl we define [X]Rv = [R(X)′, I(X)′]′.

Using this notation we rewrite R(Πk0
X

(k0)
t ) as [Is, 0][Πk0

]R[X
(k0)
t ]Rv . It follows that

∆Syt = Π1X
(1)
t +

S̃−1∑
k=2

[Is, 0][Πk]R[2X
(k)
t ]Rv + ΠS̃X

(S̃)
t + Cvt(θ) + εt(θ).

Defining

Z0,t := ∆Syt, Z1,t := [2X
(k0)
t ]Rv , Πk0

:= [Is, 0][Πk0
]R

Z2,t := [X
(1)′
t , X(S̃)′, (2[X

(2)
t ]Rv )′, . . . , ([2X

(k0−1)
t ]Rv )′, ([2X

(k0+1)
t ]Rv )′, . . . , ([2X

(S̃−1)
t ]Rv )′]′,

Π−k0 := [Π1,ΠS̃ ,Π2, . . . ,Πk0−1,Πk0+1, . . . ,ΠS̃−1]

and

Vt(θ) := [Z ′2,t, vt(θ)
′]′, C−k0 := [Π−k0 , C]

the residuals can be written as εt(θ) = Z0,t −Πk0Z1,t − C−k0Vt(θ). In this case the concentrated
pseudo log-likelihood function (up to a constant and assuming x1 = 0) is given by

LT (θ) = −T
2

log
∣∣∣Σ̂T (θ)

∣∣∣ = −T
2

log |〈εt(θ), εt(θ)〉| .

Expand the pseudo log-likelihood function as in the I(1) case:

LexT (Πk0
, C−k0

, θ) := −T
2

log |〈Z0,t −Πk0
Z1,t − C−k0

Vt(θ), Z0,t −Πk0
Z1,t − C−k0

Vt(θ)〉| .

Again for the expanded pseudo log-likelihood function we have two possibilities to estimate C. We
can employ an unrestricted concentration approach, which parallels Johansen’s methods. We
regress Z0,t and Z1,t on Vt(θ) where all involved quantities are real. Thus, we derive the following
residuals:

R0,t(θ) := Z0,t − 〈Z0,t, Vt(θ)〉 〈Vt(θ), Vt(θ)〉−1
Vt(θ)

R1,t(θ) := Z1,t − 〈Z1,t, Vt(θ)〉 〈Vt(θ), Vt(θ)〉−1
Vt(θ).

Assuming Πk0
= αβ′ with α, β ∈ Cs×r of full rank (omitting the indices for αk0

, βk0
), we continue

to use the notation of Johansen and Schaumburg (1999) and introduce the following matrices:

β := [β]R α := [α]R ᾰ := [Is, 0]α.

Consequently, Πk0
= ᾰβ′. Concentrating out ᾰ using the OLS estimator for given β we find that

Lex,UT (β, θ) = −T
2

log

(
|S00(θ)| |β

′S11,0(θ)β|
|β′S11(θ)β|

)
,

where we define the matrices in accordance to the approach of Johansen and Schaumburg (1999):

S00(θ) := 〈R0,t(θ), R0,t(θ)〉, S10(θ) := 〈R1,t(θ), R0,t(θ)〉 =: S10(θ)′,

S11(θ) := 〈R1,t(θ), R1,t(θ)〉, S11,0(θ) := S11(θ)− S10(θ)S−1
00 (θ)S01(θ).
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Using a restricted concentration approach alternatively, we concentrate out C under the
restrictions Πk =

(
−Is + zkC(In − zkA(θ))−1B(θ)

)
for 0 ≤ k ≤ S. Define

Bk(θ) := zk(I − zkA(θ))−1B(θ), BR
k (θ) := [In, 0][Bk(θ)]R, for k = 1, . . . , S̃

BR
−k(θ) :=

[
B1(θ), BS̃(θ), BR

2 (θ), . . . , BR
k−1(θ), BR

k+1(θ), . . . , BR
S̃−1

(θ)
]
,

IR := [Is, Is, [Is, 0], . . . , [Is, 0]] ∈ Rs×s(S−2).

The problem to be solved is to maximize

LexT (ᾰβ′, C−k0
, θ) = LexT (ᾰβ′, [Π−k0

, C], θ)

subject to

J :=
[
[Is, 0] IR

]
=
[

Π−k0
C ᾰ

]
G(β, θ), where G(β, θ) : =

 0 IS−2

BR
k0

(θ) BR
−k0

(θ)
−β′ 0


for given θ and β ∈ G(r, θ) : {β = [β]R : β ∈ Cs×r, G(β, θ) of full column rank}. Note that
as in the I(1) case, an additional condition is needed to ensure the existence of solutions, as in
some cases θ introduces restrictions on the right kernel of the corresponding Πk0

. Solving for
Cexk0

:= [ Π−k0 C ᾰ ], we arrive at a quite involved system of first order conditions of the form[
Cex,Rk0

(β, θ) Λ
] [〈V ext (β, θ), V ext (β, θ)〉 G(β, θ)

G(β, θ)′ 0

]
=
[
−〈Z0,t, V

ex
t (β, θ)〉 J

]
,

where Cex,Rk0
(β, θ) := [ CR−k0

(β, θ) ᾰR(β, θ) ] is the maximizer of the likelihood, Λ is the cor-

responding Lagrange multiplier matrix and V ext (β, θ) := [Z ′2,t, vt(θ)
′, (β′Z1,t)

′]′. As before, in a
next step we define the blocks of the inverse matrix of interest by[

H11(β, θ) H12(β, θ)
H21(β, θ) H22(β, θ)

]
:=

[
〈V ext (β, θ), V ext (β, θ)〉 G(β, θ)

G(β, θ)′ 0

]−1

,

where existence follows from Lemma 3 of the appendix. Hence, we find matrices Cex,Rk0
(β, θ) equal

to

Cex,Rk0
(β, θ) = 〈Z0,t, V

ex
t (β, θ)〉H11(β, θ)− JH21(β, θ),

which maximizes the pseudo log-likelihood function under the given restrictions. Using this nota-
tion let the corresponding residuals be defined as

εRt (β, θ) : = Z0,t − Cex,Rk0
(β, θ)V ext (β, θ),

The logarithm of the Gaussian pseudo log-likelihood function up to a constant can be written as

Lex,RT (β, θ) = −T
2

log
∣∣〈εRt (β, θ), εRt (β, θ)

〉∣∣ .
Solutions to the problem of maximizing with respect to β have been given in Johansen and
Schaumburg (1999) for the VAR setting. Note that in both concentration steps the rank of Πk0

is considered to be restricted, but possible rank constraints on all other matrices Πj , j 6= k0, are
not retained. It should be noted, however, that for most results below we only use consistency
of (Â, B̂), which also holds for additional rank constraints on Πj , j 6= k0. Thus, inference can be
achieved whether or not the system correctly specifies the unit roots present at other locations.
We will see that asymptotically the estimation of the cointegrating spaces and ranks and the
asymptotic results for the pseudo likelihood ratio tests are not affected by the specification at
other unit roots. The effects of the inclusion of these specifications on the power properties of the
tests are not further investigated.
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2.4.3 Inference on Cointegrating Ranks and Spaces

Note that both the unrestricted and the restricted concentration approach do not lead to a rep-
resentation of the pseudo log-likelihood function as a function of eigenvalues of a certain matrix,
as in the case of real unit roots, since there are further restrictions placed on β. Let β̂ denote a
maximizer of the respective pseudo log-likelihood function Lex,UT (β, θ). Similarly let β̂R denote a
maximizer of

Lex,RT (β, θ) = −T
2

log
∣∣〈εRt (β, θ), εRt (β, θ)

〉∣∣
in G(r, θ). Let Πk0,◦ = αk0,◦β

′
k0,◦ denote the true matrices of the SSECM corresponding to the

data generating process and define β◦ := [βk0,◦]
R and α◦ := [αk0,◦]

R. To construct a unique
maximizer, consider the normalization

β̄◦ := β◦(β
′
◦β◦)

−1 β̃ := β̂(β̄
′
◦β̂)−1

such that β′◦(β̃ − β◦) = 0. Similarly, define β̃R. Let Bω := [Bk0,◦]
R and Cω := [Ck0,◦]

R. The

asymptotic distribution of TC′ω(β̃−β◦) and TC′ω(β̃R−β◦) is then given by the following theorem.

Theorem 7 Let {yt}t∈Z be a seasonally integrated MFI(1) process generated according to the
assumptions stated in Assumption 1, and assume the true order n is known and D = D◦ = 0 such
that no deterministic terms are contained neither in the model nor the data generating process. Let
θ̂ be the PML estimator over a suitable parameter space Θ fulfilling the assumption of Proposition 2.
(I) The estimator β̃(θ̂) ∈ R2s×2rω based on the unconstrained approach and the estimator β̃R(θ̂) ∈
R2s×2rω based on the constrained approach are consistent and their asymptotic distribution is mixed
Gaussian:

TC′ω(β̃(θ̂)− β◦)
TC′ω(β̃R(θ̂)− β◦)

}
d→
(∫ 1

0

FF ′du

)−1 ∫ 1

0

F (dV )′

where F = BωW , V = (α′◦Σ
−1α◦)

−1α′◦Σ
−1W and W = [ 1√

2
(W1 + iW2)]R, where W1 and W2

are two independent s-dimensional Brownian motions with variance Σ.
(II) Consider the null hypothesis β = b, b ∈ Cs×r, against the alternative β 6= b, β ∈ Cs×r. Let

θ̂cn be the pseudo maximum likelihood estimator over the parameter space Θc,ω
n corresponding to

M({(ω, c)}, n − 2c) and let Θb
n ⊂ Θc,ω

n denote the set of parameter vectors in Θc,ω
n fulfilling the

restriction of the null hypothesis. Define θ̂bn := argmaxθ∈Θbn
LT (θ).

Under the null hypothesis, the asymptotic distribution of the pseudo likelihood ratio test statistic
τLRT := LT (θ̂cn) − LT (θ̂bn) for the hypothesis β = b is χ2

2r(s−r). The same holds for the test using

differences in Lex,UT .
(III) Consider the null hypothesis of the identifying restrictions βk = (H1ψ1, . . . ,Hrψr) for β ∈
Cs×r, against the alternative β 6= (H1ψ1, . . . ,Hrψr), β ∈ Cs×r. Let Θh

n ⊂ Θc
n denote the

set of parameter vectors in Θc,ω
n fulfilling the restriction of the null hypothesis. Define θ̂hn :=

argmaxθ∈Θhn
LT (θ).

Under the null hypothesis, the asymptotic distribution of the pseudo likelihood ratio test statistic
τLRT := LT (θ̂cn) − LT (θ̂hn) for the identifying restrictions βk = (H1ψ1, . . . ,Hrψr) normalized by
βi = bi +Hiφi is χ2 with 2

∑r
i=1(s− r − pi − 1) degrees of freedom , where Hi is s× pi, provided

β is identified. The same holds for the test using differences in Lex,UT .

A proof is given in the appendix. Again, the three different test statistics τ cT , τhT and τLRT pre-
sented in the I(1) case can be considered and the computations of τLRT can be implemented by
the reparameterizations discussed in Bauer et al. (2020, Section 5.1.2), with the corresponding
number of degrees of freedom also given for different types of hypotheses. For the asymptotics
of tests on the coefficients βk at complex valued unit roots the number of degrees of freedom are
slightly different than in the case of real unit roots, due to the different number of parameters for
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complex matrices.
The result shows that the tests for hypotheses on the cointegrating space share the same asymp-
totic distribution with the VECM framework. The proof of Theorem 7 also shows that the test
can be executed frequency by frequency assuming full rank of the matrices Πk at other frequen-
cies. Clearly, it is possible to include further specifications of the cointegrating ranks at other
frequencies. The effects of these additional specifications on the power properties of the tests are
not known to date. Further investigations are left for future research.
Finally, likelihood ratio-type test statistics for the hypothesis H(rω) : rk(Πω) = rω versus H(s) :
rk(Πω) = s, ω ∈ (0, π) in the SSECM-MFI(1) model using the unrestricted or the restricted
concentration step for appropriate choice of θ are given below:

−2 logQUT (H(rω)/H(s), θ) := −T log
|β̃
′
S11,0(θ)β̃||S11(θ)|

|β̃
′
S11(θ)β̃||S11,0(θ)|

,

−2 logQRT (H(rω)/H(s), θ) := −T
(

log
∣∣∣〈εRt (β̃R, θ), εRt (β̃R, θ)

〉∣∣∣− log
∣∣〈εRt (I2s, θ), ε

R
t (I2s, θ)

〉∣∣) .
Under a suitably chosen θ, the following asymptotic results hold:

Theorem 8 Let {yt}t∈Z be a seasonally integrated MFI(1) process generated according to the
Assumption 1, and assume the true order is known. For ω ∈ (0, π) let the true cointegrating rank

at frequency ω be rω = s − c. Let θ̂ be the PML estimator over a suitable parameter space Θ
fulfilling the assumption of Proposition 2. Let, further, θ̂c,ωn denote the PML estimator over Θc,ω

n

and θ̂n denote the PML estimator over Θn.
(I) If no deterministics are present neither in the data generating process nor the model (D =
D◦ = 0), then the limiting distributions under the null hypothesis of the rank test statistics

−2 logQUT (H(rω)/H(s), θ̂),

−2 logQRT (H(rω)/H(s), θ̂),

−2(LT (θ̂c,ωn )− LT (θ̂n))

for the hypothesis H(rω) : rk(Πω) = rω against the alternative H(s) : rk(Πω) = s can be expressed
in terms of two independent s− rω-dimensional standard Brownian motions W1, W2 as

1

2
tr

(∫ 1

0

(
dW

)
W ′

(∫ 1

0

WW ′du

)−1 ∫ 1

0

W
(
dW ′)) ,

with W = [ 1√
2
(W1 + iW2)]R.

(II) If the data generating process and the model have deterministic components of the form Dst =∑S
k=1 dkst,k or Dst =

∑S
k=1 dkst,k +dS+1t, then the limiting distributions of the pseudo likelihood

ratio tests under the null hypothesis can be expressed in terms of two independent s−rω-dimensional
standard Brownian motions W1, W2 as

1

2
tr

(∫ 1

0

(
dW

)
H ′
(∫ 1

0

HH ′du

)−1 ∫ 1

0

H
(
dW ′)) ,

with H = [( 1√
2
(W1 + iW2)′, 1)′]R and W = [W1 + iW2]R.

A proof is given in the appendix. A slight correction of Johansen and Schaumburg (1999) is
necessary. The two rank test statistics given there for the cases including a constant restricted
or unrestricted to the cointegrating space correspond to the two different variants given in Theo-
rem 8(II). Both lead to the same asymptotic distribution and, therefore, the same critical values.
The two different formulas for the asymptotic distributions given in Johansen and Schaumburg
(1999) are in fact equal such that the distributions coincide, while the tables for the critical val-
ues differ. The critical values given in Johansen and Schaumburg (1999) for the setting of the
unrestricted constant in the VECM equations are wrong and are equal to the ones found for the
restricted constant. Table 2 should be used for the critical values of both variants of determinstics.



66
CHAPTER 2. INFERENCE ON COINTEGRATING RANKS AND SPACES OF MULTIPLE

FREQUENCY I(1) PROCESSES: A STATE SPACE APPROACH

2.5 Simulation Results

In this section we compare the ranktests introduced in the previous section to the ranktests based
on a VAR approximation in the Johansen-Schaumburg vector error correction model, compare
Johansen and Schaumburg (1999), and the ranktests based on the CCA subspace algorithm in-
troduced in Bauer and Buschmeier (2016) in a simulation study.
The data generating processes used are of the form

yt = a1yt−1 + a2yt−2 + a3yt−3 + a4yt−4 + εt + λεt−4

with

a1 =

[
γ 0
0 0

]
, a2 =

[
−0.4 0.4− γ

0 0

]
, a3 =

[
−γ 0
0 0

]
, a4 =

[
0.6− .1γ 0.4 + γ

0 1

]
and

εt ∼ i.i.d. N

(
0,

[
1 0.5

0.5 1

])
.

In the case λ = 0 the processes correspond to those used in Bauer and Buschmeier (2016) and are
similar to the ones used in Cubadda and Omtzigt (2005). For γ = 0.2 and λ = {0, 0.5, 0.9} samples
of sizes 140, 144 . . . , 300 are generated with initial values set to zero. The first 100 values are
discarded, so that we have sample sizes T = 40, 44, . . . , 200. For the simulations 10000 replications
are made. All systems have state space unit root structure ((0, 1), (π2 , 1), (π, 1)).
With the five algorithms described below the cointegrating rank at frequency π

2 is determined
by testing the null hypothesis of 2s stochastic cycles, i.e., cointegrating rank zero against the
alternative of fewer than 2s stochastic cycles. In case of rejection the null hypothesis of 2(s − 1)
stochastic cycles is tested against the alternative of fewer stochastic cylces. This procedure is
continued until a null hypothesis is accepted or until there are zero stochastic cycles under the
alternative. The hit rate, i.e., the percentage of correctly specified cointegrating ranks is compared
to 1− α, where the nominal significance level α is chosen to be 0.05.
JS-VECM: For the Johansen Schaumburg procedure the lag length k is chosen by minimizing
Akaikes information criterion. Since the data generating process computes quarterly data we have
a lower bound of four for the lag length in the VECM such that k̂ = max = {4, k̂AIC}.
CCA subspace: For CCA we choose f = p = 2k̂AIC . The system order n is chosen by minimizing
a singular value criterion, see Bauer (2001).
LR-, R-, Q-statistics: For the pseudo maximum likelihood (PML) algorithms used for the
restricted (R), the unrestricted (Q) SSECM test and the pseudo likelihood ratio test in the VARMA
setting (LR) the output of the subspace algorithm is used as a starting value to find the maximizer

θ̂n of the pseudo log-likelihood function over Θn. The R- and Q-statistics are then computed using
θ̂n to maximize Lex,UT (β, θ̂n) and Lex,RT (β, θ̂n) with respect to β over G(r, θ̂n). To maximize the

likelihood over Θc,ω
n the initial parameter vector θ̂0,c ∈ Θc,ω

n corresponding to θ̂n and β̃R(θ̂n) is
used as a starting value.
In Figure 2.1 we see the hit rates for the VAR case λ = 0. Here and in the next figure we have
excluded the CCA subspace procedure, as its low hit rates for small sample sizes distorts the
diagram, making the differences between the other results indistinguishable. Among all other
listed procedures the hit rate of the Q-statistic based on unrestricted optimization starts with the
lowest hit rate at about 81%. The hit rates of the R-statistic using the restricted SSECM and
the likelihood ratio test are lower than the results for Johansen Schaumburg test procedure for
samples of size smaller than about 80. It is remarkable that the hit rates of the state-space-based
tests for sample sizes larger than 120 are slightly higher than the expected and asymptotically
valid 1 − α = 95% level. The Johansen Schaumburg test on the other hand exhibit a hit rate
lower than the 95% level for all observed sample sizes. Since the Johansen Schaumburg test was
designed for VAR systems it is not surprising that the small sample properties of the Johansen
Schaumburg procedure are better.
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Figure 2.1: Hit rates of the ranktests for the VAR case

The hit rates for λ = 0.5 are displayed in Figure 2.2. The effect of the inclusion of an MA-part
on the state-space-based tests is small. The hit rate of the Johansen Schaumburg test however
drops from about 89% in the case λ = 0 to 75% for sample size T = 40. Also, the hit rate of
the Johansen Schaumburg test only reaches a hit rate of 85% for sample sizes up to T = 200,
missing the supposed 95% level by a wide margin. This can be explained by the fact that an MA-
part increases the estimate of the lag length k. This in turn increases the number of parameters
estimated by the Johansen Schaumburg procedure which affects the small sample properties. Again
the state space-based procedures have hit rates higher than 95%. It is notable that the R-statistic
using the restricted concentration step and the true pseudo likelihood ratio test achieve hit rates
of about 89% even for sample size 40 which in the case of quarterly data corresponds to ten years
of observations and the resulting hit rates are basically equal for all observed sample sizes. The
Q-statistic based on the unrestricted SSECM is comparable to the Johansen procedure for T = 40
and reaches the performance of the other two state-space-based tests for sample sizes of T = 90
and higher.
In Figure 2.3 for the case of λ = 0.9 we observe results of the same kind. Again the restricted
SSECM test and the pseudo likelihood ratio test have higher hit rates than the unrestricted one
in small samples. This time the effect is observable for samples up to T = 100. Again the effects
of the MA-polynomial of the true system on the state-space-based tests is small, the best two still
reaching hit rates of about 88% for sample size T = 40. The hit rates of the Johansen Schaumburg
test are even lower than in the case λ = 0.5. In this figure we have included the hit rates of the
CCA subspace test, which has the lowest hit rate for samples up to about size 120. For sample
sizes lower than T = 90 the hit rate lies below 20%. For larger samples it has about the same hit
rates as the SSECM tests. Application of the CCA subspace procedure for λ = 0 or λ = 0.5 yield
similar results.
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Figure 2.2: Hit rates of the ranktests for the VARMA case with λ = 0.5
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Figure 2.3: Hit rates of the ranktests for the VARMA case with λ = 0.9
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2.6 Summary and Conclusion

In this paper the state space error correction representation for I(1) processes by Ribarits and
Hanzon (2014) was extended from the I(1) to the MFI(1) case. This approach was used to derive
pseudo likelihood ratio tests for the cointegrating rank and linear hypotheses on the cointegrating
space. The asymptotic distribution of these tests was derived.
The main message in this respect is that in the state space framework the tools of the Johansen
framework for VAR processes can be used with the only change that the stationary terms in the
error correction representation depends on estimated quantities. This does not change the asymp-
totic inference, though. This implies for example that distributions from the VAR framework can
be directly transferred to the state space framework. The same holds for hypothesis tests.
This opens the possibility of three different tests based on pseudo-likelihood ratios both for cointe-
grating spaces and cointegrating ranks: The unrestricted concentration step is easy to implement
and leads to inference totally analogous to the VECM inference. The restricted concentration
approach is more involved. Finally the results show that these tests are related to the pseudo-
likelihood ratio tests in the state space setting leading to identical asymptotics under the null
hypothesis.
A simulation study shows that these rank tests are able to correctly specify the cointegrating rank
at complex unit roots more often than the tests based on the Johansen Schaumburg procedure and
the CCA subspace algorithm for small samples for VARMA processes. It can be seen, moreover,
that the unrestricted concentration step performs slightly worse than the other two approaches,
while the performance of the other two methods is practically identically in the simulations. The
CCA subspace procedure proofs useful in providing initial estimates, but inference directly in the
CCA setting is not optimal.
Thus, this paper extends the toolbox for investigating MFI(1) processes from the VAR framework
to the VARMA setting.
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Chapter 3

Pseudo Maximum Likelihood
Estimation and Inference for I(2)
Processes: A State Space
Approach

3.1 Introduction

Cointegration analysis for nominal macroeconomic time series seems to indicate that some first
differences of common nominal variables such as inflation rates or money growth are well described
as autoregressive processes integrated of order one, compare, e. g., King, Plosser, Stock and Wat-
son (1991). Thus, the levels of these variables can be adequately described as I(2) processes.
For I(2) processes in a multivariate setting the VECM introduced by Johansen (1992) is the major
workhorse for both the determination of the number of underlying stochastic trends as well as for
inference on the different cointegrating spaces occuring in these models. Consequently, the model
class is restricted to VAR processes, which for a number of reasons may lead to disadvantages,
especially in case of I(2) processes. As discussed in Johansen (1997) there are different ways to
parameterize the model to ensure that conditions on the rank of certain matrices are satisfied,
which is necessary for the model to correspond to an I(2) process. As no explicit solution for the
pseudo maximum likelihood estimator (PMLE) in this restricted setting is available, numerical
algorithms are needed, an example being a switching algorithm introduced by Nielsen and Rahbek
(2007).
A different approach for cointegration analysis is to employ a state space framework, effectively
shifting the model class to VARMA processes. Recently Ribarits and Hanzon (2014) introduced
the state space error correction model for I(1) processes, allowing for yet another parameterization
using the state space framework. Tools to make the state space framework useful for cointegrated
processes were developed by Bauer and Wagner (2012) who introduced a canonical form tailored
to make the structure of the underlying stochastic trends visible. This is done by separating the
state process into components with different integration orders at different unit roots. The au-
thors of this paper then combined the available results, proposing several parameterizations and
characterizing their properties, defining sets with different cointegration structures, and introduc-
ing a semi-order showing that some of these sets are included in the closures of others, compare
(Bauer et al., 2020). After showing consistency of the PMLE for I(1) processes (de Matos Ribeiro
et al., 2020), in this paper we extend the theory to processes integrated of order two.
Our aim is two-fold. First, we highlight the advantages of the state space framework for I(2)
processes. It turns out that all information on the different cointegrating spaces is neatly encoded
in a single matrix Cu. The state space error correction model for I(2) processes then links the
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VECM framework and its reduced rank matrices directly to the matrices of the state space sys-
tem. Thus, the interconnected restrictions of the VECM for I(2) processes translate into a state
space system with an already available parameterization. Finally, for given or estimated state xt
and given matrix Cu we derive an explicit solution maximizing the pseudo likelihood function of
the regression yt = Cxt + εt over the set of matrices C corresponding to Cu. Maximizing the
likelihood over the set of possible Cu is then another way to find the PMLE under certain rank
restrictions, and also applicable in a VAR setting.
The second aim of this paper is to establish the stochastic properties of the PMLE, showing
consistency, deriving the asymptotic distribution and proposing a test for linear hypothesis on
the parameters. This lays the groundwork for cointegration analysis for VARMA I(2) processes,
extending the tools available in the VECM also to the state space framework. As a final result
we show that likelihood ratio statistics testing for the cointegration indices introduced by Paruolo
(1996) exhibit the same asymptotic distribution as the corresponding tests in the VECM setting.
The paper is structured as follows. Section 2 contains the necessary definitions of the I(2) processes
and cointegration properties considered in this paper. It also introduces the canonical form of the
state space representation and the state space error correction model for I(2) processes. We dis-
cuss the relations between the different representations, and between the system matrices and the
cointegrating spaces. The next section covers the PMLE over different sets of transfer functions,
starting with the description of their respective parameter spaces, before the discussion of the
consistency result and the asymptotic distribution of the parameter vector. Section 4 illustrates a
way to derive explicit solutions for given matrix Cu of cointegrating properties. This is the basis
for the subsequent Theorem dealing with the asymptotic distribution of the rank test statistics
under the null. A short simulation study is discussed in Section 5, showing the advantages of using
the state space approach to determine the cointegration indices, especially for small sample sizes.
Finally, Section 6 summarizes the results. All proofs are relegated to the appendix.
Notation in this paper is as follows: Is denotes the s-dimensional identity matrix, 0m×n them times
n zero matrix. For a square matrixX we denote the spectral radius (i.e. the maximum of the modu-
lus of its eigenvalues) by λ|max|(X). We denote the smallest eigenvalue of a symmetric matrix X by
λmin(X). L denotes the backshift operator such that L({yt}t∈Z) = {yt−1}t∈Z for a process {yt}t∈Z,
for brevity written as Lyt = yt−1. For two matrices A ∈ Cm×n and B ∈ Ck×l, A⊗B ∈ C(mk)×(nl)

denotes their Kronecker product. For a set Θ, Θ̄ denotes the closure of the set in its correspond-

ing space. Convergence in distribution is denoted by
d→ convergence in probability by

p→. For
x ∈ Rn and r ∈ R, B(x, r) denotes the open ball with center x and radius r. For finite sequences

{at}t=1,...,T , {bt}t=1,...,T , at ∈ Rk, bt ∈ Rm for t = 1, . . . , T , we define 〈at, bt〉 := T−1
∑T
t=1 atb

′
t

analogously to Johansen and Nielsen (2018). For these sequences at|bt denotes the residuals of the

regression of at on bt, i. e., it holds that at|bt = at−〈at, bt〉 〈bt, bt〉−1
bt. For functions f : [0, 1]→ Rk,

g : [0, 1]→ Rm, define f(u)|g(u) := f(u)−
∫ 1

0
f(u)g(u)′du

(∫ 1

0
g(u)g(u)′du

)−1

g(u).

3.2 I(2) Processes in the State Space Framework

This paper deals with the same class of multivariate ARMA processes {yt}t∈Z, yt ∈ Rs, as discussed
in Bauer and Wagner (2012, p. 1316-1317). As done there, we refer to a stochastic process {yt}t∈Z
as an ARMAX process, if there exist a deterministic process {Dt}t∈Z, integers p, q ≥ 1, matrices
Aj ∈ Rs×s , j = 1, . . . , p and Bj ∈ Rs×s, j = 1, . . . , q and a white noise process {εt}t∈Z, with
E(εtε

′
t) = Σ > 0, such that

a(L)(yt −Dt) = yt −Dt +

p∑
j=1

Aj(yt−j −Dt−j) = εt +

q∑
j=1

Bjεt−j = b(L)εt, t ∈ Z, (3.1)

Defining the matrix polynomials a(z) := Is+
∑p
j=1Ajz

j and b(z) := Is+
∑q
j=1Bjz

j where z ∈ C,
the pair (a(z), b(z)) is called an ARMAX system corresponding to the stochastic process {yt}t∈Z.
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Defining the difference operator as

∆ = ∆(L) := 1− L,

We are now ready to define I(k) processes:

Definition 15 A stochastic process {yt}t∈Z, yt ∈ Rs, is an integrated process of order k, if

∆k(yt −Dt) = vt, t ∈ Z,

where {Dt}t∈Z, Dt ∈ Rs, is deterministic and {vt}t∈Z, vt ∈ Rs, is the solution of a vector autore-
gressive moving average (VARMA) system

a(L)vt = b(L)εt, t ∈ Z,

fulfilling det(a(z)) 6= 0 for |z| ≤ 1, det(b(z)) 6= 0 for all |z| < 1 and b(1) 6= 0 and where {εt}t∈Z,
εt ∈ Rs is a white noise process with E(εtε

′
t) = Σ > 0.

3.2.1 The State Space Representation of I(2) Processes

Bauer and Wagner (2012, Theorem 2) show that every I(2) process {yt}t∈Z has a unique state
space representation of the form

yt =
[
Cu C•

]︸ ︷︷ ︸
C

[
xt,u
xt,•

]
+Dt + ht + εt (3.2)

[
xt+1,u

xt+1,•

]
=

[
Au 0
0 A•

]
︸ ︷︷ ︸

A

[
xt,u
xt,•

]
+

[
Bu
B•

]
︸ ︷︷ ︸
B

εt

[
x1,u

x1,•

]
=

[
0∑∞
j=0A

j
•B•ε−j

]
where A ∈ Rn×n, B ∈ Rn×s, C ∈ Rs×n, {Dt}t∈Z is deterministic and {ht}t∈Z fulfills ∆2ht = 0
for all t ∈ Z. All eigenvalues of Au are equal to one, λ|max|(A•) < 1 and λ|max|(A) ≤ 1 for
A := A − BC. The state space system (A, B, C) is minimal, i.e. there is no alternative state
space representation of {yt}t∈Z with a smaller state dimension and the system matrices fulfill the
following constraints

� The subsystem (Au, Bu, Cu) is of the form

Au =

Ic1 Ic1 0
0 Ic1 0
0 0 Ic2

 , Bu :=
[
B′1 B′E

]′
:=
[
B′1 B′2 B′3

]′
, Cu :=

[
C1 C2 C3

]
,

where C1, C2,B′1,B′2 ∈ Rs×c1 and B′3, C3 ∈ Rs×c2 . Moreover B2 and B3 are positive upper
triangular (p.u.t.) matrices, and (CE)′CE = Ic1+c2 and (CE)′C2 = 0, where CE := [C1, C3].

� The state space representation of the (stable) subsystem (A•, B•, C•) is in echelon canonical
form.

Conversely every process {yt}t∈Z generated by a the state space system (3.2) satisfying λ|max|(A•) =
1 and λ|max|(A := A− BC) ≤ 1 is an I(2) process.

Remark 19 This result is analogous to Bauer and Wagner (2012) where the authors introduce
the process {yt,h}t∈Z satisfying ∆2yt,h = 0 instead of the two components {Dt}t∈Z and {ht}t∈Z.
Clearly we can decompose {yt,h}t∈Z into a stochastic part yt,h−E(yt,h) corresponding to ht in the
above system and a deterministic part E(yt,h).
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Remark 20 The above canonical form is associated to a multi-index Γ, whose properties are
examined in Bauer et al. (2020, Theorem 2). The multi-index contains the state dimension, the
unit root indices c1 and c2, the position of the positive entries in BE restricted due to the p.u.t.
form and the Kronecker indices (see e.g. Hannan and Deistler (1988, Chapter 2.4) for a precise
definition) of the stable subsystem. It is useful to redefine the state space unit root structure1 for
I(2) processes as ΩS := (c1, c2), with unit root indices c1, c2, c1 + c2 ≤ s.

Remark 21 For any I(2) process with arbitrary unit root indices c1, c2, c1 + c2 ≤ s, there also
exists a unique state space representation in echelon canonical form. If no information on c1 and
c2 is available, as is common in application, the echelon canonical form is, therefore, useful to get
initial estimates for the system matrices, without imposing restrictions on ΩS .

The solution for t > 0 and x1,u = 0 of the system in canonical form in this setting is given by

yt = C1xt,1 + C2xt,2 + C3xt,3 + C•xt,• +Dt + ht + εt (3.3)

= C1B2

t−1∑
k=1

k∑
j=1

εt−j + (C1B1 + C2B2 + C3B3)

t−1∑
j=1

εt−j

+C•
t−1∑
j=1

Aj−1
• B•εt−j + C•At−1

• x1,• +Dt + ht + εt,

which showcases the different integrated components, making the canonical from, therefore, espe-
cially suited for cointegration analysis. We define cointegrating vectors and spaces as follows.

Definition 16 (i) An s-dimensional I(2) process {yt}t∈Z is called cointegrated of order one, if
there exists a vector β ∈ Rs, β 6= 0, such that {β′yt}t∈Z is an I(1) process. In this case the
vector β is a cointegrating vector (CIV) of order one.

(ii) An s-dimensional I(2) process {yt}t∈Z is called cointegrated of order two, if there exists a
vector β ∈ Rs, β 6= 0, such that {β′yt}t∈Z is a stationary process. In this case the vector β
is a cointegrating vector (CIV) of order two.

(iii) The span of all CIVs of order k = 1, 2 is called (static) cointegrating space of order k = 1, 2.

(iv) An s-dimensional I(2) process {yt}t∈Z is called polynomially cointegrated, if there exists a
vector polynomial β(z) = β0 + β1z, βk ∈ Rs, k = 0, 1, such that β(L)′({yt}t∈Z) is stationary
and β0 +β1 6= 0. In this case the vector polynomial β(z) is a polynomial cointegrating vector
(PCIV).

(v) The span of all PCIVs is called polynomial cointegrating space.

Remark 22 In the I(2) case, setting Dt = ht = xt,• = 0 for simplicity, we have

yt = C1xt,1 + C2xt,2 + C3xt,3 + εt,

xt+1,1 = xt,1 + xt,2 + B1εt,

xt+1,2 = xt,2 + B2εt,

xt+1,3 = xt,3 + B3εt

xt,e := [(xt,1)′, (xt,3)′]′, xt,g := xt,2.

The vector β ∈ Rs is a CIV of order one if and only if β′C1 = 0 and β′[C2, C3] 6= 0.
The vector β ∈ Rs is a CIV of order two if and only if β′[CE , C2] = 0 and β 6= 0.
The vector polynomial β(z) = β0 + β1z, with β0, β1 ∈ Rs is a PCIV of order two if and only if

1The state space unit root structure as defined in Bauer et al. (2020) for general unit root processes also contains
unit root frequencies. In the context of I(2) processes with only one unit root we omit the frequency in the definition
of ΩS to shorten notation.
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[β′0, β
′
1]

[
CE C1 + C2
CE C2

]
= 0 and β0 + β1 6= 0.

If C2 = 0 this equation is only fulfilled if already a CIV of order two exists. In this case the first
condition implies β′0C1 = 0, β′1C1 = 0 and (β0 + β1)′C3 = 0. Consequently β0 + β1 is a CIV of
order two and all PCIVs are trivial in the sense that they correspond to CIVs of order two.
If C2 6= 0 however, PCIVs which are not trivial exist. This is because the only integrated con-
tribution to {∆yt}t∈Z equals {C1∆xt,1}t∈Z = {C1xt−1,2 + C1B1εt−1}t∈Z. Thus, in order for co-
integration between {∆yt}t∈Z and {γ′yt}t∈Z to be present, the latter must eliminate the contribu-
tion of {xt,1}t∈Z and {xt,3}t∈Z but contain some contribution of {xt,2}t∈Z, which is only possible
if C2 6= 0.

3.2.2 Error Correction Models for I(2) Processes

The transfer function of an ARMA system is k(z) := a(z)−1b(z). It is well known (see e.g. Hannan
and Deistler (1988)) that the transfer function corresponding to a state space system has a power
series expansion k(z) = Is+

∑∞
j=1 CAj−1Bzj and thus converges absolutely for z ∈ C with |z| < 1,

assuming λ|max|(A) ≤ 1. Thus, it has an equivalent representation k(z) = Is+zC(In−zA)−1B on
the complex unit disk. The corresponding inverse transfer function has a power series expansion
k−1(z) = Is−

∑∞
j=1 CA

j−1Bzj . The poles of the transfer function are the inverses of the non-zero
eigenvalues of A. Thus, the only pole on the closed unit disk for I(2) processes is z = 1. The zeros
of k−1(z) are the poles of k(z) which implies that the matrix Π := −k−1(1) = −Is+C(In−A)−1B
is of reduced rank, such that

Π = αβ′ with α, β ∈ Rs×(s−c1+c2).

Moreover, defining

Γ : = k−1(1) + ∂zk
−1(z)|z=1

= Π− C(I −A)−2B = −Is − C(In −A)−2AB,

it holds that α′⊥Γβ⊥ is also of reduced rank c2 < c1 + c2, such that

α′⊥Γβ⊥ =: ξη′ with ξ, η ∈ R(c1+c2)×c2 . (3.4)

These matrices together with their rank restrictions also occur in the VECM, compare Johansen
(1997), which is given by

∆2yt = αβ′yt−1 − Γ∆yt−1 +

p−2∑
j=1

Ψj∆
2yt−j + εt. (3.5)

Based on the matrices Π and Γ corresponding to an I(2) VAR process {yt}t∈Z, Paruolo (1996)
defines “integration indices”, r0, r1, r2 say, as the number of columns of the matrices β ∈ Rs×r0 ,
β1 := β⊥η ∈ Rs×r1 and β2 := β⊥η⊥ ∈ Rs×r2 . Clearly, the indices r0, r1, r2 are linked to the
ranks of the above matrices Π and α′⊥Γβ⊥, as r0 = s − c1 − c2 and r1 = c2 and r2 = c1. It
holds that {β′2yt}t∈Z is an I(2) process without cointegration and {β′1yt}t∈Z is an I(1) process
without cointegration. The process {β′yt}t∈Z typically is I(1) and cointegrates with {β′2∆yt}t∈Z
to stationarity. Thus, there is a direct correspondence of these indices to the dimensions of the
different cointegrating spaces – both static and polynomial – and the column spaces of β2 and C1
and of β1 and C3 coincide (compare Remark 22).
Finally let us also briefly consider the Granger type representation for I(2) VAR processes due to
Johansen (1992, compare p. 195), which is of the form

yt = C2

t∑
s=1

s∑
j=1

εj + C1

t∑
j=1

εj + C∗(L)εt +A+Bt
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where the following relations hold

C2 = β2(α′2Θβ2)−1α′2, Θ := Γβ(β′β)−1(α′α)−1α′Γ + Is −
∑p−2
j=1 Ψj ,

β′1C1 = ((α′α)−1α′1Γβ1(β′1β1)−1)−1(α′1α1)−1α′1(Is −ΘC2).

Comparing the matrices β′1C1 and C2 with the corresponding terms in (3.3), we see that the row
spaces of α′2 and B2 and [α1, α2]′ and BE coincide, the latter due to B3 = C′3β1(β′1β1)−1β′1C1 and
α′1(Is −ΘC2)α = 0 which implies B3α = 0.
Analogously to the VECM we introduce a state space error correction model (SSECM) for I(2)
processes:

Theorem 9 (SSECM-I(2)) Every state space state space representation with system matrices
(A,B,C), satisfying det(In − A) 6= 0, is equivalently represented by the following system (using
ỹt := yt −Dt − ht):

∆2ỹt = Πỹt−1 + Γ∆ỹt−1 + Cvt + εt,

vt+1 = Avt + (In −A)−2A2B∆2ỹt, v1 = x1,

Π = −Is + C(In −A)−1B,

Γ = −Is − C(In −A)−2AB.

Furthermore, let Dt + ht := −[d, e][1, t]′. The state space error correction model (SSECM-I(2)) is
then given by

∆2yt = Π(yt−1 + d+ e(t− 1)) + Γ(∆yt−1 + e) + Cvt + εt (3.6)

vt+1 = Avt + (In −A)−2A2B∆2yt,

v1 = x1 − (In −A)−1B(d− e)− (In −A)−2Be,

where Π = −Is + C(In −A)−1B and Γ = −Is − C(In −A)−2AB as before.

Combining the SSECM with (3.3), for an I(2) process {yt}t∈Z generated by a system (A,B, C), it
holds that εt is equal to

εt = ∆2yt −Πỹt−1 − Γ∆ỹt−1 −
t−1∑
i=1

Ai−1(In −A)−2A2B∆2ỹt−i

= −ΠC1xt−1,1 −ΠC3xt−1,3 −
(
ΠC2 + ΓC1

)
xt−2,2 + υdt (A,B, C),

where υdt (A,B, C) does not contain integrated components. Since {xt,1}t∈Z, {xt,2}t∈Z and {xt,3}t∈Z
are all integrated processes, the first three terms are necessarily zero for the equality to hold, such
that υdt (A,B, C) = εt. Thus, the following relation hold between the subblocks of Cu and the
matrices Π and Γ: (

−Is + C(In −A)−1B
) [
C1 C3

]
= 0(

−Is + C(In −A)−1B
)
C2 +

(
−Is − C(In −A)−2AB

)
C1 = 0,

or, in shorter notation, ΠCE = 0 and ΠC2 + ΓC1 = 0 with Π and Γ corresponding to (A,B, C).

3.3 Pseudo Maximum Likelihood Estimation

Let (A◦,B◦, C◦) refer to the true system of the data generating process {yt}t∈Z. We assume that
these matrices satisfy the following:

Assumption 2 (Strict minimum phase assumption) For the matrices (A◦,B◦, C◦) we have
λ|max|(A◦) < 1.
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For the estimation we consider two different sets over which we optimize the likelihood, depending
on the available knowledge on the state space unit root structure ΩS of {yt}T∈Z.

(I) In the first scenario we only assume to know the state dimension n. In this case we consider
the set of transfer functions corresponding to the stationary processes with state dimension
n, which we denote by Mn,•. By Bauer et al. (2020, Theorem 5) the true transfer function is
contained in the closure Mn,•, compare also Remark 21. Let Θn denote the corresponding
parameter space, using the echelon canonical form with generic Kronecker indices, compare
Hannan and Deistler (1988, Chapter 2.4).

(II) In the second case we assume to know ΩS = (c1, c2). Thus, we consider the set Mn(c1, c2)
of transfer functions corresponding to the systems (A,B, C) as in (3.2) with

Au =

Ic1 Ic1 0
0 Ic1 0
0 0 Ic2

 .
and state dimension n ≥ 2c1 + c2.
Obviously not all entries in (A,B, C) are free parameters. Since a single parameterization of
Mn(c1, c2) does not exist, it is partitioned into a number of parametrizable sets MΓ, such
that Mn(c1, c2) =

⋃
ΓMΓ, where the multi-index Γ encodes information on the structure of

the canonical form as described in Remark 20. There exists a generic multi-index Γg and a
corresponding set MΓg ⊂ Mn(c1, c2) such that Mn(c1, c2) ⊂ MΓg as discussed in detail in
Bauer et al. (2020). Let Θc1,c2

n denote the parameter space corresponding to MΓg .
For given Γ the parameter space ΘΓ ⊂ Rcθ is equal to ΘΓ = ΘE×ΘG×ΘB,f ×ΘB,p×Θ•,
such that a parameter vector θ ∈ ΘΓ is composed of

� the parameter vectors θE ∈ ΘE ⊂ RcE collecting parameters for the block columns of
the unitary matrices C1 = C1(θE,1) and C3 = C3(θE,2), with θE = [θ′E,1, θ

′
E,2]′ moreover

θE,k = [θ′k,L, θ
′
k,R]′, k = 1, 2, where θk,L contains the parameters characterizing the

column space of C1 and C3 respectively.

� the parameter vector θG ∈ ΘG ⊂ RcG collecting parameters for the block columns of
the matrix C2 = C2(θG).

� the parameter vector θB,f ∈ ΘB,f = RcB,f collecting the non-restricted entries in all
Bk,

� the parameter vector θB,p ∈ ΘB,p = RcB,p+ collecting the positive real entries in all Bk
restricted due to the p.u.t. form,

� the parameter vector θ• ∈ Θ• ⊂ Rc• collecting the free entries in the echelon canonical
form of the stable subsystem (A•, B•, C•) with Kronecker indices Λ•.

Concerning {εt}t∈Z we assume the following.

Assumption 3 The errors {εt}t∈Z are a strictly stationary martingale difference sequence satis-
fying:

� E(εt|Ft−1) = 0.

� E(εtε
′
t) = E(εtε

′
t|Ft−1) = Σ◦ > 0.

� E(‖εt‖4) <∞.

where Ft−1 is the σ-algebra spanned by {εj}j∈Z,j<t.

We need to consider the parametrization of a set of variance matrices of dimension s × s. Here
the parameter vector is σ ∈ Rs(s+1)/2 and collects the diagonal and sub-diagonal elements of the
symmetric s× s matrix. Let ΘΣ ⊂ Rs(s+1)/2 denote the corresponding parameter space.
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The starting values of the state equation are not part of the parameter space. Nevertheless we need
to specify their stochastic properties in order to derive the likelihood function. The assumptions
on their properties depend on the available information on the state space unit root structure
(c1, c2) corresponding to {yt}t∈Z.

(I) In case of no further knowledge on {yt}t∈Z we chose x1 = 0 for all transfer functions in Mn,•
(prediction error method of estimation).

(II) For given true state space unit root structure (c1, c2), set x1,u = 0 and x1,• such that
E(x1,•) = 0 and Var(x1,•) = P•(θ, σ), such that P•(θ, σ) solves

P• = A•(θ)P•A•(θ)′ + B•(θ)Σ(σ)B•(θ)′.

As a last step let us specify the form of the deterministic process {Dt}t∈Z and the singular pro-
cess {ht}t∈Z. Since in practice only (a part of) one realization of {yt}t∈Z is available, the con-
tribution of {ht}t∈Z can be accounted for by including non-zero starting values in addition to
d + et, with d, e ∈ Rs, among the components of {Dt}t∈Z. Therefore, consider ht = 0 and
Dt = Dt(d, e) := d+ et with two parameter vectors d, e. Let (d◦, e◦) be the pair corresponding to
the true deterministic process {Dt,◦}t∈Z. Let ΘD = Rs ×Rs denote the corresponding parameter
space.
In order to define the pseudo likelihood function we use YT := [ y′1 . . . y′T ]′ ∈ RTs for de-
noting the stacked observations, DT (d, e) ∈ RTs is equal to [ D1(d, e)′ . . . DT (d, e)′ ]′, where
Dt(d, e) = d + et = [d, e][1, t]′ =: [d, e]st, denotes the deterministic terms as a function of the
vectors d and e. Note that under our assumptions Eyt = Dt and that, moreover, there exists a
matrix S such that st = Sst−1. Further let ΓT (k(z), σ) denote the variance matrix corresponding
to YT −DT (d, e) which according to the model is given by

ΓT (k(z), σ) = TT (k(z)) (IT ⊗ Σ(σ)) TT (k(z))′ +OT,•P•(θ, σ)O′T,•,

TT (k(z)) :=


K0 0 . . . 0

K1 K0
. . .

...
...

. . .
. . . 0

KT−1 . . . K1 K0

 ,
where Kj are the coefficients of the power series expansion of the transfer function k(z) =∑∞
j=0Kjz

j . The j-th block row of the observability matrix OT,• of the stable subsystem con-

sists of C•Aj−1
• .

Using this notation we obtain −2/T times the logarithm of the Gaussian pseudo likelihood function
as (up to a constant)

LT (k(z), σ, d, e;YT ) =

1

T

(
log det ΓT (k(z), σ) + (YT −DT (d, e))′ΓT (k(z), σ)−1(YT −DT (d, e))

)
. (3.7)

The formulas for the prediction error (PE) approach can be significantly simplified: First, in this
case ΓT (k(z), σ) = TT (k(z)) (IT ⊗ Σ(σ)) TT (k(z))′ such that

det(ΓT (k(z), σ)) = det(TT (k(z)) (IT ⊗ Σ(σ)) TT (k(z))′) = det(Σ(σ))T .

Second, noting that due to the block triangular structure TT (k(z))−1 = TT (k−1(z)), we define

εt(k(z), d, e) := k−1(L)(yt −Dt(d, e)) =

t−1∑
j=0

Kj(yt−j −Dt−j(d, e)),

where Kj := −CAj−1B denote the power series coefficients of the inverse transfer function k−1(z).
Letting

TT (k(z))−1(YT −DT (d, e)) = ET (k(z), d, e) = [ ε1(k(z), d, e)′ . . . εT (k(z), d, e)′ ]′ ∈ RTs,
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we obtain in this case that −2/T times the logarithm of the Gaussian likelihood function simplifies
to

LPE,T (k(z), σ, d, e;YT ) = log det Σ(σ) + ET (k(z), d, e)′ (IT ⊗ Σ(σ))
−1 ET (k(z), d, e)/T

= log det Σ(σ) +
1

T

∑T
t=1 εt(k(z), d, e)′Σ(σ)−1εt(k(z), d, e) (3.8)

We obtain the pseudo maximum likelihood estimate and the prediction error estimate respectively
by minimizing (3.7) over the set M ×ΘΣ × Rs × Rs:(

k̂(z), σ̂, d̂, ê
)

:= arg min
(k(z)∈MΓ,σ∈ΘΣ,d,e∈Rs)

LT (k(z), σ, d, e;YT ),(
k̃(z), σ̃, d̃, ẽ

)
:= arg min

(k(z)∈Mn,•,σ∈ΘΣ,d,e∈Rs)
LPE,T (k(z), σ, d, e;YT ).

Then, using the coordinate free consistency proof in the stationary case of Hannan and Deistler
(1988, Section 4.2.), the following result can be shown. Its proof in connection with some useful
lemmata is given in Appendix C.2.2:

Theorem 10 Let {yt}t∈Z be an I(2) process generated by a system of the form (3.2) satisfying
Assumption 2 with ΩS = (c1, c2), Dt = d◦ + e◦t and {εt}t∈Z fulfilling Assumption 3.
Let k◦(z) ∈MΓ ⊂Mn(c1, c2).

Then the pseudo maximum likelihood estimator k̂(z) = I +
∑∞
j=1 K̂jz

j converges in probability to

the true transfer function k◦(z) with rate T 1/2, i.e. T γ‖K̂j−Kj,◦‖ → 0 in probability for all j ∈ N
and all 0 < γ < 1/2. Furthermore,

T γ‖Π̂C1,◦‖ → 0,

in probability for all 0 < γ < 2, where Π̂ := k̂−1(1), and

T γ‖Π̂C3,◦‖ → 0, and T γ‖Π̂C2,◦ + Γ̂C1,◦‖ → 0,

in probability for all 0 < γ < 1, where Γ̂ := −k̂−1(1) + ∂
∂z k̂
−1(z)|z=1. For d̂ and ê the following

results hold

� T γ‖(Π̂(d◦ − d̂) + Γ̂(e◦ − ê)‖ → 0 in probability for all 0 < γ < 1/2.

� T γ‖Π̂(e◦ − ê)‖ → 0 in probability for all 0 < γ < 3/2.

The same holds for all prediction error estimators.

The results of Bauer et al. (2020) imply that the likelihood LT is a differentiable function of the
parameters. This together with the consistency theorem 10 above implies:

Corollary 5 Let {yt}t∈Z be as in Theorem 10 where k◦ is in M(c1, c2). Further assume that k◦
is a point of continuity of the parameterization θ = φ(ψ(k◦)).

Then θ̂ converges in probability to the true parameter vector θ◦.

Remark 23 Inspecting the results with respect to the deterministic terms, a number of facts stick
out: First, the parameters corresponding to the linear trend term e · t converge as T−3/2 in the
directions orthogonal to the column space of CE,◦, as usual in a regression model with stationary
processes. In the directions of the I(1)-common trends spanned by the columns of C3,◦, however,
convergence is slower and of order T−1/2. This corresponds to the difference in the order of
growth between the linear trend term and the stochastic common trends. In the directions of
the I(2)-common trends spanned by the columns of C1,◦ not even convergence holds. The same
distinction also holds for the constant term: In the directions orthogonal to the column space of
CE,◦ convergence as in the stationary case occurs, in the direction of the common trends, however,
convergence does not occur.
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For the rest of the paper, thus, we use the following notation: Let Π◦ = α◦β
′
◦ such that the columns

of β◦ are a basis for the orthogonal complement of CE,◦. Define

θd,1 := β′◦e θd,2 :=
[
θ′d,2e θ′d,2d

]′
:=
[

(C′3,◦e)′ (β′◦d)′
]′

θd :=
[
θ′d,1 θ′d,2

]′
,

such that θd ∈ Rnd , where nd = s − 2c1 − c2. By the above construction there exists a matrix
P(Cu,◦) ∈ Rcd×2s such that P(Cu,◦)[d′, e′]′ = θd. It follows that P(Ĉu,◦)[d̂′, ê′]′ is a consistent
estimator for θd,◦ := P(Cu,◦)[d′◦, e′◦]′. Moreover, let Dd(θd) := [(β◦θd,2d), (C3,◦θd,2e + β◦θd,1)].

The derivation of the asymptotic distribution of the consistent part of the pseudo maximum
likelihood estimator follows the usual scheme. It proceeds in two steps and is based on linearization
arguments around the true parameter values

(
θ◦, θd,◦). The first step is the derivation of the

asymptotic distribution of the score vector and the second step is to derive convergence of the
suitably normalized Hessian of the log likelihood function. The approach is inspired by Saikkonen
(1995) and the proof of the theorem is given in Appendix C.2.3:

Theorem 11 (Asymptotic Distribution) Let the assumptions of Theorem 10 hold and let the
true parameter vector [ θ′◦ d◦ e′◦ ]′ be an interior point of ΘΓ×(Rs×Rs) over which the pseudo

likelihood function is maximized, with θ̂ and θ̂d denoting the PMLE. Assume that the model for
the deterministic terms contains the deterministic terms included in the data generating process.
Split

θ̂ = [ θ̂′st θ̂′u ]′

with θst := [ θ′1,R θ′2,R θ′B,f θ′B,p θ′• ]′ and θu := [ θ′1,L θ′2,L θ′G ]′.

Then the following asymptotic distribution holds for the components of θ:
(A)

√
T (θ̂st − θst,◦)

d→ N (0, Vst), Vst = [E∂aεt(θ◦)′Σ−1
◦ ∂bεt(θ◦)]

−1
a,b

where ∂aεt(θ) denotes the derivative of εt(θ) with respect to the a-th component of θst.
(B) Let

θ̂? := [ θ̂′u θ̂′d,2 θ̂′d,1 ]′,

where it is understood that only parameters included in the model occur. Let cu denote the dimen-
sion of θu, cd,2 the dimension of θd,2, cd,1 the dimension of θd,1 and define cu,1 := c1(s− c1− c2).
Then there exists a scaling matrix

DM?
T := diag(T 2Icu,1 , T Icu−cu,1 , T

1/2Icd,2 , T
3/2Icd,1)diag(M, Icu−c1(s−c1)+cd,2+cd,1),

with non-singular M ∈ Rc1(s−c1)×c1(s−c1), such that the asymptotic distribution of θ? is given by:

DM?
T (θ̂? − θ?,◦)

d→ H−1v.

Here H denotes the limit of the suitably normalized entries of the Hessian obtained as the limit to
T−h(a,b)

∑T
t=1 ∂

M
a εt(θ◦)

′Σ−1
◦ ∂Mb εt(θ◦) and v denotes the limit to T−g(a,b)

∑
t=1 T∂

M
a εt(θ◦)

′Σ−1
◦ εt

where the normalization factors h(a, b) and g(a, b) depend on the entries a and b. Here ∂Ma denotes
directional derivatives corresponding to the a-th column of diag(M, Icu−c1(s−c1)+cd,2+cd,1).
(C) For the index a corresponding to an entry in θu we have

∂aεt(θ◦) = −k−1(L, θ◦)(∂aCk)xt,u(θ◦), xu,t+1(θ◦) = Au,◦xu,t(θ◦) + Bu,◦εt

and else
∂aεt(θ◦) = −k−1(L, θ◦)(−∂aDd(θd,◦)st(θ)).
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(D) Let W (u) denote a Brownian motion with variance Σ◦. Then H depends on BE,◦W (u), while
v depends on BE,◦W (u) and α′◦Σ

−1
◦ W (u). These two Brownian motions are independent.

Moreover, diag(T 2Icu,1 , T Icu−cu,1)diag(M, Icu−c1(s−c1))(θ̂u − θu,◦) is mixed Gaussian distributed
with conditional (on BE,◦W (u)) variance H−1.
(E) If no constant or linear trend is included in the model, for the first cu,1 components θM1 of

Mθ1,L =: [(θM1 )′, (θM2 )′]′, we obtain T 2(θ̂M1 − θM1,◦)
d→ H−1

1,∗v1,∗ where

H1,∗,a,b = tr
[
(∂Ma C′1)β◦α

′
◦Σ
−1
◦ α◦β

′
◦(∂

M
b C1)Z1,1∗

]
, Z1,1∗ =

∫ 1

0

G1(u)G1(u)′du,

v1,∗,a = tr
[
(∂Ma C′1)β◦α

′
◦Σ
−1
◦ X1∗

]
, X1∗ =

∫ 1

0

dW (u)G1(u)′

where G1(u) :=
∫ u

0
B2,◦W (v)dv

∣∣
BE,◦W (u)

.

If a constant but no linear trend is included, we obtain T 2(θ̂M1 − θM1,◦)
d→ H−1

1,∗v1,∗ with G1(u) in

H−1
1,∗ and v1,∗ replaced by G1(u)

∣∣
1

= G1(u)−
∫ 1

0
G1(v)dv.

If both a linear trend and a constant are included, we obtain T 2(θ̂M1 −θM1,◦)
d→ H−1

1,∗v1,∗ with G1(u)

in H−1
1,∗ and v1,∗ replaced by G1(u)

∣∣
1,u

= G1(u)−
∫ 1

0
G1(v)dv − 12(u− 1

2 )
∫ 1

0
(v − 1

2 )G1(v)dv.

Detailed expressions for the asymptotic distribution of the whole parameter vector θu are given in
Appendix C.2.3.
(F) The prediction error estimator shows the same asymptotic distribution.

The matrix M ∈ Rc1(s−c1)×c1(s−c1) depends on the true matrix Cu,◦ and is, therefore, not available
in application. In the Theorem it is used to separate the cu,1-dimensional subspace, corresponding
to components that are estimated with rate T 2 (a consequence of the presence of I(2) components
within the state) from its orthogonal complement, whose corresponding components are estimated
with rate T (linked to the remaining I(1) components within the state). The different orders of
convergence occur within the parameter vector θ1,L, since the parameterization given in Bauer
et al. (2020) is constructed without explicit dependence on a true underlying system. This ap-
proach is comparable to the normalization of β using the true matrix β◦ employed by Johansen
in the I(1)-VECM and similar procedures in the I(2)-VECM. In practice, further specification of
the matrix M is often not necessary, e. g., in the context of Wald-type tests of hypotheses on the
parameters. The following corollary, which is proven in Appendix C.2.3, gives the test statistics
and asymptotic distribution for these tests:

Corollary 6 (Wald-type test) Let the assumptions of Theorem 11 hold.
Let Dθ

T := diag(T 1/2Icst , D
M?
T ), cst := c•+ cB,f + cB,p and cθ := cst+ cu+ cd. Consider p linearly

independent restrictions collected in H0 : Rθ = r, with R ∈ Rp×cθ of full row rank p, r ∈ Rp and
suppose that there exists a matrix DR

T such that

lim
T→∞

DR
TR(Dθ

T )−1 = R∞

where R∞ ∈ Rp×cθ has full rank p. Then it holds that the Wald-type statistic

ŴR := (Rθ̂ − r)′(R(Ẑ)−1R′)−1(Rθ̂ − r), [Ẑ]ij = T · tr
[
Σ̂−1

〈
∂iε(θ̂), ∂jε(θ̂)

〉]
is asymptotically χ2

p distributed under the null hypothesis.

3.4 Tests for the State Space Unit Root Structure

The concentrated log-likelihood function in prediction error representation is up to a constant
equal to the criterion function

LϕT (ϕ) := −T
2

log det 〈εt(ϕ), εt(ϕ)〉 , ϕ := [ θ′ θ′d ],
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where εt(ϕ) := yt − C(θ)xt(ϕ) − dt(ϕ) with xt+1(θ) := A(θ)xt(θ) + B(θ)yt and dt+1(ϕ) :=
A(θ)dt(ϕ) + B(θ)(−Dd(θd)). We are interested in the specification of the state space unit root
structure. This information is encoded in the matrix Cu, Π(θ) and Γ(θ). Assume for the moment
θd = 0 such that dt(ϕ) = 0 to shorten notation. First let us define an expanded criterion function

LexT (C, θ) := −T
2

log det 〈yt − Cxt(θ), yt − Cxt(θ)〉 .

Note that xt(θ) depends on the parameter vector θ only via the pair A(θ) and B(θ). For given Cu
and PML estimator θ̂ over Θ define

LCT (Cu, θ̂) := max
C ∈ Rs×n : Π(C, θ̂)[C1, C3] = 0

Π(C, θ̂)C2 + Γ(C, θ̂)C1 = 0

LexT (C, θ̂)

The FOC for the optimal Ĉc(Cu) fulfilling the above restriction are given by

[
Ĉc(Cu) Λ1 Λ2

]  〈x̂t, x̂t〉 B̂1CE B̂1C2 + B̂2C1
(B̂1CE)′ 0 0

(B̂1C2 + B̂2C1)′ 0 0

 =
[
〈yt, x̂t〉 CE C2 + C1

]
,

where Λ1 and Λ2 are Lagrange multipliers, x̂t := xt(θ), B̂1 := B1(θ̂) := (In − A(θ̂))−1B(θ) and

B̂2 := B2(θ̂) := (In −A(θ̂))−2A(θ̂)B(θ̂). Define

B̂(Cu) :=
[
B̂1CE B̂1C2 + B̂2C1

]
.

Note that a necessary condition for matrix appearing in the FOC to be invertible is B̂(Cu) being
of full rank. Thus, define

U(c1, c2, θ) :=

{
Cu = [C1, C2, C3], C1, C2 ∈ Rs×c1 , C3 ∈ Rs×c2 :

(CE)′CE = Ic1+c2with CE = [C1, C2] and (C2)′CE = 0

}
.

If the system corresponding to θ is controllable, the residuals corresponding to Cu ∈ U(c1, c2, θ̂)
can be expressed using block matrix inversion:

ε̂ct(Cu) : = yt − Ĉc(Cu)x̂t

= (yt − ĈOLSx̂t)

+
(
ĈOLSB̂(Cu)− [CE , C2 + C1]

)(
B̂(Cu)′ 〈x̂t, x̂t〉−1

B̂(Cu)
)−1

B̂(Cu)′ 〈x̂t, x̂t〉−1
x̂t

= ε̂t + [Π̂CE , Π̂C2 + Γ̂C1]
(
B̂(Cu)′ 〈x̂t, x̂t〉−1

B̂(Cu)
)−1

B̂(Cu)′ 〈x̂t, x̂t〉−1
x̂t,

where ĈOLS denotes the OLS estimator, ε̂t := yt − ĈOLSx̂t denotes the corresponding residuals,
Π̂ := −Is + ĈOLSB̂1 and Γ̂ := −Is − ĈOLSB̂2.

Remark 24 Note that if (A,B,C) is a state space representation of a VAR process, A is nilpotent.
The system (AV +BV CV , BV , CV ), with

AV :=

[
0s(p−1)×s Is(p−1)

0s×s 0s×s(p−1)

]
, BV :=

[
0s(p−1)×s
−Is

]
, CV :=

[
Cp . . . C1

]
,

corresponds to the VAR system yt =
∑p
j=1 Cjyt−j + εt. Thus, for given Cu the matrix Ĉc(Cu)

computed using a state xt defined through xt+1 = AV xt +BV yt can be immediately translates into
the polynomial a(L) of a VAR(p) process. Maximizing over U(c1, c2, θ

V ), with θV corresponding
to AV ,BV is then a suitable way to compute the VAR polynomial maximizing the pseudo likelihood
function for given (c1, c2). This approach might be advantageous as it omits the switching algorithm
used to encompass the rank restrictions within the I(2)-VECM. Moreover, it is also extendable to
processes of higher integration order.
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Let C̃u denote the maximizer of LCT (Cu, θ̂) with respect to Cu ∈ U(c1, c2, θ̂), normalized such that
the corresponding C̃E is positive lower triangular. Thus, it holds that

max
Cu∈U(c1,c2,θ̂)

LCT (Cu, θ̂) = LCT (C̃u, θ̂)

Let ε̂ct := yt − Ĉc(C̃u)x̂t denote the corresponding residuals for given c1 and c2. Then a rank test
statistic can be defined as:

−2 logQ(H(c1, c2)/H•, θ̂) := −T log det
[
〈ε̂ct , ε̂ct〉 〈ε̂t, ε̂t〉

−1
]
,

The rank test statistics has the following asymptotic distribution under the null hypothesis:

Theorem 12 Let {yt}t∈Z be an I(2) process generated by a system of the form (3.2) satisfying

Assumption 2 and {εt}t∈Z fulfilling Assumption 3. Assume that the true order n is known. Let θ̂
be the PML estimator over a suitable parameter space Θ fulfilling the assumption of Theorem 10.
Let, further, ϕ̂c1,c2n denote the PML estimator over Θc1,c2

n ×ΘD and ϕ̂n denote the PML estimator
over Θn ×ΘD.

� Let Dt = 0. Under H0 = H(c1, c2), as T →∞, it holds that

−2 logQ(H(c1, c2)/H•, θ̂) → Q∞r +Q∞r,s,
−2(LϕT (ϕ̂c1,c2n )− LϕT (ϕ̂n)) → Q∞r +Q∞r,s,

(3.9)

where

Q∞r := tr

{∫ 1

0

dB(u)H(u)′
(∫ 1

0

H(u)H(u)′du

)−1 ∫ 1

0

H(u)dB(u)′
}
,

Q∞r,s := tr

{∫ 1

0

dB1(u)B1(u)′
(∫ 1

0

B1(u)B1(u)′du

)−1 ∫ 1

0

B1(u)dB1(u)′
}
,

where B = (B′1,B
′
2)′ is an (c1 + c2)-dimensional standard Brownian motion on the unit

interval, u ∈ [0, 1], B1 of dimension c1 and B2 of dimension c2 and

H(u) :=

( ∫ u
0
B1(v)dv
B2(u)

∣∣∣
B1(u)

)
.

� If Dt = d, the asymptotic distributions of −2(LϕT (ϕ̂c1,c2n ) − LϕT (ϕ̂n)) under H0 = H(c1, c2),
as T →∞, is as in (3.9) with H(u) in Q∞r replaced by

Hd(u) :=

 ∫ u
0
B1(v)dv
B2(u)

1

∣∣∣∣∣
B1(u)

 .

� If Dt = d+et, the asymptotic distribution of −2(LϕT (ϕ̂c1,c2n )−LϕT (ϕ̂n)) under H0 = H(c1, c2),
as T →∞, is as in (3.9) with H(u) in Q∞r replaced by

He(u) :=

 ∫ u
0
W 1(v)dv
W 2(u)
u

∣∣∣∣∣
W 1d

 .

and Q∞r,s replaced by

tr

{∫ 1

0

dB1(u)B1d(u)′
(∫ 1

0

B1d(u)B1d(u)′du

)−1 ∫ 1

0

B1d(u)dW 1(u)′
}
,

with W 1d = (B′1, 1)′.

In practice the test statistics −2 logQ(H(c1, c2)/H•, θ̂) and −2(LϕT (ϕ̂c1,c2n ) − LϕT (ϕ̂n)) are nearly

identical. Therefore, we only use Q(H(c1, c2)/H•, θ̂n) and denote it as the SS-LR test in the
following simulation study.
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3.5 Simulation Results

We compare the ranktest introduced in the previous section to the ranktests based on VECMs in
a small simulation study.
The data generating processes used are of the form

yt = a1yt−1 + a2yt−2 + a3yt−3 + a4yt−4 + εt + λεt−4 (3.10)

with

a1 =

[
2− 2a 0

0 0

]
, a2 =

[
−1− a2 + 4a 0

0 0

]
, a3 =

[
2a2 − 2a 0

0 0

]
, a4 =

[
−a2 0

0 0

]
,

where a = 0.9, and

εt ∼ i.i.d. N

(
0,

[
1 0.5

0.5 1

])
.

Clearly it holds that yt,2 = εt,2 + λεt−4,2, thus, the second component of yt is stationary. The
first component yt,1 is integrated of order two, and it holds that ∆2(1 + aL)2yt,1 = εt,1 + λεt−4,1,
such that a is the other root of the AR-polynomial. For λ = 0 the DGP is a VAR process. This
quite simple processes already showcase some major difficulties found in multivariate cointegration
analysis for I(2) processes.
For λ = {0, 0.5, 0.9} samples of sizes T = 50 and T = 100 are generated with initial values set to
zero. The simulation study is based on 10000 replications.
All processes have state space unit root structure ΩS = (1, 1). Note that the following relations
hold, compare Bauer et al. (2020),

Mn,• = Mn(0, 0) ⊃ Mn(0, 1) ⊃ Mn(1, 0) ⊃ Mn(0, 2) ⊃ Mn(1, 1) ⊃ Mn(2, 0),

for sets of transfer functions of order n ≥ 4. Thus, in application, one would usually start by
testing the hypothesis H(2, 0) against H•. If this is rejected, continue with the next larger set, in
this case Mn(1, 1), testing H(1, 1) against H•, until a hypothesis is not rejected and is, therefore,
a possible choice for the state space unit root structure or, analogously, the ranks of the respective
matrices in the VECM.
We compare the rejection frequencies of three different tests, which have the same asymptotic dis-
tribution. Their large sample performance is, thus, nearly identical and we focus the presentation
of the results on the small sample performance. The different tests statistics are computed as
follows.
VECM-2S: The lag-length p is chosen by maximizing the Akaike Information criterion, with a
lower bound of p = 2 to ensure the possibility of stochastic trends of order two. We first solve
the reduced rank regression problem for an estimate of Π = αβ′ in the I(1)-VECM. In a second

step, we find the maximizer of the likelihood under the rank restriction α̂′⊥Γβ̂⊥ = ξη′ for given

α̂, β̂. The likelihood value of the two step approach and the likelihood value corresponding to the
unrestricted OLS estimator in the I(2)-VECM is then used for a likelihood ratio test, as proposed
in Johansen (1997).
VECM-LR: Consider both restrictions Π = αβ′ and α′⊥Γβ⊥ = ξη′ and maximize the likelihood
in an I(2)-VECM with respect to α, β, ξ, η using a switching algorithm. The likelihood ratio test
statistics then compares the likelihood value of this restricted model with the likelihood value
corresponding to the unrestricted OLS estimator. This test statistic and its implementation is due
to Nielsen and Rahbek (2007).
SS-LR: For the pseudo maximum likelihood approach in the state space framework the output
of the subspace algorithm is used as a starting value to find the maximizer θ̂n of the pseudo log-
likelihood function over Θn. For the subspace algorithm we choose f = p = 2k̂AIC and the system
order n is chosen by minimizing a singular value criterion, see Bauer (2001), with a lower bound
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of n = 4 to ensure the possibilty of two stochastic I(2)-trends. Next, compute the maximizer C̃u
of LexT (Cu, θ̂n) with respect to Cu over U(c1, c2, θ̂n). This is used to compute the test statistic

−2 logQ(H(c1, c2)/H•, θ̂n) = −2(Lex(C̃u, θ̂n)− L(θ̂n)).

For the case λ = 0, i. e., a VAR-DGP, the rejection rates are given in Table 3.1 for the three tests
statistics and sample sizes T = 50, 100. All test statistics reject the hypothesis H(2, 0) in all cases.

H0 H(2, 0) H(1, 1) H(0, 2) H (1, 0) H(0, 1)

VECM-2S
T=50 100.0 97.1 96.8 79.4 64.3
T=100 100.0 99.8 100.0 80.3 67.2

VECM-LR
T=50 100.0 96.6 96.8 78.7 64.3
T=100 100.0 99.8 100.0 80.2 67.2

SS-LR
T=50 100.0 99.8 99.6 47.6 38.6
T=100 100.0 99.9 99.9 23.0 22.9

Table 3.1: Rejection rates of H0 based on 10000 replications and a nominal 5% level with the DGP
solving (3.10) with λ = 0. The tests are not calculated sequentially. The bold hypothesis and its
corresponding frequencies indicate the correct model.

The hypotheses H(1, 1) and H(0, 2) are rejected in 97% of the cases for the VECM-tests and in
nearly 100% of the cases for the SS-test. Major differences can be seen with regard to the rejection
rates for the true hypotheses H(1, 0) and H(0, 1). Here both VECM-tests falsely reject the null
in 80% respectively 65% of the cases. The SS-LR rejects in 48% and 39% of the cases for sample
size T = 50 and in 23% of the cases for sample size T = 100.
Clearly the SS-LR performs better than the VECM approaches, even though the DGP is a VAR
process. This is the case since the true lag-length of the process is unknown and estimated using
the AIC. The estimated lag-length is too low on average. Using the true lag-length p = 4, the
rejection rates for H0 = H(1, 0) are at 7% and 6%, thus, close to the nominal 5%-level, compare
Table 3.2. As a downside, the false hypotheses are rejected in fewer cases for sample size T = 50.

H0 H(2, 0) H(1, 1) H(0, 2) H (1, 0) H(0, 1)

VECM-LR true p
T=50 100.0 75.5 91.4 6.6 9.5
T=100 100.0 99.8 100.0 5.7 8.6

Table 3.2: Rejection rates of H0 based on 10000 replications and a nominal 5% level with the DGP
solving (3.10) with λ = 0 for known lag-length p = 4. The tests are not calculated sequentially.
The bold hypothesis and its corresponding frequencies indicate the correct model.

For the case λ = 0.9, the rejection rates are given in Table 3.3, again for the three tests statistics
and sample sizes T = 50, 100. Again, all test statistics reject the hypothesis H(2, 0) in all cases.
The VECM-tests reject the hypothesesH(1, 1) andH(0, 2) in fewer cases than for λ = 0, depending
on the sample size and the null, with the best rejection rate being 90%. The SS-LR rejects all
false null hypotheses in nearly 100% of the cases. For the true hypotheses H(1, 0) and H(0, 1)
both VECM-tests perform better than for λ = 0, falsely rejecting the null in around 40% of the
cases for T = 50 and in around 15% of the cases for T = 100. The SS-LR rejects similarly as



86
CHAPTER 3. PSEUDO MAXIMUM LIKELIHOOD ESTIMATION AND INFERENCE FOR

I(2) PROCESSES: A STATE SPACE APPROACH

H0 H(2, 0) H(1, 1) H(0, 2) H (1, 0) H(0, 1)

VECM-2S
T=50 99.9 72.7 74.5 45.4 38.9
T=100 99.9 82.7 90.4 14.6 16.4

VECM-LR
T=50 99.9 65.0 74.5 42.3 38.9
T=100 99.9 79.0 90.4 13.9 16.4

SS-LR
T=50 100.0 99.9 99.9 44.6 38.8
T=100 99.9 99.8 99.9 18.6 19.5

Table 3.3: Rejection rates of H0 based on 10000 replications and a nominal 5% level with the DGP
solving (3.10) with λ = 0.9. The tests are not calculated sequentially. The bold hypothesis and its
corresponding frequencies indicate the correct model.

the VECM-tests for sample size T = 50 and is slightly worse (19% of the cases) for sample size
T = 100.
Thus, the VECM approaches exhibit a better performance, falsely rejecting the null hyptheses
in fewer cases, due to a higher estimated lag-length taking account of the MA polynomial in the
VARMA system of the DGP. Nevertheless, the rejection frequencies of false null hypotheses are
also lower. The SS-LR rejects all false null hypotheses in practically all cases.
To compare the performance of both approaches it is, therefore, necessary to look at the resulting
estimated state space unit root structure. The results are given in Table 3.4 for sample sizes
T = 50, 100, 150, 300 for the VECM and the state space likelihood ratio tests. The VECM-LR

ΩS (2, 0) (1, 1) (0, 2) (1,0) (0, 1) (0, 0)

VECM-LR
T=50 0.1 34.8 1.3 23.8 5.9 34.2
T=100 0.1 20.6 0.8 65.1 2.8 10.6
T=150 0 6.8 0.2 84.2 3.7 5.1
T=300 0 2.3 0 89.7 3.5 4.5

SS-LR
T=50 0 0.1 0.1 54.6 10.7 34.5
T=100 0 0.3 0 80.6 4.1 15.1
T=150 0 0.5 0 87.4 2.4 9.8
T=300 0 1.4 0 89.4 2.9 6.2

Table 3.4: Rates of estimated ΩS = (c1, c2) based on 10000 replications and a nominal 5% level
with the DGP solving (3.10) with λ = 0.9. The tests are calculated sequentially. The correct state
space unit root structure is highlighted in bold font.

for T = 50 leads to an estimated ΩS of (1, 1) in 35% of the cases, while (0, 0) is chosen at nearly
the same rate. Thus, a false state space unit root structure is chosen more often than the correct
structure (1, 0), which exhibits a rate of only 24%. For higher sample sizes the most frequent
choice of ΩS is the correct structure, with higher rates the higher the sample size. Note, however,
that for T = 100 the structure (1, 1) is still chosen in every fifth case. The SS-LR rejects H(1, 1)
in at least 98% of the cases. The most often estimated structure is the correct ΩS , with a rate
of 54% for T = 50, 81% for T = 100 and around 90% for T = 300. The false structure with the
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highest rate is (0, 0) (35% for T = 50). Note that the rate of correct choices of both approaches
is comparable for T = 300, while the SS-LR performs better in smaller samples, with a larger
margin the smaller the sample size is.
Finally, consider the true order n of the transfer function corresponding to the DGP with λ = 0.9,
which is equal to n = 8. Using this order leads to even better estimation of ΩS as shown in
Table 3.5. For T = 150, 300 the rate of correct choices is higher than 94%, coming close to the

H0 H(2, 0) H(1, 1) H(0, 2) H (1, 0) H(0, 1) H(0, 0)

SS-LR true n
T=50 0.1 17.5 0 60.1 6.8 14.9
T=100 0 4.3 0 87.5 2.6 5.5
T=150 0 0.2 0 94.0 2.2 3.7
T=300 0 0 0 94.7 2.0 3.3

Table 3.5: Rates of estimated ΩS = (c1, c2) based on 10000 replications and a nominal 5% level
with the DGP solving (3.10) with λ = 0.9. The tests are calculated sequentially. The correct state
space unit root structure is highlighted in bold font.

desired rate corresponding to the nominal 5% level of the tests. This shows that the performance
of the tests for the state space unit root structure at small and intermediate sample sizes highly
depends on the correct specification of the order for the SS-LR and, similarly, on the lag-length
for the VECM-tests. Nevertheless, at least for the DGPs considered in this simulation study, the
state space approach outperforms the VECM approaches for both VAR- and VARMA-DGPs, if
both these integer quantities are estimated.

3.6 Summary and Conclusion

This paper shows that transfer functions corresponding to I(2) processes can be consistently es-
timated by maximizing the pseudo maximum likelihood function in the state space framework,
thus, overcoming the limitation to the class of VAR processes in cointegration literature. The
relations between the state space framework and the VECM and its Granger representation are
fully characterized through the state space error correction model for I(2) processes. Consistent
estimates are available even if the state space unit root structure and other relevant integers are
not known. The model allows for a linear trend and a constant, covering the most relevant deter-
ministics used in the literature. The inclusion of further deterministics was not pursued although
it seems possible without major changes in the results.
The parameters determining the different cointegrating spaces are estimated with rate T and T 2

in analogy to the results for VAR processes, with their asymptotic distribution being a mixture of
Brownian motions. Inclusion of a constant or a constant and a linear trend in the model and the
DGP leads to demeaning or demeaning and detrending of some of the Brownian motions occurring
in the asymptotic distribution. Hypotheses regarding linear restrictions on these parameters can
be tested using Wald-type statistics, which are asymptotically χ2.
Using likelihood ratio type approaches leads to test statistics for hypotheses on the state space unit
root structure and consequently the cointegration indices. The asymptotic distribution of these
test statistics under the null coincide with the respective distributions seen in VAR literature.
Finally, a simulation study shows good performance of the rank tests statistics for small sample
sizes, outperforming the different tests based on the VECM, even if the DGP is itself a VAR
process. The test performance highly depends on the estimation of the VAR order and state
dimension of the respective models. This indicates that state space modeling has the poten-
tial to improve estimation of cointegrating spaces in situations where a large order is necessary
in the VAR framework while a more parsimonious approximation is available using the VARMA
framework. Another topic for further research might be monitoring of structural changes in cointe-
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grating processes, possibly exploiting the advantages of the state space framework in small samples.
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Appendix A

Appendix to Chapter 1

A.1 Proofs of the Results of Section 1.3

A.1.1 Proof of Lemma 1

(i) Let Cj be a sequence in Os,d converging to C0 for j →∞. By continuity of matrix multipli-
cation

C ′0C0 = ( lim
j→∞

Cj)
′ lim
j→∞

Cj = lim
j→∞

(C ′jCj) = Id.

Thus, C0 ∈ Os,d, which shows that Os,d is closed. By construction [C ′C]i,i =
∑s
j=1 c

2
j,i.

Since [C ′C]i,i = 1 for all C ∈ Os,d and i = 1, . . . , d, the entries of C are bounded.

(ii) By definition CO(θ) is a product of matrices whose elements are either constant or infinitely
often differentiable functions of the elements of θ.

(iii) The algorithm discussed above Lemma 1 maps every C ∈ Os,d to [Id, 0
′
s−d×d]

′. Since
Rq,i,j(θ)

−1 = Rq,i,j(θ)
′ for all q, i, j and θ, C can be obtained by multiplying [Id, 0

′
s−d×d]

′

with the transposed Givens rotations.

(iv) As discussed, C−1
O (·) is obtained from a repeated application of the algorithm described in

Remark 10. In each step two entries are transformed to polar coordinates. According to
Amann and Escher (2008, Chapter 8, p. 204) the transformation to polar coordinates is
infinitely often differentiable with infinitely often differentiable inverse for θ > 0 (and hence
r > 0), i.e., on the interior of the interval [0, π). Thus, C−1

O is a concatenation of functions
which are infinitely often differentiable on the interior of ΘR

O and is thus infinitely often
differentiable, if θj > 0 for all components of θ.
Clearly the interior of ΘR

O is open and dense in ΘR
O. By the definition of continuity the pre-

image of the interior of ΘR
O is open in Os,d. By (iii), there exists a θ0 for arbitrary C0 ∈ Os,d

such that CO(θ0) = C0. Since the interior of ΘR
O is dense in ΘR

O there exists a sequence θj
in the interior of ΘR

O such that θj → θ0. Then CO(θj) → C0 because of the continuity of
CO. Since CO(θj) is a sequence in the pre-image of the interior of ΘR

O, it follows that the
pre-image of the interior of ΘR

O is dense in Os,d.

(v) For any C ∈ Os,s it holds that 1 = det(C ′C) = det(C)2 and det(C) ∈ R, which implies
det(C) ∈ {−1, 1}. Since the determinant is a continuous function on quadratic matrices,
both sets O+

s,s and O−s,s are disjoint and closed.

(vi) The proof proceeds analogously to the proof of (iii).

(vii) A function defined on two disjoint subsets is infinitely often differentiable if and only if the
two functions restricted to the subsets are infinitely often differentiable. The same arguments
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as used in (iv) together with the results in (ii) imply that C−1
O : O+

s,s → ΘR
O and C±O (·)

∣∣
O+
s,s

are infinitely often differentiable with infinitely often differentiable inverse on an open subset
of O+

s,s. Clearly the multiplication with I−s is infinitely often differentiable with infinitely

often differentiable inverse, which implies that C±O (·)
∣∣
O−s,s

is infinitely often differentiable

with infinitely often differentiable inverse on an open subset of O−s,s, from which the result
follows.

A.1.2 Proof of Lemma 2

(i) Let Cj be a sequence in Us,d converging to C0 for j →∞. By continuity of matrix multipli-
cation

C ′0C0 = ( lim
j→∞

Cj)
′ lim
j→∞

Cj = lim
j→∞

(C ′jCj) = Id.

Thus, C0 ∈ Us,d, which shows that Us,d is closed. By construction [C ′C]i,i =
∑s
j=1 |cj,i|2.

Since [C ′C]i,i = 1 for all C ∈ Us,d and i = 1, . . . , d, the entries of C are bounded.

(ii) By definition CU (ϕ) is a product of matrices whose elements are either constant or infinitely
often differentiable functions of the elements of ϕ.

(iii) The algorithm discussed above Lemma 2 maps every C ∈ Us,d to [Dd(ϕD), 0′s−d×d]
′ with

Dd(ϕD) = diag(eiϕD,1 , . . . , eiϕD,d). Since Qq,i,j(ϕ)−1 = Qq,i,j(ϕ)′ for all q, i, j and ϕ, C can
be obtained by multiplying [Dd(ϕD), 0′s−d×d]

′ with the transposed Givens rotations.

(iv) The algorithms in Remark 12 and above Lemma 2 describe C−1
U in detail. The determi-

nation of an element of ϕL or ϕR uses the transformation of two complex numbers into
polar coordinates in step 2 of Remark 12, which according to Amann and Escher (2008,
Chapter 8, p. 204) is infinitely often differentiable with infinitely often differentiable inverse
except for non-negative reals, which are the complement of an open and dense subset of the
complex plane. Step 3 of Remark 12 uses the formulas ϕ1 = tan−1

(
b
a

)
, which is infinitely

often differentiable for a > 0, and ϕ2 = ϕa − ϕb mod 2π, which is infinitely often differ-
entiable for ϕa 6= ϕb, which occurs on an open and dense subset of [0, 2π) × [0, 2π). For
the determination of an element of ϕD a complex number of modulus one is transformed
in polar coordinates which is infinitely often differentiable on an open and dense subset of
complex numbers of modulus compare again Amann and Escher (2008, Chapter 8, p. 204).
Thus, C−1

U is a concatenation of functions which are infinitely often differentiable on open
and dense subsets of their domain of definition and is thus infinitely often differentiable on
an open and dense subset of Us,d.

A.1.3 Proof of Theorem 2

(i) The multi-index Γ is unique for a transfer function k ∈Mn, since it only contains information
encoded in the canonical form. Therefore, MΓ is well defined. Since conversely for every
transfer function k ∈ Mn a multi-index Γ can be found, MΓ constitutes a partitioning of
Mn. Furthermore, using the canonical form, it is straightforward to see that the mapping
attaching the triple (A,B, C) ∈ ∆Γ in canonical form to a transfer function k ∈ MΓ is
homeomorphic (bijective, continuous, with continuous inverse): Bijectivity is a consequence
of the definition of the canonical form. Tpt continuity of the transfer function as a function
of the matrix triples is obvious from the definition of Tpt. Continuity of the inverse can
be shown by constructing the canonical form starting with an overlapping echelon form,
which is continuous according to Hannan and Deistler (1988, Chapter 2), and subsequently
transforming the state basis to reach the canonical form. This involves the calculation of a
Jordan normal form with fixed structure. This is an analytic mapping, cf. Chatelin (1993,
Theorem 4.4.3). Finally, the restrictions on C and B are imposed. For given multi-index Γ
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these transformations are continuous (as discussed above they involve QR decompositions to
obtain unitary block columns for the blocks of C, rotations to p.u.t form with fixed structure
for the blocks of B and transformations to echelon canonical form for the stable part).

(ii) The construction of the triple (A(θ),B(θ), C(θ)) for given θ and Γ is straightforward: Au is
uniquely determined by Γ. Since θB,p contains the entries of Bu restricted to be positive and
θB,f contains the free parameters of Bu, the mapping θB,p × θB,f → Bu is continuous. The
mapping θ• → (A•,B•, C•) is continuous, cf. Hannan and Deistler (1988, Theorem 2.5.3 (ii)).
The mapping θC,E × θC,G → Cu consists of iterated applications of CO, and CU (compare
Lemmas 1 and 2) which are differentiable and thus continuous and iterated applications
of the extensions of the mappings CO,d2−d1 and CO,G (compare Corollaries 1 and 2) to
general unit root structures and to complex matrices. The proof that these functions are
differentiable is analogous to the proofs of Lemma 1 and Lemma 2.

(iii) The definitions of θB,f and θB,p immediately imply that they depend continuously on Bu.
The parameter vector θ• depends continuously on (A•, B•, C•), cf. (Hannan and Deistler,
1988, Theorem 2.5.3 (ii)). The existence of an open and dense subset of matrices Cu such
that the mapping attaching parameters to the matrices is continuous follows from arguments
contained in the proofs of Lemma 1 and Lemma 2.

A.2 Proofs of the Results of Section 1.4

A.2.1 Proof of Theorem 3

For the first inclusion the proof can be divided into two parts, discussing the stable and the
unstable subsystem separately. The result with regard to the stable subsystem is due to Hannan
and Deistler (1988, Theorem 2.5.3 (iv)). For the unstable subsystem (Ω̃S , p̃) ≤ (ΩS , p) implies the

existence of a matrix S as described in Definition 9. Partition S =

[
S1

S2

]
such that S1p = p1 ≥ p̃.

Let k̃ be an arbitrary transfer function in MΓ̃ = π(∆Γ̃) with corresponding state space realization

(Ã, B̃, C̃) ∈ ∆Γ̃. Then, we find matrices B1 and C1 such that for the state space realization given

by A = S

[
Ã J̃12
0 J̃2

]
S′, B = S

[
B̃
cB1

]
and C =

[
C̃ C1

]
S′ it holds that (A,B, C) ∈ ∆Γ.

Then, (Aj ,Bj , Cj) = (A, S diag(In1 , j
−1In2)S′B, C) ∈ ∆Γ, where ni is the number of rows of Si

for i = 1, 2 converges for j →∞ to

(
A, S

[
B̃
0

]
, C
)
∈ ∆Γ, which is observationally equivalent to

(Ã, B̃, C̃). Consequently, k̃ = π

(
A, S

[
B̃
0

]
, C
)
∈ π(∆Γ).

To show the second inclusion, consider a sequence of systems (Aj ,Bj , Cj) ∈ ∆Γ, j ∈ N converging

to (A0, B0, C0) ∈ ∆Γ. We need to show Γ̄ ∈
⋃

Γ̃∈K(Γ){Γ̌ ≤ Γ̃}, where Γ̄ is the multi-index

corresponding to (A0, B0, C0).
For the stable system we can separate the subsystem (Aj,s, Bj,s, Cj,s) remaining stable in the
limit and the part with eigenvalues of Aj tending to the unit circle. As discussed in Section 1.4.1,
(Aj,s, Bj,s, Cj,s) converges to the stable subsystem (A0,•, B0,•, C0,•) whose Kronecker indices can
only be smaller than or equal to α•, cf. Hannan and Deistler (1988, Theorem 2.5.3).

The remaining subsystem consists of the unstable subsystem of (Aj ,Bj , Cj) which converges to
(A0,u, B0,u, C0,u) and the second part of the stable subsystem containing all stable eigenvalues of
Aj converging to the unit circle. The limiting combined subsystem (A0,c, B0,c, C0,c) is such that
A0,c is block diagonal. If the limiting combined subsystem is minimal and B0,u has a structure
corresponding to p, this shows that the pair (Ω̄S , p̄) extends (ΩS , p) in accordance with the defi-
nition of K(Γ).
Since the limiting subsystem is not necessarily minimal and B0,u has not necessarily a structure
corresponding to p, eliminating coordinates of the state and adapting the corresponding structure
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indices p may result in a pair (Ω̄S , p̄) that is smaller than the pair (Ω̃S , p̃) corresponding to an
element of K(Γ).

A.2.2 Proof of Theorem 4

The multi-index Γ contains three components: ΩS , p, α•. For given ΩS the selection of the struc-
tures indices pmax introducing the fewest restrictions, such that in its boundary all possible p.u.t.
matrices occur, has been discussed in Section 1.4.2. Choosing this maximal element pmax then
implies that all systems of given state space unit root structure correspond to a multi-index that
is smaller than or equal to (ΩS , pmax, β•), where β• is a Kronecker index corresponding to state
space dimension n•. For the Kronecker indices of order n• it is known that there exists one index
α•,g such that Mα•,g is open and dense in Mn• . The set MΩS ,pmax,β• is therefore contained in

MΩS ,pmax,α•,g which implies (1.14) with Γg(ΩS , n•) := (ΩS , pmax, α•,g).
For the second claim choose an arbitrary state space realization (A,B, C) in canonical form

such that π(A,B, C) ∈M(ΩS , n•) for arbitrary ΩS . Define the sequence (Aj , Bj , Cj)j∈N by Aj =
(1 − j−1)A, Bj = (1 − j−1)B, Cj = C. Then λ|max|(Aj) < 1 holds for all j, which implies

π(Aj , Bj , Cj) ∈ MΓα•,g(n)
for every n ≥ nu(Ωs) + n• and every j. The continuity of π implies

π(A,B, C) = limj→∞π(Aj , Bj , Cj) ∈MΓα•,g(n)
.

A.2.3 Proof of Theorem 5

(i) Assume that there exists a sequence ki ∈MΓ converging to a transfer function k0 ∈MΓ. For
such a sequence the size of the Jordan blocks for every unit root are identical from some i0
onwards since eigenvalues depend continuously on the matrices, cf. Chatelin (1993): Thus,
the stable part of the transfer functions ki must converge to the stable part of the transfer
function k0, since the sum of the algebraic multiplicity of all eigenvalues inside the open
unit disc cannot drop in the limit. Since Vα (the set of all stable transfer functions with
Kronecker index α) is open in Vα according to Hannan and Deistler (1988, Theorem 2.5.3)
this implies that the stable part of ki has Kronecker index α• from some i0 onwards.

For the unstable part of the transfer function note that in MΓ for every unit root zj the
rank of (A− zjIn)r is equal for every r. Thus, the maximum over MΓ cannot be larger due
to lower semi-continuity of the rank. It follows that for ki → k0 the ranks of (A − zjIn)r

for all |zj | = 1 and for all r ∈ N0 are identical to the ranks corresponding to k0 from some
point onwards showing that ki has the same state space unit root structure as k0 from some
i0 onwards. Finally, the p.u.t. structure of sub-blocks of Bk clearly introduces an open
set being defined via strict inequalities. This shows that ki ∈ MΓ from some i0 onwards
implying that MΓ is open in MΓ.

(ii) The first inclusion was shown in Theorem 3. Comparing Definitions 10 and 11 we see⋃
Γ̃∈K(Γg)MΓ̃ ⊂

⋃
(Ω̃S ,ñ•)∈A(ΩS ,n•)

M(Ω̃S , ñ•). By the definition of the partial ordering

(compare Definition 9)
⋃

Γ̃≤Γg
MΓ̃ ⊂

⋃
(Ω̃S ,ñ•)≤(ΩS ,n•)

M(Ω̃S , ñ•) holds. Together these two
statements imply the second inclusion.⋃

(Ω̃S ,ñ•)∈A(ΩS ,n•)

⋃
(Ω̌S ,ň•)≤(Ω̃S ,ñ•)

M(Ω̌S , ň•) ⊂ MΓg(Ωs,n•) is a consequence of the fol-
lowing two statements:

(a) If M(Ω̃S , ñ•) ⊂M(ΩS , n•) then
⋃

(Ω̌S ,ň•)≤(Ω̃S ,ñ•)
M(Ω̌S , ň•) ⊂M(ΩS , n•).

(b) If (Ω̃S , ñ•) ∈ A(ΩS , n•) then M(Ω̃S , ñ•) ⊂M(ΩS , n•).

For (a) note that for an arbitrary transfer function ǩ ∈M(Ω̌S , ň•) with (Ω̌S , ň•) ≤ (Ω̃S , ñ•)
there is a multi-index Γ̌ such that ǩ ∈MΓ̌. By the definition of the partial ordering (compare
Definition 9) we find a multi-index Γ̃ ≥ Γ̌ such that MΓ̃ ⊂M(Ω̃S , ñ•). By Theorem 3 and the

continuity of π we have MΓ̌ ⊂ π(∆Γ̃) ⊂MΓ̃. Since M(Ω̃S , ñ•) ⊂M(ΩS , n•) by assumption,

ǩ ∈MΓ̃ ⊂M(Ω̃S , ñ•) ⊂M(ΩS , n•) which finishes the proof of (a).
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With respect to (b) note that by Definition 11, A(ΩS , n•) contains transfer functions with
two types of state space unit root structures. First, Ãu corresponding to state space unit
root Ω̃S may be of the form

S ÃuS′ =

[
Au J12

0 J2

]
. (A.1)

Second, Ǎu corresponding to state space unit root Ω̌S may be of the form (A.1) where off-
diagonal elements of Au are replaced by zero. To prove (b) we need to show that for both
cases the corresponding transfer function is contained in M(ΩS , n•).

We start by showing that in the second case the transfer function ǩ is contained inM(Ω̃S , ñ•),
where Ω̃S is the state space unit root structure corresponding to Ãu in (A.1). For this,
consider the sequence

Aj =

[
1 j−1

0 1

]
, Bj =

[
B1

B2

]
, Cj =

[
C1 C2

]
.

Clearly, every system (Aj , Bj , Cj) corresponds to an I(2) process, while the limit for j →∞
corresponds to an I(1) process. This shows that it is possible in the limit to trade one I(2)
component with two I(1) components leading to more transfer functions in the Tpt closure of
MΓg(ΩS ,n•) than only the ones included in π(∆Γg(ΩS ,n•)), where the off-diagonal entry in Aj
is restricted to equal one and hence the corresponding sequence of systems in the canonical
form diverges to infinity. In a sense these systems correspond to “points at infinity”: For
the example given above we obtain the canonical form

Aj =

[
1 1
0 1

]
, Bj =

[
B1

B2/j

]
, Cj =

[
C1 jC2

]
.

Thus, the corresponding parameter vector for the entries in Bj,2 converges to zero and the
ones corresponding to Cj,2 to infinity.

Generalizing this argument shows that every transfer function corresponding to a pair
(Ω̌S , ň•) in A(Ω̃S , ñ•), where Ǎu can be obtained by replacing off-diagonal entries of Au
with zero, can be reached from within M(Ω̃S , ñ•).

To prove k̃ ∈ M(ΩS , n•) in the first case, where the state space unit root structure is
extended as visible in equation (A.1), consider the sequence:

Ãj =

[
1 1
0 1− j−1

]
, B̃j =

[
B1

B2

]
, C̃j =

[
C1 C2

]
,

corresponding to the following system in canonical form (except that the stable subsystem
is not necessarily in echelon canonical form)

Ãj =

[
1 0
0 1− j−1

]
, B̃j =

[
B1 + jB2

−jB2

]
, C̃j =

[
C1 C1 − C2/j

]
.

This sequence shows that there exists a sequence of transfer functions corresponding to I(1)
processes with one common trend that converge to a transfer function corresponding to an
I(2) system. Again in the canonical form this cannot happen as there the (1, 2) entry of Ãj
would be restricted to be equal to zero. At the same time note that the dimension of the
stable system is reduced due to one component of the state changing from the stable to the
unit root part.

Now for a unit root structure Ω̃S such that (Ω̃S , ñ•) ∈ A(ΩS , n•), satisfying

S ÃuS′ =

[
Au J12

0 J2

]
,
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the Jordan blocks corresponding to ΩS are sub-blocks of the ones corresponding to Ω̃S ,
potentially involving a reordering of coordinates using the permutation matrix S. Taking as
the approximating sequence of transfer functions k̃j ∈ MΓg(ΩS ,n•) → k0 ∈ MΓg(Ω̃S ,ñ•)

that

have the same structure Ω̃S but replacing J2 by j−1
j J2 leads to processes with state space

unit root structure ΩS .

For the stable part of k̃j we can separate the part containing poles tending to the unit circle

(contained in J2) and the remaining transfer function k̃j,s, which has Kronecker indices
α̃ ≤ α•. However, the results of Hannan and Deistler (1988, Theorem 2.5.3) then imply that
the limit remains in Mα• and hence allows for an approximating sequence in Mα• .

Both results combined constitute the whole set of attainable state space unit root structures
in Definition 11 and prove (b).

As follows from Corollary 4,

M(ΩS , n•) = MΓg(ΩS ,n•).

Thus, (b) implies
⋃

(Ω̃S ,ñ•)∈A(ΩS ,n•)
M(Ω̃S , ñ•) ⊂MΓg(ΩS ,n•) and (a) adds the second union

showing the subset inclusion.
It remains to show equality for the last set inclusion. Thus, we need to show that for kj ∈
MΓg(ΩS ,n•), kj → k0, it holds that k0 ∈M(Ω̃S , ñ•), where (Ω̃S , ñ•) ≤ (Ω̌S , ň•) ∈ A(ΩS , n•).
To this end note that the rank of a matrix is a lower semi-continuous function such that for
a sequence of matrices Ej with limit E0, we have

rank( lim
j→∞

Ej) = rank(E0) ≤ lim inf
j→∞

rank(Ej).

Then, consider a sequence kj(z) ∈ MΓg(Ωs,n•), j ∈ N. We can find a converging sequence of
systems (Aj , Bj , Cj) realizing kj(z). Therefore, choosing Ej = (Aj − zkIn)r we obtain that

rank((A0 − zkIn)t) ≤ n−
t∑

r=1

dkj,hk−r+1,

since kj(z) ∈ MΓg(Ωs,n•) implies that the number dkj,hk−r+1 of the generalized eigenvalues
at the unit roots is governed by the entries of the state space unit root structure Ωs. This
implies that

∑t
r=1 d

k
j,hk−r+1 ≤

∑t
r=1 d

k
0,hk−r+1 for t = 1, 2, ..., n. Consequently, the limit

has at least as many chains of generalized eigenvalues of each maximal length as dictated by
the state space unit root structure ΩS for each unit root of the limiting system.
Rearranging the rows and columns of the Jordan normal form using a permutation matrix S
it is then obvious that either the limiting matrix A0 has additional eigenvalues, where thus

SA0S
′ =

[
Aj J̃12

0 J̃2

]
must hold. Or upper diagonal entries in Aj must be changed from ones to zeros in order to
convert some of the chains to lower order. One example in this respect has been given above:

For Aj =

[
1 1/j
0 1

]
the rank of (Aj − I2)r is equal to 1 for r = 1 and 0 for r = 2. For the

limit we obtain A0 = I2 and hence the rank is zero for r = 1, 2. The corresponding indices
are d1

j,1 = 1, d1
j,2 = 1 for the approximating sequence and d1

0,1 = 0, d1
0,2 = 2 for the limit re-

spectively. Summing these indices starting from the last one, one obtains d1
j,2 = 1 ≤ d1

0,2 = 2

and d1
j,1 + d1

j,2 = 2 ≤ d1
0,1 + d1

0,2 = 2.
Hence the state space unit root structure corresponding to (A0, B0, C0) must be attainable
according to Definition 11. The number of stable state components must decrease accord-
ingly.
Finally the limiting system (A0, B0, C0) is potentially not minimal. In this case the pair
(Ω̃S , ñ•) is reduced to a smaller one, concluding the proof.
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Appendix B

Appendix to Chapter 2

B.1 Proof of Theorem 6

Proof: For every state space system (A,B,C) with corresponding transfer function k(z) = Is +
zC(In − zA)−1B the inverse transfer function is k−1(z) = Is − zC(In − zA)−1B. Consider the
power series

k̃−1(z) = ∆S(z)Is −
S∑
k=1

Πk∆S,k(z)z + C(In −AS)−1AS
∞∑
m=1

Am−1B∆S(z)zm,

which equals k−1(z) as shown in what follows: for m > S the m-th power series coefficient can be
calculated as

K̃−m = C(In −AS)−1AS(Am−1 −Am−S−1)B

= −C(In −AS)−1(In −AS)Am−1B = −CAm−1B = K−m

as required. Thus, k−1(z) − k̃−1(z) is a polynomial of maximal degree S. Since by construction
∆S,j(zj) = zj and ∆S,k(zj) = 0 for j 6= k and ∆S(zj) = 0 for all j = 1, . . . , S we get

k−1(zj)− k̃−1(zj) = k−1(zj) + Πj∆S,j(zj)zj = 0.

Additionally k−1(0) = k̃−1(0) = Is. Thus, k−1(z) − k̃−1(z) is a polynomial of degree S that is
zero at S + 1 points. Hence, k−1(z)− k̃−1(z) = 0 and

t−1∑
m=0

K−mỹt−m = ∆S ỹt −
S∑
k=1

Πk∆S,kỹt−1 + C(In −AS)−1AS
t−1∑
m=1

Am−1B∆S ỹt−m.

The representation then follows from setting

vt := (In −AS)−1AS
t−1∑
m=1

Am−1B∆S ỹt−m, v1 := x1.

The second result follows from ỹt = εt +
∑t−1
m=1 CA

m−1Bεt−m + CAt−1x1 and the fact that∑j
m=0KmK

−
j−m = 0, j > 0.

With respect to deterministics note that for st,j = zt−1
j , j = 1, . . . , S̃ we obtain

t−1∑
m=0

K−mdjst−m,j = k−1(zj)djst,j −
∞∑
m=t

K−mdjz
t−m−1
j

= −Πjdjst,j + CAt−1(In − zjA)−1Bzjdj .
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For the linear trend we obtain

t−1∑
m=0

K−mdS+1(t−m) =

∞∑
m=0

K−mdS+1(t−m)−
∞∑
m=t

K−mdS+1(t−m)

= −Π1dS+1t+ ΨdS+1 + CAt−1
∞∑
m=t

Am−tBdS+1(m− t)

= −Π1dS+1t+ ΨdS+1 + CAt−1(In −A)−2dS+1 − CAt−1(In −A)−1dS+1.

The above terms with factor CAt−1 are included in the SSECM through starting value v1.

B.2 Auxiliary Results for the SSECM

Having introduced the residuals in the SSECM, we have used invertibility of a matrix appearing
in the first order conditions. The necessary conditions are given in the following Lemma.

Lemma 3 Let {yt}t∈Z be an MFI(1) process and let (A(θ), B(θ), C(θ)) be a controllable state
space system such that the process {vt(θ)}t∈Z is defined as in Theorem 6.

(I) Let BR(θ) := [BR
k0

(θ), BR
−k0

(θ)] be of full column rank. Then the matrix[
〈vt(θ), vt(θ)〉 BR(θ)
BR(θ)′ 0

]
is of full rank.

(II) Let V ext (β, θ) := [Z ′2,t, vt(θ)
′, (β′Z1,t)

′]′ and G(β, θ) :=

 0 −I(S−2)s

BR
k0

(θ) BR
−k0

(θ)
−β′ 0

 with β ∈

G(r, θ). Then the matrix [
〈V ext (β, θ), V ext (β, θ)〉 G(β, θ)

G(β, θ)′ 0

]
is of full rank.

Proof: To simplify notation, omit the dependence on θ in the following. (I) Consider vectors
η ∈ Rn, ζ ∈ RSs satisfying [

η′, ζ ′
] [〈vt, vt〉 BR

B′R 0

]
= 0 (B.1)

such that η′ 〈vt, vt〉 + ζ ′B′R = 0, η′BR = 0. Multiplying (B.1) by [η′, ζ ′]′ from the right yields
η′ 〈vt, vt〉 η+ ζ ′B′Rη+ η′BRζ = 0. Since η′BR = 0, it follows that η′ 〈vt, vt〉 η = 0, which holds true
if and only if η′vt = 0 for all t = 1, . . . , T . Summarizing into a single equation for η, it holds that
η′[〈vt, vt〉 , BR] = 0. Rewrite the SSECM equations

∆S ỹt =

S∑
k=1

ΠkX
(k)
t − Cvt + εt(A,B,C)

Πk =
(
−Is + zkC(In − zkA)−1B

)
= −Is + CBk

using the identity
∑S
k=1 ∆S,kỹt−1 = ỹt−S into

ỹt = C

(
S∑
k=1

BkX
(k)
t − vt

)
+ εt(A,B,C),
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which implies xt =
∑S
k=0BkX

(k)
t − vt. Consequently η′[〈vt, vt〉 , BR] = 0 implies η′xt = 0, which

is a contradiction to the controllability of the state space system (A,B,C). It follows that η = 0.
Analogously ζ = 0, since ζ 6= 0 then implies ζ ′B′R = 0, which is a contradiction to the full column
rank assumption on BR. Since both vectors are shown to be zero for (B.1) to hold, the matrix is
indeed of full rank.

(II) The arguments proceed analogously. Here vt is augmented by components of the form (Z2,t)
′

and β′Z1,t and BR is extended to a matrix B̃R accordingly. Again, assuming

[
η̃′, ζ̃ ′

] [〈V ext (β), V ext (β)〉 G(β)
G(β)′ 0

]
= 0

for vectors η̃′ ∈ R(S−2)s+n+ra , ζ̃ ∈ RSs, it follows that η̃′ 〈V ext (β), V ext (β)〉 η̃ = 0. Since 〈Z1,t, Z1,t〉 >
0 and 〈Z2,t, Z2,t〉 > 0, the vector η̃ is then of the form η̃ = [0′(S−2)s, η

′, 0′ra ]′, which again implies

η′vt = 0. From here the proof proceeds as in (I).

Note that the assumption of (A(θ), B(θ), C(θ)) being a controllable state space system is not
a restriction in application, as the parameter space is usually chosen to consist of controllable
systems in order to ensure identification. Moreover, any non-controllable system can be reduced
in such a way that the resulting subsystem will be controllable and lead to the same residuals and
consequently the same likelihood value as the original system.
As a next step let us present a different representation for the residuals in the SSECM, which will
be used to prove consistency and derive the asymptotic distribution of the estimator β containing
information on the cointegrating space. For this, let us briefly recall the derivation of the residuals
R0,t(θ), R1,t(θ) as well as εRt (β, θ) and define another auxiliary times series RR1,t(β, θ). For the
unrestricted concentration approach the residuals R0,t(θ), R1,t(θ) are given by

R0,t(θ) := Z0,t − 〈Z0,t, Vt(θ)〉 〈Vt(θ), Vt(θ)〉−1
Vt(θ),

R1,t(θ) := Z1,t − 〈Z1,t, Vt(θ)〉 〈Vt(θ), Vt(θ)〉−1
Vt(θ),

where Vt(θ) := [Z ′2,t, vt(θ)
′]′ contains stationary components and stochastic trends and cycles at

frequencies other than the frequency of interest.
For the restricted approach first consider a decomposition of Πk0

into two terms:

Πk0
= [αγ , α][γ, β]′ = αγγ

′ + αβ′

where αγ , γ ∈ Cs×(s−r) and α, β ∈ Cs×r, where γ and β are of full column rank, where additionally
we assume γ′β = 0. Consider now the problem of maximizing

LexT (ᾰγγ
′ + ᾰβ′, C−k0

, θ) = LexT (ᾰγγ
′ + ᾰβ′, [Π−k0

, C], θ)

subject to J(ᾰγ) :=
[
[Is, 0] + ᾰγγ

′ IR
]

=
[

Π−k0
C ᾰ

]
G(β, θ) for given θ and β ∈ G(r, θ).

Solving for Cexk0
=
[

Π−k0
C ᾰ

]
, we arrive at a system of first order equations of the form[

Cex,Rk0
(β, θ, ᾰγ) Λ

] [〈V ext (β, θ), V ext (β, θ)〉 G(β, θ)
G(β, θ)′ 0

]
=
[
−〈Z0,t − ᾰγγ′Z1,t, V

ex
t (β, θ)〉 J(ᾰγ)

]
,

where Λ is the Lagrange multiplier matrix and V ext (β, θ) = [Z ′2,t, vt(θ)
′, (β′Z1,t)

′]′. Using the
blocks of the inverse matrix[

H11(β, θ) H12(β, θ)
H21(β, θ) H22(β, θ)

]
:=

[
〈V ext (β, θ), V ext (β, θ)〉 G(β, θ)

G(β, θ)′ 0

]−1

,

we rewrite the first order equations to find Cex,R(β, θ, ᾰγ) equal to

Cex,R(β, θ, ᾰγ) = −〈Z0,t − ᾰγγ′Z1,t, V
ex
t (β, θ)〉H11(β, θ) + J(ᾰγ)H21(β, θ),
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which maximizes the pseudo log-likelihood function under the given restrictions up to the choice
of ᾰγ . Choosing ᾰγ = 0 results in Cex,Rk0

(β, θ) =
[
CR−k0

(β, θ) ᾰR(β, θ)
]

:= Cex,R(β, θ, 0) as
described in Section 2.4. Define the subblocks H21,1 corresponding to the block [Is, 0] + ᾰγγ

′ of
J(ᾰγ) and H21,2(β, θ) corresponding to IR of H21(β, θ), recall the definition of εRt (β, θ) and define
RR1,t(β, θ)

εRt (β, θ) := Z0,t − (〈Z0,t, V
ex
t (β, θ)〉H11(β, θ)− J(0)H21(β, θ))V ext (β, θ),

RR1,t(β, θ) := Z1,t − (〈Z1,t, V
ex
t (β, θ)〉H11(β, θ) +H21,1(β, θ))V ext (β, θ).

This leads to a reduced model of the form

εRt (β, θ) = ᾰγγ
′RR1,t(β, θ) + εt (B.2)

Further, define SR11(β, θ) :=
〈
RR1,t(β, θ), R

R
1,t(β, θ)

〉
and SR1ε(β, θ) :=

〈
RR1,t(β, θ), ε

R
t (β, θ)

〉
=:

SR1ε(β, θ)
′. Setting ᾰγ = 0 results in an estimator ᾰR(β, θ)β′ corresponding to Πk0 of reduced

rank r. Estimating ᾰγ by ordinary least squares leads to an estimated matrix Πk0 of full rank
with probability one. The relations between the residuals in the state space model and the SSECM
corresponding to estimators of Πk0

with different rank is summarized in the next lemma.

Lemma 4 Let {yt}t∈Z be an MFI(1) process and let (A(θ), B(θ), C(θ)) be a controllable state
space system.

(I) Define CSS(θ) := 〈yt, xt(θ)〉 〈xt(θ), xt(θ)〉−1
, such that CSS is the OLS estimator in the

regression yt = Cxt(θ) + εt and let εSSt (θ) := yt − CSSxt(θ) be the corresponding residuals.
Then

εSSt (θ) = εRt (I2s, θ) = εRt (β, θ)− SRε1(β, θ)γ(γ′SR11(β, θ)γ)−1γ′RR1,t(β, θ)

for arbitrary choice of β ∈ G(r, θ) and corresponding γ = [γ]R, γ := (β)⊥ ∈ Cs×(s−r). It
follows that

ΠSS
k0

(θ)γ = ᾰR(I2s)γ = SRε1(β, θ)γ(γ′SR11(β, θ)γ)−1,

for ΠSS
k0

(θ) := −[Is, 0] + CSS(θ)BR
k0

(θ).

(II) For β ∈ G(r, θ) and corresponding γ, εRt (β, θ) is equal to

εRt (β, θ) = εSSt (θ) + ΠSS
k0

(θ)γ (γ′NT (θ)γ)
−1
γ′BR

k0
(θ)′ 〈xt(θ), xt(θ)〉−1

x̂t(θ),

where NT (θ) := BR
k0

(θ)′ 〈xt(θ), xt(θ)〉−1
BR
k0

(θ). Moreover,

γ′SR11(β, θ)γ = (γ′NT (θ)γ)
−1
.

Proof: To simplify notation, omit the dependence on θ in the following.
(I) Due to Theorem 6, the residuals εSSt are equal to εRt (I2s), since estimating C for given regressors
xt using ordinary least squares leads to the same residuals as maximizing the likelihood of the
SSECM under the restrictions Πk = −Is+C(In−zkA)−1B for k = 1, . . . , S through the restricted
concentration approach (but without restrictions on the rank of Πk0

). It follows that ΠSS
k0

(θ) =
ᾰR(I2s).
The residuals εRt (I2s) can also be computed using the reduced model (B.2) such that

εRt (I2s) = εRt (β)− SRε1(β)γ(γ′SR11(β)γ)−1γ′RR1,t(β),

for β ∈ G(r, θ) and corresponding γ. It follows that ΠSS
k0

= ᾰR(β)β′ + SRε1(β)γ(γ′SR11(β)γ)−1γ′

for arbitrary choice of β ∈ G(r, θ) and corresponding γ, which implies the above identity.
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(II) Consider yt = Cxt + εt, and maximize

−T log |〈yt − Cxt, yt − Cxt〉|

subject to (−[Is, 0] + CBR
k0

)γ = 0, for given matrix γ = [γ]R, γ ∈ Cs×(s−r) such that BR
k0
γ is of

full rank. Note that (−[Is, 0] + CBR
k0

)γ = 0 if and only if (−[Is, 0] + CBR
k0

) = ᾰβ for a matrix

β := [β]R with β ∈ Cs×r of full rank and β′γ = 0. Moreover, BR
k0
γ being of full rank is equivalent

to β ∈ G(r, θ). The optimal C̃(γ) fulfilling the restriction is given by

(
C̃(γ) Λ

)
=
(
〈yt, xt〉 [Is, 0]γ

)( 〈xt, xt〉 BR
k0
γ

γ′(BR
k0

)′ 0

)−1

.

By Lemma 3(I) the inverse of the above matrix exists. Using block matrix inversion, the corre-
sponding residuals are equal to

yt − C̃(γ)xt

= (y − CSSxt) + (CSSBR
k0
− [Is, 0])γ

(
γ′(BR

k0
)′ 〈xt, xt〉−1

BR
k0
γ
)−1

γ′(BR
k0

)′ 〈xt, xt〉−1
xt

= εSSt + ΠSS
k0
γ
(
γ′(BR

k0
)′ 〈xt, xt〉−1

BR
k0
γ
)−1

γ′(BR
k0

)′ 〈xt, xt〉−1
xt.

Due to Theorem 6, these residuals are equal to εRt (β) for corresponding β ∈ G(r, θ), thus, giving
an alternative derivation of the residuals in the restricted concentration approach. Together with
the results in (I) it follows that

γ′RR1,t(β) = (γ′NTγ)
−1
γ′(BR

k0
)′ 〈xt, xt〉−1

xt,

which implies the last equality.

B.3 Asymptotic Results in the SSECM

Next, we analyze the asymptotic behavior of the product moments of R0,t(θ),R1,t(θ), ε
R
t (β, θ) and

RR1,t(β, θ). The following Lemma will be fundamental for this section:

Lemma 5 The following convergence results hold for processes satisfying xt+1,k = z̄kxt,k+Bkεt+1

with zk = eiωk , 0 < ωk < π, and {εt}t∈Z denoting a white noise process with noise variance Σ as
in the assumptions stated in Assumption 1.

1

T

〈
[2xt,k]Rv , [2xt,k]Rv

〉 d→ [Bk]R
∫ 1

0

WW ′du ([Bk]R)′

〈
[2xt,k]Rv , εt

〉 d→ [Bk]R
∫ 1

0

W
(
dW ′) [Is

0

]
,〈

[2xt,k]Rv , [2xt,m]Rv
〉

= Op(1) for k 6= m,

where W = [ 1√
2
(W1 + iW2)]R and W1 and W2 are two independent s-dimensional Brownian

motions with variance Σ.

Proof: The first two results are proven by Johansen and Schaumburg, exploiting the notation of
matrices in complex structure, compare Johansen and Schaumburg (1999, proof of Theorem 9).
The last result concerning stochastic boundedness follows from the fact that〈

[2xt,k]R, [2xt,m]R
〉

=
〈
[2xt,k,m]R, [2Bmεt]

R〉+Op(1)
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with xt,k,m := z̄mxt,k,m + xt,k. The process [2xt,k,m]R can then be expressed as the sum of two
processes integrated at a single frequency. The second convergence result applied for both terms
then implies that

〈
[2xt,k]R, [2xt,m]R

〉
is bounded in probability. Since the same holds true for〈

[2xt,k]R, [2x̄t,m]R
〉

combining both results ensures that
〈
[2xt,k]Rv , [2xt,m]Rv

〉
is also stochastically

bounded.
Lemma 5 is the key component in the proof of the asymptotic distribution of the pseudo likelihood
ratio tests. Since the proof proceeds analogously for real and complex unit roots we will only focus
on the case of complex unit roots.
Before we proceed to the product moments, let us first discuss the dominant components in the
R0,t(θ),R1,t(θ), ε

R
t (β, θ) and RR1,t(β, θ).

Lemma 6 Let {yt}t∈Z be an MFI(1) process solving the SSECM equations as defined in Theorem 6

and let θ̂ be a PML estimator over Θ fulfilling the assumptions of Proposition 2. Let v̂t := vt(θ̂),

R̂i,t := Ri,t(θ̂), ε̂
R
t (β) := εRt (β, θ̂) and R̂R1,t(β) := RR1,t(β, θ̂).

(I) There exists matrices MU
0,T and MU

1,T , bounded in probability, such that the following iden-
tities hold:

R̂0,t = Z0,t −MU
0,T [

1

T
(PuZ2,t)

′, (P stZ2,t)
′, v̂′t]

′,

R̂1,t = Z1,t −MU
1,T [

1

T
(PuZ2,t)

′, (P stZ2,t)
′, v̂′t]

′,

where P st := diag
(
β′1, β

′
S̃
, [β′2]R, . . . , [β′k0−1]R, [β′k0+1]R, ..., [β′

S̃−1
]R
)
∈ R(

∑S
1 rk)×s(S−2),

and Pu := diag
(
γ′1, γ

′
S̃
, [γ′2]R, . . . , [γ′k0−1]R, [γ′k0+1]R, ..., [γ′

S̃−1
]R
)
∈ R(sS−

∑S
1 rk)×s(S−2),

for βk, αk ∈ Rs×rk such that Πk,◦ = αkβ
′
k and γk := (βk)⊥ ∈ Rs×(s−rk).

(II) Define β◦ := [βk0
]R. There exists matrices MR

0,T and MR
1,T bounded in probability, such that

the following identities hold:

ε̂Rt (β◦) = Z0,t −MR
0,T [

1

T
(PuZ2,t)

′, (P stZ2,t)
′, v̂′t, (β

′
◦Z1,t)

′]′,

R̂R1,t(β◦) = Z1,t −MR
1,T [

1

T
(PuZ2,t)

′, (P stZ2,t)
′, v̂′t, (β

′
◦Z1,t)

′]′.

Let β(j), for j = 1, . . . , r denote the j-th column of βk0 , define

β(−j) := [β(1), . . . , β(j−1), β(j+1), . . . , β(r)]

and let γ(j) ∈ Cs×(s−1) be orthogonal to β(j), such that β′(j)γ(j) = 0. Let β(j) := [β(j)]
R,

β(−j) := [β(−j)]
R and γ(j) := [γ(j)]

R. Then there exists matrices M
(j)
0,T , bounded in probabil-

ity, such that

β′(j)R̂
R
1,t(γ(j)) = β′(j)Z1,t −M (j)

1,T [
1

T
(PuZ2,t)

′,
1

T
(γ′Z1,t)

′, (P stZ2,t)
′, v̂′t, (β

′
(−j)Z1,t)

′]′.

Proof: Define PZ := [(Pu)′, (P st)′]′, P = diag(PZ((PZ)′PZ)−1/2, In), such that P ′P = In+sS ,

and DT = diag( 1
T IsS−

∑S
1 rk

, In+
∑S

1 rk
) and let V̂t := Vt(θ̂). In case of an unrestricted concentration

step it suffices to consider〈
R0,t, V̂t

〉
P ′P

〈
V̂t, V̂t

〉−1

P ′D−1
T

=
〈
R0,t, P V̂t

〉〈
DTPV̂t, P V̂t

〉−1

=
〈
R0,t, P V̂t

〉( 1
T 〈P

uZ2,t, P
uZ2,t〉 1

T 〈P
uZ2,t, V

st
t 〉

〈V stt , PuZ2,t〉 〈V stt , V stt 〉

)−1

:= MU
0,T ,
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where V̂ stt := [(P stZ2,t)
′, v̂′t]

′. Note that 1
T 〈P

uZ2,t, P
uZ2,t〉 1

T

〈
PuZ2,t, V̂

st
t

〉〈
V̂ stt , PuZ2,t

〉 〈
V̂ stt , V̂ stt

〉  d→
[
K1,1 0
K2,1 K2,2

]
=: K,

using Lemma 5 and that K is invertible with probability one, since K1,1 is a random matrix
invertible with probability one and K2,2 is determinstic and invertible. Here we also use that

consistency of A(θ̂) and B(θ), which implies 〈v̂t, v̂t〉 converges to Var(vt(θ0)). Consequently, MU
0,T

converges to a random matrices MU
0,∞ and is, thus, bounded in probability. It follows that

R0,t = Z0,t −
(〈

Z0,t, V̂t

〉〈
V̂t, V̂t

〉−1

P ′D−1
T

)
DTPV̂t

= Z0,t −MU
0,TDTPV̂t.

An analogous result holds for R1,t using

MU
1,T :=

〈
R1,t, V̂t

〉〈
V̂t, V̂t

〉−1

P ′D−1
T ,

together with the fact that 〈R1,t, V̂t〉 is bounded in probability by the third result in Lemma 5.
For the restricted concentration step consider similarly P ex := diag(P, Ir), D

ex
T := diag(DT , Ir),

V̂ ext (β◦) := V ext (β◦, θ̂) such that[
P ex 0

0 I

] [
〈V̂ ext (β◦), V̂

ex
t (β◦)〉 G(β◦)

G(β◦)
′ 0

]−1 [
(P ex)′(Dex

T )−1 0
0 I

]
=

[
〈Dex

T P
exV̂ ext (β◦), P

exV̂ ext (β◦)〉 Dex
T P

exG(β◦)
(P exG(β◦))

′ 0

]−1

:=

[
H11,T H12,T

H21,T H22,T

]
:= HT .

Define V̂ ex,stt (β◦) := [(P stZ2,t)
′, v̂′t, (β

′
◦Z1,t)

′]′ and note that[
〈Dex

T P
exV̂ ext (β◦), P

exV̂ ext (β◦)〉 Dex
T P

exG(β◦)
(P exG(β◦))

′ 0

]
:= GT

d→

 K1,1 0 0

K̃2,1 K̃2,2 diag(P st, In+r)G(β◦)
(PuG(β◦))

′ (diag(P st, In+r)G(β◦))
′ 0

 := G,

where K̃2,1 and K̃2,2 are the limits of 〈V̂ ex,stt (β◦), P
uZ2,t〉 respectively 〈V̂ ex,stt (β◦), V̂

ex,st
t (β◦)〉.

The matrices GT are invertible with probability one, due to Lemma 3 and the fact that β◦ ∈
G(r, θ◦) for θ◦ corresponding to the true system. The matrix K1,1 is invertible with probability
one due to Lemma 5. The same arguments as in the proof of Lemma 3 imply that the matrix[

K̃2,2 diag(P st, In+r)G(β◦)
(diag(P st, In+r)G(β◦))

′ 0

]
is also invertible with probability one, since otherwise a vector η such that η′Var(xtx

′
t) = 0 would

occur with positive probability, contradicting the fact that the estimated state space system is
minimal with probability one. Since the true system is also minimal, G is invertible with probability
one and HT is bounded in probability. For εRt (β◦) it follows that

εRt (β◦) = Z0,t −
(〈
Z0,t, V̂

ex
t (β◦)

〉
H11(β◦)− JH21(β◦)

)
V̂ ext (β◦)

= Z0,t −
(〈
Z0,t, P

exV̂ ext (β◦)
〉
H11,T − Jdiag((P ex)′, I)H21,T

)
Dex
T P

exV̂ ext (β◦)

= Z0,t −MR
0,T [

1

T
(PuZ2,t)

′, (V̂ ex,stt (β◦))
′]′,
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again with

MR
0,T :=

〈
Z0,t, P V̂

ex
t (β◦)

〉
H11,T − Jdiag((P ex)′, I)H21,T

bounded in probability. The results for RR1,t(β◦) and β′(j)R
R
1,t(γ(j)) follow analogously.

Lemma 7 Let θ̂ denote the pseudo maximum likelihood estimator as in Proposition 2 and let
Ŝij := Sij(θ̂), j = 0, 1, Ŝ11(β) := S11(β, θ̂) and ŜR1ε(β) := SR1ε(β, θ̂) =: ŜR1ε(β)′.

(I) Defining α◦ := [αk0
]R, ᾰ◦ := [Is, 0]α◦ and

Ŝ1ε := 〈R̂1,t, R̂0,t − ᾰ◦β′◦R̂1,t〉 =: Ŝ′ε1,

the following convergence results hold for the unrestricted concentration approach:

T−1C′ωŜ11Cω,
d→ Bω

∫ 1

0

W (u)W (u)′du B′ω,

C′ωŜ1ε
d→ Bω

∫ 1

0

W (u)
(
dW (u)

)′ [Is
0

]
.

(II) For the restricted concentration approach it holds that

Ĉex,Rk0
(β◦) := −〈Z0,t, V̂

ex
t (β◦)〉H11(β◦, θ̂) + JH21(β◦, θ̂).

is a consistent estimator of Cexk0
. Moreover, the following convergence results hold:

T−1C′ωŜ11(β◦)Cω
d→ Bω

∫ 1

0

W (u)W (u)′du B′ω

C′ωŜR1ε(β◦)
d→ Bω

∫ 1

0

W (u)
(
dW (u)

)′ [Is
0

]
.

Let β̃ denote an estimate of the cointegrating space with the property that T (β̃ − β◦) = OP (1).

(III) For the unrestricted concentration approach it holds that

α̃ := Ŝ01β̃(β̃
′
Ŝ11β̃)−1 p→ ᾰ◦

〈ε̃t, ε̃t〉
p→ Σ

(β̃
′
Ŝ11,0β̃)−1β̃

′
Ŝ10Ŝ

−1
00

p→ ᾰ′◦Σ
−1,

where ε̃t := R̂0,t − α̃β̃R̂1,t.

(IV) For the restricted concentration step, it holds that T (Ĉex,Rk0
(β̃)− Ĉex,Rk0

(β◦)) = Op(1). More-
over, 〈

ε̂Rt (β̃), ε̂Rt (β̃)
〉

p→ Σ

T−1(C′ωŜ11(β◦)Cω − C′ωŜ11(β̃)Cω)
p→ 0,

C′ωŜR1ε(β◦)− C′ω
〈
R̂R1,t(β̃), ε̂Rt (β◦)

〉
p→ 0.

Proof: (I) The boundedness of Ŝ00, β′◦Ŝ10 and β′◦Ŝ11 in probability is a consequence of the
dominating stationary components of R̂0,t and β′◦R̂1,t since the remaining terms tend to zero, as
discussed in Lemma 6.



103

To derive the limiting distribution of T−1C′ωŜ11Cω, note that neither stationary nor integrated
components at unit root frequencies other than ωk0

contained in R̂1,t are dominant, which is clear

from Lemma 6. Thus, the limit of T−1C′ωŜ11Cω coincides with the limit of

T−1C′ω
〈
[2Cωxt,k0

]Rv , [2Cωxt,k0
]Rv
〉
Cω

for which Lemma 5 is applied. For the asymptotics of C′ωŜ1ε note that〈
C′ωR̂1,t, R̂0,t − ᾰ◦β′◦R̂1,t

〉
=
〈
C′ωR̂1,t, εt

〉
+
〈
C′ωR̂1,t, C−k0

(θ◦)Vt(θ◦)− ĈU−k0
(θ̂)Vt(θ̂)

〉
(B.3)

where C−k0
(θ◦) is the coefficient matrix corresponding to the true parameter vector θ0 and

ĈU−k0
:=
〈
Z0,t − ᾰ◦β′◦Z1,t, Vt(θ̂)

〉〈
Vt(θ̂), Vt(θ̂)

〉−1

is a consistent estimator for C−k0
(θ◦). Here the last term in (B.3) is oP (1) as

C−k0
(θ◦)Vt(θ◦)− ĈU−k0

Vt(θ̂) =

t−2∑
j=0

(K−j (θ◦)−K−j (θ̂))(1− LS̃)yt−1−j +
(
C−k0

(θ̂)− ĈU−k0

)
Vt(θ̂)

where T ν(K−j (θ◦)−K−j (θ̂))→ 0 for ν < 0.5 (in fact ‖K−j (θ◦)−K−j (θ̂)‖ ≤ µρj‖θ◦ − θ̂‖ for some

0 < ρ < 1 uniformly in a small enough neighborhood of θ◦) and Vt(θ̂) and (1 − LS̃){yt}t∈Z are
stationary. Then the result follows by application of Lemma 5.

(II) To see that Ĉex,Rk0
(β◦) is consistent, consider first the OLS estimator Ĉex,Uk0

(β◦) in the ex-
panded SSECM without taking the restrictions between C and Πk, k = 1, . . . , S into account. It
holds that Ĉex,Uk0

(β◦) = 〈Z0,t, V̂
ex
t (β◦)〉〈V̂ ext (β◦), V̂

ex
t (β◦)〉−1 if ŜV V (β◦) := 〈V̂ ext (β◦), V̂

ex
t (β◦)〉 is

invertible. Since k(z, θ̂) converges to the true transfer function and the OLS estimator Cex,Uk0
(β◦)

at the true parameter value θ◦ is consistent, it holds that also Ĉex,Uk0
(β◦) is consistent. Includ-

ing linear restrictions of the form Cexk,0G(β◦, θ̂) = J , the corresponding restricted least squares

estimator Ĉex,Rk0
(β◦) can be written as

Ĉex,Rk0
(β◦) = Ĉex,Uk0

(β◦)

− (Ĉex,Uk0
(β◦)G(β◦, θ̂)− J)

(
G(β◦, θ̂)

′ŜV V (β◦)
−1G(β◦, θ̂)

)−1

G(β◦, θ̂)
′ŜV V (β◦)

−1,

if ŜV V (β◦) is invertible. Note that (Ĉex,Rk0
(β◦)G(β◦, θ̂) − J) = op(1). Thus, Ĉex,Rk0

(β◦) is con-

sistent. Slight adaptations of the arguments show consistency of Ĉex,Rk0
(β◦) also in the case of

non-invertible ŜV V (β◦).
The derivation of the limiting distribution of T−1C′ωŜ11(β◦)Cω follows analogously to the re-
stricted approach, noting again that T−1

〈
[2Ck0

xt,k0
]Rv , [2Ck0

xt,k0
]Rv
〉

is the dominant term due to
Lemma 6(II) and applying Lemma 5. For the last result consider

ε̂Rt (β◦) = εt + Cexk0
(θ◦)V

ex
t (β◦, θ◦)− Ĉ

ex,R
k0

(β◦)V
ex
t (β◦, θ̂),

where Cexk0
(θ0) is the coefficient matrix corresponding to the true parameter vector θ0. As in the

unrestricted concentration approach we find

Cexk0
(θ◦)V

ex
t (β◦, θ◦)− Ĉ

ex,R
k0

(β◦)V
ex
t (β◦, θ̂)

=

t−2∑
j=0

(K−j (θ◦)−K−j (θ̂))(1− LS̃)yt−1−j +
(
Cexk0

(θ̂)− Ĉex,Rk0
(β◦)

)
V ext (β◦, θ̂),
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where Cexk0
(θ̂) is the coefficient matrix corresponding to θ̂ and, thus, a consistent estimator for

Cexk0
(θ◦). Since {β′◦Z1,t}t∈N is stationary and θ̂ is consistent, Cexk0

(θ̂)− Ĉex,Rk0
(β◦) = op(1) follows,

such that the limits of C′ω〈R̂R1,t(β◦), ε̂Rt (β◦)〉 and C′ω〈R̂R1,t(β◦), εt〉 coincide and Lemma 5 is appli-
cable.

(III) For the first result, note that β̃
′
Ŝ10 = (β̃ − β◦)′CωC′ωŜ10 + β′◦Ŝ10 and β̃

′
Ŝ11 = (β̃ −

β◦)
′CωC′ωŜ11 + β′◦Ŝ11. Applying the results from (I) for the different parts, it follows that both

matrices are bounded in probability. The convergence of α̃ and 〈ε̃t, ε̃t〉 to ᾰ◦ and Σ follows

from T (β̃ − β◦) = Op(1), the consistency of k(z, θ̂) and the consistency of the OLS estima-

tor for the true R0,t(θ◦) and β′◦R1,t(θ◦). Similarly, the limits of (β̃
′
Ŝ11,0β̃)−1β̃

′
Ŝ10Ŝ

−1
00 and

(β′◦S11,0β◦)
−1β′◦S10S

−1
00 coincide, where the latter converges to ᾰ′◦Σ

−1 due to Johansen and
Schaumburg (1999, Lemma 8).

(IV) For the restricted concentration approach note that T (β̃ − β◦) = Op(1) implies∥∥∥〈Z0,t, V
ex
t (β̃, θ̂)〉 − 〈Z0,t, V

ex
t (β◦, θ̂)〉

∥∥∥ = Op(T
−1)

and ∥∥∥∥[〈V ext (β̃, θ̂), V ext (β̃, θ̂)〉 G(β̃, θ̂)

G(β̃, θ̂)′ 0

]
−
[
〈V ext (β◦, θ̂), V

ex
t (β◦, θ̂)〉 G(β◦, θ̂)

G(β◦, θ̂)
′ 0

]∥∥∥∥ = Op(T
−1),

using G(β̃, θ̂) = G(β◦, θ̂) + Op(T
−1), β̃

′
〈Z1,t, Vt(θ̂)〉 = β′◦〈Z1,t, Vt(θ̂)〉 + Op(T

−1), due to the

stochastic boundedness of 〈Z1,t, Vt(θ̂)〉, and

β̃
′
〈Z1,t, Z1,t〉 β̃ = β′◦ 〈Z1,t, Z1,t〉β◦ + (β̃ − β◦)′C̃ωC̃′ω 〈Z1,t, Z1,t〉β◦

+ β′◦ 〈Z1,t, Z1,t〉 C̃ωC̃′ω(β̃ − β◦) + (β̃ − β◦)′C̃ωC̃′ω 〈Z1,t, Z1,t〉 C̃ωC̃′ω(β̃ − β◦)
= β′◦ 〈Z1,t, Z1,t〉β◦ +Op(T

−1).

It follows also that H11(β̃, θ̂) = H11(β◦, θ̂)+Op(T
−1) and H21(β̃, θ̂) = H21(β◦, θ̂)+Op(T

−1). The

definition of Ĉex,Rk0
(β◦) then implies that T (Ĉex,Rk0

(β̃)− Ĉex,Rk0
(β◦)) is bounded in probability.

For ε̂Rt (β̃) it holds that

ε̂Rt (β̃) = ε̂Rt (β̃)− ε̂Rt (β◦) + ε̂Rt (β◦)

= −Ĉex,Rk0
(β̃)V ext (β̃, θ̂) + Ĉex,Rk0

(β◦)V
ex
t (β◦, θ̂) + ε̂Rt (β◦)

=
(
−Ĉex,Rk0

(β̃) + Ĉex,Rk0
(β◦)

)
V ext (β̃, θ̂) + Ĉex,Rk0

(β◦)
(
V ext (β◦, θ̂)− V ext (β̃, θ̂)

)
+ ε̂Rt (β◦).

The only non-zero component in V ext (β◦, θ̂) − V ext (β̃, θ̂) is (β̃ − β◦)′CωZ1,t, such that the inte-

grated component CωZ1,t is multiplied by (β̃−β◦) = Op(T
−1). Thus, the dominant component in

〈ε̂Rt (β̃), ε̂Rt (β̃)〉 is
〈
ε̂Rt (β◦), ε̂

R
t (β◦)

〉
, which converges to Σ due to the arguments in (II). The other

convergence results follow similarly.

B.4 Proof of Theorem 7

We use the notation [C]R, where C is a complex valued matrix, to denote the corresponding real

valued matrix of the form

[
R(C) −I(C)
I(C) R(C)

]
. Such matrices are said to have complex structure.

For the proof below we define an operator that adjusts a matrix to have complex structure.
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Definition 17 We define the following mapping for a general matrix M ∈ R2k×2l:

[M ]C :=
1

2

(
M − [i · Ik]

R
M [i · Il]R

)
.

Matrices N ∈ R2k×2l satisfying N = [N ]C have complex structure.

Note that tr (M) = tr ([M ]C) and for all N ∈ R2l×2m of complex structure it holds that
[MN ]C = [M ]CN .

(I) Asymptotic distribution of β̃
The proof follows loosely the ideas of Johansen and Schaumburg (1999). Consider first the unre-
stricted concentration approach, then the concentrated pseudo log-likelihood function up to
a constant is given by

2Lex,RT (β, θ̂) = −T log
|β′Ŝ11,0β|
|β′Ŝ11β|

− T log |Ŝ00|

= −T log |I − (β′Ŝ11β)−1β′Ŝ10Ŝ
−1
00 Ŝ01β| − T log |Ŝ00|,

where β′Ŝ00β and (β′Ŝ00β)−1 are bounded in probability for every β, since the dominant com-
ponents in R̂0,t are stationary due to Lemma 6. For each β, furthermore, standard arguments

show that β′Ŝ10Ŝ
−1
00 Ŝ01β converges in distribution for every β. Now let β̌ denote a maximizer of

LT (β, θ̂) for given θ̂ and let I2s = PC +P⊥ denote the decomposition of the identity into the pro-
jection onto the column space of Cω and the orthocomplement (the space spanned by the columns
of β◦). Then

β̌
′
Ŝ11β̌ = β̌

′
PC Ŝ11PC β̌ + β̌

′
PC Ŝ11P⊥β̌ + β̌

′
P⊥Ŝ11PCβ̌ + β̌

′
P⊥Ŝ11P⊥β̌,

where P⊥Ŝ11P⊥ converges in probability, P⊥Ŝ11PC converges in distribution and PC Ŝ11PC/T
converges in distribution to an almost surely non-singular matrix.

It follows that β̌
′
PC → 0 is necessary for the first term to remain bounded. This implies that

the second and third term tend to zero. The first term dominates the second and third term, if

‖β̌′PC‖2T dominates ‖β̌′PC‖. In such a situation the criterion function is smaller for P⊥β̌ than
for β̌ which, hence, cannot be a maximizer. This implies that TPC β̌ remains bounded. This
shows that the normalized estimator β̃ fulfills T (β̃ − β◦) = OP (1) as assumed in Lemma 7(III).
Next differentiating LT as a function of β we find the first order conditions to be fulfilled by the
estimator β̃, compare (33) of Johansen and Schaumburg (1999):

0 =
[
(β̃
′
Ŝ11β̃)−1β̃

′
Ŝ11 − (β̃

′
Ŝ11,0β̃)−1β̃

′
Ŝ11,0

]C
(B.4)

=
[
(β̃
′
Ŝ11,0β̃)−1

(
(β̃
′
Ŝ11,0β̃)(β̃

′
Ŝ11β̃)−1β̃

′
Ŝ11 − β̃

′
Ŝ11,0

)]C
=
[
(β̃
′
Ŝ11,0β̃)−1β̃

′
Ŝ10Ŝ

−1
00

(
Ŝ01 − Ŝ01β̃(β̃

′
Ŝ11β̃)−1β̃

′
Ŝ11

)]C
.

The above is equivalent to [
(β̃
′
Ŝ11,0β̃)−1β̃

′
Ŝ10Ŝ

−1
00

〈
ε̃t, R̂1,t

〉]C
= 0 (B.5)

and implies
[
(β̃
′
Ŝ11,0β̃)−1β̃

′
Ŝ10Ŝ

−1
00

〈
ε̃t, R̂1,t

〉
Cω
]C

= 0. We first find the weak limit for the above

matrix before it is complexified. From Lemma 7 we have (β̃
′
Ŝ11,0β̃)−1β̃

′
Ŝ10Ŝ

−1
00

p→ ᾰ′◦Σ
−1. Since〈

ε̃t, R̂1,t

〉
= Ŝε1 + (ᾰ◦ − α̃)β′Ŝ11 − α̃(β̃ − β◦)′Ŝ11
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we find 〈
ε̃t, R̂1,t

〉
Cω = Ŝε1Cω − α̃(β̃ − β◦)′CωC′ωŜ11Cω + oP (1).

Thus, the whole term considered in (B.4) can be written as[
ᾰ′◦Σ

−1
(
Ŝε1Cω − α̃(β̃ − β◦)′CωC′ωŜ11Cω

)
+ oP (1)

]C
and for its weak limit it holds that[

ᾰ′◦Σ
−1

(
(Is, 0)

∫ 1

0

(dW )F ′ − ᾰ◦B′∞
∫ 1

0

FF ′du

)]C
= 0,

where F = BωW and B∞ is the weak limit of TC′ω(β̃−β◦). Since B′∞
∫ 1

0
FF ′du and

∫ 1

0
(dW )F ′

have complex structure, the first order conditions then imply

[
ᾰ′◦Σ

−1(Is, 0)
]C ∫ 1

0

(dW )F ′ = [ᾰ′◦Σ
−1ᾰ◦]

CB′∞

∫ 1

0

FF ′du

where [ᾰ′◦Σ
−1(Is, 0)]C = 1

2α
′
◦Σ
−1 and [ᾰ′◦Σ

−1ᾰ◦]
C = 1

2α
′
◦Σ
−1α◦ with

Σ :=

[
Σ 0
0 Σ

]
.

This shows

B∞ =

(∫ 1

0

FF ′du

)−1 ∫ 1

0

F (dV ′),

where V = (α′◦Σ
−1α◦)

−1α′◦Σ
−1W .

From Lemma 4 it follows that for the restricted concentration approach the concentrated
pseudo log-likelihood function is given by

2Lex,RT (β, θ) = −T log
∣∣〈ε̂Rt (β), ε̂Rt (β)

〉∣∣
= −T log

∣∣∣〈ε̂t, ε̂t〉+ Π̂γ(γ′N̂Tγ)−1γ′Π̂
′∣∣∣

= −T log |Σ̂| − T log
∣∣∣Is + Σ̂−1Π̂γ(γ′N̂Tγ)−1γ′Π̂

′∣∣∣
using orthogonality of ε̂t := εSSt (θ̂) to x̂t := xt(θ̂), and the notation Π̂ := ΠSS

k0
(θ̂), Σ̂ := 〈ε̂t, ε̂t〉

and N̂T := BR
k0

(θ̂)′ 〈x̂t, x̂t〉−1
BR
k0

(θ̂). It holds that γ′ŜR11(β)γ is equal to (γ′N̂Tγ)−1 for every full

rank matrix γ = [γ]R, γ ∈ Cs×(s−r), satisfying γ′β = 0, with β ∈ G(r, θ̂).
The pseudo log-likelihood function is maximized if the term

ΛT (γ) := log
∣∣∣Is + Σ̂−1Π̂γ(γ′N̂Tγ)−1γ′Π̂

′∣∣∣
is minimized by γ̌ corresponding to β̌R. Note that by Lemma 6(II) and Lemma 7(II) ‖(C′ωŜR11Cω)−1‖
is in Op(T

−1), while ‖β′(j)ŜR11β(j)‖ is bounded for j = 1, . . . , r, which also translate to analogous

results for N̂T , such that ‖C′ωN̂TCω‖ = Op(T
−1) and ‖β′◦N̂Tβ◦‖ is bounded in probability. Using

similar arguments, ‖Π̂Cω‖ = Op(T
−1) and ‖Π̂β◦‖ = Op(1). Lemma 7(I) implies ‖ΛT (Cω)‖ is in

Op(T
−1) at the true value Cω and, therefore, also at the optimum. From this again follows that

TPC β̌
R must remain bounded, using similar arguments as discussed above for the unrestricted

concentration approach. Thus, the estimator β̃R also satisfied T (β̃R − β◦) = OP (1) as assumed
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in Lemma 7(IV).

Further transformation of Lex,RT (β, θ) leads to

−T log
∣∣〈ε̂Rt (β), ε̂Rt (β)

〉∣∣ = −T log

(
|Σ̂| |γ′(N̂T )γ|
|γ′(N̂T + M̂T )γ|

)

with M̂T := Π̂
′
Σ̂−1Π̂. Optimizing the pseudo log-likelihood over γ leads to the FOC at the

optimum C̃ω (normalized as β using the true Cω, i. e., for a maximizer Ĉω define C̄ω := Ĉω(C̄′ωĈω)−1

with C̄ω := Cω(C′ωCω)−1)

0 =
[
(C̃′ω(N̂T + M̂T )C̃ω)−1C̃′ω(N̂T + M̂T )− (C̃′ωN̂T C̃ω)−1C̃ωN̂T

]C
=
[
(C̃′ω(N̂T + M̂T )C̃ω)−1

(
C̃′ωM̂T − C̃′ωM̂T C̃ω(C̃′ωN̂T C̃ω)−1C̃ωN̂T

)]C
.

Further, rewrite the second factor using

C̃′ωM̂T − C̃′ωM̂T C̃ω(C̃′ωN̂T C̃ω)−1C̃ωN̂T
= C̃′ωΠ̂

′
Σ̂−1Π̂− C̃′ωΠ̂

′
Σ̂−1Π̂C̃ω(C̃′ωB

R
k0

(θ̂)′ 〈x̂t, x̂t〉−1
BR
k0

(θ̂)C̃ω)−1C̃′ωB
R
k0

(θ̂)′ 〈x̂t, x̂t〉−1
BR
k0

(θ̂)

= C̃′ωΠ̂
′
Σ̂−1Π̂− C̃′ωΠ̂

′
Σ̂−1(Ĉ − C̃(C̃ω))BR

k0
(θ̂)

= C̃′ωΠ̂
′
Σ̂−1Π̃,

with Ĉ := CSS(θ̂) and Π̃ := C̃(C̃ω)BR
k0

(θ̂) − [Is, 0]. Multiplying β̃ from the right, and using

α̃ := Π̃β̃ and α̂ := Π̂β◦, the above FOC imply[(
C̃′ω(N̂T + M̂T )C̃ω

)−1

(C̃ω − Cω)′β◦α̂
′Σ̂−1α̃

]C
=

[
−
(
C̃′ω(N̂T + M̂T )C̃ω

)−1

C′ωΠ̂
′
Σ̂−1α̃

]C
.

Note that C′ωΠ̂
′

is equal to (C′ωŜR11(β◦)Cω)−1C′ωŜR1ε(β◦), i. e., the OLS estimator in the reduced
model of the restricted approach and recall the identity (C̃′ωN̂T C̃ω)−1 = C̃′ωŜR11(β̃)C̃ω. Therefore,

C̃′ωM̂T C̃ω, which is Op(T
−2) due to C′ωΠ̂

′
being Op(T

−1), is dominated by C̃′ωN̂T C̃ω, which is

Op(T
−1). Using also T−1C̃′ωŜR11(β̃)C̃ω = T−1C′ωŜR11(β̃)Cω + op(1), thus,[(

T−1C̃′ωŜR11(β̃)C̃ω
)
T (C̃ω − Cω)′β◦α̂

′Σ̂−1α̃
]C

=
[
−(T−1C̃′ωŜR11(β̃)C̃ω)(T−1C′ωŜR11(β̃)Cω)−1

〈
C′ωR̂1,t(β◦), ε̂

R
t (β◦)

〉
Σ̂−1α̃

]C
+ op(1),

converges to (∫ 1

0

FF ′du

)
T (C̃ω − Cω)′β◦

[
ᾰ′◦Σ

−1ᾰ◦
]C

= −
∫ 1

0

F (dW ′)
[
Σ−1ᾰ◦

]C
,

such that the limit of T (C̃ω−Cω)′β◦ is −
(∫ 1

0
FF ′du

)−1 ∫ 1

0
F (dV ′). Finally it holds that TC′ω(β̃−

β◦) = −T (C̃ω − Cω)′β◦ +Op(T
−1), which finishes the proof also for the restricted approach.

(II) Distribution of pseudo likelihood ratio test for β = b:

To shorten notation, define [ĈR−k0
(β), α̌R(β)] := 〈Z0,t, V

ex
t (β, θ̂)〉H11(β, θ̂) +JH21(β, θ̂) such that

ε̂Rt (β) = Z0,t − α̌R(β)β′Z1,t − ĈR−k0
(β)Vt(θ̂). The test statistic is then equal to

2Lex,RT (β̃R, θ̂)− 2Lex,RT (b, θ̂) = −T log
∣∣∣〈ε̂Rt (b), ε̂Rt (b)

〉−1
〈
ε̂Rt (β̃R), ε̂Rt (β̃R)

〉∣∣∣
= −T log

∣∣∣Is +
〈
ε̂Rt (b), ε̂Rt (b)

〉−1 (〈
δt, ε̂

R
t (b)

〉
+
〈
ε̂Rt (b), δt

〉
+ 〈δt, δt〉

)∣∣∣ ,
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where δt := ε̂Rt (β̃R)− ε̂Rt (b), such that

δt = (α̌R(b)b′ − α̌R(β̃R)(β̃R)′)Z1,t + (ĈR−k0
(b)− ĈR−k0

(β̃R))Vt(θ̂)

= (α̌R(b)− α̌R(β̃R))b′Z1,t − α̌R(β̃R)(β̃R − b)′CωC′ωZ1,t + (ĈR−k0
(b)− ĈR−k0

(β̃R))Vt(θ̂).

Note also that (β̃R − b) in Op(T
−1) under the null hypothesis implies (α̌R(b) − α̌R(β̃R)) and

(ĈR−k0
(b) − ĈR−k0

(β̃R)) in Op(T
−1), due to Lemma 7(IV). Note that (ĈR−k0

(b) − ĈR−k0
(β̃R)) in

Op(T
−1) can be bounded even further using

ε̂Rt (β̃R)− ε̂Rt (b) =
(〈
Z0,t, V̂

ex
t (β̃R)

〉
H11(β̃R)− JH21(β̃R)

)
(Dex

T P
ex)−1[

1

T
(PuZ2,t)

′, (V̂ ex,stt (β̃R))′]′

−
(〈
Z0,t, V̂

ex
t (b)

〉
H11(b)− JH21(β̃R)

)
(Dex

T P
ex)−1[

1

T
(PuZ2,t)

′, (V̂ ex,stt (b))′]′

=: MR
0,T (β̃R)[

1

T
(PuZ2,t)

′, (V̂ ex,stt (β̃R))′]′ −MR
0,T (b)[

1

T
(PuZ2,t)

′, (V̂ ex,stt (b))′]′.

Since (MR
0,T (β̃R)−MR

0,T (b)) is in Op(T
−1), for the coefficient of the component (PuZ2,t) in δt it

holds that (
ĈR−k0

(b)− ĈR−k0
(β̃R)

)
P ′
[
IsS−

∑S
1 rk

0

]
= Op(T

−2).

Thus, the dominant component in δt is α̌R(β̃R)(β̃R − b)′CωC′ωZ1,t. Expanding the likelihood and
extracting the dominant components leads to

2Lex,RT (β̃R, θ̂)− 2Lex,RT (b, θ̂)

= −T tr
[
〈ε̂t(b), ε̂t(b)〉−1

(〈δt, ε̂t(b)〉+ 〈ε̂t(b), δt〉+ 〈δt, δt〉)
]

+ op(1)

= tr
[
〈ε̂t(b), ε̂t(b)〉−1

α̌R(β̃R)
(
T (β̃R − b)′Cω

)
〈C′ωZ1,t, ε̂t(b)〉

]
+ tr

[
〈ε̂t(b), ε̂t(b)〉−1 〈ε̂t(b), C′ωZ1,t〉

(
TC′ω(β̃R − b)

)
α̌R(β̃R)′

]
− tr

[
〈ε̂t(b), ε̂t(b)〉−1

α̌R(β̃R)
(
T (β̃R − b)′Cω

) 〈C′ωZ1,t, C′ωZ1,t〉
T

(
TC′ω(β̃R − b)

)
α̌R(β̃R)′

]
+ op(1)

Application of the respective convergence results then implies

2Lex,RT (β̃R, θ̂)− 2Lex,RT (b, θ̂)
p→ tr

(
(ᾰ′◦Σ

−1ᾰ◦)

∫ 1

0

(dV )F ′
(∫ 1

0

FF ′du

)−1 ∫ 1

0

F (dV )′

)
.

Now notice that conditional upon F the matrix
∫ 1

0
(dV )F ′ is Gaussian with mean zero and con-

ditional variance (ᾰ′◦Σ
−1ᾰ◦)

−1 ⊗
∫ 1

0
FF ′du, such that conditionally on F the statistic is χ2 with

2r(p− r) degrees of freedom. Consequently, this result also holds marginally.

Under the null hypothesis the above asymptotic result holds for both θ̂c,ωn and θ̂bn as defined in the
Theorem. Finally,

2
(
Lex,RT (β̃R(θ̂bn), θ̂bn)− Lex,RT (b, θ̂bn)

)
< 2

(
LT (θ̂c,ωn )− LT (θ̂bn)

)
< 2

(
Lex,RT (β̃R(θ̂c,ωn ), θ̂c,ωn )− Lex,RT (b, θ̂c,ωn )

)
implies that 2

(
LT (θ̂c,ωn )− LT (θ̂bn)

)
follows the same distribution.

For the unrestricted concentration approach consider the expansion of Lex,UT (β◦, θ̂) around its
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minimizer β̃ (where, thus, the first derivative is zero). The second order approximation of

2Lex,UT (β̃, θ̂) − 2Lex,UT (b, θ̂) equals the difference between two terms, compare Johansen (1996,
Lemma A.8). The first term is equal to

T tr
(

(β̃
′
Ŝ11β̃)−1(β̃ − β◦)′(̂Ŝ11 − Ŝ11β̃(β̃

′
Ŝ11β̃)−1β̃

′
Ŝ11)(β̃ − β◦)

)
= T tr

(
(β̃
′
Ŝ11β̃)−1(β̃ − β◦)′Ŝ11(β̃ − β◦)

)
+Op(T

−1)

and the second term reduces to

T tr
(

(β̃
′
Ŝ11,0β̃)−1(β̃ − β◦)′(Ŝ11,0 − Ŝ11,0β̃(β̃

′
Ŝ11,0β̃)−1β̃

′
Ŝ11,0)(β̃ − β◦)

)
= T tr

(
(β̃
′
Ŝ11,0β̃)−1(β̃ − β◦)′Ŝ11(β̃ − β◦)

)
+Op(T

−1).

Combining the results and using Johansen and Schaumburg (1999, Lemma 8), which implies that

(β̃
′
Ŝ11,0β̃)−1 − (β̃

′
Ŝ11β̃)−1 p→ ᾰ′◦Σ

−1ᾰ◦

we find

2LexT (β̃, θ̂)− 2LexT (b, θ̂) = T tr
(

(ᾰ′◦Σ
−1ᾰ◦)(β̃ − β◦)′Ŝ11(β̃ − β◦)

)
+Op(T

−1).

From the previous convergence results we find that the limit of the above expression is given by

tr

(
(ᾰ′◦Σ

−1ᾰ◦)

∫ 1

0

(dV )F ′
(∫ 1

0

FF ′du

)−1 ∫ 1

0

F (dV )′

)
.

From here the proof proceeds as for the restricted concentration approach.

(III) Distribution of pseudo likelihood ratio test for linear hypotheses on β
The developments for this pseudo likelihood ratio test are similar to the proof of Johansen (1996,
Theorem 13.10.) and, hence, omitted.

B.5 Proof of Theorem 8

(I) No deterministics
The rank test statistic for the unrestricted approach in this case is given by

−2 logQUT (H(rω)/H(s)|θ̂) = −T log
|Ŝ11||β̃

′
Ŝ11,0β̃|

|Ŝ11,0||β̃
′
Ŝ11β̃|

.

Using the identity

|[β̃, C̃ω]′||Ŝ11,0||[β̃, C̃ω]′| = |[β̃, C̃ω]′Ŝ11,0[β̃, C̃ω]′|

= |β̃
′
Ŝ11,0β̃||C̃′ω(Ŝ11,0 − Ŝ11,0β̃(β̃

′
Ŝ11,0β̃)−1β̃Ŝ11,0)C̃ω|

=: |β̃
′
Ŝ11,0β̃||C̃′ωŜ11,0β̃C̃ω|

and a similar one for the matrix Ŝ11, we find

−2 logQUT (H(rω)/H(s)|θ̂) = −T log
|C̃′ωŜ11,0β̃C̃ω|
|C̃′ωŜ11,β̃C̃ω|

= −T log
| 1T C̃

′
ωŜ11,0β̃C̃ω|

| 1T C̃′ωŜ11,β̃C̃ω|
.
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For the restricted approach we have

−2 logQRT (H(rω)/H(s)|θ̂) = −T
(

log
∣∣∣〈ε̂Rt (β̃R), ε̂Rt (β̃R)

〉∣∣∣− log
∣∣〈ε̂Rt (I2s), ε̂

R
t (I2s)

〉∣∣)
= −T log

(
|Σ̂| |(C̃Rω )′N̂T C̃Rω |
|(C̃Rω )′(N̂T + M̂T )C̃Rω |

)
+ log |Σ̂|,

compare the proof of Theorem 7. Using again the identities of Lemma 4 it follows that

−2 logQRT (H(rω)/H(s)|θ̂) = T log
∣∣∣Is−rω + SR1ε(β̃

R)Σ̂−1ŜRε1(β̃R)((C̃Rω )′ŜR11(β̃R)C̃Rω )−1
∣∣∣

= −T log
| 1T (C̃Rω )′ŜR11,0(β̃R)C̃Rω |
| 1T (C̃Rω )′ŜR11(β̃R)C̃Rω |

,

with ŜR11,0(β̃R) := ŜR11(β̃R)− ŜR1ε(β̃R)Σ̂−1ŜRε1(β̃R), analogous to the unrestricted approach.
For the unrestricted approach, it follows from Lemma 7

T−1C̃′ωŜ11,β̃C̃ω := T−1C̃′ω(Ŝ11 − Ŝ11β̃(β̃
′
Ŝ11β̃)−1β̃

′
Ŝ11)C̃ω = T−1C̃′ωŜ11C̃ω + op(1)

d→
∫ 1

0

FF ′du

and the same result holds for C̃′ωŜ11,0β̃C̃ω as well as for (C̃Rω )′ŜR11(β̃R)C̃Rω and (C̃Rω )′ŜR11,0(β̃R)C̃Rω .
Thus, the ratio in the above expression tends to 1 for both the restricted and the unrestricted
approach.
Expanding the test statistic of the unrestricted approach leads to

−2 logQUT (H(rω)/H(s)|θ̂) = tr
(

(T−1C̃′ωŜ11,β̃C̃ω)−1C̃′ωŜ10,β̃Ŝ
−1

00,β̃
Ŝ01,β̃C̃ω

)
+ op(1),

where Ŝ00,β̃ := Ŝ00 − Ŝ01β̃
′
(β̃
′
Ŝ11β̃)−1β̃

′
Ŝ10 = 〈ε̃t, ε̃t〉 converges to Σ and

C̃′ωŜ10,β̃ : = C̃′ω(Ŝ10 − Ŝ11β̃(β̃
′
Ŝ11β̃)−1β̃

′
Ŝ10)

= C̃′ωŜ10 − C̃′ωŜ11β̃α̃
′

= C̃′ω
〈
R̂1,t, ε̃t

〉
= C̃′ωŜ1ε − C̃′ωŜ11(β̃ − β◦)α̃′ + op(1).

Similarly, for the restricted concentration approach it holds that

−2 logQRT (H(rω)/H(s)|θ̂) = tr

((
T−1(C̃Rω )′ŜR11(β̃R)C̃Rω

)−1

(C̃Rω )′ŜR1ε(β̃
R)Σ̂−1ŜRε1(β̃R)C̃Rω

)
+ op(1).

Further,

(C̃Rω )′ŜR1ε(β̃
R) = (C̃Rω )′

〈
R̂1,t(β̃

R), ε̂Rt (β◦)
〉
− (C̃Rω )′

〈
R̂1,t(β̃

R), ε̂Rt (β◦)− ε̂Rt (β̃R)
〉

= (C̃Rω )′
〈
R̂1,t(β̃

R), ε̂Rt (β◦)
〉
− (C̃Rω )′

〈
R̂1,t(β̃

R), α̌R(β̃R)(β̃R − β◦)′CωC′ωZ1,t

〉
+ op(1),

where the ε̂Rt (β◦)− ε̂Rt (β̃R) is treated as δt in the proof of Theorem 7(II).
Note that C̃′ω respectively (C̃Rω )′ can be replaced by C′ω without changing the limit. From Theorem 7
the random matrices C̃′ωŜ10,β̃ and (C̃Rω )′ŜR1ε(β̃

R) converge to∫ 1

0

F (dW )

[
Is
0

]
−
∫ 1

0

F (dW ′)Σ−1α◦(α
′
◦Σ
−1α◦)

−1α′◦

[
Is
0

]
=

∫ 1

0

F (dW ′)(I2s −Σ−1α◦(α
′
◦Σ
−1α◦)

−1α′◦)

[
Is
0

]
=

∫ 1

0

F (dW ′)α⊥((α⊥)′Σ−1α⊥)−1(α⊥)′Σ

[
Is
0

]
,
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where α⊥ = [αk0,⊥]R. Thus,

C̃′ωŜ10,β̃Ŝ
−1

00,β̃
Ŝ01,β̃C̃ω

(C̃Rω )′ŜR1ε(β̃
R)Σ̂−1ŜRε1(β̃R)C̃Rω

}
d→
∫ 1

0

F (dW ′)M

∫ 1

0

(dW )F ′,

where M is given by

M = α⊥((α⊥)′Σα⊥)−1(α⊥)′Σ

[
Is
0

]
Σ−1

[
Is
0

]′
Σα⊥((α⊥)′Σα⊥)−1(α⊥)′

such that

[M ]C =
1

2
α⊥((α⊥)′Σα⊥)−1(α⊥)′ΣΣ−1Σα⊥((α⊥)′Σα⊥)−1(α⊥)′ =

1

2
α⊥((α⊥)′Σα⊥)−1(α⊥)′.

The asymptotic distribution for both the restricted and the unrestricted approach is then given
by

−2 logQUT (H(rω)/H(s)|θ̂)
−2 logQRT (H(rω)/H(s)|θ̂)

}
d→ tr

[(∫ 1

0

FF ′du

)−1 ∫ 1

0

F (dW ′) M

∫ 1

0

(dW )F ′

]

= tr

[(∫ 1

0

FF ′du

)−1 ∫ 1

0

F (dW ′) [M ]C
∫ 1

0

(dW )F ′

]

=
1

2
tr

[∫ 1

0

(dB)B′
(∫ 1

0

BB′du

)−1 ∫ 1

0

B(dB′)

]
,

where B = (α′⊥Σα⊥)−1/2α′⊥W 1.
Note that the proof did not use any of the properties of Θ and, hence, the same asymptotic distri-
bution holds if the assumptions of Proposition 2 are fulfilled. In general only consistent estimation
of (Â, B̂) is needed.
These arguments show that the rank tests based on the SSECM lead to the well-known distribu-
tions. Finally also the pseudo likelihood ratio rank test is investigated. Recall θ̂c,ωn and θ̂n denoting
the maximum of the pseudo log-likelihood function over the set of all systems with cointegrating
rank of r = s− c for unit root frequency ω0 and the maximum over all stable systems respectively.
Then the following relations hold:

Lex,RT (β̃R(θ̂n), θ̂n) ≤ LT (θ̂c,ωn ) ≤ Lex,RT (I2s, θ̂
c,ω
n ) ≤ LT (θ̂n)

The first inequality holds since θ̂c,ωn maximizes the pseudo log-likelihood function over all systems
with the specified structure. The second inequality holds because dropping the rank restriction
can only increase the pseudo log-likelihood function. And the last holds due to θ̂n being the
maximizer over all systems of order n. These inequalities imply

−2 logQRT (H(r)/H(s), θ̂c,ωn ) = −2
(
LT (θ̂c,ωn )− Lex,RT (I2s, θ̂

c,ω
n )

)
≤ −2

(
LT (θ̂c,ωn )− LT (θ̂n)

)
≤ −2

(
Lex,RT (β̃R(θ̂n), θ̂n)− LT (θ̂n)

)
= −2 logQRT (H(r)/H(s), θ̂n).

The evaluations above show that the limit of the left hand side and the one of the right hand side
coincide. Thus, the bounds imply that also the pseudo likelihood ratio in the middle converges to
the same limit. Moreover, also the essential term in these expressions is identical such that not
only the limit is the same but in fact under the null hypothesis the difference of the test statistics
converges to zero.
Note, furthermore, that for the test at one unit root the specification at the other unit roots does
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not influence the limiting distribution under the null hypothesis.

(II) Including deterministics
The derivation of the asymptotic distribution of the various rank test statistics proceeds analo-
gously and is, therefore, only briefly sketched here. The necessary adjustments are the inclusion
of the deterministic term. Thus, define

βD := [βD]R, βD := [β′k0
, ξ′k0

]′

βD,◦ := [βD,◦]
R, βD,◦ := [β′k0,◦, ξ

′
k0,◦]

′,

ZD1,t := [[(X
(k0)
t )′, st,k0

]′]Rv ,

V Dt (θ) := [Vt(θ), ([st,1]Rv )′, . . . , ([st,k0−1]Rv )′, ([st,k0+1]Rv )′, . . . , ([st,S̃ ]Rv )′, t].

From this, R̂D0,t,R̂
D
1,t, Ŝ

D
11, Ŝ

D
1ε and β̃D can be derived. Moreover, define

CD =

[
Ck0,◦
T 1/2cξ

]R
BD =

[
Bk0,◦
cξ

]R
,

with cξ chosen such that β′D,◦CD = 0.

For the restricted approach define V D,ext (βD, θ) = [V Dt (θ)′, (β′DZ
D
1,t)
′]′. Using the blocks of the

inverse matrix of interest[
HD11(βD, θ) HD12(βD, θ)
HD21(βD, θ) HD22(βD, θ)

]
:=

[
〈V D,ext (βD, θ), V

D,ex
t (βD, θ)〉 GD(βD, θ)

GD(βD, θ)
′ 0

]−1

,

with GD(βD, θ) defined accordingly by replacing β with βD. Define the subblocks H21,1 corre-
sponding to the block [Is, 0] + ᾰγγ of J(ᾰγ) and HD21,2(βD, θ) corresponding to IR of HD21(βD, θ),
and define

εD,Rt (βD, θ) := Z0,t −
(〈
Z0,t, V

D,ex
t (βD, θ)

〉
HD11(βD, θ)− J(0)HD21(βD, θ)

)
V D,ext (βD, θ),

RD,R1,t (βD, θ) := ZD1,t −
(〈
ZD1,t, V

D,ex
t (βD, θ)

〉
HD11(βD, θ) +HD21,1(βD, θ)

)
V D,ext (βD, θ),

which are then used to define

ŜD,R11 (βD) :=
〈
RD,R1,t (βD, θ̂), R

D,R
1,t (βD, θ̂)

〉
ŜD,R1ε (βD) :=

〈
RD,R1,t (βD, θ̂), ε

D,R
t (βD, θ̂)

〉
for given θ̂. For these the following lemma holds.

Lemma 8 Let {yt}t∈Z be a seasonally integrated MFI(1) process generated according to the as-

sumptions stated in Assumption 1, and assume the true order n is known. Let θ̂ be the PML
estimator over a suitable parameter space Θ fulfilling the requirements of Proposition 2. The
following convergence results hold:

T−1C′DŜD11CD
T−1C′DŜ

D,R
11 (βD,◦)CD

}
d→ BD

∫ 1

0

H(u)H(u)′du B′D

C′DŜD1ε
C′DŜ

D,R
1ε (βD,◦)

}
d→ BD

∫ 1

0

H(u)
(
dW (u)′

) [Is
0

]
.

where H = [ 1√
2
((W1 + iW2)′, 1)′]R and W1 and W2 are two independent s-dimensional Brownian

motions with variance Σ.

From here the derivation follows closely the arguments presented in the proof of the case without
deterministic terms, with the dominant component in C′DRD1,t equal to [((2Ck0,◦xt,k0)′, 2T 1/2cξs

′
t,k)′]Rv .

The asymptotic results of Theorem 8(II) are then a consequence of applying Lemma 8 on the dom-
inant components of the expansion of the pseudo likelihood ratio test statistics.
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Appendix C

Appendix to Chapter 3

C.1 SSECM

Proof of Theorem 9: Consider a state space system (A,B,C), with λ|max|(A) ≤ 1, λ|max|(A) ≤
1 and Is −A = Is − (A−BC) invertible. The corresponding transfer function is equal to k(z) =
Is+zC(In−zA)−1B, while the inverse transfer function is given by k−1(z) = Is−zC(In−zA)−1B.
Consider the power series

k̃−1(z) = ∆2(z)Is −Πz − Γ∆(z)z − C(In −A)−2A2
∞∑
m=1

Am−1B∆2(z)zm,

with Π = −Is +C(In −A)−1B and Γ = −Is −C(In −A)−2AB, which equals k−1(z) as shown in
what follows: for m > 2 the m-th power series coefficient can be calculated as

K̃−m = −C(In −A)−2A2(Am−1 − 2Am−1−1 +Am−2−1)B

= −C(In −A)−2(In −A)2Am−1B = −CAm−1B = K−m

as required. For m = 0, 1, 2 it holds that

K̃−0 = Is,

K̃−1 = −2Is + Is − C(In −A)−1B + Is + C(In −A)−2AB − C(In −A)−2A2B

= −CB,
K̃−2 = Is − Is − C(In −A)−2AB + 2C(In −A)−2A2B − C(In −A)−2A3B

= −CAB.

Thus, for t > 0 and y0 = y−1 = 0

t−1∑
m=0

K−mỹt−m = ∆2Is −Πỹt−1 − Γ∆ỹt−1 − C(In −A)−2A2
t−1∑
m=1

Am−1B∆2ỹt−m,

The representation then follows from setting

vt := (In −A)−2A2
t−1∑
m=1

Am−1B∆2ỹt−m, v1 := x1.

With respect to deterministics note that for the constant we obtain

t−1∑
m=0

K−md = k−1(1)d−
∞∑
m=t

K−md

= −Πd+ CAt−1(In −A)−1Bd.
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For the linear trend we obtain

t−1∑
m=0

K−me(t−m) =

∞∑
m=0

K−me(t−m)−
∞∑
m=t

K−me(t−m)

= −Πet+ (Π− Γ)e+ CAt−1
∞∑
m=t

Am−tBe(m− t)

= −Πe(t− 1)− Γe+ CAt−1(In −A)−2Be− CAt−1(In −A)−1Be.

The above terms with factor CAt−1 are included in the SSECM through the starting value v1.

C.2 PML Estimator

C.2.1 Preliminaries

The proof of consistency of the PML estimator for I(2) processes reiterates the arguments in the
analogous proof in the MFI(1) case given in de Matos Ribeiro et al. (2020). To make the proof
more readable we recount it almost literally, as focusing the discussion only on the differences of
the proves would necessitate the reader to have both articles at hand.
The main ideas follow a similar line of thought as illustrated in the example given in Saikkonen
(1995, Section 5). The key property in Saikkonen’s work is the continuous convergence of certain
quantities, which has also been developed in Saikkonen (1993). Instead of Saikkonen’s Condition
3.1. (compare Saikkonen (1993, p. 160)) we will use the following uniform equicontinuity condition,
that is later shown to hold for the required quantities:

Condition 1 (USE - Uniform Stochastic Equicontinuity) A sequence Xn(θ), θ ∈ Θ is said
to fulfill Condition USE, if for every sequence θn → θ and every ε > 0, δ > 0 and η > 0 there
exists an integer n(ε, η, δ) such that P{supt∈B(θn,δ) ‖Xn(t)−Xn(θn)‖ > ε} ≤ ηδ for n ≥ n(ε, η, δ).

This condition ensures that the convergence is uniformly in the parameter space. For a compact
space one obtains the following consequence, compare de Matos Ribeiro et al. (2020, Lemma 2):

Lemma 9 Assume that Xj(θ), θ ∈ Θ fulfills Condition USE, where Θ is compact. Further
assume that for each fixed θ ∈ Θ the sequence Xj(θ) → 0 in probability for j → ∞. Then
supθ∈ΘXj(θ)→ 0 in probability for j →∞.

For the readers convenience we list the relevant convergence results from Lemma 1 of Sims et al.
(1990).

Lemma 10 Let {εt}t∈N be a martingale difference sequence satisfying E(εt|Ft−1) = 0, E(εtε
′
t) =

E(εtε
′
t|Ft−1) = Σ◦ > 0 and E(‖εt‖4) <∞. Further let W (u) denote the weak limit of T−1/2

∑[Tu]
t=1 εt,

where [Tu] denotes the integer part of Tu, such that W (u) is a Brownian motion with variance
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Σ◦. Then

(i)
〈∑t−1

j=1 εj , εt

〉
d→
∫ 1

0

W (u)dW (u)′

(ii) T−1
〈∑t−1

j=1 εj ,
∑t−1
j=1 εj

〉
d→
∫ 1

0

W (u)W (u)′du

(iii) T−1
〈∑t−1

k=1

∑k−1
j=1 εj , εt

〉
d→
∫ 1

0

(∫ u

0

W (v)dv

)
dW (u)′

(iv) T−2
〈∑t−1

k=1

∑k−1
j=1 εj ,

∑t−1
j=1 εj

〉
d→
∫ 1

0

(∫ u

0

W (v)dv

)
W (u)′du

(v) T−3
〈∑t−1

k=1

∑k−1
j=1 εt,

∑t−1
k=1

∑k−1
j=1 εt

〉
d→
∫ 1

0

(∫ u

0

W (v)dv

)(∫ u

0

W (v)dv

)′
du

(vi) T 1/2 〈1, εt〉
d→
∫ 1

0

1dW (u)′

(vii) T−1/2
〈

1,
∑t−1
j=1 εj

〉
d→
∫ 1

0

W (u)′du

(viii) T−3/2
〈

1,
∑t−1
k=1

∑k−1
j=1 εj

〉
d→
∫ 1

0

(∫ u

0

W (v)dv

)′
du

(ix) T−1/2 〈t, εt〉
d→
∫ 1

0

udW (u)′

(x) T−3/2
〈
t,
∑t−1
j=1 εj

〉
d→
∫ 1

0

uW (u)′du

(xi) T−5/2
〈
t,
∑t−1
k=1

∑k−1
j=1 εj

〉
d→
∫ 1

0

u

(∫ u

0

W (v)dv

)′
du

In the expressions for the pseudo likelihood function, terms that can be represented as filtered
versions of the observations yt show up, where the filters depend upon the parameter values.
Thus, it is necessary to understand the convergence properties of estimated sample covariances
of expressions of the form g(L, θ)xt =

∑t−1
j=0Gj(θ)xt−j , where g(z, θ) =

∑∞
j=0Gj(θ)z

j denotes
a family of stable transfer functions parametrized by the parameter vector θ and xt is either
integrated of order one, i. e. xt =

∑t−1
j=1 εj or of order two, i. e. xt =

∑t−1
k=1

∑k−1
j=1 εj . The notation

here somewhat hides the fact that the summation is only performed for t > 0 or equivalently
xt = 0, t < 0 is assumed. We will use this notation throughout the appendix. A family of transfer
functions g(z, θ), θ ∈ Θ is called uniformly stable, if there exist constants C <∞, 0 < ρ < 1, such
that supθ∈Θ ‖Gj(θ)‖ ≤ Cρj , i.e. the decay in the transfer function coefficients is exponential and
uniform in the parameter set. For quantities of this form in the following lemma the asymptotic
behavior is clarified and for each of the considered expressions Condition USE is established.
The lemma parallels Theorem 4.2 in Saikkonen (1993, page 167) in which he establishes his
Condition 3.1.

Lemma 11 Let g(z; θ) =
∑∞
j=0Gj(θ)z

j , k(z; θ) =
∑∞
j=0Kj(θ)z

j , θ ∈ Θ be two uniformly stable
families of rational transfer functions, of finite McMillan degrees less or equal to n, where it
is always assumed that the transfer functions are of the correct dimensions. Let {εt}t∈Z be a
martingale difference sequence fulfilling the assumptions of Lemma 10 with non-singular innovation
variance Σ◦.
The following asymptotic results hold for each fixed θ ∈ Θ.

(i) 〈g(L; θ)εt, k(L; θ)εt〉 →
∑∞
r=0Gr(θ)Σ◦Kr(θ)

′ in probability.
〈g(L; θ)1, k(L; θ)εt〉 → 0.
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(ii) 〈g(L; θ)
∑t−1
j=1 εj , k(L; θ)εt〉

d→

g(1; θ)
(∫ 1

0
W (u)dW (u)′

)
k(1; θ)′ − g(1; θ)Σ◦k̃(0; θ)′ + lim

t→∞
Eg̃(L; θ)εt−1(k(L; θ)εt)

′

where g(z; θ) = g(1; θ) + (1− z)g̃(z; θ), k(z; θ) = k(1; θ) + (1− z)k̃(z; θ).

(iii) T−1〈g(L; θ)
∑t−1
j=1 εj , k(L; θ)

∑t−1
j=1 εj〉

d→ g(1; θ)
(∫ 1

0
W (u)W (u)′du

)
k(1; θ)′.

(iv) 〈g(L; θ)1, k(L; θ)1〉 → g(1; θ)k(1; θ)′.

(v) T−1/2〈g(L; θ)
∑t−1
j=1 εj , k(L; θ)1〉→g(1; θ)

(∫ 1

0
W (u)du

)
k(1; θ)′.

(vi) T−1〈g(L; θ)t, k(L; θ)1〉 → 1
2g(1; θ)k(1; θ)′.

T−2〈g(L; θ)t, k(z; θ)t〉 → 1
3g(1; θ)k(1; θ)′.

(vii) T−3/2〈g(L; θ)t, k(L; θ)
∑t−1
j=1 εj〉

d→ g(1; θ)
(∫ 1

0
uW (u)′du

)
k(1; θ)′.

(viii) T−1/2〈g(L; θ)t, k(L; θ)εt〉
d→ g(1; θ)

(∫ 1

0
udW (u)′

)
k(1; θ).

(ix) T−1〈g(L; θ)
∑t−1
k=1

∑k−1
j=1 εj , k(L; θ)εt〉

d→ g(1; θ)
(∫ 1

0
(
∫ u

0
W (v)dv)dW (u)′

)
k(1; θ).

(x) T−2〈g(L; θ)
∑t−1
k=1

∑k−1
j=1 εj , k(L; θ)

∑t−1
j=1 εj〉

d→ g(1; θ)
(∫ 1

0
(
∫ u

0
W (v)dv)W (u)′du

)
k(1; θ).

(xi) T−3〈g(L; θ)
∑t−1
k=1

∑k−1
j=1 εj , k(L; θ)

∑t−1
k=1

∑k−1
j=1 εj〉

d→

g(1; θ)
(∫ 1

0
(
∫ u

0
W (v)dv)(

∫ u
0
W (v)dv)′du

)
k(1; θ).

(xii) T−3/2〈g(L; θ)
∑t−1
k=1

∑k−1
j=1 εj , k(L; θ)1〉 d→ g(1; θ)

(∫ 1

0
(
∫ u

0
W (v)dv)du

)
k(1; θ)

T−5/2〈g(L; θ)
∑t−1
k=1

∑k−1
j=1 εj , k(L; θ)t〉 d→ g(1; θ)

(∫ 1

0
(
∫ u

0
W (v)dv)udu

)
k(1; θ).

All sequences in items (i) to (xii) fulfill condition USE.

Proof: For (i)-(viii) compare de Matos Ribeiro et al. (2020, Lemma 4). The proof rests upon the
results established in Lemma 10.
Decompose g(z; θ) = g(1; θ)+(1−z)g̃(z; θ), where the assumed uniform stability of g(z; θ) implies
that also g̃(z; θ) =

∑∞
j=0 G̃j(θ)z

j is a uniformly stable family of transfer functions. Using the
decomposition we obtain:

g(L; θ)
∑t−1
k=1

∑k−1
j=1 εj =

∑t−1
i=0 Gi(θ)

∑t−1
k=1

∑k−1
j=1 εj

= g(1; θ)
∑t−1
k=1

∑k−1
j=1 εj + g̃(L; θ)(

∑t−1
k=1

∑k−1
j=1 εj −

∑t−2
k=1

∑k−1
j=1 εj)

= g(1; θ)
∑t−1
k=1

∑k−1
j=1 εj + g̃(L; θ)

∑t−2
j=1 εj

for t ∈ N. Then item (ix) follows from

T−1〈
∑t−1
k=1

∑k−1
j=1 εj , k(L; θ)εt〉

= T−1〈
∑t−1
k=1

∑k−1
j=1 εj , k(1; θ)εt〉+ T−1〈

∑t−1
k=1

∑k−1
j=1 εj , k̃(L; θ)(1− L)εt〉.
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The first term converges to
∫ 1

0
W (u)dW (u)′ k(1; θ)′ according to Lemma 10. The second term is

equal to

T−2
T∑
t=1

[∑t−1
k=1

∑k−1
j=1 εj(k̃(L; θ)εt)

′ −
∑t−1
k=1

∑k−1
j=1 εj(k̃(L; θ)εt−1)′

]
= T−2

T−1∑
t=1

[∑t−1
k=1

∑k−1
j=1 εj −

∑t
k=1

∑k−1
j=1 εj

]
(k̃(L; θ)εt)

′ + oP (1)

= −T−2
T−1∑
t=1

∑t−1
j=1 εj(k̃(L; θ)εt)

′ + oP (1),

where the oP (1) term is due to T−2
∑T−1
k=1

∑k−1
j=1 εj(k̃(L; θ)εT )′. This term converges to zero due

to (ii). Combining this with pre-multiplication of
∑t−1
k=1

∑k−1
j=1 εj with g(1; θ) then delivers the

result. Item (x) and (xi) can be shown using the same approach. The proof of (xii) follows from

g(L; θ)1 =
∑t−1
j=0Gj(θ)1 =

∑t−1
j=0Gj(θ) = g(1; θ) + o(1),

where the o(1) term is of order O(ρt), and

g(L; θ)t =
∑t−1
j=0Gj(θ)(t− j) =

(∑t−1
j=0Gj(θ)

)
t−
∑t−1
j=0 jGj(θ)

= g(1; θ)t− g∗(1; θ)−
(∑∞

j=tGj(θ)
)
t+
∑∞
j=t jGj(θ),

where g∗(z) =
∑∞
j=1 jGj(θ)z

j−1. The difference of g(L; θ)t and g(1; θ)t−g∗(1; θ) is of order O(tρt).
The result then follows from Lemma 10.
The fulfillment of Condition USE for the sequences considered in (ix) to (xii) is left to be shown,
but proceeds as for the other terms. The difference for two parameter vectors (remembering that
Condition USE is concerned with the behavior for θn → θ) can be decomposed in two parts: One
part depends only upon the parameter vectors but not on εt, for which convergence to zero follows
immediately due to continuity of the parametrization. The other part can be bounded by the esti-
mation error from estimating sample covariances. Consider, e.g., g(1; θ)〈

∑t−1
k=1

∑k−1
j=1 εj , εt〉k(1; θ)′,

which is the product of three terms. Of these three terms, two are deterministic and depend con-
tinuously on the parameter vector, the third term is stochastic and independent of the parameter
vector. This finishes the proof of the Lemma.

Lemma 12 Let the I(2) process {yt}t∈Z be generated as in Theorem 10. Define the pseudo like-
lihood function and the prediction error criterion function

LT (θ, σ, d, e;YT ) = LT (k(z; θ), σ, d, e;YT ),

LPE,T (θ, σ, d, e;YT ) = LPE,T (k(z; θ), σ, d, e;YT ),

where k(z; θ) = π(A(θ),B(θ), C(θ)). Assume that the pseudo likelihood function LT is maximized
for given multi-index Γ over the parameters θ ∈ ΘΓ, σ ∈ ΘΣ, (d, e) ∈ ΘD, where all sets are
compact such that infΣ∈ΘΣ

λmin(Σ) > 0, supθ∈ΘΓ
λ|max|(A(θ)) < 1 and sup(d,e)∈ΘD

(‖d‖+ ‖e‖) <
∞.
Then

sup
θ∈ΘΓ,(d,e)∈ΘD,σ∈ΘΣ

|LT (θ, σ, d, e;YT )− LPE,T (θ, σ, d, e;YT )| = o(T ε−1)

for every ε > 0. The same holds for the difference in the first and second derivatives.

The proof proceeds as in the MFI(1) case, compare de Matos Ribeiro et al. (2020, Lemma 5).
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C.2.2 Proof of Consistency

Consider a state space system given by:

yt = C1xt,1 + C2xt,2 + C3xt,3 + C•xt,• + εt +Dt,
xt+1,1 = xt,1 + xt,2 + B1εt, x1,1 = 0,

xt+1,2 = xt,2 + B2εt, x1,2 = 0,

xt+1,3 = xt,3 + B3εt, x1,3 = 0,

xt+1,• = A•xt,• + B•xt,•, x1,• =
∑∞
j=0A

j
•B•ε1−j ,

Let P1 := C1C′1 and P1⊥ := Is − P1 denote the projection onto the column space of C1 and its
ortho-complement respectively. Then with Dt = Dst, with D := [d, e] and st = [1, t]′, we find that

y̌t − ĎT : = (P1∆ + P1⊥)(yt −Dt)
= C1∆xt,1 + P1C•∆xt,• + P1∆εt + C2xt,2 + C3xt,3 + P1⊥C•xt,• + P1,⊥εt

= C1(xt−1,2 + B1εt−1 − C′1C•xt−1,• − C′1εt−1) + C2xt,2 + C3xt,3 + C•xt,• + εt

is the sum of a stationary process with a deterministic part

ĎT = (P1∆ + P1⊥)Dst = Dst − P1Dst−1 = Dst − P1DS−1st =
(
D − P1DS−1

)
st =: Ďst.

This follows since st = Sst−1 for S :=

[
1 1
0 1

]
by construction of the vector st of deterministics.

Hence, it can be written as

y̌t = ǩ(L)εt + Ďst,

where the solutions processes to the stationary transfer function ǩ(z) have the representation

y̌t − Ďst = C1x̌t,1 + C2xt,2 + C3xt,3 + C•xt,• + εt,
x̌t+1,1

xt+1,2

xt+1,3

xt+1,•

 =


0 I 0 −C′1C•
0 I 0 0
0 0 I 0
0 0 0 A•



x̌t,1
xt,2
xt,3
xt,•

+


B1 − C′1
B2

B3

B•

 εt.
The transfer function ǩ(z) corresponds to process integrated of order one. The zeros are the
eigenvalues of 

0 I 0 −C′1C•
0 I 0 0
0 0 I 0
0 0 0 A•

−

B1 − C′1
B2

B3

B•

 [C1 C2 C3 C•] = A− BC,

where (A,B, C) denotes the original system in canonical form. Hence, invertibility of k(z) implies
invertibility of ǩ(z). Note that we can further rewrite y̌t − Ďst as

y̌t − Ďst = C1(−B2εt−1 + B1εt−1 − C′1C•xt−1,• − C′1εt−1) + (C1 + C2)xt,2 + C3xt,3 + C•xt,• + εt,

where the common I(1)-trends enter the process y̌t − Ďst through the matrix [C1 + C2, C3]. Thus,

let P2 := [C1 + C2, C3] ([C1 + C2, C3]′[C1 + C2, C3])
−1

[C1 + C2, C3]′ and P2⊥ = Is−P2. It follows that

ỹt = (P2∆ + P2⊥)y̌t = (P2∆ + P2⊥)ǩ(L)εt + (P1∆ + P1⊥)Ďst = k̃(L)εt + D̃st.

The transfer function k̃(z) is stable and D̃ := (Ď−P2ĎS−1) = D− (P1 +P2)DS−1 +P2P1DS−2.
The zeros of k̃(z) are the eigenvalues of[

0 −Č′1Č•
0 Ǎ•

]
−
[
B̌1 − Č′1
B̌•

]
[Č1 Č•] =

[
Ic − B̌1Č1 −B̌1Č•
−B̌•Č1 Ǎ• − B̌•Č•

]
= Ǎ − B̌Č,



119

where (Ǎ, B̌, Č) denotes the system corresponding to ǩ(z) and the I(1) process y̌t−Ďst in canonical
form. Hence, invertibility of ǩ(z) implies invertibility of k̃(z).
Therefore, the Gaussian likelihood function for YT := [y′1, ..., y

′
T ]′ can be calculated using ỸT :=

[y′1, y
′
2, ỹ
′
3, ..., ỹ

′
T ]′, which – being a linear invertible transformation of YT – is also Gaussian dis-

tributed. Note that y1 = C•x1,•+ε1 +Ds1 and y2 =
∑3
j=1 CjBjε1 +C•x2,•+ε2 +Ds2 for x1,u = 0.

Then −2/T times the Gaussian likelihood function for YT equals:

LT (k,D,Σ) =
1

T

(
log |ΓT (k,Σ)|+ (YT − (IT ⊗D)DT )′ΓT (k,Σ)−1(YT − (IT ⊗D)DT )′

)
=

1

T

(
log |ΓT (k̃,Σ)|+ (ỸT − (IT ⊗ D̃)DT )′ΓT (k̃,Σ)−1(ỸT − (IT ⊗ D̃)DT )′

)
,

where the dependence of the covariance matrix ΓT on the transfer function k or k̃ respectively
and the noise variance Σ is emphasized, while the influence of the variance of the initial state
diag(0, P•(θ, σ)) is neglected. Except for the inclusion of y1, y2 this is identical to the criterion
function used in Hannan and Deistler (1988, Section 4.2).
The domain of the transfer function k̃ here is defined analogously to the sets Θ in Hannan and
Deistler (1988, p. 110ff.): Let Θ ⊂ Mn,• × P c1 × P c1+c2 × D × Σ equal the product of the set
of marginally stable (having no poles within the closed unit disc) and minimum-phase (no zeros
within the closed unit disc) transfer functions of order smaller or equal to n with the sets P c1 and
P c1+c2 (space of projector matrices in Rs×s with rank equal to c1 respectively c1 + c2), the set D
(the vectorization of all s× 2 real matrices) and the set Σ (the set of all s× s symmetric positive
definite matrices). This set is endowed with the product topology of the pointwise topology for
Mn,•, with the gap metric for projector matrices and with the Euclidean topology for the two

sets of matrices. Then Θ denotes the corresponding closure, Θ̂ ⊂ Θ contains only stable transfer
functions and Θ∗ ⊂ Θ̂ in addition strictly minimum-phase transfer functions without zeros on the
unit circle.
Note that for k(z) as in the theorem it follows that k̃(z) ∈ Mn,• (see above). Furthermore, given

P1 and P2, there is a 1-1 mapping between the k and k̃:

k̃(z) = (P2∆ + P2⊥)(P1∆ + P1⊥)k(z)⇒ k(z) = (P1∆ + P1⊥)−1(P2∆ + P2⊥)−1k̃(z).

As seen above, under the assumption of stable invertibility of the true transfer function k(z) it
follows that k̃(z) is stably invertible. It further follows that the parameters for the transfer func-
tion k can be partitioned into a set that parameterizes the column space of C1 and [C1 + C2, C3],
relating to P1 = C1C′1 and P2 = [C1 + C2, C3]([C1 + C2, C3]′[C1 + C2, C3])−1[C1 + C2, C3]′, and the
remaining ones relating to k̃. This conforms with the parameterization suggested in Bauer et al.
(2020), which also considers the parameters corresponding to Cu and the ones corresponding to
C•, A, and B separately.
The proof of Theorem 10 is based on slightly adapting (and punctually slightly extending) the ar-
guments of Hannan and Deistler (1988, Section 4.2., p. 110 ff) (called HD henceforth). Therefore,
we also use the notation of HD referring to the quintuple (k, P1, P2, D,Σ) as θ in this section. As
in HD, Section 4.2. our proof is coordinate independent using only the transfer functions and not
the particular form of their realizations.
The pseudo maximum likelihood estimate θ̂ is obtained by minimizing LT (θ) = L̃T (k̃, P1, P2, D̃,Σ) =
LT (k,D,Σ) over Θ.
Now follow the proof of Theorem 4.2.1. of HD. As on p. 112 we define u(t, θ) = ỹt−D̃st, t = 3, .., T,
where u(1, θ) = y1−D̃s1, u(2, θ) = y2−(P1 +P2)y1−D̃s2 and uT (θ) = {u(t, θ)}t=1,...,T . Note that

here u(1, θ) and u(2, θ) deviates from the ’regular’ definition ỹ1 − D̃s1 = u(1, θ) − (P1 + P2)y0 +
P2P1y−1 and ỹ2 − D̃s2 = u(2, θ) + P2P1y0. Using this, we define

LT (θ) = T−1 log |Γ̃T (θ)|+ T−1uT (θ)Γ̃T (θ)−1uT (θ),

where the dependence on θ = (k, P1, P2, D,Σ) is stressed. Here Γ̃T (θ) = Γ̃T (k̃,Σ). Note that
LT (θ) depends on k only via k̃ and, thus, can be seen as a function of θ̃ = (k̃, P1, P2, D̃,Σ).
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Consequently maximizing LT over θ ∈ Θ is equivalent to maximizing the corresponding function

L̃T (θ̃) = LT (θ) = T−1 log |Γ̃T (θ̃)|+ T−1uT (θ̃)′Γ̃T (θ̃)−1uT (θ̃)

where θ = (k,D,Σ) maps onto θ̃ = (k̃, D̃,Σ) = Λ(θ) over the corresponding set Θ̃ = Λ(Θ) ⊂ Θ.
Then, using the arguments of HD on p. 112, it follows that L̃T is finite on Θ̂ (as k̃ is stable there).
This follows since all entries are bounded and the matrix Γ̃T (θ) is non-singular. Consider Γ̃T (θ̃)
in more depth: It is defined as the variance of

uT (θ) = Ỹ1,T (θ̃) +


(P1 + P2)y0 − P2P1y−1

−P2P1y0

0
...
0


⇒ Γ̃T (θ̃) =

[
V (y1,2) Cov(y1,2, Ỹ3,T (θ̃))

Cov(Ỹ3,T (θ̃), y1,2) ΓT−2(θ̃)

]
,

where Ỹi,T (θ̃) = [ỹt(θ)−D̃st]t=i,...,T . Here y1,2 = [(C•x1,•+ε1−Ds1)′, (Cux2,u+C•x2,•+ε2−Ds2)′]′.
This implies, using the block matrix inversion, that

Γ̃T (θ̃)−1 =

[
0 0

0 ΓT−2(θ̃)−1

]
(C.1)

+

[
Is

−ΓT−2(θ̃)−1Cov(Ỹ3,T (θ̃), y1,2)

]
Vπ(θ̃)−1

[
Is −Cov(y1,2, Ỹ3,T (θ̃))ΓT−2(θ̃)−1

]
,

where Vπ(θ̃) := V (y1,2) − Cov(y1,2, Ỹ3,T (θ̃))ΓT−2(θ̃)−1Cov(Ỹ3,T (θ̃)), y1,2). Now, for stable θ̃ it

follows that Vπ(θ̃) ≥ I2sλmin(Σ).
It follows that

uT (θ̃)′Γ̃T (θ)−1uT (θ̃)/T ≥ u3:T (θ̃)′ΓT−2(θ̃)−1u3:T (θ̃)/T,

where u3:T (θ̃) = {ut(θ̃)}t=3,...,T = Ỹ3,T (θ̃) is used in order to be closer to the notation in HD. Note
that the right hand side term has exactly the same form as the second term of the log-likelihood
dealt with in Chapter 4 of HD. Further, note that the difference between these two terms equals

y1,2,π(θ̃)′Vπ(θ̃)−1y1,2,π(θ̃)/T,

where this equation defines y1,2,π(θ̃).
It follows that the criterion function to be considered equals

L̃T (θ̃) ≥ log |Γ̃T (θ̃)|+ u3:T (θ̃)′ΓT−2(θ̃)−1u3:T (θ̃)/T = log |Γ̃T (θ̃)|+ Q̃T (θ̃).

In the following, we will use the arguments of HD to deal with these two terms.

The log det term

In this subsection the asymptotic behavior of log |Γ̃T (θ̃)| is investigated. This term is relatively
easy to deal with, since it is not influenced by the data or by D̃. Using the definitions above, we
obtain [

Is −Cov(y1,2, Ỹ3,T (θ̃))ΓT−2(θ̃)−1

0 I

]
Γ̃T (θ̃)

[
Is 0

−ΓT−2(θ̃)−1Cov(Ỹ3,T (θ̃), y1,2) I

]
=

[
Vπ(θ̃) 0

0 ΓT−2(θ̃)

]
.
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Therefore, the determinant is the product of |Vπ(θ̃)| and |ΓT−2(θ̃)|. From Vπ(θ) ≤ V (y1,2) we see
that

1

T
log det Γ̃T (θ̃) =

1

T
log |Vπ(θ̃)|+ 1

T
log |ΓT−2(θ̃)| ≤ 1

T
log |ΓT−2(θ̃)|+ 1

T
log |V (y1,2)|.

The behavior of T−1 log |ΓT−2(θ̃)| follows as in HD, Lemma 4.2.2., p. 116: T−1 log |ΓT−2(θ̃)| ≥
log |Σ| and limT→∞ T−1 log |ΓT−2(θ̃)| = log |Σ| for θ̃ ∈ Θ̂. For θj → θ̃0 ∈ Θ − Θ̂, such that k̃0

contains a pole on the unit circle, where θj ∈ Θ̂, we have log |ΓT−2(θj)| → ∞ as λ|max|(P•)→∞.

For θ̃ ∈ Θ̂ we have
0 < Vπ(θ̃) ≤ V (y1,2) <∞,

such that limT→∞ T−1 log |Γ̃T (θ̃)| = log |Σ|.
For θj → θ̃0 ∈ Θ − Θ̂ we have Vπ(θj) ≥ λmin(Σ)Is, which hence must also hold in the limit.

Consequently in this case T−1 log |Γ̃T (θj)| → ∞. Thus, we obtain the same asymptotic behavior
as in HD.

The quadratic term QT

The second component of the criterion function is the term

QT (θ̃) = T−1uT (θ̃)′Γ̃T (θ̃)−1uT (θ̃)

= T−1y1,2,π(θ̃)′Vπ(θ̃)−1y1,2,π(θ̃) + T−1u3:T (θ̃)ΓT−2(θ̃)−1u3:T (θ̃)

≥ T−1u3:T (θ̃)′ΓT−2(θ̃)−1u3:T (θ̃) =: Q̃T (θ̃),

using the block matrix inversion. HD define the function Q(θ̃) as the limit of Q̃T (on Θ∗). Here

Q(θ̃) =
1

2π

∫ π

−π
tr[(k̃Σk̃∗)−1(k̃0Σ0k̃

∗
0))]dω.

HD add terms related to exogenous inputs potentially including deterministic terms. We will,
however, deal differently with them here.
The next step in HD is crucial for avoiding problems with non-invertible transfer functions in Θ.
In order to avoid problems with the term involving (k̃Σk̃∗)−1 due to zeros of k̃ on the unit circle,
in Q(θ̃) for k̃(z) = N(z)/c(z), HD introduce a regularization term such that

φη(ω; θ̃) = 2π|c(eiω)|2{N(eiω)ΣN(eiω)∗ + ηIs}−1 ≤ 2π|c(eiω)|2{N(eiω)ΣN(eiω)∗}−1 = f−1
u (ω),

∀η > 0,

as a replacement for (k̃Σk̃∗)−1 in the definition of ΓT (θ̃). As the covariances are functions of the
spectrum for stationary processes HD state that the covariance matrix ΓT (θ̃) can be written as
ΓT (fu) where fu = k̃Σk̃∗. Moreover, they show that for φ−1

η ≥ fu it holds that ΓT (φ−1
η ) ≥ ΓT (fu)

and thus ΓT (φ−1
η )−1 ≤ ΓT (fu)−1, see HD, (4.2.18) on p. 119.

Then HD consider the regularized version

Q̃T,η(θ̃) := u3:T (θ̃)′ΓT−2(φ−1
η )−1u3:T (θ̃)/T ≤ Q̃T (θ̃) := u3:T (θ̃)′ΓT−2(θ̃)−1u3:T (θ̃)/T.

Lemma 4.2.3. of HD shows that (i) Q̃T (θ) → Q(θ), θ ∈ Θ∗ and (ii) Q̃T,η(θ) → Qη(θ) uniformly

in Θc1c2c3 ∩ Θ̂ where c1, c2 denote constants bounding the eigenvalues of 0 < c1Is ≤ Σ ≤ c2Is for
θ ∈ Θc1c2c3 and c3 bounds the entries of certain matrix polynomials (see HD, p. 118) corresponding
to the transfer functions. These restrictions are sufficient to make Θc1c2c3 a compact set.
The intersection with Θ̂, wherein all transfer functions are stable, is not necessary for the argument.
The only place, where stability enters the proof, is in the strict lower bound of P2,i in the first
display on p. 121. However, as Θc1c2c3 potentially also contains transfer functions with unit roots,
the arguments also need to extend to the case where P2,i(ω) = 0 for some ω.
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The regularization leads to a uniform lower bound of the eigenvalues of ΓT (φ−1
η ) on Θc1c2c3 such

that the inverse can be uniformly bounded.
With respect to the pointwise convergence of Q̃T (θ) in our setting we use the arguments of HD.
For easier notation in the following we relabel the sample size by replacing T − 2 with T , start
indexing at t = 3 and using θ in place of θ̃ for the remainder of this proof.
The proof of Lemma 4.2.3. proceeds by bounding the spectrum (k̃Σk̃∗)−1 below and above by
spectra, P say, corresponding to autoregressive processes with lag length M . This is possible for
θ ∈ Θ∗, which contains only stable and invertible transfer functions. Now for these autoregressive
processes one finds matrices C such that (see HD, p. 119, bottom display)

ΓT (P−1)−1 = C ′


Γ−1
M 0 ... 0

0 Σ−1
P

. . .
...

...
. . .

. . . 0
0 . . . 0 Σ−1

P

C.

Here C is a lower triangular matrix, whose first M block rows are identical with the identity
matrix while the remaining ones contain the autoregressive coefficients Cj :

C =



IM
...

· · · · · · · · · .
CM CM−1 ... C0 0

0
. . .

. . .
. . .

. . .
. . .
...

0 ... CM CM−1 ... C0


.

It follows that

uT (θ)′ΓT (P−1)−1uT (θ) = uM (θ)′Γ−1
M uM (θ)/T+T−1

T∑
t=M+1

(

M∑
j=0

Cju(t−j, θ))′Σ−1
P (

M∑
j=0

Cju(t−j, θ)).

The first term clearly tends to zero as T → ∞ since M is fixed, whereas the second can be
rewritten as

tr

(
Σ−1
P [CM , CM−1, ..., C0]

[
T−1

T∑
t=M+1

Ut,M (θ)Ut,M (θ)′

]
[CM , CM−1, ..., C0]′

)
.

Therefore, we need to investigate Ut,M (θ) in more depth: Here

u(t, θ) = ỹt − D̃st = yt − (P1 + P2)yt−1 + P2P1yt−2 − D̃st
= (D̃0 − D̃)st + C◦xt − (P1 + P2)C◦xt−1 + P2P1C◦xt−2 + εt − (P1 + P2)εt−1 + P2P1εt−2

= (D̃0 − D̃)st + εt − (P1 + P2)εt−1 + P2P1εt−2

+ C◦((A◦)2xt−2 +A◦B◦εt−2 + B◦εt−1)− (P1 + P2)C◦(A◦xt−2 + B◦εt−2) + P2P1C◦xt−2

= (D̃◦ − D̃)st + εt + (C◦B◦ − (P1 + P2))εt−1 + (C◦A◦B◦ − (P1 + P2)C◦B◦ + P2P1)εt−2

+ (C◦(A◦)2 − (P1 + P2)C◦A◦ + P2P1C◦)xt−2

= ϕt(θ) + vt,•(θ) + vt,u(θ).
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where

ϕt(θ) := (D̃◦ − D̃)st

vt,•(θ) := εt + (C◦B◦ − (P1 + P2))εt−1 + (C◦A◦B◦ − (P1 + P2)C◦B◦ + P2P1)εt−2

+ (C•,◦(A•,◦)2 − (P1 + P2)C•,◦A•,◦ + P2P1C•,◦)xt−2,•

vt,u(θ) := (Is − (P1 + P2) + P2P1)Cu,◦xt−2,u + (2Is − P1 − P2)C1,◦xt−2,2

= P2⊥P1⊥Cu,◦xt−2,u + (P2⊥ + P1⊥)C1,◦xt−2,2

=
[
P2⊥P1⊥C1,◦ P2⊥P1⊥C2,◦ + (P2⊥ + P1⊥)C1,◦ P2⊥P1⊥C3,◦

]
xt−2,u := Pxt−2,u

Thus, for every θ ∈ Θ̂ the process ut(θ) contains three components: a deterministic part ϕt(θ)
dominated by (D̃◦−D̃), a stationary component (denoted with vt,•(θ) above) and the term vt,u(θ)
which is integrated of order two if P2⊥P1⊥C1,◦ 6= 0, integrated of order one if P2⊥P1⊥C1,◦ = 0 and
P2⊥P1⊥C2,◦ + (P2⊥ + P1⊥)C1,◦ 6= 0 or P2⊥P1⊥C3,◦ 6= 0 and zero else. Therefore,

Ut,M (θ) =


u(t−M, θ)

u(t−M + 1, θ)
...

u(t, θ)

 =


ϕt−M (θ) + vt−M,•(θ) + Pxt−M−2,u

ϕt−M+1(θ) + vt−M+1,•(θ) + Pxt−M−1,u

...
ϕt(θ) + vt,•(θ) + Pxt−2,u



=


ϕt−M (θ)
ϕt−M+1(θ)

...
ϕt(θ)

+


vt−M,•(θ)

vt−M+1,•(θ) + P (xt−M−1 − xt−M−2)
...

vt,•(θ) + P (xt−2 − xt−M−2)

+

 P
...
P

xt−M−2,u

= Dt,M (θ) + Vt,M (θ) +

 P
...
P

xt−M−2,u

= Vt,M (θ) +D(θ;M)st + PMxt−M−2,u.

Define zt,M := [s′t, x
′
t−M−2,u]′. In the following, let the superscript .π denote the residuals of a

regression onto zt,M with the corresponding fitted values denoted as .z such that

Ut,M (θ) = Ut,M (θ)π + Ut,M (θ)z = Vt,M (θ)π + Ut,M (θ)z

since Dt,M (θ)π = 0, xπt−M−1,1 = 0. It follows that

〈Ut,M (θ), Ut,M (θ)〉 = 〈Vt,M (θ)π, Vt,M (θ)π〉+ 〈Ut,M (θ)z, Ut,M (θ)z〉 ≥ 〈Vt,M (θ)π, Vt,M (θ)π〉 .

Furthermore, for fixed M we have

〈Vt,M (θ)π, Vt,M (θ)π〉 = 〈Vt,M (θ), Vt,M (θ)〉+ oP (1) (C.2)

as regressing out integrated processes, the constant, seasonal terms and a linear trend from sta-
tionary processes leads to negligible terms. If no deterministics are present, the negligible term is
also o(1).
It is now easy to verify that for D̃ = D̃◦ and P = 0 the term Q̃T (θ) converges to Q(θ), since the
second moments 〈Vt,M (θ), Vt,M (θ)〉 converge in this case and Ut,M (θ) = Vt,M (θ) holds then.
In the general case, we obtain

QT (θ) ≥ Q̃T (θ) ≥ tr
(
Σ−1
P [CM , CM−1, ..., C0] 〈Ut,M (θ), Ut,M (θ)〉 [CM , CM−1, ..., C0]′

)
≥ tr

(
Σ−1
P [CM , CM−1, ..., C0] 〈Vt,M (θ)π, Vt,M (θ)π〉 [CM , CM−1, ..., C0]′

)
= tr

(
Σ−1
P [CM , CM−1, ..., C0] [〈Vt,M (θ), Vt,M (θ)〉+ oP (1)] [CM , CM−1, ..., C0]′

)
.
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Jointly we obtain that for fixed θ ∈ Θ∗ for the term QT (θ) it holds that

lim inf
T→∞

QT (θ) ≥ Q(θ).

For θ̃◦ = Λ(θ◦) the additional terms due to D̃ − D̃0 and P are zero and, hence, QT (θ̃◦)→ s.
Replacing Q̃T (θ) with the corresponding Q̃T,η(θ) and noting that QT (θ) ≥ Q̃T (θ) ≥ Q̃T,η(θ) for
all η > 0, θ ∈ Θ, we obtain uniformly in θ ∈ Θc1c2c3 (a compact space) that

lim inf
T→∞

inf
Θc1c2c3

(QT (θ)−Qη(θ)) ≥ 0.

This follows since by taking the liminf all non-negative terms can be neglected. It is simple to
verify that the convergence in (C.2) is uniform in the parameter set as vt,•(θ) only depends on
the parameter vector via P1 and P2 which varies in a compact set. The remaining arguments
are as in HD, p. 119-121. In particular we only have to investigate a finite number of spectra P
with a corresponding finite number of lag lengths M , since the set Θc1c2c3 is compact. Then the
convergence results are standard.
This implies that for each η > 0 the function QT (θ) stays uniformly in Θc1c2c3 above Qη(θ) and,
hence, also above supη>0Qη(θ).

Restriction to a compact set Θc1c2c3

A central step in HD on p. 121 is to show that the PML estimator is inside Θc1c2c3 a.s. for T
large enough. That is, the eigenvalues of Σ̂ are bounded from below and above and the coefficients
of the polynomial R(z) = adj(b(z))a(z) =

∑r
j=0Rjz

j (where k̃(z) = a−1(z)b(z)) can be bounded
such that

r∑
j=0

‖Rj‖2Fr ≤ c3.

To show this, first note that

lim supLT (θ̂) ≤ log det Σ◦ + s a.s.

as LT (θ◦) → log det Σ◦ + s a.s. This holds true as the log det term converges to log det Σ◦ and
for the QT term we have shown Q̃T (θ̃◦) → Q(θ̃◦) = s. The fact that Vπ(θ̃◦) > 0 then shows
LT (θ0)→ log det Σ◦ + s.
This implies log |Σ̂| ≤ log |Σ◦| + s a.s. for T large enough. Next, we use the arguments on the
bottom of p. 121 and (4.2.25) of HD to infer

AΓT (θ)A′ ≤ γ2(IT−r ⊗ Σ), θ ∈ Θ̂

for some constant 0 < γ < ∞, where A denotes the matrix A defined in line 2 of p. 122 of HD.
As in HD, it follows that

Q̃T (θ) = uT (θ)′ΓT (θ)−1uT (θ)/T

≥ tr

[
Σ−1[Rr, Rr−1, ..., R0]

[
T−1

T∑
t=r+1

Ut,r(θ)Ut,r(θ)
′

]
[Rr, Rr−1, ..., R0]′

]
γ−2.

Using the arguments above, it follows that the smallest eigenvalue of[
T−1

T∑
t=r+1

Ut,r(θ)Ut,r(θ)
′

]
≥

[
T−1

T∑
t=r+1

Vt,r(θ)
π(Vt,r(θ)

π)′

]
can be bounded from below a.s. for T large enough by a constant c, as it is related to 〈Vt(θ)π, Vt(θ)π〉
whose main component is

vt,•(θ) := εt + (C◦B◦ − (P1 + P2))εt−1 + (C◦A◦B◦ − (P1 + P2)C◦B◦ + P2P1)εt−2

+ (C•,◦(A•,◦)2 − (P1 + P2)C•,◦A•,◦ + P2P1C•,◦)xt−2,•,
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where xt−r−2,u and st are regressed out. Noting that R0 = Is, it follows that

uT (θ)′ΓT (θ)−1uT (θ)/T ≥ tr
[
Σ−1[Rr, Rr−1, ..., Is][Rr, Rr−1, ..., Is]

′] cγ−2 ≥ tr(Σ−1)cγ−2.

Consequently, (letting the eigenvalues of Σ̂ be denoted as λj(Σ̂))

tr(Σ̂−1) =

s∑
j=1

1

λj(Σ̂)
≤ (log det Σ◦ + s)γ2/c <∞

is bounded a.s. for large enough T . This implies that the smallest eigenvalue of Σ̂ is bounded
from below. Consequently, also the largest eigenvalue of Σ̂ is bounded since log |Σ̂| ≤ log |Σ◦|+ s
a.s. for T large enough.
Furthermore, also the third restriction of Θc1c2c3 is valid a.s. for large enough T as the lower
bound on the eigenvalues of Σ̂ implies

uT (θ̂)′ΓT (θ̂)−1uT (θ̂)/T ≥ tr

Σ̂−1

 r∑
j=0

R̂jR̂
′
j

 cγ−2 ≥ tr

 r∑
j=0

R̂jR̂
′
j

 cγ−2/c2.

Therefore, it follows that for large enough T a.s.
̂̃
θT ∈ Θc1c2c3 .

We obtain that for large enough T a.s.
̂̃
θT ∈ Θc1c2c3 ∩ Θ̂, as the criterion function is infinite for

transfer functions k̃ with unit roots, since in this case λ|max|(P•(θj))→∞ for θj → θ ∈ Θ− Θ̂.

Putting the pieces together

Using the uniform convergence of Q̃T,η(θ) to Q̃η(θ) on Θc1c2c3 , we have (using Lemma 4.2.1. of
HD for the last equation)

lim inf
T→∞

LT (θ̂T ) ≥ lim inf
T→∞

(log |Σ̂T |+ Q̃T (θ̂T )) ≥ sup
η>0

lim inf
T→∞

(log |Σ̂T |+ Q̃T,η(θ̂T )) a.s.

≥ inf
θ∈Θc1c2c3

(
log |Σ|+ sup

η>0
Qη(θ)

)
= log |Σ◦|+ s.

Then as in HD, p. 125, for every sequence θ̂T → θ (choosing a subsequence if necessary) it holds
that

lim inf
T→∞

LT (θ◦) ≥ lim inf
T→∞

LT (θ̂T ) ≥ log |Σ◦|+ s.

Then LT (θ̂T )→ L(θ) = L(θ◦) = log |Σ◦|+ s follows. Recall that θ is of the form (k, P1, P2, D,Σ).
This shows that Σ = Σ◦ and k̃ = k̃◦ is the unique limit, since L(θ) depends on θ only via
Σ and k̃ but not on P1,P2 or D. Convergence of P1, P2 and D can be shown as in Lemma 4 of
de Matos Ribeiro et al. (2020). An analogous approach proving the results presented in Theorem 10

will be discussed in subsection C.2.2. Note that from the above results LT (θ̂T )→ L(θ◦) and, hence,

for large enough T it holds that LT (θ̂T ) ≤ c a.s. for a constant c < log |Σ◦|+ s+ ε for every ε > 0.

The prediction error criterion function

For the prediction error criterion function

LPE,T (k(z),Σ, d, e;YT ) = log |Σ|+ uT (θ)′ΓT,PE(θ)−1uT (θ)/T

it follows that

ΓT,PE(θ̃) =


Is 0 ... 0

K1 Is
. . .

...
...

. . .
. . . 0

KT−1 ... K1 Is


︸ ︷︷ ︸

TT (θ)

(IT ⊗ Σ)


Is 0 ... 0

K1 Is
. . .

...
...

. . .
. . . 0

KT−1 ... K1 Is


′

.
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Consequently, |ΓT,PE(θ̃)| = |Σ|T in this case such that T−1 log |ΓT (θ̃)| = log |Σ| holds. Note that

this does not depend on the poles of k̃ and, hence, the first part of the criterion function does not
diverge to infinity at the stability boundary of Θ̂.
Following the proof above, note that the log det term in this case is simpler such that we can
directly obtain the result log |ΓT,PE(θ̃)|/T → log |Σ|.
For the second part QT (θ) of the criterion function note that

ΓT,PE(k, σ) ≤ ΓT (k, σ)⇒ ΓT,PE(k, σ)−1 ≥ ΓT (k, σ)−1.

Therefore, it follows that the second term of the criterion function can be bounded from below by
the arguments given above. This immediately implies that the prediction error estimator lies in
Θc1c2c3 for large enough T . The result then follows from

LPE,T (k◦(z), σ◦, d◦, e◦;YT )→ log |Σ◦|+ s,

see Lemma 9 for a proof.

Super-consistency for certain parts of the parameter vector

Let Π(k) := −k−1(1) and Γ(k) := −k−1(1) + ∂
∂zk
−1(z)|z=1 for a transfer function k(z). Defining

k̃ through k−1(z) = k̃(z)(1− z)2 −Π(k)z − Γ(k)z(1− z), we find the representation

εt(k, d, e) = k̃(L)∆2(yt − d− et)−Π(k)(yt−1 − d− e(t− 1))

− Γ(k)∆(yt−1 − d− e(t− 1))

= −Π(k)C1,◦xt−1,1 −Π(k)C3,◦xt−1,3 −
(
Π(k)C2,◦ + Γ(k)C1,◦

)
xt−2,2

−Π(k)(d◦ − d)− Γ(k)(e◦ − e)−Π(k)(e◦ − e)(t− 1) + υt(k, d, e),

where

υt(k, d, e) : = k̃(L)∆2[Cu,◦xt,u + C•,◦xt,• + εt]−Π(k)[C2,◦B2,◦εt−1 + C•,◦xt,• + εt]

− Γ(k)[C1,◦B1,◦εt−1 + C2,◦B2,◦εt−1 + C3,◦B3,◦εt−1 + ∆(C•,◦xt,• + εt)]

−
∑∞
m=tKm(d− e(t−m)).

By the strict minimum-phase assumption k−1(z) and, thus, also k̃(z) are uniformly stable and since
εt, xt,• are (asymptotically) stationary by definition, it follows that υt(k, d, e) is asymptotically
stationary. The proof for the super-consistency results listed in Theorem 10 now proceeds as in
Lemma 4 of de Matos Ribeiro et al. (2020). For this define wt := [x′t−1,1, x

′
t−2,2, x

′
t−1,3, 1, t − 1]′

and

Ψ := Ψ(k, d, e) : =
[
Ψu(k) Ψd(d, e)

]
Ψu(k) : =

[
Π(k)C1,◦ Π(k)C2,◦ + Γ(k)C1,◦ Π(k)C3,◦

]
Ψd(d, e) : =

[
(Π(k)(d◦ − d) + Γ(k)(e◦ − e) Π(k)(e◦ − e)

]
and let Ψ̂ := Ψ(k̂, d̂, ê). The consistency proof implies〈

εt(k̂, d̂, ê), εt(k̂, d̂, ê)
〉

=
〈
υt(k̂, d̂, ê)− Ψ̂wt, υt(k̂, d̂, ê)− Ψ̂wt

〉
< c.

Consider Dw
T = diag(T−3/2Ic1 , T

−1/2Ic1+c2 , 1, T
−1) such that Dw

T 〈wt, wt〉Dw
T converges to a pos-

itive definite matrix with probability one. The above implies〈
Ψ̂wt, Ψ̂wt

〉
−
〈

Ψ̂wt, υt(k̂, d̂, ê)
〉〈

υt(k̂, d̂, ê), υt(k̂, d̂, ê)
〉−1 〈

υt(k̂, d̂, ê), Ψ̂wt

〉
< c,

from which 〈Ψ̂wt, Ψ̂wt〉 < c̃ follows since υt(k̂, d̂, ê) is asymptotically stationary such that in a re-

gression of wt on υt(k̂, d̂, ê) the variance of the fitted values tends to zero. Therefore, 〈Ψ̂wt, Ψ̂wt〉 <
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c̃ implies ‖Ψ̂(Dw
T )−1‖ = Op(1). Assume ‖〈υt(k̂, d̂, ê), wt〉(Dw

T )‖ = op(‖Ψ̂(Dw
T )−1‖) and, conse-

quently, ‖〈υt(k̂, d̂, ê), Ψ̂wt〉‖ = op(‖〈Ψ̂wt, Ψ̂wt〉‖), which implies〈
εt(k̂, d̂, ê), εt(k̂, d̂, ê)

〉
=
〈
υt(k̂, d̂, ê), υt(k̂, d̂, ê)

〉
−
〈
υt(k̂, d̂, ê), Ψ̂wt

〉
−
〈
υt(k̂, d̂, ê), Ψ̂wt

〉
+
〈

Ψ̂wt, Ψ̂wt

〉
=
〈
υt(k̂, d̂, ê), υt(k̂, d̂, ê)

〉
+
〈

Ψ̂wt, Ψ̂wt

〉
− op(‖〈Ψ̂wt, Ψ̂wt〉‖)

>
〈
υt(k̂, d̂, ê), υt(k̂, d̂, ê)

〉
for large T . This is a contradiction to the optimality of the PML estimator, since in this case the
choice Ψ = 0 would lead to a higher likelihood value. Thus, 〈Ψ̂wt, Ψ̂wt〉 = Op(〈υt(k̂, d̂, ê), Ψ̂wt〉),
which implies for the different components〈
υt(k̂, d̂, ê),Π(k̂)C1,◦xt−1,1

〉
= Op(

〈
Π(k̂)C1,◦xt−1,1,Π(k̂)C1,◦xt−1,1

〉
)

⇒ T γ‖Π(k̂)C1,◦‖ = op(1) for γ < 2,〈
υt(k̂, d̂, ê), (Π(k̂)C2,◦ + Γ(k̂)C1,◦)xt−2,2

〉
= Op(

〈
(Π(k̂)C2,◦ + Γ(k̂)C1,◦)xt−2,2,Π(k̂)C2,◦xt−2,2

〉
+Op(

〈
(Π(k̂)C2,◦ + Γ(k̂)C1,◦)xt−2,2,Γ(k̂)C1,◦xt−2,2

〉
)

⇒ T γ‖(Π(k̂)C2,◦ + Γ(k̂)C1,◦)‖ = op(1) for γ < 1,〈
υt(k̂, d̂, ê),Π(k̂)C3,◦xt−1,3

〉
= Op(

〈
Π(k̂)C3,◦xt−1,3,Π(k̂)C3,◦xt−1,3

〉
)

⇒ T γ‖Π(k̂)C3,◦‖ = op(1) for γ < 1,〈
υt(k̂, d̂, ê),Π(k̂)(d◦ − d̂) + Γ(k̂)(e◦ − ê)

〉
= Op(

〈
Π(k̂)(d◦ − d̂) + Γ(k̂)(e◦ − ê),Π(k̂)(d◦ − d̂)

〉
+Op(

〈
Π(k̂)(d◦ − d̂) + Γ(k̂)(e◦ − ê),Γ(k̂)(e◦ − ê)

〉
)

⇒ T γ‖Π(k̂)(d◦ − d̂) + Γ(k̂)(e◦ − ê)‖ = op(1)
for γ < 1/2,〈

υt(k̂, d̂, ê),Π(k̂)(e◦ − ê)(t− 1)
〉

= Op(
〈

Π(k̂)(e◦ − ê)(t− 1),Π(k̂)(e◦ − ê)(t− 1)
〉

)

⇒ T γ‖Π(k̂)(e◦ − ê)‖ = op(1) for γ < 3/2.

Alternatively, it holds that

Ψ̂diag(T 2Ic1 , T Ic1+c2 , T
1/2, T 3/2)T−ε = op(1)

for every ε > 0, proving the results given in Theorem 10.

C.2.3 Derivation of the Asymptotic Distribution

Let us repeat at this point, that a specific parameterization is necessary in order to derive the
asymptotic distribution, whereas the consistency proof has been independent of the chosen pa-
rameterization. Furthermore, for the applicability of linearization techniques, we assume that the
parameters are introduced in such a way that the true parameter vector is defined as

ϕ◦ := [ θ′u,◦ θ′d,1,◦ θ′d,2,◦ θ′st,◦ ]′,

where θu,◦ collects the parameter vector corresponding to Cu = [C1, C2, C3] by the relations

C1(θE,1) : = R1,L(θ1,L)′
[

Ic1
0(s−c1)×c1

]
R1,R(θ1,R),

C3(θE,2; C1(θE,1)) : = R1,L(θ1,L)′

 0c1×c2

RL,2(θL,2)′
[

Ic2
0(s−c1−c2)×c2

] R2,R(θ2,R),

C2(θG; CE(θE)) : = R1,L(θ1,L)′

 0c1×c1

R2,L(θ2,L)′
[

0c2×c1
Λ(θG)

] R1,R(θ1,R),
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where R1,L(θ1,L), R2,L(θ2,L) ∈ Rs×s and R1,R(θ1,R) ∈ Rc1×c1 , R2,R(θ2,R) ∈ Rc1×c1 are orthonor-
mal matrices and products of Givens rotations and Λ(θG) ∈ Rs−c1−c2×c1 . For more details on the
parameterization see Bauer et al. (2020). Note that we slightly adapted the factorization of C2
presented there by additionally multiplying R1,R(θ1,R) from the right, in order to simplify some
calculations.
By θd,1,◦ and θd,2,◦ denote the parameters for the deterministic terms (if it is included). Further,

θst,◦ : = [ θ′1,R,◦ θ′2,R,◦ θ′B,f,◦ θ′B,p,◦ θ′•,◦ ]′

θu,◦ : = [ θ′1,L,◦ θ′2,L,◦ θ′G,◦ ]′

θ?,◦ : = [ θ′u,◦ θ′d,1,◦ θ′d,2,◦ ]′

Then in the theorem it is assumed that ϕ◦ is an interior point of the parameter set. This requires
that the multi-index Γ is specified correctly.
Let the corresponding parameter estimator minimizing the scaled negative pseudo likelihood func-
tion LT be denoted as ϕ̂. Lemma 12 shows that the difference between the minima of LT and
the prediction error function LPE,T is negligible for the asymptotic distribution. Thus, we use
the prediction error form which is easier to investigate. Furthermore, we concentrate out the
parameters for Σ such that the criterion function equals

LPE,T (ϕ;YT ) = log det 〈εt(ϕ), εt(ϕ)〉

where

εt(ϕ) = yt −D(ϕ)st −
t−1∑
j=1

Kj(ϕ)(yt−j −D(ϕ)st−j).

In the following, we omit the subscript ’PE’ for notational convenience.
Here Kj(ϕ) denotes the impulse response corresponding to the inverse transfer function k−1(z).

Note that ‖Kj(ϕ◦)‖ ≤ µKρ
j
0 for some 0 < ρ0 < 1 due to the strict minimum-phase assumption

for the data generating system.
Due to the consistency result it follows that for T large enough, the probability that the estimate
ϕ̂ is contained in Θε (an open neighborhood of ϕ◦) tends to 1, where the exponential decrease of
the impulse response sequence holds uniformly in Θε.
Thus, a necessary condition for a minimum is a zero first derivative and we obtain from the mean
value theorem

∂LT (ϕ̂;YT ) = 0 = ∂LT (ϕ◦;YT ) + ∂2LT (ϕ̄T ;YT )[ϕ̂− ϕ◦],

where ϕ̄T denotes an intermediate point between ϕ̂ and ϕ◦.
Define the scaling matrices

D̃T : = diag(T−1Icu,1 , Icu−cu,1 , T
1/2Icd,2 , T

−1/2Icd,1 , T
1/2Icst),

D̃M
T : = D̃T M̃, M̃ := diag(M, Icu−c1(s−c1)+cd,2+cd,1+cst),

DM
T : = TD̃−1

T M̃.

The matrix M ∈ Rc1(s−c1)×c1(s−c1) separates components with different orders of convergence
within the parameter vector θ1,L. Let C⊥ ∈ Rs×s−c1−c2 denote a non-singular matrix whose
columns are orthogonal to the column space of [C1, C3]. In order for all c1(s− c1) components of
θ1,L to be estimated with rate T 2, T γ‖[Ĉ3, Ĉ⊥]′C1,◦]‖ → 0 would need to hold in probability for
all 0 < γ < 2. By the results of Theorem 10 this is only the case if c2 = 0, i. e., if there are no
I(1)-common trends other than C2,◦xt,2. Consequently, the presence of I(1)-common components
C3,◦xt,3 reduces the convergence rate in some components of θ1,L.
The derivation of the asymptotic distribution given in Theorem 11 proceeds in three steps:

1. Show that D̃M
T ∂LT (ϕ◦;YT ) converges in distribution.

2. Show that D̃M
T ∂

2LT (ϕ̄T ;YT )(DM
T )−1 converges in distribution to a random matrix Z.
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3. Show that P{Z > 0} = 1.

Let us start with the first item, i.e., with establishing the asymptotic properties of the score vector.
Denote with ∂if(ϕ◦) the partial derivative of a function f with respect to the i-th component of the
parameter vector ϕ, evaluated at the point ϕ = ϕ◦. With subscript i = st we denote the subvector
of ∂if(ϕ◦) for all i, such that the component θi is contained in θst. With subscript u we denote
differentiation with respect to the entries in θu, with subscript d, 2d we denote differentiation with
respect to the entries in θd,2d, with d, 2e differentiation with respect to the entries in θd,2e and with
d, 1 differentiation with respect to the entries in θd,1. Furthermore, we use the notation ∂i,Hf(ϕ)
for differentiation with respect to the i-th component of ϕ which corresponds to the matrix H.
Here and also below the matrices (A,B, C) correspond to the canonical representation of a system
described by the parameter vector θ. We omit the dependency on the parameter θ for simplicity
of notation.

Lemma 13 Define k̃(z, θ) through k−1(z; θ) = k̃(z, θ)(1−z)2−Π(θ)z−Γ(θ)z(1−z) with Π(θ) :=
−k−1(1; θ) and Γ(θ) := −k−1(1; θ) + ∂

∂zk
−1(z; θ)|z=1. The derivatives of εt(ϕ) with respect to the

different parameters in θst evaluated at ϕ◦ are given by

� ∂i,A•εt(ϕ) = dki,A•(L, θ)xt,•(θ), where dki,A•(z, θ) = −Cz(I − zA)−1

[
0c×(n−c)
∂i(A•)

]
,

� ∂i,Bεt(ϕ) = dki,B•(L, θ)εt(ϕ), where dki,B(z, θ) = −Cz(I − zA)−1∂iB,

� ∂i,C•εt(ϕ) = k−1(L; θ)(−∂iC•)xt,•(θ).

� ∂i,R1,R
εt(ϕ) = dki,R1,R

(L, θ)εt(ϕ)

= −Π(θ)∂i,R1,R
C2B2εt−1 − Γ(θ)∂i,R1,R

CuBuεt−2 − k̃(L; θ)(1− L)2∂i,R1,R
Cuxt,u(θ).

� ∂i,R2,R
εt(ϕ) = dki,R2,R

(L, θ)εt(ϕ)

= −Γ(θ)∂i,R2,R
C3B3εt−2 − k̃(L; θ)(1− L)2∂i,R2,R

Cuxt,u(θ).

All the above processes are asymptotically stationary.
The derivatives of εt(ϕ) with respect to parameters in θu are given by

� ∂i,R1,L
εt(ϕ) = k−1(L; θ)(−∂i,R1,L

Cu)xt,u(θ).

� ∂i,R2,L
εt(ϕ) = k−1(L; θ)(−∂i,R2,L

Cu)xt,u(θ).

� ∂i,Λεt(ϕ) = k−1(L; θ)(−∂i,ΛCu)xt,u(θ).

Finally the derivatives of εt(ϕ) with respect to parameters in θd are given by

� ∂i,Dεt(ϕ) = k−1(L; θ)(−∂i,DDd(θd))st(θ).

Proof: The results follow from taking the derivative of the inverse transfer function. As an
example let us analyze derivation with respect to a parameter corresponding to the matrix Cu.
The partial derivatives are:

∂iεt(ϕ) = −(∂iCu)xt,u(θ)− C(∂ixt(θ))
∂ixt+1(θ) = A∂ixt(θ)− B(∂iCu)xt,u(θ).

These components of the score are filtered versions of xt,k(θ). A possibly non-minimal representa-
tion of the filter is given by dki(z, θ) = −∂iCu + zC(I − zA)−1B∂iCu = k−1(z; θ)(−∂iCu). It holds
that

∂i,R1,R
Cu =

[
C1R′1,R

(
∂i,R1,R

R1,R

)
C2R′1,R

(
∂i,R1,R

R1,R

)
0
]
,

∂i,R2,R
Cu =

[
0 0 C3R′2,R

(
∂i,R2,R

R2,R

)]
,

∂i,R1,L
Cu =

(
∂i,R1,L

R1,L

)
R′1,L

[
C1 C2 C3

]
,

∂i,R2,L
Cu =

[
0 0 ∂i,R2,L

C3
]
,

∂i,ΛCu =
[
0 ∂i,ΛC2 0

]
,



130 APPENDIX C. APPENDIX TO CHAPTER 3

again omitting the dependencies on the different components of θE,1, θE,2 and θG for ease of
notation. Decomposing

k−1(z; θ) = k̃(z, θ)(1− z)2 −Π(θ)z − Γ(θ)z(1− z),

the derivatives with respect to different components of Cu can be further analyzed. It follows that
the derivatives with respect to θi,R can be further simplified:
θ1,R:

k−1(z; θ)(−∂i,R1,R
Cuxt,u(θ)) = − (Π(θ)C2 + Γ(θ)C1)R′1,R

(
∂i,R1,R

R1,R

)
xt−1,2(θ)

−Π(θ)∂i,R1,R
C2B2εt−1 − Γ(θ)(∂i,R1,R

C1B1 + ∂i,R1,R
C2B2)εt−2

− k̃(L; θ)(1− L)2∂i,R1,R
Cuxt,u(θ)

where the first term is equal to zero.
θ2,R:

k−1(z; θ)(−∂i,R2,R
Cuxt,u(θ)) = −Γ(θ)∂i,R2,R

C3B3εt−2 − k̃(L; θ)(1− L)2∂i,R2,R
Cuxt,u(θ).

Note that both dki,R1,R
(z, θ) and dki,R2,R

(z, θ) are stable transfer functions.
If the derivative is taken with respect to θ1,L, θ2,L or θG the terms Π∂i,R1,L

C1, Π∂i,R2,L
C3 and

Π∂i,ΛC2 do not vanish, such that ∂i,R1,L
εt(ϕ) and ∂i,R1,L

εt(ϕ) contain integrated components of
order one or two.
Derivatives with respect to the other parameters are derived analogously.
In the following lemma the asymptotic behavior of the score is summarized. In this lemma and the
rest of the document the dependence of the prediction error criterion function on YT is omitted
for notational simplicity.

Lemma 14 Let the assumptions of Theorem 11 hold. Then the following statements hold true:

� For the derivative with respect to θst,

T 1/2∂stLT (ϕ◦)
d→ N (0, Vst),

where Vst denotes the asymptotic variance matrix.

� Let Π◦ := Π(θ◦) and Γ◦ := Γ(θ◦) and the scaling factor DT,u,i, such that DT,u,i = 1 if
Π◦(∂iC1) = 0 and DT,u,i = 1/T else. Then

DT,u,i (∂uLT (ϕ◦))i
d→

{
2tr
[
−Σ−1
◦ Π◦∂iC1X1

]
if DT,u,i 6= 1,

2tr
[
−Σ−1
◦ ∂iΨuXu

]
if DT,u,i = 1,

where

∂iΨu :=
[
Π◦∂iC1 (Π◦∂iC2 + Γ◦∂iC1) Π◦∂iC3

]
, Xu := [X ′1,X

′
2,X

′
3]′,

with ∂iCj := ∂u,iCj,◦, j = 1, 2, 3, and the limits

X1 : =
∫ 1

0

(∫ u
0
B2,◦W (v)dv

)
dW (u)′,

X2 : =
∫ 1

0
B2,◦W (u)dW (u)′, X3 :=

∫ 1

0
B3,◦W (u)dW (u)′,

where W is the weak limit of T−1/2
∑[Tu]
t=1 εt.

� For θd,2 one obtains with respect to θd,2d = β′◦d

T 1/2∂d,2dLT (ϕ◦)
d→ −2α′◦Σ

−1
◦ W (1) =: vd,2,d,

and for derivatives with respect to θd,2e = C′3,◦e

T 1/2∂d,2eLT (ϕ◦)
d→ −2(Γ◦C3,◦)′Σ−1

◦ W (1) =: vd,2,e.
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� For θd,1 = β′◦e it holds that

T−1/2∂d,1LT (ϕ◦)
d→ −2α′1,◦Σ

−1
◦ U(1) =: ve⊥,

where α◦ := Π◦[C̃2,◦C⊥,◦] and U(1) :=
∫ 1

0
udW (u).

� All convergence results hold jointly.

PROOF: In order to establish the asymptotic properties of the score, the partial derivatives of
LT (ϕ) are required. These can be derived from the system equations:

∂iLT (ϕ◦) = ∂i (log det 〈εt(ϕ◦), εt(ϕ◦)〉) = tr[〈εt(ϕ◦), εt(ϕ◦)〉−1
2〈∂iεt(ϕ◦), εt(ϕ◦)〉]

= tr[Σ−1
◦ 2〈∂iεt(ϕ◦), εt(ϕ◦)〉] + oP (1).

Let us start with the coordinates of θst =
[
θ′1,R θ′2,R θ′B,f θ′B,p θ′•

]′
. For every com-

ponent of θst Lemma 13 above establishes asymptotic stationarity. Asymptotic normality for
T 1/2〈∂iεt(ϕ◦), εt(ϕ◦)〉 then follows from well established theory for stationary processes, see, e.g.,
Hannan and Deistler (1988, Lemma 4.3.4 ff). It is straightforward to show that the results hold
jointly in all coordinates of θst.
The representation in Lemma 13 allows for the application of Lemma 10 and Lemma 11 to obtain

DT,u,i∂u,iLT (ϕ◦) = DT,u,itr[Σ
−1
◦ 2〈k−1(L; θ◦)(−∂u,iCu,◦)xt,u(θ◦), εt〉] + oP (1)

= DT,u,itr[Σ
−1
◦ 2〈Π◦∂iC1xt−1,1 + (Π◦∂iC2 + Γ◦∂iC1)xt−2,2 + Π◦∂iC3xt−1,3, εt〉]

+ oP (1)

= DT,u,itr[Σ
−1
◦ 2〈∂iΨuxt−2,u, εt〉] + oP (1)

d→

{
2tr
[
−Σ−1
◦ Π◦∂iC1X1

]
, if DT,u,i 6= 1

2tr
[
−Σ−1
◦ ((Π◦∂iC2 + Γ◦∂iC1)X2 + Π◦∂iC3X3)

]
if DT,u,i = 1.

The next step is to derive the asymptotic distribution of the score components corresponding to
θd. With respect to components of β′◦d it holds that

∂d,2dLT (ϕ◦) = −2T−1∑T
t=1(k−1(L; θ◦)β◦)

′Σ−1
◦ εt + oP (T−1/2).

Note that

k−1(L; θ◦)β◦ = (α◦β
′
◦)β◦ − C◦A

t
◦(I −A◦)−1B◦β◦,

where the second component exhibits exponential decay. Therefore, it follows that

T 1/2∂d,2dLT (ϕ◦) = −α′◦Σ−1
◦ 2T−1/2∑T

t=1 εt + oP (T−1/2)

d→ −α′◦Σ−1
◦ W (1).

For the derivatives with respect to C3,◦e and β′◦e it holds that

∂d,2eLT (ϕ◦) = −2T−1∑T
t=1(k−1(L; θ◦)C3,◦t)′Σ−1

◦ εt + oP (T−1/2),

∂d,1LT (ϕ◦) = −2T−1∑T
t=1(k−1(L; θ◦)β◦t)

′Σ−1
◦ εt + oP (T−1/2).

Using

k−1(L; θ◦)t =
∑t−1
j=0Kj(t− j) = (

∑t−1
j=0Kj)t−

∑t−1
j=0Kjj = Π◦t+ Γ◦ + oP (ρt),

we get for the derivatives with respect to β′◦e

T−1/2∂d,1LT (ϕ◦) = −2α′◦Σ
−1
◦ T−3/2∑T

t=1 tεt + oP (T−1/2)

d→ −2α′◦Σ
−1
◦ U(1),
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where we have used Lemma 10 (xi) for the convergence of the first summand. In the directions of
C3,◦ the first term vanishes because Π1,◦C3,◦ = 0. Consequently, we get

T 1/2∂eLT (ϕ◦) = −2(Γ◦C3,◦)′Σ−1
◦ T−1/2∑T

t=1 εt + oP (T−1/2)

d→ −2(Γ◦C3,◦)′Σ−1
◦ W (1).

This concludes the proof of the lemma. �
After having established the (asymptotic) properties of the score vector, the next step is the
analysis of the asymptotic behavior of the Hessian. As in Lemma 14 in the discussion we have
to distinguish with respect to which parameter components θu, θst, θd,2 and θd,1 differentiation
takes place. In addition to the previous lemma, we also have to consider the cross terms, where
differentiation takes place, e.g., once with respect to an entry in θu and once with respect to an
entry in θst.

Lemma 15 Under the conditions of Theorem 11 one obtains D̃T∂
2LT (ϕ̄T )D−1

T
d→ Z for each

sequence ϕ̄T → ϕ◦.
In case that no deterministic terms are included in the true data generating process and the model
(i.e., D̂ = D◦ = 0), Z = diag(Z?, Zst) is block diagonal. It holds that Zst > 0 is a constant matrix
and Z? a random matrix, for which P{Z? > 0} = 1 holds.
If the deterministic terms are included in the model, the following asymptotic distribution is ob-
tained: Here again ϕ = [ θ′u θ′d,2 θ′d,1 θ′st ]′. Then

D̃M
T ∂

2LT (ϕT )(DM
T )−1 d→

[
Z? 0
0 Zst

]
=


Zu Y ′u,2d Y ′u,2e Y ′u,1 0

Yu,2d Zd,2d Y ′2d,2e Y ′2d,1 0

Yu,2e Y2d,2e Zd,2e Y ′2e,1 0
Yu,1 Y2d,1 Y2e,1 Zd,1 0

0 0 0 0 Zst



For typical indices i, j (not the same for all the expressions below) the respective entries are of the
form:

[Zu]i,j =


2tr
[
(∂Mj Ψu,1)′Σ−1

◦ ∂Mi Ψu,1Z1,1

]
, if i, j ≤ cu,1

2tr
[
(∂Mj Ψu)′Σ−1

◦ ∂Mi Ψu,1Z1

]
, if i ≤ cu,1, j > cu,1

2tr
[
(∂Mj Ψu,1)′Σ−1

◦ ∂Mi ΨuZ
′
1

]
, if i > cu,1, j ≤ cu,1

2tr
[
(∂Mj Ψu)′Σ−1

◦ ∂Mi ΨuZ
]
, if i, j > cu,1

where ∂Mj Ψu :=
∑cu
k=1Mjk∂kΨu, for an orthogonal matrix M ∈ Rcu×cu , where the first cu,1 =

c1(s− c1 − c2) rows of M are such that the matrices ∂Mj Ψu,1 :=
∑cu
k=1Mjk∂kΨu[Ic1 , 0c1×(c1+c2)]

′

are linearly independent, and ∂Mj Ψu,1 = 0 for all j > cu,1, and where Z1,1, Z1 and Z are defined
through

T−3 〈xt,1, xt,1〉
d→ Z1,1, T−3/2 〈xt,1, Du

Txt,u〉
d→ Z1, 〈Du

Txt,u, D
u
Txt,u〉

d→ Z,

with Du
T := diag(T−3/2Ic1 , T

−1/2Ic1+c2). For the blocks corresponding to deterministic components
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we have

[Yu,2d]i,j = −2e′i(Π◦C⊥,◦)′Σ−1
◦ ∂Mj ΨuY 2,

[Yu,2e]i,j = −2e′i(Γ◦C3,◦)′Σ−1
◦ ∂Mj ΨuY 2,

[Yu,1]i,j = −2e′iα
′
1,◦Σ

−1
◦ ∂Mj ΨuY 1,

Z2d = 2α′◦Σ
−1
◦ α◦.

Z2e = 2(Γ◦C3,◦)′Σ−1
◦ Γ◦C3,◦,

Z1 =
2

3
α′◦Σ

−1
◦ α◦,

Y1,2e = α′◦Σ
−1
◦ Γ◦C3,◦,

Y1,2d = α′◦Σ
−1
◦ α◦,

Y2e,2d = 2(Γ◦C3,◦)′Σ−1
◦ α◦,

where Y 2 is the limit of 〈Du
Txt,u, 1〉 and Y 1 is the limit of T−1 〈Du

Txt,u, t〉.
It follows that Zu − Y ′DZ

−1
D YD with YD = [ Y ′u,2d Y ′u,2e Y ′u,1 ]′ and

ZD :=

 Zd,2d Y ′2d,2e Y ′2d,1
Y2d,2e Zd,2e Y ′2e,1
Y2d,1 Y2e,1 Zd,1


has the same structure as Zu, where in the expression Σ

−1/2
◦ ∂Mi Ψu has to be replaced by

∂Mi Ψu,2Σ : =
[
PΣ−1/2αΣ

−1/2
◦ (Π◦∂

M
i C2 + Γ◦∂

M
i C1) PΣ1/2α⊥Σ

−1/2
◦ Γ◦∂

M
i C1) Σ

−1/2
◦ Π◦∂

M
i C3

]
where PΣ−1/2α := Σ

−1/2
◦ α◦(α

′
◦Σ
−1
◦ α◦)

−1α′◦Σ
−1/2
◦ and PΣ1/2α⊥ := Is − PΣ−1/2α and Z1,1, Z1 and

Z have to be replaced by

Zd1,1 :=
∫ 1

0
(
∫ u

0
B2W (v)dv)|1(

∫ u
0
B2W (v)dv)′du,

Zd1 :=
∫ 1

0
(
∫ u

0
B2W (v)dv)|1F ′ddu F d := [(B2W (u)|1)′, (B2W (u))′, (B3W (u)|1)′]′,

Zd :=
∫ 1

0
F dF

′
ddu

if there is no linear trend term in the model. If a linear trend is present in the model, Z1,1, Z1

and Z have to be replaced by

Zde1,1 :=
∫ 1

0
(
∫ u

0
B2W (v)dv)|1,u(

∫ u
0
B2W (v)dv)′du,

Zde1 :=
∫ 1

0
(
∫ u

0
B2W (v)dv)|1,uF ′dedu F de := [(B2W (u)|1,u)′, (B2W (u)|1)′, (B3W (u)|1,u)′]′,

Zde :=
∫ 1

0
F deF

′
dedu.

Further, Zst > 0 and P{Zu > 0} → 1 respectively P{Zu − Y ′DZ
−1
D YD > 0} → 1.

PROOF: In the proof, first, convergence of the various parts is shown and in a final step the
non-singularity of Zu is established. First, note that:

∂2
i,jLT (ϕ̄T ) = ∂i

(
tr[〈ε̄t, ε̄t〉−1

2〈∂j ε̄t, ε̄t〉]
)

= −tr
[
〈ε̄t, ε̄t〉−1

(〈∂iε̄t, ε̄t〉+ 〈ε̄t, ∂iε̄t〉) 〈ε̄t, ε̄t〉−1
2 〈∂j ε̄t, ε̄t〉

]
+ tr

[
〈ε̄t, ε̄t〉−1

2
〈
(∂2
i,j ε̄t), ε̄t

〉]
+ tr

[
〈ε̄t, ε̄t〉−1

2 〈(∂j ε̄t), (∂iε̄t)〉
]

= −tr
[
Σ−1
◦ (〈∂iε̄t, ε̄t〉+ 〈ε̄t, ∂iε̄t〉) Σ−1

◦ 2 〈∂j ε̄t, ε̄t〉
]

+ tr
[
Σ−1
◦ 2

〈
(∂2
i,j ε̄t), ε̄t

〉]
+ tr

[
Σ−1
◦ 2 〈(∂j ε̄t), (∂iε̄t)〉

]
+ oP (1), (C.3)
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for every sequence ϕ̄ → ϕ◦, using the short notation ε̄t := εt(ϕ̄T ), ∂iε̄t := ∂iεt(ϕ̄T ), ∂2
i,j ε̄t :=

∂2
i,jεt(ϕ̄T ). This follows from the USE condition, see Lemma 9 in combination with 〈εt(ϕ◦), εt(ϕ◦)〉 →

Σ◦.
According to the partitioning of ϕ in five sub-vectors in total 10 matrix blocks have to be dealt
with (taking into account symmetry of the Hessian). The blocks are partitioned according to how
often differentiation takes place with respect to a component of θu, θd,2, θd,1 and θst.

The multiplication of the Hessian with DT and D̃T has the following effect: For each derivative
with respect to an entry in θd,1 an additional scaling factor T−1 is introduced and for each deriva-
tive with respect to an entry in θu an additional scaling factor of T−1/2 or T−3/2 is introduced,
which results in the proper scaling factor for each of the terms to obtain convergence in distribu-
tion.
In the above expression (C.3) the variable εt(ϕT ) appears, in the first and second term to be
precise. This variable has to be evaluated at the point ϕ̄T . Due to the assumptions ϕ̄T converges
to ϕ◦. Hence, applying a mean value expansion again εt(ϕ̄T ) = εt + ∂εt(ϕ̃)(ϕ̄T −ϕ◦), for suitable
intermediate value ϕ̃, it follows that both mentioned terms converge to 0. Look for example at
the second term with essential term

〈
(∂2
i,jεt(ϕ̄T )), εt(ϕ̄T )

〉
=
〈
(∂2
i,jεt(ϕ̄T )), εt

〉
+

dim(ϕ)∑
l=1

〈
(∂2
i,jεt(ϕ̄T )), ∂lεt(ϕ̃)

〉
(ϕ̄l,T − ϕl,◦).

Lemmas 10 and 11 show that for this term for all possible combinations of differentiation (including
the necessary normalization if differentiation occurs with respect to an entry of θu or θd,1) the first
term of the above equation converges to 0. Due to the established condition USE this convergence
is uniformly in a compact neighborhood of ϕ◦. Analogous considerations deliver convergence of
the second term to 0 as well. Here the terms (∂2

i,jεt(ϕ))∂lεt(ϕ̃)′ converge to random variables,
post-multiplying with (ϕ̄l,T − ϕl,◦) then delivers the result. Similar considerations also apply to
the first term of equation (C.3). Hence, we obtain:

∂2
i,jLT (ϕ̄T ) =tr

[
Σ−1
◦ 2〈(∂iεt(ϕ̄T )), (∂jεt(ϕ̄T ))〉

]
+ oP (T−Nu/2−Nu,i−Ne⊥ ), (C.4)

where Nu counts the number of times differentiation takes place with respect to an element of
θu, Nu,1 counts the number of times differentiation takes place with respect to an element θM1
as defined in Theorem 11 and Nd,1 counts the number of times differentiation takes place with
respect to an element of θd,1. Recall the definition of DT :

D̃T : = diag(T−1Icu,1 , Icu−cu,1 , T
1/2Icd,2 , T

−1/2Icd,1 , T
1/2Icst)

D̃M
T : = D̃T M̃ M̃ := diag(M, Icu−cu,1+cd,2+cd,1+cst)

DM
T : = TD̃−1

T M̃,

where the matrix M ∈ Rcu×cu separates the I(1) and I(2) components. It follows that

D̃M
T ∂

2LT (ϕ̄T ;YT )(DM
T )−1 = T−1D̃T

(
M̃ ∂2LT (ϕ̄T ;YT ) M̃ ′

)
D̃T .

Note that left and right multiplication of the Hessian by M̃ and M̃−1 corresponds to a change
from the partial derivatives with respect to ϕ to a basis of certain directional derivatives, for which
we use the notation ∂M in the following. Note, however, that only the partial derivatives with
respect to θu are affected by the change of the basis. Starting from equation (C.4) we now analyze
the asymptotic behavior of the derivatives.
i ∼ θst, j ∼ θst: If differentiation takes place twice with respect to an entry of θst, then all quantities
in the above equation are asymptotically stationary, see also the previous lemma. In this case
convergence to a constant matrix follows using uniform convergence in a compact neighborhood
of ϕ◦.
i ∼ θst, j ∼ θ?: If differentiation takes place once with respect to an entry of θst and once with
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respect to an entry of θ?, convergence of (D̃M
T ∂

2LT (ϕ̄T ;YT )(DM
T )−1)i,j → 0 follows. In this case

define

∂Mj Ψ : =
[
∂Mj Ψu ∂Mj Ψd

]
,

∂Mj Ψd : =
[(
−α◦∂Mj θd,2d − Γ◦[C3,◦, β◦]′∂Mj [θ′d,2e, θ

′
d,1]′

)
−α◦∂Mj θd,1

]
∂Mj Ψ : =

{∑c1(s−c1)
k=1 Mjk∂kΨ if j ≤ cu,1

∂jΨ if j > cu,1

such that the dominant component in (D̃M
T ∂

2LT (ϕ̄T ;YT )(DM
T )−1)i,j is equal to

T−1(D̃T )i,i(D̃T )j,jtr
[
Σ−1
◦ 2〈∂iεt(ϕ◦), ∂Mj Ψwt〉

]
.

The process ∂iεt(ϕ◦) is asymptotically stationary, while, e. g., for directional derivatives j ≤ cu,1
the process ∂Mj Ψwt contains I(2) components. In this case T−1(D̃T )i,i(D̃T )j,j = T−2, such that

T−2tr
[
Σ−1
◦ 2〈∂iεt(ϕ◦), ∂Mj Ψwt〉

]
→ 0 according to Lemma 11.

i ∼ θ?, j ∼ θ?: Finally, examine the cases of differentiating twice with respect to an entry in θ?.
The dominant component in (D̃M

T ∂
2LT (ϕ̄T ;YT )(DM

T )−1)i,j is equal to

T−1(D̃T )i,i(D̃T )j,jtr
[
Σ−1
◦ 2〈∂Mj Ψwt, ∂

M
j Ψwt〉

]
.

Consider again the directional derivatives i, j ≤ cu,1 corresponding to I(2) processes. Since

T−1(D̃T )i,i(D̃T )j,j = T−3, Lemma 10 implies

T−3tr
[
Σ−1
◦ 2〈∂Mj Ψwt, ∂

M
j Ψwt〉

]
→ 2tr

[
(∂Mj Ψu,1)′Σ−1

◦ ∂Mi Ψu,1Z1,1

]
.

The other terms follow similarly by application of Lemma 10.
It remains to analyze the non-singularity properties of Z. In the case D◦ = D̂ = 0 the block-
diagonality of the asymptotic Hessian implies that it is sufficient to treat the blocks Zu and Zst
separately. If deterministic terms are present it is sufficient to investigate Zst, ZD and Zu −
Y ′DZ

−1
D YD.

Consider the block Zst corresponding to θst first: This block converges in fact to a constant matrix,
i.e., asymptotic non-singularity is shown, if the limiting matrix is non-singular. For the part of θst
corresponding to the parameters for k•(z) this follows again from standard theory for stationary
processes. Since the parameters of the stable and the unstable part of the transfer function are
independent of each other, we can consider the unstable part alone.
Thus, only the derivatives corresponding to θC,R, θB,f and θB,p have to be analyzed. The proof is
indirect: If the sub-block of Zst corresponding to θC,R, θB,f and θB,p were singular, there would
exist a vector x = [ x1 . . . xv ]′ such that

0 =

v∑
r,s=1

xrxstr[Σ
−1
◦ E∂sεt(ϕ◦)∂rεt(ϕ◦)′] = tr

[
Σ−1
◦ E

v∑
r=1

xr∂rεt(ϕ◦)

(
v∑
s=1

xs∂sεt(ϕ◦)

)′]

denoting the components of θst corresponding to θC,R, θB,f and θB,p with 1, . . . , v for some integer
v. This implies that ∑

r

xr∂rεt(ϕ◦) = −k−1
0 (L)

∑
r

xr∂rk(z; θ)εt

is equal to zero and, thus, that the filters for generating the score are linearly dependent. The
coefficients of the unstable part of the transfer function are of the form Kj,u = jC1B2 + C1B1 +
C2B2 + C3B3. Thus, linear dependence of the derivatives with respect to θst implies∑

r

xr∂r[C1[B2,B1], C2B2, C3B3] = 0 (C.5)
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since both the I(2) and (1) components need to vanish separately, and Ck, k = 1, 2, 3, span
different spaces such that no linear dependance between matrices ∂rCkBk for different k occur. In
the following we show that (C.5) implies xr = 0.
We start with the derivatives with respect to θ2,R and θB3 = [θB3,p, θ

′
B3,f

]′ and consider the product
C3B3 or R2,RB3. We show the independence by induction over c2. In the case c2 = 1, there are
s parameters in θ2,R and θB3

, and all parameters correspond to the entries of B3 while R2,R = 1,
see Bauer et al. (2020, Section 3.1) for details. The coefficients xr of a linear combination of the
derivatives must be zero, in order for the sum to be zero, showing that the derivatives are linearly
independent.
Suppose the linear independence has been shown for c2 = g. To show the statement for c2 = g+1,
write

R2,R(θ2,R) =

c2−1∏
i=1

c2−i∏
j=1

Rc2,i,i+j(θi(i−1)/2+j) =

c2−1∏
j=1

Rc2,1,1+j(θj)

c2−1∏
i=2

c2−i∏
j=1

Rc2,i,i+j(θi(i−1)/2+j),

where Rc2,i,i+j(θi(i−1)/2+j) is a real Givens rotation, see Bauer et al. (2020, Definition 6). Note
that this corresponds to the form of RR in Bauer et al. (2020, Lemma 1) up to a reordering, which
simplifies the proof. Clearly, the entries in the first column of R2,RB3 with non-zero entries only
depend on the parameters θ1 . . . , θc2−1 and the first non-zero entry in the first row of B3. Since
the first columns of the derivatives with respect to these parameters are orthogonal to each other,
the coefficients of these derivatives in (C.5) must be zero. Since the matrix

∏c2−1
j=1 Rc2,1,1+j(θj) is

of full rank, the derivatives of

c2−1∏
j=1

Rc2,1,1+j(θj)

c2−1∏
i=2

c2−i∏
j=1

Rc2,i,i+j(θi(i−1)/2+j)B3

with respect to the other parameters are independent if and only if the derivatives of

c2−1∏
i=2

c2−i∏
j=1

Rc2,i,i+j(θi(i−1)/2+j)B3 =

[
1 0

0
∏c2−1
i=2

∏c2−i
j=1 Rc2−1,i−1,i+j−1(θi(i−1)/2+j)

]
B3

are linearly independent. Then consider the second column of this matrix. The derivative with
respect to b12 is null outside the first row, while the derivative with respect to any other parameter
is zero in the first row. Thus, the coefficient of the derivative with respect to b12 must be zero.
By an analogous argument the coefficients corresponding to b13, . . . , b1s are zero. To show that
the coefficients of the derivatives in the linear combination with respect to the other parameters
are zero it is sufficient to consider the lower right (c2 − 1)× (s− 1) block. This follows from the
induction hypothesis, which finishes the proof.
An analogous argument for the product C1[B1,B2] respectively R1,R[B1,B2] shows the linear inde-
pendence of derivatives with respect to θ1,R, θB,p and θB,f . Combining both, the linear indepen-
dence of all derivatives with respect to θst follows.
Next consider the block Zu corresponding to θu. It has been shown above that if differentiation
takes place twice with respect to an entry in θu the essential term in equation (C.3) is

(D̃M
T ∂

2LT (ϕ̄T ;YT )(DM
T )−1)i,j = T−1(D̃T )i,i(D̃T )j,jtr

[
Σ−1
◦ 2〈∂Mj Ψuxt,u, ∂

M
j Ψuxt,u〉

]
+ oP (1)

= tr
[
∂Mj Ψ̃′uΣ−1

◦ 2∂Mj Ψ̃uD
u
T 〈xt,u, xt,u〉Du

T

]
+ oP (1),

where ∂Mj Ψ̃ := [∂Mj Ψ̃u,1, 0s×(c1+c2)] for j ≤ cu,1 and ∂Mj Ψ̃ = ∂Mj Ψ for j > cu,1. Recall that

Du
T = diag(T−3/2Ic1 , T

−1/2Ic1+c2). This can be further rewritten as

D̃M
T ∂

2LT (ϕ̄T ;YT )(DM
T )−1 = Φ′TΦT + oP (1),

ΦT : = [ φ1, . . . , φcu ] φj := vec
(

Σ
−1/2
◦ ∂Mj Ψ̃(T−1Du

T 〈xt,u, xt,u〉Du
T )−1/2

)
.
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Note that Zu is invertible if and only if the limit of Φ′TΦT is invertible, which holds if and only
if ΦT is of full column rank, at least asymptotically. Since T−1Du

T 〈xt,u, xt,u〉Du
T is invertible in

probability and converges to the random matrix Z, which is also invertible in probability, it is

enough to show that ψj := vec
(
∂Mj Ψ̃

)
are linearly independent, due to the identity

φj =
(

(Du
T 〈xt,u, xt,u〉Du

T )−1/2 ⊗ Σ
−1/2
◦

)
vec(ψj).

Note first that ψj , j ≤ cu,1, is orthogonal to ψj , j > cu,1, thus, separating the proof of linear
independence into two parts.
For j = 1, . . . , cu,1 the linear independence follows from the fact that the derivatives of the product
(C1,◦)⊥(C1,◦)′⊥R1,L(θ1,L) with respect to θ1,L are c1(s− c1) linearly independent matrices. Thus,
there exists a orthogonal matrix M ∈ Rcu×cu of linear combinations, transforming the set of deriva-
tives into two different sets, such that the set

∑cu
k=1Mj,k(β◦β

′
◦)∂kC1, j ≤ cu,1 is a basis for the

set of all matrices N ∈ Rs×c1 satisfying [C1◦, C3◦]′N = 0, and the set of
∑cu
k=1Mj,k(C3◦C′3◦)∂kC1,

cu,1 < j ≤ cu is a basis for the set of all matrices N ∈ Rs×c1 satisfying [C1◦, β◦]′N = 0. Multipli-
cation with Π◦ from the left then proves the linear independence of the vectors ψj , j ≤ cu,1.
For j = 1, . . . , cu,1, consider the submatrix [ Π◦∂

M
i C2 + Γ◦∂

M
i C1 Π◦∂

M
i C3 ]. Chose [∂Mi C2, ∂Mi C3] =

[∂iC2, ∂iC3] for the derivatives with respect to θG and θ2,L. Thus, for derivatives with respect to
θG the above submatrix is equal to [ Π◦∂iC2 0 ], while for derivatives with respect to θ2,L the
submatrix is equal to [ 0 Π◦∂iC3 ]. Since the columns of ∂iC2 are in the column space of β◦
by construction, it follows that the matrices [ Π◦∂iC2 0 ] form a basis for the set of all ma-
trices [N, 0s×c2 ], N ∈ Rs×c1 satisfying [C1◦, C3◦]′N = 0. Similarly, the matrices [ 0 Π◦∂iC3 ]
form a basis for the set of all matrices [0s×c1 , N ], N ∈ Rs×c2 satisfying [C1◦, C3◦]′N = 0. This is
due to the properties of the parameterization based on Givens rotation, ensuring by construction
that (β◦β

′
◦)∂iC3 are linearly independent, since the columns of ∂iC3 are orthogonal to C1,◦ and

cannot lie in the span of C3,◦. Note that these two sets of linearly independent matrices can be
now used to reduce the set of [ Π◦∂

M
i C2 + Γ◦∂

M
i C1 Π◦∂

M
i C3 ] into [ (α⊥,◦α

′
⊥,◦Γ◦∂

M
i C1 0 ], by

regressing out the matrices corresponding to derivatives with respect to θG and θ2,L. Thus, as
the last step, consider the set of matices [ (α⊥,◦α

′
⊥,◦Γ◦∂

M
j C1 0 ] for cu,1 < j ≤ s(s − c1) cor-

responding to derivatives with respect to θ1,L. Using α′⊥,◦Γ◦ = ξ◦η
′
◦ = ξ◦C′3 and the fact that∑cu

k=1Mj,k(C3◦C′3◦)∂kC1, cu,1 < j ≤ cu is a basis for the set of all matrices N ∈ Rs×c1 satisfying
[C1◦, β◦]′N = 0, it follows that the reduced vectors are linearly independent, which implies that

the set of vectors ψj := vec
(
∂Mj Ψ̃

)
, cu,1 < j ≤ cu are jointly linearly independent.

In consequence, ΦT is of full column rank, such that Φ′TΦT is invertible.
Finally, let us consider Zu − Y ′DZ

−1
D YD. For t = 1, . . . , T , i = 1, . . . , cu define

τu,i,t := −Σ
−1/2
◦ ∂Mi Ψ′uD

u
Txt,u(θ◦) τu,t := [ τu,1,t . . . τu,cu,t ].

We see that

diag(T−1Icu,1 , Icu−cu,1)Mu∂
2
uLT (ϕ̄T )M−1

u diag(T−2Icu,1 , T
−1Icu−cu,1)

=

T∑
t=1

τ ′u,tτu,t + oP (1)→ Zu,

with Mu := diag(M, Icu−c1(s−c1)). Analogously, define for t = 1, . . . , T

τ2d,t := −T−1/2Σ
−1/2
◦ α◦ ∂2

d,2dLT (ϕ̄T ) =

T∑
t=1

τ ′2d,tτ2d,t + oP (1)→ Z2d

τ2e,t := −T−1/2Σ
−1/2
◦ Γ◦C1,◦ ∂2

d,2eLT (ϕ̄T ) =

T∑
t=1

τ ′2e,tτ2e,t + oP (1)→ Z2e

τ1,t := −T−3/2Σ
−1/2
◦ α◦t T−2∂2

d,1LT (ϕ̄T ) =

T∑
t=1

τ ′1,tτ1,t + oP (1)→ Z1
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and analogous expressions for the sample covariances between the deterministic terms.
Let us first deal with the case where no linear trend is present. To show the invertibility of Zu −
Y ′DZ

−1
D YD, we first investigate the invertibility of the corresponding sample covariance matrices

and later take the limit of these quantities. We find

T∑
t=1

τ ′u,tτu,t −

(
T∑
t=1

τ ′u,tτ2d,t

)
︸ ︷︷ ︸

→Y ′D

(
T∑
t=1

τ ′2d,tτ2d,t

)−1

︸ ︷︷ ︸
→Z−1

D

(
T∑
t=1

τ ′2d,tτu,k,t

)
︸ ︷︷ ︸

→YD

=

T∑
t=1

τ ′u,tτu,t −

(
T∑
t=1

τ ′u,t

)
Σ
−1/2
◦ α◦(α

′
◦Σ
−1
◦ α◦)

−1α′◦Σ
−1/2
◦

(
T∑
t=1

τu,t

)

=

T∑
t=1

τ ′u,tPΣ1/2α⊥τu,t +

T∑
t=1

τ ′u,tPΣ−1/2ατu,t −

(
T∑
t=1

τ ′u,t

)
PΣ−1/2α

(
T∑
t=1

τu,t

)
,

where PΣ−1/2α is the projection on the column space of Σ
−1/2
◦ α◦, and PΣ1/2α⊥ is the projection

on its orthogonal complement. Note that for PΣ−1/2ατu,t the regression on τ2d,t corresponds to
regressing out the constant. Thus, defining

xt,d :=
[
(xt,1 − x̄1)′ x′t,2 (xt,3 − x̄3)′

]′
where x̄j = T−1

∑T
t=1 xt,j for j = 1, 2, 3, and using

∂Mi Ψu,2Σ : =
[
PΣ−1/2αΣ

−1/2
◦ (Π◦∂

M
i C2 + Γ◦∂

M
i C1) PΣ1/2α⊥Σ

−1/2
◦ Γ◦∂

M
i C1) Σ

−1/2
◦ Π◦∂

M
i C3

]
,

it follows that Zu − Y ′DZ
−1
D YD is given by

[
Zu − Y ′DZ−1

D YD
]
i,j

=



2tr
[
(∂Mj Ψu,1)′Σ−1

◦ ∂Mi Ψu,1Z
d
1,1

]
, if i, j ≤ cu,1

2tr
[
(∂Mj Ψu,2Σ)′Σ

−1/2
◦ ∂Mi Ψu,1Z

d
1

]
, if i ≤ cu,1, j > cu,1

2tr
[
(∂Mj Ψu,1)′Σ

−1/2
◦ ∂Mi Ψu,2Σ(Zd1)′

]
, if i > cu,1, j ≤ cu,1

2tr
[
(∂Mj Ψu,2Σ)′∂Mi Ψu,2ΣZ

d
]
, if i, j > cu,1

(C.6)

where Zd1,1, Zd1 and Zd occur as the respective limits of

T−3 〈xt,1 − x̄1, xt,1〉
d→ Zd1,1, T−2 〈xt,1 − x̄1, xt,d〉

d→ Zd1, T−1 〈xt,d, xt,d〉
d→ Zd.

This matrix is positive with probability one, which follows from the same arguments used for Zu.
The case with the linear trend can be dealt analogously. Note that the additional regression on
the constant vector τ2e,t leads to a correction for a constant for the whole vector τu. Adding τ1,t
as another additional regressor then leads to a linear detrending of PΣ−1/2ατu,t. It follows that

Zd1,1, Zd1 and Zd in the above expression needs to be replaced by Zde1,1, Zde1 and Zde, which are
the limits of

T−3 〈xt,1 − x̄1 − x́1(t− t̄), xt,1〉
d→ Zde1,1, T−2 〈xt,1 − x̄1 − x́1(t− t̄), xt,de〉

d→ Zde1 ,

T−1 〈xt,de, xt,de〉
d→ Zde,

where

x́j :=
(∑T

t=1(xt,j − x̄j)t
)(∑T

t=1(t− t̄)2
)−1

, t̄ = T−1
T∑
t=1

t,

xt,de :=
[
(xt,2 − x̄2 − x́1(t− t̄))′ (xt,2 − x̄2)′ (xt,3 − x̄3 − x́1(t− t̄))′

]′
.
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Thus, the inclusion of deterministics corresponds to replacing some of the Brownian motions by a
demeaned and detrended Brownian motion. Again it follows that this matrix is positive definite
with probability one. This implies the invertibility of the Hessian and finishes the proof. �

Combining the results of the previous two lemmata, the asymptotic distributions of T (θ̂? − θ?,◦)
and
√
T (θ̂st − θst,◦) follow immediately.

In any case
√
T (θ̂st − θst,◦)

d→ N (0, Z−1
st VstZ

−1
st ). Therefore (A) and (B) holds.

(C) has been shown in Lemma 11, while (D) is contained in the results of Lemma 13 and Lemma 15.
With respect to (E) note that if no deterministic terms are included in the estimation it follows,

that the sub-block of θ̂u has a limiting distribution of the form Z−1
u vu, where vu is a random

vector whose entries are given by

(vu)j =

{
tr[Σ−1

◦ ∂Mj ΨuX1] if j ≤ cu,1
tr[Σ

−1/2
◦ ∂Mj Ψu,2Σ[X2,X3]] if j > cu,1

.

When a constant is included in the estimation, Zu is replaced by Zu − Y ′DZ
−1
D YD, compare (C.6)

in Lemma 15, and vu is replaced by

(v?)j =

{
tr[Σ−1

◦ ∂Mj ΨuX
d
1] if j ≤ cu,1,

tr[Σ
−1/2
◦ ∂Mj Ψu,2ΣX

d
2] if j > cu,1

,

where Xd
1 is the limit of T−1 〈xt,1 − x̄1, εt〉 and equal to

B2,◦
∫ 1

0

(∫ u
0
W (v)dv −

∫ 1

0
(
∫ v

0
W (w)dw)dv

)
dW (u)′

= B2,◦
∫ 1

0

(∫ u
0
W (v)dv

∣∣
1

)
dW (u)′,

and Xd
2 is the limit of 〈xt,d, εt〉.

If a linear trend is included Zu is replaced by Zu − Y ′DZ
−1
D YD as in (C.6) (where ZD and YD now

also contain elements corresponding to the linear trend term) and vu is replaced by a random
vector defined as v? with Xd

1 replaced by Xe
1 defined as the limit of T−1 〈xt,1 − x̄1 − x́1(t− t̄), εt〉,

which is equal to

B2,◦
∫ 1

0

(∫ u
0
W (v)dv −

∫ 1

0
(
∫ v

0
W (w)dw)dv − 12

(
u− 1

2

) ∫ 1

0

(
v − 1

2

)
(
∫ v

0
W (w)dw)dv

)
dW (u)′

= B2,◦
∫ 1

0

(∫ u
0
W (v)dv

∣∣
1,u

)
dW (u)′

and Xd
2 is replaced by Xde

2 denoting the limit of 〈xt,de, εt〉.
To derive the asymptotic distribution of θM1 another block inversion of the Hessian is necessary
to derive the corresponding block of the Hessian. Following the same arguments as in Lemma 15
concerning the block corresponding to the deterministics it follows that Z1,1 has to be replaced by
the limit of

〈
xt,1, xt,1|xt,2,xt,3

〉
if no deterministics are present, by the limit of

〈
xt,1, xt,1|xt,2,xt,3,1

〉
if there is a constant but no linear trend and by the limit of

〈
xt,1, xt,1|xt,2,xt,3,1,t

〉
if both a

constant and a linear trend occur. By Lemma 10 the above converge to Z1,1? as presented in (E).
Analogously v1? is of the form

v1? = tr[Σ−1
◦ ∂Mj ΨuX1?]

with X1? being the limit of
〈
xt,1|xt,2,xt,3 , εt

〉
if no deterministics are present. It is replaced

by the limit of
〈
xt,1|xt,2,xt,3,1, εt

〉
if there is a constant but no linear trend and by the limit of〈

xt,1|xt,2,xt,3,1,t, εt
〉

if both a constant and a linear trend occur. Again Lemma 10 provides the
limiting distributions as given in (E).
Finally (F) is immediate from Lemma 12, which concludes the proof of Theorem 11.
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To prove Corollary 6 let Z = diag(Z?, Zst) and note that

ŴR = (Rθ̂ − r)′(RẐ−1R′)−1(Rθ̂ − r)

= ((DR
TR(Dθ

T )−1)Dθ
T (θ̂ − θ◦))′(DR

TR(Dθ
T )−1(Dθ

T Ẑ
−1Dθ

T )(Dθ
T )−1R′DR

T )−1(DR
TR(Dθ

T )−1)Dθ
T (θ̂ − θ◦)

d→ [ Z−1
? v′? v′st ](R∞)′(R∞Z−1(R∞)′)−1R∞[ Z−1

? v′? v′st ]′,

where we have used Dθ
T (θ̂ − θ◦) → [ Z−1

? v′? v′st ]′ and Ẑ
d→ Z because of Lemma 15. Since

vst is asymptotically normally distributed with variance Zst and v? conditionally upon BE,◦W (u)
is asymptotically normally distributed with variance Z?, the test statistic conditionally upon
BE,◦W (u) is asymptotically χ2

p distributed which implies that the same result holds marginally.

C.3 Convergence Results

Let Â, B̂ be chosen by a pseudo maximum likelihood approach. An estimate of the state x̂t is
then given by x̂t+1 = Âx̂t + B̂yt. Minimizing the likelihood with respect to C is then equivalent
to a regression in the model.

yt = Cx̂t + εt,

which is the starting point in the derivation of the asymptotic distribution of the rank test statistic.
Let us introduce the following notation:

� Let ε̂t denote the residuals of the (unrestricted) regression of yt on x̂t.

� Let ε̂ct denote the residuals from the restricted regression and let (Â, B̂, Ĉ) be the correspond-
ing estimated system transformed into the canonical form for systems corresponding to I(2)
processes.

� The restricted regression introduces a partitioning of the state x̂t into estimated stochastic
trends and estimated stationary components. Let x̂t,u denote the state space components
corresponding to the stochastic trends, x̂t,e := [x̂′t,1, x̂t,3]′ the I(2) component and the I(1)
component that does not sum up to an I(2) trend. Let x̂t,g := x̂t,2 denote the state space
components corresponding to the I(1) components of the states which sum up to the I(2)
component of the state, and x̂t,• the components corresponding to the stationary part of the
state.

� Let α̂⊥ := B̂′E(B̂EB̂′E)−1/2 = [B̂′2, B̂′3](B̂EB̂′E)−1/2 be such that α̂′⊥Π̂ = B̂EΠ̂ = 0, where

Π̂ := −I + Ĉ(I − Â)−1B̂, and α̂ the orthogonal complement of α̂⊥ in Rs with β̂ such

that Π̂ = α̂β̂′. Let γ̂⊥ := B̂′2(B̂2B̂′2)−1/2 be the such that γ̂′⊥Γ̂Ĉ1 = B̂2Γ̂Ĉ1 = 0, where

Γ̂ := −I + Ĉ(I − Â)−2ÂB̂, and let γ̂, with γ̂′γ̂ = Ic2 , be a matrix whose column space is the
orthogonal complement in the space spanned by the columns of α̂⊥.

The next Lemma then introduces three necessary conditions for the residuals ε̂ct to correspond to
a maximizer of the restricted regression.

Lemma 16 The following equalities hold:

(i) 〈ε̂ct , x̂t,•〉 = 0

(ii) α̂′ 〈ε̂ct , ε̂ct〉
−1 〈ε̂ct , x̂t,u〉 = 0

(iii) γ̂′ 〈ε̂ct , ε̂ct〉
−1 〈ε̂ct , x̂t,g〉 = 0

The above imply

ε̂ct = ε̂t + α̂⊥
〈
ε̂ct , x̂t,e|x̂t,g

〉 〈
x̂t,e|x̂t,g , x̂t,e|x̂t,g

〉−1
x̂t,e|x̂t,g + γ̂⊥ 〈ε̂ct , x̂t,g〉 〈x̂t,g, x̂t,g〉

−1
x̂t,g
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Proof: Let Ĉ be the estimator of the restricted regression and let (Â, B̂, Ĉ) be the corresponding
system in canonical form. We will argue that if either (i) or (ii) or (iii) does not hold, then we can
find a matrix C̃ (not necessarily in canonical form), satisfying the restrictions, such that

det
〈
yt − Ĉx̂t, yt − Ĉx̂t

〉
> det

〈
yt − C̃x̂t, yt − C̃x̂t

〉
,

which is a contradiction to Ĉ being the estimator of the restricted regression.

(i) Consider the model ε̂ct = C(i)x̂t,• + ε̃ct such that the regression is performed only on the

regressors in x̂t,•. If 〈ε̂ct , x̂t,•〉 6= 0, we clearly have det 〈ε̂ct , ε̂ct〉 > det〈ˆ̃εct , ˆ̃εct〉 for the OLS

residuals ˆ̃εct of the above restricted regression or equivalently

det
〈
yt − Ĉx̂t, yt − Ĉx̂t

〉
> det

〈
yt − C̃x̂t, yt − C̃x̂t

〉
with C̃ = Ĉ+

[
0s×nu Ĉ(i)

]
, where Ĉ(i) denotes the OLS estimator from the above regression.

What is left is to show that C̃ fulfills the desired restriction. Using Ã = Â + B̂C̃ = Â +
B̂
[
0 Ĉ(i)

]
we see that Ã is of the form [

Au ?
0 ?

]
,

where ? indicates entries which are not further specified. Thus, there exists a regular matrix

M̃ such that Ã = M̃

[
Au 0
0 ?

]
M̃−1, which implies that C̃ indeed fulfills the rank restrictions.

This contradicts the assumption of Ĉ being the estimator of the restricted regression.

(ii) For the restricted optimization we have to minimize det 〈ε̂ct , ε̂ct〉. We note that

det 〈ε̂ct , ε̂ct〉 = detN 〈ε̂ct , ε̂ct〉N ′ = det 〈Nε̂ct , Nε̂ct〉

for any matrix N with detN = 1. Choose N = [α̂⊥, α̂]′, such that detN = 1 holds. Then
the likelihood splits into two components.

det 〈ε̂ct , ε̂ct〉
= det 〈α̂′⊥ε̂ct , α̂′⊥ε̂ct〉det

(
α̂′ 〈ε̂ct , ε̂ct〉 α̂− α̂′ 〈ε̂ct , ε̂ct〉 α̂⊥(α̂′⊥ 〈ε̂ct , ε̂ct〉 α̂⊥)−1α̂′⊥ 〈ε̂ct , ε̂ct〉 α̂

)
= det 〈α̂′⊥ε̂ct , α̂′⊥ε̂ct〉det 〈α̂′ε̂⊥,t, α̂′ε̂⊥,t〉 ,

where α̂′ε̂⊥,t := α̂′ε̂ct − α̂′ 〈ε̂ct , ε̂ct〉 α̂⊥(α̂′⊥ 〈ε̂ct , ε̂ct〉 α̂⊥)−1α̂′⊥ε̂
c
t . These decompositions also play

a role in the VECM setting, compare Johansen (1996, Lemma 10.1) for different (asymptotic)
relations between these empirical variances. Note that

ε̂⊥,t = α̂
(
α̂′ 〈ε̂ct , ε̂ct〉

−1
α̂
)−1

α̂′ 〈ε̂ct , ε̂ct〉
−1
ε̂ct

since the residuals of the regression of ε̂ct on α̂⊥ε̂
c
t are equal to the projection of ε̂ct on

α̂′ 〈ε̂ct , ε̂ct〉
−1
ε̂ct . If 〈ε̂ct , ε̂ct〉

−1 〈ε̂ct , x̂t,u〉 6= 0, we can find a matrix Ĉ(ii) 6= 0 by regression in the

model α̂′ε̂⊥,t = C(ii)x̂t,u + α̂′ε̃⊥,t such that det 〈α̂′ε̂⊥,t, α̂′ε̂⊥,t〉 > det〈α̂′ ˆ̃ε⊥,t, α̂′ ˆ̃ε⊥,t〉, where
ˆ̃ε⊥,t denotes the OLS residuals in the auxiliary model. Thus,

det
〈
yt − Ĉx̂t, yt − Ĉx̂t

〉
> det

〈
yt − C̃x̂t, yt − C̃x̂t

〉
with C̃ := Ĉ + [α̂Ĉ(ii), 0s×(n−2c1−c2)] and Ĉ(ii) := α̂′ 〈ε̂ct , x̂t,u〉 〈x̂t,u, x̂t,u〉

−1
being the OLS

estimator. Note that

α̂′⊥(−I + C̃(I − Â)−1B̂) = α̂′⊥Π̂ + α̂′⊥α̂Ĉ(ii)(I − Â)−1B̂ = 0
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such that rank(Π̃) ≤ s− c1 − c2 holds. Moreover,

γ̂′⊥(−I + C̃(I − Â)−2ÂB̂)ĈE = γ̂′⊥Π̂ĈE + γ̂′⊥αĈ(ii)(I − Â)−2ÂB̂ĈE = 0

such that rank(B̂EΓ̃ĈE) ≤ c2 holds. Thus, C̃ also fulfills the restrictions contradicting the
assumption of an optimal choice of Ĉ.

(iii) Here we proceed similarly to (ii). To minimize det 〈ε̂ct , ε̂ct〉 focus on det 〈α̂′ε̂⊥,t, α̂′ε̂⊥,t〉 as
defined in (ii). Decompose α̂⊥ into [γ̂, γ̂⊥]. Then the determinant splits into two components.

det 〈α̂′ε̂⊥,t, α̂′ε̂⊥,t〉 = det 〈γ̂′⊥ε̂⊥,t, γ̂′⊥ε̂⊥,t〉det
〈
γ̂′ε̂g⊥,t, γ̂

′ε̂g⊥,t

〉
,

where γ′ε̂g⊥,t := γ̂′ε̂⊥,t − γ̂′ 〈ε̂⊥,t, ε̂⊥,t〉 γ̂⊥ (γ̂′⊥ 〈ε̂⊥,t, ε̂⊥,t〉 γ̂⊥)
−1
γ̂′⊥ε̂⊥,t. Again

ε̂g⊥,t = γ̂
(
γ̂′ 〈ε̂ct , ε̂ct〉

−1
γ̂
)−1

γ̂′ 〈ε̂ct , ε̂ct〉
−1
ε̂ct

since the residuals of the regression of ε̂⊥,t on γ̂′⊥ε̂
c
⊥,t are equal to the projection of ε̂ct on

γ̂′ 〈ε̂ct , ε̂ct〉
−1
ε̂ct . If 〈ε̂ct , ε̂ct〉

−1 〈ε̂ct , x̂t,g〉 6= 0, we can find a matrix Ĉ(iii) 6= 0 by regression in the

model γ̂′ε̂g⊥,t = C(iii)x̂t,g + γ̂′ε̃g⊥,t such that det〈γ̂′ε̂g⊥,t, γ̂′ε̂
g
⊥,t〉 > det〈γ̂′ ˆ̃εg⊥,t, γ̂′ ˆ̃ε

g
⊥,t〉, where

ˆ̃εg⊥,t denotes the OLS residuals in the auxiliary model. Thus,

det
〈
yt − Ĉx̂t, yt − Ĉx̂t

〉
> det

〈
yt − C̃x̂t, yt − C̃x̂t

〉
with C̃ := Ĉ + [0s×c1 , γĈ(iii), 0s×(n−2c1)] and Ĉ(iii) := γ̂′

〈
ε̂g⊥,t, x̂t,g

〉
〈x̂t,g, x̂t,g〉−1

being the

OLS estimator. Using Ã = Â+ B̂C̃ we see that Ã is of the form
Id1 ? 0 0
0 Id1 0 0
0 ? Id2

0
0 ? 0 A•

 ,
where ? indicates entries which are not further specified. It follows that the geometric
multiplicity of the eigenvalues of Ã is greater or equal to c1 + c2. Moreover, Ã can be
transformed into canonical form Ã = M−1ÃM with M being a block diagonal matrix of the
form diag(M1,M2,M3,M•). This ensures that the column space of ĈE is a subspace of the
column space of the subblock C̃E of C̃ = C̃M . Note that

γ̂′⊥(−I + C̃(I − Â)−2ÂB̂)ĈE = γ̂′⊥Π̂ĈE + γ̂′⊥γ̂Ĉ(iii)(I − Â)−2ÂB̂ĈE = 0

such that rank(B̂EΓ̃ĈE) ≤ c2 holds. Thus, C̃ also fulfills the restrictions contradicting the
assumption of an optimal choice of Ĉ.

Next, let us discuss some properties of x̂t, which we summarize in the following Lemma

Lemma 17 Let {yt}t∈Z be an I(2) process generated by a system of the form (3.2) and {εt}t∈Z
fulfilling Assumption 3. Assume the true order n is known. Let θ̂ be a PML estimator of θ over
a suitable parameter space Θ fulfilling the assumption of Theorem 10 and define x̂Et := x̂Et (θ̂) :=

AE(θ̂) + BE(θ̂)yt, and εt(θ̂) := yt − CE(θ̂)x̂Et , where AE(θ̂), BE(θ̂) and CE(θ̂) are assumed to be
in echelon canonical form. Let xEt = AE◦ + BE◦ yt denote the true state corresponding to the true
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matrices AE◦ and BE◦ in echelon canonical form. Then there exists a sequence of matrices GT with
GT → G such that the following results hold:

(i) Dx
T

(〈
GxEt , Gx

E
t

〉
−
〈
GT x̂

E
t , GT x̂

E
t

〉)
Dx
T → 0,

(ii) Dx
T

〈
GT x̂

E
t , GT x̂

E
t

〉
Dx
T → Zxx, with P{Zxx > 0} → 1

(iii)
〈
εt(θ̂), GT x̂

E
t

〉
Dx
T → 0,

where Dx
T = diag(T−3/2Ic1 , T

−1/2Ic1+c2 , In•).

Proof: Define g(z, θ) :=
∑∞
j=0(zAE(θ))j−1BE(θ) and decompose g(z; θ) = g(1; θ)+(1−z)ǧ(z; θ) =

g(1; θ)+(1−z)ǧ(1; θ)+(1−z)2g̃(z; θ), where stability of ǧ(z; θ) and g̃(z; θ) holds if g(z; θ) is stable.
Let us first analyze the different components of

g(L; θ̂)yt = g(1; θ)yt + ǧ(1; θ)∆yt + g̃(z; θ)∆2yt

= g(1; θ̂)C1,◦xt,1 + ǧ(1; θ)C1,◦∆xt,1 + g(1; θ̂)C2,◦xt,2 + g(1; θ̂)C3,◦xt,3
ǧ(1; θ̂)∆(C2,◦xt,2 + C3,◦xt,3) + g(1; θ̂)C•,◦xt,• + ǧ(1; θ̂)∆C•,◦xt,• + g̃(z; θ)∆2yt.

Since g(z; θ̂) → g(z; θ◦) uniformly due to the consistency of the PML estimator θ̂ and g(z; θ◦) is

stable, it follows that g(1; θ̂)C1,◦xt,1 is the only component integrated of order two. Let G1(θ) :=
g(1; θ◦)C1,◦ ∈ Rn×c1 . Then by Lemma 11

T−3〈g(L; θ̂)C1,◦xt,1, g(L; θ̂)C1,◦xt,1〉 →G1(θ◦)Z1,1G1(θ◦)
′

and analogously for 〈g(L; θ◦)C1,◦xt,1, g(L; θ◦)C1,◦xt,1〉 such that

T−3〈g(L; θ̂)yt, g(L; θ̂)yt〉 − T−3 〈g(L; θ◦)yt, g(L; θ◦)yt〉 → 0.

Similarly, define G2(θ) := PG,1⊥(ǧ(1; θ)C1,◦ + g(1; θ̂)C2,◦) and PG,1⊥G3(θ) := PG,1⊥g(1; θ̂)C3,◦,
with PG,1⊥ := In −G1(θ)(G1(θ)′G1(θ))−1G1(θ)′. Then again due to Lemma 11

T−1〈[G2(θ̂), G3(θ̂)]′g(L; θ̂)yt, [G2(θ̂), G3(θ̂)]′g(L; θ̂)yt〉
− T−1 〈[G2(θ◦), G3(θ◦)]

′g(L; θ◦)yt, [G2(θ◦), G3(θ◦)]
′g(L; θ◦)yt〉 → 0.

Similarly for the stationary part, defineG⊥(θ) orthogonal to the column space of [G1(θ̂), G2(θ̂), G3(θ̂)].
Then

T−1〈G⊥(θ̂)′g(L; θ̂)yt, G⊥(θ̂)′g(L; θ̂)yt〉
− T−1 〈G⊥(θ◦)

′g(L; θ◦)yt, G⊥(θ◦)
′g(L; θ◦)yt〉 → 0,

and similarly for the different cross terms. It follows that

Dx
T

〈
G(θ◦)

′xEt , G(θ◦)
′xEt
〉′
Dx
T −Dx

T

〈
G(θ̂)′x̂Et , G(θ̂)′x̂Et

〉
Dx
T → 0.

which proves (i) for GT = G(θ̂) := [G1(θ), G2(θ), G3(θ), G⊥(θ)].
Further, note that multiplication by G(θ◦)

′ leads to a change of basis of the state vector in the
echelon canonical form to a state corresponding to the canonical form for systems of I(2) processes
as in (3.2), i. e.,

G(θ◦)
′xEt = [(G̃1xt,1)′, (G̃2xt,2)′, (G̃3xt,3)′, (G̃•xt,•)

′]′,

where the non-singular matrices G̃1 ∈ Rc1×c1 , G̃2 ∈ Rc2×c2 and G̃• ∈ Rc•×c• still occur. This is due
to the fact that the above basis change does not ensure the correct basis of the subspaces spanned
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by the new state components G1(θ◦)
′xEt , G2(θ◦)

′xEt , G3(θ◦)
′xEt and G⊥(θ◦)

′xEt . Consequently,

G(θ◦) is invertible, implying also asymptotic invertibility for G(θ̂). It follows that

Dx
T

〈
GT x̂

E
t , GT x̂

E
t

〉
Dx
T → diag(G̃1, G̃2, G̃3, G̃4)−1

[
Z 0
0 Zx•x•

]
(diag(G̃1, G̃2, G̃3, G̃4)−1)′,

where Z is the limit of Du
T 〈xt,u, xt,u〉Du

T , for which P{Z > 0} → 1 holds, and Zx•x• =
E(xt,•x

′
t,•) > 0, proving (ii).

For (iii) note that

T−1〈k−1(L; θ̂)k(L; θ◦)εt, g(L; θ̂)C1,◦xt,1〉

= T−1〈εt + υt(θ̂)− εt −Ψu(θ̂)wt,u, g(L; θ̂)C1,◦xt,1〉

= T−1〈εt, g(L; θ̂)C1,◦xt,1〉+ op(1)→X ′1G1(θ◦)
′,

where

υt(θ) : = k̃(L; θ)∆2[Cu,◦xt,u + C•,◦xt,• + εt]−Π(θ)[C2,◦B2,◦εt−1 + C•,◦xt,• + εt]

− Γ(θ)[C1,◦B1,◦εt−1 + C2,◦B2,◦εt−1 + C3,◦B3,◦εt−1 + ∆(C•,◦xt,• + εt)]

=: kυ(L, θ)εt

Ψu(θ) : =
[
Π(θ)C1,◦ Π(θ)C2,◦ + Γ(θ)C1,◦ Π(θ)C3,◦

]
wt,u : = [x′t−1,1, x

′
t−2,2, x

′
t−1,3]′

and where T−1〈υt(θ̂)−εt, g(1; θ̂)C1,◦xt,1〉 = T−1〈(kυt (L; θ̂)−Is)εt, g(1; θ̂)C1,◦xt,1〉 tends to zero due

to consistency of kυ(z; θ̂) → kυ(z; θ◦) = Is and T−1〈Ψu(θ̂)wt,u, g(1; θ̂)C1,◦xt,1〉 tends to zero due

to the super-consistency results for Ψu(θ̂), compare Theorem 10. Thus,

T−3/2〈k−1(L; θ̂)k(L; θ◦)εt, g(1; θ̂)C1,◦xt,1〉 → 0.

An analogous result holds for the terms integrated of order one, while for the stationary terms in
x̂t convergence to zero holds since G⊥(θ̂)x̂t and εt are uncorrelated. Thus, (iii) follows.
Some general results for different estimators of C in this model are summarized in the next lemma.

Lemma 18 Let {yt}t∈Z be an I(2) process generated by a system of the form (3.2) and {εt}t∈Z
fulfilling Assumption 3. Let x̂t := xEt (θ̂) be defined as in Lemma 17. Let C be the limit of

C(θ̂)
p→ C. Then the following consistency results hold.

(i) The OLS-estimator ĈOLS := 〈yt, x̂t〉 〈x̂t, x̂t〉−1
from the regression yt = Cx̂t+εt is a consistent

estimator for C.

(ii) Let C̃u be a (normalized) maximizer of the function LCT (Cu, θ̂) over U(c1, c2, θ̂), thus, satis-
fying

max
Cu∈U(c1,c2,θ̂)

LCT (Cu, θ̂) = LCT (C̃u, θ̂).

The corresponding estimator Ĉ := Ĉ(C̃u) is consistent for C.

(iii) Furthermore,

T γ‖Π̂OLSC1,◦‖ → 0,

in probability for all 0 < γ < 2, where Π̂ := −Is − ĈOLS(Is − Â)−1B̂, and

T γ‖Π̂OLSC2,◦‖ → 0, and T γ‖Π̂OLSC3,◦ + Γ̂OLSC1,◦‖ → 0,

in probability for all 0 < γ < 1, where Γ̂OLS := −Is + ĈOLS(Is − Â)−2ÂB̂. The same holds
true using Π̂ := −Is − Ĉ(Is − Â)−1B̂ and Γ̂ := −Is + Ĉ(Is − Â)−2ÂB̂.
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Proof: (i) The proof follows the arguments of the proof of Theorem A1 of Johansen (1997). First,
note that the OLS-estimator maximizes the normalized concentrated likelihood function

fT (C) =
|〈yt − Cx̂t, yt − Cx̂t〉|

|〈yt − C(θ̂)x̂t, yt − C(θ̂)x̂t〉|
,

which can be further rewritten into

fT (C) = |Σ(θ̂)|−1|Mε̂ε̂ + (C − C(θ̂)−M−1
x̂x̂Mx̂ε̂)

′Mx̂x̂(C − C(θ̂)−M−1
x̂x̂Mx̂ε̂)|,

where

Σ(θ̂) :=
〈
yt − C(θ̂)x̂t, yt − C(θ̂)x̂t

〉
, Mε̂ε̂ :=

〈
yt − ĈOLSx̂t, yt − ĈOLSx̂t

〉
,

Mx̂x̂ := 〈x̂t, x̂t〉 , Mx̂ε̂ :=
〈
x̂t, yt − C(θ̂)x̂t

〉
.

Choosing a scaling matrix DT := Dx
TG(θ̂)′ with G(θ̂) → G as in Lemma 17 it follows that

DTMx̂x̂D
′
T = Dx

TG
′MxxGD

x
T + op(1), with Mxx := 〈xt, xt〉. Moreover, Dx

TG
′MxxGDT converges

to a positive definite limit, compare Lemma 17 (ii).

Further, note that Σ(θ̂)→ Σ due to Theorem 10. By Lemma 17 (iii) it holds that

M ′x̂ε̂D
′
T (DTMx̂x̂D

′
T )−1DTMx̂ε̂ = op(1),

which also implies Mε̂ε̂ = Σ(θ̂)−M ′x̂ε̂D′T (DTMx̂x̂D
′
T )−1DTMx̂ε̂ → Σ.

Using |A+x′Bx| ≥ |A|(1+
λ|min|(B)

λ|max|(A) |x|
2), which holds for symmetric and positive definite matrices

A and B and a vector x of matching dimensions, we get a lower bound of

fT (C) ≥ |Mε̂ε̂|
|Σ(θ̂)|

(
1 +

λ|min|(DTMx̂x̂DT )

λ|max|(Mε̂ε̂)
(|D−1

T (C − C(θ̂))| − |(DTMx̂x̂DT )−1DTMx̂ε̂|)2

)
,

Now, for any η > 0 and any δ > 0, there exists a constant a, an integer T0 and a set Aη with
P(Aη) > 1 − η, such that for T < T0 and an outcome in Aη, we have λ|min|(DTMx̂x̂DT ) ≥ a,

λ|max|(Mε̂ε̂) ≤ c, |(DTMx̂x̂DT )−1DTMx̂ε̂| ≤ δ/2, |Mε̂ε̂|/|Σ(θ̂)| ≥ 1− aδ2/8c
1+aδ2/4c , which implies that

fT (C) ≥ 1 +
aδ2

8c

holds for all C such that |D−1
T (C − C(θ̂))| ≥ δ. Hence,

P(|D−1
T (C − C(θ̂))| ≥ δ) ≥ P(Aη) > 1− η

for T ≥ T0, such that D−1
T (ĈOLS − C(θ̂))

p→ 0.

(ii) Since θ̂ is consistent, it follows that Cu,◦ is in U(c1, c2, θ̂) with probability one. The estimator

Ĉ◦ := Ĉ(Cu,◦) can then be computed using the explicit formula:

Ĉ(Cu,◦) := ĈOLS − [Π̂CE,◦, Π̂C2,◦ + Γ̂C1,◦]
(
B̂(Cu,◦)′ 〈x̂t, x̂t〉−1

B̂(Cu,◦)
)−1

B̂(Cu,◦)′ 〈x̂t, x̂t〉−1
.

Note that (
B̂(Cu,◦)′ 〈x̂t, x̂t〉−1

B̂(Cu,◦)
)−1

B̂(Cu,◦)′ 〈x̂t, x̂t〉−1 · B̂(Cu,◦) = I2c1+c2 ,(
B̂(Cu,◦)′ 〈x̂t, x̂t〉−1

B̂(Cu,◦)
)−1

B̂(Cu,◦)′ 〈x̂t, x̂t〉−1 · 〈x̂t, x̂t〉 B̂(Cu,◦)⊥ = 0(2c1+c2)×(n−2c1+c2),

where the columns of
[
B̂(Cu,◦), 〈x̂t, x̂t〉 B̂(Cu,◦)⊥

]
form a basis of Rn with probability one. Thus,(

B̂(Cu,◦)′ 〈x̂t, x̂t〉−1
B̂(Cu,◦)

)−1

B̂(Cu,◦)′ 〈x̂t, x̂t〉−1
is bounded while [Π̂CE,◦, Π̂C2,◦ + Γ̂C1,◦] con-

verges to zero, which implies consistency of Ĉ◦ := Ĉ(Cu,◦).
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Existence and consistency of the estimator Ĉ follows from the arguments given in (i), using Ĉ◦
instead of C(θ̂) and Ĉ instead of ĈOLS. It follows that the corresponding estimator for Cu in
canonical form is consistent for Cu,◦, as well as its normalized C̃u for C̃u,◦.
(iii) The super-consistency results hold using the same arguments as in subsection C.2.2.

As a last auxiliary step, we summarize the asymptotic behavior of different quantities in the
following lemma:

Lemma 19 Let ε̂ct denote the residuals from the restricted regression and let De
T := diag(T−1Ic1 , Ic2)

It holds that

(i) 1
T 〈x̂t,g, x̂t,g〉 →

∫ 1

0
W 1(u)W 1(u)′du,

(ii) 1
TD

e
T 〈x̂t,e, x̂t,e〉De

T →
∫ 1

0
F (u)F (u)′du,

(iii) 1
T 〈x̂t,g, x̂t,e〉D

e
T →

∫ 1

0
W 1(u)F (u)′du,

(iv) 1
TD

e
T

〈
x̂t,e|x̂t,g , x̂t,e|x̂t,g

〉
De
T →

∫ 1

0
G(u)G(u)′du,

(v) 〈xt,g, B̂2,◦ε̂
c
t〉 →

∫ 1

0
W 1(u)dW 1(u)′,

(vi) De
T 〈x̂t,e|x̂t,g , B̂E,◦ε̂ct〉 →

∫ 1

0
G(u)dW (u)′,

up to multiplication by regular matrices. Here W 1 = B2,◦Σ
1/2
◦ B and W 2 = B3,◦Σ

1/2
◦ B with an

s-dimensional standard Brownian motion B on the unit interval, u ∈ [0, 1]. Furthermore,

F (u) :=

( ∫ u
0
W 1(v)dv
W 2(u)

)
G(u) :=

( ∫ u
0
W 1(v)dv
W 2(u)

∣∣∣
W 1(u)

)
.

Proof: Recall that (Â, B̂, Ĉ) denotes the system corresponding to Ĉ from the restricted regression

and θ̂ transformed into canonical form and let (Â◦, B̂◦, Ĉ◦) denote the true system in canonical
form. To prove (i) decompose x̂t−1,g into:

x̂t−1,g = Ĉ′1Ĉ1x̂t−1,g

= Ĉ′1C1,◦xt−1,g + Ĉ′1(∆yt − C1,◦xt−1,g)− Ĉ′1(∆yt − Ĉ1,◦x̂t−1,g)

= Ĉ′1C1,◦xt−1,g + Ĉ′1g◦(L)εt − Ĉ′1ĝ(L)(υ̂t − Ψ̂uwt,u)

= Ĉ′1C1,◦xt−1,g + Ĉ′1 (g◦(L)εt − ĝ(L)υ̂t) + Ĉ′1ĝ(L)Ψ̂uwt,u,

where

g◦(z) : = (1− z) + C1,◦B1,◦z + C2,◦B2,◦z + C3,◦B3,◦z + C•,◦
∞∑
j=1

Aj−1
•,◦ (1− z)zjB•,◦

ĝ(z) : = (1− z) + Ĉ1B̂1z + Ĉ2B̂2z + Ĉ3B̂3z + Ĉ•
∞∑
j=1

Âj−1
• (1− z)zjB̂•

are stable transfer functions,

υ̂t : = Ĉ(In − Â)−2Â
2
∞∑
j=1

Â
j−1
B∆2(z)zj∆2[Cu,◦xt,u + C•,◦xt,• + εt]

− Π̂[C2,◦B2,◦εt−1 + C•,◦xt,• + εt]

− Γ̂[C1,◦B1,◦εt−1 + C2,◦B2,◦εt−1 + C3,◦B3,◦εt−1 + ∆(C•,◦xt,• + εt)]

=: k̂υ(L)εt
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is stationary and

Ψ̂u : =
[
Π̂C1,◦ Π̂C2,◦ + Γ̂C1,◦ Π̂C3,◦

]
.

The dominant component is Ĉ′1C1,◦xt−1,g, which is integrated of order one, while Ĉ′1g◦(L)εt and

ĝ(L)υ̂t are stationary. Note that there is another non-stationary component of the form ĝ(L)Ψ̂uwt,u.

It holds that 〈εt, Ψ̂uwt,u〉 and 1
T 〈xt−1,2, Ψ̂uwt,u〉 as well as 〈Ψ̂uwt,u, Ψ̂uwt,u〉 are in op(1), which

holds also if we replace Ψ̂uwt,u by the filtered series g(L; θ)Ψ̂uwt,u. Similarly, all terms 〈·, ·〉 con-
taining the stationary component tend to zero, due to the convergence of the transfer function
ĝ(z)k̂υ(z)→ g◦(z). Thus, noting also that Ĉ′1C1,◦ converges to Is, it follows that

1

T
〈x̂t,g, x̂t,g〉 =

1

T
〈Ĉ′1C1,◦xt,g, Ĉ′1C1,◦xt,g〉+ op(1)

=
1

T
〈xt,g, xt,g〉+ op(1)→

∫ 1

0

W 1(u)W 1(u)′du.

Similarly, decompose x̂t,e into

x̂t,e = Ĉ′ECE,◦xt,e + Ĉ′EC2,◦xt,g + Ĉ′E(yt − CE,◦xt,e − C2,◦xt,g)− Ĉ′E ε̂ct − Ĉ′E Ĉ•x̂t,•,

where we have used that Ĉ′E Ĉ2,◦ = 0. Since Π̂CE = α̂β̂′CE tends to zero as T−1, the same holds

for Ĉ′EC2, ensuring that all terms 〈·, ·〉 containing Ĉ′EC2xt,g vanish. The dominating term in x̂t,e
is, therefore, equal to Ĉ′ECExt,e directly implying (ii) and (iii), while (iv) follows by application of
(i)-(iii).
To show (v) we first consider

〈x̂t,g − Ĉ′1C1xt,g, B̂2ε̂
c
t〉 = 〈Ĉ′1(g(L, θ◦)− g(L, θ̂)kυ(z; θ̂))εt+1 + Ψ̂uwt+1,u, B̂2ε̂

c
t〉.

Since ĝ(z)k̂υ(z) → g◦(z) due to convergence of the PML estimator together with Lemma 18 and
the super-consistency of Ψ̂u → 0, this term is in op(1) and it follows that

〈x̂t,g, B̂2ε̂
c
t〉 = 〈Ĉ′1C1xt,g, B̂2ε̂

c
t〉+ op(1)

= 〈xt,g, B̂2ε̂
c
t〉+ op(1)

= 〈xt,g,B2,◦εt〉+ 〈xt,g, B̂2(ε̂ct − εt)〉+ op(1).

What is left to show is that the last term is indeed also op(1). For this note that B2(ε̂ct − εt)
may contain integrated components of different integration orders. The term B̂2Π̂C1,◦xt−1,1 is

integrated of order two. However, this component vanishes since B̂2Π̂ = 0. For the other integrated
components in B̂2(ε̂ct − εt) we find B̂2Π̂C3,◦xt−1,3 = 0 and B̂2(Π̂C2,◦ + Γ̂C1,◦)∆xt−1,1 = Op(T

−1),

the latter due to B̂2Γ̂C1,◦ = B̂2Γ̂(ĈE Ĉ′E + Is − ĈE Ĉ′E)C1 = B̂2Γ̂(Is − ĈE Ĉ′E)C1,◦ = Op(T
−2), using

that β̂′C1,◦ = Op(T
−2). Thus,

〈x̂t,g, B̂2ε̂
c
t〉 = 〈xt,g,B2,◦εt〉+ 〈xt,g, B̂2(υt − εt)〉+ op(1)→

∫ 1

0

W 1(u)dW 1(u)′.

To prove (vi) note that the stationary component in x̂t,e|x̂t,g according to the above decomposition

is equal to C′E(h◦(L) − ĥ(L)k̂υ(L))εt, with h◦(z) := Is + C•,◦
∑∞
j=1A

j−1
•,◦ z

jB•,◦ and ĥ(z) := Is +

Ĉ•
∑∞
j=1 Â

j−1
• zjB̂•. This term as well as the term Ĉ′E ĥ(L)Ψ̂uwt,u can be treated as in the case of

the corresponding components of x̂t,g. Thus, consider

De
T 〈x̂t,e|x̂t,g , B̂E ε̂ct〉 = De

T 〈(Ĉ′ECE,◦xt,e + Ĉ′EC2,◦xt,g)|xt,g , B̂E ε̂ct〉+ op(1)

= De
T 〈xt,e|xt,g , B̂E ε̂ct〉+ op(1)

= De
T 〈xt,e|xt,g ,BE,◦εt〉+De

T 〈xt,e|xt,g , B̂E(ε̂ct − εt)〉+ op(1)
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The convergence of the last term follows by considering the different integrated components. It
follows that De

T 〈xt,e|xt,g , B̂EΠ̂C1,◦xt−1,1〉 and De
T 〈xt,e|xt−1,g

, B̂EΠ̂C3,◦xt,3〉 are equal to zero by the
arguments given in (v). Using (i) and (ii) one can also replace the regression on x̂t,g by a regression
on the true state component xt,g. It, therefore, holds that

De
T 〈xt,e|xt,g , B̂EΓ̂C1,◦xt−2,1〉 = De

T 〈xt,e|xt,g , B̂EΓ̂C1xt−2,g〉+ op(1)

= De
T 〈xt,e, B̂EΓ̂C1xt−2,g|xt,g 〉+ op(1) = op(1).

All in all

De
T

〈
x̂t,e|x̂t,g , B̂E,◦ε̂ct

〉
=
〈
xt,e|xt,g ,BEεt

〉
+
〈
xt,e|xt,g , B̂E(υt − εt)

〉
+ op(1)→

∫ 1

0

G(u)dW (u),

which finishes the proof also for (vi).

C.4 Proof of Theorem 12

Proof: The logarithm of the likelihood ratio is given by

−2 logQ(H(c1, c2)/H•, θ̂) = −T log det(〈ε̂ct , ε̂ct〉 〈ε̂t, ε̂t〉
−1

)

= T log det(〈ε̂t, ε̂t〉 〈ε̂ct , ε̂ct〉
−1

)

= T log det
[
(〈ε̂ct , ε̂ct〉+ 〈ε̂ct − ε̂t, ε̂ct − ε̂t〉) 〈ε̂ct , ε̂ct〉

−1
]

= T log det
[
Is + 〈ε̂ct − ε̂t, ε̂ct − ε̂t〉 〈ε̂ct , ε̂ct〉

−1
]
.

Since the second term tends to zero, a Taylor expansion of the likelihood leads to the following
representation

−2 logQ(H(c1, c2)/H•, θ̂) = T · tr
(
〈ε̂ct − ε̂t, ε̂ct − ε̂t〉 〈ε̂ct , ε̂ct〉

−1
)

+ op(1).

Lemma 16 (i) implies that the difference ε̂ct − ε̂t is given by 〈ε̂ct , x̂t,u〉
〈
x̂t,u|x̂t,• , x̂t,u|x̂t,•

〉−1
x̂t,u|x̂t,• ,

where x̂t,u|x̂t,• are the residual of the regression of x̂t,u on x̂t,•. Consequently, we can transform

T · tr
(
〈ε̂ct − ε̂t, ε̂ct − ε̂t〉 〈εct , εct〉

−1
)

= T · tr
(
〈ε̂ct , x̂t,u〉

〈
x̂t,u|x̂t,• , x̂t,u|x̂t,•

〉−1 〈x̂t,u, ε̂ct〉 〈ε̂ct , ε̂ct〉
−1
)

= T · tr
(
〈ε̂ct , x̂t,u〉 〈x̂t,u, x̂t,u〉

−1 〈x̂t,u, ε̂ct〉 〈ε̂ct , ε̂ct〉
−1
)

+ op(1)

since 〈ε̂ct , ε̂ct〉 and 〈ε̂t, ε̂t〉 converge to the true Σ◦ and the terms in
〈
x̂t,u|x̂t,• , x̂t,u|x̂t,•

〉
are dominated

by 〈x̂t,u, x̂t,u〉. Consequently,

T · tr
(
〈ε̂ct , x̂t,u〉 〈x̂t,u, x̂t,u〉

−1 〈x̂t,u, ε̂ct〉 〈ε̂ct , ε̂ct〉
−1
)

= T · tr
(
〈ε̂ct , ε̂ct〉

−1/2 〈ε̂ct , x̂t,u〉 〈x̂t,u, x̂t,u〉
−1 〈x̂t,u, ε̂ct〉 〈ε̂ct , ε̂ct〉

−1/2
)

= T · tr
(
〈ε̂ct , ε̂ct〉

−1/2 〈
ε̂ct , x̂t,e|x̂t,g

〉 〈
x̂t,e|x̂t,g , x̂t,e|x̂t,g

〉−1 〈
x̂t,e|x̂t,g , ε̂ct

〉
〈ε̂ct , ε̂ct〉

−1/2
)

+ T · tr
(
〈ε̂ct , ε̂ct〉

−1/2 〈ε̂ct , x̂t,g〉 〈x̂t,g, x̂t,g〉
−1 〈x̂t,g, ε̂ct〉 〈ε̂ct , ε̂ct〉

−1/2
)

=: T · tr(M1) + T · tr(M2).
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Define ṽα̂ := α̂′⊥ 〈ε̂ct , ε̂ct〉
1/2

and vα̂ := (ṽα̂ṽ
′
α̂)−1/2ṽα̂, such that vα̂v

′
α̂ = Ic. Then w̃α̂ := α̂′ 〈ε̂ct , ε̂ct〉

−1/2

is orthogonal to ṽα̂. Similarly we set wα̂ := (w̃α̂w̃
′
α̂)−1/2w̃α̂. Then

tr (IsM1) = tr (v′α̂vα̂M1) + tr (w′α̂wα̂M1) = tr (vα̂M1v
′
α̂) + tr (wα̂M1w

′
α̂) .

The second term is zero since

tr (wα̂M1w
′
α̂) = tr (w̃α̂M1w̃

′
α̂(w̃′α̂w̃α̂))

= tr
(
α̂′ 〈ε̂ct , ε̂ct〉

−1 〈
ε̂ct , x̂t,e|x̂t,g

〉 〈
x̂t,e|x̂t,g , x̂t,e|x̂t,g

〉−1 〈
x̂t,e|x̂t,g , ε̂ct

〉
〈ε̂ct , ε̂ct〉

−1
α̂w̃′α̂(w̃′α̂w̃α̂)−1

)
and we have α̂′ 〈ε̂ct , ε̂ct〉

−1 〈ε̂ct , xt,e〉 = 0 by Lemma 16 (ii). Thus, tr (wα̂M1w
′
α̂) = 0. Similarly

tr
(
w̃γ̂M2w̃

′
γ̂(w̃′γ̂w̃γ̂)

)
= 0,

where w̃γ̂ = γ̂′ 〈ε̂ct , ε̂ct〉
−1/2

by Lemma 16 (iii). Defining ṽγ̂ := γ̂′⊥ 〈ε̂ct , ε̂ct〉
1/2

and vγ̂ := (ṽγ̂ ṽ
′
γ̂)−1/2ṽγ̂ ,

it follows that

−2 logQ(H(c1, c2)/H•) = T · tr (vα̂M1v
′
α̂) + T · tr

(
vγ̂M2v

′
γ̂

)
+ op(1)

= T · tr
(
〈α̂′⊥ε̂ct , α̂′⊥ε̂ct〉

−1 〈
α̂′⊥ε̂

c
t , xt,e|xt,g

〉 〈
xt,e|xt,g , xt,e|xt,g

〉−1 〈
xt,e|xt,g , α̂′⊥ε̂ct

〉)
+ T · tr

(
〈γ̂′⊥ε̂ct , γ̂′⊥ε̂ct〉

−1 〈γ̂′⊥ε̂ct , xt,g〉 〈xt,g, xt,g〉
−1 〈xt,g, γ̂′⊥ε̂ct〉

)
+ op(1)

= T · tr
(〈
B̂E ε̂ct , B̂E ε̂ct

〉−1 〈
B̂E ε̂ct , xt,e|xt,g

〉 〈
xt,e|xt,g , xt,e|xt,g

〉−1
〈
xt,e|xt,g , B̂E ε̂ct

〉)
+ T · tr

(〈
B̂2ε̂

c
t , B̂2ε̂

c
t

〉−1 〈
B̂2ε̂

c
t , xt,g

〉
〈xt,g, xt,g〉−1

〈
xt,g, B̂2ε̂

c
t

〉)
+ op(1).

Finally, Lemma 19 implies:

T · (vαM1v
′
α) + T · tr

(
vγM2v

′
γ

)
→ Q∞r +Q∞r,s,

which proves the result in Theorem 12 (i) for −2 logQ(H(c1, c2)/H•, θ̂).

Next, the pseudo likelihood ratio rank test is investigated. Let θ̂c1,c2n denote the PML estimator

over Θc1,c2
n and θ̂n denote the PML estimator over Θn. For Dt = 0 we have θd = 0, thus,

ϕ̂c1,c2n = [θ̂c1,c2n , 0] and ϕ̂n = [θ̂n, 0]. The following inequalities hold:

LCT (C̃u(θ̂n), θ̂n) ≤ LϕT (ϕ̂c1,c2n ) ≤ LexT (ĈOLS, θ̂c1,c2n ) ≤ LϕT (ϕ̂n),

where C̃u(θ̂n) is a (normalized) maximizer of the function LCT (Cu, θ̂n) over U(c1, c2, θ̂n). The first
inequality holds since ϕ̂c1,c2n maximizes the pseudo log-likelihood function over all systems with the
specified structure. The second inequality holds because dropping the restrictions can only increase
the pseudo log-likelihood function. The last inequality holds due to ϕ̂n being the maximizer over
all systems of order n. These inequalities imply

−2 logQ(H(c1, c2)/H•, θ̂
c1,c2
n ) = −2

(
LϕT (ϕ̂c1,c2n )− LexT (ĈOLS, θ̂c1,c2n )

)
≤ −2 (LϕT (ϕ̂c1,c2n )− LϕT (ϕ̂n))

≤ −2
(
LCT (C̃u(θ̂n), θ̂n)− LϕT (ϕ̂n)

)
= −2 logQ(H(c1, c2)/H•, θ̂n).

The evaluations above show that the limit of the left hand side and the one of the right hand side
coincide. Thus, the bounds imply that also the pseudo likelihood ratio in the middle converges to
the same limit.
In order to derive the asymptotics of the test statistics in (ii) and (iii), note that in the case of a

constant and no linear trend it holds that α̂′
〈
ε̂dt , ε̂

d
t

〉−1 〈
ε̂dt , 1

〉
= 0, where ε̂dt denotes the residual
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in the corresponding restricted model with additional constant term. In the case of a constant and

a linear trend α̂′
〈
ε̂det , ε̂

de
t

〉−1 〈
ε̂det , [1, t]

′〉 = 0 and γ̂′
〈
ε̂det , ε̂

de
t

〉−1 〈
ε̂det , 1

〉
= 0, where ε̂det denotes

the residual in the corresponding restricted model with additional constant and linear trend term.
Both results are proven along the same lines as the results in Lemma 16. The derivation of the
asymptotic distribution of the test statistics follows analogously, using the Taylor expansion of the
test statistics, which leads to

−2 logQ(Hd(c1, c2)/H•, θ̂) = −T log det
[〈
ε̂dt , ε̂

d
t

〉
〈ε̂t, ε̂t〉−1

]
= T · tr

(〈
ε̂dt , ε̂

d
t

〉−1 〈
ε̂dt , x̂t,ed|x̂t,g

〉 〈
x̂t,ed|x̂t,g , x̂t,ed|x̂t,g

〉−1 〈
x̂t,ed|x̂t,g , ε̂ct

〉)
+ T · tr

(〈
ε̂dt , ε̂

d
t

〉−1 〈
ε̂dt , x̂t,g

〉
〈x̂t,g, x̂t,g〉−1 〈

x̂t,g, ε̂
d
t

〉)
+ op(1),

where xt,ed := [x′t,e, 1]′ if only a constant is included and to

−2 logQ(Hde(c1, c2)/H•, θ̂) = −T log det
[〈
ε̂det , ε̂

de
t

〉
〈ε̂t, ε̂t〉−1

]
= T · tr

(〈
ε̂det , ε̂

de
t

〉−1 〈
ε̂det , x̂t,ee|x̂t,gd

〉 〈
x̂t,ee|x̂t,gd , x̂t,ee|x̂t,gd

〉−1 〈
x̂t,ee|x̂t,gd , ε̂det

〉)
+ T · tr

(〈
ε̂det , ε̂

de
t

〉−1 〈
ε̂det , x̂t,gd

〉
〈x̂t,gd, x̂t,gd〉−1 〈

x̂t,gd, ε̂
de
t

〉)
+ op(1),

where xt,ee := [x′t,ee, t]
′ and xt,gd := [x′t,g, 1]′ if a constant and a linear trend are included. The rest

follows as in Lemma 19 and the respective convergence results from Lemma 10. Convergence of the
pseudo likelihood ratio then follows by the same arguments used in the case without deterministics.
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und mir verfasst wurden. Der erstgenannte Artikel ist gleichzeitig auch Bestandteil der Disserta-
tion von Patrick de Matos Ribeiro, die im Rahmen des gemeinsamen Projektes ebenfalls an der
Fakultät Statistik der TU Dortmund eingereicht wurde.

Die Resultate des ersten Artikels “A Parameterization of Models for Unit Root Processes: Struc-
ture Theory and Hypothesis Testing“ stammen von Patrick de Matos Ribeiro und mir. Ausgehend
davon verfasste Dietmar Bauer einen Entwurf, bei dem die Gliederung des Artikels entstand. Bei
der anschließenden Überarbeitung im Rahmen zweier Revisionen schrieb Martin Wagner die Ein-
leitung. Die Revisionen der übrigen Abschnitte wurden in enger Abstimmung und Diskussion mit
Martin Wagner durchgeführt, Abschnitte zwei und drei primär von Patrick de Matos Ribeiro, Ab-
schnitte vier und fünf primär von mir. (geschätzte Anteile: MW 20%, DB 20%, PR 30%, LM 30%)

Die erste Version des zweiten Artikels “Inference on Cointegrating Ranks and Spaces of Mul-
tiple Frequency I(1) Processes: A State Space Approach” wurde wiederum von Patrick de Matos
Ribeiro und mir in Zusammenarbeit mit Martin Wagner erstellt, wobei die Resultate und Beweise
vorwiegend von mir stammen, während die Teile zur Simulationsstudie von Patrick de Matos
Ribeiro erstellt wurden. Nach einer grundlegenden Überarbeitung von Dietmar Bauer, wurden
die Resultate und entsprechenden Herleitungen von mir schließlich in einem dritten Schritt in
Notation neu gefasst, präzisiert und um fehlende Bestandteile erweitert. In weiteren Iterationen
zu bestimmten Beweisen und Textpassagen mit Dietmar Bauer, Patrick de Matos Ribeiro und
schließlich Martin Wagner ist dann die endgültige Version entstanden. Der für die Tests verwen-
dete Code wurde von mir unter Mithilfe von Patrick de Matos Ribeiro erstellt und verwendet auch
Code von Dietmar Bauer zur Schätzung des Startwertes in der Optimierung. (geschätzte Anteile:
MW 10%, DB 20%, PR 10%, LM 60%)

Der dritte Artikel schließlich, “Pseudo Maximum Likelihood Estimation and Inference for I(2)
Processes: A State Space Approach”, wurde auf Basis der erarbeiteten Resultate zu I(1) Prozessen
von mir verfasst, einschließlich der Resultate und Beweise, des notwendigen Codes und der Sim-
ulationsstudie. Anschließend hat Dietmar Bauer hilfreiche Anmerkung und Korrekturvorschläge
eingebracht. (geschätzte Anteile: DB 10%, LM 90%)

Dortmund, den 29.09.2020,
Lukas Matuschek
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vorgelegt worden. Ich erkläre, dass ich bisher kein Promotionsverfahren erfolglos beendet habe
und dass keine Aberkennung eines bereits erworbenen Doktorgrades vorliegt.

Lukas Matuschek


