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Abstract
Despite about six decades of research on the Fermi-Hubbard model (FHM), there is hardly
any other model that holds a comparable fascination. The model has a conceptually
simple structure and yet contains the essential ingredient of a solid: interaction. Precisely
this interaction, however, opposes conclusive solutions of the FHM in equilibrium and
non-equilibrium and imposes high demands on methodological approaches.

In the course of this work, we review the FHM and related models which can be
derived from it, e.g. the t–J model or the Heisenberg model, discuss key topics of current
research and use both well-known methods like CET and TPQS and new techniques
like iEoM to contribute to the elucidation of some central questions. We begin with the
analyses of equilibration and thermalisation in quenched closed quantum systems and
confirm as well as extend previously made hypotheses. Furthermore, we challenge and
falsify the assumption of a dynamical phase transition in one dimension. In a second
step, we reduce the FHM to an effective t–J model, which is of particular interest in
the context of high-temperature superconductivity, and consider the resulting charge
carrier dynamics. Moreover, we confirm ideas on the quantitative predictability of the
autocorrelation in dense spin systems. In the last step, we propose a novel theoretical
approach based on iEoM for the systematic evaluation of Green’s functions in reduced
operator subspaces and motivate its applicability by means of an exemplary calculation.

Kurzfassung
Trotz mittlerweile etwa sechs Jahrzehnten Forschung am Fermi-Hubbard-Modell (FHM)
geht von kaum einem anderen Modell eine vergleichbar hohe Faszination aus. Das Modell
ist von konzeptionell einfacher Struktur und enthält dabei doch die wesentliche Grundzutat
dessen, was Festkörper ausmacht: Wechselwirkung. Ebendiese Wechselwirkung ist es,
die abschließenden Lösungen des FHM im Gleich- sowie Nichtgleichgewicht diametral
entgegensteht und hohe Ansprüche an die verwendeten methodischen Zugänge stellt.

In dieser Arbeit wenden wir uns dem FHM sowie einigen hieraus ableitbaren Modellen
zu, etwa dem t–J-Modell oder dem Heisenberg-Modell, diskutieren Kernfragen der
aktuellen Forschung und nutzen bekannte Ansätze wie die CET oder TPQS sowie neue
Techniken wie die iEoM, um zur Klärung einiger zentraler Fragestellungen beizutragen.
Wir starten mit Analysen von Äquilibration und Thermalisierung in gequenchten von
der Umgebung abgeschlossenen Quantensysteme und bestätigen und erweitern bisherige
Annahmen. Ferner widerlegen wir die Vermutung eines dynamischen Phasenübergangs in
einer Dimension. In einem zweiten Schritt reduzieren wir das FHM auf ein effektives t–J-
Modell, das besonders im Kontext von Hochtemperatursupraleitung Beachtung findet, und
betrachten hierin die Ladungsträgerdynamik. Darüber hinaus bestätigen wir Annahmen
zur quantitativen Vorhersagbarkeit der Autokorrelation in dichten Spin-Systemen. Im
letzten Schritt schlagen wir einen neuartigen theoretischen Ansatz mittels iEoM für die
systematische Berechnung von Greenfunktionen in reduzierten Operator-Unterräumen
vor und motivieren seine Anwendbarkeit im Rahmen einer exemplarischen Rechnung.
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1 Introduction

Each and every one of us deals with electricity on a daily basis. We charge our mobile
phones, watch illuminated advertisements or simply switch on the ceiling light. You may
even be reading this text digitally right now. We all take it for granted that electricity
finds its way. Though, the exact materials used to transmit it from A to B are usually of
at most secondary importance to us. And yet, it is worth to take a closer look.

We already know from school that some materials conduct electricity, whereas others
are not conductive at all. Accordingly, we refer to the former ones as conductors and to
the latter ones as insulators. But can every material be assigned exclusively to one of
the two groups? At the latest since the conceptual introduction of the metal-insulator
transition by Mott in 1949, this strict distinction is no longer feasible [1]. According to
Mott, a material can turn from an insulator into a conductor by a reduction of its lattice
constant, e.g. by applying external pressure [2]. Already decades earlier, Kamerlingh
Onnes was able to show phenomenologically that there had to be a third group besides
metals and insulators. Upon intense cooling of mercury, he found that below a transition
temperature T < Tc, it abruptly exhibited an immeasurably small electrical resistance.
This change from a lossy to a perfect conductor was the birth of superconductivity [3].
Albeit widely unknown, the opposite case of a reduction of the conductivity on cooling
also exists. For instance, vanadium dioxide (VO2) shows a first-order metal-insulator
transition near room temperature and, thus, becomes an insulator when cooled [4].

Explaining such observations often takes years or even decades. Nearly five decades
passed before conventional superconductivity was explained by Bardeen, Cooper and
Schrieffer using their famous BCS theory [5]. Similarly, it was not until a good ten years
after the observation of the unusual properties of VO2 that a first microscopic theory
was proposed [6]. Unfortunately, often the same macroscopic effect can have completely
different microscopic causes. When copper oxides with superconducting properties at high
temperatures were discovered in 1986 [7], it became evident that conventional approaches
by the BCS theory were not applicable, and even today, understanding all subtleties of
the atomic processes and excitations in VO2 is still the subject of ongoing research [8].

But what does it make so challenging to answer these questions? As unimpressive
as this question may seem, it is actually a crucial one. Indeed, it is one of the main
questions of condensed matter physics. The difficulty begins where constituents of the
system are not independent of each other, but are strongly-correlated, i.e. influence each
other in everything they do. Examples of this can be found in everyday life: changing
seats in a crowded aeroplane or moving around inside the cabin is practically impossible
without influencing other passengers. Electrons behave similarly in the periodically
arranged Bravais lattice of atoms as they interact with each other and atomic cores
via the Coulomb interaction. Since the dynamics of a physical system is determined
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1 Introduction

by quantum mechanics [9] the Hilbert space grows exponentially with the number of
particles, and since a typical solid has O(1023) particles, a numerical simulation – even
with the fastest conventional computers – will probably never be a feasible option.

Therefore, simplified models are indispensable for an improved qualitative understand-
ing of any physical system. In the context of this thesis, we are particularly concerned
with the Fermi-Hubbard model (FHM) [10–12] as an archetypal model for a Mott metal-
insulator transition. Nevertheless, the FHM is also remarkable for another reason. It is
considered the simplest strongly-correlated model of interacting electrons in a solid. In
this model, the actually long-range Coulomb interaction is reduced due to screening such
that only electrons interact with each other that are in close proximity. The movement
of itinerant electrons is represented by hopping from one lattice site to another. Despite
its conceptual simplicity, the model is still a source of fascinating insights today [13, 14].
In the chapters to come, we discuss selected questions of the present research on the
FHM and our contributions. We do so in three thematic blocks: quenching of the FHM
and its effects, the dynamics of charge and spin degrees of freedom in the t–J model and
the Heisenberg model as well as theoretical proposals for obtaining Green’s functions in
operator subspaces. But what is it that renders these topics so relevant and, above all,
what has triggered the renewed interest in research on the FHM in the recent past?

During many decades, research on the FHM was mostly of theoretical nature. For
experiments, there was a major obstacle: the reduction of a realistic physical solid to a set
of electrons in an ideal lattice influenced by only two effective parameters, the strength
of the interaction and the hopping, does not correspond to reality. Microscopically small
systems are hard to decouple from their environment and the precise tuning of two
well-defined parameters is challenging. Moreover, real solids never have perfect lattices.
Instead, they are full of impurities or defects, i.e. influences that are not included in the
FHM. Finding an ideal experimental setting for the FHM was therefore nearly impossible
for a long time. In short, the model was actually too simple for a complex world.

In a pioneering theoretical work in 1998, Jaksch et al. [15] proposed to lock particles into
optical lattices. An optical lattice is a periodic potential of intersected laser beams where
the lattice constant is of the order of the wavelength of the laser beam [16]. Typically, the
periodic potential is generated as standing waves by two counterpropagating beams. The
atoms themselves are cooled down to sufficiently low temperatures and then loaded into
the lattice [17]. The optical lattice controls the ratio of the two FHM parameters. Thus,
depending on the strength of the potential of the optical lattice, either a tight-binding
system [18] or a system of completely localised electrons is created. In case of exceptionally
strong on-site interaction, the electrons become completely immobile and only their spin
degrees of freedom determine the dynamics of the system. Even this scenario is potentially
controllable through precise adjustment of the intensity, frequency and polarisation of the
laser beam [19]. Already a few years after the theoretical introduction of optical lattices
by Jaksch and his colleagues, the first realisation of the idea was achieved [20]. Since
then, the interest in optical lattices has continued unabated and has led to an almost
innumerable number of contributions, see e.g. Ref. [21] for an insightful review.

And yet, optical lattices do not only offer a clean setting for the decoupling of a
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fixed lattice from the environment. Indeed, it is now also possible to change the lattice
itself at any point in time which provides a clean way of reproducibly driving a system
out of equilibrium. The effects induced by abrupt changes in optical lattices are also
referred to as quenches and are described extensively in section 5.2. The curiosity in the
resulting non-equilibrium physics is anything but purely academic. Systems far from
equilibrium can exhibit unusual transport properties [22] or even show superconducting
features when stimulated, e.g. by light [23–26]. A profound understanding of systems in
non-equilibrium can, therefore, contribute significantly to the discovery of new phases
of matter and consequently, for instance, to the energy-efficient use of resources in the
future. Nevertheless, it is not only the properties of a solid in non-equilibrium that are
remarkable. Likewise, there are still questions about the return of a system to equilibrium
following an excitation. To put it vividly, the question is whether a system whose past is
completely known and whose future can be unambiguously determined from the past can
forget its past fully during its time-evolution. If it can, it is said to thermalise [27]. As we
see in section 5.3, it is typically far from being clear whether arbitrary systems thermalise,
and if so, under what specific conditions they do. Moreover, selected observables of
the system, e.g. the jump at the Fermi surface, may exhibit characteristically distinct
behaviour depending on the strength of the quench, cf. section 5.4.

Another cause of fascination in strongly-correlated quantum systems remains the
fact that even supposedly simple questions are hard to answer. If a certain particle
moves without any significant external constraints, it performs a so-called random walk.
While this situation is easy to describe for classical particles, the quantum mechanical
equivalent poses a substantially tougher problem. For instance, it turns out that quantum
interference can significantly change the results of the quantum mechanical random walk
compared to its classical counterpart [28]. This is mainly explained by the fact that
the quantum mechanical path of a particle from a starting point A to an endpoint B
is not simply a direct connection of the two points but a superposition of all available
paths that can be chosen between these two points [29]. Consequently, they all interfere
differently with each other. This phenomenon becomes particularly problematic for
charge carriers in high-temperature superconductors, often described by a t–J model and,
thus, the FHM in the limit of strong interaction. If holes move in disordered random spin
backgrounds, they displace spins along their path in every step, effectively destroying the
original environment [30]. We analyse hole motion and its effects in section 6.2.

In light of all these ongoing problems, unresolved issues and experimental challenges
in dealing with quantum mechanical systems, the legitimate question may arise whether
quantum mechanical systems are not per se too sensitive for real-world applications. In
particular, the typically insufficient decoupling of quantum mechanical systems from
their environment is a frequently encountered difficulty in the practical realisation
of theoretical concepts. More recently, however, it has increasingly been seen as an
opportunity: if quantum mechanical systems respond so sensitively to all possible
external excitations, no matter how weak, ought they not to be excellent sensors? In
fact, it turned out in various experiments that quantum sensors can have a high quality
and broad practical applicability [31]. Among the systems already successfully used are
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1 Introduction

diamonds with nitrogen vacancies (NVs). Their NV centres are excellent probes, e.g.
in magnetometry [32]. Nevertheless, even with optimal production of the NV centres,
unpaired spin ensembles emerge at the surface [33]. A theoretically reliable description
of these ensembles is important to improve the coherence and, thus, the applicability of
the NV centres. We turn to these kinds of dense spin ensembles in section 6.3.

This thesis addresses some exemplary aspects from the plethora of fascinating topics
of the FHM. In this context, we will repeatedly revisit the aspect of modelling physical
systems throughout the course of the entire work. We will notice that it may be necessary
to partly simplify the FHM or to adapt it for different problems, and we will see what
influence topology and the dimensionality of the system may have on the FHM. We begin
with a mathematical description of the FHM in chapter 2, where we discuss its many
applications to questions of non-equilibrium physics, high-temperature superconductivity,
magnetism in insulators and Kondo physics in detail. In each case, we give a brief
overview of the relevant current state of research. In chapters 3 and 4, we discuss the
theoretical methods used or enhanced in the framework of this thesis. In particular,
we review different possibilities to reliably determine time-dependent observables in
strongly-correlated systems in chapter 3. Moreover, we outline ways to optimise their
computational efficiency. In chapter 4, we address the question of how the thermal
behaviour of systems can be adequately determined. In the two-part chapter 5 we are
concerned with quantum quenches. At first, we discuss key issues of the fundamental
questions regarding equilibration and thermalisation after interaction quenches. For this
purpose, we resort to the FHM on both lattices with periodic boundary conditions and to
the FHM on fully arbitrary topologies including so-called infinite-range graphs. Then, we
deal with the highly debated occurrence or absence of a dynamical phase transition, i.e.
a significant change in the behaviour of the jump at the Fermi surface, in the quenched,
integrable one-dimensional FHM. In chapter 6, we employ a slight modification of the
FHM, the so-called t–J model, and study the motion of a hole in a disordered spin
background. Here, we use an effective generalised version of the t–J model to account
for both charge and spin degrees of freedom in a reliable manner and compute the
corresponding excitation spectra by means of numerically determined Green’s functions.
Thereafter, we freeze the charge degrees of freedom of the t–J model which leads us to
the Heisenberg model. For this model, we heavily increase the coordination number z
to systematically analyse the limit z → ∞. This limit is revelant, for example, in
dense surface spin ensembles. The respective information conservation of the initial spin
polarisation is described via the associated autocorrelation function. By performing an
extrapolation in the system size, we examine whether dynamical mean-field theories
might be applicable to spin systems as long as they are dense, i.e. consisting of many
mutually connected constituents. In chapter 7, we describe a novel theoretical method to
obtain Green’s functions in reduced operator subspaces. Eventually, we motivate possible
applications to the single impurity Anderson model, i.e. the FHM in the boundary case of
infinite dimension, e.g. to efficiently compute and characterise the Kondo physics inherent
in the model. The key findings of this work as well as further suggestions for upcoming
research are summarised and discussed at length in the concluding chapter 8.
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2 Fermi-Hubbard model and its limiting cases

The Fermi-Hubbard model (FHM) describes strongly correlated electrons in a lattice. It
has been proposed independently by Hubbard [10], Kanamori [11] and Gutzwiller [12]
and was consequently used to describe general condensed-matter systems with narrow
energy bands, metal-insulator transitions, itinerant ferromagnetism and high-temperature
superconductors. It is a specialised version of the more general Pariser-Parr-Pople model
being prominent in quantum chemistry and outlined about ten years ealier [34, 35]. While
the Pariser-Parr-Pople model also includes Coulomb intersite interactions [36] the mutual
interactions in the Hubbard model are assumed to be confined to particles on the same
lattice site. This fully screened on-site interaction renders the FHM one of the simplest
models possible for describing interacting fermions in a solid.

In spite of this remarkable conceptual simplicity, the FHM is impressive in two ways:
on the one hand, it is capable of explaining a whole range of physical phenomena in
solids, and on the other hand, it has remained closed to complete solutions for decades.
Only in very few and special cases the FHM is solvable at all.

In the following chapter, we will first discuss the actual model and its characteristic
properties, and then present models related to the FHM. These derived models cover
special physical cases in a form much easier to handle while at the same time maintaining
the fundamental physical features. It turns out, for example, that the FHM in second-
order perturbation theory is well-suited to describe high-temperature superconductivity
in a certain class of materials. Moreover, the FHM can be mapped onto the Heisenberg
model in the case of half-filling or results – in the limiting case of infinitely large dimensions
or coordination numbers – in a model with which a magnetic impurity in metals can be
described. This makes the FHM suitable for the description of Kondo-like phenomena.

In the course of this thesis all models presented in the following, i.e. both the complete
FHM as well as its simplified limiting cases, will be analysed. For the respective physical
applications, the model which best describes the physical situation at hand will be chosen.

2.1 Fermi-Hubbard model

2.1.1 Real space representation

The complete FHM consists of two contributions which are the single particle term H0

and the two-particle interaction term Hint. While H0 describes the hopping of tightly
bound electrons through a lattice the interaction part mimics a highly oversimplified
fully local Coulomb interaction due to screening. Here and in the following, f †iσ and fiσ
describe creation and annihilation operators for creating or annihilating a particle of
spin σ at the lattice site i at position ri and n̂iσ = f †iσfiσ denotes the occupancy number
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2 Fermi-Hubbard model and its limiting cases

operator. The one-particle basis used for this purpose consists of Wannier functions [9, 37]
which are a complete set of orthogonal functions. Taking only one band into consideration
and denoting the hopping elements1 between adjacent sites with Jij and the on-site
interaction with Ui leads to the full Fermi-Hubbard Hamiltonian H = H0 +Hint with

H0 = −
∑

〈i,j〉, σ

Jijf
†
iσfjσ, (2.1a)

Hint =
∑
iσ

Uin̂i↑n̂i↓. (2.1b)

In spite of its seemingly simple nature, merely the one-dimensional FHM as shown in
figure 2.1 and the FHM in infinitely many dimensions can be solved exactly. But even
for these two limiting cases the approaches themselves have nothing in common. While
the one-dimensional model fulfils the Yang-Baxter conditions [38, 39] and is solved by
resorting to a Bethe ansatz in the form of Lieb-Wu equations [14, 40] the model of
infinitely many dimensions is solved by a dynamical mean-field theory (DMFT) approach
and, therefore, mapped onto a self-consistent single impurity Anderson model (SIAM)
which yields the same local Green functions under specific conditions [41]. We take
another look at the SIAM in more detail in section 2.4.

Figure 2.1: Illustration of the one-dimensional Fermi-Hubbard model in real space
with constant hopping Jij = J and on-site interaction Ui = U taken from Ref. [42].

Like many models in solid state physics the FHM is a local quantum many-body system
with interactions of finite range. Such systems can always be decomposed [27] into a
sum of individual hi acting on a finite number of sites only, i.e. the Hamiltonian can be
described by the sum

H =
∑
i

hi. (2.2)

Comparable systems for which the decomposition (2.2) is possible are, e.g. spin lattice
systems, bosonic or fermionic lattice systems, models with short range interactions or
even long range interactions with polynomially decaying strengths.
It is worth to reconsider the fact that one specific site has a finite number of interaction
partners only. This implies that each lattice or cluster can be described by means of a
graph G = (V,E) whose vertices V label and contain information about sites and whose

1Contrary to other conventions, the abbreviation Jij is chosen here and in the following for the hopping
matrix elements instead of tij . We choose this notation intentionally in order to avoid possible
confusion of the hopping matrix elements with the time t.
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2.1 Fermi-Hubbard model

edges E connect interacting vertices. We revisit this very aspect in more detail in the
context of exactly solving many-body quantum systems in section 3.1.1.

2.1.2 Momentum space representation

While the most general form of the FHM, cf. equation (2.1), for non-vanishing hopping
and interaction strengths, i.e. Jij 6= 0 and Ui 6= 0, lacks an analytical solution for
arbitrary dimensions the opposite case of vanishing on-site interactions can be solved in a
simpler way for translationally invariant lattices. Since the underlying Fourier transform
motivates a vivid and easily accessible representation of the so-called Fermi sea state
– the ground state of H0 – the respective ansatz will be given here for illustrative purposes.

Figure 2.2: Dispersion relation εk as given in (2.5) for the one-dimensional Fermi-
Hubbard model over the first Brillouin zone at half-filling. The momentum of
the highest occupied state is denoted by solid blue lines, the Fermi energy εF by
dashed blue lines. Occupied states are shown in dark-green, unoccupied states in
pale-green. Figure reprinted from Ref. [43].

Since H(U=0) = H0 holds with H0 being an effective one-particle problem of an electron
in a lattice-periodic potential with discrete translational symmetry, the Bloch theo-
rem [44] ensures that an energy eigenbasis of Bloch functions exists. The corresponding
transformation for a crystal of N unit cells is performed by a Fourier transform of the
Wannier creation and annihilation operators using

f †kσ =
1√
N

∑
j

f †jσe
ikrj (2.3)

and the Hermitian conjugate, respectively. Inserting equation (2.3) into (2.1) leads to
the Fermi-Hubbard Hamiltonian in the eigenbasis of the one-particle part H0. Therefore,
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2 Fermi-Hubbard model and its limiting cases

the momentum space representation of the real space Hamiltonian (2.1) is given by

H0 =
∑
kσ

εkf
†
kσfkσ, (2.4a)

Hint =
U

N

∑
kk′q

f †k+q↑f
†
k′−q↓fk′↓fk↑. (2.4b)

Then, the dispersion relation in the case of a hypercubic d-dimensional lattice reads

εk := −2J
d∑

i=1

cos (kri). (2.5)

It is depicted in figure 2.2 for the one-dimensional model, i.e. d = 1, at half-filling.
Now, the intuitive approach towards constructing the Fermi sea as the ground state
of H0 is easy to perform. Starting by filling the energetically lowest lying state at the
energy ε0=−2J and gradually inserting further particles into the system in the order of
increasing energy up to a threshold given by the Fermi energy εF leads to the state of
minimum overall energy for a fixed total number of particles.

Once the local repulsion is turned on the electrons are scattered by the non-diagonal
contribution (2.4b) while conserving the total (lattice) momentum k+k′ = k+q+k′−q
due to the discrete translational invariance of the underlying model. In this case, the
underlying dynamics of the model changes fundamentally and previous one-particle
approaches have to be replaced by much more advanced techniques to gain insight into
the physical processes and the behaviour of observables in the model. We discuss such
approaches especially in chapter 3 for time-dependent observables and in chapter 4 for
the respective thermodynamic properties.

2.1.3 Symmetries and model properties

One of the most trivial and yet most important properties of the Hamiltonian (2.1) is its
conservation of the number of particles Nσ of spin σ due to

[
H, N̂σ

]
= 0 with

N̂σ =
∑
i

n̂iσ (2.6)

and, therefore, also its conservation of the total particle number N = N↑ + N↓. This
stems from the U(1) symmetry which can be proven by inserting the transformation

f †jσ → f †jσ exp (iα) (2.7)

as well as its Hermitian conjugate for the creation and annihilation operators. Here, α
denotes an arbitrary global phase. Moreover, the model possesses a spin-flip symmetry
σ → −σ as part of its SU(2) symmetry.
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2.1 Fermi-Hubbard model

The latter one results in the fact that the Hamiltonian commutes individually with all
global spin operators of the form

Sα =
1

2

∑
i,ab

f †ia(σ
α)abfib ∀α ∈ {x, y, z} with a, b ∈ {↑, ↓} (2.8)

where i labels the sites, a and b denote the possible spin combinations and σα is given by
the respective Pauli matrix

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
or σz =

(
1 0
0 −1

)
. (2.9)

As a result, this renders the following quantities good, i.e. conserved, quantum numbers

[H,Sα] =
[
H,S2

]
= 0. (2.10)

Further highly non-trivial conserved quantities can be deduced for special cases such
as the partly U -dependent integrals of motion of the one-dimensional model [14] or, more
generally, the particle-hole symmetry in the case of half-filling on a bipartite lattice.

As we will be often working in situations where the latter symmetry is preserved a
brief motivation [45] shall be given in the following. First, we consider a bipartite lattice,
i.e. a lattice whose vertices can be separated into two independent sets of vertices V1
and V2 such that every edge connects vertices of both sets but no edge connects vertices
within the very same set Vi. Second, we perform the particle-hole transformation

f †iσ → fiσ, fiσ → f †iσ (2.11)

which changes the role of particles and holes and thus modifies the occupancy number
operator of a given site to become

n̂iσ = f †iσfiσ → fiσf
†
iσ = 1− n̂iσ. (2.12)

Obviously, equation (2.12) can only be invariant for half-filling which is a strong hint at
the central prerequisite for particle-hole symmetry in the FHM. We verify this assumption
by negating the creation operators on only one of the two sublattices V2 using

f †iσ → −f
†
iσ if i ∈ V2 (2.13)

and, thus, transforming the Hamiltonian to become H → H+U(|Λ|−N) where Λ denotes
the set of lattice vertices and |Λ| gives the number of sites. In the case of exact half-filling
the number of sites equals the number of particles in the lattice. This is the reason why
the Fermi-Hubbard Hamiltonian is invariant under a particle-hole transformation in this
specific situation.
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2 Fermi-Hubbard model and its limiting cases

2.2 Generalised t–J model
2.2.1 Copper oxides and superconductivity
In view of the striking ease with which we analysed and analytically solved the limiting
case of a non-correlated system, i.e. a system with U = 0, in section 2.1.2, the question
arises as to whether the limiting case of strong correlation, i.e. J/U � 1, can be dealt
with just as easily. When answering this we will concentrate on the case of half-filling.

The introduction of a not negligible on-site interaction U leads to the situation that
electrons as charge carriers can no longer move completely freely. Their movement is
restricted in particular by the effort not to realise the undesirable case of a double
occupancy (DO) of the same lattice site. This trend of energetically highly unfavourable
states can also be seen when looking at the local density of states ρ(E) of the Hubbard
model in the limiting case of strong interaction: It splits into two parts, the lower and
the upper Hubbard band (LHB and UHB), cf. figure 2.3.

Figure 2.3: At half-filling and for J/U � 1, the local density of states ρ(E) splits
into the LHB and the UHB with each band having the effective bandwidth Weff.
Exactly at half-filling the LHB is completely filled while the UHB is empty. Thus,
charge excitations have a minimum excitation energy of the spectrum gap ∆ [46].

To introduce charge carrier excitations into the half-filled system with the Fermi energy εF
lying in between the LHB and the UHB, at least the energy amount ∆, the so-called
Mott gap, must be applied to overcome the excitation gap in the spectrum. The resulting
excitations take the form of double occupancies (DOs) by electrons or holes. The ground
state of this strongly correlated system is an insulator. In this state the electrons are
spatially fixed and only their magnetic moments undergo mutual (exchange) interactions.
For this reason, it is energetically advantageous for the localised electrons to have the
singlet state of antiparallel aligned spins.

If one leaves the exactly half-filled state and thus allows deviations in the occupancy
number of the lattice, from a physical point of view the movement of DOs in an antifer-
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2.2 Generalised t–J model

romagnetic background is studied. However, why is this scenario relevant at all?
Even though already discussed in 1970 [47], the great interest in the Hubbard model

in the limiting case of strong interaction exists especially since the discovery of high-
temperature superconductivity in the copper oxide La2–xBaxCuO4 in 1986 by Bednorz
and Müller [7] with the then highest ever measured transition temperature of a supercon-
ductor of only 30 K. Since then, the family of copper oxides has more and more become
the focus of research - in the constant hope of superconductivity at room temperature.
Although, in the meantime, much higher transition temperatures almost close to room
temperature could be realised, see e.g. Ref. [48], the corresponding physical materials
mostly suffer from one problem: They only become superconducting at very high pressure.

It continues to be a challenge to establish superconductivity at room temperature.
The highest temperatures currently achievable for superconductivity without additional
external pressure are in the range of T ≈ 133 K [49]. An applicability in typical scenarios
of day-to-day life is thus impossible and further research therefore inevitable. For these
studies the family of copper oxides is still an important candidate with regard to the
realisation of high-temperature superconductivity and with it in particular one physical
model, the generalised t–J model as a limiting case of the FHM with strong interaction.
A detailed discussion and derivation of the t–J model can be found in section 2.2.2.

Unfortunately, even with the t–J model as a simplified version of the FHM the
theoretical description of the motion of a DO in an antiferromagnetic background
remains highly demanding [13, 50]. Despite various efforts, for example by resorting
to self-consistent Born approximations [51], cumulant [52] or spin-wave [53] expansions,
perturbative approaches [54] or limited functional spaces [55], it has not yet been possible
to develop satisfactory theoretical tools to describe the dynamics of such systems in
equilibrium or, lately, even away from equilibrium [56]. For instance, it has been shown
that highly non-trivial quantum effects occur when holes move in a perfectly ordered
antiferromagnet: one hole can destroy the ordered background, whereas a second hole can
restore it [57]. Consequently, both holes perceive the existence of each other. Thereby,
an effective attraction between the two holes is created. Such effects naturally prohibit
the treatment of the problem with effective one-particle methods, which in turn creates
a variety of methodical problems. Moreover, the fundamental mechanism of charge
carrier interaction via the environment is very reminiscent of the explanation by Bardeen,
Cooper and Schrieffer (BCS) for conventional superconductivity at low temperatures [5]
proposed as early as 1957. Here, two electrons can interact via lattice deformations,
quantised by phonons, and form so-called Cooper pairs. These Cooper pairs can then
move through the surrounding crystal lattice without collision or energy dissipation.

With this conceptual similarity of the mechanisms, the question naturally arises why
the theoretical description for conventional BCS superconductivity cannot simply be
adapted to the high-temperature superconductivity domain. The BCS explanation for
superconductivity is a mean-field approach, which is justified in particular by the fact
that the average distance between the two constituents of a Cooper pair, the correlation
length ξ, is far greater than the average distance between Cooper pairs. As a result,
the Cooper pairs mix and it is justified to consider the resulting average effects of all
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2 Fermi-Hubbard model and its limiting cases

BCS quasiparticles. This is not the case with high-temperature superconductivity in
copper oxides as they consist of several distinct CuO2 layers with two different correlation
lengths, cf. especially Ref. [58]. The correlation length ξ⊥ is measured perpendicular to
the CuO2 planes, the correlation length ξ‖ parallel to the planes. While ξ⊥ is significantly
smaller than the distance between the planes, even ξ‖ is only a few lattice constants
in size. The small correlation length ξ⊥ causes Cooper pairs of different planes to
mutually interact with a very small probability. The electronic states and, thus, the
actual high-temperature superconductivity in copper oxides are therefore effectively a
two-dimensional phenomenon. The second correlation length ξ‖ is slightly larger but still
small compared to the average free distance of the charge carriers. Correspondingly, the
Cooper pairs, which are not strongly spread out, hardly mix and a mean-field approach
is not justified. This is a consequence of the fact that mean-field approaches are more
suitable in higher dimensions d > 2.

It is reasonable now to assume that at least the treatment of a freely moving hole in
a disordered background is possible with classical one-particle methods. After all, in
this case there is no order at all that could cause attractive effects. But even that is
not possible. It was shown that the one-particle gap 1/2 · (W − U) with W being the
bandwidth of the system is only reproduced in the limit U → ∞ and for movements
with self-retracing paths, for example in one dimension [59–61]. Once the interaction U
changes only slightly towards a finite value, however, the situation is altered significantly.
Accordingly, the prediction at which critical Uc the band gap in the density of states ρ(E)
opens up becomes much more complicated. For the infinite-dimensional case at finite U
there are a great number of analyses with consistent qualitative and slightly differing
quantitative results [62–65].

Since in the one-dimensional case an exact analytical approach is available with the
Bethe ansatz [14], for this case reliable reference results can be obtained, for example
for benchmarking numerical or approximate methods. The completely disordered spin
background here corresponds illustratively to a case where J � T � U ≈ W . This
means that the temperature T is high compared to the typical energy scale of spins J ,
but small compared to the Hubbard interaction U . The spin background is therefore
obviously hot and all spins are essentially disordered. For the charge carrier excitations,
however, the situation is different. Here, the system behaves as if it had a temperature
of T ≈ 0. The few excitations in the system are therefore exclusively formed by DOs.
Only these determine the dynamics significantly. The critical minimal interaction for the
emergence of a band gap in the disordered one-dimensional model was determined to be
Uc =

√
3/2 ·W [66].

In summary, it can be said that the calculation of dynamical structure properties in cases
other than the one-dimensional case still poses significant challenges for the theoretical
methods and that, in particular, the two-dimensional t–J model is of outstanding
importance due to its explanatory character for high-temperature superconductivity in
copper oxides. The ability to understand and predict the movement of DO charge carriers
in the generalised t–J model can hardly be overestimated in its importance.
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2.2 Generalised t–J model

2.2.2 Analytic derivation for strong interactions

There are many different ways of analytically motivating and deducing the t–J model,
see for instance the derivations in Refs. [67, 68]. One of the most elegant and shortest
ways relies on second-order perturbation theory. The energy corrections of the insulating
ground state and the charge carrier dynamics of a freely moving hole are then derived by
means of a projection of the Fermi-Hubbard Hamiltonian (2.1) onto a reduced subspace
such that the resulting effective Hamiltonian operates on states without any sites being
occupied by two electrons at once. In order to separate these double occupancies by
electrons from double occupancies by holes, i.e. unoccupied lattice sites, we introduce
in the following an additional notation for double occupancies exclusively formed by
electrons (eDO). This expression is thus to be separated from the previous abbreviation
DO for any double occupancy. It is of importance to keep in mind that the t–J model
prohibits eDOs exclusively.

Figure 2.4: Illustration of the one-dimensional t–J model in real space. The
system contains an additional hole, e.g. added via doping, which moves in the
direction of the arrow, i.e. from i+ 1 to i. The movement of the parallely moving
electron takes place in opposite direction and thus from i to i+ 1.

The following derivation is a highly abbreviated and partly modified version of Refs. [14,
59], of which the latter one is based in particular on Refs. [69, 70]. In order to be able
to use perturbation theory successfully, it is necessary to identify a sufficiently small
perturbation parameter in the very first step. For this, we assume that Jij � Ui = U
holds and, thus, that the hopping H0 described by (2.1a) is a small perturbation to the
unperturbed Hamiltonian Hint as given in (2.1b). Since Hint implies a strong localisation
of the particle at the individual lattice sites it is advisable to resort to the tight-binding
representation of the model, cf. section 2.1.1.

Before we start with the actual derivation, it is helpful to consider the influence of the
interaction term Hint on the structure of the Hilbert space H. For this we first consider
the operator

D̂ := Hint/U =
∑
i

n̂i↑n̂i↓. (2.14)

Here, the operator n̂i↑n̂i↓ measures whether the site i is occupied by two electrons, so
that D̂ calculates the sum of all eDOs for a given state. Its eigenvalues are therefore
D ∈ {0, . . . , N}, since a minimum of zero and a maximum of all lattice sites can have an
eDO. Just like Hint also D̂ is block diagonal in the chosen basis. This fact implies that
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2 Fermi-Hubbard model and its limiting cases

the underlying Hilbert space
H = H0 ⊕ . . .HN (2.15)

splits into different independent subspaces Hi with exactly i eDOs each. The projectors
onto these subspaces Hi with a fixed number of eDOs are called Pi in the following.

Since the ground states of the Mott insulator cannot have any eDOs, these states are
fully located in the corresponding subspace H0 with the respective projector

P0 =
∏
i

(1− n̂i↑n̂i↓) . (2.16)

Since a product is zero exactly when at least one of its factors vanishes, the operator P0

applied to a many-particle state ensures that only states without a single eDO remain.
Note that the projector P0 in its explicit form (2.16) has no effect on states with double
occupancies caused by holes. So if a given lattice site i is unoccupied, the application of
P0 to this site results in the neutral element with respect to multiplication, i.e. a one.
Thus, charge carrier dynamics of holes added to the system, e.g. by means of doping, is
maintained after an application of P0 as can be seen in figure 2.4.

The typical generalised t–J model does not leave the respective subspace H0, i.e. the
associated Hamiltonian only links states with each other in which there is at most one
electron on each lattice site. With this motivation in mind, the second-order perturbation
theory for the rescaled Hamiltonian

H/U = D̂ + λH0 (2.17)

may be performed in the parameter λ = 1/U as done in Ref. [14] resulting in an expression
for the individual subspace contributions to the unperturbed energies En asPnH0Pn + λ

∑
m 6=n

PnH0PmH0Pn

En − Em

 |ψ〉 = E − En

λ
|ψ〉 (2.18)

when applied to an arbitrary state |ψ〉. The expression (2.18) is merely a slightly
generalised version of conventional second-order perturbation theory, as it appears in
various textbooks for energy corrections in degenerate subspaces, cf. in particular Ref. [71].
Since we are especially focused on corrections of energy and dynamics in the Hilbert
space without a single eDO, we set n = 0 and E0 = 0 in (2.18) and get the conventional
representation of the generalised t–J model [14, 59, 72] after some basic commutations
and rearrangements as

Ht−J = P0

[
H

(2)
t−J +H

(3)
t−J

]
P0 (2.19a)

H
(2)
t−J =

∑
jkσ

Jjkf
†
jσfkσ +

∑
jk

2|Jjk|2

U

(
SjSk −

n̂jn̂k
4

)
(2.19b)

H
(3)
t−J =

1

U

∑
j 6=k 6=l 6=j

σσ′

JjkJkl

(
f †jσσσσ′flσ′Sk −

1

2
f †jσflσn̂k

)
(2.19c)
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with the spin operators Si, the vector of the Pauli matrices σ = (σx, σy, σz)T and the
occupancy number operator n̂i = n̂i↑ + n̂i↓. The superscripts in (2.19) describe the
number of lattice sites involved in the processes being considered by the respective
Hamiltonian. Since Ht−J does not contain any contributions which create or annihilate
particles the whole t–J model conserves the total number of particles in the system, i.e.[

Ht−J , N̂
]
= 0. (2.20)

Furthermore, the Hamiltonian (2.19) has an effect on H0 only due to its projectors P0.
The first sum of the t–J model in equation (2.19b) describes normal hopping, the second
sum represents the exchange interaction of the spins localised at the individual lattice
sites and the third sum (2.19c) reflects processes that describe correlated hopping over
exactly three lattice sites. In particular, this correlated hopping is often omitted in
the consideration of the model. The name t–J model comes from the fact that – in
conventional naming of the hopping matrix elements by tij and omitting the three-place
contributions – the essential contributions of the model are given by hopping as well as
by the exchange interaction of the spins. The exchange interaction, i.e. the parameter
before the spin-spin interaction, is often referred to as J .

2.3 Heisenberg model

In 1928, Heisenberg drew parallels between the nature of ferromagnetism and that of the
helium atom in a phenomenological way, postulating that ferromagnetism, too, must be
caused by a kind of exchange interaction [73]. Since its first description, the Heisenberg
model has been used countless times, particularly to describe ferro-, antiferro- and
ferrimagnetism in insulators. The Heisenberg model does not capture magnetic properties
of metallic materials with moving electrons. The reason for this becomes obvious when
considering the t–J model once again – this time in the limit of half-filling. Since the
complete t–J model according to equation (2.20) does not change the total number of
particles in the system and, furthermore, eDOs are not allowed, the t–J model can be
significantly simplified for half-filling. If exactly N electrons have to be distributed over
N lattice sites without creating a single eDO, the only allowed configuration is the one
with one electron per lattice site. Thus, the eigenstates of the Hamiltonian Ht−J in the
half-filled system consist of completely spatially fixed spins. Due to the fact that in such
case hopping processes – no matter whether simple or correlated hopping across three
lattice sites – are impossible, the t–J model is reduced to pure spin-spin interaction as

HHF
t−J =

∑
jk

2|Jjk|2

U

(
SjSk −

1

4

)
. (2.21)

Since the last summand in equation (2.21) only makes an absolute energy correction, it
can be neglected when considering the dynamics of the model. In this case, however, the
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2 Fermi-Hubbard model and its limiting cases

resulting model is nothing other than the Heisenberg model

HH = J̃
∑
〈i,j〉

SiSj (2.22)

provided that the interaction is restricted to nearest neighbours, which results in an
elimination of one of the sums and, thus, in a global factor of 2, and provided that the
quotient of hopping elements J := Jij and the repulsive Hubbard interaction strength U
is identified as the exchange interaction

J̃ =
4J2

U
. (2.23)

Further extensions of the Heisenberg model are feasible and can easily be carried out.
For instance, next-nearest neighbour interactions can be included in a similar manner.

Being essentially a scalar product of two spin operators Si, the Heisenberg model is
completely invariant to rotations and any arbitrary direction in space can be selected as
the quantisation direction of the spins. Without limitation of the generality we choose
the z-axis as quantisation direction in the following. A depiction of the Heisenberg model
in such a quantisation direction can be found in figure 2.5. There are many different

Figure 2.5: Illustration of the one-dimensional Heisenberg model in real space.
The system consists of fixed spins which interact via exchange coupling with each
other. No hopping processes of particles can take place.

variants of the Heisenberg model. For example, the isotropy of the model (2.22) can be
broken by adding an external magnetic field or by using different exchange interaction
strengths J̃i for the different directions in space (as in the well-known XXZ model). As
such modifications of the model do not play a role in the following work, they will not
be discussed in more detail. Moreover, mappings are possible by transformations, e.g.
by a Jordan-Wigner transformation to spinless fermions in the case of one-dimensional
chains with periodic boundary conditions or also by a transformation to permutation
operators in the case of only two possible spin orientations, i.e. s = 1/2. The latter case
is particularly helpful for computationally analysing the Heisenberg model and its effect
on states of an occupancy number basis and will be used at a later stage.

To see the motivation for this reformulation, we first replace the scalar product in
equation (2.22) with an equivalent expression using the spin ladder operators

S± = Sx ± iSy (2.24)
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which can be shown to obey to the following commutation and anticommutation relations

{
S+, S−} = 1, (2.25a)[
S+, S−] = 2Sz (2.25b)

and act on a spin state |σ〉 by either changing its orientation or extinguishing it

S−S+ |↓〉 = S− |↑〉 = |↓〉 (2.26a)
S+ |↑〉 = S− |↓〉 = 0. (2.26b)

By using (2.24) the respective Heisenberg Hamiltonian in spin ladder operators reads

HH =
J̃

2

∑
〈i,j〉

(
S+
i S

−
j + S−

i S
+
j + 2Sz

i S
z
j

)
. (2.27)

The general structure in (2.27) implies that, on the one hand, there is a swapping of the
orientations of the spins at the sites i and j, and on the other hand, there is a measuring
process that does not change the state because Sz is included in the complete set of
commutating observables of the basis. This observation suggests the substitution of all
spin operators by permutation operators Pij . Such a permutation operator Pij exchanges
the spin information2 at lattice site i with that at site j. Consequently, the general
structure of the new Hamiltonian is

H
(c)
H =

J̃

2

∑
〈i,j〉

(Pij + c) with c ∈ R (2.28)

with an additive constant c to be determined. Obviously, as this constant is only an
absolute shift of energies, it is of no further interest for the dynamics of the system.
Nevertheless, we want to derive it exactly in the following and prove the equivalence
of the permutation operators and the spin operators for an s = 1/2 Heisenberg model
simultaneously. Here, we choose J̃ = 1 for the sake of brevity.

The two representations are exactly identical if and only if the effect of the operators
on the states is the same. As there are only two lattice sites involved and on each of
them two spin orientations are possible, there are four cases in which the effects have to
be identical. We start with the case of identical spin orientations, where the spin ladder
operators cannot have any effects, so that

HH |σσ〉 = Sz
i S

z
j |σσ〉 =

1

4
|σσ〉 (2.29)

2Please note that a substitution of the spin operators SiSj by the permutation operator Pij is naturally
also possible in the case of the original t–J model in (2.19b). However, especially in the general t–J
model, which also permits the presence of holes, there is a subtle aspect to be considered: The phrase
spin information is to be taken literally. The permutation operator Pij exclusively exchanges the spin
at lattice site i with that at site j, it does not act on unoccupied sites and thus, above all, does not
exchange a spin with a hole.
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2 Fermi-Hubbard model and its limiting cases

holds. The effect of the permutation operator on these states follows analogously

H
(c)
H |σσ〉 =

1

2
(Pij + c) |σσ〉 = 1

2
(1 + c) |σσ〉 (2.30)

so that the constant c = −1/2 can be determined. We proceed in the same way for states
of mixed orientation, where σ symbolises the opposite orientation to σ. This leads to

HH |σσ〉 =
1

2
|σσ〉 − 1

4
|σσ〉 (2.31)

for the effect of the Heisenberg Hamiltonian and to

H
(c)
H |σσ〉 =

1

2
|σσ〉+ c

2
|σσ〉 (2.32)

for the effect of the Hamiltonian using the permutation representation. Again, we see that
HH = H

−1/2
H holds. In the course of this work, we will use the alternative representation

(2.28) of the Heisenberg model due to its computational simplicity.

2.4 Single impurity Anderson model
The single impurity Anderson model (SIAM) was introduced in 1966, cf. Ref. [74],
to describe a system in which a single magnetic impurity is embedded in a group of
otherwise conductive electrons of a host metal. Analogous to the foundations explained
in section 2.1.2, the metal is best described in a momentum basis, whereas the impurity
is a purely local phenomenon. Rigorously mathematically, however, the impurity breaks
the strict translational symmetry. Thus, we can still consider the metal electrons
phenomenologically as quasiparticles rather spread out over real space, yet we are no
longer able to assign conserved momenta to these levels. Instead, we number the different
energy levels in the bath, i.e. the metal surrounding the impurity, in ascending order.
Here, the indices k do not represent a momentum, but an energy level in the basis with
respect to which the Hamiltonian of the bath is diagonal. While the electrons of the bath
perceive no interaction with each other, the impurity has energy levels dependent on its
local occupancy number. It is modelled by two-particle interaction. The coupling of the
impurity to the surrounding bath occurs via hopping processes in which an electron hops
from the bath to the impurity or away from it.

Due to the general structure of many similar and interaction-free energy levels as well as
the one position distinguished by the impurity and being coupled via hybridisation to the
bath, it is by now common to represent and discuss the SIAM in a star-shaped topology.
As shown in figure 2.6, in this topology the impurity is given by the central location and
all bath electrons are connected to it via the different hybridisation strengths Vk. The
undeniable advantage of such schematic modelling is that the SIAM by its design is not
only able to describe impurities in metals, but can describe any system in which a single
dedicated level is connected to many similar levels. As a result, the focus of research on
the SIAM has also shifted slightly in the meantime and is more focused on quantum dots
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2.4 Single impurity Anderson model

Figure 2.6: Illustration of the single impurity Anderson model with star-shaped
topology. For demonstration purposes only the first six of the nb bath levels and the
central impurity site are shown. Only at the impurity site there is an interaction,
bath levels cannot interact with each other. All bath levels are coupled to the
central site via the hybridisation strengths Vk.

as well as research on electronics [75–77] making the SIAM the archetypal model for the
treatment of quantum information storage and nanoelectronics.

From a purely theoretic perspective the SIAM describes a system in which only a
single level has a true Hubbard interaction. For the sake of simplicity, this level will
be referred to as zero below. Consequently, only at this zeroth level a real two-particle
interaction exists. All other levels of the bath show the typical behaviour of itinerant
electrons, i.e. the electrons of the bath are fully mobile without any restriction. These
bath levels are coupled to the impurity via the hybridisation strengths Vk. In second
quantisation and when using f †σ as a creation operator for a particle with spin σ at the
impurity level and c†kσ for one with spin σ at the bath level k the model consists of the
following contributions

HSIAM = HImp +HBath +HHyb (2.33a)

HImp = ε0
∑
σ

f †σfσ + Un̂↑n̂↓ (2.33b)

HBath =
∑
kσ

εkc
†
kσckσ (2.33c)

HHyb =
∑
kσ

(
Vkf

†
σckσ + h.c.

)
. (2.33d)
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2 Fermi-Hubbard model and its limiting cases

The three previously motivated features can also be found here: HImp acts exclusively
on the impurity and has a kinetic contribution and an interaction term, HBath solely
describes the free electrons of the bath and HHyb couples the impurity to the bath. All
fundamental dynamic processes of the SIAM are exemplified in figure 2.6. At the six
illustrated energy levels of the bath any constellations consistent with the Pauli principle
can be found, while merely the local energies εk are affected. Levels can be completely
empty, such as level k=5, filled by one particle (k=3 and k=6) or even be completely
filled (k=2 and k=4). For an exchange process between the impurity and any bath level
the parameter Vk denotes the transition amplitude (k=1).

Considerably later than its phenomenologically motivated introduction in 1966, the
emergence of DMFT allowed for another view on the SIAM. It could be proven math-
ematically rigorously that the SIAM is just another limiting case of the FHM – the
limiting case of infinitely high coordination number z. It was first shown in 1989 that
this limiting case of infinite dimensions d→∞ for hypercubic lattices with a resulting
infinite coordination number z →∞ is a reasonable limit of the FHM with non-trivial
physics [78]. In analogy to the ideas of statistical mechanics, such a limit cannot be
obtained without rescaling the system parameters. While the interaction U does not
require a rescaling at all, the hopping elements Jij = J have to be adjusted as the
dimension increases. The initial motivation for this observation was the density of states
in the case of vanishing interaction which follows by the central limit theorem [79] as

ρ(E) =
1

2J
√
πd

exp
(
− E2

4dJ2

)
. (2.34)

To keep ρ(E) finite at all times, the hopping element must be rescaled according to
J → J/

√
2d. The examination of the model within this limit is not just a feasibility study.

It was shown that the limit d→∞ is, on the one hand, able to provide robust results
reproducing characteristic properties for three-dimensional materials, and on the other
hand, that the analysis of the infinite-dimensional case is much easier than the case of
finite dimensions. But why is this limit any simpler now?

To understand the dynamics of physical systems, it is mostly sufficient to be able
to describe the average behaviour of one or two characteristic particles [80]. For this
purpose, one often resorts to Green’s functions or propagators G(k, ω), which provide
a convenient access to dynamic quantities. Such Green’s functions are calculated from
diagrammatic perturbation theory, e.g. via the Dyson equation

G(k, ω) = 1

G−1
0 (k, ω)− Σ(k, ω)

(2.35)

with the self-energy Σ(k, ω) and the non-interacting propagator G0(k, ω) of a free particle.
The propagator of the free particle is easy to calculate, the complete determination of the
self-energy – especially in case of strongly correlated systems – is arbitrarily complicated.
In systems of infinitely large dimension, however, the self-energy Σ is independent of
any momenta [81]. Thus, the Dyson equation is simplified significantly and the required
interacting single-electron Green’s function is only frequency-dependent. Conversely,
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2.4 Single impurity Anderson model

this means that all processes that can contribute to the self-energy at all are completely
local in real space. Unfortunately, this knowledge of a completely local self-energy alone
does not automatically help. Nonetheless, with the SIAM one can find a model that has
exactly the same self-energy as the FHM for d→∞ but is much easier to solve [82].

It is this systematic mapping of the FHM in infinite dimensions to the SIAM that
provides a method for gaining insights into the FHM that would otherwise hardly be
possible. In practice, this mapping of the FHM to a SIAM is often used especially in
self-consistency calculations, in which a gradually increasing accuracy is achieved by
repeated iteration of the Dyson equation for the last obtained result of the self-energy.

And yet, even solving the simplified SIAM is not easy. The many energy scales present
in the model, as well as the fact that conventional perturbation theory approaches do
not converge, make the numerical treatment of the SIAM a veritable challenge. Here,
the energy scales emerging in the process comprise the (nearly) continuum of the bath
energies to which the impurity can couple as an interacting system. This may lead to
infrared divergences and the occurrence of the Kondo problem [83]. Many approaches
exist from more conventional ones such as exact diagonalisation (ED) [84], density matrix
renormalization group (DMRG) [85] or Bethe ansatz techniques [86] to highly specialised
ones such as adapted quantum Monte Carlo (QMC) [87] approaches, but all suffer from
different shortcomings. Be it that they only work for small systems (ED), that they
are limited to one-dimensional systems (DMRG) or that analytical continuations of the
imaginary-valued quantities to the real axis are ill-conditioned (QMC).

In particular, one method has turned out as the de facto way to treat the low-
energy dynamics of the SIAM: the numerical renormalisation group (NRG), see e.g.
Ref. [83] for an instructive review. Albeit approved and promising, a problem arises
when several impurity sites are to be considered instead of one as the effort of NRG
increases exponentially with the number of impurities in the system. The associated
exponential decrease in accuracy can be partially remedied by a so-called z-averaging [88].
The fundamental principle behind this is to average over several calculations, each with
a slightly different discretisation, in order to obtain an improved approximation of the
continuum limit. Moreover, it is fairly difficult to resolve sharp spectral features of
the high-energy spectrum using NRG due to its logarithmic discretisation. By now,
first successful strategies towards this goal have been established by using dynamic
DMRG [89, 90]. Considering the fact that especially abrupt changes of a system, such
as those occurring due to quenching3, generate short-term dynamics that take place on
all time and thus energy scales, a non-existing access to the high-energy excitations of
a system limits the applicability of a method to equilibrium. Even though systematic
extensions of NRG to non-equilibrium situations exist under certain conditions [91, 92],
at least one central facet still remains a major concern of NRG: The massive numerical
complexity when extending the model or adding additional impurities.

In the context of this work, we adopt a semi-analytical method that addresses such
shortcomings and is both numerically and analytically tractable with reasonable effort.

3For a dedicated discussion of the terminology as well as the problems and central issues arising in the
context of quenching, see particularly chapter 5.
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3 Approaches to operator dynamics

A central task in the analysis of solids is the determination of the time-dependent
properties of the system. Such properties are generally described by physical observablesO,
i.e. quantities that can actually be measured for the system in experiments. If a system
starts at the beginning of the measurement, i.e. at time t = 0, in the known state
|ψ(t=0)〉, the time-evolution of the observable O is described by

O(t) = 〈ψ(t)|O|ψ(t)〉 , (3.1)

where |ψ(t)〉 evolves unitarily from the given initial state and the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 . (3.2)

Here and henceforth, we constantly resort to natural units for simplicity, i.e. we set ~ = 1.
Specifically, for systems in non-equilibrium states, the calculation of such properties
is highly demanding. But even for moderately large systems in equilibrium, it can be
exceedingly challenging to capture the dynamics of the system due to the exponential
growth of the Hilbert space with the number of system’s constituents.

If we stick to the Schrödinger picture, the primary objective is to determine the
time-evolution of the state |ψ(t)〉. For a Hamiltonian that does not explicitly depend
on time, the stationary Schrödinger equation holds. The corresponding time-evolution
operator reads

U(t) = exp (−iHt) (3.3)

and can be used to express the full time-evolution of an initial state by means of

|ψ(t)〉 = U(t) |ψ(t=0)〉 . (3.4)

As simple as the phrasing of the actual algebraic problem is, as complex and sometimes
sophisticated is the algorithmic implementation. It is not only the exponential growth
of the Hilbert space that is problematic, the actual handling of quantum mechanical
states in a computer also poses difficulties. In order to be able to represent a state or
an operator, a problem-adapted and efficient basis is required. Here, problem-adapted
means that the structural design of the basis states should be as close as possible to the
physical reality of the problem, and efficient means that the representation should be
chosen in such a way that computer resources are optimally utilised.

In this chapter we present various methods to deal with the above mentioned tasks. In
order to do so, we start with basic ideas on the transformation of physical states and
measurable quantities into mathematical representations in section 3.1.1 and derive the
Hamiltonian governing the dynamics in the chosen representation in section 3.1.2. With

23



3 Approaches to operator dynamics

this Hamiltonian, we discuss a naive approach to obtaining the operator dynamics as
well as its respective limitations in section 3.2. Thereafter, we discuss a highly efficient
numerically exact alternative to this naive method in section 3.3 and finally we turn
to approximate, but extremely fast ways of determining the time-evolution (3.1) in
section 3.4.

3.1 Exact approaches

3.1.1 Organising the Hilbert space

Henceforth, O shall denote a linear operator defined on a given Hilbert space H with
dimension d := dim (H) and O ∈ Cd×d shall be the corresponding Hermitian matrix
representing O in H with respect to a chosen basis. For the sake of brevity, we will drop
the formal notation of O for a representation of the linear operator O altogether and use
the latter symbol for both the matrix and the operator interchangeably. The respective
context will clarify what is referred to.

In the FHM as stated in equation (2.1), a single lattice site may be either occupied
by two electrons of different spin each |↑↓〉, by one electron of arbitrary spin orientation
which reads |↑〉 or |↓〉 or it may not be occupied at all as in the state |◦〉.1 In order to
organise the Hilbert space it is necessary to introduce particular conventions to properly
account for the fermionic algebra. The following way of labelling and dealing with sites
and states is by far not the only one but has proven to be especially handy and fast when
dealing with large amounts of data as in the case of even moderately sized systems. Since
this issue of exponentially growing Hilbert space sizes stems from physical restrictions
there is no general remedy for it. Nevertheless, the typical system sizes can be heavily
enlarged by exploiting physical properties and symmetries of the FHM like particle
conservation which we will use in the following.

01

Figure 3.1: Graph representation of a
system with N = 2 sites and arbitrary
but fixed vertex labelling.

We start by modelling the topology of a given
finite site cluster as described in section 2.1.1, i.e. by
means of a graph. Thus, the site cluster is described
by the undirected graph G = (V,E) consisting of
consecutively labeled vertices (sites) V each having
information about its local repulsion Ui and edges
(hopping matrix elements) E. The most natural
representation of an undirected graph G is by means of its adjacency matrix A(G). The
adjacency matrix of a finite site cluster of size N is a square matrix of size N ×N whose
matrix elements aij := Jij denote the hopping elements for a hopping between the sites
i and j. Since in our model Jij = Jji ∈ R holds, the matrix A(G) is symmetric. An
example for a system with N = 2 sites is depicted in figure 3.1, while the adjacency
matrix of this graph for Jij = J is shown in figure 3.2. The respective labelling of the

1For reasons of simplicity, we exclusively concentrate on the FHM in the examples provided in this
chapter. However, all the techniques discussed here are also applicable, with slight modifications, to
the other models discussed in chapter 2.
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3.1 Exact approaches

different cluster sites is arbitrary but has to be chosen once and kept constant thereafter.

A(G) =

(
0 J
J 0

)
Figure 3.2: Adjacency matrix
of the cluster depicted in fig-
ure 3.1 for Jij = J .

In order to transfer the resulting Hamiltonian of the
system to an easily applicable matrix form an operator basis
has to be chosen. A very first naive attempt for establishing
a basis is to apply all physically possible combinations of
elementary fermionic creation operators f †iσ to the many-
particle vacuum state |0〉. Doing so creates all existing
states of the respective Hilbert space and will eventually
lead to basis states of the exemplary pictorial and algebraic form given by∣∣∣↑N−1, . . . , ↓↑2, ◦1, ↑0

〉
:= f †N−1↑ . . . f

†
2↓f

†
2↑f

†
0↑ |0〉 . (3.5)

It is necessary to implement an unambiguous and efficient book keeping of the states on
the right-hand side of (3.5) when implementing them on modern computers. Resulting
from the fermionic algebra phase factors arise in these cases due to{

f †α, f
†
β

}
= 0. (3.6)

This becomes problematic in cases of inconsistent ordering of operators. Moreover, this
approach does not take any symmetries of the model into account rendering the basis
larger than actually needed.

According to section 2.1.3, the FHM possesses no spin-flip terms and the total number
of particles Nσ of spin σ is a conserved quantity. Consequently, the dynamics of the
system is confined to a subspace of the overall Hilbert space H with dim (H) = 4N . Since
the particle number conservation is equal to a conserved total spin Sz, the basis of states
can be chosen such that the Hamiltonian of the system will be of block-diagonal structure
where each block has a well-defined spin Sz as given by equation (2.8) and (2.9) with

Sz =
1

2

∑
i

(n̂i↑ − n̂↓)
(2.6)
=

1

2

(
N̂↑ − N̂↓

)
= const. (3.7)

Consequently, the subspace of the Hilbert space in which the dynamics take place consists
of all states with fixed numbers Nσ. This is equal to independently distributing N↓ and
N↑ particles over the lattice of size N leading to a total number of

M :=

(
N

N↓

)
︸ ︷︷ ︸

m↓

·
(
N

N↑

)
︸ ︷︷ ︸

m↑

(3.8)

basis states to be used which is considerably smaller than the initial dim (H).
Then, we need to find a representation in which both spin species can be treated

independently from each other while in each spin sector the total number of fermions is
conserved. We achieve this by resorting to occupancy number states of the form

|nN−1,…, n0〉σ :=
(
f †N−1σ

)nN−1
(
f †N−2σ

)nN−2

. . .
(
f †0σ

)n0

|0〉 (3.9)
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3 Approaches to operator dynamics

where exactly ni ∈ {0, 1} spin σ particles are located at the site labeled with i and∑
i ni = Nσ holds. A more detailed explanation of the theoretical background of these

Fock basis states will be given in appendix A.2. For now, it is fully sufficient to know
about their semantic structure. Note that (3.9) also implies that the lattice sites are
consecutively identified in ascending order from right to left in the chosen representation.

The resulting tensor product states have to incorporate both spins and read

|nN−1,…, n0〉↓ ⊗ |nN−1,…, n0〉↑ (3.10)

for a lattice of N sites. The most effective way to map this structure onto a fast
and storage-effective scheme is by resorting to twofold Lin tables [93]. The possible
practical usages of Lin tables are wide-ranging. They can be used whenever the quantum
mechanical states of a system can be divided into two non-overlapping subsets. The
partition in the context of the FHM into two different non-interacting spin orientations is
obvious. Nevertheless, Lin tables can also be used in cases where the topology of a lattice
is bipartite. This implies that the lattice can be divided into two distinct subsets, for
example by alternately colouring a two-dimensional rectangular lattice like a chessboard
in two colours. All lattice sites of one colour then form one of the two sets.

In the case of the FHM we start by concatenating both spin species and reading the full
state as a bit string. This leads to a bit pattern of the form I = I↓I↑ where each Iσ can
simultaneously be seen as an array of bits Iσ[i] ∈ {0, 1} and as the binary representation
for an integer value

Iσ =

N−1∑
i=0

Iσ[i] · 2i. (3.11)

For consistency, we apply the concept of equation (3.9) for the enumeration of lattice
sites to the integer representation I as well. Hence, the least significant bit Iσ[0] at the
first position counted from right to left in the bit pattern denotes the occupation of the
lattice site of the index i = 0. In other words, the value of Iσ[0] corresponds to the value
n0 of the spin σ subspace state given in (3.9). The overall state is characterised by an
integer value as well. This follows from

I = 2NI↓ + I↑. (3.12)

For example, if the system shown in figure 3.1 consisted of two different lattice sites, one
conceivable state would be the half-filled one∣∣∣↓1, ↑0〉 . (3.13)

In this state, two particles of different spin orientation are distributed over the two
available lattice sites. On site i = 0 there is a spin ↑ and on site i = 1 there is a spin ↓.
According to the previous considerations, the bit representation of the state (3.13) follows
according to

|10〉↓ |01〉↑ ≡ 10012 = 9 = I. (3.14)
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Thereby, each spin σ subspace state comprises the full number of lattice sites, in this
case two. In the spin subspace for ↓ the most significant bit is set because a particle
of this spin orientation sits on site i = 1, whereas in the spin subspace for ↑ the least
significant bit is set to symbolise a particle with spin ↑ on lattice site i = 0.

What might have been subtle when constructing states and identifying them with
bit patterns is the fact that we actually introduced two important conventions with
equations (3.9) and (3.10). These allow for an unambiguous mapping from the fermionic
algebra – consisting of elementary fermionic creation and annihilation operators eventually
applied to the vacuum state |0〉 – to the actual states. These conventions are

(1) indices increase from right to left within the respective spin species, e.g. f †1↑f
†
0↑,

(2) ↑ before ↓, i.e.
{
f †i↓

}{
f †i↑

}
|0〉, where the operators having a spin of ↑ are applied

first to the vacuum state.

The advantage of this storage scheme is easy to see. We do not need to maintain one
large table of size M with all states, but we are able to work with two tables of noticeably
smaller sizes mσ instead. Identifying states is done by using their table indices J = J(I)
with respect to the overall table of basis states later on. To reconstruct this index of
interest J for a particular binary state I we resort to the separated bit patterns of both
spins, I↓ and I↑, find each one in the respective table leading to J↓ and J↑, respectively,
and reconstruct the total table index by

J = J↓ ·m↑ + J↑. (3.15)

The power of this method is twofold. At first, at no point the whole table of all M states
has to be stored. This leads to a huge decrease in memory while simultaneously speeding
up the look-up times for the individual Jσ. Secondly, since the states in both tables can
be arranged in ascending integer order, i.e.

J(I(i)) < J(I(j)) ⇔ I(i) < I(j) (3.16)

for blocks of constant Sz, the lists are sorted. This makes it feasible to look for the bit
patterns Iσ within the tables using asymptotically faster searching algorithms.2

Example

We derive the two necessary Lin tables for the easiest system possible, the N = 2 sites
case depicted in figure 3.1, by making use of the formerly discussed ansatz. More detailed
explanations including in-depth examples are to be found, e.g. in Refs. [94–96]. For ease of
understanding, table 3.1 gives an overview over all the states of the Hilbert space in both
algebraic and binary representation. We explicitly emphasise that this representation is

2With no inherent structure in the data of length n the estimate to find an element is given by O(n)
since half the data set has to be traversed on average. In the case of sorted lists an algorithm like
binary search is able to find an element asymptotically faster in O (logn).
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3 Approaches to operator dynamics

not equal to the actual Lin tables and that the Lin tables do not necessitate the storage
of a complete basis at any time, but – on the contrary – only require the storage of two
significantly smaller tables.

Table 3.1: All binary basis states with their bit patterns Iσ and table indices Jσ
for a system of N = 2 sites and two particles. The full pattern I as well as the full
table index J are marked bold for better readability. The different spin sectors Sz

stem from conservation of the individual Nσ.

Total spin State Bit pattern I↓ I↑ I J↓ J↑ m↓ m↑ J
Sz = 1 |00〉↓ |11〉↑ 00112 0 3 3 0 0 1 1 0
Sz = 0 |01〉↓ |01〉↑ 01012 1 1 5 0 0 2 2 0
. . . |01〉↓ |10〉↑ 01102 1 2 6 0 1 . . . . . . 1

|10〉↓ |01〉↑ 10012 2 1 9 1 0 2
|10〉↓ |10〉↑ 10102 2 2 10 1 1 3

Sz = −1 |11〉↓ |00〉↑ 11002 3 0 12 0 0 1 1 0

Presuming that our system is half-filled meaning exactly two particles of up to now
unspecified spin orientation are distributed over the lattice of N = 2 sites, there are
three different possibilities to do so. The system can possess two spins of the same spin
orientation with either ↑ or ↓ (Sz = 1 or Sz = −1) or it can be filled with two particles of
opposite spin (Sz = 0). Distributing two particles of the very same spin leads to mσ = 1
possible configuration due to the Pauli exclusion principle. For exactly one spin σ particle
in the case of vanishing total spin there are mσ = 2 different possibilities. Ordering the
bit patterns in increasing integer order leads to the states shown in table 3.1 where the
respective indices J unambiguously label the state in the sector of conserved Sz.

Table 3.2: Lin table for N = 2 sites
and Sz = 0.

State Bit pattern Iσ Jσ

|01〉σ 012 1 0
|10〉σ 102 2 1

Assuming in this example that the initial state
|ψ(t=0)〉 of the time-evolution (3.4) has a spin of
Sz = 0, there are only mσ = 2 possible configu-
rations for each spin subspace. Only these two
actually need to be stored in a Lin table. Thus, we
create two different Lin tables of the general struc-
ture of table 3.2. In each Lin table, it is sufficient
to exclusively store the integer information Iσ and
the local label Jσ and to retrieve all remaining information from it. Further columns
are only given for didactic purposes. Any handling of quantum mechanical states now
requires knowing the total index J of a state with respect to the full Hilbert space. To
determine J for an arbitrary state, such as the state

|s〉 := |10〉↓ |01〉↑ , (3.17)

the state is split into its two distinct spin components. Each spin component is then
searched for in the available Lin table 3.2 so that, for example, J↓ = 1 and J↑ = 0 are
determined. By knowing the number of entries mσ = 2 of each Lin table, J as defined
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in (3.15) can be calculated. In our example, this results in J = 1 · 2 + 0 = 2 which is
consistent with the index J = 2 for the state |s〉 that could be obtained from table 3.1.

Given an arbitrary physical state we are now able to construct the corresponding bit
pattern I and from this the index J of the state by means of a significantly faster and
memory-saving procedure compared to the use of the complete table 3.1. By memory-
saving we mean that instead of the naively allocated amount of memory O(m↓m↑) for
all states of the system under use of Lin tables, only O(m↓ +m↑) of memory is needed.

In this minimal example, there is only a saving of access time, but no saving of memory.
Here, two tables with two entries each had to be saved instead of one table with four
entries. The effect becomes more obvious in larger systems: If, for example, one had
mσ = 10 states in each spin sector and, thus, M = 10 × 10 = 100 states in the entire
Hilbert space, one would have to store a single table with 100 entries. With Lin tables,
however, only two tables with 10 entries each need to be stored.

3.1.2 Creating the Hamiltonian
With the basis which has been chosen and discussed in section 3.1.1, it is possible to
obtain the matrix representation of the Fermi-Hubbard Hamiltonian. This task is equal
to determining the matrix elements〈

I ′
∣∣H∣∣I〉 ⇔

〈
J ′(I ′)

∣∣H∣∣J(I)〉 =: h(J ′, J). (3.18)

For the hopping part H0 of the Fermi-Hubbard Hamiltonian (2.1) we need to identify
which basis states |I〉 and |I ′〉 are connected by hopping processes. These allowed hopping
processes are defined by the adjacency matrix elements aij . In the event that two states
are connected by a permitted hopping process from site i to site j, i.e. aij 6= 0, the
corresponding matrix element of the Hamiltonian reads

h(J ′, J) = (−1)p+1aij (3.19)

where p is the number of hops over occupied sites between the sites i and j with respect
to the representation (3.9). Such permitted processes can be derived by iterating over
all states |I〉 of the Hilbert space and constructing for each state all possible states |I ′〉
that emerge from the state |I〉 by exchanging the information on exactly one occupied
and one unoccupied site provided that these sites are connected in the adjacency matrix.
More formally put, the conservation of Nσ requires that the Hamming weight3 δ(·) of
the actually different parts of both basis states |I〉 and |I ′〉 amounts to δ

(
I
)
= 2. This

actual difference is given by a logical XOR operation as

I = I ⊕ I ′. (3.20)

Furthermore, the topology of the cluster imposes that hopping processes only take place
between sites that are connected via non-vanishing adjacency matrix elements.

3On a modern CPU the Hamming weight of a binary string can be measured in a fast way due to the
fact that the embedded instruction set offers commands for that purpose, e.g. popcount.

29



3 Approaches to operator dynamics

In order to derive the fermionic phase factor and, thus, p in (3.19) we identify the two
positions i > j that are set in the binary pattern I and construct a binary mask

Mij = 0 . . .

i︷︸︸︷
0︸ ︷︷ ︸

N−i

1 . . . 1︸ ︷︷ ︸
i−j−1

j︷︸︸︷
0 . . . 0︸ ︷︷ ︸
j+1

(3.21)

for measuring the occupied sites in between. Then, the number of swaps with other
fermionic creation operators can be deduced by the Hamming weight of the conjunction

p = δ (I ∧Mij) = δ
(
I ′ ∧Mij

)
. (3.22)

The interaction part Hint is even easier because it is diagonal in the chosen real space
basis and does not couple off-diagonal basis states. Using nJiσ to denote the occupancy
number of the spin σ particle at site i of the basis state indexed with label J it reads

h(J, J) =

N−1∑
i=0

Uin
J
i↑n

J
i↓. (3.23)

This is equal to a logical AND operation of both spin patterns I↓ and I↑ according to

∼
I = I↓ ∧ I↑ (3.24)

and summing up the set bits, i.e. the sites at which double occupancies occur, weighted
by their on-site interactions as

h(J, J) =

N−1∑
i=0

∼
I [i] · Ui. (3.25)

Example (cont’d)

We revisit the example of section 3.1.1 to calculate the Hamiltonian for the non-trivial
Sz = 0 block. For the sake of simplicity, we assume Ui = U and Jij = J .

There are eight allowed hopping processes of which we only need to examine four in
detail for symmetry reasons. Starting from the state I = 5, cf. table 3.1, it is possible for
an electron of spin ↑ to hop which results in the state I = 6. Likewise, a hopping of a
spin ↓ is possible leading to the state I = 9. In a similar manner the states I = 6 and
I = 9 can become I = 10. For the hopping part of the Hamiltonian we, thus, receive

〈6|H0|5〉 = 〈9|H0|5〉 = 〈10|H0|6〉 = 〈10|H0|9〉 = (−1)p+1aij . (3.26)

As all of these hoppings can be performed back and forth, i.e. from site i to j but also
from j to i, four more processes stemming from symmetry are possible. Due to the
fact that in all aforementioned cases our binary mask Mij given by (3.21) vanishes, the
Hamming weight in equation (3.22) vanishes as well resulting in a global p = 0. This
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3.2 Exact diagonalisation

can be easily understood from the fact that in between the two neighbouring sites of our
example no further particles can be present.

There are only the two states I = 5 and I = 10 that lead to non-vanishing results in
equation (3.24). As a result, the interaction part is determined by

〈5|Hint|5〉 = 〈10|Hint|10〉 = U. (3.27)

Taking both the hopping and the interaction part into account the matrix representation
of the Hamiltonian in the subspace of a constant Sz = 0 can be calculated. Here, the
states are sequentially numbered in ascending I according to table 3.1 which leads to

H =


U −J −J 0
−J 0 0 −J
−J 0 0 −J
0 −J −J U

 . (3.28)

Even though the overall scale might be larger in practical problems studied throughout
this thesis the concepts explained in this section make up the foundation for understanding
the techniques and methods to come.

3.2 Exact diagonalisation

To yield the actual time-evolution (3.4) with the Hamiltonian H just determined, the most
natural approach is a complete diagonalisation providing the eigenvalues and -vectors
of the system. We call a basis of vectors {v1,…,vd} eigenbasis of the matrix O if the
condition

Ov = λv (3.29)

is met. The factors {λ1,…, λd} of the linear transformation are called eigenvalues.
A special case of an operator is the Hamiltonian itself, i.e. O = H. Since the Hamilto-

nian is the operator of energy the |i〉 usually go by the name (energy) eigenstates whereas
the eigenvalues Ei are referred to as eigenenergies. In Dirac notation equation (3.29)
reads

H |i〉 = Ei |i〉 . (3.30)

Obtaining the complete set of eigenstates and eigenenergies is called full diagonalisation.
Then, the time-propagation (3.4) of a quantum state |ψ(t)〉 from its initial value |ψ0〉 :=
|ψ(t=0)〉 can be performed using the projector onto energy eigenstates as

|ψ(t)〉 =
∑
n

e−iEnt |n〉 〈n|ψ0〉 . (3.31)

Due to the fact that in the Schrödinger picture all information is contained in the states
the equation (3.31) is sufficient to describe the system. In other words, once |ψ(t)〉 is
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3 Approaches to operator dynamics

calculated all physical quantities are within reach and can easily be obtained for arbitrary
times t. Especially the quantity O(t) as in equation (3.1) can be derived by means of

O(t) = 〈ψ(t)|O|ψ(t)〉 (3.32a)

=
∑
mn

〈m|O|n〉 〈n|ψ0〉︸ ︷︷ ︸
=:αn

〈ψ0|m〉︸ ︷︷ ︸
=:α∗

m

e−i(En−Em)t (3.32b)

=
∑
mn

αnα
∗
m 〈m|O|n〉 e−i(En−Em)t. (3.32c)

Essentially, with equations (3.31) and (3.32) all the tools one needs to compute the
time-evolution of observables are at hand. So why would there be a real necessity to
employ more complicated or sophisticated methods instead of relying on exact diago-
nalisation (ED)? The reason lies mainly in the effort of the complete diagonalisation
of a matrix H as required by (3.30). The asymptotic time complexity of a complete
diagonalisation of a d× d matrix is of the order of O

(
d3
)
. As the dimension d of the

Hilbert space itself grows exponentially with the number of system constituents, i.e. in
the FHM with the number of lattice sites N , the effort for the complete diagonalisation
quickly exceeds all feasibility limits. Fortunately, on the one hand, in practical situations
mostly no simulation of O(t) is required for arbitrarily large times t→∞, on the other
hand, not all energy eigenstates |i〉 contribute equally to the time-evolution for moderately
large simulation times t. By a smart representative sampling of Nc � d states |φn〉 and
the simulation of the system in the subspace span (|φ0〉 , ..., |φNc−1〉) spanned by these
states, it is commonly possible to capture the dynamics with sufficient accuracy. This is
the key idea of the technique described in the next section.

3.3 Chebyshev expansion

In order to derive the basic ideas of the Chebyshev expansion technique (CET) we start
from the most general ansatz of expanding an arbitrary function f(x) using Chebyshev
polynomials. By employing this method on the rescaled time-evolution operator as given
in (3.3), we will be able to compute arbitrary time-dependent expectation values O(t), cf.
equation (3.4), with controllable accuracy. The principles of the expansion of a function
by means of a complete set of orthogonal functions as presented in this section will also
play a central role in the calculation of thermal expectation values. This topic will be
discussed in chapter 4. The following section is partly based on Refs. [97, 98].

3.3.1 Expanding in orthogonal polynomials

We start by considering the closed interval I = [−1; 1] and two arbitrary complex-valued
functions f, g : I → C of which the former function is to be expanded in terms of a given
set of orthogonal polynomials pn(x) fulfilling the relation

〈pn|pm〉 = N−1
n δn,m with a norm Nn = 〈pn|pn〉−1 . (3.33)
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3.3 Chebyshev expansion

Furthermore, we define a weighted scalar product between the two functions f(x) and
g(x) with a positive weight function wj : I → R+ according to

〈f |g〉j :=
∫ 1

−1
wj(x)f

∗(x)g(x) dx . (3.34)

When needed, the subscript j is used to denote the weight function in use. The most
general form of the expansion of f(x) in terms of orthogonal polynomials reads

f(x) =
∞∑
n=0

αnpn(x) with αn = Nn 〈pn|f〉 . (3.35)

While basically every set of orthogonal functions could be used for the expansion in
equation (3.35) it turns out that there is a special set of polynomials that converges
particularly fast, distributes errors uniformly on its support and whose basis only grows
linearly in the maximum simulation time tmax [99]. These are the Chebyshev polynomials
Tn(x) of first kind [100]. They are defined explicitly using trigonometric functions

Tn(x) =

{
cos (n arccos(x)) x ∈ I
cosh (n arccosh(x)) otherwise

(3.36)

or in an iterative fashion using the following recursion relation

T0(x) = 1, T1(x) = x (3.37a)
Tn+1(x) = 2xTn(x)− Tn−1(x). (3.37b)

The polynomials Tn(x) are mutually orthogonal with respect to the scalar product in
equation (3.34) and the weight function w1(x) =

(
π
√
1− x2

)−1
due to

〈Tn|Tm〉1 =
π

2− δn,0
δn,m. (3.38)

As the last property of interest we examine the finite Fourier transform of the weighted
Chebyshev polynomials Tn(x) over the closed interval I, cf. Ref. [101], which is related
to the Bessel functions of first kind Jn(x) by

Jn(t) =
(−i)n

π

∫ 1

−1

eiztTn(z)√
1− z2

dz . (3.39)

Inserting equation (3.36) into (3.35) and using the corresponding scalar product 〈·|·〉1
leads to the expansion of the given function in terms of Chebyshev polynomials

f(x) = λ0 + 2
∞∑
n=1

λnTn(x) (3.40a)

λn = 〈f |Tn〉1 =
∫ 1

−1

f∗(x)Tn(x)

π
√
1− x2

dx . (3.40b)
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3 Approaches to operator dynamics

The expansion coefficients λn of the function f(x) are often referred to as moments. It
can sometimes become problematic to integrate over w1(x) due to its singularities at
x = ±1 when calculating these moments. As a remedy for these cases, we define the new
orthogonal basis set

Wn(x) = w1(x)Tn(x) (3.41)

and a scalar product 〈·|·〉2 with a weight function w2(x) = π
√
1− x2. The expansion in

terms of the new basis set reads

f(x) =
1

π
√
1− x2

(
µ0 + 2

∞∑
n=1

µnTn(x)

)
(3.42a)

µn = 〈f |Wn〉2 =
∫ 1

−1
f∗(x)Tn(x) dx . (3.42b)

In the context of the Chebyshev expansion technique in section 3.3.3, we use in particular
the expansion (3.40), while for the calculation of thermal expectation values in section 4.1.2
equation (3.42) will prove useful.

3.3.2 Generalising the applicability

Strictly speaking, the equations (3.40) and (3.42) may only be used for scalar functions
defined on the interval I. All quantities we are going to derive in the following are directly
dependent on the energy spectrum {E′} of a given Hamiltonian or on the Hamiltonian
H ′ itself. This means we always deal with functions of type f(E′) or f(H ′). In order to
be able to handle these with the help of CET, we have to map the spectrum of H ′ onto
the interval I.

Transforming the Hamiltonian

Given the extremal eigenvalues E′
min and E′

max of H ′, the linear transformation

H ′ → H =
H ′ − b
a

=⇒ E′ → E =
E′ − b
a

(3.43)

is sufficient to yield a dimensionless Hamiltonian H with a spectrum of eigenvalues in the
required interval I. This ensures the applicability of the Chebyshev expansion technique.
The offset or scaling factors of the linear transformation are given by

a = 1/2
(
E′

max − E′
min
)

(3.44a)
b = 1/2

(
E′

max + E′
min
)
. (3.44b)

Obviously, in order to perform the linear transformation (3.43) knowledge of at least a
part of the spectrum is required. Since a full diagonalisation is not feasible a different
approach has to be taken.
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3.3 Chebyshev expansion

Triangle inequality

It would be detrimental to the method if the evaluation of the extremal eigenvalues
E′

min and E′
max in the context of the transformation (3.43) took more time than the

execution of the actual time-evolution. In this respect, we are looking for a method that
determines the approximations ηmin and ηmax to the extremal eigenvalues quickly and in
a memory-saving way. It is not necessary to have an extremely exact approximation as
long as the actual energy spectrum of the Hamiltonian fully lies in the energy interval
spanned by the approximation, i.e.

ηmin < E′
min and E′

max < ηmax. (3.45)

The accomplishment of this task becomes even easier if we keep in mind that in fact we
only need an upper bound ξ ≥ λmax to the eigenvalue λmax = λmax (H) with the largest
absolute value. For then it follows that

ηmin = −|ξ| and ηmax = |ξ| (3.46)

holds as a general approximation. There are many different approaches towards gaining
an approximation of λmax, e.g. by means of techniques starting from a randomly chosen
vector s and operating on the iteratively constructed F -dimensional Krylov subspace

KF (s) = span
(
s, Hs, H2s, . . . , HF−1s

)
(3.47)

like the power method [102], the Arnoldi algorithm [103] or – in the case of Hermitian
matrices – the Lanczos iteration [104]. In our practical application of these methods to
the FHM, it turned out that the numerically most stable and consequently most reliable
approach for obtaining an upper bound ξ can be performed by resorting to the extended
triangle inequality

‖A+B + C‖ ≤ ‖A‖+ ‖B‖+ ‖C‖. (3.48)

Since we are dealing with matrices, the spectral norm is a natural choice to be used in
equation (3.48). It is defined according to

‖A‖ := ‖A‖2 =
√
λmax (A†A) (3.49)

which is merely the absolute value of λmax (A) in the case of a Hermitian matrix A = A†.
Thus, the right-hand side of equation (3.48) can be read as the desired quantity ξ for a
decomposition of the Fermi-Hubbard Hamiltonian (2.1) into the two hopping parts of both
spin species, i.e. H↑ and H↓, and the interaction part Hint.4 In order to obtain the final
approximation to the largest absolute eigenvalue, the right-hand side of equation (3.48)
must be evaluated by means of the diagonalisation of the two hopping matrices Hσ and

4An short review of computational improvements, the decomposition of the hopping part into the two
distinct spin species and the practical implications and advantages can be found in appendix A.1.
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3 Approaches to operator dynamics

the identification of the largest absolute eigenvalue of Hint.5 The latter is bounded by
the sum over all on-site interaction strengths.

3.3.3 Application to time-dependent observables
Initially introduced by Tal-Ezer and Kosloff [99] to yield the time-evolution of physical
observables, the Chebyshev expansion technique (CET) is by now a widely used method
for a variety of purposes: Be it the determination of eigenvalues of Hermitian matrices
within a specified range [105], the calculation of the one-electron density matrix by
expanding the Fermi-Dirac distribution [106], the computation of spectral functions in
one-dimensional models with short-range interactions [107] or the analysis of spin-noise
spectra of the anisotropic central spin model [108]. There are even various applications
of approaches based on CET to the Hubbard model [109, 110].

The time-evolution operator as matrix exponential

To find a suitable approximation to the result of equation (3.1) we start by considering
the time-propagation of a quantum state (3.4) using the unitary time-evolution operator
U = e−iH′t. By applying the linear transformation (3.43) to U we obtain the function

f(H) = e−iaHte−ibt (3.50)

which can be directly expanded using the techniques outlined in section 3.3.1. Here it is
advantageous and, thus, advisable to start from equation (3.40) by determining

λn = e−ibt

∫ 1

−1

eiazt Tn(z)

π
√
1− z2

dz (3.51a)

(3.39)
= ine−ibtJn(at). (3.51b)

Inserting equation (3.51b) into (3.40a) provides the time-evolution operator U in terms
of Chebyshev polynomials as

U =

∞∑
n=0

αn(t)Tn(H) (3.52a)

αn(t) = (2− δn,0)ine−ibtJn(at). (3.52b)

An intriguing property of (3.52) is the fact that the actual time-evolution and the effect
of the Hamiltonian are completely separated from each other. The time-dependence

5The attentive reader may wonder why two explicit diagonalisations are performed given the fact that
we tried to avoid a full diagonalisation at all costs up to now. The reason is to be found in the
overall dimension

(
N
Nσ

)
of the two effective one-particle problems Hσ. This dimension is significantly

smaller than the overall Hilbert space dimension leading to low computational costs. A second source
of irritation may be the fact that while Hσ are matrices of small dimensions Hint evidently is not.
Fortunately, in a real space representation the interaction is diagonal such that the identification of
the largest absolute eigenvalue can be performed in linear time.
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3.3 Chebyshev expansion

is contained only in the αn(t), the effect of the Hamiltonian is contained only in the
Chebyshev polynomials Tn(H).6 Resorting to (3.37) permits us to compute the time-
evolution of a given initial quantum state |ψ0〉 easily by means of an iterative scheme

|ψ(t)〉 = U |ψ0〉 =
∞∑
n=0

αn(t)Tn(H) |ψ0〉︸ ︷︷ ︸
=: |φn〉

. (3.53)

Since a treatment of the infinite series is computationally not possible, a cut-off value
of Nc < ∞ must be introduced for practical usability. The basis of the expansion
|φn〉, n ∈ {0, ... , Nc−1}, can be determined iteratively by

|φ0〉 = |ψ0〉 , |φ1〉 = H |φ0〉 (3.54a)
|φn+1〉 = 2H |φn〉 − |φn−1〉 . (3.54b)

If (3.53) is to be calculated in an iterative manner in large systems, it is not a requirement
to keep all the Nc states of the Chebyshev basis in the memory at once – the states that
are necessary for the next iteration step (3.54b) as well as the temporary result vector to
sum |ψ(t)〉 are sufficient. Hence, the only truly limiting factor of a CET in large Hilbert
spaces is the ability to store this minimal set of states.

Estimating the accuracy

In order to keep the number Nc of basis states as small as possible it is worthwhile to
estimate the error for a truncation of (3.52) after a finite number of elements precisely.
Since the asymptotic behaviour of the time-dependent prefactors is determined by the
Bessel functions of the first kind Jn(z), their asymptotic behaviour for n→∞ and fixed
z 6= 0 is of interest. This is provided, e.g. in Ref. [111, Eq. 10.19.1], as

Jn(z) ∝
1√
2πn

(z · e
2n

)n
. (3.55)

The higher the order n the longer it takes the Bessel function Jn(t) to have a noticeable
impact on the result as can be seen in figure 3.3a. While the Bessel function J0(t) is
notably different from zero for arbitrarily small times, the Bessel functions of higher order
make significant contributions for considerably larger times only. This in turn means that
the coefficients (3.52b) for a fixed time t′ above a certain order n ∝ Nc can no longer
make a contribution to the time dynamics that exceeds the order of magnitude ε. Thus,
this upper bound ε to the error of the first contribution not taken into account when
truncating with a cut-off value of Nc can be provided as

ε ≥
(
at · e
2Nc

)Nc

. (3.56)

6While the easily computable time-dependence of a quantum state is the most notable benefit of CET it is
by far not the only one. Especially two further advantages are worth mentioning: Since H only occurs
applied to a state merely the effect of H needs to be known, not H itself. This renders two options
possible: The first is the obvious advantage not to store H. The second is that the resulting on-the-fly
reconstruction of H is a perfect starting point for highly parallelised matrix-vector-multiplications.
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3 Approaches to operator dynamics

Evidently, the error ε is not only related to Nc but also depends directly on the maximum
time tmax up to which results should be calculated as well as the parameter a which equals
half the width of the energy spectrum as defined in (3.44a). This has two implications:
A too rough overestimation of the bandwidth of the energy spectrum and, thus, of a
leads to an unnecessarily large basis. Furthermore, the basis size Nc only has to increase
linearly with the desired maximum simulation time tmax.
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(a) Different Bessel functions of the first kind
Jn(t) which determine the asymptotic be-
haviour of the expanded time-evolution opera-
tor (3.53) according to (3.52b).
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(b) Comparison of the result of exact diagonal-
isation (ED) and of Chebyshev expansion tech-
nique (CET) forN = 8, half-filling and U/J = 3.
The analytical result equals n(t) = 0.5.

Figure 3.3: Components and error of a Chebyshev expansion

In order to get an impression of the implications of the choice of ε, we look at a practical
example. For a half-filled one-dimensional FHM with N = 8 sites and periodic boundary
conditions as well as a local interaction strength U/J = 3 we simulate the local particle
density n(t) := 〈n̂iσ(t)〉 at site i for a particle with spin σ using both ED and CET. Due
to the translational symmetry, the chosen lattice site does not matter. The corresponding
results can be found in figure 3.3b. The analytically determined reference result for the
observable is hereby a time-independent and constant average filling of n(t) = 0.5. To
emphasise the key differences between the two techniques, we deliberately choose the
cut-off value Nc for the CET such that an accuracy better than ε = 10−3 is guaranteed for
all times t ≤ 5 [1/J]. While the results of the ED for arbitrarily large times t completely
correspond to the analytical reference, there are significant deviations starting at about
t = 6 [1/J] in the case of the CET. The explanation for this lies in the fact that an ED
describes the dynamics in the entire Hilbert space and, thus, yields proper results for
arbitrarily long simulations, cf. (3.32). In the case of the CET, however, the subspace of
the Hilbert space is chosen from the very beginning in such a way that it is adequate to
capture the dynamics up to the chosen maximum time only. Results of a CET above this
maximum simulation time are therefore in no way meaningful, as the computed values
above t > 6 [1/J] impressively prove. However, keeping this restriction in mind, CET
provides a robust and highly efficient way to study the dynamics of even moderately
large systems, which would be impossible using ED.
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3.4 Iterated equations of motion

3.4 Iterated equations of motion
Despite the fact that the CET presented in section 3.3 offers innumerable advantages, it is
and remains an exclusively numerical procedure. Occasionally, this has the disadvantage
that analytical a priori statements about the system are infeasible. For example, within
the framework of CET, long-time averages can only be determined by simulating a system
up to finite times t and subsequently averaging over it. True long-time averages for
t → ∞ are therefore clearly out of reach. An even more striking shortcoming of CET
relates to the fact that the basis vectors (3.54) to be stored comprise the full dimension
of the Hilbert space and scale exponentially with the system size. Such problems are not
inherent to the semi-analytical iterated equations of motion (iEoM) method based on
the Heisenberg equation of motion and described in this section.

3.4.1 Heisenberg picture
Whilst in the Schrödinger picture employed so far all information about the time-
dependence of the quantum mechanical system is completely contained in the states |ψ(t)〉,
in the Heisenberg picture the operators themselves carry this information. In order to
emphasise the contrast between these two pictures, we temporarily use corresponding
indices attached to the operators in the following. A unitary transformation between
both pictures is given by

AH(t) = U †
S(t)AS(t)US(t), (3.57)

whereby unitarity is reflected by the property of the time-evolution operator that

U †
S(t) = U−1

S (t) = US(−t). (3.58)

The time-evolution of an operator AH(t) in the Heisenberg picture can be derived from
an operator AS(t) with possibly present explicit time-dependence in the Schrödinger
picture by means of

d
dt
AH(t) =

d
dt

(
U †

S(t)
)
AS(t)US(t) + U †

S(t)
∂AS(t)

∂t
US(t)

+ U †
S(t)AS(t)

d
dt

(
US(t)

)
(3.59a)

= i[HH(t), AH(t)] + U †
S(t)

∂AS(t)

∂t
US(t). (3.59b)

As before, we use natural units. Given that all the operators considered in this thesis do
not exhibit an explicit time-dependence in the Schrödinger picture, i.e. AS(t) = AS, the
Heisenberg equation of motion (3.59b) can be transformed into its simplified form

d
dt
AH(t) = i[HH(t), AH(t)] = iL(AH(t)) , (3.60)

which will be used from now on. In order to be able to write down the repeated
commutations of an operator with the Hamiltonian of the system in a streamlined way,

39



3 Approaches to operator dynamics

the Liouville superoperator L(.) := [HH(t), .] was introduced here. Furthermore, the fact
that all subsequent operators possess no explicit time-dependence in the Schrödinger
picture allows us to simplify the notation a bit further. Instead of the cumbersome
notation for the two pictures by means of indices, we specify that operators with time-
dependence belong to the Heisenberg picture, while those without time-dependence
belong to the Schrödinger picture.

A special case of (3.60) worth mentioning arises when the Hamiltonian of the total
system is time-independent. In this case the system is conservative and in particular the
relation HH = HS = H holds.

3.4.2 Operator expansion
One of the fundamental ideas of the iEoM approach [42, 112–116] is to calculate the
time-dependence of any operator A(t) with the help of (3.60) by writing the operator as
a linear combination

A(t) =
∑
i

hi(t)Ai. (3.61)

The occurring Schrödinger picture operators {Ai} have to be linearly independent to
form a basis in the space of operators and only the complex-valued prefactors hi(t) carry
the time-dependence. Substituting equation (3.61) into (3.60) yields

d
dt
A(t) = iL(A(t)) (3.62a)

= i
∑
i

hi(t)L(Ai) . (3.62b)

The result of applying the Liouville superoperator to a basis operator Ai yields a linear
combination of the form

L(Ai) =
∑
j

MjiAj (3.63)

which simultaneously defines the Liouvillian matrix M , sometimes also called the dynamic
matrix. By combining all time-dependent prefactors hi(t) into a single vector h(t), the
dynamics of a system can be described entirely by

d
dt

h(t) = iMh(t). (3.64)

As straightforward as the characterisation of the dynamics by means of (3.64) seems at
first, as difficult is it to assess the consequences of insufficient approximations. Building
on the basic ideas of Kalthoff et al. [116] we pointed out the specific implications in
Ref. [42]. We will briefly discuss the core aspects presented in both works in the following.

From a purely mathematical point of view, due to (3.3) all solutions h(t) of (3.64) are
superpositions of oscillatory solutions. The oscillation frequencies of the solutions are
given by differences of the eigenenergies of the system. Thus, relaxation processes or
dephasing arise naturally in open quantum systems. This characteristic physics does
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not change, of course, by a switch to the Heisenberg picture. If, however, an insufficient
approximation is made, it may happen that the dynamic matrix has complex eigenvalues
z ∈ C. If the matrix itself is real-valued, the eigenvalues occur in pairs as z± = R± iI
with real part R and imaginary part I. Consequently, exponential divergences arise in
the progress of time. However, even if the eigenvalues remain entirely real, the matrix
might not be fully diagonalisable but of Jordan normal form. In this case, divergences of
power law type would arise. Only if it is ensured that the matrix can be diagonalised
and has exclusively real eigenvalues, such divergences can be excluded with certainty.

A sufficient, though not necessary, condition to guarantee this is that the dynamic
matrix is Hermitian [116], i.e. M =M †. Then, the matrix has always real eigenvalues λj
of the same geometric and algebraic multiplicity and a solution of (3.64) is provided by

h(t) =
f∑

j=1

αje
iλjtvj . (3.65)

Here, the vj denote the eigenvectors of the dynamic matrix and the αj include the initial
conditions imposed on the system. Unquestionably, the structure of (3.65) ensures that
all solutions are composed solely of superpositions of oscillatory contributions.

By choosing the basis operators Ai orthogonal with respect to an arbitrary scalar
product (·|·), which implies

(Ai|Aj) = δij , (3.66)

the matrix elements of the dynamical matrix M may be written in the form

Mji = (Aj |L(Ai)) . (3.67)

For a completely arbitrary scalar product, however, hermiticity of M is not guaranteed.
Therefore, the selection of such a scalar product is decisive. A suitable choice is, for
example, the Frobenius scalar product

(A|B) := N Tr
(
A†B

)
with N :=

1

Tr(1)
(3.68)

as initially proposed in Ref. [116]. Since the trace is invariant under cyclic permutations
we can ensure the self-adjointness of L(·) and thus the hermiticity of M , i.e.

Mji = N Tr
(
A†

j(HAi −AiH)
)

(3.69a)

= (Ai|L(Aj))
∗ (3.69b)

=M∗
ij . (3.69c)

We highlight the fact that the scalar product (3.68) requires the local Hilbert space of
the system to be finite. Such a space is given for all spin systems, fermionic systems
as for instance the FHM, or models with a combination of spin and fermionic degrees
of freedom. Bosonic systems with their infinite-dimensional Hilbert spaces, in contrast,
cannot be captured with the scalar product.
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3 Approaches to operator dynamics

As indicated at the beginning, the iEoM are not only capable of describing the actual
real-time dynamics of a system, but they also enable a semi-analytical determination of
true long-time averages

A∞ := lim
t→∞

1

t

∫ t

0
dt′
〈
A(t′)

〉
. (3.70)

The basic idea is that the long-time dynamics (3.70) is completely determined by the
initial conditions of the system. Typically, the observables A(t) are products of fermionic
creation or annihilation operators. For simplicity, here we resort to an exemplary product
of exactly one creation and one annihilation operator. For each of these operators,
the dynamics can be determined with the help of (3.61). Then, one decomposes their
individual initial vectors h(0) into the oscillatory eigenmodes (3.65) of the system and
eliminates all contributions that cannot participate in the long-time dynamics by using

lim
t→∞

1

t

∫ t

0
dt′h∗m(t′)hn(t

′) (3.71a)

=
∑
i,j

v ∗
i,mvj,n lim

t→∞

1

t

∫ t

0
dt′ei(λj−λi)t

′

︸ ︷︷ ︸
= δλi,λj

(3.71b)

=
∑
i,j

λi=λj

v ∗
i,mvj,n. (3.71c)

Thus, one obtains statements about the genuine t→∞ behaviour of a physical system.
We have published a very comprehensive explanation of this method together with its
application to the one-dimensional FHM in Ref. [42]. For the full analytical derivation
and results, we refer the reader to that paper.

3.4.3 On the concept of unitarity
A common misunderstanding concerning the terminology of a unitary time-evolution is
that there are actually two, not entirely synonymous, meanings of this term – depending
on whether one speaks of unitary time-evolution of states or of operators. We explicitly
point out this fact in Ref. [42] and recap the most important aspects here.

We will start with the prevailing textbook understanding, i.e. unitarity on the level of
states. Thereby, any solution U(t) of the differential equation

i
d
dt
U(t) = H(t)U(t) (3.72)

implies simultaneously that the scalar product of any two states |a(t)〉 and |b(t)〉 is
invariant because of (3.58) for all times resulting in

〈a(t)|b(t)〉 = 〈a(0)|U †(t)U(t)|b(0)〉 (3.73a)
= 〈a(0)|b(0)〉 . (3.73b)
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3.4 Iterated equations of motion

In contrast, unitarity on the level of operators is a much weaker criterion and merely
implies that the scalar product of two operators remains constant, i.e.

(A(t)|B(t)) = (A(0)|B(0)) . (3.74)

This, in turn, is easier to ensure. Formally, every time-evolution of the form

A(t) = UA (3.75)

with an operator U = U(t), for which U† = U−1 holds, satisfies the condition of operator
unitarity. The formal requirements regarding U are, thus, more modest than those for a
full mapping from the Schrödinger to the Heisenberg picture as given in equation (3.57).
Only if we impose the special form

UA := U †AU (3.76)

which places further constraints on U and, thus, on unitarity on the operator level, operator
unitarity also implies time-invariant scalar products of states as in equation (3.73).

What does this difference mean in a practical application? It means, in particular,
that although the actual dynamics of an observable is assured to consist exclusively of
oscillating terms, conserved quantities of the system do not necessarily remain constant
in time in a truncated operator basis. We were able to impressively substantiate this fact
in connection with the calculation of the time-dependent local particle density n(t) in
the translationally invariant one-dimensional FHM. While the analytical result tells us
that there is a constant particle density

n(t) = const (3.77)

equal to the filling, cf. section 3.3.3, deviations from this reference value were detectable
in the iEoM calculations [42]. There, we were also able to show that this implication
does not necessarily represent a disadvantage. We could use the proper non-dependence
on time of a conserved quantity as a sensitive test for the accuracy of different truncation
schemes used when constructing the operator basis.

It is tempting to believe that a method like iEoM, which cannot guarantee unitarity
of states, can only inadequately simulate physical systems, if at all. Nevertheless, such
deviations do not always have to occur and mainly depend on the observables to be
considered and the truncation scheme. For example, we were able to obtain highly accurate
results for the (non-local) jump at the Fermi surface with a comparatively small basis for
the one-dimensional FHM. These results were in complete agreement with numerically
substantially more demanding calculations like those of a DMFT approach [117]. For
further details and an in-depth discussion of the results regarding energy scales and
dynamical phase transitions within the one-dimensional FHM as obtained by means of
the iEoM method, the reader is referred to section 5.4 and Ref. [42].

The characteristic difference between the iEoM approach and other methods is that
the iEoM approach is hardly subject to any practical obstacles and can easily be used
to calculate the time-evolution for arbitrarily long periods of time as well as arbitrary
lattices.
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4 Approaches to thermal expectation values

While the calculation of time-dependent observables as discussed in chapter 3 provides
insight into the dynamics of a system at a fixed time t, it is sometimes of similar interest to
be able to make predictions about its thermal behaviour. This behaviour is characterised
by the so-called thermal expectation values 〈O〉th. These are the mean values that
observables O of the system adopt when the system is in complete thermal equilibrium.
Whether such a thermal equilibrium occurs, and if so to what extent, is still a highly
debated question in theoretical physics [27]. A dedicated discussion of the reasons and
implications of the question and our contribution to the debate can be found in chapter 5.
For the moment, we simply assume that the system to be considered is in the state of
thermal equilibrium after a sufficiently long relaxation period.

In this case, the system is described best by its canonical ensemble and only the
effective inverse temperature β := 1/T of the system determines its thermal properties.
Here, each quantum mechanical eigenstate |i〉 with corresponding energy Ei of the system
is weighted by its probability of occurrence, i.e. its Boltzmann factor e−βEi , leading to

〈O〉th =
1

Zd
Tr
(
Oe−βH

)
(4.1a)

  =
1

Zd

d−1∑
i=0

〈i|O|i〉 e−βEi . (4.1b)

In this context, the scalar Z denotes the partition function counting all weighted states

Z =
1

d
Tr
(
e−βH

)
=

1

d

d−1∑
i=0

e−βEi . (4.2)

Contrary to the usual convention, a normalisation by means of d :=dim (H) is used here
to achieve a more stable numerical integration of (4.1) and (4.2) in section 4.1.

A complete diagonalisation as described in section 3.2 would be the apparently most
direct path to a solution, but once again this approach is in practice simply impossible
due to the enormous numerical effort. So what are the possibilities to fathom the thermal
behaviour (4.1) with alternative approaches? In the following, we present two different
approaches to answer this question and evaluate them, especially with regard to their
numerical stability and simplicity of implementation in our actual applications.

4.1 Kernel polynomial method
The most intuitive approach to determining thermal expectation values is obviously to
fall back on the already existing toolsets and, thus, on conceptual ideas of the Chebyshev
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4 Approaches to thermal expectation values

expansion, cf. section 3.3. A prominent example of such an approach is the Kernel
polynomial method (KPM). Such methods have a long history and have suffered for a
long time from problems related to finite temperatures β > 0. Subsequent concepts of
this section are partly based on Ref. [118].

For the successful application of a Chebyshev expansion a function is required in the
first step, analogous to (3.50), that we may expand on the closed interval I = [−1; 1] using
moments µn. In the following, we always assume that a suitable rescaling of the system,
comparable to that used in (3.43), has already taken place. In concrete terms, this means
that all observables and functions calculated here are defined on I only. A subsequent
rescaling to the actual physical result domain is therefore necessary, for example, if a
comparison is to be made with experimental results. When we refer to a rescaled density
of states in subsequent calculations the respective quantity on I is meant.

In order to obtain functions to be expanded we rewrite our two target quantities (4.1)
and (4.2) into a continuous form. Thereby, the canonical partition function becomes

Z =

∫ 1

−1
ρ(E)e−βE dE (4.3)

and the desired thermal expectation value may be rewritten in an analogous way as

〈O〉th =
1

Z

∫ 1

−1
o(E)e−βE dE . (4.4)

The actual task now lies in finding reasonably good approximations of the rescaled density
of states ρ(E) as well as of the observable density o(E) given by

ρ(E) =
1

d

d−1∑
i=0

δ(E − Ei) (4.5a)

o(E) =
1

d

d−1∑
i=0

〈i|O|i〉 δ(E − Ei). (4.5b)

Unfortunately, an analytical derivation of the expansion coefficients with a precise error
estimate as we did in equations (3.51b), (3.52b) and (3.56) is not always feasible. Likewise,
even if an analytical approach is possible it might lead nowhere. As an instructive example,
consider the density of states (4.5a) which – inserted into equation (3.42b) – leads to
moments involving the complete energy spectrum by

µn =
1

d

d−1∑
i=0

Tn(Ei) =
1

d

d−1∑
i=0

〈i|Tn(H)|i〉 . (4.6)

Such a complete spectrum, however, can only be determined by a complete diagonalisation.
Since this is not feasible, equation (4.6) is not of any practical use. In practice, the
situation is actually even worse. Imagine that we were given the full spectrum Ei and all
we had to do was to evaluate (4.6) to insert it into (3.42a). Contrary to the expansion of
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4.1 Kernel polynomial method

the time-evolution operator U , it is not easily possible for us here to truncate the infinite
series in a controlled manner after a finite number of contributions, so we would in theory
have to compute an infinite number of moments µn. Needless to say, for practical reasons
we do not have such an option. But what happens if we uncontrollably truncate the
series after a finite number of summands?

The most urgent issue when truncating an infinite series such as (3.42a) after a finite
number of contributions are Gibbs oscillations, cf. Ref. [111, § 6.16(i)]. This means that
in the vicinity of points where the initial function possesses discontinuities or singularities
highly oscillating fluctuations occur. This does not only lead to an unsatisfactory
approximation of f(x) but also to the more severe impossibility to numerically integrate
the approximated function afterwards with a high precision which is a key ingredient to
the determination of thermal quantities such as (4.3) or (4.4). Furthermore, note that
the Boltzmann weight disproportionately penalises the smallest numerical errors in the
low-energy region of the spectrum upon integration.

For these reasons, on the one hand, we have to find a procedure in which Gibbs
oscillations can be suppressed sufficiently and, on the other hand, moments µn may be
computed even if they contain traces Tr(A) :=

∑d−1
i=0 〈i|A|i〉 involving the full spectrum

as, for example, in equation (4.6). We address these issues in the following two sections.

4.1.1 Convolution with a kernel

-��� � ���

�

�

Figure 4.1: Piecewise constant density of states
ρ2D being first approximated by the naive ap-
proach of a simple truncation and second by trun-
cation and convolution with the Jackson kernel.
Here, we truncate after N = 39 contributions.

In order to obtain a first impression of
the nature and extent of Gibbs oscilla-
tions, we turn to the concrete example of
a two-dimensional free electron gas with
(piecewise) constant density of states, i.e.

ρ2D ∝ θ(E). (4.7)

This density has a discontinuity at E = 0
and, thus, inevitably leads to Gibbs oscil-
lations. If one naively approximates the
underlying step function by truncating the
infinite series (3.42a) after N <∞ contri-
butions, one sees a strong overshoot espe-
cially in the discontinuity region. Right
before and after, oscillations that dimin-
ish with distance from the discontinuity
appear, cf. naive truncation in figure 4.1.

To avoid a highly oscillating resulting function when the Chebyshev expansion is
performed up to a maximum degree of N polynomials, we use an integral kernel

KN (x, y) = g0W0(x)W0(y) + 2
N−1∑
n=1

gnWn(x)Wn(y). (4.8)
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4 Approaches to thermal expectation values

In this case, the functions Wn(x) represent a set of basis functions modified according
to equation (3.41). Using (4.8) is sometimes referred to as convolution in the literature.
Written in a less formal way, this convolution is equal to a rescaling of the moments
µn → gnµn such that the approximate function (3.42a) becomes

fKPM(x) = 〈KN (x, y)|f(y)〉2 =
1

π
√
1− x2

(
g0µ0 + 2

N−1∑
n=1

gnµnTn(x)

)
. (4.9)

The crucial aspect when resorting to (4.9) is the question how to optimally choose the
rescaling factors gn. The simplest choice in this context is the so-called Dirichlet kernel.
A convolution of the approximated function with this kernel leads to gi = 1 ∀ i and, thus,
effectively to an unmodified truncation. The result of this convolution is consequently
inadequate and less desirable as seen for the naive truncation in figure 4.1. Among many
possibilities of choosing a kernel, one stands out in particular. The Jackson kernel [119,
120] has proven to be the optimal choice for many practical applications. We present its
central motivation and schematic derivation here briefly and, for this purpose, resort to
the extensive calculations carried out by Weiße et. al [118]. Readers who are interested
in the detailed derivation of a variety of different kernels as well as in their individual
convergence properties are recommended to consult this source for further information.

A uniform convergence of the approximated function fKPM(x) towards the original
function f(x) for an increasing number of polynomials is a highly preferable property
that allows us to make various reliable assertions about the approximated function, such
as its continuity or integrability. Uniform convergence is achieved if the kernel fulfils the
following conditions requiring that

(1) the kernel has to be positive, i.e. KN (x, y) > 0 ∀ x, y ∈ I,

(2) the kernel is normalised, i.e. g0 = 1,

(3) the second coefficient obeys g1
N→∞−−−−→ 1.

In order to prove the positivity (1) of the kernel KN (x, y) the strictly positive function

p(φ) =

∣∣∣∣∣
N−1∑
v=0

ave
ivφ

∣∣∣∣∣ = g0 + 2

N−1∑
v=1

gn cos (nφ) with gn :=

N−1−n∑
v=0

avav+n (4.10)

is used where av ∈ R are arbitrary coefficients. Since p(φ) is positive, the following
expression is positive in the interval I as well

1

2
[p(arccos(x) + arccos(y))− p (arccos(x)− arccos(y))] > 0 ∀x, y ∈ I. (4.11)

Subsequently, it is possible to rewrite the expression on the left-hand side of (4.11) into
the form KN (x, y) defined in (4.8), which yields KN (x, y) > 0 ∀ x, y ∈ I as required.
This can be achieved by inserting φ = arccos(x) as well as using the identity (3.36) for the
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4.1 Kernel polynomial method

Chebyshev polynomials and rescaling the polynomials with the positive weight function
w1(x) as defined in section 3.3.1.

Here, the fulfilment of positivity explicitly places no requirements on the general
structure of the real-valued coefficients av. This freedom of choice makes it possible to
select the av as optimally as possible in the sense that the broadening achieved by the
kernel for arbitrary functions f(x) is as small as feasible. Abrupt changes of the function,
i.e. sharp features, should thereby remain as distinct as they can be. To optimise this
broadening and preserve pronounced features, we minimise the expression

Q :=

∫∫
I
(x− y)2KN (x, y) dx dy (4.12)

which in fact reduces the squared width of the peak at x = y under convolution. One
then replaces x→ T1(x) and y → T1(y) in equation (4.12) and uses the orthogonality of
the Chebyshev polynomials (3.38) in connection with Lagrange multipliers. The latter
ones are resorted to since the condition (2) of a normalised kernel with g0 = 1 has to be
fulfilled. Undergoing all these steps, cf. Ref. [121], leads to the Jackson coefficients

gn =
(N − n+ 1) cos (πn/N+1) + sin (πn/N+1) cot (π/N+1)

N + 1
. (4.13)

The effect of convolution with the Jackson kernel (4.13) is significant and has the great
advantage, especially in comparison to naive truncation, that oscillatory artefacts are
almost completely dodged, cf. figure 4.1. This, however, comes at a cost. The unavoidable
broadening of the original function due to the convolution becomes evident in the less
pronounced slope of the convolved function in comparison to the original and naively
approximated function.

4.1.2 Stochastic evaluation of traces
In order to enhance an approximation by means of a convolution with a kernel, it
must be calculated in the first place. This is particularly difficult if the function to be
approximated requires the full spectrum Ei as in (4.5). Since ρ(E) emerges from o(E)
for O = 1, we will concentrate on the approximation of the observable density o(E) only.
All moments (3.42b) appearing in this case may be written as

µn =

∫ 1

−1
o(E)Tn(E) dE (4.14a)

=
1

d

d−1∑
i=0

〈i|O|i〉Tn(Ei) (4.14b)

=
1

d
Tr (OTn(H)) . (4.14c)

The trace arising here cannot be calculated exactly, even for moderately large systems.
But can we eventually approximate this trace and, if so, to what quality? To answer
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4 Approaches to thermal expectation values

this question, we fall back on ideas for stochastic trace evaluation initially proposed by
Skilling [122] and generalised and applied to physical quantities by Silver et al. [123] as
well as by Drabold et al. [124]. The main idea of this technique is to average over a small
subset of R� d randomly chosen quantum states instead of using all d states spanning
the Hilbert space. In order to be able to easily distinguish between the full trace Tr(A)
of a given operator A and the trace estimate, we define the latter one by means of

tr (A) := 1

R

R−1∑
r=0

〈r|A|r〉 . (4.15)

Here, each of the R quantum states is completely random and does not need to coincide in
any way with any meaningful state of the system, such as an eigenstate of the Hamiltonian.
The states are constructed using arbitrary orthogonal basis states |i〉 by

|r〉 =
d−1∑
i=0

ξri |i〉 (4.16)

with complex coefficients ξri ∈ C that stem from a probability distribution which fulfils

〈〈ξri〉〉 = 0, 〈〈ξriξr′j〉〉 = 0, 〈〈ξ∗riξr′j〉〉 = δrr′δij . (4.17)

In this context, the notation 〈〈·〉〉 means the statistical average. It is evident that the
relation 〈〈tr (A)〉〉 = Tr (A) will hold if we construct only sufficiently many states |r〉
and average over them according to equation (4.15). That is, the mean value of the
approximated trace will be equal to the trace over the entire Hilbert space. The apparent
point here is: How quickly do the two results approach each other and how many random
states must actually be drawn in order to provide a sufficiently good approximation? To
answer this question the variance of the approximation comes in handy.

For a given Hermitian operator A, the variance as calculated in Ref. [118] reads

σ2 = 〈〈tr (A)2〉〉 − 〈〈tr (A)〉〉2 = 1

R

(
Tr
(
A2
)
+
(
〈〈|ξri|4〉〉 − 2

) d−1∑
i=0

A2
ii

)
(4.18)

where Aij = 〈i|A|j〉 denotes the matrix elements. It is possible to eliminate the rightmost
part of equation (4.18) by drawing both the real and the imaginary part of the coefficients
ξri = a + ib independently from a Gaussian distribution with an expectation value of
µ = 0 and a variance of σ2 = 1/2 due to its statistical average given by

〈〈|ξri|4〉〉 = 〈〈a4 + 2a2b2 + b4〉〉 (4.19a)

=
2√
π

∫
R
x4e−x2 dx+ 2 ·

(
1√
π

∫
R
x2e−x2 dx

)2

(4.19b)

=
6

4
+

2

4
= 2. (4.19c)
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4.1 Kernel polynomial method

This, in turn, leads to a variance being independent of the chosen basis. Traces depend
linearly on the dimension d of the Hilbert size implying that tr(A) ∈ O(d). Consequently,
the relative error σrel of a stochastically evaluated trace is of the order

σrel =
σ

tr(A)
∝
√

d/R

d
=

1√
Rd

. (4.20)

When looking at equation (4.20), it becomes clear why the approximation of traces is
a highly promising concept for realistic cases of medium to large systems. The reason
for this lies in particular in the behaviour σrel ∝ d−1/2 which has an implication that
seems counterintuitive: For a constant number of drawn states R, the approximation
error becomes smaller with increasing Hilbert space dimension. Analogously, it can be
stated that as the dimension of the Hilbert space increases, fewer and fewer states are
required for an approximation of a specified quality.

Table 4.1: Number of ran-
dom states R for a relative
trace error below 10−3 with
lattice size N and effective
Hilbert space dimension d′.

N d′ [105] R

8 0.05 205
10 0.64 16
12 8.54 2
14 117.79 1

For a better understanding of this effect, we turn to an
application for the half-filled, one-dimensional FHM. As the
number of particles is conserved in this model, the effective
Hilbert space is significantly reduced in accordance with (3.8).
In the following, we denote the dimension of this effective
Hilbert space by d′. For a relative error of σrel < 10−3, which
is conventional in practice, the necessary amount of random
states R for different lattice sizes N is listed in table 4.1.

For a lattice size of N = 8 only R = 205 randomly drawn
states are necessary. This corresponds approximately to
4 % of the effective Hilbert space. This effect becomes even
more pronounced with increasing lattice size or Hilbert space
dimension. Already for N = 14 states, only one single random state |r〉 has to be drawn
in order to approximate a given trace with the help of (4.15) in sufficient accuracy.

4.1.3 Low-temperature issues

As described in the context of thermal expectation values (4.1), a system in thermal
equilibrium can be characterised solely by its inverse temperature β := 1/T . In the case
of a low temperature, i.e. T � J , the resulting inverse temperature becomes noticeably
large with βeff � 1/J. In interacting systems, this leads to a large Boltzmann weight in
equation (4.4) for the lowest part of the energy spectrum Ei which then heavily amplifies
even small numerical errors in this domain. Since common computational systems use
floating-point algebra, minor numerical inaccuracies are inevitable and – once amplified
by large Boltzmann weights – may spoil numerical results completely. Note that this
issue is of fundamental character and cannot be solved by trivial means such as the mere
increase of the number of expansion moments µn. We return to this issue and its possibly
serious implications in the comparison of KPM with an alternative method in section 4.3.

It is worthwhile to emphasise that this problem does not persist in the case of non-
interacting fermionic particles since in this case all energies of the many-particle system
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4 Approaches to thermal expectation values

can be separated into isolated contributions from effective one-particle subsystems. This
leads to an average occupancy of one of the levels which is given by the Fermi-Dirac
distribution. This distribution converges to a step function in the limit of β →∞ and,
thus, does not cause any numerical shortcomings.

The only promising way to address the problem of large Boltzmann weights in strongly
correlated systems when using KPM is to exclude the low-energy region of the spectrum
in all calculations. Nevertheless, as this region is highly relevant, especially for weakly
excited systems, it cannot simply be omitted, but must be treated with an alternative
procedure. This is precisely the approach proposed by Weiße et al. [118]. They suggest to
overcome the obstacles in the interacting regime by combining iterative approaches and
the kernel polynomial method. This way, the ground state and the m− 1 energetically
lowest excitations of the systems are treated in an exact manner while the remainder
of the spectrum is calculated using the kernel polynomial expansion. The respective
decomposition of (4.4) reads

〈O〉th =
1

Zd

m−1∑
i=0

〈i|O|i〉 e−βEi +
1

Z

∫ 1

−1
o(E)e−βE dE (4.21)

where the partition function Z is decomposed likewise and i counts the eigenstates of
the systems in energetically increasing order. Since the new moments µn used for KPM
must not capture the full Hilbert space, we project out the subspace that was treated
exactly, e.g. by resorting to the Lanczos algorithm, using the projection operator

P = 1−
m−1∑
i=0

|i〉〈i| . (4.22)

For the part of the spectrum that does not contain the low-energy excitations, the
Boltzmann weight is no longer a noteworthy problem. This fraction can thus be treated
normally with KPM on the reduced Hilbert space. For this purpose the new moments of
the functional expansion are slightly altered to become

µn =
1

d
Tr (POTn(H)) . (4.23)

Analogously, the modified moments for the expansion of the partition function Z follow
from equation (4.23) by setting the observable O to unity.

4.2 Quantum typicality
For a better understanding of the principle behind the concept to come, it is suggested
to first reconsider the approximation of traces in section 4.1.2. In this framework, a
few random states have sufficed to reproduce and capture the behaviour of a signifi-
cantly larger Hilbert space with adequate accuracy. The phenomenon underlying this
observation is commonly called quantum typicality and states that the expectation
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4.2 Quantum typicality

values of characteristic pure states are equal to the expectation values of the statistical
ensemble, see for example Refs. [125, 126]. Its key aspect is the tremendously high level
of entanglement between the subsystem and the environment coupled to that system. We
come back to this aspect and our own contributions to the topic in detail in section 5.3
and first focus on the consequences of this observation.

4.2.1 Thermal pure quantum states

When we examine equation (4.15) again, it becomes clear that the approximated trace
tr(A) corresponds to the searched thermal expectation value (4.1) for infinitely high
temperatures T . In other words, we notice that the relation

lim
T→∞

〈A〉th = tr(A) (4.24)

holds. This observation is intuitively easy to accept because the states used for the
approximation have been drawn completely uniformly in the context of (4.16) as well
as (4.17). Nevertheless, this just means that every pure state of the Hilbert space is
considered equally probable and the system is completely disordered. A disordered
canonical ensemble is characterised by a density matrix ρ ∝ 1 and T → ∞. Thus, in
order to be able to calculate thermal expectation values for finite temperatures T , not
all states may be regarded as equivalent any more. The previously completely randomly
drawn states must, loosely speaking, be cooled down to inverse temperatures β > 0.

To find out what form these cooled-down characteristic states |β〉 have, we decompose
the application of the Boltzmann weight to the normalised state |r〉 into two contributions
using the invariance of the trace under cyclic permutation. This results in

Tr
(
Oe−βH

)
= Tr

(
e−

βH/2Oe−
βH/2

)
(4.25a)

= d 〈r|e−βH/2Oe−
βH/2|r〉 (4.25b)

(∗)
= d 〈β|O|β〉 (4.25c)

when using the overbar to denote the arithmetic mean over a set of different normalised
states {|r〉} and identifying

|β〉 := e−
βH/2 |r〉 . (4.26)

The states |β〉 are commonly named thermal pure quantum states (TPQS) and were
suggested by Sugiura and Shimizu [127]. As long as the set {|r〉} is the full basis of the
d-dimensional Hilbert space, then the equality denoted by the asterisk in (4.25c) is given.
However, if only a smaller subset of R� d randomly drawn normalised states is used,
i.e. if the trace is approximated analogously to section 4.1.2, the same considerations
regarding the relative error described by (4.20) apply and the error follows to σrel ∝ 1/

√
Rd.

In order to obtain the thermal expectation value we identify the partition sum as

Z = d〈β|β〉. (4.27)

53



4 Approaches to thermal expectation values

Inserting the partition sum Z and equation (4.25) into (4.1a) eventually yields

〈O〉th =
〈β|O|β〉
〈β|β〉

. (4.28)

Especially in high-dimensional Hilbert spaces, typically only few or even a single state
|β〉 are sufficient to calculate the expectation values of the system in thermal equilibrium.

It is to be noted that quantum typicality is not only limited to static quantities in
thermal equilibrium. It has been shown that the dynamics of observables and, thus, the
equilibration behaviour of systems can also be simulated with representatively drawn
states. For example, the autocorrelation function of the spin current in the Heisenberg
model can be derived from only a single state that is to be propagated [128]. As
quantum typicality will be used throughout this work exclusively for approaches to
thermal expectation values, we will not discuss applications to dynamical quantities any
further. For the interested reader, Ref. [129] is recommended for a methodological review.

The primary advantage of resorting to TPQS is its conceptual simplicity, both in terms
of implementation effort and the directness of the method. In contrast to the approach
via KPM, for TPQS no auxiliary quantities such as functions to be expanded have to be
calculated and no numerically potentially demanding or even unstable integrations have
to be carried out. Yet all these advantages are only given if it is possible to calculate the
matrix exponential of TPQS in a time-saving and efficient way. An especially efficient
way, which was put forward in Ref. [130], is by resorting to the Lanczos algorithm [104].

4.2.2 Lanczos algorithm and matrix exponentials
One of the main issues in applying the matrix exponential exp (−βH/2) to the randomly
drawn state |r〉 in (4.26) is the necessity to know the eigenbasis of H to calculate its
corresponding exponential. We circumvent this problem by constructing an s-dimensional
Krylov space Ks with s� d as a small subspace of the full d-dimensional Hilbert space.

For this purpose, we transform the state |r〉 into a coefficient vector r as well as
the Hamiltonian into a matrix H with respect to a chosen basis. The special form or
configuration of this basis is not of importance in this case [129]. In fact, any suitable
basis can be chosen which is optimal for the problem. This is insofar remarkable as with
the eigenstate thermalisation hypothesis a very similar, but not identical statement is
available. It states that the expectation value Aii = 〈i|A|i〉 of a local observable A in an
eigenstate |i〉 of a non-integrable Hamiltonian is practically indistinguishable from the
expectation value 〈A〉mc of the equivalent microcanonical ensemble at the same energy in
realistically large systems [131], i.e.

Aii = 〈A〉mc (4.29)

holds. Similarly, a single pure state |i〉 is enough to capture an ensemble of many different
states sufficiently well. In contrast to (4.26), however, there are clear requirements for the
structure of the state |i〉 in (4.29): It must be an eigenstate of H. This condition is not
imposed on the states in the framework of quantum typicality. Only their randomness
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given by (4.16) and a sufficiently large dimension of the Hilbert space are necessary. As
Heitmann et al. [129] motivate, this means in particular that quantum typicality is also
applicable in cases where the eigenstate thermalisation hypothesis breaks down. This,
according to the authors, is because (4.16) is invariant under unitary transformations and
thus, in particular, a transformation is permitted that changes the formerly arbitrary but
orthogonal basis states |i〉 into eigenstates of the Hamiltonian. Then, however, |r〉 would
be a superposition of eigenstates and the prerequisites of the eigenstate thermalisation
hypothesis would no longer be given. Nevertheless, the applicability of quantum typicality
is still given. Obviously, the freedom of choice of the basis also includes the possibility of
exploiting symmetries of the system in the construction of basis states. Without explicitly
stating this fact, we have already made use of it in the context of table 4.1, where we
employed particle number conservation to reduce the size of the effective Hilbert space.

After choosing a basis, the actual matrix exponential has to be calculated. For this
purpose, we use the Lanczos algorithm [104], whose following description is taken from
Ref. [43] and slightly adapted for an easy applicability to TPQS according to the ideas
presented in Ref. [130]. In order to calculate the matrix exponential we start from the
random vector r drawn according to (4.16) and repeatedly apply the Hamiltonian in its
matrix form H. This procedure creates the underlying Krylov space

Ks(r) = span
(
r, Hr, H2r, . . . , Hs−1r

)
(4.30)

in which the evaluation of the matrix exponential takes place.1 This iterative process [132]
begins with the normalised initial vector

b1 =
r
‖r‖ (4.31a)

as the first basis vector of Ks. All further vectors rj of the Krylov space are constructed
to be mutually orthogonal using

γj = b†
jHbj (4.31b)

rj = Hbj − γjbj − βj−1bj−1 (4.31c)

βj =

{
‖rj‖ if j ≥ 1

0 otherwise.
(4.31d)

In each step, the resulting basis vector is finally normalised according to

bj+1 =
rj
‖rj‖

. (4.31e)

Thus, the Lanczos algorithm (4.31) leads to a new basis of orthonormal basis vectors
bj , j ∈ {1, ... , s}, which are created in the course of the iterative process and fulfil

b†
ibj = δij . (4.32)

1In most cases, relatively small dimensions s are sufficient to reproduce results of the full Hamiltonian.
Since an exact diagonalisation has an asymptotic complexity which is cubic in the matrix dimension
the time to find the eigensystem of eigenvalues and eigenvectors of the Krylov space representation
Hs is O

(
s3
)

and thus significantly less than O
(
d3
)

for a diagonalisation of H.
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Here, the notation b†
i denotes the conjugate transpose of the vector bi. The Hamiltonian

H has now been significantly reduced regarding its dimension and can be expressed in
its new basis {bi} leading to the real-valued symmetric tridiagonal matrix

Hs =



γ1 β1 0 · · · 0 0
β1 γ2 β2 · · · 0 0
0 β2 γ3 0 0
...

... . . . ...
0 0 0 γs−1 βs−1

0 0 0 · · · βs−1 γs


. (4.33)

To calculate the numerator of equation (4.28), we average over as many different real-
isations of 〈β|O|β〉 as necessary for the desired accuracy. The computation of one of
these realisations involves the usage of the Krylov basis vectors bi created in the iterative
process. Let Bs be the matrix whose columns are given by these Krylov basis vectors, i.e.

Bs = (b1 | · · · | bs) . (4.34)

Then, the approximate correspondence for the full Hamiltonian H in the s-th step reads

H ≈ BsHsB
†
s. (4.35)

Inserting this approximation (4.35) into the numerator of equation (4.28) leads to

〈β|O|β〉 = 〈r|e−
β
2
HOe−

β
2
H |r〉 (4.36a)

≈ r†Bse
−β

2
HsB†

sOBse
−β

2
HsB†

sr (4.36b)

= e†
1e

−β
2
HsB†

sOBse
−β

2
Hse1. (4.36c)

Here, the unit vector into the first direction of the Krylov space basis

e1 = (1, 0, · · · , 0)T (4.37)

stems from the orthogonality of the different basis vectors according to (4.32). Note
that Hs is not in its diagonal form but tridiagonal instead. Exactly diagonalising this
tridiagonal matrix, e.g. by means of QR decompositions, is easily feasible and fast due to
the reduced Krylov space dimension as it is analysed in-depth in footnote 1 on page 55.

The denominator 〈β|β〉 and, thus, the partition sum Z follows directly from equa-
tion (4.36) by setting O to unity.

4.3 Method comparison
In view of the two very different approaches to the thermal behaviour of systems, the
question arises almost instantaneously which procedure is to be preferred for which
application. In our work on the relaxation behaviour of quenched systems, see section 5.3
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or Ref. [133], both methods were implemented on highly parallel cluster systems. In the
following, we use the resulting opportunity for a dedicated comparison of both methods
to work out the strengths and weaknesses of the methods on the basis of an illustrative
concrete example. For this purpose, we simulate the thermal expectation value of the
double occupancy di at the lattice site i for the one-dimensional FHM with N = 10
lattice sites, periodic boundary conditions, half-filling and an on-site interaction strength
of U/J = 3. The overall Hilbert space dimension of this model equals roughly 6.4 · 104.
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Figure 4.2: Boltzmann weight exp (−βE) for
three fixed values of β as a function of the energy
E. Solely for infinitely high temperature T , i.e.
β = 0, the energy eigenstates |i〉 of the Hamilto-
nian are equally weighted. For all other β > 0,
only the lowest-energy part of the spectrum has a
significant contribution.

To get an idea of the expected results,
we qualitatively estimate the two limiting
cases β = 0 as well as β →∞. A central
role in this estimation is played by the
Boltzmann weight shown in figure 4.2 for
different fixed values of β.

For the first case β = 0, all states are
equally weighted in the trace calculation,
so that the limiting value of the thermal
expectation value (4.1a) can simply be
calculated by means of a combinatorial
approach: For half-filling, i.e. a fixed num-
ber Nσ = N/2 of spins of orientation σ,
exactly one of four possible scenarios on
each lattice site i results in a double oc-
cupancy (DO). Since all scenarios are
equally likely, di(β=0) = 1/4 holds.

For the case β →∞, a combinatorial a
priori estimation is not possible without
knowledge concerning the spectrum. This is, in particular, due to the fact that the
Boltzmann weight generates a strong imbalance already for minimally larger β > 0:
eigenstates |i〉 of the Hamiltonian contribute much more to the thermal expectation value
if they are of low energy. The lower the actual effective temperature T of the system
becomes, the less high-energy states contribute to the thermal behaviour. In the extreme
case β → ∞, the trace is dominated by a few low-energy excitations of the system, if
not exclusively by the ground state of the system only. In particular, we thus expect
an asymptotic convergence to a fixed value for this edge case. Given the large relative
importance of low-energy excitations for β → ∞, it can already be concluded that a
method must be particularly accurate in this range of the spectrum in order to capture
the behaviour at low temperatures T correctly.

After these general considerations we take a look at the concrete use case of the one-
dimensional FHM. As a start, we resort to the unmodified KPM approach according to
equation (4.4). The respective results are depicted in figure 4.3a. For the high temperature
range, i.e. β = 0, the results agree with the combinatorial ones. For an increasing number
k of moments µn a gradual decrease of the predictions of the thermal expectation value
in the range β ∼ 0.5/J can be observed. For even larger β > 0.7/J , the KPM results
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asymptotically approach the same value, which is of the order of di(β=0) = 1/4. This is
physically remarkable insofar as only low-lying excitations or the ground state should be
of importance in this range. However, for an interaction U/J � 1, the ground state of
the FHM has to be a state that avoids energetically unfavourable DOs if possible. As a
result, the probability of encountering DOs should subsequently be reduced significantly.
The KPM results, however, suggest that DOs in the ground state are approximately as
likely as for the completely disordered case β = 0. In order to examine this prediction,
the comparison with an exact method is a logical next step.

0.0 0.5 1.0 1.5 2.0
0.16

0.18

0.20

0.22

0.24

(a) Thermal expectation value of the double
occupancy calculated with KPM and k expan-
sion moments. A higher number of moments
improves the accuracy but does not change the
qualitative behaviour for β > 0.7/J .
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(b) Comparison of results from both KPM (k =
900) and TPQS (Krylov space dimension d =
50) with an exact diagonalisation (ED). KPM
(unlike TPQS) results show notable deviations
from ED for increasing β.

Figure 4.3: High temperature behaviour for half-filled FHM with U/J = 3 [133]

If the same scenario is simulated using ED, a completely different picture emerges, cf.
figure 4.3b. Although the results are consistent with the KPM results for the range
β < 0.5/J , there are noticeably different results for increasing β. In contrast to the
prediction of KPM, significantly fewer DOs occur in reality already at β > 0.5/J .
This probability of the occurrence of DOs decreases successively until the minimum of
dmin
i ≈ 0.125 sets in at about β ≈ 1.5/J . For even larger β, a slight increase in the

expected number of DOs can be observed until in the range of β ≈ 4/J and higher,
there is an asymptotic convergence to an edge value of about di(β →∞) = 0.14. This
actual limit is nearly 60 % below the prediction of KPM. This diminished value is highly
plausible and in line with the previously motivated expectations.

The qualitatively as well as quantitatively erroneous behaviour of the KPM results is
easily explained by the shortcomings in the range of low temperatures of the unmodified
KPM used here, cf. section 4.1.3. As a remedy, two solutions in particular may be
considered: Since the KPM requires a very high accuracy of the observable density in the
range of low energies for the proper approximation of the low-temperature behaviour, a
piecewise approximation of the densities with particularly many moments in the range of
low energies is possible. This approach bears similarity to importance sampling. However,
figure 4.3a shows that this approach is costly and yields only very small gains in accuracy.
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Provided that the actual qualitative behaviour of ED could be reproduced at all by
more moments and numerical artefacts would not make convergence infeasible, then an
enormous number of additional moments would be necessary with significantly increased
computational effort. This is no option.

The only way to correct the shortcomings of KPM is to treat the low-energy excitations
with other methods and then analyse the remaining spectrum with KPM as described in
section 4.1.3 and particularly by equation (4.21). That this concept is highly promising
has been shown in a dedicated analysis of an XXZ model on a square lattice [118]. Here,
it was proven that for a lattice of 4 × 4 sites an exact treatment of only m ≤ 9 of
these low-energy excitations is sufficient to capture the general physics on the level of
comparable ED results. This makes it possible to choose a moderately sized m in (4.21)
and treat the lowest part of the spectrum using Arnoldi procedures [103].

The final method available to us is the TPQS approach as described in section 4.2.1.
The corresponding results are shown in figure 4.3b. Clearly, all TPQS results are fully in
accordance with those results obtained by ED. In particular, this means that the low-
temperature physics is also correctly captured. Again, the asymptotic value for β →∞
clearly confirms less frequently occurring DOs. The results of the TPQS calculation are
identical to ED results for comparatively small Krylov space dimensions (d = 50) even
for larger β ∼ 10/J (not shown here). Admittedly, a word of caution is necessary with
respect to choosing the required Krylov space dimensions. Since the one-dimensional
model with periodic boundary conditions at hand possesses a translational symmetry2,
the momentum is a conserved quantity. As with any conserved quantity, this allows
for a partition of the original Hilbert space into closed subspaces of smaller dimensions.
Therefore, the required Krylov space dimension to achieve the desired accuracy decreases.
On the contrary, systems with fewer symmetries may demand a higher dimension to
produce satisfactory approximations.

When comparing the different methods with each other, three aspects have to be noted
in particular: First, pure KPM calculations without spectrum decompositions do not
provide adequate results for low temperature physics. Second, already for medium to high
temperatures, here above T ≥ 2J as can be seen in the inset of figure 4.3b, the physics is
captured fully by pure KPM calculations. Third, TPQS results are able to reproduce
ED results with moderate effort and without special modifications for all temperatures.

In view of the fact that a thorough implementation of the Lanczos algorithm is already
available in our setup of TPQS, it is a straightforward exercise to use KPM with spectrum
decompositions for the calculation of thermal expectation values. Nevertheless, given
the fact that TPQS are very tolerant against accumulated numerical errors, easy to
deal with and that they can be used regardless of the specific temperature β, all further
computations will be performed using TPQS and we will refrain from following the route
of enhancing KPM by spectrum decompositions any further.

2In strongly correlated systems there are further conservation laws besides translational symmetry such
as charge conservation, conservation of the total spin Sz or point group symmetry which allow for a
reduction of the total Hilbert space. An instructive example on how the translational symmetry helps
to reduce the number of basis states of the full FHM by constructing Bloch states of well-defined
momentum can be found in Ref. [134].
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Employing the techniques discussed in chapters 3 and 4, a systematic approach to the
dynamics as well as to the thermal behaviour of physical systems is feasible. In this
chapter, we use these techniques to gain insights into one of the most fascinating and
promising areas of research in solid state physics - the field of non-equilibrium physics.
Here, the model under consideration is the full FHM as described in section 2.1.1, either
on a one-dimensional chain or on arbitrary lattice topology.

The chapter reproduced herein is an enhanced and partially modified and/or restruc-
tured full reprint of our original publications in Refs. [42, 133] that are subject to copyright
by the American Physical Society in 2018 and 2020, respectively.

5.1 Introduction
Systems far away from thermal equilibrium give rise to fascinating properties and, thus,
have been a source of inspiration for finding both highly non-linear material characteristics
and studying the evolution of strong correlations. Unfortunately, most of these studies had
to remain gedankenexperiments for a long time with no feasible experimental realisation.
In recent years, however, the research in non-equilibrium physics gained steam mainly
due to remarkable experimental progress which rendered a dedicated preparation and
observation of non-equilibrium phenomena possible.

The creation and precise tuning of optical lattices to confine ultra-cold atomic gases [135–
137] form the basis for experimentally analysing former purely theoretical Hamiltonians [20,
138]. Moreover, femtosecond spectroscopy and pump-probe experiments allow one to
gain insight into the evolution of ultrafast correlations in solid state physics [139–141].
Various invasive and non-invasive imaging processes have been proposed to perform
in-depth studies of quantum states. For this purpose, the use of Bragg spectroscopy and
time-of-flight experiments [142], in situ techniques with fluorescence [143], matter-wave
scattering [144, 145], optical cavities [146], or Dicke superradiance [147] is possible.

A suitable method to prepare a system out of equilibrium in order to study the ensuing
dynamics is to quench the system, i.e. to change its parameters abruptly. This approach
has been used very frequently, e.g. in one-dimensional Bose-Hubbard systems for quenches
across quantum phase transitions both theoretically [148] and experimentally [149] or to
observe propagations of thermal correlations by coherently splitting a one-dimensional
Bose gas into two separate parts [150]. Given that a quantum quench is a straightforward
setting for the analysis of non-equilibrium phenomena, we resort to this method of
exciting a system in the following. The quenching protocol which we apply to drive a
system out of equilibrium is described in more detail in section 5.2.1.

Systems outside of equilibrium often show completely new characteristics, which can
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be indications of new, still unexplored physics or system mechanisms. Especially for
practical applications, it is mandatory to understand how and whereto excited systems
relax. Possible observable phenomena in the relaxation of systems are equilibration
and thermalisation. Although these phenomena appear similar at first glance, they are
not identical. We discuss the corresponding differences in the sections 5.2.2 and 5.2.3.
Particularly finite closed quantum systems have time-reversal invariant and recurrent
time-evolutions which consequently already make the meaningful definition of the term
equilibration a challenge. But even if that succeeds, fundamental conceptual issues remain
to be clarified [27]: How do equilibration and thermalisation occur in closed quantum
systems? Which properties of the systems and of the quenches influence these processes?
And also if equilibration and thermalisation exist under certain circumstances, they are
far from doing so under all of them. In particular, this motivates another question: In
which situations could thermalisation be weakened or break down [151, 152]?

In addition to these questions about the physical nature of closed quantum sys-
tems, there are entirely new practical implications: The groundbreaking experimental
progress induces an urgent demand for corresponding theoretical methods to simulate
non-equilibrium phenomena in an adequate way. Systems away from equilibrium are
usually in highly excited states so that the occurring processes are spread over wide
scales of energy and hence of time. For this reason, common predictions from equilibrium
physics are often not applicable. The hugely varying time scales can be illustrated, e.g. by
the relaxation times of doublons, i.e. the excitations caused by DOs, in Mott insulators
which are shown to be different from intrinsic equilibrium time scales of the system by
orders of magnitude [153]. Especially the enormous number of excitations in the system
makes the theoretical description in terms of a few dressed quasi-particles [80] insufficient.

In view of the high level of research interest, there are a large number of approaches
that have dealt with the description of non-equilibrium physics by now. Unfortunately,
many methods are either not universally applicable or computationally very demanding.
For example, only very few special systems allow for analytic treatments [154–156].
ED, as described in section 3.2, is very flexible, but limited in the maximum size of
the system [157]. Non-equilibrium DMFT [117, 158] or perturbative expansions in the
inverse coordination number [159, 160] work both best for infinite or large dimensions.
The time-dependent DMRG [161] is most powerful in one dimension and simulations
by QMC [162, 163] rely on detailed balance so that they are inherently designed for
equilibrium configurations. Variational Gutzwiller approaches [164, 165] provide an
analytical approach which captures quantum fluctuations only partly, variational QMC is
a very powerful technique, but computationally very expensive [166]. Continuous unitary
transformations (CUTs) have so far been employed in leading order in U only [167–169].
Thus, despite undoubtedly great progress in the description of non-equilibrium systems,
the need for universal and fast methods remains.

After thorough definitions of all terms describing the fundamental concepts in sec-
tion 5.2, we discuss our contributions to the two basic questions raised by non-equilibrium
physics motivated above. In section 5.3, we analyse the universality of a generalised con-
cept of equilibration and the impact of integrability on equilibration and thermalisation,
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respectively, and in section 5.4, we propose and apply a conceptually new, polynomial
and thus efficient approach to non-equilibrium physics of larger systems by means of the
iEoM method.

5.2 Fundamental concepts
5.2.1 Quenching
Consider a system of temperature T = 0 which is initially prepared in an arbitrary pure
or mixed state given by a density operator

ρ =
∑
i

pi |i〉〈i| . (5.1)

In the statistical ensemble described by (5.1) each pure state |i〉 occurs with a probability
of pi. Evidently, at each time the total probability is conserved and thus the sum over all
weights has to fulfil ∑

i

pi = 1. (5.2)

In the special case of a pure state all but one pi vanish which results in a density operator
being idempotent, i.e. ρ = ρ2. Moreover, the time-evolution of the density operator is
given by the von Neumann equation

∂ρ

∂t
= i[ρ,H]. (5.3)

As done before, we resort to natural units. Obviously, a non-trivial time-evolution of the
density operator in (5.3) can only emerge if the condition [ρ,H] 6= 0 holds. Otherwise the
density operator is stationary, i.e. ρ(t) = ρ(0), and, hence, the system is in equilibrium.

To induce such a non-trivial time-evolution and excite the system, we use a global
parameter quench, in which we quickly change a global system parameter. In the context
of the FHM, this quench is executed by preparing the system in an eigenstate of H0 and
then resorting to the quench protocol

HQ(t) = H0 +Θ(t)Hint (5.4)

where Θ(t) is the Heaviside function. Without limiting generality, in the following we
use the Fermi sea |FS〉 as the respective eigenstate of H0.

Due to the fact that the arbitrary lattices we examine are not necessarily translationally
invariant and the momentum k is, therefore, not a conserved quantity we cannot resort
to the momentum space representation (2.4) when constructing the initial state |FS〉.
Nevertheless, even for this rather general case one can proceed analogously to section 2.1.2.
Provided that the lattice is given by an undirected graph G and its adjacency matrix
by A(G), as described in section 3.1.1, it is sufficient to diagonalise the one-particle
Hamiltonian

h0 := −A(G) (5.5)
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in order to obtain the Fermi sea. Let |νσ〉 be the eigenstates of h0, i.e. let them fulfil the
eigenvalue equation

h0 |νσ〉 = εν |νσ〉 . (5.6)

Then, the Fermi sea is constructed by gradually filling the states |νσ〉 in order of increasing
eigenenergies εν according to

|FS〉 :=
∏

(ν,σ)∈ I

f †νσ |0〉 . (5.7)

Here, the index set I is chosen in a way that the condition εν < εF with εF being the Fermi
energy is fulfilled for all occupied eigenstates of h0. In the case of an m-fold degeneracy,
we consider a mixed state using all m Fermi seas in (5.1) with a probability of pi = 1/m.
When studying observables in real space, it can be advantageous to construct the Fermi
sea in a real space representation instead of using the eigenbasis of H0 as in equation (5.7).
Further details and practical examples for this can be found in appendix A.2.

But what exactly happens to the system when it is quenched? To answer this, let
us simplify the scenario (5.1) slightly and assume a pure state |ψ0〉 as the initial state
of the system. Moreover, we assume that |ψ0〉 is the ground state of H0. Then, its
time-evolution before the quench is trivial since it is an eigenstate of H0. After the
quench, i.e. for times t > 0, however, its time-evolution is governed by HQ and reads

|ψ(t)〉 = e−iHQt |ψ0〉 =
∑
n

αne
−iEnt |Ψn〉 (5.8)

with |Ψn〉 as the eigenstates with energy En of the final Hamiltonian HQ as given
in equation (5.4) and αn = 〈Ψn|ψ0〉. Although (5.8) is in fact simply a textbook
decomposition of the dynamics into the eigenstates of HQ, the implications are huge: the
new dynamics suddenly take place in the entire subspace of span (|Ψn〉) for which αn 6= 0
holds. The total energy of the system is changed according to

∆E = 〈ψ0|HQ|ψ0〉 − 〈ψ0|H0|ψ0〉 (5.9)

and |ψ0〉 is no longer the ground state of the new Hamiltonian HQ, but constitutes a
highly excited state. Consequently, the system is no longer in equilibrium and allows the
study of a plethora of effects such as equilibration and thermalisation.

Even though the technique (5.4) of globally quenching a system is widely used [154–156,
167, 170, 171] it is not the only possibility to suddenly change fundamental properties of
a quantum system. Aside from the instant modification of one unique global parameter
a variety of ways for driving a system out of equilibrium locally exists. Particularly
worth mentioning here are, for example, the immediate change of the overall system
geometry [172] or the concatenation of two possibly different subsystems to become
one [173, 174].
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Example: Local observable

In order to gather a sense of the practical consequences of a quench in addition to the
analytical perspective (5.8), let us consider the double occupancy operator

d̂i = n̂i↑n̂i↓ (5.10)

of site i. This observable is of particular importance in the FHM in view of the fact that
the interaction part (2.1b) can also be written as

Hint =
∑
i

Uid̂i. (5.11)

For simplicity of notation, we abbreviate the time-dependent expectation value (3.1) or
thermal expectation value (4.1) of the double occupancy operator by di(t) or di hereafter.

The enormous effects of a global quench, i.e. how strongly the local double occupancy
depends on the activation of the on-site interaction U > 0, can easily be motivated by
a gedankenexperiment: In a half-filled one-dimensional chain with periodic boundary
conditions (PBC), the electrons are maximally delocalised according to section 2.1.2 for
U = 0 and can thus move freely along the chain without constraints. We therefore speak
of itinerant electrons, the material is a conductor. In the different limiting case U →∞,
however, the interaction part (5.11) penalises each single double occupancy. The electrons
occupy one lattice site each and consequently become immobile. The material under
consideration is now an insulator. The resulting high sensitivity of the double occupancy
operator to quenching in the FHM makes it an excellent litmus test for investigating the
resulting non-equilibrium dynamics.

5.2.2 Equilibration
By equilibration of a quantum system we denote the process that time-dependent
observables 〈A(t)〉 eventually relax for t→∞ to an average value

A = Tr(Aω) (5.12)

where the density operator of the system is averaged over very long time intervals by

ω := ρ(t). (5.13)

Equilibration is considered a generic phenomenon in quantum systems [175–178]. But
finite quantum systems with a finite-dimensional Hilbert space are special in a rigorous
sense because they display a discrete and finite set of eigenvalues. Hence, the temporal
evolution of an arbitrary quantum state and thereby of its expectation values is governed
by frequencies corresponding to these eigenvalues or more precisely to the differences
between these eigenvalues. For a finite set of eigenvalues one has a finite set of possible
frequencies so that an oscillatory evolution is induced (except if one starts by accident
from an eigenstate). Rigorously, no equilibration towards A can occur which seems to
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indicate that only infinite systems can display equilibration. While this conclusion is
correct in the strict sense, it does not reflect the range of observable phenomena. Due to
the exponential increase of the dimensionality of the Hilbert space with system sizes that
are still finite, not too large systems reflect the behaviour of their infinite counterparts.
But there are fluctuations around the long-time averages A and their strength and
dependence on the system size constitute an important issue which we will address below.

For studying equilibration one conventionally starts by partitioning a given closed
quantum system into a small subsystem and a considerably larger bath

H = HS ⊗HB with dS � dB (5.14)

where dn := dimHn. In line with most of the present literature, we assume that this
partitioning is done in real space. Certain aspects may carry over to other representations
as well. Measurements are supposed to take place on the smaller subsystem which can
be taken as small as a single site if the measurement of local, on-site observables is
considered. Equilibration means that the chosen subsystem S resides in a state described
by the partial density matrix

ρS(t) = TrB ρ(t) (5.15)

which is close to its time-averaged state for all times, at least after a sufficiently long
initial period of relaxation. In this context, the notation TrB denotes a trace over the
subsystem B only. We denote the respective time-averaged state by

ωS = ρS(t). (5.16)

For initial product states, i.e. states with separable contributions of system and bath,

|ψ〉SB = |ψ〉S ⊗ |ψ〉B (5.17)

it has been proven rigorously by Linden et al. [179] that the trace distance for two
Hermitian operators as given by

D(t) =
1

2
Tr
(√

(ρS(t)− ωS)2
)

(5.18)

between the density matrix ρS(t) and its long-time average ωS is bounded by

D(t) ≤ 1

2

√
dS

deff(ωB)
≤ 1

2

√
d2S

deff(ω)
. (5.19)

Here and in similar studies [175–177, 180, 181], the relevant quantity has proven to be
the effective dimension

deff(ω) := 1/Tr
(
ω2
)

(5.20)

of the time-averaged state ω = ρ(t). The effective dimension is formally given by

deff(ω) =

(∑
n

(Tr (Pnρ(0)))
2

)−1

(5.21)
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where we use the projector Pn onto the eigenspace of energy En and the initial state
is given by ρ(0) [176, 180]. If this effective dimension is sufficiently large the above
inequality implies that the small subsystem equilibrates in the sense that the expectation
values in the subsystem deviate from their long-time average little and very rarely. It
is reasonable to presume that the effective dimension in realistic cases of interacting
Hamiltonians is very large due to exponentially many energy eigenstates contributing to
quenched states, even if these states display only small energy uncertainties [179, 182].

The physical motivation for the phenomenon of equilibration in a subsystem is intu-
itively accessible. Equilibration means that information encoded in the initial state of the
subsystem is lost. Since rigorously the unitary evolution of the whole quantum system
does not allow for information loss, the loss must occur to the bath, i.e. to the remainder
of the system. This is favored if the quantum dynamics allows to reach the whole Hilbert
space or a substantial part of it. This, in turn, requires a high effective dimension.

Even though highly plausible, it remains unclear whether the assumption of a sufficiently
large effective dimension holds for all physically realistic configurations. What is more,
the evaluation of the quantity deff(ω) requires an a priori complete exact diagonalisation
and, thus, highly limits the applicability of the bound (5.19) in practical situations.

Recent research has reformulated the effective dimension in terms of the Rényi entan-
glement entropy. This reformulation does not imply an improved calculability [177]. In
addition, however, an upper bound for the Rényi entanglement entropy was derived which
predicts a linear increase of the entropy with system size N , implying an exponential
growth of the effective dimension with N . The prefactor of N in these estimates remains
yet unknown. Furthermore, the mathematical considerations implying

ln(deff) ∝ N, (5.22)

as put forward in Ref. [177], consider product states of system and bath as initial states.
The open issue remains whether the situation changes fundamentally if the system is
quenched starting from other types of initial states than those of equation (5.17).

To address this question we will investigate another generic, but non-product initial
state. We prepare the system initially in a state which is highly entangled with respect to
the chosen real space partitioning, namely the Fermi sea (5.7). This means that there are
no pure states of both subsystems S and B individually since |FS〉 cannot be split into a
product state of a state of S and B, respectively. By doing so we intentionally violate one
of the main conditions conventionally assumed to hold in the process of equilibration. We
want to study whether equilibration still occurs in this more generic setting. Subsequently,
the system will be subject to a quench to drive it out of equilibrium in a well-defined
and reproducible manner. We further discuss the results of this novel approach of using
non-product initial states in section 5.3.1.

5.2.3 Thermalisation

When referring to thermalisation a specific form of equilibration is meant. If the average
value A equals the thermal value Ath which results from statistical ensemble theory
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5 Quenches in the Fermi-Hubbard model

thermalisation has taken place. For further details on thermal averages and their
computation see chapter 4. In short, thermal expectation values are defined by

Ath = Tr(Aρcan) (5.23)

where the canonical density matrix at inverse temperature β = 1/T in natural units reads

ρcan =
1

Z
e−βH . (5.24)

The most intriguing aspect about thermalising systems is that the expectation values
A = Ath only depend on an effective inverse temperature βeff resulting from the overall
energy E = 〈H〉 according to

E = − d
dβ

ln(Z(β))
∣∣∣∣
β=βeff

. (5.25)

In other words, it appears that the system has lost its memory about the initial state at
t = 0 except for its energy content. Of course, this cannot be true if one had access to
all conceivable observables of a system. Then, it would be easy to see that this access
provided complete knowledge about the temporal evolution of the initial state without
any loss of information. Hence, equilibration and thermalisation can only occur for
observables measured on a small subsystem of the total quantum system. Typically,
observables acting only on a very few adjacent sites are considered. In the FHM, in
particular the double occupancy operator (5.10) is a sensible choice due to its high local
confinement. The local support of this observable, i.e. the subsystem S in the language
of equilibration, is only one lattice site in size.

The essential question is: Do all systems exhibit thermalisation? Is thermalisation
therefore a similarly generic phenomenon as equilibration? To answer this question,
one must first understand what can prevent thermalisation. Conserved quantities Ci in
integrable models restrict the dynamics similar to the energy in the canonical ensemble.
Obviously, the expectation values of the Ci are constant in time and do not change from
their initial values. Thus, they cannot relax to any thermal value. Hence, thermalisation
is claimed to be a specific property of non-integrable systems [183–185].

In our subsequent analyses of the occurrence or absence of thermalisation, it is therefore
appropriate to reflect this insight. Accordingly, we consider two different classes of systems:
Integrable and non-integrable ones. As an example for the inherent constraints of the
dynamics of an integrable system, we resort to the FHM on a finite PBC chain [14,
40] with nearest-neighbour hoppings Jij = J and on-site Hubbard repulsions Ui = U .
Most of the integrals of motion, but not all of them, are functionally dependent on the
ratio J/U [186, 187]. As realisations of non-integrable systems we consider connected
clusters of arbitrary topology. In the design of these clusters, we try to avoid any form
of symmetry. In order to accomplish this, we select finite clusters without any PBC
and with individually different hopping elements Jij and on-site repulsions Ui. The
corresponding Jij and Ui are chosen randomly in a uniform manner within a one-percent
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range around the respective parameters J and U of the integrable one-dimensional chain
with which we compare the arbitrary clusters. Since the exact shape of the clusters is not
of interest for the analysis, we refer the interested reader to appendix B for an overview
over all considered clusters.

Independent of integrability, any number of integrals of motion Ci restricts equilibration.
Instead of the thermal density matrix in the canonical ensemble it is straightforward
to derive that the maximisation of the entropy of a density matrix for given, fixed
expectation values 〈Ci〉 of the respective conserved quantities Ci leads to a generalisation
of (5.24) called the generalised Gibbs ensemble (GGE) [184, 188]

ρGGE =
1

Z
e−

∑
i λiCi , (5.26)

where the λi are Lagrange multipliers which are determined by the condition

〈Ci〉GGE = 〈Ci〉initial. (5.27)

We emphasise that this result does not require the conserved quantities to commute
pairwise, i.e. [Ci, Cj ] = 0 is not a necessary condition. This is so because the entropy to
be maximised is given by a trace which allows for cyclic permutations after derivation so
that the sequence of operators can always be chosen such that Ci stands in front of (or
after) the density matrix. In literature, the GGE for non-commuting integrals of motion
is sometimes called non-Abelian thermal state [189, 190]. In any case, a system with
conserved quantities may show generalised thermalisation to the GGE in (5.26) while its
thermalisation to the canonical ensemble (5.24) is only possible if this ensemble fulfils
the conditions (5.27) accidentally.

For the scope of the results of section 5.3 it is of importance to stress the key idea here
once again: Non-integrable generic clusters, which are not restricted by any conserved
quantities other than the overall energy, are expected to show signs of thermalisation
while integrable ones are expected not to do so. Using the numerically exact CET
approach, which is discussed in further detail in the context of section 3.3, we investigate
this expectation for the one-band FHM. In particular, we discuss the results for the
globally quenched FHM on clusters of various topologies, study the influence of the
cluster properties on the general relaxation behaviour and work out the thermalisation
behaviour of different systems.

5.3 Equilibration and thermalisation
5.3.1 Results on equilibration
As outlined in section 5.2.2, analytic arguments for equilibration have been brought
forward for the case of initial product states of system and bath [177]. In order to extend
evidence for equilibration beyond this special situation, we focus on the Fermi sea |FS〉
as a generic non-product state in real space representation. The initial non-equilibrium
is generated by an interaction quench according to (5.4).
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In the highly excited state ensuing from the global parameter quench, we examine the
tendency of the finite clusters to equilibrate by simulating the time-dynamics of proper
local observables which are measurable in the subsystem S. To study this phenomenon
in detail we consider the two types of clusters motivated in section 5.2.3, i.e.

(i) integrable ones with PBC and a constant ratio U/J,

(ii) generic clusters with an arbitrary topology.

A complete overview of the used finite-size clusters is given in appendix B. Henceforth,
the corresponding labels (a), (b), ..., (n) ascribed to the individual topologies will be
used for identifying a particular cluster. In order to avoid any undesired symmetries
in the generic clusters, we additionally slightly randomise the parameters of the model
such as the hopping strengths Jij = Jji by drawing their values with uniform probability
from the respective intervals [J − p · J ; J + p · J ] with p = 0.01. The same applies to
the on-site interactions Ui as well, i.e. they are drawn from the corresponding interval
[U − p · U ; U + p · U ]. Note that the randomisation is deliberately chosen weak in order
to avoid any many-body localisation [191]. The only purpose of randomisation is to avoid
the influence of accidental symmetries. In the integrable clusters no randomisation is
performed because it would spoil the integrability of the model.

As a meaningful local observable which incorporates two-particle interaction we choose
the double occupancy (5.10). Consequently, the subsystem S consists of site i only. For
the calculation of the time-dependence we resort to CET as given in equation (3.53).

Results of the time-dependence in the integrable cluster with a lattice size of N = 12
as well as in the non-integrable cluster (l) of the same size are shown in figure 5.1
for half-filling and U = 3J . The results described below are always collected for this
intermediate quench of strength U = 3J . If other quenching strengths are used, for
example to check whether observed phenomena are also preserved in the weak or strong
quenching regime, these are stated explicitly. For U = 3J , we clearly see signs of the
expected fluctuations around an average value in figure 5.1. Nevertheless, there is no
tendency to converge to a constant stationary value, cf. section 5.2.2. Even on longer
time scales which are not shown here no constant stationary value is approached. This
comes as no surprise and is a direct result of the finite system size.

Interestingly, there seem to be qualitative differences between the integrable and the
generic cluster. The time series of the integrable cluster shows fluctuations which are of
the same magnitude for all times. In contrast, the time series of the generic cluster first
shows larger fluctuations which subsequently diminish to some extent. This observation,
however, certainly needs to be substantiated further quantitatively.

To do so we need to determine the long-time averages of the fluctuating quantities.
These values are the best guesses on finite clusters for stationary values after relaxation.
Certainly, an analytical calculation of these long-time averages after relaxation is feasible
via the method of stationary phases, cf. equation (3.70), but this would require an ED
and consequently a complete diagonalisation of the Hamiltonian matrix. Consequently,
such a procedure is neither applicable nor efficient. Accordingly, we proceed differently.
Since at the beginning there are various transient effects, see figure 5.1, it is not trivial
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Figure 5.1: Time-evolution of the double occupancy on the integrable periodic
FHM chain (PBC) after an interaction quench of U = 3J and on the non-integrable
(Generic) cluster of N = 12 sites at half-filling. For the non-integrable case, site
i = 10 of cluster (l) is depicted and a one percent randomisation around the average
U ≈ 3J is chosen. Solid lines denote the average values (5.28), dashed lines the
average plus and minus the standard deviation σi, both calculated at τ = 0.6 [133].

to compute the long-time averages reliably. We account for this obstacle by introducing
an averaging according to

d(τ) :=
1

tmax − tmin

∫ tmax

tmin

dt d(t) (5.28)

with τ := tmin/tmax ∈ [0; 1] for fixed values of tmax. By tuning τ and, thus, the minimum
starting time from which the averaging is performed we are able to eliminate the influence
of initial transient effects on the dynamics. If not noted otherwise, all numerical CET
calculations are performed up to a maximum simulation time tmax = 100/J .

Exemplary results for all sites of the non-integrable, half-filled N = 12 cluster (l) are
shown in figure 5.2. As can be seen, some weak initial transients are visible up to the
range of τ ≤ 0.2. During this initial time span we consider the data not fully converged
yet, cf. especially the data for sites i = 6 or i = 8. Nevertheless, after these initial
transients, the averaged data converges to an almost constant value. Only if τ is chosen
too large, i.e. too close to unity, large fluctuations appear. The reason is that the averaged
time span becomes too small so that the fluctuations do not cancel sufficiently anymore,
cf. the range τ ' 0.8 in figure 5.2. In conclusion, avoiding the initial transient effects as
well as the final fluctuations can be achieved by reading off di for medium values of τ , i.e.
around τ ≈ 0.5 to τ ≈ 0.6.

In all checked cases of various lattice sizes N and both integrable and non-integrable
topology the determination of the time-averaged value according to (5.28) is possible
since no significant variations occur in the range of τ ≈ 0.5 to τ ≈ 0.6. Thus, all following
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Figure 5.2: Averages of the double occupancy of cluster (l) at the sites i determined
according to (5.28). A tendency of the dynamics to converge towards an essentially
constant value around τ ≈ 0.5 to τ ≈ 0.6 is discernible for all sites [133].

calculations are performed for a constant τ = 0.6. This way, we obtain a suitable
approximation of the stationary value of an observable A as discussed in section 5.2.2.
We refer to these time-averages di both in the study of equilibration and thermalisation
for describing the respective final relaxation values.

For a better visual orientation, figure 5.1 shows the long-time averages (solid lines)
and the standard deviations around them (dashed lines), both calculated at τ = 0.6. The
initial dynamics differ qualitatively between the two cases considered. The generic model
shows longer-lasting transients after the quench. Nevertheless, the long-time fluctuations
show roughly the same amount of spread. This observation leads to the hypothesis that
fluctuations show no pronounced dependence on the integrability of the model. We will
substantiate this conjecture in the following by a detailed analysis of the global standard
deviation of the system.

The fluctuations present in the dynamics of the system around the time-averaged
values di of the double occupancies are quantified by their individual variances σ2i . They
are a measure for how well the (finite) system stays close to the time average di. A fully
equilibrating system would show vanishing fluctuations since it would fulfil

lim
t→∞

di(t) = di (5.29)

so that σ2i = 0 if the latter is determined for long, ideally infinite, time ranges. Practically,
we use (5.28) also for the determination of the σ2i . We are not aware of analytic a priori
predictions of the values of σ2i in the physical situation we are considering, namely a
highly entangled initial state in real space. Applying a scheme similar to (5.19) for an
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observable O leads to an upper bound to its variance [176] given by

σ2O ≤
∆(O)2

4deff(ω)
≤ ‖O‖

2

deff(ω)
(5.30)

with ‖O‖ being the largest absolute eigenvalue of the Hermitian operator O and

∆(O) = 2min
c∈C
‖O − c1‖. (5.31)

Unfortunately, these upper bounds (5.30) still require the cumbersome calculation of the
effective dimension deff(ω) as main ingredient which can neither be predicted without a
complete diagonalisation nor estimated except for initial product states of system and
bath. Consequently, it is not readily assessable how the variance of the double occupancy
behaves in this particular scenario. Hence, our main motivation here is to study to which
extent the considered systems equilibrate after the quench.

In order not to discuss each site in a cluster separately we define the global variance as
the arithmetic mean of all variances σ2i of the individual lattice sites by

σ2 =
1

N

N∑
i=1

σ2i . (5.32)

This quantity provides a good measure for the degree of equilibration. If it vanishes
it indicates equilibration, at least on average. Figure 5.3 depicts the global standard
deviation σ as defined by (5.32). For the generic, non-integrable cluster, the values
for σ2 are averaged additionally over all clusters of the same size N , cf. appendix B. For
example, all generic clusters of N = 12 sites are those labeled by (l)-(n). The plotted
error bars indicate the average spread between the maximum and minimum standard
deviation for each of the different clusters contributing to each data point for a specific
cluster size N , i.e. half the error bar of the generic data set amounts to 1/2(σmax − σmin).

The first remarkable observation is that the standard deviations of the integrable
and the non-integrable clusters are very similar for the same cluster size. One could
have expected that the fluctuations in the integrable systems are larger because there is
less accessible Hilbert space due to the large number of conserved quantities. But this
does not seem to be the case. Furthermore, one could think that the similarity of the
integrable and non-integrable fluctuations in figure 5.3 is at odds with the time series
shown in figure 5.1 where the generic fluctuations are larger shortly after the quench.
But for longer times this is no longer true and it is for these longer times that the
quantity σ is determined, e.g. the evaluation at τ = 0.6 for tmax = 100/J implies that σ
is computed for the time interval [60/J, 100/J ]. In figure 5.1, the dashed lines and their
mutual distance illustrate that the fluctuations of both systems are comparable in size.

A common challenge in the simulation of finitely large systems is to obtain statements
about realistic lattice sizes as they occur in typical solids. We tackle this issue by
extrapolating the data to the thermodynamic limit. To do so, we compare two kinds of
fits. The first one is linear in the inverse lattice size, i.e. σ = a + b/N, and the second
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(a) A linear least-square fit to the numer-
ical data of the form σ = a0 + b0/N is
inserted using solid lines.
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(b) Two least-square fits are displayed us-
ing either ln(σ) = ln(a1)−b1N (solid lines)
or σ = a2 exp(−b2N) (dashed lines).

Figure 5.3: Global standard deviation σ depending on the (inverse) lattice size N
(1/N). The quantity σ is derived from (5.32) and describes fluctuations of the double
occupancies di(t) around their individual average values di. Results for integrable
(PBC) and non-integrable (Generic) clusters and different fits are shown [133].

one is exponential in the lattice size, i.e. σ = a exp (−bN). The linear fit is shown in
figure 5.3a and the corresponding exponential fit is shown in figure 5.3b. Note that the
exponential fit is carried out in two ways of least-square fits by means of

(i) σ being fitted with a exp (−bN),

(ii) ln(σ) being fitted with ln(a)− bN .

The difference between both seemingly equal approaches lies in the fact that a least-
squares algorithm which is computed for σ or ln(σ) leads to different weights. The first
procedure is depicted using dashed lines and keeps the fit close to the data points at
larger values of σ since they have a strong numerical influence while the second procedure
is denoted by solid lines and focuses on the data points at smaller values. This is the
reason for two slightly differing fits for the same overall scaling in figure 5.3b.

When considering the numerical results shown in figure 5.3 in detail, we find that
our data is consistent with the exponential scaling predicted by Wilming et al. [177].
Nevertheless, it is appropriate to state that the numerical data does not necessarily
require an exponential dependency of the global standard deviation σ on the lattice
size N and thus does not provide fully compelling evidence for the exponential scaling.
As a result, further research on this issue is certainly desirable and called for.

One aspect, however, is quite evident. Both data sets and all fits regardless of the
implied form of scaling indicate a vanishing global variance for N → ∞, especially if
the notoriously small system of N = 4 is excluded from the fits (not shown here). This
provides numerical evidence for the fact that equilibration takes place in all systems of
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increasing system sizes. In other words, equilibration appears to be a generic scenario
independent of the property of integrability. We emphasise here that there is not even a
discernible trend in the variances of the integrable and non-integrable systems. Depending
on the lattice size N , sometimes the one, sometimes the other kind of system shows a
slightly larger variance on average, while the orders of magnitude of the variances are
identical in each case. This leads us to postulate that equilibration is an even more
generic property than currently proven as it is neither limited by a highly entangled
initial state nor by constants of motion present in integrable systems.
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Figure 5.4: Comparison of the actual global standard deviations σ (filled symbols)
to the upper bounds (open symbols) given by equation (5.33) on logarithmic scale.
The same fits and parameters as in figure 5.3b are shown; they appear here as
straight lines [133].

In view of the exponential scaling behaviour of the global variance that is to be assumed,
it is appropriate to choose a logarithmic representation for the further analyses. We
refer to the raw data from figure 5.3b again in figure 5.4, this time with a logarithmic
representation of the global variances. The exponential fits already used in figure 5.3b
appear accordingly as straight lines in figure 5.4.

An additional question that naturally arises is the relevance of the upper bound in
equation (5.30). Is this upper bound sharp and thus meaningful? In order to shed
some light on this question, we have to obtain the upper bound and therefore perform
a concrete calculation of the rather artificial quantity of the effective dimension deff(ω).
One way to do this would be to resort to approximate techniques such as the Lanczos
algorithm, cf. section 4.2.2 for details or Ref. [192] for another example in the context of
the FHM. Nevertheless, since a possibly too small Krylov space dimension can cause
systematic errors in the determination of the upper bound (5.30), we refrain from a
corresponding procedure at this point and choose a fully exact approach by means of ED.

This, however, requires a complete diagonalisation of the system including a deter-
mination of the eigenstates, which has been mostly avoided so far. In this context, it
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Figure 5.5: Results for σ as derived from (5.32). The results are calculated in
the same manner as in figure 5.4 except for U = 1J or U = 6J instead of U = 3J .
In full accordance with figure 5.4 fluctuations are becoming exponentially smaller
with increasing cluster size N . Upper bounds (5.33) are computed by complete
exact diagonalisation and shown using open symbols. The bounds are indeed well
above the actual data, but they are clearly not tight [133].

is worthwhile to consider the restrictions of using the ED approach for non-integrable,
highly non-symmetric clusters: the usage of ED on strongly correlated lattice systems
usually exploits symmetries of the underlying lattice to generate so-called symmetry
adapted basis states [193]. This is no longer an option here since our goal in constructing
the generic clusters was to avoid any symmetry as far as possible. Thus, a reduction of
the overall Hilbert space by means of symmetries is infeasible. In contrast, we have to
resort to a purely unenhanced ED without any optimisations other than those described
in section 3.1.1, e.g. in the context of particle conservation.

For the respective system sizes that are accessible to such an ED, we additionally
determine the effective dimensions and the respective upper bounds (5.30) to variance
and standard deviation. In this context, we resort to the tightest upper bound for the
double occupancies, i.e. O = di and c = 1/2 in (5.31), leading to the upper bound

σi ≤
1

2
deff(ω)

− 1
2 . (5.33)

The required effective dimension is computed assuming the absence of any degeneracy so
that the following relation holds

1

deff(ω)
=
∑
n,j

(
pj |〈n|ψj〉|2

)2
. (5.34)

Here, the initial state may be given as mixture ρ(0) =
∑

j pj |ψj〉〈ψj |, as motivated in the
context of (5.1), and |n〉 shall denote the eigenstates of H. The resulting upper bounds
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are displayed in figure 5.4 by open symbols in the same colour as the time-averaged
standard deviations. It is evident that the mathematically rigorous upper bounds are
not particularly tight for the actually occurring fluctuations. Note the logarithmic axis
representation. There are almost two orders of magnitude between upper bounds and
the actual variances in some cases. We conclude from this that the upper bound (5.33),
at least in this concrete application scenario, does not yet take into account all physically
relevant processes in a meaningful weighting.

Analogous to the results presented in figure 5.4 for quenches of strength U = 3J , we
also test the hypothesis of equilibration independent of integrability in the weak and
strong quench regimes, i.e. for U = 1J and U = 6J , respectively. The corresponding
results can be found in figure 5.5. In the case of U = 1J as well as in the case of U = 6J ,
completely analogous results can be seen: for none of the cases a significant dependence
on integrability can be detected, the variance visibly goes towards zero with increasing
lattice size N . In all cases, the upper bounds (5.33) are not very tight.
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Figure 5.6: Infinite-range clusters Gc for N = 4 and N = 8 with a maximum
number of hoppings possible, also called complete graphs. For each of the N sites
the coordination number is z = N − 1 leading to a total of K = 1/2N(N − 1)
hopping links or bonds, respectively [133].

When discussing fluctuations the coordination number z is relevant. In the clusters
considered so far, it is z = 2 for the PBC chain and has a mean value of z = 2.45 for
the generic clusters. Hence, these numbers do not vary much. Yet, it is to be expected
that systems with large coordination numbers display smaller fluctuations. At least in
equilibrium, it is common lore that mean-field approaches work much better in higher
dimensions and for larger coordination numbers because the relative relevance of the
individual fluctuations is lower. The same presumption is a plausible working hypothesis
out-of-equilibrium. We put this hypothesis to a test below.

Our assumption of decreasing fluctuations with increasing connectivity, i.e. more
possible hopping processes, can be tested in various ways. Typically, the limiting case of
a maximum coordination number z is constructed by an increase of the lattice dimension
d→∞ in analytical calculations. Here, we go for another route that is rendered possible
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5 Quenches in the Fermi-Hubbard model

by the finite clusters at hand. It is reached by linking each site in a cluster with every
other site implying z = N − 1. Then, we extrapolate these results by z → ∞. The
resulting clusters Gc are called infinite-range clusters in physics and complete graphs in
mathematics. Each of them has

K =
1

2
N(N − 1) (5.35)

bonds in total. The respective adjacency matrix of such a cluster Gc reads

A(Gc) = JN − 1N (5.36)

where JN denotes the N × N all-ones-matrix and 1N stands for the identity matrix.
We subtract the latter one to exclude local terms corresponding to hops from site i
to i. We point out that in infinite-range clusters without any randomisation the system
has an enormously high level of symmetry and that the initial Fermi sea is thus highly
degenerate leading to ρ2 � ρ. Due to this inherent self-averaging the fluctuations in
fully symmetric clusters Gc with the same J on each bond and the same U at each site
are strongly suppressed. These results are not shown here since they merely stem from
symmetry. Consequently, this is not what we want to study.
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Figure 5.7: Global standard deviations σ of integrable chains with z = 2 (PBC)
and of infinite-range clusters Gc with z = N − 1 and a one-percent randomisation.
Results, fits and bounds are to be compared with figure 5.4. The amount of fluctu-
ations depends on the number of bonds and decreases upon increasing coordination
number so that the infinite-range clusters display only small fluctuations in the
limit N →∞ relative to the fluctuations in the PBC clusters [133].

Instead, we again slightly randomise the hoppings Jij and the interactions Ui by 1 %.
This is exactly what we did for the generic clusters allowing for a study of the direct
influence of large coordination numbers z without being distracted by a large number of
symmetries as we would when using infinite-range clusters Gc without randomisation.
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An example of two infinite-range clusters Gc with N = 4 and N = 8, respectively, is
given in figure 5.6. Note that each lattice site is connected to every other lattice site and
only self-hops which are not present in the FHM are forbidden. We use such clusters Gc to
compute the time-averaged double occupancies di and, subsequently, the global standard
deviations σ for a quench of strengths U = 3J as before for (non-)integrable models in
figure 5.4. No averaging over various clusters is conducted. The results are displayed
in figure 5.7 and compared to the ones for integrable chains. Again, we include the
upper bounds for σi determined by (5.33) by means of open symbols for small systems.
A clear difference of the thermodynamic behaviour, i.e. for N → ∞, can be noticed.
In PBC systems with a small coordination number, the extrapolated fluctuations are
noticeably larger than in the infinite-range clusters Gc. The standard deviations in the
infinite-range clusters have a much steeper slope for increasing N rendering fluctuations
less important for larger complete graphs than for long PBC chains. This clearly supports
the hypothesis that a larger connectivity favors smaller fluctuations. Hence, as a rule of
thumb we expect that systems with larger coordination number equilibrate better than
those with smaller coordination number. We stress that this finding does not necessarily
imply that the equilibration occurs faster, i.e. on a shorter time scale. In view of the
used CET approach the issue of time scales is beyond the scope of this analysis since the
reliable determination of equilibration time scales is numerically very challenging.

5.3.2 Results on thermalisation
In the previous section 5.3.1, we noted no substantial influence of integrability on the
degree of equilibration. In both cases of PBC and of the generic clusters the results
indicated a stationary, equilibrated state in the thermodynamic limit. Moreover, the
fluctuations due to the finite size of the studied clusters are comparable for the same system
sizes. While equilibration thus seems to be a general characteristic, the legitimate question
arises whether the same applies to thermalisation. To answer this question we compare
the equilibrated, time-averaged double occupancies di with the thermal predictions 〈di〉th
where the latter ones are computed for the canonical statistical ensemble at the same
energy as the quenched system. The key question will be: Are they equal?

In order not to be distracted by accidental effects at particular sites i we define the
global deviation from the thermalised values by means of

∆therm :=
1

N

N∑
i=1

∣∣di − 〈di〉th∣∣ (5.37)

for integrable (PBC) and non-integrable (generic) clusters of size N . The thermal
predictions 〈di〉th are calculated using TPQ states as described in section 4.2.1. Since
each site i of a given cluster contributes to (5.37) this definition accommodates for the
highly differing individual topologies in a systematic way. A system showing perfect
thermalisation is characterised by a vanishing deviation ∆therm = 0.

Since we are dealing with closed quantum systems the total energy is conserved. This
allows us to determine the effective temperature of the quenched system easily. Knowing
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5 Quenches in the Fermi-Hubbard model

the corresponding inverse temperature β is necessary to compute the thermal expectation
value of the cluster since this temperature defines the statistical density matrix ρcan
of the canonical ensemble as described by (5.24). The initial state of the system, cf.
equation (5.7), defines this effective temperature. It has an overall energy

E = 〈FS|H|FS〉 (5.38)

which translates into an effective inverse temperature according to equation (5.25).
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Figure 5.8: Global deviation of the time-averages di from the thermal predictions
〈di〉th at the effective temperature for U = 3J . This deviation ∆therm is shown
in dependence on the inverse cluster size 1/N. For the generic clusters the shown
values are averaged over various clusters of the same size and the error bar indicates
the spread within this set of clusters. The lines represent linear regressions to the
data [133].

In figure 5.8, the different global deviations for an intermediate quench of the strength
U = 3J are plotted against the inverse cluster sizes 1/N for the various topologies. Error
bars again account for the spread of the values between the differently shaped clusters of
the same overall lattice size N in the generic, non-integrable cases. In order to analyse the
data, a linear fit ∆therm = A/N +B is performed and included in the plot for both data
sets. In accordance with previous studies [185, 188, 194–198] and with our expectations,
clear trends can be read off. The generic, non-integrable clusters display a vanishing
deviation ∆therm in the limit N →∞. This is a definite indication that theses clusters
thermalise. In contrast, the integrable chains show only a slight decrease of the global
deviation which is not consistent with a vanishing value for N → ∞. The persisting
finite value of ∆therm > 0 even for extrapolated infinitely large systems is a strong sign
for equilibration of the integrable chains towards a non-thermal state. This must be
attributed to the restricted dynamics in a subspace of the overall Hilbert space due to
the large number of constants of motion.
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(b) U = 6J

Figure 5.9: Results for the global deviation ∆therm. The results are calculated in
the same manner as in figure 5.8 except for U = 1J and U = 6J instead of U = 3J .
While the results for U = 6J agree qualitatively with the ones shown in figure 5.8,
the results for U = 1J show no clear tendency of thermalisation or the absence
thereof. This can be ascribed to the very small energy deposited in the system
whose results can be visible on larger time scales only [133].

It is worthwhile to keep in mind that perfectly thermalising systems, e.g. the non-
integrable generic clusters in the former example, lose all knowledge about their initial
states ρ(0) to the larger baths. Furthermore, consider that we use a quench to divert a
system from its previous ground state |ψ0〉. Such a quench deposits energy in the system
according to (5.9). This energy is reflected in the new dynamics of the system after the
quench by equation (5.8). If the difference between the state excited by the quench and
the previous ground state of the unexcited system is small, mainly (but not exclusively)
states |Ψn〉 with lower energies En participate in the dynamics. Low energies naturally
translate into low-frequency contributions to the dynamics, so that significant changes in
the system take place on substantially longer time scales. Thus, two borderline cases
come to ones mind here. First, one may ask whether a system which is only weakly
perturbed, i.e. which is quenched to U / J , is kept from thermalising – at least on the
time scales considered here. So, does a weak quench allow to retain memory about ρ(0)?
Second, one can wonder whether systems which are quenched even stronger than with
U = 3J support the hypothesis that integrability is the key ingredient, and thus also
show thermalisation. The corresponding results for the weak quench regime U = 1J are
to be found in figure 5.9a and results for a comparatively strong quench of U = 6J are
depicted in the respective figure 5.9b.

Here, we notice that the situation is slightly different for the thermalisation behaviour
characterised by the global deviation ∆therm between actual results and thermal predic-
tions in both cases. The predictions regarding thermalisation with a vanishing ∆therm → 0
in the thermodynamic limit hold when the quenching strength is reasonably large, cf.
figure 5.9b. In situations, however, where the quench is weak – which is the case when
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5 Quenches in the Fermi-Hubbard model

hopping strength J and interaction U are equal at U = 1J – the system is only weakly
perturbed. As stated above, the amount of energy deposited in the system is relatively
small and it is plausible that the effects induced by the lower amount of quench energy
make themselves felt only on larger time scales.

Parallel to the energy deposited in the system, there is another factor that gains
importance with a reduced strength of the quench: the topology and, thus, ultimately
also the system size N is of relevance. For U / J , the hopping part H0 of the Hamiltonian
is no longer a small perturbation of Hint, but a significant contribution influencing the
dynamics. Consequently, larger spatial scales would be required to fully analyse U = 1J
quenches. While the CET computations can be performed for longer times with reasonable
effort, increasing only linearly in time, it is extremely tedious, if not impossible, to tackle
larger systems because of their exponentially larger Hilbert spaces. It is worth mentioning
in this context that the average spread of ∆therm among the generic clusters is much
larger for U = 1J in figure 5.9a than in the other cases U = 3J and U = 6J in figure 5.8
and figure 5.9b, respectively. This fact emphasises the noticeably higher influence of the
varying topology of the generic clusters for a particular system size N for weak quenches.
Obviously, for weak interaction quenches the kinetic part of the Hamiltonian comprising
the hoppings remains important. It is this part which defines the topology while for the
local interaction any set of N sites behaves the same.

Thus, we state that while in the domain of intermediate and strong quenches the
relation between integrability and an absence of thermalisation is quantitatively confirmed,
weak quenches require further in-depth research due to the conceptual difficulties.

5.3.3 Summary
Using the numerically exact CET method as well as the TPQS approach we computed
results for equilibration and thermalisation of arbitrarily shaped finite-size clusters of the
quenched FHM. The chosen initial state is the Fermi sea which is highly entangled in
real space. The double occupancy is the local quantity of which the non-trivial quantum
dynamics is studied after the interaction quenches.

We showed that even for the Fermi sea as a quantum state that is extremely far from
a product state in real space the property of equilibration towards a stationary state is a
generic feature regardless of topology or integrability in the thermodynamic limit, i.e. for
infinite system sizes N →∞. The fluctuations present in finite systems are of comparable
magnitude for various topologies and do not show a strong influence of integrability.

In addition, we studied infinite-range graphs Gc which represent systems with a
maximum coordination number for a given system size. We showed that the fluctuations
in these graphs become significantly smaller for N →∞ than those in graphs of a smaller
coordination number z = 2. We stress that in infinite-range graphs the coordination
number increases with the system size as z = N − 1. This corroborates the expectation
that fluctuations are less important for a higher connectivity of the cluster. This paradigm
is well established in equilibrium and the evidences found indicate that it holds true as
well in non-equilibrium situations.

Concerning thermalisation, we confirmed the expectations established in the literature
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that it depends decisively on the extent that integrals of motion exist. The integrable
chains studied do not show thermalisation and stay away from the thermal canonical
ensemble. In contrast, the generic clusters clearly display thermalisation.

Obviously, many issues in the field of equilibration and thermalisation still require
intensive investigation. Our data showed that there are clear signs of transient be-
haviour briefly after the quench before the long-time averages and variances emerge.
For conceptual and practical purposes it is highly desirable to understand this transient
behaviour better, for instance by determining or at least estimating the relevant time
scales. Knowledge of the relevant time scales in turn will help to compute long-time
averages and stationary values with high accuracy. Finally, passing from quenches to
more general forms of time-dependences of closed or open quantum systems represents a
vast field of research and continues to be a source of inspiration.

5.4 Dynamical phase transition

5.4.1 Overview

In the previous section, we discussed questions of equilibration and thermalisation on
very long time scales. In this section, we turn to the relaxation dynamics of the system on
short to medium time scales. That is, so far we aimed to better understand phenomena
for which physical observables with the smallest possible local support were advantageous.
In other words, we split the system into the smallest possible subsystem S and the largest
possible bath B in terms of (5.14). This local limitation of an observable is no longer
necessary here and sometimes even undesirable, because it can restrict insights into the
entire system. Consequently, an opposite approach is appropriate here. The subsequent
choice must fall on an observable that adequately covers the entire real-space system and
has a large support or – even better – is fully non-local. All following calculations are
performed for the FHM on one-dimensional PBC chains.

Example (cont’d): Non-local observables

One such non-local observable of the one-dimensional FHM is the momentum distribution.
It counts how many particles of a certain momentum k and spin σ are present on average
at a given time t. For this purpose, the momentum space representation motivated in
section 2.1.2 and in particular the corresponding creation and annihilation operators are
used. The momentum distribution thus follows as

nkσ(t) :=
〈
f †kσ(t)fkσ(t)

〉
. (5.39)

For an unperturbed, half-filled system in the ground state, the momentum distribution
is the Fermi-Dirac distribution at temperature T = 0, where all states k up to the
Fermi wave vector kF are occupied and all others are unoccupied. In particular, a sharp
discontinuity occurs at kF itself. This discontinuity is commonly referred to as jump at
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the Fermi surface and is defined by

∆n(t) := lim
k→k−F

nkσ(t)− lim
k→k+F

nkσ(t). (5.40)

The mutual dependence of momentum distribution and jump is shown in figure 5.10 for
times t > 0 after a quench. It can be seen that the distribution is no longer a Fermi-Dirac
distribution, but instead levels at momenta k > kF are partly occupied, while levels
at momenta k < kF have reduced in occupation. As a consequence, the jump loses its
height. The discontinuity is still present for a short time after the quench, but it is
usually smaller than in the undisturbed system.

Figure 5.10: The momentum distribution [43] for times t > 0 after a quench
of the form (5.4). It noticeably differs from the initial Fermi-Dirac distribution
at temperature T = 0. The jump ∆n(t) decreases due to momentum conserving
scattering processes which transfer particles to formerly unoccupied momenta.

Typically, both the momentum distribution and the jump at the Fermi surface are
strongly influenced in their qualitative behaviour by external quenching [113–115, 117,
158, 199]. Furthermore, only a momentum distribution with vanishing jump ∆n(t) = 0
can be thermal in the sense of section 5.2.3: Since a quench transfers energy into the
(closed) quantum system, the effective temperature is T > 0. For T 6= 0, however,
the corresponding Fermi-Dirac distribution would no longer show a discontinuity and
∆n(t) = 0 would have to hold. Conversely, this means that a momentum distribution
with a non-vanishing jump for T > 0 cannot represent a thermalised state. An instructive
comparison of the thermal momentum distribution and the actual relaxed momentum
distribution based on DMFT can be found, for example, in Ref. [158].

For the jump ∆n(t), previous studies [113, 117, 164, 165] have consistently predicted
a remarkable behaviour: Depending on the strength of a quench, there are two clearly
distinguishable behaviours, which are separated by a dynamical phase transition at
a critical strength Uc. For weak quenches, i.e. U � Uc, the jump changes little and
oscillates slightly. This phenomenon is commonly referred to as wiggling. For stronger
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quenches U � Uc, however, a qualitatively completely different behaviour occurs. In this
case, the jump disappears almost completely in the course of time, only to increase again
almost to its initial level. Typically, this phenomenon is called collapse-and-revival in the
literature, cf. for example Ref. [158].

It should be noted, however, that previous studies on this topic were methodologically
limited. For instance, results could only be calculated for infinite dimension [117], for
very small time spans [113] or they were based on variational approaches, which have to
neglect quantum fluctuations for the most part [164, 165]. Consequently, an in-depth
investigation of this predicted dynamical phase transition with novel, less constrained
methods is desirable. This is the subject of the following sections.1

5.4.2 Obtaining the jump ∆n(t)

The jump at the Fermi surface ∆n(t) is a discontinuity in reciprocal space and, thus,
places particularly high demands on methodological approaches. On the one hand, a
method used must be able to adequately consider long-range processes in real space,
and on the other hand, the system in real space has to be as large as possible. These
requirements make the use of CET basically impossible. Instead, we resort to the iEoM
described in section 3.4, an approximative method that permits a systematic consideration
of processes relevant for the dynamics. In the following, we discuss its specific application
to the jump at the Fermi surface and present the corresponding results.

Since the jump is a rescaled Heaviside-like discontinuity, only terms proportional to 1/r
can contribute to it, i.e. terms with the longest range in real space. These contributions
are those due to single-particle excitations relative to the Fermi sea [112, 113]. To extract
these terms we proceed by normal-ordering all contributions which are present in the
dynamics of the fermionic creation operator by

f †i↑(t) =

N∑
m

H(i)∗
m (t) :f †m↑:︸ ︷︷ ︸

single-particle
excitations

+:
[
P †
(
P †H†

)]
i
: + . . . . (5.41)

Here, only the first term relates to single-particle excitations and thus matters for the
jump ∆n. In this notation a particle is inserted at the lattice site i at time t = 0 and :A:
denotes the normal-ordering of the operator A with respect to the Fermi sea. Once the
one-particle prefactors Hn(t) are determined, the jump ∆n(t) can be computed either by

∆n(t) =
N∑
m,n

H(0)∗
m (t)H(0)

n (t)eikF(m−n) (5.42)

1Statement on the work carried out within the scope of this dissertation: The contents discussed in
section 5.4 are a systematic continuation of earlier work results from the master’s thesis, listed in
the bibliography as Ref. [43]. Contents already discussed there are only reproduced where absolutely
necessary for understanding.
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or by first computing the complete Fourier series [112–114] as given by

H
(0)
k (t) =

∑
n

H(0)
n (t) exp(−ikn) (5.43)

and then taking the square of its absolute value leading to the jump by means of

∆n(t) =
∣∣∣H(0)

k (t)
∣∣∣2 . (5.44)

We emphasise here that this method is a highly efficient approach since only the differential
equation system (3.64) has to be solved for the determination of all real-space contributions
H

(0)
n (t). The number of contributions of this differential equation system depends on

the size of the chosen operator basis and is typically polynomial in the lattice size N .
In particular, compared to a Hilbert space size that increases exponentially with N in
the case of CET, much larger systems can thus be treated with iEoM. All calculations
discussed below are carried out for N = 40 at half-filling, which is far beyond the
feasibility limits of a CET approach.

5.4.3 Operator basis
The choice of a problem-adapted orthonormal operator basis (ONOB) for the linear
combination (3.63) is a central aspect of any iEoM calculation. To understand what
influences the choice of a proper ONOB, we turn to the basic processes affecting the
dynamics in the one-dimensional FHM. Each operator Ai of the chosen basis may consist
of a product of many elementary fermionic creation or annihilation operators and will
be called operator monomial in the following. Moreover, all monomials are orthonormal
with respect to the Frobenius scalar product (3.68).

For an arbitrary scenario with 0 < J/U <∞, each application of the Liouville operator,
i.e. each commutation with H in (3.60), creates new operator monomials which were not
yet in the considered ONOB. In the following, all time-dependent prefactors are omitted
for brevity and the set of lattice sites in real space where an operator monomial has
a non-trivial effect is called its corresponding cluster. In general, the hopping part H0

moves operators through the lattice and the interaction part Hint generates monomials
with increasing numbers of operators. Consequently, no finite ONOB can be closed
under iterated commutation with both H0 and Hint. Thus, the number of sites involved
proliferates upon commutation, i.e. the clusters continuously grow.

Nevertheless, not all operators contribute to the dynamics to the same extent depending
on the parameter regime. Exemplarily, for the limit of strong on-site repulsion, i.e.
J/U � 1, hopping represents a small perturbation and plays a minor role since nearly
local processes dominate the time-evolution of the system. Henceforth, we focus on this
particular regime and refrain from including physically strongly suppressed operators
in the ONOB. This means that monomials generated by many hopping processes are
neglected and an effective operator subspace is used onto which the true dynamics is
projected. Similar approaches have been used successfully in former studies, e.g. for
calculating resolvents by modified Mori-Zwanzig equations [70].

86



5.4 Dynamical phase transition

To construct a suitable ONOB we start by applying both H0 and Hint to the initial
fermionic creation operator f †i↑ by means of

L0
(
f †i↑

)
∝ f †i±1↑ (5.45a)

Lint

(
f †i↑

)
∝ f †i↑f

†
i↓fi↓. (5.45b)

Thereafter, we orthonormalise all newly created operators. Eventually, this leads to

w†
1(i) =

√
2f †i↑ (5.46a)

w†
2(i, j, k) =

(√
2
)3
f †i↑

(
f †j↓fk↓ −

1

2
δjk

)
(5.46b)

with N3 +N (and thus only polynomially many) operators in total. All operators of the
set (5.46) are invariant under repeated applications of L0(·). Already the two operator
families of (5.46) allow for the same level of description which was reached perturbatively
by continuous unitary transformations before [167, 168]. But since we aim at a description
of strong interaction quenches where the local terms dominate we extend the basis (5.46)
slightly and close it under repeated applications of Lint(·) leading to seven additional
monomials by

w†
3(i, j, k) =

(√
2
)5
f †i↑

(
n̂i↓ −

1

2

)(
f †j↓fk↓ −

1

2
δjk

)
(5.47a)

w†
4(i, j, k) =

(√
2
)5
f †i↑f

†
j↓

(
n̂j↑ −

1

2

)
fk↓ (5.47b)

w†
5(i, j, k) =

(√
2
)5
f †i↑f

†
j↓fk↓

(
n̂k↑ −

1

2

)
(5.47c)

w†
6(i, j, k) =

(√
2
)7
f †i↑

(
n̂i↓ −

1

2

)
f †j↓

(
n̂j↑ −

1

2

)
fk↓ (5.47d)

w†
7(i, j, k) =

(√
2
)7
f †i↑

(
n̂i↓ −

1

2

)
f †j↓fk↓

(
n̂k↑ −

1

2

)
(5.47e)

w†
8(i, j, k) =

(√
2
)7
f †i↑f

†
j↓

(
n̂j↑ −

1

2

)
fk↓

(
n̂k↑ −

1

2

)
(5.47f)

w†
9(i, j, k) =

(√
2
)9
f †i↑

(
n̂i↓ −

1

2

)
f †j↓

(
n̂j↑ −

1

2

)
fk↓

(
n̂k↑ −

1

2

)
. (5.47g)

Here, restrictions regarding the site indices i, j and k apply. All operators of (5.47) exist
for three distinct indices i 6= j 6= k, i 6= k. Moreover, the operator family w†

3(i, j, k) also
exists for the case where only i is distinct from the other two indices. The same applies
to w†

4(i, j, k) for the index j and w†
5(i, j, k) for the index k. The complete basis consisting

of (5.46) and (5.47) is well suited for strong quenches where hopping can be seen as a
pertubation. Furthermore, it is exact for monomials up to order (J/U)2. This stems from
the fact that the monomials comprise up to three sites and, starting from a single sites,
clusters of three sites require at least two hopping processes.
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A rather subtle problem when choosing such an operator basis for calculating the
jump at the Fermi surface lies in the fact that this basis does not consist exclusively of
single-particle excitations. Each monomial of the basis (5.46) and (5.47) also contains
two-particle excitations as well as even higher excitations. A transformation is possible
by means of

H(0)
n (t) =

∑
j

tnjh
(0)
j (t) (5.48)

where h(0)j (t) is the time-dependent prefactor of the operator Aj and tnj ∈ C quantifies
to which extent the normal-ordering of the operator Aj contributes to the single-particle
operator fnσ = :fnσ :. For further details we refer the interested reader to Ref. [42].

5.4.4 Results on the dynamical phase transition

To get a first impression of the procedure described in the previous section as well as an
overview about the dynamics at the Fermi surface, we turn to the jump ∆n(t) itself for
varying quenches prior to a dedicated analysis of a possibly occurring dynamical phase
transition. It is worthwhile to note that the jump is not accessible in a direct calculation
on finite lattices because the one-sided limits in equation (5.40) cannot be computed
then. Thus, we use the detour via the one-particle contributions Hn(t) in connection
with equation (5.42) in all subsequent calculations.

Earlier studies based on iEoM but without the Frobenius scalar product (3.68) were
limited to very short time spans due to the resulting exponentially increasing or decreasing
contributions in the dynamics. Nevertheless, a comparison with these data provides a
good benchmark for our method. The respective comparison is shown in figure 5.11.
Here, our results which resort to the scalar product are shown using solid lines whereas
former analyses not using it [113–115, 200] are depicted by means of dashed lines. The
benchmark data (dashed lines) is highly accurate where it is converged, i.e. for short
time spans only. The time range shown and used for comparison is adapted accordingly.
We emphasise that the time range is restricted for benchmark reasons only and that
the Frobenius scalar product provides results on much longer time scales with merely
oscillatory dynamics.

On detailed examination of the results two striking phenomena are to be observed.
First, for all interaction strengths the zeros of each curve agree very well for both methods.
This can be seen as a first indication of a general physical process that determines the
overall dynamics for strong quenches. More precisely, the pronounced oscillations of the
jump correspond to Rabi oscillations, well-known from two-level systems. The physical
interpretation is straightforward. In the limit J/U → 0, the FHM is mainly governed by
local processes which induce Rabi oscillations between singly and doubly occupied sites
with periods according to

T =
2π

U
(5.49)

because their energy difference is U , cf. Refs. [113–115]. This is analogous to spin
precession around the z-axis if initially the spin points along a transversal direction
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Figure 5.11: Comparison of results [42] obtained using the Frobenius scalar
product (solid lines) and results calculated for normal-ordered operators without
scalar product [114, 200] (dashed lines). The latter results are calculated in a
highly accurate approach, but are only converged up to short times. The respective
maximum times are given by the three different plot symbols. Triangles at the
x-axis mark predictions for zeros of the curve based on the Rabi oscillations (5.49).

in the xy-plane. When quenching, the initial state is a superposition of the two local
possibilities of singly and doubly occupied sites. Note that at half-filling both, single
occupation and double occupation, are two-fold degenerate: Single occupation due to
the two spin states and double occupation because the completely empty site acts like a
site doubly occupied with holes. In the considered regime of quenches to intermediate
and strong interaction strengths, we see that the estimate by means of Rabi oscillation
periods (5.49) for the observed oscillations matches the zeros very well, cf. the triangular
symbols at the bottom axis. The first symbol is put at the first zero of the computed
curves and the following symbols are placed at multiples of the Rabi oscillation period T .

Second, the amplitudes of the jump for both approaches nearly coincide for strong
interaction quenches, i.e. U ≥ 20J . This observation indicates that our scalar product
method yields highly accurate results especially in the limit of strong quenches providing
the advantages that

(i) the operator basis to be considered, though large, is much smaller in the present
approach than in the previous approach;

(ii) the present approach is able to capture noticeably longer time spans so that it
renders more extensive studies possible.

While the data already suggest a high precision of the iEoM method employing the
Frobenius scalar product, they do not yet answer the question of the occurrence of a
dynamical phase transition in the form presented here. Especially isolating weaker low-
frequency parts of the oscillation is highly demanding if not impossible in an approach in
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5 Quenches in the Fermi-Hubbard model

the time domain as in figure 5.11. We address this problem by a systematic analysis of the
entire frequency components contained in the jump. To analyse the relevant frequencies
in the evolution of the Fermi jump systematically we use a Fourier analysis. Obviously, a
straightforward approach is not initially feasible here. An unmodified Fourier analysis is
hampered by the discontinuous onset at the time t = 0 where the signal starts. As we
have already seen in the context of section 4.1.1, abruptly starting or stopping signal
components will lead to Gibbs phenomena and, thus, make a systematic analysis difficult.
As a remedy for the analysis, we therefore choose a slightly modified approach. Since we
want to focus only on the frequency content we resort to a fast Fourier transform of the
symmetrised signal ∆n(t) + ∆n(−t). This signal is additionally smoothed by means of a
low-pass Gaussian filter in order to remove any possibly occurring numerical artefacts.
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Figure 5.12: Spectra as obtained by Fourier transform of the time-dependent
symmetrised Fermi jump for weaker interaction quenches. The symbols with error
bars indicate spectral features which we read off [42].

The figures 5.12 to 5.14 display the squares of the absolute values of the resulting
spectra for various quenches in logarithmic plots. The value of the quenching strength is
indicated in the lower right corner of the panels. The coloured symbols with error bars
show the frequencies which we read off. Mostly, they are used to indicate peaks, in some
cases, however, they denote shoulders. An example for a shoulder can be seen in the
low-frequency feature in the upper panel of figure 5.12. We chose to read off this feature
because at even smaller interaction only the shoulder can be identified reliably.
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5.4 Dynamical phase transition

Note that different symbols are chosen to display different spectral structures. Upon
increasing U , the high-frequency feature shown using a green square shifts to higher
and higher values, but becomes less and less significant. Beyond a certain value of U it
does not appear anymore, cf. figures 5.13 and 5.14. In parallel, a low-frequency feature
appears which was not discernible before. We denote this low-frequency feature by the
red hexagons in figures 5.13 and 5.14.
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Figure 5.13: Exemplary spectrum for intermediate interaction quenches. The
same caption as in figure 5.12 applies [42].
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Figure 5.14: Exemplary spectrum for strong interaction quenches. The same
caption as in figure 5.12 applies [42].

Comparing the figure 5.13 and the figure 5.14, it appears as if the two peaks indicated
by blue triangles, which are still discernible in figure 5.13, were merged in figure 5.14.
Consequently, we denote the new combined feature by a single symbol formed from both
triangles. The vertical dashed lines are a means to identify the two typical energies of
the system, namely the bandwidth W (grey) and the interaction strength U (red) for
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5 Quenches in the Fermi-Hubbard model

orientation and comparison with the identified spectral features. It appears as if both of
them showed up in the spectral features. This means that pronounced spectral features
occur at frequencies which are close to both W and U . The same energy scales have also
been identified in previous studies, cf. for example Ref. [113], but always individually
limited to one regime. For weak quenches, only spectral features in the bandwidth range
were identified, for strong quenches only those in the on-site interaction range. Our data,
however, indicate that both energy scales are present in all regimes.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

Figure 5.15: Frequencies of the most important spectral features in the spectra
of ∆n(t) plotted as functions of the interaction strength. The latter is given in
a compactified form with Uc = −8Ekin/N where Ekin/N = −W/π is the kinetic
energy per site of the half-filled non-interacting system. This permits to show the
full range from U = 0 to U = ∞. The error bars are determined approximately
by the half-widths at half maximum of the peaks. The frequency of local Rabi
oscillations and the bandwidth are depicted for comparison as dashed lines [42].

We analysed many more spectra than the four shown here explicitly. The derived data
of all spectral features is compiled in figure 5.15. In total, we identified four relevant
features. For weak quenches, one feature is clearly given by the bandwidth W as shown
by the green curve in figure 5.15. Besides this feature, there are two features located
at frequencies above and below the local Rabi frequency U (blue curves). The lower
frequency curve almost coincides with U for weak quenches. We stress that the features
for weak quenches must be regarded with some caution because the choice of the ONOB
is specifically designed for the regime of strong quenches.

For strong quenches, a low-frequency feature occurs as depicted by the red curve. It
does not coincide quantitatively with the bandwidth W , but it is close to it within a factor
of two. Given the difficulty to extract the proper frequency for the low-frequency feature,
see especially figures 5.13 and 5.14, the quantitative deviations are not surprising. The
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5.4 Dynamical phase transition

high-frequency feature clearly matches the local Rabi frequency U almost quantitatively.
As motivated before, the two spectral features above and below U merge for larger U , at
least they can no longer be detected separately, cf. figure 5.14.

The intermediate parameter region U ≈ Uc/2 in figure 5.15 is of particular interest since
in all previous analyses [113, 117, 164, 165] it seemed as if there were two qualitatively
distinct regimes for weak and for strong quenches, separated by a sharp dynamical phase
transition. The results in figure 5.15 at least question this interpretation. We recall
that the iEoM approach used here allows for an analysis on considerably longer time
scales and with essentially more substantial contributions to the dynamics. In contrast
to former studies, the respective results in figure 5.15 point towards a crossover. Indeed,
different spectral features dominate for weak and strong quenches. But there is no sharp,
singular transition between these two regimes as pointed out in the previous studies.
Instead, the weight of the different spectral features shifts so that W is more relevant
for weak quenches while U dominates for strong quenches. Thus, the prediction of a
dynamical phase transition deserves a further in-depth investigation.

Although the integrability of the one-dimensional FHM was not a prerequisite for the
application of the iEoM approach and was not used at any time, it can limit the dynamics.
We have seen one example of this in the context of thermalisation in section 5.3.2. As a
result, the situation in higher dimensions, for instance in d = 2, might be also of interest.

5.4.5 Summary
With the results presented in section 5.4, progress has been made in the analysis of the
relaxation behaviour of the one-dimensional FHM on short to medium time scales. Here,
the integrability of the model was not used at any stage.

Using a modified iEoM approach, we computed the dynamics of the time-evolution of
the discontinuity of the momentum distribution, namely the Fermi jump. We used the
Heisenberg picture with a truncated basis and continuously preserved operator unitarity.
Using these techniques, we studied interaction quenches from the non-interacting Fermi
sea to a finite interaction strength U . In doing so we conceived an ONOB that describes
all possible physical processes which can occur on up to three lattice sites and that is
designed to capture the limit of strong interactions and small hopping. This ONOB
is exact up to order (J/U)2. The accuracy of it was tested by a comparison to highly
accurate reference results. For large values of U the agreement is especially good.

For stronger quenches the jump shows pronounced oscillations which correspond to
Rabi oscillations, well-known from two-level systems. They are reminiscent of the collapse-
and-revival scenario in bosonic systems [20] and they were observed before in the one-,
two- and infinite-dimensional FHM [113, 115, 117]. A systematic frequency analysis
of the jump showed that two important energies dominate: the bandwidth W and the
interaction strength U . Interestingly, we do not find a singular dynamical phase transition
as function of the quenched interaction, but a smooth crossover. Spectral features gain
and lose weight, but they do not pop up or vanish suddenly. This is in contrast to
previous interpretations. This progress has become possible due to the significantly
longer accessible times thanks to the conceptual progress.
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In this chapter, we address the limiting case of the FHM in the presence of strong
interaction, the so-called t–J model. For a physical motivation and the theoretical
derivation of this model the reader is referred to section 2.2. Here, we focus primarily on
two situations, which allow us to study the respective charge and spin degrees of freedom.
First, we consider the motion of a hole in a disordered spin background for the analysis
of the charge carrier dynamics. Second, we resort to strict half-filling such that all charge
degrees of freedom in the resulting Heisenberg model are frozen out, cf. section 2.3. This
way, the mere spin dynamics can be analysed. In this context, we consider systems on
one-dimensional chains, two-dimensional square lattices or on infinite-range graphs.

The chapter reproduced herein is an enhanced and partially revised and/or restructured
reprint of Refs. [46, 201]. These works may be or become subject to copyright. The
studies on which these two works are based are the results of different collaborations.1

6.1 Introduction
Strongly correlated fermionic systems and, in particular, Mott-Hubbard physics continue
to represent a great challenge for theoretical treatments in spite of many decades of
research [13]. Even apparently rather simple physical questions cannot be answered
in a straightforward manner. A prominent example is the motion of a single hole in a
disordered Mott insulator. This issue has attracted a lot of interest especially after the
discovery of high-temperature superconductivity, cf. section 2.2.1 for an introduction to
fundamental issues and an instructive overview of possible theoretical approaches.

In principle, the crucial difficulty in describing hole motions in disordered spin back-
grounds is the difference between classical and quantum mechanical processes. Depending
on the specific spin background or the topology of the lattice, different paths of the hole
through the lattice can interfere with each other to different degrees, making it difficult
to formulate universal solutions [30]. In general, the charge carrier dynamics in the Mott-
Hubbard regime can only be described satisfactorily with theoretical methods in few and
special cases. For instance, theoretical statements are feasible for one-dimensional [66],
very large or even infinite-dimensional systems [202–204]. Moreover, systems can be
approximated, e.g. by means of variational approaches for specific initial spin orien-
tations [205] or by self-consistent perturbation theory [206]. Despite this undeniable
progress, there is still no method to obtain generally accurate predictions for arbitrary

1Authorship statement: The results shown in this chapter are based on the work of several contributors.
The author is responsible for the complete implementation and provision of all CET results shown.
Furthermore, the author co-supervised Dag-Björn Hering’s master’s thesis on iEoM. Dag-Björn Hering
is responsible for all iEoM results shown. Timo Gräßer is responsible for all results on spinDMFT.
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systems. Considering the significant experimental progress in the field of ultracold atoms,
e.g. by means of quantum gas microscopy [207, 208], the motion of holes in paradigmatic
models such as the FHM or the t–J model is no longer a gedankenexperiment. Thus, the
need for reliable theoretical approaches is more urgent than ever.

But even if the motion of charges is completely suppressed, serious problems remain.
Although the resulting system then consists exclusively of stationary spins, the mutual
interaction of the spins can render the determination of the dynamics highly difficult. This
is especially a problem in situations where many nearly equal energy scales are involved
and the partitioning of a larger system into a small subsystem and a very weakly coupled
bath is no longer an option. Such systems are often referred to as dense ensembles and
are described in more detail in section 6.3.1. Due to many equal constituents governing
the dynamics, theories for weakly coupled open quantum systems are no longer applicable.
But how do the spin orientations evolve in time for such and similar systems after
they have been aligned in a given initial position? Questions of this kind have a very
practical relevance, be it in the context of nuclear magnetic resonance [209] or diamonds
with nitrogen vacancies (NVs), cf. Refs. [210, 211]. Especially when systems are being
considered as possible candidates for the persistent storage of quantum information, it is
essential to predict their decoherence, i.e. the loss of information over time [212].

This chapter consists of two major parts. In section 6.2, we address the dynamics
of a hole in the complete t–J model with its full charge and spin degrees of freedom.
We outline how an effective generalised t–J model can be derived by means of a CUT
and discuss two relevant parameter regimes for disordered spin backgrounds. For these
regimes, we calculate the corresponding Green’s functions and spectral densities in one
and two dimensions using CET. These results are compared to approximate results of an
iEoM calculation. In section 6.3, we freeze the charge degrees of freedom and exclusively
focus on the spin dynamics in dense systems. For this, we exploit the Heisenberg model
on topologies with comparatively high coordination numbers. Then, we compute the
quantum mechanical autocorrelation of the system with a numerically exact method
and compare it to the results of a novel dynamical mean-field theory. In this way,
we demonstrate that the full quantum mechanical dynamics can also be derived in a
noticeably easier way, i.e. with classical random fields around each individual spin.

6.2 Charge dynamics

The aim of this section is to study the hole motion in one and two dimensions, i.e. along
a chain and on a square lattice. The former case serves both as a benchmark and, due to
its lower coordination number, as a system in which a larger number of processes with
a larger local spread is numerically accessible than in higher-dimensional lattices. This
facilitates an in-depth spectral analysis and, in particular, the analysis of the edges of the
excitation spectrum, which are typically noticeably difficult to access. The latter case of
a two-dimensional square lattice actually represents the most interesting case in view of
experimental realisations in solid state systems or in ultracold atom setups. In our study,
we consider the t–J model, which can be derived from the Hubbard model [72, 213–218].
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One possible way of doing this transformation has already been explained in section 2.2.2,
another possibility is discussed below. Regardless of the concrete transformation, we
stress that the mapping from the Hubbard model to the t–J model is not restricted
to the magnetic exchange couplings only, but naturally extends to the charge degrees
of freedom, i.e. to hopping terms, hole-hole interactions and even correlated hopping
processes. This applies to both the one-dimensional chain [59] and to the two-dimensional
square lattice [72, 219] at half-filling and in its direct vicinity, i.e. for finite doping [220].

Henceforth, we choose a notation that is slightly different from previous chapters to
keep it in line with the current literature on the topic. Consequently, the parameter t
denotes the time, indexed quantities or quantities with (double) prime symbols describe
hopping processes of different order and J denotes the magnetic interaction strength.

For the analysis, two different approaches are used: a numeric approach using CET,
cf. section 3.3, and a semi-analytic approach by means of iEoM, cf. section 3.4. The
latter approach by means of iEoM relies on the Heisenberg picture and a set of operators
which is enlarged iteratively by repeated commutations with the Hamiltonian. Using
the Frobenius scalar product (3.68) a Hermitian, oscillatory dynamics is guaranteed [42,
116]. Moreover, results of the application of the Liouville superoperator are projected
such that no double occupancies are created or annihilated. This procedure prevents the
emergence of non-physical processes. Thus, the iEoM approach is a systematic expansion
in the parameter

x := t0/U. (6.1)

For further information on the operator basis used, the accuracy of the method or the
derivation of a spectral density in the reduced operator subspace, we refer the interested
reader to Ref. [46]. In the following, we will not go into further detail regarding iEoM.

Whereas the first approach using CET is numerically exact, but limited to finite
systems, the second approach considers processes up to a certain order only, but in
the infinite thermodynamic system. This makes the first technique more reliable for
determining the exact dynamics of a given system. Nevertheless, it bears the risk of being
unable to access the thermodynamic behaviour due to finite-size effects. The necessary
steps of a CET have already been discussed in detail for the FHM in section 3.1. In
section 6.2.2, we turn to the required adjustments and simplifications for the t–J model as
well as the derivation of the spectral density from the time-dependent Green’s function.

For both methods, we proceed in three separate steps. First, we consider a large
interaction strength U , i.e. we omit all terms of the order x2U and, thus, only keep terms
of the order U and t0. Second, we include all hopping terms of the order x2U which
contain uncorrelated as well as correlated spin-dependent hopping. In the last step, we
turn on the magnetic interaction J to study to which extent it induces changes in the
spectral densities and its band edges. Generally, such changes are expected. For instance,
the critical strength Uc, at which the Mott insulator becomes unstable, deviates from the
bandwidth W in the quantitative estimate

Uc ≈ 1.10W (6.2)

for the case of the two-dimensional square lattice as given by Reischl et al. [219].

97



6 Excitations and dynamics in the t–J model

6.2.1 Effective charge model
As discussed in section 2.2.2, the standard procedure in the analysis of the t–J model
is to restrict the full second-order perturbation theory (2.18) to the subspace H0 of no
electronic double occupancy (eDO). This leads to the conventional t–J model as given
by equation (2.19). Henceforth, we proceed differently in analogy to the considerations
of Ref. [219]. The reason for this rewriting is, in particular, a resulting more descriptive
and accessible interpretation of the t–J model than its conventional representation would
allow for. What is more, the representation chosen here is more universal. Even though
the subspaces Hn of a fixed number n of eDOs are decoupled from each other and the
dynamics of a state does not leave the corresponding subspace, thermal expectation
values, for instance, are equally dependent on all subspaces of the entire Hilbert space.
Consequently, restricting the discussion only to the subspace of vanishing eDOs might be
a potential pitfall. In spite of the fact that we exclusively determine dynamical properties
of the system in the following, we would like to emphasise once again the higher generality
of the representation chosen here compared to the one given by equation (2.19).

In the limit of strong interaction, i.e. x� 1, the Hubbard model can be mapped to
the t–J model by means of an expansion in the small parameter x. We discuss the terms
in three steps. First, we consider all terms up to the first order in x. These terms consist
of Hint, which is linear in U and thus of zeroth order in x, as well as the xU = t0 term
H0, which describes nearest-neighbour (NN) hopping and which is of first order in x. In
the second step, we take into account all terms of up to second order in x but without
any spin degrees of freedom and, thus, without the magnetic exchange interaction

J = 4x2U. (6.3)

In the last step, we also include J in the analysis. Consequently, we consider solely charge
dynamics in the first and second step and both charge and spin dynamics in the third
step. Contributions of order x3U are neglected at any point. A systematic approach to
derive such an effective model is to resort to a CUT, cf. especially Refs. [218–224].

For the sake of completeness, we will briefly recall the general concepts as presented in
Ref. [219]. For a CUT, one conventionally starts with the flow equation [221] given by

d

d`
H(`) = [η(`),H(`)]. (6.4)

Here, one has to choose a suitable antihermitian generator η(`). Similar to the perturbative
reasoning [213–217], the key idea is to eliminate all processes which could change the
total number of DOs in the system. One possible choice of a generator for the CUT is

η(`) =
[
D̂,H(`)

]
(6.5)

since it preserves the overall number of DOs [219]. In this context, the Hermitian operator

D̂ :=
∑
i

[n̂i↑n̂i↓ + (1− n̂i↑)(1− n̂i↓)] (6.6)
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counts the number of DOs, i.e. all sites which are either occupied by zero or two electrons.
We stress that the resulting generator is proportional to the ones with sign functions [219,
222, 223] due to the simplicity of D̂. The flow equation (6.4) governs a transformation
from the initial Hamiltonian H(0) = H to an effective one according to

Heff = lim
`→∞

H(`). (6.7)

One is interested in this effective Hamiltonian. Obviously, it is necessary to restrict
the number of contributing operator terms generated by the flow equation in a suitable
manner. One possibility, which is employed in Refs. [219, 220], is to define a proper
measure of locality. The idea is to discard all operator terms which are not sufficiently
local. Since the non-locality of the Hubbard model stems from its hopping processes, this
approach corresponds to a systematic expansion in the parameter x. By means of this
approach it is feasible to derive a generalised t–J model both at strict half-filling [219]
and even for moderate doping [220]. This generalised t–J model [219] reads

Heff = H0,eff +HJ . (6.8)

Besides the contributions listed in equation (6.8), there are additional contributions that
arise in the course of the CUT. These terms characterise any interactions of two or
more DOs with each other. Since we want to study the dynamics of one hole in the
half-filled model only, interactions of DOs do not play a role. Note that with respect
to the half-filled model as the reference state an empty site equals exactly one hole.
Consequently, the corresponding contributions for more than one DO can be ignored.

It is instructive to note that the results for the leading order at half-filling can be
determined by analytical approaches as well [59, 60, 72]. Basically, the generalised t–J
model consists of the charge degrees of freedom as given by the different hopping terms

H0,eff = T0 + T ′
0 + T ′

s,0 + T ′′
0 + T ′′

s,0 + h.c. (6.9)

and the spin dynamics. The second contribution in equation (6.8) is called Heisenberg
term, cf. especially equation (2.22), depends on the magnetic interaction (6.3) and reads

HJ = J
∑
〈i,j〉

SiSj =
J

2

∑
〈i,j〉

(
Pij −

1

2

)
. (6.10)

The alternative representation by means of permutation operators Pij arising here is
explained in detail in the context of section 2.3 and especially before equation (2.28).

It should be noted that the term generalised t–J model used in this work takes into
account the fact that besides the pure NN hopping T0 further, partly spin-dependent and
thus correlated hopping processes are being considered. The t–J model discussed in the
present literature, however, often only consists of the contributions

H
(0)
t−J = T0 +HJ (6.11)
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and is not consistent with an expansion in x. For the sake of brevity, we use the term
t–J model in the following to denote the generalised t–J model (6.8). In each case, we
indicate which contributions of the model are included in the calculation of the dynamics.

The elements in equation (6.9) have a slightly different physical meaning for one and
two dimensions. In the following, we start with the more general case of two dimensions
and then discuss the adjustments for the special case of one dimension. The term T0
describes NN hopping from site i to j and vice-versa subjected to the restraint that DOs
neither are added nor removed. Thus, it corresponds to a special case of H0 and leads to

T0 = t0
∑

〈i,j〉, σ

[
(1− n̂iσ)f

†
iσfjσ(1− n̂jσ) + n̂iσf

†
iσfjσn̂jσ

]
. (6.12)

The notation below the sums denotes a one-time counting of each bond between the
lattice sites i and j while σ means the opposite of the orientation σ. The generalisation
of such hopping to next-nearest neighbour (NNN) hopping processes, i.e. all processes
between sites on the square lattice which lie on adjacent diagonal positions, read

T ′
0 = t′

∑
〈〈i,j〉〉, σ

[
(1− n̂iσ)f

†
iσfjσ(1− n̂jσ)− n̂iσf

†
iσfjσn̂jσ

]
. (6.13)

Likewise, hopping processes between third-nearest neighbour (3NN) sites, i.e. sites that
lie in-line on one of the axes and are separated by two links, are described by the term

T ′′
0 = t′′

∑
〈〈〈i,j〉〉〉, σ

[
(1− n̂iσ)f

†
iσfjσ(1− n̂jσ)− n̂iσf

†
iσfjσn̂jσ

]
. (6.14)

Apart from these hopping processes, further spin-dependent hops occur in the effective
two-dimensional model. Whenever a charge carrier hops from one site to another, e.g.
from i to j with a NN site k in between, a spin-dependent hop occured. They read

T ′
s,0 = t′s

∑
〈i,k,j〉
α,β

{[
(1− n̂iα)f

†
iασα,βfjβ(1− n̂jβ)

]
Sk +

[
n̂iαf

†
iασα,βfjβn̂jβ

]
Sk

}
(6.15a)

T ′′
s,0 = t′′s

∑
〈〈i,k,j〉〉

α,β

{[
(1− n̂iα)f

†
iασα,βfjβ(1− n̂jβ)

]
Sk +

[
n̂iαf

†
iασα,βfjβn̂jβ

]
Sk

}
. (6.15b)

The processes (6.15) do not only involve the hopping of a charge over a NN site, but
also its interaction with the spin of this NN site. For instance, the spin of the hopping
charge may swap with the spin of the charge which is located at the NN site. Again, the
spin-dependent processes (6.15) do not change the total number of DOs in the system.

The adaptation of the contributions (6.12), (6.13), (6.14) and (6.15) of the effective
two-dimensional model to the case of one dimension is straightforward. Without the
second spatial direction, certain processes can no longer be present. Clearly, only the
contributions T0 and T ′′

0 can exist in one dimension since there are no diagonals. Thus,
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the double-prime processes represent NNN hopping and all prime hopping processes
vanish completely. Unfortunately, this makes the nomenclature NN, NNN and 3NN
highly ambiguous if both one and two dimensions are considered. As a remedy, we use
the terms prime and double-prime hopping instead. We stress again that both exist in
two dimensions whereas only the double-prime processes are present in one dimension.

The leading orders of the above contributions, i.e. their hopping strengths, may be
determined analytically via perturbation-theoretical approaches [59, 72] or numerically
by means of the above-discussed CUT [219]. In the following, we make use of the values
which have been derived analytically for one dimension in Ref. [59]. They read

t′′ = − t20
2U

(6.16a)

t′′s =
t20
U
. (6.16b)

A generalisation of these contributions to the additional processes arising in two dimensions
is easily possible. In two dimensions, there is exactly one shortest route from a site i to a
site j that can generate a t′′ contribution. In the case of a diagonal hopping, i.e. for t′,
there are two shortest routes since a diagonal step on a square lattice can happen via
a horizontal step and then a vertical step or vice-versa. For spin-independent diagonal
hopping, both routes contribute equally. We account for this by a factor of two such that

t′ = − t
2
0

U
. (6.17)

For all spin-dependent processes the involved intermediate lattice site k distinguishes the
two routes. Therefore, no doubling is needed and the hopping strength reads

t′s =
t20
U
. (6.18)

The leading contributions in equations (6.17) and (6.18), which we generalised for two
dimensions, are fully consistent with the numerically determined contributions t′ and t′s
of comparable studies, cf. especially Ref. [219]. Furthermore, they agree with the results
for the two-dimensional system that is analysed in Ref. [72].

Evidently, there are two different energy scales in the effective t–J model (6.8). The
energy scale J of the spin degrees of freedom and the bandwidth W = 2zt0 governing the
charge degrees of freedom. As before, the coordination number of the lattice is denoted
by z. For all subsequent considerations, we always choose the physical regime

0 < J � T �W (6.19)

where the temperature T is much larger than the typical magnetic coupling strength J
but smaller than the bandwidth W . Hence, we consider a completely disordered spin
background. The charge carriers, however, behave as if the system was essentially at
vanishing absolute temperature, i.e. T ≈ 0. Such regimes, in which the bandwidth W
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6 Excitations and dynamics in the t–J model

lies clearly above the magnetic strength J , are no longer pure gedankenexperiments, but
can indeed be measured experimentally on ultracold atoms [208]. To analyse this regime
in detail, we especially focus on the following two parameter sets

A : J =
t0
3

(6.20a)

B : J =
t0
d
. (6.20b)

The first set A is taken from a practical application example. For cuprates, i.e. materials
which are relevant for high-temperature superconductivity as discussed in section 2.2.1,
the magnetic strength (6.20a) is a representative value. The second parameter set B is a
theoretically motivated one. It roughly represents the boundary value

U =W (6.21)

up to which the mapping from the FHM to the t–J model is reasonable [219, 220]. For
lower values of the interaction, the assumption of a gap between a LHB and an UHB
is no longer justified. Moreover, the case B is of particular interest as it represents the
limiting case with the maximum number of second-order terms in the t–J model. For ease
of identification, we use the corresponding abbreviations A and B below to distinguish
between these two parameter sets. We emphasise that in case B different second-order
terms occur depending on the dimension d of the system.

6.2.2 Obtaining Green’s functions

While the basic procedure of a CET was already discussed in detail using the example of
the FHM in section 3.1, in this section we elaborate on the modifications necessary for
the t–J model. Given that we consider the t–J model for half-filling with exactly one
additional hole, there are significantly fewer possible states per lattice site than previously
in the FHM. Accordingly, it is not reasonable to reuse the original basis of the FHM as
presented in section 3.1. After all, the numerical effort involved is significantly larger
than what is actually necessary for the t–J model. Hence, we need another suitably
chosen complete set of orthonormal states {|i〉} that forms a basis of the Hilbert space
H for the Hamiltonian (6.8). In order to increase the overall performance we resort to
a representation of the basis states by integer numbers. This procedure is completely
analogous to the approach taken in equation (3.12). We exemplify this in the following
before discussing how to derive Green’s functions from the respective Hamiltonian matrix.

Consider a half-filled t–J model doped with a single hole. That is, exactly one hole is
inserted into a lattice of N sites with one particle per site. Then, the dimension of the
Hilbert space is

dim (H) = N 2N−1 (6.22)

since the hole may occupy one of N sites while on all remaining sites the spins 1/2 can
point upwards or downwards. For notational simplicity, we artificially enlarge the basis
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6.2 Charge dynamics

size to d = N 2N states while keeping in mind that the spin orientation at the site
occupied by the hole has no physical meaning. Thus, a real space basis of the form

|i〉 = |iN−1 . . . i0〉 |hN−1 . . . h0〉 (6.23)

can be constructed. In this notation, all spins can be either orientated upwards, i.e. ↑≡0,
or downwards, i.e. ↓≡1, so that the relation ij ∈ {0, 1} holds. The hole always occupies
exactly one site hk = 1. Consequently, all remaining sites are fully empty such that

hj = 0 ∀ j 6= k (6.24)

is ensured. This allows for an easy and concise identification of a specific basis state |i〉
by means of the integer representation I ∈ 0, . . . , N 2N − 1 using

I = k 2N +
N−1∑
j=0

ij2
j . (6.25)

Here, the last sum is equal to the integer value of the binary number given by the binary
pattern of the spin orientations. As long as we do not consider the magnetic exchange HJ

the complete dynamics in the t–J model only takes place in the direct vicinity of the hole
position k. This facilitates the numerical task considerably. As before for the FHM, it is
possible to construct the respective Hamiltonian matrix either on-the-fly by algorithms
linear in the basis size or to keep a highly sparse copy of it. In order to compute spectral
densities with the CET, we determine the retarded Green’s function which is given by

g(t) = −iTr
(
hi↑(t)h

†
i↑ρ0

)
θ(t) (6.26)

in a first step. Here, we create a hole at the lattice site i with spin orientation σ using

h†iσ = fiσ. (6.27)

In realistic cases, the trace in equation (6.26) cannot be calculated exactly, i.e. using an
ED, due to the size of the Hilbert space. Hence, we again resort to the concept of the
stochastic evaluation of traces, cf. section 4.1.2. Due to the regime given in equation (6.19)
we consider a fully disordered spin background. Consequently, we do not deal with a pure
state but with a mixed one corresponding to the high-temperature limit of the canonical
ensemble ρ ∝ e−βH , i.e. to the disordered system given by the density matrix

ρ0 ∝ 1. (6.28)

Inserting equation (6.28) into (6.26) while choosing R randomly drawn states |r〉 to
evaluate the trace, the retarded Green’s function may be approximated by means of

g(t) ≈ − i

R

R∑
r=1

〈r|eiHeffthi↑e
−iHeffth†i↑|r〉 θ(t). (6.29)
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6 Excitations and dynamics in the t–J model

It should be noted that the time-evolutions occurring in (6.29) are all of the general form

|ψ(t)〉 := exp (−iHt) |ψ(t=0)〉 . (6.30)

Hence, we can resort to (3.53) for the evaluation of its time-dependence by means of a
CET. As discussed in section 6.2.1, we consider the hole dynamics both in the complete
t–J model (6.8) as well as in the hopping-only model (6.9). The last case, in which the
magnetic exchange interaction is set to zero such that J = 0 holds, allows for a significant
simplification of the retarded Green’s function (6.29). This simpler version reads

g0,eff(t) ≈ −
i

R

R∑
r=1

〈r|hi↑e−iH0,effth†i↑|r〉 θ(t). (6.31)

Here, we exploited that eiHefft has no impact on 〈r| for J = 0 because no hopping can take
place in 〈r|. Consequently, this contribution can be omitted in (6.29). The implication of
this simplification is apparent. In the first case (6.29), a hole is inserted into the random
state |r〉 at time t= 0 followed by a simulation of its time-evolution. In parallel, the
time-evolution of the state 〈r| is simulated and a hole is inserted at the future point in
time t > 0. In the second case (6.31), a hole is inserted into both the bra and the ket at
time t=0 whereupon one of the two states is time-evolved. For practical purposes, this
means that in the case (6.29) the time-evolution of two states has to be calculated by
means of a CET, whereas in the case (6.31) only one state has to be simulated in a CET.
In both cases, the Green’s functions are calculated for a finite time span [0; tmax] in time
steps of dt. Thereafter, a Fourier transform is performed such that

g(ω) ∝
∑
n

e−iωtng(tn) dt (6.32)

holds. For the sake of notational brevity, we use the same symbol g both for time-
and frequency-dependent quantities. The chosen finite time intervals lead to spurious
phenomena in the Fourier transforms (6.32). These can be systematically suppressed by
damping the temporal Green’s function g(t) by means of multiplying it with a decreasing
function. For simplicity, we opt for the approach to damp the Green’s function using

g̃(t) = g(t) exp
(
−1

2
σ2t2

)
. (6.33)

We recall that a multiplication in the time domain, like the one in equation (6.33), equals
the convolution of g(ω) in the frequency domain with the corresponding Gaussian kernel

K ∝ exp
(
−ω2

2σ2

)
. (6.34)

Finally, the spectral density of the single hole excitation can be obtained by means of

A(ω) = − 1

π
Im g̃(ω). (6.35)
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6.2.3 Accuracy and finite-size effects
Before turning to an in-depth analysis of the results of hole motion in the t–J model on
the basis of the corresponding spectral densities (6.35), it is advisable to compare the
two selected approaches in terms of accuracy. Since the native quantity of a CET is the
time-dependent Green’s function (6.26), we select this very quantity for the following
comparison. In particular, we have to answer the questions: Do the results of a CET
significantly depend on the lattice size N and do finite-size effects appear for systems
that are small? What is the minimum number of fundamental processes that must be
considered in an iEoM calculation in order to capture the system with sufficient accuracy?

Since our main interest lies in the thermodynamic system, i.e. the limit N → ∞,
both approaches can cause issues. While the CET is exact in the analysis of any finite
system with N lattice sites, one may wonder whether the result can be readily applied to
infinite systems. In contrast, the iEoM approach considers the thermodynamic system
by definition, but does not take into account all processes that may contribute to its
dynamics. If processes with a larger spatial extension are not adequately captured but
are decisive for the dynamics, this reduces the reliability of the iEoM results.

In addition to the two numerical approaches, an analytical approach for the short-term
behaviour of the dynamics suggests itself for comparison. For this analytical estimate, we
will slightly modify the former creation operator for a hole h†iσ as given in equation (6.27).
In analogy to the procedure we used in Ref. [46], we choose the operator defined by

h
†
iσ = fiσfiσf

†
iσ (6.36)

for creating a hole at site i with spin σ. The operator (6.36) is merely a generalised
version of the operator given in equation (6.27). In particular, the operator (6.36) ensures
that no particle with spin σ is located at the site i before it creates a hole of orientation
σ there. Moreover, this operator is orthogonal to all other operators of the iEoM basis
with respect to the Frobenius scalar product (3.68). We emphasise that the use of (6.36)
is motivated by the wish to improve the analytical comparability with the iEoM. This
operator is not conceptually different from the operator (6.27) used in the CET. For the
practical purposes of a CET simulation, both operators behave in the same way.

The behavior of the retarded Green’s function g(t), cf. equation (6.26), of the hole
creation operator given in equation (6.36) for times t & 0 can be estimated analytically
by means of an expansion in powers of t. This expansion reads

g(t) ≈ − i
2

(
1 +

〈[
H,hi↑(0)

] [
H,h

†
i↑(0)

]〉
t2
)
+O

(
t3
)
. (6.37)

In this context, the translational invariance in time, which can be denoted using

g′(t) = g′(−t) =
〈[
H,hi↑(0)

]
h
†
i↑(−t)

〉
, (6.38)

permits to simplify the expression and to rewrite the second derivative advantageously by

g′′(t) =
dg′(−t)

dt
= −i

〈[
H,hi↑(0)

] [
H,h

†
i↑(0)

]〉
. (6.39)

105



6 Excitations and dynamics in the t–J model

This way, we are able to avoid a double commutator. Since we perform the comparison
of the different methods using the example of the one-dimensional chain, we exemplarily
calculate the expansion in powers of t for this case. We emphasise that an analogous
procedure using equation (6.37) is also easily possible for the two-dimensional lattice.
Due to the additional prime hopping terms and more potential hopping partners in the
lattice, more summands occur in this case. The commutators of the chain read[

T0, hi↑

]
= t0hi±1↓σ

+
i +

1

2
t0hi±1↑σ

z
i +

1

2
t0hi±1↑ (6.40a)[

T ′′
0 , hi↑

]
= t′′hi±2↓σ

+
i +

1

2
t′′hi±2↑σ

z
i +

1

2
t′′hi±2↑ (6.40b)[

T ′′
s,0, hi↑

]
=

1

2
t′′shi±2↓σ

+
i±1 +

1

2
t′′shi±2↓σ

+
i±1σ

z
i (6.40c)

+ t′′shi±2↑σ
−
i±1σ

+
i +

1

4
t′′shi±2↑σ

z
i±1 (6.40d)

+
1

4
t′′shi±2↑σ

z
i±1σ

z
i −

1

2
t′′shi±2↓σ

z
i±1σ

+
i (6.40e)[

HJ , hi↑

]
=

1

4
Jhi↑σ

z
i±1 +

1

2
hi↓σ

+
i±1. (6.40f)

All remaining commutators for the case h†i↑ result from equation (6.40) when substituting

hi↑ → −h
†
i↑ (6.41a)

σ+i ↔ σ−i . (6.41b)

The expectation values occurring in (6.37) can be calculated straightforwardly since they
are needed at time t = 0. The trace is computed over states at half-filling without a hole.
For instance, the results for the expectation values (6.40f) arising from HJ read〈

hi↑σ
z
i±1h

†
i↑σ

z
i±1

〉
= 2 · 1

2
(6.42a)〈

hi↓σ
+
i±1h

†
i↓σ

−
i±1

〉
= 2 · 1

4
. (6.42b)

One should note that the first factor results from the repeated occurrence of the given
expectation value, once for the lattice site i+1 and once for the site i−1. The expectation
values of the other contributions can be calculated likewise. Then, substituting all
expectation values and (6.40) into (6.37) yields the explicit expansion as

g(t) = − i
2

[
1−

(
t20 + t′′2 +

6

16
t′′2s +

3

32
J2

)
t2
]
+O(t3). (6.43)

In order to perform the actual method comparison we apply the CET to the full
one-dimensional t–J model as given by equation (6.8) and compare its results to both the
analytical approximation, cf. equation (6.43), and to the corresponding iEoM results.2

2These and all following iEoM results of this chapter were provided as raw data by Dag-Björn Hering,
cf. in particular footnote 1 on page 95. The author is responsible for the entire data processing, e.g.
by convolution or broadening, data analysis and data comparison. For more details on the calculation
of the raw data using iEoM we refer the interested reader to Ref. [46].
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Figure 6.1: Retarded real-time Green’s function (6.29) of the one-dimensional
chain for the full t–J model with parameters A as given in equation (6.20a). The
results are determined for various lattice sizes N (CET) and loop orders m (iEoM).
The parabola of the analytical expansion (6.37) in powers of t up to O(t3) is
depicted as well (blue triangles). Note that the iEoM result for m = 6 loops first
starts to deviate from the CET results at about t ≥ 9/t0 [46].

For this comparison, we resort to the realistic parameter regime A as given in equa-
tion (6.20a). The respective retarded Green’s function (6.29) is presented in figure 6.1 for
various chain lengths N (CET) and loop orders m (iEoM). Furthermore, the short-time
behavior (6.37) is plotted by a dashed line as a reference. Here and henceforth, the
hopping element t0 defines the energy unit and, thus, the time unit according to [t] = t−1

0 .
Note that the Green’s function starts at g(t=0) = 0.5. This is because the creation

of a hole can only be performed successfully if an electron with the appropriate spin is
present at the respective lattice site. Due to the assumed spin disorder (6.28) this holds
in exactly 50 % of the cases. The time-dependence, cf. figure 6.1, resembles a damped
oscillation. Nevertheless, we are dealing with a closed quantum system. Therefore,
no actual relaxation can occur and merely the superposition of coherent oscillations is
possible. As we resort to a large mixture of spin backgrounds it is plausible that no
damping but a strong dephasing of very many eigenstates of the hole motion occurs.

The comparison of the different methods shows a high degree of consistency for the
times presented. Moreover, no finite-size effects appear in the CET results. Even for
longer time intervals up to tmax = 20 (not fully shown here) the results for N = 10,
N = 14 and N = 18 coincide. Therefore, a further analysis of any finite-size dependence
of the CET results is not required in the following. Instead, we use simulations of the
largest possible system size N = 18 in all subsequent computations by means of CET.

Especially for the highest loop order, i.e. m = 6, the iEoM results agree remarkably
well with the CET results. For lower loop orders, e.g. m = 3, a deviation begins to
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emerge for times t& 4/t0. Albeit it seems that the iEoM results for this smaller loop
order diverge more and more from the actual physical result for increasing times t→∞,
the unitarity of the Liouville matrix guarantees that exclusively oscillatory dynamics can
occur, cf. equation (3.69) or Refs. [42, 116]. As a result, no contributions to g(t) may
decrease or increase exponentially. For all calculations based on iEoM the results which
resort to the highest feasible loop order m were provided. This order varies and is strongly
dependent on the topology of the lattice as well as on the number of physical processes
considered. What is more, the number of processes depends on whether only the first-
order contribution T0, second-order contributions without spin-spin interaction (6.9) or
the complete generalised t–J model (6.8) is considered. The numerically most challenging
case is given by a large coordination number z in combination with the complete t–J
model, i.e. for Heff on a two-dimensional square lattice. For this case, results using the
loop order m = 3 have been provided.

6.2.4 Results
In this section, we consider the local spectral densities A(ω) of the t–J model and we
compare the spectral densities calculated by CET using equation (6.35) with the raw
iEoM data provided. For performance reasons, these iEoM raw data were calculated in
reduced Krylov spaces of sufficiently high dimension f = 200 so that the corresponding
spectral density consists of f discrete peaks. It reads

A(ω) ≈
f∑
n

anδ (ω − ωn) . (6.44)

Here, the an denote the weight of the corresponding δ-spike located at frequency ωn.
The CET data do not exhibit such phenomena and are substantially smoother since

they were obtained by means of Fourier transforms for comparatively long time periods.
In order to better compare both results, we artificially broaden the δ-spikes of the iEoM
results by Gaussians so that the final iEoM spectral densities become

A(ω) =

f∑
n

an√
2πσ

exp
(
−(ω − ωn)

2

2σ2

)
. (6.45)

Note that the relevant parameter of this broadening is the second moment of the Gaussian
distribution, i.e. the parameter σ2. This parameter determines how wide the spatial
extent of each δ-spike of the spectral density is. This procedure is very similar to the
damping of the CET Green’s function, cf. equation (6.33) for the influence of σ.

For all subsequent comparisons, we choose the parameter σ as small as possible. A
parameter σ that is too large risks erasing physical features of the spectral density and a
value of σ that is too small causes large wiggling in the results. In particular, the iEoM
results are affected by this wiggling. In cases in which an especially large broadening of
the iEoM is required, we show both the slightly broadened CET results on their own as
well as a comparison of the results of both methods with a larger broadening.
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(b) Density for parameter set B

Figure 6.2: Spectral density A(ω) for a one-dimensional chain and the parameter
sets A and B of (6.20), respectively. The results are artificially broadened by
σ = 0.15t0. Solid lines represent CET results, dashed lines denote iEoM results.
The iEoM band edges ωmin are indicated by vertical dashed lines [46].

Due to its semi-analytical character, the iEoM approach offers a particular advantage
over the CET: Band edges of the spectrum, i.e. the smallest occurring frequencies ωmin,
can be determined in a reliable way. We plot these band edges, determined by iEoM, by
vertical dashed lines in the following figures. All cases of Heff in which no band edge is
drawn show characteristics of an infinite support. In these cases, the spectral density
could possibly extend over the entire real axis with weights which decrease in the outer
regions of the spectrum. We explicitly emphasise that all band edges originate from the
plain spectrum, i.e. before the artificial broadening was performed. Accordingly, the
choice of the parameter σ has no influence on these band edges. For more details on the
calculation of the band edges and infinite supports of the spectrum, see Ref. [46].

One-dimensional model

The results of the one-dimensional system are depicted in figure 6.2. Here, the two
parameter sets A and B are used. Since the results for T0 do not depend on the specific
choice of a parameter set, this curve can serve as a reference in the two figures 6.2a
and 6.2b for how much the parameter sets modify the plain NN hopping.

We stress that the results of the different methods agree well in all cases. Note that the
results have been broadened by σ = 0.15t0. Both the upwards and the downwards flanks
of the spectral density as well as the characteristic shape including the peak positions
are accurately reproduced by both approaches. The wiggling of the iEoM results around
ω = 0 results from a few discrete, Gaussian broadened peaks. A higher loop order m and
then possibly a larger Krylov space dimension f could lead to smoother results.

The spectral density A(ω) for the T0 part of the t–J model is symmetric around the
frequency ω = 0. This is to be expected since NN hopping implies a symmetric local
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density of states as has been shown rigorously in the one-dimensional case for the limit
of infinite interaction, i.e. U →∞ [59, 60]. Moreover, it explains the frequency

ωmin = −2t0. (6.46)

It is reproduced by the given iEoM results within a relative error of about 2 %.
The pronounced peaks in the outer parts of the densities are van Hove singularities.

They are smeared out by finite-size effects (CET) or finite loop orders (iEoM) and the
artificial broadening σ. Otherwise, they would show up as 1/

√
∆ω divergences. In fact,

the analytical results [47, 59, 60] imply that the spectral density is given by

A(ω) =
1

2π

1√
ω2 − 4t20

. (6.47)

If the spin-dependent and spin-independent hopping is included, i.e. when H0,eff is
considered, the support of the spectrum increases: for the parameter set A by about
10 % and for the set B by almost 20 %. Since the density satisfies the sum rule∫

R
A(ω) dω =

1

2
, (6.48)

a larger support necessarily translates into a reduced average height. This behaviour is
clearly visible. In particular, the black curves show a significantly lower mean height
combined with an increased support. In addition, one clearly sees that the spectral
density loses its symmetry: the left van Hove peak becomes lower than the right one.

If the magnetic exchange, i.e. the spin-spin interaction HJ , is included as well we
consider the dynamics induced by Heff. The corresponding results are shown by the
darkest curves in the figures 6.2a and 6.2b. The broadened curves show an even larger
asymmetry between the left and the right peak compared to the former results obtained for
H0,eff. For the parameter set B, the left peak is reduced to only a shoulder. Furthermore,
its seems that the edges have been slightly more shifted and broadened. Nevertheless,
a thorough analysis of the minimum frequencies ωmin as a function of increasing loop
order m with the help of the iEoM approach suggests another conclusion. In this analysis,
the minimum frequencies do not asymptotically converge towards a constant value, but
continue to increase in their absolute values. This gives rise to the hypothesis that there
are no minimum frequencies and that the actual physical spectrum of the full t–J model
extends over the entire real axis, cf. Ref. [46]. One reason for this observation could
be that the number of excitations in the spin sector is not bounded because HJ is an
extensive term and that more and more spin excitations can cause an increasing support.
Further research on this matter may be appropriate.

Two-dimensional model

Analogous to calculations for the one-dimensional model, i.e. the t–J model along a
chain, spectral densities and minimum frequencies can also be determined for the two-
dimensional case. We emphasise that such a calculation is not merely an enlargement
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(b) Density for parameter set B

Figure 6.3: Spectral density A(ω) for a two-dimensional square lattice and the
parameter sets A and B of (6.20), respectively. The results are artificially broadened
by σ = 0.15t0. Solid lines represent CET results. The iEoM band edges ωmin are
indicated by vertical dashed lines [46].

of the dimension but introduces additional physical processes. For instance, there are
four NNs on a square lattice instead of two NNs on the chain. This yields a more
densely populated Hamiltonian matrix. In parallel, for a constant cluster size N only√
N hopping processes for NN hopping and correspondingly fewer for NNN or 3NN

hopping are unaffected by wrap-around effects. As a consequence, it becomes significantly
more demanding to describe the dynamics without finite-size effects on a square lattice
by means of a CET. As a result, the obtained densities are not as smooth as in one
dimension and are subject to more wiggling.

In order to achieve a higher number of hopping processes before wrap-around effects
set in, we resort to a trick and rotate the studied square cluster by 45°. Then, its edge
length is given by

√
2n according to Pythagoras where n is the number of vertical and

horizontal NN steps to pass from one corner of the square cluster to the adjacent one.
Consequently, the total number of sites is N = 2n2. For n = 3, we have to treat N = 18
sites which is still feasible. The advantage is that a wrap-around only occurs after exactly
2n = 6 NN hops. We emphasise that a naive choice of the square cluster with an equal
number of hops for a wrap-around would have required N = 62 = 36 sites. In this case,
the corresponding Hilbert space would be almost 2.6 · 105 times larger than the one our
CET has to deal with in the case of the optimised cluster.

Since a significant improvement of the accuracy of the iEoM results would only be
realisable with an increase of the loop order m, which is technically extremely difficult
to do, the corresponding iEoM results are of low resolution and less detail. For this
reason, we show the more finely resolved CET results for the smallest possible broadening
σ = 0.15t0 in figures 6.3a and 6.3b. Comparable results with a broadening three times as
large, i.e. for σ = 0.45t0, are shown in figures 6.4a and 6.4b for both methods.

The first feature one notices is that the overall shape of the spectrum is significantly
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6 Excitations and dynamics in the t–J model

altered compared to the case of a chain. While the one-dimensional model shows strongly
pronounced van Hove singularities at the edges as well as the approximate shape (6.47),
the spectral density of the two-dimensional model appears more elliptical or even slightly
rectangular. The density is symmetric if only T0 is considered and becomes asymmetric as
soon as the Hamiltonian is extended in agreement with what we found in one dimension.
Note, however, that the lower band edge for T0 is not given by the naive assumption

ωmin = −4t0. (6.49)

Indeed, the actual iEoM band edge is close to −4t0, see the vertical dashed lines in
figures 6.3a and 6.3b. At first glance, one would expect that (6.49) should hold for
the simple NN hopping in two dimensions. The motivation for (6.49) is similar to the
one-dimensional case where we found (6.46) in accordance with the analytical arguments
given in Refs. [59, 60]. The reason for this deviating behaviour in two dimensions is that
in one dimension a perfect spin-charge separation occurs for NN hopping and U →∞. In
other words, the sequence of spins is not changed by the hole motion. This does not hold
in two dimensions. On a square lattice, loops may occur and merely Trugman paths [57]
allow for a hole motion without any changes of the spin order.

It is important to keep in mind that there is a subtle difference between this spin-charge
separation and the actual spin-spin interaction HJ . The spin-charge separation also exists
for J = 0 and stems from the fact that each lattice site is always occupied by a particle
of a certain spin orientation. In the one-dimensional model, this spin order is initially
predetermined and cannot be changed by a moving hole, as is described by T0. In two
dimensions, there is also an initial orientation of all spins on the square lattice. Yet,
this spin orientation can be destroyed by a hopping hole provided that it hops randomly
enough through the lattice. Then, the hole will leave a trail of changed spins and the
initial spin pattern and the final pattern will no longer be identical.

Furthermore, the iEoM band edges ωmin are significantly closer to each other for the
two parameter sets displayed than for the one-dimensional case. For the parameter set A,
we attribute this to the altered dimensionality. For the parameter set B, this effect is
enhanced by the smaller value of the exchange coupling J , i.e. due to

J1D,B = 1 >
1

2
= J2D,B. (6.50)

We emphasise that our results agree with results of previous research, for instance

ωc = −4.4t0 (6.51)

for the full t–J model as given in Ref. [219]. The prediction (6.51) resides in the range of
the left flanks where the spectral density starts to rise significantly, cf. black curves in
figures 6.3a and 6.3b. As previously motivated, an exact determination of the band edge
for the complete t–J model for J 6= 0 is not possible. We assume this finding not to be
an artefact but to reflect that band edges do not exist in this case [46].

Analogous to the one-dimensional case, a broadening of the spectrum upon inclusion
of more and more processes is observed for the square lattice. For the parameter set A
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(a) Density for parameter set A
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(b) Density for parameter set B

Figure 6.4: Spectral density A(ω) for a two-dimensional square lattice and the
parameter sets A and B of (6.20), respectively. The results are artificially broadened
by σ = 0.45t0. Solid lines represent CET results, dashed lines denote iEoM results.
The iEoM band edges ωmin are indicated by vertical dashed lines [46].

the spectrum broadens from T0 to the complete t–J model, i.e. Heff, by about 13 %. For
the parameter set B, the broadening of the spectrum is near to 25 %. Instead of peaks at
the boundaries of the spectral density as in the one-dimensional case one can observe
clear knee-like flanks for the square lattice.

6.2.5 Summary

In this section, we studied the dynamics of a single hole in a disordered spin background.
For this purpose, we resorted to the full t–J model as it results for the Mott insulating
phase of the FHM by an expansion in the small parameter x, cf. equation (6.1), to second
order. We systematically extended the NN hopping T0 by means of spin-dependent and
spin-independent NNN and 3NN hopping to all charge degrees of freedom of the t–J
model. In a next step, we also included the spin-spin exchange interaction which is
given by SiSj . For the one-dimensional chain and the two-dimensional square lattice we
computed the lower band edges of the Hubbard bands and the shape of the local spectral
density A(ω) by means of both CET and iEoM.

We found qualitatively different behaviours of A(ω) depending on the dimension. A
thorough comparison with findings of previous studies made these results appear plausible.
Moreover, the iEoM indications of an infinitely large support of the spectral density
may represent a new finding. This effect has not yet been observed or discussed in
the literature to our knowledge. In contrast, a previous analysis of the FHM based
on the Bethe ansatz found finite band edges for the hole motion in a disordered spin
background [66]. It is unclear whether this difference results from the study of the two
different, though related models, i.e. FHM and t–J model, or from differences in the
treatment of the magnetic dynamics. This issue surely merits further investigation.
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6 Excitations and dynamics in the t–J model

What is more, the substantially higher numerical demand in two dimensions calls for
even more efforts to corroborate the advocated scenario further. Analogous studies for
other lattices in two dimensions and also in three dimensions to study the influence of
lattice topology are conceivable and desirable.

6.3 Spin dynamics
While we dealt with the dynamics of both charge and spin degrees of freedom in section 6.2,
we switch off all charge degrees of freedom in the following. In particular, this means
that only systems with stationary spins are considered in which exactly one spin S = 1/2
particle resides on each lattice site. An illustration of this model can be found in figure 2.5.
The corresponding spins interact with each other via the exchange interaction given by
equation (2.22). In contrast to the common approach in literature, however, we do not
restrict the exchange to NN interactions only, but successively extend the analysis to
systems with as many interaction partners as possible.

6.3.1 Dense spin ensembles
The storage of binary information is a common practice nowadays. The characterisation
of a system as binary means that the information it contains can be clearly assigned
to one of two states. Since the mid-1990s, there have been theoretical debates on the
algorithmic advantages [225] of storing information in quantum mechanical bits, so-called
qubits. These provide the ability to superpose different kinds of information and, thus,
are not limited to two distinct states only. At about the same time, one of the first
abstract realisation of such qubits via electron spins in quantum dots was proposed in
Ref. [226]. Today, there is a multitude of further ideas on how information can be stored
in quantum mechanical systems, cf. especially the review in Ref. [212] for an overview.
Common to all systems is that they must fulfil a number of prerequisites, first proposed by
DiVincenzo [227], for practical usability. In cases where electrons and holes are involved
in the storage, the models are roughly divided into two different classes, those with a low
connectivity between the constituents and those with a high connectivity.

An archetypal example of the first class, i.e. systems with a low connectivity, is a
quantum dot. Here, the spin of an excess electron acts as the information carrier.
Decoherence effects arise through the coupling of the electron spin to nuclear spins of
the surrounding lattice by means of hyperfine interaction [228, 229]. Such hyperfine
interactions are nearly three orders of magnitude larger than the mutual interaction of
the nuclear spins with each other [230]. Therefore, all nuclear spins can be regarded
as weakly coupled to other spins of the lattice and, thus, are of low connectivity. As
a consequence, the interaction of the nuclear spins with each other is often negligible.
One theoretical model used to describe this situation is Gaudin’s central spin model [231,
232], in which a central spin S0 is coupled to N bath spins Sk according to

HCSM = S0

N∑
k=1

JkSk. (6.52)
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By now, there are many studies on decoherence in the system described by equation (6.52),
e.g. by resorting to correlation functions to probe information conservation. Insights
into correlations are of high practical relevance, for example in the context of spin
noise spectroscopy [233], and have been obtained by various semi-classical [234, 235]
and quantum mechanical approaches [236]. Furthermore, conclusions have been drawn
about persistent correlations [237–239], the effect of anisotropies in the model [108] or
the influence of nuclear electric quadrupole moments on the long-time dynamics and
coherence of the central spin [240, 241].

Recently, a second class of models has received increasing attention, namely systems
with a high level of connectivity. Due to the mutual interaction between all of their
constituents, these systems no longer permit the use of the same kind of star-shaped
topology as in the central spin model (6.52). Instead, all particles interact with all other
particles on roughly the same order of magnitude and the system may be thought of
as a dense ensemble. In many cases, quantum systems near surfaces exhibit such kind
of physical behaviour. A prominent example in which a dense spin ensemble near the
surface plays an integral role is the one of single NV centres in diamonds. Here, the NV
centres themselves are considered as promising candidates for solid-state qubits [242].
For quite some time, NV centres have been used experimentally in the field of quantum
sensing [31], especially for high-precision magnetometry [243] or magnetic resonance
microscopy [32]. In this context, one obstacle became apparent early on, which conflicts
fundamentally with any practical application: The NV centre has to be close to the
surface of the system for an improved sensitivity. The surface itself, however, is a major
source of decoherence for the NV centre. A variety of attempts have been made to
reduce the surface-generated decoherence of the NV centre, e.g. using a direct physical
manipulation of the surface as part of surface-engineering [244], quantum control of the
NV centre by dynamical decoupling [245] or coherent driving of the bath spins [246].
Moreover, experimental results suggest that unpaired spins near the surface are one
of the primary reasons for this decoherence and that the theoretical description of the
phenomenon might be feasible by means of a bath of many identical spins [33].

In the following sections, we use the Heisenberg model with high coordination numbers
as an exemplary model for the treatment of these dense spin baths in order to contribute to
a detailed understanding and a simplified methodological description of surface dynamics.
Being able to easily describe the effects of surfaces is highly desirable for further practical
applications of NV centres and an enhancement of their coherence.

6.3.2 Obtaining autocorrelation functions
A key quantity for measuring the coherence in a given spin S = 1/2 system is the
autocorrelation function. It is formally defined by the expectation value

gαβ(t) =
〈
Sα
0 (0)S

β
0 (t)

〉
. (6.53)

Vividly speaking, the function (6.53) characterises to what extent the orientation of the
spin component Sβ

0 at time t > 0 differs from the initial orientation Sα
0 at time t=0.
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Since we turn to the Heisenberg model (2.22) below we can exploit its symmetries.
Basically, the model consists of the scalar product SiSj of two spin operators. Hence,
it is invariant under any rotation as well as invariant under time reversal, i.e. the
transformation t→ −t. Consequently, only the three autocorrelation functions

gxx(t) = gyy(t) = gzz(t) (6.54)

do not vanish [201]. Without limiting the generality, we choose α = β = z henceforth.
The orientation of a spin can be used as a persistent information storage, e.g. as a system
to realise a qubit [212]. Then, the information would be completely preserved if the
autocorrelation function equaled its initial value given by

gzz(t = 0) =
1

4
(6.55)

for all times t > 0. Analogous to section 6.2.2, the expectation value (6.53) is to be
understood as the high-temperature limit of the canonical ensemble. In particular, the
density matrix of the system is given by equation (6.28). As before, we approximate the
occurring trace by means of (4.15) and rewrite the autocorrelation function as

gzz(t) ≈ 1

R

R∑
r=1

〈r|Sz
0(0)S

z
0(t)|r〉 (6.56a)

=
1

R

R∑
r=1

〈r|Sz
0e

iHtSz
0e

−iHt|r〉 . (6.56b)

Here, each randomly drawn state |r〉 has the dimension d = 2N . Furthermore, each basis
state |i〉 of the Hilbert space has to carry information about the spin orientation at each
lattice site by means of the binary pattern

|i〉 = |iN−1 . . . i0〉 (6.57)

with ij ∈ {0, 1}. This basis choice is similar to the one of the t–J model, cf. equation (6.23),
except for the fact that we do not need to keep track of the position of a hole. According
to section 4.1.2, it is sufficient to choose a small number of R� d randomly drawn states
when calculating the approximated autocorrelation function (6.56).

For computational simplicity, we do not work with the spin operator representation
given in equation (2.22) but use the Hamiltonian provided in equation (2.28) for c = −1/2.
As it was already the case for the t–J model with J 6= 0, cf. equation (6.29), two different
states have to be evolved in time by means of a CET in order to obtain equation (6.56).
These two states read

〈ψS(t)| = 〈r|Sz
0e

iHt (6.58a)
|ψ(t)〉 = e−iHt |r〉 . (6.58b)

The reason for this lies in the fact that, on the one hand, a time-evolution of the random
state |r〉 is necessary and, on the other hand, a time-evolution of the state 〈r|Sz

0 is
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required, i.e. after an application of the spin operator Sz
0 . A possible misconception

is that the application of the operator Sz
0 does not change a state in the chosen basis.

Nevertheless, this is only the case for the corresponding eigenstates (6.57). For general
states |r〉 of the form (4.16), an application of Sz

0 to the state changes the associated
coefficients ξri. In this process, the operator Sz

0 measures the least significant bit i0 of
the basis state |i〉 associated with ξri and modifies the coefficients according to

ξri →
1

2

{
+ξri if i0 = 0

−ξri otherwise.
(6.59)

As before, we stick to the convention established in the context of section 6.2.2 for the
identification of physical spin orientations by bits, i.e. we use ↑≡0 as well as ↓≡1.

Eventually, the autocorrelation can be obtained from all R pairs of states (6.58) by

gzz(t) =
1

R

R∑
r=1

〈ψS(t)|Sz
0 |ψ(t)〉 . (6.60)

Due to the initial value of the autocorrelation function given by equation (6.55), we
choose to plot the quantity 4gzz(t) in the following section for easier readability.

6.3.3 Results
The aim of this section is to improve the understanding of decoherence in dense spin
systems. Especially in physically realistic systems, where each spin has a high average
number of identical or similar interaction partners, numerically exact methods such as the
CET are severely limited by the large connectivity and size of the relevant Hilbert spaces.
In contrast, approximate methods are often able to provide predictions significantly easier
because irrelevant aspects of the full quantum mechanical dynamics are heavily simplified.
A typical phenomenon in physics is the remarkable property of single constituents and
their individual dynamics to become less important as the number of interacting partners
increases. In such situations, mean-field approaches are justified and useful alternatives
to the computation of the exact system dynamics.

The mean-field theory for dense spin ensembles, which we will denote by spinDMFT in
the following, was proposed by Timo Gräßer and Götz S. Uhrig, cf. especially Ref. [201],
and incorporates this fundamental idea. Essentially, the quantum mechanical environment
of each individual spin is replaced by a classical, dynamical random field. The classical
moments of this field are self-consistently linked to the quantum mechanical moments.
Furthermore, since the correlation of two spins is suppressed with the coordination
number z →∞, the mean-field is Gaussian according to the central limit theorem. Due
to the fact that a Gaussian distribution is characterised by only two moments, the
underlying self-consistency problem is also restricted to just two moments and the use of
the spinDMFT is a particularly efficient alternative to numerically exact approaches.

Nevertheless, approximate methods such as the spinDMFT have to prove their validity
and correctness in comparison with exact methods such as a CET or an ED. In the
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following, we use particularly the more efficient CET approach for this comparison. To
do so, we proceed in three steps. First, we compare our CET results to the reference
results of an ED [247] for one-dimensional PBC chains. On the one hand, this helps us
to gain insight into the spin dynamics for a system of comparably small coordination
number z = 2 and, on the other hand, it enables us to verify the validity of the CET
implementation. In the second step, we increase the coordination number to z = 4
and consider two-dimensional PBC lattices. In the last step, we extend the CET
consideration to infinite-range clusters Gc, cf. especially figure 5.6 for an example. These
clusters represent finite systems with maximum possible connectivity because every site
is connected to every other site. By using these clusters, a study of the N → ∞ and,
thus, also the z →∞ limit is possible. It is instructive to note that the results of this
extrapolation are comparable to the physical situation described by the spinDMFT.

For comparative reasons, we additionally present results of an iEoM approach alongside
the spinDMFT results. While both methods are approximate by design and consider
the thermodynamic limit, the coordination number z has a significant impact on the
performance in the case of the iEoM method. For this reason, the number of processes
considered, i.e. the loop order m, is limited for the iEoM as the dimension and connectivity
of the system increases. Especially, the dynamics in infinite-range clusters Gc is difficult
to realise by means of the iEoM approach. Hence, only iEoM results that have been
derived for one- and two-dimensional systems can be contrasted to the CET results.

In agreement with our work in Ref. [201], we choose the global energy unit J for all
following measurements. As a result, the times t can be measured in units of [t] = J −1.
For the one- and two-dimensional system (2.22) this energy unit is defined by using

J =
√
z · J̃ (6.61)

where z denotes the coordination number of the system, e.g. z = 2 in one dimension.
In infinite-range clusters Gc, as specified by equation (5.36), we have to proceed slightly

differently because these kinds of systems typically have a high degree of symmetry, cf.
the in-depth explanations concerning complete graphs in section 5.3.1. These symmetries
lead to a severe limitation of the dynamics. As a result, the highly symmetric models
are not easily comparable to physically realistic z → ∞ scenarios. To obtain a more
generic setting we opt for a randomised approach. Therefore, we choose many different
couplings Jij instead of one coupling J̃ only and draw these couplings from a Gaussian
probability distribution. Then, the couplings are normalised, i.e. multiplied by a suitable
constant λj , in a way that the relation

J 2 =
∑
i

J2
ij (6.62)

holds for all sites j. In order to avoid any further unwanted accidental symmetries, we
choose 100 sets of random couplings for each cluster size N . Eventually, the corresponding
results are averaged to yield a representative generic system.

Results for the one-dimensional system are displayed in figure 6.5. We find that the
results of our CET are identical to the reference results of an ED [247] within the error
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Figure 6.5: Autocorrelation (6.60) of the isotropic Heisenberg model (2.22) on
a one-dimensional chain. Both ED [247] and CET results use PBC and finite
lattice sizes N . The iEoM approach deals with the thermodynamic limit and
physical processes up to m loops. The spinDMFT considers highly dense systems,
i.e. systems of large coordination numbers z →∞. A correlation decrease is visible
for denser systems (spinDMFT). Figure adapted and reprinted from Ref. [201].

tolerance ε = 10−3 assumed for the CET, cf. equation (3.56). Furthermore, the CET
results for the lattice sizes N = 16 and N = 18 are identical. Clearly, this indicates
that finite-size effects do not play a role for the considered time periods t < 10/J .
A comparison with the iEoM approach for m = 13 loops reveals a high agreement of
the initial dynamics up to about t ≈ 9/J . After this time, a slight deviation of the
iEoM results from the CET and ED simulations can be identified. Since the accuracy
of an iEoM calculation is directly dependent on the loop order m, a higher order m
should necessarily be chosen for longer observation periods. While the results of CET,
ED and iEoM are practically identical, the spinDMFT simulation shows a considerable
deviation. Solely the initial dynamics, i.e. the fast decrease of the autocorrelation up to
about t ≈ 3/J , is approximately captured by the spinDMFT for the one-dimensional
system. We emphasise that the one-dimensional system being used is a highly difficult
case for the spinDMFT. While the spinDMFT makes assumptions that are justified
in the limit z → ∞, the system under consideration here actually has a coordination
number which equals z = 2 only. The difference concerning the dynamics is evident: The
spinDMFT predicts a fast and almost complete decoherence of the system whereas the
actual results of the other methods suggest that the decoherence takes place substantially
slower. Moreover, the actual results show weak revivals of coherence around t ≈ 5/J and
t ≈ 9/J . These results are in no way surprising, considering that the one-dimensional
system is integrable, cf. section 2.1.1 as well as Ref. [14]. Given that in integrable
systems there is only a strongly restricted Hilbert space available for the dynamics, no
self-averaging as strong as predicted by the spinDMFT for z →∞ can occur.

119



6 Excitations and dynamics in the t–J model

� � � � � ��
���

���

���

���

���

���

Figure 6.6: Autocorrelation (6.60) of the isotropic Heisenberg model (2.22) on
a two-dimensional square lattice. The one-dimensional result (1D) is provided
as a reference. See caption of figure 6.5 for further details on the notation. For
increasing dimension and, thus, coordination number z the results are consistent
with the spinDMFT prediction. Figure adapted and reprinted from Ref. [201].

In the following second step, we expand the dimension of the system under consideration
and, thus, also the coordination number z. In the case of the two-dimensional system
with exactly four NNs around each lattice site, the coordination number is z = 4 and, as
a consequence, already twice as large as for the one-dimensional case. The results of the
two-dimensional system are presented in figure 6.6. As a visual orientation and to allow
for a simplified comparison with systems of lower coordination numbers, we additionally
include the CET results for the one-dimensional PBC chain, cf. figure 6.5. We denote
these results by the addition (1D) in the legend of figure 6.6.

Focusing on the CET simulations only, it is noteworthy that the results for the two-
dimensional lattices of sizes N = 16 and N = 18 are almost identical and that no
relevant finite-size effects seem to occur. Furthermore, in comparison with the one-
dimensional results, it turns out that a significantly faster decoherence occurs in the
system with higher connectivity. While the one-dimensional system shows a higher
average autocorrelation as well as recurrent revivals of coherence, the two-dimensional
system shows a strictly monotonically decreasing autocorrelation. The resulting average
autocorrelation is significantly lower than in the one-dimensional case.

Interestingly, the agreement of the two-dimensional system with the spinDMFT pre-
diction is significantly improved compared to the one-dimensional case. The explanation
for this phenomenon is analogous to the observations in the context of equilibration and
thermalisation for the full FHM in section 5.3: The more interaction partners exist for
a given particle, the faster the propagation of information across a cluster or lattice
can occur. The convergence of the results of systems with increasing finite coordination
numbers, i.e. systems with z = 2 and z = 4, to the ones of a system with maximum den-
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sity and connectivity, as considered by spinDMFT for z →∞, supports this hypothesis.
Therefore, already for the physically realistic case of two dimensions, the spinDMFT is
able to make fairly reliable predictions in an efficient way within bounded error tolerances.

The iEoM results for m = 7 loops display a good agreement with the CET results up
to about t ≈ 3.5/J . From this point onwards, the low loop order becomes noticeable.
Vividly speaking, this results from the fact that processes become important for the
dynamics which do not take place in the considered iEoM operator subspace. Accordingly,
for an improved representation of the dynamics, significantly larger iEoM loop orders
would be necessary. This, in turn, would lead to a much higher computational effort.
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Figure 6.7: Autocorrelation (6.60) of the isotropic Heisenberg model (2.22) on
infinite-range clusters Gc as depicted in figure 5.6 (CET). These clusters are
a possible systematic approximation of the z → ∞ limiting case (spinDMFT).
An N →∞ extrapolation of the CET results agrees well with the results of the
spinDMFT. Figure adapted and reprinted from Ref. [201].

In the last step, we turn to complete graphs Gc, i.e. systems that have the maximum
possible connectivity for a given number of sites N . This situation is very similar to the
scenario considered by the spinDMFT. We present the corresponding results in figure 6.7.
Note that each curve belonging to a finite lattice size N actually represents the average
of 100 different randomly generated infinite-range graphs Gc. Each occurring cluster Gc

has interaction elements Jij that have been drawn from a standard normal distribution.
To ensure that clusters of different sizes N have the same mean energy, each adjacency
matrix of such a cluster is normalised according to equation (6.62). The resulting slightly
different couplings Jij of the many neighbouring spins can be regarded as a realistic
representation of many different distances between spins in the total ensemble.

Evidently, the decoherence increases with increasing lattice size N . This finding is in
agreement with the observations for the one- and two-dimensional systems, cf. figures 6.5
and 6.6. As a result, our main objective is to systematically determine the thermodynamic
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limit N →∞. In view of the energy scale (6.62) and the associated scaling

Jij ∝
1√
N
, (6.63)

it is reasonable to use power law extrapolations for each data point at a fixed time t by

4gzz(x) = axp/2 + b (6.64)

with x = 1/N and the two fit parameters a, b ∈ R to extrapolate the data for finite clusters
by means of x→ 0. In our analysis of different extrapolations with various values of p ∈ N
(not shown here), the most robust choice turned out to be p = 3. Accordingly, we use
this scaling behaviour in the subsequent extrapolation. The corresponding extrapolated
data points are denoted by N →∞ in figure 6.7. The high agreement of the extrapolated
data with the spinDMFT predictions is a strong indication for the correct description
of the dynamics of dense systems by the spinDMFT. Since systems with increasing
connectivity lead to significantly denser Hamiltonians, the effort for a CET calculation
increases accordingly. Therefore, infinite-range graphs Gc with even higher lattice sizes
are notoriously difficult to realise, but could be used in the future to substantiate the
agreement of the extrapolated CET data and the results obtained by means of the
spinDMFT approach even further.

6.3.4 Summary
In section 6.3, we reviewed the local autocorrelation function (6.60) of dense spin systems
as a measure of the occurrence of decoherence and information loss, respectively. Being
able to predict the decoherence of a system is a central ingredient for the effective storage
of quantum information or to enable improved forms of quantum sensing, e.g. by means
of NV centres. As an archetypal model for a dense spin system, the Heisenberg model
on topologies with increasing coordination numbers z was considered. In contrast to
the typical approach in literature with the treatment of comparatively low coordination
numbers, we studied the strict limit z →∞ to describe systems of high connectivity. We
found clear indications that the one-dimensional model plays a special role due to its
integrability and that the decoherence increases with increasing coordination number. A
systematic extrapolation of the numerically exact CET results by a power law fit showed
a good agreement with the predictions of the spinDMFT, i.e. a dynamical mean-field
theory for spin systems in the limit z →∞. Consequently, we substantiated that highly
efficient approximations via classical random fields are a viable alternative to full-fledged
quantum mechanical approaches as the number of interacting partners increases.

This finding potentially facilitates the future study of much larger and physically
relevant systems, e.g. in the context of nuclear magnetic resonance, diamonds with NV
centres or spin diffusion in solids, with a reasonable amount of computational effort.
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Henceforth, our main goal is the theoretical description of a technique to obtain the
one-particle Green’s function of a system by means of the iEoM approach. We exemplify
this approach using the Green’s function of the impurity electrons of the SIAM, i.e. of
those particles which are located at the central site. For this purpose, we resort to the
respective retarded Green’s function. Formally, it is defined by

Gret
fσf

†
σ
(t) = −i

〈{
fσ(t), f

†
σ

}〉
θ(t). (7.1)

Simplified, equation (7.1) describes the dynamics of an impurity electron that is added to
the system at time t = 0 and removed at time t > 0. In order to calculate this expression,
we will resort to the iEoM framework presented in section 3.4 and adapt it accordingly.
In section 7.1, we outline the general steps involved in calculating arbitrary Green’s
functions with the aid of the iEoM, in section 7.2, we motivate the methodology using
the SIAM as an example. We conclude the chapter with a theoretical description of a
potential algorithmic implementation of the concepts presented here in section 7.3.

7.1 Green’s functions in the iEoM framework

Throughout the associated analysis of (7.1), we will discover that we do not only need to
calculate the Green’s function (7.1) that we are actually looking for, but that we may
also need other Green’s functions as auxiliary quantities. Therefore, we leave aside the
concrete form (7.1) for a moment and discuss a Green’s function for two entirely general
observables A† and B by means of

Gret
A†B(t) = −i

〈{
A†(t), B

}〉
θ(t). (7.2)

In order to avoid any confusion between the iEoM operator basis, cf. equation (3.61),
and the actual operator A†, we denote all operators of the operator basis by means of xi
in the following. Consequently, the corresponding column vector x is given by

xT :=
(
x1, x2, x3, . . . , xm

)
(7.3)

and may be used as a shorthand notation to refer to all m basis operators at once.
Note that the Hermitian conjugate in (7.2) is swapped compared to (7.1). This results

from the fact that we will subsequently write all operators of the actual iEoM operator
basis, i.e. all operators contained in (7.3), without Hermitian conjugation. Hereby, we
proceed analogously to the notation in (3.61). Since the actual operator basis is always
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7 Dynamics in the single impurity Anderson model

constructed starting from its first basis operator, e.g. x1 ∝ f †σ, the symbolic operator B
does not carry a dagger, whereas the concrete operator, say x1, may have one.

For any given observable, we can use (7.3) to formally express the time-dependence as

C(t) = xTh(t). (7.4)

Given that only the vector h(t) is time-dependent, we need to determine its time-
dependence first. Its dynamics is governed by (3.64) and the formal solution reads

h(t) = eiMth(0). (7.5)

In a next step, we insert equation (7.5) into (7.4) which leads us to the general time-
dependence of an observable and its Hermitian conjugate given by

C(t) = xT eiMtec (7.6a)
C†(t) = eT

c e
−iMtx†. (7.6b)

Here, the column vector x† consists of all Hermitian conjugates and is defined using

x† :=
(
x†1, x†2, x†3, . . . , x†m

)T
. (7.7)

Moreover, we used an abbreviation in equation (7.6) to denote the initial conditions of
the system. Since the Heisenberg operator C(t) equals the Schrödinger operator C at the
time t = 0 we can use the unit vector into the corresponding direction as initial condition

h(0) = ec. (7.8)

Thus, the vector ec carries zeros everywhere except for the entry at the index of the basis
operator C. Then, the retarded Green’s function in the time domain can be determined
by inserting equation (7.6) into (7.2). Eventually, this results in

Gret
A†B(t) = −ie

T
Ae

−iMt
〈{

x†, B
}〉

. (7.9)

Far more often than in the time-dependent Green’s function (7.9), however, one is
interested in the frequency-dependent Green’s function. We take this into account and
Fourier transform (7.9) accordingly. Finally, this leads to

Gret
A†B(ω) = −i

∫ ∞

0
eT
Ae

−i(M−ω−i0+)t
〈{

x†, B
}〉

dt (7.10a)

= eT
AR
〈{

x†, B
}〉

. (7.10b)

Note that we introduced a mathematically necessary convergence generating summand
here with the substitution ω → ω+i0+. This summand represents an analytic continuation
of the retarded Green’s function on the upper half-plane of the complex numbers C and
is a shorthand for the limit

ω + i0+ := lim
δ→0+

ω + iδ. (7.11)
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7.1 Green’s functions in the iEoM framework

To avoid a potentially cumbersome notation in the following, from now on we exclusively
refer to ω, but implicitly always mean a frequency with an additional infinitesimally
small but finite positive imaginary part δ in the context of a Green’s function.

The matrix R that occurs in (7.10b) is called the resolvent of the system and reads

R :=
1

ω −M
. (7.12)

In addition, a vector of expectation values appears both in (7.9) and (7.10). For this,
the operator B is anticommuted with the entire Hermitian conjugate of the basis, i.e. x†.
Henceforth, we will refer to this vector by means of the abbreviation

pB :=
〈{

x†, B
}〉

. (7.13)

Depending on the size and design of the operator basis, the occurrence of the vector
given in equation (7.13) may lead to a self-consistency problem. What is the cause of
this? In fact, expectation values and Green’s functions are always related. For in-depth
details, we refer in particular to Ref. [248]. For the sake of brevity, we recapitulate the
most important relations without further derivation in the following.

For each Green’s function there is a spectral density AA†B (ω). In the case of the
retarded one, it is directly proportional to the corresponding imaginary part and given by

AA†B (ω) = − 1

π
Im
[
Gret

A†B(ω)
]
. (7.14)

The inverse route is also feasible. For instance, the retarded Green’s function reads

Gret
A†B(ω) =

∫
R

AA†B (x)

ω − x
dx (7.15)

in terms of the spectral density. Thus, according to (7.14) and (7.15), the calculation
of the Green’s function and its spectral density are equivalent. Furthermore, it can be
shown that any expectation value of any interacting system can be derived directly from
the spectral density and the associated distribution, i.e. the Fermi-Dirac distribution in
the case of the SIAM. The respective relation [248] reads〈

BA†
〉
=

∫
R

AA†B (ω)

exp (βω) + 1
dω . (7.16)

Given this advantage as well as the fact that typically the spectral density allows for a
more intuitive access to the underlying physics, we will focus exclusively on the calculation
of the spectral density in the following sections.

A minor downside of this approach is that each expectation value depends on the
spectral density according to equation (7.16), which in turn depends on the Green’s
function according to equation (7.14). The Green’s function, however, requires all of
the expectation values comprised in (7.13) due to (7.10b). The resulting self-consistency
problem can therefore only be solved iteratively in the great majority of cases. Typically,
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7 Dynamics in the single impurity Anderson model

more than only one expectation value is needed in the process. For an expectation
value vector 〈s〉 to be determined one starts from sensibly chosen initial values 〈s〉(0)

and alternately calculates the associated set of spectral densities A(i)
k and the resulting

expectation values 〈s〉(i+1). We denote this process by means of the iterative scheme

〈s〉(0) → A
(1)
k → 〈s〉

(1) → . . .→ 〈s〉(f) . (7.17)

The terminating condition after the f -th step is fulfilled if the deviation of the last two
iterative steps is below a chosen error tolerance ε. For this purpose, one can choose any
metrics. For instance, one may opt for the Euclidean norm leading to∥∥∥〈s〉(f) − 〈s〉(f−1)

∥∥∥
2
< ε. (7.18)

7.2 Application to the SIAM
Following the advocated approach of section 7.1, we now turn to the actual goal, the
theoretical description of the single-particle Green’s function and the corresponding
spectral density of the impurity electrons, respectively. The necessary steps consist of
the construction of a problem-adapted, orthonormal operator basis, the determination
of the resolvent of the system as well as the identification of all necessary expectation
value vectors pi and their individual components. We carry out these three steps in the
following sections 7.2.1 to 7.2.3 and propose an algorithmic implementation in section 7.3.

7.2.1 Operator basis
In order to construct a suitable operator basis, one usually starts from equation (3.60).
One begins with the operator one is interested in and commutates it and all contributions
arising in the course of the repeated commutations repetitively with the complete
Hamiltonian of the system. In our case this is the Hamiltonian described by (2.33).
Since we are interested in the single-particle Green’s function (7.1), it suggests itself to
choose f †σ as the starting operator for the iteration.

Nevertheless, the standard approach of repeated commutations of the basis with HSIAM
is tedious and error-prone. Instead, we propose a different, more intuitive approach.
Therefore, we illustrate the effect that a commutation of a given operator with certain
contributions of the Hamiltonian can have. In this context, it is noteworthy that only the
contributions HImp and HHyb possess parts that are not diagonal in the given basis. They
either punish DOs at the impurity site by an additional energy U or favour a hopping
between the impurity site and the bath sites which is proportional to the transition
amplitude Vk. The actual effect of a commutation with these two contributions can be
depicted illustratively by two elementary processes. It can be noticed that

(1) Un̂↑n̂↓ extends the operator basis by means of f †σ → f †σn̂σ and fσ → −fσn̂σ,

(2) HHyb exchanges one impurity and one bath electron via f (†)σ ←→ c
(†)
σ .
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7.2 Application to the SIAM

All other parts of the Hamiltonian do not have any relevant influence on the design of
an operator basis and will therefore not be considered below. Starting from the first
operator of the basis, the creation operator f †σ at the site of the impurity electron, we
iteratively apply the above two processes. Given that the two elementary processes
specify the action of the Hamiltonian on one operator in a potentially larger product, it
is mandatory in such cases to apply the product rule to each of the operators.

As an example for the suggested approach, we carry out the basis creation explicitly
in the following. The first commutation is decomposed into both processes and yields

f †σ
(1)−−→ f †σf

†
σfσ (7.19a)

f †σ
(2)−−→ c†kσ. (7.19b)

Note that the prefactors that may arise during a commutation, i.e. in the context of
an application of the processes (1) and (2) in (7.19), are ignored in this representation
entirely because they are of no further relevance to the actual basis operators.

In a second commutation, we only need to consider the operator derived in (7.19a) since
the operator c†kσ is closed under repeated application of the two elementary processes.
Even for the operator (7.19a), merely the process (2) has a non-vanishing effect with
respect to newly created basis operators. All resulting new operators read

f †σf
†
σfσ

(2)−−→ c†kσn̂σ (7.20a)
(2)−−→ f †σc

†
kσfσ (7.20b)

(2)−−→ f †σf
†
σckσ. (7.20c)

The operators created as part of (7.20) are closed under repeated application of the
process (1) and only the process (2) needs to be executed. For the sake of brevity, we
refrain from carrying out all further commutations at this point. Completely analogous to
the previous steps (7.19) and (7.20), one more step is performed. Hence, we construct the
resulting basis of order O(V 3) in such a way that it is closed under repeated applications
of process (1). In other words, the resulting basis is exact in U excluding O(V 3) terms.

In fact, however, we are not yet finished by performing the mere commutation. In
accordance with (3.66) we orthonormalise all the basis operators with respect to the
Frobenius scalar product. The resulting twelve families of basis operators are stated
below. At the level of (7.19) and (7.20), i.e. up to the order O(V 2), we obtain the
following six families

W1 =
√
2f †σ (7.21a)

W2 =
(√

2
)3
f †σ

(
n̂σ −

1

2

)
(7.21b)

W3(k) =
√
2c†kσ (7.21c)

W4(k) =
(√

2
)3
c†kσ

(
n̂σ −

1

2

)
(7.21d)
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7 Dynamics in the single impurity Anderson model

W5(k) =
(√

2
)3
f †σc

†
kσfσ (7.21e)

W6(k) =
(√

2
)3
f †σf

†
σckσ. (7.21f)

Another commutation of the basis (7.21) yields six more families. Note that these new
families now possess an increased local support. While at most one bath operator has
occurred in (7.21) so far, the following families include effects on up to two bath sites

W7(k, l) =
(√

2
)3
c†kσc

†
lσfσ (7.22a)

W8(k, l) =
(√

2
)3
c†kσf

†
σclσ (7.22b)

W9(k, l) =
(√

2
)3
f †σ

(
c†kσclσ −

1

2
δkl

)
(7.22c)

W10(k, l) =
(√

2
)5
c†kσc

†
lσfσ

(
n̂σ −

1

2

)
(7.22d)

W11(k, l) =
(√

2
)5
c†kσclσf

†
σ

(
n̂σ −

1

2

)
(7.22e)

W12(k, l) =
(√

2
)5(

c†kσclσ −
1

2
δkl

)
f †σ

(
n̂σ −

1

2

)
. (7.22f)

Throughout the notation of (7.21) and (7.22), the functional dependence on the indices
represents the up to two bath sites on which the corresponding operator has an effect.
Note that the overall basis size for a bath of N sites is 6N2 + 4N + 2 ∈ O(N2). It is
instructive to contrast this basis with the one for the full FHM presented in section 5.4.3.

7.2.2 Obtaining the resolvent
The resolvent R of the system is essentially constructed by an inversion of the Liouville
matrix, cf. equation (7.12). Consequently, the main task is to work out the corresponding
matrix elements Mij of the Liouville matrix. Due to the symmetry (3.69), only those
matrix elements belonging to the upper or lower triangular matrix of M have to be
determined. For the operator basis given in equations (7.21) and (7.22), there is a total
of 78 potential matrix elements to be calculated. For the sake of brevity, we refrain from
reproducing the extensive calculations here and only provide the actual results, which
are to be presented in appendix C.1.

Nevertheless, it might be an instructive example for understanding the necessary
procedure to take a closer look at the first scalar product. Prior to the calculation, it
is helpful to recall a central concept: If A1 and A2 are bounded operators and act on
separable Hilbert spaces H1 and H2 a trace in H = H1 ⊗H2 can be split according to

Tr (A1A2) = Tr1 (A1)Tr2 (A2) . (7.23)

Here, Trm(.) denotes a trace over the partial Hilbert space Hm. The equivalence (7.23)
implies that we can always decompose a trace of a product of operators that act on
different sites. We will make use of this below.
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7.2 Application to the SIAM

According to (3.67) the scalar product, which is to be evaluated in the following, reads

M11 = (W1|L(W1)) . (7.24)

Naturally, the commutation with the Hamiltonian of the system that occurs here generates
operators that may have an overlap with W1, but do not necessarily have to possess
one. Consequently, we examine the part of the dynamics of W1 that resides in the
corresponding, reduced subspace. The result of the commutation is

L(W1) = [HSIAM,W1] (7.25a)

=
√
2ε0f

†
σ +
√
2Uf †σn̂σ +

√
2
∑
k

Vkc
†
kσ. (7.25b)

In a next step, we are now going to evaluate the actual scalar product. Possible pairings
are indicated by square brackets above the operators. Note that scalar products of
operators that act on separate partial Hilbert spaces can be decomposed according to
equation (7.23). Here, the entire scalar product is zero if at least one of its factors
vanishes. Eventually, we obtain for the respective matrix element M11 the result

M11 = 2ε0N Tr
(
fσf

†
σ

)
+ 2UN Tr

(
fσf

†
σf

†
σfσ

)
+ 2N

∑
k

Vk Tr
(
fσc

†
kσ

)
(7.26a)

= ε0 +
U

2
+ 2N

∑
k

Vk Tr
(
fσ

)
Tr
(
c†kσ

)
︸ ︷︷ ︸

=0

(7.26b)

= ε0 +
U

2
. (7.26c)

Here, the shorthand N is used to refer to the normalisation in accordance with (3.68).
Completely analogous to the above calculation, every appearing scalar product can be
determined. In some cases, scalar products arise that are only different from zero under
certain conditions, for example in the case of the scalar product (C.3a). Clearly, this is
due to the fact that operators at different bath sites have no influence on each other.

7.2.3 Self-consistency of expectation values
According to equation (7.1) and (7.9), the first expectation value vector to be calculated
is the one that couples the entire Hermitian conjugate of the operator basis x† to the
creation operator f †σ of the impurity electron. For consistency, we will use operators
of the basis only, i.e. we choose W1 as the rescaled equivalent of f †σ. This leads to the
expectation value vector

p1 :=
〈{

x†,W1

}〉
. (7.27)

For reasons of brevity, we provide the respective entries of this vector in appendix C.2.
The next step would be the self-consistent calculation of all expectation values occurring
in (7.27). In order to achieve this, it is necessary to decompose each of the expectation
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7 Dynamics in the single impurity Anderson model

values according to (7.16) into a product of two operators, a basis operator B and
the Hermitian conjugate of a basis operator, i.e. A†. The order of the operators in all
expectation values in appendix C.2 is chosen such that the first elementary fermionic
creation operator represents the operator B, and the subsequent operators form the
operator A†. Using the example of the expectation value (C.15f), this means

p1,10 = −8
〈
f †σf

†
σclσckσ

〉
(7.28a)

= −2
〈
W1W

†
7 (k, l)

〉
. (7.28b)

In this case, we identify B = W1 and A† = W †
7 (k, l). Due to (7.13) and (7.27), this

expectation value consequently does not generate a new vector p. The situation is
different with regard to the expectation value (C.15e). Indeed, this expectation value
imposes the self-consistent computation of a new expectation value vector by

p1,9 = 4
〈
c†lσckσ

〉
− 2δkl (7.29a)

= 2
〈
W3(l)W

†
3 (k)

〉
− 2δkl. (7.29b)

Again, the entries of this new vector are provided in appendix C.2. They are defined by

p3 :=
〈{

x†,W3(r)
}〉

. (7.30)

Note that, thus, nearly all expectation values can be composed of the expectation values〈
W1W

†
1

〉
,
〈
W3(l)W

†
3 (k)

〉
(7.31)

as well as of the following expectation values and their Hermitian conjugates, respectively,〈
W1W

†
3 (k)

〉
,
〈
W1W

†
5 (l)

〉
,
〈
W1W

†
6 (l)

〉
,
〈
W1W

†
7 (k, l)

〉
,
〈
W1W

†
8 (k, l)

〉
. (7.32)

The only exception to this is (C.15i) due to its spin orientation, which is identical for all
operators. Since no operator of the basis has exclusively the same spin orientation, no
A† can be chosen in this case. Thus, the calculation of the expectation value (C.15i) has
to be done by means of a Wick decomposition into smaller expectation values [249, 250].

7.3 Proposals for an algorithmic implementation
From a purely theoretical perspective, the task of calculating the spectral density (7.14)
has been completely solved by the procedure presented in the former section 7.2 and
the results given in appendix C. We conclude this chapter with an outlook concerning a
possible future practical implementation of our theoretical results. For this purpose, we
use existing ideas such as the logarithmic discretisation of the NRG, propose reasonable
starting conditions for the iteration and develop a complete iterative scheme for the
determination of expectation values of the desired vector pB.
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7.3 Proposals for an algorithmic implementation

7.3.1 Logarithmic discretisation
A major problem in the numerical analysis of the SIAM and its spectral density is to
achieve a sufficiently high energy resolution while keeping the numerical effort as low as
possible. On the one hand, some highly fine energetic structures like the Kondo peak
have to be resolved, on the other hand, there are the energetically rather broad Hubbard
satellites. In particular, this means that an adaptive energy discretisation is necessary
that represents a variety of energy scales using only a small finite number of actual levels.

This problem is by no means new. Already in the mid-1970s, Wilson proposed to
incorporate as many energy scales as possible into the problem in the scope of his NRG
theory [251]. This is possible in particular by selecting a logarithmic discretisation for
the bath electrons instead of equidistant energy levels. Analogously, we suggest to resort
to this fundamental concept for any actual numerical implementation. The following
motivation of the corresponding logarithmic discretisation is based on Ref. [83].

Figure 7.1: A logarithmic discretisation of the bath energies εk as given by (7.34)
for an arbitrary |Λ| > 1. The intervals become smaller towards the middle, so
that a greater emergence of bath energies around ε = 0 is guaranteed. This is
particularly advantageous for the resolution of fine energetic structures, cf. Ref. [83].

Assume that the spectral function has the support D = [−D;D], cf. figure 7.1 for the
normalised case D = 1. Note that any arbitrary spectral function on a different support
can be mapped to D by a linear transformation. A similar procedure has been carried
out in section 3.3.2 for Hamiltonians. Then, the challenge is to divide the interval D into
a set of non-overlapping subintervals such that as many energy scales as possible are
represented. Hence, we choose a parameter |Λ| > 1 and the logarithmic sequence

c±n = ±DΛ−n with n ∈ N0. (7.33)

Arranged in ascending order, the elements (7.33) define the interval boundaries of all
subintervals. In each of these subintervals we choose exactly one representative energy
level εk of the bath. For this, we pick the midpoint of the respective interval by using

ε±k = ±DΛ−k + Λ−(k−1)

2
with Λ−N/2 = 0 and k = 1, 2, . . . ,N/2. (7.34)

Here, we assume a finite bath of N sites which we need to account for by introducing a
manual cut-off around zero. This is necessary to obtain well-defined interval boundaries
for the two innermost intervals. Furthermore, note that (7.34) implies the symmetry

εk = −ε−k. (7.35)
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7 Dynamics in the single impurity Anderson model

We choose the transition amplitudes Vk in such a way that the limit of an infinite support,
i.e. the so-called wide-band limit |D| → ∞, is still meaningful. Therefore, we resort to

V±k =
V√
2

∣∣∣Λ−(k−1) − Λ−k
∣∣∣ 12 . (7.36)

Thus, it is ensured that the resonance width of the impurity electrons remains finite for
vanishing interactions, i.e. for U = 0. A physical motivation may be found in Ref. [252].

7.3.2 Initial conditions

For starting the iterative process (7.17), it is necessary to choose an initial vector 〈s〉(0).
In principle, it is possible to choose any vector, but for reasons of convergence it is
advisable to start close to the expected numerical values. For this reason, one can use
the so-called atomic picture, in which the isolated interacting impurity electron is chosen
as the starting point and the hybridisation by surrounding bath electrons is switched on
gradually [252]. Accordingly, we calculate the required expectation values analytically
for the boundary case Vk = 0. Using n as the filling of the system we obtain〈

f †σfσ

〉
= n (7.37a)〈

c†kσcjσ

〉
=

{
δkj if k ≤ kF

0 otherwise
(7.37b)〈

f †σckσ

〉
= 0. (7.37c)

In particular, equation (7.37c) reflects the fact that for Vk = 0 there can be no correlation
at all between the impurity site and the bath. Similarly, all initial expectation values of
quadrilinear order in appendix C.2 have to vanish. Furthermore, all bilinear expectation
values whose operators have opposite spin orientations disappear.

7.3.3 Iterative scheme

The actual iterative scheme can be significantly speeded up in advance by means of
analytical simplifications. For this purpose, we rewrite the main part of the iteration (7.16)
in a smart way and assume that a diagonalisation of the Liouville matrix M has taken
place such that the relation

Mk = mkk (7.38)

holds. We recall that all frequencies ω = ξ + iδ of the resolvent R have an infinitesimally
small but finite positive imaginary part according to (7.11). Hence, the resolvent (7.12)
as denoted in the eigenbasis of the Liouville matrix (7.38) reads

R = lim
δ→0+

∑
k

1

ξ + iδ −mk
kk†. (7.39)
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In order to execute the limit arising in equation (7.39) we resort to the Dirac identity

lim
δ→0+

1

x+ iδ
= P

[
1

x

]
− iπδ(x) (7.40)

and identify x := ξ −mk. Thus, the resolvent (7.39) may be rewritten and split into a
real and an imaginary part of which only the latter one is needed due to (7.14). It reads

ImR = −π
∑
k

δ(ξ −mk)kk†. (7.41)

By means of inserting (7.41) into equation (7.10b), we obtain the spectral density as

AA†B (ξ) =
∑
k

δ(ξ −mk)eT
Akk†pB. (7.42)

Due to the fact that all matrix elements of the Hamiltonian (2.33) are real-valued and that
a time reversal invariance is present, all expectation values contained in the expectation
value vector (7.13) have to be real as well. Eventually, we can insert equation (7.10b),
(7.14) and (7.41) into equation (7.16) in order to obtain the final iteration scheme〈

BA†
〉
=
∑
k

∫
R

eT
Akk†pB

exp(βξ) + 1
δ(ξ −mk) dξ (7.43a)

=
∑
k

eT
Ak

exp(βmk) + 1︸ ︷︷ ︸
=:wAk

k†pB. (7.43b)

Note that the first part of (7.43b) represents the rescaled Fermi-Dirac weight wAk for
the operator A† and the energy eigenvalue mk. These weights only have to be evaluated
once per iteration and can be reused in each step given by the iteration scheme

〈
BA†

〉
=
∑
k

wAk k†pB. (7.44)

By means of the iterative algorithm which is given by equation (7.44) it is possible to
gradually determine approximations to the expectation value vector pB. As soon as
a sufficiently good approximation for pB is achieved, the actually wanted one-particle
Green’s function, cf. equation (7.10b), can be reliably determined numerically.

We are confident that a forthcoming practical implementation of the theoretical
concepts proposed in this chapter can serve as a novel methodological approach and
semi-analytical complement to existing numerical methods such as NRG. The main
strengths of this iEoM approach lie in its polynomially instead of exponentially increasing
numerical effort as well as in the possibility to adapt operator bases to the physical
regimes to be considered. This will not only help to analyse the dynamics of the SIAM
but also to describe the behaviour of a variety of strongly-correlated systems.
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8 Summary

If one wanted to summarise the content of this work with just one word, it would probably
be interaction. Nothing poses as great a challenge to current research on solids as even
the smallest interactions and the resulting correlations of the constituents. If particles
no longer move undisturbedly and independently of each other, but constantly and
drastically influence each other, remarkable collective phenomena arise. Describing the
underlying dynamics caused by the mutual influences adequately is highly non-trivial.

As one of the simplest strongly-correlated models of solid state theory, the FHM is still
far from being understood a good sixty years after its first mention in the early 1960s.
For instance, many theoretical models like the t–J model, the Heisenberg model or
the SIAM, which determine the ongoing discourse in highly relevant topics such as
Mott metal-insulator transitions, high-temperature superconductivity, quantum dots
or nanoelectronics, are limiting cases of the FHM. We examined and discussed some
particularly intriguing facets of the FHM and its related models in this work.

Conceptually, we resorted to well-known and widely accepted methods such as ED
and CET to compute the dynamics of observables and we made use of comparatively
newer ones like KPM and TPQS to describe the thermal behaviour of systems. We
implemented these approaches with state-of-the-art techniques on high-performance
cluster systems. For the lesser-common method of iEoM, we additionally proposed
methodological improvements and novel concepts with respect to operator unitarity and
outlined the rigorous derivation of Green’s functions in approximated operator subspaces.
The recourse to so many different methodological approaches was primarily due to the
variety of physical topics and technical requirements in the scope of the present work.

Besides the efficient implementation as well as the methodological enhancement of
methods, this work essentially consists of three thematic sections. In the first major section
we considered quenches, in particular the abrupt change of global system parameters.
For this purpose, we used the FHM on one-dimensional periodic chains, on arbitrary
topologies in the form of finite clusters and on infinite-range graphs. By comparing the
equilibrated systems and the thermal predictions for the systems, we were able to make
substantial contributions to the understanding of the dynamics of a system after sudden
external excitations. In particular, by choosing an initial non-product state and thus
deliberately violating assumptions made in previous studies on equilibration, we were
able to show that equilibration is an even more generic property of excited quantum
systems than previously predicted. Moreover, we found strong indications that the
intensity of fluctuations decreases with the connectivity of a system, i.e. the number of
connected constituents. While this paradigm is widely accepted in equilibrium physics,
we were also able to provide evidence for its validity in non-equilibrium regimes by
using infinite-range graphs. By studying thermalisation in integrable and non-integrable
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systems, we contributed to another highly debated topic in non-equilibrium physics. In
this way, we confirmed that even in closed quantum systems the amount of integrals of
motion present has a significant influence on its dynamics. In our studies, this became
evident in the fact that integrable systems showed no signs of thermalisation, whereas
generic, non-integrable systems evolved towards thermal equilibrium.

For the quenched one-dimensional FHM with periodic boundary conditions, we suc-
ceeded in achieving longer simulation times than they were possible in previous studies
thanks to an improvement of the methodological approach. We achieved this by improving
the iEoM in terms of their unitarity-preserving dynamics. With the help of a new scalar
product and a problem-adapted operator basis, we could describe processes on up to three
lattice sites in an exact manner and achieve excellent agreement with highly accurate
reference results, especially for strong quenches. Due to these longer simulation times,
we were able to partially falsify previous assumptions, especially on a formerly presumed
dynamical phase transition for the jump at the Fermi surface. Previous studies assumed
that there was a sharp change in the behaviour of the jump depending on the interaction
strength of the quench [113, 117, 164, 165]: for weak quenches, weak wiggling should
occur, for strong quenches, collapse-and-revival behaviour should be present. Contrary
to these assumptions, we found signs of a smooth crossover instead of a dynamical phase
transition between the regimes of weak and strong quenches. The spectral features lose
or gain weight, but no sharp cut in the frequency spectrum is to be observed.

In the second major part of the work, we dealt with the FHM in the limiting case
of strong interactions. This situation, also called t–J model in the literature, is of
particular importance in the current research on high-temperature superconductivity
and on ultra-cold atoms. For the systematic description of the charge and spin degrees
of freedom in the t–J model, we used a perturbative model up to second order in the
parameter t0/U in which spin-dependent and spin-independent hopping and spin-spin
interactions are separated from each other. This model was derived in the literature with
a CUT [219]. Using CET, we analysed the spectral densities of single hole excitations
as the fundamental quantities for understanding the dynamics. Our own analytical
estimates as well as the comparison with externally provided iEoM results revealed a
high accuracy of the chosen approach. We could demonstrate that the spectral densities
for one-dimensional chains and two-dimensional square lattices differ significantly from
each other. In the first case, strong influences of the individual processes and of the
spin-charge separation on the spectrum are evident, thus indicating a significant change
of the underlying dynamics once more processes are turned on. Expected van Hove
singularities appear in the outer regions of the spectrum. In the two-dimensional case,
however, no spin-charge separation is present and the spectrum is clearly less influenced
by the different processes, has an almost elliptical or constant structure and is featureless.
Both spectra have in common that the local support increases with the addition of further
dynamical processes. The externally provided iEoM results even hint at an unbounded
local support as soon as spin-spin interactions are included in the dynamics.

If one excludes all charge degrees of freedom in the half-filled t–J model and only permits
spin-spin interactions, one obtains the Heisenberg model. For a better understanding of
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information loss and, thus, decoherence between the individual spins in the system, we
simulated the Heisenberg model on different topologies, with an increasing coordination
number in each case. Since for an incrementing amount of interacting spins the importance
of each spin becomes successively smaller, it is reasonable to assume that the effect of
many spins can be described by a single mean field without significant loss of accuracy.
This is the basic idea of the self-consistent spinDMFT, which we could corroborate
by numerically exact CET reference results and extrapolations. While pronounced
autocorrelations and a correlation revival were detectable for one-dimensional chains even
on medium time scales, the amount of correlations decreased gradually with increasing
coordination number. Already on two-dimensional lattices, less intense autocorrelations
were observed. By systematically extrapolating the results from infinite-range clusters,
i.e. finite clusters with the maximum possible coordination number, it was feasible to
capture maximally dense spin systems. The agreement with the externally provided
results of the spinDMFT was remarkably good and renders the spinDMFT an option for
capturing the dynamics of unordered spin systems with large coordination numbers.

The third section was mainly of methodological nature. We described a novel method
for the self-consistent computation of Green’s functions in approximate operator subspaces.
For this purpose, we employed basic ideas of the unitarity-preserving iEoM approach and
motivated that the relevant spectral densities in interacting systems can be determined
iteratively starting from arbitrary initial values of all expectation values associated with
them. We illustrated the procedure using the example of the SIAM. To this end, we
derived an operator basis that is exact for all processes on up to two bath sites, calculated
the resolvent and described the operator structure of the associated expectation value
vectors. Our expectation is that the presented technique can serve as an efficient and
easier-to-implement semi-analytical complement to existing numerical methods such as
NRG and that already small iEoM operator bases are sufficient to describe physical
phenomena such as the Kondo physics, which is an integral part of the SIAM.

Even though we addressed many relevant questions of the FHM and contributed to
their clarification, each solved question raises new ones: How many integrals of motion
are necessary to prevent thermalisation under realistic circumstances? What are the time
scales on which equilibration and thermalisation take place? What determines them?
How can the phenomenologically large differences between the one- and two-dimensional
t–J model be explained, apart from spin-charge separation and potential integrability?
What is the cause of a possibly unbounded local support as soon as spin-spin interaction is
added? Moreover, there remains potential for methodological improvement. For example,
it would be desirable to recognise all symmetries of a cluster in order to facilitate CET
calculations for even larger systems. Furthermore, it would be helpful to enhance the
process of creating an iEoM basis and to define metrics that exclude irrelevant operators
from consideration. This would allow for using more relevant and accurate operator
bases, which would enable longer simulation times and treating more subtle effects.

The outlook given above highlights only a handful of particularly interesting follow-up
questions and does not even claim to be comprehensive. Rather, it is intended to inspire
future work and to emphasise: Research on the FHM is a constant source of fascination.
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A Implementations

A.1 Computational improvements
In the numerical treatment of the FHM, the effective storage of the Hamiltonian matrix is
of particular importance. In this, two aspects are involved which are especially relevant.

First, the storage scheme of the Hamiltonian can be optimised. This is due to the
fact that while the dimension of the Hamiltonian matrix itself grows exponentially fast
the number of non-zero elements in each row and column grows noticeably slower due
to the generally small number of available hopping processes. For example, in the case
of a one-dimensional lattice with nearest-neighbour hopping, the number of non-zero
elements grows linearly with the number of lattice sites N . This implies a high sparsity
of the matrix making a sparse storage format a sensible choice.

Second, the matrix does not need to be saved as a whole [253]. Since particles with
spin σ and the opposite spin σ are independent of each other the hopping part H0 as
given by (2.1a) can be decomposed into the two matrices Hσ, σ ∈ {↓, ↑}, by

H0 = (H↓ ⊗ 1↑)⊕ (1↓ ⊗H↑) . (A.1)

For each Hσ, only the upper triangular matrix needs to be stored due to symmetry.
Moreover, the interaction matrix Hint is diagonal in real space according to (2.1b).
Consequently, only its main diagonal needs to be stored, e.g. by means of a one-dimensional
array. Applying Hint to a state is a mere vector-vector multiplication then.

Unfortunately, with this approach calculating the effect of Hσ on a state is no matrix-
vector multiplication anymore. Let mσ :=dim (Hσ) be the dimension of the Hilbert space
of spin σ particles in accordance with equation (3.8). Then, each state |s〉 ∈ H given by
its coefficient vector s has the structure

s =

 s0
. . .

sm↓−1

 with the components si :=

 x0
. . .

xm↑−1

 . (A.2)

The application of H0 to this state is performed according to (A.1) and, thus, becomes

H0 · s = H↓

 s0
. . .

sm↓−1

+

 H↑ · s0
. . .

H↑ · sm↓−1

 . (A.3)

A.2 Constructing the Fermi sea
As discussed in section 5.2.1, it may be necessary to determine the Fermi sea |FS〉, as
the initial state of the system, in a real space basis rather than in the eigenbasis of H0
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when performing a global parameter quench. This is especially appropriate when the
observables under consideration are themselves easier to treat in real space. We turn to
this problem below, briefly recapitulating the most important basics from section 5.2.1
and extending them to real space. Finally, we give a practical example for a concrete
application to a toy model.

Since the hopping part consists of interaction-free particles, it is an effective one-particle
problem h0 := −A(G) where A(G) denotes the adjacency matrix of the undirected
graph G describing the site topology. Hence, we can restrict all further considerations
to states consisting of only one particle and construct the full Fermi sea from the
corresponding results. Let |iσ〉 be the eigenstates of the occupation number operator
according to

n̂iσ |iσ〉 = niσ |iσ〉 with |iσ〉 := f †iσ |0〉 (A.4)

where |0〉 denotes the vacuum and let |νσ〉 be the eigenstates of h0 with the respective
energies εν . Consequently, these states obey the eigenvalue equation

h0 |νσ〉 = εν |νσ〉 . (A.5)

Therefore, in both states (A.4) and (A.5) exactly one particle with spin σ resides on
lattice site i and in state ν, respectively. The Fermi sea (5.7) can be constructed by
gradually filling the eigenstates of h0 in increasing order of the εν leading to the definition

|FS〉 :=
∏

(ν,σ)∈ I

f †νσ |0〉 =
∏

(ν,σ)∈ I

(∑
i

〈iσ|νσ〉 f †iσ

)
|0〉 . (A.6)

Here, the part in brackets describes the basis change which is necessary since all states
which are worked with are eigenstates of the occupation number operator in real space.
The index set I is chosen such that the condition εν < εF with εF being the Fermi energy
is fulfilled. This means that all states with energies below the energy threshold of the
Fermi energy are occupied with particles and all remaining states are unoccupied.

It is worthwhile to keep in mind that each state of a fixed number of n particles is an
element of the Hilbert space Hn. Consequently, this means that the new state, after f †iσ
has been applied, cannot be an element of the former Hilbert space anymore but has
to be an element of Hn+1 or the vacuum state instead. The space of a variable total
particle number is defined as the Fock space according to

F = H0 ⊕H1 ⊕H2 ⊕ … (A.7)

for which the complete orthonormal basis set is given by the many-particle eigenstates

|{nα}〉 := |n1, n2,…〉 (A.8)

defined in equation (3.9). Each of these states represents a system state in which
ni ∈ {0, 1} fermions are in the i-th one-particle state |αi〉. In our practical application,
cf. equation (A.6), this means that we start from the vacuum state |0〉 of H0 and end
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A.2 Constructing the Fermi sea

up with the resulting Fermi sea |FS〉 ∈ Hm for a total number of m particles. On a
finite lattice of N sites, the number of basis states with a fixed number of Nσ particles of
spin σ in each intermediate Hilbert space Hj with j = N↓ +N↑ equals

dim(Hj) =

(
N

N↓

)
·
(
N

N↑

)
(A.9)

which is the direct combinatorical result of distributing the two independent kinds of
particles over all lattice sites as described by equation (3.8) in section 3.1.1.

Example

In order to see the practical implications of equation (A.6) we resort to a toy model
of a one-dimensional lattice without periodic boundary conditions, N = 3 sites and a
constant hopping strength of J = 1. In the occupation number basis the Hamiltonian
H0 can be easily derived by negating the corresponding adjacency matrix of the graph
representing the lattice which means

H0 = −

 0 1 0
1 0 1
0 1 0

 . (A.10)

Constructing the Fermi sea can be performed independently for the two spin species
which then can be combined by means of a Kronecker product using

|FS〉 = |FS〉↓ ⊗ |FS〉↑ . (A.11)

For this reason, we will drop the subscript σ from now on and exemplarily construct the
Fermi sea for one arbitrary spin orientation with a filling of 2/3. For this, we have to
identify which states are to be filled and in which order. This requires a full diagonalisation
of the hopping matrix (A.10) resulting in the eigenenergies

ε1 = −
√
2, ε2 = 0, ε3 =

√
2 (A.12)

with their individual corresponding eigenvectors given by

v1 =
(
1,
√
2, 1
)T

, v2 = (−1, 0, 1)T , v3 =
(
1,−
√
2, 1
)T

. (A.13)

For clarity and to be able to differentiate between both bases |ν〉 and |i〉, we will use

d†ν :=
∑
i

vν,if
†
i (A.14)
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to denote a creation operator in the eigenbasis of H0. Hence, the first intermediate state
with one particle can be constructed1 as the linear combination

|I〉 = d†1 |0〉 = 1 · |001〉+
√
2 · |010〉+ 1 · |100〉 . (A.15)

To obtain the desired filling a second particle has to be inserted into the system in state
|ν = 2〉 by applying the respective creation operator d†2 which leads to

|FS〉σ = d†2 |I〉 = (−1f †1 + f †3)
(
|001〉+

√
2 |010〉+ |100〉

)
(A.16a)

=
√
2 |011〉+ |101〉+ |101〉+

√
2 |110〉 (A.16b)

=
√
2 |011〉+ 2 |101〉+

√
2 |110〉 . (A.16c)

Note that the signs have to be adjusted whenever a particle hops over an already occupied
state to comply with the fermionic algebra. For didactic purposes, the states are not
normalised in the process of repeated particle creations. In real applications, however,
this normalisation has to be performed leading to the Fermi sea coefficient vector with
respect to the basis states of H2 given in (A.16c) as

vFS = (1/2, 1/
√
2, 1/2)T . (A.17)

The energy of this state is the sum of the one-particle energies of the occupied levels

E =
∑
εi<εF

εi (A.18)

which equals ε1 + ε2 = −
√
2 in the above case of the toy model example. Obviously, this

result could have been obtained as well by calculating the expectation value of the kinetic
Hamiltonian H

(2)
0 in the two-particle subspace with respect to vFS

〈FS|H(2)
0 |FS〉 = −v†

FS

 0 1 0
1 0 1
0 1 0

vFS = −
√
2. (A.19)

In the possible case of a degeneracy at the level of the Fermi energy all combinatorically
possible results {|FS〉} have to be computed and simulated individually. The final physical
outcome can be obtained by averaging over all simulation results.

1A possibility to implement this process in a fast way for the binary basis described in section 3.1.1 is
by using bitmasks. For a creation operator in real space f†

i , two masks are created with the first being
the operator itself as Ci = 0 . . . 0︸ ︷︷ ︸

N−i

1 0 . . . 0︸ ︷︷ ︸
i−1

and the second being the mask Mi = 1 . . . 1︸ ︷︷ ︸
N−i

0 . . . 0︸ ︷︷ ︸
i

to obtain

the global sign of the final state. Applying f†
i to a state S equals the following process: if Ci ∧ S = ∅,

the site i is unoccupied and a particle can be created. It can be created using Ci ∨ S and the global
sign (−1)p can be deduced by applying Mi ∧ S =: P with p = popcount(P ), i.e. the total number of
bits set to 1 in P .
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C SIAM

C.1 Scalar products
The scalar products listed below correspond to all possible non-vanishing combina-
tions of the operators (7.21) and (7.22). Since the Liouville matrix is Hermitian, cf.
equations (3.67) and (3.69), not all of these combinations have to be considered and

(Aj |L(Ai)) = (Ai|L(Aj))
∗ (C.0)

holds. As a consequence, only about half of all possible scalar products are specified here.
The indices of an operator denote the bath sites on which it acts. Eventually, we obtain

W1 (W1 | L(W1)) = ε0 +
U

2
(C.1a)

(W2 | L(W1)) =
U

2
(C.1b)

(W3(c) | L(W1)) = Vc (C.1c)

W2 (W2 | L(W2)) = ε0 +
U

2
(C.2a)(

W4/5(c)
∣∣L(W2)

)
= Vc (C.2b)

(W6(c) | L(W2)) = −Vc (C.2c)

W3(k) (W3(c) | L(W3(k))) = εk δck (C.3a)

W4(k) (W4(c) | L(W4(k))) = εk δck (C.4a)
(W7(c, d) | L(W4(k))) = Vd δck (C.4b)
(W8(c, d) | L(W4(k))) = −Vd δck (C.4c)

W5(k) (W5(c) | L(W5(k))) = εk δck (C.5a)
(W7(c, d) | L(W5(k))) = Vc δdk (C.5b)
(W9(c, d) | L(W5(k))) = −Vd δck (C.5c)

W6(k) (W6(c) | L(W6(k))) = (2ε0 − εk + U) δck (C.6a)(
W8/9(c, d)

∣∣L(W6(k))
)
= Vc δdk (C.6b)
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W7(k, l) (W7(c, d) | L(W7(k, l))) =

(
−ε0 + εk + εl −

U

2

)
δck δdl (C.7a)

(W10(c, d) | L(W7(k, l))) = −
U

2
δck δdl (C.7b)

W8(k, l) (W8(c, d) | L(W8(k, l))) =

(
ε0 + εk − εl +

U

2

)
δck δdl (C.8a)

(W11(c, d) | L(W8(k, l))) = −
U

2
δck δdl (C.8b)

W9(k, l) (W9(c, d) | L(W9(k, l))) =

(
ε0 + εk − εl +

U

2

)
δck δdl (C.9a)

(W12(c, d) | L(W9(k, l))) =
U

2
δck δdl (C.9b)

W10(k, l) (W10(c, d) | L(W10(k, l))) =

(
−ε0 + εk + εl −

U

2

)
δck δdl (C.10a)

W11(k, l) (W11(c, d) | L(W11(k, l))) =

(
ε0 + εk − εl +

U

2

)
δck δdl (C.11a)

W12(k, l) (W12(c, d) | L(W12(k, l))) =

(
ε0 + εk − εl +

U

2

)
δck δdl. (C.12a)

C.2 Expectation values

The expectation value vectors motivated in section 7.2.3, which occur in the context of
the operator basis (7.21) and (7.22), are listed below. The actual calculation reveals that
it is not mandatory to compute all twelve conceivable expectation value vectors

pq :=
〈{

x†(k, l),Wq(r, s)
}〉

. (C.13)

In many cases, the operator Wq(r, s) can be chosen in a smart way and, thus, the
calculation be reduced to already existing expectation value vectors. In practice, only
the two vectors for q = 1 and q = 3 are sufficient.

Here and in the following, we use pq,j to denote the entry for W †
j (k, l) of the expectation

value vector pq and the index pairs k, l and r, s to describe the possible site-dependence
of an operator family. Occasionally, the emerging expectation values involve operators
that are not part of the basis (7.21) and (7.22) due to different spin orientations. Since
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the SIAM is invariant under the change of the spin orientation, i.e. the transformation

σ → σ, (C.14)

we can always rewrite the respective operators into basis operators by using (C.14). If
needed, we denote the usage of this transformation by an asterisk.

For brevity, we again only specify non-vanishing elements of the vectors. This means
that pq,j = 0 holds if not stated otherwise in the following. Eventually, we obtain the
two necessary expectation value vectors p1 and p3 as defined in (7.27) and (7.30) by

p1 p1,1 = 2 (C.15a)

p1,2 = 4 〈n̂σ〉 − 2
(∗)
= 4

〈
f †σfσ

〉
− 2 (C.15b)

p1,5 = 4
〈
f †σckσ

〉
(∗)
= 4

〈
f †σckσ

〉
(C.15c)

p1,6 = 4
〈
c†kσfσ

〉
= 4

〈
c†kσfσ

〉
(C.15d)

p1,9 = 4
〈
c†lσckσ

〉
− 2δkl

(∗)
= 4

〈
c†lσckσ

〉
− 2δkl (C.15e)

p1,10 = −8
〈
f †σf

†
σclσckσ

〉
(C.15f)

p1,11 = 8
〈
f †σc

†
lσfσckσ

〉
(C.15g)

p1,12 = −4
〈
c†lσckσ

〉
− 4 〈n̂σ〉 δkl + 2δkl − 8

〈
c†lσf

†
σckσfσ

〉
(C.15h)

(∗)
= −4

〈
c†lσckσ

〉
− 4

〈
f †σfσ

〉
δkl + 2δkl − 8

〈
c†lσf

†
σckσfσ

〉
(C.15i)

≈ −4
〈
c†lσckσ

〉
− 4

〈
f †σfσ

〉
δkl + 2δkl (C.15j)

+ 8
〈
c†lσckσ

〉〈
f †σfσ

〉
− 8

〈
c†lσfσ

〉〈
f †σckσ

〉
(C.15k)

p3 p3,3 = 2δkr (C.16a)

p3,4 = 2δkr (2 〈n̂σ〉 − 1)
(∗)
= 2δkr

(
2
〈
f †σfσ

〉
− 1
)

(C.16b)

p3,7 = 4δkr

〈
f †σclσ

〉
(∗)
= 4δkr

〈
f †σclσ

〉
(C.16c)

p3,8 = 4δkr

〈
c†lσfσ

〉
(∗)
= 4δkr

〈
c†lσfσ

〉
(C.16d)

p3,10 = −4δkr
〈
f †σclσ

〉
+ 8δkr

〈
f †σf

†
σclσfσ

〉
(C.16e)

(∗)
= −4δkr

〈
f †σclσ

〉
+ 8δkr

〈
f †σf

†
σclσfσ

〉
(C.16f)

p3,11 = 4δkr

〈
c†lσfσ

〉
− 8δkr

〈
f †σc

†
lσfσfσ

〉
(C.16g)

(∗)
= 4δkr

〈
c†lσfσ

〉
− 8δkr

〈
f †σc

†
lσfσfσ

〉
. (C.16h)
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