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Abstract

Current experimental data on the flavor observables RK and RK∗ shows evidence for a
violation of lepton universality – an essential feature of the Standard Model of particle
physics. Together with several deviations seen in other b → sµ+µ− observables as well as
RD and RD∗ , these results constitute the so-called B decay anomalies. In this thesis we
investigate new physics models that provide potential solutions to these anomalies and
put a special emphasis on their flavor structure. To this end, we consider an A4 ×UFN(1)-
based flavor symmetry, which addresses the SM flavor puzzle, and study patterns that it
imposes on the couplings of leptoquark models. We find that flavorful leptoquarks provide
good explanations of RK(∗) , while constraints from rare kaon decays and charged lepton
flavor violating processes are too strong to allow to accommodate the deviations in RD(∗) .
As another consequence of the imposed flavor structure, flavorful leptoquarks are light
enough to be produced at current and future hadron colliders. We compute estimates
for the production cross sections of the S3, V1 and V3 leptoquarks in different flavor
scenarios, focusing on single production, which is sensitive to the leptoquark coupling
and its flavor structure. We find that future hadron colliders with higher center of mass
energies are needed to cover the full parameter space and determine leptoquark mass
bound for benchmark scenarios.
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Kurzfassung

Aktuelle experimentelle Daten zu den Flavor Observablen RK and RK∗ zeigen Evidenz
für eine Verletzung der Leptonuniversalität – einem wesentlichen Bestandteil des Stan-
dardmodells der Teilchenphysik. Zusammen mit mehreren Abweichungen in anderen
b → sµ+µ− Observablen, ebenso wie RD und RD∗ , bilden diese Ergebnisse die soge-
nannten B-Anomalien. In dieser Dissertation untersuchen wir neue Physik Modelle die
mögliche Lösungen zu diesen Anomalien bereitstellen, und legen dabei besonderen Fokus
auf deren Flavorstruktur. Zu diesem Zweck betrachten wir eine A4 ×UFN(1)-basierte Fla-
vorsymmetrie, welche das SM Flavor Puzzle angeht, und untersuchen Strukturen die sie
den Kopplungen von Leptoquarkmodellen auferlegt. Wir stellen fest, dass Flavor-behaftete
Leptoquarks gute Erklärungen der RK(∗) Anomalien liefern, während Einschränkungen
von seltenen Kaon Zerfällen und Leptonflavor-verletzenden Prozessen zu stark sind um
die Abweichungen in RD(∗) erklären zu können. Als weitere Konsequenz der auferlegten
Flavorstruktur sind Flavor-behaftete Leptoquarks leicht genug um an gegenwärtigen
und zukünftigen Hadronenbeschleunigern produziert werden zu können. Wir berechnen
Abschätzungen für die Produktionsquerschnitte der S3, V1 and V3 Leptoquarks in ver-
schiedenen Flavorszenarien mit Fokus auf der Einzelproduktion, welche sensitiv auf die
Leptoquarkkopplungen und deren Flavorstruktur ist. Wir stellen fest, dass Hadronen-
beschleuniger mit höherer Schwerpunktsenergie als gegenwärtig verfügbar nötig sind
um den vollständigen Parameterraum abzudecken, und bestimmen Schranken an die
Leptoquarkmassen für Benchmarkszenarien.
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Chapter 1.

Introduction

The field of elementary particle physics has emerged from the pursuit to answer the most
profound questions about nature: what are the fundamental building blocks of matter
and how do they interact? Over the past centuries, the scientific method, driven by the
interplay between theory and experiment, has led to remarkable progress in this pursuit,
simplifying and unifying the mathematical descriptions of natural phenomena. Most
recently, the discovery of the Higgs boson by the ATLAS [4] and CMS [5] experiments at
the Large Hadron Collider (LHC) in 2012 has completed the Standard Model (SM) of
particle physics, which provides the most precise and well-tested description of nature
at fundamental scales to date. Besides the fact that the SM does not incorporate
gravity, it suffers from further shortcomings: it explains neither the observed neutrino
mass differences nor the origin of the baryon asymmetry and contains no potential
dark matter candidates. Furthermore, the flavor sector of the SM, which encompasses
most of its free parameters, exhibits a non-trivial structure, for which there is no
explanation.

Due to the absence of direct experimental evidence for physics beyond the Standard
Model (BSM), which is required to overcome the deficiencies of the SM, investigating
precision observables that allow to probe key features of the SM has become more and
more important. Currently, several measurements of flavor observables in the rare flavor-
changing neutral current (FCNC) transitions b → sℓ+ℓ− as well as in the flavor-changing
charged current (FCCC) processes b → cℓν̄ challenge the SM’s built-in feature of lepton
flavor universality (LFU) [6–12]. Additionally, there is a long-standing discrepancy
between the very precisely known SM prediction and the experimentally determined value
of the anomalous magnetic moment (AMM) of the muon [13]. Recently, an improved
calculation of the fine structure constant has lead to a tension in the electron’s AMM as
well [14].

In this thesis, we focus on the deviations measured in the ratios of branching fractions
RK(∗) ≃ B(B̄→K̄

(∗)
µ+µ−)

B(B̄→K̄e+e−) and RD(∗) ≃ B(B̄→D̄
(∗)
τ ν̄)

B(B̄→D̄ℓν̄) in the b → sℓ+ℓ− and b → cℓν̄ sectors,
respectively. After laying out the foundations of flavor physics in the SM in Chapter 2,
we review the current experimental and theoretical status of the previously mentioned

1



Chapter 1. Introduction

sectors in Chapter 3. To this end, we introduce the model-independent framework of
effective field theories (EFTs), which will enable us to identify and classify possible BSM
scenarios in a data-driven manner. We then consider concrete new physics (NP) models
adressing the B anomalies and the flavor puzzles in chapters 4 and 5, respectively. In
Chapter 6 we employ a flavor model to derive patterns for the couplings of leptoquark
models that can potentially explain the RK(∗) and RD(∗) anomalies. These patterns allow
us to use experimental bounds from related flavor sectors to constrain the leptoquark
couplings, resulting in a predictive NP scenario with a rich phenomenology. Since the
masses of flavorful leptoquarks required to account for the B anomalies are in the TeV
region, they can potentially be produced at current or future hadron colliders. Chapter 7
is dedicated to the study of possible collider signals. We examine how collider searches can
reveal information about the flavor structure of the leptoquark couplings by considering
different flavor scenarios and determining their characteristic signatures. We conclude in
Chapter 8.

2



Chapter 2.

Flavor Physics in the Standard

Model

To begin, we provide a brief overview of the SM of particle physics with a focus on its
flavor sector following standard literature [15–18]. After outlining the mathematical
structure of the model and providing a summary of the particles and interactions it
describes in the unbroken phase, we explore the breaking of electroweak (EW) symmetry
and the consequences this has for the particles and interactions. This naturally leads us
to the concept of flavor, which we review in the context of the available experimental data.
Finally, we discuss the puzzles that emerge and how accidental symmetries of the SM can
help to construct models BSM that seek to resolve them.

2.1. Field Content and Gauge Symmetries

The SM of particle physics is a mathematical framework, which describes all known
fundamental particles and all their known interactions with the exception of grav-
ity. It is constructed as a gauge quantum field theory (QFT) with the local gauge
group

SU(3)C × SU(2)L × U(1)Y , (2.1)

where the first factor belongs to Quantum Chromodynamics (QCD), the theory of the
strong interaction, while the remaining part is associated with the EW sector and is
spontaneously broken by the Higgs mechanism to yield the U(1)em gauge symmetry of
Quantum Electrodynamics (QED).

The matter content of the SM comprises two classes of fermions: the color-charged up- and
down-type quarks, respectively denoted u and d, and the color-neutral leptons, which can
be divided into the electrically neutral neutrinos ν and the electrically charged leptons e.
Furthermore, there are three copies, called generations, of all of those fermions, so that
in total there are six flavors of each quarks and leptons. Before further exploring the
flavor sector in the next section, we first need to review the gauge group representations

3



Chapter 2. Flavor Physics in the Standard Model

Field SU(3)C SU(2)L U(1)Y

Q 3 2 1/6

U 3 1 2/3

D 3 1 −1/3

L 1 2 −1/2

E 1 1 −1
H 1 2 1/2

Table 2.1.: Standard Model fields and their gauge group representations.

of the matter fields and discuss the resulting Lagrangian. On that account, we define the
chiral fields1

Q ≡
⎛⎝uL

dL

⎞⎠ , U ≡ uR, D ≡ dR, L ≡
⎛⎝νL

eL

⎞⎠ , E ≡ eR, (2.2)

which transform under the SM gauge group (2.1) according to Table 2.1. Here, the
column vectors denote SU(2)L doublets, while the SU(3)C and generation structure are
left implicit. The complex scalar Higgs field H is needed to generate fermion mass terms,
which would otherwise be forbidden by gauge invariance.

Consequently, the most general renormalizable and gauge invariant Lagrangian that can
be constructed from these fields contains the kinetic terms

Lkin =
∑︂

ψ∈{Q,U,D,
L,E}

ψ̄i /Dψ − 1
4
(︂
GAµνG

µν
A +W a

µνW
µν
a +BµνB

µν
)︂

(2.3)

of the fermions ψ and of the gauge bosons G, W and B of QCD and the EW sector,
respectively, which appear in the form of their associated field strength tensors, which
have the form

F i
µν ≡ ∂µAi

ν − ∂νAi
µ + κf ijkAj

µAk
ν (2.4)

for a given gauge group with coupling κ, gauge boson A and structure constants f ijk of
the associated Lie algebra. The interactions between fermions and gauge bosons arise
from the gauge covariant derivative

Dµ ≡ ∂µ − igstAG
A
µ − igTaW

a
µ − ig′Y Bµ , (2.5)

with the generators tA, Ta, and Y and the gauge couplings gs, g, and g′ of SU(3)C,
SU(2)L, and U(1)Y , respectively.

1See Appendix A for mathematical notation and conventions.
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2.2. Electroweak Symmetry Breaking

All remaining terms 2 in the SM Lagrangian include the Higgs field H, which is responsible
for spontaneously breaking the EW gauge symmetry and shaping the flavor sector, as we
will see in the next section.

2.2. Electroweak Symmetry Breaking

The part of the Lagrangian involving only H reads

LHiggs = (DµH)† (DµH) − V (H) , (2.6)

with the scalar potential

V (H) = −µ2H†H + λ
(︂
H†H

)︂2
, (2.7)

where the parameters µ2 and λ are real and positive, so that H acquires a non-zero
vacuum expectation value (vev) that can be chosen as

⟨H⟩ = 1√
2

⎛⎝0
v

⎞⎠ , (2.8)

with v =
√︂

µ2

λ . This choice of ⟨H⟩ spontaneously breaks the EW symmetry to the local
gauge group U(1)em, which is generated by the electric charge Q ≡ T3 +Y . The massless
gauge boson associated with this symmetry is the photon.

According to Goldstone’s theorem [19] a new scalar degree of freedom appears for each
broken generator of a spontaneously broken continuous global symmetry. In the case
of a broken gauge symmetry, however, the new degrees of freedom can be absorbed
into additional polarizations of the associated gauge bosons, rendering them massive.
Diagonalizing the mass terms that arise from the kinetic term in (2.6) after H is replaced
by its vev (2.8) yields the spectrum of massive gauge bosons after symmetry breaking.
The electrically charged gauge bosons

W± ≡ 1√
2

(W 1 ∓ iW 2) (2.9)

have mass mW = gv/2. Besides the massless photon A, there is another electrically neu-
tral, but massive, gauge boson Z. These two fields are defined as⎛⎝Z

A

⎞⎠ ≡
⎛⎝cos θW − sin θW

sin θW cos θW

⎞⎠⎛⎝W 3

B

⎞⎠ , (2.10)

2We tacitly assume that the theory has been quantized and renormalized; hence we omit the gauge-fixing
and ghost parts of the Lagrangian.
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Chapter 2. Flavor Physics in the Standard Model

where the Weinberg angle θW is defined by

sin θW = g′√︁
g2 + g′2 . (2.11)

The mass of the Z boson is then mZ = mW / cos θW.

The interactions of the fermions with the EW gauge bosons after symmetry breaking follow
from the EW part of the gauge covariant derivative (2.5), which now reads

DEW
µ = ∂µ − i

g√
2

(︂
T+W+

µ + T−W−
µ

)︂
− ie

(︂
cot θWT

3 − tan θWY
)︂
Zµ − ieQAµ , (2.12)

where T± = T 1 ± iT 2 and e = g sin θW. To further inspect these interactions, we first
need to discuss masses and mixing of the fermions.

2.3. Fermion Masses and Mixing

With the Higgs field H (and its SU(2)L conjugate H̃ ≡ iσ2H∗) at hand it is possible to
include the Yukawa interaction terms

− LYukawa = Q̄iHY
ij
D Dj + Q̄iH̃Y

ij
U Uj + L̄iHY

ij
E Ej + h.c. , (2.13)

which yield Dirac masses M ij
ψ = v√

2Y
ij
ψ for the fermions ψ = u, d, e once H acquires its

vev. Here, we explicitly include generation indices i, j = 1, 2, 3 to emphasize the flavor
structure of the Yukawa couplings Y ij

ψ . Using chiral, unitary field transformations in
flavor space

ψiL,R → U ijψL,R
ψjL,R, (2.14)

the mass matrices can be diagonalized. These transformations manifest themselves in the
charged currents mediated by the W± bosons. Defining the Cabbibo–Kobayashi–Maskawa
(CKM) matrix

VCKM ≡ U †
uLUdL , (2.15)

and using (2.12), the charged-current interactions of the quarks in the mass eigenbasis
read

Lkin ⊃ g√
2

(︂
ūiLγ

µVijd
j
LW

+
µ + d̄

i
Lγ

µV †
iju

j
LW

−
µ

)︂
, (2.16)

where the indices i, j now iterate over the mass eigenstates up (u), charm (c), and top (t)
and down (d), strange (s), and bottom (b) of the up- and down-type quarks, respectively.
Therefore, off-diagonal entries in VCKM lead to FCCCs in the quark sector. The neutral
currents, however, are not affected by the flavor rotations of the fermions, because the
couplings to the photon and the Z boson are flavor universal. Hence, there are no

tree-level FCNCs in the SM. Furthermore, loop contributions as exemplarily depicted in
Figure 2.1 are suppressed due to the Glashow–Iliopoulos–Maiani (GIM) mechanism, which
is based on the destructive interference between diagrams with quarks from different

6



2.3. Fermion Masses and Mixing

b s
u, c, t

W

Figure 2.1.: Loop-level Feynman diagram that induces the FCNCs b → s in the SM.

generations propagating in the loop. If all quark mass differences were zero, summing
over all quark generations would lead to an exact cancellation due to the unitarity of the
CKM matrix. In reality the quark masses are strongly hierarchical so that only partial
cancellations occur and a small contribution to down-type FCNCs, dominated by the
top quark, remains [20, 21].

In the absence of neutrino masses there is no mixing in the lepton sector. We will come
back to the more general case after reviewing some fundamental experimental results of
the SM flavor parameters.

Since the Yukawa couplings are free parameters of the SM, there is no reason to expect
any distinct structure. Nevertheless, the experimentally determined values of the quark
masses [22]

mu ≃ 2.2 MeV < md ≃ 4.7 MeV ≪ ms ≃ 95 MeV
< ΛQCD ≃ O(100) MeV ≪

mc ≃ 1.3 GeV < mb ≃ 4.2 GeV ≪ mt ≃ 173 GeV ≃ v√
2

(2.17)

exhibit a strong hierarchy, where only the top quark mass is of the order of the EW
scale, while all others are much smaller. Here ΛQCD denotes the QCD confinement
scale. A similar hierarchical structure is observed in quark mixing. With the sines
sij ≡ sinϑij of the three mixing angles ϑij , as defined in (A.9), the observed hierarchy
is [23]

s13 ≪ s23 ≪ s12 ≪ 1 . (2.18)

This means the CKM matrix is equal to the unit matrix up to corrections of the order of
the Wolfenstein parameter

λ ≡ s12 = 0.224 53 ± 0.000 44 . (2.19)

More precisely, the CKM matrix can be parametrized as

VCKM =

⎛⎜⎜⎝
1 − λ2

2 λ Aλ3(ρ̄− iη̄)
−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ̄− iη̄) −Aλ2 1

⎞⎟⎟⎠+ O
(︂
λ4
)︂
, (2.20)

where the three parameters

A = 0.836 ± 0.015, ρ̄ = 0.122+0.018
−0.017, η̄ = 0.355+0.012

−0.011 (2.21)

7



Chapter 2. Flavor Physics in the Standard Model

are introduced to accommodate for the two remaining mixing angles and the complex
phase.

The fact that the SM flavor parameters are small and hierarchical without any apparent
reason poses the SM flavor puzzle [24].

While the masses of the charged leptons follow a resembling pattern

me ≃ 0.51 MeV ≪ mµ ≃ 106 MeV ≪ mτ ≃ 1.8 GeV , (2.22)

the neutrino sector looks very different. The experimental data on neutrino oscillations
shows that two of the three mixing angles (see (A.9)) of the Pontecorvo–Maki–Nakagawa–
Sakata (PMNS) matrix

UPMNS ≡ U †
eLUνL (2.23)

are of order one, while the third one is comparably small [23]:

θ23 ≃ π

4 , θ12 ≃ π

5.4 , θ13 ≃ π

20 . (2.24)

Even though it is now excluded by experimental data the so-called tribimaximal (TBM)
mixing pattern [25]

UTBM
PMNS =

⎛⎜⎜⎜⎝
√︂

2
3

1√
3 0

− 1√
6

1√
3 − 1√

2
− 1√

6
1√
3

1√
2

⎞⎟⎟⎟⎠ (2.25)

provides a good leading order approximation for the PMNS matrix and hence serves as a
useful starting point for flavor model building in the lepton sector.

Furthermore, the observation of non-trivial mixing in the lepton sector implies non-
vanishing neutrino masses. From neutrino oscillation data the two mass squared differences
have been determined to be of the orders 10−5 eV2 and 10−3 eV2, while cosmological data
imposes an upper bound of about 0.5 eV on the absolute neutrino mass scale [22]. This
scale is so small that, due to the GIM mechanism, neutrino contributions to FCNCs in
the charged lepton sector are negligibly small so that there is virtually no charged lepton
flavor violation (cLFV) in the SM.

Since neutrino masses are absent in the SM, the observation of neutrino oscillations
already require physics beyond the SM. Extending the SM field content by the gauge
singlet fermion N ≡ νR allows to include the terms

− LNeutrino = L̄iH̃Y
ij
N Nj + 1

2N̄
c
iM

ij
MNj + h.c. (2.26)

that give rise to neutrino masses and thus permit non-trivial mixing. Besides the usual
Yukawa interaction that yields a Dirac mass matrix MD ≡ v√

2YN , there is a Majorana
mass term involving the Majorana mass matrix MM. If the Dirac masses are much
smaller than the Majorana masses, the heavy mass eigenstates remain at the scale

8
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of MM, while the light mass eigenstates are of the order MT
DM

−1
M MD. This so-called

seesaw-mechanism [26] provides a specific UV completion of the dimension-5 effective
operator

Oij
ν =

(︂
L̄
i
H̃
)︂ (︂
H̃Lj

)︂†
, (2.27)

also known as the Weinberg operator.

We will often make use of such effective operators in order to parametrize NP and its
underlying flavor structure in a model-independent manner. The details of this EFT
approach will be discussed in the next chapter. In this thesis, we focus on NP at the
TeV scale, which is becoming more and more accessible at current collider experiments.
However, we would expect this NP to have a generic flavor structure that would lead to
easily detectable signals in FCNC observables. The absence of such signals presents the
BSM flavor puzzle [24].

2.4. Symmetries of the Flavor Sector

The gauge part of the SM Lagrangian exhibits the large accidental flavor symme-
try

U(3)Q × U(3)U × U(3)D × U(3)L × U(3)E (2.28)

which reflects the freedom to rotate the five fermion fields Q,U,D,L,E in flavor
space. In the presence of the Yukawa interactions this symmetry is broken down
to

U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ (2.29)

corresponding to the global symmetries associated with the conservation of baryon number
and the individual lepton numbers of each generation. Since there are 41 broken generators
this means that of the 54 real parameters present in the three Yukawa matrices YU,D,E only
13 are physical. These are the six quark masses, three mixing angles and one CP phase
of the quark sector and the three charged lepton masses.

It should be noted that if non-perturbative QCD effects are taken into account the
axial vector symmetry U(1)A of the quark sector is anomalous so that there is one more
physical parameter in the SM, namely the strong CP phase θQCD. Experimentally there
is no evidence for CP violation in QCD so that θQCD must be very small – this poses
the strong CP problem.

A way to approach the BSM flavor puzzle is to assume that the SM Yukawa interactions
are the only terms that break the flavor symmetry (2.28). This idea is formalized in
the framework of minimal flavor violation (MFV) [27–29] in which the SM Yukawas are
promoted to spurion fields that transform as bifundamentals under the SM flavor sym-
metry group, rendering the Yukawa interactions formally invariant under that symmetry.
In this framework the flavor structure of any NP interactions can then be expressed

9



Chapter 2. Flavor Physics in the Standard Model

in terms of the Yukawa spurions by requiring that new terms in the Lagrangian also
formally respect the flavor symmetry.

In order to solve the SM flavor puzzle in this symmetry-based manner the flavor symmetry,
or a subgroup thereof, has to be broken by some mechanism that gives rise to the Yukawa
couplings. This needs to happen in such a way that the structure of the resulting matrices
yields the observed pattern of masses and mixing of the fermions. We will further discuss
this approach in Chapter 5.
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Chapter 3.

Model-Independent Study of

Flavor Observables

Experimentally, the flavor structure of the quark sector is accessible through the study
of flavor-changing processes, which, due to the confinement of QCD, necessarily involve
hadronic bound states. Thus, we focus on EW decays of hadronic states that are stable
with respect to the flavor-universal QCD interactions. However, bound states that can
decay through QCD may still occur as intermediate resonances in decay spectra of heavier
states.

Since the flavor dynamics, which is governed by the weak interaction, can be handled in
perturbation theory, it is essential to disentangle it from the confining dynamics that
stems from the non-perturbative regime of QCD. The fact that this is at all possible,
relies on factorization theorems that allow us to separate contributions that arise from
physics at different scales.

3.1. Effective Field Theory Approach

EFTs allow us to separate short-distance and long-distance effects in a systematic
manner, thereby providing the foundation for a model-independent parametrization of
NP contributions from high scales.

The foundation of this factorization approach is provided by the Appelquist–Carrazone
decoupling theorem [31], which states that at low energies contributions from heavy
states are suppressed by their mass scale. Processes that only involve initial and final
states with energies that are small compared to a particular scale Λ can therefore be
described by an effective Hamiltonian of the form

Heff =
∑︂
i

Ci
Λd−4 O(d)

i + h.c. , (3.1)

11



Chapter 3. Model-Independent Study of Flavor Observables

where all short-distance contributions from scales higher than Λ are included in the
Wilson coefficients Ci and the long-distance contributions from scales lower than Λ

are contained in the matrix elements of the local operators O(d)
i of mass dimension

d > 4.

As the top quark is so heavy that it decays before it can form any hadronic states, the
heaviest hadrons are the ones involving b quarks and hence they are much lighter than
the EW gauge bosons. The EFT that describes weak interactions at hadronic scales can
thus be obtained from the SM by removing the heavy degrees of freedom, such as the top
quark, the W and Z bosons, and the Higgs, from the theory.

The standard example for a hadronic process mediated by the weak interaction is nuclear
β decay. Figure 3.1 shows at constituent level the leading order Feynman diagrams
for this process in the full EW theory (left) and in the EFT obtained in the limit of
small momenta (right). In this limit, the matrix element calculated in the full theory (in
unitary gauge) reads

(︃
ig√

2

)︃2
Vud (ūLγ

µdL)
−ηµν + qµqν

m2
W

q2 −m2
W

(ēLγ
ννeL) q≪mW−−−−→ −4GF√

2
Vud (ūLγ

µdL) (ēLγµνeL) ,

(3.2)
where GF ≡

√
2

8
g2

m2
W

is the Fermi constant. Hence, in order that the EFT described by
the weak Hamiltonian [32]

Hd→ueν̄e
eff = −4GF√

2
VudC (ūLγ

µdL) (ēLγµνeL) + h.c. (3.3)

yield the same result as the full theory, the Wilson coefficient C must be taken to
be one. This procedure is called matching and can be used to obtain the Wilson
coefficients of a low energy EFT from the ultraviolet (UV) theory in a “top-down”
manner.

This approach is formally described by the Operator Product Expansion (OPE), which
allows us to express products of charged current operators as a series of local opera-
tors [32].

Of course, the UV theory does not need to be the SM, but can be any BSM model.
Since EFTs provide the foundation for all calculations of flavor processes they serve as
an interface between the construction of BSM models and their flavor phenomenology
– after matching a specific model onto the EFT, predictions for flavor observables can
be calculated. But this also means that EFTs enable the study of flavor observables
independent of the underlying UV model if all effective operators that are compatible
with the existing symmetries are included and their Wilson coefficients are treated as
free parameters. In contrast to the aforementioned method, this “bottom-up” approach
allows for a data-driven analysis in which experimental data on flavor observables is
used to constrain the Wilson coefficients of the EFT. By this means, hints for NP in
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d u

νe e

q � mW

d u

νe e

qW

Figure 3.1.: Feynman diagrams for nuclear β decay at parton level in the EW theory (left)
and in Fermi’s theory (right) – an EFT valid at scales below mW where the heavy
degrees of freedom are integrated out [32].

experimental data can be used to identify the responsible operators and thereby guide
the construction of BSM models.

So far we have not taken into account any QCD corrections. However, they turn out
to be essential, because in the calculation of hadronic decay rates the renormalization
scale is typically chosen to be of the order of the mass of the decaying hadron, while the
Wilson coefficients are determined at the matching scale Λ ∼ mW . Therefore, radiative
QCD corrections can give large logarithmic contributions of order αs ln Λ

µH
, where µH is

the hadronic scale. These large logarithms can be resummed to all orders in αs by means
of the renormalization group (RG) [30]. By introducing a renormalization scale µ ≤ Λ in
the effective Hamiltonian

Heff =
∑︂
i

Ci(µ)
Λd−4 O(d)

i (µ) + h.c. , (3.4)

we can shift long-distance contributions to the hadronic matrix elements, while the
short-distance contributions remain in the Wilson coefficients. The renormalization
group equations (RGEs) that govern the scale dependence of the Wilson coefficients are
obtained from the requirement that physical observables be independent of the scale
parameter µ and read

dC⃗(µ)
d lnµ − C⃗(µ)γT (µ) = 0 , (3.5)

where γ is the anomalous dimension matrix. As the relevant radiative corrections stem
from QCD only, the scale dependence can be completely expressed in terms of the running
of the strong coupling constant αs. This allows us to solve the RGEs (3.5), yielding at
leading order

C⃗(µ) = C⃗(Λ) exp
(︄

γT0

2β(nf)
0

ln αs(Λ)
αs(µ)

)︄
, (3.6)

where β(nf)
0 = 11 − 2

3nf is the leading order contribution to the beta function of αs for
nf fermions. In this approximation the RGE evolution resums the leading logarithms of the
form

(︂
αs ln Λ

µ

)︂n
to all orders, leaving corrections of order αns

(︂
ln Λ

µ

)︂n−1
.
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b̄ s̄

d d

`−

`+

t̄

W +

γ, Z

B K

Figure 3.2.: Electroweak penguin diagram contributing to the semileptonic decay B → Kℓ+ℓ−.
Hadronic effects are schematically included in terms of gluon and quark loops
between the hadronic states.

3.2. Parametrization of Long-Distance QCD

Contributions to Hadronic Processes

We will now turn to the matrix elements of the local operators and discuss how the
long-distance QCD effects can be parametrized in terms of non-perturbative quantities
as well as how these quantities can be determined.

As a trivial consequence of the OPE, leptonic parts of the matrix elements can be factorized
out and calculated perturbatively. Therefore, (semi-)leptonic decays of hadrons provide
the simplest observables for the study of quark flavor transitions, while simultaneously
adding a potential link to lepton flavor. As an example, we show in Figure 3.2 a Feynman
diagram contributing to the rare semileptonic B decay B → Kℓ+ℓ−, explicitly including
gluon and quark loops to schematically illustrate the non-perturbative QCD contributions
to the hadronic part of the process.

As matrix elements of quark current operators involving hadronic states generally cannot
be calculated perturbatively, one is led to exploit the knowledge of the Lorentz structure of
these matrix elements to parametrize them in the most general way.

In the case of only one hadronic state (as e.g. in a purely leptonic decay of a meson),
all non-vanishing matrix elements of hadronic operators are proportional to the decay

constant. For instance, the decay constant fP of a pseudoscalar meson P is defined
by

⟨0|jµ5 |P (p)⟩ ≡ −ipµfP , (3.7)

where pµ is the meson’s 4-momentum and jµ5 is the axial vector quark current operator
that annihilates |P (p)⟩.

Hadronic matrix elements involving two or more hadrons can be expressed as linear com-
binations of the involved kinematic variables and so-called form factors, which can depend
on Lorentz invariant kinematic quantities. In the case of a transition P1 → P2 between
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two pseudoscalar mesons that is induced at the quark level by the transition q1 → q2, the
matrix element of the vector quark current operator jµ ≡ q̄2γ

µq1 can be parametrized by
two independent form factors F0(q2) and F1(q2) (in some conventions called f0(q2) and
f+(q2), respectively), which are defined by [34]

⟨P2(p2)|jµ|P1(p1)⟩ ≡
(︄

(p1 + p2)µ − m2
1 −m2

2
q2 qµ

)︄
F1(q2) + m2

1 −m2
2

q2 qµF0(q2) , (3.8)

where qµ ≡ (p1−p2)µ is the hadronic momentum transfer and F0(0) = F1(0). Furthermore,
the tensor form factor FT(q2) is defined by

⟨P2(p2)|tµν |P1(p1)⟩ ≡ −i(pµ1pν2 − pν1p
µ
2 ) 2FT(q2)
m1 +m2

, (3.9)

where tµν ≡ q̄2σ
µνq1. Matrix elements of (pseudo)scalar, pseudotensor and axial vector

operators can be expressed in terms of (3.8) and (3.9) by exploiting the quarks’ equations
of motion.

In the following chapters we will also study processes in which the initial pseudoscalar
meson decays into a vector meson. With the polarization vector εµ of the vector meson
V there are more options to decompose the hadronic matrix elements, resulting in a
larger number of independent form factors than before. For the vector and axial vector
currents, the definitions read [34, 35]

⟨V (p2, ε)|jµ|P (p1)⟩ ≡ −iϵµνρσε∗
νp1ρp2σ

2V (q2)
mP +mV

(3.10)

⟨V (p2, ε)|jµ5 |P (p1)⟩ ≡ ε∗µ(mP +mV )A1(q2) − (p1 + p2)µ(ε∗ · q) A2(q2)
mP +mV

− qµ(ε∗ · q)2mV

q2

(︂
A3(q2) −A0(q2)

)︂ (3.11)

where A3(q2) ≡ mP+mV
2mV A1(q2) − mP−mV

2mV A2(q2) and A3(0) = A0(0). The tensor form
factors are defined by

⟨V (p2, ε)|tµν |P (p1)⟩ ≡ ϵµνρσ
[︄

− ε∗
ρ(p1 + p2)σT1(q2)

+ ε∗
ρqσ

m2
P −m2

V

q2

(︂
T1(q2) − T2(q2)

)︂
+ 2(ε∗ · q)

q2 p1ρp2σ

(︄
T1(q2) − T2(q2) − q2

m2
P −m2

V

T3(q2)
)︄]︄

,

(3.12)

where T1(0) = T2(0). As in the previous case, all other matrix elements can be expressed
in terms of the ones considered here.

Due to their non-perturbative nature these quantities are very difficult to calculate.
Even though there are a number of very successful methods to determine them, form
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factors and decay constants are still the major source of uncertainty in the prediction of
flavor observables. On account of their universality among processes that only differ in
their non-hadronic parts, a viable method of their determination is the extraction from
experiment.

We briefly introduce theoretical frameworks that allow to either simplify form factor
parametrizations, thereby reducing the number of parameters that have to be extracted
from experimental data, or to even calculate form factors.

Heavy Quark Effective Theory (HQET) For hadrons composed of a single heavy quark
(mQ ≫ ΛQCD, Q = b, c) and one or more light quarks the short-distance effects
from the heavy quark scale can be systematically separated from the long-distance
effects that occur at the QCD confinement scale ΛQCD. The resulting EFT, namely
HQET, allows to establish form factor relations [36] that are particularly useful for
B̄ → D and B̄ → D∗ transitions. See e.g. [37, 38] for in-depth discussions.

Lattice Quantum Chromodynamics (LQCD) A direct approach towards the calculation
of non-perturbative hadronic matrix elements is taken by LQCD [39] where space-
time is discretized, resulting in a finite QFT. Due to large discretization uncertainties
at low q2 LQCD form factors only provide useful information at high q2.

Light Cone Sum Rules (LCSR) In the kinematic region of low hadronic recoil, i.e. high
q2, LCSR provide a complementary theoretical method of calculating form factors.
This method is based on a light-cone expansion of the correlator of the time-ordered
product of two local quark current operators, which are evaluated between the
on-shell final state hadron and the vacuum [40].

In order to minimize the influence of the large uncertainties stemming from long-distance
QCD contributions, it is beneficial to construct observables in which substantial parts of
the hadronic uncertainties cancel (often referred to as “clean” observables). A prominent
example for an observable of this kind is

RK ≃ B(B̄ → K̄µ+µ−)
B(B̄ → K̄e+e−)

, (3.13)

i.e. the ratio of branching ratios of the rare semileptonic decays B̄ → K̄ℓ+ℓ− in which
the numerator and denominator only differ by the flavor of the leptons in the final
state. The SM predicts this ratio to be unity owing to the lepton-universal nature of
the couplings of the Z boson and the photon and the fact that the mass difference
between the muon and the electron is negligibly small compared to the masses of the
Kaon and the B meson. As the hadronic parts of the branching ratios can be factorized
from the leptonic part, the respective hadronic uncertainties largely cancel in the ratio
(3.13).

We will discuss this particular observable and similar ones in much more detail in the
following sections.
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3.3. The FCCC Processes b → cℓν̄

The first set of observables we introduce are based on the FCCC transitions b → cℓν̄,
which can be regarded as the heavy-flavor equivalent of the quark transitions underlying
nuclear β decay in the SM. After introducing the effective operators that govern this class
of processes and reviewing the hadronic processes B̄ → D(∗)ℓν̄ in a model-independent
manner, we will take a closer look at several NP-sensitive observables and report on the
current experimental status as well as recent developments.

3.3.1. Hadronic Observables in the Effective Theory

Analogous to the weak Hamiltonian (3.3), the effective Hamiltonian describing b → cℓν̄

transitions can be expressed as

Hb→cℓν̄
eff = 4GF√

2
Vcb

(︄
δℓνOℓν

V1 +
∑︂
i

Cℓνi Oℓν
i

)︄
+ h.c. , (3.14)

where δ denotes the Kronecker symbol and the effective dimension-six operators are given
as

Oℓν
V1(2)

=
[︂
c̄L(R)γ

µbL(R)
]︂ [︂
ℓ̄LγµνL

]︂
,

Oℓν
S1(2)

=
[︂
c̄L(R)bR(L)

]︂ [︂
ℓ̄RνL

]︂
,

Oℓν
T =

[︂
c̄Rσ

µνbL
]︂ [︂
ℓ̄RσµννL

]︂
.

(3.15)

We use a notation where ℓ ∈ {e, µ, τ} and ν ∈ {νe, νµ, ντ} are used as placeholders for
fields of a specific flavor and also as flavor indices of the operators and Wilson coefficients.
In the SM only the operator OV1 receives a non-negligible contribution, which is explicitly
included in the definition of the effective Hamiltonian so that the Cℓνi contain only the
NP contributions.

Since the chiral vector quark currents of OV1(2) are conserved in the limit of massless
quarks, the respective anomalous dimensions vanish [30]. The anomalous dimension
matrix of the remaining operators is diagonal, which, in the leading logarithmic approxi-
mation, results in

Ci(µb) =
(︃
αs(mt)
αs(µb)

)︃ γi

2β(5)
0

(︃
αs(Λ)
αs(mt)

)︃ γi

2β(6)
0 Ci(Λ) , (3.16)

where i ∈ {S1,S2,T} and the respective anomalous dimensions are γS1,2 = −8 and
γT = 8

3 [41].

The simplest hadronic processes based on the b → cℓν̄ transition are the semileptonic
decays B̄ → Dℓν̄ and B̄ → D∗ℓν̄ (unless the charges of the hadronic states are explicitly
specified, we average over different isospin modes). Both of these decays have and
continue to play an important role in flavor physics by providing a way to determine
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the CKM element Vcb and by presenting us with a variety of observables that are highly
sensitive to NP contributions. Within the EFT described above the differential branching
fractions B̄ → D(∗)ℓν̄ can be written as

dB(B̄ → Dℓν̄)
dq2 = dBSM(B̄ → Dℓν̄)

dq2

⃓⃓⃓
δℓν + CℓνV1 + CℓνV2

⃓⃓⃓2
+AS(q2)

⃓⃓⃓
CℓνS1 + CℓνS2

⃓⃓⃓2
+AT(q2)

⃓⃓⃓
CℓνT

⃓⃓⃓2
+AVS(q2) Re

[︂
(δℓν + CℓνV1 + CℓνV2)(CℓνS1 + CℓνS2)∗

]︂
+AVT(q2) Re

[︂
(δℓν + CℓνV1 + CℓνV2)Cℓν∗

T
]︂
,

(3.17)

and

dB(B̄ → D∗ℓν̄)
dq2 = dBSM(B̄ → D∗ℓν̄)

dq2

[︃⃓⃓⃓
δℓν + CℓνV1

⃓⃓⃓2
+
⃓⃓⃓
CℓνV2

⃓⃓⃓2]︃
+BV1V2(q2) Re

[︂
(δℓν + CℓνV1)Cℓν∗

V2

]︂
+BS(q2)

⃓⃓⃓
CℓνS1 − CℓνS2

⃓⃓⃓2
+BT(q2)

⃓⃓⃓
CℓνT

⃓⃓⃓2
+BVS(q2) Re

[︂
(δℓν + CℓνV1 − CℓνV2)(CℓνS1 − CℓνS2)∗

]︂
+BV1T(q2) Re

[︂
(δℓν + CℓνV1)Cℓν∗

T
]︂

+BV2T(q2) Re
[︂
CℓνV2C

ℓν∗
T
]︂
,

(3.18)

where the square of the hadronic momentum transfer q2 corresponds to the dilepton
invariant mass squared and is bounded bym2

ℓ ≤ q2 ≤ (mB−mD(∗))2. The SM contribution
to B̄ → Dℓν̄ is given by

dBSM(B̄ → Dℓν̄ℓ)
dq2 = N(q2)

[︄(︄
1 + m2

ℓ

2q2

)︄
Hs2
V,0(q2) + 3

2
m2
ℓ

q2 H
s2
V,t(q2)

]︄
(3.19)

with the normalization factor

N(q2) ≡ τB
G2

F|Vcb|2
192π3m3

B

q2
√︂
λD(∗)(q2)

(︄
1 − m2

ℓ

q2

)︄2

, (3.20)

where λD(∗)(q2) ≡ λ(q2,mB,mD(∗)) denotes the Källén function given in Appendix A and
τB is the lifetime of theB meson. For B̄ → D∗ℓν̄ the SM contribution reads

dBSM(B̄ → D∗ℓν̄ℓ)
dq2 = N(q2)

[︄(︄
1 + m2

ℓ

2q2

)︄(︂
H2
V,+(q2) +H2

V,−(q2) +H2
V,0(q2)

)︂

+ 3
2
m2
ℓ

q2 H
2
V,t(q2)

]︄
.

(3.21)

Explicit expressions for the non-perturbative quantities Ai(q2) and Bi(q2) in terms of
the hadronic matrix elements Hi(q2) are given in Appendix C. We suppress indices that
denote their dependence on the lepton and its polarization for the sake of legibility. For the
evaluation of the hadronic matrix elements we employ the HQET and lattice form factors
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provided in [35, 42, 43]. As the shapes of the q2 distributions can potentially be affected by
NP contributions to operators other than OV1 , their knowledge is very useful in the search
for NP and provides a way of distinguishing between different scenarios. In Figure 3.3
we show the SM predictions for the differential branching ratios along with experimental
results to be discussed in the following section.

3.3.2. NP-Sensitive Observables and Experimental Status

While the data on the decay distributions in the case with light leptons in the final state is
generally consistent with the theory predictions at the one sigma level, the BABAR results
for the tauonic modes show a slight excess. This excess can also be seen in the data on the
integrated branching ratios listed in Table 3.1. However, due to the large uncertainties on
both the theoretical and experimental side of these observables the statistical significance
of these deviations is rather small.

In order to reduce the impact of theoretical uncertainties, we consider the ratios

RD(∗) ≡ B(B̄ → D(∗)τ ν̄τ )
B(B̄ → D(∗)lν̄l)

, (3.22)

where l denotes the average over the light lepton flavors e and µ. The numerator suffers
from phase space suppression caused by the large mass of the τ lepton, leading to SM
predictions smaller than one and also leaving small residual form factor uncertainties.
Numerical results are provided in Table 3.1 together with all the available experimental
data. It can be seen that each individual experimental result exceeds the SM prediction
and that the effects in RD and RD∗ are of similar size. With the averages provided by the
Heavy Flavor Averaging Group (HFLAV) in summer 2018 [12], taking into account the
correlations between RD and RD∗ obtained in the measurements performed by BABAR in
2013 and by Belle in 2015, this results in a deviation from the SM value of about 3.8σ.
Including the most recent values measured by Belle in 2019 reduces the significance of the
excess to about 3.1σ [47], as can be seen in Figure 3.4, which shows the updated HFLAV
average and the experimental data. Even though this might indicate that the excess be
a statistical fluke rather than a sign of NP, it still provides valuable information for the
construction of models in flavor physics beyond the SM. As we will see in more detail
later on, there are reasons to expect potential NP contributions to RD(∗) to be smaller
than the current data suggests. In any case, this issue is expected to be clarified by the
forthcoming results of Belle II, which have projected relative uncertainties of ±7 % (±3 %)
for RD and ±4 % (±2 %) for RD∗ , respectively, for an integrated luminosity of 5 ab−1

(50 ab−1) anticipated by the end of 2020 (2024) [48].

A straightforward explanation of the excess can be realized by a contribution to
the SM-like operator Oτ

V1
. To linear order in the NP contribution (3.17) and (3.18)

yield
R̂D(∗) − 1 ≃ 2 ReCτV1 , (3.23)
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Figure 3.3.: SM predictions and experimental data for the differential branching fractions
dB(B̄ → Dℓν)/dq2 (top) and dB(B̄ → D∗ℓν̄)/dq2 (bottom). We use the lepton
flavor “l” to indicate taking the average over the light leptons e and µ. The bands
mark the one sigma uncertainty ranges, which are driven by the uncertainties of
the form factors (see Appendix C for details). The data points for B̄ → D(∗)τ ν̄ are
taken from the BABAR collaboration [44]. For the decays with light leptons in the
final state we show experimental results provided by the Belle collaboration [45, 46].
Note that the Belle data in the bottom plot (and also our respective SM prediction)
relates to the mode B̄0 → D∗+lν̄, while in all other cases isospin averaged modes
are concerned.
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Figure 3.4.: Overview of the available experimental data in the RD–RD∗ plane provided by the
HFLAV collaboration in spring 2019 [12].

where we define R̂D(∗) ≡ RD(∗)/RSM
D(∗) . Consequently, as the experimental data exceeds

the SM prediction by about twenty percent, the required NP contribution is of the
order of ten percent. For a generic heavy particle with O(1) couplings that induces Oτ

V1
at tree-level this implies a mass scale of about 1 TeV. If the couplings are smaller, as
typically predicted by flavor models, the mass of the new particle needs to be much lower,
which can cause large effects in other low-energy flavor observables. We will also consider
contributions to other operators within concrete NP scenarios as a resolution to these
tensions later on.

A similar excess in the related observableRJ/ψ ≡ B(B+
c → J/ψτ+ντ )/B(B+

c → J/ψµ+νµ)
has been reported by LHCb in 2018 [49]. Adding statistical and systematic uncertain-
ties in quadrature they find RLHCb

J/ψ = 0.71 ± 0.25 – a two sigma excess over the SM
predictions, which, depending on the form factors used, range from 0.25 to 0.28 [50–
60]. However, such a large central value cannot even be explained by NP contribu-
tions [47].

The last NP-sensitive observable we consider is the polarization

Pτ (D(∗)) ≡ B+(D(∗)) − B−(D(∗))
B+(D(∗)) + B−(D(∗))

(3.24)

of the τ lepton in the rest frame of the decaying B̄ meson in B̄ → D(∗)τ ν̄τ . Here,
B±(D(∗)) is a short form for the branching ratio B(B̄ → D(∗)τ ν̄τ ) with a lepton helicity
of ±1/2. As can be seen in Table 3.1 the only available result thus far is Belle’s
measurement PBelle

τ (D∗) = −0.38 ± 0.54, which is compatible with the SM prediction
but has a fairly large uncertainty. However, the results are soon expected to become
considerably more precise owing to the much higher instantaneous luminosity at the
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SuperKEKB collider - the upgrade to KEKB which began operations recently. The
projected absolute uncertainty is ±0.20 (±0.07) for an integrated luminosity of 5 ab−1

(50 ab−1) [48].

Further progress in the search for possible NP effects in b → cℓν̄ transitions can be
made by investigating angular observables of B̄ → D(∗)ℓν̄ decays. Although this is very
challenging as the neutrino in the final state cannot be completely reconstructed in
experimental analyses, with the increasing experimental sensitivity and the development
of new reconstruction methods angular analyses of these decays might become feasible in
the future [61].

22



3.3. The FCCC Processes b → cℓν̄

Observable SM Prediction Exp. Results Reference

B(B̄ → Dlν̄) × 102 2.30 ± 0.20 2.28 ± 0.10 BABAR ’07 [62]
2.31 ± 0.11 Belle ’15 [45]

B(B̄ → D∗lν̄) × 102 5.58 ± 0.31 5.64 ± 0.22 BABAR ’07 [62]

B(B̄0 → D∗+lν̄) × 102 5.31 ± 0.37 4.95 ± 0.25 Belle ’17 [46]

B(B̄ → Dτν̄) × 102 0.68 ± 0.07 1.02 ± 0.17 BABAR ’12 [44, 63]

B(B̄ → D∗τ ν̄) × 102 1.4 ± 0.1 1.76 ± 0.17 BABAR ’12 [44, 63]

RD 0.300 ± 0.008 0.440 ± 0.072 BABAR ’12 [44, 63]
0.375 ± 0.069 Belle ’15 [64]
0.307 ± 0.040 Belle ’19 [65]

0.346 ± 0.031 average

RD∗ 0.252 ± 0.003 0.332 ± 0.030 BABAR ’12 [44, 63]
0.293 ± 0.041 Belle ’15 [64]
0.336 ± 0.040 LHCb ’15 [66]
0.302 ± 0.032 Belle ’16 [67]
0.270 ± 0.044 Belle ’17 [68]
0.291 ± 0.035 LHCb ’18 [69]
0.283 ± 0.023 Belle ’19 [65]

0.300 ± 0.012 average

Pτ (D) 0.330 ± 0.023

Pτ (D∗) −0.497 ± 0.011 −0.38 ± 0.54 Belle ’17 [68]

Table 3.1.: SM predictions and experimental results for key observables in b → cℓν̄ transitions.
Statistical and systematic uncertainties are added in quadrature. The averages
provided for the experimental values of RD(∗) are error weighted arithmetic means.
For the LHCb results on RD∗ the light lepton flavor refers only to muons. Our
predictions are in good agreement with the results available in the literature [43,
70–76].
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3.4. The FCNC Processes b → sℓ+ℓ−

We will now turn to the much rarer transitions b → sℓ+ℓ−. As FCNCs they only occur
at loop level in the SM while also suffering from GIM suppression and are thus much
more sensitive to tree-level NP contributions. They are also more accessible at hadron
colliders than the previously discussed processes, since typically all decay products
can be fully reconstructed in experimental analyses. Thus, a substantial amount of
precision data is already available and a lot more is expected to be produced by future
experiments.

3.4.1. Hadronic Observables in the Effective Theory

The effective Hamiltonian for this class of processes can be written as

Hb→sℓ+ℓ′−
eff = −4GF√

2
VtbV

∗
ts

αe
4π
∑︂
i

CiOi + h.c. (3.25)

Our main focus lies on the semileptonic operators

O(′)ℓℓ′
9 =

[︂
s̄γµPL(R)b

]︂ [︂
ℓ̄γµℓ′

]︂
, O(′)ℓℓ′

10 =
[︂
s̄γµPL(R)b

]︂ [︂
ℓ̄γµγ5ℓ

′
]︂
,

O(′)ℓℓ′
S =

[︂
s̄PR(L)b

]︂ [︂
ℓ̄ℓ′
]︂
, O(′)ℓℓ′

P =
[︂
s̄PR(L)b

]︂ [︂
ℓ̄γ5ℓ

′
]︂
.

(3.26)

Although lepton flavor is conserved in the SM the flavors ℓ and ℓ′ can differ in the general
case and we will see later on that experimental data on lepton flavor violating processes
imposes strong constraints on flavorful NP models. The dominant SM contribution
arises from electroweak penguin diagrams, as previously shown in Figure 3.2, resulting
in CSM

9 (mb) ≃ −CSM
10 (mb) ≃ 4.2, universally for all leptons [77]. Contributions to

(pseudo)scalar and primed operators, in which the chirality of the quark current is flipped,
are negligible in the SM but can become sizable in NP scenarios. For the sake of simplicity
we disregard tensor operators, which are induced neither in the SM nor in any of the NP
models considered later on. Beyond that, there are the quark operators O1–O6 as well as
the photon dipole operator O7, each of which receive a non-negligible SM contribution.
But since the coupling of these operators to leptonic currents is induced by QED, their
contributions – including potential NP effects – are necessarily lepton-universal, making
them less interesting for flavorful model building beyond the SM. For a comprehensive
study of this EFT we refer to [78].

Like before, we focus on the simplest hadronic processes which in this case are the
semileptonic decays B̄ → K̄ℓ+ℓ− and B̄ → K̄

∗
ℓ+ℓ−. We will take a more detailed

look at the angular distribution of the former decay mode as it is sufficiently simple
and serves as an example that highlights the beneficial properties of angular observ-
ables.
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Following [79], the matrix element for B̄ → K̄ℓ+ℓ− can be expressed as

M = i
GFαe√

2π
VtbV

∗
ts

(︂
FV(q2) pµB

[︂
ℓ̄γµℓ

]︂
+ FA(q2) pµB

[︂
ℓ̄γµγ5ℓ

]︂
+ FS(q2)

[︂
ℓ̄ℓ
]︂

+ FP(q2)
[︂
ℓ̄γ5ℓ

]︂ )︂
,

(3.27)

where the functions Fi(q2) read

FA(q2) ≡ f+(q2)C10 ,

FV(q2) ≡ f+(q2)Ceff
9 (q2) + 2Ceff

7 mb
fT(q2)

mB +mK
,

FP(q2) ≡ 1
2
m2
B −m2

K

mb −ms
f0(q2)CℓP

+ f+(q2)mℓC
ℓ
10

[︄
m2
B −m2

K

q2

(︄
f0(q2)
f+(q2) − 1

)︄
− 1

]︄
,

FS(q2) ≡ 1
2
m2
B −m2

K

mb −ms
f0(q2)CℓS .

(3.28)

Effects of chirality-flipped operators can be included by replacing Ci → Ci + C ′
i, where

i ∈ {7, 9, 10,S,P}. Note that this means that all observables in B̄ → K̄ℓ+ℓ− are only
sensitive to vectorial quark currents. The parametrizations we use for the form factors
f0(q2), f+(q2) and fT(q2) are given in [80]. Contributions from the quark operators O1–O6
are absorbed into the effective coefficients Ceff

7 ≃ −0.3 and Ceff
9 (q2) = C9 +Y (q2). Further

details and the loop function Y (q2) and can be found in [77].

The double-differential partial decay width can be written as

d2Γ (B̄ → K̄ℓ+ℓ−)
dq2 d cos θ = aℓ(q2) + bℓ(q2) cos θ + cℓ(q2) cos2 θ , (3.29)

where 4m2
ℓ ≤ q2 ≤ (mB − mK)2 and θ denotes the angle between the momenta of the

kaon and the lepton in the rest frame of the decaying B meson and the angular coefficient
functions are given as [81]

aℓ(q2)
Γ0

√
λKβℓ

≡ q2
(︂
β2
ℓ |FS|2 + |FP|2

)︂
+ λK

4
(︂
|FA|2 + |FV|2

)︂
+ 2mℓ(m2

B −m2
K + q2) Re(FPF

∗
A) + 4m2

ℓm
2
B|FA|2,

bℓ(q2)
Γ0

√
λKβℓ

≡ 2mℓ

√︁
λKβℓ Re(FSF

∗
V) ,

cℓ(q2)
Γ0

√
λKβℓ

≡ −λK
4
(︂
|FA|2 + |FV|2

)︂
.

(3.30)

For the sake of legibility, we suppress the q2 dependences of the involved functions and
employ the short forms

Γ0 ≡ G2
Fα

2
e |VtbV ∗

ts|2
29π5m3

B

, βℓ(q2) ≡
√︄

1 − 4m
2
ℓ

q2 , λK(∗)(q2) ≡ λ(q2,mB,mK(∗)) . (3.31)
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The fully integrated decay width

ΓKℓ ≡ Γ (B̄ → K̄ℓ+ℓ−) = 2
∫︂ q2

max

q2
min

dq2
(︃
aℓ(q2) + 1

3cℓ(q
2)
)︃

(3.32)

only depends on aℓ(q2) and cℓ(q2) and is dominated by (axial)vector contributions. The
coefficient function bℓ(q2) of the cos θ term in the angular distribution is related to the
dilepton forward–backward asymmetry

AℓFB ≡ 1
ΓKℓ

∫︂ q2
max

q2
min

dq2 bℓ(q2) , (3.33)

which vanishes in the SM, thus making it sensitive to scalar NP contributions. However,
the strong suppression by the lepton mass prevents the asymmetry from becoming large
enough to be detected in current experiments.

It can be seen from (3.30) that in the SM aℓ(q2) = −cℓ(q2) holds up to corrections that
are also suppressed by the lepton mass. As the purely (pseudo)scalar contributions to
aℓ(q2) do not suffer from such a suppression, the observable

F ℓH ≡ 2
ΓKℓ

∫︂ q2
max

q2
min

dq2
(︂
aℓ(q2) + cℓ(q2)

)︂
, (3.34)

in which the SM part largely cancels, is highly sensitive to these contributions. Both AℓFB
and F ℓH are normalized to the total decay width in order to reduce form factor uncertainties.
Neglecting corrections from higher-dimensional operators and QED these two quantities
completely determine the normalized angular distribution [81]

1
ΓKℓ

dΓKℓ
d cos θ = 3

4(1 − F ℓH)(1 − cos2 θ) + 1
2F

ℓ
H +AℓFB cos θ. (3.35)

Since the K̄∗ vector meson in the final state of B̄ → K̄
∗
ℓ+ℓ− further decays into K̄π

via the strong interaction, the final state reconstructed in experiments actually consists
of four bodies, providing access to an angular distribution with a much larger set of
observables. However, in this thesis we will mainly make use of the q2 distribution, which,
following [82], can be expressed as

dΓ (B̄ → K̄
∗
ℓ+ℓ−)

dq2 = 2J1s(q2) + J1c(q2) − 2
3J2s(q2) − 1

3J2c(q2) , (3.36)

where the required subset of angular coefficient functions is given by
4
3J1s = 2 + β2

ℓ

4

[︃⃓⃓⃓
AL

⊥
⃓⃓⃓2

+
⃓⃓⃓
AL

∥
⃓⃓⃓2

+ (L → R)
]︃

+ 4m2
ℓ

q2 Re
(︂
AL

⊥A
R∗
⊥ +AL

∥A
R∗
∥
)︂
,

4
3J1c =

⃓⃓⃓
AL

0

⃓⃓⃓2
+
⃓⃓⃓
AR

0

⃓⃓⃓2
+ 4m2

ℓ

q2

[︂
|At|2 + 2 Re

(︂
AL

0A
R∗
0
)︂]︂

+ β2
ℓ |AS|2,

4
3J2s = β2

ℓ

4

[︃⃓⃓⃓
AL

⊥
⃓⃓⃓2

+
⃓⃓⃓
AL

∥
⃓⃓⃓2

+ (L → R)
]︃
,

4
3J2c = −β2

ℓ

[︃⃓⃓⃓
AL

0

⃓⃓⃓2
+
⃓⃓⃓
AR

0

⃓⃓⃓2]︃
.

(3.37)
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Later on we will briefly discuss additional observables, which are related to the eight re-
maining angular coefficient functions {J3, J4, J5, J6s, J6c, J7, J8, J9} that appear in the full
angular distribution. The transversity amplitudes from (3.37) read

AL,R
⊥ =

√
2N
√︁
λK∗

[︃(︂
Ceff

9 ∓ C10
)︂ V

mB +mK∗
+ 2mb

q2 Ceff
7 T1

]︃
,

AL,R
∥ = −

√
2N

(︂
m2
B −m2

K∗

)︂ [︃(︂
Ceff

9 ∓ C10
)︂ A1
mB −mK∗

+ 2mb

q2 Ceff
7 T2

]︃
,

AL,R
0 = − N

2mK∗
√︁
q2

×
{︄(︂

Ceff
9 ∓ C10

)︂ [︃(︂
m2
B −m2

K∗ − q2
)︂

(mB +mK∗)A1 − λK∗

mB +mK∗
A2

]︃

+ 2mbC
eff
7

[︄(︂
m2
B + 3m2

K∗ − q2
)︂
T2 − λK∗

m2
B −m2

K∗
T3

]︄}︄
,

At = N

√
λK∗√︁
q2

[︄
2C10 + q2

mℓ

CℓP
mb +ms

]︄
A0,

AS = −2N
√︁
λK∗

CℓS
mb +ms

A0 ,

(3.38)

where we employ the normalization factor

N(q2) ≡ GFαeVtbV
∗
ts

√︄
q2βℓ

√
λK∗

3 · 210π5m3
B

, (3.39)

and, as before, suppress the q2 dependences to avoid clutter. We employ the form
factors from [83]. Contributions from chirality-flipped operators can be accounted for by
replacing all Wilson coefficients Ci → Ci − C ′

i in all the transversity amplitudes except
for AL,R

⊥ where they need to be replaced by the orthogonal combination Ci + C ′
i that

already appeared in B̄ → K̄ℓ+ℓ−. Therefore, B̄ → K̄
∗
ℓ+ℓ− offers observables that are

complementary to those in B̄ → K̄ℓ+ℓ− with respect to the Lorentz structure of the
quark current.

In Figure 3.5 the general form of the B̄ → K̄
∗
ℓ+ℓ− dilepton invariant mass squared

spectrum is sketched. For B̄ → K̄ℓ+ℓ− the photon pole is not present while the rest of
the spectrum looks similar. The kinematic regions where 6 GeV2 ≤ q2 ≤ 15 GeV2 contain
the narrow charmonium resonances J/ψ(1S) and ψ(2S) with masses of about 3.1 GeV
and 3.7 GeV, respectively. These resonances are usually vetoed in experimental analyses
and the spectrum is divided into a low q2 region and a high q2 that begin below and
above the previously mentioned bounds, respectively. The low q2 region is generally
further confined to the interval1 1 GeV2 ≤ q2 ≤ 6 GeV2 in order to exclude the photon
pole [85]. Theoretical uncertainties in both the low and high q2 regions can be kept
under control by employing the appropriate tools discussed earlier. They are expected to

1in some experimental results a lower cut of 1.1 GeV2 is used
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Figure 3.5.: Schematic illustration of the B̄ → K̄
∗
ℓ+ℓ− dilepton invariant mass squared spec-

trum. While the region where 6 GeV2 ≤ q2 ≤ 15 GeV2 is dominated by narrow
charmonium resonances that give rise to non-perturbative QCD contributions,
perturbative methods can be employed above and below this region. Figure taken
from [84].

be of the order of 10 % [48]. It is therefore customary to integrate observables only over
these subregions of the spectrum.

3.4.2. NP-Sensitive Observables and Experimental Status

Experimental data on the differential decay widths of B+ → K(∗)+µ+µ− is shown in the
upper row of Figure 3.6 together with the respective theory predictions. In both cases
small deficits with respect to the SM values can be seen in the bins of the low q2 regions.
This is consistent with the data on the alternative isospin modes B0 → K(∗)0µ+µ− [86,
87]. The largest discrepancy appears in the bin 1 GeV2 ≤ q2 ≤ 6 GeV2 of the decay mode
B0
s → ϕµ+µ− where the tension amounts to more than three standard deviations. This

can be seen in the lower row of Figure 3.6 where we show the latest LHCb results for the
q2 spectra of the decays B0

s → ϕµ+µ− and also the baryonic mode Λ0
b → Λµ+µ− which

exhibits this deviation as well. Of course, due to the sizable form factor uncertainties
in the respective SM predictions none of these individual discrepancies are statistically
significant on their own – it is the seeming emergence of a consistent pattern that has
provoked the community’s curiosity within the past few years. Even though upcoming
data by LHCb and Belle II will substantially increase the experimental precision, the
large form factor uncertainties make it impossible to find NP in these observables.

As mentioned in the previous section, a large set of observables is provided by the
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Figure 3.6.: Top row: LHCb data on the differential branching fractions of B+ → K+µ+µ− (left)
and B → K∗+µ+µ− (right) [87]. The colored bands indicate the SM predictions
and their form factor uncertainties based on LCSR and lattice QCD calculations.
Bottom row: LHCb data on the differential branching fractions of B0

s → ϕµ+µ−

(left) [88] and the baryonic decay mode Λ0
b → Λµ+µ− (right) [89] together with

binned SM predictions provided by [40, 90] and [91], respectively.
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Figure 3.7.: Experimental data on the clean observable P ′
5 derived from the B̄ → K̄

∗
µ+µ−

angular distribution measured by LHCb [98], Belle [99], ATLAS [100] and CMS [101].
Note that the Belle results also include data from the electronic mode. The boxes
show SM predictions by DHMV [102] and ASZB [40, 90]. Figure taken from [103].

angular coefficients Ji of the decay B̄ → K̄
∗(→ K̄π)µ+µ−. This set can be used to

construct clean observables that do not suffer from large theory uncertainties and are
hence highly sensitive to NP contributions. In the past, the normalized CP -averaged
angular coefficients Si ≃ (Ji + J̄ i)/(ΓK∗µ + Γ̄K∗µ), where the bar indicates the CP -
conjugate, have been considered as a starting point for experimental analyses [92]. Even
though experimental and theoretical uncertainties are reduced in these ratios, they are
still sensitive to the choice of form factors and their parametrizations. Anticipating
precision data from LHCb and other experiments, the construction of clean observables
from the angular distribution of B̄ → K̄

∗
µ+µ− has been tackled in a systematic manner

over the past years [93–97]. As a result of this endeavor, a set of six clean observables,
namely P1,2,3 and P ′

4,5,6, has emerged. Following [97], these quantities can be related to
the Si as

P1,2,3 ≃ S3,6,9
FT

, P ′
4,5,6 ≃ S4,5,7√

FTFL
, (3.40)

where FT(L) is the transverse (longitudinal) polarization fraction of K̄∗ mesons. The P (′)
i

are theoretically clean in the sense that all form factor uncertainties cancel at leading
order. Together with their experimental accessibility, this makes them play a major role in
finding deviations from the SM and constraining NP models.

Current data on these clean observables shows a tension of about 3.4σ compared with
SM expectation [98]. Most prominently, the largest local discrepancy is observed by
LHCb in the two low q2 bins 4 GeV2 ≤ q2 ≤ 6 GeV2 and 6 GeV2 ≤ q2 ≤ 8 GeV2 of the
observable P ′

5 where the tensions amount to 2.8 and 3.0σ, respectively, as can be seen in
Figure 3.7 where we show the currently available experimental results for P ′

5 including
SM predictions. While the ATLAS data is compatible with the LHCb result but has
much larger uncertainties, the CMS result is more precise but compatible with both the
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LHCb result and the SM prediction. The Belle result is the first one to also include
the electronic mode B̄ → K̄

∗
e+e− and shows a 2.5σ tension with respect to the SM

prediction in the bin 4 GeV2 ≤ q2 ≤ 8 GeV2 that includes both of the bins in which LHCb
reports the largest discrepancy. Although the tension slightly increases to 2.6σ in case the
muonic mode alone is considered, the individual measurements are compatible between
different lepton flavors. Future measurements by Belle II will lower the experimental
uncertainties in P ′

5 for both the muonic and electronic mode by about a factor of three
(ten) given an integrated luminosity of 5 ab−1 (50 ab−1) [48]. More such flavor-specific
analyses are required to check whether these discrepancies are exclusive to muons and
hence require lepton non-universal NP or whether they occur universally. In the latter
case they could possibly be attributed to underestimated long-distance QCD effects
stemming from charm loop contributions [104–106]. Since the motivation of this thesis is
rooted in the flavor puzzles that are present in and beyond the SM we concentrate on
the former case and, abiding by the lepton-specific nature of the experimental results,
focus on flavorful NP scenarios.

Crucial tests of the SM’s built-in feature of LFU are provided by the ratios

RK(∗) |[q2
1 ,q

2
2] ≡

∫︂ q2
2

q2
1

dq2 dΓ (B̄ → K̄
(∗)
µ+µ−)

dq2∫︂ q2
2

q2
1

dq2 dΓ (B̄ → K̄
(∗)
e+e−)

dq2

, (3.41)

which play a central role in this thesis. Unlike in the case of RD(∗) , phase space effects
due to the mass difference of the final state leptons can be neglected in the ratios
considered here so that they are expected to be unity in the SM. This also implies a larger
cancellation of form factor uncertainties, leaving behind only tiny QCD corrections of the
order m2

µ/m
2
B [81, 107]. In fact, the dominant theoretical uncertainties of the ratios (3.41)

stem from QED and amount to about 1 % [108]. Thus, the observables RK(∗) − 1 are
considered to be clean null-tests of the SM as any significant deviation from zero would be
a clear sign of lepton flavor universality violation (LFUV).

The measurement that provides a main motivation for this thesis is the result

RLHCb ’14
K

⃓⃓⃓
[1,6]

= 0.745+0.090
−0.074 (stat) ± 0.036 (syst) (3.42)

obtained by the LHCb collaboration in 2014 using Run 1 data corresponding to an
integrated luminosity of 3.0 fb−1 at center of mass energies of 7 and 8 TeV [6]. It shows
a deficit of 2.6σ compared with the SM prediction, which persists in the most recent
update of this measurement published in 2019 [7]. Furthermore, using only the Run 1
dataset, in 2017 LHCb has reported similar deficits in RK∗ |[1.1,6] and RK∗ |[0.045,1.1] which
correspond to tensions of 2.5σ and 2.3σ, respectively. Note that the SM prediction for
the very low q2 region 4m2

µ ≤ q2 ≤ 1.1 GeV2 is slightly smaller than unity, because the
electronic mode receives a stronger enhancement from the photon pole than the muonic
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Observable SM Prediction Exp. Results Reference

RK |[1,6] 1.00 ± 0.01 0.752 ± 0.090 LHCb ’14 [6]
RK |[1.1,6] 1.00 ± 0.01 0.847 ± 0.042 LHCb ’21 [8]

RK∗ |[0.045,1.1] 0.906 ± 0.028 0.68 ± 0.10 LHCb ’17 [109]
0.57 ± 0.31 Belle ’19 [110]

RK∗ |[1.1,6] 1.00 ± 0.01 0.71 ± 0.10 LHCb ’17 [109]
1.04 ± 0.39 Belle ’19 [110]

Table 3.2.: Experimental results for RK and RK∗ in the low and very low q2 bins with sym-
metrized uncertainties. See [108] for more details on the SM predictions.
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Figure 3.8.: Available experimental results for RK (left) and RK∗ (right). LHCb [7, 109],
BABAR [111], Belle [112]

mode near its kinematic endpoint. The available experimental results for RK(∗) are shown
in Figure 3.8 where we also include older results by BABAR (2012) and Belle (2009) that
are compatible with both the SM prediction and the LHCb results due to their much
larger uncertainties. Numerical results for the low and very low q2 bins are compiled in
Table 3.2 along with the respective SM predictions. Additionally, the latest update of
Belle’s results for RK∗ published in 2019 is included.

3.4.3. Global Fits and NP Scenarios

With the vast amount of available data it becomes difficult to see whether the pattern of
discrepancies observed in the measurements of branching fractions that we discussed in
the beginning is compatible with the discrepancies seen in the clean angular observables
and RK(∗) . For this reason, several groups [9–11] have specialized in performing global
fits of the Wilson coefficients to the experimental data. The main result of these fits is
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Figure 3.9.: Likelihood contours of the individual RK(∗) and b → sµ+µ− constraints, as well
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10 (right). The dashed contours indicate the constraints and fit
results excluding the 2019 Moriond data. Figures taken from [11].

quite remarkable: a single NP contribution

CµNP
9 = −CµNP

10 ≃ −0.5 (3.43)

suffices to consistently explain all of the anomalies that are currently seen in b → sℓ+ℓ−

transitions. This simple scenario is found to improve the fit to the experimental data
by at least five standard deviations in comparison with the SM and is hence widely
considered as a benchmark point to resolve the b → sℓ+ℓ− anomalies. On the left side of
Figure 3.9 we show the most recent global fit results in the plane spanned by CµNP

9 and
CµNP

10 and a breakdown of the fit into the experimental data on the branching fractions
and angular observables in b → sµ+µ− decays alone on the one hand and RK and RK∗

on the other hand. While it can be seen that the 1σ contours derived from the individual
datasets have slightly drifted apart with the 2019 update of the LHCb data, the pull
with respect to the SM still exceeds five standard deviations. Nevertheless, this shows
that more cross-checks are required to verify that these deviations share a common
origin.

For instance, as we have discussed earlier, B̄ → K̄ℓ+ℓ− and B̄ → K̄
∗
ℓ+ℓ− provide

complementary sensitivity to the chirality of the quark current. Accordingly, this is also
true for RK and RK∗ , as can be seen in the following simplified expressions that result
from an expansion in the dominant NP contributions [113]:

RK = 1 +∆+ +Σ+ ,

RK∗ = 1 +∆+ +Σ+ + p (Σ− −Σ+ +∆− −∆+) ,
(3.44)
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with

∆± = 2 Re
(︄
CµNP

LL ± CµRL
CSM

LL
− (µ → e)

)︄
,

Σ± =

⃓⃓⃓
CµNP

LL ± CµRL

⃓⃓⃓2
+ |CµLR ± CµRR|2⃓⃓⃓

CSM
LL

⃓⃓⃓2 − (µ → e) ,
(3.45)

where we write the Wilson coefficients in the basis

CLL = C9 − C10 , CLR = C9 + C10 ,

CRL = C ′
9 − C ′

10 , CRR = C ′
9 + C ′

10
(3.46)

that reflects the chirality of both the quark and the lepton current in the first and
second index, respectively. The polarization fraction p is close to unity in the low q2

region [114]. Hence, any difference between RK and RK∗ would be an indicator of NP
contributions to right-handed quark currents i.e. primed operators. This complementary
sensitivity can be seen on the right side of Figure 3.9 where the global fit results are
displayed in the plane spanned by CµNP

9 = −CµNP
10 and C ′µNP

9 = −C ′µNP
10 and the

RK(∗) contour is further decomposed into those derived from RK and RK∗ individually.
Here, the impact of the 2019 data is very small and does not change the fact that
primed operators are currently not needed for a joint explanation of all b → sℓ+ℓ−

anomalies.

Furthermore, as there is presently only very limited data available on b → se+e− the
anomalies observed in b → sµ+µ− do not necessarily require lepton-specific NP and can
hence also be explained by a lepton-universal NP contribution CNP

9 = −CNP
10 ≃ −0.5

which does not affect RK(∗) . More generally, the observed deficits in RK and RK∗ can
not only be caused by a suppression of the muonic mode but also by an enhancement of
the electronic mode or a combination of those cases. Analyses dedicated to b → se+e−

are therefore needed to examine these possibilities. For instance, if the electronic mode
is enhanced due to (pseudo)scalar NP contributions to C(′)e

S,P causing a deficit in RK , this
will also lead to a non-vanishing flat term F eH in the B̄ → K̄e+e− angular distribution,
as the two quantities are in this scenario related by

RK = 1 − F eH (3.47)

if lepton masses are neglected [81]. Note that in this scenario cancellations between
primed and unprimed operators are necessary in order to evade bounds from Bs →
e+e−.

In the following, we will focus on the benchmark scenario (3.43) and treat any additional
contributions from flavor models as predictions or, if necessary, as constraints. While
disfavored by global fits, we will also explore explanations of RK involving right-handed
quark currents.
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3.5. Constraints on NP Contributions from Flavor

Processes

While we are mainly interested in finding deviations from the predictions of the SM,
there is an abundance of experimental data that is in agreement with these predictions
and needs to be taken into account. This means NP models which are meant to explain
the previously discussed discrepancies must not make predictions that disagree with
existing data. As we have seen, within the framework of EFTs this condition directly
translates into bounds on the Wilson coefficients. Focusing on resolving the b → sℓ+ℓ−

anomalies, we will discuss further b → s transitions such as b → sνν̄ and B̄s–Bs mixing
that strongly constrain NP contributions to that sector.

So far, we have always studied a single class of low-energy transitions at a time. However,
as soon as specific NP models from higher energy scales are considered, contributions
to several different classes of processes might be induced simultaneously. In the context
of flavor models even more relations between various classes of flavor transitions arise,
further increasing the amount of constraints that need to be satisfied. In this section
we will therefore also discuss constraints emerging from flavor transitions different from
those in which the anomalies are seen. This includes decays in the charm and kaon sector
as well as lepton flavor violating processes.

3.5.1. Further b → s Transitions

In order to obtain the desired benchmark scenario (3.43) in which the quark and lepton
current are both left-handed, NP contributions to operators involving the quark and
lepton doublets are required above the electroweak scale. At low energies this can
potentially induce the transitions b → sνν̄, which can be described by the previously
discussed effective Hamiltonian (3.25) provided that the set of effective operators is
amended by

Oνν′

L(R) =
[︂
s̄γµPL(R)b

]︂ [︁
ν̄γµPLν

′]︁ . (3.48)

In the SM the dominant contributions arise from Z penguins and W boxes resulting
in

CSM
L = − 2Xt

sin2 θW
≃ −13 (3.49)

while CSM
R is negligible [115]. Details about the evaluation of the loop function Xt can be

found in [116] and references therein. The most stringent constraint on NP contributions
are imposed by the upper limit

B(B → Kνν̄) < 1.7 × 10−5 (3.50)
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at 90 % confidence level obtained by BABAR in 2013 [117]. This amounts to a maximum en-
hancement over the SM prediction by a factor of 4.3 [115], yielding⌜⃓⃓⎷∑︂

ν

⃓⃓⃓
CSM

L + CNPνν
L + CννR

⃓⃓⃓2
+
∑︂
ν ̸=ν′

⃓⃓
Cνν

′
L + Cνν

′
R
⃓⃓2 ≤

⃓⃓⃓
CSM

L

⃓⃓⃓√
4.3 · 3 ≃ 47 . (3.51)

In the case of a single real flavor-diagonal coupling CNPνν
L involving left-handed quarks

this bound simplifies to
−30 ≤ CNPνν

L ≤ 56 . (3.52)

New results from the Belle II experiment, which are anticipated within the next few
years and can potentially reach SM-level sensitivity, are expected to further tighten this
constraint.

3.5.2. Bs–B̄s Mixing

So far we have only considered FCNC processes in which the flavor quantum number
changes by one unit. Another important class of FCNCs consists of ∆F = 2 transitions
that induce neutral meson oscillations and thus lead to mixing between neutral mesons
and their antiparticles. The study of meson mixing in the kaon sector has played a
crucial role in the construction of the SM, as it provided the first evidence for indirect CP
violation [118] and led to the prediction of the charm quark mass before its discovery [119].
In the B sector Bd–B̄d mixing has provided first hints towards a large top quark mass.
Here we focus on Bs–B̄s mixing, as current experimental data imposes strong bounds on
models that address the b → sℓ+ℓ− anomalies.

The time evolution of the meson and antimeson states is governed by the Schrödinger
equation

i
d
dt

⎛⎝|Bs(t)⟩
|B̄s(t)⟩

⎞⎠ =
(︃
M s − i

2Γ
s
)︃⎛⎝|Bs(t)⟩

|B̄s(t)⟩

⎞⎠ , (3.53)

where M s and Γ s are the hermitian mass and decay matrices, respectively. Diagonalizing
the mass matrix results in two mass eigenstates with masses mlight

Bs
and mheavy

Bs
. Their

mass difference corresponds to the frequency of the meson oscillation and thus provides
an excellent experimental observable. It can be expressed in terms of the off-diagonal
matrix element as

∆mBs = 2|M s
12| =

⃓⃓⃓⃓
⃓⃓⟨Bs|H|∆B|=2

eff |B̄s⟩
mBs

⃓⃓⃓⃓
⃓⃓ , (3.54)

where mBs denotes the average of mlight
Bs

and mheavy
Bs

.

The effective Hamiltonian describingBs–B̄s mixing can be expressed as [120]

H|∆B|=2
eff = (VtbV ∗

ts)
2C1Q1 + h.c. , (3.55)
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Figure 3.10.: Dominant SM contributions to the Bs–B̄s mixing amplitude.

where the only necessary effective operator reads

Q1 = [s̄LγµbL] [s̄LγµbL] . (3.56)

Within the SM the dominant contribution stems from box diagrams with W bosons
and top quarks propagating in the loop, as depicted in Figure 3.10. Evaluating these
diagrams gives

CSM
1 = G2

F
4π2m

2
W η̂BsS0

(︄
m2
t

m2
W

)︄
, (3.57)

where S0 is an Inami–Lim function and η̂Bs parametrizes perturbative 2-loop QCD
corrections. For details we refer to [120] and references therein. Parametrizing the
hadronic matrix element as

⟨Bs|Q1|B̄s⟩ = 2
3m

2
Bsf

2
BsBBs , (3.58)

with the decay constant fBS and the bag parameter BBs , the SM prediction for the mass
difference reads

∆mSM
Bs =

⃓⃓⃓⃓
⃓G2

F
6π2 (VtbV ∗

ts)
2m2

WS0

(︄
m2
t

m2
W

)︄
BBsf

2
BsmBs η̂Bs

⃓⃓⃓⃓
⃓ . (3.59)

Currently the precision of the SM value is strongly limited by the large hadronic un-
certainties of the bag parameter and the decay constant which are obtained from
lattice calculations and sum rules. The weighted average of the most recent results
is [121]

∆mSM
Bs = (18.15 ± 0.95) ps−1 = (1.025 ± 0.055)∆mexp

Bs
, (3.60)

where uncertainties are symmetrized and the average of experimental results provided by
HFLAV [12] reads

∆mexp
Bs

= (17.749 ± 0.020) ps−1 . (3.61)

3.5.3. Lepton Flavor Violation, Kaon and Charm Decays

Lastly, we consider constraints that can arise indirectly through an imposed flavor
structure.
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cLFV Processes As soon as a link between two or more lepton generations is established,
strong bounds from experimental limits on cLFV transitions arise, because their
signatures are very clean and have virtually no SM background. In the context of
the b → sℓ+ℓ− anomalies the relevant processes are

• µ− → e−γ ,

• µ−N → e−N ,

• µ− → e−e+e− .

In the following we apply the bounds derived in [122]. For more details we refer
to [123]. The current constraints are expected to be improved by at least two
orders of magnitude with upcoming data from the Mu2e [124], COMET [125] and
MEG [126] experiments.

Kaon Decays If NP couplings to the first two quark generations are induced by a
hierarchical flavor structure, contributions to leptonic and semileptonic kaon decays
can approach current experimental limits [127]. From a flavor perspective cLFV
kaon decays are particularly interesting. Relevant processes which impose the
strongest bounds include

• KL → µ+µ− ,

• KL → e−µ+ ,

• K → πνν̄ .

We make use of the constraints on the Wilson coefficients of four-quark operators
discussed in [127–129].

Charm Decays In the charm sector the corresponding decay channels

• D → µ+µ− ,

• D → e−µ+ ,

• D → πνν̄

are relevant in the context of flavorful NP models related to the B anomalies.
However, the situation on both the experimental and the theoretical side is very
different for rare charm decays. The branching ratios of these processes are
particularly small and dominated by resonances which complicate the search for
NP signals. Since the mass of the charm quark is neither very large, as it is the
case for the bottom quark, nor small, as the strange quark, theoretical methods
used in the B and kaon sectors can only be applied to a limited extent so that
theoretical uncertainties are large. Consequently, rare charm decays provide only
weak constraints on NP models [122].
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Specific Models for the

Resolution of the B Anomalies

In this chapter we will review classes of models which can potentially induce the desired
NP contribution to Oµ

LL ≡ (Oµ
9 − Oµ

10) /2 that resolves the b → sℓ+ℓ− anomalies. This
means, we will leave the completely model-independent EFT approach behind and will
instead study specific particles that contribute to OLL when they are integrated out,
while still remaining agnostic about the detailed UV completion. At tree-level, only the
three options shown in Figure 4.1 are possible: scalar leptoquarks, vector leptoquarks
and also neutral vector currents (Z ′ models). Even though OLL consists of (axial)vector
currents, it can still receive contributions from scalar leptoquarks due to the Fierz
transformations that are necessarily involved when the effective interactions invovling
lepton-quark currents are matched onto the basis (3.26). This has the additional effect
that leptoquarks can potentially induce b → cℓν̄ transitions as well and hence might
provide a joint explanation of the B anomalies.

b `

s `

b `

s `

b

s

`

`

∆ ∆
Z ′

Figure 4.1.: Tree-level Feynman diagrams of possible NP contributions that allow to resolve the
b → sℓ+ℓ− anomalies. We use ∆ to generically denote a leptoquark.
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4.1. Leptoquarks

In the SM, the quark sector and the lepton sector are completely independent from each
other. The only thing relating them is the peculiar fact that their contributions to gauge
anomalies cancel exactly within each generation. As this does not necessarily need to be
the case in models beyond the SM, many of them are expected to include new particles,
called leptoquarks, that mediate interactions between quarks and leptons [128, 130].
Among those models are Grand Unified Theories (GUTs) [131, 132], supersymmetric
models with R-parity violation [133] and also those in which leptoquarks appear as bound
states resulting from new confining dynamics [134].

Leptoquarks can be scalars or vectors with interactions that schematically have the
form

L ⊃ YABAB∆+ h.c. , (4.1)

where A ∈ {Q, Q̄, U, Ū ,D, D̄} denotes an (anti)quark field and B ∈ {L,E} denotes a lep-
ton field. The couplings YAB are 3×3 matrices in flavor space, where the rows and columns
correspond to different quark and lepton generations, respectively. Furthermore, some lep-
toquarks can have interactions that violate lepton and baryon number and thus potentially
give rise to proton decay [135]. However, focusing on low-energy flavor phenomenology,
we only consider leptoquark interactions that conserve both lepton and baryon number
and thus do not endanger the proton lifetime.

In total there are twelve possible coupling matrices that can appear in the interactions
of the ten leptoquark models with distinct SM gauge group representations. Table 4.1
shows which coupling matrix is present in a particular leptoquark model and whether it
induces tree-level FCNCs in the up and down type sectors. The detailed interactions
and SM representations of the individual models are listed in Tables 4.2, 4.3. In
these tables we also present all the effective vertices obtained by integrating out the
respective leptoquark and subsequently Fierz transforming the resulting current-current
interactions.

Regarding the b → sℓ+ℓ− anomalies, of course, only those models are relevant in which
FCNCs in the down type sector are induced. However, some of the models contribute only

AB QL Q̄L UL ŪL DL D̄L QE Q̄E UE ŪE DE D̄E

model S1,3 V1,3 Ṽ 2 S2 V2 S̃2 V2 S2 S1 Ṽ 1 S̃1 V1

d FCNCs ✓ ✓ – – ✓ ✓ ✓ ✓ – – ✓ ✓

u FCNCs ✓ ✓ ✓ ✓ – – ✓ ✓ ✓ ✓ – –

Table 4.1.: Baryon and lepton number conserving leptoquark couplings YAB as they appear in
the different models. A check mark indicates tree-level contributions to up and down
type FCNCs.
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Figure 4.2.: Experimental constraints from Bs–B̄s mixing (blue) and RK(∗) (red) in the Y Y ∗–M
plane for the S3 leptoquark. The solid and dashed black lines indicates the resulting
one and two sigma contours, respectively. The corresponding upper bounds on
the leptoquark mass are shown in purple. Typical sizes for the couplings in flavor
models are depicted in green.

to right handed lepton currents or b → sνν̄, leaving just V1,2,3, S3 and S̃2 as potential
candidates, where V1,3 as well as S3 contribute to OLL while V2 and S̃2 contribute to ORL.
The leptoquarks contributing to right-handed quark currents are disfavored by current
data as they predict RK ̸= RK∗ . All of these models have been extensively studied
within various scenarios in recent literature [114, 136–140]. The strongest constraint
that applies to leptoquark models in the context of b → sℓ+ℓ− transitions is due to
the mass difference in Bs–B̄s mixing as discussed in Section 3.5.2. Following [113] the
leptoquark contribution to the ∆B = 2 effective operator (3.56) stemming from box
diagrams reads

CLQ
1 = pLQ (Y Y ∗)2

32π2(VtbV ∗
ts)2M2 , where pLQ = 5, 4, 20 for S3, V1, V3 . (4.2)

Since this contribution scales as (Y Y ∗)2

M2 while effects in semileptonic decays are propor-
tional to Y Y ∗

M2 the experimental data on Bs–B̄s mixing imposes an upper limit on the
mass of leptoquarks that can explain the observed deviation in RK(∗) . In Figure 4.2
we show the one sigma regions of to the bounds from ∆mBs and RK(∗) in blue and
red, respectively, for the S3 leptoquark together with the resulting one and two sigma
contours from which we infer the upper leptoquark mass bound. At one (two) sigma we
find

M/TeV ≲ 41 (83) , 46 (92) , 21 (41) for S3, V1, V3 . (4.3)

The leptoquarks S1,2,3, and V1,2,3 are all capable of giving rise to the charged currents
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b → cℓν̄. As the hints for NP in this sector are far less established than in b → sℓ+ℓ−

and there is no preferred direction in the space of BSM Wilson coefficients, we will later
on explore multiple scenarios that have been previously studied in the literature [35,
141].

Instead of just focusing on one individual anomaly it is of course tempting to study
models that can resolve multiple anomalies at once. Such combined scenarios have also
received a lot of attention from the community. While most of them focus on RK(∗) and
RD(∗) [142–150] there are also models which address additional problems such as the
deviation seen in the anomalous magnetic moment of the muon or the lack of neutrino
masses in the SM [151–154]. The consensus of those works is that a combined single
leptoquark explanation of the B decay anomalies is only possible with V1 – all other
remaining models either induce opposing effects in RK(∗) and RD(∗) or are excluded by
other flavor observables [149].

We provide tables summarizing the tree-level leptoquark contributions to the Wilson
coefficients for the transitions b → sℓ+ℓ−, b → sνν̄, b → cℓν̄ as well as the charm
FCNCs c → uℓ+ℓ− and c → uνν̄, obtained from comparing the effective vertices listed in
Tables 4.2, 4.3 with the respective operator bases, in Appendix D. Contributions to these
different sectors arise from different sectors of the coupling matrix Y , as schematically
shown here:

Y =

⎛⎜⎜⎝
Y 11 Y 12 Y 13

Y 21 Y 22 Y 23

Y 31 Y 32 Y 33

⎞⎟⎟⎠ .

Although there is some overlap between these regions of the coupling matrix it can be
possible to tune the entries in such a way that constraints from the charm and kaon sectors
or cLFV decays can be avoided while at the same time accounting for the B anomalies.
In the literature discussed above the flavor structure is typically either tuned to match
the experimental data directly, assumed to follow simple structures like such ones that
are dominated by third generation couplings with others induced by mixing, or obtained
from variants of MFV. Here, we aim to establish more rigid structures within these
coupling matrices by imposing flavor symmetries which are also capable of describing the
observed pattern of masses and mixing of the SM fermions.

Charm FCNCs, Kaon decays, . . .

RK(∗)

RD(∗)

In order to study the hadron collider phenomenology of leptoquarks we also need to
consider their gluon interactions. As gauge interactions they arise from the kinetic terms,
which read

Lkin = (Dµ∆)†Dµ∆ , (4.4)
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Interaction Lagrangian SM Rep. Effective Vertices

(︂
YQLQ̄

c
Liσ2LL + YUE ū

c
ReR

)︂
S1 (3̄,1, 1/3)

Y ij
QL(Y mn

QL )∗

2M2 (ūLmγµuLi)(ℓ̄Lnγ
µℓLj)

− Y ij
QL(Y mn

QL )∗

2M2 (ūLmγµdLi)(ℓ̄Lnγ
µνLj)

Y ij
QL(Y mn

QL )∗

2M2 (d̄LmγµdLi)(ν̄Lnγ
µνLj)

Y ij
UE

(Y mn
UE )∗

2M2 (ūRmγµuRi)(ℓ̄Rnγ
µℓRj)

− Y ij
QL

(Y mn
UE )∗

2M2 (ūRmuLi)(ℓ̄RnℓLj)
Y ij

QL
(Y mn

UE )∗

8M2 (ūRmσµνuLi)(ℓ̄Rnσ
µνℓLj)

Y ij
QL

(Y mn
UE )∗

2M2 (ūRmdLi)(ℓ̄RnνLj)

− Y ij
QL

(Y mn
UE )∗

8M2 (ūRmσµνdLi)(ℓ̄Rnσ
µννLj)

YDE d̄
c
ReRS̃1 (3̄,1, 4/3) Y ij

DE
(Y mn

DE )∗

2M2 (d̄RmγµdRi)(ēRnγ
µeRj)

(︂
YŪLūRLL + YQ̄EQ̄Liσ2eR

)︂
S2 (3,2, 7/6)

− Y ij

ŪL
(Y mn

ŪL )∗

2M2 (ūRiγµuRm)(ν̄Lnγ
µνLj)

− Y ij

ŪL
(Y mn

ŪL )∗

2M2 (ūRiγµuRm)(ℓ̄Lnγ
µℓLj)

− Y ij

Q̄E

(︁
Y mn

Q̄E

)︁∗

2M2 (ūLiγµuLm)(ℓ̄Rnγ
µℓRj)

− Y ij

Q̄E

(︁
Y mn

Q̄E

)︁∗

2M2 (d̄LiγµdLm)(ℓ̄Rnγ
µℓRj)

Y ij

ŪL

(︁
Y mn

Q̄E

)︁∗

2M2 (ūRidLm)(ℓ̄RnνLj)
Y ij

ŪL

(︁
Y mn

Q̄E

)︁∗

8M2 (ūRiσµνdLm)(ℓ̄Rnσ
µννLj)

− Y ij

ŪL

(︁
Y mn

Q̄E

)︁∗

2M2 (ūRiuLm)(ℓ̄RnℓLj)

− Y ij

ŪL

(︁
Y mn

Q̄E

)︁∗

8M2 (ūRiσµνuLm)(ℓ̄Rnσ
µνℓLj)

YD̄Ld̄RLLS̃2 (3,2, 1/6)
− Y ij

D̄L
(Y mn

D̄L )∗

2M2 (d̄RiγµdRm)(ν̄Lnγ
µνLj)

− Y ij

D̄L
(Y mn

D̄L )∗

2M2 (d̄RiγµdRm)(ℓ̄Lnγ
µℓLj)

YQLQ̄
c
Liσ2σ⃗LLS⃗3 (3̄,3, 1/3)

Y ij
QL(Y mn

QL )∗

M2 (ūLmγµuLi)(ν̄Lnγ
µνLj)

Y ij
QL(Y mn

QL )∗

M2 (d̄LmγµdLi)(ℓ̄Lnγ
µℓLj)

Y ij
QL(Y mn

QL )∗

2M2 (ūLmγµuLi)(ℓ̄Lnγ
µℓLj)

Y ij
QL(Y mn

QL )∗

2M2 (ūLmγµdLi)(ℓ̄Lnγ
µνLj)

Y ij
QL(Y mn

QL )∗

2M2 (d̄LmγµdLi)(ν̄Lnγ
µνLj)

Table 4.2.: Interaction Lagrangians and tree-level effective vertices of scalar leptoquark models
with given SM gauge group representation.
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Interaction Lagrangian SM Rep. Effective Vertices

(︂
YQ̄LQ̄LγµLL + YD̄E d̄RγµeR

)︂
V µ

1 (3,1, 2/3)

− Y ij

Q̄L

(︁
Y mn

Q̄L

)︁∗

M2 (ūLiγµuLm)(ν̄Lnγ
µνLj)

− Y ij

Q̄L

(︁
Y mn

Q̄L

)︁∗

M2 (ūLiγµdLm)(ℓ̄Lnγ
µνLj)

− Y ij

Q̄L

(︁
Y mn

Q̄L

)︁∗

M2 (d̄LiγµdLm)(ℓ̄Lnγ
µℓLj)

− Y ij

D̄E
(Y mn

D̄E )∗

M2 (d̄RiγµdRm)(ℓ̄Rnγ
µℓRj)

2Y ij

Q̄L
(Y mn

D̄E )∗

M2 (ūLidRm)(ℓ̄RnνLj)
2Y ij

Q̄L
(Y mn

D̄E )∗

M2 (d̄LidRm)(ℓ̄RnℓLj)

YŪE ūRγµeRṼ
µ
1 (3,1, 5/3) − Y ij

ŪE
(Y mn

ŪE )∗

M2 (ūRiγµuRm)(ℓ̄Rnγ
µℓRj)

(︂
YDLd̄

c
RγµLL + YQEQ̄

c
LγµeR

)︂
iσ2V

µ
2 (3̄,2, 5/6)

Y ij
DL

(Y mn
DL )∗

M2 (d̄RmγµdRi)(ν̄Lnγ
µνLj)

Y ij
DL

(Y mn
DL )∗

M2 (d̄RmγµdRi)(ℓ̄Lnγ
µℓLj)

Y ij
QE(Y mn

QE )∗

M2 (ūLmγµuLi)(ℓ̄Rnγ
µℓRj)

Y ij
QE(Y mn

QE )∗

M2 (d̄LmγµdLi)(ℓ̄Rnγ
µℓRj)

2Y ij
DL(Y mn

QE )∗

M2 (ūLmdRi)(ℓ̄RnνLj)
2Y ij

DL(Y mn
QE )∗

M2 (d̄LmdRi)(ℓ̄RnℓLj)

YULū
c
RγµLLṼ

µ
2 (3̄,2,−1/6)

Y ij
UL

(Y mn
UL )∗

M2 (ūRmγµuRi)(ν̄Lnγ
µνLj)

Y ij
UL

(Y mn
UL )∗

M2 (ūRmγµuRi)(ℓ̄Lnγ
µℓLj)

YQ̄LQ̄Lγµσ⃗LLV⃗
µ

3 (3,3, 2/3)

− 2Y ij

Q̄L

(︁
Y mn

Q̄L

)︁∗

M2 (ūLiγµuLm)(ℓ̄Lnγ
µℓLj)

− 2Y ij

Q̄L

(︁
Y mn

Q̄L

)︁∗

M2 (d̄LiγµdLm)(ν̄Lnγ
µνLj)

− Y ij

Q̄L

(︁
Y mn

Q̄L

)︁∗

M2 (ūLiγµuLm)(ν̄Lnγ
µνLj)

Y ij

Q̄L

(︁
Y mn

Q̄L

)︁∗

M2 (ūLiγµdLm)(ℓ̄Lnγ
µνLj)

− Y ij

Q̄L

(︁
Y mn

Q̄L

)︁∗

M2 (d̄LiγµdLm)(ℓ̄Lnγ
µℓLj)

Table 4.3.: Same as Table 4.2 but for vector leptoquark models.

44



4.2. Z ′ Models

in the case of scalar leptoquarks and

Lkin = −
(︂
(Dµ∆ν)†Dµ∆ν − (Dν∆µ)†Dµ∆ν

)︂
(4.5)

for vector leptoquarks. In the latter case, an additional gauge invariant coupling to the
gluon field strength tensor appears, which is given by

L ⊃ −igsκ∆
†µtA∆νGAµν , (4.6)

where κ is a dimensionless parameter.

4.2. Z ′ Models

New electrically neutral and colorless vector bosons arise as gauge bosons in models
with an additional U(1)′ symmetry, including all GUTs based on gauge groups larger
than SU(5) [155]. Once the new symmetry is broken the Z ′ boson acquires a mass MZ′

related to the breaking scale. Generically, the Z ′ interactions with the SM fermions in
the mass basis can be expressed as

LZ′ =
∑︂
f

[︂
f̄Lγ

µgLfL + f̄Rγ
µgRfR

]︂
Z ′
µ , (4.7)

where the couplings gfL,R are 3 × 3 matrices in flavor space. The values of these couplings
depend on the new gauge coupling as well as the charges of the SM fermions under the
U(1)′. Fermion mixing allows to obtain contributions to off-diagonal entries that give rise
to tree-level FCNCs if the fermion charges under the new symmetry are non-universal
among different generations.

Within a general Z ′ model an explanation of the anomalies in RK(∗) is readily obtained
by integrating out the Z ′ at tree-level, which results in

CZ
′

9 = −CZ′
10 = − π√

2αeGFVtbV ∗
ts

gbsL g
µµ
L

M2
Z′

. (4.8)

This minimal scenario as well as variations in which the lepton current is vectorial,
resulting in a contribution only to C9, have been the subject of many recent studies [156–
163] which consider a variety of different UV completions. A strong, model-independent,
constraint on the gbsL coupling arises from Bs–B̄s mixing to which Z ′ bosons contribute
at tree-level. The respective Wilson coefficient reads [121]

CZ
′

1 = 1
2(VtbV ∗

ts)2

(︂
gbsL

)︂2

M2
Z′

. (4.9)

Hence, a large muon coupling gµµL is needed to successfully explain the data on RK(∗) .
Similar to the case of leptoquarks, Bs–B̄s mixing imposes a model-independent upper
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Figure 4.3.: One sigma constraints from Bs–B̄s mixing (blue) and RK(∗) (red) in the plane
spanned by the Z ′ mass MZ′ and the off-diagonal coupling gbs

L , assuming gµµ
L = 1.

The solid and dashed purple lines indicate the model-independent bounds imposed
on MZ′ at one and two sigma, respectively, resulting from the corresponding black
contours.

bound on the masses of Z ′ bosons that can account for the deviation in RK(∗) . This
can be seen in Figure 4.3, where we show the mixing constraint on gbsL in blue and the
one sigma range that allows for an explanation of RK(∗) , assuming gµµL = 1. From the
resulting one and two sigma contours shown as solid and dashed black lines, respectively,
we obtain

MZ′/TeV ≲ 7 (15) . (4.10)

While typical explanations of the b → sℓ+ℓ− anomalies employ heavy fields that can be
integrated out and yield q2-independent contributions to the Wilson coefficients of the
EFT, the parameter space of models with light new degrees of freedom is not yet fully
exhausted by experimental data. As the deviation seen in RK(∗) is located in the low-q2

interval between 1 GeV2 and 6 GeV2, a viable explanation can be obtained by means of
a light Z ′ with a mass of MZ′/GeV ≃

√
6 ≃ 2.5 that causes a negative interference in

this region. This idea is studied in [164, 165] in the context of the deviation measured in
the muon anomalous magnetic moment. The effect of the light Z ′ boson on b → sℓ+ℓ−

observables can be written as a q2-dependent conribution to the Wilson coefficients C9
and C10 as

C lightZ′

9,10 (q2) =
gbsL g

µµ
V,A/N

q2 −M2
Z′ + iMZ′ΓZ′

, (4.11)

where gV,A = gL ± gR and N = GFVtbV
∗
tsαe/

√
2π. The decay width ΓZ′ is assumed to

be dominated by the decay to a light SM singlet fermion and to be moderately narrow
– ΓZ′/MZ′ ≃ 20 %. We are able to reproduce the benchmark scenario from [164] using

46



4.2. Z ′ Models

0 2 4 6 8 10

q2/GeV2

0.4

0.6

0.8

1.0

1.2

1.4
R
K

0 2 4 6 8 10

q2/GeV2

R
K
∗

Figure 4.4.: q2-dependent results for RK and RK∗ in the light Z ′ scenario from [164] (orange),
in the light scalar scenario from [166] (green), and in the SM (blue). Experimental
data on RK(∗) from the LHCb collaboration is shown in black.

the values gµµV = 0.1 and gµµA = −0.044 for the muon couplings, and gbsL = 1.75 × 10−8,
which saturates the limit imposed by B → Kνν̄. In Figure 4.4 we show RK and RK∗ as
functions of q2 in the NP scenario from [164] (orange) and in the SM (blue) together with
the most recent LHCb data (black). It can be seen that the light Z ′ with MZ′ = 2.5 GeV
and large muon couplings interferes with the SM contribution in such a way that the
LHCb data on RK and RK∗ can be accommodated in the regions 1 GeV < q2 < 6 GeV
and 1.1 GeV < q2 < 6 GeV, respectively. However, the tension in the very low q2 region
for RK∗ remains.

A different approach is taken by [166] where light scalar and vector bosons in the
O(10) MeV range are considered. In particular, a simple scenario involving a light scalar
of mass MS = 25 MeV with the fermion interactions

LS =
[︂
s̄Rg

bs
S bL + s̄Lg

bs
S′bR + ēgeeS e

]︂
S (4.12)

provides a good fit to the RK(∗) in all q2 regions. Note that for scalar mediators only
couplings to electrons can help to explain RK(∗) since there is no interference with
the SM contribution, making it impossible to suppress B → K(∗)µ+µ−. However, the
enhancement of B(B → K(∗)e+e−) in this simple scenario is in conflict with measurements
by BABAR [167] and Belle [112, 168], which can be resolved with q2-dependent couplings.
We are able to reproduce this scenario with the parameters provided in [166] and show the
q2-dependent results for RK and RK∗ in comparison with the previously discussed light Z ′

scenario from [164] and the SM expectation in Figure 4.4.
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Chapter 5.

Approaches to the Flavor Puzzles

Before discussing concrete models that seek to solve the flavor puzzles in and beyond
the SM let us briefly highlight the special role that is played by flavor in general by
comparing the structure of the SM’s flavor and gauge sectors. Since the latter is described
by the kinetic terms of the Lagrangian alone, it is completely determined by the matter
fields and their transformation properties under the gauge group. As we have seen
before, this means that the only free parameters of this sector are the three gauge
couplings. However, according to the parameter counting performed in Section 2.4 there
are 13 parameters in the Yukawa sector alone. Taking into account the two parameters
associated with electroweak symmetry breaking and the strong CP phase, this means
that 16 out of the total 19 free parameters of the SM belong to its flavor sector. This
uneven distribution of parameters between the two sectors reflects the fact that the flavor
sector is much more complex and exhibits a smaller degree of symmetry than the gauge
sector.

Any effort towards solving the flavor puzzles must reduce the number of flavor parameters
and consequently entail a larger degree of symmetry of the flavor sector at some higher
scale. Hence, the canonical starting point for any symmetry-based flavor model is a
subgroup of the SM’s flavor symmetry group (2.28) in the absence of Yukawa couplings. In
the following, we first discuss one of the the simplest options – a U(1) symmetry. Models
based on this subgroup have proven to be successful in answering the central question of the
flavor puzzles as to why the parameters of the flavor sectors are so small and hierarchical,
while those in the gauge sector are all approximately of O(1). At this point it is important
to remark that we generally do not expect flavor models to make precise predictions
for the parameters, but rather to provide a qualitative understanding of the hierarchies
in terms of power counting in a small expansion parameter. Afterwards, we consider a
more complex model based on the non-abelian discrete group A4, which naturally gives
rise to tribimaximal mixing in the lepton sector, thus providing are more quantitative
explanation of the non-hierarchical neutrino mixing pattern.
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5.1. The Froggatt–Nielsen Mechanism

From the masses of the quarks and charged leptons given in (2.17) and (2.22), respectively,
we can see that the mass ratios follow the approximate pattern

mu : mc : mt ≃ λ8 : λ4 : 1 ,
md : ms : mb ≃ λ4 : λ2 : 1 ,
me : mµ : mτ ≃ λ4 : λ2 : 1 ,

(5.1)

where λ is the Wolfenstein parameter. This hierarchy can be explained by the Froggatt–
Nielsen (FN) mechanism [169], which is based on a global U(1) symmetry under which
the SM fermion generations transform distinctively. A new gauge singlet scalar field θ,
dubbed “flavon”, is introduced that spontaneously breaks the symmetry by acquiring a
vev. Furthermore, we assume a UV cutoff scale Λ beyond current experimental reach,
as we follow an EFT approach in which we remain agnostic about the details of the
UV completion. The cutoff scale and the flavon vev are chosen in such a way that they
provide a small expansion parameter

ϵ ≡ ⟨θ⟩
Λ

≃ λ , (5.2)

which is assumed to be of the order of the Wolfenstein parameter.

In order to generate hierarchical SM fermion Yukawa couplings, the fermions are assigned
U(1)FN charges q in such a way that a certain number of insertions of the flavon field θ,
carrying U(1)FN charge −1, is required to form Yukawa interactions that are invariant
under the FN symmetry. Consequently, the Yukawa interaction terms can be written in
terms of effective operators as

− LYukawa =
∑︂
ψ

Y ′
ψ,ij

(︃
θ

Λ

)︃q(ψ̄iL)+q(ψjR)

⏞ ⏟⏟ ⏞
Yψ,ij

Hψ̄
i
Lψ

j
R + h.c. , (5.3)

where, after breaking the U(1)FN symmetry, the Yukawa couplings are given by

Yψ,ij = Y ′
ψ,ij ϵ

q(ψ̄iL)+q(ψjR) ∼ ϵq(ψ̄
i
L)+q(ψjR) (5.4)

and the coefficients Y ′
ψ,ij are of O(1). We use the symbol “∼” for relations that hold in

terms of power counting in ϵ up to unknown factors of O(1). Note that this means we
allow for small deviations in power counting relations for quantities that can contain
sums or products of multiple O(1) factors.

UV completions of this effective model require new heavy fermions, called FN fields
or, more generally, “messengers”, at the mass scale Λ which mediate the interactions
between the SM fermions and the flavon field, as shown in the exemplary diagram
depicted in Figure 5.1. However, Λ is typically so large that effects stemming from the
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ψL

ψR

H
〈θ〉 〈θ〉 〈θ〉

Figure 5.1.: Schematic Feynman diagram of a UV completion of the effective interaction in (5.3).
Thick black lines denote heavy FN fermions. The crosses denote vev insertions
of the flavon field. In this example three insertions are necessary to obtain a
U(1)FN-invariant amplitude.

messenger fields are too small to be detected with current experimental sensitivities.

Perturbatively diagonalizing the Yukawa matrices (5.4) in powers of ϵ yields the mass
hierarchies

mi

mj
∼ ϵq(ψ̄

i
L)−q(ψ̄jL)+q(ψiR)−q(ψjR) . (5.5)

The resulting unitary rotation matrices, defined in (2.14), follow the hierarchical struc-
ture

U ij ∼ ϵ|q(ψiL)−q(ψjL)| . (5.6)

Therefore, the quark and lepton mixing matrices VCKM and UPMNS, respectively, derived
from (5.6) adhere to this pattern as well, since they are products of two unitary rotation
matrices.

In the quark sector, where the mixing angles are small, this mechanism provides a good ex-
planation of the current experimental data. The charge assignments [170]

q(Q̄) = q(U) = (4, 2, 0) , q(D) = (3, 2, 2) , (5.7)

yield the desired quark mass hierarchies from (5.1) and correctly reproduce the quark
mixing matrix. Furthermore, the charged lepton mass hierarchies can be modeled by
assigning charges only to the lepton singlets, i.e.

q(E) = (4, 2, 0) , q(L) = 0 . (5.8)

If right-handed neutrinos are included to generate neutrino masses through the seesaw-
mechanism, FN models can explain mixing in the lepton sector as well. However, as can
be seen in the detailed analysis provided in [170], some fine-tuning of the unknown O(1)
coefficients is necessary.

The main limitation of the FN approach is the lack of quantitative predictions for sets
of non-hierarchical quantities such as the neutrino mixing angles, of which only one is
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small while the other two are large and of similar size. More suitable descriptions of large
mixing angles can be achieved within models based on discrete non-abelian symmetries
such as A4, which we discuss in the following section.

5.2. Lepton Flavor from Discrete Symmetries

The TBM mixing pattern (2.25) hints at a flavor symmetry group based on rotations by
discrete angles. A particularly well-suited discrete group is A4 - the alternating group of
degree four, which describes the symmetry of a regular tetrahedron. It is the smallest
discrete group that contains three distinct irreducible singlet representations 1, 1′ and
1′′, as well as an irreducible triplet representation 3 – perfectly suitable to harbor three
generations of leptons.

While the singlet representations follow the trivial multiplication rules of the Z3 subgroup,
the triplet obeys

3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3 ⊕ 3 . (5.9)

Explicitly, denoting two triplets as a = (a1, a2, a3) and b = (b1, b2, b3), their products
resulting in singlets read

[ab] = a1b1 + a2b3 + a3b2 ,

[ab]′ = a1b2 + a2b1 + a3b3 ,

[ab]′′ = a1b3 + a2b2 + a3b1 .

(5.10)

The resulting triplets can be symmetric or antisymmetric and are given by

[ab]s = 1
3

⎛⎜⎜⎝
2a1b1 − a2b3 − a3b2

2a3b3 − a1b2 − a2b1

2a2b2 − a3b1 − a1b3

⎞⎟⎟⎠ , [ab]a = 1
2

⎛⎜⎜⎝
a2b3 − a3b2

a1b2 − a2b1

a3b1 − a1b3

⎞⎟⎟⎠ . (5.11)

The earliest application of this symmetry to lepton flavor models dates back to 2001 [171].
Since then many more variants have been constructed and constantly adapted to new
experimental developments.

In this thesis, we focus on the Altarelli–Feruglio (AF) models introduced in [172–174],
which give rise to the TBM mixing pattern and have been subsequently modified [175] to
account for a non-zero reactor angle θ13. These models are based on the flavor symmetry
group

A4 × Z3 × U(1)FN , (5.12)

where the additional Z3 is used to separate the neutrino and charged lepton sectors, and
the U(1)FN corresponds to the FN symmetry discussed before, which induces hierarchical
masses for the charged leptons. This symmetry is spontaneously broken by several scalar
flavon fields that each acquire a vev.
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L νR eR µR τR ϕℓ ϕν ξ ξ′ θ

A4 3 3 1 1′ 1′′ 3 3 1 1′ 1
Z3 1 1 1 1 1 0 2 2 2 0

U(1)FN 0 0 4 2 0 0 0 0 0 −1

Table 5.1.: Charge and representation assignments of the lepton and flavon fields with respect
to the A4 × Z3 × U(1)FN symmetry.

Here we consider the modified model [175], which contains the same number of flavons as
the original AF model, namely two triplet flavons, ϕℓ and ϕν , and two singlet flavons ξ and
ξ′, where the only difference is that the ξ′ flavon transforms as a non-trivial singlet 1′ under
A4 instead of as a trivial singlet. The vevs of the flavons read

⟨ϕℓ⟩
Λ

= cℓ(1, 0, 0) , ⟨ϕν⟩
Λ

= cν(1, 1, 1) , ⟨ξ(′)⟩
Λ

= κ(′) , (5.13)

where, as before, Λ corresponds to a UV cutoff associated with the flavor dynamics.
The expansion parameters1 cℓ,ν , κ

(′) are generally model-dependent with typical values
of the order of the Wolfenstein parameter. Note that the triplet flavons acquire vevs
in the particular directions (1, 0, 0) and (1, 1, 1), which break down A4 to subgroups
isomorphic to Z3 and Z2, respectively. As detailed in [174], these subgroups describe
the low-energy symmetries that shape the charged lepton and neutrino sectors, respec-
tively.

With the transformation properties of the lepton and flavon fields under the flavor
symmetry group (5.12) provided in Table 5.1 the charged lepton mass matrix resulting
from

− Lℓ = ye
Λ5 θ

4[ϕℓL̄]eRH + yµ
Λ3 θ

2[ϕℓL̄]′′µRH + yτ
Λ

[ϕℓL̄]′τRH + h.c. (5.14)

is diagonal due to the coupling to the vev of ϕℓ in the (1, 0, 0) direction, which selects
the relevant component of the lepton doublet by means of the triplet multiplication rules
from (5.11). As discussed in the previous chapter, the charged lepton mass hierarchies
are explained by the additional FN suppression. The neutrino sector is described
by

− Lν = y[L̄νR]H̃ + xAξ[ν̄Rν
c
R] + x′

Aξ
′[ν̄Rν

c
R]′′ + xB[ϕν ν̄Rν

c
R] + h.c. . (5.15)

Note that the products that result in trivial A4 singlets give rise to contributions to
the Dirac and Majorana mass matrices that are symmetric under the exchange of
the second and third lepton generation. Thus, in the resulting mixing matrix θ23
is maximal. In fact, in the limit ⟨ξ′⟩ → 0 (5.15) yields exactly the TBM mixing
pattern from (2.25). The contribution of the ξ′ flavon then enables a non-zero value for
θ13.

1In the following we refer to the expansion parameters ϵ, cℓ,ν , κ(′) as “vevs”.
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Chapter 6.

Leptoquarks in the Context of

Flavor Models

We will now use the flavor models discussed in the previous chapter to impose con-
straints on the couplings of leptoquark models. First, we derive and classify the resulting
flavor patterns and compute corrections that arise from flavor rotations and higher
order flavon contributions. We then consider modifications of the patterns that can
be engineered with dedicated charge assignments, and explore their phenomenology
with a focus on the B anomalies. We use experimental data on rare kaon decays
and µ-e conversion to constrain our patterns and work out predictions for charm de-
cays.

The results of this chapter are based on the findings of [1].

6.1. Flavor Structure Imposed by the AF × FN Model

Based on the AF × FN model introduced in Section 5.2 we derive possible textures for
the leptoquark couplings YAB listed in Table 4.1. We generally assume that leptoquarks
transform under singlet representations of A4. The possibility of three generations of
leptoquarks residing in the A4 triplet representation is considered in [176]. We begin
under the assumption that quarks transform as trivial A4 singlets and study possible
generalizations later on.

6.1.1. Quarks in the Trivial A4 Singlet Representation

In the case where all quarks transform as trivial singlets under A4 and are equally charged
under Z3, we only need to distinguish between couplings to lepton singlets YAE and
to lepton doublets YAL. The resulting patterns are then determined by the leptoquark
representation under A4×Z3. The choice of the leptoquark’s A4 representation determines
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to which lepton generation(s) it can couple, while its Z3 charge selects the flavon field
mediating the interaction.

For the couplings to lepton doublets the leading order contributions arise from the A4
triplet flavons ϕℓ and ϕν , which lead to patterns that isolate a single lepton generation or
couple equally to all generations, respectively. Interactions involving lepton singlets can
be rendered Z3-invariant by an appropriate choice of the leptoquark’s Z3 charge without
the need of any flavon insertion. This leads to lepton flavor isolating patterns in which,
in contrast to the case of lepton doublets, the isolated column is not suppressed by a
flavon vev but by a power of ϵ due to the lepton singlet FN charges. If neither the quark
nor the leptoquark carry a Z3 charge an insertion of one of the flavons ξ or ξ′ is required.
As these share the same Z3 charge but transform under different singlet representations
of A4 the resulting pattern isolates two lepton generations. A democratic pattern is
obtained for [∆]Z3 = 1 where two flavon insertions of ξ(′) are needed. Similarly, a second
democratic pattern with two flavon insertions arises for the lepton doublets as well. Note
that the democratic patterns do not induce LFUV.

In order to summarize these patterns we introduce the lepton flavor isolation tex-
tures

ke =

⎛⎜⎜⎝
∗ 0 0
∗ 0 0
∗ 0 0

⎞⎟⎟⎠ , kµ =

⎛⎜⎜⎝
0 ∗ 0
0 ∗ 0
0 ∗ 0

⎞⎟⎟⎠ , kτ =

⎛⎜⎜⎝
0 0 ∗
0 0 ∗
0 0 ∗

⎞⎟⎟⎠ , (6.1)

in which the “∗” denote non-zero entries whose parametric flavor dependence is governed
by the FN symmetry. We present the resulting patterns in Table 6.1 as linear combinations
of those matrices. As an example, consider the pattern named “Reµ”, which is obtained
for couplings to lepton singlets if the leptoquark resides in the 1′′ representation of A4
and the Z3 charges are chosen such that [A∆B]Z3 = 1. The structure imposed by the
discrete symmetries is then given by the linear combination κ′ke + κkµ, which is further
amended by powers of ϵ stemming from the FN symmetry and hence depends on the
quark field involved in the interaction. For instance, in the case of A = U or A = Ū the
full patterns read

Reµ(UE) =

⎛⎜⎜⎝
κ′ϵ8 κϵ6 0
κ′ϵ6 κϵ4 0
κ′ϵ4 κϵ2 0

⎞⎟⎟⎠ , Reµ(ŪE) =

⎛⎜⎜⎝
κ′ϵ0 κϵ2 0
κ′ϵ2 κϵ0 0
κ′ϵ4 κϵ2 0

⎞⎟⎟⎠ . (6.2)

Note that the interference of the FN charges of the quarks and leptons permits cancella-
tions so that couplings to the lighter quark generations can be enhanced over those to
heavier generations.

Just like their leptonic counterparts, the quark doublets and singlets must carry equal Z3
charges to make sure the SM Yukawa interactions remain invariant. Consequently, for the
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ke kµ kτ [∆]A4 [A∆B]Z3 name

YAL

cℓ 0 0 1
0

Le

0 cℓ 0 1′′ Lµ

0 0 cℓ 1′ Lτ

cν cν cν 1(any) 1 Ld

cνκ cνκ cνκ 1(any) 2 Ld′

YAE

1 0 0 1
0

Re

0 1 0 1′′ Rµ

0 0 1 1′ Rτ

κ 0 κ′ 1
1

Reτ

κ′ κ 0 1′′ Reµ

0 κ′ κ 1′ Rµτ

κ2 κ′2 κκ′ 1(any) 2 Rd

Table 6.1.: Patterns for the lepton-quark coupling matrices of interactions involving lepton
doublets (upper part) and lepton singlets (lower part) generated by the A4 × Z3
symmetry.

leptoquarks S1, S2, V1 and V2, for which couplings to lepton doublets and singlets are simul-
taneously present, the respective patterns are related through

[QL∆]Z3 = [UE∆]Z3 , [ŪL∆]Z3 = [Q̄E∆]Z3 ,

[Q̄L∆]Z3 = [D̄E∆]Z3 , [DL∆]Z3 = [QE∆]Z3 .
(6.3)

If the Z3 charges are chosen such that A∆B is Z3-invariant the patterns Lℓ and Rℓ
are induced for the couplings to lepton doublets and singlets, respectively, where the
joint lepton flavor ℓ is determined by the A4 representation of the leptoquark. In this
case there is a hierarchy between the couplings to lepton doublets, which are suppressed
by cℓ, and the couplings to lepton singlets The latter require no flavon insertion so
that they remain of order one. For [A∆B]Z3 = 1 the coupling to lepton doublets
follows the democratic pattern Ld, while the lepton singlet coupling adheres to one of
the Rℓℓ′ patterns that isolates two lepton families depending on the choice of [∆]A4 .
Unless there is a large hierarchy cν ≪ κ, κ′ suppressing the democratic pattern, the
phenomenology is dominated by strong bounds from cLFV decays. In the remaining
case, where [A∆B]Z3 = 2, the subleading democratic patterns with two flavon insertions
are induced for both couplings.

The vev suppression of the lepton doublet couplings is not exclusive to the A4 × Z3
model studied here, but appears generically in flavor models in which the lepton doublet
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transforms under a triplet representation of the non-abelian group in order to generate
the observed mixing in the lepton sector. As a possibility to circumvent this suppression
due to the insertion of a triplet flavon one could let the leptoquark transform as a
triplet. However, this leads again to democratic patterns that are not phenomenologically
viable.

6.1.2. Corrections to the Flavor Patterns

Since the patterns derived above apply to the leptoquark couplings in the flavor ba-
sis, we need to consider the modifications that arise from rotations to the mass basis.
As discussed in Section 2.3, these rotations correspond to the unitary transforma-
tions (2.14) of the fermion fields. Consequently, the leptoquark couplings transform
as

YAB → UTAYABUB , YĀB → U †
AYĀBUB , (6.4)

so that combinations of unitary matrices other than the CKM and PMNS matrices
defined in (2.15) and (2.23), respectively, can become physical. Note that the rotations
of the quark sector only mix the rows of the leptoquark couplings, while the lepton flavor
rotations only affect the columns. The FN symmetry dictates the parametric dependence
of the quark rotation matrices to be

(UuL)ij ∼ (UdL)ij ∼ ϵ|q(Qi)−q(Qj)| ,

(UuR)ij ∼ ϵ|q(Ui)−q(Uj)| ,

(UdR)ij ∼ ϵ|q(Di)−q(Dj)| .

(6.5)

As a result, the mixing of the rows parametrically preserves the hierarchical suppression
by powers of ϵ unless the quarks transform non-trivially under A4 – an option that leads to
more complicated patterns to be discussed in Section 6.1.3.

Observables that can be accessed in collider experiments are insensitive to neutrino
flavors, so that the neutrino rotation matrix UνL has no phenomenological significance.
Beyond that, no mixing among charged leptons arises at leading order in the AF × FN
model. If we consider higher order flavon insertions the charged lepton Yukawa matrix
receives corrections of the order of the product of two vevs, which we parametrize
as

δ ∼ max
(︄
c3
ν

cℓ
,
cνκ

2

cℓ
,
cνκκ

′

cℓ
,
cνκ

′2

cℓ

)︄
. (6.6)

At this order we find

Yℓ ∼ cℓ

⎡⎢⎢⎣
⎛⎜⎜⎝
ϵ4 0 0
0 ϵ2 0
0 0 1

⎞⎟⎟⎠+ δ

⎛⎜⎜⎝
ϵ4 ϵ2 1
ϵ4 ϵ2 1
ϵ4 ϵ2 1

⎞⎟⎟⎠
⎤⎥⎥⎦ ∼ cℓ

⎛⎜⎜⎝
ϵ4 δϵ2 δ

δϵ4 ϵ2 δ

δϵ4 δϵ2 1

⎞⎟⎟⎠ , (6.7)
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which, using perturbative diagonalization [177], yields the rotation matrices

UL ∼

⎛⎜⎜⎝
1 δ δ

δ 1 δ

δ δ 1

⎞⎟⎟⎠ , UE ∼

⎛⎜⎜⎝
1 δϵ2 δϵ4

δϵ2 1 δϵ2

δϵ4 δϵ2 1

⎞⎟⎟⎠ . (6.8)

For the lepton flavor isolation patterns Lℓ this means that entries which are forbidden at
leading order receive corrections of order δ relative to their suppression due to the vev of
the triplet flavon ϕℓ. Because the lepton flavor rotations only mix the columns of the
leptoquark couplings and in the case of lepton doublets do not contain any powers of ϵ,
the FN hierarchy from the isolated column is preserved. As an explicit example, consider
the Lτ patterns, for which these corrections amount to

Lτ (UL, ŪL,QL, Q̄L) → cℓ

⎛⎜⎜⎝
δϵ4 δϵ4 ϵ4

δϵ2 δϵ2 ϵ2

δϵ0 δϵ0 ϵ0

⎞⎟⎟⎠ , Lτ (DL, D̄L) → cℓ

⎛⎜⎜⎝
δϵ3 δϵ3 ϵ3

δϵ2 δϵ2 ϵ2

δϵ2 δϵ2 ϵ2

⎞⎟⎟⎠ .

(6.9)

In the case of couplings to lepton singlets, the corrections stemming from the change to
the mass basis are smaller due to the fact that the respective rotation matrix contains
FN factors in addition to the parameter δ. Considering the τ isolation pattern as an
example again, we find

Rτ (UE, ŪE,QE, Q̄E) →

⎛⎜⎜⎝
δϵ8 δϵ6 ϵ4

δϵ6 δϵ4 ϵ2

δϵ4 δϵ2 ϵ0

⎞⎟⎟⎠ , Rτ (DE, D̄E) →

⎛⎜⎜⎝
δϵ7 δϵ5 ϵ3

δϵ6 δϵ4 ϵ2

δϵ6 δϵ4 ϵ2

⎞⎟⎟⎠ .

(6.10)
Likewise, one can determine the corrections to the patterns that isolate two lepton
generations. For the Reµ pattern, which served as an example in the previous section,
we obtain

Reµ(ŪE) →

⎛⎜⎜⎝
κ′ϵ0 κϵ2 δϵ4(κ+ κ′)
κ′ϵ2 κϵ0 δϵ2κ

κ′ϵ4 κϵ2 δϵ4κ

⎞⎟⎟⎠ . (6.11)

Additional contributions to all entries of the flavor patterns arise directly from higher
order flavon insertions. For Lℓ – the flavor isolation patterns involving lepton doublets –
the dominant corrections arise from replacing ϕℓ with ϕν and adding two insertions of
either the A4-triplet flavon ϕν or the singlet flavons ξ(′) to compensate for the Z3 charge.
Hence, relative to the FN factors these corrections are of the orders c3

ν/cℓ and cνκ(′)2/cℓ,
respectively, corresponding to the same order, δ, at which the lepton flavor rotations
discussed before contribute.
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The direct higher order contributions to the couplings involving lepton singlets require
at least three flavon insertions, as, in contrast to the previous case, there is no flavon
contribution at leading order that could be replaced by another one. Nevertheless, these
corrections can in fact be larger than those originating from the flavor rotations, since the
emerging FN factors do not result from the mixing matrix but are a direct consequence
of the FN charges of the quarks and lepton singlets, which allows for cancellations. With
δ′ ∼ vev3, we find

Rτ (UE, Q̄E) →

⎛⎜⎜⎝
δ′ϵ8 δ′ϵ6 ϵ4

δ′ϵ6 δ′ϵ4 ϵ2

δ′ϵ4 δ′ϵ2 ϵ0

⎞⎟⎟⎠ , Rτ (ŪE,QE) →

⎛⎜⎜⎝
δ′ϵ0 δ′ϵ2 ϵ4

δ′ϵ2 δ′ϵ0 ϵ2

δ′ϵ4 δ′ϵ2 ϵ0

⎞⎟⎟⎠ ,

Rτ (D̄E) →

⎛⎜⎜⎝
δ′ϵ δ′ϵ ϵ3

δ′ϵ2 δ′ϵ0 ϵ2

δ′ϵ2 δ′ϵ0 ϵ2

⎞⎟⎟⎠ .
(6.12)

For the patterns that isolate two lepton generation Z3 invariance requires four flavon
insertions, so that the direct higher order corrections read

Reµ(ŪE, Q̄E) →

⎛⎜⎜⎝
κ′ϵ0 κϵ2 δ′′ϵ4

κ′ϵ2 κϵ0 δ′′ϵ2

κ′ϵ4 κϵ2 δ′′ϵ0

⎞⎟⎟⎠ , (6.13)

where δ′′ ∼ vev4.

6.1.3. Quarks in Non-Trivial A4 Representations

Assigning individual quark generations to a non-trivial singlet representation of A4 allows
for the construction of more complex patterns that lead to a richer phenomenology. For
the sake of simplicity we only consider the case where one quark generation Ai transforms
non-trivially. In order to preserve both A4 × Z3 invariance and the structure of the SM
Yukawa matrices the Z3 and FN charges of the selected quark generation need to be
adjusted as well. Invariance under A4 then requires the insertion of one or two additional
ξ′ flavons if the selected quark generation transforms as 1′′ or 1′, respectively. Since
these flavons carry a non-zero Z3 charge, the Z3 charge of the quark generation must
be adjusted accordingly. Furthermore, the additional vev suppression due to ξ′ has to
be compensated by reducing the FN charge of the affected quark generation. Assuming
the vevs to be related as κ′ ∼ ϵn with an integer n, the two possible options can be
summarized as

[Ai]A4
→ 1′′, [Ai]Z3

→ 1, q(Ai) → q(Ai) − n , (6.14)

with one insertion, or

[Ai]A4
→ 1′, [Ai]Z3

→ 2, q(Ai) → q(Ai) − 2n , (6.15)
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with two insertions, where A ∈ {Q̄, U,D} denotes a quark field of either the first or
second generation, i ∈ {1, 2}.

This charge reassignment essentially causes a shift in the selection of the flavor pattern
according to the rules of Table 6.1 which only affects the row corresponding to the
quark generation Ai. If the original flavor pattern is given by the overall Z3 charge
a ≡ [A∆B]Z3 of the vertex and the A4 representation [∆]A4 of the leptoquark, then
the ith row, corresponding to the modified quark generation Ai, adheres to the pattern
defined by

[A∆B]Z3
=

⎧⎨⎩(a+ 1) mod 3 for one insertion
(a+ 2) mod 3 for two insertions

, (6.16)

and the product of the representations of the quark and the leptoquark, i.e. [A∆]A4 . Due
to the modification of the FN charges the quark flavor rotations can have an impact on
the patterns and need to be included explicitly.

As an example consider again the isolation patterns Lτ obtained for [∆]A4 = 1′ and
[A∆B]Z3 = 0. If the second quark generation is put in the 1′′ representation of A4, the
Z3 charge of the vertex for this generation is shifted by one unit, according to (6.16), so
that the second row follows the Ld pattern instead. Explicitly, for couplings involving the
antiquark doublet, as it is the case for the leptoquarks V1 and V3, the modified pattern
reads

L̃τ (Q̄L) =

⎛⎜⎜⎝
0 0 cℓϵ

4

cν cν cν

0 0 cℓ

⎞⎟⎟⎠ , (6.17)

where we assume κ′ ∼ ϵ2. The corrections resulting from the rotation to the mass basis
amount to

L̃τ (Q̄L) →

⎛⎜⎜⎝
ϵ2cν ϵ2cν ϵ2cν

cν cν cν

ϵ2cν + δcℓ ϵ2cν + δcℓ cℓ

⎞⎟⎟⎠ . (6.18)

Note that the FN suppression of the first row is only of the order ϵ2. Within our
framework, this is an example of a pattern that yields the largest contributions to RD
and RD∗ with quark and lepton doublets involved.

Assigning the second generation up-type antiquark singlets to a non-trivial A4 repre-
sentation allows to create a similar pattern for the chirality-flipping coupling YŪL that
occurs in the S2 leptoquark model. Including corrections due to the rotation to the mass
basis, we find

L̃τ (ŪL) →

⎛⎜⎜⎝
ϵ2κcν ϵ2κcν ϵ2κcν

κcν κcν κcν

ϵ2κcν + δcℓ ϵ2κcν + δcℓ cℓ

⎞⎟⎟⎠ . (6.19)
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Note that the charge reassignments (6.14) and (6.15) are reversed for the antiquark
singlets so that the modified row follows the Ld′ pattern, which is subject to an additional
vev suppression by κ.

In the case of b → sµ+µ− transitions, the muon isolation patterns Lµ(Q̄L,QL) for cou-
plings to the quark and lepton doublets are most relevant. Applying the same charge modi-
fications to the second quark generation as before leads to the patterns

L̃µ(Q̄L) =

⎛⎜⎜⎝
0 cℓϵ

4 0
cν cν cν

0 cℓϵ
0 0

⎞⎟⎟⎠ , L̃µ(QL) =

⎛⎜⎜⎝
0 cℓϵ

4 0
cνκ cνκ cνκ

0 cℓϵ
0 0

⎞⎟⎟⎠ , (6.20)

where two flavon insertions are necessary for the second pattern. Here, the flavor rotations
yield the modifications

L̃µ(Q̄L) →

⎛⎜⎜⎝
cνϵ

2 cνϵ
2 cνϵ

2

cν cℓϵ
2 + cν cν

cℓδ + cνϵ
2 cℓ cℓδ + cνϵ

2

⎞⎟⎟⎠ ,

L̃µ(QL) →

⎛⎜⎜⎝
cνκϵ

2 cℓϵ
4 + cνκϵ

2 cνκϵ
2

cνκ cℓϵ
2 + cνκ cνκ

cℓδ + cνκϵ
2 cℓ cℓδ + cνκϵ

2

⎞⎟⎟⎠ .

(6.21)

6.2. Phenomenology

In order to reveal the full predictive power that is achieved by employing flavor symmetries
to restrict the freedom of NP model, we will now explore the flavor phenomenology of
several leptoquark scenarios using the coupling patterns derived in the previous section.
We focus on the leptoquark scenarios that can potentially provide explanations for the
B anomalies. Using data on kaon and charm decays as well as cLFV processes we
constrain the vevs of the A4-breaking flavons, thus following a data-driven approach that
is grounded on a concrete theoretical foundation.

6.2.1. Impact of Flavorful Leptoquarks on b → cℓν̄ Transitions

We begin by investigating leptoquark effects in the b → cℓν̄ sector, where our main focus
lies on different attempts to explain the anomalies in RD and R∗

D. For each scenario
we also work out predictions for the polarization fractions Pτ (D) and Pτ (D∗), for which
more precise data is expected to be available in the future.
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SM-like contributions The most favored explanation of the deviations in RD and
RD∗ is given by a flavor non-universal NP contribution to the SM-like operator OV1 ,
which involves the quark and lepton doublets and hence offers a possible connection to
the anomalies in b → sℓ+ℓ−. According to Table D.1, contributions to this operator can
arise for the leptoquarks S3, V3, S1 and V1. For the leptoquarks S3 and V3 this is the
only induced operator. In the case of V1 the scalar operator OS1 receives contributions
as well, while the S1 leptoquark additionally induces scalar and tensor operators, whose
effects we discuss separately.

Generalizing the linearized expression (3.23) for RD(∗) from Section 3.3.2 to include light
lepton flavors and expressing the Wilson coefficients in terms of leptoquark couplings
according to Table D.1 yields

R̂D∗ − 1 = R̂D − 1 ≃ 2 Re
(︂
CτV1 − CℓV1

)︂
= 2n(∆) Re (Y Y ∗|τ − Y Y ∗|ℓ)

√
2

4GFVcbM2

≃ 1.5n(∆) Re (Y Y ∗|τ − Y Y ∗|ℓ)
(︃TeV
M

)︃2
,

(6.22)
where the Fierz factors for the different possible leptoquarks are given by

n(∆) =

⎧⎪⎪⎨⎪⎪⎩
−1

2 , ∆ = S3

+1, ∆ = V1

−1, ∆ = V3

. (6.23)

For the leptoquark V1 the additional contributions to R̂D∗ stemming from OS1 are of
the order of ten percent, but can be of order one for R̂D. Thus, we first discuss NP
contributions to the SM-like operator OV1 alone and consider additional effects from
chirality-flipping operators later on.

Following (6.22), the data on RD(∗) implies

Re (Y Y ∗|τ − Y Y ∗|ℓ) ≃ 0.20 ± 0.05
n(∆)

(︃
M

TeV

)︃2
. (6.24)

for the leptoquark couplings. For these to remain perturbative it is necessary that
M ≲ 3 TeV. At the same time, collider searches impose lower bounds on leptoquark
masses. In the context of b → cℓν̄ transitions a relevant limit is M > 685 GeV for scalar
leptoquarks decaying to tτ final states [178]. For a viable explanation of RD(∗) , this
means that the leptoquark couplings cannot be too small, i.e. Re (Y Y ∗|τ − Y Y ∗|ℓ) > 0.07
in this scenario. Similar limits can be obtained for the vector leptoquark V1 where the
final state includes a neutrino instead of a charged lepton [179]. Collider bounds on the
masses of leptoquarks that predominantly couple to light leptons are generally stronger.
In the case of scalar leptoquarks decaying exclusively into a muon (an electron) and a
jet, current mass limits impose M > 1160 GeV [180] (M > 1755 GeV [181]), which yields
Re (Y Y ∗|τ − Y Y ∗|ℓ) > 0.2 (0.5) for the leptoquark couplings. Furthermore, current data
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excludes vector leptoquarks with masses below 1200 GeV to 1720 GeV and 1150 GeV to
1660 GeV [182], assuming they decay entirely into a muon and a jet, or an electron and a
jet, respectively.

Within the large class of flavor models in which the lepton doublets transform as a triplet
under the flavor symmetry group, the maximal size predicted for the leptoquark couplings
is

Y Y ∗|τ − Y Y ∗|ℓ ∼ vev2 . (6.25)

In the A4 × Z3 × U(1)FN model considered here this can be achieved with the modified
tau isolation pattern L̃τ (Q̄L) shown in (6.17), which evades the suppression due to the
FN mechanism at the cost of the second quark generation transforming non-trivially
under the flavor symmetry group. The suppression of the leptoquark couplings is then
given by the product cνcℓ of the vevs of the two triplet flavons. Here, the direct bound
from B → Kνν̄ applies for V3 and implies cνcℓ ≲ 0.02(M/TeV) (see Section 3.5.1). With
less elaborate representation assignments the FN suppression of the quarks cannot be
avoided, leading to even smaller couplings. This is the case for the unmodified tau
isolation pattern Lτ (Q̄L) from (6.9), which leads to

Y Y ∗|τ − Y Y ∗|ℓ ∼ c2
ℓϵ

2 ≲ 10−3 . (6.26)

Thus, an explanation of the deviations in RD and RD∗ is not viable in leptoquark
scenarios that involve NP contributions to the SM-like operator OV1 only, and where the
couplings are governed by a flavor structure that falls into the same class as the AF × FN
model studied here. Specifically, this excludes the leptoquarks S3 and V3 as explanations
of the data within this scenario. Nevertheless, their impact on R̂D and R̂D∗ is equally
large and can reach the level of a few percent for the “maximal” flavor scenario (6.25),
but only a few permille in the generic case (6.26). The polarization fractions Pτ (D(∗))
remain unchanged for all NP scenarios that affect only OV1 .

Chirality-flipping contributions As a second option, we consider a scenario domi-
nated by NP contributions to the scalar and tensor operators OS2 and OT, respectively.
These are only induced by the scalar leptoquarks S1 and S2. Due to the involved Fierz
transformation of the lepton-quark currents the resulting Wilson coefficients are related
as

CS2 = ∓rCT , (6.27)

where r = 4 at the matching scale, which we assume to be close to the leptoquark mass.
Throughout this section, the upper (lower) sign corresponds to S1 (S2). Since the scalar
and tensor operators carry non-vanishing and distinct anomalous dimensions, as discussed
in Section 3.3.1, this Fierz relation is modified by the RG evolution down to the hadronic
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scale. Using the CRunDec package [183] we find

r =

⎧⎪⎪⎨⎪⎪⎩
7.8, M = 1 TeV
8.2, M = 2 TeV
8.4, M = 3 TeV

(6.28)

at the b quark mass scale for leptoquark masses M in the TeV range. Following (3.17) and
(3.18) linearized expressions for R̂D(∗) in this scenario read

R̂D − 1 ≃ Re
(︁
CτS2

)︁ (︂
Â
τ
VS ∓ Â

τ
VT/r

)︂
− (τ → ℓ)

= Re
(︁
CτS2

)︁
(1.73 ∓ 0.09) − (τ → ℓ)

≃ (−0.65 ± 0.03) Re (Y Y ∗|τ )
(︃TeV
M

)︃2
,

(6.29)

and

R̂D∗ − 1 ≃ − Re
(︁
CτS2

)︁ (︂
B̂
τ
VS ± B̂

τ
VT/r

)︂
− (τ → ℓ)

= Re
(︁
CτS2

)︁
(−0.12 ± 0.59) − (τ → ℓ)

≃ (∓0.22 + 0.045) Re (Y Y ∗|τ )
(︃TeV
M

)︃2
.

(6.30)

The light lepton contributions can be neglected with respect to those involving the tau
lepton due to the mass suppression present in chirality-flipping operators. It can be
generally seen that R̂D ̸= R̂D∗ and in particular for the S2 leptoquark these observables
acquire shifts in different directions.

In order to obtain a complete picture, we must go beyond the linear approximation
and perform a fit based on the complete expressions from Section 3.3.1, allow for
complex Wilson coefficients. Figure 6.1 shows the one sigma constraints imposed by
RD(∗) on the real and imaginary parts of the Wilson coefficient CτS2

and the respective
combinations of leptoquark couplings. For S1, contributions to the SM-like operator
OV1 are present as well. They are, however, strongly constrained by experimental data
(3.50) on the branching ratio B → Kνν̄. For the fit we employ the largest possible
contribution to OV1 that satisfies the conservative upper bound on |CντντL | from (3.52)
derived in Section 3.5.1. Applying this model-independent constraint to leptoquarks, we
find ⃓⃓⃓

Y bντ
QL

(︂
Y cτ
QL

)︂∗ ⃓⃓⃓
≲ 0.05

(︃
M

TeV

)︃2
(for S1) . (6.31)

The resulting best fit points subsequently read

Y bντ
QL (Y cτ

UE)∗ = −0.4
(︃
M

TeV

)︃2
(for S1) , (6.32)
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Figure 6.1.: Fits to the experimental data on RD(∗) for the leptoquark scenarios S1 (left) and
S2 (right) in the complex plane of the Wilson coefficient Cτ

S2
and the leptoquark

couplings Y Y ∗|τ . For the S1 leptoquark we allow YQL to saturate the limit (6.31).
The red and green bands indicate the one sigma constraints from RD and RD∗ ,
respectively. In the SM Cτ

S2
vanishes. The one and two sigma confidence intervals

of the fit are shown in dark and light blue, respectively, and the best fit points are
indicated by black crosses. This is an updated version of Figure 1 from [1] with the
most recent data on RD(∗) from Table 3.1.

and

Y cντ
ŪL

(︂
Y bτ
Q̄E

)︂∗
= (0.4 ± 1.4i)

(︃
M

TeV

)︃2
(for S2) . (6.33)

Due to theB → Kνν̄ bound the couplings must respect the hierarchy

Y sντ
QL

Y cτ
UE

≃ 0.13 . (6.34)

This is compatible with flavor model predictions thanks to the generic vev suppression of
the couplings to lepton doublets, which is not present for interactions involving lepton
singlets. In the particular case where the couplings adhere to the tau isolation patterns
Lτ (QL) and Rτ (UE) this ratio is of the order cℓ. Generally, this means that the largest
possible contributions to chirality-flipping operators are suppressed by a single vev
as

Y Y ∗|τ ∼ vev . (6.35)

This maximal case is realized for the scalar operator induced by the leptoquark V1
with the patterns Lτ (Q̄L) from (6.9) and Rτ (D̄E), given by the maximum of (6.10)
and (6.12), if we allow for quark FN-charges as in multi Higgs doublet models such
that Rτ (D̄E)33 ∼ ϵ0. We will come back to this particular model in the next sec-
tion.
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The largest effects within a scenario involving only chirality-flipping contributions are
found for the S2 leptoquark model where the couplings obey the patterns L̃τ (ŪL) from
(6.19) and Rτ (Q̄E), which is again given by the maximum of (6.10) and (6.12). Due to
the additional vev suppression in L̃τ (ŪL) compared to L̃τ (Q̄L) the resulting contribution
amounts to

Y Y ∗|τ ∼ κcν . (6.36)

Constraints from µ-e conversion data impose κcν ≲ 0.02(M/TeV) [122]. Bounds from
the branching ratios of the rare charm decays D → µ+µ− and D → πµ+µ− are much
weaker and read κ2c2

νϵ
2 ≲ 0.06(M/TeV) [122].

In the generic case the FN suppression of the second quark generation leads to smaller
chirality-flipping leptoquark contributions of the order

Y Y ∗|τ ∼ cℓϵ
2 ≲ 10−2 , (6.37)

which is realized with the patterns Lτ from (6.9) andRτ from before.

Contributions to the chirality-flipping operator OS1 are suppressed even stronger than in
the generic case because V2, the sole leptoquark that induces this operator, only couples
to down-type quark singlets, which typically carry larger FN charges than their up-type
counterparts. For the AF × FN model we find

Y Y ∗|τ ∼ cℓϵ
4 . (6.38)

To summarize, effects in R̂D(∗) stemming from chirality-flipping operators are largest in
the S2 leptoquark scenario, where they can reach up to a few percent in R̂D and about ten
percent in R̂D∗ . However, in this case an enhancement of R̂D implies a suppression of RD∗

and vice versa, so that the tension between the experimental data and the theory prediction
cannot be relieved in both observables simultaneously.

For the τ -polarizations we find

P̂ τ (D) − 1 ≃ Re(CτS2)
[︂
(Â+

VS − Â
−
VS − Â

τ
VS) ∓ (Â+

VT − Â
−
VT − Â

τ
VT)/r

]︂
≃ Re(CτS2)(3.50 ± 0.18)

≃ (1.30 ± 0.07) Re (Y Y ∗|τ )
(︃TeV
M

)︃2
,

(6.39)

and

P̂ τ (D∗) − 1 ≃ − Re(CτS2)
[︂
(B̂+

VS − B̂
−
VS − B̂

τ
VS) ± (B̂+

V1T − B̂
−
V1T − B̂

τ
V1T)/r

]︂
≃ − Re(CτS2)(−0.36 ± 0.19)

≃ (0.13 ∓ 0.07) Re (Y Y ∗|τ )
(︃TeV
M

)︃2
,

(6.40)

where again the upper and lower signs correspond to the S1 and S2 leptoquarks, respec-
tively.
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V1 leptoquark As a final scenario we consider the leptoquark V1, which contributes to
the SM-like operator OV1 without being directly constrained by B → Kνν̄, and also to
the chirality-flipping operator OS1 . For R̂D and R̂D∗ we find

R̂D − 1 ≃ 2 Re(CτV1) + Re(CτS1)ÂτVS − (τ → ℓ)

≃ 1.5cν (cℓ − 1.73)
(︃TeV
M

)︃2

≲ 0.03
(︃TeV
M

)︃
,

(6.41)

and

R̂D∗ − 1 ≃ 2 Re(CτV1) + Re(CτS1)B̂τ
VS − (τ → ℓ)

≃ 1.5cν (cℓ − 0.12)
(︃TeV
M

)︃2

≲ 0.02 (cℓ − 0.12)
(︃TeV
M

)︃
.

(6.42)

Here, the upper bounds stem from constraints on the vev cν . The strongest ones in this
case arise from cLFV kaon decays s → deµ, which impose c2

νϵ
2 ≲ 5 × 10−6(M/TeV)2 [127],

or, cν ≲ 0.01(M/TeV). Bounds from µ-e conversion are slightly weaker and read ϵ4c2
ν ≲

7 × 10−7(M/TeV) [122], yielding, cν ≲ 0.02(M/TeV). Although forbidden at tree-level,
contributions to B → Kνν̄ decays are still induced by RGE running between the matching
scale µ ∼ M and the electroweak scale [184]. Constraints due to this effect are, however,
smaller than those from kaon decays and µ-e conversion.

The τ polarization is only affected by the chirality-flipping contribution. We ob-
tain

P̂ τ (D) − 1 ≃ Re(CτS1)(Â+
VS − Â

−
VS − Â

τ
VS)

≃ 3.50 Re(CτS1) ≲ 0.05
(︃TeV
M

)︃
,

(6.43)

and

P̂ τ (D∗) − 1 ≃ Re(CτS1)(B̂+
VS − B̂

−
VS − B̂

τ
VS)

≃ −0.36 Re(CτS1) ≲ 0.005
(︃TeV
M

)︃
.

(6.44)

Summary In Figure 6.2 we show the maximal predictions for R̂D(∗) − 1 that can be
achieved with the leptoquarks V1, V3 and S2 within flavor models. We omit the S1 and S3
scenarios, which yield only negligible contributions to the crucial flavor observables due
to the strong suppression of their couplings, as given by (6.26). The colored regions of
the plot correspond to the maximal effects emerging in the three different scenarios where
we distinguish two cases: for the smaller, dark areas we assume that the a priori unknown
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Figure 6.2.: Largest possible contributions to R̂D(∗) − 1 by the leptoquarks V1 (red), V3 (blue)
and S2 (green) with couplings dictated by flavor models. The dark and light areas
correspond to variations of the unknown O(1) coefficients within the ranges of ±1
and ±(1/

√
2;

√
2), respectively. In the SM R̂D(∗) − 1 vanishes. Experimental data

is shown in the form of dark and light one sigma bands that correspond to the
averages including and excluding the 2019 Moriond data, respectively. The dashed
extension of the blue region indicates the maximum reach in the V3 scenario if only
the direct bound from B → Kνν̄ is used. Updated version of Figure 2 from [1].
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O(1) factors have magnitude one, whereas for the larger, light areas these numbers can
be as large as

√
2. In the second case this produces an effective enhancement of the

product of couplings Y Y ∗ by a factor of four, where one factor of two arises directly and
the second one emerges from the relaxation of the bounds from low energy processes.
For contributions from V1 and V3, shown in red and blue, respectively, we employ data
on kaon decays to constrain cν and require cℓ ≲ 0.2. The dashed extension of the blue
region indicates the maximal reach of the effects induced by V3 if only the direct bound
on the product cνcℓ from B → Kνν̄ data is imposed. Depicted in green is the potential
impact of S3 where constraints from µ-e conversion on κcν are utilized. Lastly, we show
the averages of the available experimental data on R̂D(∗) − 1 from 2016 and 2019 as light
and dark grey bands, respectively. The normalized experimental values are calculated
using the data from Table 3.1 and read

R̂
exp, 2016
D = 1.35 ± 0.17 R̂

exp, 2016
D∗ = 1.23 ± 0.07 (6.45)

and

R̂
exp, 2019
D = 1.15 ± 0.11 R̂

exp, 2019
D∗ = 1.19 ± 0.05 . (6.46)

6.2.2. Impact of Flavorful Leptoquarks on b → sℓℓ̄ Transitions

Let us now consider the effects of leptoquarks with couplings constrained by the AF×FN
model on the FCNC transitions b → sℓ+ℓ−. Again, we concentrate on the flavor anomalies
currently seen in data on RK and RK∗ .

Benchmark Scenario As discussed in Section 3.4.3, we focus on the benchmark
scenario (3.43) as a resolution to the b → sℓ+ℓ− anomalies. The preferred Lorentz struc-
ture of left-handed quark and lepton currents is readily obtained within the leptoquark
models V1, V3 and S3, which all couple to quark and lepton doublets. In these cases the
necessary Wilson coefficients are proportional to Y bµ

QL

(︂
Y sµ
QL

)︂∗
or Y sµ

Q̄L

(︂
Y bµ

Q̄L

)︂∗
. With the

exact relations given in Appendix D, we find that

Y bµ
QL

(︂
Y sµ
QL

)︂∗
or Y sµ

Q̄L

(︂
Y bµ

Q̄L

)︂∗
∼ 10−3

(︃
M

TeV

)︃2
, (6.47)

is required in order to explain the data.

This can be accommodated with the simple muon isolation pattern Lµ, as already
discussed in [176], which imposes

Y bµ
QL

(︂
Y sµ
QL

)︂∗
or Y sµ

Q̄L

(︂
Y bµ

Q̄L

)︂∗
∼ c2

ℓϵ
2 , (6.48)

and thus requires cℓ ∼ 0.2(M/TeV). Therefore, typical values for the flavon vev indi-
cate leptoquark masses of the order of a few TeV, which are well within the Bs − B̄s
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mixing mass bound (4.3). The kaon decays K → µ+µ− receive leptoquark contribu-
tions of the order c2

ℓϵ
6. Mass basis corrections (6.21) to the Lµ pattern induce µ-e

conversion at the order c2
ℓδϵ

8. In both cases present experimental bounds are not
exceeded.

Using the modified patterns L̃µ(QL, Q̄L) from (6.21), which avoid the FN-suppression,
results in

Y bµ
QL

(︂
Y sµ
QL

)︂∗
∼ cℓcνκ , Y sµ

Q̄L

(︂
Y bµ

Q̄L

)︂∗
∼ cℓcν . (6.49)

If the vevs that determine the values of the Y sµ couplings saturate the upper limit
allowed by current data on kaon decays, i.e. cνκ ∼ 0.01(M/TeV) for S3 and cν ∼
0.01(M/TeV) for V1,3, the anomalies can again be explained with cℓ ∼ 0.2(M/TeV).
Hence, upcoming experimental data on cLFV kaon decays and µ-e conversion is expected
to show a signal if this scenario constitutes the origin of the deviations in RK and
RK∗ .

The benchmark scenario for the b → sℓ+ℓ− anomalies can thus be realized with the S3
and V3 leptoquarks whose couplings are determined by the AF × FN model while the
involved flavon vevs take typical values. For V1 additional right-handed quark and lepton
currents arise due to the singlet coupling YD̄E . The charge assignments that give rise to
the muon isolation pattern for the doublets necessarily induces the Rµ pattern for the
singlet coupling, in which cancellations between the quark and lepton FN charges occur,
as pointed out in Section 6.1.1. These cancellations lead to inverted flavor hierarchies
which in turn can induce kaon decays at order ϵ, exceeding current experimental limits.
However, this problem can be circumvented by flipping the signs of the lepton singlets’
FN charges q(E), as this only affects the flavor hierarchies in the leptoquark couplings
but leaves the masses and mixing intact. In this case, kaon decays only arise at order ϵ9,
which is beyond any foreseeable experimental sensitivity. Thus, a flavorful V1 constitutes
a viable explanation for the b → sℓ+ℓ− anomalies as well.

Furthermore, NP effects in b → sℓ+ℓ− are induced by the V3 model with couplings
following the tau isolation pattern utilized to study contributions to b → cℓν̄. However,
these effects are negligible since they either stem from higher order corrections to the
Lτ (Q̄L) pattern, which are of the order δ2c2

ℓϵ
2, or they are strongly constrained by b → sνν̄

data and low energy physics, as it is the case for the modified tau isolation pattern
L̃τ (Q̄L), where the largest contributions to b → sℓ+ℓ− reach an order of δcℓcν + c2

νϵ
2.

This means that in this scenario NP effects cannot be sizable in both b → sℓ+ℓ− and
b → sνν̄ transitions, let alone deliver simultaneous explanations of the b → s and b → c

anomalies.

Right-Handed Quark Currents We will now briefly discuss the disfavored scenario
with contributions to right-handed quark currents i.e. C ′µ

9 = −C ′µ
10. According to

Table 4.1, the necessary leptoquark couplings YD̄L and YDL occur in the models S̃2 and
V2, respectively. As this scenario provides direct access to the FN charges q(D) of the
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down-type quark singlets, instead of using the fixed charges from (5.7) we keep them as
free parameters here and employ the short form qi ≡ q(Di).

An explanation of RK then requires

Y bµ
DL

(︂
Y sµ
DL

)︂∗
or Y sµ

D̄L

(︂
Y bµ

D̄L

)︂∗
∼ c2

ℓϵ
q3+q2 ≃ 10−3

(︃
M

TeV

)︃2
, (6.50)

while data on K → µ+µ− [127] imposes the limit

Y sµ
DL

(︂
Y dµ
DL

)︂∗
or Y sµ

D̄L

(︂
Y dµ

D̄L

)︂∗
∼ c2

ℓϵ
q2+q1 ≲ 1.3 × 10−4 or 2.6 × 10−4

(︃
M

TeV

)︃2
. (6.51)

In order to satisfy both of these constraints the condition

ϵq1−q3 ≲ 0.13 , (6.52)

must be met, indicating
q1 ≥ q3 + 2 , (6.53)

for integer charges qi. Lower bounds on the mass imply that the suppression of the
couplings Y bµ and Y sµ cannot be too strong if (6.50) is to be fulfilled. Furthermore,
we require the couplings to remain perturbative. Together, these two conditions re-
quire

0 ≤ q2 + q3 ≤ 3 . (6.54)

This means that an explanation of RK is not possible using our benchmark charge assign-
ment q(D) = (3, 2, 2) from (5.7). However, supersymmetric models or other multi-Higgs
scenarios allow for FN charges of the form q(D) = (q3 + 1, q3, q3) with 0 ≤ q3 ≤ 3, which
are viable if the mild tension with (6.52) can be tolerated.

Going one step further, if the FN charges of the up-type singlets and doublets are changed
as well, we find the two possible solutions q(Q) = q(U) = (3, 2, 0) and q(D) = (2, 0, 0) or
q(D) = (3, 1, 1) [170]. The second option gives

Y bµ
DL

(︂
Y sµ
DL

)︂∗
or Y sµ

D̄L

(︂
Y bµ

D̄L

)︂∗
∼ c2

ℓϵ
2 , (6.55)

which carries the same suppression as in (6.48) from the benchmark scenario. Thus, we
find a preference for typical flavon vevs and TeV-scale leptoquarks in this case as well.
Contributions to µ-e conversion arise from mass basis rotations and are of the order of
δc2
ℓϵ

6 – well below present experimental bounds. The S̃2 leptoquark does not give rise to
tree-level FCNCs in the charm sector.

6.2.3. cLFV Observables and Rare Charm and Kaon Decays

While contributions to cLFV processes only arise through mass basis corrections in the
Lµ pattern, they are induced directly by the modified flavor structure of the L̃µ pattern.
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Process Limit LQs Pattern

B(D → πνν) 3 × 10−10 S3, V3 Lµ

B(D → πeµ) 3 × 10−13 V3 Lµ

B(D → eµ) 5 × 10−15 V3 L̃µ

B(D → eτ) 7 × 10−17 S2 L̃τ

B(D → µµ) SM-like
B(D → πµµ) SM-like

Table 6.2.: Upper limit on branching ratios of rare and cLFV charm decays that can be
reached with flavorful leptoquarks in the context of RK(∗) . “SM-like” effects are
indistinguishable from resonance contributions.

In relation to b → sµ+µ− transitions we find the ratios

b → sµµ : b → sµ(e, τ) : b → seτ ∼ 1 : δ : δ2 (Lµ) , (6.56)
b → sµµ : b → sµ(e, τ) : b → seτ ∼ 1 : 1 : 1 (L̃µ) , (6.57)

for the amplitudes of cLFV b → sℓℓ′ processes. Hence, the L̃µ pattern yields sizable
contributions to leptonic and semileptonic decays of B and Bs mesons. Following [176]
we find the following estimates depending on RK

B(B → Kµ±e∓) ≃ 10−8
(︃1 −RK

0.15

)︃2
, (6.58)

B(B → K(e±, µ±)τ∓) ≃ 10−8
(︃1 −RK

0.15

)︃2
, (6.59)

B(Bs → µ+e−)
B(Bs → µ+µ−)SM

≃ 4 × 10−3
(︃1 −RK

0.15

)︃2
, (6.60)

B(Bs → τ+(e−, µ−))
B(Bs → µ+µ−)SM

≃ 2
(︃1 −RK

0.15

)︃2
. (6.61)

Furthermore, cLFV signals induced by the triplet leptoquarks S3 and V3 can be large
enough to be detected with upcoming data from the COMET [125] and Mu2e [124] experi-
ments, which will improve current experimental limits by two to three orders of magnitude.
For µ-e conversion in muonic gold we find σ(µ−Au→e−Au)

σ(µ−Au→capture) ≲ 2 × 10−13 (5 × 10−14) for
V3 (S3).

We follow [122] to discuss leptoquark effects in rare and cLFV charm decays. Table 6.2
shows the largest possible branching ratios that can be obtained within the flavorful
leptoquark models addressing the B anomalies. The non-resonant SM predictions for the
SM-like processes are BSM(D → µ+µ−) ≃ 10−13 and BSM(D → πµ+µ−) ≃ 10−12 [122].
Since explanations of RK(∗) strongly prefer couplings to left-handed quarks, all relevant
leptoquark models involve couplings to the quark doublet, which means that the tight
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constraints from kaon decays automatically lead to strongly suppressed leptoquark effects
in the charm sector. Consequently, the predictions listed in Table 6.2 lie far below current
experimental limits.

More generally, without a connection to the B anomalies, larger contributions to rare
charm decays can be obtained from leptoquarks in flavor models. A promising scenario
involves the skewed pattern Reµ(ŪE) for the Ṽ 1 leptoquark, where cancellations between
the FN charges lead to potentially large effects in the charm sector. However, the strong
constraint from µ-e conversion can only be avoided at the cost of suppressing the diagonal
entries of the flavor coupling. Likewise, the Reµ(UE) pattern, which can be realized within
the S1 leptoquark model, yields only very small effects of the order of δ(′)ϵ10. An evasion
of the µ-e conversion constraints can be successfully achieved with the Reτ (ŪE) pattern
applied to the coupling of the Ṽ 1 leptoquark. In this case c → ueτ processes arise at the
order of κκ′ϵ2 ≲ 10−3, resulting in B(D → eτ) ≲ 10−13.

Since the triplet leptoquarks S3 and V3 are most constrained by cLFV kaon decays, we pre-
dict large signals close to the experimental upper limit B(KL → eµ) < 4.7 × 10−12 [129].
For the S2 leptoquark model in combination with the patterns L̃τ (ŪL) and Rτ (Q̄E) we
find only small contributions to rare kaon decays yielding B(KL → eµ) ≲ 4 × 10−19 due
to the constraints from µ-e conversion.

6.3. Summary and Conclusion

We have employed the AF × FN flavor model to derive patterns for leptoquark couplings.
While the FN symmetry imposes a hierarchical structure on the rows of the coupling
matrices, which relate to different quark generations, the discrete group A4 allows to
isolate couplings to a specific lepton generation based on the representation assigned to
the leptoquark. Beyond that, modified patterns can be engineered which allow to evade
experimental bounds and maximize NP effects in flavor observables. In general, we find
that couplings to lepton singlets are larger than those involving doublets, resulting in
more sizable contributions to chirality-flipping operators than to SM-like operators in
the context of RD(∗) .

Due to the strong constraints from b → sνν̄, rare kaon decays and µ-e conversion
together with existing leptoquark mass bounds, an explanation of the anomalies in
RD and RD∗ is currently not possible within this framework. Predictions of the
largest possible effects in RD(∗) and the τ polarizations Pτ (D(∗)) are discussed in Sec-
tion 6.2.1 and can be tested by upcoming data from the Belle II experiment with
50 ab−1 [185].

However, an explanation of the RK and RK∗ anomalies in the b → sℓ+ℓ− sector arise
naturally with the help of the muon isolation patterns Lµ(Q̄L,QL) and L̃µ(Q̄L,QL)
within the triplet leptoquark models S3 and V3. If the relative signs of the charged
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lepton singlet and down-type quark singlet FN charges are adjusted in such a way that
cancellations occur in YD̄E , then the singlet vector leptoquark model V1 provides a viable
solution as well. While these options reproduce the benchmark scenario (3.43) compatible
with global fits to b → sµ+µ− observables, it is also possible to explain RK within the
S̃2 leptoquark model that gives rise to right-handed quark currents and thus predicts
RK ̸= RK∗ .

A joint explanation of the RD(∗) and RK(∗) is not possible with flavorful leptoquarks
as effects in RD and in particular in RD∗ are strongly constrained by flavor processes.
In order to obtain maximal contributions to RD(∗) and RK(∗) , two types of flavorful
leptoquarks in the TeV mass region are required.

Since we treat the flavon vevs as free parameters constrained by experimental data
the results presented here apply to more general models than the particular AF × FN
realization we consider.
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Chapter 7.

Signatures of Flavorful

Leptoquarks at Hadron Colliders

The strict bounds imposed by flavor symmetries on the couplings of leptoquarks that can
explain the deviations in RK and RK∗ highlight the O(1) TeV leptoquark mass region,
which is accessible at future collider experiments. In this chapter, we study possible signa-
tures of these leptoquarks focusing on single production, which provides an experimental
handle on the flavor structure of the leptoquark couplings.

The results of this chapter are based on the findings of [2, 3].

7.1. The Leptoquarks S3, V1 and V3

As discussed in Section 4.1, the only leptoquarks that can accommodate the RK(∗) data
with couplings to quark and lepton doublets are the scalar triplet S3(3̄,3, 1/3), the vector
singlet V1(3,1, 2/3) and the vector triplet V3(3,3, 2/3). The kinetic terms and fermion
interactions of these leptoquarks read

LS3 = 1
2 Tr

[︂
(DµS3)†DµS3

]︂
+ Y Q̄

c
iσ2σ⃗L S⃗3 + h.c.,

LV1 = −
(︂
DµV ν

1 (DµV1ν)† −DµV ν
1 (DνV1µ)†

)︂
− igsκV

†µ
1 T aV ν

1 G
a
µν

+ Y Q̄γµLV
µ

1 + h.c.,

LV3 = −
(︃
DµV⃗

ν

3 ·
(︂
DµV⃗ 3ν

)︂†
−DµV⃗

ν

3 ·
(︂
Dν V⃗ 3µ

)︂†)︃
− igsκV⃗

†µ
3 T

a · V⃗ ν

3G
a
µν

+ Y Q̄γµσ⃗L · V⃗ µ

3 + h.c.

(7.1)

We neglect couplings that potentially induce proton decay or involve right-handed
fermions and focus solely on the coupling to quark and lepton doublets, which we denote
by Y . Since we only consider one leptoquark at a time we use the same symbol for the
coupling throughout. Note that the interactions of different multiplet components are
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related by SU(2)L. We use quark and lepton flavor indices, e.g. Yqℓ, to refer to individual
entries of the couplings in the mass basis. The couplings to up- and down-type quarks
are related by

Yuiℓ = V ∗
jiYdjℓ , (7.2)

where V is the CKM matrix.

The scalar and vector triplet can be decomposed in terms of their weak isospin components
as

σ⃗ · S⃗3 =

⎛⎝ S
1/3
3

√
2S4/3

3√
2S−2/3

3 −S1/3
3

⎞⎠ , (7.3)

and

σ⃗ · V⃗ 3 =

⎛⎝ V
2/3

3
√

2V −1/3
3√

2V 5/3
3 −V 2/3

3

⎞⎠ , (7.4)

respectively. Here, fractional superscripts denote the electric charges of the isospin
components. We assume that the masses of the individual components are approximately
degenerate. Expanding the fermion interaction parts of the Lagrangians in terms of the
weak isospin components gives

LS3,int = −Y d̄cL νL S
1/3
3 − Y ūcL eL S

1/3
3

+
√

2Y ūcL νL S
−2/3
3 −

√
2Y d̄cLeL S

4/3
3 + h.c.,

LV1,int = Y ūLγ
µνLV

2/3
1,µ + Y d̄Lγ

µeLV
2/3

1,µ + h.c.,

LV3,int = Y ūLγ
µνLV

2/3
3,µ − Y d̄Lγ

µeLV
2/3

3,µ

+
√

2Y ūLγ
µeL V

5/3
3µ +

√
2Y d̄Lγ

µνL V
−1/3

3,µ + h.c.

(7.5)

Note that the diagonal components of V3 have the same quantum numbers as V1 and
thus yield the same fermion interactions (up to a sign). The relevant leptoquarks in the
context of RK(∗) are those which couple to down-type quarks and charged leptons, i.e.
S

4/3
3 , V 2/3

1 and V
2/3

3 .

In order to study the collider phenomenology of these leptoquarks, we implement their
Lagrangians in Feynrules [186] from which we obtain the UFO output [187] that can be
used as an input to the MadGraph framework [188].

An explanation of the anomalies in the current data on RK and RK∗ via leptoquarks
requires

YbµY
∗
sµ − YbeY

∗
se

M2 ≃ ± 1
(40 TeV)2 , (7.6)

where the upper (lower) sign applies in the case of the vector (scalar) leptoquarks. As a
benchmark scenario we consider the simple pattern

Ys ∼ Y0

⎛⎜⎜⎝
0 0 0
∗ ϵ2 ∗
∗ 1 ∗

⎞⎟⎟⎠ , (7.7)
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which is motivated by the Lµ pattern discussed earlier. With the lepton flavor isolation
patterns derived in the AF×FN model, couplings to first generation quarks are negligible,
as they are FN-suppressed and additionally constrained by experimental data on µ–e
conversion and rare kaon decays. For the sake of simplicity we set them to zero in the
simple pattern (7.7). The entries marked with “∗” are not necessary to explain RK(∗)

but can potentially produce leptoquark signals with electrons or tau leptons in the final
state and induce cLFV. In the previously discussed flavor models these entries only arise
by means of higher order flavon insertions and are therefore strongly suppressed. We
consider more general patterns and their phenomenology in Section 7.3.3. With this
setup the RK(∗) data (7.6) points to Y0 ≃ M/8 TeV. If we allow O(1) factors between
1/3 and 3 the RK(∗) to be present in Ysµ, we find the range

M/14 TeV ≲ Y0 ≲M/5 TeV . (7.8)

This interval is in accordance with existing experimental limits on Drell-Yan processes,
which receive contributions from t-channel leptoquark exchange at tree-level. Explicitly,
we find

CbLL = v2 Y 2
0

2M2
S3

≲ 2 × 10−3 (7.9)

in the basis of the Standard Model Effective Field Theory (SMEFT) Wilson coefficients.
The experimental bounds on this coefficient are about one order of magnitude weaker
for electrons as well as for muons [189]. Note that these limits still serve as a suitable
approximation in the case of light leptoquarks for which the EFT approach does not
apply [190].

7.2. Leptoquark Decay and Width

The partial decay widths of the leptoquark triplets S3 and V3 decaying to a lep-
ton ℓ and a quark q, whose masses are negligible compared to the leptoquark mass,
read

Γ (S3 → qℓ) = c
|Yqℓ|2
16π MS3 , and Γ (V3 → q̄ℓ) = c

|Yqℓ|2
24π MV3 , (7.10)

respectively, with c = 1 for the diagonal multiplet components S1/3
3 and V 2/3

3 , and c = 2
for the off-diagonal components S4/3

3 and S
−2/3
3 as well as V −1/3

3 and V
5/3

3 . For the
singlet vector leptoquark V 2/3

1 the two-body decay width is the same as for the diagonal
component V 2/3

3 of the triplet. If Yqℓ is the dominant coupling then the partial decay width
Γ is a good approximation for the total width of the leptoquark. For large leptoquark
masses a significant contribution to the total decay width can arise from inter-multiplet
cascades such as S−4/3

3 → S
−1/3
3 W− → bνW−.

In the case of the simple scenario (7.7), where the couplings to light quark generations
are strongly suppressed, the leptoquark primarily decays to third generation quarks.
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Figure 7.1.: Parameter space of the S4/3
3 and V

2/3
1,3 leptoquark components within the simple

scenario (7.7) with a dominant coupling to the third quark generation. The red
band indicates the region relevant for RK(∗) . Within the yellow area the narrow
width approximation (NWA) holds. Inside the hatched region above the black curve
the leptoquark does not hadronize. Dashed lines indicate the regions that apply
for the vector leptoquarks. Flavor model predictions are shown in green. Updated
version of Figure 1 from [2].

Figure 7.1 shows the relevant parameter space spanned by the leptoquark mass M∆ and
the dominant coupling Y0 ≡ Ybµ for the components S4/3

3 and V
2/3

1,3 , which couple to
charged leptons and down-type quarks. The red region corresponds to the range (7.8)
which allows for an explanation of RK(∗) . Within the hatched area the leptoquark decays
quickly enough so that it does not form QCD bound states, i.e. Γ > ΛQCD. Indicated by
the yellow band is the region where the couplings are small enough to employ the NWA
for the production and decay of the leptoquark. We use the bound Γ/MS3 ≲ 5 %, which
implies Y0 ≲ 1.1 (1.4) for scalar (vector) leptoquarks. The previously discussed flavor
models require Y0 ∼ ϵ as indicated by the green band.

In this scenario the dominant decay modes of the leptoquarks that are capable of
explaining the RK(∗) data are

S
+2/3
3 → tν ,

S
−1/3
3 → bν, tµ− ,

S
−4/3
3 → bµ− ,

(7.11)

for the scalar triplet,

V
+2/3

1 → bµ+, tν (7.12)
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for the vector singlet, and
V

−1/3
3 → bν ,

V
+2/3

3 → bµ+, tν,

V
+5/3

3 → tµ+ .

(7.13)

for the vector triplet. At collider experiments, tagging the charge of the bottom quark
in the final state would be very useful to determine the type and electric charge of the
leptoquark, as for instance the processes V −2/3

1,3 → b̄µ− and S
−4/3
3 → bµ− both result in

final states that contain a negatively charged lepton. Furthermore, note that due to the
couplings to quark and lepton doublets, there are two possible final states with third
generation quarks for the singlet and for the diagonal component of the triplet leptoquark.
In particular, this yields B(S−1/3

3 → bν) ≃ B(S−1/3
3 → tℓ−) ≃ 1/2 for the scalar, and

B(V 2/3
1,3 → bµ+) ≃ B(V 2/3

1,3 → tν) ≃ 1/2 for the vectors.

7.3. Collider Phenomenology of Scalar Leptoquarks

7.3.1. Single Leptoquark Production: S3

At hadron colliders single leptoquarks can be produced together with a lepton by means
of quark–gluon fusion. The respective production cross section is sensitive to the flavor
coupling Yqℓ. Taking into account the decay of the leptoquark into a quark and a lepton
then results in the characteristic collider signature consisting of a jet and two leptons. In
the case of a dominant coupling to the third quark generation the leptoquarks that can
potentially explain RK(∗) produce the signature pp → bµµ.

Figure 7.2 shows the leading order parton-level Feynman diagrams that induce the single
and pair production of the S3, V1 and V3 leptoquarks and their subsequent decay at
hadron colliders. Due to the strong flavor hierarchies in (7.7), the hadronic production
cross section is still dominated by the coupling to the third quark generation, despite
the parton distribution function (PDF)-suppression of the bottom quark. To illustrate
this, we show in Figure 7.4 the single leptoquark production cross sections for unit
couplings to the d, s and b quarks in blue (dotted), brown (dash-dotted) and pink
(dashed), respectively. The relative suppression of the bottom-induced production with
respect to that caused by the s and d quarks amounts to factors of order one and
10−1 to 10−2, respectively, which is much weaker than the suppression from the flavor
pattern (7.7). For all single leptoquark production cross sections depicted in Figure 7.4
we add the contributions from the respective CP-conjugate final states. In the case of
sea quark–gluon fusion this amounts to a factor of two in the limit of CP conservation.
The contribution of the d̄ quark in the initial state is included explicitly. Depicted as
a red band is the CP-summed single production cross section of the S3 leptoquark in
association with a muon for the benchmark scenario (7.7). Additionally, we show the
pair production cross section σ(pp → S

−4/3
3 S

+4/3
3 ) in green. The corresponding Feynman
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(a) Single production of the scalar leptoquark S3.
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(b) Single production of the vector leptoquarks V1 and V3.

Figure 7.2.: Leading order Feynman diagrams of the scalar (a) and vector (b) leptoquark single
production and decay at hadron colliders. The first two diagrams in each case yield
resonant amplitudes, while the third one gives a non-resonant contribution whose
effects can be suppressed by means of kinematic cuts (see text). For the vector
leptoquark production (b) the final state lepton and antilepton are interchanged
compared with the scalar case and an additional contribution to the leptoquark–
gluon coupling proportional to κ arises in the second diagram.
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Figure 7.3.: Leading order Feynman diagrams of leptoquark pair production at hadron colliders.
The process is dominated by the first two diagrams involving leptoquark–gluon
couplings. For vector leptoquarks additional contributions proportional to κ arise
for those diagrams. We use ∆ to denote a generic scalar or vector leptoquark.
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Figure 7.4.: Single leptoquark production cross section σ(pp → S
−4/3
3 µ+ + S

+4/3
3 µ−) as a

function of the leptoquark mass MS3 for the center of mass energies
√
s = 14,

27 and 100 TeV. The red band indicates the range of cross sections obtained in
the simple scenario (7.7) with Y0 chosen according to (7.8) which provides an
explanation for RK(∗) . As pink (dashed), brown (dash-dotted) and blue (dotted)
lines we show the cross sections with only the coupling to the down, strange and
bottom quark turned on and set to one, respectively. The green line shows the pair
production cross section σ(pp → S

−4/3
3 S

+4/3
3 ). The smallest cross section that still

allows for the production of a single event with an integrated luminosity of 3 ab−1

is shown as a black line. Updated version of Figure 3 from [2].
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diagrams are shown in Figure 7.3. With the flavor pattern relevant for RK(∗) the S−4/3
3

leptoquark predominantly decays to bµ which means that pair production generates
the signature pp → bbµµ. The final states ttµµ, bbEmiss, btµEmiss and ttEmiss can be
produced by pair production of the other components of the S3 multiplet. Besides the
results for a center of mass energy of

√
s = 14 TeV, at which the LHC will operate in the

following years, we also include projections for planned future experiments with center of
mass energies of

√
s = 27 and 100 TeV as proposed for the HE-LHC and the FCC-hh,

respectively [191].

All numerical calculations discussed here are carried out at leading order in QCD using
the MadGraph framework [188]. For the evaluation of the PDFs, which provide the
largest source of uncertainty, we use LHAPDF [192]. We find that the PDF uncertainties
of the single leptoquark production cross section associated with the RK(∗) data (red band
in Figure 7.4) amount to O(10 %) for small leptoquark masses M ≃ 1 TeV and grow up
to 35 % to 45 % for smaller cross sections of the order of 10−7 pb. Further uncertainties
stem from the factorization and renormalization scale and can reach up to 25 %. Both
scales are assumed to equal half of the sum of the final state transverse masses. For the
pair production cross section both scale and PDF uncertainties can rise up to O(40 %) in
the high mass region where, the cross section drops to O(︁10−7)︁ pb. At small leptoquark
masses M ≃ 1 TeV the PDF uncertainties remain as small as O(10 %), comparable to the
case of single production. The scale uncertainties, however, stay approximately constant
throughout the full leptoquark mass range.

Since leptoquark pair production is dominated by the leptoquark–gluon coupling, for
small leptoquark masses the associated cross section is larger than the single leptoquark
production cross section. For larger leptoquark masses the pair production cross section
becomes increasingly phase space suppressed and eventually drops below the single
production cross section. At higher center of mass energies of

√
s = 27 and 100 TeV the

mass reach for the pair production can be increased by factors of about two and five,
respectively, compared with the reach at

√
s = 14 TeV and assuming the same luminosity

of 3 ab−1 in all cases. Increasing the center of mass energy has a moderately larger effect
on the mass reach for the single leptoquark production. For

√
s = 27 (100) TeV naively a

factor of two (seven) can be gained.

7.3.2. Top and Jet Final States

The SU(2)L multiplet structure of the S3 leptoquark suggests to also consider single
production processes with final states in which top quarks or jets instead of a bottom
quark are produced alongside two leptons. This provides the opportunity to search for
complimentary signatures at collider experiments.

As can be seen immediately from the interaction Lagrangian (7.5), the processes gb →
µ+S

−4/3
3 (→ bµ−) and gb → ν̄S

−1/3
3 (→ tµ−) are related and occur at the same order in
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the flavor coupling. Note that for S−1/3
3 an additional factor of 1/2 arises in the leading

branching fractions, as it decays in equal parts to bν and tℓ− within the hierarchical
flavor scenario (7.7). From an experimental point of view tµ−ν̄ final states have the
disadvantage over final states with two charged leptons that their SM background is
larger, since W− → ℓ−ν̄ events cannot be removed as easily as Z → ℓ+ℓ− decays.
However, flavor scenarios in which the coupling to second generation quarks is not
suppressed can induce gc → µ+S

−1/3
3 (→ tµ−), leading to a tµ+µ− signature. In the case

of a democratic scenario where Ybµ = Ysµ the branching ratio of the tµ− channel reads
B(S−1/3

3 → tµ−) ≃ 1/4. The RK(∗) data (7.8) then requires the leptoquark coupling Y0
to be an order of magnitude smaller than in the hierarchical scenario. Consequently,
with democratic couplings pp → tµ+µ− cross sections are about two orders of magnitude
smaller compared to pp → bµ+µ−, even though the initial state charm quark involved in
the leptoquark production suffers from a much milder PDF suppression than the bottom
quark.

As another variation of the simplified scenario (7.7) let us consider the case of inverted
hierarchies, i.e. Ysµ ≫ Ybµ. While this option is allowed by current experimental data,
within the flavor models we consider here such a scenario is only possible for singlet leptons
with the Rµ(QE) pattern if the FN charges of the quarks and leptons have opposite
sign so that cancellations are possible. Considering tµ+µ− final states this variant does
not provide an improvement, since the branching fraction B(S−1/3

3 → tµ−) suffers from
suppression by |Ybµ/Ysµ|2, where the product YbµY ∗

sµ is fixed by the data on RK(∗) (7.8).
However, this scenario highlights pp → jµ+µ− signatures, which are strongly enhanced by
the large coupling to second generation quarks and include the dominant decay channel
of S−1/3

3 . Note that this signature receives contributions from the S−4/3
3 component as

well. Taking into account the upper limit Ysµ ≲ M/2 TeV, which stems from ATLAS
measurements of high pT tails in the dilepton invariant mass distribution of pp → ℓ+ℓ−

processes [189], as well as the PDF enhancement that comes with second generation quark
couplings, we find that the cross sections σ(pp → (jµ−)µ+ + (jµ+)µ−) can exceed the
largest possible signals from processes linked to the RK(∗) data and dominated by third
quark generation quarks by about one order of magnitude.

7.3.3. Flavor Benchmarks

So far we have only considered the simplified pattern from (7.7), which suffices to study
collider signatures of flavorful leptoquarks that are strongly tied to the B anomalies.
This pattern is inspired by the Lµ pattern introduced in Section 6.1.1 from which
only small contributions to the entries that are not needed for an explanation of RK(∗)

(marked with “∗” in (7.7)) arise from higher order effects. However, as discussed in
Section 6.1.3, it is possible to construct more general patterns within viable flavor
symmetries that provide explanations for the flavor structure of the SM. One of these
generalizations is the L̃µ pattern (6.21), which weakens the hierarchy between the

85



Chapter 7. Signatures of Flavorful Leptoquarks at Hadron Colliders

bµ be bτ jµ je jτ

Lµ 1 δ2 δ2 λ4 λ4δ2 λ4δ2

L̃µ 1 δ2 δ2 (cνκ/cℓ)2 (cνκ/cℓ)2 (cνκ/cℓ)2

YFD 1/2 κ2
e/2 1/2 ρ2/2 ρ2κ2

e/2 ρ2/2

Table 7.1.: Parametric branching ratios of the leptoquark decay modes S−4/3
3 → bℓ and S−4/3

3 →
jℓ for the flavor benchmark patterns Lµ, L̃µ and YFD.

second and third quark generation couplings and introduces sizable effects in the first
and third lepton generations. In the most general approach, where all entries of the
leptoquark flavor couplings are treated as free parameters that are constrained only
by the RK(∗) data (7.8) and experimental upper bounds, it is currently not possible to
determine the dominant collider signatures. Hence, we consider generalized benchmark
flavor patterns that provide predictions for the entries marked with “∗” in the simple
pattern.

Besides the Lµ and L̃µ patterns derived from flavor models, we employ the more general
“flavor data” structure [176]

YFD = Y0

⎛⎜⎜⎝
ρdκe ρd ρdκτ

ρκe ρ ρκτ

κe 1 κτ

⎞⎟⎟⎠ . (7.14)

The hierarchy of the individual quark generations is parametrized by ρd = Ydℓ/Ybℓ and
ρ = Ysℓ/Ybℓ, while κe and κτ parametrize the column structure of the pattern with the
second lepton generation as a reference point. Assuming κτ ≃ 1 the phenomenologically
viable range for these parameters is [176]

ρd ≲ 0.02 , κe ≲ 0.5 , 10−4 ≲ ρ ≲ 1 , κe/ρ ≲ 0.5 , ρd/ρ ≲ 1.6 . (7.15)

The limit on the ratio κe/ρ can be improved to about 0.2 by upcoming results from the
MEG experiment [126].

In Table 7.1 we show the branching ratios for the leptoquark component S−4/3
3 decaying to

bℓ and jℓ final states, where ℓ = e, µ, τ , for each of the flavor benchmark scenarios at lead-
ing order in the vevs cℓ, cν , κ and the flavor parameters ρ, ρd, ke. These results can also be
used to estimate the potential signal strength of leptoquark pair production. The branch-
ing ratios of the related S

−1/3
3 component are given by

B(S−1/3
3 → tℓ) ,B(S−1/3

3 → bν) ≃ B(S−4/3
3 → bℓ)/2

B(S−1/3
3 → jℓ) ,B(S−1/3

3 → jν) ≃ B(S−4/3
3 → jℓ)/2 .

(7.16)

Note that for vector leptoquarks, which couple to Q̄L rather than QL, the L̃µ pattern
receives no suppression by κ, as can be seen in (6.21). Apart from that, the predictions
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L̃µ c2
ℓ c2

ℓδ
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ℓδ
2 c2

ℓδ
4 c2

ℓδ
4 c2

ℓδ
4

YFD λ2
0/2 λ2

0κ
2
e/2 λ2

0/2 λ2
0κ

4
e/2 λ2

0κ
2
e/2 λ2

0/2

(a) bℓℓ′ final states

jµµ jeµ jτµ jee jeτ jττ

Lµ c2
ℓλ

4 c2
ℓδ

2λ4 c2
ℓδ

2λ4 c2
ℓδ

4λ4 c2
ℓδ

4λ4 c2
ℓδ

4λ4

L̃µ (cνκ)2 (cνκ)2 (cνκ)2 (cνκδ)2 (cνκδ)2 (cνκδ)2

YFD λ2
0ρ

2/2 λ2
0ρ

2κ2
e/2 λ2

0ρ
2/2 λ2

0ρ
2κ4
e/2 λ2

0ρ
2κ2
e/2 λ2

0ρ
2/2

(b) jℓℓ′ final states

Table 7.2.: Parametric dependence of the single leptoquark induced cross sections σ(pp → bℓℓ′)
and σ(pp → jℓℓ′) for the three flavor benchmark patterns.

for vector leptoquark branching ratios are analogous and are related as e.g. B(V1 → bℓ) ≃
B(S−4/3

3 → bℓ)/2.

Table 7.2 shows the parametric single leptoquark production cross section for final states
with bottom quarks (a) and jets (b) within the three flavor benchmark scenarios. For
these estimates we employ the narrow width approximation

σ(pp → S3(→ qℓ)ℓ) = σ(pp → S3ℓ) B(S3 → qℓ) . (7.17)

While both the Lµ and the L̃µ pattern yield the same hierarchies for final states in-
volving bottom quarks, jet signals are enhanced with the L̃µ pattern in which the FN
suppression of the second quark generation is lifted. Dielectron signals are strongly
suppressed for both flavor patterns. Predictions based on the third flavor benchmark
pattern YFD depend on the size of the parameters ke and ρ, which is restricted but
not completely fixed by the currently available data, see (7.15). The two extreme cases
are:

(i) Both ke and ρ are of order one. In this case either the coupling Y0 has to be small
or the leptoquark mass has to be very large in order not to exceed experimental
bounds. Both options lead to strongly suppressed pp → bµµ signals that are too
small to be detected at the LHC.

(ii) Both ke and ρ are very small. This means that Y0 can be large while leptoquark
masses remain in the TeV range and that final states with jets or electrons are
strongly suppressed.
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In limit (ii) the collider phenomenology of the YFD benchmark pattern concerning modes
with jets or electrons becomes similar to that of the Lµ and L̃µ patterns. Stronger
constraints on the parameter ke can be obtained from studies of b → se+e− processes.
As discussed in Section 3.4, a well suited set of observables with small theoretical
uncertainties can be found in the angular distribution of B → K∗(→ Kπ)e+e− de-
cays [114].

If couplings to charged leptons other than the muon are large, leptoquark single production
associated with the RK(∗) data is affected in two ways: On the one hand, the cross section
σ(pp → S3(→ bµ)µ) decreases due to the enlarged branching ratio of the leptoquark
decay channel involving the other lepton(s). On the other hand, cLFV signatures such
as pp → S3(→ bµ)τ and pp → S3(→ bτ)µ are induced in the case of a sizable coupling to
tau leptons. Complementary searches for B → K(∗)µτ decays can prove useful in this
case.

The single leptoquark production signature pp → tµ+µ− is suppressed with respect to
pp → bµµ in all three flavor benchmark scenarios. This is due to the fact that the
coupling to the charm quark, which is necessarily involved in the production of the
pp → tµµ signature, is suppressed in every pattern. For Lµ, L̃µ and YFD the relative
suppression is given by ϵ4, (cνκ/cℓ)2 and ρ2, respectively. To leading order in the vevs
and flavor parameters the cross sections σ(pp → tµν) and σ(pp → bνν) are as large as
σ(pp → bµµ) across all benchmarks.

7.4. Collider Phenomenology of Vector Leptoquarks

For the vector leptoquarks V1(3,1, 2/3), V3(3,3, 2/3) we follow a similar approach as for
the scalar leptoquark discussed before. However, we focus on the simplified coupling
pattern (7.7) and study variations thereof.

We work out bounds on the masses of vector leptoquarks using available search results for
pair production of leptoquarks from ATLAS [193] (Section 7.4.3), and cross sections for
future pp colliders in Section 7.4.4. We consider three setups corresponding to center of
mass energies

√
s: 14 TeV (LHC run 3), 27 TeV (HE-LHC), and 100 TeV (FCC-hh) [191]

with target integrated luminosities of L = 3 ab−1, 15 ab−1 and 20 ab−1, respectively. In
Section 7.4.5 we briefly discuss the resonant production mechanism, for which theoretical
predictions have become possible recently. We analyze the mass reach of future pp

colliders by extrapolating current limits on cross sections to higher center of mass energies
and luminosities in Section 7.4.6.
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7.4.1. Benchmark Flavor Patterns

In the following we consider three benchmark scenarios with coupling textures that couple
the vector leptoquark predominantly to the second lepton generation.

Hierarchical scenario We start from the simplified, or “hierarchical” scenario (7.7) stud-
ied before, for which the unknown O(1) factors yield the range provided in (7.8).

Flipped scenario As a second scenario, we consider the inverted form of the previous
texture, that is:

YQ̄L ∼ Y0

⎛⎜⎜⎝
0 0 0
∗ 1 ∗
∗ ϵ2 ∗

⎞⎟⎟⎠ . (7.18)

This yields the same effect in b → sℓ+ℓ− transitions as the hierarchical pattern
while enhancing the single production cross section due to the larger PDF of the
strange quark. We obtain the same coupling range for Y0 as in the hierarchical
scenario given in (7.8).

Note that this pattern has a weaker foundation in flavor models and can potentially
receive mixing induced contributions to the first quark generations at order ϵ if it
is introduced in the interaction basis.

Democratic scenario Lastly, we consider a texture where the couplings to the second
and third quark generation are of equal size:

YQ̄L ∼ Y0

⎛⎜⎜⎝
0 0 0
∗ 1 ∗
∗ 1 ∗

⎞⎟⎟⎠ . (7.19)

In this case the RK(∗) data (7.6) together with the unknown O(1) factors imply

MV /70 TeV ≲ Y0 ≲MV /23 TeV . (7.20)

In each scenario there are four parameters, namely the leptoquark massMV , the parameter
κ, and the dominant couplings Ybµ and Ysµ. In order to determine all of these parameters,
it suffices to measure the single or pair production cross section, the corresponding
branching fractions and the resonance width including the reconstruction of the mass
peak. Note that such an analysis requires b-tagging.

Allowing for significant entries “∗” in the patterns (7.7), (7.18), (7.19) would open up
further leptoquark decay modes and search channels, and reduce branching ratios in
the signal channels studied here. Hence, negligible entries “∗” correspond to the most
favorable situation for an observation in the muon channel.
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V1,3

`

q̄

Figure 7.5.: Resonant leptoquark production.

7.4.2. Vector Leptoquark Production and Decay

We consider three dominant mechanisms of vector leptoquark production at pp colliders:
pair production, single production in association with a lepton and resonant produc-
tion induced by quark-lepton fusion, shown in Figures 7.3, 7.2b and 7.5, respectively.

The flavor scenarios (7.7), (7.18), (7.19) can be distinguished experimentally by different
patterns of the final states in leptoquark two-body decays. For the hierarchical scenario
(7.7) the dominant leptoquark decay modes are given in (7.12) and (7.13) for the singlet
and triplet vector leptoquarks, respectively.

In the flipped scenario (7.18) the leading signatures involve charm and strange quarks

V
+2/3

1 → sµ+ , cν̄ , (7.21)

for the singlet and
V

−1/3
3 → sν̄ ,

V
+2/3

3 → sµ+ , cν̄ ,

V
+5/3

3 → cµ+ ,

(7.22)

for the triplet.

In the democratic scenario (7.19) all of the aforementioned modes arise and final states
with both light and heavy quarks are relevant. Note that the unknown O(1) factors can
strongly impact the relative size of the possible final state branching ratios as B ∼ |YQ̄ℓ|2.
Approximate branching ratios for the benchmark patterns (7.7), (7.18), (7.19) are given
in Table 7.3.

In Figure 7.6 we show the pair- and single production cross sections as functions of κ for
the example of a vector leptoquark with mass MV1 = 3 TeV at the HL-LHC with a center
of mass energy of

√
s = 14 TeV. The cross sections exhibit minima for κ in the vicinity of

0 or −1, see also [194]. Within the mass range suitable for a 14 TeV collider, the shape of
these curves only mildly depends on the leptoquark mass.
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bµ+ tν̄ sµ+ cν̄

hierarchical 1/2 1/2 0 0
flipped 0 0 1/2 1/2
democratic 1/4 1/4 1/4 1/4

(a) V1 and triplet component V
2/3

3 .

bν̄ (tµ+) sν̄ (cµ+)

hierarchical 1 0
flipped 0 1
democratic 1/2 1/2

(b) V
−1/3

3 (V +5/3
3 ).

Table 7.3.: Branching fractions of the V1 and V3 leptoquarks in the benchmark scenarios from
Section 7.4.1.

−3 −2 −1 0 1 2 3

κ

10−6

10−5

σ
/
p

b

pp→ V
+2/3
1 V

−2/3
1

pp→ V
±2/3
1 µ∓

Figure 7.6.: κ-dependence (7.1) of the single- (red, solid) and pair production cross section
(green, dashed) for V1. We fix

√
s = 14 TeV and MV1 = 3 TeV. For the single

production cross section we employ the hierarchical scenario. Analogous results
are obtained for other choices of the parameters and flavor benchmarks.
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7.4.3. Current Vector Leptoquark Mass Bounds

Leptoquark-based explanations of the B anomalies motivated a recent search for pair
produced scalar leptoquarks with 139 fb−1 of data from 13 TeV pp collisions at the ATLAS
experiment [195]. This search imposes lower mass bounds of 1470 GeV (1480 GeV) on
scalar leptoquarks that predominantly decay to a top quark and an electron (muon).
Such final states appear in decays of the scalar (vector) SU(2)L triplet leptoquark S3
(V3). Previously derived collider bounds on vector leptoquarks from pair production
searches are MV1 > 1.3 TeV for dominant decays to τb, and MV1 > 1.7 TeV in the µb
channel [196], in the case of κ = 1.

We evaluate the current lower mass bounds on the V1 leptoquark by reinterpreting limits
imposed on the pair production cross sections of scalar leptoquarks by the ATLAS
search [193], which uses data collected in the 13 TeV LHC run with a luminosity of
L = 139 fb−1. For the hierarchical scenario we use the limits obtained in the (bµ, bµ)-
channel while for the flipped scenario we use the (qµ, qµ)-channel. The role of q in
the latter channel is played in our model by the strange quark. In order to obtain the
V1 mass limits we compare the theoretical cross sections for V1 pair production and
subsequent decay into the corresponding final state channels to the ATLAS data as shown
in Figure 7.7 (left). The resulting bounds are the same for the hierarchical and flipped
scenarios, as the experimental limits for the cross sections to (bµ, bµ)- and (sµ, sµ) final
states nearly coincide in the region of large leptoquark masses. We find mass limits of
(1.7 ± 0.1) TeV and (2.0 ± 0.1) TeV for κ = 0 and κ = 1, respectively, in this case. For
the democratic scenario we employ the experimental results for the (bµ, bµ) channel as
they provide stricter bounds in the relevant mass range than the (qµ, qµ) channel. We
find slightly weaker limits of (1.5 ± 0.1) TeV and (1.8 ± 0.1) TeV for κ = 0 and κ = 1,
respectively, owing to the smaller branching ratios of the bµ and sµ final states, shown
in Table 7.3.

In the hierarchical scenario the mass limits imposed by the ATLAS data on V1 also apply
for the triplet V3 because only the diagonal component V 2/3

3 , whose quantum numbers
are the same as those of V1, gives a relevant contribution. Due to additional contributions
to (cµ, cµ) final states from the V ±5/3

3 components with B(V 5/3
3 → cµ+) ∼ 1, we find

stronger limits in the case of the flipped scenario. For κ = 0 and κ = 1 we find the
mass limits (2.0 ± 0.1) TeV and (2.3 ± 0.1) TeV, respectively. The (cµ, cµ) channel also
provides the strongest bound for the democratic scenario, where we find the limits
(1.7 ± 0.1) TeV and (2.0 ± 0.1) TeV.

In Figure 7.7 (right) we show the κ dependence of the mass bounds for the V1 leptoquark
in the hierarchical and flipped scenarios. The weakest bounds on the V1 mass are obtained
for κ = −0.3, where the pair production cross section reaches its minimum (see also
Figure 7.6). In the hierarchical and flipped scenarios we find MV1 > 1.6 TeV for this value
of κ. However, the lowest mass bound is reached in the democratic scenario, where the
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Figure 7.7.: Sensitivity and mass bounds from reinterpretation of a current ATLAS search [193].
Top row: V1 in the hierarchical and flipped flavor scenarios, which equals V3 in the
hierarchical and democratic flavor scenarios. Middle row: V1 in the democratic
scenario, and bottom row: V3 in the flipped scenario. Left: Sensitivity to V1, V3-pair
production, assuming dominant decays to µb, µq and µc in purple, blue and black,
respectively; q denotes quarks lighter than the charm quark. The green bands
indicate the theory prediction including the pdf- and scale uncertainties, for κ = 0
(solid) and κ = 1 (dashed). Right: Mass bounds for the leptoquarks V1, V3 as a
function of κ. The boundary of the excluded region is represented by the band
whose width results from the pdf- and scale uncertainties.
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ATLAS data imposes MV1 > 1.4 TeV. The corresponding weakest bound on the V3 mass
arises in the hierarchical scenario and reads MV3 > 1.6 TeV.

7.4.4. Single and pair production cross sections

We evaluate the leading order cross sections for the single production of V1 in association
with a muon, represented by the first two diagrams in Figure 7.2b, as functions of the
leptoquark mass. We neglect non-resonant contributions as shown in the third diagram,
assuming that they can be removed by appropriate kinematic cuts. The results are shown
in the form of solid (hatched) red bands for κ = 0 (κ = 1) in Figures 7.8 and 7.9 for V1
and V3, respectively. The band widths correspond to the ranges given in (7.8) and (7.20),
which stem from the unknown O(1) factors. Likewise, the solid and hatched green bands
display the leading order pair production cross sections including subsequent resonant
decay.

Pair production is predominantly induced by QCD interactions and is hence essentially
independent of the flavor structure of the leptoquark couplings. As an exception to this,
the contribution stemming from the third diagram in Figure 7.3 can become sizable for
large leptoquark masses within the flipped scenario, as can be seen in the last plot of the
second row in Figure 7.8. This is due to the fact that the RK(∗) constraint drives Ysµ to
large values close to the limit of perturbativity.

The magnitude of the single production cross section induced by qg → V
2/3

1 ℓ at parton
level is directly proportional to the square of the magnitude of the corresponding flavor
coupling YQ̄ℓ. Assuming the narrow width approximation, we multiply the corresponding
production cross sections by the corresponding branching fractions given in Table 7.3.
Since there are no available single production searches involving b quarks in the final state,
we add the contributions involving jets and b quarks which amounts to the branching
fraction 1/2 for each of the three flavor scenarios.

7.4.5. Resonant production

Recent advances in the determination of the lepton PDFs [197] have opened up the
possibility to study resonant leptoquark production from quark–lepton fusion in pp

collisions [198], as depicted in Figure 7.5. Next-to-leading-order QCD and QED cor-
rections to the resonant production of scalar leptoquarks have recently become avail-
able [199].

In order to estimate the resonant V1 production cross section in our flavor benchmark sce-
narios (7.7), (7.18) and (7.19), we employ the LUXlep-NNPDF31_nlo_as_0118_luxqed
[197] PDF set. Numerical results for a

√
s = 14 TeV pp collider are shown in Figure 7.5.

Due to the much smaller phase space suppression, the resonant cross section is larger
than those of pair and single production.
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Figure 7.8.: V1-leptoquark production in pp-collisions in the flavor scenarios introduced in
Section 7.4.1 (rows) for different future collider experiments (columns). Red bands:
Single production cross section for σ(pp → V

±2/3
1 (→ µ±b)µ∓) + σ(pp → V

±2/3
1 (→

µ±j)µ∓), derived from the RK(∗) -band in (7.8) for hierarchical and flipped scenarios,
and (7.20) for the democratic scenario. Light green: pair production with final
states (bµ, bµ) for the hierarchical and democratic scenarios and (qµ, qµ) for the
flipped scenario. The error bands for pair production are evaluated by combining
the PDF-, and scale uncertainties. Results for κ = 1 are shown in a dashed/hatched
form together with the solid curves for κ = 0. The solid dark red and the dark green
curves depict the projected experimental sensitivity for single and pair production,
respectively. See Section 7.4.6 for details.
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Figure 7.9.: V3-leptoquark production in pp-collisions in the flavor scenarios introduced in
Section 7.4.1 (rows) for different future collider experiments (columns). Red bands:
Single production cross section for σ(pp → µ+µ−j) induced by the triplet V3,
derived from the RK(∗)-band in (7.8) for hierarchical and flipped scenarios, and
(7.20) for the democratic scenario. Light green: pair production with final states
(bµ, bµ) for the hierarchical and democratic scenarios and (cµ, cµ) for the flipped
scenario. The error bands for pair production are evaluated by combining the
PDF-, and scale uncertainties, see Figure 7.8 and Section 7.4.6 for details.
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Figure 7.10.: Resonant leptoquark production cross section from lepton-quark fusion for the
flavor scenarios (7.7), (7.18), (7.19) at the HL-LHC. The solid (dash-dotted) grey
line indicates the resonant cross section with only the bµ (sµ) coupling set to one.

In Figure 7.11 we compare the cross sections of the resonant and single production for
V1 masses up to ∼ 10 TeV. In the regions of the MV1–

√
s plane to the right of the thick

blue lines the resulting resonant cross section is larger than the one for single production.
Currently, the lepton PDF uncertainties are too large to allow for extrapolations to larger
center of mass energies.

7.4.6. Sensitivity Projections for Future Colliders

In order to estimate the mass reach of the future colliders for the flavor benchmark
scenarios, we extrapolate existing bounds from single- and pair production using the
limit extrapolation method following [200, 201]. The method assumes that the exclusion
limits are determined by the numbers of background events and involves the appropriate
re-scaling of the background processes with the corresponding parton luminosity functions,
see [200, 201] for more details. We expect the method to be less suitable for the case of
leptoquarks than for the case of s-channel resonances, for which it was initially used [200],
however, it should provide a correct estimate of the order of magnitude for the collider
limits on the corresponding cross sections.

As the starting point for our approximation of the future sensitivity projections for single
production searches, we employ the limits obtained by the CMS collaboration at a center
of mass energy of

√
s = 8 TeV and with an integrated luminosity of L = 19.6 fb−1 [181].

In our extrapolations, we assume that the b quark in the final state is not tagged but
rather counted as a light jet and thus contributes to the jµµ final states considered in
the CMS search. We emphasize that b-tagging is necessary to distinguish between our
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Figure 7.11.: Single leptoquark production cross section for V1 depending on the center of mass
energy

√
s, and the leptoquark mass MV1 . For each scenario we use the central

value of the allowed ranges from (7.8), (7.20). In the regions to the right of the
red lines the single leptoquark production cross section is larger than the pair
production cross section. In the regions to the right of the blue lines (up to
MV1 ∼ 10 TeV) the resonant leptoquark production cross section is larger than the
single production one, see text. In the plot to the lower right we show in addition
the pair production cross section σ(pp → V

+2/3
1 V

−2/3
1 ). All plots are for κ = 0.
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Collider
√
s/TeV L /ab−1 hierarchical flipped democratic pair

Mass reach for κ = 0

HL-LHC 14 3 — (2.3) — 2 (3)
HE-LHC 27 15 2.7 4.4 (5.6) — 5 (5)
FCC-hh 100 20 15.1 17.7 (20.5) (10.7) 13 (15)

Mass reach for κ = 1

HL-LHC 14 3 — 2.1 (2.8) — 3 (3)
HE-LHC 27 15 4.5 5.5 (6.4) — 5 (6)
FCC-hh 100 20 17.5 19.9 (22.7) 11.7 (14.0) 15 (18)

Table 7.4.: Mass reach in TeV for vector leptoquark single production in the hierarchical, flipped
and democratic scenarios from Section 7.4.1 and pair production, at different future
colliders for κ = 0 and κ = 1. For single production we provide the mass reaches
corresponding to the upper limit of the cross section band resulting from (7.8) and
(7.20). In the flipped and democratic scenarios as well as for pair production we
show the increased mass reaches for V3 in parentheses, for the hierarchical scenario
the V1,V3 reaches are the same, see text for details.

flavor benchmark textures and can potentially yield stronger limits in the hierarchical
and democratic scenarios.

For the extrapolations of the limits on the pair production cross sections we use results
from the ATLAS collaboration performed at 13 TeV with L = 139 fb−1 [193]. We further
employ the leading order PDF sets provided by the MSTW collaboration [202] and use the
NNPDF23_lo_as_0130_qed PDF set [203] as a cross check. As mentioned previously
in Section 7.4.3, for the hierarchical and democratic scenarios we consider the (bµ, bµ)-
channel, while the (qµ, qµ)-channel is used in the case of the flipped scenario, where
q corresponds to the strange quark. We compare the extrapolations of the sensitivity
limits for the single and pair production cross sections with their respective theoretical
predictions for the V1 leptoquark in Figure 7.8. The results for V3 are depicted in
Figure 7.9.

In Table 7.4 we list the possible mass reaches at future colliders for the V1 leptoquark
in each of the three flavor benchmark scenarios for both single and pair production.
Additionally, we provide the reach for V3 in parentheses if it differs from the V1 result.

The cross sections of V3 are larger than the ones of V1 in the flipped and democratic
scenario, due to the contributions from the additional components in the SU(2)L triplet.
In the hierarchical flavor scenario the dominant contribution stems from b quarks and
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involves only the V 2/3
3 component, which makes the cross section equal to that of the

singlet.

We estimate the single production cross section of V3 with a pp → jµµ signature in
the flipped and democratic scenarios using σ(pp → V

2/3
3 µ−) = σ(pp → V

2/3
1 µ−) and

including the contribution from cg → V
5/3

3 (→ jµ+)µ−. In case of the flipped scenario
we find

σFlipped
V3

(pp → jµµ) = 2
[︁
σ(sg → V

2/3
3 µ−)B(V 2/3

3 → sµ+)

+ σ(cg → V
5/3

3 µ−)B(V 5/3
3 → cµ+)

]︁
,

(7.23)

where the factor of 2 stem from adding the CP-conjugate of the process. Assuming that
the PDFs for the strange and charm quarks are roughly the same, i.e. σ(sg → V

2/3
3 µ−) ≃

(
√

2)2 σ(cg → V
5/3

3 µ−), where the (
√

2)2 is an isospin factor. Using the branching ratios
given in Table 7.3, we find σFlipped

V3
(pp → jµµ) ≃ 5σFlipped

V1
(pp → jµµ). An explicit nu-

merical evaluation shows that the ratio σFlipped
V3

(pp → jµµ)/σFlipped
V1

(pp → jµµ) decreases
with larger leptoquark masses, and lies within the range between 4 and 2.5 for values of√
s and MV relevant for this study.

For the democratic scenario we find

σDemocratic
V3 (pp → jµµ) = 2

[︁
σ(bg → V

2/3
3 µ−)B(V 2/3

3 → (b, s)µ+)

+ σ(sg → V
2/3

3 µ−)B(V 2/3
3 → (b, s)µ+)

+ σ(cg → V
5/3

3 µ−)B(V 5/3
3 → cµ+)

]︁
.

(7.24)

Assuming σ(sg → V
2/3

3 µ−) = 4σ(bg → V
2/3

3 µ−) results in σDemocratic
V3

(pp → jµµ) ≃
2.5σDemocratic

V1
(pp → jµµ), while a numerical evaluation shows that the ratio drops from

2.5 to about 1.5 throughout the relevant mass range. Numerical results from explicit
evaluations of σ(cg → V

5/3
3 µ−) are included in Fig. 7.9.

In Figure 7.12 we compare the expectations for the single production cross sections for
the flavor scenarios and different future collider experiments; the values span up to two
orders of magnitude. An observation of a single production signal with a cross section
that is much larger than those shown here would point to a leptoquark that is unrelated
to the RK(∗) anomalies.

The comparison of the single and pair production cross sections in Figure 7.11 shows
that pair production is instrumental for the discovery or exclusion of vector leptoquarks
in the mass region of a few TeV. Leptoquark single production cross sections exceed
corresponding pair production cross sections for large leptoquark masses in the parameter
regions to the right of the solid red lines.

100
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Figure 7.12.: Comparison of the single leptoquark production cross sections σ(pp → V
±2/3

1 µ∓)
for the benchmarks (7.7), (7.18), (7.19) at different future colliders, for κ = 0.
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7.5. Summary and Conclusion

Flavorful leptoquark explanations of the deviations in RK and RK∗ can be realized
with the scalar triplet S3, the vector singlet V1, or the vector triplet V3, and suggest
masses of a few TeV, which can be probed at hadron colliders. Here, we have focused on
leptoquark single production, which is sensitive to the leptoquark coupling to fermions
and the associated flavor structure. In a flavor model context, the B anomalies highlight
pp → ∆µ → bµµ as a prime channel. Together with the missing energy modes pp →
∆ν → bνν and pp → ∆ν → tµν, these processes yield the dominant cross sections.
Experimental studies of the latter modes can potentially provide additional information
on the flavor structure of the leptoquark coupling and also serve as a cross check with pair
production searches or indirect probes such as Drell-Yan processes and semileptonic rare
B decays. A crucial flavor model prediction is the strong hierarchy among quark flavors,
which causes jℓℓ signatures to be heavily suppressed with respect to bℓℓ. Experimental
results indicating an inverted hierarchy Ysℓ ≫ Ybℓ would hence hint at an origin of flavor
beyond symmetries. We have explored variations of the hierarchical flavor pattern in
more detail for the vector leptoquarks V1 and V3 and considered signatures including
second generation quarks. The results obtained for vector leptoquarks with the modified
flavor patterns also apply to the scalar leptoquark S3 on a qualitative level. Numerical
predictions are shown in Figures 7.4, 7.8, 7.9 and 7.11.

Furthermore, we have considered leptoquark pair production, which has a larger cross
section than single production in the low leptoquark mass region, as can be seen in
the aforementioned Figures as well. Hence, we encourage searches for pair production
signatures of leptoquarks decaying into a bottom quark and a lepton, or a top quark and
a lepton (7.11)-(7.13). By reinterpreting a recent ATLAS search for pair-produced scalar
leptoquarks, we have obtained new mass limits for the vector leptoquarks V1 and V3.
The weakest limits are MV1 > 1.4 TeV and MV3 > 1.6 TeV for κ = −0.3. For different
values of κ, including the Yang-Mills (κ = 1) and minimal coupling (κ = 0) cases the
limits are stronger – see Figure 7.7.

We find that data from the LHC alone is not sufficient to probe the full parameter space
of flavorful leptoquarks, but rather a future hadron collider with larger center of mass
energy and luminosity is required. In particular, we estimate that the future collider
scenarios HL-LHC, HE-LHC and FCC-hh are sensitive to V1 leptoquark signatures up
to masses of 3 TeV, 5.5 TeV and 19.9 TeV, respectively, for the case of κ = 1. Similar
estimates hold for single production signatures of V3 in the hierarchical scenario, but are
generically larger otherwise.

The “flavor data” benchmark (7.14) can be improved by upcoming data on rare B decays
from LHCb and Belle II. Relevant processes are the electronic modes b → see, and
cLFV decays b → seµ and those including tau leptons. Furthermore, dedicated studies
of angular observables in B → K∗ee decays, analogously to B → K∗µµ [99, 114] as
well as searches for cLFV transitions such as B → K(∗)e(µ, τ) and B → K(∗)µτ at the
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order of 10−8 and below, and Bs → eµ at O(︁10−11)︁ are needed in order to constrain
the leptoquark coupling matrix. For an exhaustive study of the flavor structure of the
leptoquark couplings, tagging the flavor of the bottom quark is necessary. This would
also allow to determine the charge of the leptoquark and to distinguish between different
leptoquark representations.

Recent progress in the field of leptonic PDFs has facilitated studies concerning resonant
leptoquark production from lepton-quark fusion at hadron colliders. This provides
another flavor-sensitive production mechanism besides leptoquark single production,
as shown in Figure 7.10. An in-depth study regarding (future-)collider sensitivities is,
however, beyond the scope of this thesis.
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Chapter 8.

Summary and Conclusion

In this thesis we have investigated theory implications of anomalies currently present in
the experimental data on theoretically clean observables in rare B decays. The deviations
in the ratios RK(∗) and RD(∗) hint at a violation of LFU – an essential feature of the
SM. In Chapter 3, we have seen that these observables are constructed in such a way
that theoretical uncertainties stemming from non-perturbative QCD contributions are
strongly suppressed. We have then reviewed the current status of these anomalies in
a data-driven and model-independent EFT approach and isolated several possible NP
scenarios. While the discrepancy in RD(∗) has diminished over time and there is no
preferred NP scenario, the situation is quite different for RK(∗) : since the 2014 LHCb
result on RK , showing a deviation of 2.6σ from the SM prediction, the tension has grown
to 3.1σ with the latest data published this year. Furthermore, if current data on RK∗ is
taken into account, the combined result deviates from unity by more than four sigma.
Remarkably, the favored NP solution CNP

LL ≃ −1 is also strongly supported by global fits
to other b → sµ+µ− observables.

In Chapter 4, we have considered different UV completions of the potential BSM scenarios
and put a special focus on leptoquark models, which provide a unique perspective on
quark and lepton flavor. To fully exploit this perspective we have then employed flavor
models that can successfully explain the masses and mixing of the SM fermions to impose
theoretically motivated constraints on the leptoquark couplings. The FN and AF flavor
symmetries discussed in Chapter 5 have allowed us to construct flavor patterns for the
leptoquark couplings. In Chapter 6, we have then classified the possible flavor patterns and
studied the effects of higher order corrections and mass basis rotations. We have identified
simple patterns that can isolate single lepton generations and present quark hierarchies
that are stable under mass basis rotations. Additionally, we have studied modified
patterns that partially evade the strong quark hierarchies and maximize NP effects, but
in turn introduce sizable cLFV effects. In order to explore the phenomenology of the flavor
patterns, we have used experimental data on b → sνν̄, rare kaon and charm decays and
cLFV processes to constrain the flavor parameters in a data-driven manner. Due to these
strong constraints in combination with current leptoquark mass bounds, obtained from
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direct searches, we have found that an explanation of RD and RD∗ is presently not possible
within this setup. The maximal effects of flavorful leptoquarks in RD(∗) are summarized
in Figure 6.2. On the other hand, the deviations in RK and RK∗ can be accounted for
with the S3, V1 and V3 leptoquarks in combination with the muon isolation patterns that
naturally emerge from the AF × FN flavor model.

Another consequence of the flavor structure imposed on the couplings of leptoquarks is that
the mass range which allows for an explanation of RK and RK∗ is lowered from ∼ 30 TeV,
in the case of O(1) couplings, down to a few TeV. This makes flavorful leptoquarks
accessible at current and future collider experiments. Potential signatures have been
worked out in Chapter 7 using the MadGraph framework. We have put an emphasis on
the single production mechanism, as it provides direct access to the leptoquark couplings
and their flavor structure. We identify pp → bµ+µ− as the central channel, while we
also expect sizable contributions to pp → bνν̄ and pp → tµ−ν̄. For low leptoquark
masses, pair production dominates over single production and accentuates final states
consisting of two quarks and two leptons such as bb̄µ+µ− – see Figures 7.4, 7.8, 7.9 and
7.11. Alternative flavor scenarios and variations beyond the simple hierarchical pattern
can be probed with searches for pp → jℓ+ℓ− signatures.

We find that the LHC only allows to access a small part of the parameter space, thus
a future hadron collider with increased center of mass energy and luminosity is needed
to explore flavorful leptoquarks as a solution to the B anomalies in detail. For the
future collider scenarios HL-LHC, HE-LHC and FCC-hh, we estimate sensitivities to
V1 leptoquark signatures up to masses of 3 TeV, 5.5 TeV and 19.9 TeV, respectively,
for the case of κ = 1, with comparable projections for single production signatures of
V3.

We conclude that flavorful leptoquarks provide viable solutions to the long-standing and
continually growing discrepancies seen in RK and RK∗ . Furthermore, they can be probed
at future hadron colliders and have the potential to help decipher the flavor puzzles in
and beyond the SM.
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Appendix A.

Notation and Conventions

Throughout this thesis we use the conventions described in this appendix.

The metric tensor reads
ηµν = diag(+1,−1,−1,−1) . (A.1)

The Levi–Civita symbol is normalized as

ε0123 = +1 . (A.2)

The Pauli matrices read

σ0 =

⎛⎝1 0
0 1

⎞⎠ , σ1 =

⎛⎝0 1
1 0

⎞⎠ , σ2 =

⎛⎝0 −i
i 0

⎞⎠ , σ3 =

⎛⎝1 0
0 −1

⎞⎠ . (A.3)

The Dirac matrices obey
γµγν + γνγµ = 2ηµν14×4 (A.4)

and are given in the chiral basis as

γµ =

⎛⎝ 0 σµ

σ̄µ 0

⎞⎠ , (A.5)

where σ̄µ ≡ (12×2,−σi)T . Furthermore, we define

γ5 ≡ iγ0γ1γ2γ3γ4 . (A.6)

We employ four-component Dirac spinors, generically denoted by ψ.

We follow the charge conjugation conventions of [204], i.e.

ψc ≡ Cψ̄
T ≡ Dψ∗, (A.7)

where C = iγ0γ2 and D = −iγ2 holds numerically.
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The order of charge conjugations, projectors and Dirac conjugation is defined by

ψL = PLψ = 1 − γ5
2 ψ ,

ψ̄L ≡ ψL = ψ̄PR ,

ψcL ≡ (ψL)c = (ψc)R = PRψ
c ,

ψ̄
c
L ≡ ψcL = (ψL)c = (ψc)R = ψcPL .

(A.8)

The standard parametrization of the fermion mixing matrices reads

U =

⎛⎜⎜⎝
1 0 0
0 c23 s23

0 −s23 c23

⎞⎟⎟⎠
⎛⎜⎜⎝

c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

⎞⎟⎟⎠
⎛⎜⎜⎝
c12 s12 0

−s12 c12 0
0 0 1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c23

⎞⎟⎟⎠ .

(A.9)

The Kallén function is defined as

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2xz . (A.10)
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Appendix B.

Numerical Constants

For all numerical calculations performed in this thesis, we use the input parameters
compiled in Table B.1.

Quantity Symbol Value Unit Reference

Fermi constant GF 1.166 378 7(6) × 10−5 GeV−2 PDG [23]
Fine structure constant αe(mb) 1/133
CKM elements |Vcb| 0.0411(13) PDG [205]

|Vtb| 0.999 146(50) PDG [205]
|Vts| 0.0404(12) PDG [205]

Meson masses mD+ 1.869 61(9) GeV PDG [23]
mD0 1.864 84(5) GeV PDG [23]
mD∗+ 2.010 27(5) GeV PDG [23]
mD∗0 2.006 97(8) GeV PDG [23]
mK+ 0.493 677(16) GeV PDG [23]
mK0 0.497 614(24) GeV PDG [23]
mK∗+ 0.891 66(26) GeV PDG [23]
mK∗0 0.8955(8) GeV PDG [23]
mB+ 5.279 29(15) GeV PDG [23]
mB0 5.279 61(16) GeV PDG [23]

Meson lifetimes τB+ 1.638(4) × 10−12 s PDG [23]
τB0 1.520(4) × 10−12 s PDG [23]

Quark and lepton masses ms 0.095(5) GeV PDG [205]
mc 1.275(25) GeV PDG [205]
mMS
b 4.18(3) GeV PDG [205]

mpole
t 1.73(1) × 102 GeV PDG [205]

me 0.510 998 928 × 10−3 GeV PDG [205]
mµ 0.105 658 371 5 GeV PDG [205]
mτ 1.776 86(12) GeV PDG [205]

Table B.1.: Numerical values of the input parameters used in this thesis.
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Appendix C.

Numerical Evaluation of

B̄ → D(∗)ℓν̄ Observables

In this appendix we provide details on the numerical evaluation of the observables
discussed in Section 3.3.1, following [1].

The q2-dependent coefficient functions Ai(q2) and Bi(q2) that occur in the expressions
for the differential branching ratios of the decays B̄ → Dℓν̄ (3.17) and B̄ → D∗ℓν̄ (3.18),
respectively, read

AS(q2) = 3
2N(q2)Hs2

S (q2) , (C.1)

AT(q2) = 8N(q2)
(︄

1 + 2m2
ℓ

q2

)︄
Hs2
T (q2) , (C.2)

AVS(q2) = 3N(q2) mℓ√︁
q2H

s
S(q2)Hs

V,t(q2) , (C.3)

AVT(q2) = −12N(q2) mℓ√︁
q2H

s
T (q2)Hs

V,0(q2) , (C.4)

and

BV1V2(q2) = N(q2)
[︄(︄

1 + m2
ℓ

2q2

)︄(︂
H2
V,0(q2) + 2HV,+(q2)HV,−(q2)

)︂

+ 3
2
m2
ℓ

q2 H
2
V,t(q2)

]︄
,

(C.5)

BS(q2) = 3
2N(q2)H2

S(q2) , (C.6)

BT(q2) = 8N(q2)
(︄

1 + 2m2
ℓ

q2

)︄(︂
H2
T,+(q2) +H2

T,−(q2) +H2
T,0(q2)

)︂
, (C.7)

BVS(q2) = 3N(q2) mℓ√︁
q2HS(q2)HV,t(q2) , (C.8)
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ℓ Â
ℓ
S Â

ℓ
T Â

ℓ
VS Â

ℓ
VT

e 1.45 ± 0.16 0.38 ± 0.20 0.00 ± 0.00 0.00 ± 0.00
µ 1.45 ± 0.16 0.36 ± 0.17 0.17 ± 0.02 0.13 ± 0.09
τ 1.36 ± 0.15 0.35 ± 0.13 1.73 ± 0.19 0.69 ± 0.15

Table C.1.: The normalized B̄ → Dℓν coefficients Âℓ

i = Aℓ
i/BSM.

ℓ B̂
ℓ
V1V2 B̂

ℓ
S B̂

ℓ
T B̂

ℓ
VS B̂

ℓ
V1T B̂

ℓ
V2T

e −1.72 ± 0.13 0.06 ± 0.01 12.98 ± 0.98 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
µ −1.72 ± 0.13 0.06 ± 0.01 12.98 ± 0.98 0.02 ± 0.00 −0.43 ± 0.03 0.70 ± 0.05
τ −1.78 ± 0.13 0.04 ± 0.01 13.35 ± 1.00 0.12 ± 0.01 −4.58 ± 0.34 6.14 ± 0.45

Table C.2.: The normalized B̄ → D∗ℓν coefficients B̂ℓ

i = Bℓ
i /BSM.

BV1T(q2) = −12N(q2) mℓ√︁
q2

(︂
HT,0(q2)HV,0(q2)

+HT,+(q2)HV,+(q2) −HT,−(q2)HV,−(q2)
)︂
,

(C.9)

BV2T(q2) = 12N(q2) mℓ√︁
q2

(︂
HT,0(q2)HV,0(q2)

+HT,+(q2)HV,−(q2) −HT,+(q2)HV,−(q2)
)︂
.

(C.10)

Here, N(q2) denotes the normalization factor from (3.20). The hadronic matrix elements
Hi(q2) can be found in [35]. We employ the lattice form factors [43] for B̄ → D and rely
on the HQET form factors from [35] for B → D∗. In Tables C.1 and C.2 we provide
numerical results for the Ai(q2) and Bi(q2) integrated over the full kinematic range,
summed over the lepton polarizations and normalized to the SM branching fractions.
For the latter we find

BSM(B̄0 → D+τν) = (6.66 ± 0.67) × 10−3 ,

BSM(B̄0 → D+(e, µ)ν) = (2.23 ± 0.24) × 10−2 ,
(C.11)

and
BSM(B̄0 → D+∗τν) = (1.35 ± 0.10) × 10−2 ,

BSM(B̄0 → D+∗(e, µ)ν) = (5.34 ± 0.40) × 10−2 .
(C.12)

In order to estimate the uncertainties, we draw 105 random samples of the form factor
parameters provided in the respective references and calculate the coefficients Ai and
Bi for each sample. The mean and standard deviation of the resulting distributions are
then considered as the central value and uncertainty. We assume that the form factor
parameters are normally distributed and incorperate all correlations provided by [35,
43].
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k Â
k
S Â

k
T Â

k
VS Â

k
VT

+ 4.12 ± 0.45 0.56 ± 0.20 5.23 ± 0.57 0.70 ± 0.15
− - 0.50 ± 0.19 - 1.39 ± 0.30

Table C.3.: The normalized B̄ → Dτν coefficients Âk

i = Ak
i /
(︁
BSM

k=+ − BSM
k=−

)︁
for a given

polarization k of the τ lepton.

k B̂
k
V1V2 B̂

k
S B̂

k
T B̂

k
VS B̂

k
V1T B̂

k
V2T

+ 0.62 ± 0.06 0.04 ± 0.00 −14.15 ± 1.06 −0.24 ± 0.03 3.08 ± 0.23 −4.12 ± 0.30
− 1.26 ± 0.10 - −12.72 ± 0.95 - 6.15 ± 0.46 −8.24 ± 0.61

Table C.4.: The normalized B̄ → D∗τν coefficients B̂k

i = Bk
i /
(︁
BSM

k=+ − BSM
k=−

)︁
for a given

polarization k of the τ lepton.

Additionally, we provide the coefficients for given τ -polarizations in Tables C.3 and C.4,
where we normalize to the difference BSM

k=+ − BSM
k=− of the SM values of the polarized

branching fractions. For the latter we obtain

BSM
k=+(B̄0 → D+τν) = (4.43 ± 0.47) × 10−3 ,

BSM
k=−(B̄0 → D+τν) = (2.22 ± 0.22) × 10−3 ,

(C.13)

and
BSM
k=+(B̄0 → D+∗τν) = (3.40 ± 0.27) × 10−3 ,

BSM
k=−(B̄0 → D+∗τν) = (1.01 ± 0.07) × 10−2 .

(C.14)

Scalar operators do not contribute to the case where k = −.
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Appendix D.

LQ Contributions to Wilson

Coefficients of the Weak

Hamiltonian

By comparing the effective vertices listed in the Tables 4.2 and 4.3 with the effective
Hamiltonians that govern the flavor transitions b → cℓν̄ (see (3.14), (3.15)), b → sℓ+ℓ−

(see (3.25), (3.26)) and c → uℓ+ℓ− (see [122]), we obtain the Wilson coefficients com-
piled in the Tables below. In order to avoid clutter, we define the rescaled coeffi-
cients

C̃ ≡ 4GF√
2
VcbM

2C (D.1)

for b → cℓν̄,
C̃ ≡ 4GF√

2
VtbV

∗
ts

α

4πM
2C (D.2)

for b → sℓ+ℓ− and b → sνν̄, as well as

C̃ ≡ 4GF√
2
α

4πM
2C (D.3)

for c → uℓ+ℓ− and c → uνν̄, whereM denotes the leptoquark mass.
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C̃V1 C̃S1 C̃S2 C̃T

S1
1
2Y

bν
QL

(︂
Y cℓ
QL

)︂∗
- −1

2Y
bν
QL

(︂
Y cℓ
UE

)︂∗ 1
8Y

bν
QL

(︂
Y cℓ
UE

)︂∗

S2 - - −1
2Y

cν
ŪL

(︂
Y bℓ
Q̄E

)︂∗
−1

8Y
cν
ŪL

(︂
Y bℓ
Q̄E

)︂∗

S3 −1
2Y

bν
QL

(︂
Y cℓ
QL

)︂∗
- - -

V1 Y cν
Q̄L

(︂
Y bℓ
Q̄L

)︂∗
−2Y cν

Q̄L

(︂
Y bℓ
D̄E

)︂∗
- -

V2 - −2Y bν
DL

(︂
Y cℓ
QE

)︂∗
- -

V3 − Y cν
Q̄L

(︂
Y bℓ
Q̄L

)︂∗
- - -

Table D.1.: Contributions from leptoquarks to b → cℓν̄ transitions at matching scale.

C̃L C̃R C̃L C̃R

S1
1
2Y

bℓ
QL

(︂
Y sℓ′
QL

)︂∗
- - -

S2 - - - −1
2Y

uℓ
ŪL

(︂
Y cℓ′

ŪL

)︂∗

S̃2 - −1
2Y

sℓ
D̄L

(︂
Y bℓ′

D̄L

)︂∗
- -

S3
1
2Y

bℓ
QL

(︂
Y sℓ′
QL

)︂∗
- Y cℓ

QL

(︂
Y uℓ′
QL

)︂∗
-

V1 - - −Y uℓ
Q̄L

(︂
Y cℓ′

Q̄L

)︂∗
-

V2 - Y bℓ
DL

(︂
Y sℓ′
DL

)︂∗
- -

Ṽ 2 - - - Y cℓ
UL

(︂
Y uℓ′
UL

)︂∗

V3 −2Y sℓ
Q̄L

(︂
Y bℓ′

Q̄L

)︂∗
- −Y uℓ

Q̄L

(︂
Y cℓ′

Q̄L

)︂∗
-

Table D.2.: Contributions from leptoquarks to b → sνν̄ and c → uνν̄ transitions at matching
scale.

C̃9 C̃10 C̃
′
9 C̃

′
10

S̃1 - - 1
4Y

bℓ
DE

(︂
Y sℓ′
DE

)︂∗
+C̃ ′

9

S2 −1
4Y

sℓ
Q̄E

(︂
Y bℓ′

Q̄E

)︂∗
+C̃9 - -

S̃2 - - −1
4Y

sℓ
D̄L

(︂
Y bℓ′

D̄L

)︂∗
−C̃ ′

9

S3
1
2Y

bℓ
QL

(︂
Y sℓ′
QL

)︂∗
−C̃9 - -

V1 −1
2Y

sℓ
Q̄L

(︂
Y bℓ′

Q̄L

)︂∗
−C̃9 −1

2Y
sℓ
D̄E

(︂
Y bℓ′

D̄E

)︂∗
+C̃ ′

9

V2 - - 1
2Y

bℓ
DL

(︂
Y sℓ′
DL

)︂∗
−C̃ ′

9

V3 −1
2Y

sℓ
Q̄L

(︂
Y bℓ′

Q̄L

)︂∗
−C̃9 - -

Table D.3.: Contributions from leptoquarks to b → sℓ+ℓ− transitions at matching scale (vectors).
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C̃S C̃P C̃
′
S C̃

′
P

V1 Y sℓ
Q̄L

(︂
Y bℓ′

D̄E

)︂∗
+C̃S Y sℓ

D̄E

(︂
Y bℓ′

Q̄L

)︂∗
+C̃ ′

S

V2 Y bℓ
DL

(︂
Y sℓ′
QE

)︂∗
−C̃S Y bℓ

QE

(︂
Y sℓ′
DL

)︂∗
+C̃ ′

S

Table D.4.: Contributions from leptoquarks to b → sℓ+ℓ− transitions at matching scale (scalars).

C̃9 C̃10 C̃′
9 C̃′

10

S1
1
4Y

cℓ
QL

(︂
Y uℓ′
QL

)︂∗
−C̃9

1
4Y

cℓ
UE

(︂
Y uℓ′
UE

)︂∗
+C̃′

9

S2 −1
4Y

uℓ
Q̄E

(︂
Y cℓ′

Q̄E

)︂∗
+C̃9 −1

4Y
uℓ
ŪL

(︂
Y cℓ′

ŪL

)︂∗
−C̃′

9

S3
1
4Y

cℓ
QL

(︂
Y uℓ′
QL

)︂∗
−C̃9 - -

Ṽ 1 - - −1
2Y

uℓ
ŪE

(︂
Y cℓ′

ŪE

)︂∗
+C̃′

9

V2
1
2Y

cℓ
QE

(︂
Y uℓ′
QE

)︂∗
+C̃9 - -

Ṽ 2 - - 1
2Y

cℓ
UL

(︂
Y uℓ′
UL

)︂∗
−C̃′

9

V3 −Y uℓ
Q̄L

(︂
Y cℓ′

Q̄L

)︂∗
−C̃9 - -

Table D.5.: Contributions from leptoquarks to c → uℓ+ℓ− transitions at matching scale (vec-
tors).

C̃S C̃P C̃′
S C̃′

P C̃T1 C̃T2

S1 −1
4Y

cℓ
UE

(︂
Y uℓ′
QL

)︂∗
+C̃S −1

4Y
cℓ
QL

(︂
Y uℓ′
UE

)︂∗
−C̃′

S
1
8Y

cℓ
UE

(︂
Y uℓ′
QL

)︂∗ 1
8Y

cℓ
QL

(︂
Y uℓ′
UE

)︂∗

S2
1
4Y

uℓ
Q̄E

(︂
Y cℓ′

ŪL

)︂∗
+C̃S

1
4Y

uℓ
ŪL

(︂
Y cℓ′

Q̄E

)︂∗
−C̃′

S
1
8Y

uℓ
ŪL

(︂
Y cℓ′

Q̄E

)︂∗ 1
8Y

uℓ
Q̄E

(︂
Y cℓ′

ŪL

)︂∗

Table D.6.: Contributions from leptoquarks to c → uℓℓ transitions at matching scale (scalars
and tensors).
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Acronyms

AF Altarelli–Feruglio. 52, 53, 105

AMM anomalous magnetic moment. 1

BSM beyond the Standard Model. 1–3, 9, 12, 13, 42, 105

CKM Cabbibo–Kobayashi–Maskawa. 6, 7, 18, 58, 78, 109

cLFV charged lepton flavor violation. 8, 37, 38, 42, 57, 62, 68, 71–74, 79, 88, 102, 105

EFT effective field theory. 2, 9, 11–13, 16, 18, 24, 35, 39, 46, 50, 79, 105

EW electroweak. 3–7, 11–13

FCCC flavor-changing charged current. 1, 6, 17

FCNC flavor-changing neutral current. 1, 6–9, 24, 36, 40, 42, 45, 70, 72

FN Froggatt–Nielsen. 50–53, 56, 58–61, 64, 66, 67, 71, 72, 74, 79, 85, 87, 105

GIM Glashow–Iliopoulos–Maiani. 6, 8, 24

GUT Grand Unified Theory. 40, 45

HFLAV Heavy Flavor Averaging Group. 19, 21, 37

HQET Heavy Quark Effective Theory. 16, 18, 112

LCSR Light Cone Sum Rules. 16, 29

LFU lepton flavor universality. 1, 31, 105

LFUV lepton flavor universality violation. 31, 56

LHC Large Hadron Collider. 1, 84, 87

LQCD Lattice Quantum Chromodynamics. 16
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Acronyms

MFV minimal flavor violation. 9, 42

NP new physics. 2, 9, 11, 12, 17–19, 21, 22, 24, 26, 28, 30, 31, 33–35, 38, 39, 42, 47,
62–64, 71, 74, 105

NWA narrow width approximation. 80

OPE Operator Product Expansion. 12, 14

PDF parton distribution function. 81, 84, 85, 89, 94–97, 99, 100, 103

PMNS Pontecorvo–Maki–Nakagawa–Sakata. 8, 58

QCD Quantum Chromodynamics. 3, 4, 7, 9, 11, 13, 14, 16, 28, 29, 31, 37, 80, 84, 105

QED Quantum Electrodynamics. 3, 24, 26, 31

QFT quantum field theory. 3, 16

RG renormalization group. 13, 64

RGE renormalization group equation. 13, 68

SM Standard Model. 1, 3–10, 12, 16–21, 23, 24, 26, 28–33, 35–37, 40, 42–47, 49, 50,
56, 60, 63–66, 68, 69, 73, 74, 85, 105, 106, 112, 113

SMEFT Standard Model Effective Field Theory. 79

TBM tribimaximal. 8, 52, 53

UV ultraviolet. 12, 39, 45, 50, 51, 53, 105

vev vacuum expectation value. 5, 6, 50–53, 56–60, 62, 64, 66–68, 70–72, 75, 86, 88
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