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Abstract

Perfluorooctanoic acid (PFOA) and related per- and polyfluoroalkyl substances, a group of man-

made persistent organic chemicals employed for many products, are widely distributed in the environ-

ment. Adverse health effects may occur even at low exposure levels. A large-scale PFOA contamination

of drinking water resources, especially of the river Ruhr, was detected in North Rhine-Westphalia, Ger-

many, in summer 2006. Subsequent measurements are available from the water supply stations along

the river and elsewhere. The first state-wide environmental-epidemiological study on the general popu-

lation analyses these secondary data together with routinely collected perinatal registry data, to estimate

possible developmental-toxic effects of PFOA exposure, especially regarding birth weight (BW).

Drinking water data are temporally and spatially modelled to assign estimated exposure values to the

residents. A generalised linear model with an inverse link deals with the steeply decreasing temporal data

pattern at mainly affected stations. Confirmed by a river-wide joint model, the river’s segments between

the main junctions are the most important factor to explain the spatial structure, besides local effects.

Deductions from stations to areal units are made possible via estimated supply proportions.

Regression of perinatal data with BW as response usually includes the gestational age (GA) as an

important covariate in polynomial form. However, bivariate modelling of BW and GA is recommended

to distinguish effects on each, on both, and between them. Bayesian distributional copula regression

is applied, where the marginals for BW and GA as well as the copula representing their dependence

structure are fitted independently and all parameters are estimated conditional on covariates. While a

Gaussian is suitable for BW, the skewed GA data are better modelled by the three-parametric Dagum

distribution. The Clayton copula performs better than the Gumbel and the symmetric Gaussian copula,

although the lower tail dependence is weak. A non-linear trend of BW on GA is detected by the standard

polynomial model. Linear effects of biometric and obstetric covariates and also of maternal smoking on

BW mean are similar in both models, while the distributional copula regression also reveals effects on

all other parameters.

The local PFOA exposure is spatio-temporally assigned to the perinatal data of the most affected

town of Arnsberg and so included in the regression models. No significant effect results and a relatively

high amount of noise remains. Perspectively and for larger regions, this can be dealt with by exposure

modelling on area level using dependence information, by allowing further asymmetry in the bivariate

distribution of BW and GA, and by respecting geographical structures in birth data.

Keywords: distributional copula regression, drinking water contamination, perfluorooctanoic acid,

perinatal registry data, river modelling, two spatial level data.
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Preliminary remark

The text below, along with the major part of the tables and figures, is partly based on the articles by

Rathjens et al. (2021b) and Rathjens et al. (2021a), which give some main statistical results of the

reported research project, and of which the author of this dissertation is essentially responsible with

regard to execution of research and writing.

Specifically, the following sections represent edited, partly extended and rearranged versions of the

said publications:

• Sections 1.1, 1.2, 2.1, 2.2, 2.3.3, 2.4, 2.5 and 2.7, along with

– Tables 2.2, 2.3, 2.4 and 2.6,

– Figures 2.1, 2.2, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, A.1, A.2, A.3 and A.4,

are partly based on Rathjens et al. (2021b).

• All sections from Chapter 3 as well as Sections 4.2.3, 4.3 and 4.4, along with

– Tables 3.1, 3.3 and 3.4,

– all figures from Chapter 3,

are partly based on Rathjens et al. (2021a).

The corresponding individual source references are omitted in the following text.
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Chapter 1

Introduction

This dissertation contributes to applied statistics in the fields of environmental medicine and epidemi-

ology. A long lasting cooperation project has been established to investigate the possible toxic effect

of per- and polyfluoroalkyl substances (PFASs), especially of perfluorooctanoic acid (PFOA), on foetal

development. A secondary data analysis is conducted regarding the general population in the state of

North Rhine-Westphalia (NRW), Germany, which has been affected by environmental contamination.

The results obtained so far, from the statistical perspective, are reported here. Although designed

for a very specific data analysis, the approaches detailed below are general enough to be transferred to

similar situations in other fields of application.

The research project has brought about a complex study to find specific solutions for exploration,

modelling and inference in unusual, partly unique data situations. Major statistical issues include the

spatial distribution and temporal progression of the environmental exposure, in conjunction with bivariate

regression analysis of birth data. Both established and innovative statistical methods are applied.

Specifically, the exposure to PFOA is presumed to be mainly caused by drinking water, especially

from the river Ruhr in NRW. The temporal progression of this dynamic contamination has to be modelled

using routine measurement data, to obtain reliable, stable information, continuously over a long period of

time. Various generalised linear and mixed models depending on time are applied to this. Furthermore,

these values have to be spatially assigned in accordance with the water supply structure, respecting

possible dependencies along a river, and to be realigned on the spatial level of perinatal registry data.

The birth data from the NRW state perinatal registry are analysed to estimate effects of the envi-

ronmental factor and other explanatory variables on perinatal parameters. The data have been collected

for quality assurance in obstetric health care. Complete records from many years are available. To in-

vestigate effects of PFASs on foetal development, the birth weight is of primary interest. However, to

gain deeper insights into the relationships between the variables involved, the birth weight is bivariately

modelled together with the gestational age, all conditional on biometric and medical covariates as well as

on the spatio-temporally assigned environmental exposure. A recent Bayesian distributional regression

approach by Klein and Kneib (2016) using copulas is applied, for the first time to birth data with two

continuous response variables. While no significant PFOA effect is observed in this way, the bivariate

analysis enables some insights from the perspective of obstetric research.

Below, a review on the relevance of PFASs in the environment and their physiological effects is given,

including potential developmental toxicity, which motivates the further research. Section 1.2 summarises

the major PFASs contamination event in NRW prior to 2006. The subsequent environmental medical

1



INTRODUCTION 1.1. BACKGROUND ON PERFLUOROOCTANOIC ACID (PFOA)

research project is detailed in Section 1.3, including an account of a human biomonitoring cohort study

in the most affected town of Arnsberg, an overview of the available state-wide secondary data sets, the

major research questions and aims, and an overview of other sub-projects, most of them further detailed

below. An overview of the whole dissertation is given in Section 1.4.

1.1 Background on perfluorooctanoic acid (PFOA)

Per- and polyfluoroalkyl substances (PFASs) name a group of man-made persistent organic chemicals

produced since the 1940’s which are employed in a wide variety of products used by consumers and

industry (OECD, 2004; ATSDR, 2018). Their biochemical persistence and stability have led to pollution

of the environment worldwide and an internal exposure of the general human population (cf., e.g.,Buck

et al., 2011). The lead substances perfluorooctanoic acid (PFOA) and perfluorooctane sulphonic acid

(PFOS) are readily absorbed after ingestion or inhalation, not metabolised and very slowly excreted via

urine and faeces. Several studies report different estimates of the biological half-life of PFOA in the

human organism, but usually of about two to three years (Table 4.1 on page 63).

The most important PFASs source for the human population is food (Fromme et al., 2009). In regions

with contaminated drinking water, according to Vestergren and Cousins (2009), tap water contributes to

more than 75% of the estimated intake in comparison to other exposure pathways (like diet, air, consumer

articles). In the highly affected region in NRW, consumption of contaminated drinking water is associated

with increased PFOA concentrations in human plasma (Hölzer et al., 2008).

The toxicity of PFASs is currently being discussed among toxicologists, epidemiologists and regu-

latory agencies. Developmental and liver toxicity (Lau et al., 2004; Lau, 2012), elevated blood lipids

(Frisbee et al., 2010; Steenland et al., 2009) and immunotoxicity (Grandjean et al., 2012; Looker et al.,

2014; NTP, 2016) are assessed as major health effects associated with the exposure to PFOA and PFOS.

Other relevant impairments to health, like the incidence of type 2 diabetes in humans (Sun et al., 2018),

have been reported.

In particular, analyses of animal experimental data (see Lau et al., 2007 for a meta-analysis) and

human epidemiological data concluded that developmental exposure to PFOA adversely affects human

health; they are based on sufficient evidence of decreased foetal growth in both human and non-human

mammalian species. In animal experiments, impairments of mouse mammary development at relatively

low PFOA concentrations are known (Macon et al., 2011). Human epidemiological studies indicate

reduced birth weight with increasing internal PFASs exposure (Maisonet et al., 2012), even if this is

still at background level (Apelberg et al., 2007; Fei et al., 2007). Nolan et al. (2009) report associations

of PFOA exposure with birth weight and gestational age for a case of contaminated drinking water.

For a cohort of mothers and children selected from the general population, Whitworth et al. (2012)

report slightly lower standardised birth weight values for the quartile of mothers with the highest PFASs

concentrations in blood plasma. In a large epidemiological study, a delay in pubertal development was

observed for children exposed to elevated levels of PFOA (Lopez-Espinosa et al., 2011). Meta-analyses

of animal and human epidemiological studies on the association of PFOA exposure with foetal growth

can be found in Johnson et al. (2014), Koustas et al. (2014) and Lam et al. (2014). Bach et al. (2016)

report reduced birth weight in a birth cohort with increased PFOS exposure. However, the mechanisms of

toxicity have not yet been sufficiently clarified. Detailed toxicological assessments have been published

2



1.2. CONTAMINATION IN NORTH RHINE-WESTPHALIA (NRW) INTRODUCTION

lately (EPA, 2016; ATSDR, 2018; EFSA CONTAM, 2018; UBA HBM-Kommission, 2018; NJDEP,

2019).

The European Food Safety Authority (EFSA) lowered the tolerable weekly intake from 10,500

(1050) (EFSA, 2008) to 6 (13) ng per kg body weight for PFOA (PFOS) and concluded that a consid-

erable proportion of the population currently is exceeding these levels (EFSA CONTAM, 2018). Only

recently, EFSA also evaluated the exposure to the sum of four different PFASs and recommended an even

lower tolerable weekly intake of 4.4 ng per kg body weight for the sum of PFOA, PFOS, PFHxS and

PFNA (EFSA CONTAM, 2020). The German drinking water commission lowered their precautionary

action value for pregnant women, breastfeeding mothers and infants under 24 months of age to 50 ng

PFOA per litre of drinking water (Trinkwasserkommission, 2020); the lifelong tolerable guide value is

currently set to 100 ng/l (Trinkwasserkommission, 2016). Among the effects evaluated by the EFSA and

the drinking water commission are lipid metabolism, immunotoxicity and developmental effects.

The findings on possible developmental toxicity of PFASs motivate research concerning associa-

tions between maternal PFASs exposure before or during pregnancy and the newborn children’s weight.

As the drinking water exposure pathway predominates in regions, where it is considerably above back-

ground level, water contamination can be used as a surrogate marker of the human internal exposure (see

Section 4.2.4 for a model verification).

1.2 Contamination in North Rhine-Westphalia (NRW)

A large-scale contamination of drinking water with PFOA and other PFASs has been discovered in the

summer of 2006 in North Rhine-Westphalia (NRW), Germany (Skutlarek et al., 2006). The principal

cause has been the use of PFASs-polluted soil conditioner on more than 1300 farmlands with subsequent

contamination of surface waters. Further PFOA-contaminations of both surface and groundwater by

sewage plants and other sources like fire extinguishing foam have occurred in different parts of NRW

(LANUV, 2011), though with minor effects on drinking water.

A particularly severe contamination has affected the river Ruhr and its tributary Möhne (Skutlarek

et al., 2006; Wilhelm et al., 2008). Large quantities of PFASs from polluted soil conditioner have been

washed out from a field near the town of Brilon and conducted to the Möhne. Both rivers are important

resources of the regional drinking water: More than 20 water supply stations are installed along them

(Figure 1.1), supplying a large region of NRW with about four to five million inhabitants, especially the

Ruhr metropolitan area.

PFASs are generally not removed during riverbank filtration and conventional water processing; some

water supply stations have subsequently installed activated charcoal filters in order to reduce the PFOA-

concentrations in drinking water below the guidance value of the German drinking water commission

(Trinkwasserkommission, 2016).

Since 2006, the NRW state environmental agency has implemented an extensive monitoring pro-

gramme of PFASs in relevant environmental media, including soil, water and drinking water (LANUV,

2011). The latter constitutes the main part of the data set on PFASs concentrations in drinking water

(Table 1.1) used in the subsequent environmental medical research project.

3
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Figure 1.1: The river Ruhr and its tributaries Möhne and Lenne with water supply stations depending on
these surface waters. An important contamination site has been discovered near the town of Brilon and
the Möhne spring.

1.3 The ‘PerSpat’ project

After the discovery of the NRW contamination, the NRW State Agency for Nature, Environment and

Consumer Protection (Landesamt für Natur, Umwelt und Verbraucherschutz; LANUV) has assessed the

pollution by soil conditioner on farmlands near the town of Brilon (Wilhelm et al., 2008; LANUV,

2011). The pollution has turned out to be extremely high and has mainly affected the rivers Möhne and

Ruhr. The drinking water in parts of the town of Arnsberg is from the Möhne and had been severely

contaminated for at least two years.

Therefore, a human biomonitoring cohort study (Hölzer et al., 2008) on individual internal exposure

(PFASs concentrations in blood serum) and consumption behaviour has been started in 2006 by the

Department of Hygiene, Social and Environmental Medicine at the Ruhr-University Bochum (RUB),

obtaining unique data on the human internal exposure in this region. These data include 90 children from

Arnsberg who went to school that year, together with their mothers. The study has been extended to male

adults from Arnsberg and control groups from comparable towns in the region not affected by PFASs

contamination. Data from anglers consuming fish from lake Möhne, through which the contaminated

river flows, have also been analysed (Hölzer et al., 2011). Follow-up examinations of the biomonitoring

cohort have been conducted several times in the following years (Hölzer et al., 2009; Brede et al., 2010)

until 2017 (Bacher, 2020).

As the rivers Möhne and Ruhr are important for the drinking water supply of several million inhab-

itants in large parts of NRW, the project ‘PerSpat’ (‘Perfluoroalkyl Spatial’) has been started in 2014

to investigate the dynamics and the spatial distribution of PFASs in rivers and drinking water resources

as well as potential health risks. It is a collaboration between the Department of Hygiene, Social and

Environmental Medicine (PD Dr. Jürgen Hölzer) at the RUB and the Chair of Mathematical Statistics

with Applications in Biometrics (Prof. Dr. Katja Ickstadt) at TU Dortmund University.

The LANUV has provided PFASs measurement data from the drinking water supply besides fur-

ther information (overview in Table 1.1); the drinking water data set has been complemented with data

collected from water suppliers by the Department of Hygiene, Social and Environmental Medicine.

The question of potential developmental toxicity is addressed by using data from the perinatal regis-

try (overview in Table 1.2) provided by another cooperation partner, the quality assurance office (qs-nrw)

located at the medical association Westphalia-Lippe.
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Table 1.1: Data set overview for PFASs concentration measurements in the NRW drinking water.
C

ol
le

ct
io

n measurements various water suppliers
management LANUV, RUB

purpose protection of drinking water after contamination
size about 4500 measurements

variables PFOA, PFOS, further PFASs

Ti
m

e

accuracy day of sampling (partly with hour and minute)
start summer 2006 (for regions at risk)
end ongoing along river Ruhr

further information partly time of interventions, esp. filter installations

Sp
ac

e water supply stations about 700 in NRW, data from about 250
water supply areas about 450 in NRW, data from about 200

further information assignment of stations and areas; geodata of areas;
importance of stations: e.g., location, water amount

Table 1.2: NRW perinatal data set overview.

C
ol

le
ct

io
n

measurements hospitals and other childbirth institutions
management competent institute for quality assurance and transparency

in health care in accordance with German § 137a SGB V
purpose quality assurance in health care

size about 150 000 observations per year,
about 250 biometric, medical and other variables

time here: 2003–2014 (ongoing routine survey)

Va
ri

ab
le

s

regarding newborn e.g., weight, height, sex, Apgar score
regarding mother e.g., age, previous pregnancies, height, smoking;

pregnancy risks, diseases:
e.g., hypertension, (pregnancy) diabetes

regarding pregnancy e.g., expected date of birth, gestational age
regarding delivery e.g., mode, complications (soft-tissue injury, fever, . . . )

Temporal structure day of birth
Spatial structure mother’s place of residence: about 850 postal code areas
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The ‘PerSpat’ project is a large-scale study using these secondary data on the general population

in NRW, to evaluate associations of Perfluorooctanoic Acid (PFOA) and other PFASs with perinatal

parameters, especially the newborn children’s weight.

Major statistical issues include the modelling of concentration data from drinking water, spatio-

temporal assignment of the resulting predictions to the perinatal registry data and advanced regression

models in birth data analysis. Another question is whether PFOA contamination of the local drinking

water is an appropriate surrogate marker (proxy) for the internal exposure of the residents, and how to

model the pathway between them.

The main focus is on regions affected by the Möhne-Ruhr contamination incident, although other

parts of NRW are also of interest, where some lower but detectable PFOA concentrations have been

found besides many regions with no detection. Due to higher data variability, measurements considerably

above critical values and its long half-life, PFOA is of primary interest among all available PFASs.

After preliminary works mainly on Markov random field modelling and spatial alignment issues

(e.g., Goeken et al., 2013), several further statistical theses have been written within the project and co-

supervised by the author of this dissertation. Becker (2016) deals with drinking water data below the

limit of quantification (details in Section 2.3.1) and preliminary modelling approaches including inter-

polation and regression with change points (Section 2.3.2). Becker (2017) continues the latter with a

focus on Kriging (Section 2.3.4) and Gaussian processes in hydrology (Section 2.3.5) and gives reasons

to presume homogeneity of contamination data within water supply areas (Section 2.3.3). Ganme (2017)

investigates geographical structures in spatially aggregated birth weight data as well as their associations

with air pollution and urbanity (Section 4.1.1). Kohlenbach (2019) explores the applicability of various

spatial realignment approaches to the two main data sets (Section 4.2.1). Müller (2020) applies longitu-

dinal mixed models to analyse the Arnsberg cohort data for associations of internal PFASs exposure and

lipide concentrations in blood, separately for children and adults, with further covariates like age, height,

weight, alcohol and tobacco consumption; the only significant effect is found for PFOA in children, but

many values are missing and the need for imputation turns out to be an important issue.

Further work on the Arnsberg cohort has been performed, including Cox regression applied to pu-

berty development and further longitudinal modelling of the internal exposure conditional on drinking

water contamination and consumption behaviour (see Section 4.1.2 for the latter).

Main parts of the project have been presented at scientific conferences or published in scientific jour-

nals. Apart from the results reported below (Rathjens et al., 2021b,a), this includes regression analyses

of the complete perinatal data set (Kolbe et al., 2016), pharmacokinetic modelling of the internal expo-

sure to PFOA (Kolbe et al., 2019b) as well as weighted geographical data realignment using population

density data (Kolbe et al., 2019a). Bacher (2020) reports a follow-up examination of the Arnsberg co-

hort, in which associations between PFASs exposure and the effectiveness of an influenza vaccination

are studied, too.

1.4 Outline

The remainder of this dissertation is thematically structured, according to the two principal data sets and

the respective analyses. The drinking water analyses are reported first, as they include modelling of the

environmental exposure, such that their results are necessary for the further epidemiological research.
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1.4. OUTLINE INTRODUCTION

Within the chapters, the structure is partly chronological to illustrate the research process. Regarding

both the drinking water and the perinatal data set, the respective chapters open with a data description

(Sections 2.1 and 3.1), followed by a short review on potentially relevant methodological literature related

to statistical challenges with the given data (Sections 2.2 and 3.2). Afterwards, the conducted analyses

are detailed, followed by some conclusions, discussions and perspectives (Sections 2.7, 2.8, 3.6, 3.7 and

3.8).

Specifically, the analyses of drinking water contamination data in Chapter 2 start with the report of

various preliminary studies (Section 2.3), which are necessary to prepare the main study, or to rule out the

applicability of certain temporal and spatial analysis approaches. As first part of the main study, temporal

generalised regressions models are fitted and evaluated in Section 2.4, to explore the dynamic PFOA

measurements of the stations along the river Ruhr. In order to conclude from station-wise contamination

values to those of the so-called water supply areas, the supply relationships are quantitatively estimated

in terms of a matrix of shares (Section 2.5). A river-wide generalised mixed model for all Ruhr data is

developed in Section 2.6.

The perinatal data regression analyses in Chapter 3 are restricted to the subset from the town of

Arnsberg, for reasons of computability and the town’s relevance. They begin with the standard univariate

polynomial model (Section 3.3), followed by a comprehensive report of the innovative application of a

Bayesian distributional copula model (Section 3.4), including a brief theoretical introduction, processing,

model selection and evaluation. Both models’ performances and results are compared in Section 3.5.

Chapter 4 approaches the original research question of a potential effect of PFOA on foetal devel-

opment, in a spatial context. After reports of related sub-projects (Section 4.1), the spatio-temporal

assignment of local PFOA concentrations in drinking water to the perinatal observations is detailed in

Section 4.2. PFOA effect estimations using the Arnsberg perinatal subset are reported in Section 4.3,

followed by some final remarks (Section 4.4).

More detailed outlines can be found at the beginning of the respective chapters. The final Chapter 5

closes with some more general considerations on the subject, complementary to the more specified issues

dealt with in the respective closing sections of the chapters before.
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Chapter 2

Drinking water contamination analyses

In this chapter, the PFOA measurement data from the drinking water supply of North Rhine-Westphalia

(NRW), Germany, are described, explored, and finally modelled to obtain reliable and stable estimations

of the average contaminations and their variability for any location and point of time. The resulting

predicted values constitute the exposure variable used to estimate a possible PFOA effect in perinatal

analyses, as reported in Chapter 4. But the temporal and spatial structures of persistent chemical con-

taminations in drinking water along a river are also investigated in their own right, to get insights in

the relevant and universal characteristics of such data and to find model classes generally applicable in

situations like this.

The main focus is on stations along the river Ruhr, where considerably more comprehensive data

are available, a consequence of being affected by the Möhne-Ruhr contamination incident (Section 1.2).

Among the available PFASs data, the focus is on PFOA: This is due to its higher data variability, mea-

surements considerably above critical values, and its long half-life.

The data are described in more detail in Section 2.1, with an overview on their features and the num-

bers of observations as well as an outline of the river network in NRW and its usage for drinking water

(Section 2.1.1); the typical temporal structures to be found in the various locations are differentiated in

Section 2.1.2. Section 2.2 gives a brief overview of literature on modelling irregular measurement series,

also with a spatial component, and such with a focus on river networks.

With this starting point, several preliminary studies and sub-projects within the project ‘PerSpat’ are

reported in Section 2.3. They are necessary to prepare the main study, or to rule out the applicability of

certain temporal and spatial analysis approaches. The first issue is the handling of measurements below

the limit of quantification (Section 2.3.1). Preliminary approaches to model the temporal data from

individual water supply stations, especially using kernel smoothing, are briefly explained in Section 2.3.2.

To motivate joint spatial analyses within certain regional clusters of water supply stations, Section 2.3.3

points out the homogeneous behaviour of many neighbouring stations, especially when supplying the

same area; here, the available data from the drinking water network are also used for comparison and

evaluation. Several spatio-temporal approaches, which have not been considered further, are briefly

named in Sections 2.3.4 (Kriging) and 2.3.5.

As first part of the main study, temporal generalised regression models (Section 2.4) are fitted to the

individual stations’ data (Section 2.4.1) and the spatial structure of model results along the river Ruhr is

initially explored (Section 2.4.2). Section 2.5 focuses on the pathways in the water supply of the state:

The shares of water are estimated to allow conclusions to be drawn from contamination values at stations
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2.1. DESCRIPTION OF PFOA CONCENTRATION DATA FROM NRW WATER

to those of the so-called water supply areas. A river-wide generalised mixed model for all Ruhr data is

developed in Section 2.6; based on the previous findings (Section 2.6.1), random effects are included in

Section 2.6.2 and the river’s structure is respected in an enhanced approach using Bayesian modelling

(Section 2.6.3).

Conclusions from this chapter are summarised and discussed in Section 2.7, followed by an outlook

on possible alternative modelling approaches (Section 2.8).

All data preprocessing steps, visualisations and analyses have been conducted using the R environ-

ment (R Core Team, 2020) along with its basic packages. Processing of geographical data and drawing

of maps have been conducted using the R packages rgdal (Bivand et al., 2019) and tmap (Tennekes,

2018). See Appendix B.2.1 for documentation.

2.1 Description of PFOA concentration data from NRW

The PFOA measurements (overview in Table 1.1 on page 5) have been conducted on behalf of the local

drinking water suppliers; the data have been collected by the NRW State Agency for Nature, Environment

and Consumer Protection (Landesamt für Natur, Umwelt und Verbraucherschutz; LANUV) and by the

Department of Hygiene, Social and Environmental Medicine of the Ruhr-University Bochum.

2.1.1 Data amount and features

The data consist of measurements from completely purified, ready-to-drink water in both water supply

stations (3349 observations) and networks (536) since summer 2006. Observations are available until

2016 and partially ongoing. Furthermore, there are some samples drawn from raw water (418) and

during water treatment (87) at the stations. Many samples, especially the latter, are non-detects. See

Figure A.2 on page 81 for a cross-sectional overview of the spatial distribution of PFOA concentrations.

Table 2.1 shows the structure of the measurement data set.

Table 2.1: Structure (variables) of PFOA measurement data set.

Station: name of water supply station
Area: name of water supply area
Time: day the sample has been taken
LoQ: whether the concentration is under the limit of quantification
Value: PFOA concentration or limit of quantification in ng/l
Type: whether the sample is drawn from an area (network), from a station,

from its raw water or during treatment

NRW is geographically divided in some 450 water supply areas (cf., Figure 2.1), with any data

available from about 200 areas. For the stations, many of them being very small, any data are available

from about 250 of 700 stations. There is a complex, neither injective nor surjective assignment between

areas and stations; see Section 2.5 for the water supply proportions; minor changes in areal division,

station running and assignment have occurred in the course of the years. The number of non-equidistant

measurements per time period varies between locations and periods according to the contamination risk.

More detailed information on the amount of data per station and their ranges and temporal patterns

can be found in Table 2.2. According to this, the data availability is satisfying for all affected stations,
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Figure 2.1: NRW divided into water supply areas, with water supply stations and the major rivers which
are used as drinking water resources. An important contamination discovered in 2006 is located near the
Möhne spring. (Above: NRW within Germany.)

i.e., along the river Ruhr (a total of 2484 observations at 27 stations), and all of them feature at least

rather high values; stations not depending on the river Ruhr are much less observed, typically with low

values, although there are exceptions. Table 2.3 details the data availability with respect to water supply

areas: Where some of the stations supplying a particular area are Ruhr dependent, there are typically

enough data to assess the area’s contamination risk by deduction from the stations.

An important issue in preparation of modelling are exceptionally high values at the beginning of the

observed period of time: The most affected supply station of Möhnebogen at the Ruhr’s tributary Möhne

near Arnsberg features a PFOA maximum of 640 ng/l. On the other hand, values below the limit of

quantification (LoQ, mostly 10 ng/l) are frequent in less affected regions and later periods of time. A

kind of discretisation is caused by a data accuracy of 10 ng/l frequently given.

Apart from the measurement data, there is further information from water supply operators on the

most likely non-existence of PFOA contamination at certain stations or areas over longer periods of
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2.1. DESCRIPTION OF PFOA CONCENTRATION DATA FROM NRW WATER

Table 2.2: Number of water supply stations by data availability and temporal data pattern of the PFOA
concentrations. (In this rough classification of typical observed situations, ‘very high’ means PFOA
concentrations about and above the guide value of 100 ng/l, ‘rather high’ values are about and above
50 ng/l. LoQ: limit of quantification.)

Data availability Temporal data pattern Number of stations
(or other information) Ruhr others

many (more than 25 data)

decrease, with very high values 17 1
decrease, with rather high values 6 0
diffuse, with rather high values 4 1
all values below LoQ 0 1

few

single very high value 0 2
decrease, with rather high values 0 3
diffuse, with rather high values 0 1
low values 0 16
all values below LoQ 0 142

raw water / treatment
low values 0 4
all values below LoQ 0 53

expert statement (no contamination risk) 0 56
none — 0 ≈ 400

total 27 ≈ 675

time. For some of these places, there are a few values, or even just one, and these measurements usually

confirm the water supplier’s assumption of no relevant PFASs contamination.

With data being on two spatial levels, stations and areas, there is also information on their assignment

and the supplied and demanded water amounts (used in Section 2.5).

The main rivers of NRW, with water supply stations along them, are shown in Figure 2.1. A graph of

their directions of flow and their junctions (a simplified spatial structure, comprising of river segments)

is shown in Figure A.1 on page 80. As explored in Sections 2.3.3 and 2.4, a certain homogeneity may be

presumed for river-depending stations within the same river segment. Apart from the main rivers, there

are many stations taking water from smaller tributaries, but with almost no measurement data available.

For the river Ruhr, there are five water supply stations upstream beyond the Möhne mouth, the station

of Möhnebogen on the river Möhne, and twenty-one stations downstream from both rivers’ junction

(Figure 1.1 on page 4).

In summary, the PFOA concentrations of all water supply stations along the river Ruhr are well ob-

served, beside water network data from many water supply areas depending on them. For other regions,

there are fewer measurements per station, usually below the limit of quantification, or none.

2.1.2 Temporal data patterns for individual water supply stations

Water supply stations along the river Ruhr (Figure 1.1 on page 4) are focussed on, with numerous mea-

surements covering a longer period of time. For data availability and patterns, cf., Table 2.2. According

to this, there are two main types of temporal data patterns, a rather diffuse one (Figure 2.2) and a striking

decrease (Figure 2.3).

The first typical temporal structure is found at stations which are 1) less affected by the contamination
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Table 2.3: Number of water supply areas by contamination risk and data availability per station: Con-
sidering the water supply stations with a relevant supply for a particular area (estimated share of more
than 5%, Section 2.5), it is distinguished whether all or some of these stations are potentially affected by
the Möhne-Ruhr contamination incident, and whether any data are available from all or some of these
stations (right the respective numbers of areas among them with only one supplying station).

Ruhr contamination Number of areas Single-station areas
– Data availability among them

all stations affected 23 14
– all with data 23 14

– some with data 0 —
– none with data 0 0

some stations affected 9 —
– all with data 8

– some with data 1
– none with data 0

no station affected 423 271
– all with data 181 110

– some with data 27 —
– none with data 215 161

incident, being upstream beyond the Möhne mouth (like Mengesohl, Figure 2.2 left), 2) partly supplied

by groundwater (like Volmarstein, centre) or 3) far downstream at the river Ruhr (like Styrum West,

right). Measurements observed here feature no or hardly detectable trends and comparatively small

variability. A certain decline in background pollution may be reflected, too.
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Figure 2.2: Measurement series of PFOA from exemplary water supply stations with comparatively low
PFOA values and no or a weak trend. Left: Mengesohl; centre: Volmarstein; right: Styrum West.

A second type is a more or less smooth decline over the years, though some short-term trends may be

distinguished. The decrease is considerably stronger for the first couple of years (e.g., Essen-Überruhr,

Figure 2.3).

This decrease at the beginning is the strongest at the outstanding station of Möhnebogen, where

some water filtering measures have taken place after discovery of the contamination. Filters eliminate

all PFASs after installation, become gradually less efficient and have to be reactivated after a while

(Figure 2.4). Thus, some outliers, change points, and even seasonality may occur for this station (and
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Figure 2.3: Measurement series of PFOA from Essen-Überruhr station as an example for a smooth
decrease.

also for some others downstream, which have installed filters too, if filtering data were available).

Apart from these differing observed types of temporal structures, there are periods of missing data

in some locations: The density of measurements in the course of time and space varies widely. Thus,

extrapolation should be performed with caution, especially when using rather simple regression or inter-

polation methods.

In summary, there are two typical trends in the PFOA values of water supply stations at the river Ruhr

– beside the special case of Möhnebogen station. In particular, a characteristic form of ‘decreasing de-

crease’ can be distinguished. Apart from the Ruhr-depending stations, there are but a few with sufficient

data to identify a trend (one example are the stationary measurements around the limit of quantification

in Haltern, see Figure 2.6 on page 19).

2.2 Methodological background

This empirical data analysis has been started rather open-minded with regard to model classes. Ulti-

mately, a model in continuous time and discrete space is preferred due to irregular measurement series

and the predominant role of water supply stations along a river.

However, an autoregressive model for temporal smoothing of irregularly observed time series based

on wavelets has been developed by Salcedo et al. (2012), which also allows for non-stationarity. A

Bayesian model for predicting values at regular points in time by Nieto-Barajas and Sinha (2015) and

another for periodic signals by Beelaerts et al. (2012) each assume a stationary process. The trend is

taken into account by Quick et al. (2015) through a hierarchical Bayesian model for a spatio-temporal

process, where gradients are estimated to detect sudden changes. Further proposals taking into account

censored values are given in Section 2.3.1.

As for approaches in spatial scenarios similar to that of the ‘PerSpat’ project, and for profound

model developments, see, e.g., the smoothing models by White et al. (2017) for areas being but partially

observed: Data are primarily given on area level with a Markov property assumed, whereas the focus
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Figure 2.4: Measurement series of PFOA from Möhnebogen station including times of carbon filtering
interventions.

of the ‘PerSpat’ project is on the temporal modelling first, and also on encountering complicated spatial

relationships. Bayesian hierarchical discrete-space approaches, along with choice considerations for the

intrinsic CAR prior, can be found in Keefe et al. (2019); again, the neighbourhood structure is more

specific than found in the given situation. Grollemund et al. (2019) present a regression model using

functional predictors as representations of the temporal structures in spatio-temporal analysis; however,

after exploring the given data patterns, the functional predictors are in some way replaced by a simpler

generalised linear model, whose link function may be regarded as an expression of a simple functional

relationship.

As a frequentistic alternative, Tang et al. (2019) develop a semi-parametric copula model to cope

with the spatio-temporal dependence and to predict values for new points of time and sites. This is rather

restrictive, being Markovian in time, whereas continuous, irregularly measured temporal data are mod-

elled within ‘PerSpat’. Wang and Sun (2019) propose a spatial regression model with local polynomials

modelling the coefficients as a function of space, but without an explicit temporal component. An au-

toregressive conditional heteroscedasticity model with respect to spatial neighbourhood is developed by

Otto et al. (2018) and augmented to the spatio-temporal case, but where data are observed at or arranged

to discrete points in time.

As water supply stations are partly supplied from rivers, a specific structure can be assumed for the

spatial dependence, determined by distances along the river, directions, junctions and water amounts.

An overview of this field can be found in Cressie et al. (2006), who develop a covariance model for

Kriging. O’Donnell et al. (2014) propose a flexible regression model depending on a spatially smoothed

expected value function. Here, temporal, especially seasonal influences can also be integrated. Model

comparisons for hydrological variables on large river networks by Kriging and regression can be found
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in Laaha et al. (2014). All such models are typically designed for far more complex river networks than

considered in the ‘PerSpat’ project.

The set-up of consistent spatial correlation matrices along more complex river networks is described

as a particular challenge (cf., e.g., Peterson et al., 2007). With more data from groundwater-stations

not directly adjacent to a river than are available in the ‘PerSpat’ project, the river could be regarded as

an inhomogeneous line source of contamination (cf., e.g., Ayub et al., 2019). Another option would be

the incorporation of more detailed river network features, such as water amounts, stream velocity and

smaller tributaries (cf., Ver Hoef et al., 2006), if corresponding data were available.

Further methods and application scenarios for risk assessment, when measurement data are available

at more steps along water supply systems than in the ‘PerSpat’ project, can be found in Roozbahani

et al. (2013). Causal remote effect estimation, when both influence and outcome quantities are measured

along a river and over time, unlike in ‘PerSpat’, is performed by Saul et al. (2019) via the parametric

g-formula.

After all, the unique, unusual and complex spatial and temporal structure of the given drinking water

data requires a specifically designed modelling that deviates from the methods mentioned in the litera-

ture. Shin et al. (2011a) give another such practical example of estimating PFOA contamination in the

region around a chemical plant, respecting many local environmental circumstances, which determine

the transport of pollutants in air, soil, ground-, surface and drinking water.

2.3 Preparation and preliminary approaches

2.3.1 Measurements below the limit of quantification

Many data of PFOA concentrations in drinking water are reported as below the limit of quantification

(LoQ). In these cases, the measurement technology is not accurate enough to quantify a concentration

as being above zero, and the measurement error is too large compared to the magnitude measured. Such

data should not be set to zero (Helsel, 2006), whether or not a statistical model allows this.

A simplifying approach is to group drinking water pollution into categories (cf., Nolan et al., 2009

and Maisonet et al., 2012). Here, data below LoQ can be interpreted as the smallest value of an ordi-

nal variable. Lee and Helsel (2005) use a regression of the values above LoQ on their quantiles. For

temporal interpolation, spatial regression and prediction may be more targeted, replacing the spatial

dimension by time. Here, Rathbun (2006) proposes an imputation of values below LoQ using the covari-

ance structure to improve Kriging estimation. This is compared with simpler substitutions by Schelin

and Sjöstedt-de Luna (2014) and turns out to be particularly suitable in the case of a normal distribution

assumption. A Bayesian alternative assuming a Gaussian random field is found in de Oliveira (2005),

where non-stationarity of the process is allowed by introducing space- or time-dependent regressors.

Kriging methods for spatial interpolation with values below LoQ are further presented and compared by

Saito and Goovaerts (2000) and Knotters et al. (1995). If these measurements are used as regressor, Nie

et al. (2010) propose approaches to include the below-LoQ-statement in the regression model.

Within the ‘PerSpat’ project, Becker (2016) has worked on this issue, referring to definitions and

approaches from Currie (2004), Armbruster and Pry (2008) and Helsel (2006), among others:

Randomisation is often recommended, be it from a uniform distribution on [0,LoQ] or from a Gaus-

sian distribution around
LoQ

2
. However, the variability of randomised values can be higher as for actual
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measurements, and the resulting ‘artificial’ data can feature an ‘accuracy’ which is not found in real data:

In all relevant cases, the LoQ is reported as 10 ng/l; but many water supply stations report data which

are also accurate to 10 ng/l (i.e.: below LoQ, 10, 20, 30, . . . ). Therefore, it has not seemed appropriate

to introduce values with a semblance of higher accuracy. Furthermore, models for stations with rather

low measurements have turned out to be quite sensitive to this randomisation. (On a side note, measure-

ment accuracy is not necessarily the same as reporting accuracy. And higher values tend to have higher

absolute inaccuracy due to serial dilution in chemical analysis.)

So, a simpler recommended approach is applied for dealing with data below LoQ, namely to fix them

to a certain value, most commonly
LoQ

2
, which in this case is 5 ng/l.

2.3.2 Temporal modelling

Besides the LoQ issue and several data cleansing steps, Becker (2016) applies preliminary approaches

to model the temporal structure of data from water supply stations within the ‘PerSpat’ project. Con-

stant, linear or spline interpolation tend to overfit the given data and does not always follow the natural

decreasing long-term trend, where longer periods without data occur. Smoothing, by running-mean or

Gaussian kernel, suffers from similar problems, extrapolation is often not reliable. Regression on time

with a quadratic term has a sufficient prediction performance in many cases. The optimal model is dif-

ferent from station to station. A universal approach, like regression, that is less sensitive to single data

points, should be preferred. Where change points (installation and replacement of carbon filters) are

known, the benefit of piecewise modelling becomes apparent.

As a simple but rather straightforward Bayesian smoothing approach, a conjugate Gamma-Gamma-

model is also applied. Let a random variable Xt represent the concentration in drinking water for an

arbitrary point of time t and λt be a rate parameter at t such that

Xt |λt ∼ Γ(ζ ,λt).

The time-independence of the shape parameter ζ is motivated by an assumed constant relative measure-

ment error in terms of the coefficient of variation:

cv :=

√︁
Var(Xt)

E(Xt)
=

√︁
ζ/λ 2

t

ζ/λt
=

1√︁
ζ
.

Measurement errors are an important source of variability besides natural fluctuations. The absolute error

depends on the measured magnitude due to serial dilution in chemical analysis. According to LANUV,

2011, cv ≈ 0.2 is assumed in case of the NRW PFOA measurements, resulting in ζ ≈ 25. Furthermore,

the Gamma distribution is a natural approach for positive data, without need of transformation (as with

the log-normal distribution), which would be very sensitive with small values (cf., the LoQ issue in

Section 2.3.1). When ζ = 25 is fixed as a first approach, a conjugate prior Gamma distribution

λt ∼ Γ(ξt ,ψt)

emerges. To incorporate smoothing in the calculation of the posterior distribution of any λt0 , weighted

16



2.3. PREPARATION AND PRELIMINARY APPROACHES WATER

data are used, so that the parameters are updated by

ξt ‧‧➡ ξt +ζ ·K ·
K

∑
k=1

zk,

ψt ‧‧➡ ψt +K ·
K

∑
k=1

x(k)t zk.

The data x(k)t of observations k = 1, . . . ,K, are weighted according to their temporal distances

dtemp(t, t0) := |t − t0|

to the respective t0. Weights are then obtained from, e.g., a Epanechnikov kernel:

zk := z(t(k), t0) := max

{︄
0,

3
4
·

(︄
1−

d2
temp(t, t0)

s2
temp

)︄}︄

with smoothing parameter stemp controlling the kernel’s bandwidth. Various empirical, vague and infor-

mative priors for the λt’s are considered as well as adjustments of dtemp and stemp and also modelling

ζ . However, depending on the availability of data in the considered period of time, results seem either

overfitted or the posterior depends too much on the prior or its variance is too large.

2.3.3 Data homogeneity of water supply areas

In many cases, PFOA values for water supply areas have to be deduced from the relevant water supply

stations’ data in order to assess the residents’ exposure. It is considered whether the involved stations’

temporal trends are similar enough (‘homogeneous’) for joint modelling and whether these data and the

respective network data, if any, are sufficiently homogeneous in the course of time. Underlying data

analyses within the ‘PerSpat’ project are reported by Becker (2017).

Homogeneity or inhomogeneity are presumed on the basis of exploratory results, particularly on

the two distinguishable main types of temporal data patterns at the stations (Section 2.1.2), the stations’

locations with respect to the affected river Ruhr (cf., Section 2.1.1) and the structures found in predictions

for Ruhr-dependent stations (Section 2.4.2).

As illustrated in Table 2.2 on page 11, the occurrence of the typical data patterns is strongly correlated

with the stations’ dependence from the river Ruhr, where high values with a steep decrease in the course

of time can be found. Moreover, these patterns are most similar for stations within the same segment

of the river, regarding both data and predictions, where prediction intervals often overlap or are near to

each other, along the course of time, as shown in Figures 2.8 on page 26 and A.3 on page 82. In other

locations, there are typically low values and few measurements.

Therefore, an area is presumed as homogeneous, if it is essentially supplied by stations, which are

in the same situation with regard to their location and their temporal data pattern. Examples for the

homogeneity of data, especially of such with a decreasing pattern, are shown in Figure 2.5.

On the other hand, there are a few areas with some supplying stations depending on the contaminated

river Ruhr and some being non-affected (cf., the middle part of Table 2.3 on page 12). An example of

an inhomogeneously supplied area is shown in Figure 2.6: Three stations supply the COE 3 area, two

of them are dependent on the contaminated river Ruhr, the third (with a water share of about 40%) is
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Figure 2.5: Comparison of PFOA measurements from the network of some water supply areas (red
crosses) and from their relevant supplying stations.

non-affected.

A reliable double-checking of the homogeneity is limited to cases with sufficient amounts of data

from the respective stations or from the area’s water network, representing the same periods of time.

Larger amounts of station data are mostly given along the river Ruhr (cf., Tables 2.2 and 2.3 from

page 11). Network data are rare, especially for the most interesting period of time. (E.g., there are none

for the interesting case of the inhomogeneous COE 3 area.) Where available, the range of the network

data seems not to substantially differ from the respective concurrent station samples (cf., Figure 2.5).

For Ruhr-dependent areas, data from the respective stations are combined, to search for clusters in

the space of time and values (using the R package EMCluster, Chen and Maitra, 2015). The same is

done with network data, where available. It is not possible to distinguish the data and (re-)discover the

stations in this way.

Another approach to check whether concurrent station data are distinguishable is a regression model

similar to those in Section 2.4 for the combined measurement data of an area’s supplying stations, with

additional dummy variables representing the stations. For areas completely dependent on (a segment of)

the river Ruhr, the resulting station effects are not significant or at most very weak. For inhomogeneous

areas, such effects are found.
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Figure 2.6: Measurement series of PFOA from the three water supply stations supplying the COE 3
water supply area.

Both approaches allow the conclusion for the vast majority of water supply areas (cf., the upper and

lower part of Table 2.3 on page 12) that there is no evidence against a hypothesis of homogeneity, where

adequate data are available (i.e., some of the about 30 stations with many data according to Table 2.2

on page 11 are involved). This avoids uncertainty by averaging PFOA concentrations. Perspectively,

joint models can be fitted to the respective water supply stations, to obtain estimates for a whole area’s

exposure. Where waters from the river Ruhr and other sources are involved (about 9 areas according to

Table 2.3), this situation is more difficult.

2.3.4 Kriging along rivers

Within the ‘PerSpat’ project, Becker (2017) has worked on Kriging approaches in hydrology, referring

to Cressie et al. (2006), and Skøien et al. (2003, 2006), among others:

Kriging approaches along the river turn out to be inappropriate, since they do not respect the river

segments, which dominate the spatial data structure (Section 2.4). Furthermore, even for the well ob-

served river Ruhr, the data are too sparse to analyse proper variograms, and sometimes the assumption

of isotropy seems violated. Ordinary and universal Kriging lead to sufficient local estimates when cross-

validated along the river Ruhr, but perform worse near the Möhnebogen water supply station. It is ques-

tionable whether the continuous Kriging solution is an efficient way to merely estimate concentrations at

discrete, definite stations, as in the given situation.

Topological (Top-) Kriging (Skøien et al., 2006, using the R package rtop, Skøien et al., 2014; cf.,

19



WATER 2.3. PREPARATION AND PRELIMINARY APPROACHES

e.g., Laaha et al., 2014) is designed for prediction on the level of the rivers’ catchment areas. This would

be useful to model measurements along the river network in NRW, thereby summarising several stations

each. Nonetheless, with the stations’ values connected to water supply areal units, it does not seem

productive to introduce a third spatial level. Furthermore, no geographical data on the actual catchment

areas are available.

In general and state-wide, the problems of a varying data density, up to entirely non-observed regions,

and of a regionally different strength of dependence remain hindering for all Kriging approaches. For

the river Ruhr, the rather complicated models, especially Top-Kriging, seem exaggerated for an ‘linear’

spatial river structure. Therefore, these approaches are dropped because of the non-suitable spatial data

structure. For problems of the performance of spatial methods, especially (Top-)Kriging, compared to

regression approaches for river-related catchment area data, see, e.g., Brunner et al. (2018).

2.3.5 Further spatial and spatio-temporal modelling along rivers

A lack of data in vast regions also affects the applicability of comprehensive state-wide smoothing mod-

els. Moreover, water supply areas which are isolated within the supply relationship structure and addi-

tional spatial dependencies would have to be respected.

As a preliminary spatio-temporal approach, a Bayesian Gamma-Gamma model (a generalisation of

that from Section 2.3.2) has been applied. It focusses on the mean surface to predict PFOA values for

any water supply station, water supply area and point of time. It suffers from the same limitations as the

temporal-only model, such that the reliability and uncertainty in prediction vary widely according to the

presence of data.

Within the ‘PerSpat’ project, Becker (2017) has worked on the application of Gaussian processes

to model the PFOA concentration, mainly along the river Ruhr, referring to Rigby and Stasinopoulos

(2005, 2014), among others, using the R packages CompRandFld (Padoan and Bevilacqua, 2015) and

geoR (Ribeiro Jr et al., 2020). The form and degree of spatial dependence has been explored via the

empirical semivariogram, but it turned out to be non-monotonic. So, it has been difficult to identify a

clear spatial structure, partly due to the small number of points (i.e., stations) in space. It has been found

useful to exclude the stations upstream of the Möhne mouth before modelling. Instead of geographical

coordinates, kilometres along the river have been used for spatial information, so space being actually

one-dimensional. As a preliminary spatio-temporal approach, the time has been included as a second

dimension, but without useful semivariogram results. In conclusion, the applied methods seem to be

restricted to actual two-dimensional geographical coordinates.

In this context, Becker (2017) has also considered Gaussian Markov random fields to model PFOA

concentrations at stations along the river Ruhr, conditional on the neighbouring stations. Again, the

clarity of the spatial structure, and thus the applicability of the model with a reasonable smoothing

parameter, is affected by sudden changes (especially river junctions) and the possibility of prediction

proves to be different depending on the location. Models have been fitted separately for several points

of time. Based on this, the time has been experimentally included by establishing a spatio-temporal

neighbourhood structure. However, the MCMC simulation has turned out to be extremely difficult due

to the large number of surface parameters, or, reducing this number, too less points in time could be

considered.

Preliminary spatial and spatio-temporal approaches (like smoothing, Markov random fields) mostly
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pay special attention to the modelling on two spatial levels: stations and water supply areas. They partly

use a proportion- or weight-matrix as developed in Section 2.5. Other terms are included to the area-level

equations to allow for additional uncertainty there. However, as data on this level (from the network) are

not numerous and meaningful enough, more complicated approaches are refrained from and the focus is

set on modelling at station level, where data are extensive. Conclusions from stations to areas regarding

PFOA contamination by means of the weight-matrix remain, therefore, deterministic, but without further

speculative model assumptions and excessive computation.

2.4 Temporal GLMs for individual water supply stations

It is investigated, which classes are appropriate to model the dynamics (temporal progression) of PFOA

concentration data at a water supply station. Models are fitted individually to a station’s data, but it is of

main interest to obtain a consistent approach along the river Ruhr.

Let Xit denote the PFOA concentration for time t, now distinguished by water supply station i. Rea-

sonable units of time are months or days.

2.4.1 Model choice

The data are continuous with respect to time with an irregular measurement process: There are periods

of time with a high ‘data density’ (up to two measurements within a few days) and others without any

data for several month. Therefore, regression models are applied with the time as a covariate instead of

autoregressive models.

An appropriate model has to cope with the varying shapes of decrease (cf., Figures 2.2 and 2.3 from

page 12), which may also imply some heteroscedasticity. Several generalised linear models (GLMs,

Table 2.4) with various distribution families for Xit and link functions

g(EXit) = g(µi(t)) = ηi(t) = αi +βi · t

as well as data transformations are considered.

For the latter (see Item 1 in Appendix B.2.1 for documentation), a pre-transformation like ln(Xit),√
Xit or 1√

Xit
and usage of a simple linear regression leads to very large residuals for periods of high mea-

surements. For the pre-transformation 1
Xit

, the instability of the estimation is even worse. Additionally,

results are difficult to interpret, when re-transformed after the model fit.

Instead of that, while sticking to the simple linear regression, the time covariate is experimentally

transformed (see Item 1 in Appendix B.2.1 for documentation): Among the usual fractional polynomials,

the model

EXit = αi +βi
1√
t

(2.1)

results in a particularly good fit. Results are included to Table 2.4. However, it is not translation invari-

ant, and a starting point t0 has to be chosen, preferably close to the beginning of the measurements (in

this situation the beginning of the year 2006) and consistently for all stations. From an environmental

scientific point of view, the results are difficult to interpret in terms of the change of concentration during

a given span of time.
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Another preliminarily considered approach is a Poisson regression, where data are discretisised mo-

tivated by their frequently given accuracy of 10 ng/l (i.e., 0 for values below the limit of quantification,

1 =̂ 10 ng/l, 2 =̂ 20 ng/l, . . . ). However, as there are many locations and periods of time, where all

measurements are far from zero, this model seems not appropriate, and its fit has not always converged.

For the same reason, models with zero-inflation are not applied.

For the remaining GLMs without pre-transformation of data (see Item 2 in Appendix B.2.1 for doc-

umentation), at first all combinations of continuous distribution families and link functions, such that

the model fit converges for all stations, are identified (shown in Table 2.4). Among these, a Gaussian

distribution with an inverse link

(EXit)
−1 = αi +βi · t

turns out to yield the best fit in terms of the residual sum of squares (RSS) for most of the stations,

especially those with the typical ‘decreasing decrease’. But also the Gamma distribution with its natural

inverse link is often close to it in that sense. Table 2.4 shows the goodness of fit of the various models; the

RSS is considered, as the Akaike information criterion (AIC) or the Bayesian information criterion (BIC)

are not directly comparable between GLM families. Figure 2.7 illustrates the suitability of the models

with regard to the estimated mean function as well as their capability to reflect the data’s variance.

While the variance Var(µiˆ ) of the mean response estimator is always a function of time and is further

affected in case of non-identity link functions, a proper choice of the data variance function turns out to

be more relevant in terms of magnitude: Var(Xit) is constant for all µi in case of the Gaussian family,

leading to a certain probability of negative predictions, but also to a closer prediction interval in the

period of high values. For the Gamma family, it holds

Var(Xit) = φ
2
i µ

2
i (t)

with a dispersion factor φi, so it is possible to interpret and estimate the measurements’ standard error

as a constant multiple of the mean. This is in accordance with some assumptions on measurement

technique and natural fluctuation (LANUV, 2011). On the other hand, the prediction interval is very

large in the period of high values (perhaps corresponding with an inferior measurement technique in

the early period) and rather small later on (notwithstanding that an increased uncertainty is assumed for

measurements close to the limit of quantification). However, all models seem to sufficiently cover the

data variance.

The inverse link is very suitable for modelling the ‘decreasing decrease’ type of temporal data pat-

terns; for less definite trends, especially along the upper Ruhr, others would do (cf. Table 2.4). In some

cases, a slight heteroscedasticity remains. Outlying data at the measurements’ beginning have a strong

leverage that may lead to a certain instability, especially when ‘predicting the past’. With the inverse link

being superior compared to the log link, the decrease turns out to be steeper than exponential for highly

contaminated places.

Any such models are applicable for situations without change points or outliers as described in Sec-

tion 2.1.2. Where carbon filtering interventions are known, a piece-wise regression is applied.

With regard to easy interpretability of the parameters, the goodness of the predictions, and the per-

spective model extension (Section 2.6), the Gaussian GLM with an inverse link is focussed on.

A preliminary polynomial regression approach (Section 2.3.2) has also been dropped in favour of
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Table 2.4: Goodness of fit of various GLMs (distribution families with link functions) in terms of the
residual sum of squares by water supply station along the river Ruhr (best fitting model per station in
bold). The last column represents a linear model (Gaussian family and identity link), where the time
transform from Equation (2.1) is applied.

Gaussian Gamma (time
Station identity log inverse inverse transform)

Upper Ruhr

Hennenohl 2509 2594 2969 3492 2797
Insel 3960 5205 6991 10436 8761
Mengesohl 4822 6403 8012 12069 9204
Stockhausen 9309 8349 8448 8655 8913
Langel 14313 15219 18680 26437 20501

Middle Ruhr

Echthausen 88504 45406 14310 21009 27617
Warmen 113172 35174 27297 92980 33468
Fröndenberg 20550 14131 16808 23934 14807
Ruhrtal 42814 30823 23334 23354 23793
Halingen 52522 35329 21342 24756 22985
Hengsen 45081 26048 20154 20515 20240
Villigst 117266 54163 32504 33629 39224
Ergste 52451 34579 22754 25543 25000
Westhofen 1 83985 39238 21610 22606 29586
Westhofen 2 52549 30258 21761 21861 22315

Lower Ruhr

Hengstey 131908 79197 84974 130458 81677
Volmarstein 3501 3207 3110 3110 3122
Ruhrstrasse 6356 5454 5061 5132 5096
Witten 3926 3007 3342 3740 3336
Stiepel 12004 8328 7003 7146 6886
Essen-Horst 17017 7938 5645 6071 5572
Essen-Überruhr 16607 8839 4616 4710 5053
Essen-Kettwig 11580 6569 4859 5016 5358
Dohne 13437 11544 10594 10679 10912
Styrum Ost 7256 7386 7499 7682 7823
Styrum West 5738 5499 5103 5272 5087

this simpler, more interpretable model with few parameters. Table 2.5 evaluates polynomial (GLM)

regressions on time with a linear, an additional quadratic, and an additional cubic term; for the simple

linear model, even a higher degree is not of much use; for a Gaussian distribution with inverse link, there

are but minor differences between the degrees.

2.4.2 Results

Figure 2.8 shows a cross-section µ̂ i(t
∗) of the mean response estimation results along the river Ruhr.

Further points of time can be found in Figure A.3 on page 82, a longitudinal overview in Figure A.4 on

page 85. See Item 2 in Appendix B.2.1 for documentation.

The results show a clear distinction between the river’s segments: The abrupt increase of PFOA

concentrations below the junction of Ruhr and Möhne is reflected as well as a decrease below the mouth

of the Ruhr’s tributary Lenne. The estimations for most of the stations along the lower Ruhr tend to

feature smaller uncertainty intervals.
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Figure 2.7: (GLM) Regression for PFOA measurements depending on time: point-wise 90% confidence
intervals for the expected value (blue) and simulated 90% prediction intervals (red) for various models
exemplarily fitted to the data of Essen-Überruhr.

Within the segments, no definite trend is recognizable; local effects of the individual stations seem

to overlay a trend along the river.

To conclude, the GLM with Gaussian distribution and an inverse link function is a convenient way

of functional representation of temporal trends in PFOA data of the water supply stations along the river

Ruhr. This consistent approach opens the possibility to jointly model all data from this river, and so to

distinguish station-related random effects from the general temporal progression. Such a model should

respect the river segments and is developed in Section 2.6.

2.5 Station-to-area supply proportions

With data (and also possible models) on two spatial levels: water supply stations and water supply areas,

the proportions are of strong interest, how much of an area’s water stems from the respective stations, in
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Table 2.5: Exemplary GLM polynomial fitting results for Essen-Überruhr: Regression on time with a
linear, an additional quadratic, and an additional cubic term, respectively. Especially for the best fitting
inverse link, there is not much gain from a higher degree.

Link Degree RSS AIC BIC
identity 1 16607 738 746
identity 2 10710 700 710
identity 3 7608 671 684
inverse 1 4616 622 629
inverse 2 4491 621 631
inverse 3 4108 615 627

order to mediate between the two levels. However, there is no direct information on this question (apart

from rough estimations by a few local drinking water suppliers).

Instead of this, these supply proportions are estimated using data on the stations’ water supply

amounts and the areas’ water demands together with the qualitative information which stations supply

which areas. See Item 3 in Appendix B.2.1 for documentation.

Let ã = (ã1, . . . , ãm)
T be the supply of stations i = 1, . . . ,m and b̃ =

(︁
b̃1, . . . , b̃n

)︁T the demands of

areas j = 1, . . . ,n. The data (say, cubic metres per year) are somewhat vague and, therefore, standardised

to ai :=
ãi

ãT 1m
and b j :=

b̃ j

b̃T 1n

, respectively, in order to obtain matching totals.

Formally, a weight matrix

W =

⎛⎜⎜⎝
w11 . . . w1m

...
...

wn1 . . . wnm

⎞⎟⎟⎠ ∈ [0,1]n×m

is searched for, such that area j gets the w ji’s part of its water from station i, which means that the water

amounts w jib j of the areas sum up to the stations total supply:

ai =
n

∑
j=1

w jib j, i = 1, . . . ,m, (2.2)

with area-wise restrictions
m

∑
i=1

w ji = 1, j = 1, . . . ,n. (2.3)

Such a deconvolution problem (cf., e.g., Cutler, 1978) is generally not uniquely solvable.

In the given situation, the problem is simplified by several facts:

1. Only a small number of stations and areas are connected at all. And these relations are known

at least qualitatively, albeit not in numbers. Therefore, it is known for far most of the cases that

a station i∗ does not supply an area j∗ and so there are many further restrictions w j∗i∗ = 0 when

calculating W.

2. If an area is supplied by a single station, the respective weight w j∗i∗ = 1 is known prior to solving

the system of Equations (2.2) and (2.3), even if this relation is not bijective.

3. Due to the many zeros in W, the equation system of No. (2.2) and (2.3) is actually split in, often
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Figure 2.8: Predictions (estimates and approximate 95% confidence intervals of the expected value) of
the PFOA values on 1 January 2007, from GLMs with Gaussian distribution and inverse link, individually
for each water supply station along the river Ruhr.

very small, partial problems, now in matrix notation:

a(h) = WT
(h)b(h), W(h)1mh = 1nh , h = 1, . . . ,H. (2.4)

Each partial problem is to solve a non-zero block W(h) ∈ [0,1]nh×mh of W, concerning mh stations

and nh areas. Moreover, a large number of supply relations are unique, i.e., mh = nh = 1 (cf.,

Table 2.6).

Using only the qualitative information from Item 1, i.e., whether it holds w ji = 0 or w ji > 0 (for all

areas j and all stations i), an ‘adjacency matrix’ G ∈ {0,1}n×n of the areas is set up, indicating whether

two areas are (partly) supplied by the same station (or several of them). G is transformed to a diagonal

structure of non-zero blocks with the help of the R packages igraph (Csardi and Nepusz, 2006) and

Matrix (Bates and Mächler, 2019). These blocks of areas from G with their respective affiliated stations

are, therefore, separated from each other in terms of the supply structure. (A later, nuanced version of

this is shown in Figure 2.9.) Thus, the partial problems referred to in Item 3, regarding the non-zero

blocks of W, are set up from these blocks of G.

With that, H = 322 linear equation systems like No. (2.4) are obtained. Of these, 27 are non-trivial,
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i.e., mh,nh ≥ 2. Each comprises of mh + nh independent equations like No. (2.2) and (2.3) to solve a

certain number of unknown quantities w ji ∈ (0,1).

In 6 of these 27 cases, the system is determined. In 20 systems, there are more equations than

unknowns and a numerical solution for the least squares problem⃦⃦⃦
a(h)−WT

(h)b(h)

⃦⃦⃦2

2
−→ min

W(h)

!, W(h)1mh = 1nh

is found with the help of the R package NlcOptim (Chen and Yin, 2019) performing optimisation with

constraints; the obtained estimated proportions are exact enough given the vague data; in particular, the

by far largest system (mh = 72, nh = 82), containing many of the Ruhr dependent stations, is solvable.

Only one system is under-determined: it concerns a small region (mh = 3, nh = 6) not related to the Ruhr

and is not considered further.

Table 2.6: Overview on water supply relations: number of connections between stations and areas with
relevant shares of water (> 5% of an area’s demand).

Number of areas 285 81 46 19 8 16
Supplying stations per area 1 2 3 4 5 ≥ 6

Number of stations 22 578 73 16 5 8
Supplied areas per station none 1 2 3 4 ≥ 5

The obtained proportions of water supply from stations to areas are important to estimate the sta-

tions’ relevance for the NRW water supply in general. They are also used to assess the areas’ PFOA

burden and thereby the residents’ risk by weighted averaging. This is particularly relevant if the PFOA

concentration is inhomogeneous within an area, especially one supplied from both the Ruhr and other

rivers or groundwater (Section 2.3.3).

The supply matrix W also illustrates to what extent the spatial units (water supply areas) are contigu-

ous in terms of shared water: Blocks of ‘adjacent’ areas are determined as above; the resulting Figure 2.9

shows one large region of such potentially correlated areas (with the river Ruhr in their south) and several

smaller clusters. On the other hand, there is a large number of single isolated areas.

Therefore, the obtained supply matrix is a key to understand the unusual discrete spatial structure

of NRWs drinking water supply. It is the basis for models on supply area level, including analyses of

network data.

2.6 Joint modelling along the river Ruhr

As pointed out in Section 2.1, the availability of PFOA contamination data strongly varies within the state

of NRW. The by far largest part of data is from the water supply stations along the river Ruhr. These

measurements have also been taken more regularly in the course of the years. Therefore, it is obvious to

further focus on this river, as also done before, especially in Section 2.4.

The tributary Möhne is a special case when considering spatial relationships along the river Ruhr.

It is the principal source of contamination, what has become evident in Section 2.4. But there is only

one relevant water supply station directly depending on it: Möhnebogen with its outstandingly high
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Figure 2.9: NRW water supply areas combined according to their potential correlation (i.e., two areas
have relevant (> 5%) shares of water from the same station): A coloured area is correlated with at least
one other area of the same colour and not correlated with any area of other colours. White coloured areas
are not correlated with any other area.

measurement values and clearly visible fluctuations caused by filtering measures (Section 2.1.2 with

Figure 2.4). As these points of intervention are known, a separate modelling treatment is possible and

indicated, realised by piece-wise regression. When modelling the Ruhr stations jointly, it is therefore

reasonable to exclude the Möhne. In this way, the space becomes actually one-dimensional.

2.6.1 Initial situation

Section 2.4 concludes that regression on time is a reasonable approach to model measurement series at

individual water supply stations, as a functional representation of a temporal trend. It is also concluded

that certain generalised linear models (GLMs) are consistently applicable to all stations; in particular, a

Gaussian distribution with an inverse link is considered; other families and links can be justified, too.

To introduce this notation again, let a random variable Xit represent the PFOA concentration in drinking
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water at a station i and time t. GLMs

Xit ∼ N
(︃

1
ηi(t)

,σ2
e

)︃
ηi(t) = αi +βi · t.

(2.5)

with fixed intercepts αi and slopes βi are individually fitted for all water supply stations i = 1, . . . ,m

along the river Ruhr.

When applying spatio-temporal statistics to all the Ruhr data, a model that is continuous in time

(irregular measurement series) and discrete in space (stations) is naturally of interest. Considering con-

tamination as continuously distributed along the river is also reasonable, and various approaches have

been applied (Section 2.3), though without striking success. Furthermore, measurements are not directly

from the river, but from within the stations after some stages of treatment. For these and other reasons,

individual effects of the stations are likely and they should be prominently respected in joint modelling.

Another conclusion from Section 2.4 is the importance of the river segments, distinguished as: up-

stream beyond the Möhne mouth (here called upper Ruhr), between the Möhne and the largest tributary

Lenne (middle Ruhr), and below the Lenne mouth (lower Ruhr); see Figure 1.1 on page 4. The predic-

tive means in individual station models and their uncertainties can be clearly distinguished between these

segments (Figure 2.8 on page 26). Within the segments, however, a spatial structure is not apparent and

local effects may prevail (Section 2.4.2).

Therefore, some regression models based on those from Section 2.4 are developed and applied jointly

to all the Ruhr data, to explore and distinguish effects of stations and river segments.

2.6.2 River-wide mixed GLM

The model in Equation system (2.5) is augmented by fixed effects for the river segments s = 1, . . . ,S, be-

sides the overall intercept and slope, to identify significant differences in water contamination caused by

the rivers’ junctions (see Item 4 in Appendix B.2.1 for documentation). To avoid over-parametrisation,

the upper Ruhr segment is used as baseline, resulting in just s = 2,3. Modelling the segments by ran-

dom effects does not seem reasonable, as the contamination process of the river as a whole is rather

deterministic, with local and spontaneous random fluctuations found at the levels of stations and mea-

surements; furthermore, the number of segments is small and such effects could hardly be presumed to

have a common variance, considering data and predictions from previous sections.

Additionally, random effects pi,qi of the stations are introduced, again with respect to both intercept

and slope. Here, the usage of fixed effects would mean an overemphasis of local, individual phenomena,

leading to a kind of overfitting, besides a cumbersome number of model parameters. Instead, it is in-

tended to capture possible random fluctuations on station level and to explore, whether there is a spatial

structure in the resulting effects.
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With these specifications and unlike in (2.5), the river-wide model

Xit ∼ N
(︃

1
ηi(t)

,σ2
e

)︃
ηi(t) = α +β · t +α(s)+β(s) · t + pi +qi · t

pi ∼ N(0,σ2
p)

qi ∼ N(0,σ2
q )

(i = 1, . . . ,m)

(s = 2, . . . ,S)

(i within s)

(2.6)

is fitted to all joined data of the Ruhr stations.

Several variations (inclusion and exclusion of terms, subgroups of data, etc.) of this model are tested

and compared by the BIC, using the R package lme4 (Bates et al., 2015):

The introduction of station random effects pi,qi, with overall variances σ2
p ,σ

2
q (independent of the

segments) increases the goodness of fit only slightly or not at all. This result is even sensitive to ran-

domisation of values below the limit of quantification (Section 2.3.1). The residuals (with variance σ2
e )

are predominant over these effects.

On the other hand, when fitting individual models to the segments, i.e.,

Xit ∼ N
(︃

1
ηi(t)

,σ2
e

)︃
ηi(t) = α +β · t + pi +qi · t

pi ∼ N(0,σ2
p)

qi ∼ N(0,σ2
q )

(i = 1, . . . ,ms)

for s= 1,2,3, the station random effects are in some cases stronger than before. This raises the possibility

that the random effect variance differs between segments, and motivates a further model improvement

(Section 2.6.3).

Experimentally, a quantitative spatial distance, in terms of kilometres along the river, is added to the

linear predictor ηi(t), but turns out to be irrelevant in terms of changing the BIC, if river segments are

present in the model. This is also another indication to stay with a discrete spatial structure.

In contrast to the approach in Equation system (2.6), a hierarchical random effect modelling of sta-

tions within segments does not prove useful, as the goodness of fit is weaker than in other models and no

significant overall intercept and slope emerge.
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2.6.3 Enhanced Bayesian mixed GLM

As the variability is likely to differ between the river segments, the model in Equation system (2.6) is

further augmented by distinguishing the station random effect population per segment:

Xit ∼ N
(︃

1
ηi(t)

,σ2
e

)︃
ηi(t) = α +β · t +α(s)+β(s) · t + pi(s)+qi(s) · t
pi(s) ∼ N(0,σ2

p,s)

qi(s) ∼ N(0,σ2
q,s)

(i = 1, . . . ,ms)

(s = (1,)2, . . . ,S).

(2.7)

As this goes beyond the usual estimation routines, and to have a closer look on the random effects’

behaviour, a Bayesian model is implemented in the Stan software (Stan Development Team, 2020b),

using the R interface package rstan (Stan Development Team, 2020a). The default non-informative

priors are employed for α,β ,α(s),β(s),σ
2
e ,σ

2
p,s and σ2

q,s, s = (1,)2, . . . ,S. See Item 2 in Appendix B.2.1

for documentation. Table 2.7 shows the posteriors of variance and fixed effect parameters.

Table 2.7: Quantiles of the sampled posterior distributions for the standard deviations (non-squared) of
residuals and random effects as well as for the fixed effects from the model in Equation system (2.7). The
residual variance σ2

e is not directly comparable to the random effect variances due to the non-linear model
specification. A significance mark ∗ indicates that the 95% credible interval does not include zero. (The
specific numbers are not directly informative regarding substantive interpretation in this complicated
model with a non-linear link function – apart from σe.)

Quantiles
2.5% 10% 50% 90% 97.5%

σe 13.2157 13.3665 13.6280 13.8989 14.0478 ∗
σp,1 0.0003 0.0007 0.0036 0.0111 0.0193 ∗
σq,1 0.0002 0.0004 0.0009 0.0022 0.0042 ∗
σp,2 0.0051 0.0065 0.0098 0.0153 0.0206 ∗
σq,2 0.0007 0.0010 0.0015 0.0022 0.0028 ∗
σp,3 0.0002 0.0005 0.0050 0.0122 0.0190 ∗
σq,3 0.0002 0.0006 0.0012 0.0021 0.0027 ∗
α -0.0503 -0.0477 -0.0412 -0.0352 -0.0320 ∗
β 0.0073 0.0079 0.0089 0.0099 0.0109 ∗

α(2) -0.0296 -0.0251 -0.0177 -0.0095 -0.0060 ∗
β(2) -0.0011 -0.0002 0.0010 0.0022 0.0029
α(3) -0.0606 -0.0559 -0.0467 -0.0369 -0.0305 ∗
β(3) 0.0050 0.0060 0.0075 0.0089 0.0097 ∗

Figure 2.10 represents the posteriors of the stations’ random intercepts pi(s) and confirms that it is

reasonable to model them with segment-wise distributions. While there are hardly no random effects of

stations along the upper Ruhr, their variance σp,s is larger for the middle Ruhr (Table 2.7). However,

even here, many random effects are still not significant. A certain similarity to the station-individual

predictions in Figure 2.8 on page 26 (apart from the sign) holds especially for the lower Ruhr. A spatial

structure in terms of a smooth decrease is indicated, albeit very weak.
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Figure 2.10: Credible intervals (80% and 95%) for the random intercepts pi(s) (i = 1, . . . ,ms;s = 1,2,3)
by water supply station along the river Ruhr, obtained from the sampled posterior distributions from the
model in Equation system (2.7). (The specific numbers on the axis are not very informative regarding
substantive interpretation in this complicated model with a non-linear link function.)

Results for the random slopes (time dependence) are similar. On a side note, the stations’ intercepts

and slopes are generally somewhat correlated in all models, not only the joint models. Nonetheless, it

is canonical to always include the intercept where a non-linear link function is present. Moreover, it is

not clear from the outset whether individual effects can be found rather regarding the influence of time

(random slope) or absolutely (random intercept).

After all, some of the stations along the middle Ruhr feature random effects in the model from

Equation system (2.7), which significantly differ from zero. But as before, the residuals (with variance

σ2
e ) are still predominant over them.

For the fixed effects with regard to both intercept and slope (time dependence), the distinctiveness of

all river segments is mostly significant.

2.7 Conclusions and discussion

Given the potential health risks of PFASs, especially PFOA, and the contamination incident affecting

the rivers Möhne and Ruhr, measurement data from water supply stations and within the drinking water

network are explored.

The data comprise of quite complete measurement series along the river Ruhr and only few measure-

ments each at other water supply stations. Along the river, a steeply decreasing temporal data pattern is

observed at mainly affected stations, as opposed to a more diffuse structure upstream; in later years after

the contamination, the decrease is weaker. In other regions, no PFOA is usually detected.

A consistent temporal modelling approach is of interest for comparison of results along the river
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Ruhr and for building joint models. A Gaussian generalised linear model with an inverse link function

turns out to have the best fit to the data among regression approaches, hinting to a more than exponential

contamination decrease after the incident. If there are crucial events such as change points or extreme

outliers, a piece-wise regression is applied.

When exploring the spatial structure of the predictions resulting from this model, the important

role of the river segments (between the main junctions) is found: The PFOA concentration at stations

considerably varies between the Ruhr segments, but less and without clear trends within. Joint modelling

of all data from Ruhr-dependent stations confirms the significant effects of the segments. Random effects

of stations occur, especially along the middle course of the river Ruhr below the Möhne mouth, but are

comparatively weak. Such a model is smoother and generalises better than the station-wise approach; it

is also applicable to predict PFOA values with a more regional perspective, especially in water supply

areas completely dependent on a single Ruhr segment.

The importance of random effects and the absence of a clear spatial trend of declining concentrations

downstream hint at possible station-related effects. The treatment of the water on its way from the river

to a station’s outlet varies, particularly with regard to filtration, both technically and naturally through

the river bank. Some stations operate with a certain share of non-contaminated groundwater, but these

proportions are not constant and no reliable data are available. Another aspect are additional minor

PFOA discharges, especially from sewage plants affecting the river Ruhr (cf. LANUV, 2011). In fact,

there seems to be a slightly increasing trend along parts of the lower Ruhr.

The spatial structure of the water supply consists of two levels, stations and water supply areas, and

assessment of the residents’ PFOA risk by area is ultimately of interest. Therefore, inferences from the

station-level data are necessary for prediction at the area level. An approximate supply proportion matrix

is obtained from rough information on the water amounts. Furthermore, from the exploratory results,

homogeneity of data from stations along the river Ruhr, which supply the same areas, can be presumed.

Therefore, the uncertainty when aggregating data in such areas is low. For those areas supplied from

both the river Ruhr and unaffected stations, the uncertainty is higher, but aggregation is possible using

weights from the proportion matrix. In summary, reasonable conclusions from stations to areas are

generally possible.

From the perspective of environmental medicine, the steep decrease of PFOA concentrations in water,

after the contamination is discovered and handled, is relevant for the assessment of the internal exposure.

Studies on the Arnsberg cohort within the ‘PerSpat’ project (cf., Section 4.2.4), including pharmacoki-

netic modelling, emphasise the predominant importance of time periods with very high burden; later

minor PFOA intakes are then less relevant for the temporal progression of the internal exposure (see also

Bartell et al., 2010; Seals et al., 2011; Russell et al., 2015; Li et al., 2018). Modelling this early stage

with adequate precision is therefore important. For later years, the decrease in water is weaker and a

certain level of detectable contamination remains over a long time; this is also relevant, as even a low

level PFOA burden is suspected of adverse health effects.

Data and predictions not only show a severe contamination of the river Ruhr downstream from the

Möhne mouth, but also further upstream from this alleged principal PFOA source, albeit significantly

weaker. The widespread distribution of this substance should always be kept in mind.

Predicted PFOA concentrations in drinking water are used to estimate concentrations in blood serum

of NRW residents, depending on time and place of residence, and also used in the analysis of health-
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related data from the state-wide birth registry (Chapter 4). The developed modelling approaches are

transferable to other or more complex river systems and to other substances solute in water or to similar

scenarios.

2.8 Perspectives

As the environmental epidemiological interest lies primarily in the prediction of PFOA concentrations

per water supply area, it is straightforward to change the perspective in modelling accordingly. E.g., in

general spatio-temporal notation with discrete points of time, let

ν :=
(︂

ν
(1), . . . ,ν(T )

)︂
:=

⎛⎜⎜⎝
ν11 . . . ν1T

...
...

νn1 . . . νnT

⎞⎟⎟⎠
represent the expected values of PFOA concentration at time t = 1, . . . ,T and area j = 1, . . . ,n. To respect

both spatial levels of data, the same is denoted for the water supply stations i = 1, . . . ,m by

µ :=
(︂

µ
(1), . . . ,µ(T )

)︂
:=

⎛⎜⎜⎝
µ11 . . . µ1T

...
...

µm1 . . . µmT

⎞⎟⎟⎠ .

As before, the spatial levels are connected by a weight matrix W as developed in Section 2.5, in the

simplest case as ν = Wµ. More general, an areal random effect like ω ∼ N
(︁
0n,τ

2In
)︁

may be introduced

to avoid a deterministic conclusion from stations to their supplied areas, when further uncertainty is

likely:

ν =
(︂

Wµ
(1)+ω, . . . ,Wµ

(T )+ω

)︂
= Wµ +1′T ⊗ω.

This is contrary to the previous goal of a model that is continuous in time. Furthermore, sufficient data

would be required on area level, i.e., from the network.

With the given amount of data, all models are reliable only for the river Ruhr, but generally applicable

to all main rivers of the state. Useful predictions are not possible for largely unobserved regions or

periods of time.

Extrapolations are challenging with all methods, especially for the early period prior to the first

measurements in 2006. Yet, the duration of the Brilon contamination has been estimated as two to four

years from the fertilizer’s quantity, the drainage, and the residents’ internal exposure (Hölzer et al., 2009,

Skutlarek et al., 2006). This information should be respected when ‘predicting the past’ using the above

models.

Comprehensive spatial models should respect the complex potential state-wide spatial correlation

structure. It is explored using the supply proportions. There is one large region of potentially correlated

areas near the river Ruhr, but also many other supply areas which are isolated or grouped to small clusters.

This information is important to set up a covariance matrix for usage in spatial models.

Given the results from the Ruhr data, it also seems reasonable to focus on the river segments when

building up a neighbourhood structure based on water supply stations and their locations along the river

network in NRW. In the future, river-induced correlations may be estimated from the Ruhr data. Spatial
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correlations caused by groundwater may be relevant, too, and, therefore, are possible extensions of the

neighbourhood structure. The existence of several contamination sources should be taken into account,

too.
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Chapter 3

Perinatal data analyses

This chapter is concerned with regression analyses of the perinatal registry data from North Rhine-

Westphalia (NRW), Germany. The main interest is on the estimation of influences on the birth weight

(BW). There are reasons for bivariate modelling of BW jointly with the gestational age (GA, the dura-

tion of pregnancy). This is taken up by a copula model within a framework of Bayesian distributional

regression, as the first application of this innovative method to birth data with two continuous response

variables.

The local PFOA concentration in drinking water is later added as another environmental explanatory

variable (Chapter 4).

The region along the upper course of the river Ruhr in NRW, precisely the town of Arnsberg, is

focussed on: It is of particular interest due to variable and in parts very high PFOA concentrations in

drinking water during several years. Furthermore, the external exposure to PFOA is well assessed and

confirmed by human biomonitoring data on the internal exposure of a cohort of residents (Hölzer et al.,

2008). A constrained data analysis also eases computability in Bayesian distributional regression.

It is investigated, which family of one-parametric copulas, which families of marginal distributions

and which linear predictors are most suitable for the given perinatal registry data. Using the identified

copula model, the results are compared to a standard univariate regression model for BW and the effects

of biometric, perinatal, environmental and socio-economic covariates on BW, GA and their dependence

are estimated.

The chapter opens with a presentation of the data in more detail (Section 3.1). This is followed by a

short literature review on bivariate modelling in biometrics, especially for birth data respecting GA, on

copula applications, especially in regression, and on options to model several parameters conditional on

covariates (Section 3.2).

The analyses begin with the development of the standard univariate model (Section 3.3), where GA

is included in functional form as a polynomial. Explanation and application of the Bayesian distribu-

tional copula model follow in Section 3.4, beginning with a brief theoretical introduction and the ex-

istent implementation (Section 3.4.1). After some preliminary considerations and pre-processing steps

(Section 3.4.2), the optimal marginal families for BW and GA are selected in Section 3.4.3, the copula

in Section 3.4.4, all including variable selection. Substantive results are given in Section 3.4.5. The

performances and results of both the polynomial and the copula model are compared in Section 3.5.

Various aspects of data modelling are discussed in Section 3.6, including the usage of secondary data

and their quality (Section 3.6.1), the dependence structure of BW and GA, which may be more difficult to
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deal with after all (Section 3.6.2), and some medical interpretations and the benefit of bivariate modelling

thereby (Section 3.6.3). Conclusions of this chapter follow in Section 3.7, some perspective aspects in

Section 3.8.

Besides the application of a developer version of the BayesX software (Belitz et al., 2020) for the

distributional regression models, routine calculations have been performed using the R environment (R

Core Team, 2020), see Appendix B.2.2 for documentation.

3.1 Perinatal registry data from NRW

The perinatal registry data (overview in Table 1.2 on page 5) are collected by all hospitals and are com-

bined and processed by the quality assurance office located at the state medical association, for the

purpose of quality assurance in obstetrical health care. An overview of collection and administration of

the German perinatal registry data can be found in Reeske et al. (2011), another use of them as secondary

data in a scientific study. Within the ‘PerSpat’ project, these secondary data collected from 2003 until

2014 are used. They comprise of about 1.7 million records and more than 200 biometric, medical and

social variables on mother and child, pregnancy, birth and treatment.

They are anonymised by removing all personal information apart from the postal code of the mother’s

residence. Further data cleansing steps are performed, in particular regarding the plausibility of GA.

Analyses are restricted to singleton births, to children born alive without malformations and to postal

codes within NRW.

When restricted to the town of Arnsberg, 6442 birth cases are observed within the period from 2003

until 2014. Those where values of relevant variables are not given are removed, leaving a total of 4451

observations.

The response variables are BW (measured in g with varying accuracy, mean: 3390, standard devia-

tion: 517) and GA (clinically estimated, in days, mean: 277, standard deviation: 12), the former being of

primary interest (Figure 3.1).

Individual relevant explanatory variables are pre-selected from the perinatal registry data. This is

done in accordance with the literature (e.g., Gardosi et al., 1995; Schwartz et al., 2010; Frederick et al.,

2008; Thompson et al., 2001) and with previous findings within the ‘PerSpat’ project (Kolbe et al., 2016).

The specific variables are: the child’s sex, the number of previous pregnancies of the mother, whether the

child has been delivered by Caesarean section (sectio), whether the birth has been induced, the mother’s

age, the mother’s height, the mother’s body mass index (BMI) at the beginning of pregnancy, the gain of

weight of the mother during pregnancy, the number of cigarettes the mother reports to smoke per day,

whether the mother is single and whether the mother is employed. Some descriptive characteristics can

be found in Table 3.1.

Temporal and spatial information is given by the date of birth and the postal code of the mother’s

residence. These are later used to include the average PFOA concentration in drinking water for a given

place and time as a spatio-temporally assigned covariate (see Section 4.2).
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Figure 3.1: Observations of birth weight and gestational age (density of the point cloud represented by
shading: darker shade is for more points, + stands for a single isolated point).

Table 3.1: Descriptive characteristics for covariates from the perinatal data.

l Covariate Unit Description
1 sex female: 47%
2 previous pregnancies 0: 38%, 1: 32%, 2: 16%
3 sectio 24%
4 induction 26%
5 maternal age years mean: 29.4, s.d.: 5.5
6 maternal height cm mean: 167.0, s.d.: 6.7
7 maternal BMI kgm−2 mean: 25.2, s.d.: 5.3
8 maternal gain of weight kg mean: 10.4, s.d.: 5.7
9 maternal smoking cigs./day no: 87%, ≤10 cigs.: 8%

10 mother is single 7%
L = 11 mother is employed 42%
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3.2 Methodological background

When analysing perinatal (newborn infants’) data with BW as the response variable of primary interest,

it is essential to adjust for GA, which is often reported as the quantitatively most important covariate

(e.g., Skjærven et al., 2000; Fang et al., 2007; Weiss et al., 2014; Frederick et al., 2008). Augmenting

linear models, it may be included as a polynomial or in other parametric functional forms (e.g., Gardosi

et al., 1995; Salomon et al., 2007). Another widespread alternative is a binary response with a class such

as ‘small for GA’ (e.g., Gage, 2003; Polakowski et al., 2009; Thompson et al., 2001).

In contrast to univariate approaches like these, consideration of bivariate (or multivariate) outcomes is

frequent in biometric research, such as meta-analysis (Berkey et al., 1998), clinical trials (Braun, 2002),

dose-response-modelling in developmental toxicology (Regan and Catalano, 1999), measuring heavy

metal concentrations in the environment (Pozza et al., 2019), or simultaneous estimation of human expo-

sure to jointly occurring chemicals (Sy et al., 2020). In spatial statistics, a Bayesian hierarchical model

for multiple responses can be found in Gelfand and Vounatsou (2003), who generalise the conditional

autoregressive (CAR) model accordingly with proper priors; the application to children’s biometric data

is also proposed there.

In gynaecological and obstetric research, modelling of a bivariate response comprising of both BW

and GA is recommended (e.g., Schwartz et al., 2010; Gage, 2003; Fang et al., 2007), but not com-

mon. Schwartz et al. (2010) use a finite mixture model in a Bayesian analysis of the discretisised two-

dimensional response, because of suspected subgroups in the population and to increase flexibility. GA,

which is often only known in full weeks, is taken into account as a censored variable. Neelon et al.

(2014) generalise this approach from categorical to normally distributed covariates; in addition, spatial

effects and area regressors are included. A two-dimensional mixture model of normal distributions for

BW and GA is also used by Gage (2003) and estimated by maximum likelihood estimation (MLE) or

EM methodology. For binary response variables representing BW by GA in relation with mortality, Gage

et al. (2008) propose a mixture model of logistic regressions that depends on the density of covariates,

to account for subgroups and unobserved heterogeneity. A mixture model for several response variables

is also used by Zhu et al. (2012), to determine the membership to subgroups by logistic regression.

A flexible way in following the recommendation of bivariate analysis is to use copulas (Nelsen, 2006)

to simultaneously and independently estimate the univariate marginal distributions and the dependence

structure via the copula. More flexible non-Gaussian copula families assume less symmetries for the data;

instead, upper or lower tail dependence can be modelled. There is a vast literature on copula modelling,

also in the regression context. Effects of covariates on the parameter of various copula families are

modelled by Acar et al. (2013). Krämer et al. (2013) work on MLE in regression with several outcomes

joint by copulas. For Bayesian copula application in human biology, see, e.g., Dalla Valle et al. (2018).

Another approach for regression problems is to represent the multivariate density by a (D-)vine copula

(Kraus and Czado, 2017; Cooke et al., 2020).

An important issue in regression analysis of data with non-Gaussian shapes is to model several pa-

rameters of a (possibly multivariate) distribution, and especially other parameters than the location, con-

ditional on covariates. Vector generalised linear (VGLMs) and additive models (VGAMs), first proposed

by Yee and Wild (1996), further developed and comprehensively presented by Yee (2015), enable this

for a wide range of distribution families, also beyond the exponential family class. For many univariate

cases, GAMs for location, scale and shape parameters are already introduced by Rigby and Stasinopou-
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los (2005) and much work has been done on them since, see in particular Wood (2017) and Rigby et al.

(2019). While all this does not include copulas, Song et al. (2009), on the other hand, develop simul-

taneous MLE for VGLMs using Gaussian copulas, but the estimation of correlation matrices does not

depend on covariates. Finally, Vatter and Chavez-Demoulin (2015) develop a GAM, where a conditional

equivalent to Sklar’s theorem (Sklar, 1959) is considered and the dependence structure of two response

variables is represented by a copula, and a single dependence parameter is a function of covariates; under

certain regularity conditions and limited to continuous responses with the whole real axis as support, they

present penalised MLE.

Within the ‘PerSpat’ project, the VGLM approach of Yee (2015) has had an essential part in pre-

liminary considerations for modelling the perinatal response variables, in particular using a Gamma

distribution for GA.

However, as the Bayesian interpretation of parameters, data and their relationships fits well to the goal

of modelling arbitrary parameters conditional on covariates, the Bayesian distributional copula regression

models developed by Klein and Kneib (2016) are applied: Besides modelling the two response variables

depending on several covariates, these models comprise of another predictor to independently model

the parameter of one-parametric copulas between the two of them in a flexible manner. The procedure

is outlined in Figure 3.2 on page 45 and generally applicable to data from various areas of applications,

including the biometric studies named above. It is a natural approach to analyse a bivariate response with

an asymmetric joint distribution and skewed marginals as found in the data (Figure 3.1 on page 38). Klein

et al. (2019) also consider bivariate copula regression with GA and low BW measured as a continuous

and a binary variable, respectively, conditional on various biometric and clinical variables in a spatial

context.

3.3 Standard polynomial regression

Instead of bivariate regression for BW and GA, univariate analyses for one of them are common in gynae-

cological and obstetric research (e.g., Skjærven et al., 2000; Weiss et al., 2014; Frederick et al., 2008),

perhaps adjusted for the other, or with a dichotomous response like ‘small for GA’ (e.g., Polakowski

et al., 2009; Thompson et al., 2001).

For the remainder of this chapter, let K be the number of observations, yk1 the observed BW and

yk2 the observed GA, k = 1, . . . ,K, from continuous response variables Y1 and Y2. Observations xkl of

L covariates xl , l = 1, . . . ,L, are considered (not to be confused with the PFOA concentration variable

denoted by X in Chapter 2).

In preliminary studies (see Item 1 in Appendix B.2.2 for documentation), a regression model is

confirmed as the most suitable among univariate BW models, where GA is included as a covariate in the

form of a polynomial Pγ of degree three:

Polynomial regression models

yk1 = β0 +Pγ(yk2)+∑
l

βlxkl + εk,

k = 1, . . . ,K, with independent εk ∼ N(0,σ2) are applied for BW response, with observed GA yk2 as

explanatory variable and some of the further covariates numbered l = 1, . . . ,L (see Table 3.1 on page 38).
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Among the usual fractional polynomials (Royston and Sauerbrei, 2008) of degree one or two, the result-

ing mean prediction errors are very close to each other. With regard to the residual sum of squares, the

Akaike information criterion, the Bayesian information criterion and the maximum prediction error (i.e.,

for outlying data), the polynomial

Pγ(yk2) = γ1y2
k2 + γ2y3

k2

performs best. However, a model with ‘full’ polynomial

Pγ(yk2) = γ1yk2 + γ2y2
k2 + γ3y3

k2

is even better in this respect; it is in accordance with gynaecological and obstetric literature (e.g., Gardosi

et al., 1995; Salomon et al., 2007) and therefore preferred. Standard diagnostic plots show no hints on

violations of model assumptions; in particular, Gaussian assumption is thoroughly fulfilled; moreover,

the residuals display no anomalies when plotted against gestational age.

Therefore, this standard model is applied in a Bayesian interpretation using the software BayesX

(Belitz et al., 2020, see Section 3.4.1) for further evaluation and comparison to the Bayesian distributional

copula regression. Estimates of regression coefficients are summarised in Table 3.4 on page 51.

3.4 Bayesian copula distributional regression

Below, the employed class of Bayesian conditional copula models is outlined within a distributional re-

gression framework, developed by Klein and Kneib (2016). The focus is on such model components that

are relevant for the analyses in this chapter. Especially, the predictors of the structured additive regres-

sion models (Fahrmeir et al., 2004) are restricted to linear components, due to computational reasons and

because most of the explanatory variables are binary. Furthermore, there is no hierarchical modelling,

in particular not in relation to space, as a small region is considered, divided in only few spatial units,

which are equivalent to the environmental exposure to be included later. The more general perspective

can be found in Klein and Kneib (2016) and the references therein.

From now on, bivariate responses with observations (yk1,yk2), k = 1, . . . ,K, are considered. Let

probability density functions be denoted by f1 and f2 and cumulative distribution functions (CDFs) by

F1 and F2, respectively, for the continuous response variables Y1 and Y2 as before.

3.4.1 Bivariate copula models and implementation

A bivariate copula is defined by a CDF Cρ : [0,1]× [0,1]→ [0,1] such that the joint CDF of Y1 and

Y2 can be written as

F(y1,y2) =Cρ(F1(y1),F2(y2)) =: Cρ(u,v).

Sklar’s theorem (Sklar, 1959) ensures that Cρ always exists and is unique for continuous Y1 and Y2 while

F1 and F2 are uniformly distributed. With a copula density cρ(·, ·), the joint density of Y1 and Y2 can be

written as

f (y1,y2) = cρ(F1(y1),F2(y2)) · f1(y1) · f2(y2)
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and a conditional density as

f1|2(y1|y2) = cρ(F1(y1),F2(y2)) · f1(y1). (3.1)

While this representation is unconditional, the results can be extended to the regression context (Patton,

2006), see also Section 3.2.

There are various families of copulas, characterised by a parameter ρ representing the degree and

form of dependence between Y1 and Y2. Implemented for application in these analyses are the Gaussian

copula family with density

cρ(u,v) =
1√︁

1−ρ2
exp
[︃
−1

2
· ρ

1−ρ2 ·
{︁

ρ(Φ−1(u))2 −2 ·Φ−1(u) ·Φ−1(v)+ρ(Φ−1(v))2}︁]︃ ,
ρ ∈ (−1,1)

(where Φ−1 is the inverted CDF (quantile function) of a univariate standard Gaussian distribution), the

Clayton copula family with density

cρ(u,v) = (1+ρ)(uv)−1−ρ
(︁
u−ρ + v−ρ −1

)︁−2−1/ρ
,

ρ ∈ (0,+∞),

and the Gumbel copula family with density

cρ(u,v) =
1
uv

(− lnu)ρ−1(− lnv)ρ−1 exp
(︂
−z1/ρ

)︂(︂
z2/ρ−2 − (1−ρ)z1/ρ−2

)︂
,

where z := (− lnu)ρ +(− lnv)ρ ,

ρ ∈ (1,+∞).

The Gaussian copula allows for linear dependence and symmetry only; its response distribution is equiv-

alent to that of a standard multivariate regression model. The others are more flexible and assume less

symmetry. The Clayton copula allows for a stronger non-linear dependence between the two variables

within the region of their extremely low values (tail dependence), whereas the Gumbel copula allows for

upper tail dependence (Nelsen, 2006).

The two marginal distribution families can be chosen independently from each other and from the

copula. Besides the Gaussian distribution N(µ,σ2) with expected value µ and variance σ2, a Dagum

distribution with density

fp,a,b(y) =
ap
y

· (y/b)ap

((y/b)a +1)p+1 ,

shape parameters p > 0 and a > 0 and dispersion parameter b > 0 is implemented.

All this is considered conditional on covariates. For any parameter θ of the joint distribution of Y1

and Y2, being either one of the assumed marginal distributions or of the copula (i.e., θ ∈ {µ,σ2, p,a,b,ρ}
in this case), a linear predictor

η
(θ) = β

(θ)
0 +β

(θ)
1 x1 + . . .+β

(θ)
L xL
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is formed from the covariates, possibly just from a part of them or even reduced to the intercept. Link

functions hθ with θ = h−1
θ
(η(θ)) are specified appropriately for the respective parameter spaces:

µ = η(µ),

θ = exp(η(θ)) for θ ∈ {σ2, p,a,b},

ρ =
η(ρ)√︁

1+(η(ρ))2
for the Gaussian copula,

ρ = exp(η(ρ)) for the Clayton copula,

ρ = exp(η(ρ))+1 for the Gumbel copula.

The covariates to be included to the linear predictor η(θ) can be separately selected for all parameters

θ ∈ {µ,σ2, p,a,b,ρ}.

All models are estimated using a developer version of the BayesX software (Belitz et al., 2020),

which implements fully Bayesian inference based on Markov chain Monte Carlo simulation techniques,

to simultaneously and independently assess the covariates’ influences on location, dispersion or shape

parameters of the marginals and on the copula parameter. BayesX also includes routines for spatial data,

hierarchical models and structured additive models (Fahrmeir et al., 2004) in general, see Klein and

Kneib (2016) for details. BayesX offers rotation of copula data (u,v) ∈ (0,1)2 by 90° or −90°, to cover

all four possible directions of tail dependence.

3.4.2 Preliminaries, preparation and outline of procedure

Bayesian distributional copula regression models (Section 3.4.1) are applied to the perinatal registry data.

The models are evaluated using the anonymised excerpt of K = 4451 observations representing the five

postal code areas of the town of Arnsberg in the upper Ruhr region, North Rhine-Westphalia, Germany,

for the years of 2003 until 2014 (Section 3.1).

Besides the BayesX software, calculations have been performed using the R environment (R Core

Team, 2020), with the Dagum distribution from the VGAM package (Yee, 2020) and copula distributions

from copula (Hofert et al., 2020). See Appendix B.2.2 for documentation.

In preliminary studies, univariate frequentistic linear regression models for both marginal response

variables: birth weight (BW) y1 and gestational age (GA) y2, ignoring the respective other, have also been

considered. In both cases, no hints on heteroscedasticity or other striking patterns in the residuals have

been found. However, the Gaussian assumption has seemed somewhat violated in the lower tail of the

data, especially for the GA model, resulting in a slightly higher variance of lower fitted values. The latter

model has also revealed a separation of the predicted values in two groups, presumably corresponding to

whether children have been delivered by Caesarean section.

After preparation steps of data import and cleansing, the response data of observations k = 1, . . . ,K

are standardised for numerical reasons only, without affecting the results, since the original responses can

easily be recovered by linear back-transformation. Specifically, to employ a Gaussian for the marginals

in BayesX, data-independent values for mean and standard deviation in a reasonable scale are used to

yield

ỹk1 :=
yk1 −3500

500
for BW and ỹk2 :=

yk2 −280
14

for GA.
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To apply the Dagum marginal (with positive support), BW is normalised to

ỹk1 :=
yk1

500
,

while GA is also inverted to a more appropriate shape by

ỹk2 :=
322− yk2

14
, (3.2)

to have the main part of the data closer to zero and the tail on the right. 322 days = 46 weeks exceed the

maximum observable GA.

The choice of the optimal copula regression model is a stepwise procedure, outlined in Figure 3.2.

Marginal distribution families are chosen by applying Gaussian and Dagum models to both univariate

responses; in all these four models and for all parameters therein (θ ∈ {µ,σ2} or θ ∈ {p,a,b}, respec-

tively), covariates are selected if the 95% credible intervals of their respective β
(θ)
l ’s do not include zero;

the optimal models per family are compared by probability integral transform values, quantile residuals

and log-scores (Section 3.4.3). The optimal marginals of BW and GA are combined with all possible

copula families (including rotations); covariates for the copula parameter are selected and these models

compared by information criteria (Section 3.4.4). For the linear predictors of all parameters, all covari-

ates listed in Table 3.1 on page 38 are considered, without interactions. The final model is evaluated in

terms of prediction performance and substantive results (Sections 3.4.5 and 3.5).

3.4.3 Marginal model selections

After non-significant covariates are excluded, different univariate distributional models (Klein et al.,

2015) are fitted (see Item 2 in Appendix B.2.2 for documentation) and compared using logarithmic

scores (log-scores, Gneiting and Raftery, 2007). To compute the log-scores, a four-fold cross-validation

is implemented, for which the observations are randomly assigned to subsamples of equal size. Using the

estimated model based on three subsamples, individual log-scores for the respective left-out subsample

are computed using the R package scoringRules (Jordan et al., 2019). See Item 3 in Appendix B.2.2

for documentation. The average log-scores for Dagum and Gaussian distribution are very close to each

other in the case of BW; however, for GA, the Dagum distribution has a notably better fit (Table 3.2).

Table 3.2: Mean log-scores to evaluate prediction performances of the two models for the marginal
responses. A lower score indicates a better fit.

Marginal
Model Birth weight Gestational age
Gaussian 7.66 4.07
Dagum 7.63 3.74

These findings are confirmed by graphical evaluation (see Item 3 in Appendix B.2.2 for documen-

tation) of the probability integral transform values F(y; β̂ ) and the corresponding normalised quantile

residuals Φ−1(F(y; β̂ )) (cf., Dunn and Smyth, 1996), where posterior means of the respective β
(θ)
l ’s are

employed, and y (BW or GA) is on the standardised scale. The theoretically expected uniform distribu-

tion of the F(y; β̂ )’s is well recognisable for the Dagum fits, while it is strongly violated for the Gaussian
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Data

Response 1 Response 2Covariates

Marginal Distributional Regression 1

distrib.
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distrib.
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. . . distrib.
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covariate
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parameter

. . .
covariate
selection per
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model fit comparison

Marginal Distributional Regression 2
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distrib.
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. . . distrib.
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selection per
parameter
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selection per
parameter

. . .
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selection per
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each parameter for response 1 Response 2
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with covariate specifications for
each parameter for response 2

Copula Distributional Regression

copula
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covariate
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covariate
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selection
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Results: effects of respective selected covariates on marginal
distributions and on the parameter of the selected copula

Figure 3.2: Outline of the proposed procedure to choose optimal marginal and copula families in bivariate
Bayesian distributional regression.
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fit of GA; a similar structure as for the latter remains also for the Gaussian fit of BW, but considerably

weaker (Figure 3.3). A quantile-quantile-plot of the Φ−1(F(y; β̂ ))’s (Figure 3.4 ) shows a slightly better

fit of the Dagum model in either case, especially in the lower range, but more striking for GA, where

a distinguishable structure remains with the Gaussian. These results are convincing to use the Dagum

distribution for the GA marginal in the further analyses.
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Figure 3.3: Histograms of probability integral transform values F(y; β̂ ) (with posterior means of the β ’s
plugged in) for the two models and the two marginal response variables.

For BW, however, the results are less clear and there are reasons to remain with the Gaussian distri-

bution in case of doubt: In this application, influences of covariates on the mean (and variability) of BW

are of primary interest – characteristics directly represented by the N(µ,σ2) parametrisation; and there is

at least some evidence above that this distribution family does not fit essentially worse than the other. In

this parametrisation, effects of covariates are easily and directly interpretable. By contrast, the interpreta-

tion of effects on the three Dagum parameters is quite complicated and sometimes ambiguous in terms of

substantive results (cf., Section 3.4.5). Results from the Gaussian fit are furthermore directly comparable

to other studies, especially with standard regression models (cf., Section 3.5). So, the Gaussian is used
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Figure 3.4: Quantile-quantile-plots of randomised quantile residuals Φ−1(F(y; β̂ )) (with posterior means
of the β ’s plugged in) for the two models and the two marginal response variables.

as BW marginal in the further analyses.

3.4.4 Copula model selection

As a motivation, the usefulness of flexible copula regression and non-linear dependence structures is

illustrated by comparing confidence intervals of rank correlation coefficients (R package spearmanCI,

de Carvalho, 2018) of BW and GA from subsets of data selected by certain covariate choices: In case of

a discrete covariate, the respective levels are considered; in case of a continuous covariate, observations

are ordered by the covariate values and grouped together into four subsets of equal size. See Item 4

in Appendix B.2.2 for documentation. Differences between these levels or subsets are especially pro-

nounced for the sectio and weight-gain covariates (Figure 3.5). Therefore, it seems reasonable to apply

distributional regression methods also with respect to the copula parameter.

The Gaussian, Clayton, and Gumbel copula are compared, the latter two also with copula data (u,v)

47



PERINATAL 3.4. BAYESIAN COPULA DISTRIBUTIONAL REGRESSION

0.25 0.30 0.35 0.40

Spearman's rho

se
ct

io

no
ye

s

0.15 0.20 0.25 0.30 0.35 0.40

Spearman's rho
da

ta
 s

ub
se

ts
 b

y 
ga

in
 o

f w
ei

gh
t

lo
w

es
t

2n
d

3r
d

hi
gh

es
t

Figure 3.5: Rank correlations of birth weight and gestational age (80% and 95% confidence intervals)
from subsets of data selected by certain covariate choices: left: Caesarean section, two groups; right:
maternal gain of weight, ordered observations grouped into four equal subsets; other covariates do not
feature such visible differences between subsets.

rotation by 90° and −90°, using the deviance information criterion (DIC, Spiegelhalter et al., 2002) and

the widely application information criterion (WAIC, Watanabe, 2010). See Item 5 in Appendix B.2.2

for documentation. Too many covariates with respect to the ρ parameter of the Clayton and Gumbel

copulas lead to technical problems with the given amount of data, where the MCMC sampling is unable

to initiate. Therefore, they are pre-selected based on the variability of correlation coefficients reported

above and by tentatively adding covariates one by one. With respect to the three copula families, the

Clayton copula model without rotation yields the best DIC and WAIC values.

In conclusion from the model fitting, a Clayton copula with Dagum marginal for GA and Gaussian

marginal for BW emerges as the best. The predictor specifications for each of the six model parameters

ρ , p, a, b, µ and σ2 are given in Table 3.3, the respective link functions specified in Section 3.4.1 are

employed.

3.4.5 Evaluation of effects

Based on the results from Sections 3.4.3 and 3.4.4, the Bayesian bivariate distributional copula regression

model (see specification in Table 3.3) is applied to the perinatal registry data.

Significant influences, i.e., 0 ̸∈ CI95%

(︂
β
(θ)
l

)︂
, of covariates on BW’s mean are quantified in Ta-

ble 3.4. Apart from this, covariates also significantly influence other model parameters (see overview in

Table 3.3). BW’s scale (σ2) is higher for male children, in case of sectio, for higher maternal BMI and if

the mother smokes.

For the Dagum distribution of gestational age (GA), the shape parameter p is higher in case of

induction and lower in case of sectio. The shape parameter a increases with the maternal gain of weight

and is lower in case of sectio, induction and if the mother smokes. The scale parameter b increases
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3.5. COMPARISON OF STANDARD AND COPULA APPROACH PERINATAL

Table 3.3: Final bivariate copula model specification and result overview: composition of the linear
predictor η(θ) from the covariates, per parameter θ ∈ {µ,σ2, p,a,b,ρ} of the chosen marginal and
copula families, together with the employed link functions. Included covariates are marked by +, − or
◦, where + and − denote significant positive and negative effects, respectively, and ◦ is for no significant
effect in the final evaluation.

Response: Birth weight Gestational age Copula:
Family: Gaussian Dagum Clayton
Parameter: µ σ2 p a b ρ

C
om

po
ne

nt
s

of
η
(θ

)

sex (female) − −
prev. pregn. + +
sectio − + − − + +
induction + + − −
mat. age
mat. height +
mat. BMI + +
weight gain + +
smoking − + −
single ◦
employed ◦

Link: η(θ) = . . . µ lnσ2 ln p lna lnb lnρ

with the number of previous pregnancies and in case of sectio, and is lower in case of induction. If the

distribution’s

median = b ·
(︂
−1+21/p

)︂−1/a
,

the monotonically increasing link functions and the inverting transformation of the data from Equa-

tion (3.2) on page 44 are considered, these results can be qualitatively interpreted such that GA is higher

for decreasing p or b or increasing a, e.g., with increasing maternal gain of weight. But it becomes also

obvious that this interpretation is generally rather difficult. It leads to no consistent results in the case of

sectio or induction.

For the copula parameter, only the information, whether the child has been delivered by Caesarean

section, emerges as a stably estimated significant influence. Taking the intercept into account, the depen-

dence between BW and GA measured in this way turns out to be surprisingly weak, in fact not far from

independence (ρ ≈ 0.40 for children delivered by Caesarean section, ρ ≈ 0.14 for the others), although

significantly positive.

Examples of bivariate predictions depending on covariate values (levels) are shown in Figure 3.6.

See Item 6 in Appendix B.2.2 for documentation.

3.5 Comparison of standard and copula approach

A four-fold cross-validation is performed and the obtained prediction samples of BW from copula and

standard model are compared to the observed values by log-scores as in Section 3.4.3. See Item 7 in

Appendix B.2.2 for documentation.

To make the copula model’s results comparable, after estimation of the bivariate joint distribution,
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Figure 3.6: Bivariate density of birth weight and gestational age, as predicted from the copula model
with posterior mean parameters plugged in, conditional on certain selected exemplary covariate values
(the others are fixed to: maternal height: 170 cm, maternal BMI: 20 kgm−2, maternal gain of weight:
10 kg; and all others set to ‘no’ or 0, respectively).
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3.5. COMPARISON OF STANDARD AND COPULA APPROACH PERINATAL

Table 3.4: Regression coefficients (posterior mean and standard deviation) regarding the parameter µ of
(standardised) BW, estimated in the polynomial and the copula distributional regression model.

Covariate Coefficients in regression models
Polynomial Copula

sex (female) −0.2908 (± 0.0237) −0.2896 (± 0.0273)
previous pregnancies 0.0583 (± 0.0085) 0.0484 (± 0.0065)
sectio not signif. −0.2907 (± 0.0535)
induction not signif. 0.0870 (± 0.0280)
maternal age not signif. not signif.
maternal height 0.0279 (± 0.0018) 0.0290 (± 0.0015)
maternal BMI 0.0302 (± 0.0023) 0.0368 (± 0.0029)
maternal gain of weight 0.0144 (± 0.0022) 0.0249 (± 0.0024)
maternal smoking −0.0308 (± 0.0029) −0.0416 (± 0.0031)
mother is single −0.1271 (± 0.0480) not signif.
mother is employed not signif. not signif.
gestational age −2.6145 (± 0.1717)
squared gestational age 0.0112 (± 0.0007)
cubic gestational age −15E−6 (± 0.9E−6)

predictions of BW conditional on GA are of interest. To evaluate the conditional distribution with the

density from Equation (3.1) on page 42, random numbers are drawn via rejection sampling with a uni-

form envelope extended to a large enough range. Thereby, the observed GA values yk2, parameter

estimates θ̂ obtained from samples of the posterior β̂
(θ)

l ’s, and the covariate values of the respective

observations are used.

For the standard model, there results an average log-score of 7.41; for the copula model, with respect

to BW response conditional on GA, it is 7.67. Thus, the standard model designed for this specific

situation performs better than the more general copula model, when reduced to the prediction of BW.

For the vast majority of BW predictions, the distributional copula regression model is close to univari-

ate polynomial regression. The residual and comparison plots in Figure 3.7 (see Item 7 in Appendix B.2.2

for documentation) show how the models agree, especially in mean (bottom left). However, extremely

low BWs are correctly predicted by the polynomial alone (top left), while their observations diverge from

the copula model predictions (top right: fitted values are in the range of the main part of data, but resid-

uals are too far to the negative). A closer range of predictions from the copula model is also visible (top

right). The residual plot for GA from copula regression (Figure 3.7, bottom right) also reveals rather poor

prediction of extremely low values, which often coincide with very low BW; besides, there emerge two

distinguishable groups of GA predictions, presumably in connection with the highly influential sectio

and induction covariates.

Due to independent and simultaneous estimation of marginals and copula, estimates of the regression

coefficients with regard to BW’s mean are very similar in both models, but their significances differ

(Table 3.4 on page 51).
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Figure 3.7: Top: residual plots for birth weight from polynomial (left) and copula distributional (right)
regression model, each with smoothed mean and standard deviation lines; bottom right: the same for
gestational age; bottom left: predictions of birth weight from polynomial and copula distributional re-
gression model, plotted against each other per observation, with bisecting line (dotted) and robustly
estimated principal axis of the plotted data (‘direction of main point cloud’, solid); predictions for all
figures obtained from a cross-validation study.
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3.6 Discussion

3.6.1 Data quality

The secondary data from the perinatal registry have not originally been collected to be scientific material,

but for quality assurance. As such, they are nonetheless very informative with regard to procedures in

obstetric health care, like the birth mode (Caesarean section, induction), which turns out as an important

covariate. Perinatal registry data from Germany have already been used in scientific studies, e.g., by

Reeske et al. (2011).

On the other hand, measurement accuracy varies (e.g., one hospital reports birth weight (BW) accu-

rate to 1 g, another to 10 g). This holds also for gestational age (GA), where the unit of days found in the

data, instead of weeks, is not common and varying accuracy of partially rounded data is possible.

In general, GA data are subject to uncertainty of reporting, measurement, clinical estimation and

documentation (e.g., Polakowski et al., 2009), although they have been carefully checked for plausibility

in the ‘PerSpat’ project. However, the socio-economic status of a family can presumably be represented

worse than in other studies, which are designed for this purpose. Information on nationality is given, but

cannot be used like ‘ethnicity’ as found in, e.g., US studies.

Maternal smoking is self-reported and perhaps biased towards a socially desirable answer; nonethe-

less, these data are accurate enough such that an effect of smoking in line with other studies from the

literature (see Section 3.6.3) is detected despite the remaining noise.

Another issue is related to data accuracy: Although both response variables are justifiably consid-

ered as continuous, their measurement is actually not. As pointed out, BW values are but accurate up to

certain levels, and GA is given in discrete units of time. This affects the (u,v)-data after non-linear trans-

formation by CDFs in the copula framework, which are then strictly speaking not uniformly distributed.

However, modelling them conditional on covariates, the diagnostic plots above hint at adequate uniform

distributions.

3.6.2 Gestational age and dependence structure

There are strong effects of all three polynomial terms of GA in the univariate model and the increasing

trend of the mean BW along GA decreases again towards the end. This phenomenon is also reported in

other studies (e.g., Skjærven et al., 2000; Voigt et al., 1996) and could be an effect of medical decisions

to deliver foetuses with high weights rather early by induction or sectio and to avoid such treatments for

a longer time when foetal weight is low.

The dependence structure between BW and GA responses is difficult to estimate and perhaps am-

biguous. Information criteria of the non-rotated Clayton copula’s fit and of that rotated by −90° are

quite close to each other. The dependence is estimated as rather weak in terms of the copula parameter;

especially, there is no visible tail in predictions from this model (Figure 3.6 on page 50). Although these

results seem to be in contradiction to the expectation, and so one of the intended uses of the copula model

is doubtful, they can be assumed to be effects of the said trend reversal of BW in the region of very high

GA.

Prior to analysis, the Clayton copula has been assumed to be a little more appropriate for the given

data situation, as it is able to model lower tail dependence. A particularly visible dependence of GA

and BW can be found for extremely low values of these variables (Figure 3.1 on page 38). However,
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when the transformation of the GA data from Equation (3.2) on page 44 is taken into account, the lower

tail is actually located in the region of high GA, where the mean BW tends to become lower again and,

thus, the dependence may be different than in the main part of the data. Now, as the Clayton copula

without rotation is indeed fitted best to the given transformed data, the region of high GA is confirmed

to represent the actual tail and, thus, the few extremely outlying data for low GA are not reflected by this

model.

All this and Figure 3.1 hint at two tails in the data (in the regions of both high and low GA), which

cannot both be modelled by the considered copula families. In this case, the less prominent tail towards

high gestational ages (the lower tail after pre-inversion of data) would be more important due to more

observations. However, the main part of data in their ‘centre’ seems to predominate any estimation.

In any case, this estimation of tail dependence is very sensitive to GA observation. Any data inaccu-

racies, which are generally possible for GA (e.g., Polakowski et al., 2009), have an impact on regression

models.

3.6.3 Model comparison and substantive evaluation

An important benefit of the distributional copula regression model are visible differences between groups,

with respect to both scale and dependence: Figure 3.6 on page 50 shows examples of predictions, distin-

guished by sex and sectio. It becomes apparent, that the variability and structure of the response data is

deeper explained, when influences of covariates on more parameters than only the means are allowed –

unlike in a standard regression model (Section 3.5).

The relative closeness of both models’ birth weight predictions (Figure 3.7 on page 52, bottom left)

for most of the data is remarkable, as the purpose of the copula model is more general and only a partial,

one-dimensional result is considered, whilst the polynomial is more specified for the data situation.

However, when only birth weight is of interest, it remains much more efficient to stick with a univariate

regression approach.

Considering both models together, conclusions are obtained that go beyond effects of covariates on

BW. A striking example are the possible relationships between BW, GA and the Caesarean section co-

variate (cf., Tables 3.3 and 3.4 from page 49): The latter has a significant influence on BW according

to the copula model, where GA is separately estimated, while this does not hold for the standard model,

where GA is present as a significant covariate. The sectio covariate also significantly influences the

parameters of the Dagum distribution of GA in the copula model as well as the copula parameter (Sec-

tion 3.4.5). According to these results, the influence of the sectio covariate is in fact manifold (cf., e.g.,

Stotland et al., 2004), but this can only be discovered using the bivariate model, which provides more

extensive conclusions in this respect. In the standard model, the importance of the sectio covariate dis-

appears; it is presumably predominated and in parts mediated by GA. Similar considerations hold for the

induction covariate.

As a different example, both models agree with respect to the significant effect of smoking on BW

(Table 3.4). There is also an effect on GA found in the bivariate model (Section 3.4.5, Table 3.3), but

only with respect to one Dagum parameter and, thus, presumably less important. So, there seems to be

no mediation by GA in the standard model. The influence of smoking on both BW, GA and on the risk

of pre-term birth or ‘small for GA’ has also been found in many studies with univariate responses (e.g.,

Ko et al., 2014; Polakowski et al., 2009; Kyrklund-Blomberg and Cnattingius, 1998; Li et al., 1993).
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3.7 Conclusions

For regression analyses regarding birth weight (BW), the bivariate modelling jointly with the gestational

age (GA) emerges as very productive. The results allow insights into the relationships between these two

variables and others, e.g., Caesarean section, avoiding mediation.

Distributional regression, where any parameter of the bivariate distribution is estimated conditional

on covariates, is an appropriate instrument to explain the variability and structure of the perinatal registry

data in more depth. While a Gaussian distribution is well fitted to the marginal BW data, the heavily

skewed GA data are better modelled by the more flexible Dagum distribution. Effects of many explana-

tory variables on both BW and GA can be distinguished. A copula model is useful to simultaneously and

independently estimate the dependence structure and the marginals. The perinatal data are fitted better by

the lower-tail Clayton copula than by the Gaussian and the Gumbel. However, the estimated dependence

is weak and the result not entirely convincing with regard to possible tail dependence.

As the trend of BW along GA tends to reverse and BW becomes lower again for observations with

very high GA, this bivariate structure may be more asymmetric than what the Clayton copula can cope

with. The effect of GA on BW is better explained by a univariate polynomial regression, especially

regarding data outside the main cloud of observations.

The models allow the inclusion of the local PFOA concentration in drinking water as an additional

environmental explanatory variable, spatio-temporally assigned using the mother’s postal code and the

date of birth (Chapter 4).

3.8 Perspectives

The employed Dagum distribution fits well to the strongly asymmetric GA data, but other families might

also be suitable. They should be just as flexible and, therefore, have several parameters including shape,

even when the structure of results is unfavourable for substantial interpretation. By contrast, a Gaussian

distribution assumption is not implausible for BW conditional on covariates, and it should be preferred

for the sake of interpretability and comparability of results, despite slight model fit discrepancies.

Since the available methods cannot reflect further asymmetry but the latter is likely and visible in

bivariate plots of data (Figure 3.1 on page 38) and residuals (Figure 3.7 on page 52), other copula families

as well as specific data transformations might be useful for complicated bivariate response data shapes

as here. E.g., the skewed t-copula allows for strong asymmetry and non-linearity (Sun et al., 2008),

but estimation and interpretation of the multiple parameters are inconvenient compared to the applied

one-parametric representation of dependence structure.

When observations with low BW and low GA are of particular interest, it is recommendable to stick

with the conventional approach to model the binary response ‘small for GA’ instead of continuous BW

data. In the same distributional regression context with copulas as here, ‘small for GA’ is modelled

jointly with GA by Klein et al. (2019). Another approach is an extreme value copula (Gudendorf and

Segers, 2010), as there are few data in this region of interest; while it has not been possible to properly

model the ‘angle’ of the tail in preliminary frequentistic studies using the Galambos copula, this issue

has to be further addressed.
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Chapter 4

Data integration and evaluation

It is possible to assess effects of PFOA contamination in drinking water on perinatal parameters, in

particular on the newborn children’s weight, by integrating the exposure data modelled along space and

time in Chapter 2 into appropriate models for birth data as developed in Chapter 3. Using the copula

model, this analysis is restricted to data from the town of Arnsberg, which have mainly been worked

with in Chapter 3, mostly for computational reasons and the town’s distinctive role as the most affected

place in NRW.

In this chapter, the result of this combined model is reported along with a number of preliminary

considerations and preparation steps. The latter include the necessary spatial realignment of data, as

the spatial level of the drinking water supply areas differs from that of the perinatal data (postal codes).

Furthermore, some aspects on the assignment of individual exposure information as well as possible

other spatial effects have to be considered.

Much of this work is related to the Arnsberg cohort introduced in Section 1.3. The participants are not

included in the perinatal registry data set, as the children are born around the year 2000, and would not

be identifiable anyway. But data from this biomonitoring study group serve to explore the relationships

between external and internal exposure, and so to reason that usage of drinking water data is meaningful.

This chapter begins with reports on related sub-projects (Section 4.1). One of these is to explore

the relevance of spatial relationships within the perinatal data set, not considering the PFOA exposure;

spatial autocorrelation of the mean birth weight as well as possible influences of urbanity and air pollution

on it are estimated (Section 4.1.1). Furthermore, data from the Arnsberg cohort and its control groups

are used to explore the temporal progression of PFOA concentrations in blood serum (i.e., the internal

exposure) after the end of the major contamination; influences of consumption behaviour, estimated

external exposure and biometric covariates on the internal exposure are also estimated (Section 4.1.2).

Section 4.2 explains several steps of the assignment of individually modelled PFOA exposure val-

ues to residents. Starting with the realignment issue, common solutions from the literature are briefly

reviewed and their applicability to the given situation is evaluated in Section 4.2.1. The ultimately pre-

ferred simpler approach using population density data is outlined in Section 4.2.2. Section 4.2.3 focuses

on the town of Arnsberg as an example to explain the spatial structure of the drinking water supply and

the deduction of local contamination values on postal code level. The internal exposure is addressed

in Section 4.2.4, where the spatio-temporal predictions from Chapter 2 are used in a pharmacokinetic

model. The perinatal data from Arnsberg, combined with modelled drinking water data, are evaluated in

Section 4.3, followed by some concluding remarks in Section 4.4.

56
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4.1 Preliminary and related studies

4.1.1 Urbanity, air pollution and birth weight in NRW

Within the ‘PerSpat’ project, Ganme (2017) has worked on geographical structures in the NRW registry

data regarding birth weight and on associations between birth weight, air pollution and urbanity, referring

to Romão et al. (2013) and Basu et al. (2014), among others:

The birth weight data have been spatially aggregated by averaging, first on their natural level of

postal codes, later on the level of cities and municipalities to match the air pollution data. The population

density in the areal units has been used as the measure of urbanity. A spatial autocorrelation of mean

birth weight (i.e., correlation between neighbouring postal codes or municipalities) has been confirmed

by spatial autoregression models. Significant effects of the spatially varying factors of population density

and various air pollutants on mean birth weight have been found, but also collinearity between the factors.

To further explore the spatial structure of the perinatal data, Kohlenbach (2019) has applied a regres-

sion model on individual level and afterwards aggregated the residuals on postal code level. There is a

correlation between these mean residuals and the area sizes. As smaller postal code areas are usually

found in urban regions, this is another hint that urbanity correlates with birth weight.

Perspectively, when spatially analysing perinatal data, a spatial structure of some individual covari-

ates should be taken into account, usually as random effect in a mixed model. E.g., ‘ethnicity’ (unlike

nationality) as found in US studies would be subject to spatial analyses, since the ‘ethnic’ composition

of the population may vary within a state, especially between urban and rural regions.

4.1.2 Studies on the Arnsberg cohort

Beside the major works by Hölzer et al. (2008); Hölzer et al. (2009); Hölzer et al. (2011); Bacher

(2020), additional smaller studies on the human biomonitoring cohort from Arnsberg, NRW, and its

control groups (cf., Section 1.3) have been conducted within the ‘PerSpat’ project. Graphical and regres-

sion analyses on the temporal progression of PFOA concentrations in blood (internal exposure) include

data on individual tap water consumption behaviour, among others, and estimations of the local water

contamination based on models from Chapter 2.

Overall, a decrease of the internal exposure is clearly visible for both adults and children from Arns-

berg. When logarithmic PFOA concentrations are considered, this trend is linear for several years from

2006 on. This corresponds to an exponential decay, such that the decrease is proportional to the current

value, which allows a reliable estimation of the biological half-life. Measurements from successive years

are strongly correlated, but this correlation becomes weaker with an increasing time lag. Including data

from the 2017 follow-up, the decrease becomes slightly weaker in later years, especially for the now

adolescent girls. For the latter, the trend is also observed along the individual age instead of time.

A visible, but very weak linear decrease of logarithmic PFOA concentrations is also found for

the control groups, which have not been affected by specific environmental contamination events with

PFASs, but are exposed at background level. Anglers fishing from the contaminated lake Möhne are

grouped by their internal exposure; those who report to eat fish several times a week are over-represented

in the high level groups. For mothers from Arnsberg who report to have given birth to another child, the

internal exposure visibly decreases more in the respective year, albeit very weakly.

In cross-sectional regression models for adults from Arnsberg for several years, significant influences
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of age, sex and body mass index (BMI) on the internal exposure to PFOA are found. Older and female

participants are thus more exposed, while a higher BMI is associated with lower exposure. Sex and

age also significantly influence the differences of PFOA concentrations between the first examination in

2006 and those 4 years later, where older and female participants show a slower decay in their internal

exposure.

When the estimated external exposure via drinking water is taken into account, there is also a signifi-

cantly positive effect of the presumed PFOA intake about 2006 on the blood concentrations in the course

of time. In contrast, the later minor intakes have no effect.

The longitudinal analyses suffer from a rather large number of missing values, as many participants

have not taken part in all follow-up examinations.

4.2 Assignment of individual exposure to PFOA

Daily estimations of the PFOA concentrations in drinking water are modelled on the spatial level of

water supply stations and, afterwards, of so-called water supply areas (Chapter 2). However, these are

still spatially misaligned to the perinatal registry data, which comprise of individual birth records but are

spatially allocated on postal code level. Below, this issue is first addressed in general (Sections 4.2.1

and 4.2.2), and afterwards illustrated for the particular relevant town of Arnsberg (Section 4.2.3).

There also remains the question of appropriate temporal assignment, i.e., which point or period of

time within the water contamination process can represent the individual exposure that is relevant for

influencing birth weight. The assumed long biological half-life of PFOA is important here. Addressing

this issue is one of the purposes of modelling the temporal progression of PFOA concentration in the

human organism, as presented in Section 4.2.4.

4.2.1 Spatial realignment approaches

In the given situation, there are two spatial data sets of disparate resolution (misalignment, a block-to-

block change-of-support-problem). The second division of space is not a refinement of the first, but can

deviate from it in every respect (non-nested, cf. Mugglin et al., 2000). Overviews of the situation and

solution approaches can be found in, e.g., Gelfand et al. (2001) and Gotway and Young (2002).

A joint analysis of misaligned spatial structures is also possible by transition to continuous models by

infinitesimal refinement of the resolution. A Bayesian Poisson-Gamma point process model is developed

by Wolpert and Ickstadt (1998). Best et al. (2000) base an epidemiological Poisson regression with

individual and spatial covariates on this. Model comparisons with Poisson-Gamma and semi-parametric

approaches can be found in Best et al. (2005) and Sturtz and Ickstadt (2014). However, these and

other epidemiological methods are usually restricted to count data. While these have been extensively

researched on, especially concerning disease frequencies, Gaussian and other continuous responses, as

needed in the ‘PerSpat’ project, are comparatively rare in spatial epidemiology. Within the ‘PerSpat’

project, Goeken et al. (2013) have fitted Markov random field models under certain restrictions, which

do not allow for individual covariates, unlike point process models.

Various approaches to handle spatially misaligned data sets are considered. Kohlenbach (2019) has

explored their applicability to the situation within the ‘PerSpat’ project:
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The general change-of-support-problem is outlined by Gelfand et al. (2001) and there addressed by

Bayesian Kriging. The approach is extended to hierarchical regression by Zhu et al. (2003). Because the

data cannot be considered as continuous in space (at least for drinking water), as required, this approach

turns out not to be directly applicable.

Estimation of spatial processes to solve the problem by means of geostatistics is described by Gotway

and Young (2007), specialisations by Krivoruchko et al. (2011). This approach is generally applicable

to model one of the data sets and so to obtain predictions at the spatial level of the other. However,

the estimation of the required correlation matrix has been practically difficult and resulted in extremely

varying and even negative predictions of PFOA concentrations. For the moment, a fixed correlation

matrix of the water supply areas based on river dependency and the estimated station-to-area-supply

proportions has been used to apply the algorithm.

Mugglin et al. (2000) consider all intersections (‘atoms’) of the areal units of both data sets and esti-

mate the variables’ distribution parameters on atom-level in Bayesian hierarchical models. The approach

is adapted to a spatial grid structure by Agarwal et al. (2002). As it is only elaborated for count data,

Kohlenbach (2019) considers the number of births with low birth weight per areal unit, together with the

local PFOA concentration and covariates from the perinatal registry data, aggregated in the areal units.

However, the MCMC evaluation did not produce stable, plausible estimates, perhaps due to a violated

Poisson assumption.

4.2.2 Realignment using population density

An individual, simpler realignment approach is ultimately preferred over those from Section 4.2.1. As

reported in Kolbe et al. (2019a), a postal area’s PFOA concentration is averaged from the respective

overlapping water supply areas, weighted by population density data from the German national census

of 2011 (Statistische Ämter des Bundes und der Länder, 2015):

The population density is given on a grid of 100m× 100m cells by the number of inhabitants per

cell. This resolution is fine enough compared to both postal code and drinking water supply areas and

also compared to their intersections (‘atoms’ as considered by Mugglin et al., 2000).

The PFOA concentration is known for any atom, and so is the number of inhabitants per atom.

Using these numbers, a postal area can be interpreted as a weighted sum of its atoms, and its PFOS

concentration calculated as the respective weighted mean.

In this way, the estimation of the external exposure to PFOA for the population of a postal code area

is not biased, when a sparsely populated part is supplied with water with a different PFOA concentration

than in the main part. Since no more precise location information than the postal code is known for the

data of the perinatal registry, this approach is the best possible and correct on average.

4.2.3 Arnsberg contamination assessment

The town of Arnsberg is of particular interest due to comparably high PFOA contamination of drinking

water resources, namely the rivers Möhne and Ruhr, from about 2003 until about 2007 (Skutlarek et al.,

2006; Hölzer et al., 2008). As consumption of contaminated drinking water is supposed to account for

the major part of the human external exposure (Section 1.1 and references therein), it is reasonable to use

PFOA concentration in drinking water as a surrogate marker, at least as a local average. However, the

individual internal exposure (PFOA concentration in blood serum) may not be well represented by these
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data without information on individual water consumption, time of residence and additional biometric

data; these aspects are elaborated in another sub-project within ‘PerSpat’ briefly reported in Section 4.2.4.

Estimated PFOA concentrations in the Arnsberg drinking water are included as an additional ex-

planatory variable to the linear predictors of the regression models selected in Chapter 3. They are

spatio-temporally assigned to the perinatal data by postal code (Section 4.2.2) and day of birth. Re-

garding the latter, a time-lag of one year is employed (Section 4.2.4), such that, e.g., the local drinking

water contamination of the future mother’s postal code area on 15 April 2007, is used for a perinatal data

observation from 15 April 2008.

Every water supply area within Arnsberg is supplied by a single station. Four of the five postal code

areas are uniquely located within a water supply area. The westernmost postal code area comprises

several districts and is divided between four water supply areas, so their values are averaged. With that,

the lowest PFOA concentration is obtained in the eastern part of the town (supplied by a Ruhr-dependent

station upstream of the Möhne mouth). In the western part (supplied from Möhne and Ruhr, but also

from stations using non-contaminated groundwater), the average concentration in 2006 is about four

times higher. Finally, in the central part (solely supplied from the Möhne), it is almost twice as high

again. An example of this spatial exposure situation for Arnsberg can be found in Figure 4.1.

The earliest measurements at water supply stations are from the middle of 2006, after the contami-

nation has been discovered and assumed to have started two to four years earlier (Skutlarek et al., 2006;

Hölzer et al., 2008). Thus, the exact temporal progression of the PFOA concentrations in drinking water

is not known, nor to be reliably modelled as in Section 2.4, for the interesting early period of time. For

the moment, a linear increase is presumed, starting at the the limit of quantification of 10 ng/l in the

middle of 2003 and ending at station-specific values obtained from the model results for the middle of

2006. This is based on the provisional presumption that the polluted soil conditioner had been steadily

brought out in the course of the years. In fact, there are neither records on the discharge nor on the

PFOA concentrations in the soil conditioner, and the process of the solution of PFOA in water and of

the washout is more complex. For the later period of time from the middle of 2006 on, daily predictions

from the station-specific models in Section 2.4 are used, which are significantly declining in the course

of time.

4.2.4 Internal exposure modelling

The question whether and how to conclude from the PFOA contamination in the local drinking water

(external exposure), via a certain amount of water intake by the residents, to the concentration of PFOA

in blood serum (internal exposure) is an important step within the ‘PerSpat’ project: It has been addressed

by Kolbe et al. (2019b) and continues to be worked on. Shin et al. (2011b) is the principal reference and

an important example for modelling and verification of the internal exposure to PFOA following an

environmental contamination incident.

The concentration in drinking water decreases within rather short periods of time, after the contami-

nation process in the environment is interrupted (cf., data and model results in Chapter 2), and even more

rapid after interventions like filtering measures (cf., Figure 2.4 on page 14). In contrast, the internal

exposure is very stable, due to the long biological half-life, so it needs a long time for a decrease in the

environment to take effect here.

The respective physiological process is represented by a simplifying one-compartment pharmacoki-
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Figure 4.1: Schema of the water supply of the town of Arnsberg in the upper Ruhr region, NRW, Ger-
many. The town is partly supplied from formerly contaminated rivers, its districts being affected to
varying degrees. The contamination risk is given in relative, dimensionless units, roughly estimated
from modelled data (Chapter 2) for the middle of the year 2006.

netic ADME model (absorption – distribution – metabolism – excretion). It depends on the individual

body weight and age, as associations with the PFOA concentration in blood serum are found for both of

them in the Arnsberg cohort study (Hölzer et al., 2008; Hölzer et al., 2009; see also Section 4.1.2). The

absolute amount of PFOA in the body (here denoted by Mt for a point of time t) is the product of blood

concentration, body weight and the volume of distribution, a physiological constant. Changes within the

period from time t0 to t1 are modelled to be

Mt1 = Mt0 · e−κ +Dt1−t0

(︃
1− e−κ

κ

)︃
,

where κ is an elimination constant determined by the biological half-life. The PFOA intake Dt1−t0 during

this period of time is the product of the concentration in water and the individual tap water consumption,

to which a certain background exposure is added and all is downweighted by a bioavailability constant.

Consumption is age-specifically presumed to be in accordance with the German national nutrition survey

(Heuer et al., 2015). The individual age is also needed for modelling the total intake caused by back-

ground exposure. In this context, a starting value M0 has to be determined; it is presumed that there
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was no additional environmental contamination in NRW (Section 1.2) until 2002 (Skutlarek et al., 2006;

Hölzer et al., 2008) and, thus, only background exposure has to be respected for this period. A special

model is set up for children, where the body weight is presumed to increase over time.

The local PFOA concentration in water is estimated by spatial realignment as described in Sec-

tion 4.2.2. Thereby, the water supply areas’ concentrations have been deduced from those of the respec-

tive water supply stations using the weight matrix from Section 2.5. The stations’ values are taken from

the models in Chapter 2. All this is modelled per day.

The model is verified using blood sample data from mothers in the Arnsberg cohort and the control

group, with 150 participants each and several observations in the course of the years. The predictions

from the model, using individual body weight and age, generally agree well with the observations on

average, although predictions are slightly too high for some age groups. In the model result, the affected

group from Arnsberg and the control group are well distinguishable. However, the observations feature a

much wider variance than the modelled values, presumably due to unknown or unconsidered individual

effects. Individual tap water consumption is not respected, as the corresponding survey data are not

thoroughly complete, accurate and comparable.

To conclude, for persons with a high external exposure at the beginning, later minor concentration

peaks in water as well as later periods of lower contamination are hardly relevant for the progression

of the internal exposure. Furthermore, a time-lag between the peaks of external and internal exposure

of a few months up to a year is recognisable. Therefore, the PFOA concentration in the local drinking

water one year before a birth event is considered relevant for possible influences on perinatal parameters.

Perspectively, the total external exposure over a longer period of time is equally reasonable.

The model verification is limited to data from younger female participants, but these are of principal

interest for the ‘PerSpat’ project. The assessment of water contamination prior to 2006 is still problem-

atic; for the moment, a linear increase is presumed (cf., Section 4.2.3), as the polluted soil conditioner

had been steadily brought out in the course of the years. Physiological constants have to be fixed as

model parameters; in particular, various values of the volume of distribution (Thompson et al., 2010;

Shin et al., 2011b) and of the biological half-life (Table 4.1) are plausible and have been reported; the

rather short half-life of 2.3 years deduced by Bartell et al. (2010) leads to predictions which fit best to

the cohort data.

4.3 Effect evaluation for Arnsberg perinatal data

With regard to a possible effect of PFOA, a first and preliminary substantive evaluation of the models

developed in Chapter 3 is conducted.

The 4451 complete observations from the perinatal registry data are considered, where the postal

code of the mother’s residence is from Arnsberg (Section 3.1). As no individual information on tap water

consumption or a more precise place of residence is given, the spatio-temporal assignment of average

PFOA contamination outlined in Section 4.2.3 is employed and the respective values are included per

postal code and day of birth as an additional explanatory variable to the perinatal data.

Applying both the standard polynomial and the distributional copula regression, no significant linear

effect of the modelled PFOA concentration is found with either.

A simplified representation of this temporally structured covariate is also experimentally included
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Table 4.1: Biological half-life estimates for PFOA in human organism.

Source Study group Sample Median 95% Confi-
size (years) dence interval

Olsen et al. (2007) retired production workers 26 3.4 [3.0, 4.1]
(2 female)

Brede et al. (2010) Arnsberg cohort 65 3.3
Bartell et al. (2010) exposed adults 200 2.3 [2.1, 2.4]

(C8 health project)
Seals et al. (2011) highly exposed adults 602 2.9 [2.3, 3.8]

(C8 health project)
Seals et al. (2011) less exposed adults 971 8.5 [7.1, 10.1]

(C8 health project)
Zhang et al. (2013) young females 20 1.8 stand. err.:

0.3
Zhang et al. (2013) males and 66 1.7 stand. err.:

older females 0.4
Russell et al. (2015) general population (modelled) 2.4
Li et al. (2018) formerly exposed 106 2.7 [2.5, 2.9]

children and adults

to the models, as a first exploration of possible temporal effects: A dummy variable states whether an

observation is from the years of 2004 until 2007 (with regard to the time-lagged PFOA variable) and,

thus, from within the period of presumed very high PFOA concentrations in drinking water, but with no

significant effect resulting.

If, on the other hand, the linear time itself over the entire observation period is included as a covariate,

it shows a significant, but extremely weak effect on the mean parameter of birth weight, which decreases

in the course of the years.

These and other aspects are currently used for further developments within the ‘PerSpat’ project

to better represent the internal exposure and thereby gain more reliable results for a PFOA effect (cf.,

Sections 4.2.4 and 4.4).

4.4 Discussion and perspectives

A possible effect of PFOA on perinatal variables is supposed to be weak and difficult to measure, com-

pared to influences of other environmental exposures such as maternal smoking (Section 3.6.3) or air

pollution (Section 4.1.1). Therefore, and as there remains much noise in the perinatal data after either

model fit, it is not surprising not to find an effect of PFOA.

Furthermore, there are complex relationships and uncertainties on the path between drinking water

contamination and internal exposure. Shin et al. (2011b) give an important example of modelling and

verification of the internal exposure to PFOA, using their assessment of the local drinking water contam-

ination (Shin et al., 2011a). For the ‘PerSpat’ project, similar considerations, pharmacokinetic modelling

and comparisons using the Arnsberg cohort data are briefly reported in Section 4.2.4. However, important

information on an individual level needed for that are not given in the perinatal data.

The other way around, data from the children in the Arnsberg cohort can be analysed with models

from Chapter 3, as far as possible with the smaller number of observations. Here, the individual internal

63



INTEGRATION 4.4. DISCUSSION AND PERSPECTIVES

PFOA burden is known, but perinatal data, especially birth weight and gestational age, would have to be

collected retrospectively. However, these children are born around the year 2000 and so are presumably

not affected by a major contamination event before or during pregnancy. The focus of analyses in this

cohort is mainly on possible adverse effects on the later development (Section 1.3).

PFOA’s long biological half-life of several years is important for the reason of the study, but estima-

tions vary (Table 4.1), such that an important model assumption is uncertain. This makes it difficult to

decide on a point or period of time, where concentrations in water correspond to the individual burden

during pregnancy (cf., Section 4.2.4), even when equal and constant tap water consumption is assumed.

In addition, for the whole of NRW, the mothers’ consumptions have not been recorded in the perinatal

data set.

To deeper explain perinatal data, more complex generalised additive models, especially using splines,

could be considered, where non-linear relationships are possible (Fahrmeir et al., 2004). This holds for

the temporal modelling of PFOA concentrations, but also for the spatial dimension in future studies

when larger regions are considered. There, further information such as neighbourhood of postal codes or

water supply relationships could be used. Since lower birth weights are observed in some urban regions,

an according spatial dependence structure can also be included (Section 4.1.1). This and other model

enhancements may make it possible to more easily detect even very weak effects.
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Chapter 5

Reflections

This study consists of two main parts of an epidemiological secondary data analysis, presented in Chap-

ters 2 and 3. The first part deals with modelling the environmental factor of perfluorooctanoic acid

(PFOA) concentration in drinking water for assessment of the external exposure. The second part con-

sists of a regression analysis of perinatal data, where the birth weight as the outcome of interest and a

number of important other explanatory variables are included. Both parts are of interest as statistical

analyses of complex data structures, both enable important insights to substantive matters and allow for

future applications in other fields with similar data situations.

The original question and ultimate goal of the ‘PerSpat’ research project is the potential effect of

PFOA and other per- and polyfluoroalkyl substances on foetal development. However, this fades into

the background for the time being, as the two main issues of this study have to be addressed first. Later,

the original question becomes an application of the developed models (Section 4.3). Moreover, the

reported negative result is restricted to one location, lacks some deeper biological considerations on

PFOA pathways, and is, therefore, somewhat preliminary within ‘PerSpat’. To complete the approach

and to strengthen these aspects, related research is currently conducted in another sub-project with a

more medical point of view. Starting with Kolbe et al. (2016) and Kolbe et al. (2019b), computationally

easier regression analyses of the whole perinatal registry data are performed using the PFOA exposure

predictions obtained above.

Given the challenging data situation and the fact that models are considered or developed in parts of

the analyses, which are rather complicated in terms of structure or computational effort, the results are

surprisingly simple. It becomes apparent once again that highly refined models need to be matched by

equally sophisticated data quality with complete background information.

For instance, when modelling PFOA concentrations jointly from all water supply stations along the

river Ruhr, the relevance of the river’s segments is obvious, but more local trends cannot be distinguished.

Individual effects of stations may depend on properties such as partial groundwater usage, of which no

precise information is available. The variability of individual measurements outweighs such random

effects. As a result from such and other imponderables like estimated area supply proportions, risk

assessment for PFOA in drinking water may be reliable on average but is still subject to uncertainty.

However, the developed approaches are transferable to nearly any persistent substance solute in surface

waters.

Remaining noise is also found when modelling the perinatal registry data, mainly caused by natural

fluctuations, since a highly variable and individual process is observed. Despite of this, data are accu-
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rate enough to gain relevant insights, which are of interest for gynaecological and obstetric research in

general. Joint modelling of birth weight and gestational age as a bivariate outcome is confirmed to be

important to distinguish effects on both variables, on each of them separately, and between them, in par-

ticular with regard to explanatory variables like Caesarean section or maternal smoking. In this situation,

Bayesian distributional regression is very useful to reveal structures in the data beyond effects on the

means.

However, the applied copula model in distributional regression is computationally demanding, i.e.,

long-running and in some cases unstable. The estimability of the conditional dependence between the

two outcomes is technically limited. Analyses have to be restricted to a small subset of the perinatal

registry data; this is contrary to the purpose of a large-scale secondary data analysis, which results in a

dilemma between data usage and applicability of models. On the other hand, too small an amount of data

may also lead to a lack of computability. For the time being, while the complex model proves somewhat

unsuitable for practical daily application, it is more efficient to focus on a simpler approach, like the

applied polynomial regression. An easier representation of dependencies is another option. For future

applications to the large data set, the technical realisation of the copula distributional regression will be

adapted accordingly. In any case, allowance for non-linearity and asymmetry should be preserved.

All this renders it very difficult to determine a possible effect of PFOA on perinatal parameters from

the given material in a serious manner, the more as the effect is presumed to be comparably weak.

However, the considerations and developments on the path to this goal prove useful in their own right,

for other applications and for gaining substantive knowledge.
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Skøien, J. O., Merz, R., and Blöschl, G. (2006). Top-kriging-geostatistics on stream networks. Hydrology

and Earth System Sciences, 10(2), 277–287.
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Appendix A

Additional figures on drinking water
contamination
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Figure A.1: River network in NRW relevant for drinking water supply: Every vertex represents a river
segment between two important junctions, with the most affected Ruhr and Möhne region coloured as in
Figures 2.8, A.3 and A.4 The paths represent the connection along the course of the water.
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Figure A.2: PFOA concentration per water supply area measured in the respective network. The data
closest to 1 July 2006 are used. Where no network samples are available, the respective supplying sta-
tions’ measurements are averaged with weights according to Section 2.5. (With the limit of quantification
at 10 ng/l, the respective areas in light yellow are below it.)
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Figure A.3: Predictions (estimates and approximate 95% confidence intervals of the expected value)
of the PFOA values from 2006 until 2009, from GLMs with Gaussian distribution and inverse link,
individually for each station along the river Ruhr (page 1/3).
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Figure A.3: PFOA predictions for six points of time (page 2/3).

83



ADDITIONAL FIGURES ON DRINKING WATER CONTAMINATION

●

●
●

●

● ●
● ●

●

●

● ● ●

●

●

●

● ●
● ● ● ●

●
●

● ●

0
50

10
0

15
0

20
0

25
0

pr
ed

ic
te

d 
P

F
O

A
 [n

g/
l] 

fo
r 

1 
Ju

ly
 2

00
8

Water supply station

H
en

ne
no

hl

In
se

l

M
en

ge
so

hl

S
to

ck
ha

us
en

La
ng

el

(M
öh

ne
 m

ou
th

)

E
ch

th
au

se
n

W
ar

m
en

F
rö

nd
en

be
rg

R
uh

rt
al

H
al

in
ge

n

H
en

gs
en

V
ill

ig
st

E
rg

st
e

W
es

th
of

en
 1

W
es

th
of

en
 2

(L
en

ne
 m

ou
th

)

H
en

gs
te

y

V
ol

m
ar

st
ei

n

R
uh

rs
tr

aß
e

W
itt

en

S
tie

pe
l

E
ss

en
−

H
or

st

E
ss

en
−

Ü
be

rr
uh

r

E
ss

en
−

K
et

tw
ig

D
oh

ne

S
ty

ru
m

 O
st

S
ty

ru
m

 W
es

t

−> Upper Ruhr −> −> Middle Ruhr −> −> Lower Ruhr −>

●

●
●

●

●
● ● ●

●

●

● ● ●

●

●

●
● ●

● ● ● ●
●

●
● ●

0
50

10
0

15
0

20
0

25
0

pr
ed

ic
te

d 
P

F
O

A
 [n

g/
l] 

fo
r 

1 
Ja

n 
20

09

Water supply station

H
en

ne
no

hl

In
se

l

M
en

ge
so

hl

S
to

ck
ha

us
en

La
ng

el

(M
öh

ne
 m

ou
th

)

E
ch

th
au

se
n

W
ar

m
en

F
rö

nd
en

be
rg

R
uh

rt
al

H
al

in
ge

n

H
en

gs
en

V
ill

ig
st

E
rg

st
e

W
es

th
of

en
 1

W
es

th
of

en
 2

(L
en

ne
 m

ou
th

)

H
en

gs
te

y

V
ol

m
ar

st
ei

n

R
uh

rs
tr

aß
e

W
itt

en

S
tie

pe
l

E
ss

en
−

H
or

st

E
ss

en
−

Ü
be

rr
uh

r

E
ss

en
−

K
et

tw
ig

D
oh

ne

S
ty

ru
m

 O
st

S
ty

ru
m

 W
es

t

−> Upper Ruhr −> −> Middle Ruhr −> −> Lower Ruhr −>

Figure A.3: PFOA predictions for six points of time (page 3/3).
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Figure A.4: Predictions of the PFOA values for all stations along the river Ruhr, from GLMs with
Gaussian distribution and inverse link, for the respective periods of time in which data are available for
the station.
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Appendix B

Documentation

B.1 Data sources and availability

Due to the partly restricted data availability, and as the ‘PerSpat’ project group does not hold the copy-

right for any of the data sets, it is not possible to deposit them in a public repository.

• Measurement data from the relevant drinking water supply stations along the river Ruhr are pub-

licly available from the LANUV at www.elwasweb.nrw.de/elwas-hygrisc/twbericht/pf

t tw.php?exhibit-use-local-resources (12 June 2021).

• Other measurement data from the drinking water supply as well as further information (see Ta-

ble 1.1) have been confidentially provided by the LANUV and some water supply station operators

to the Department of Hygiene, Social and Environmental Medicine of the RUB.

• Some of the maps have been produced using geographical data from the German Federal Agency

for Cartography and Geodesy (© GeoBasis-DE / BKG, 2019; license: www.govdata.de/dl-de

/by-2-0; data: wms vg250-ew, wfs dlm1000).

• The perinatal registry data are available from the quality assurance office (Geschäftsstelle Quali-

tätssicherung, qs-nrw) located at the medical association Westphalia-Lippe. Restrictions apply to

the availability of these data, which are used under license for the ‘PerSpat’ project, and so are not

publicly available. These data can only be accessed on the premises of qs-nrw.

• Data from the Arnsberg biomonitoring cohort and its control groups are administered by the De-

partment of Hygiene, Social and Environmental Medicine of the RUB and are confidential.

• Population density data from the German national census are publicly available at www.zensus20

11.de/DE/Home/Aktuelles/DemografischeGrunddaten.html

(12 June 2021).

B.2 Overview on computational steps

Commented programme code files in R, Stan or BayesX, respectively, are available from the public

repository OSF at https://osf.io/rfn8q/?view only=644fff3f6c5d428398404faafeb648af.

They consist of exemplary code snippets and functions, to make the procedures transparent, which are

reported in the essential parts of Chapters 2 and 3, although no data can be published alongside. The
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B.2. OVERVIEW ON COMPUTATIONAL STEPS DOCUMENTATION

calculations are not documented in full; rather, repetitions of similar steps (e.g., with other covariates),

data loading and writing, or standard applications are omitted or noted in comments.

Specifically, the essential analysis steps for the drinking water contamination data are listed in Sec-

tion B.2.1 and for the perinatal registry data in Section B.2.2. Documentations regarding other parts

of this dissertation are refrained from, as far as they are from other sub-projects within ‘PerSpat’, not

meaningful without the actual data, preliminary, or inessential.

B.2.1 Drinking water contamination analyses

The subdirectory 2 water contains the following files, representing essential parts of the drinking water

data analyses in Chapter 2, Sections 2.4, 2.5 and 2.6:

1. The file

• 1 prelim transf.R,

written in R, contains preliminary studies in search for regression models for measurements de-

pending on time, with pre-transformation of data or time using fractional polynomials (Section

2.4.1).

2. The file

• 2 station wise glm.R,

written in R, contains GLM applications for PFOA measurements depending on time, individually

for all water supply stations, in search for the optimal combination of distribution family and link

function (Section 2.4.1) with results for the best fitting GLM (Section 2.4.2).

3. The file

• 3 supply proport.R,

written in R, contains the estimation of water supply proportions (shares, how much of a supply

area’s water stems from a water supply station) from Section 2.5.

4. The files

• 4a ruhr mixed.R and

• 4b ruhr mixed bayes.R,

written in R with Stan code included, contain mixed model applications for PFOA measurements,

jointly for all water supply stations along the river Ruhr, with several preliminary variations (Sec-

tion 2.6.2) and with random effect distributions per river segment (Section 2.6.3), respectively.

B.2.2 Perinatal data analyses

The subdirectory 3 perinatal contains the following files, representing essential parts of the perinatal

data analyses in Chapter 3, Sections 3.3, 3.4 and 3.5:

1. The file

• 1 fractional polynomials.R,
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DOCUMENTATION B.2. OVERVIEW ON COMPUTATIONAL STEPS

written in R, contains a preliminary study of fractional polynomials to find a parametric function

of the gestational age in a regression model for the birth weight (Section 3.3).

2. The files

• 2a gaussian marginal.txt and

• 2b dagum marginal.txt,

written in BayesX, contain the marginal distributional regression models: a Gaussian for the birth

weight and a Dagum distribution for the gestational age (Section 3.4.3).

3. The files

• 3a marginal choice logscores.R and

• 3b marginal choice pit qr.R,

written in R, contain the procedures to compare the fit of marginal Gaussian and Dagum distri-

butions for birth weight and gestational age, by log-scores and by diagnostic plots, respectively

(Section 3.4.3).

4. The file

• 4 conditional correlation.R,

written in R, is to calculate plots of correlations of birth weight and gestational age conditional on

covariates (Section 3.4.4).

5. The files

• 5a gaussian copula.txt,

• 5b clayton copula.txt and

• 5c gumbel copula.txt,

written in BayesX, contain the three possible copula distributional regression models for the joint

distribution, with a Gaussian, a Clayton and a Gumbel copula, respectively (Section 3.4.4).

6. The file

• 6 copula prediction plots.R,

written in R, is to calculate contour plots of two-dimensional predictions from the Clayton copula

model for birth weight and gestational age (Section 3.4.5).

7. The files

• 7a copula vs polynomial logscores.R and

• 7b copula vs polynomial plots.R,

written in R, contain the cross validation study to compare the fit of the bivariate Clayton copula

model (afterwards reduced to the distribution of birth weight conditional on gestational age) to

the univariate polynomial model for birth weight, by log-scores and graphically by predictions,

respectively (Section 3.5).
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