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Abstract

The adaptive charging algorithms of today divide the available charging capacity of a charg-
ing site between the electric vehicles without knowing how much current each vehicle
draws in reality. Thus, they are not able to detect deviations between the current set point
at the charging station and the real charging current. This leads to a situation where the
charging capacity of the charging site is not used optimally. This paper presents an algo-
rithm including a novel feature, Expected Characteristic Expectation and tested under
realistic circumstances. It is demonstrated that the proposed algorithm enhances the adapt-
ability of the charging site, increasing the efficiency of the used network capacity up to
about 2 kWh per charging point per day in compatison with the previous benchmark algo-
rithm. The algorithm is able to increase the average monetary benefits of the charging
operators by up to around 5.8%, that is 0.6 € per charging point per day. No input, such
as departure time, is required from the user. The proposed algorithm has been tested with
real electric vehicles and charging stations and is compatible with the IEC 61851 charging
standard. The charging algorithm is applicable in practice as it is desctibed in this paper.
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1 | INTRODUCTION

With an increasing need to build new charging sites for electric
vehicles (EVs), a rematkable consideration is that most of the
new charging sites must be retrofitted to an already existing net-
work infrastructure [1]. This is likely to pose challenges with
the current capacity, particularly during the daily peak hours.
In most cases, a reinforcement of the network results in high
costs and is not economically feasible [2]. Regardless of the lim-
ited network capacity, the charging time is a critical constraint
in order to provide a charging service of high quality. Another
issue is that each EV possesses different charging characteris-
tics, or non-idealities [3]. Ignoring this aspect will reduce the
charging efficiency when it comes to the use of network capacity
and increase charging times [4—6]. It is shown that about 76% of
the users of public charging stations find a high-quality charging
service more important than the price of charging [7]. With such
restrictions from the side of the network and from the side of

the customers, a highly efficient and adaptive charging algorithm
is a key element to improve the quality of the charging service.

In the literature review of this paper, six requirements to
develop a practical charging algorithm are considered. These
requirements are used to highlight the differences between
already published research works and this paper. The require-
ments are as follows:

1. Is the algorithm tested by applying real charging data? Com-
mercial EVs have a wide range of charging characteristics
and the charging habits of the users are strongly dependent
on the type of the charging site.

2. Are the non-ideal charging characteristics considered? In
practice, this means the use of charging curves that are mea-
sured on real EVs with sufficient accuracy. If the goal is to
develop an algorithm to manage charging in a time frame of
seconds or a few minutes, real, session-based charging data
does not reveal the dynamic charging characteristics of each
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TABLE 1 Comparison of related research works
6) Utilizes measured

1) Tested 3) Compliancy current of EVs as
using real 2) Non-ideal with charging 5) Control feedback for the
charging charging standards 4) Tested with time-step < real-time charging

Reference data considered tested real EVs 1 min management algorithm

9] yes no yes (J1772) yes no (15 min) no

[10] yes no yes (J1772) yes not mentioned no

[11] no no yes (IEC 61851) yes yes (30 s) no

[5] yes yes no no yes (1 min) no

[12] no no no no yes (1 min) no

[13] yes no no no no (15 min) no

[14] no no no no no (30 min) no

[15] no no no no no (60 min) no

[16-20] no no no no no (15 min) no

[21-23] no no no no not mentioned no

vehicle that could cause undesirable decisions of the algo-
rithm in practice.

3. Is the compliancy of the algorithm with the charging stan-
dards verified? It is important to ensure that the algorithm is
able to work with commercial charging stations and electric
vehicles as well as to rule out any unrealistic features of the
algorithm.

4. Is the algorithm tested with real EVs and charging stations,
either directly or via hardware-in-the-loop simulations?

5. Is the time step applied by the algorithm short enough so
that no meaningful dynamic phenomena, such as sudden
power peaks, remain unnoticed? The results in [8] suggest
that a time step longer than one minute may not be accurate
enough to observe the load peaks when operating charging
stations with nominal powers up to 22 kW.

6. Does the algorithm utilize measured charging currents of the
EVs in its operation? In order to make the algorithm agile
and adaptive, it should use as accurate values of currents as
possible.

In the best case, all six abovementioned requirements atre
included when developing a practical algorithm for charging
management that works with the commercial hardware of today.
Table 1 summarizes related works found in the literature where
real-time charging management algorithms are developed and
evaluates their matching with the abovementioned six require-
ments. Then, the contribution of our work is stated against the
papers that the authors consider the most relevant for this work.

In [5], a real-time charging management algorithm with a
focus on non-ideal charging characteristics is presented. The
algorithm is based on neural network models, which means that
the neural network must be trained with the charging charac-
teristics of each EV model before the algorithm works in an
optimal manner. The study ovetlooks the fact that the charg-
ing curve is different at each current set point [4], but the same
charging curve is used for all current set points, which will result
in a reduced accuracy to predict charging profiles in a practical
application. Also, the simulation or the algorithm, does not take

into account that the charging curve depends on the tempera-
ture and the lifetime of the battery, which will further reduce
the performance of the algorithm. In order to reach the optimal
operation, all EV models should be measured at all possible set
points in different temperatures. This would be extremely labo-
rious and unpractical. Because of the fact that the operation of
the algorithm is based on predefined charging curves, all abnor-
malities in the charging curve are automatically ignored. The
algorithm in [5] requires a certain computation time between the
connection of the EV to the charging point and the start of the
charging session to schedule the charging sessions. If this com-
putation time becomes too long, customer experience may be
reduced. The scheduling algorithm in [5] works in time slots of
15 min, which means that if an unexpected charging behaviour
occurs, the scheduler must wait until the end of the time slot to
consider the behaviour, which can be too long time for some
applications.

In [10] it is mentioned that the individual charging charac-
teristics of each EV complicate priority sharing, This is due
to the fact that the EVs do not always charge according to
the indicated maximum power. However, no solution for the
issue is offered. In [9], an adaptive charging algorithm is pre-
sented, where the charging currentis used to measure the energy
consumption of each vehicle, but is not used as an input to
the charging algorithm. The algorithm is tested with single-
phase AC chargers and a fast charger, not with three-phase AC
chargers. In [17], constant-current and constant-voltage charg-
ing stages are included in the mathematical modelling of the
EVs. This makes the scheduling algorithm more efficient than
considering only a constant charging curve. However, only one
generic load curve is used, which makes it inaccurate in a real
application.

The work in [21], presents a real-time adaptive charging
algorithm. The algorithm uses discrete charging powers: 0 kW,
20 kW, 40 kW and 62.5 kW, for every EV, which can be ineffi-
cient from the network-capacity viewpoint. In [24], the capacity
utilization rates of the charging stations are increased by chang-
ing their physical locations in the network, but these are rather
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fixed solutions than algorithms, as the solution presented in this
paper.

The second study with a focus on non-ideal charging
behaviour of EVs is presented in [0]. In the work, an offline
method for clustering charging curves is presented. Even if
the work does not present a real-time method to deal with
non-idealities, it underlines the importance of considering non-
idealities in charging management.

The literature review in Table 1 shows that non-ideal charging
characteristics are taken into account only in one study develop-
ing a real-time algorithm for charging management. In addition,
no algorithm uses the measured charging current as an input to
the charging management algorithm. Three works are identified
where the algorithm is proven to be functional with real elec-
tric vehicles and charging stations or is otherwise proven to be
compatible with the charging standards. What is also noticeable
in Table 1 is that most real-time algorithms have a fixed operat-
ing time-step of 15 min or more. This is rather long for many
applications of demand response [8].

In this paper, the term ‘network adaptivity’ means that the
charging current that is available for a charging site changes over
time and, consequently, the current drawn by the charging site
adapts to these changes. The term ‘capacity efficiency’ describes
how many percent of the charging current that is available for
the charging site is used by the charging site (consisting of one
or more charging points). To the best of the authors’ knowledge,
no other paper has considered the capacity efficiency related to
EV charging as it is done in this work.

To fill the identified gaps in research, the contribution of this
paper is as follows:

1. Propose a novel adaptive charging algorithm, called CCE
(charging characteristic expectation) algorithm that employs
actual charging currents and has a capacity to learn the charg-
ing characteristics of the charging EV. The CCE algorithm
would enhance the operation of the charging algorithms, for
example the ones presented in [9, 10, 17] and [21], by reduc-
ing idle network capacity and charging times. The charging
algorithm is extended to function with a prioritized fast-
charging station or under varying load in the network.

2. Test the functionality of the algorithm with four real electric
vehicles, charging stations and a fast-charging station emula-
tor via hardware-in-the-loop simulations. The hardware test-
ing guarantees that the algorithm is compatible with the IEC
61851 charging standard. All data used in the hardware-in-
the-loop simulations are real, measured data.

3. Compare the proposed charging algorithm with a commonly
used reference algorithm.

4. Demonstrates that the CCE algorithm outperforms the ref-
erence algorithm in terms of efficient use of the charging

capacity.

Non-idealities of EV charging and their impacts on charging
management, supported by detailed laboratory measurements,
are studied in [3], where an initial version of such adaptive algo-
rithm is also presented. The benefits of an adaptive charging
algorithm on a larger simulation case are further explored in

[4]. In comparison with [3] and [4], in this paper, the algo-
rithm is further developed by a complete reorganization and
including a load prioritization. Also, new features, such as met-
rics on the performance of the algorithm are added. In addition,
new EV models are added to the simulation model as well as
used in the experiments as hardware. Further, an extent compar-
ison between the CCE algorithm and the reference algorithm is
carried out.

The remainder of the paper is structured as follows. Section 2
presents the complete algorithm step-by-step. CCE, which is
a remarkable feature of the algorithm, is explained in its own
sub-section. Also, the reference algorithm is separated as a sub-
section. Section 3 describes the used data and the modelling in
the hardware-in-the-loop simulations as well as the laboratory
setup. Section 4 provides the results of the experiments and Sec-
tion 5 discusses the results and their implications. Section 6 con-
cludes the paper and gives directions to the future work.

2 | PROPOSED CHARGING
ALGORITHM

This section explains the functioning of the proposed charg-
ing algorithm. Henceforth, the algorithm is referred to as the
CCE algorithm according to its distinctive feature called CCE.
The reference algorithm that is used for comparison purposes,
is briefly explained in Section 2.1. A flowchart of the CCE algo-
rithm is presented in Figure 1. The main idea of the algorithm
is to find the most suitable current set points for each charg-
ing station so that the current capacity available for the charging
site is used as efficiently as possible without causing an overload.
The time step of the algorithm is 10 s. The algorithm does not
require any input from the user. The maximum current that is
shared between the prioritized load(s) and the charging points
can be a fixed value, for example an ampacity of the feeder
where the charging stations are connected, or non-fixed, such
as the free current capacity at the feeding secondary substation.
In order to enhance the readability of Figure 1, the steps of the
algorithm are numbered and explained separately in the text.

Step 1-2: The currents of the prioritized load(s) are read. In
the experiments of this study, the prioritized load is a DC fast
charging station, but it could be any other network load, such
as a current measurement from a building that is connected to
the same feeder. The fast-charging station is selected as a priot-
itized load in order to maintain the quality of service as high as
possible for the fast-charging customers. This selection is done
because the use of fast charging stations has usually a higher
price than charging stations with lower nominal charging power.
Thus, the fast-charging station is not controlled by the CCE
algorithm. In this step, also the actual 3-phase charging currents
of each charging station are read.

Step 3: A set of performance metrics is calculated. The met-
rics include, for example, the error between the predicted and
the actual charging current of each vehicle as well as the total
error consisting of the sums of the errors for each time step.
Also, the charged energies and the capacity usage rates of each
charging station are calculated. Finally, the metrics are saved for
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FIGURE 1 A flowchart of the proposed charging algorithm

later analysis. In operational use, such detailed data for each time
step may not be necessary and the number of metrics can be
reduced.

Step 4: The CCE model is updated for each charging session
based on current measurements in Step 2. In short, the CCE
model enables the algorithm to estimate the upcoming charging
currents before applying the current set point. A CCE model
is a matrix where the charging current of each phase at each
current set point is memorized. The details of the CCE model
are described in Section 2.1.

Step 5: A list of active charging sessions is formed. An active
charging session refers to a charging session where an EV is
connected to the charging station and is ready to be charged
(status B in IEC 61851) or charging (status C or D).

Step 6: 6 A for each active charging session is allocated. This
is the minimum non-zero charging current according to IEC
61851. The idea is that each EV can always be charged with at
least 6 A, which is important from the user experience point-of-
view.

Step 7-8: Once 6 A for each active charging session is allo-
cated, the remaining current capacity is calculated for each
phase. The remaining charging capacities are calculated based
on the CCE models. If there is still available charging capacity
in the network to be allocated, the algorithm continues the inner
loop to Step 9. Otherwise, it moves to Step 14.

Step 9: From Step 8, a secondary loop is started. The idea of
this loop is to increase the charging current of each EV by 1 A
until the whole charging capacity is used or there are no more
EVs that can increase their charging current without causing an
overload. It is important to notice that the current set points
are not sent to the charging stations yet, but only in Step 14.
In this step, the possibility to allocate +1 A without causing
ovetloading is estimated using the CCE model. Additionally, the
algorithm considers the maximum current limit of the charging
point. If it is not possible to allocate +1 A for the first EV in the
list, the algorithm moves to Step 10. Otherwise, the algorithm
moves to Step 11.

Step 10: If the charging session is unsuitable for further
capacity allocation, it is removed from the list of active charg-
ing sessions and the algorithm returns to Step 8.

Step 11-13: If possible, +1 A is allocated to the EV and the
EV is placed at the end of the list. This ensures even capacity
allocation among the active charging sessions. Afterwards, the
remaining current capacity is recalculated.

Step 14-15: A physical signal of the current set point is sent
from the computer that runs the algorithm to each charging sta-
tion with an active charging session (including the ones removed
from the list). Once the set points are sent, the algorithm waits
until the end of the 10 s time step before starting a new time
step.

It is important to point out that always, when the remain-
ing current capacity is calculated, it is done so that the current
capacity is not exceeded in any of the three phases. So, the cut-
rent in phases A, B and C must stay below the maximum current
limit. The algorithm is developed in Python.

2.1 | Charging characteristics expectation

The CCE model is a way to memorize the charging currents
of each EV. The CCE is a crucial component to improve the
performance of the algorithm. It is computationally light, which
enables fast computation and high scalability.

A CCE model is essentially a matrix that includes the phase
currents of an EV at all current set points. The use of CCE

allows an accurate prediction of the charging currents of an EV,
before the current set point is sent to the charging station (Step
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14 in Figure 1). Each CCE model is updated in every iteration of
the algorithm with new measurements values of the phase cur-
rents of the corresponding charging session. Thus, each CCE
model corrects itself during a charging session, which is a way
to include non-ideal or non-linear characteristics in the charging
algorithm.

When an EV arrives at the charging station, the CCE model
supposes that the EV charges exactly according to the current
set point and is able to use the maximum current of the charging
station. Thus, the initial CCE matrix is

]-"/7 111 IB [C Meas
[ 6 6.0 6.0 6.0 False
Lsmare| 7 7.0 7.0 7.0  False )
320, 8 80 80 80 [l ’
| 32 32,0 32.0 32.0 fale] |
where I, is the maximum current of the charging session.

This is typically either 3 X 16 A or 3 X 32 A (11 kW or 22 kW)
in Europe. [, is the current set point at the charging station
controller. /4, Iy and I are the measured phase currents at the
given current set point /. The matrix is updated at each itera-
tion loop. At the beginning, the values are set according to the
set point values (as in (1)). This is an initial assumption as there
is no preliminary knowledge of the charging sessions. Meas is
a Boolean variable to indicate whether the values of 74, /3 and
I are measured values (77#e) or initial values (fa/se). For exam-
ple, after the first loop, if the CCE of a charging station receives
measurement at current set point 6 A: [, = 6.2 A,/ = 5.7 A
and /- = 5.4 A, the CCE is updated as

Ly Ly Iz Ic  Meas
6 62 57 54  Tuel
Lewax |7 7.0 7.0 7.0  False

@
320,18 80 8.0 80 [fale

|32 32.0 32.0 32.0 [false]

As seen in (2), the updated values are bolded in purple. In this
way, the CCE model learns a part of the charging characteristics
of the EV, and thus, the accuracy of the CCE model to estimate
the upcoming charging currents increases. In order to acceler-
ate the operation of the charging algorithm, CCE includes three
auxiliary functions.

The first function detects the charging phases of an EV.
When the EV has charged during few seconds and if current
at one or two phases are obviously above 0 A and one or two
phases are close to 0 A, the corresponding columns (74, /5 and
1) of the latter one(s) will be set to 0.0 A.

The second function verifies the highest charging current of
an EV. The function calculates the difference between the cur-
rent set point and the realized charging current. If the difference

is more than a couple of amperes, the realized current is set as
the maximum charging current of the charging session (Z ,,,)-

The third function interpolates values of /4, [z and /- that are
not yet measured (Meas = False), but lay between two measured
values (Meas = True). The measured values provide the upper
and the lower boundary for the estimation. The interpolated
value is placed linearly between the measured values.

When measuring the charging currents to update the CCE
model, it is important to consider that each EV has a different
reaction time to the input signals. When a new current set point
is set, it may take up to even 10 s before the EV starts reacting
to the new current set point. Another point is the noise in the
measurement devices that should not be confused with charging
current.

2.2 | Reference algorithm

The same hardware-in-the-loop simulations are carried out with
the CCE algorithm as well as with a reference algorithm. The
reference algorithm is a fair sharing algorithm that divides the

available charging capacity equally among the charging vehicles
as

P

available, !
lp = s ©)

Ractive, t

where £, is the energy that each vehicle receives [10] at a given
time step 7. B, + 15 the available charging capacity to be
divided between all vehicles at time step 7. 7,4, is the number
of active charging sessions. In addition to [10], the algorithm is
used in [9] as well as by several commercial charging operators
and charging point manufacturers [25-27]. In [5], the fair shar-
ing algorithm is used as a reference algorithm, like in this paper.
Thus, the algorithm can be considered as a benchmark and is
referred to as the ‘reference’ algorithm throughout this paper.

3 | USED DATA, MODELLING
AND LABORATORY SETUP

In this section, the used data and how it is used in hardware-in-
the-loop simulations are described. Also, general descriptions of
the studied cases are provided.

3.1 | Case description

The charging site modelled in the hardware-in-the-loop simu-
lations is located in the district of Kreuzviertel, in the city of
Dortmund, Germany. There are plans to install 40 new charging
stations in Kreuzviertel in 2021. The charging stations are man-
ufactured by Wirelane and provide three-phase AC charging up
to 22 kW via a Type 2 connector. The charging stations are oper-
ated by a local energy company. High and irregular variations in
load make the EV charging loads at different sites very diffi-
cult, or neatly impossible [18], to be predicted with sufficient
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accuracy. In addition, a significant rotation of short-time cus-
tomers will intensify the use of the charging stations. In spite
of the demanding charging environment and limited network
capacity, a high quality of charging service will be offered.
This makes Kreuzviertel a feasible location for an adaptive and
capacity-efficient charging algorithm. Furthermore, more AC
charging points or DC charging stations might be installed in
the area in the future.

3.2 | Used charging data and modelling

As suggested in [28] and in [29], creating synthetic load curves
from mobility data involves several possibilities for pitfalls. That
is why real charging data is used in this work. The data is mea-
sured at a commercial charging site at Dortmund city centre,
located close to the planned charging site, and is expected to
possess similar user behaviour as the charging site under this
case study. The power of these two charging stations is lim-
ited to 22 kW and any further smart charging strategies are
not employed, so the EVs are charged with their respective
maximum charging powers. They are in commercial use and
equipped with Type 2 sockets.

The measured average parking time at the site where the
charging data is measured is 3 h 53 min and the average
charged energy is 11.3 kWh, which is much higher in com-
parison with other studies, such as [30-34]. From the data set,
it is not possible to see when the charging is finished, which
means that exact average charging powers cannot be directly
concluded.

In this study, four different EV models consisting of six dif-
ferent charging characteristics are used. The EV models are Nis-
san Leaf ZEO 2012 (1 X 16 A), Nissan Leaf 2019 (1 X 32 A),
BMW i3 1261 2016 (3 X 16 A) and Smart EQ forfour 2020 (3
X 32 A). The reason behind the selection of these EV models
in the study is that they cover the most of the common com-
binations of phases and maximum AC charging currents on the
market:

* 37kW (1 X16A),
* 0.6kW (1 X32A),
* 11kW (3 X 16 A) and
* 22kW (3 X 32A).

These EV models are also common in the European mat-
ket. More details of the EVs used in this study are included in
Section 3.3.

From the measured charging data, the used energy is divided
by the patking time of the charging session in order to have an
estimated average charging power. Then, the EV model of each
charging session is concluded as follows:

1. all charging sessions with an estimated average power
of > 15 kW are modelled as Smart forfour,

2. all charging sessions with parking time < 2 h and estimated
average charging power between 8 kW and 15 kW are mod-
elled as BMW i3,

3. all charging sessions with parking time < 2 h and estimated
average charging power between 4 kW and 8 kW are mod-
elled as Nissan Leaf 2019,

4. all charging sessions with parking time < 2 h and estimated
average charging power between 0 kW and 4 kW are mod-
elled as Nissan Leaf 2012 and,

5. the EV model for the rest of the charging sessions is selected
arbitrarily.

The idea is that each charging session is linked to one of the
abovementioned EV models. By far, most charging sessions fall
in categories (1) to (4), so the estimate is relatively accurate. The
reason why 2 h is selected in categories (2) to (4) is that the
shorter the charging session, the more likely it is that the esti-
mated average charging power is close to the real maximum
charging power. In other words, the shorter the charging ses-
sion, the more likely it is to be inflexible [30]. The mode of the
BMW i3 (low’, ‘teduced’ or ‘maximum’ mode) is selected ran-
domly. More information about the charging modes of BMW i3
can be found in [35] and related measurements are presented in
[3].

The charging data from the two charging points are com-
bined to cover eight charging points. This is done so that the
different days of the week are not mixed. Three weekdays are
selected for this study: Tuesday, Wednesday and Friday. For
example, data from several Tuesdays at two charging stations
are assembled so that representative data for a Tuesday of eight
charging points are obtained. The same is repeated to gather
charging sessions for Wednesday and Friday. As a result, the
charging schedules of one typical Tuesday, one typical Wednes-
day and one typical Saturday consisting of real charging sessions
are formed. The charging behaviour at a chatging site varies
typically according to the weekday. In order to form as realis-
tic charging schedules as possible, it is important that charging
sessions from different weekdays are not mixed with each other.

The charging data for the fast-charging station is obtained
from the same dataset as used in [32]. The charging data is from
the urban area of Oslo, which is expected to have similar charg-
ing behaviour as a fast-charging site in Dortmund would have.
Also, the same weekdays, Tuesday, Wednesday and Friday, are
respected when selecting the data from the fast-charging sta-
tion. The currents of the fast-charging station used in the study
for each day are illustrated in Figure 2.

The main intention of the work is to assess the performance
of the proposed charging algorithm during a typical day, not in
a worst-case scenario. That is why any special circumstances are
avoided when selecting the days for the simulations. In this way,
it is proven that the algorithm brings benefits to daily operation,
instead of only during extreme cases.

In reality, more than four different EV models are used at
the real charging site, however, using four categories (e.g. EV
models) allows us to construct a rather comprehensive and real-
istic simulation model for virtual EVs. The load cutves of the
EVs are modelled very accurately based on real measurements
carried out on the same EVs models presented previously.
Every possible charging curve within the possibilities of the IEC
61851 charging standard and commercial charging controllers is
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The currents of the fast charging for the expetiments in

considered. This means that the load curves are measured at
every current set point with a resolution of 1 second:

* Nissan Leaf 2012 and BMW i3: 6, 7, 8, 9, 10, 11, 12, 13, 14,
15 and 16A, and

* Nissan Leaf 2019 and Smart forfour: 6,7, 8,9, 10, 11, 12, 13,
14,15, 16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31 and 32 A.

These measurements are used as a model to simulate virtual
EVs. Mote information about the modelling of the virtual EVs
used in the HIL-simulation is found in [4].

3.3 | Laboratory setup

The algorithms are tested through hardware-in-the-loop simu-
lations carried out at TU Dortmund University [36]. The labo-
ratory setup resembles a public parking and charging site with
eight AC charging stations (22 kW, 32 A each) and one fast
charging station (45 kW, 65 A), that are connected to the same
400 V 3-phase feeder. Figure 3 illustrates a simplified scheme of
the laboratory setup.

It is important to notice that according to IEC 61851 charg-
ing standard, the minimum possible charging current set point
is 6 A. Any set points between 6 A and 0 A are not allowed
according to the standard. In this case, the total current limit is
set high enough that the power of the fast-charging station does
not need to be reduced. This is to guarantee a maximum quality
of service to the fast-charging station, which is typically more
costly to the users than an AC charging station.

A limit of 115 A per phase is set as the maximum cut-
rent of the whole charging site (/). The idea behind set-
ting 7, to 115 A is that all AC charging stations are able to
operate at least with the minimum charging current and the
fast-charging station with the nominal one, simultaneously. The

AN
10 KV power 4 N
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network g
10/0.4 kV

| Lori Fast charging station
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Wirelane charging station, P,,, = 22kW
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Virtual charging station, P, = 22 kW
1
' P * Virtual EV
Real-time et I ® _
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- i-(& > Virtual EV
1
L_2-(Ay > Virtual EV
FIGURE 3 Laboratory setup for the Hardware-in-the-Loop simulations

to evaluate the algorithms

fast-charging station draws a maximum power of 45 kW that is
about 64.95 A per phase. If, at the same moment, all AC chatg-
ing stations operate at the minimum capacity, that is 6 A, then
6495446 X 8.4 = 113 A. Thus 115 A is slightly above 113
A and guarantees the intended operation. This is a trade-off
between the flexibility of the charging site, quality of the charg-
ing service and customer experience.

The hardware-in-the-loop simulation consists of a hardware
and a real-time simulation that are linked to each other via Mod-
bus TCP communication. Four commercial electric vehicles;
Nissan Leaf 2012, Nissan Leaf 2019, BMW i3 and Smart for-
four EQ, are used. The EVs are connected to two commet-
cial charging stations (each charging station has two charging
sockets): Wirelane Doppelstele and RWE eStation. At the RWE
charging station, currents from phases A, B and C are measured
by using a KoCoS EPPE PX power quality analyser. Wirelane
charging station already includes a current measurement off the
shelf. The charging stations are connected to the 400 V 3-phase
power network of the laboratory. In parallel with the charging
stations, a programmable load is connected and used as a fast
charging station emulator. The load is controlled according to
the fast-charging schedules illustrated in Figure 2. Thus, it has
the same electrical characteristics as a fast charging station.
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With the real EVs, the driven distances ate calculated based
on the energy consumption in the real charging data for each
simulated day. When assessing the different algorithms, exactly
the same routes are driven, and the same SoCs are obtained, in
each case. In this way, the results can be compatred with high
accutacy.

The real-time simulation is written in Python and runs on a
computer in the laboratory. The simulation includes four virtual
charging points that are virtually connected to the same feeder
as the real charging points. The virtual EV models are selected
according to the procedure clarified in Section 3.2. During one
day, one charging station can host several virtual charging ses-
sions. In addition, the charging curves of the virtual EVs are
based on measurements with an accuracy of 1 s, as explained in
Section 3.2. Figure 4 shows a photo of the laboratory during the
experiments.

4 | RESULTS

In this section, the results of the hardware-in-the-loop simu-
lations are presented. Each illustration from Figure 5 to Fig-
ure 10, shows the results of the CCE algorithm in the upper
half and the results of the reference algorithm are in the lower
half. The summed charging currents of phases A, B and C as
well as the current limit 7, 4.

Figure 10. The current limit /,

SUMmax

are presented from Figure 5 to
is the maximum available
current capacity that can be shared between all non-prioritized
EVs, which means all charging stations, except the fast charg-
ing station. Fach phase has an own maximum current limit. But
since the fast-charging load causes very balanced thtee-phase
loading from the grid point-of-view, the current limit of each
phase is almost the same. Thus, only one current limit is shown
in the results. The current limits are calculated according to

Imm,max,a = ]max - ]pfi,a
]mm,max,/; = ]ﬁmx - ]prz',/i B (7)
1 =/ 1
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FIGURE 5 The phase currents and the available capacity limit on

Tuesday: the CCE algotithm (above) and the reference algorithm (below)
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FIGURE 6 The currents of Tuesday from 10 h to 14 h: the CCE

algorithm (above) and the reference algorithm (below)

where /,,; is the current of the prioritized fast charging point
and a—c denotes each phase. When the fast charging station is
idle ( ,,; = 0), the current limit 7/, is 115 A, as presented in
(7). When the fast charging station operates, the current limit
(Z;,,,) for the AC charging stations is decreased. For the sake of
clarity, the results are shown during the whole period (24 h) as
well as during the peak hours (1014 h). The results of Tuesday
are presented in Figure 5 and in Figure 6.

In both, Figure 5 and in Figure 0, it can be seen that the
charging stations operate closer to their limits when the CCE
algorithm is used (upper halves of the figures) as opposed to
the reference algorithm (lower halves). This is evident, especially
between 11 h 20 min and 12 h 5 min, where the average value
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of current on phase A is 104.3 A with the CCE algorithm and
72.9 A with the reference algorithm. This means that during the
time the reference algorithm operates at 69.9% of the capacity
of the CCE algorithm. This means that at least some of the EV's
are able to charge faster with the CCE algorithm than with the
reference algorithm. The results of Wednesday are presented in
Figure 7 and in Figure 8.

The results of Wednesday are similar to the tesults of Tues-
day; the summed charging currents are often higher, or at least
not lower, with the CCE algorithm than with the reference algo-
rithm. A major difference is between 11 h 30 min and 12 h
30 min, when the average current on phase B is 72.2 A with
the CCE algorithm and 53.4 A with the reference algorithm.
During this time petiod, the reference algorithm charges 73.9%
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FIGURE 9 The phase currents and the available capacity limit on Friday:

the CCE algorithm (above) and the compared algorithm (below)
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FIGURE 10 The currents of Wednesday from 10 h to 14 h: the CCE

algorithm (above) and the compared algorithm (below)

of the current on phase B compared with the CCE algorithm.
The results of Friday are illustrated in Figure 9 and in Figure 10.
Again it is seen that, especially between 11 h and 12 h, the charg-
ing current with the CCE algorithm are closer to the current
limit (Z,,, ) When using the CCE algorithm than with the ref-
erence algorithm.

Due to the fact that not all EVs are charged fully during
the charging sessions, higher charging current means that they
charge more energy during the same amount of time when
the CCE algorithm is used. If a charging operator charges
its customer based on the amount of charged energy, the
operator achieves higher earnings with the CCE than with
the reference algorithm. Because of the higher charging cur-
rents on average, the CCE algorithm causes a slightly higher
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TABLE 2  Summarized results when comparing the reference algorithm with the CCE algorithm

Tuesday Tuesday Wednesday Wednesday Friday Friday

(reference) (proposed) (reference) (proposed) (reference) (proposed)
Charged energy (kWh) 178.33 194.01 202.19 212.44 261.02 270.69
Gross profit (€) 53.50 58.20 60.66 63.73 78.31 81.21
Capacity utilization 18.03 18.84 18.74 19.29 22.20 2271

rate (%)
Prediction error (A) 48.79 0.42 47.85 0.42 68.80 0.39
Prediction error (%o) 130.49 0.85 108.80 0.82 130.34 0.61
TABLE 3  Changes in the performance of the charging site when comparing the reference and the CCE algorithm
Tuesday Wednesday Friday

Charged energy +15.65 kWh (8.79%) +10.25 kWh (5.07%) +9.67 kWh (3.71%)
Gross profit +4.7 € (8.79%) +3.07 € (5.07%) +2.9 € (3.63%)
Capacity utilization rate +4.30% +2.85% +2.25%
Prediction error —99.14% —99.12% —99.43%

capacity utilization rate than the reference algorithm. As the
result of the learning mechanism in the CCE algorithm, it can
predict the charging currents more accurately than the reference
algorithm, which increases the adaptability of the algorithm in
general. Table 2 presents the charged energies, gross profits,
capacity utilization rates and prediction errors each day with
the proposed as well as with the reference algorithm. The gross
profit is calculated based on the energy price of 0.3 €/kWh that
is a common rate of commercial charging operators at public
AC charging sites across Germany [37]. In Table 3, the perfor-
mance of the CCE algorithm is compared with the reference
algorithm.

Table 3 shows the CCE algorithm improves the performance
of the charging site in all analysed aspects. On average, daily
charged energy increases by 11.86 kWh. The average gross
profit increases by 3.56 € per day that is 5.8%. The capac-
ity utilization rate increases by 3.13% and the prediction error
decreases by 99.23% per day on average. In the worst day, that
is on Friday, the CCE algorithm increases the charged energy
of the site by neatrly 10 kWh, resulting in almost 3 € higher
gross profits than the reference algorithm, which is 8.8%. Con-
sequently, the capacity utilization rate increases by more than
2% and the prediction error decreases by more than 99%. It
should be taken into account that the studied charging site is
small, consists of only eight charging stations. The benefits of
the CCE algorithm are much higher at larger sites, for exam-
ple, shopping centres, with tens, or even hundreds, of charging
stations.

Since the number of EVs increases rapidly and the charg-
ing powers ate increasing, the EV charging sites are expected
to operate closer to their limits in the near future. That is why
it is valuable to analyse the difference between the CCE algo-
rithm and the reference algorithm during a peak hour with many
simultaneous charging sessions. Table 4 shows the differences in

charged energies and gross profit in the time frame from 11 h
to 12 h.

Table 4 shows even more drastic differences between the two
algorithms. A remarkable difference is that on average, about
24.5% more energy is charged during the peak hour with the
CCE algorithm. When comparing Table 3 with Table 4 it can
be seen that most of the advantages of the CCE algorithm are
gained during the peak time.

5 | DISCUSSION

It is demonstrated that the current state-of-the-art adaptive
charging algorithm does not provide as high utilization of avail-
able charging capacity as possible. An alternative adaptive charg-
ing algorithm is presented and compared against the previous
benchmark algorithm. The key factor why the CCE algorithm
petforms better than the compared benchmark algorithm is
that it uses real charging currents as an input to the algorithm.
In other words, the algorithm efficiently divides the available
charging capacity amongst the active charging sessions while
considering their real charging currents. Simply, without current
measurements, it is not possible to know how much current the
EVs draw and the real-time charging management cannot be
organized that accurately. The accuracy of the charging algo-
rithm is further enhanced with a simple learning mechanism,
CCE that makes the algorithm capable of memorizing and fore-
casting the real charging current of each connected EV with a
given current set point. It is demonstrated that the CCE algo-
rithm gives a great advantage over the reference algorithm espe-
cially during the hours when the charging site operates close to
its capacity limits.

For many demand response applications, it is crucial that the
charging algorithm recognizes the charging currents of the EVs.
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TABLE 4  Changes in the performance of the charging site when comparing the reference and the CCE algorithm between 11 h and 12 h
Tuesday Wednesday Friday
Charged energy +8.45 kWh (20.56%) +11.54 kWh (34.43%) +6.12 kWh (18.42%)
Gross profit +2.54 € +3.46€ +1.84€
As an example, if a BMW i3 charges at a 22 kW charging point 35
that allows the maximum charging capacity (22 kW, 3 X 32 A, 30
230 V), consequently the BMW charges at its maximum capac- = Sl )
ity (11 kW, 3 X 16 A, 230 V). The energy management system = T EE P
. . ) . =z Expected current (CCE)
of the charging site wishes to set a new current set point to the S20
BMW so that the charging power of the BMW is reduced by 3 -
5.5 kW. By using the reference algorithm. The energy manage- S 15 \f\w\/"‘
ment system would reduce the charging power from 22 kW to 10 W e
16.5 kW (22 kW — 5.5 kW = 16.5 kW). This means that the 5 VWLV\M_VWV
BMW would still continue charging with its maximum capacity Ihe V:'»VM M
(11 kW, 3 X 16 A, 230 V) and finally, the real charging current is 0 5 10 15 20 25 30 35
not reduced at all. Without a reasonable measurement and antic- Time (min)
ipation of charging currents, it may be difficult to obtain the ) ) _
FIGURE 11 Idle charging capacity that can be allocated to other electric

expected load value for a given charging site in a short amount
of time. That is why the applicability of the reference algorithm
in demand response applications, such as in peak shaving or fre-
quency regulation, is questionable. On the contrary, the CCE
algorithm enables an accurate way to set the power consump-
tion of the charging site to a wished value, as demonstrated by
the results.

The benefits to be obtained from the use of the CCE algo-
rithm are highly dependent on the number and the type of
the charging stations, the maximum allowed charging current
and the charging behaviour of the customers (charging dura-
tions and simultaneity). The tesults show meaningful benefits
over the reference algorithm even on average days and cir-
cumstances. On one hand, the algorithm can be guaranteed
that the available charging capacity is used efficiently, which
decreases the charging times, improves the customer experience
and increases the economic gains of the charging operator. On
the other hand, the algorithm can be used to prevent overloads
in the feeding distribution network. After all, the algorithm leads
to increased utilization of network capacity, which can lead to
savings in the network investment costs.

From the power system-viewpoint, the constant-voltage
phase of the charging curve is where a notable share of the
charging capacity may be lost, if the decreasing charging current
is not recognized by the algorithm Due to the fact that the EVs
with 32 A charging current may have a longer constant-voltage
phase, the difference between the charging current and the cur-
rent set point is significant during longer time than with 16 A
EVs. For example, for Nissan Leaf 2012, the constant-voltage
phase takes about 25 minutes, and for Nissan Leaf 2019, it takes
about 1 h 28 min, under the nominal charging currents, 16 A
and 32 A, respectively. An example of the lost network capac-
ity and the effectiveness of the CCE algorithm is illustrated in
Figure 11.

In Figure 11, the grey dotted line shows the current set
point. When the reference algorithm is used, the control system

vehicles (grey area) during the constant-voltage charging phase. The purple line
is the measured charging current (Phase A) of Nissan Leaf 2012. The grey
dotted line is the current set point. The yellow line is the expected charging
current of the CCE algorithm

practically assumes that the realized loading follows the set
point. On the contrary, the yellow dotted line illustrates the
expected charging current, when the CCE algorithm is applied.
When the reference algorithm is used and the current drawn by
the EV is supposed to be the same as the nominal current of
the charging station, the unused capacity in the network is the
difference between the realized charging current and the cur-
rent set point (the grey area in Figure 11). When the algorithm
is used, this capacity is estimated and allocated to other vehicles
if there are no additional network constraints. Due to small and
sudden fluctuations of the charging currents in practice, some-
times the CCE algorithm forecasts the expected charging cur-
rent marginally lower than it is. In such a situation, the algorithm
can allocate more charging capacity to the charging site than it
has. In reality, such errors are relatively rare and are likely to be
evened with the simultaneous charging of several vehicles.

Some commercial EVs turn to a ‘waiting’ mode, when the
charging cable is connected to the EV if the charging station
does not instantly allow charging. The EV remains in this mode
until the charging starts. However, some EV models stay in the
‘waiting’ mode for some minutes. If the charging process does
not start, let’s say, within 1-2 min, the EV goes to a “stand by”
mode. During the ‘stand by’ mode, the charging process cannot
be started without disconnecting and connecting the charging
cable physically from the EV. Such behaviour is observed for
BMW i3, for example [35].

In the future, peak-power based electricity tariffs are likely to
become more common as they improve the cost-reflectivity of
the electricity pricing [38]. As a consequence. there may be situ-
ations where it is economically feasible to limit the peak loading
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at the charging site below the capacity that would normally be
available. This further emphasizes the need to effectively utilize
the available charging capacity.

Although the algorithm presented in this paper is intended
for a charging site where all charging stations are connected
in a star-configuration, the CCE feature of the algorithm is
topology-independent and can be applied to more complex net-
work configurations, including several series and parallel con-
nections. In this case, the rest of the algorithm, excluding CCE,
should be adapted to such network configuration.

5.1 | Deployment of the proposed charging
algorithm in practice

When a charging point operator plans to use the CCE algo-
rithm in the daily operation of its charging sites, it does not
entail significant additional equipment of operational costs com-
pared with the already existing solution. Most importantly, each
charging station must be equipped with a controller that is able
to control the charging current according to the local standard,
such as IEC 61851, in Eutrope. In addition, the charging sta-
tion should have a current measurement, this can be embed-
ded in the energy meter or can be a separate device. Generally,
energy meters with the capability to deliver a current measure-
ment are common in modern charging stations. A usual indus-
trial solution is that an energy meter is physically connected to
the charging controller, via a master-slave structure, where the
charging controller is the master and the energy meter is the
slave. When a current measurement is asked by, for example, the
server where the CCE algorithm is running, the server sends a
message to the controller that further reads the measurement
value from the energy meter and sends the measurement value
to the server.

The crucial technical requirements to be able to operate the
CCE algorithm in a real case are:

* acharging controller,

* a current measurement device,

* communication media, such as LTE, 4G or Ethernet, and
* abackend server, where the algorithm is running,

In practice, all requirements are already fulfilled by a typi-
cal European charging point operator. Thus, it can be said that
deploying the CCE algorithm does not entail significant addi-
tional equipment or operational costs compared with most solu-
tions of today. There may be regulations considering data pri-
vacy and communication media that vary from countty to coun-
try, which must be taken into account.

6 | CONCLUSION AND FUTURE WORK

The adaptive charging algorithms of today overlook the non-
ideal charging characteristics of EVs. As a consequence, they
are likely to operate in a non-optimal way, leading to wasted
charging capacity and increased charging times. To contribute
to this problem, a new charging algorithm that shows an evident

advantage over the benchmark charging algorithm is proposed.
The performance of the charging algorithm is proved under
realistic circumstances and tested with real EVs. In a site of
eight charging stations, the proposed CCE algorithm increases
the capacity utilization rate by 3.13% and the charging capac-
ity by 11.9 kWh per day on average. This means that the algo-
rithm brings an additional gross profit of about 3.6 € per day
for eight charging points, so about 0.6 € per charging point, to
the charging operator. This means an increment of 5.8% in the
average gross profit. During the peak hour, the CCE algorithm
can deliver 24.4% more energy to the EVs than the reference
algorithm, which shows that the benefits of the algotithm are
likely to increase in the near future when charging sites will be
used more than they are used today.

The algorithm is compatible with the IEC 61851 charging
standard and can be applied as presented in this paper. Besides,
no information, such as the state-of-charge of the battery or
leaving time, from the user is necessary. The algorithm can be
applied to modern charging stations without the need for spe-
cialized additional hardware.

Future work focuses on testing the algorithm in commer-
cial operation, altogether in about 40 charging stations in Dort-
mund, Germany. To gain more insights from the pilot test, addi-
tional metrics that help to design following versions of the algo-
rithm are developed. Additionally, it will be studied, how much
CCE can improve the performance of other charging algo-
rithms found in the reseatch literature. Also, the use of the pro-
posed algorithm in the case of complex configurations (several
parallel and series connections) of the power network within a
charging site will be studied.
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