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Abstract

In this thesis, methods for Bayesian data analysis are employed in the search for physics be-
yond the Standard Model (BSM). A new implementation of the Bayesian Analysis Toolkit in
Julia (BAT.jl) is introduced as a modern data analysis framework providing algorithms for
Bayesian inference. The EFTfitter.jl package for interpreting measurements in the context of
effective field theories (EFTs) is presented. It facilitates combining measurements and esti-
mating underlying parameters with Bayesian inference. Both tools are employed for indirect
BSM searches using EFTs. Wilson coefficients of dimension-six operators from the top-quark
sector of the Standard Model effective field theory (SMEFT) are constrained, and approaches
for enhancing fits of SMEFT coefficients are investigated. Studies on the effects of correlations
between the uncertainties of measurements on the results of SMEFT fits are conducted. It is
demonstrated that the correlations can significantly impact the resulting constraints and can
be the crucial components deciding whether deviations from the Standard Model of particle
physics are observed or not, in particular when assuming future measurements with reduced
uncertainties. Moreover, studies on combining measurements of top-quark and flavor physics
observables for SMEFT interpretations are performed, and the steps necessary for a combined
fit are discussed. Powerful synergies between top-quark processes and    transitions are
observed when constraining SMEFT Wilson coefficients of the top-quark sector. It is demon-
strated that due to complementary sensitivities, combining observables from different energy
scales can tighten the constraints significantly. Future scenarios assuming measurements from
HL-LHC, Belle II, and CLIC are investigated, and their potential for improving constraints
on up to eleven SMEFT Wilson coefficients is pointed out. The benefits of orthogonal con-
straints in multidimensional phase spaces for resolving ambiguous solutions are highlighted.
The SMEFT studies presented in this thesis demonstrate the capabilities of the new BAT.jl
and EFTfitter.jl packages for BSM analyses.
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Kurzfassung

In dieser Arbeit werden Methoden der Bayes’schen Datenanalyse bei der Suche nach Physik
jenseits des Standardmodells (BSM) eingesetzt. Eine neue Implementation des Bayesian Ana-
lysis Toolkit in Julia (BAT.jl) wird als modernes Datenanalyse-Framework vorgestellt, welches
für Bayes’sche Inferenz benötigte Algorithmen bereitstellt. Ferner wird das Paket EFTfitter.jl
für Interpretationen von Messungen im Rahmen von effektiven Feldtheorien (EFTs) vorge-
stellt. Es ermöglicht die Kombination von Messungen und die Schätzung von Parametern
mit Bayes’scher Inferenz. Beide Programme werden für indirekte BSM-Suchen unter Verwen-
dung eines EFT-Ansatzes eingesetzt. Wilson-Koeffizienten von Dimension-Sechs-Operatoren
aus dem Top-Quark-Sektor der Standard Model effective field theory (SMEFT) werden ein-
geschränkt und Möglichkeiten zur Verbesserung von Fits der SMEFT-Koeffizienten werden
untersucht. Es werden Studien zu den Auswirkungen von Korrelationen zwischen den Unsicher-
heiten der Messungen auf die Ergebnisse von SMEFT-Fits durchgeführt. Dabei wird gezeigt,
dass die Korrelationen einen signifikanten Einfluss auf die resultierenden Einschränkungen ha-
ben können und die wesentlichen Komponenten sein können, die darüber entscheiden, ob Ab-
weichungen vom Standardmodell der Teilchenphysik beobachtet werden oder nicht, insbeson-
dere wenn zukünftige Messungen mit reduzierten Unsicherheiten angenommen werden. Dar-
über hinaus werden Studien zur Kombination von Top-Quark- und Flavor-Physik-Observablen
für SMEFT-Interpretationen durchgeführt, und es werden die notwendigen Schritte für kom-
binierte Fits diskutiert. Starke Synergieeffekte zwischen Top-Quark-Prozessen und   

Übergängen für die Einschränkung von SMEFT Wilson-Koeffizienten des Top-Quark Sektors
werden beobachtet. Es wird gezeigt, dass aufgrund von sich ergänzenden Sensitivitäten, die
Kombination solcher Observablen von verschiedenen Energieskalen die resultierenden Ein-
schränkungen bedeutend verbessern kann. Zukunftsszenarien, die Messungen von HL-LHC,
Belle II und CLIC annehmen, werden untersucht, und ihr Potenzial zur Verbesserung der
Einschränkungen von bis zu elf SMEFT-Wilson-Koeffizienten wird aufgezeigt. Die Vorteile or-
thogonaler Einschränkungen in mehrdimensionalen Phasenräumen für das Auflösen von mehr-
deutigen Lösungen werden herausgestellt. Die in dieser Arbeit vorgestellten SMEFT-Studien
demonstrieren die Leistungsfähigkeit der neu implementierten Pakete BAT.jl und EFTfitter.jl
für BSM-Analysen.
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1 Introduction

The fundamental goal in all fields of research is to generate new knowledge. In modern sci-
ence, the typical approach for this relies on a combination of two essential components. On
the one hand, theoretical descriptions of processes are developed based on the current state
of knowledge and novel hypotheses. In physics, such theoretical descriptions are formulated
in terms of mathematical models. On the other hand, empirical observations of the processes
under study are made by conducting experiments. The crucial step for generating new knowl-
edge is then to compare the model expectations of the current theoretical description with the
observed data. In quantitative research, statistical inference is employed to update the state of
knowledge in the light of new data. This allows formulating probabilistic statements about the
model, its parameters, and its compatibility with the observed data. A formal mathematical
approach for this process is provided by Bayesian inference, in which Bayes’ theorem is applied
to update prior beliefs by taking new data into account. Bayesian inference yields probabil-
ity distributions of the model parameters, which are straightforward in their interpretation.
However, the application of Bayesian methods to real-world problems usually requires the use
of sophisticated numerical algorithms, such as Markov chain Monte Carlo (MCMC). In this
thesis, a modern tool facilitating Bayesian data analysis is presented. The Bayesian Analysis
Toolkit in Julia (BAT.jl) [1] provides the required infrastructure and a collection of algorithms
simplifying the application of Bayesian inference on user-defined problems.

A field of research in which one of the most precise theoretical descriptions of nature has
been achieved is particle physics. The Standard Model of particle physics (SM) is the under-
lying theory in this field and has been probed by many experiments. During the development
of the SM in the second half of the 20th century, the above-described approach to gaining
knowledge through an interplay of theory expectations and experimental data was particu-
larly successful. Theory predictions motivated experimental searches for specific new particles,
and, vice versa, unexpected experimental observations led to modifications of the theory. With
the discovery of the Higgs boson in 2012 [6, 7], all particles described in the SM have been
observed experimentally. Despite this considerable success, there are several aspects, both re-
garding experimental observations and theoretical details, which indicate that the SM alone
cannot be the full theory describing all elementary particles and their interactions. There-
fore, particle physics is a highly active field of research, with the current objective being the
search for physics beyond the Standard Model (BSM). While particle accelerators reached en-
ergies above the TeV scale during recent years and a huge amount of data has been analyzed,
so far, no direct detection of any BSM phenomena has been achieved. This strengthens as-
sumptions that BSM particles could exist at energy scales much above the scale of the SM
and motivates indirect approaches for BSM searches, such as using effective field theories
(EFTs). EFTs can be applied for model-independent searches for the effects of high-energy
BSM phenomena on the lower-energy processes testable at current experiments. The Standard
Model effective field theory (SMEFT) is a specific EFT extension of the SM and introduces
higher-dimensional effective operators into the theory. In the top-quark sector, SMEFT in-
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1 Introduction

terpretations of measurements gained popularity in recent years [8–23]. They are performed
to constrain the coupling strength, so-called Wilson coefficients, of the effective operators.
In particular, combinations of different observables and various measurements are pursued,
aiming towards a global fit of SMEFT coefficients [3–5, 15–23]. The tool EFTfitter.jl [2] builds
upon BAT.jl and facilitates such EFT interpretations of measurements. It allows combining
possibly correlated measurements and constraining underlying parameters with Bayesian in-
ference. In this thesis, EFTfitter.jl is applied in BSM searches using the SMEFT framework.
Emphasis is placed on investigating aspects for enhancing SMEFT fits of multiple observables
and measurements constraining Wilson coefficients affecting the top quark. As in such combi-
nations, possible correlations between the uncertainties of measurements are often neglected,
the impact of correlations on the results of SMEFT fits is investigated. Moreover, synergies of
top-quark and flavor physics observables for constraining SMEFT coefficients of the top-quark
sector are explored by performing combined fits. Particular focus is placed on estimating the
effects of potential future scenarios with new measurements and reduced uncertainties.

This thesis is organized as follows:
In Chap. 2, an introduction to the main concepts of Bayesian data analysis is given. The
difficulties in applying Bayesian inference to multidimensional problems are indicated, and
the need for efficient algorithms that allow using Bayes’ theorem for statistical inference is
motivated. In Chap. 3, BAT.jl is introduced as a tool facilitating Bayesian data analysis. Its
design concepts and the included features and algorithms are presented. A brief introduction
to the SM and a motivation for searching for BSM physics is given in Chap. 4. The concept
of EFTs is introduced, and its application in model-independent BSM searches is motivated.
The SMEFT framework and the relevant operators of the top-quark sector of SMEFT are
established. In Chap. 5, the combination of measurements for SMEFT fits is motivated, and
the concepts for combining possibly correlated measurements with EFTfitter.jl are introduced.
Its design structure and features are presented. Studies on estimating the weights of individ-
ual measurements in their combination are performed using a toy example. In Chap. 6, the
impact of correlations between the uncertainties of measurements on the results of SMEFT
fits is investigated systematically. Measurements of single top-quark production and top-quark
decay processes are employed to constrain three SMEFT coefficients. Different correlation and
uncertainty scenarios are examined and compared. In Chap. 7, a first study on combining top-
quark observables with    transitions from  physics in a joint SMEFT fit is performed.
The steps necessary for such a combination are introduced, and the Wilson coefficients of
three operators affecting the top-quark couplings are constrained. This approach is extended
in Chap. 8, where further observables, measurements, and Wilson coefficients are considered
in a combined fit to top-quark and flavor physics data. Synergies between the observables from
different energy scales are investigated, and their sensitivities on up to eleven SMEFT coeffi-
cients are exploited. In particular, possible future scenarios with measurements from HL-LHC,
Belle II, and CLIC are examined for their potential to improve the constraints on SMEFT
Wilson coefficients. In Chap. 9, the thesis is concluded.
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2 Introduction to Bayesian data analysis

The analysis of data is a central task in almost all areas of scientific research and business.
Bayesian data analysis provides a systematic approach to gaining knowledge from data. Its
main concepts are introduced in this chapter. In Sec. 2.1, certain fundamental concepts of
probability theory are described, and Bayes’ theorem is derived. Bayesian inference as a rule
for updating prior knowledge based on new data is introduced in Sec. 2.2, and specific aspects
of the Bayesian interpretation of probabilities are discussed in Sec. 2.3. The difficulties of
using Bayesian inference in real-world data analyses are pointed out in Sec. 2.4, and the
necessity of efficient numerical algorithms is motivated. The concept of Markov chain Monte
Carlo (MCMC) methods as a solution to these problems is introduced in Sec. 2.5, and the
Metropolis–Hastings algorithm as the original and best-known MCMC algorithm is presented.

2.1 Probabilities and Bayes’ theorem

Early mathematical approaches to the treatment of probabilities emerged mainly in the 17th
and 18th centuries [24]. The first axiomatic foundations for the concept of probability were
formulated in 1933 by Kolmogorov in terms of set theory [25]. Since these three Kolmogorov
axioms are the most widely accepted conceptual definition and do not imply any specific
interpretation of probability, they are briefly stated here. 1

Axiom 1 – Non-negativity The probability  of each possible event  in a sample space 

is a real number greater than or equal to zero,

()  0      (2.1)

Axiom 2 – Unit measure The probability  that at least one of all possible events in the
sample space  will occur is one,

() = 1  (2.2)

Axiom 3 – Additivity If two events  and  are mutually exclusive, i.e.,    = , the
probability  of either  or  occurring is the sum of the individual probabilities of  and ,

( ) = () + ()  (2.3)

1Kolmogorov’s axioms represent the first but not the only possible axiomatic definition of the concept of
probability. In particular for the Bayesian interpretation of probabilities, the theorems formulated by Cox [26]
in terms of conditional probabilities are an often discussed alternative. Kolmogorov’s axioms can be derived
from them [27, 28].
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2 Introduction to Bayesian data analysis

Following these fundamental postulates, all further rules for the calculus of probabilities can
be derived, including, for example, the rule of monotonicity, i.e., ()  () if   , or
the complement rule, () = 1 (), where  is the complement of .

An important concept is that of conditional probabilities, which allows formulating the prob-
ability () for  to occur under the prerequisite that  has already occurred. In the
formalism laid out by Kolmogorov’s axioms, conditional probabilities are described as the
quotient of the probability of both events to happen, i.e., the intersection   , divided by
the probability of  to happen,

() = ( )
()  (2.4)

Bayes’ theorem When multiplying Eq. (2.4) by the denominator () of the right side, an
expression for the joint probability of  and  both occurring is obtained,

( ) = () ()  (2.5)

Using the equality ( ) = ( ) and again dividing by (), the famous equation

() = ()()
() = ()()

 ()()
(2.6)

is obtained, which is commonly referred to as Bayes’ theorem. The last equality in Eq. (2.6)
applies when the sample space  consists of multiple disjoint partitions . Bayes’ theorem is
named after Thomas Bayes (c. 1701-1761), who was the first to write about a mathematical
approach to inferring from an effect back to its cause, which he did by solving a specific
inverse problem through a learning process. Bayes’ manuscripts were edited and published
posthumously by Richard Price in 1763 [29]. It was, however, Pierre-Simon Laplace, who
(during the late 18th and early 19th century) developed a thorough mathematical treatment
for conditional probabilities and brought the concepts of Bayes and Price into the form of
Eq. (2.6) that is nowadays known as Bayes’ theorem [30].

2.2 Bayesian inference

The central idea of Bayesian inference is to use Bayes’ theorem for updating knowledge about
a set of parameters in the light of new data. For this purpose, Bayes’ theorem in Eq. (2.6) is
rewritten for model-based inference as

(  ) = (  ) 0()
 ( )

 (2.7)

In this formulation,  are the parameters of a statistical model  , and  are the observed data.
The term (  ) describes the probability of observing the data , given the parameters
 and the model  . As in Bayesian inference the parameters  are varied for fixed data ,
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this term is not necessarily a valid probability density in  and is, therefore, referred to
as the likelihood. The term 0() is the probability distribution of the model parameters
 before the data  are taken into account. It is called the prior probability distribution,
or prior for short. The desired result of the inference process is (  ), the so-called
posterior probability density, often simply called the posterior. It is the probability distribution
of the model parameters  when taking into account both the observed data  and the prior
knowledge about the parameters . The denominator of Eq. (2.7),

( ) =  =


(  ) 0() d  (2.8)

is called marginal likelihood or evidence.2 It is a normalizing constant which ensures that the
posterior is a valid probability density. It can be interpreted as the marginal probability of
observing the data  when assuming the model  . It is discussed in Sec. 2.4 that, in partic-
ular, this denominator complicates the application of Bayesian inference and that an explicit
computation of the evidence is usually avoided. In Bayesian model comparison, however, the
evidence plays a central role. The so-called Bayes factor is given as

 = ( )
( )

= 


 (2.9)

which is the ratio of the marginal likelihoods of two different models,  and , describing
the same data . The value of the Bayes factor  can be used as a criterion for model
selection, with values   1 supporting  over  and values   1 rather supporting
.

Bayes’ theorem in Eq. (2.7) describes a knowledge update process in which prior beliefs
about the distribution of model parameters, 0(), are updated according to observed data,
(  ), resulting in an updated belief on the distribution of the parameters, (  ).
This process is the central concept of data analysis with Bayesian inference. Particularly in
cases where access to new data is gained gradually, Bayesian inference allows a stepwise update
of the knowledge since it is possible to use the posterior of a previous analysis as the prior of
the next analysis with additional data. The resulting posterior is then, however, exactly the
same as when analyzing all data in a single step.

When performing Bayesian inference, it is often the posterior distribution of an individual
parameter that is of interest. It can be obtained through marginalization, i.e., by integrating
over all parameters that are not of interest,

(  ) =


(  )

 =

d  (2.10)

In typical applications, the statistical model  depends not only on the parameters of interest
, but also on a number of nuisance parameters . In such cases, Bayes’ theorem takes the
2The formulation of the evidence as an integral is valid for continuous probability distributions. Bayes’ theorem
also applies for discrete distributions, for which the integral in the denominator is replaced by a sum.
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form

(   ) = (   ) 0( )
 ( )

 (2.11)

Information about the parameters of interest is obtained by marginalization over the nuisance
parameters,

(  ) =


(   ) d  (2.12)

2.3 Bayesian interpretation of probabilities

While Kolmogorov’s axioms provide a foundation for the mathematical treatment of probabil-
ities, they do not imply any interpretation of the concept of probability itself. Over the years,
different interpretations have been developed and widely disputed. While some approaches
are claimed to be objective, others are considered more subjective interpretations. The most
famous example of the former class is the so-called frequentist interpretation, in which a prob-
ability is thought of as the relative frequency of a certain outcome in the limit of infinite
repetitions of the same process. The Bayesian interpretation, on the other hand, is typically
considered a subjective approach since probability is interpreted as a degree-of-belief. Because
different statistical methods for inference are associated with the respective interpretations of
probability, there are discussions about the choice of methods and the validity of correspond-
ing results. Especially in the case of the Bayesian and frequentist interpretations, there are
often contentious and almost philosophical disputes about the validity or superiority of one
interpretation over the other, which will not be discussed here but have been addressed, for
example, in Refs. [31–36]. However, it should be noted that not only the statistical methods
themselves but also their results and the interpretability thereof depend on the interpretation
of probability chosen and can even be contradictory, as, for example, demonstrated in the
Jeffreys–Lindley paradox [37, 38].

Bayes theorem itself, as given in Eq. (2.6), is a universal formula for probabilities that is valid
for all interpretations, not only for Bayesian reasoning. When using this theorem for statistical
inference, as shown in Eq. (2.7), however, the Bayesian interpretation is adopted. This is
particularly noticeable in the required formulation of prior knowledge (or prior beliefs) in terms
of prior distributions. The presence of a prior is one of the main aspects that distinguish the
Bayesian approach from other statistical methods. While a prior distribution allows to include
existing knowledge about the parameters, it is often the researchers’ subjective choice how
exactly this information is formulated. This subjectivity leads to the prior often being the
target for criticism of Bayesian methods. As the prior can indeed have a significant influence
on the outcome of the inference, it is best practice to explicitly state the prior distributions
chosen. Comparison studies using different prior distributions can be performed to investigate
the influence of the prior on the actual analysis. There are also approaches aiming towards
more objective Bayesian analyses, for example, by minimizing the information contained in the
prior using concepts of information theory. Different methods have been developed to construct
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so-called uninformative prior distributions, with the Jeffreys prior and the reference priors
being the two most famous objective Bayesian approaches [39–42].

One of the main advantages of Bayesian inference, compared to other approaches, is that the
outcome of the analysis is the full probability distribution of the model parameters. Based on
the posterior probability, it is possible to derive summary statistics and make probabilistic
statements that are usually straightforward in their interpretation. For example, the credi-
ble intervals derived from the posterior distribution of a Bayesian analysis are generally more
informative and easier to interpret than the confidence intervals determined in frequentist anal-
yses. However, obtaining a distribution as the result of the inference is also one of the aspects
that complicates the application of Bayesian inference, in particular, when using multivariate
models with many free parameters, as is discussed in the next section.

2.4 Difficulties in the application of Bayesian inference

Even though the concept of Bayesian inference in Eq. (2.7) seems straightforward, its ap-
plication for data analysis usually requires numerical computations with efficient algorithms.
This is because analytical calculations of the posterior distribution are only possible in a very
limited number of cases. In particular, the evidence integral in Eq. (2.8) is usually intractable,
especially when considering models with multiple parameters. Thus, the posterior distribution
typically cannot be determined in a closed-form but has to be approximated or represented
by samples. Also, it is usually not only the posterior density itself that is of interest, but
rather certain summary statistics of the distribution, such as the mean value, the variance, or
other moments and interval estimates. The computation of such estimates then again requires
integrations that are analytically intractable.

In particular, for inference problems with many parameters, instead of trying to solve the in-
tegrals, methods for sampling from the unnormalized posterior distribution are employed. The
desired information about the properties of the posterior distribution is obtained from samples,
using the law of large numbers. Therefore, sampling or approximating the posterior distribution
is a central task when applying Bayesian inference. However, efficiently sampling an arbitrary
target distribution becomes increasingly difficult as the number of dimensions increases since
the volume of the parameter space grows exponentially with the number of free parameters. For
example, when sampling a one-dimensional parameter space, simple quadrature-based algo-
rithms divide the continuous sample space into a number of bins,  . In  dimensions, however,
this approach requires dividing the parameter space into  hypercubes. Obviously, this ap-
proach quickly becomes infeasible as the number of required hypercubes grows exponentially
with the number of dimensions. This effect is often referred to as the curse of dimension-
ality and makes the application of numerical methods in high-dimensional parameter spaces
challenging.

Furthermore, when sampling distributions with many parameters, it has to be considered that
in high dimensions, most of the probability mass is no longer distributed around the mode,
even though this is where the probability density is highest. Since probability is the integral
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over the probability density, also the corresponding volumes have to be taken into account.
In the simple picture of the parameter space subdivided into hypercubes, the probability is
the product of the density and the corresponding cube volumes. In high dimensions, however,
most of the volume is not centered around the mode but rather in the tails of the distribution.
Therefore, for efficient sampling it must be ensured that samples are drawn from the region
where the probability mass is high, which is called the typical set [43, 44]. The typical set has
the important property that samples drawn from this region represent the target distribution
faithfully, which makes the sampling efficient. In the example of the  hypercubes, this means
that the evaluations of most hypercubes are unnecessary since they are not part of the typical
set and contribute almost nothing to the total probability. While for low-dimensional problems,
typically for   5, it is still feasible to perform a simple grid-based posterior evaluation, more
efficient approaches for sampling of posterior distributions are needed for models with a larger
number of parameters.

Monte Carlo (MC) methods, which use random numbers to explore the posterior distribution,
are a common approach to sampling. However, simple rejection-based MC algorithms are inef-
ficient for sampling from the typical set. Approaches like importance sampling, where samples
are generated not from the unknown posterior distribution but from a similar distribution
that can be sampled more efficiently, require some prior knowledge about the shape of the
posterior distribution and typically also scale poorly with the number of parameters.

2.5 Markov chain Monte Carlo

The technique that revolutionized the application of Bayesian inference for data analysis is
MCMC. The concept of MCMC was developed in 1953 and was originally designed for physics
simulations [45]. It was not until the 1990s that MCMC gained popularity in statistical analyses
and was first used for Bayesian inference [46]. By providing a method for efficiently sampling
posterior distributions, even in cases with many parameters, MCMC made the application
of Bayesian inference to real-world problems feasible. Together with the steep increase in
available computing power in recent decades, the development of MCMC methods led to a
major boost in the relevance of Bayesian analyses. Today, MCMC algorithms are the most
common approach for performing Bayesian inference, and their main concepts are briefly
introduced here.

A Markov chain is a sequence of states  that satisfies the Markov property, which is the
requirement that the transition probability (+1) from the current state  into the next
state +1 only depends on the current and next state but not on any of the previous states.
If the conditional probability distribution for the transition (+1) does not depend on ,

(+1) =     (2.13)

the distribution  is called the stationary or equilibrium distribution of the Markov chain. If
such a stationary distribution exists, starting from any initial point in the state space, this
distribution will eventually be reached. When using Markov chains for MC sampling, the goal
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is to construct a Markov chain in such a way that its stationary distribution is the distribution
of interest, i.e., the target distribution. In Bayesian inference, this target distribution is the
posterior distribution. In practice, the most challenging tasks are constructing a Markov chain
that converges quickly to its equilibrium distribution and determining whether or not the chain
has converged to this distribution. When a chain has reached convergence, the states  visited
by the chain are samples of the target distribution. The collection of states generated by the
Markov chain before converging to its stationary distribution is commonly referred to as the
warm-up or burnin phase. Samples generated in this phase are usually discarded since they
do not represent the target distribution accurately. Determining the convergence of Markov
chains is one of the most important tasks when using MCMC methods, as only the samples of
a converged chain should be used to derive information about the target distribution. Common
criteria for determining the convergence of Markov chains are introduced in Sec. 3.3.2.

A drawback of MCMC methods that has to be considered is that the samples generated
by Markov chains are not completely independent but are correlated. Autocorrelations arise
since each state depends on the previous one. When constructing Markov chains, the goal is to
reduce such autocorrelations in order to approximate the target distribution as efficiently as
possible. Often, the autocorrelation is taken into account by referring to the so-called effective
sample size (ESS), which describes the number of independent and identically distributed (iid)
samples that would be equivalent to the number of correlated MCMC samples.

2.5.1 Metropolis–Hastings algorithm

The first algorithm for generating Markov chains with a specific stationary distribution was the
Metropolis algorithm [45], which was originally used for sampling the Boltzmann distribution.
It was later generalized to be used for arbitrary target distributions by Hastings [47] and
brought into the form that is now the most common algorithm for MCMC and is widely used
in Bayesian inference.

The Metropolis–Hastings algorithm works as follows:
Starting from an initial point  in the parameter space, a new point ̃ is proposed according
to a proposal function (̃). This proposed point is then either accepted as the next point
of the chain, or it is rejected. If it is rejected, the chain stays at the point , and a new
proposal point is generated. The probability to accept a proposed point in the accept-reject
step is given as

accept = min


1
(̃)
()

(̃)
(̃)


 (2.14)

where  is the target distribution that needs to be evaluable at any point of the parameter
space. In Algorithm 1, the Metropolis–Hastings algorithm is illustrated in terms of pseudocode.
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Algorithm 1 Metropolis–Hastings
1: start at a random initial point in the parameter space: 

2: for i in 1: do
3: propose a new point: ̃ = rand(())
4: calculate the acceptance ratio  = (̃)

() 
(̃)
(̃)

5: draw a random number from a uniform distribution:  = rand(0 1)
6: if    then
7: accept the proposal and move to the proposed point: +1 = ̃

8: else
9: reject proposal and stay at current point: +1 = 

10: end if
11: end for
12: return all points [1      ]

A special property of the Metropolis–Hastings algorithm is that it generates Markov chains
that fulfill the detailed balance principle. A Markov chain that satisfies detailed balance is
reversible, i.e., the probability of the chain moving from state  to state  is the same as
the probability of moving from  to ,

 ( ) =  ()  (2.15)

The detailed balance principle is a stronger condition than that required for the existence of a
stationary distribution. Thus, it is ensured that Markov chains generated by the Metropolis–
Hastings algorithms have a stationary distribution that is the target distribution.

While the basic ideas of the Metropolis–Hastings algorithm are straightforward, achieving
implementations that are efficient for arbitrary target distributions can be challenging. To
reach a fast convergence of the Markov chains, the proposal functions usually have to be tuned,
and adaptive steps have to be introduced into the sampling process. A tool providing such a
general-purpose implementation of the Metropolis–Hastings and further sampling algorithms
is introduced in the next chapter.
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analysis

The concept of Bayesian inference introduced in the previous chapter is a powerful approach to
data analysis. But as already indicated, its application to real-world problems requires the use
of efficient numerical algorithms for sampling and integration. In this chapter, the Bayesian
Analysis Toolkit (BAT), a software tool providing algorithms facilitating the use of Bayesian
inference for user-defined problems, is introduced. The main ideas of BAT are motivated in
Sec. 3.1. In Sec. 3.2, a new version of the toolkit in the Julia programming language, called
BAT.jl, is presented, and important design considerations and aspects of its implementation
are discussed. The numerical algorithms included in BAT.jl are described in Sec. 3.3, and
features for the output and visualization of analysis results are presented in Sec. 3.4.

3.1 The Bayesian Analysis Toolkit

As motivated in Sec. 2.4, performing data analysis with Bayesian methods usually requires
advanced numerical techniques, such as MCMC. While the general concept of MCMC algo-
rithms, such as the Metropolis–Hastings algorithm presented in Sec. 2.5.1, is straightforward,
achieving performant and reliable implementations of such methods that are universally appli-
cable can be challenging. This is, for example, due to the presence of tunable hyperparameters
and many computational details. Therefore, it is clearly expedient to use tools that provide
elaborate and well-tested implementations of the required algorithms. A variety of such tools
exists for the realm of Bayesian analyses [48–51]. In the field of particle and high-energy
physics, BAT [52] is an established framework for Bayesian analyses. Integrating into the
common infrastructure of this field of research, BAT was initially implemented in the C++
programming language and relying on the particle-physics analysis framework ROOT [53].
Since its first release in 2008, the main focus of BAT was to provide a user-friendly infras-
tructure that allows performing Bayesian analyses with user-specified likelihoods and prior
distributions. This is achieved by offering a collection of algorithms for posterior exploration,
optimization, and integration, facilitating typical analyses tasks such as parameter estima-
tion, model comparisons, and hypothesis testing. Particular focus was placed on providing an
efficient implementation of the Metropolis–Hastings algorithm, including an adaptive tuning
procedure for the proposal distribution [52].

Over the years, BAT has been used in various analyses in particle physics, for example, for
model fitting [54–56] or limit setting [57–60]. BAT also had use cases in related fields of
research, such as cosmology [61], astrophysics [62], and nuclear physics [63]. In order to open
the tool for further areas of application, its dependencies on domain-specific software had to
be reduced, and the computational requirements of modern data analysis frameworks had to
be met. For these reasons, a completely new implementation of BAT was targeted.
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3.2 BAT.jl – A modern implementation of BAT

Starting in 2017, BAT was rewritten from scratch in the Julia programming language. The first
stable version of the new software package, called Bayesian Analysis Toolkit in Julia (BAT.jl),
was released in 2019 and has been significantly updated in its second version in 2020 [1]. Julia is
a modern multi-purpose programming language with particular focus on high-performance nu-
merical computing [64]. The choice of the Julia language for the development of BAT.jl allows
for performant implementations of the numerical algorithms required for Bayesian analyses
while providing a high-level and user-friendly code syntax. Because of its inherent support
of parallel and distributed computing, as well as its features allowing automatic code-based
differentiation, Julia is a well-suited basis that allows meeting the requirements of a modern
toolkit for Bayesian data analysis.

BAT.jl is a registered Julia package, which makes its installation and setup very simple.
Installation and update processes can be performed automatically using Julia’s integrated
package management system.

Pkg.add(BAT)
using BAT

The design of BAT.jl is focused on (normalized or unnormalized) probability densities. This
allows formulating problems in terms of user-specified likelihood and prior distributions with-
out requiring the use of a certain modeling or domain-specific language. The posterior density
is constructed from the custom likelihood and prior definitions.

posterior = PosteriorDensity(likelihood, prior)

Similar to its predecessor, BAT.jl aims to provide a large collection of algorithms for common
tasks in Bayesian analyses, focusing on capable general-purpose implementations of sampling,
integration, and optimization algorithms. Intuitive high-level functions facilitate the applica-
tion of the numerical algorithms needed for Bayesian inference.

samples = bat_sample(posterior, sampler).result
mode = bat_findmode(posterior, estimator).result
evidence = bat_integrate(samples, integrator).result

The numerical algorithms available in BAT.jl are introduced in Sec. 3.3. For all algorithms,
reasonable default settings are implemented, which depend on the properties of the considered
objects and can be adjusted according to the users’ needs. For the prior, constrained or uncon-
strained distributions can be used, typically provided by the Distributions.jl package [65].
The use of hierarchical priors is also supported. Since many algorithms perform best in cer-
tain parameter spaces, or even require a specific parameter space, such as the unit-hypercube,
BAT.jl includes features for automatic parameter-space transformations.

trafo = PriorToUniform()
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BAT.jl offers a variety of algorithms for sampling, integration, and optimization so that the
user can choose the algorithms that best suit the problem at hand. In the following, the
numerical algorithms included in BAT.jl and some important details of their implementations
are introduced.

3.3 Numerical algorithms of BAT.jl

3.3.1 Algorithms for low-dimensional sampling

As discussed in Sec. 2.4, for low-dimensional problems (typically   5), it can be computa-
tionally feasible to evaluate the posterior distribution at a certain number of discrete points
in the phase space that are not adjusted to the target density. By assigning weights corre-
sponding to the value of the posterior distribution at these points, independent samples can
be obtained. Even though this approach suffers from the curse of dimensionality and does not
scale well with an increasing number of dimensions, three algorithms of this type are included
in BAT.jl for low-dimensional use cases. As such algorithms do not rely on tunable hyperpa-
rameters and are independent of the specific posterior shape, the results obtained with these
methods do not suffer from biases or convergence problems and always represent the true
target distribution. Only the resulting resolution of the posterior distribution depends on the
number of sampling points chosen. Therefore, these algorithms provide important cross-checks
when comparing with the results from more sophisticated MCMC sampling algorithms.

The simplest strategy for generating sampling points in the -dimensional phase space is
using an evenly spaced grid on a constrained parameter space. BAT.jl includes an algorithm
for performing such a grid-based posterior evaluation.

sampler = GridSampler(ppa = 100)

The number of evaluation points per parameter can be specified, and the total number of
samples generated is ppa. In addition, BAT.jl includes a similar algorithm that is based on
the Sobol sequence [66].

sampler = SobolSampler(nsamples = 10^6)

Using the Sobol sequence, quasi-random numbers are obtained that are evenly distributed
in the -dimensional hyperspace and have low discrepancy. This algorithm allows generating
an arbitrary number of samples. Compared to the GridSampler it has the advantage that
the sampling points are not equidistantly spaced. The last sampling algorithm of this type
in BAT.jl generates sampling points by drawing random numbers from the prior. This is
possible because prior distributions in BAT.jl are required to be directly samplable, yielding
iid samples.

sampler = PriorImportanceSampler(nsamples = 10^6)

13



3 BAT.jl – A modern toolkit for Bayesian data analysis

3.3.2 MCMC algorithms

Burn-in and convergence

As mentioned in Sec. 2.5, one of the most important steps when using MCMC algorithms for
Bayesian inference is to ensure that the Markov chains have converged towards their target
distribution so that the samples appropriately represent the posterior distribution. When using
MCMC algorithms in BAT.jl, a pre-run is performed during which hyperparameters of the
sampling algorithms are tuned, and the convergence of the chains is checked iteratively.

burnin = MCMCMultiCycleBurnin()

For the pre-run, multiple Markov chains are initialized with random starting points drawn
from the prior. The pre-run is performed in cycles during which the chains are iterated for
a number of steps (a certain percentage of the requested samples by default) and tuned
according to algorithm-specific tuning procedures. The proposal function is tuned to optimize
the acceptance rate of proposed sampling points and to improve the convergence speed. After
each tuning cycle, the convergence of the chains is checked using the convergence criteria
introduced in the next paragraph. The pre-run is stopped when all chains have converged
and are tuned to the required acceptance rate. The samples generated during the pre-run are
discarded, and the desired number of posterior samples is generated by further iterating the
converged chains. The resulting samples of the posterior distribution are returned. If not all
of the chains converge within the specified number of tuning cycles, a warning is displayed,
and the user can decide in advance whether the sampling should be continued or aborted in
this case.

Convergence criteria

Two common criteria for checking the convergence of Markov chains are implemented in
BAT.jl. They are both based on a comparison of the variance of samples within a chain
(within-chain variance  ) to the variance of samples between different chains (between-chain
variance ), as proposed by Gelman and Rubin [67]. If both variances are compatible, it
indicates that the chains have mixed well and that the samples of each chain have converged
to the same stationary distribution. Following Ref. [67], this is mathematically checked by
calculating the so-called potential scale reduction factor (PSRF) as

̂ =


 + 1

(  )


 (3.1)

where  is the number of samples per chain. In BAT.jl, a cutoff value of ̂  11 is used by
default to determine convergence. The Gelman–Rubin approach has been generalized for the
multivariate case by Brooks and Gelman [68], which is the default convergence criterion in
BAT.jl.

convergence = BrooksGelmanConvergence(threshold=1.1)
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Metropolis–Hastings algorithm

The default sampling algorithm for posterior distributions in BAT.jl is the Metropolis–Hastings
algorithm, as introduced in Sec. 2.5.1.

sampler = MCMCSampling(mcalg=MetropolisHastings(), nchains=4, nsteps=10^6)

A multivariate Students’ -distribution is used as the default proposal function. As mentioned
above, during the pre-run multiple Markov chains are generated. In the tuning process of the
Metropolis–Hastings algorithm, the acceptance rate , i.e., the ratio of accepted proposals to
the total number of samples in each chain, is adapted to be within a range min    max
to ensure an optimal exploration and performance of the chain. By default, min = 015
and max = 035 are chosen. The acceptance rate is tuned using an adaptive procedure that
updates the covariance matrix of the proposal distribution based on the covariance matrix of
the samples generated in the previous tuning cycle. This matrix is then scaled with an overall
factor to reach the desired acceptance rate.

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC), formerly also referred to as Hybrid Monte Carlo, is another
prominent MCMC-based sampling algorithm [43, 69, 70]. It aims to circumvent the often
inefficient random walk behavior of the Metropolis–Hastings algorithm by utilizing gradient
information of the posterior to adjust the proposals to the shape of the target distribution.
As a consequence, HMC usually yields higher acceptance rates than the Metropolis–Hastings
algorithm and reaches convergence faster. The samples obtained with HMC tend to be less
correlated and, therefore, yield a higher ESS, reducing the total number of samples required
for exploring the target distribution appropriately. HMC samplers are capable of working in
up to several thousand dimensions. However, these advantages come with the cost that a single
step of the Markov chain is computationally more expensive in HMC than in the Metropolis–
Hastings algorithm. A brief introduction to the main concept of HMC is given here. A more
detailed overview of HMC techniques can be found in Refs. [43, 70], for example.

The central idea of HMC is to expand the -dimensional parameter space to 2 dimensions
by introducing hyperparameters , the so-called momenta. The original phase space is thus
transformed into the canonical phase space   ( ).1 Also the target distribution () is
lifted into the canonical phase space by constructing a joint distribution

( ) = ()() = e()  (3.2)

where a conditional probability distribution () is chosen for the momenta.

1In this paragraph, the model parameters to be estimated with Bayesian inference are exceptionally denoted
as  instead of  in order to follow the common notation for HMC.
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In the last equality of Eq. (3.2), the so-called Hamiltonian

( ) =  log ( ) =  log () log () (3.3)

is introduced. With this definition of the Hamiltonian, it is possible to use the methods of
classical mechanics, where Hamilton’s equations of motion are given as

d

d
= 




d

d
= 


 (3.4)

When using HMC, a new point (   ) in the canonical phase space is obtained by solving
the equations of motion for a certain time  . This is achieved numerically using so-called
symplectic integrators [71, 72] and allows to move along trajectories  in the canonical phase
space, resulting in a transition

( )  ( ) = (   )  (3.5)

A new proposal point   in the original parameter space is then obtained by marginalizing
over the momenta . Similar to the Metropolis–Hastings algorithm, the new proposal is then
either accepted or rejected by calculating an acceptance ratio.

While this approach for generating proposals seems straightforward, achieving efficient and
reliable implementations of HMC algorithms can be delicate. Compared to the Metropolis–
Hastings algorithm, HMC requires several additional steps, such as the transformations be-
tween the canonical phase space and the original parameter space, or the numerical integration
of the equations of motions. This also leads to HMC sampling processes being dependent on
multiple tunable hyperparameters, such as the momenta , the step sizes, and number of steps
used in the symplectic integrators. In particular, HMC also requires information about the
gradient of the posterior distribution, which has to be provided by the user or needs to be
automatically derivable via code-based differentiation. Different approaches have been devel-
oped to find optimal values for the tuning parameters of HMC [73]. Adaptive techniques like
the No-U-Turn sampler (NUTS) [74] have proven to be successful by eliminating the need
for certain tuning parameters and are, therefore, the current state-of-the-art approaches for
HMC.

In BAT.jl, HMC is provided using an internal interface to the AdvancedHMC.jl package [75]
for performing the individual HMC sampling steps.

sampler = MCMCSampling(mcalg=AdvancedHMC(), nchains=4, nsteps=10^6)

AdvancedHMC.jl provides robust and efficient implementations of HMC and allows choosing
different techniques for the symplectic integrations and generation of proposals. Specifically,
multiple versions of NUTS are available and can be selected. The high-level operations, such
as the construction and transformation of the posterior distribution, as well as the burn-in
process, are handled by BAT.jl, similar to the Metropolis–Hastings sampling. The required
gradient of the target distribution can often be derived automatically from the user-defined
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posterior distribution by making use of Julia’s efficient support of automatic differentiation,
for example, via the packages ForwardDiff.jl [76] and Zygote.jl [77]. In cases where this
is not possible, the gradient can also be specified explicitly by the user.

3.3.3 Integration algorithms

The sampling algorithms discussed above do not take into account the integral in the denomi-
nator of Bayes’ theorem in Eq. (2.7) and sample only the unnormalized posterior distribution.
To estimate the evidence , however, for example, when aiming to calculate Bayes’ factors for
model comparisons, it is necessary to evaluate the corresponding integral. In BAT.jl, different
approaches for the integration of posterior distributions are included.

An interface to the CUBA library [78] allows estimating integrals with established general-
purpose integration algorithms based on importance sampling techniques, such as VEGAS
[79].

evidence = bat_integrate(posterior, VEGASIntegration()).result

As these algorithms do not scale very well with the dimensionality, a new algorithm for inte-
gration based on samples generated with the sampling algorithms described above, is included
in BAT.jl, called Adaptive Harmonic Mean Integration (AHMI) [80].

evidence = bat_integrate(samples, AHMIntegration()).result

The AHMI algorithm creates multiple hyperrectangles in the parameter space and computes
the harmonic mean estimator based on the posterior samples in each of these regions. By join-
ing the results from all hyperrectangles, an integral estimate for the full posterior distribution
is obtained. Furthermore, estimates for the uncertainty are provided. This algorithm has been
shown to perform well for up to 20 dimensions [80].

3.3.4 Partitioned sampling

Using the integration algorithms introduced above, a new sampling approach is implemented
in BAT.jl, which allows a parallel exploration of the sampling space. The main idea of this
so-called partitioned sampling [81] is to divide the parameter space into multiple subspaces and
to perform the posterior sampling separately in each of them, using the sampling algorithms
discussed above. When merging the samples from the individual subspaces, the relative weights
of the samples have to be taken into account. For this purpose, the samples of each subspace
are first reweighted according to their integral, determined using the AHMI algorithm. This
allows for correctly stitching together all subspaces.

sampler = PartitionedSampling(npartitions=4, sampler=mcmc, integrator=ahmi)

The partitioned sampling allows reducing wall-clock times by providing another option for
parallelizing the sampling process. Also, for certain target distribution, such as multimodal
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posterior distributions, the partitioned sampling approach is advantageous, since the included
integration step makes the correct estimation of the relative heights of the individual modes
possible, which can not be achieved using the ordinary Metropolis–Hastings algorithms, as
will be demonstrated later in Sec. 8.5.

3.3.5 Nested sampling

A MC approach that yields both samples of the target distribution and an estimate of its
integral, i.e., the evidence  in Bayesian inference, is nested sampling. The idea of nested
sampling was proposed in 2004 [82], and its main concepts for the exploration of the phase
space and the estimation of the integral are briefly summarized below, following the review of
Ref. [83].

When using nested sampling for Bayesian inference, a number  of so-called live points is
randomly drawn from the prior distribution. Each of these points is associated with a fraction
1 of the total volume, and the likelihood is evaluated at each of them. The live point with
the lowest likelihood value, 1, is then removed, which results in a shrinkage of the volume by
 = 1 and leads to a remaining volume of  = (1 1

 ). The removed point (dead point)
is saved as a sample and weighted by the product of its likelihood value and the corresponding
volume. A new live point is then sampled from the prior distribution, with the requirement
of having a likelihood value greater than that of the removed point, i.e., greater than 1.
This is referred to as constrained sampling or likelihood-restricted prior sampling (LRPS).
With the new point, again  live points are available, and each of them represents a fraction
1 of the remaining volume. The steps of removing the live point with the lowest likelihood
value and sampling a new live point from the prior distribution with increasing likelihood
values are repeated iteratively. This causes the volume to shrink by a constant factor in each
iteration, and the considered phase space becomes more and more concentrated around the
highest likelihood values. The nested sampling algorithm terminates when the changes in the
remaining volume after  iterations,  = (1  1

 ), become negligibly small. The evidence is
then estimated as

 




∆    (3.6)

where ∆ =   1 = 1
 (1  1

 ) is the shrinkage of volume, and  are the likelihood
values of the corresponding dead points. The removed live points are samples of the target
distribution. The crucial step in nested sampling is generating new live points that satisfy
the requirement of increasing likelihood values, i.e., the LRPS. Various approaches have been
proposed for this constrained sampling, also including methods based on HMC approaches
[84], for example. A detailed overview and comparison of such algorithms for nested sampling
is given in Ref. [83].

In BAT.jl, two different implementations of nested sampling algorithms are available using
interfaces to specialized packages. On the one hand, an interface to the python package
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UltraNest2 is provided by the Julia wrapper UltraNest.jl3.

sampler = ReactiveNestedSampling(min_num_live_points=400)

The UltraNest package implements the MLFriends algorithm [85, 86] for the constrained
sampling, which uses ellipsoids around the live points to draw new points from these regions.
It has the advantageous property of being free of tuning parameters. On the other hand, a
native Julia implementation of nested sampling is accessible using an internal interface to the
NestedSamplers.jl package4, which provides single- and multi-ellipsoidal nested sampling
algorithms [87].

sampler = EllipsoidalNestedSampling(num_live_points=400)

Besides the ability to compute posterior samples and the integral estimate simultaneously,
nested sampling algorithms are particularly suited for exploring multimodal distributions, as
will be demonstrated in Chap. 8.

3.3.6 Optimization and best fit values

A quantity of particular interest in Bayesian analyses is the point with the highest value of
the posterior probability, i.e., the global mode of the posterior distribution. When samples
of the posterior distribution are already available, the sample with the highest weight can be
a first estimate for the global mode. For more precise estimates of the global mode, BAT.jl
includes two optimization algorithms by interfacing to the Optim.jl package [88]. The default
optimization algorithm for mode finding in BAT.jl is the Nelder-Mead algorithm [89].

estimator = MaxDensityNelderMead()

For distributions for which the gradient is known or can be derived automatically, the LBFGS
algorithm [90] can be applied.

estimator = MaxDensityLBFGS()

Often, also the mode values of marginal distributions, further referred to as marginal modes,
are of interest. In BAT.jl, the marginal mode is estimated from binned samples as the center
of the bin with the highest weight. The number of bins to be used for the calculations can be
set manually or determined automatically using different binning rules, such as the Freedman-
Diaconis rule [91], for example.

2https://johannesbuchner.github.io/UltraNest/
3https://github.com/bat/UltraNest.jl
4https://github.com/TuringLang/NestedSamplers.jl
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3.4 Visualization of results

An essential aspect of each data analysis is the presentation and visualization of the results.
BAT.jl provides several functionalities for easy access to numerical and graphical output of
results. A summary object can be constructed containing information about the sampled
distribution, such as estimates for the mean, global and marginal modes, and the covariance
matrix.

results = SampledDensity(posterior, samples)

An example of the output obtained from this object is shown in Fig. A.1 of App. A. All
properties and estimates can also be accessed via specific functions to use them for further
computations or to create custom output formats of the results. For the one-dimensional
marginal distributions, additional summary statistics, such as the quantiles or smallest inter-
vals containing a certain probability, can be determined.

For the graphical representation of results, BAT.jl includes multiple plot recipes that facilitate
plotting with the Plots.jl package 5. For the visualization of high-dimensional distributions,
by default, the one- and two-dimensional marginals are plotted using histogrammed samples.

plot(samples)

Figure 3.1: Example of a BAT.jl default plot, showing one- and two-dimensional marginal
distributions. For the one-dimensional marginals on the diagonal and the two-dimensional
marginals in the lower triangle, the smallest intervals (areas) containing 683 %, 955 % and
997 % of the posterior probability are highlighted in green, yellow, and red, respectively. In
the upper triangle plots, two-dimensional heatmaps are shown.

5https://github.com/JuliaPlots/Plots.jl
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3.4 Visualization of results

In Fig. 3.1, a BAT.jl default plot is depicted for a three-dimensional multimodal distribu-
tion, built from multiple normal distributions. By default, the smallest intervals (areas in the
two-dimensional case) containing 683 %, 955 % and 997 % of the posterior probability are
highlighted. For the one-dimensional distributions, the central intervals, i.e., the symmetri-
cal intervals around the mean, can also be highlighted instead. The corresponding intervals
and areas are determined based on histogrammed samples. A more detailed discussion of this
approach is given in Sec. 5.4.

Various keyword arguments allow for highlighting certain properties of the distribution and
for customizing the plotting styles. By plotting the posterior distribution together with the
associated prior distribution, the knowledge update gained in the Bayesian inference can be
visualized, as demonstrated in Fig. 3.2.

p = plot(samples, :θ2, nbins=300, mean=true, intervals=[0.5, 0.7, 0.9],
colors=blues, marginalmode=Dict("linecolor"=>:red, "linewidth"=>2))

p = plot!(prior, :θ2, linecolor=:darkorange2, linewidth=2)

Figure 3.2: Example of a customized plot showing both the marginal posterior and the prior
distribution. The marginal mode and the mean of the posterior distribution are shown. The
smallest intervals containing 50 %, 70 % and 90 % of the posterior probability are highlighted.

Since full access to the posterior samples and the marginalized histograms is available, com-
pletely customized visualizations of the results can also be created.
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4 The search for physics beyond the Standard
Model

In particle physics, the statistical analysis of large amounts of data plays a crucial role. In
this thesis, the previously presented methods and tools for Bayesian data analysis are applied
in the search for physics beyond the Standard Model (BSM) using the framework of effective
field theories (EFTs). This approach is motivated in this chapter. For this purpose, a short
introduction to the Standard Model of particle physics (SM) is given in Sec. 4.1. Open ques-
tions and aspects that motivate the search for BSM phenomena are presented in Sec. 4.2.
The concept of EFTs is introduced in Sec. 4.3, and the Standard Model effective field theory
(SMEFT) as a model-independent approach to BSM searches is discussed.

4.1 A brief introduction to the Standard Model

The grand objective of particle physics is to search for the fundamental components of the
universe and to understand the interactions between them. The SM comprises the current state
of knowledge about the elementary particles and their interactions and is the underlying model
of particle physics. The theory of the SM and the corresponding mathematical description were
developed gradually during the 20th century and finalized in its current form in the 1970s [92–
100]. Within the SM, all elementary particles discovered so far and three of the four known
fundamental forces are described, with only the gravitational force not being included in its
formalism. For the purposes of particle physics, however, the gravitational force is orders
of magnitudes weaker than the other three forces, and its influence can be neglected. The
mathematical formulation of the SM allows making predictions for the values of observable
physical quantities, which can then be probed by particle physics experiments.

The elementary particles described in the SM are grouped into two main classes according
to their spin values. The so-called fermions have half-integer spin, while bosons have integer-
valued spin.

Fermions The Fermions are the constituents of matter. They are divided into two sub-
classes, called quarks and leptons. The six quarks carry fractions of the elementary electric
charge . They are grouped into the up-type quarks named up (), charm (), and top ()
quark with an electric charge of +2

3, and the down-type quarks called down (), strange (),
and bottom/beauty () quark with an electric charge of 1

3. The leptons are also grouped
according to their electric charge. The electron , the muon , and the tau lepton 

have an electric charge of 1 and are referred to as the charged leptons. For each of the
charged leptons, there exists a corresponding uncharged lepton, called neutrino. Specifically,
these are the electron neutrino (), the muon neutrino (), and the tau neutrino ( ), which
are assumed to be massless in the SM. For both the quarks and the leptons, a mass hierarchy
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between the three respective generations is observed, with the particles of the third generation
being the heaviest and those of the first generation being the lightest. The top quark is the
heaviest particle of the SM, with a mass of about (17276 030) GeV [101]. For each of the
fermions, there is a corresponding antifermion with opposite charges, forming the antimatter.
Only for the neutrinos, it is not clear if there exist separate antineutrino particles or if the
neutrinos themselves are their own antiparticles, which would make them so-called Majorana
particles [101].

Bosons The bosons are grouped into the gauge bosons with spin one and the scalar Higgs
boson with spin zero. The gauge bosons are the mediators of forces. By coupling to specific
charges, they enable interactions between correspondingly charged particles. The photon 

is the gauge boson of the electromagnetic interaction. It couples to the electric charge and
therefore to all fermions, except for the neutrinos, and to the charged bosons. The gluon 

is the mediator of the strong interaction and couples to the color charge, a quantum number
carried by the quarks and also the gluons themselves. This special property of the gluons being
color-charged allows for self-interactions between them. In ordinary phases of matter, quarks
and gluons cannot be isolated because of the so-called confinement, which describes that only
color-neutral combinations of these particles can be observed. Together with the fact that the
coupling strength of the strong force increases with increasing distances between the particles,
this leads to the hadronization, in which new particles are generated from the vacuum to form
color-neutral bound states of quarks and gluons, the hadrons. The gauge bosons of the weak
interaction are the charged   and the neutral 0 bosons. In contrast to the photon and the
gluons, the weak gauge bosons are massive, with masses of  = (80379 0012) GeV and
 = (91187 0002) GeV [101]. The weak interaction is related to the quantum number
called weak isospin and is the only interaction that affects all fermions. In 2012, the Higgs
boson  was experimentally discovered as the last fundamental particle described in the SM
[6, 7]. It arises from the Higgs mechanism [98–100], which describes how the charged fermions
and massive bosons obtain their mass through a spontaneous breaking of the electroweak
symmetry.

Mathematical formulation of the SM Mathematically, the SM is formulated as a relativistic
and renormalizable quantum field theory with a SU(3)  SU(2) U(1) gauge symmetry
group before spontaneous symmetry breaking (SSB). The SU(3) is the underlying symme-
try of quantum chromodynamics (QCD), i.e., the theory describing the strong interaction.
A unified description of quantum electrodynamics (QED), i.e., the theory of the electromag-
netic interaction, and the weak theory is achieved in the electroweak theory, which has the
SU(2)U(1) gauge symmetry [92, 93, 96]. The Higgs mechanism induces a SSB of the elec-
troweak symmetry and gives rise to the three massive bosons. After this symmetry breaking,
the gauge group of the SM is SU(3) U(1)EM.

A mathematical summary of the SM quantum field theory can be given in terms of a La-
grangian density, often simply called Lagrangian. From the Lagrangian, certain properties of
the particles and their interactions, as well as rules for calculating predictions of observable
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processes, can be derived. The Lagrangian is built from quantum fields and corresponding op-
erators. All terms of the SM Lagrangian are of mass-dimension four, except for the  part
in the Higgs mass term, which is of dimension two. A compact version of the SM Lagrangian
is given in Eq. (4.1), together with a brief description of the respective terms:

SM =1
4  1

4
  1

4 
 

kinetic terms of gauge bosons

+ ()()

kinetic Higgs term

+ 2 ()2

Higgs mass term

+ (̄  + ̄ )
kinetic quark terms

+ (̄  + ̄  + ̄ )
kinetic lepton terms

 ( ̄̃ +  ̄ +   ̄ + h.c.)
mass terms for quarks and charged leptons

 (4.1)

In this notation,  ,  , and 
 are the gauge field strength tensors of the U(1) , SU(2),

and SU(3) gauge groups. The Higgs doublet is denoted as , where ̃ = 2 with the Pauli

matrices . The SU(2) doublets for quarks and leptons are  =







and  =







. The

terms , , and  are the singlets for the up-type quarks, down-type quarks, and charged
leptons, respectively. The   denote the Yukawa matrices, and  is the covariant derivative.

4.2 Motivation for physics beyond the Standard Model

The SM is a huge success of particle physics, as it describes all known particles and their
interactions comprehensively and allows making predictions for measurable quantities. Pre-
dictions based on the SM have been tested successfully by various particle physics experiments
over a large range of energy scales [101]. Until now, no deviations between measurements and
corresponding SM predictions have been found that would be considered significant at the 5 

level, which is the common significance threshold in particle physics. There are, however, sev-
eral indications that the SM is not the full theory describing all fundamental components and
interactions of the universe. On the one hand, there are experimental observations of phenom-
ena that cannot be explained within the SM or that deviate in a consistent way from the SM
predictions. On the other hand, there are certain shortcomings of the theoretical framework
of the SM. A non-exhaustive selection of such indications is listed below.

Neutrino masses Multiple experiments observed so-called neutrino oscillations, which are
conversions of the neutrino flavors from one lepton generation into another. Such conversions
have been observed using atmospheric [102], solar [103], reactor [104], and accelerator [105]
neutrinos. The mixing between different neutrino generations is theoretically described by
the Pontecorvo–Maki–Nakagawa–Sakata matrix [106, 107], which requires the neutrinos to be
massive. In the SM, however, neutrinos are considered to be massless, and it is not possible to
add terms for neutrino masses to the Lagrangian while keeping the same particle content and
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symmetries of the SM. There are approaches that allow adding mass terms for the neutrinos,
such as the see-saw mechanism or the concept of sterile neutrinos, which are two examples of
possible extensions of the SM [101].

Dark matter & dark energy Cosmological observations of the rotation curves of galaxies
[108] or of gravitational lensing effects [109] imply the presence of matter in a form that differs
from the ordinary particles described by the SM and that is not directly detectable with
present particle physics experiments. Current estimates based on the Planck satellite data
[110] suggest that only 5 % of the universe is made of the baryonic matter described in the
SM. Around 27 % are estimated to be matter of a still unknown nature, so-called dark matter.
The remaining 68 % percent are an unknown form of energy, called dark energy. That the
baryonic matter described by the SM makes up only a small fraction of all matter indicates
that the SM alone cannot be the full theory describing all particles of the universe.

Baryon asymmetry The aforementioned 5 % of observable matter in the universe are assumed
to consist entirely of baryonic matter. So far, no hints for primordial forms of antibaryonic
matter have been found. Antimatter has only been observed in particle accelerators or cosmic
rays, in both cases resulting from the collisions of matter particles [101]. Within the SM,
however, there is no mechanism preferring baryonic matter over antibaryonic matter. The
absence of observable antimatter in the universe is referred to as the baryon asymmetry, for
which the SM does not provide an explanation.

 anomalies Recent measurements of different observables in semi-leptonic  meson decays
deviate from their SM predictions, e.g., Refs. [111–116], hinting towards a violation of lepton
flavor universality, a fundamental principle of the SM. The deviations observed in the indi-
vidual measurements are at a level of up to 36  [116] and are therefore not yet considered
statistically significant on their own. However, these deviations are observed in multiple ob-
servables at different experiments and are all pointing in the same direction. Therefore, the
so-called  anomalies are currently a highly interesting sector for searching deviations from
the SM. Further experimental results will need to be considered to confirm or disprove the
observed anomalies and possible violations of lepton flavor universality.

Anomalous magnetic moments Due to higher-order contributions, the SM expectations for
the magnetic moments of charged fermions deviate from the value  = 2 expected from the
Dirac equation. The so-called anomalous magnetic moment  = (  2)2 is a quantity de-
scribing this deviation, and its value is subject to high-precision experiments. A deviation
between the measured value of  and the corresponding SM predictions could be an indication
that contributions from unknown particles are neglected in the calculations. For the anomalous
magnetic moment of the muon, , a deviation from the SM prediction was observed at the
Brookhaven National Laboratory [117]. Recent results from Fermilab confirm this deviation,
with the combined significance of both experiments now being 42  [118]. As this value is
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still below the common threshold of 5 , further experimental results will have to be consid-
ered. Because the computation of the SM prediction for  is intricate, in particular, due to
contributions from hadronic light-by-light scattering, also improved SM predictions have to
be considered, which might decrease the currently observed deviations between theory and
experiment [119].

Unification of forces The SM provides consistent descriptions for three of the four known
fundamental forces in terms of quantum field theories. While the electromagnetic and weak
forces can be unified in the electroweak theory, a combined description including also the strong
force would be desirable and is often referred to as a grand unified theory. A description of
gravity as a quantum field theory has not been achieved so far. From a theoretical point of
view, however, a common framework describing all known interactions in a coherent way, i.e.,
a so-called theory of everything, would be desirable for particle physics.

The points above, as well as further aspects not listed here, indicate that the SM alone is not
the full theory of particle physics, even though it describes a huge part of empirical observations
very precisely. Therefore, there is still a lot of research ongoing in the field of particle physics,
both in experiment and in theory, searching for observations and theoretical descriptions of
BSM physics.

4.3 Going beyond the Standard Model with effective field theories

In the search for BSM physics, various approaches are being pursued. One approach is to
develop hypothetical BSM models postulating specific new particles or phenomena, which
are then directly searched for by the experiments. On the other hand, there are indirect
searches probing only the effects of potential BSM scenarios on known processes by comparing
observations with the SM predictions. One such indirect and model-independent approach is
the use of EFTs for BSM searches.

4.3.1 The concept of effective theories

Effective theories can be applied when a separation of energy scales exists. In such cases, it is
possible to formulate an effective description of processes at the low energy scale of interest
without knowing the full fundamental theory defined at a higher energy scale. The effective
description then includes only the relevant effects at the scale of interest and ignores effects
at other scales. The use of this concept of separated energy (or length) scales is well known in
various fields of research. For example, in atomic physics and chemistry, precise calculations
of observable processes are possible without taking into account the substructure of protons
and neutrons since this becomes only relevant at much higher energy scales, which are not
probed in these research fields [120, 121].

In particle physics, effective theories can be applied, for example, if the energy scale of a
mediator particle is much higher than the scale of the process under study. The most famous
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4 The search for physics beyond the Standard Model

example of such an effective description in particle physics is Fermi’s theory of beta decay. In
his publication from 1934, Fermi describes the beta-minus decay,    +  + ̄, as a four-
fermion point interaction, which agrees well with observations [122]. In the 1960s, however,
the full theory of the weak interaction was developed by Glashow, Salam, and Weinberg [92,
93, 96], and the  boson was postulated to be the particle mediating the weak interaction in
the beta decay. It was discovered in 1983 by the UA1 and UA2 experiments [123, 124]. Fermi’s
theory thus turned out to be only an effective description of the beta decay. However, due to
the large mass of the  boson, compared to the energy scale of the beta decay itself, Fermi’s
theory still provides a good description of the process, even though it is unaware of the 

boson exchange as the actual underlying mechanism. Considering the weak interaction and
its mediator particles to be the full theory, valid also for higher energies, Fermi’s theory for
processes at lower energy scales can be recovered. Such a procedure, starting from the known
fundamental theory and deriving an effective description for lower scales, is referred to as the
top-down approach and is demonstrated in the following for the example of the beta decay.

In Fig. 4.1, two Feynman diagrams for the beta-minus decay of a neutron are depicted, neglect-
ing spectator quarks. The left diagram shows the process as described by the weak interaction,
mediated by a  boson. The right diagram shows the same process as a four-point interaction,
as described by Fermi.
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νe
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GF
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d νe
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Figure 4.1: Feynman diagrams for the beta-minus decay as described by the weak interaction
(left) and by Fermi’s effective theory (right).

In beta decays, the energy scale of the process, i.e., the transferred momentum , is much
smaller than the energy scale of the full theory, which corresponds to the mass of the mediator,
 . Therefore, the propagator of the massive  boson in the left diagram of Fig. 4.1 can be
expanded as

2

2 2


=  2

2



1 + 2

2


+


4

4



  2

2


 (4.2)

Thus, starting from the weak interaction, a low-energy effective description is obtained, and
the Fermi coupling constant F  2

2


can be recovered. Since the heavy  boson is integrated
out in this low-energy approximation, the Feynman diagram takes the form of a four-point
contact interaction with the Fermi constant  as the coupling strength, as is shown in the
right diagram of Fig. 4.1.
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4.3 Going beyond the Standard Model with effective field theories

When applying such an effective approach while being aware of the energy scale of the un-
derlying full theory, the inaccuracy ∆EFT introduced by using the effective description can be
estimated by comparing the energy scale  of the process to the energy scale Λ of the full
theory. Considering the above example of the beta-minus decay of the neutron, an estimate
of the EFT error can be approximated as

∆EFT 
2

Λ2 
2



2


 104  (4.3)

For a process with similar Feynman diagrams but an even lower energy scale, such as the
muon decay  ̄, the corresponding error of the Fermi approach would be only ∆EFT 
2



2

 106 [121]. It is thus apparent that, if the energy scales are separated well enough,

effective theories can yield very precise descriptions even though heavy mediator particles are
not taken into account. For energies  close to the scale Λ, however, the EFT expansion breaks
down and no longer provides a valid description of the process.

In  physics, EFT approaches similar to Fermi’s theory are commonly applied for the com-
putation of low-energy observables, in particular for flavor-changing processes. Since such
processes take place at energies well below the electroweak scale, a suitable EFT can be de-
rived by integrating out the particles above this scale, i.e., the massive  , , and Higgs
bosons, as well as the top quark and hypothetical heavy BSM particles. The resulting effective
theory is referred to as the weak effective theory (WET) [125–127] and is commonly used for
the calculation of observables. A complete basis of effective operators below the electroweak
scale has recently also been formulated in the low-energy effective field theory (LEFT) [128].
In Chap. 7 of this thesis, the WET is introduced in more detail and employed to compute
BSM contributions to  physics observables.

4.3.2 The Standard Model Effective Field Theory

In the search for BSM physics, experiments at current particle accelerators are able to directly
search for new phenomena in an energy range of up to a few TeV. However, even though the
integrated luminosity of analyzed data has grown rapidly, no signs of BSM phenomena have
been detected in such direct searches. A possible reason for this could be that the energy scale
of potential BSM physics might be much higher than the scale of the SM, and therefore not
reachable with current accelerator experiments. This would, however, imply a separation of
the energy scales of SM and BSM physics. The SM itself could then be considered a low-energy
effective description of a more general theory at a much higher energy scale, often referred to
as an ultraviolet (UV) complete theory. In the search for such a full theory of SM and BSM
physics at an energy scale Λ much higher than that of the SM, a so-called bottom-up EFT
approach can be pursued. By systematically extending the SM Lagrangian, it is attempted
to parametrize the effects of new phenomena in terms of effective operators, without having
specific knowledge about the details of the full theory. By constraining the coupling strengths
of effective operators, BSM physics can be probed in a model-independent way by searching
for deviations from the SM expectations. However, the full UV theory at the scale Λ cannot be

29



4 The search for physics beyond the Standard Model

determined with this approach, as the same effective operators could be derived from different
fundamental theories having similar low-energy effects. Conversely, when considering a specific
UV theory at scale Λ, however, it can be matched to the effective theory.

A common effective extension of the SM for BSM searches is SMEFT. In SMEFT, it is assumed
that the energy scale of BSM physics Λ is well above the vacuum expectation value of the Higgs
boson, i.e.,  = 246 GeV, and that the Higgs field is a doublet in the SU(2) symmetry [129].1
The Lagrangian of SMEFT is built by adding higher-dimensional terms to the SM Lagrangian.
For this, -dimensional operators are constructed from the SM fields and are required to be
gauge invariant under the symmetries of the SM. As all terms of the SM Lagrangian are of mass
dimension four at most, the SMEFT operators of dimensions   4 are suppressed by inverse
powers of the BSM scale, 1Λ(4). For each effective operator , there is a corresponding
Wilson coefficient , which quantifies its coupling strength. The Lagrangian of -dimensional
SMEFT operators is therefore given as

() =




1
Λ4 

()
 

()
  (4.4)

where  iterates over all possible operators of dimension . The SMEFT Lagrangian is then
created by adding all higher-dimensional terms to the SM Lagrangian

SMEFT = SM +


=5
()  (4.5)

For  = 5, only one effective operator can be constructed in SMEFT. This operator does not
conserve lepton number and gives rise to Majorana neutrino masses [130]. In general, only
even-dimensional operators conserve lepton and baryon numbers [131, 132]. As the higher-
dimensional terms are suppressed by increasing powers of Λ, the leading contributions to
BSM physics (besides the neutrino masses) come from dimension-six operators. In this thesis,
only these leading BSM contributions, suppressed by Λ2, are considered, and the SMEFT
Lagrangian under study reads

SMEFT = SM +




1
Λ2 

(6)
 

(6)
 +

 1
Λ4


 (4.6)

For  = 6, it has been shown that there are 59 independent effective operators when counting
only one fermion generation [130, 133]. All operators are given in Ref. [133] in a representation
referred to as the Warsaw basis, which is also employed in this thesis. When considering all
possible flavor combinations of the fermion fields, these 59 operators lead to a total of 2499
independent parameters for dimension six. In observable processes, however, usually only
a small subset of these operators gives non-negligible contributions [130, 131]. This allows
deriving constraints on the Wilson coefficients of the operators from measurements.

1There are other EFT approaches to BSM physics, such as the Higgs effective field theory (HEFT), in which
the Higgs boson is assumed to be a SU(2) singlet [129].

30



4.3 Going beyond the Standard Model with effective field theories

Based on Eq. (4.6), predictions for the values of observables can be calculated. Similar as for
the SM, the Lagrangian is translated into Feynman rules, which are then applied to Feynman
diagrams. When computing the Feynman amplitude of a specific process, all corresponding
Feynman diagrams need to be considered, including those containing modifications from EFT
operators. In this thesis, only Feynman diagrams with a single insertion of a dimension-six
operator are considered, as contributions from diagrams with multiple insertions are sup-
pressed by more than Λ2. The resulting amplitude can be divided into contributions from
SM diagrams and from BSM diagrams including EFT operators [134],

 =SM + 1
Λ2




BSM
 +

 1
Λ4


 (4.7)

Cross sections are proportional to the square of the absolute value of the amplitude, i.e.,
  2. The resulting terms when squaring Eq. (4.7) are given as

 = SM + 1
Λ2





interf
 + 1

Λ4




BSM
 +

 1
Λ6


 (4.8)

The first term, SM, contains only the contributions from the SM diagrams. The leading
contributions to BSM physics come from the interference between SM and BSM diagrams
and are of the order 


Λ2. Contributions of the order 


Λ4 arise from squaring the

amplitude of the BSM diagrams. The origin of these terms is also visualized in Fig. 4.2.

SM

2

interf. BSM

2

Figure 4.2: Diagrams visualizing the origin of the terms in Eq. (4.8). Adapted from [134].

In this thesis, Eq. (4.8) is used to obtain computationally fast parametrizations of observables
as a function of the Wilson coefficients. This is achieved by determining the values of the
terms interf

 and BSM
 in Eq. (4.8) through interpolations to MC simulations performed

with fixed values of the Wilson coefficients. Terms of the order 

Λ4 in Eq. (4.8) are in

general not considered to be leading order BSM contributions for dimension-six operators.
However, in some processes, the interference terms of certain operators might be suppressed,
for example, due to small SM contributions. In such cases, the leading BSM contributions from
dimension-six operators can be those of


Λ4.2 It has been shown that, for these reasons, the

corresponding BSM terms coming from squaring the contributions of diagrams with dimension-
six operators should not be neglected in general [134]. In this thesis, observables, such as cross

2Contributions of the same order also arise from the interference of dimension-eight effective operators with
the SM. Such contributions are not taken into account in this thesis since dimension-eight operators are not
considered.
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sections and decay widths, are therefore usually parametrized using Eq. (4.8), including the
quadratic terms of the order 


Λ4. For the EFT studies in Chap. 6, the relevance of the

quadratic terms is investigated explicitly by comparing both a linear parametrization taking
into account only the interference terms and a quadratic parametrization taking also into
account the contributions of order 


Λ4 [15].

4.3.3 The top-quark sector of SMEFT

This thesis focuses on SMEFT operators affecting the top quark, as it plays an important role
in the search for BSM physics. In many BSM scenarios, new phenomena are expected to be
best accessible in top-quark processes. This is motivated by certain unique properties of the top
quark. The top quark is the heaviest particle of the SM and has the largest Yukawa coupling
to the Higgs boson, being of the order (1). This makes studies of the coupling between the
top quark and the Higgs boson very interesting and sensitive to potential new phenomena. In
addition, many BSM scenarios assume that new particles decay into SM particles, with the
top quark often taking a special role in these hypothetical decays. Due to its high mass, also
the average lifetime of the top quark is very small, being at the order of 1025 s [101, 135].
This time is so short that the top quark decays before hadronization. This allows studying the
top quark and its properties as a quasi-free particle, which is a unique feature in the quark
sector. As its lifetime is also shorter than the timescale for spin decorrelation, the top quark
keeps its spin state from production to decay and passes its spin completely to the decay
products [101, 135]. Therefore, studies of top-quark decays, which happen almost exclusively
into a  boson and a  quark, are of particular interest. For these reasons, BSM studies
using top quarks are very common, and during the recent years EFT interpretations of top-
quark measurements gained a lot of interest and importance [3, 15–23]. Therefore, in this
thesis, the Bayesian methods introduced before are used to constrain the Wilson coefficients
of dimension-six operators affecting the top quark.

The dimension-six operators considered in the following studies are introduced here and are
given in the Warsaw basis [133]. Only operators affecting third-generation quarks are taken
into account. Six operators modifying the interactions of the top quark with the bosons are
considered:

 = (̄) ̃   =

̄ 


̃

 

 =

̄ 


̃ 

  (1)
 =




 


(̄) 

 =



 


(̄)  (3)

 =



 


 

̄ 




(4.9)

In addition, five semileptonic four-fermion operators are included:


(1)
 =


̄


(̄)  

(3)
 =


̄  

 
̄ 




 = (̄) (̄)   = (̄) (̄) 

 =

̄


(̄) 

(4.10)
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For the studies of -channel single top quark production cross sections in Chap. 6, also the
four-quark operators

(1)
 = (̄) (̄) and (3)

 =

̄ 

 
̄ 


(4.11)

are considered. All of the operators above are constructed from the SM fields of the Lagrangian
in Eq. (4.1). Therefore,  and  are again the SU(2) doublets of the quarks and leptons, 

and  are the SU(2) singlets for the up-type quarks and charged leptons. The  ,  
 ,

and 
 are the field strength tensors of U(1) , SU(2), and SU(3) , respectively, and 

denotes the Higgs doublet. The  are the Pauli matrices with   = 2. The Dirac gamma
matrices are denoted as , and   are the Gell-Mann matrices.

The sensitivities of the considered top-quark and  physics observables to these operators are
discussed in the respective studies in Chap. 6, Chap. 7, and Chap. 8.
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5 Combining measurements for EFT
interpretations with EFTfitter.jl

The interpretation of measurements in terms of SMEFT is a popular approach for indirectly
searching for BSM physics, as already discussed in the previous paragraphs. In this chapter, the
need for a collective EFT interpretation of multiple measurements and different observables
is indicated, and a Bayesian approach for combining correlated measurements is introduced.
Current efforts targeting global SMEFT fits are motivated in Sec. 5.1, and statistical meth-
ods for combining correlated measurements of a single or multiple observables are discussed
in Sec. 5.2. In Sec. 5.3, a new tool facilitating Bayesian combinations of measurements for
EFT interpretations is introduced, and important aspects of its implementation are presented.
Methods for determining the influence of individual measurements on the total combination
are discussed in Sec. 5.4, and studies comparing the different weighting criteria are performed
using a toy example.

5.1 Towards a global SMEFT fit in the top-quark sector

Since direct searches at the Large Hadron Collider (LHC) did not yield any hints for BSM
physics, indirect searches using EFT approaches gained popularity during recent years. As
motivated in Sec. 4.3.3, particularly LHC measurements of the top-quark sector are now fre-
quently interpreted in terms of EFT, for example, by the ATLAS and CMS collaborations
[8–14]. By comparing the measured values with corresponding SM predictions and translating
potential deviations into contributions from dimension-six operators, constraints on the Wil-
son coefficients are derived. To improve the precision of the constraints, combining multiple
measurements of the same observable is a common approach. As mentioned before, typically,
only a certain number of dimension-six operators give non-negligible contributions to a specific
process. Therefore, measurements of a single observable are usually sensitive to only a small
subset of SMEFT coefficients. Combinations of different observables are pursued to provide
higher sensitivity and to constrain larger sets of Wilson coefficients in a consistent way. Efforts
for such combinations are ongoing both within the experimental collaborations and external
working groups, targeting multi-observable and multi-coefficient SMEFT fits [5, 16, 17, 23,
136, 137]. LHC-wide working groups have formed to harmonize such efforts and to establish
common standards for global SMEFT fits, for example, in the top-quark sector [15].

One of the challenges when aiming for a global fit of SMEFTWilson coefficients is to find a suit-
able method that allows for a consistent combination of multiple observables, measured using
different experiments, energy scales, and analysis methods. The most fundamental approach
to combining measurements for a common EFT interpretation is to determine a combined
likelihood function including all data available. However, such a likelihood-level combination
of different experiments is an elaborate task in particle physics. A great amount of data has to
be considered, and typically different techniques and various software frameworks are used to
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derive the individual likelihoods. In particular, the models describing systematic uncertainties
pose a challenge, as they usually cannot be merged in a simple way. Therefore, combining the
likelihoods of measurements from different experiments in a coherent way is a sophisticated
task that requires a lot of cooperation and harmonization of tools. Such combined analyses
of ATLAS and CMS data have, for example, been performed in the Higgs sector [138, 139].
When combining different measurements and observables to interpret them in the context of
SMEFT, usually simplified approaches are employed [2, 23, 140]. These methods then allow
performing combined fits even outside the respective experimental collaborations and without
access to the underlying data and likelihoods. In the following section, such approaches for
the combination of correlated measurements are introduced.

5.2 Methods for combining measurements

The naive approach to combine multiple estimates of the same quantity is to determine the
average. In the presence of uncertainties, the weighted average is often applied, with the
weights being proportional to the inverse variances of the individual measurements. This
approach, however, is only valid when the measurements are uncorrelated. In particle physics,
correlations between different measurements can exist and then need to be considered. For the
case of SMEFT fits of top-quark observables, this is also discussed in more detail in Chap. 6.

5.2.1 Correlated measurements

The results of high energy physics measurements are usually treated as normally distributed
random variables, specified by a nominal value and an uncertainty. The uncertainty  of a mea-
surement with nominal value ̄ is the square root of its variance  =


Var(), with the vari-

ance being the expected quadratic deviation from the expectation value, Var()=E[(  ̄)2].
The joint variance of two measurements (of the same or of different quantities) is expressed by
the covariance cov( ) = cov(  ) = E[( ̄)  ( ̄)]. The dependence between two
measurements is often formulated in terms of the dimensionless linear correlation coefficient
, which is obtained by normalizing the covariance with the respective uncertainties

 =  = cov( )


 (5.1)

and can take values 1    1. In the case of two measurements being truly independent,
the covariance and the correlation coefficient are zero. Conversely, however, the covariance and
correlation coefficient being zero does not imply the independence of the measurements. For
multiple measurements, the pairwise correlation coefficients or covariances are summarized in
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symmetric and positive semi-definite correlation or covariance matrices,

cor =


1 12 13   

21 1 23   

31 32 1   
...

...
... . . .

 or cov =


var(1) cov(1 2) cov(1 3)   

cov(2 1) var(2) cov(2 3)   

cov(3 1) cov(3 2) var(3)   
...

...
... . . .

 

(5.2)

with the diagonal of the correlation matrix being unity by definition (see Eq. (5.1)) and the
diagonal elements of the covariance matrix being the variances of the individual measurements.

Approaches for combining a set of measurements for which these matrices are not diagonal,
i.e., where the correlation matrix is not the identity matrix, are introduced in the following
paragraphs.

5.2.2 Combining correlated measurements

... of a single observable When combining multiple measurements of the same quantity, a
common approach to account for correlations between the measurements is to determine the
so-called Best Linear Unbiased Estimator (BLUE) [141]. As the name implies, the resulting
estimate has the three properties of being (1) a linear combination of the input measurements,
(2) an unbiased estimate, and (3) the best estimate, in the sense that it has the minimum
possible variance. When combining  different measurements  (with  = 1     ) of the
same observable, the BLUE and its variance are given as

̂ =


=1
 and 2

̂ =   where  =


1

1




 (5.3)

Here, the matrix  is the covariance matrix of the measurements, and  is a vector with
 elements all being unity. The elements  are the weights of the individual measurements
in the linear combination. They are determined to minimize the variance of the resulting
estimate and fulfill the normalization condition 

  = 1 . A feature of the BLUE method
is that the covariance matrix of the input measurements can be composed of different sources
of uncertainties, such as statistical and systematic uncertainties, for example,

 = cov( ) =


=1
cov()( )  (5.4)

where  iterates over the  different types of uncertainties.

... of different observables When combining measurements of different observables, per-
forming the BLUE combination described above separately for each observable only yields
the best estimate if no correlations exist between measurements of the different observables.
To account for such correlations, Eq. (5.3) can be generalized for correlated measurements of
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different quantities [142]. For  measurements  (with  = 1     ) of  different observ-
ables  (with  = 1     ), where each observable  is measured at least once, i.e.,   1
and  = 

   , the BLUE estimates and the corresponding covariance matrix of the
estimates are given as

̂ =


=1
 and cov(̂ ̂) =   where  =


1

1




 (5.5)

Here,  is a matrix with the elements being

 =

1 if  is a measurement of 

0 else .
(5.6)

An estimate of the BLUE value that is equivalent to that of Eq. (5.5) can be determined by
finding the values ̂ that minimize the weighted sum of squares

 =







[ ]1
 [ ]  (5.7)

This sum of squares in Eq. (5.7) can also be interpreted as a likelihood function , using the
relation

 = 2 ln   (5.8)

of Wilks’ theorem [143]. This likelihood then allows performing combinations of correlated
measurements using Bayesian inference. When choosing uniform prior distributions, the BLUE
estimate is recovered as the mode of the posterior distribution, with the variance (covariance
matrix in the case of multiple observables) corresponding to the variance (covariance) of the
posterior distribution.

... for inference on underlying model parameters In many cases, such as in EFT fits,
combinations of measurements are not only performed to obtain the best combined estimate
but rather to gain knowledge about common model parameters that are not directly observable
but can be inferred from the measurements. In the case of SMEFT interpretations, for example,
measurements of observables, such as cross sections and branching ratios, are combined in
order to constrain Wilson coefficients as the underlying model parameters. In such cases, the
Bayesian approach to the combination, i.e., using the likelihood of Eq. (5.8), can be generalized
by introducing an uncertainty propagation step [2]. For this purpose, the observables  are
assumed to depend on the free parameters  of the model, i.e.,  = (). The likelihood thus
becomes a function of the measurements , given the model parameters ,

ln () = 1
2







[ ()]1
 [ ()]  (5.9)

38



5.3 EFTfitter.jl

This likelihood can be interpreted as a measure of the distance between the observed values
 and the predicted values for a given configuration of the model parameters (). When
performing Bayesian inference with this likelihood, the corresponding prior is a distribution
of the model parameters .

5.3 EFTfitter.jl

A tool that facilitates the application of the Bayesian approach to the combination of mea-
surements based on Eq. (5.9) is EFTfitter [2]. While this approach and the corresponding
likelihood are generally applicable to all use cases where the common assumption of Gaussian
uncertainties holds, EFTfitter is specifically intended for EFT interpretations of high energy
physics measurements.

The main objective of EFTfitter is to provide an interface that facilitates a user-friendly im-
plementation of the likelihood in Eq. (5.9). For this purpose, in EFTfitter, the likelihood is
automatically derived from user inputs for the underlying model, measurements, uncertainties,
and correlations. The central element when applying EFTfitter is the user-specified model ().
It must be provided in terms of functions that return predictions for the values of the observ-
ables and depend only on the free model parameters to be constrained. In these functions, the
underlying physics model, such as an EFT, enters the analysis. For SMEFT interpretations,
this typically means that the dependences of observables, such as cross sections, on the Wil-
son coefficients have to be expressed in terms of simple functions. Furthermore, measurements
of the observables have to be provided. As in the approach of Eq. (5.9) the measurements
are assumed to have Gaussian uncertainties, they are specified as nominal values with corre-
sponding values of the uncertainties. For the uncertainties, a breakdown of different sources,
such as statistical or systematic uncertainties, for example, can be provided. For each type of
uncertainty, an associated correlation matrix has to be specified. The total covariance matrix
is automatically determined according to Eq. (5.4) as the sum over the individual covariance
matrices.

For performing the Bayesian inference, EFTfitter relies on BAT. The first version of EFTfitter
was released in 2016 and was implemented in C++, depending on the C++ version of BAT
[2].1 To take full advantage of the additional features and novel algorithms of BAT.jl, a new
version of EFTfitter, called EFTfitter.jl2 has been implemented in Julia within the scope
of this thesis. The general workflow for using EFTfitter.jl is similar to that of the previous
version. However, several new features have been implemented, improving its capabilities.

As mentioned above, the central task for the user is to provide an underlying physics model
by specifying the dependences of the observables on the model parameters. In EFTfitter.jl,
this is done by implementing plain Julia functions depending only on the model parameters
to be constrained.

1https://github.com/tudo-physik-e4/EFTfitterRelease
2https://github.com/tudo-physik-e4/EFTfitter.jl
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function observable1(parameters)
return 2*parameters.λ1^2 + 0.4*parameters.λ1*parameters.λ2

end

Using ordinary Julia functions provides full flexibility in implementing the underlying model.
Thus, it can also be derived from external tools or depend on interfaces to other languages, for
example. An important aspect is that the functions returning the predictions of the observ-
ables need to be computationally fast since they are evaluated in each step of the sampling
process. For SMEFT fits, this usually means that the rather slow MC simulations, which are
typically used to determine BSM contributions to the observables, first need to be approx-
imated to obtain faster parametrizations. The values of the measurements are entered as a
Julia NamedTuple, consisting of EFTfitter.jl’s Measurement objects. A name is assigned to
each measurement, and the associated observable is specified. The measured nominal value is
inserted, together with values for (multiple types of) uncertainties.

measurements = (
Meas1 = Measurement(observable1, 21.6, uncertainties=(stat=0.8, syst=1.8),
... )

Correlations between the measurements are specified by providing a correlation matrix (or a
NoCorrelation object for the identity matrix) for each type of uncertainty.

correlations = (
stat = NoCorrelation(),
syst = Correlation([1.0 0.5; 0.5 1.0]),
... )

After providing a BAT.jl prior distribution for the model parameters, an EFTfitterModel
can be constructed, which automatically implements the likelihood of Eq. (5.9) from the user
inputs.

model = EFTfitterModel(parameters, measurements, correlations)
posterior = PosteriorDensity(model)

Bayesian inference on the model parameters is then performed using BAT.jl and the algorithms
discussed in Sec. 3.3 for sampling the corresponding posterior distribution. Compared to its
predecessor version, the new implementation of EFTfitter.jl simplifies the use of distributions.
While each bin of a distribution is counted as an individual measurement in the likelihood
of Eq. (5.9), distributions can now be inserted as a joint MeasurementDistribution object.
This facilitates the use of binned observables, such as differential cross sections.

MeasDist = MeasurementDistribution(diff_xsec, [1.9, 2.9, 4.4],
uncertainties = (stat=[0.7, 1.1, 1.2], syst=[0.6, 0.7, 0.9]),
active = [true, false, true])
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When needed, also access to the individual bins is possible. As for all Measurement objects,
also for the distributions, the keyword argument active can be used to exclude individual
measurements or bins from the combination. Furthermore, the input of correlations is sim-
plified in EFTfitter.jl. While in the predecessor version the full correlation matrices for each
uncertainty had to be provided explicitly, in EFTfitter.jl, the correlation matrices can be con-
structed from the names of the measurements and corresponding correlation coefficients using
the function to_correlation_matrix.

corr_matrix = to_correlation_matrix(measurements,
(:Meas1, :Meas2, 0.4),
... )

The full correlation matrix is automatically derived and converted into the corresponding
covariance matrix when instantiating the EFTfitterModel. This syntax also supports the
use of block matrices, e.g., for the bins of distributions. Like in the C++ version, unknown
correlation coefficients can be treated as nuisance parameters in the fit. In such cases, for
each of the unknown correlation coefficients, an additional parameter is introduced into the
fit using a NuisanceCorrelation object. During the inference, the corresponding elements of
the covariance matrix in Eq. (5.9) are then varied according to their prior distributions.

nuisance_correlations = (
rho = NuisanceCorrelation(:syst, :Meas1, :Meas2, Normal(0.3, 0.05)),

)

Since the total number of correlation coefficients scales quadratically with the number of mea-
surements included, this approach is only suitable for a small number of unknown correlations
compared to the number of measurements. Otherwise, the number of free parameters becomes
too large to be constrained by the data available.

Julia plot recipes are implemented, which allow visualizing the EFTfitter.jl types, such as
the Measurement and Observable objects, for specific configurations of the model parame-
ters. Examples of such plots are shown in Fig. 6.2 of Chap. 6. Like its predecessor version,
EFTfitter.jl includes methods to estimate the influence of individual measurements (or types
of uncertainty) on the result of the combination. Based on the relative increase (decrease)
in the size of the posterior distribution when a single measurement (uncertainty type) is ex-
cluded from the combination, weights for the individual measurements (uncertainty types) are
estimated.

A more detailed discussion of this approach is given in the next section. In particular, a com-
parison of the EFTfitter approach with other approaches for determining the relative weight
of a single measurement in the combination is performed. A multi-stage artificial example is
used to demonstrate the difficulties of finding a generally valid approach for determining such
weights.
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5.4 Estimating the impact of individual measurements on their
combination

When combining multiple measurements with the approaches described above, it is often
of interest to determine how much each individual measurement affects the result of the
combination. Different criteria that allow assigning weights to the individual measurements
are introduced below and compared using a generic example.

Central value weights When using the BLUE method to combine multiple measurements of
the same observable, the weights  in Eq. (5.3) can be used to estimate the relative impact of
the individual measurements on their linear combination. These weights are further referred
to as central value weights (CVWs)3, following the notation of Ref. [144]. It should be noted
that the central value weights can take negative values, which then indicates the presence of
a high-correlation regime [144].

Relative importance weights As the negative values of the central value weights may lead
to problems in their interpretation, the relative importance weight (RIW) of a single measure-
ment,

RIW = 
=1  

 (5.10)

is sometimes used instead to circumvent this problem by using absolute values. This approach
has been applied, for example, in BLUE combinations of top-quark mass measurements from
Tevatron and LHC [145, 146]. However, the concept of the relative importance weights has
been criticized as being an improper approach, and its limitations have been demonstrated in
Ref. [144]. Instead, two so-called information weights have been proposed in Ref. [144], which
are based on the Fisher information .

Intrinsic information weights The intrinsic information weight (IIW) of a single measure-
ment  is defined as

IIW = 12


1
 with  = 1

2
̂

 (5.11)

where 2
̂ is the standard deviation of the BLUE estimate, as given in Eq. (5.3). It is the ratio

of the Fisher information of each individual measurement to the Fisher information of the
total combination. In this approach, the influence of correlations between measurements is
considered not to be assignable to a single measurement and is accounted for in an additional

3For improved readability, in this section, only the weight types that are also used in further chapters of this
thesis are abbreviated in the text. In the labels of plots, the abbreviations are used for all types of weights.
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weight

IIWcor =  


=1 12



 (5.12)

fulfilling the normalization IIWcor +
=1 IIW = 1 by definition [144].

Marginal information weights The marginal information weight (MIW) of a measurement
is defined as the ratio of its marginal information to the total information in the combination.
It is determined by performing the combination again, excluding the respective measurement,

MIW = ∆

( meas.)
=

( meas.)  (1 meas., i.e. all meas. except )
( meas.)

 (5.13)

A more detailed discussion of the information weights and a comparison with the central
value weights and the relative importance weights is given in Ref. [144].

Measurement exclusion weights When using the Bayesian approach of Eq. (5.9) for com-
bining measurements, the dependences of the observables on the model parameters have to be
taken into account for estimating the influence of the individual measurements. However, these
dependences can lead to the posterior distributions not having multivariate Gaussian shapes,
as is generally the case for the simple BLUE combinations without inference on the underlying
parameters. Therefore, in EFTfitter.jl an approach similar to that of the marginal information
weights is used, which is also valid for non-Gaussian posteriors. To determine weights for 

individual measurements, the combination is performed  times, each time excluding one of
the measurements. This results in  different posterior distributions, each accounting for only
1 of the measurements. Certain properties of the obtained posterior distributions are then
compared to the posterior distribution of the full combination to estimate the influence of
each individual measurement. The weights obtained from this approach are further referred
to as measurement exclusion weights (MEWs). The properties of the posterior distributions
compared in EFTfitter.jl to determine the MEWs are the sizes of the highest density regions
(HDRs). This approach is motivated by the idea that the sizes of the HDRs containing a cer-
tain fraction of the total posterior probability, e.g., the HDR containing 90 % of the posterior
probability, can be interpreted as a measure of the overall uncertainty of the combination
result. For a one-dimensional posterior distribution, the size of the HDR is the total width
of the smallest intervals containing the specified probability. In the two-dimensional case, it
is the corresponding area, and in higher dimensions, it is the corresponding (hyper-)volume.
Therefore, the term highest density volume (HDV) is used here to specify the size of a HDR.
When referring explicitly to the one-dimensional and two-dimensional cases, the terms highest
density length (HDL) or highest density area (HDA), respectively, are used for more precise
phrasing.

By default, the 90 % HDVs are used in EFTfitter.jl to obtain estimates of the total uncertainty,
as they are also valid for non-Gaussian or multi-modal posterior distributions. In such cases,
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other measures, like the variance or covariance, are not necessarily meaningful. When removing
a single measurement from the fit, the HDV is expected to increase because less information is
available to constrain the parameter space. This is visualized in Fig. 5.1, where two-dimensional
90 % HDRs are shown, obtained by combining multiple measurements of a generic example. It
is visible that when excluding individual measurements from the combination, the sizes of the
corresponding HDRs increase compared to that of the total combination of all measurements.
The corresponding values of the HDVs for the different posterior distributions are also shown
in Fig. 5.1.

3 2 1 0 1 2
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all measurements combined
without measurement A
without measurement B

90% HDV(all) = 5.1

90% HDV(without A) = 11.9

90% HDV(without B) = 9.9

Figure 5.1: Visualization of the increase of HDVs when excluding individual measurements
from the combination. Shown are the HDRs containing 90 % of the posterior probability of a
generic example with two free parameters.

It should be noted, however, that excluding a single measurement from the combination can
also result in a decrease of the HDV, e.g., in cases where one measurement contradicts all
others. In EFTfitter.jl, the relative change of the HDV when excluding a single measurement
is used to estimate its influence on the total combination. By removing one measurement at a
time from the fit, the relative change of the HDV can be calculated for each measurement as

HDV = HDV HDV

HDV
 (5.14)

where HDV is the HDV when excluding measurement , and HDV is the HDV of the total
combination including all  measurements. The corresponding MEWs are then obtained by
normalizing according to

MEW = HDV
 HDV

 (5.15)

In particular, it should be mentioned that this approach can be applied not only to estimate
the impact of individual measurements but also the impact of different types of uncertainties.
For this purpose, the combination can be performed several times, each time excluding a
certain uncertainty category. Since fewer uncertainties are accounted for in the individual fits,
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the corresponding posterior distributions are expected to be narrower. The resulting HDVs are
thus expected to decrease compared to the fit where all types of uncertainties are considered.
Therefore, in EFTfitter.jl, the relative decrease of the HDVs can be used to assign weights to
the different uncertainty categories, the so-called uncertainty exclusion weights (UEWs).

Estimating the HDR in EFTfitter.jl

In EFTfitter.jl, the HDR containing a certain amount of probability is determined numerically
from binned posterior samples. The weighted sum over the bins is computed starting from the
bin with the largest weight until the summed probability has reached the desired threshold.
By multiplying the number of bins belonging to the HDR with the volume of each bin, the
size of the HDR, i.e., the HDV, is obtained. When combining measurements of a single ob-
servable without underlying model parameters and using a uniform prior, i.e., in a BLUE-like
scenario, the posterior obtained with EFTfitter.jl is a one-dimensional normal distribution. In
such cases, the size of the HDR is the length of the central interval containing the requested
probability. In particular, the size of the 683 % HDR then corresponds to the variance 2

̂ of
the normal distribution. Thus, in such cases, also the variance estimated from the posterior
samples can be used in EFTfitter.jl for determining MEWs, which is equivalent to using the
683 % HDV.

5.4.1 Example: Combining measurements of a single observable

The different criteria for estimating the influence of individual measurements described above
are now compared. For this purpose, different scenarios of the artificial example on  boson
decays, introduced in Sec. 4 of Ref. [142], are adopted here and extended in the following.

Suppose two experiments,  and , measure the branching fraction  of leptonic  boson
decays separately in the electron, muon, and tau channels. The measured nominal values and
uncertainties are given as

 = (105 10) %  = (135 30) %
 = (102 09) %  = (123 15) %
 = (950 30) %  = (140 30) % 

The numbers of the electron and tau channels are taken from the example in Ref. [142], while
the numbers for the muon channel are added here for the purpose of the following studies.

For a first comparison, these measurements are combined under the assumption of lepton
flavor universality. Thus, all six measurements are assumed to describe the same underlying
observable, i.e., the branching ratio  of a  boson decaying into a lepton. Throughout this
example, the Bayesian combinations are always performed using uniform prior distributions.
As mentioned above, in this case, the result of the EFTfitter.jl combination corresponds to
the BLUE estimate, which in the absence of correlations yields ̂ = (1085  058) %. The
different types of weights are computed for this example. Specifically, these are the central
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value weights, the relative importance weights, the intrinsic information weights, and the
marginal information weights of the BLUE method, as well as the EFTfitter.jl MEWs using
the HDRs containing 683 % and 955 % of the posterior probability. In addition, the MEWs
are computed once using the variance estimate of the EFTfitter.jl combination, where the
variance is estimated numerically from the posterior samples, and once using the analytically
determined variance of the BLUE method.

In the top plot of Fig. 5.2, the resulting weights are shown for the lepton-universal combination
without correlations between the measurements. It should be noted that, according to their
definition in Eq. (5.13), the marginal information weights are not normalized. For better
comparison with the other weights, always normalized weights are shown, obtained similarly
to Eq. (5.15).
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Figure 5.2: Comparison of the different types of weights for the lepton-universal example
when assuming no correlations between the measurements (top) and when assuming the cor-
relations of Fig. B.1 (bottom).

As can be seen in the upper plot of Fig. 5.2, in the uncorrelated case, all types of weights show
a very similar hierarchy of the individual measurements, with  and  having the largest
influence, and the measurements ,  , and  having very small weights close to zero.
This also agrees well with the naive expectations when considering only the magnitudes of
the associated uncertainties of the measurements. In particular, the central value weights, the
relative importance weights,the intrinsic information weights, and the marginal information
weights have very similar values. Also, the MEWs all agree very well among each other.
For the BLUE marginal information weights and BLUE variance MEWs, it should be noted
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that they are based on the same information, with the only difference being the inversion
of the variance in the case of the marginal information weights. As expected, contributions
to the intrinsic information weights coming from correlations, i.e., IIWcor, are zero in this
uncorrelated example.

In the next step, correlations between the measurements are introduced in order to investigate
their influence on the weights. It is assumed that measurements of the different lepton channels
from experiment  are all correlated rather strongly among each other, with  = 08. For
experiment , the correlations between the different channels are assumed to be weaker,
with  = 05. Negative correlations with a value of  = 03 are assumed to be present
between the measurements of experiments  and  for the same lepton channels, to also
include negative correlation coefficients in the example. The full correlation matrix is given
in Fig. B.1 of App. B. When assuming these correlations, the BLUE combination of the
measurements yields ̂ = (1060  020) %. The different types of weights obtained in this
correlated scenario are shown in the bottom plot of Fig. 5.2. It is visible that the central value
weights for measurements  and  now take negative values, which is a consequence of the
large correlations [144]. It is noticeable that for the intrinsic information weights, the largest
weight is attributed to the correlations, and the weights for the individual measurements
are all very close to zero. Again, the weights based on excluding a single measurement all
agree very well and yield the same hierarchy of the measurements. Due to the presence of
correlations, however, the measurements with the smallest uncertainties no longer receive the
largest weights. In particular, for the marginal information weights, it can be noticed that the
weights for  and  are very similar, whereas for all MEWs,  obtains a noticeably larger
weight than  . It should be noted that the results in the bottom plot of Fig. 5.2 apply, of
course, only for this one example of many possible correlation scenarios. However, in all other
correlation scenarios tested, it was also observed that the different MEWs agree well among
each other and yield similar hierarchies as the marginal information weights, with the latter
usually being closer together, as seen in Fig. 5.2.

5.4.2 Example continued: Combining measurements of different observables

The above example of  boson decays is continued, but the assumption of lepton flavor uni-
versality is now dropped so that the three lepton channels are considered separate observables.
Therefore, when combining the measurements from experiments  and , three different es-
timates, ̂, ̂, and ̂ , are obtained. In the uncorrelated scenario, the results of the BLUE
combination are

̂ = (1079 095) %  ̂ = (1076 077) %  ̂ = (1175 212) % 

To estimate the influence of the individual measurements, the BLUE weights are calculated
separately for each of the observables. In the Bayesian approach, this corresponds to calculating
the MEWs based on the respective one-dimensional marginal distributions. These weights for
the muon channel are shown in Fig. 5.3, again for both the uncorrelated and the correlated
scenario. Corresponding plots for the electron and tau channel are given in Fig. B.2 and
Fig. B.3 of App. B, respectively.
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In the uncorrelated case, as expected, only the two measurements of the considered channel
give contributions to the combination, and the weights of the other four measurements are
zero. In the correlated case, also the weights of other measurements take values slightly above
zero or, in the case of the central value weights, even slightly negative weights.
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Figure 5.3: Comparison of the different types of weights for the muon channel when assuming
no correlations between the measurements (top) and when assuming the correlations of Fig. B.1
(bottom).

In particular when using the Bayesian approach implemented in EFTfitter.jl, it might also
be of interest to estimate which of the measurements has the largest overall impact on the
(multidimensional) posterior distribution. In the current example, no inference on underlying
model parameters is performed, but only the best combined estimate is determined. Thus,
according to Eq. (5.8), always a multivariate normal posterior distribution is obtained. In
this case, the generalized variance, i.e., the determinant of the covariance matrix of the com-
bination results, can be used as an estimate of the overall uncertainty. In the more general
approach of Eq. (5.9), the observables can have arbitrary dependence on underlying model
parameters. As mentioned above, in such cases, the posterior distribution is not necessarily a
multivariate normal distribution but can have complex shapes and multiple modes. Therefore,
in EFTfitter.jl, typically, the size of a HDR of the posterior distribution is considered as a
measure of the overall uncertainty, which is also applicable for non-Gaussian posterior shapes.
Computing a HDV of the three-dimensional posterior distribution is, thus, another approach
for calculating overall weights in this example. Estimating the HDV from the posterior sam-
ples, however, is a non-trivial task in multiple dimensions, as will be pointed out in the next
paragraph.
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5.4 Estimating the impact of individual measurements on their combination

Estimating the HDV in multiple dimensions The default criterion for ranking the influence
of individual measurements in EFTfitter.jl is based on the HDV. It is determined numerically
from binned posterior samples, as described above. This approach, however, suffers from the
curse of dimensionality and is not feasible for more than three dimensions, as will be demon-
strated here. In the case of one- and two-dimensional posterior distributions, computing the
HDV from binned samples yields reliable results when using the typical sample sizes obtained
from the BAT.jl samplers, i.e., (106)(107) samples. For three dimensions, however, the
results of the HDV calculation already depend strongly on the number of posterior samples
and the number of bins used for the calculation. This problem is visualized in Fig. 5.4, where
estimates of the 683 %, 955 %, and 997 % HDVs are shown as a function of the number of
bins per dimension for a two-dimensional (left plot) and three-dimensional (right plot) uncor-
related standard normal distribution. The HDV estimates are shown for 106 and 107 posterior
samples. The dashed lines indicate the true values of the HDVs, calculated as the volumes of
-spheres with corresponding radii.
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Figure 5.4: Estimated values of the 683 %, 955 %, and 997 % HDVs for a two-dimensional
(left) and three-dimensional (right) standard normal distribution as a function of the number
of bins used for the computation. The true values of the HDVs are indicated as dashed lines.

It is visible in Fig. 5.4 that in the two-dimensional case, the numerical HDV estimates are
consistent for the typical number of bins per dimension (the EFTfitter.jl default is 200 bins per
dimension) and yield estimates very close to the true value, both for 106 and 107 samples. Only
for a very small number of bins, the HDV is overestimated, which is a result of an insufficient
resolution due to the large bin size. In the three-dimensional case, a strong dependence on
the number of bins is observed, and the true value of the HDV is only estimated correctly
within a small range of the number of bins. The decreasing values of the HDV estimates for
an increasing number of bins are a natural consequence of the ratio between the number of
samples and the number of bins. If the phase space is divided into too many bins, in relation
to the available number of samples, bins that would be part of the HDR are not populated by
any posterior sample and are, thus, not included in the HDV computation. In the case of the
three-dimensional normal distribution in the right plot of Fig. 5.4, for more than 100 bins per
dimension, the total number of bins already exceeds the number of 106 samples available, and
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5 Combining measurements for EFT interpretations with EFTfitter.jl

thus the weights cannot be determined correctly. This leads to the observed underestimation
of the HDVs. Since using much more than 107 samples is computationally unfeasible, different
approaches for obtaining reliable estimates of the HDVs in higher dimensions are needed. While
in the case of multivariate normal posterior distributions, the HDV can also be determined
analytically, the posterior shapes obtained with EFTfitter.jl can be arbitrarily complicated.
More sophisticated methods for estimating the HDV of the posterior distribution are needed
to overcome the curse of dimensionality but are currently not available in the literature [147].
Therefore, only the naive approach based on binned samples is available in EFTfitter.jl so
far. In particular, methods like nested sampling and AHMI might be suitable for developing
algorithms to estimate HDVs in more than three dimensions.

Using marginal HDR estimates Because of these difficulties in obtaining the HDVs for
higher-dimensional distributions, it is investigated if overall weights for the measurements can
also be estimated using the one- and two-dimensional marginal distributions. In particular,
it is studied if the summed HDLs and HDAs can sometimes be used to estimate MEWs that
are compatible with the MEWs based on the full three-dimensional HDVs. Also, MEWs based
on the generalized variance are included in the comparison. Overall weights from the BLUE
weighting criteria are obtained by summing the weights of the individual observables and
renormalizing them. Thus, the following criteria for determining overall weights are compared
in the non-lepton-universal example:

• Renormalized sums over the BLUE weights for each observable

• MEWs based on the generalized variance, i.e., the determinant of the analytical (BLUE)
covariance and the determinant of the numerical covariance estimated from the samples

• MEWs based on the determinants to the inverse power of the dimension

• MEWs based on the sum of all marginal 955 % HDLs and the MEWs based on the sum
of all marginal 955 % HDAs

• MEWs based on the three-dimensional HDVs containing 955 % of posterior probability,
once calculated analytically as the volume of an ellipsoid specified by the analytical
covariance estimate of the BLUE method, and once estimated numerically from the
posterior distribution using the binned method discussed above.

In Fig. 5.5, these overall weights for the measurements are shown for both the correlated and
the uncorrelated example.

In the uncorrelated case, again, a good agreement is observed in the hierarchy of the different
types of weights. In particular, the BLUE weights and the MEWs agree well among each other.
That the MEWs based on the analytical and numerical estimation of the 955 % HDV agree
very well, indicates that the number of bins for the numerical HDV estimation is well chosen.
For the MEWs based on the generalized variance, the weight of  is estimated higher and
that of  lower than for the other MEWs. It is also noticeable that for this multivariate
Gaussian posterior distribution, the MEWs based on the sums of the HDLs and HDAs yield
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Figure 5.5: Comparison of the different types of overall weights for the non-lepton-universal
example when assuming no correlations between the measurements (top) and when assuming
the correlations of Fig. B.1 (bottom).

the same values as the MEWs coming from the three-dimensional HDVs. In the correlated
case, the BLUE weights yield very different values and do not agree with the MEWs based
on the HDVs, which again agree well among each other. The MEWs based on the generalized
variance show the same hierarchy as those based on the HDVs, but different values of the
specific weights, particularly for . In this example, the weights based on the sum of all
two-dimensional HDAs seem to be a good estimate for the weights based on the full three-
dimensional HDV. However, the sum of the one-dimensional HDLs leads to different weights
for  and  . This is not surprising since basically no information about correlations can be
retrieved from the one-dimensional marginal distributions.

5.4.3 Example extended: Constraining underlying parameters

In the examples above, the combination of measurements has been performed without inference
on underlying parameters. Thus, the resulting posterior distributions always had a (multivari-
ate) Gaussian shape. As mentioned before, when performing combinations with EFTfitter.jl for
inference on underlying parameters, this is not necessarily the case. The posterior distribution
can take arbitrary shapes, depending on the relation between the observables and the param-
eters. In particular, this implies that the (generalized) variance of the posterior distribution is
not always a reasonable quantity for determining weights. To investigate the compatibility of
the different types of weights in such a typical EFTfitter.jl use case, a generic dependence of

51



5 Combining measurements for EFT interpretations with EFTfitter.jl

the observables on fictitious underlying parameters  is introduced. The specific dependence
chosen for the purpose of the example is

(1) = 001(1  5)2 + 95
(1 2) = 001(1  5)2 + 75 + 0012

2

 (2 3) = 3 + 022 

(5.16)

The resulting posterior distribution when assuming a uniform prior is shown in Fig. 5.6 for the
uncorrelated case. The corresponding posterior distribution when assuming the correlations
of Fig. B.1 is shown in Fig. B.4 of App. B.
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Figure 5.6: Posterior distribution of the total combination when assuming the dependence on
underlying parameters of Eq. (5.16) in the uncorrelated case. The one- and two-dimensional
marginal distributions are shown, and the HDRs containing 683 %, 955 %, and 997 % of the
posterior probability are highlighted.

The marginalized posterior distributions of the parameters 1 and 2 are bimodal, and the
associated two-dimensional marginal distribution has the shape of a ring. This shape of the
distribution was chosen intentionally, as these are typical posterior distributions obtained in
SMEFT fits with EFTfitter.jl, due to the often quadratic parametrizations of observables.
Similar posterior shapes are also obtained in the SMEFT studies of Chap. 7.

For this example, only MEWs can be determined since the weights related to the BLUE method
cannot be applied when inference on underlying parameters is performed. Therefore, again the
MEWs based on the three-dimensional HDV are compared to MEWs based on the sums of
the HDAs and HDLs. For this example, the 955 % and the 683 % HDRs are considered. To
demonstrate that the generalized variance is not a universally reliable estimate of the total
uncertainty, the MEWs based on the determinant of the covariance matrix are also included
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5.4 Estimating the impact of individual measurements on their combination

in the comparison. The weights obtained in this example are given in Fig. 5.7, again for both
the uncorrelated and the correlated case.
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Figure 5.7: Comparison of the different types of overall weights for the example with inference
on underlying parameters when assuming no correlations between the measurements (top) and
when assuming the correlations of Fig. B.1 (bottom).

It can be observed in Fig. 5.7 that the weights based on the covariance matrix do not agree with
any of the other weights. This is expected from the posterior distribution in Fig. 5.6 since the
ring-shaped distribution of 1 and 2 cannot be described properly by the covariance matrix.
In the uncorrelated case, the weights obtained from the 955 % and 683 % HDVs agree very
well in their hierarchies, with only minor differences in the values for  and . This is also
observed in the correlated case. The MEWs obtained from the sums of HDLs differ for the
955 % and 683 % HDRs and do not agree with the HDV weights regarding the hierarchy of
the measurements, in both correlation scenarios. In the uncorrelated case, the MEWs based
on the sum of the HDAs appear to be rather compatible with the weights obtained from the
HDVs at first glance. However, for both the 955 % and the 683 % HDRs, the weight of  is
lower than that of the HDVs, and thus, the hierarchy of the measurements is also different.
In the correlated case, a similar effect can be observed, and the hierarchy of measurements
based on the HDAs is different from that based on the HDVs, mainly due to differences in
the weight of  . Such differences are expected as the full three-dimensional posterior shape
cannot be approximated using only the two-dimensional projections.

Summarizing these studies, it can be noted that MEWs based on HDRs provide a reason-
able option for assigning weights to the individual measurements in their combination, even in
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cases in which the posterior distributions have non-Gaussian shapes. In the simplest cases, the
MEWs agree well with the weights obtained by the BLUE method. However, it was pointed
out that for posterior distributions with more than three parameters, a reliable numerical esti-
mation of the HDVs is currently not feasible. In the examples above, it has been demonstrated
that an approximation using the one- or two-dimensional marginal distributions is possible in
some cases but is not necessarily valid in general. Therefore, for multidimensional posterior
distributions, it is currently impossible to obtain universally valid and reliable estimates for
overall weights of the measurements. In such cases, it is rather recommended to determine
the MEWs for the individual one- and two-dimensional marginal posterior distributions and
to estimate the impact of the measurements based on these results.
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6 Studying the impact of correlated
measurements on the results of SMEFT fits

The studies in the previous chapter already indicated that correlations between measure-
ments can have a sizeable impact on the results of their combination. However, since the
values of correlation coefficients are not always available, measurements are often treated as
being uncorrelated in such combinations. In this chapter, the potential impact of correlations
on the results of SMEFT fits with EFTfitter.jl is examined systematically. For this purpose,
constraints on three Wilson coefficients of dimension-six operators are derived using measure-
ments of single top-quark production and top-quark decay processes, and the results of fits
assuming different correlation scenarios are compared. This chapter is organized as follows:
In Sec. 6.1, the common complications in the treatment of correlations in SMEFT fits are
described. The EFT operators to be constrained are given in Sec. 6.2, and the observables
and measurements included in the fits are introduced in Sec. 6.3. The parametrization of BSM
contributions in terms of Wilson coefficients is discussed in Sec. 6.4. The uncertainty categories
considered in the analysis, as well as the assumptions for the different correlation scenarios, are
introduced in Sec. 6.5. The SMEFT fits and comparisons of the different correlation scenarios
are performed in Sec. 6.6, and the impact of the correlations is studied in detail. In Sec. 6.7, an
outlook is given on how the influence of correlations might evolve when future measurements
with reduced uncertainties are taken into account. The findings of the studies in this chapter
are briefly summarized in Sec. 6.8.

6.1 SMEFT fits with correlated measurements

As motivated in Sec. 5.1, fits combining measurements of different observables and from mul-
tiple experiments are commonly performed to constrain the Wilson coefficients of SMEFT
operators. In such fits, potential correlations between uncertainties of the measurements are
often not accounted for. This is because the values of respective correlation coefficients are
only rarely available. Estimating correlations between measurements of different observables,
particularly between measurements from different experiments, is a complex task and is vir-
tually impossible for researchers outside the respective experimental collaborations. However,
global SMEFT fits combining measurements from different experiments are often performed
by working groups outside the experimental collaborations. As a consequence, the simplifying
assumption of uncorrelated measurements is regularly used in these fits if no other information
is publicly available [23, 136]. Another approach commonly applied to circumvent the problem
of unknown correlations is to include only measurements for which no (or only very small)
correlations are expected. This usually implies that only one measurement of each observable
is considered, even if several measurements are available. For these reasons, the impact corre-
lations can potentially have on the results of SMEFT fits is studied in the following. Special
focus is placed on comparing the resulting constraints on the Wilson coefficients obtained from
fits with uncorrelated and correlated uncertainties.
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6.2 Wilson coefficients to be constrained

In the following, SMEFT Wilson coefficients of the top-quark sector are constrained using a
combination of single top-quark production and top-quark decay measurements. The leading
BSM contributions arise from the interference of dimension-six operators with the SM. Four of
the SMEFT operators introduced in Sec. 4.3.3 contribute at order (Λ2) to these top-quark
processes and are therefore considered here,

(3)
 =




 


 

̄ 




 =

̄ 


̃ 

 

(1)
 = (̄) (̄) 

(3)
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
̄ 

 
̄ 




(6.1)

Neglecting suppressed contributions proportional to masses much smaller than the top-quark
mass, i.e.,   , the leading BSM contributions to the observables considered in this
analysis can be parametrized using only the three coefficients

̃(3)
  ̃  ̃ = ̃(3)1133

 + 1
6

̃(1)1331

  ̃(3)1331



 (6.2)

Here, additional superscripts denote the quark flavors, and ̃ are rescaled coefficients, defined
as

̃ = 2

Λ2   (6.3)

where  = 246 GeV is the vacuum expectation value of the Higgs field. In the following,
all Wilson coefficients are assumed to be real-valued, since only the coefficient of the non-
Hermitian operator  could take complex values, but just its real part contributes at
(Λ2) to the considered processes.

6.3 Observables and measurements

This study includes measurements of total and differential single top-quark -channel produc-
tion cross sections, as well as measurements of top-quark decay observables, specifically the
 boson helicity fractions and the top-quark decay width. Counting the bins of differential
distributions as individual observables, a total of 58 measurements of 41 different observables
is included. In the following, the observables and corresponding measurements considered are
introduced. An overview of all observables and measurements is given in Tab. 6.1, where also
the corresponding references are listed.

6.3.1 Single top-quark production cross sections

Singly-produced top quarks have first been observed by the CDF and D0 experiments at the
Tevatron [166, 167]. Although the dominant production of top quarks at the LHC happens via
pair production, precise measurements of single top quarks at different center-of-mass energies
have been performed by the ATLAS and CMS experiments, allowing to study the properties
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Table 6.1: Measurements of top-quark production and decay observables considered in the
analyses. Also the respective center-of-mass energies (


), the integrated luminosities, the

experiments, the specific observables, and the corresponding publication references are listed.
Process


 Luminosity Experiment Observable Reference

Single top 7 TeV
459 fb1

117 fb1()
156 fb1(e)

ATLAS
CMS
CMS

(), (̄), ()


, (̄)


( + ̄)
( + ̄)

[148]
[149]
[149]

Single top 8 TeV 202 fb1

197 fb1
ATLAS
CMS

(), (̄), ()


, (̄)


(), (̄), ( + ̄), 
(̄)

[150]
[151, 152]

Single top 13 TeV

32 fb1

22 fb1

23 fb1

359 fb1

ATLAS
CMS
CMS
CMS

(), (̄)
(), (̄), ( + ̄)

(̄)
(), (̄), ( + ̄)

[153]
[154]
[155]
[156]

Top decay 196 TeV
27 fb1

87 fb1

54 fb1

CDF
CDF
D0

0
0
0

[157]
[158]
[159]

Top decay 7 TeV 104 fb1

50 fb1
ATLAS
CMS

0, 

0, 

[160]
[161]

Top decay 8 TeV
202 fb1

202 fb1

197 fb1

ATLAS
ATLAS
CMS

Γ

0, 

0, 

[162]
[163]
[164]

Top decay 13 TeV 198 fb1 CMS 0,  [165]

of the  vertex in detail. In the search for BSM physics, single top-quark production pro-
cesses are of particular interest, as they are expected to be sensitive to various potential BSM
scenarios [168].

The single production of top quarks happens via different mechanisms, with the specific pro-
portions of the individual processes depending on the energy scale. The -channel is the domi-
nant production channel at both the Tevatron and LHC, contributing approximately 7080 %
of the total single top-quark production cross section. In -channel production, a virtual 

boson and a  quark fuse to produce the top quark via   .

As the -channel is the dominant production mechanism at current energies and has been
measured very precisely, it is often subject to BSM and EFT studies [17, 23, 136, 169–171].
The -channel production can be described in the five-flavor scheme (5FS) as a 2 2 process,
or in the four-flavor scheme (4FS) as a 2 3 process. In the first case, the proton is assumed to
contain a  sea quark, while in the latter case, also the  quark production via gluon splitting is
included. It has been shown that calculations using both flavor schemes are in good agreement
with each other [172]. The leading Feynman diagrams for -channel production in both schemes
are shown in Fig. 6.1.
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Figure 6.1: Leading order Feynman diagrams for -channel single top-quark production in
the 5FS (left) and in the 4FS (right).

Measurements of -channel single top-quark production cross sections have been performed
at Tevatron and LHC. In this study, measurements from the ATLAS and CMS experiments
at 7, 8, and 13 TeV are considered, all unfolded to parton level. Specifically, the total single
top-quark and single anti-top quark -channel production cross sections, () and (̄), are
included as well as differential cross sections as a function of the transverse momentum of the
top quark, d

d () , and of the anti-top quark d
d (̄) . Furthermore, differential cross section mea-

surements as a function of the rapidity  of the (anti-) top quark are considered. If differential
cross sections are published in terms of normalized distributions, the absolute distributions
are reconstructed for this analysis using the associated total cross section measurements. The
specific single top-quark production observables and measurements included in the analysis
are listed in Tab. 6.1.

6.3.2 Top-quark decay observables

As mentioned in Sec. 4.3.3, due to its high mass, the top quark has a very short lifetime and the
unique property of decaying before hadronization. The decay width Γ of the top quark is the
inverse of its lifetime, Γ = 1. It is an interesting quantity to study the  vertex structure
and to search for BSM physics, as deviations from the SM predictions in this observable would
hint at non-SM decay channels or modified top-quark couplings. The top-quark decay width
has been measured with indirect methods by the D0 and CMS experiments [173, 174]. In the
following, only the first direct measurement of the top-quark decay width by ATLAS, using
̄ events at 8 TeV, is included [162].1

As a consequence of its short lifetime, the spin information of the top quark does not decor-
relate and is preserved in its decay products. Since the top quark decays almost exclusively
via    into a  quark and a  boson, the polarizations of the  bosons are interest-
ing observables and allow searching for non-SM effects. When choosing the rest frame of the
top-quark, the  boson and the  quark obtain the same amount of momentum but with
opposite directions. As the spin must be conserved, the  boson can take three different
polarizations: left-handed, right-handed, or longitudinally polarized. The fractions  = ΓΓ
of the respective polarizations are called  boson helicity fractions. A leading order (LO)

1A direct measurement of the top-quark decay width using the full Run-II data set has been published by
ATLAS in Ref. [175] but is not included here.
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6.4 Parametrizations of BSM contributions

QCD SM calculation using the assumption of the  quark being massless yields the following
predictions for the  boson helicity fractions [176]:

0 = 22


2
 + 22



 07   = 22


2
 + 22



 03   = 0  (6.4)

More precise calculations in next-to-next-to-leading order (NNLO) QCD [177] yield

0 = 0687 0005   = 0311 0005   = 00017 00001  (6.5)

The fraction  being (almost) zero is a consequence of the  +-boson and  quark both being
right-handed in this case, which is highly suppressed in the SM due to the    structure
of the weak interaction. Measurements of the  boson helicity fractions have been performed
by the ATLAS, CMS, D0, and CDF experiments. Here, measurements of 0 at a center-of-
mass energy of 196 TeV by CDF and D0, as well as measurements of 0 and  at 7, 8, and
13 TeV by the ATLAS and CMS experiments are included. Again, the specific measurements
considered in the analysis are given in Tab. 6.1.

6.4 Parametrizations of BSM contributions

As pointed out in Sec. 5.3, when using EFTfitter.jl for SMEFT fits, the dependences of the
observables on the Wilson coefficients need to be formulated in terms of functions returning
predictions for the values of the observables. In the following paragraphs, it is described how
these dependences are determined for the observables considered here. In particular, it is
demonstrated how computationally fast parametrizations are obtained that can be used for
the Bayesian fits with EFTfitter.jl.

6.4.1 BSM contributions to single-top quark production

To determine BSM contributions to single-top quark -channel cross sections as a function of
dimension-six SMEFT operators, MC events are generated using MadGraph5_aMC@NLO
[178] with the dim6top_LO [15] Universal FeynRules Output (UFO) model [179]. This allows
computing the values of parton-level cross sections for arbitrary configurations of the Wilson
coefficients in LO QCD. In the MC simulations, the BSM scale is set to Λ = 1 TeV, and only
one insertion of a dimension-six operator is considered at a time. The top-quark mass is set to
 = 1725 GeV, and the renormalization and factorizations scales are set to  =  = .
The MSTW2008lo parton distribution function (PDF) set [180] is used. For the SM values
of the total cross sections, next-to-leading order (NLO) QCD predictions are obtained using
MadGraph5_aMC@NLO. Scale variation uncertainties are estimated by varying both the
renormalization and factorization scales independently to  = 2 and  = 2. PDF
uncertainties are estimated by varying the PDF sets, using the CT10nlo and NNPDF23_nlo
PDF sets [181, 182]. The total theory uncertainties of the SM values are obtained by adding
the statistical (MC), scale variation, and PDF uncertainties in quadrature. For differential
cross sections, NLO QCD corrections are taken into account by applying -factors using the
NLO predictions in Refs. [148, 150, 152, 155].
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6 Studying the impact of correlated measurements on the results of SMEFT fits

In order to obtain continuous and computationally fast parametrizations for the dependences
of the cross sections on the Wilson coefficients, interpolations of the MC cross sections are
performed. The interpolations are based on the parametrization of cross sections as a function
of the Wilson coefficients in Eq. (4.8), where the  and  are the unknown parameters to be
determined. In this analysis, two approaches for the interpolation are considered simultane-
ously. In the linear ansatz, only leading BSM contributions of the order (Λ2), originating
from the interference of SM and BSM diagrams, are considered,

MC = SM +




̃ (linear)  (6.6)

As indicated in Sec. 4.3.3, it can be beneficial to also consider contributions (Λ4) that arise
when squaring the BSM diagrams. When including these terms, the interpolation function has
a quadratic dependence on the Wilson coefficients, and the quadratic ansatz reads

MC = SM +




̃ +



̃̃ (quadratic)  (6.7)

It should be noted again that in this thesis, terms of the order(Λ4) are considered only when
coming from dimension-six operators. Possible contributions from dimension-eight operators
at the same order are not taken into account. By comparing both interpolation approaches
during the following analyses, the influence of quadratic terms on the results of the SMEFT
fits is examined. In the case of differential distributions, the interpolations are performed
separately for each bin.

An example of the resulting parametrizations of cross sections is depicted in Fig. 6.2, where
the 7 TeV total single top-quark -channel cross section is given as a function of the coefficients
̃

(3)
 , ̃ , and ̃. The plots show slices of the phase space where only one of the Wilson

coefficients is varied at a time while the others are fixed to zero. Both the linear (light blue)
and the quadratic interpolation (dark blue) are shown. It is visible that at the intersections
with the corresponding ATLAS measurement (gray), the sensitivities of both parametrizations
are very similar.
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Figure 6.2: Dependence of the 7 TeV total single top-quark -channel cross section on ̃
(3)
 ,

̃ , and ̃. Shown are slices of the phase space where only one of the Wilson coefficients
is varied at a time while the others are fixed to zero. Both the linear (light blue) and the
quadratic interpolation (dark blue) are shown. The ATLAS measurement of Ref. [148] and
the corresponding total uncertainty are indicated in gray.

60



6.5 Uncertainties and correlation scenarios

6.4.2 BSM contributions to top-quark decay observables

The dependence of the top-quark decay width and of the  boson helicity fractions on the
Wilson coefficients is determined according to Ref. [183], considering only the operators 

and 
(3)
 , both modifying the  vertex. BSM contributions are included at LO QCD, while

for the SM value, NNLO QCD predictions are applied [177, 184]. In this analysis, the  boson
helicity fractions are considered to depend only on ̃ , and the top-quark decay width is
assumed to depend on ̃ and ̃

(3)
 . In contrast to Ref. [183], for the  helicity fractions

also quadratic contributions in ̃ are taken into account. The dependence of the top-quark
decay observables on the Wilson coefficients is visualized in Fig. 6.3.
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Figure 6.3: Dependence of the  boson helicity fractions 0 and , and of the top-quark
decay width Γ on the Wilson coefficients ̃ and ̃

(3)
 . For the decay width, only one Wilson

coefficient is varied at a time while the other is fixed to zero. The corresponding measurements
from ATLAS [148] and CMS [165], as well as the respective total uncertainties, are indicated
in gray.

6.5 Uncertainties and correlation scenarios

Three different categories of uncertainties are considered in the fit: statistical uncertainties,
systematic uncertainties, and theory uncertainties. For the systematic uncertainties, publi-
cations typically provide breakdowns of the different sources of these uncertainties. In this
analysis, only the reported total systematic uncertainties are taken into account. The theory
uncertainties are those of the SM predictions.

As detailed in Sec. 5.2, the total covariance matrix in EFTfitter.jl is constructed as the sum
over the individual covariance matrices of the different types of uncertainties. Thus, correla-
tion matrices have to be provided for each of the three uncertainty categories considered. As
mentioned before, determining the correlations between multiple measurements from differ-
ent experiments is an intricate task. As a consequence, the full correlation matrices for the
measurements included here are not known. However, it has been pointed out, for example
in Ref. [185], that measurements of single top quark cross sections from different experiments
and at different energies can have non-negligible correlations.
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6 Studying the impact of correlated measurements on the results of SMEFT fits

Therefore, three different correlation scenarios are introduced to study their impact in the
following:

• In the no correlations scenario, all measurements are considered to be uncorrelated, and
each of the three correlation matrices is chosen to be the identity matrix.

• In the known correlations scenario, only the available correlation coefficients given in
the publications are taken into account.

• In the best guess correlations scenario, based on simplifying assumptions, parametriza-
tions of the correlation matrices are developed, and correlations between the measure-
ments are introduced for studying their impact on the results of the fits.

In the following paragraphs, the correlation matrices of the different scenarios are discussed
for the individual uncertainty categories.

Statistical uncertainties Correlations of statistical uncertainties are present when multiple
measurements are based on the same data. As this is only the case for measurements performed
at the same experiment and with the same data sets, correlations of the statistical uncertainties
are usually estimated in the respective analyses and provided by the collaborations. Here, this
is the case for the single top-quark -channel cross section measurements, in particular for the
correlations between the bins of differential distributions. Furthermore, correlation coefficients
for the  boson helicity fractions 0 and  are provided in the respective publications.
Statistical correlations between measurements performed at different energies or at different
experiments are not possible because independent events are used. The correlation coefficients
given in the publications are used to construct the full 58  58 correlation matrix of the
statistical uncertainties. The resulting matrix is used for both the known correlations and the
best guess correlations scenarios, as no further statistical correlations are expected. The full
correlation matrix of the statistical uncertainties is given in Fig. C.1 of App. C. The matrix
contains only a very small number of non-zero elements and is almost diagonal, i.e., it differs
only slightly from the identity matrix of the no correlations scenario.

Systematic uncertainties Correlations of systematic uncertainties arise between measure-
ments that use the same experimental setup, the same data collection procedure, the same
MC simulations, or the same data analysis methods. However, the estimation of systematic
uncertainties is an elaborate and time-consuming task since usually, a variety of sources of
systematic uncertainties has to be considered. Therefore, determining correlations of system-
atic uncertainties, especially between different experiments, is usually not feasible, and almost
no information about such correlations is provided by the collaborations. In particular, it is
not possible to estimate the correlations of systematic uncertainties outside the respective
analysis teams. For these reasons, almost no estimates for systematic correlations between the
considered measurements are available, with the exception of correlation coefficients for the
measurements of 0 and , which are given in the respective publications. Therefore, the
systematic correlation matrix of the known correlations scenarios is also very similar to the
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6.5 Uncertainties and correlation scenarios

identity matrix. In order to study the impact of potential systematic correlations on SMEFT
fits, the following assumptions are made to construct a parametrization of the systematic
correlation matrix to be used in the best guess correlations scenario:

• Measurements performed at the same experiment and at the same center-of-mass energy
are assumed to be correlated with a correlation coefficient sys since for such measure-
ments, the systematic uncertainties are likely to be coming from the same sources.

• Measurements performed at the same experiment but at different energies are assumed to
be less correlated, as differences in the detectors, MC simulations, and energy-dependent
systematic uncertainties are present. Such correlations are accounted for by a correlation
coefficient sys2.

• For measurements performed at different experiments, the systematic uncertainties are
assumed to be uncorrelated.

Of course, these assumptions are oversimplifying, for example, because all bins of differential
distributions are assumed to be correlated with the same correlation coefficient. However,
the assumptions are largely based on the studies combining single top-quark cross section
measurements of ATLAS and CMS in Ref. [185], and without further knowledge of the actual
correlations, more specific assumptions cannot be justified. For the best guess correlations
scenario, the correlation coefficient sys is chosen to be

sys = 09  (6.8)

which is again based on the studies of Ref. [185]. The  boson helicity fractions 0 and 

are always assumed to be anti-correlated. The full 5858 systematic correlation matrix based
on the aforementioned assumptions is given in Fig. C.2. To illustrate the main aspects of the
parametrization, a simplified representation is given in Eq. (6.9), considering only a subset
of five different measurements. When taking into account only the total single top-quark and
single anti-top quark cross sections measured by ATLAS at 7 TeV, ()A7 and (̄)A7 , the
single top-quark cross sections at 8 TeV measured by ATLAS, ()A8 , and CMS, ()C8 , and
the top-quark width measurement, Γ, the correlation matrix of the systematic uncertainties
in the best guess correlations scenario is given as

sys =



()A7 (̄)A7 ()A8 ()C8 Γ

()A7 1 sys
sys

2 0 0
(̄)A7 sys 1 sys

2 0 0
()A8

sys
2

sys
2 1 0 0

()C8 0 0 0 1 0
Γ 0 0 0 0 1


 (6.9)

It should be noted that for sys = 0, the systematic correlations vanish and the known corre-
lations scenario is obtained.
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6 Studying the impact of correlated measurements on the results of SMEFT fits

Theory uncertainties Also on the correlations between the theory uncertainties of the in-
cluded measurements, no information is available. Therefore, simplifying assumptions are made
in order to provide a best guess correlations matrix for these uncertainties. It is assumed that
theory uncertainties are independent of the experiments and only depend on the center-of-mass
energy:

• Measurements performed at the same center-of-mass energy are assumed to be correlated
with th.

• Measurements of the same observable performed at different center-of-mass energies are
assumed to be less correlated with th2.

Again, these assumptions are rather simplistic, and the theory uncertainties usually depend
on various factors, for example, on the energy scale of the collision. Such dependencies cannot
be completely parametrized using only one parameter. Based on Ref. [185], for the best guess
correlations scenario, the correlation coefficient th is chosen to be

th = 09  (6.10)

The full correlation matrix of the best guess correlations scenario constructed using these
assumptions is given in Fig. C.3. Similar to Eq. (6.9), the simplified representation of the
systematic correlation matrix is given as:

th =



()A7 (̄)A7 ()A8 ()C8 Γ

()A7 1 th
th
2

th
2 0

(̄)A7 th 1 th
2

th
2 0

()A8 th
2

th
2 1 th 0

()C8 th
2

th
2 th 1 0

Γ 0 0 0 0 1


 (6.11)

6.6 Constraining the Wilson coefficients

The dependences of the observables on the Wilson coefficients determined in Sec. 6.4 are
implemented into EFTfitter.jl, and the measurements of Tab. 6.1 are inserted together with
their associated uncertainties. Uniform prior distributions are chosen for all three Wilson
coefficients, with their maximum range being 1  ̃  1. For values ̃  1, the EFT
expansion of Eq. (4.6) breaks down, as the expansion parameter becomes to large and reaches
perturbativity limits.

6.6.1 Constraints in the known correlations scenario

In a first step, the correlation matrices of the known correlations scenario are used in the
fit. Since only a very small number of statistical correlation coefficients are available and
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6.6 Constraining the Wilson coefficients

considered in this scenario, the results obtained are very similar to those of the no correlation
scenario, which is therefore not discussed further here.

In Fig. 6.4, the resulting posterior distributions obtained from fits with EFTfitter.jl are shown
for both the linear and the quadratic parametrizations of the single top-quark cross sections.
Constraints on the three Wilson coefficients are shown in terms of one- and two-dimensional
marginal distributions. On the main diagonal and in the upper triangle of the plots, the
results of the total combination of all 58 measurements are shown, with the smallest intervals
and areas containing 90 % of the posterior probability, i.e., the 90 % HDLs and HDAs, being
highlighted. In the lower triangle, the 90 % HDAs are shown as obtained when only a certain
subset of observables is used in the fit. In these plots, the constraints coming from top-quark
decay observables are shown in gray. The constraints coming from the total single top-quark
cross sections are shown in light blue, and the constraints coming from differential cross
section measurements are shown in medium blue. The results of the total combination of all
measurements are shown in dark blue and are the same as the ones in the upper triangle.

It is visible in the lower triangles of both pots that the top-quark decay measurements only
constrain ̃

(3)
 and ̃ . As already shown in Fig. 6.3, measurements of the  boson helicity

fractions only constrain ̃ , while the top-quark decay width is also sensitive to ̃
(3)
 . When

comparing the results based on the linear parametrization of the cross sections with those of the
quadratic parametrization, it is observed that the shapes of the constraints obtained from the
total and differential cross sections are different. In the case of the linear parametrizations,
as expected from the likelihood in Eq. (5.9), a multivariate normal shape of the posterior
distributions is observed. For the quadratic parametrization, the shapes of the HDAs are
more distorted due to the (Λ4) BSM contributions to the observables. It can also be noticed
that the constraints on ̃

(3)
 and ̃ coming from the total cross section measurements are

much tighter in the case of the quadratic parametrization than in the linear one, which is
also expected considering the sensitivity of the different parametrizations shown in Fig. 6.2.
Overall, the total -channel cross sections yield weaker constraints compared to those coming
from the differential measurements, especially for ̃

(3)
 . Although the shapes and sizes of

the constraints obtained from the total and differential cross sections differ between the two
parametrizations, this is no longer observed in the total combination of all measurements.
The results of the combination, shown in the upper triangles of Fig. 6.4, agree very well
for both parametrizations. In the total combination, the coefficient ̃ obtains the strongest
constraints, with the width of its smallest 90 % interval being 0.026. The coefficient ̃ is
constrained to a similar degree and has a 90 % HDL of 0.029. The constraints on ̃

(3)
 are

the weakest, with the length of the 90 % interval being 0.074. All numerical values for the
constraints are given in Tab. 6.2. There, the bounds of the marginal 90 % HDRs, their total
widths (i.e., the 90 % HDLs), the modes, and the standard deviations (), as well as the
deviations of the modes from the SM value in terms of the standard deviations are given for
all three Wilson coefficients, both for the known correlations and the best guess correlations
scenario. The values are determined using the linear parametrization of cross sections but
are virtually the same as for the quadratic parametrization. The good agreement of the two
different parametrizations of the cross sections in the total combination is also observed in
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Figure 6.4: One- and two-dimensional marginalized posterior regions containing 90 % poste-
rior probability obtained in fits using the known correlations scenario. In the lower triangle,
the corresponding areas are shown for fits to the individual data sets. On the diagonal and in
the upper triangle, the results of the total combination are shown.
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6.6 Constraining the Wilson coefficients

the left plot of Fig. 6.7, where the constraints on the Wilson coefficients are visualized as
the smallest 90 % intervals. In particular, it should be noticed that the SM value is contained
within all the credible regions shown here.

To investigate the impact of the individual measurements on the combination in further detail,
the MEWs, as introduced in Sec. 5.4, are computed. In Fig. 6.5, the resulting weights are shown
for both the linear parametrization (in the top plot) and the quadratic parametrization (in
the bottom plot). Following the discussions in Sec. 5.4, the question of whether the MEWs
based on the sum of all two-dimensional HDAs are compatible with those based on the HDVs
of the full three-dimensional parameter space is also examined. For this reason, in Fig. 6.5,
the weights for both approaches are shown. The weights obtained from the three-dimensional
90 % HDVs are shown in light blue, while the weights based on the sum of all two-dimensional
90 % HDAs are shown in dark blue. It is noticeable in Fig. 6.5 that the general distribution of
the weights and, in particular, their respective hierarchies are very similar for the linear and
the quadratic parametrizations, with only a few exceptions.
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Figure 6.5: MEWs based on the 90 % HDV (light blue) and the sum of the 90 % HDAs (dark
blue) for the linear (top) and the quadratic parametrization (bottom) of cross sections in the
known correlations scenario.

While for the linear parametrization all measurements have positive weights, in the case of the
quadratic parametrization, also negative weights are obtained, which indicates that excluding
these measurements from the fit leads to a smaller 90 % HDR. This is particularly striking for
the fourth bin of the ATLAS differential single top-quark cross section measurement at 8 TeV.
It is assigned a rather large negative weight in the quadratic parametrization, while it obtains
a positive weight in the linear parametrization. Comparing the weights obtained using the
three-dimensional HDVs with those obtained using the sum over the two-dimensional HDAs,
it can be observed that the overall distribution and hierarchy of weights are very similar
in this case, again with a few exceptions. As the measurements are only weakly correlated

67
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and the posterior distribution of the total combination has a very Gaussian shape, even for
the quadratic parametrization, the similarity of the HDV and HDA weights is not surprising
and agrees with the observations in the artificial example of Sec. 5.4, e.g., in Fig. 5.5. The
largest weight is assigned to the measurement of the  helicity fraction  by CMS at
13 TeV. Most of the other measurements of  also receive large weights. This is mainly
due to the tight constraints  yields on ̃ , which is also observed in Fig. 6.4. Other
measurements with large weights are mostly those of differential cross sections, which is also
plausible when considering the plots in the lower triangles of Fig. 6.4. The measurement of the
top-quark decay width receives only a very small weight, as the constraints on ̃

(3)
 provided

by this measurement are much weaker than those from the total and differential cross section
measurements. However, it should be noted again that the MEWs shown here are based only on
measures of uncertainty, not on other influences of the measurements, such as their individual
impacts on the location of the posterior distribution in the parameter space.

6.6.2 Constraints in the best guess correlations scenario

As the objective of this study is to investigate the impact of correlations on the constraints
of Wilson coefficients, the Bayesian fit with EFTfitter.jl is repeated using the correlation
matrices of the best guess correlations scenario. The resulting posterior distribution for the
linear parametrization of cross sections is shown in Fig. 6.6. The one- and two-dimensional
marginal distributions for the total combination are shown, as well as the 90 % HDAs of fits
to the individual types of observables. The corresponding plot for the quadratic interpolation
is given in Fig. C.4 of App. C.

Comparing the distributions in the lower triangle of Fig. 6.6 with those of the known correla-
tions scenario in Fig. 6.4, it is visible that the main effect of the correlations in the best guess
correlations scenario is a shift of the constraints coming from the differential cross sections.
This shift is particularly large for ̃

(3)
 . It is noticeable in the lower triangle plots of Fig. 6.6

that due to the shift in ̃
(3)
 , the 90 % HDAs obtained using only the differential cross sections

no longer have a common intersection with the constraints coming from the total cross sec-
tions and those coming from the  boson helicity fractions. Consequently, this also leads to
a shift in the constraints of the total combination of all measurements. In particular for ̃

(3)
 ,

deviations from the SM expectation are obtained in the best guess correlations scenario, which
is clearly visible in the distributions of the upper triangle, where the SM value lies outside
the 90 % HDA for the ̃

(3)
 axis. For the quadratic parametrization of cross sections, similar

effects can be observed in Fig. C.4.
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Figure 6.6: Posterior distribution of the best guess correlations scenario when using the
linear parametrization of cross sections. Shown are the one- and two-dimensional marginalized
posterior regions containing 90 % posterior probability. On the diagonal and in the upper
triangle, the results of the total combination of all measurements are shown. In the lower
triangle, the 90 % HDAs are shown for fits to the individual types of observables.

A clear visualization of the differences of the constraints obtained in the two correlation
scenarios is given in Fig. 6.7, where the marginalized 90 % highest density intervals (HDIs)
are shown for the known correlations scenario (left) and the best guess correlations scenario
(right). The constraints are given for both the linear and the quadratic parametrizations of
cross sections. The good agreement between the two parametrizations in the total combination
is again observed. Also the shift of the constraints on ̃

(3)
 away from the SM value towards

negative values is clearly visible, with its mode shifting from -0.019 to -0.095, leading to a
deviation from the SM value of about 365  in the best guess correlations scenario. For ̃ ,
a minor shift towards larger values is observed in the best guess correlations scenario, with its
mode changing from 0.00075 to 0.01025 and the 90 % HDR still being in agreement with the
SM. For the coefficient ̃, the mode shift is very minor. A decrease in the size of the 90 % HDI
by about a factor of 1.6 is observed for the linear parametrization, while the corresponding
intervals for ̃

(3)
 and ̃ increase by a factor of 1.15. This is also observed in the two-

dimensional distributions of Fig. 6.6. However, such effects are expected, as the correlations
lead to deformations of the multidimensional posterior distributions.
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Figure 6.7: Marginal modes and smallest 90 % intervals of the one-dimensional marginalized
posterior distributions using the linear (light blue) and quadratic (dark blue) parametrization
of cross sections in the known correlations scenario (left) and in the best guess correlations
scenario (right). The SM value is indicated as the dashed gray line.

The numerical values for the 90 % HDIs and the modes of the best guess correlations scenario
are also given in Tab. 6.2.

Table 6.2: Bounds of the marginalized 90 % HDIs, their total length, the standard deviation,
and the value of the mode, as well as the deviation of the mode from the SM value in units of
the standard deviation.

known correlations best guess correlations
̃ 90% HDI 90% HDL  mode mode/ 90% HDI 90% HDL  mode mode/

̃
(3)
 [-0.056, 0.018] 0074 0023 00190 084 [-0.136, -0.051] 0085 0026 00950 365

̃ [-0.014, 0.015] 0029 0009 00008 008 [-0.007, 0.027] 0034 0011 00103 098
̃ [-0.015, 0.011] 0026 0008 00023 029 [-0.012, 0.005] 0016 0005 00038 075

Also for the best guess correlations scenario, the MEWs are determined and shown in Fig. 6.8.
In this scenario, the agreement between the hierarchies of the weights from the linear and the
quadratic parametrizations is not as good as in the known correlations scenario. In general, for
both parametrizations, more measurements are assigned negative weights than in the known
correlations scenario. Again, in particular for the fourth bin of the ATLAS differential single
top-quark cross section measurement at 8 TeV, a large negative weight is obtained in the
quadratic parametrization, while a positive weight is obtained in the linear parametrization.
However, also in this best guess correlations scenario, the weights based on the sum of the
HDAs agree very well with those based on the HDVs.

70



6.6 Constraining the Wilson coefficients

0.10

0.05

0.00

0.05

0.10

we
ig

ht
s

linear parametrizationHDV
HDAs

A(
tq

) 7
bi

n1
A(

tq
) 7

bi
n2

A(
tq

) 7
bi

n3
A(

tq
) 7

bi
n4

A(
tq

) 7
bi

n5
A(

tq
) 7

A(
tq

) 7
bi

n1
A(

tq
) 7

bi
n2

A(
tq

) 7
bi

n3
A(

tq
) 7

bi
n4

A(
tq

) 7
bi

n5
A(

tq
) 7

A(
tq

) 8
A(

tq
) 8

A(
tq

) 13
A(

tq
) 13

A(
tq

) 8
bi

n1
A(

tq
) 8

bi
n2

A(
tq

) 8
bi

n3
A(

tq
) 8

bi
n4

A(
tq

) 8
bi

n5
A(

tq
) 8

bi
n1

A(
tq

) 8
bi

n2
A(

tq
) 8

bi
n3

A(
tq

) 8
bi

n4
C(

tq
+

tq
) 8

bi
n1

C(
tq

+
tq

) 8
bi

n2
C(

tq
+

tq
) 8

bi
n3

C(
tq

+
tq

) 8
bi

n4
C(

tq
+

tq
) 8

bi
n5

C(
tq

+
tq

) 8
bi

n6
C(

tq
) 8

C(
tq

) 8
C(

tq
+

tq
) 8

C(
tq

+
tq

) 13
bi

n1
C(

tq
+

tq
) 13

bi
n2

C(
tq

+
tq

) 13
bi

n3
C(

tq
+

tq
) 13

bi
n4

C(
tq

) 13
C(

tq
) 13

C(
tq

+
tq

) 13
C(

tq
) 13

,2

C(
tq

) 13
,2

C(
tq

+
tq

) 13
,2

C(
tq

+
tq

) 7 t
F 0

AT
LA

S
7

F L
AT

LA
S

7
F 0

AT
LA

S
13

F L
AT

LA
S

13
F 0

CM
S

7
F L

CM
S

7
F 0

CM
S

8
F L

CM
S

8
F 0

CM
S

13
F L

CM
S

13
F 0

CD
F

F L
D0

0.05

0.00

0.05

0.10

we
ig

ht
s

quadratic parametrization

Figure 6.8: MEWs based on the 90 % HDV (light blue) and the sum of the 90 % HDAs (dark
blue) for the linear (top) and the quadratic parametrization (bottom) of cross sections in the
best guess correlations scenario.

As mentioned in Sec. 5.4, in EFTfitter.jl, the concept used to determine the MEWs can also be
applied to compute weights for the different types of uncertainties, i.e., the UEWs, which are
based on the relative decrease of the HDR size when excluding a particular type of uncertainty.
To investigate the influence of the three types of uncertainties considered in this analysis, the
UEWs are computed for both correlation scenarios. Again, both the three-dimensional HDV
and the sum of the two-dimensional HDAs are used to determine these weights. In Fig. 6.9, the
resulting weights are shown for the known correlations (left) and the best guess correlations
(right) scenarios, both for the linear and the quadratic parametrizations.
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Figure 6.9: UEWs based on the 90 % HDV (light blue) and the sum of the 90 % HDAs
(dark blue) for the linear (top) and the quadratic parametrization (bottom) in the known
correlations scenario (left) and in the best guess correlations scenario (right).
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6 Studying the impact of correlated measurements on the results of SMEFT fits

Generally, a good agreement between the UEW for the linear and the quadratic parametriza-
tions is observed. Also, the weights based on the HDV are very similar to those obtained from
the sum of the HDAs, in particular considering the relative influence and hierarchies of the
uncertainty types. For the fit in the known correlations scenario, the systematic uncertainties
are the dominating type of uncertainty, with a relative weight of about 0.5. The statistical
uncertainties are the second most important contributions, with a weight of about 0.4. The
theory uncertainties are rather insignificant in this scenario and have a weight of less than 0.1.
In the best guess correlations scenario, the statistical and the systematic uncertainties still
obtain very similar weights between 0.3 and 0.4. The theory uncertainties, however, are more
important in this scenario and obtain larger weights between 0.2 and 0.3. This can be ex-
plained by the large number of positive correlations assumed between the theory uncertainties
in this best guess correlations scenario (see the correlation matrix in Fig. C.3). The impact of
the uncertainties on the resulting constraints is further examined in Sec. 6.7.

6.6.3 Varying the correlation coefficients

The observed impact of correlations on the constraints is further investigated by considering
the best guess correlations scenario in more detail. The parametrization of the correlation
matrices introduced in Sec. 6.5 is still used but the values of the correlation coefficients sys
and th are varied from those of the best guess correlations scenario, where they were chosen
to be sys = theo = 09.

In a first step, only one of the correlation coefficients is varied at a time, or both are simul-
taneously set to the same value. In Fig. 6.10, the results obtained when varying the values of
sys and theo between 0 and 0.95 in steps of 0.05 are shown for the Wilson coefficient ̃

(3)
 .

Depicted are the marginal mode and the 90 % HDR when using the linear parametrization.
They are shown for the cases in which only one of the correlation coefficients is varied at a
time while the other one is fixed to zero and for the case in which both correlation coefficients
are varied simultaneously to the same value.
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Figure 6.10: Marginal mode and smallest 90 % interval for ̃
(3)
 when varying only sys (left),

when varying only th (middle), and when varying both simultaneously (right) from 0 to 0.95
in steps of 0.05.

In all three cases, a continuous behavior of the changes of the mode and of the 90 % HDR is
observed. The shifts of the mode and the interval towards more negative values are again visi-
ble, with the deviations from the SM increasing for larger values of the correlation coefficients.
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It is noticeable that this effect is also present when only one of the correlation coefficients is
varied but is much stronger when both correlation coefficients are varied simultaneously. The
corresponding plots for the other two Wilson coefficients are shown in Fig. C.5 and Fig. C.6
of App. C. There, the impact of the correlations is not as strong as for ̃

(3)
 , but it is also

continuous and in agreement with the observations in Fig. 6.7. A very similar behavior is
observed when using the quadratic parametrization, and the corresponding plots are shown
in App. C.3.2.

In a next step, the values of the correlation coefficients sys and th are varied separately. In
Fig. 6.11, this is shown for sys theo  [0 015 03 045 06 075 09]. The relative deviation
of the marginal mode towards negative values (left) and the relative increase of the 90 % HDL
(right) compared to the known correlations scenario are shown for the Wilson coefficient ̃

(3)
 .

In these plots, the top left bin corresponds to the known correlations scenario, and the bottom
right bin represents the best guess correlations scenario.
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Figure 6.11: Relative deviation of the marginal mode (left) and relative increase of the 90 %
HDL compared to the known correlations scenario for ̃

(3)
 when varying the values of sys

and th independently.

It is observed that variations of both correlation coefficients lead to deviations of the mode
towards more negative values and that especially for large values of both correlation coeffi-
cients, these deviations from the known correlations scenario increase. For the 90 % HDL it
is noticeable that it steadily increases for larger values of sys. When varying th, however,
the HDL reaches its maximum for medium values of th  03. The corresponding plots for
̃ and ̃ are shown in Fig. C.10 and Fig. C.11, respectively. There, a similar behavior of
the mode is observed for ̃ , while for ̃ the largest deviation of the mode is found for
medium values of th  03. While the 90 % HDL of ̃ increases only slightly for larger
values of the correlation coefficients, for ̃ a decrease of the HDL is observed, which reaches
its maximum in the best guess correlations scenario.
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6.7 Impact of correlations in future scenarios

The correlation studies above are based on measurements performed at the Tevatron and
the LHC, in the latter case using only Run-I and preliminary Run-II data with a maximum
integrated luminosity of 202 fb1, as given in Tab. 6.1. During Run-II of the LHC, data with
an integrated luminosity of about 140 fb1 have been collected by both the ATLAS and the
CMS experiments [186], and the full data sets are still to be analyzed with respect to the
observables of interest. Currently, the LHC and its experiments are being prepared for Run-
III, after which the amount of recorded data is expected to double to an integrated luminosity
of about 300 fb1 [187]. After this run, the LHC and the experiments will be upgraded once
again to form the High-Luminosity LHC (HL-LHC), which is foreseen to start taking data at
the end of this decade and to increase the amount of collected data by one order of magnitude,
with an expected integrated luminosity of up to 3000 fb1 [187]. With that much more data
becoming available in the next years, the statistical uncertainties of the measurements are
expected to decrease significantly. Therefore, it is a particularly interesting question how the
constraints on the Wilson coefficients will be affected by the decreasing statistical uncertainties
and what the impact of correlations will be in such future scenarios.

To investigate this, constraints on the three Wilson coefficients are again derived for both
correlation scenarios but assuming improved precision of the measurements. For this purpose,
a simple approximation of the expected precision is performed by scaling the statistical uncer-
tainties of all measurements in Tab. 6.1 to an integrated luminosity of 300 fb1, as expected
after LHC Run-III . The systematic and theory uncertainties, as well as the nominal values
of the measurements, are assumed to remain unchanged and are set to the same values as in
the previous studies. The constraints on the Wilson coefficients with such reduced statistical
uncertainties are derived again using the described setup of EFTfitter.jl. The resulting one-
dimensional marginalized intervals containing 90 % of the posterior probability are shown in
Fig. 6.12 for both the linear and the quadratic parametrization using the known correlations
scenario (left) and the best guess correlations scenario (right). For a simpler comparison, also
the corresponding results using the current statistical uncertainties, as shown in Fig. 6.7, are
indicated again using slightly transparent markers.

It is visible that, as expected, the sizes of the 90 % intervals decrease for all three Wilson
coefficients when assuming the reduced uncertainties. In the known correlations scenario, this
effect is largest for ̃ , where the 90 % HDL shrinks by about a factor of two. Also the modes
of all three Wilson coefficients shift slightly towards negative values, with the corresponding
90 % intervals still containing the SM value. When considering the best guess correlation sce-
nario, there are much larger shifts in the modes of the posterior distributions compared to the
results with the current statistical uncertainties. This stronger impact of the correlations in
this scenario with reduced statistical uncertainties is expected, as the rather weakly correlated
statistical uncertainties have less influence, and the stronger correlated systematic and theory
uncertainties dominate. In particular for ̃

(3)
 , the shift of the mode towards more negative

values, as well as a shrinkage of the 90 % HDL to about 70 % of its original length, is striking.
In this scenario, the mode of ̃

(3)
 deviates by about 92  from the SM value. Also for ̃ , the
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6.7 Impact of correlations in future scenarios
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Figure 6.12: Marginal modes and smallest 90 % intervals of the one-dimensional marginalized
posterior distributions using the linear (light blue) and quadratic (dark blue) parametrization
of cross sections in the known correlations scenario (left) and in the best guess correlations
scenario (right) for the statistical uncertainties scaled down to an integrated luminosity of
300 fb1. The SM value is indicated as the dashed gray line. The results using the current
statistical uncertainties are indicated using the slightly transparent markers.

90 % credible interval is no longer in agreement with the SM when using the reduced statistical
uncertainties. The mode is shifted towards larger positive values and deviates by about 26 

from the SM value. The intervals of ̃ shrink by a factor of 1.8, with the mode being slightly
shifted towards negative values. While for the quadratic parametrization the 90 % interval of
̃ is still in agreement with the SM, in the case of the linear parametrization, the interval
does no longer include the SM value, with the mode deviating by about 23 . All numerical
values for the bounds and widths of the 90 % HDIs, the modes, and standard deviations of
this scenario with the statistical uncertainties scaled to 300 fb1 are given in Tab. 6.3.

In Fig. 6.13, the marginal mode and the 90 % HDL of ̃
(3)
 are shown as a function of the

correlation coefficients sys and th when they are varied independently or set simultaneously
to the same value. It can be noticed that in the case of reduced statistical uncertainties, the
impact on the constraints when varying both correlation coefficients at a time is much larger
than in the case of the current uncertainties shown in Fig. 6.10. The corresponding plots for
̃ and ̃ are given in Fig. C.12 and Fig. C.13.

Table 6.3: Bounds of the marginalized 90 % HDIs, their total length, the standard deviation,
and the value of the mode, as well as the deviation of the mode from the SM value in units
of the standard deviation for the measurements when assuming the statistical uncertainties
reduced to 300 fb1.

known correlations best guess correlations
̃ 90% HDI 90% HDL  mode mode/ 90% HDI 90% HDL  mode mode/

̃
(3)
 [-0.050, 0.012] 0061 0019 0020 104 [-0.200, -0.139] 0061 0019 0171 922

̃ [-0.010, 0.002] 0012 0004 0004 101 [ 0.009, 0.040] 0030 0009 0024 264
̃ [-0.013, 0.007] 0021 0006 0003 052 [-0.011, -0.002] 0009 0003 0006 233
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6 Studying the impact of correlated measurements on the results of SMEFT fits
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Figure 6.13: Marginal mode and smallest 90 % interval for ̃
(3)
 when varying only sys (left),

when varying only th (middle), and when varying both simultaneously (right) assuming the
reduced statistical uncertainties.

Considering the UEWs for this future scenario, shown in Fig. 6.14, also confirms that the
statistical uncertainties have much less influence on the results of the combination. In the
known correlations scenario, the weight of the statistical uncertainties is now of a similar size
as that of the theory uncertainties, both having weights of about 0.1. The influence of the
systematic uncertainties is clearly dominating with a weight of about 0.8. Also in the best
guess correlations scenario, the weight of the statistical uncertainties is around 0.1, and the
fit is dominated by the systematic and theory uncertainties.
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Figure 6.14: UEWs based on the 90 % HDV (light blue) and the sum of the 90 % HDAs (dark
blue) for the linear (top) and the quadratic parametrization (bottom) in the known correlations
scenario (left) and the best guess correlations scenario when assuming the reduced statistical
uncertainties, corresponding to an integrated luminosity of 300 fb1.

When decreasing the statistical uncertainties further to a luminosity of 3000 fb1, which cor-
responds to the expected integrated luminosity of the HL-LHC, not much difference to the
300 fb1 scenario is observed. This is expected, especially when considering the weights of the
uncertainties in Fig. 6.14. The statistical uncertainties already have only a minor influence in
this scenario, and the constraints are mainly driven by the systematic and theory uncertain-
ties. However, it could be anticipated that during the next decades, until the HL-LHC stops
operating, not only the statistical uncertainties on the measurements decrease due to more
data collected, but that also the systematic and theory uncertainties decrease, for example,
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6.8 Summary

due to improved detectors and more precise theory calculations and MC simulations. Here,
a very simplistic estimation of such a future scenario is performed by scaling the statistical
uncertainties of the measurements in Tab. 6.1 to an integrated luminosity of 3000 fb1 and
simultaneously assuming an ambitious reduction of the systematic and theory uncertainties
by a factor of two, for the purpose of estimating the effects of correlations on SMEFT fits in
such a scenario. The resulting constraints and the corresponding numerical values are given
in App. C in Fig. C.14 and Tab. C.1. Overall, a similar effect as for the 300 fb1 case can be
observed. However, due to the reduced uncertainties, the obtained constraints are even tighter
and therefore also lead to even larger deviations from the SM value. Again, in the best guess
correlations scenario, BSM physics would be observed. The mode of ̃

(3)
 deviates by more

than 19  in this case, and also for ̃ and ̃ deviations from the SM value by about 5  are
obtained. In the known correlations scenario, however, the constraints are still in agreement
with the SM, with the deviations being only about 2 .

6.8 Summary

The studies presented in this chapter reveal that in SMEFT fits of several observables and
multiple measurements, correlations between the uncertainties of measurements can have a
significant impact on the results. It was demonstrated that the constraints on the Wilson
coefficients depend on the correlation matrices and change for different values of the corre-
lation coefficients. In particular, it was pointed out that for reduced uncertainties, which are
expected from future measurements, the influence of correlations becomes even stronger and
more important. It was pointed out that in such cases, the correlation matrices can be the
crucial components of SMEFT fits that decide whether BSM phenomena are discovered or
not. Generally, it should therefore be attempted to determine as many correlation coefficients
as possible and to include them in the analyses, in particular when aiming towards global
SMEFT fits using many different observables and measurements. In cases where this is not
possible, the above studies provide guidance on how to investigate the influence of unknown
correlation coefficients. By using knowledge about the underlying physics and measurements,
a best guess correlations scenario can be constructed, similar to how it is done here. This
scenario then allows studying the impact of potential correlations on the results of the par-
ticular fit. Different parametrizations of the correlation matrices and different values of the
individual correlation coefficients can be tested. While in some cases, as in the studies above,
a strong dependence of the results on the correlation matrices will be observed, this approach
can, in particular, identify cases in which the correlations do not have a significant impact,
which then allows validating the results. In any case, correlations between the uncertainties
of measurements are essential components of each SMEFT fit that should be given particular
attention.

77





7 Enhancing SMEFT fits by combining
top-quark and  physics observables

The combination of different observables is a fundamental approach for improving the con-
straints on Wilson coefficients, as also demonstrated in the previous chapter. In this chapter,
the opportunity of enhancing SMEFT fits by combining observables from top-quark and flavor
physics is investigated. The feasibility of this approach is demonstrated, and the steps required
for such a combination are outlined. For this purpose, two observables from top-quark and
 physics are combined to constrain the Wilson coefficients of three SMEFT dipole opera-
tors modifying the top-quark coupling to the photon. This chapter is organized as follows: In
Sec. 7.1, the different effective theories used to describe BSM contributions in top-quark and
 physics are introduced, and the steps necessary for combining measurements from different
energy scales in a common EFT approach are discussed. The observables and measurements
included in this study are introduced in Sec. 7.2, and the computation of BSM contribu-
tions from dimension-six operators to the observables is detailed in Sec. 7.3. In Sec. 7.4, the
constraints obtained in SMEFT fits to the individual and the combined observables are dis-
cussed, and the improvements gained through their combination are highlighted. In Sec. 7.5,
the results of the study are briefly summarized.

7.1 Combining EFTs from different energy scales

As indicated before, SMEFT fits combining multiple observables and measurements from the
top-quark sector gained much popularity over the last years and are a prominent approach for
indirect BSM searches [3, 15–22]. While such combinations of different top-quark observables
are already common, the combination with observables from other sectors of particle physics is
particularly interesting, as further observables can provide additional sensitivity to the Wilson
coefficients [170, 171]. Especially  physics processes offer great opportunities for improving
the constraints on Wilson coefficients and may serve as a window to BSM physics, for example,
when considering the observed anomalies discussed in Sec. 4.2 [188–192].

In this study, it is investigated how the Wilson coefficients of dimension-six SMEFT operators
modifying top-quark couplings can be constrained using combined data from the top-quark
and  physics sectors. For the purpose of exploring the required steps and to highlight the
potential benefits of such a combination, only measurements of two different observables,
namely the ̄ production cross section and the ̄   branching ratio, where  is any
hadronic state containing a strange quark, are considered here. They are employed to constrain
Wilson coefficients of the three dipole operators

 = (̄) ̃   =

̄ 


̃

 

 =

̄ 


̃ 

 
(7.1)

79



7 Enhancing SMEFT fits by combining top-quark and  physics observables

as defined in Eq. (4.9). These are the SMEFT operators giving the leading BSM contributions
of order (Λ2) to the two processes considered here. Contributions from dipole operators
with right-handed  quarks contribute to top-quark decay and   transitions via one-loop
diagrams but are suppressed by a factor . Four-quark operators are neglected here since
̄ production at the LHC is dominated by the gluon-gluon channel, which makes up about
90 % of all top-quark pairs produced at 13 TeV [193]. BSM contributions from  in top-
quark decays are explicitly allowed. In this analysis, all Wilson coefficients are assumed to be
real-valued, as only the real parts of the operators give contributions at order (Λ2).

When combining observables from top-quark and  physics, it has to be considered that the
corresponding measurements are performed at different energy scales and that the computation
of BSM contributions is typically performed using different effective theories. For top-quark
physics, the measurements are performed at the top-quark scale   , and the correspond-
ing SMEFT is defined at the energy scale Λ, which is assumed to be well above the scale of
the SM. The considered  physics processes happen at much lower energies   , and
an EFT describing these processes and enabling BSM calculations can be constructed at an
energy scale below the electroweak scale, as briefly mentioned in Sec. 4.3.1. The steps required
to combine both approaches in a common fit are described in the following paragraphs.

7.1.1 The weak effective theory

For BSM calculations of  physics processes, the WET is commonly used. In WET, the
energy scale of the EFT expansion is at the scale    . The heavier particles, i.e., the
heavy bosons, the top quark, and hypothetical heavy BSM particles, are integrated out. The
Lagrangian of the WET is given as

WET = 4
2

 


10
=1

̄  (7.2)

where  and  are CKM matrix elements, and  are the effective operators [125, 126]. The
̄ are the corresponding Wilson coefficients of WET, which, in contrast to those of SMEFT,
contain both the SM and BSM contributions. The operators relevant to describe the   

transitions are:

1 = (̄ )(̄ ) 

3 = (̄)




(̄) 

5 = (̄)




(̄) 

7 = 

162 (̄) 


9 = 2

162 (̄)(̄) 

2 = (̄)(̄) 

4 = (̄ )




(̄ ) 

6 = (̄ )




(̄ ) 

8 = 

162 (̄ )
 


10 = 2

162 (̄)(̄5) 

(7.3)
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7.1 Combining EFTs from different energy scales

7.1.2 Matching SMEFT & WET

The WET provides a well-known framework for calculating SM and BSM contributions to 

physics observables, and thus also for the ̄   branching ratio considered here. In this
study, however, the  observables are used to derive constraints on the SMEFT coefficients
̃, ̃, and ̃ at the top-quark scale. Therefore, the dependence of BSM contributions
to BR(̄  ) on the SMEFT Wilson coefficients needs to be determined. This is achieved
by matching the SMEFT coefficients onto the WET coefficients [194]. For this, the different
energy scales at which the two effective theories are defined have to be taken into account. In
Fig. 7.1, a schematic representation of the energy scales of the different theories is shown. The
steps for translating SMEFT coefficients into WET coefficients are indicated.

Figure 7.1: Schematic visualization of the energy scales of SMEFT and WET, and the steps
necessary for translating SMEFT and WET coefficients [4].

At the energy scale of BSM physics, Λ, the underlying UV theory, which is the desired theory
describing both SM and BSM physics, can be matched on the effective description of SMEFT.
Using so-called renormalization group equation (RGE) evolution within the SMEFT frame-
work, the Wilson coefficients at the lower energy scale    can be derived. This is the scale
where the top-quark measurements are located. In this thesis, all constraints on the SMEFT
Wilson coefficients are given at this scale  = 1725 GeV. When using  physics processes to
constrain SMEFT Wilson coefficients at the scale , predictions for the BSM contributions
to the  observables have to be determined in terms of the SMEFT coefficients at this energy
scale. To translate the SMEFT coefficients into the WET coefficients at the lower energy scale
   where the  measurements are located, the following steps need to be applied, which
then allow using the common WET framework to determine BSM contributions to the 

observables:

1. RGE evolution in SMEFT is used to run down the energy scale from  to the match-
ing scale    . The RGEs for the SMEFT coefficients have been computed in
Refs. [195–198]. In this thesis, the RGE evolution is performed at one-loop level using
the wilson package [199].
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7 Enhancing SMEFT fits by combining top-quark and  physics observables

2. At the scale  , the SMEFT coefficients are matched onto the WET coefficients.
The matching conditions for converting SMEFT into WET coefficients are derived in
Ref. [191]. In this thesis, these conditions are applied, as detailed in Ref. [5]. The nu-
merical values for the matching conditions employed here are given in App. D.1.

3. RGE evolution in WET is used to run down the coefficients to the scale of  physics,
  . At this scale, the well-known WET formalism is applied to compute predictions
for the values of the  observables, including BSM contributions. In this thesis, these
steps are performed using the wilson and flavio [200] packages.

These three steps thus allow determining the dependence of  physics observables on the
SMEFT Wilson coefficients at the scale , using the established WET framework for com-
puting BSM contributions.

7.2 Observables & measurements

As mentioned above, only two observables are considered to be combined in this feasibility
study. From the top-quark sector, it is the cross section of ̄ production, i.e., the associated
production of a top-antitop quark pair with a photon. In Fig. 7.2, examples of leading-order
Feynman diagrams of ̄ production are shown. In these diagrams, possible insertions of
dimension-six operators modifying the vertices are indicated by the black dots.
g t

g t̄

γ

g t

g t̄

γ

g t

g t̄

γ

Figure 7.2: Examples of leading-order Feynman diagrams of ̄ production at the LHC.
Possible insertions of dimension-six operators are indicated by the black dots.

Measurements of the ̄ production cross section have been performed at different center-
of-mass energies by the ATLAS and CMS experiments [201–205]. Here, only the ATLAS
measurement at 13 TeV, using an integrated luminosity of 361 fb1, of Ref. [201] is considered.
There, the cross section is given as a fiducial cross section for final states containing one lepton
(single-lepton channel) or two leptons (dilepton channel), where the leptons can be either
electrons or muons (or the corresponding antifermions). The values of the measured cross
sections, as well as the SM predictions in NLO QCD, are given in Tab. 7.1.

Table 7.1: Observables, measurements, and SM predictions considered in this study.
Observable Measurement SM prediction Refs.
Top fid(̄  1) ATLAS 521 9 (stat)  41 (syst) fb 495 99 fb [201, 206]
Top fid(̄  2) ATLAS 69 3 (stat)  4 (syst) fb 63 9 fb [201, 206]
 BR(̄  ) HFLAV (332 15) 106 (336 23) 106 [207, 208]
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7.3 Computing BSM contributions in SMEFT

From the  physics sector, measurements of   transitions are combined with the ̄ cross
section. As visible in the Feynman diagrams in Fig. 7.3, such transitions are mainly possible
via top-quark loops.1 Therefore, similar vertices as in the top-quark processes of Fig. 7.2 are
present, which makes these transitions sensitive to the same dimension-six operators. This, in
particular, motivates the study and is the reason why the combination of these observables is
expected to improve the constraints on the SMEFTWilson coefficients. It should be noted that
the sensitivity of the   transitions to ̃ is induced by the SMEFT and WET running
only. The specific    observable considered here is the ̄   branching fraction,
BR(̄  ). It has been measured by the BaBar [209–211], Belle [212–214], and CLEO
[215] experiments. A combination of these measurements has been performed by the Heavy
Flavor Averaging Group (HFLAV) [216] and accounts for small differences in the respective
phase spaces. Here, the latest combined value [207] is used for the fit, as given in Tab. 7.1.
Corresponding SM predictions of the branching ratio are considered at NNLO QCD [208] and
are also given in Tab. 7.1.
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Figure 7.3: Examples of Feynman diagrams of    and    transitions. Possible
insertions of dimension-six operators are indicated as black dots.

7.3 Computing BSM contributions in SMEFT

7.3.1 BR(̄  )

The dependence of BR(̄  ) on the SMEFT Wilson coefficients ̃, ̃, and ̃ is
determined using the procedure described in Sec. 7.1. The BSM contributions are calculated
at the scale  in terms of WET coefficients using flavio, and the matching and running
is performed using wilson. To obtain a fast parametrization of this dependence that can be
used in EFTfitter.jl, a quadratic interpolation is performed. The resulting dependence of the
̄   branching ratio on ̃, ̃, and ̃ is shown in Fig. 7.4, where one coefficient
is varied at a time, while the others are set to zero.

It is visible that BR(̄  ) is particularly sensitive to ̃. Within the range considered,
this coefficient agrees with the measurement in two regions, once at ̃  0 and once around
̃  05, due to the narrow parabolic shape of the dependence on this coefficient.

1In Fig. 7.3, also a diagram of a    transition is shown, as it can be matched onto the WET coefficient
̄8, which due to running mixes with ̄7 and thus also contributes to the considered    transitions. More
details on the running and matching of the WET and SMEFT operators can be found in Ref. [4].

83



7 Enhancing SMEFT fits by combining top-quark and  physics observables

1.0 0.5 0.0 0.5 1.0
Ci

0

100

200

300

400
BR

(B
X s

) x
 1

06

HFLAV
CuB
CuG
CuW

Figure 7.4: Dependence of BR(̄  ) on the SMEFT coefficients ̃, ̃, and ̃

at the scale  when only one of them is varied at a time, while the others are set to zero.
The corresponding value of the HFLAV combination and the combined experimental and
theoretical uncertainties are indicated by the gray line and band.

7.3.2 ̄ production

The parametrization of the ̄ cross section as a function of the SMEFT Wilson coefficients
is determined using MC simulations with MadGraph5_aMC@NLO and the dim6top_LO
UFO model, similar to Chap. 6. For ̄ production, however, only fiducial measurements are
available, which requires additional steps in the computation, described in the following. The
MC samples for ̄ are generated similarly to the signal samples of Ref. [201] as a 2  7
process. In the simulations, the BSM scale is chosen as Λ = 1 TeV, and only one insertion of a
dimension-six operator is allowed for each Feynman diagram. Since in the dim6top_LO UFO
model different degrees of freedom are chosen for the SMEFT operators, it is not possible to
directly set the value of ̃, but only that of the linear combination

̃ = cos  ̃  sin  ̃  (7.4)

with the Weinberg angle  , where cos  = 


. Therefore, the MC samples are generated
in the space of ̃, ̃ , and ̃ , and the quadratic interpolation according to Eq. (4.8) is
performed in this parameter space. Afterwards, in the EFTfitter.jl combination, the original
parameter space of ̃, ̃, and ̃ is used again by inverting Eq. (7.4). A total of 201
different sampling points in the three-dimensional space of Wilson coefficients is chosen, with
up to two of the coefficients taking non-zero values at a time. At each sampling point, 50 000
events are generated in LO QCD. A parametrization of the total ̄ cross section as a function
of ̃, ̃ , and ̃ is determined using an interpolation according to Eq. (4.8). In Fig. 7.5,
the sampling points and the result of the interpolation are shown as slices of the parameter
space where only one of the coefficients is varied, while the others are fixed to zero.
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Figure 7.5: Sampling points and result of the interpolation for the total ̄ cross section,
shown as slices of the phase space where only one of the Wilson coefficients is varied at a time,
while the others are fixed to zero.

A very good agreement of the interpolation with the sampling points is observed, with the
standard deviation of the relative deviations at all sampling points being only 02 %. As the
measurement in Ref. [201] is performed in a fiducial region and no unfolded results are given,
fiducial acceptances are calculated for the simulated cross sections. To determine them, parton
showering is applied to the MC samples using PYTHIA8 [217]. A particle-level event selection is
performed at each sampling point using the MadAnalysis framework [218–221] to recover the
same fiducial region as in the corresponding ATLAS measurement. The clustering of particle
jets is conducted using the anti- algorithm [222] with a radius parameter of  = 04 using
FastJet [223]. The fiducial acceptances obtained for the SM-like sampling point agree well
with those of Ref. [201], having the same value in the case of the dilepton channel and only a
deviation of 3 % for the single-lepton channel. It has been checked explicitly that performing
only a parton-level simulation and applying the fiducial cuts at this level is not a suitable
approximation, as it leads to deviations of the LO SM predictions by about 50 % for the
single-lepton channel and by about 25 % for the dilepton channel.

The values of the fiducial acceptances, , obtained at the sampling points are parametrized
according to

 =
SMSM +

 ̃
interf
 interf

 +
 ̃̃BSM

 BSM


SM +
 ̃interf.

 +
 ̃̃BSM



 (7.5)

Here, the denominator is the parametrization of the total cross section, determined before
and shown in Fig. 7.5. The unknown parameters  and  of the fiducial acceptances are
determined using a least-squares fit to Eq. (7.5). The obtained parametrization of the fiducial
acceptances and the corresponding sampling points for the single-lepton channel are shown in
Fig. 7.6. The plots of the dilepton channel can be found in Fig. D.1 of App. D.

The desired dependence of the fiducial cross sections on the Wilson coefficients ̃, ̃,
and ̃ is finally obtained by multiplying the interpolation of the total cross section with
the interpolation of the fiducial acceptances. NLO SM calculations of the fiducial cross sec-
tions are taken into account by applying a -factor, shifting the parametrization so that the
SM contributions correspond to the according values of the NLO predictions. The resulting
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Figure 7.6: Sampling points and result of the interpolation for the fiducial acceptance of the
single-lepton channel (1). Shown are slices of the phase space where only one of the Wilson
coefficients is varied at a time, while the others are fixed to zero.

parametrizations of the fiducial cross sections as a function of the coefficients ̃, ̃, and
̃ are shown in Fig. 7.7 for the single-lepton (left) and dilepton (right) cases. Again, only
one of the Wilson coefficients is varied, and the others are fixed to zero. Also indicated are
the measurements of Ref. [201] as well as the associated total uncertainty, which includes ex-
perimental and theory uncertainties. The parametrizations of the single-lepton and dilepton
channels yield very similar sensitivities to the three Wilson coefficients considered.
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Figure 7.7: Parametrization of the fiducial ̄ cross sections for the single-lepton channel
(left) and the dilepton channel (right) when only one of the Wilson coefficients is varied at
a time, while the others are set to zero. The corresponding ATLAS measurement and the
combined experimental and theory uncertainties are indicated by the blue line and band.

7.4 Constraining the SMEFT Wilson coefficients

The dependences of the ̄ cross section and of the ̄   branching ratio on the SMEFT
Wilson coefficients shown in Fig. 7.7 and Fig. 7.4, respectively, are implemented in EFTfitter.jl,
and the measurements of Tab. 7.1 are inserted together with the corresponding experimental
and theory uncertainties. Since no information about correlations between the measurements is
available, they are initially assumed to be uncorrelated. The influence of potential correlations
on the results is investigated in a subsequent step. A uniform prior distribution is assumed for
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7.4 Constraining the SMEFT Wilson coefficients

all three Wilson coefficients within the range 1  ̃  1, since larger values of the Wilson
coefficients would lead to a breakdown of the EFT expansion. As the parameter space is
low-dimensional, the Sobol sampler of BAT.jl is applied to explore the posterior distribution.

When performing a SMEFT fit of all three coefficients using only the measurement of the
̄   branching fraction, only constraints on ̃ can be derived, while ̃ and ̃

remain unconstrained. The marginalized posterior distribution of ̃ is visualized in the
left plot of Fig. 7.8. The smallest intervals containing 90 % of the posterior probability are
highlighted.
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Figure 7.8: Marginalized posterior distribution of ̃ obtained when using only the
BR(̄  ) measurement (left) and when using only the ̄ cross section measurement
(right). The colored areas highlight the 90 % HDRs, and the dashed lines indicate the SM
values.

For ̃, two regions of the parameter space are in agreement with the BR(̄  ) mea-
surement. One region is around the SM value, and the other one is at negative values around
̃  05. This result is expected when considering the quadratic shape of the sensitivity
of BR(̄  ) to ̃ in Fig. 7.4. Without further input, however, neither of the two
allowed regions can be excluded. Indeed, this ambiguity is well-known in  physics and can
be resolved using measurements of semileptonic  + decays, which allows excluding the
solution around ̃  05 [224, 225]. Such observables will be included in the studies of
Chap. 8. Here, it is investigated whether a combination with top-quark observables can also
resolve this ambiguity.

When using only the measurements of the ̄ production cross section, constraints on all three
coefficients can be derived. The corresponding marginalized posterior distribution of ̃ is
shown in the right plot of Fig. 7.8. The distributions of ̃ and ̃ have similar shapes and
are shown in Fig. D.2 of App. D. The constraints obtained from the ̄ cross sections are of a
similar magnitude for all three Wilson coefficients with the widths of their 90 % HDRs being
of the order (1).

When finally combining the top-quark and  physics measurements in a joint fit, the con-
straints on the Wilson coefficients improve significantly, in particular for ̃. This can be
observed in Fig. 7.9, where the one- and two-dimensional 90 % HDRs are shown for all three
Wilson coefficients. The HDRs are given for the fit using only the BR(̄  ) measure-
ments (gray), for the fit using only the ̄ cross section measurements (light blue), and for the
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Figure 7.9: One- and two-dimensional marginalized 90 % HDRs obtained in fits to only
BR(̄  ) (gray), to only (̄) (light blue), and to their combination (dark blue). The
SM value is indicated. The numbers in the two-dimensional plots indicate the relative sizes of
the corresponding areas in the two-dimensional parameter space spanned by 1  ̃  1.

combined fit to all measurements (dark blue). In both upper plots as well as in the lower right
plot of Fig. 7.9, it can be observed that including the ̄ cross sections allows to resolve the
ambiguity in the constraints on ̃ obtained in the -only fit. While in the one-dimensional
HDRs of the upper left plot no large improvement of the constraints on ̃ and ̃ is
visible in the combination compared to the top-only fit, when considering the two-dimensional
marginal distributions, it can be observed how the allowed parameter space is tightened in
the combined fit. In particular in the two plots on the right-hand side of Fig. 7.9, showing
the two-dimensional marginal distributions of ̃ vs. ̃ and ̃ vs. ̃ , it is observed
that the sensitivity of the top-quark and  observables to these Wilson coefficients are rather
orthogonal, which leads to the significantly improved constraints in their combination. To
quantify this improvement of the constraints, the sizes of the two-dimensional HDRs depicted
in Fig. 7.9 are compared. In both plots on the right-hand side, the constraints obtained in
the -only fit cover about 12 % of the allowed two-dimensional parameter spaces spanned by
̃ ̃  [1 1] and ̃ ̃  [1 1], respectively. The constraints from the fit using
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7.4 Constraining the SMEFT Wilson coefficients

only the ̄ cross sections are of a similar size for both projections and cover about 11 % of the
allowed space. Due to the complementarity of the constraints from top-quark and  physics,
the allowed region in the combined fit is reduced by more than an order of magnitude, with the
corresponding area of the combination taking only about 1 % of the allowed parameter space.
The two-dimensional marginal distribution of ̃ vs. ̃ in the lower-left plot of Fig. 7.9
does not depend on ̃ and is therefore not directly constrained by the BR(̄  ) mea-
surements. However, also in this projection, an improvement of the 90 % HDR is observed in
the combined fit, with the allowed area being reduced by a factor of about 1.9 when compared
to the top-only fit. This is the result of a reduction of the allowed three-dimensional parameter
space, which also translates into the two-dimensional marginal distributions.

As only three Wilson coefficients are considered in this fit, the full three-dimensional posterior
distributions can be visualized. In Fig. 7.10, two different views of the three-dimensional
posterior distributions obtained in the fits to the individual data sets and in the combined fit
are shown. In this representation, it is clearly visible that the fit using only BR(̄  )
allows for two separated plane-shaped 90 % HDRs and constrains only ̃. The measurements
of the ̄ cross section constrain all three Wilson coefficients to a certain degree, and the
corresponding posterior distribution has the shape of an ellipsoid shell. It is visible that the
ring-shaped posterior distribution of the combined fit is the result of one of the planes of the
-only constraints intersecting the ellipsoid of the top-only fit. When considering the three-
dimensional 90 % HDVs, determined as described in Sec. 5.4, the reduction of the allowed
parameter space becomes even more apparent than when considering only the two-dimensional
marginal distributions. The posterior distribution of the -only fit has a 90 % HDV of about
0.333, while that of the top-only fit has a 90 % HDV of 0.138. In the combined fit, the 90 %
HDV is more than an order of magnitude smaller and is only 0.009.

Figure 7.10: Two views of the three-dimensional posterior distributions obtained in fits to
only BR(̄  ) (gray), to only (̄) (light blue), and to their combination (dark blue).
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7 Enhancing SMEFT fits by combining top-quark and  physics observables

In the fits discussed above, the measurements were assumed to be completely uncorrelated,
regarding both the experimental and the theory uncertainties. While this assumption is well-
justified for the correlations between the  physics and top-quark measurements, correlations
between the two considered channels of the ̄ cross section measurements might be present
and should be considered, as discussed in Chap. 6. The actual values of the respective corre-
lation coefficients, however, are not known. Therefore, the effects of non-zero correlations for
the experimental and theory uncertainties between the single-lepton and dilepton channels are
investigated by varying the values of the correlation coefficients. For the systematic uncertain-
ties, the correlation coefficient is varied between -0.9 and 0.9. For the theory uncertainties, only
positive correlations are considered, varying the corresponding correlation coefficient between
0 and 0.9. When performing the combined fit with varying correlation coefficients, only minor
changes in the sizes of the HDRs of ̃ vs. ̃ and ̃ vs. ̃ by about 4 % are observed.
No changes in the overall shape or position of the posterior distributions are visible. As the
marginal distribution of ̃ vs. ̃ is mainly constrained by the ̄ cross section measure-
ment, slightly larger changes can be observed when varying the correlation coefficients. Again,
the general shape and position of the constraints are not affected, and only the width of the
ring changes, with the 90 % HDA increasing by up to 30 % compared to the uncorrelated sce-
nario. However, these differences do not impact the essential findings discussed above. Since
the main objective of this study is to demonstrate the feasibility of combining top-quark and
 physics data, the resulting benefits shown above are not affected by potential correlations
between the two channels of the ̄ cross section measurement.

7.5 Summary

It was demonstrated that observables from the  physics sector can be employed to constrain
the Wilson coefficients of dimension-six SMEFT operators affecting top-quark couplings. The
steps necessary for translating WET coefficients into SMEFT coefficients were outlined and
allow determining BSM contributions to  observables as a function of SMEFT Wilson coeffi-
cients at the top-quark scale. In this proof-of-concept study with only two observables, it was
revealed that a combination of top-quark and  measurements can improve the constraints
on top-quark Wilson coefficients significantly. Due to the observed complementarity of con-
straints derived from the individual observables, including  physics processes from a lower
energy scale into global fits of SMEFT Wilson coefficients of the top-quark sector seems to
be a promising approach for enhancing SMEFT fits. In the following chapter, the observed
synergies between top-quark and flavor physics observables are further explored, and their
potential in future scenarios is investigated.
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8 Synergies of top-quark and  physics in
current and future SMEFT fits

In the previous chapter, it was demonstrated that the combination of observables from top-
quark and  physics can significantly improve the constraints on SMEFT Wilson coefficients.
In this chapter, this approach is extended by including more observables and coefficients in
a combined fit. In addition, the impact of potential future data is examined by including
projections for measurements expected in the near and far future. Particular focus is placed
on the challenges of sampling the resulting multimodal posterior distributions. This chapter is
organized as follows: In Sec. 8.1, the considered observables are introduced, and an outline of
the following studies is given. In Sec. 8.2, the SMEFT coefficients to be constrained are stated,
and the sensitivities of the different observables are discussed. Fits of the Wilson coefficients
using current measurements are performed in Sec. 8.3.3, and the synergies between top-quark
and  physics observables are highlighted. Potential improvements of the constraints when
considering future measurements from HL-LHC, Belle II, and CLIC are explored in Sec. 8.4.
In Sec. 8.5, it is demonstrated that only the nested sampling algorithms of BAT.jl are suited
for sampling the multimodal posterior distributions obtained in the combined fits. A brief
summary of the results is given in Sec. 8.6.

8.1 Extending combinations of top-quark and  physics
observables

The steps necessary for combining observables from top-quark and flavor physics in a joint
fit of SMEFT Wilson coefficients were outlined in Chap. 7. In the following, this approach
is extended, and further observables and measurements from top-quark and  physics are
considered, allowing to constrain a significantly larger set of Wilson coefficients.

From the top-quark sector, the measurements of the fiducial ̄ production cross section are
again included. In addition, measurements of ̄ production and ̄ production cross sections
are considered. Also, top-quark decay observables, namely the  boson helicity fractions and
the top-quark decay width, are included. From  physics, the ̄   branching ratio as
an observable of    transitions is again taken into account. In addition, observables of
 + transitions, such as (differential) branching ratios and multiple angular observables,
are considered. Furthermore, cross sections, asymmetries, and ratios of   ̄ decays are
included in the fit for improving the sensitivity to certain coefficients, as will be discussed in
the next section. In further steps of the study, projections for measurements expected from
future experiments are considered. In a first step, a near-future scenario is investigated in which
measurements of the same observables but with improved precision are expected to be obtained
by the HL-LHC experiments and Belle II. Additionally, in this scenario, measurements of
 ̄ transitions are assumed to be achieved by the Belle II experiment. In a next step, a
far-future scenario is considered, in which a CLIC-like lepton collider is expected to provide
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8 Synergies of top-quark and  physics in current and future SMEFT fits

measurements of +  ̄ processes. The specific sensitivities of the considered processes to
the Wilson coefficients of dimension-six SMEFT operators are discussed in the next section.

8.2 Sensitivities to the Wilson coefficients

While in the simple example of Chap. 7 only three SMEFT Wilson coefficients were consid-
ered, the additionally included observables allow constraining more parameters. Therefore,
the Wilson coefficients of up to eleven dimension-six operators are considered here. These are
those of the bosonic operators

 = (̄) ̃   =

̄ 


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
̃ 

  (1)
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
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
 
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


(8.1)

and those of the semileptonic four-fermion operators


(1)
 =


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
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(8.2)

Since the dominant BSM contributions at order (Λ2) are proportional to the real parts of
the operators, again, only real-valued Wilson coefficients are taken into account. Details on
the definitions of these operators and considered contributions from down-type quarks to the
corresponding coefficients are given in Ref. [5]. As pointed out before, different observables
yield different sensitivities to the Wilson coefficients. Some observables, however, are only
sensitive to certain linear combinations of the dimension-six operators, as was also the case in
the example of Sec. 6.2. Here, the linear combinations

̃
 = ̃(1)

  ̃(3)
 and ̃

 = ̃
(1)
  ̃

(3)
 (8.3)

are constrained by some of the observables.

The dominant sensitivities of the observables from the different physics sectors to the SMEFT
coefficients considered here are indicated in Fig. 8.1. The specific observables included in the
studies, their sensitivities to the Wilson coefficients, and the computation of corresponding
BSM contributions are discussed in detail in the following. A summary of the observables and
their dominant and subdominant sensitivities to the coefficients is given in Tab. 8.1.
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Figure 8.1: Dominant sensitivities of the different types of observables to the SMEFT coef-
ficients considered here. Adapted from Ref. [5].

8.2.1 Sensitivities of top-quark observables

As shown in Chap. 7, the leading BSM contributions to the ̄ production cross section
come from the coefficients ̃, ̃ and ̃ . Here, also the cross section of ̄ production
is included to improve the sensitivity to ̃. The top-quark decay observables, i.e., the top-
quark decay width Γ and the  boson helicity fractions 0 and , allow constraining
the coefficients ̃ and ̃

(3)
 , as already shown in Chap. 6. Furthermore, the cross section

of ̄ production is considered, which depends on ̃, ̃ and ̃ as well, but is also
sensitive to BSM contributions from ̃ and from the linear combination ̃

. By combining
measurements of the top-quark decay width, sensitive to ̃

(3)
 , with measurements of the ̄

cross section, sensitive to ̃
, it is thus possible to probe ̃

(1)
 and ̃

(3)
 individually, according

to Eq. (8.3). Therefore, the top-quark observables considered here allow constraining a total
of six coefficients of two-fermion operators, namely

̃  ̃  ̃  ̃(1)
  ̃(3)

  ̃  (8.4)

The computation of BSM contributions to the top-quark cross sections as a function of these
Wilson coefficients is again performed using MadGraph5_aMC@NLO and the dim6top_LO
UFO model with a subsequent interpolation according to Eq. (4.8). For the fiducial cross
sections of ̄ production, the model derived in Sec. 7.3.2 is employed. Similar to Chap. 6,
the dependence of the  boson helicity fractions on ̃ is computed according to Ref. [183],
with the addition that also quadratic contributions are included. For the top-quark decay
width, the BSM contributions are calculated according to Ref. [18], also including quadratic
contributions.

8.2.2 Sensitivities of   ̄ observables

Observables of   ̄ processes in + collisions are included here to tighten the constraints
on ̃

(1)
 and ̃

(3)
 . Specifically, the forward-backward asymmetry 0

FB, the ratio of partial
widths for   ̄ decays  = Γ̄Γhad, and the hadronic cross section had are considered
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here. These observables are sensitive to the linear combination ̃+
. As this is the linear

combination with the opposite sign as in ̃
, which is constrained by the ̄ cross section,

improved constraints on ̃
(1)
 and ̃

(3)
 are expected when combining the   ̄ observables

with the top-quark observables.

The BSM contributions to   ̄ processes as a function of ̃+
 are also computed using

MadGraph5_aMC@NLO and the dim6top_LO UFO model. For the hadronic cross section,
a quadratic interpolation to Eq. (4.8) is performed. For the forward-backward asymmetry

FB = FB


 with FB =
 1

1
sign(cos ) d

d cos 
d cos   (8.5)

where  is the angle between the momenta of the bottom quark and the positron in the
center-of-mass frame, the BSM contributions are interpolated according to Eq. (4.8) for both
the numerator and denominator. Similarly, for , the BSM contributions are parametrized
using quadratic interpolations of the partial widths according to

Γ = ΓSM + ̃+
Γint + (̃+

)2ΓBSM (8.6)

for both the numerator and denominator.

8.2.3 Sensitivities of  physics observables

In addition to the contributions from ̃, ̃, and ̃ , studied in the previous chapter, for
  transitions now also contributions from ̃

(3)
 are considered. Next to the branching ratio

of ̄  , the branching ratios of 0   and +  + are included as observables
of such transitions. Several observables of  + transitions are taken into account, such
as (differential) branching ratios, angular observables , and forward-backward asymmetries
FB. These quantities are included for various processes. In particular, these are different types
of    decays, but also   +,   +, and Λ  Λ+. A detailed list
of the specific observables included is given in Tab. 8.3. The  + processes are sensitive
to ̃, ̃, ̃ , and ̃

(3)
 or ̃+

. In addition, they can also receive contributions from
four-fermion operators, namely from ̃ and from the linear combination ̃+

 . Furthermore,
the mass difference ∆ of   ̄ mixing is included, which is sensitive to ̃ , ̃, and
̃

(3)
 . Therefore, the  physics observables considered here provide sensitivity to the eight

coefficients

̃  ̃  ̃  ̃(1)
  ̃(3)

  ̃ ̃  ̃+
  (8.7)

The BSM contributions to    and   + transitions are computed in LO QCD
using the flavio and wilson packages. The dependence on the SMEFT coefficients at the
top-quark scale is again determined by performing the matching and running procedure as
described in Sec. 7.1.2. For the mass difference of   ̄ mixing, the BSM contributions in
terms of WET are determined according to Ref. [226], as detailed in Ref. [5].
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Table 8.1: Overview of the considered observables and their sensitivities to the SMEFT coef-
ficients. Coefficients without brackets contribute at tree level. Coefficients in square brackets,
[̃], contribute only at one-loop level to  physics observables. Coefficients written in braces,
̃, are induced by SMEFT and WET running only. Coefficients marked with asterisks, ̃

()


and ̃
()
 , receive contributions at one-loop level that change their tree-level definitions, as

given in App. D.1. Observables and corresponding Wilson coefficients written in gray are con-
sidered only in the future projections and are introduced in Sec. 8.4.1 and Sec. 8.4.2. Adapted
from Ref. [5].

Process Observable Two-fermion Four-fermion
 ̄ inc ̃ -

 ̄ fid ̃, ̃ , ̃ -
 ̄ inc ̃, ̃ , ̃, ̃

, ̃ -
  0 ̃ -

Top decay Γ ̃
(3)
 , ̃ -

  ̄ 
 , , had ̃+

 -

  BR

̃


,

̃


,


̃


,

̃

(3)



-

 + BR, FB, 
()
 ,

, , dBRd2


̃


,

̃


,


̃


, ̃

+()
 ,


̃

(3)



̃

+()
 , ̃

()


Mixing ∆


̃


,


̃


,

̃

(3)



-

 ̄ BR ̃
+()
 ̃

()


+  ̄ , FB ̃, ̃ ,


̃


, ̃

, ̃ ̃, ̃, ̃, ̃


8.3 Constraining SMEFT coefficients with current data

The observables introduced above and the parametrizations of their dependences on the
SMEFT coefficients are inserted into EFTfitter.jl. Analogously to Chap. 7, constraints on
the coefficients are derived using both the individual and the combined data sets to demon-
strate the gain in sensitivity when combining observables from different physics sectors. The
measurements included in the SMEFT fits are introduced below. The specific observables and
corresponding measurements are listed in Tabs. 8.2, 8.3, and 8.4. Experimental uncertainties,
consisting of statistical and systematic contributions, as well as theory uncertainties on the
SM predictions, are taken into account in all fits. As demonstrated in Chap. 6, unknown corre-
lations between the uncertainties of measurements can have a significant impact on the results
of their combination. All available information on correlations, e.g., for the measurements of
 boson helicity fractions, is included. To minimize the effects of unknown correlation coef-
ficients, in the following only the most precise measurement of each observable is considered,
similar to Refs. [17, 227]. Wherever available, averaged values from the HFLAV group are
used for the  physics observables. In the case of distributions, only the bin with the smallest
uncertainties is considered, as particularly bin-to-bin correlations can have significant impacts
on the results. Values of correlations within the same 2 bins are available and taken into
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8 Synergies of top-quark and  physics in current and future SMEFT fits

account. Given these measures, the simplifying assumption of the remaining measurements
being uncorrelated is well justified, especially considering that the primary purpose of the fol-
lowing studies is to point out the synergies of observables from different energy scales rather
than to provide a fit including all data available.

8.3.1 Constraints from top-quark measurements

A fit considering only the top-quark observables introduced in Sec. 8.2.1 is performed to
constrain the six coefficients of Eq. (8.4). For the ̄ cross sections, again the fiducial ATLAS
measurements of Ref. [201] are included, using both the single-lepton and dilepton channels.
For the ̄ cross section, a measurement by the CMS experiment at 13 TeV [11] is used, and
for the ̄ cross section, a measurement by ATLAS at 13 TeV [228] is employed. Measured
values of the  boson helicity fractions and the top-quark decay width are again taken from
the respective ATLAS measurements at 8 TeV in Ref. [163] and Ref. [162]. The considered top-
quark observables and the corresponding references for the measurements and SM predictions
are summarized in Tab. 8.2.

Table 8.2: Considered observables of top-quark processes and references of the included
measurements and SM predictions.
Process Observable


 Int. luminosity Experiment Ref. SM Ref.

̄ fid(̄ 1)  fid(̄ 2) 13 TeV 36.1 fb1 ATLAS [201] [201, 206]
̄ inc(̄) 13 TeV 77.5 fb1 CMS [11] [229–231]
̄ inc(̄) 13 TeV 36.1 fb1 ATLAS [228] [232]

0   8 TeV 20.2 fb1 ATLAS [163] [177]
Γ 8 TeV 20.2 fb1 ATLAS [162] [184]

For the Bayesian fit with EFTfitter.jl, a uniform prior distribution in the range 1  ̃  1
is assumed for all six Wilson coefficients. Again, values ̃  1 are not reasonable, as for
such, the EFT expansion breaks down. The Metropolis–Hastings algorithm is employed for
sampling the six-dimensional posterior distribution. The one-dimensional marginalized inter-
vals containing 90 % of the posterior probability obtained in this fit to only the top-quark
data of Tab. 8.2 are shown in the left plot of Fig. 8.2. In the right plot of Fig. 8.2, the cor-
responding total widths of the intervals, i.e., the widths of the 90 % HDRs, are given. The
strongest constraints are found for ̃ , with the width of its 90 % HDR being about 6102.
As already observed in Chap. 6, the tight constraints on this coefficient originate from the
measurements of  boson helicity fractions. Also ̃ and ̃ are well-constrained with the
total widths of their 90 % HDRs being about 3101 and 6101, due to the ̄ and ̄ cross
section measurements, respectively. The coefficient ̃

(3)
 is constrained on the order (1) by

the top-quark decay width measurement. The weakest constraints are obtained for ̃
(1)
 and

̃. This is because only the ̄ cross section gives sensitivity to these two coefficients and
the combined experimental and theory uncertainties of the corresponding measurement are
rather large with a size of about 14 %.
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Figure 8.2: One-dimensional marginalized smallest intervals containing 90 % of the posterior
probability (left) and their total widths (right) obtained in a fit of the Wilson coefficients in
Eq. (8.4) to the top-quark data of Tab. 8.2.

8.3.2 Constraints from  and   ̄ measurements

For the  physics observables, measurements from Belle, BaBar, LHCb, as well as averaged
values from the HFLAV group, are considered here. The specific observables and corresponding
references for the measurements and SM predictions are listed in Tab. 8.3.

Table 8.3: Considered observables of  physics processes and references for the corresponding
measurements and SM predictions. For observables measured in 2 bins, where 2 denotes the
square of the invariant dilepton mass, only one bin is included to minimize the effects of
unknown bin-to-bin correlations.

Process Observable 2 bin [GeV2] Experiment Ref. SM Ref.
̄   BR16 GeV - HFLAV [216] [208]
0   BR - HFLAV [216] [200]

+  + BR - HFLAV [216] [200]
̄  + BR [1 6] BaBar [233] [234]

FB [1 6] Belle [235] [234]
  + BR - LHCb [236] [200]

0  +   1  2  3 
 

4   
5   

6   
8

[11 6] LHCb [237] [200]

0  0+ dBRd2 [1 6] LHCb [238] [200]
+  ++ dBRd2 [1 6] LHCb [238] [200]
+  ++ dBRd2 [1 6] LHCb [238] [200]

  +   3  4  7 [1 6] LHCb [239] [200]
Λ  Λ+ dBRd2 [15 20] LHCb [240] [200]

  ̄ mixing ∆ - HFLAV [216] [226]
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A fit of the eight SMEFT coefficients in Eq. (8.7) to the data of Tab. 8.3 is performed,
again using a uniform prior distribution with 1  ̃  1 for all coefficients and the
Metropolis–Hastings algorithm for sampling the posterior. The smallest 90 % intervals of the
one-dimensional marginalized posterior distributions and their corresponding total widths are
shown in Fig. 8.3 in light gray color.
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Figure 8.3: Marginalized smallest intervals containing 90 % of the posterior probability (left)
and their total widths (right) obtained in fits of the SMEFT coefficients in Eq. (8.7) to only
the  physics data of Tab. 8.3 (light gray) and to the combination of  and   ̄ data in
Tab. 8.4 (dark gray).

Only weak constraints on the eight Wilson coefficients are obtained. It is noticeable that in a
fit using only the  physics data, ̃ is the coefficient obtaining the tightest constraints, with
the width of the corresponding 90 % HDR being of the order (101). All other coefficients
remain almost unconstrained in this fit, with the widths of the 90 % HDRs being of the
order (1). The main reason for the weak constraints in this fit to only the  physics data
is that correlations between the coefficients are induced when matching WET and SMEFT.
Considering the matching conditions in App. D.1, it can be noticed that there are more
degrees of freedom in the SMEFT parametrization than in the WET parametrization. When
performing the fit to the  data of Tab. 8.3 not in terms of the SMEFT coefficients, but
in terms of WET coefficients at the scale  , less correlated constraints are obtained. The
results of such a fit to the WET coefficients are shown in Fig. D.3 of App. D. In this WET fit,
it is observed that the obtained 90 % HDR of ∆9, i.e., the BSM part of ̄9, does not include
the SM value. This deviation is a consequence of the  anomalies measured in the angular
distributions of 0  + decays and has been discussed in more detail in Ref. [241]. In
the fit of the SMEFT coefficients shown in Fig. 8.3, however, this deviation is not observed
since the constraints in SMEFT are diluted by the matching of WET and SMEFT.

As mentioned above, for improving the constraints on ̃
(1)
 and ̃

(3)
 , also   ̄ processes are

considered. The specific observables included are listed in Tab. 8.4, together with corresponding
references for the measurements and SM predictions.
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Table 8.4: Included observables of   ̄ processes and corresponding references for the
measurements and SM predictions.

Process Observables Experiments Refs.

  ̄ 0
FB, , had LEP/SLC [101, 242]

A fit using the data of Tab. 8.4 can only constrain the linear combination ̃+
. The resulting

posterior distribution of such a one-dimensional fit is shown in the left plot of Fig. 8.4. It is
visible that the   ̄ measurements yield tight constraints on ̃+

, with the width of its
90 % HDR being about 2 103. Due to deviations from the SM in the measurement of the
forward-backward asymmetry, the corresponding 90 % interval does not cover the SM, and a
small deviation of about 2  is obtained for the mode of ̃+

.
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Figure 8.4: Posterior distribution of a one-dimensional fit of ̃+
 to the   ̄ data of

Tab. 8.4 (left) and two-dimensional marginalized 90 % HDRs (right) of ̃
(1)
 vs. ̃

(3)
 obtained

in fits of the eight coefficients in Eq. (8.7) to only the  data (gray), to only the   ̄ data
(orange), and to their combination (dark gray).

When performing a fit of all eight Wilson coefficients in Eq. (8.7) to only the   ̄ data of
Tab. 8.4, the resulting one-dimensional marginal distributions yield no constraints and are flat
for all coefficients. However, since the   ̄ observables are sensitive to the linear combina-
tion ̃+

, a strong correlation in the two-dimensional marginal distribution of ̃
(1)
 vs. ̃

(3)
 is

observed, and only a very narrow band is allowed in this projection of the parameter space.
This is visualized in the right plot of Fig. 8.4, where the 90 % HDR of the corresponding two-
dimensional marginal distribution of ̃

(1)
 vs. ̃

(3)
 is shown in the orange color. Performing

a fit of the eight Wilson coefficients in Eq. (8.7) to the combination of the   ̄ mea-
surements of Tab. 8.4 and the  measurements of Tab. 8.3, the resulting constraints on ̃

(1)


and ̃
(3)
 are improved significantly. In the right plot of Fig. 8.4, the two-dimensional 90 %

HDRs of ̃
(1)
 vs. ̃

(3)
 are shown for fits of all eight coefficients to only the  physics data

(light gray), to only the   ̄ data (orange), and to their combination (dark gray). It is
visible that the individual data sets have orthogonal sensitivities to the coefficients, which
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8 Synergies of top-quark and  physics in current and future SMEFT fits

yields the tight constraints in their combination. The improved constraints on ̃
(1)
 and ̃

(3)


obtained in a combined fit to  and   ̄ data are also observed in the one-dimensional
constraints in Fig. 8.3, shown in the dark gray color. There, the constraints of ̃

(1)
 and ̃

(3)


improve by more than a factor of two, compared to the fit using only the  physics data.
Furthermore, in Fig. 8.3, an improvement by about two orders of magnitude is striking for the
constraints on ̃ and ̃+

 in the combined fit. As the   ̄ data is not directly sensitive to
these two coefficients, this improvement is initially unexpected. However, it can be explained
when taking into account that the constraints shown in Fig. 8.3 are only marginalized views
of the total eight-dimensional parameter space. Unfortunately, visualizing the complete mul-
tidimensional posterior distributions is not possible. However, considering three-dimensional
visualizations of the posterior distributions already allows explaining the tight constraints on
̃ and ̃+

 observed in the combination. In Fig. 8.5, three-dimensional posterior distribu-
tions are shown for the individual and the combined fits of the eight Wilson coefficients. The
marginal views of ̃

(1)
 vs. ̃

(3)
 vs. ̃ (left) and ̃

(1)
 vs. ̃

(3)
 vs. ̃+

 (right) are depicted.
In both cases, it can be observed how the constraints from the  physics data intersect the
plane-shaped constraints from the   ̄ measurements. In the one- and two-dimensional
marginal distributions, these orthogonalities in the three-dimensional parameter space are not
visible because the spatial information is lost due to the marginalization. When considering
these three-dimensional visualizations, however, it becomes apparent how the orthogonality
of the constraints in the multidimensional parameter space leads to the tight constraints on
the coefficients ̃ and ̃+

 in the combination of  and   ̄ data. Thus, even if certain
observables, such as the   ̄ observables in this example, do not provide tight constraints
on the considered coefficients, they can still exclude a large fraction of the allowed parame-
ter space. This also illustrates how combining observables sensitive to specific coefficients can
significantly improve the constraints on other coefficients, as the complementary sensitivities
in the multidimensional parameter space have to be considered.

Figure 8.5: Three-dimensional marginalized posterior distributions for ̃
(1)
 vs. ̃

(3)
 vs. ̃

(left) and for ̃
(1)
 vs. ̃

(3)
 vs. ̃+

 (right) obtained in fits of the eight coefficients of Eq. (8.7)
to only the  data (light gray), to only the   ̄ data (orange), and to their combination
(dark gray).
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8.3.3 Constraints from a combined fit

A combined fit of the eight coefficients in Eq. (8.7) to the top-quark, , and   ̄ measure-
ments is performed. Again, uniform prior distributions in the range 1  ̃  1 are applied
for all coefficients. The ellipsoidal nested sampling algorithm of BAT.jl is used for exploring
the multimodal posterior distribution. In Sec. 8.5, it is discussed in more detail why nested
sampling algorithms are required for exploring these posterior distributions. The resulting
smallest 90 % intervals of the combined fit are given in the left plot of Fig. 8.6 in dark blue
color. Also indicated are the constraints from a fit to only the top-quark data (light blue) and
from the fit to only the  and   ̄ data (dark gray), as already shown in Fig. 8.3. In the
right plot of Fig. 8.6, the corresponding total widths of the 90 % HDRs are given.
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Figure 8.6: Marginalized smallest intervals containing 90 % of the posterior probability (left)
and their total widths (right) obtained in fits of the Wilson coefficients in Eq. (8.7) to only
the top-quark data (light blue), to only the combined  and   ̄ data (gray), and to their
combination (dark blue).

In the combined fit, most of the Wilson coefficients are constrained tightly. Only ̃ remains
essentially unconstrained, as only the ̄ cross section is sensitive to this coefficient, and even
the combination cannot improve the weak constraints on this coefficient, which were already
observed in the fit to only the top-quark data in Fig. 8.2. For the coefficients ̃, ̃, ̃ ,
̃

(1)
 , and ̃

(3)
 , tight constraints are obtained with the width of the corresponding HDRs

being about 5 102. These constraints are up to an order of magnitude smaller than those
obtained in the fits to the individual data sets. For ̃ and for the linear combination ̃+

 , the
constraints in the combined fit are at a level of 6103, which is a consequence of the already
tight constraints obtained in the combination of  and   ̄ data. The considered top-quark
data cannot constrain these coefficients since none of the top-quark observables is sensitive
to them, as discussed in Sec. 8.2. For ̃

(1)
 and ̃

(3)
 , the improvements of the constraints in

the combination are the largest. For both coefficients, the 90 % HDRs consist of two clearly
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Figure 8.7: Two-dimensional marginalized posterior distributions obtained in fits of the Wil-
son coefficients in Eq. (8.7) to only the top-quark data (light blue), to only the combination
of  and   ̄ data (gray) and to the total combination (dark blue). Shown are the 90 %
HDRs of the posteriors for ̃ vs. ̃

(3)
 , ̃ vs. ̃, and ̃ vs. ̃. The SM value is

indicated by the star.

separated regions, with one of them being in agreement with the SM. Also for ̃ and ̃,
such separated HDRs are obtained. Again, this cannot be explained by considering only the
one-dimensional 90 % HDRs shown in Fig. 8.3. However, the origin of the divided HDRs in the
combination can be understood when considering the corresponding two-dimensional marginal
distributions. In Fig. 8.7, the two-dimensional marginal distributions are given for ̃ vs.
̃

(3)
 , ̃ vs. ̃, and ̃ vs. ̃. The 90 % HDRs obtained in the fits to only the top-quark

data (light blue), to the combination of  and   ̄ data (gray), and to the combination of
all measurements (dark blue) are shown. In all three plots, it is observed that the constraints
from the top-quark and from the combined  and   ̄ data are orthogonal in the considered
projections. As discussed before, this leads to a significant reduction of the allowed parameter
space and to the observed improvement in the combination of all observables. In particular, in
the left plot, it can be noticed that the constraints from the  and   ̄ measurements are
multimodal in ̃

(3)
 , which is not visible in the one-dimensional 90 % HDRs of Fig. 8.6, as this

spatial information is again lost due to marginalization. In the combination, the constraints
from the top-quark data intersect with the flat constraints from the combined  and   ̄

data, and the orthogonality of the constraints leads to the two solutions in ̃
(3)
 being also

visible in the one-dimensional HDRs. In the other two plots, a similar effect is observed, but
the two solutions in the  and   ̄ constraints are much closer together. While in the
middle plot of ̃ vs. ̃ a separation of the constraints can still be seen, in particular for
the right plot of ̃ vs. ̃, the bimodality can only be resolved in the combined fit.

As such ambiguous solutions with separated HDRs cannot be resolved by current data alone, in
the following, projections for future measurements are investigated for their potential to further
improve the constraints on the SMEFT coefficients and to exclude these second solutions.

8.4 Prospects for SMEFT fits with future measurements

In the coming years, much more data is going to be analyzed by the LHC experiments [243],
and new precision measurements of  observables are expected to be performed by the Belle II
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experiment [244]. As already indicated in Chap. 6, improved precision of the measurements
will lead to tighter constraints on the SMEFT coefficients and could allow detecting deviations
from the SM. Here, two future scenarios are considered to investigate the possible effects of
prospective measurements on the constraints of SMEFT Wilson coefficients, in particular with
respect to the synergies of top-quark and  physics observables. In a near-future scenario, ex-
pected results from the ATLAS and CMS experiments at the HL-LHC and from the Belle II
experiment are considered. While the HL-LHC experiments are foreseen to start taking data
by the end of this decade, the Belle II experiment has already started data taking in 2019.
Both facilities will provide measurements of the observables considered above with improved
precision. Moreover, measurements of processes that have not been observed before are antic-
ipated. Specifically, measurements of  ̄ transitions are expected to be possible at Belle
II and are explicitly taken into account in the following studies. Currently, only upper limits
on such processes have been derived [245]. In a second step, a far-future projection is studied.
In this scenario, the opportunities for improving SMEFT fits with measurements performed
at a future lepton collider are investigated. So far, there has not been a decision on a specific
lepton collider, and different concepts, such as the Future Circular Collider (FCC)-ee [246], the
International Linear Collider (ILC) [247], and the Compact Linear Collider (CLIC) [248], are
still under discussion. In the following studies, the CLIC proposal is adopted for the far-future
scenario, and possible improvements of SMEFT fits by including measurements of top-quark
observables expected at such a lepton collider are investigated.

The specific assumptions made for the future projections of both scenarios are discussed in the
following paragraphs, and their effects on the constraints of SMEFT coefficients are explored.

8.4.1 Near-future scenario

In the near-future scenario, precise measurements of top-quark and  physics observables
are considered to be performed by the ATLAS and CMS experiments at the HL-LHC and
by the Belle II experiment at the SuperKEKB collider. The approach employed here for
estimating future projections is similar to that used in Chap. 6. The nominal values of the
future measurements are assumed to be those of the current measurements given in Sec. 8.3.
For observables that have not yet been measured, the corresponding SM predictions are taken
as the nominal values. The simplifying assumption of SM theory uncertainties decreasing
by a factor of two compared to the current SM predictions is made to account for expected
improvements in MC simulations and higher-order theory calculations. Estimates of the values
of experimental uncertainties, i.e., statistical and systematic uncertainties, are based on studies
of the expected precision by the ATLAS, CMS, and Belle II collaborations in Refs. [243, 244,
249–251]. The statistical uncertainties of the measurements are estimated by scaling current
uncertainties according to the expected integrated luminosity. For the HL-LHC experiments,
an integrated luminosity of 3000 fb1 is assumed for a center-of-mass energy of 14 TeV [243].
For Belle II, an integrated luminosity of 50 ab1 is anticipated [244]. The specific processes
and observables considered in the near-future scenario, as well as the corresponding references
used for estimating the expected precision, are given in Tab. 8.5.
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Table 8.5: Observables expected to be measured at the HL-LHC experiments and Belle II in
the near-future scenario. The references considered for estimating the expected precision and
the SM predictions are given.

Process Observable 2 bin [GeV2] Experiment Ref. SM Ref.
̄ fid(̄ 1)  fid(̄ 2) - ATLAS [243, 249] [206, 252]
̄ inc(̄) - CMS [243, 250] [229–231]
̄ inc(̄) - CMS [243, 251] [232]

0   - - - [177]
Γ - - - [184]

̄   BR16 GeV - Belle II [244] [208]
0   BR - Belle II [244] [200]

+  + BR - Belle II [244] [200]
̄  + BR, FB [35 6] Belle II [244] [234]

0  +  , 1  2  3 
 

4   
5   

6   
8

[11 25],
[25 4], [4 6] Belle II [244] [200]

0  ()̄ BR - Belle II [244] [200]

For the fiducial ̄ cross sections, estimates of the anticipated uncertainties are given in
Refs. [243, 249]. For both the single-lepton and the dilepton channel, the largest estimates of
the experimental uncertainties are assumed here. For the ̄ cross section, the projections of
Refs. [243, 250] are considered, and the statistical uncertainties are scaled to the corresponding
luminosity. For the total ̄ cross section, the assumed precision is based on the studies of
differential cross sections in Refs. [243, 251]. For both the ̄ and the ̄ cross sections, the
systematic uncertainties are assumed to decrease by a factor of two compared to the current
values. As expectations for the top-quark decay observables are not discussed in Ref. [243],
the uncertainties are estimated similarly to those of the ̄ cross section. For future projections
of    transition measurements by the Belle II experiment, the estimates in Ref. [244]
are considered. For BR(̄  )16 GeV, it is assumed that the given uncertainties for
  19 GeV can be applied. In the case of the [1.1, 2.5] 2-bin for 0  +, the Belle II
projection of the [1.0, 2.5] bin is considered for the expected experimental uncertainties. In
particular, it is assumed that Belle II yields first observations of   ̄ transitions by
measuring the branching ratio of 0  ()̄. As indicated in Tab. 8.1, this observable is
sensitive to the linear combinations ̃+

 and ̃
 . The current measurements of Sec. 8.3 are

sensitive to the linear combination ̃+
 , i.e., the linear combination with the opposite sign as

̃
 . Therefore, by including   ̄ transitions in the SMEFT fits, it is expected that ̃

(1)


and ̃
(3)
 can be constrained individually. The dependences of the top-quark and  physics

observables on the considered Wilson coefficients are computed as described in Sec. 8.2. For
the new observable BR(0  ()̄), Ref. [253] is followed for the computation of BSM
contributions, as detailed in Ref. [5].

A combined fit to the current measurements of Sec. 8.3 and to the near-future projections
of Tab. 8.5 is performed with EFTfitter.jl. Again, uniform prior distributions with maximum
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ranges of ̃  1 are chosen, and the ellipsoidal nested sampling algorithm is used for explor-
ing the posterior distribution. Nine SMEFT coefficients are constrained, i.e., those of Eq. (8.7)
but including ̃

(1)
 and ̃

(3)
 individually instead of using their linear combination ̃+

 . The
constraints on the coefficients obtained in this fit are shown in Fig. 8.8 in red color. Again, the
marginalized smallest intervals containing 90 % posterior probability (left) are shown together
with the corresponding total widths of these intervals (right). Also shown (in blue color) are
the constraints obtained in a fit of the nine coefficients to only the current measurements.
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Figure 8.8: Marginalized smallest intervals containing 90 % of the posterior probability (left)
and their total widths (right) obtained in fits of nine Wilson coefficients when using only
the current measurements (blue) and when using the combination of current and near-future
measurements (red).

It is visible that when using the combination of current and near-future measurements, almost
all Wilson coefficients are constrained tightly. As in the previous fits, only for ̃ weak con-
straints of the order (1) are obtained because still only the ̄ cross section gives sensitivity
to this coefficient. It has to be noted that in the left plot of Fig. 8.8, only one of the two
90 % HDRs of ̃ is visible for the combined current and near-future fit, as the other part is
in the range 1  ̃  06 and is excluded for better visibility of the constraints on the
other coefficients. The one-dimensional marginalized posterior distribution of this coefficient is
shown in Fig. 8.10, where the second branch of the 90 % HDR is also visible. In the combined
fit, the total widths of the constraints on ̃, ̃, ̃ , ̃

(1)
 , and ̃

(3)
 are all in the range

of (24)102. Compared to the fit using only the current measurements, the constraints on
̃, ̃, ̃ are tightened by about a factor of two, while the constraints on ̃

(1)
 and ̃

(3)


remain almost unchanged. As discussed in Sec. 8.2, using only current data, the coefficients
̃

(1)
 and ̃

(3)
 cannot be constrained independently, but only their linear combination ̃+

 , to
which measurements of   + observables provide sensitivity (as shown in Fig. 8.6). As
visible in Fig. 8.8, when combined with the anticipated Belle II measurement of the  ̄

observable, sensitive to the opposite linear combination ̃
 , the coefficients ̃

(1)
 and ̃

(3)
 can
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be probed independently and tight constraints in the range of (7 11) 103 for the widths
of the 90 % HDRs are obtained. The origin of these tight constraints on the four-fermion op-
erators in the combination of current and near-future measurements is visualized in Fig. 8.9.
In the left plot, the 90 % HDRs obtained in fits to only the current data (blue), to only the
near-future data (orange), and to their combination (red) are shown.
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Figure 8.9: Marginalized two-dimensional 90 % HDRs of ̃
(1)
 vs. ̃

(3)
 (left) and marginalized

three-dimensional posterior distribution of ̃
(1)
 vs. ̃

(3)
 vs. ̃ (right) obtained in fits of

nine Wilson coefficients to only the current measurements (blue), to only the near-future
measurements (orange), and to their combination (red).

It is visible that due to the inclusion of the  ̄ observable, the current and the near-future
measurements have complementary sensitivities to the Wilson coefficients ̃

(1)
 and ̃

(3)
 . Their

combination, therefore, yields the observed tight constraints. In the right plot of Fig. 8.9 this
is also shown in terms of the three-dimensional marginal distribution of ̃

(1)
 vs. ̃

(3)
 vs. ̃.

There, it is visible that the improved sensitivity to ̃
(1)
 and ̃

(3)
 also significantly narrows the

allowed region in the multidimensional parameter space and, thus, improves the constraints
on ̃. This is a similar effect as the one observed in Sec. 8.3.2 in the combination of  and
  ̄ measurements, but not quite as strong.

As can be seen in Fig. 8.8, for most coefficients, the 90 % HDRs are split into two parts. For
̃, ̃

(1)
 , ̃

(3)
 , and ̃, this was already observed in the fit to current data in Fig. 8.6.

For the coefficients ̃, ̃, ̃
(1)
 , and ̃

(3)
 , the one-dimensional marginalized distributions

obtained in the combined current and near-future fit are shown in Fig. 8.10 and reveal the
multimodal shape of the posterior distribution. For all coefficients, the parts of the 90 % HDRs
that are closer to the SM value cover the largest proportion of the posterior probability, and
thus all constraints are in good agreement with the SM.

In the next paragraph, it is investigated if including far-future measurements from a CLIC-like
lepton collider can resolve these ambiguous solutions.
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Figure 8.10: One-dimensional marginalized posterior distributions of ̃, ̃, ̃
(1)
 , and

̃
(3)
 obtained in the combined fit to current and near-future measurements. The smallest

intervals containing 90 % of the posterior probability are highlighted.

8.4.2 Far-future scenario

In the far-future scenario, measurements of top-quark observables performed at the CLIC
+–collider are anticipated. Specifically, the total cross section of ̄ production (̄) and
the forward-backward asymmetry FB are considered here. As indicated in Tab. 8.1, such
observables of +  ̄ processes are sensitive to the coefficients ̃, ̃ , ̃, ̃,
̃, and to the linear combinations ̃

 and ̃
 . In addition, they also provide sensitivity

to the previously unconstrained four-fermion coefficients ̃ and ̃.1 In its current design
proposal, different operation modes of CLIC are foreseen. On the one hand, three different
center-of-mass energies are possible: 380 GeV, 14 TeV, and 30 TeV. On the other hand, two
different beam polarizations are proposed, namely longitudinal polarizations of 80 % for the
electron beam and no polarization of the positron beam [248]. The observables and operation
modes considered in the far-future scenario are given in Tab. 8.6.

Table 8.6: Observables and operation modes considered for ̄ production at CLIC in the
far-future scenario.
Observable


 Polarization ( +) Ref. experiment SM Ref.

̄, FB 380 GeV, 14 TeV, 3 TeV (80 % 0) [248] [255]

First studies on top-quark physics at CLIC have been presented in Ref. [248] and are followed
here to obtain estimates for the expected precision of the measurements. For the nominal val-
ues, current SM predictions are assumed, including NLO QCD corrections [255]. The depen-
dences of the cross section and the forward-backward asymmetry on the SMEFT coefficients
are again determined using MC simulations with MadGraph5_aMC@NLO and subsequent
interpolations, as described in Sec. 8.2.

When performing a fit with EFTfitter.jl to the expected CLIC measurements of Tab. 8.6 only,
all of the eleven SMEFT coefficients in Fig. 8.1 are constrained. The marginalized 90 % HDRs
and their total widths obtained in this fit are shown in Fig. 8.11 in the light brown color.
1During the finalization of these studies, a preprint by the CMS collaboration was published in which the
coefficients ̃ and ̃ are constrained by measurements of top-quark production in association with leptons
[254]. These two coefficients are otherwise unconstrained by current data.
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Figure 8.11: Marginalized smallest intervals containing 90 % of the posterior probability
(left) and their total widths (right) obtained in fits of the eleven Wilson coefficients in Fig. 8.1
to only the combined current and near-future data (red), to only the CLIC data (light brown)
and to the total combination (dark brown).

The tightest constraints are found for the four-fermion coefficients ̃ and ̃, with the widths
of their 90 % HDRs being about (36)104. Strong constraints on the order of (103) are
also obtained for ̃. The weakest constraints in the fit to only the CLIC data are derived for
̃. As indicated in Tab. 8.1, the sensitivity of the +  ̄ observables to this coefficient
arises only through running in SMEFT and is therefore suppressed. Also for the coefficients
̃

(1)
 , ̃

(3)
 , ̃

(1)
 , and ̃

(3)
 , the constraints obtained in the fit to only the CLIC data are weaker

than those obtained in a combined fit of all eleven coefficients to the current and near-future
measurements of Sec. 8.4.1, as shown in Fig. 8.11 in the red color. This is due to the considered
CLIC observables being only sensitive to the linear combinations ̃

 and ̃
 , as shown in

Tab. 8.1. That these four coefficients can be constrained independently at all using only the
CLIC data is an effect of the RGE running in which these coefficients evolve differently.2
The constraints on the remaining coefficients, i.e., ̃, ̃ , and ̃, are stronger than
those obtained using the combined current and near-future measurements. In particular, the
+  ̄ processes considered in the far-future scenario provide additional sensitivity to ̃

and thus allow improving the constraints by almost one order of magnitude. Also shown in
Fig. 8.11 (in the dark brown color) are the constraints on the coefficients obtained in a fit
to the combination of current, near-future, and far-future measurements. It is noticeable that

2It should be noted that the constraints on ̃
(1)
 and ̃

(3)
 shown in Fig. 8.11 are stronger than those shown in

the corresponding plot of Ref. [5]. This is because in this thesis, the constraints on the SMEFT coefficients are
given at the scale 1725 GeV instead of at the scale 1 TeV as in Ref. [5]. Therefore, here, the effects of SMEFT
running are more pronounced.
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in this total combination, all coefficients can be constrained very tightly. The coefficients of
the four-fermion operators are constrained the strongest, with the total widths of their 90 %
HDRs being about (2 3) 104. In particular, for the coefficients ̃

(1)
 and ̃

(3)
 , a decrease

in the size of the 90 % HDRs by more than an order of magnitude is observed when compared
to the fits using only the CLIC or only the combined current and near-future data sets. This
large improvement is again a consequence of the complementary sensitivities of the considered
observables. This can be observed particularly well in the left plot of Fig. 8.12, where the 90 %
HDRs of the two-dimensional marginalized posterior distributions are shown for the individual
and combined fits. Such orthogonal constraints obtained from the different data sets are also
observed for further coefficients. In the right plot of Fig. 8.12 this is demonstrated for the
two-dimensional marginal distribution of ̃

(1)
 vs. ̃.

0.01 0.00 0.01 0.02
C(1)
lq

0.02

0.01

0.00

0.01

C(3
)

lq

current + near
only CLIC
all combined

0.2 0.1 0.0 0.1 0.2
C(1)

q

0.010

0.005

0.000

0.005

0.010

C l
u

current + near
only CLIC
all combined

Figure 8.12: Two-dimensional 90 % HDRs of ̃
(1)
 vs. ̃

(3)
 (left) and ̃

(1)
 vs. ̃ (right)

obtained in fits to the combined current and near-future measurements (red), to only the
CLIC measurements (light brown), and to the total combination of all measurements (dark
brown).

As noticeable in Fig. 8.11, for the coefficients ̃, ̃
(1)
 , ̃

(3)
 , ̃

(1)
 , and ̃

(3)
 , the combination

with the CLIC measurements allows removing the second solutions observed in the fits to the
combined current and near-future data sets. This is again a result of the orthogonality of the
constraints from the CLIC data and from the combined current and near-future data. In the
plots of Fig. 8.12, it is visible how this complementarity of the constraints allows excluding the
second solutions for the coefficients ̃

(1)
 , ̃

(1)
 , and ̃

(3)
 . Again, the observed synergies in the

sensitivities of the different data sets also affect the multidimensional parameter space and
allow tightening the constraints on further coefficients. Two examples of three-dimensional
marginalized posterior distributions where this is visible are shown in Fig. 8.13 for ̃

(1)
 vs.

̃ vs. ̃ (left) and ̃
(1)
 vs. ̃ vs. ̃

(3)
 (right).

It should be noted that in Fig. 8.11, deviations from the SM are observed for ̃
(1)
 and ̃

(3)
 in

the combined fit, with the corresponding modes of the posteriors deviating by about 46 

and 35 , respectively. This is a result of the assumption that Belle II confirms the current
central values measured by the LHCb experiment, in particular, those of the  anomalies in
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Figure 8.13: Three-dimensional posterior distributions of ̃
(1)
 vs. ̃

(3)
 vs. ̃ (left) and ̃

(1)


vs. ̃ vs. ̃ (right) obtained in fits of the eleven coefficients in Fig. 8.1 to the combined
current and near-future measurements (red), to only the CLIC measurements (light brown),
and to the total combination of all measurements (dark brown).3

0  +. While this assumption was also made for the near-future fits of Sec. 8.4.1,
the precision of the constraints did not allow observing such deviations in the corresponding
fits.

In combination with the expected CLIC data, however, the constraints are strong enough to
observe the deviations. If instead assuming the current SM predictions as the nominal values
for the Belle II projections of the 0  + measurements, the constraints of all coef-
ficients contain the SM value within the 90 % HDRs. This is visualized for ̃

(1)
 and ̃

(3)
 in

Fig. 8.14, where the two-dimensional 90 % HDRs and the one-dimensional marginal distribu-
tions obtained in the total combination of current, near-future, and far-future measurements
are shown when assuming that Belle II confirms the  anomalies measured by LHCb (left)
and when assuming Belle II measures the corresponding SM values (right).

3The posterior distributions of the total combination in the dark brown color are also plotted but cannot really
be seen because they are very small and covered by the other distributions.
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Figure 8.14: One- and two-dimensional 90 % HDRs of the posterior distributions obtained
in fits of the eleven coefficients in Fig. 8.1 to the combined current, near-future, and far-
future measurements when assuming Belle II confirms the observed  anomalies in the 0 
+ measurements (left) and when assuming Belle II measures the corresponding SM
predictions (right). The SM value is indicated.

8.5 Sampling multimodal distributions with BAT.jl

As observed in Sec. 8.3.3 and Sec. 8.4, the posterior distributions obtained in the combined
SMEFT fits of up to eleven coefficients are multimodal. It is a known drawback of classical
MCMC approaches, such as the Metropolis–Hastings algorithm or HMC, that these methods
are not well suited for sampling multimodal target distributions [256, 257]. This is because
the Markov chains constructed with these algorithms only rarely jump between the modes of
a distribution, in particular, if the modes are isolated and have very different heights. In the
SMEFT fits above, this complicates the exploration of the multimodal posterior distributions
with the default MCMC algorithms of BAT.jl. Reliably sampling the corresponding distribu-
tions is only possible using the nested sampling algorithms introduced in Sec. 3.3.5. In the
following, the difficulties in sampling multimodal distributions with the default Metropolis–
Hastings algorithm of BAT.jl are demonstrated using a low-dimensional SMEFT fit as an
example.

For this purpose, a fit of the four coefficients ̃, ̃
(1)
 , ̃, and ̃+

 to the combination of
the current top-quark, , and   ̄ data sets is performed. Uniform prior distributions with
maximum ranges of ̃  1 are chosen for all parameters. It is, thus, the same setup as for
the combined fit of Fig. 8.6, but considering only four SMEFT coefficients instead of eight.
As introduced in Sec. 3.3.1, for such low-dimensional cases, BAT.jl provides algorithms that
evaluate the target distributions at a number of sampling points in the parameter space that
are not adapted to the shape of the distribution. These algorithms always yield independent
samples of the true target distributions and do not rely on any conditions, such as the conver-
gence of iterative computations. In this example, the Sobol algorithm is used for exploring the
posterior distribution, and the corresponding results are depicted in the top plot of Fig. 8.15
in terms of the one- and two-dimensional marginal distributions.
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Sobol sampler

0.50 0.25 0.00
CuB

0
10
20
30
40

p(
C u

B)

0.50 0.25 0.00
CuB

0.001
0.001
0.003

C(
1) q

0.50 0.25 0.00
CuB

0.004

0.001

0.002

C q
e

0.50 0.25 0.00
CuB

0.02
0.01
0.00

C+ lq

0.50 0.25 0.00
CuB

0.001
0.001
0.003

C(
1) q

0.001 0.001 0.003
C(1)

q

0
200
400
600
800

p(
C(

1) q)

0.001 0.001 0.003
C(1)

q

0.004

0.001

0.002

C q
e

0.001 0.001 0.003
C(1)

q

0.02
0.01
0.00

C+ lq

0.50 0.25 0.00
CuB

0.004

0.001

0.002

C q
e

0.001 0.001 0.003
C(1)

q

0.004

0.001

0.002

C q
e

0.004 0.001 0.002
Cqe

0
200
400
600
800

p(
C q

e)

0.004 0.001 0.002
Cqe

0.02
0.01
0.00

C+ lq

0.50 0.25 0.00
CuB

0.02
0.01
0.00

C+ lq

0.001 0.001 0.003
C(1)

q

0.02
0.01
0.00

C+ lq

0.004 0.001 0.002
Cqe

0.02
0.01
0.00

C+ lq

0.02 0.01 0.00
C+

lq

0
200
400
600
800

p(
C+ lq

)
Metropolis-Hastings

0.50 0.25 0.00
CuB

0
10
20
30

p(
C u

B)

0.50 0.25 0.00
CuB

0.001
0.001
0.003

C(
1) q

0.50 0.25 0.00
CuB

0.004

0.001

0.002

C q
e

0.50 0.25 0.00
CuB

0.02
0.01
0.00

C+ lq

0.50 0.25 0.00
CuB

0.001
0.001
0.003

C(
1) q

0.001 0.001 0.003
C(1)

q

0
200
400
600

p(
C(

1) q)

0.001 0.001 0.003
C(1)

q

0.004

0.001

0.002

C q
e

0.001 0.001 0.003
C(1)

q

0.02
0.01
0.00

C+ lq

0.50 0.25 0.00
CuB

0.004

0.001

0.002

C q
e

0.001 0.001 0.003
C(1)

q

0.004

0.001

0.002

C q
e

0.004 0.001 0.002
Cqe

0
100
200
300
400
500
600

p(
C q

e)

0.004 0.001 0.002
Cqe

0.02
0.01
0.00

C+ lq

0.50 0.25 0.00
CuB

0.02
0.01
0.00

C+ lq

0.001 0.001 0.003
C(1)

q

0.02
0.01
0.00

C+ lq

0.004 0.001 0.002
Cqe

0.02
0.01
0.00

C+ lq

0.02 0.01 0.00
C+
lq

0
100
200
300
400
500
600

p(
C+ lq

)

Figure 8.15: Posterior distributions obtained in fits of the four coefficients ̃, ̃
(1)
 , ̃,

and ̃+
 to the combination of current top-quark, , and   ̄ physics data sets. One- and

two-dimensional marginalized distributions are shown for the posterior distributions obtained
with the Sobol sampler (top) and with the Metropolis–Hastings algorithm (bottom). The
683 %, 955 %, and 997 % HDRs are highlighted.
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The plots in the upper triangle show two-dimensional heatmaps of the posterior probability
distribution, and the plots in the lower triangle depict the 683 %, 955 %, and 997 % HDRs.
Considering the one-dimensional marginal distributions and the HDRs, it is observed that
for each of the SMEFT coefficients, a unimodal distribution is obtained. Only when taking a
closer look at the heatmaps in the upper triangle, the presence of multiple modes for ̃,
̃, and ̃+

 can be suspected. However, the relative importance of the additional modes is
negligibly small, as they are not observed in the one-dimensional marginal distributions and
are not part of the considered HDRs.

In Fig. 8.16, the one-dimensional marginal distributions of ̃ (left) and ̃+
 (right), obtained

with the Sobol sampler, are examined in more detail.
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Figure 8.16: One-dimensional marginalized distributions of ̃ (left) and ̃+
 (right) ob-

tained using the Sobol sampler.

In the inset plots, the -axes are zoomed in, and second modes of the posterior distributions
are indeed observed. However, these modes are many orders of magnitude smaller than the
main peaks. This reveals that the four-dimensional posterior distribution of the considered
example has one global mode but additional strongly suppressed local modes.

When using the Metropolis–Hastings algorithm for sampling this posterior distribution, vary-
ing results are obtained when repeating the fit multiple times. On the one hand, unimodal
distributions similar to the top plot of Fig. 8.15 are observed. On the other hand, multimodal
distributions with varying heights of the individual modes are obtained. In the bottom plot of
Fig. 8.15, one example of such a posterior distribution sampled with the Metropolis–Hastings
algorithm is shown. Bimodal marginal distributions are observed for the coefficients ̃, ̃,
and ̃+

 , with the second modes taking a significant amount of the posterior probability and
being part of the considered HDRs. Two further examples of posterior distributions obtained
in repeated fits with the Metropolis–Hastings algorithm are shown in Fig. E.2 of App. E.
There, the varying heights and different numbers of modes discovered are visible. These plots
reveal that when using the Metropolis–Hastings algorithm for sampling, the relative impor-
tance of the local modes is vastly overestimated, if they are discovered at all. This is due to
the fact that the Markov chains constructed with the Metropolis–Hastings algorithms typi-
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cally only explore the phase space around the mode in which they started and rarely jump
between different modes. This leads to an incorrect estimation of the mode heights since in
the classical Metropolis–Hastings algorithm, there is no mechanism for weighting the samples
from the individual chains according to the probability they covered.
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Figure 8.17: Marginal distributions of ̃ (left) and trace plots (right) of two individual
Markov chains when sampling the four-dimensional examples with the Metropolis–Hastings
algorithm.

In Fig. 8.17, the behavior of two Markov chains sampling the considered four-dimensional
posterior distribution is visualized. In the left plots, the marginal distributions of ̃ are
shown for the individual chains. On the right-hand side, the corresponding trace plots are
given, i.e., the chronological sequence of states visited by the respective chains. While in the
lower plots, i.e., for Chain 2, only the global mode around ̃  0 is discovered, Chain 1
initially starts close to the local mode around ̃  045. The chain explores this region
around the local mode for about 25 104 iterations before eventually jumping to the global
mode and exploring this mode for further 45 104 iterations. However, such jumps from one
mode to another are very rare and typically happen from the smaller modes into the larger
ones, as the tails of the larger mode attract the chain. The farther the modes are separated,
the less likely such transitions become, and the Markov chains exhibit the very slow mixing
observed for Chain 1.

In BAT.jl, the convergence criteria introduced in Sec. 3.3.2 are used to determine whether the
Markov chains have converged to their stationary distribution or not. For the samples of the
Metropolis–Hastings algorithm shown in the lower plot of Fig. 8.15, these criteria indicate that
the chains have not converged. When considering Fig. 8.17, this is apparent as the within-chain
variance and the between-chain variance, used for determining the convergence, obviously do
not agree, as would be required for convergence (see Sec. 3.3.2). If, however, by pure chance,
all Markov chains start in the same (local or global) mode and stay there during the whole
sampling process, the convergence criteria indicate convergence, even though the other modes
of the distribution have never been visited by any chain. This is, for example, observed in the
top plot of Fig. E.2, where all Markov chains only sampled the global mode, and no other
modes are observed in the two-dimensional heatmaps of the upper triangle. This points out
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that using only the Metropolis–Hastings algorithm and the corresponding convergence criteria
does not always allow deciding whether the posterior distribution has been sampled correctly.
In cases where the shape of the target distribution is not known before and multiple modes
might be possible, the stability of the results from the Metropolis–Hastings algorithm should
be checked by performing multiple runs and using a large number of chains with different
starting points. When an unstable behavior is observed, as in the example above, or when a
multimodal posterior distribution is already expected, other sampling methods should be used
for exploring the distribution and performing cross-checks.

There are approaches for constructing adaptive MCMC algorithms that allow for more effi-
cient exploration of multimodal distributions [256–258]. In BAT.jl, different algorithms and
approaches are available for sampling such multimodal target distributions. As mentioned
before, for low-dimensional problems, BAT.jl offers the algorithms of Sec. 3.3.1, which al-
ways yield the correct distributions. For problems with more than five parameters, the nested
sampling algorithms introduced in Sec. 3.3.5 are the best choice for exploring multimodal
distributions. Since in nested sampling, the phase space is explored using multiple live points
that converge towards the modes and the evidence integral is taken into account, the explo-
ration of local and global modes, as well as a correct estimation of their heights, is ensured.
For the SMEFT fits of this chapter, both nested sampling algorithms available in BAT.jl (see
Sec. 3.3.5) have been applied. They performed well in sampling the multimodal distributions
with up to eleven parameters and generated agreeing samples of the considered posterior dis-
tributions. Another approach for sampling multimodal distributions in BAT.jl is provided in
the form of the partitioned sampling, introduced in Sec. 3.3.4. If the partitions of the param-
eter space created by this algorithm match the modes of the target distribution, the classical
MCMC algorithms can be used for sampling since the Markov chains then only need to ex-
plore one mode in each partition. Due to the subsequent AHMI integration when combining
the samples from all subspaces, the correct weighting of the probability covered by the indi-
vidual modes is ensured. In Fig. E.1 of App. E, a posterior distribution of the four-dimensional
example, obtained with the partitioned sampling approach and the Metropolis–Hastings algo-
rithm, is shown. There, it is observed (in the heatmaps of the upper triangle) that the local
modes are discovered. However, they correctly receive small weights and are neither visible
in the one-dimensional distributions nor part of the HDRs. While in the low-dimensional ex-
ample the partitioned sampling approach performed comparably well as the nested sampling
algorithm, for the SMEFT fits in Sec. 8.4 with eleven parameters and multiple modes, the
nested sampling algorithms provided more reliable results and required less manual tuning of
hyperparameters.

This example demonstrates the complications of exploring (potentially) multimodal posterior
distributions with the Metropolis–Hastings algorithm. It points out that even in cases where
the target distribution can be considered unimodal for all practical purposes, the presence of
additional (but strongly suppressed) modes can lead to wrong results of the sampling. This
also stresses the importance of choosing appropriate sampling algorithms for the problem at
hand and highlights that performing cross-checks using different techniques is an essential
aspect, in particular when no prior knowledge about the shape of the posterior distribution is
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available. In BAT.jl, the collection of different sampling algorithms facilitates performing such
cross-checks and makes it simple to choose the best-suited algorithm for the current problem.

8.6 Summary

In the studies above, the approach of Chap. 7 was extended, and further observables and
SMEFT coefficients were included in a combined fit. It was demonstrated again that a com-
bination of observables from different energy scales can lead to a significant improvement of
the constraints on the SMEFT coefficients. By combining current measurements of top-quark
production and decay processes, of    transitions, and of   ̄ decays, it was illus-
trated how the different sensitivities of the corresponding observables can yield orthogonal
constraints on the Wilson coefficients. In particular, it was pointed out that such complemen-
tary sensitivities on certain coefficients also affect the multidimensional parameter space. This
allows improving the constraints on additional coefficients to which the observables themselves
are not directly sensitive. By including projections of measurements expected in the near and
far future, the physics potential of the considered future experiments was pointed out. It was
demonstrated that the improved precision of the anticipated measurements can lead to tighter
constraints and allows constraining more SMEFT coefficients. Specifically, it was shown that
expected observations of   ̄ transitions at Belle II allow resolving flat directions in
the constraints and enable probing the coefficients ̃

(1)
 and ̃

(3)
 independently. The studies

assuming a CLIC-like lepton collider demonstrated the significant improvements of the con-
straints on the considered SMEFT coefficients to be expected from such a future collider.
Again, the benefits of combining observables with complementary sensitivities for resolving
ambiguous solutions were highlighted. Performing these SMEFT fits with up to eleven free
parameters also demonstrated the capabilities of the new implementations of EFTfitter.jl and
BAT.jl. The posterior distributions obtained in the combined SMEFT fits are multimodal and
have complicated shapes in the multidimensional phase space. It was pointed out in Sec. 8.5
that classical MCMC methods are not suited for such problems and that only the nested
sampling algorithms available in BAT.jl are capable of reliably sampling these posterior dis-
tributions. As these algorithms were not available in the predecessor versions of the tools,
these studies also demonstrated the excellent suitability of the new BAT.jl and EFTfitter.jl
packages for applications in SMEFT interpretations, where such multimodal posterior distri-
butions are common, due to the often quadratic dependences of the observables on the Wilson
coefficients.
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9 Conclusion

Bayesian inference provides a systematic mathematical approach to gaining knowledge by
comparing model expectations with observed data. While interpretations of the results are
straightforward, applying Bayesian inference for data analysis typically requires efficient nu-
merical algorithms for sampling and integration. In this thesis, the newly developed Bayesian
Analysis Toolkit in Julia (BAT.jl) was introduced. Its design concepts were motivated, and the
included collection of state-of-the-art algorithms for posterior exploration and integration was
presented. As direct searches for physics beyond the Standard Model (BSM) have not yet led to
any observations of new particles, effective field theories (EFTs) provide an indirect approach
to probing BSM physics at energy scales much higher than directly accessible with current
collider experiments. Interpretations of measurements in the context of the Standard Model
effective field theory (SMEFT) gained much interest in recent years, particularly in the top-
quark sector. In this thesis, methods for Bayesian data analysis were applied in BSM searches
using the SMEFT formalism. For this purpose, the newly revised EFTfitter.jl package was
introduced in Chap. 5 as a tool facilitating EFT interpretations of measurements. Its concepts
for combining measurements of different observables and constraining underlying parameters
with Bayesian inference were discussed. In particular, methods for assigning weights to the
individual measurements describing their impact on the total combination were studied and
compared. It was pointed out that weights based on the sizes of highest density regions are a
valid approach for arbitrarily shaped posterior distributions but can currently not be employed
reliably for problems with more than three parameters.

The tools BAT.jl and EFTfitter.jl were applied in this thesis to constrain Wilson coefficients of
dimension-six SMEFT operators. Particular focus was placed on investigating approaches for
enhancing SMEFT fits in the top-quark sector. It was discussed that combinations of measure-
ments are a common method for constraining SMEFT coefficients, but correlations between
the uncertainties of the measurements are often not known precisely and, as a consequence,
frequently neglected in such analyses. Therefore, studies on the impact of correlations on the
results of SMEFT fits were performed in Chap. 6. Observables of top-quark production and
decay processes were considered, and different correlation scenarios were constructed. A best
guess correlations scenario was developed using simplifying assumptions and compared to the
known correlations scenario for quantitatively investigating the effects of correlations on the
resulting constraints. The studies revealed that neglecting correlations can lead to significantly
different results and demonstrated that correlations can be the crucial components of SMEFT
fits deciding whether new phenomena are discovered or not. By considering projections for fu-
ture measurements with reduced uncertainties, as expected from the HL-LHC, it was pointed
out that the impact of correlations will become even more critical in the future. These studies
thus illustrated that special attention needs to be paid to the treatment of correlations, par-
ticularly when aiming towards global fits of SMEFT coefficients. For such fits, the analyses
of Chap. 6 can serve as a guideline for investigating the impact of correlations, and similar
studies could be employed to validate the results of SMEFT fits with potentially unknown
correlations between the uncertainties of measurements.
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9 Conclusion

Further enhancements of SMEFT fits were pursued by conducting first studies on the combi-
nation of measurements from top-quark and  physics in Chap. 7. The steps necessary for a
combined fit of observables from different energy scales were laid out, and Wilson coefficients
of operators affecting the top-quark couplings were constrained. By comparing the results of
fits to the individual observables with the results of the combined fit, significant improve-
ments of the constraints by more than one order of magnitude were highlighted as a result
of complementary sensitivities. The observed synergies between top-quark and flavor physics
were examined further in Chap. 8 by extending the analyses to include more Wilson coef-
ficients, observables, and measurements. SMEFT fits using data from top-quark production
and decay,   ̄ decay, and   transitions were performed, and up to eleven SMEFT co-
efficients were constrained. Orthogonal constraints in the multidimensional parameter spaces
originating from the different types of observables were discovered, and the benefits of com-
bining them to tighten the constraints and resolve ambiguous solutions were illustrated. By
performing studies of future scenarios, including projections for measurements expected from
the HL-LHC, Belle II, and the CLIC lepton collider, the potential benefits of these exper-
iments for constraining BSM physics were pointed out. In particular, it was demonstrated
that the considered future measurements could allow deriving tight constraints on currently
weakly constrained SMEFT coefficients. These studies also highlighted the advantages of the
comprehensive collection of algorithms provided by the new implementation of BAT.jl. It was
demonstrated that in some of the high-dimensional SMEFT fits, multimodal posterior dis-
tributions were obtained, and only nested sampling algorithms were suited to sample these
distributions reliably.

In conclusion, the studies presented in this thesis served, on the one hand, as first use cases
demonstrating the capabilities of the newly implemented BAT.jl and EFTfitter.jl packages for
BSM searches. On the other hand, they pointed out important aspects for enhancing SMEFT
fits, which should be taken into account when pursuing the goal of global fits to current and
future data.
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Appendix A

BAT.jl default output

Figure A.1: Example output obtained from a BAT.jl SampledDensity object. The output
shown here corresponds to the posterior distribution visualized in Fig. 3.1.
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Appendix B

Additional plots on the weight studies

In this appendix, additional plots related to the studies on the influence of individual mea-
surements on their combination in Sec. 5.4 are given.

B.1 Correlation matrix
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Figure B.1: Correlation matrix assumed for the  boson decay measurements in the studies
of Sec. 5.4
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Appendix B Additional plots on the weight studies

B.2 Weights in the non-lepton-universal example
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Figure B.2: Comparison of the different types of weights for the electron channel when
assuming no correlations between the measurements (top) and when assuming the correlations
of Fig. B.1 (bottom).
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Figure B.3: Comparison of the different types of weights for the tau channel when assuming
no correlations between the measurements (top) and when assuming the correlations of Fig. B.1
(bottom).
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B.3 Posterior distribution of the example when assuming correlations

B.3 Posterior distribution of the example in Sec. 5.4.3 when
assuming correlations
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Figure B.4: Posterior distribution of the total combination when assuming the dependence
on underlying parameters of Eq. (5.16) and the correlations of Fig. B.1. The one- and two-
dimensional marginal distributions are shown, and the HDRs containing 683 %, 955 %, and
997 % of the posterior probability are highlighted.
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Appendix C

Additional material on the correlation studies

In this appendix, additional plots and tables related to the studies on the impact of correlations
on the results of SMEFT fits in Chap. 6 are given.

C.1 Correlation matrices

The full correlation matrices of the statistical, systematic, and theory uncertainties in the best
guess correlations scenario are shown in Fig. C.1, Fig. C.2, and Fig. C.3.
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Appendix C Additional material on the correlation studies
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C.1 Correlation matrices
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Appendix C Additional material on the correlation studies
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C.2 Posterior of the best guess correlations scenario using the quadratic parametrization

C.2 Posterior distribution of the best guess correlations scenario
when using the quadratic parametrization
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Figure C.4: Posterior distribution of the best guess correlations scenario when using the
quadratic parametrization of cross sections. Shown are the one- and two-dimensional marginal-
ized posterior regions containing 90 % posterior probability. On the diagonal and in the upper
triangle, the results of the total combination of all measurements are shown. In the lower
triangle, the 90 % HDAs are shown for fits to the individual types of observables.
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Appendix C Additional material on the correlation studies

C.3 Varying the correlation coefficients

Additional plots on the effects of varying the values of the correlation coefficients in the best
guess correlations scenario.

C.3.1 Current uncertainties with linear parametrization
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Figure C.5: Marginal mode and smallest 90 % interval for ̃ when varying only sys (left),
when varying only th (middle), and when varying both simultaneously (right) from 0 to 0.95
in steps of 0.05.
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Figure C.6: Marginal mode and smallest 90 % interval for ̃ when varying only sys (left),
when varying only th (middle), and when varying both simultaneously (right) from 0 to 0.95
in steps of 0.05.
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C.3 Varying the correlation coefficients

C.3.2 Current uncertainties with quadratic parametrization
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Figure C.7: Marginal mode and smallest 90 % interval for ̃
(3)
 when varying only sys (left),

when varying only th (middle), and when varying both simultaneously (right) from 0 to 0.95
in steps of 0.05 using the quadratic parametrization of cross sections.
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Figure C.8: Marginal mode and smallest 90 % interval for ̃ when varying only sys (left),
when varying only th (middle), and when varying both simultaneously (right) from 0 to 0.95
in steps of 0.05 using the quadratic parametrization of cross sections.
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Figure C.9: Marginal mode and smallest 90 % interval for ̃ when varying only sys (left),
when varying only th (middle), and when varying both simultaneously (right) from 0 to 0.95
in steps of 0.05 using the quadratic parametrization of cross sections.
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Appendix C Additional material on the correlation studies

C.3.3 Current uncertainties with linear parametrization
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Figure C.10: Relative deviation of the marginal mode (left) and relative increase of the 90 %
HDL compared to the known correlations scenario for ̃ when varying the values of sys
and th independently.
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Figure C.11: Relative deviation of the marginal mode (left) and relative increase of the 90 %
HDL compared to the known correlations scenario for ̃ when varying the values of sys and
th independently.
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C.3 Varying the correlation coefficients

C.3.4 Reduced statistical uncertainties with linear parametrization
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Figure C.12: Marginal mode and smallest 90 % interval for ̃ when varying only sys (left),
when varying only th (middle), and when varying both simultaneously (right) assuming the
reduced statistical uncertainties.
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Figure C.13: Marginal mode and smallest 90 % interval for ̃ when varying only sys (left),
when varying only th (middle), and when varying both simultaneously (right) assuming the
reduced statistical uncertainties.
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C.4 Reduced statistical, systematic, and theory uncertainties
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Figure C.14: Marginal modes and smallest 90 %intervals of the one-dimensional marginalized
posterior distributions using the linear (light blue) and quadratic (dark blue) parametrization
of cross sections in the known correlations scenario (left) and in the best guess correlations
scenario (right) for the statistical uncertainties scaled down to 3000 fb1 and the systematic
and theory uncertainties reduced by a factor of two. The SM is indicated as the dashed
gray line. The results obtained with the current uncertainties and the reduced statistical
uncertainties are indicated using the slightly transparent markers.

Table C.1: Bounds of the marginalized 90 % HDIs, their total length, the standard deviation,
and the value of the mode, as well as the deviation of the mode from the SM in units of
the standard deviation when assuming the statistical uncertainties reduced to 3000 fb1, and
systematic and theory uncertainties reduced by a factor of two.

known correlations best guess correlations
̃ 90% HDI 90% HDL  mode mode/ 90% HDI 90% HDL  mode mode/

̃
(3)
 [-0.034, -0.003] 0031 0009 0019 199 [-0.189, -0.159] 0030 0009 0174 194

̃ [-0.007, -0.001] 0006 0002 0004 215 [ 0.018, 0.033] 0015 0004 0026 59
̃ [-0.009, 0.002] 0011 0003 0003 091 [-0.008, -0.004] 0004 0001 0006 49
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Appendix D

Additional material on combinations of
top-quark and  physics

D.1 Numerical values of the matching conditions

The numerical values of the tree-level matching conditions of SMEFT and WET at  = 

are

∆tree
9 = 4021


̃1

 + ̃3
 + ̃


 4453


̃1

 + ̃3





∆tree
10 = 4021


̃1

  ̃3
 + ̃ + ̃1

 + ̃3





∆tree
 = 4021


̃1

  ̃3
 + ̃1

 + ̃3





The one-loop contributions at  =  are

∆ loop
7 = 2310̃ + 009251̃  00946̃(1)

 + 07951̃(3)
 

∆ loop
8 = 06687̃ + 02709̃ + 02839̃(1)

 + 07568̃(3)
 

∆ loop
9 =2170̃ + 2512̃ + 2972̃(3)

 + 02217

̃  ̃(1)




 2002


̃ + ̃  ̃

(1)
  ̃


 3174̃

(3)
 

∆ loop
10 = 7536̃  1570̃(3)

 + 4498

̃  ̃(1)




 2002


̃  ̃ + ̃

(1)


 ̃


+ 3174̃

(3)
 

∆ loop
 = 2876̃  5084̃(3)

  04451

̃  ̃(1)

 + ̃  ̃
(1)



+ 07057̃

(3)
 

∆mix, loop
1 =4120̃ + 1008̃(3)

 
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Appendix D Additional material on combinations of top-quark and  physics

D.2 Fiducial acceptance of the dilepton channel
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Figure D.1: Sampling points and result of the interpolation for the fiducial acceptance of
the dilepton channel (2). Shown are slices of the phase space where only one of the Wilson
coefficient is varied at a time while the others are fixed to zero.

D.3 Posterior distributions of the fit to top-quark measurements
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Figure D.2: Marginalized posterior distributions of ̃ (left) and ̃ (right) when using
only the ̄ cross section measurement. The colored areas highlight the smallest intervals
containing 90 % of the posterior probability, and the dashed line indicates the SM value.
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D.4 Fit of the WET coefficients to the  measurements

D.4 Fit of the WET coefficients to the  measurements
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Figure D.3: Marginalized smallest intervals containing 90 % of the posterior probability (left)
and their total widths (right) obtained in a fit of the WET coefficients to only the  physics
measurements of Tab. 8.3.
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Appendix E

Additional plots on the sampling of
multimodal distributions

Partitioned sampling
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Figure E.1: Posterior distribution obtained in a fit of the four coefficients ̃, ̃
(1)
 , ̃, and

̃+
 to the combination of current top-quark,   ̄, and  physics data sets. One- and two-

dimensional marginalized distributions are shown for posterior distributions obtained with the
partitioned sampling using the Metropolis–Hastings and AHMI algorithm. The 683 %, 955 %,
and 997 % HDRs are highlighted.
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Appendix E Additional plots on the sampling of multimodal distributions

Metropolis-Hastings
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Figure E.2: Posterior distributions obtained in fits of the four coefficients ̃, ̃
(1)
 , ̃,

and ̃+
 to the combination of current top-quark,   ̄, and  physics data sets. One- and

two-dimensional marginalized distributions are shown for posterior distributions obtained in
different runs of the Metropolis–Hastings algorithm. The 683 %, 955 %, and 997 % HDRs are
highlighted.
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4FS four-flavor scheme

5FS five-flavor scheme

AHMI Adaptive Harmonic Mean Integration

BAT Bayesian Analysis Toolkit

BAT.jl Bayesian Analysis Toolkit in Julia

BLUE Best Linear Unbiased Estimator

BSM physics beyond the Standard Model

CLIC Compact Linear Collider

CVWs central value weights

EFT effective field theory

ESS effective sample size

FCC Future Circular Collider

HDA highest density area

HDI highest density interval

HDL highest density length

HDR highest density region

HDV highest density volume

HEFT Higgs effective field theory

HFLAV Heavy Flavor Averaging Group

HL-LHC High-Luminosity LHC

HMC Hamiltonian Monte Carlo

iid independent and identically distributed

IIW intrinsic information weight

ILC International Linear Collider

LEFT low-energy effective field theory

LHC Large Hadron Collider

LO leading order
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LRPS likelihood-restricted prior sampling

MC Monte Carlo

MCMC Markov chain Monte Carlo

MEW measurement exclusion weight

MIW marginal information weight

NLO next-to-leading order

NNLO next-to-next-to-leading order

NUTS No-U-Turn sampler

PDF parton distribution function

PSRF potential scale reduction factor

QCD quantum chromodynamics
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RGE renormalization group equation

RIW relative importance weight

SM Standard Model of particle physics
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UEW uncertainty exclusion weight
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