

Impact-activated fluid-solid tool: towards more flexible high speed forming

M. Hahn, V. Kumar, A. E. Tekkaya

October 13, 2021 (online)

Outline

- Motivation and concept
- Experimental feasibility investigation
- Analytical modeling aspects
- Conclusion

Need for more flexible (impulse) forming

Conventional: massive, geometry-bound tools, high lead time and costs, unsuited for individual batches

High speed forming can already remove heavy machinery and punch, but what about the die?

Idea*:

- Cheap thin shell governs part geometry (e.g. 3D-printed plastic)
- Mechanical support by reusable, refillable liquid acting as a solid upon impact
- Such substances are <u>Shear Thickening</u>
 Fluids (<u>STF</u>, colloidal dispersions)
- STF used in body armor, protective sport goods, extravehicular suits, ...

STF mechanism

Jamming front theory* (others exist):

Locally condensed particles rapidly form 'jamming front' in surrounding liquid yielding a 'solid column' h

Experimental setup

- Electromagnetic forming of 1 mm thick circular aluminum sheet (Al 99.5)
- Flat cone comparison: normal **solid steel** (left) vs. **STF die** (right)

Photon Doppler Velocimetry (PDV) for determining velocity histories

Air evacuation fitting (without PDV)

Experimental prerequisites

- Plastic shell: 5 mm wall thickness, 3D-printed on Ultimaker (ABS Acrylonitrile Butadiene Styrene)
- 70wt% nano silica particles in glycol (STF Technologies LLC)
- Capacitor bank: Poynting SMU 612 FS (40-80 µF, max. 9 kJ)

Lightweight Components

Experimental results – impact conditions

- Reproducible impact velocities (point O displacement = steel die cavity height)
- Charging energy < 1 kJ: no impact (insufficient die filling)
- Same energies (impact velocities) for STF die
- GOM ATOS for measuring part geometries

Experimental results – exemplary parts

Steel die, 1.2 kJ (impact velocity 182 m/s)

STF die, 1.2 kJ (impact velocity 182 m/s)

- No STF-tool fracture (up to 5 repetitions per energy level conducted)
- STF increases geometric accuracy (reduced / eliminated bounce back H)

Experimental results – comparative overview

Contact length $l_{\rm c}$ – independent of die concept

Rebound height H – dependent on die concept

Analytical modeling (bounce back substitute model)

Steel die (or STF, with different parameters)

Sheet-die impact assumptions:

- Rigid sheet
- Friction neglected
- Known: dimensions, initial conditions, sheet mass fraction, tool stiffness
- Known or sought: damping
- **⇒** Governing ODE solvable

Solution characteristics (steel die)

• Rebound from t_c on: $H^{Al} \cong 1.687I_r$ (also derivable by: kinetic \equiv elastic sheet energy)

Institute of
Forming Technology and
Lightweight Components

Solution characteristics (STF die)

Damping ratio ξ (resp. η_{STF}) unknown a priori \Rightarrow Minimize error between model and experiment over velocities v_0

- Phase shift observed (<u>visco</u>elastic response)
- 'Const.-η model' predicts with average error of 14%
- Ca. 86% of initial impact energy absorbed by STF
- $x_{peak}^{STF} \approx 4x_{peak}^{Stee}$

Conclusion

- General feasibility of flexible STF-tool concept shown for electromagnetic forming
- Reduced / eliminated undesired bounce or spring-back compared to massive steel die
- Reason: viscoelastic damping $\xi_{STF} = 0.3 \approx 30 \xi_{Steel}$ ($\xi > 1 \Leftrightarrow$ 'negative bounce back' / penetration)
- Simplified analytical modeling suitable for a first tool / process design

Future work: validation for other impulse processes / velocities, materials, part geometries

Thank you for your attention

M.Sc. Marlon Hahn
Institut für Umformtechnik und Leichtbau
Technische Universität Dortmund
Baroper Str. 303
Campus Süd Maschinenbau III, D-44227 Dortmund
E-Mail: marlon.hahn@iul.tu-dortmund.de