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Abstract 

Magnetic pulse welding (MPW), a solid-state impact welding technique provides the ability 
to join a wide array of material combinations, whilst introducing little to no heat to the 
system and preserving the base metal microstructure. Impact velocity is one of the key 
criteria which determines the weldability of the joint during MPW. Experimental 
measurement of impact velocity in MPW across wide-ranging parameters is expensive and 
time-consuming. Therefore, guidelines for process selection and knowledge of relative 
influence of parameters on impact velocity is limited. This study presents the applicability 
of coupling finite element method (FEM) and artificial neural network (ANN) modelling to 
perform sensitivity analysis of MPW. The welding process was simulated using FEM, and 
multilayer modular feedforward networks based on the results from finite element 
simulations were developed. The results of the present study revealed that the coil cross-
sectional area and turns primarily governed the process, followed by the voltage. The 
relative sensitivity of the parameters remained independent of the material combination. 
Inclusion of shop floor applicable process parameters suggests that the developed ANN 
models can substantially narrow down experimental runs and simultaneously act as a 
decision support tool for end users. 
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1 Introduction 

The use of advanced and high-strength dissimilar material pairs in automobile, defense and 
aerospace sectors has seen a significant growth in the recent past owing to the continually 
growing demands for sophisticated and versatile products and equipment. However, 
subsequent development of joining technologies for these disparate material pairs has been 
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gradual. Although, techniques like friction stir welding (Mastanaiah et al. 2016), electron 
beam welding (Mastanaiah et al. 2018), etc., have been quite successful for dissimilar 
material joining, yet there exist inherent issues that need to be resolved. Solid-state welding 
techniques facilitate joint formation at low temperatures and often very quickly, usually 
within microseconds (Stern and Aizenshtein, 2002). Examples include explosive welding 
(Blazynski, 1983), magnetic pulse welding (MPW) (Spitz and Shribman, 2001) , vaporizing 
foil actuator welding (Vivek et al., 2013), cold welding, and diffusion welding. These 
processes involve reduced formation of brittle intermetallic compounds, and thereby keep 
the material properties intact. Among the solid-state processes, the MPW is one of the most 
environmentally friendly methods for joining dissimilar materials, wherein electromagnetic 
forces impact one metal on to another to form a solid-state cold weld (Kapil and Sharma, 
2015a). 

The weldability of the joint in MPW is decided by a host of parameters among which 
impact velocity and impact angle are of prime importance (Kore et al., 2010). Based on these 
two criteria’s, several weldability windows have been developed by researchers for different 
material classes. These windows provide the lower and upper limits of the impact velocity 
and angle, provide an idea of the jetting, as well give an understanding of the interface state 
(melting/intermetallic compound formation) (Kapil and Sharma, 2015a). This study focuses 
on one of the weldability criterion i.e., impact velocity and conducts a comprehensive 
assessment of its influence on the weldability. The impact velocity, i.e., the velocity at which 
the mating members collide, is directly influenced by a host of parameters, including 
electrical (voltage, capacitance, frequency, inductance, and resistance), coil (turns, length, 
and cross-sectional area), geometrical (air gap), and material properties. The interrelation 
between these parameters is crucial for the design of process selection guidelines; however, 
capturing multi-parameter interaction requires a significant number of experiments and 
producing many electromagnetic coils. Additionally, experimental determination of impact 
velocity (e.g., photon Doppler velocimetry (Johnson et al., 2009) for a wide-ranging set of 
parameters entails considerable workforce, monetary resources, and technicality. The 
graphical representation to understand the effect of process parameters has a limitation of 
depicting the effect of up to two parameters. For a multi-variable, multi-parameter process 
such as MPW, where the interaction of parameters affects the process, the graphical 
representation method does not appear feasible. Studies that can quickly and economically 
relate the parameter interaction, predict the impact velocity, and enable the user to realize 
the relative significance of the parameters lack in the literature. 

Scaling the MPW process for actual shop floor applications requires the development 
of robust and accurate predictive models to narrow down the number of trial experiments 
without missing significant parameters. While finite element model (FEM) development is 
a solution, the execution of developed models consumes lot of time and computer resources. 
The artificial neural network (ANN) can model the input-output relations of complex 
systems and then be used to predict, explore data patterns, map, optimize and control (Paturi 
and Cheruku, 2020). ANN models rely on the formation and generalization of large input 
datasets. Once the model is trained, validated, and tested, it can effectively and quickly map 
a wide array of process inputs and outputs. The use of ANN in modelling the fusion welding 
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processes like arc (Sharma 2016) and laser (Kochar et al., 2019) is prevalent, however, there 
is no reported literature on predictive model development in MPW using neural networks. 

The present study uses the FEM and ANN for virtual experimentation to reduce, if not 
eliminate, process optimization experiments significantly. The larger goal is to develop a 
model capable of predicting impact velocity and reveal the relative significance of the 
parameters through sensitivity analysis, particularly for MPW of dissimilar alloys. The issue 
is whether it is possible to have a clear idea regarding the ability of the process parameters 
to influence the impact velocity, independently or depending on the combination of materials 
to be welded. With a clear understanding, the high cost of process development mainly 
because of the manufacture of several electromagnetic coils can be significantly reduced. 
The approach presented is the first of its kind, and, to the authors' best knowledge, no prior 
literature on sensitivity analysis in the MPW has been published. 

2 Materials and Methods 

Two different material pairs, i.e., pure Al-SS 304 and AA 2219-SS 321, were chosen for 
investigation. The properties and the geometry of the selected material pairs are presented 
in Table 1 and Figs. 1(a) and (b), respectively. Fig. 2 depicts the methodology employed in 
this study. The FEM was used to predict the impact velocity for various combinations of 
process parameters, namely voltage, capacitance, frequency, inductance, resistance, coil 
turns/length/cross-sectional area, and air gap. The FEM runs were conducted based on the 
orthogonal arrays using the aforementioned parameters. Table 2 presents the details of the 
FEM, for further details on the FEM utilized in this study, the authors' previous work can be 
referred to (Kapil and Sharma, 2015b). The developed orthogonal array and the numerically 
computed impact velocities (by the FEM) are then fed as input to a multilayer modular neural 
network. The optimum network architecture was reached upon after several iterations with 
different network topologies, the selection based on the smallest cross-validation mean-
squared error between outputs of ANN and input dataset obtained from the FEM.  

 

Physical properties Mechanical properties Plastic properties 
(Cowper-Symonds Model) 

Density 
(Kg/m3) 

Speed of 
sound (m/s) 

Bulk modulus 
(GPa) 

Shear modulus 
(GPa) 

Poisson’s 
ratio 

Modulus of 
elasticity 

(GPa) 
m P (s-1) 

Pure Al 2700 5305 76 26.2 0.33 70 0.25 6500 AA 2219 2700 5100 76 26 0.33 73 
SS 304 8033 4211 142.5 77.5 0.29 193 0.28 996 
SS 321 8027 5130 120 90 0.29 193 

Table 1: Material properties 
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Mesh 

Type User-controlled 
Element Size Flyer tube-Extremely fine, Remaining Geometry-Fine 

Element Size parameters 

Maximum 
element size 

(mm) 

Minimum 
element size 

(mm) 

Maximum element 
growth rate 

Curvature 
factor 

2 0.004 1.1 0.2 
 

Contact pair 

Contact pressure method Augmented Lagrangian 

Penalty factor 
Penalty factor control Tuned for 

Preset Speed 

Solver (Time 
dependent) 

Direct solver used Multifrontal massively parallel sparse direct solver (MUMPS) 

Time stepping 
Method Steps taken by 

solver 
Maximum step 

(µs) Event tolerance 

BDF Free 0.1 0.01 

Table 2: FEM properties 

 
Figure 1: (a) and (b) Configuration of flyer and base tubes for different air gaps for the 
selected material pairs. (Schematic not drawn to scale). 

 

 
Figure 2: Flow chart depicting the methodology employed for model development and 
validation and performing sensitivity analysis. 
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Table 3 lists the parameters of the optimized neural networks. The input data for the 
neural network were randomly divided into three sets, i.e., training, cross-validation, and test 
data. The optimized network was validated using the test data (Fig. 2), which allowed for 
comparison of impact velocities predicted by FEM and the neural network. To further 
establish the predictability of the developed neural network, the general trend of impact 
velocity with variation in process parameters was checked and compared with known trends 
from literature (for Al-SS 304 pair). For this exercise, the velocity was calculated for random 
values of selected process parameters, with the calculation being performed with the best 
weights obtained during training step of the network development. The variation of the 
velocity with each parameter was done by generating random values of the considered 
parameter and keeping all the other parameters at their mid values. 

The trained and tested network was then utilized to perform a sensitivity analysis. A 
multidimensional domain representing the group of process parameters can be expressed in 
terms of K patterns. Every pattern represents a combination of process parameters, with at 
least one process parameter having a different value. Thus, for Kth pattern, sensitivity due to 
ith input can be defined as (Sharma et al., 2007): 
 

𝑆𝑆𝑖𝑖,𝑘𝑘 = �𝜕𝜕𝑦𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖
�                        (1) 

 
The overall sensitivity of ith input is given as follows: 
  

𝑆𝑆𝑖𝑖 = �∑ �𝑆𝑆𝑖𝑖,𝑘𝑘�
2𝐾𝐾

𝑘𝑘=1
𝐾𝐾

                   (2) 
 
The inputs and outputs were normalized (between 0 and 1) to account for the difference in 
the dimensionality of the different inputs.  

Transfer function Sigmoid Axon 
Learning algorithm Levenberg–Marquardt 

Data classification (%) 
Training Cross-validation Test 

70 15 15 

ANN topology 
 Al-SS 304 AA 2219-SS 321 

Upper layer 8-6-4 12-8-8-6 
Lower layer 6-4-4 6-5-4-4 

Table 3: Neural network parameters 

3 Results and Discussions 

The FEM was validated by comparing the simulated impact velocities with the experimental 
values available in the literature (Desai et al., 2010; Xu et al., 2013). Fig. 2 shows a close 
agreement between the impact velocities obtained from the simulations and the experimental 
values. A comparison of the impact velocities computed by the ANN and the FEM is 
depicted in Fig. 2. Most of the data lie on the bisector or in its vicinity, which presents a 



9th International Conference on High Speed Forming – 2020 
 
 

  

good correlation between FEM data and output predicted by the ANN. For both the material 
pairs, the percentage error in prediction is within the ± 10% range. 

Figs. 3 (a) to (i) show the general trend of impact velocity with process parameters 
predicted by the developed ANN. For all the considered process parameters, the neural 
network predicts variation in impact velocity with change in process parameters that 
matched with the trends observed in literature. Details regarding the change of the impact 
velocity with process parameters in MPW have been well explained in literature and thus 
have not been reiterated in this study (Kapil and Sharma, 2015a; Kapil, 2015). The developed 
model could accurately predict the impact velocity not only for a single case, but over a wide 
range of parameters, giving confidence in the model developed in this work.  

   

   
   

   
Figure 3: (a) to (i)  General trend of impact velocity with process parameters predicted by 
the ANN (Al-SS 304 material pair). 
 

Fig. 4 shows how sensitive each parameter is towards the impact velocity, which, as 
mentioned before, plays a decisive role in attaining a successful joint in MPW. For both 
material pairs, the coil cross-sectional area and turns (coil parameters) most significantly 
affected the process, followed by the operating voltage (electrical parameter) and the air gap 
(geometrical parameter) (also observed in Figs. 3(h), (f), (a) and (i) respectively). It can also 
be observed that the sensitivity was almost independent of the material combination 



9th International Conference on High Speed Forming – 2020 
 
 

  

employed. These observations are significant, as coil design strategies and guidelines have 
received limited attention in MPW.  

The results of neural network, developed herein can be utilized to identify optimized 
coil parameters for a variety of  materials employed, preventing  the physical need to produce 
many coils. Although the operating voltage is significant, electromagnetic coils are damaged 
or fatigued when higher voltages are employed, limiting the operable voltage range. In 
similar lines, the air gap, despite having a relatively high significance, has limited variability 
(ideally 1.5-3 mm (Kapil and Sharma, 2015a). Thus, coil design and its use with the 
conjunction of a field shaper (not considered in this study) provide higher flexibility to the 
user to frame process design guidelines. The lower significance of other electrical parameters 
(capacitance, frequency, resistance, and inductance) makes them less preferable to change, 
which is rather good. These parameters are fixed for a particular machine and would require 
substantial monetary resources to introduce variability. 

 
Figure 4: Sensitivity of impact velocity with process parameters. 

Once the parameters are filtered to introduce variability, the ANN could be used to 
inverse model to obtain the range of process parameters that yield feasible impact velocity 
as follows: 

1.2 ∗ 𝑉𝑉𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 < 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 < 1.2 ∗ 𝑉𝑉𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜              (3)  

where  𝑉𝑉𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is the threshold impact velocity below which the welding does not occur, 
and 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the velocity at which damage occurs, as observed from the FEM simulations. 
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𝑉𝑉𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is calculated using the speed of sound, material density, bulk modulus, shear 
modulus and the tensile yield stress of flyer and base materials (Kore et al., 2010; Botros, 
and Groves, 1980; Blazynski, 1983). The factor 1.2 ensures impact velocity remains 
sufficiently above the threshold while 0.8 compensates overprediction in impact velocity 
due to neglecting the compression of air between the colliding members.  

Although the focus of this study is limited to sensitivity analysis of process parameters 
based on impact velocity, the developed neural network can be extended to include other 
important criteria like impact angle, effective plastic strain, and shear stress, and thereby 
perform a multi-criterion, multi-parameter sensitivity analysis in future. The methodology 
employed in this study can also be extended for development of multi-criteria weldability 
windows.  The parameter interaction can be analysed in more detail to exploit neural network 
modelling as a decision-making tool in MPW. 

4 Conclusions 

1. Finite element model coupled with modular artificial neural network is an effective tool 
to analyze process sensitivity over a wide range of parameters for complex multi-variable 
manufacturing operations like magnetic pulse welding of dissimilar materials. 
Concurrently, the range of feasible impact velocity and corresponding process 
parameters can be obtained by inverse modelling. 

2. The order of predominance of the process parameters is established.  The coil cross-
sectional area and turns have the most significant effect on the impact velocity followed 
by the working voltage and air gap. The low order sensitivity of machine-specific 
electrical parameters makes the capital investment in a new welding machine to change 
the process parameter ranges the less preferred. 

3. The order of sensitivity to the individual parameters remained the same for the different 
material pairs used, meaning that the process and material effects can be isolated.  
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