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Magnetic blue shift of Mott gaps enhanced by double exchange
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A substantial energy gap of charge excitations induced by strong correlations is the characteristic feature of
Mott insulators. We study how the Mott gap is affected by long-range antiferromagnetic order. Our key finding
is that the Mott gap is increased by the magnetic ordering: A magnetic blue shift (MBS) occurs. Thus the
effect is proportional to the exchange coupling in the leading order in the Hubbard model. In systems with
additional localized spins the double-exchange mechanism induces an additional contribution to the MBS which
is proportional to the hopping in the leading order. The coupling between spin and charge degrees of freedom
bears the potential to enable spin-to-charge conversion in Mott systems on extreme time scales determined by
hopping and exchange only, since a spin-orbit-mediated transfer of angular momentum is not involved in the
process. In view of spintronic and magnonic applications, it is highly promising to observe that several entire
classes of compounds show exchange and double-exchange effects. Exemplarily, we show that the magnetic
contribution to the band-gap blue shift observed in the optical conductivity of α-MnTe is correctly interpreted as
the MBS of a Mott gap.
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I. INTRODUCTION

The discovery of insulating behavior in transition metal
oxides [1] and its explanation in terms of strong electron-
electron interaction [2] were the origin of the very active
research field of strongly correlated systems [3–6]. The
low-energy physics of Mott insulators is governed by spin ex-
citations [7]. A common and successful strategy to treat them
consists in disentangling spin and charge degrees of freedom
[8–11]. However, following this approach, it is difficult to
track the coupling between charge and spin dynamics, which
is expected to play a pivotal role in the recent massive surge
of interest in antiferromagnetic (AFM) spintronics [12–17].
The grand goal of this impressive research effort consists in
establishing the ability to convert spin signals into charge
responses on the shortest possible time scale and minimizing
as much as possible the energy dissipations.

So far, the typical route to spintronics relies on spin-orbit-
based transport effects [12] requiring a heavy metal layer on
top of the antiferromagnet to read out the electric system. The
vision of a spintronic information technology based solely on
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antiferromagnetism thus completely relies on the strength of
the spin-orbit coupling, which defines both the spin-charge
conversion efficiency and the operational frequency of a
device. Generically, exchange couplings are larger than spin-
orbit couplings by at least one order of magnitude. This makes
it desirable to use effects of purely exchange origin implying
shorter characteristic time scales and hence higher operational
frequencies.

Evidence has been reported that the charge gap in a Mott
insulator, the Mott gap, depends on the magnetic ordering
[18–20]. In particular, a magnetic shift of the band gap pro-
portional to the square of the sublattice magnetization could
enable a coherent modulation of the band-gap energy itself.
Coherent dynamics of the order parameter in AFM insula-
tors has been photoinduced and manipulated [21–23] where
frequencies of 22 THz [24–26] were found. This framework
would enable a coherent manipulation of the transport proper-
ties at the unprecedented 20 THz working frequency.

Local electronic interactions are essential for the formation
of magnetic moments. Thus there are two possible dichoto-
mous scenarios for the influence of the magnetic ordering on
the charge gap: (i) The charge gap is a band gap of s and
p electrons which are different from the electrons forming
the magnetic degrees of freedom. Then, the influence of the
localized spins is only indirect via superexchange with the
itinerant electrons. (ii) The charge gap is a Mott gap, so that
the electrons forming the localized spins are also the ones
forming the charge gap. A charge-transfer insulator also be-
longs to scenario (ii) because one of the bands relevant for the
optical gap is a strongly correlated one.

So far, the observed magnetic shifts have been discussed in
terms of scenario (i) [27–29]. The obtained results and even
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the overall sign of the effect, red or blue shift, depend on many
details of the system. Only very recently has the observed
magnetic shift of the band gap in hexagonal MnTe (α-MnTe)
[30,31] been linked to strong local interactions in a local
static mean-field model [30]. In this paper, we investigate the
temperature dependence of the Mott gap across the transition
from a paramagnetic to an AFM insulator. The transition to
the ordered phase is accompanied by a noticeable increase in
the Mott gap, i.e., a magnetic blue shift (MBS) of the Mott
gap occurs.

We address the fundamental nature of this MBS. By study-
ing models with increasing complexity within the dynamical
mean-field theory (DMFT) [3] we are able to pinpoint the
subtle differences and clarify the influence of the charge hop-
ping and the magnetic exchange interaction. We apply our
approach to a real material, α-MnTe, and demonstrate the very
good agreement with the available experimental data.

First, we study the MBS in two fundamental models, the
Hubbard model and the Hubbard-Kondo model, and unfold
some generic features. In the Hubbard model, we show that in
the leading order the MBS is proportional to the magnetic ex-
change appearing by mapping the half-filled Hubbard model
to a Heisenberg model or to a t-J model (at finite doping).
This results from the Slater mechanism: As a static alternating
field induced by the magnetic order opens an energy gap in a
metal, such a field also increases the existing charge gap in a
Mott insulator.

In the Hubbard-Kondo model an additional local spin S is
included at each lattice site to account for nonitinerant mag-
netic degrees of freedom. Due to Hund’s rules the itinerant and
the local spin are coupled locally by a ferromagnetic coupling
JH > 0. In this model, we find an additional contribution to
the MBS which is proportional to the hopping matrix element.
This hopping contribution is the dominant contribution in
systems with a large Hubbard interaction, which implies a
small magnetic exchange. We reveal that this contribution is
induced by the double-exchange mechanism due to a reduced
effective hopping upon transition from the paramagnetic to the
AFM insulator.

Second, we verify our approach by analyzing an exemplary
system promising for applications, hexagonal MnTe (α-
MnTe), which has been experimentally investigated [30,31].
We extend the S = 5/2 spin model explaining the inelastic
neutron scattering data [32,33] to a Hubbard-Kondo model
allowing for the coupling of the spin and charge degrees
of freedom. We compute the MBS of the Mott gap of the
half-filled 3d shell of Mn ions. Using only generic param-
eters established for α-MnTe in the literature and without
any fine-tuning, we achieve an overall excellent description
of the MBS measured in the optical conductivity. We unveil
the origin of the MBS in α-MnTe data and find a magnetic
exchange contribution of 36% and a hopping contribution of
64%. Our findings set the stage to study coupled spin and
charge dynamics in strongly correlated systems, including the
specific case of α-MnTe.

This paper is organized as follows. After this Introduction,
results for the Hubbard model are shown and interpreted.
Subsequently, the results for the Hubbard-Kondo model are
presented and discussed, in particular, the additional con-
tribution to the MBS stemming from the double-exchange

mechanism. Section IV deals with the particular case of
α-MnTe as a candidate for significant spin-charge coupling
based on the MBS. In Sec. V the results are summarized, and
a brief outlook is given.

II. THE THREE-DIMENSIONAL HUBBARD MODEL

The Hubbard model [34] at half filling comprises hopping
between nearest-neighbor (NN) sites controlled by the param-
eter t and an interaction U between electrons at the same site
with opposite spins

HH = −t
∑
〈i, j〉

∑
σ=↑,↓

(
c†

j,σ ci,σ + H.c.
) + U

∑
i

ni,↓ni,↑. (1)

This well-studied model shows a particle-hole symmetry at
half filling with respect to the energy μ = U/2 defining the
chemical potential μ used throughout this paper. The phase
diagram at finite temperatures on the cubic lattice is well
known at half filling [35–39]. At T = 0, the ground state
is a Néel antiferromagnet for any finite U/t [40]. The Néel
temperature TN separating the paramagnetic and the AFM
phases increases from 0 upon increasing U [37], reaches a
maximum, and decreases as TN ∝ t2/U in the strong-coupling
limit U � t where the model can be mapped onto a spin-1/2
Heisenberg model. At high temperatures, the phase is a metal
for small U/t and a paramagnetic Mott insulator for large
U/t separated from the metallic phase by a crossover region.
At large U/t , the Mott gap is proportional to U as a charge
excitation leads to the creation of a double occupancy which
requires the energy U .

We define the bare charge gap � as the value of the
charge gap in the absence of the hopping, t = 0. Although
in the Hubbard model the bare charge gap just equals the
Hubbard interaction U , it remains the relevant quantity also
in the Hubbard-Kondo model defining the magnetic exchange
interaction J = 4t2/�. We use the bare charge gap � in cases
where we aim to compare our results for the Hubbard model
and the Hubbard-Kondo model.

We employ the DMFT [3] with exact diagonalization (ED)
[41] as the impurity solver. This approach is well established
for strong local interactions where subtle effects such as an
emerging exponentially low energy scale associated with the
formation of a narrow band at the chemical potential in the
metallic phase cannot occur. For more details on the method
we refer the reader to Appendix A. We compute the averaged
local spectral function A(ω) = (AA

σ (ω) + AB
σ (ω))/2 from the

imaginary part of the local Green’s function of sublattices A
and B. We point out that the spectral function A(ω) does not
depend on spin even in the AFM phase because we average
over both sublattices.

We plot the local spectral function A(ω) of the Hubbard
model for different temperatures in the magnetic insulator
(MI) phase in Fig. 1(a) and in the paramagnetic insulator (PI)
phase in Fig. 1(b) for U = 20t . The spectral functions for
the different parameters are shifted vertically for clarity. Note
that the peak structure in A(ω) is caused by the discretized
representation of the conduction band in the ED impurity
solver with the number of bath sites nb = 6. Lowering the
temperature T in the PI hardly changes A(ω). However, in
the MI, a shift of the electron and hole contributions to
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FIG. 1. Spectral function A(ω) vs ω in the range [−8t,+8t] at
various temperatures T in the magnetic insulator (MI) (a) and in the
paramagnetic insulator (PI) (b) for U = 20t and nb = 6 bath sites in
the impurity problem. The Néel temperature is given by TN ≈ 0.3t .

higher excitation energies is clearly observed. Below the Néel
temperature TN ≈ 0.3t , the stable phase is the MI, but the
metastable PI solution can be computed as well and was added
to Fig. 1(b) for comparison.

The Mott gap is obtained from the energy difference be-
tween the two excitation energies of the spectrum that are
closest to the chemical potential μ; see the indicated arrows
in Fig. 1. While this gap is apparently a constant in the PI
phase as can be seen in Fig. 1(b), it shows a strong temperature
dependency in the MI phase in Fig. 1(a). Upon reducing T ,
the electron and hole peaks at ±5.5t shift apart to ±7t due to
the magnetic ordering. This leads to a MBS of the Mott gap
�MG(T ) of about 3t as T → 0.

We depict the Mott gap as well as the local spin polar-
ization m in units of h̄ vs the temperature T for U = 15t
in Fig. 2(a) and for U = 20t in Fig. 2(b). The results are
displayed for two bath sizes, nb = 6 and nb = 8, to illustrate
the accuracy of the approach. For U = 15t , the gap in the PI
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FIG. 2. The Mott gap in the magnetic insulator (MI) and in the
paramagnetic insulator (PI) as a function of temperature for U = 15t
(a) and U = 20t (b). The gray lines show the local spin polarization
m (right axes). The results for nb = 6 and nb = 8 are compared.
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FIG. 3. The lower band of the spectral function in the Hubbard
model for various values of the bare charge gap � = U in the MI
close to T = 0 and in the PI close to T = TN. The Fermi energy is
located at ω = μ = U/2. We have used the bare charge gap � as
the label since we aim to compare the results with the results of the
Hubbard-Kondo model. Clearly, the spectral functions in the PI and
in the MI phase approach each other upon increasing �. The results
are obtained for nb = 6 bath sites in the impurity solver. The MBS of
the Mott gap �MG(0) is twice the indicated arrows.

decreases slowly upon lowering the temperature. For U = 20t
it remains almost constant. However, in both cases there is a
rapid increase in the gap upon entering the MI phase which
illustrates the MBS.

At the continuous transition from the PI to the MI the gaps
have to be equal. This is not quite the case, most likely because
of inaccuracies in extracting the gap from the ED data at finite
bath sites. For U = 15t , the gap value is about 5.5t close to
the transition temperature and rises to about 9.4t for T → 0.
Comparing Figs. 2(a) and 2(b), a decrease in the MBS upon
increasing U from 15t to 20t is observed. Such a decrease
in the MBS in the Mott regime has also been observed in
Ref. [20].

To analyze the MBS �MG(T ) near T = 0 further, we depict
the spectral function as a function of ω for various values
of the bare charge gap � = U in the MI close to T = 0 and in
the PI close to T = TN in Fig. 3. We have used the bare charge
gap � as the label since we aim to compare the results with
the results of the Hubbard-Kondo model in the next section.
Only the lower Hubbard band is shown in Fig. 3 because
the upper Hubbard band is its mirror image with respect to
ω = μ = U/2 due to electron-hole symmetry, which is per-
fectly realized in our numerical data. We indicated the shift
of the excitation peak closest to the chemical potential by an
arrow defining half of the MBS, �MG(0)/2. The results are
for nb = 6 bath sites in the impurity solver. Figure 3 reveals
that the spectral functions in the MI and in the PI approach
each other more and more upon increasing the bare charge
gap � = U . Consequently, the MBS �MG(0) decreases as
t/� → 0.

The MBS in the Hubbard model has already been observed
in previous work [18,19], but not systematically studied.
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FIG. 4. The magnetic blue shift of the Mott gap �MG(T ) in units
of the hopping t at T = 0 is plotted vs t/�, where � is the bare
charge gap. The results are obtained for nb = 6 bath sites in the
impurity problem. In the Hubbard-Kondo model we set the local spin
to S = 2 and the Hund coupling to JH = 0.15U .

Recently, its monotonic decrease in the Mott regime for U →
∞ was noted in Ref. [20]. However, so far neither a functional
dependence nor a physical interpretation has been given. The
microscopic understanding of this highly promising effect for
application in AFM spintronics is thus still lacking.

In order to provide a quantitative description of the influ-
ence of the hopping t and the bare charge gap � onto the
MBS, we plot �MG(0)/t vs t/� in Fig. 4 for various com-
binations of t and �. This demonstrates clearly that the MBS
in the Mott regime is proportional to the exchange coupling
J = 4t2/�. Since the figure renders �MG(0) in units of t , the
proportionality �MG(0) ∝ J implies a straight line as depicted
in red. It fits very well to the blue data for small values of t/�
with a slope of 57.8, which is equivalent to �MG(0) ≈ 14.4J
underlining its magnetic origin. Thus this effect is quite siz-
able and sets the scale for further contributions.

The MBS can also be linked to the decrease in the free en-
ergy when the system enters the MI phase. If such a decrease
did not occur, the system would not display the phase transi-
tion to the ordered phase. The free-energy change below TN is
mainly due to the reduction of the internal energy, which can
be determined solely from the single-particle spectral func-
tion. Upon transition from the PI to the MI, a redistribution of
the weight within the spectral function occurs which leads to
a large increase in the internal energy if it is not compensated
by a MBS. This is exemplarily illustrated in Appendix B and
corroborates that the MBS is a generic feature upon entering
an antiferromagnetically ordered phase.

III. HUBBARD-KONDO MODEL

We extend the analysis presented so far for the Hubbard
model to a model which includes localized spins so that it also
bears features of a Kondo system. Specifically, we consider
the Hubbard-Kondo model [42–44] given by

HHK = HH + HK, (2a)

HK = −2JH

∑
i

�si · �Si, (2b)

where HH is the Hubbard model equation (1). The Kondo term
HK couples the spin of the electron �si ferromagnetically to the
local spin �Si originating from a Hund coupling. We choose the
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FIG. 5. The same as Fig. 3, but for the Hubbard-Kondo model
with the local spin S = 2 and the Hund coupling JH = 0.15U . The
bare charge gap is given by � = U + 4JH = 1.6U . The spectral
functions do not approach each other upon increasing U .

local spin quantum number to be S = 2 and the Hund coupling
to be JH = 0.15U . The bare charge gap is no longer given by
U alone but acquires a contribution from the Hund coupling,
� = U + 4JH.

Figure 5 depicts the local spectral functions as in Fig. 3 but
for the Hubbard-Kondo model. In contrast to data from the
Hubbard model, Fig. 5 shows that the spectral functions in the
PI and in the MI remain distinctly different even for large �

resulting in an enhanced MBS of the Mott gap �MG(0); see
the indicated arrows. This can clearly be associated with the
noticeably smaller bandwidth in the MI phase compared with
the PI phase, which is the fingerprint of the double-exchange
mechanism [45–48].

The double-exchange mechanism is well known for en-
hancing the mobility of an electron in a ferromagnetic state
since the 1950s, and it is responsible for ferromagnetism
in perovskite manganites. In an AFM state, however, the
double-exchange mechanism strongly suppresses the effective
hopping between sites with antiparallel spin ordering.

The basic idea of the mechanism is illustrated in Fig. 6.
A hole added to the half-filled system propagates with an
effective hopping which determines the bandwidth of the
single-particle spectral function. In the limit of large JH it is
natural to restrict the local Hilbert space such that the electron
spin s = 1/2 and the local spin S always form the maximum
total spin S + 1/2. This allows the following relation to be
derived for the effective hopping between sites i and j [49]:

t eff
i, j

t
= ST

i, j + 1/2

2S + 1
(−1)2S−ST

i, j+1/2, (3)

where ST
i, j is the total bond spin constructed from the spin

at site i and the spin at site j, i.e., from S + 1/2 and S
[50]. One notes that there is always a hole either at site
i or at site j. The total bond spin takes the values ST

i, j =
1/2, 3/2, . . . , 2S + 1/2. For parallel spin ordering between
sites i and j we have ST

i, j = 2S + 1/2, which results in the
effective hopping t eff

i, j = t . The PI phase is described by singlet
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FIG. 6. Illustration of the reduction of the effective hopping due
to the double-exchange mechanism. Due to the strong Hund coupling
only electrons with spin aligned with the local spin can occur. This
allows unrestricted hopping between sites with parallel spin orienta-
tion; see (b). However, for antiparallel spin orientation, no hopping
is possible; see (a).

bonds, i.e., bonds with the total spin 0. Adding a hole to a
singlet bond creates a bond with the total spin ST

i, j = 1/2,
which can be realized from the commutation relation

[ �S T
i, j · �S T

i, j , c j,α

] = 3

4
c j,α −

∑
β

c j,β �σα,β · �S T
i, j , (4)

where �S T
i, j = �si + �Si + �s j + �S j is the total bond spin operator

and �σ is a vector made of Pauli matrices. Such a hole prop-
agates with the effective hopping t eff

i, j = t (−1)2S/(2S + 1)
according to Eq. (3). In the case of antiparallel spin ordering
between sites i and j, a pure hopping can never take place,
i.e., the hopping of the hole is always accompanied by the
reduction of the local magnetic numbers from the absolute
maximum values [49].

The above discussion explains the narrower bandwidth we
observe for the Hubbard-Kondo model in Fig. 5 in contrast to
the results for the Hubbard model in Fig. 3. One notes that
the effective hopping in the Hubbard model for both MI and
PI phases is the bare hopping t . More importantly, the above
discussion explains the narrower bandwidth we observe in the
MI phase in contrast to the PI phase in Fig. 5, which is the
origin of the enhanced MBS in the Hubbard-Kondo model.

The results for the MBS in the Hubbard-Kondo model at
T = 0 in units of t are included in Fig. 4. The qualitative be-
havior of the MBS in the Hubbard-Kondo model significantly
differs from those of the Hubbard model. A substantial offset
in the limit t/� → 0 is observed in the quantity �MG(0)/t . A
linear fit given by the gray line

�MG(0)

t
= C1 + 4C2

t

�
(5)

with the constants C1 = 2.7 and C2 = 6.3 nicely agrees with
our data. Note that the exchange coupling is given by J =
4t2/� such that we end with the fit

�MG(0) = C1t + C2J. (6)

By plotting �MG(0)/t vs t/� in Fig. 4 we can separate the two
different contributions to the MBS more clearly: one propor-
tional to the hopping t which appears as a constant term and

one proportional to the magnetic exchange J which appears
as a linear term. The first contribution results from changes
in the effective hopping, and we refer to it as the hopping
or the double-exchange contribution. The second contribution
results from the alternating magnetic field as in the Hubbard
model, and we refer to it as the exchange contribution.

Our findings unfold the essential role that the double-
exchange mechanism can play in the future development of
AFM spintronics: It induces a coupling between the magnetic
order and the charge gap as large as the hopping. The rela-
tion equation (6) is highly promising since there are several
entire classes of compounds which show the exchange and
the double-exchange effects. We leave a more detailed inves-
tigation of the hopping and the exchange contributions of the
MBS to future research and instead apply our approach to a
real material for the rest of this paper.

IV. APPLICATION TO α-MnTe

Now we apply the acquired understanding of the MBS in
the Hubbard-Kondo model to a real compound: α-MnTe. This
AFM semiconductor displays a noticeable additional increase
of the optical gap below its Néel temperature TN ≈ 310 K.
To separate the MBS from other temperature-dependent con-
tributions, which are continuous, the experimental band gap
is fitted in the paramagnetic regime T > TN by the empirical
Varshni function [51], which allows one to extrapolate the
temperature dependence of the band gap in a paramagnetic
semiconductor down to zero temperature. The difference be-
tween the actually measured gap and the extrapolated value
quantifies the MBS [30,31]. Similar analyses were performed
also for other magnetic semiconductors [27–29,52].

The magnetic order in α-MnTe consists of planes of Mn2+

ions forming triangular lattices in which spins are parallel
ordered. These planes are stacked, and the spins are oriented
antiparallel in adjacent planes generating AFM order. Accord-
ing to Hund’s rule the total spin at the Mn2+ ions is S = 5/2
due to the half-filled d shell. The dispersion of the collec-
tive magnons is well understood [32,33,53]. In contrast, the
knowledge of the electronic excitations is significantly less de-
veloped, and the understanding of its coupling to the magnetic
system is still in its infancy. Density functional theory (DFT)
calculations [33,54,55] indicate that the conduction band in
α-MnTe is dominated by Mn 3d contributions although the
Mn 4s orbital is also involved. Assuming scenario (ii), we ne-
glect the 4s admixture and treat α-MnTe as a charge-transfer
insulator [16] where the optical gap g arises from promoting
an electron from the filled p band of Te2− to the empty upper
Hubbard band d+ at Mn2+; cf. the panel for T1 in Fig. 7.

Figure 7 schematically depicts the relative change in bands
upon lowering the temperature T1 → T2 → T3. As the tem-
perature is decreased from T1 to T2 > TN the p and the d+
bands shift apart with the Mott gap remaining unchanged.
This increase in the charge-transfer gap g is induced by slight
structural changes and minute temperature effects in the para-
magnetic phase. This fraction of the change in the gap is
continuous through the magnetic transition and thus captured
by the extrapolation with the Varshni function. For T3 < TN an
additional contribution �d+ to the gap arises due to the MBS
of the upper Hubbard band d+. In principle, the magnetic
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FIG. 7. Sketch of the bands in α-MnTe comprising the p bands
at Te2−and the lower (d−) and upper (d+) Hubbard bands of the 3d
electrons at Mn2+ at three temperatures T1 > T2 > TN > T3, where
TN is the Néel temperature. The energy difference between the d−

and the d+ Hubbard bands defines the Mott gap, and the energy
difference between the p and the d+ band defines the charge-transfer
gap g. The optical gap equals the charge-transfer gap. The Mott
gap experiences the magnetic blue shift �MG(T3) = �d+ + �d−,
while the charge-transfer gap experiences the magnetic blue shift
�CTG(T3) = �d+; see main text.

ordering could also affect the p band; however, this would be
an indirect effect, and we thus assume it to be less relevant.
Consequently, to address the MBS in α-MnTe, we focus on
an effective Hamiltonian describing the electrons in the 3d
shell of the Mn2+ ions.

For a quantitative description, the established Heisenberg
model for the spins of the Mn2+ ions [32,33] needs to be
extended by the charge degrees of freedom. The full extension
would require us to consider at least five d bands from the
Mn2+ ions plus three p bands from the Te2− ions. This is
by far too complex for an explicit numerical treatment of the
strong interactions present at the Mn sites. For this reason,
we follow the idea proposed in Ref. [30] and describe the
itineracy of each of the five d electrons in a one-band Hubbard
model while treating the other four d electrons as localized
forming a spin S = 2. We stress that the itinerant electron is
representative for all five electrons. We do not claim that the
five orbitals are different, but that for each electron in one of
them the other four act like a localized spin. In other words,
we make the approximation that the local Fock space of the
Mn+2 3d orbitals is restricted to the charge configurations
N = 4, 5, and 6, so that we only need to take into account
the charge fluctuation in one effective local orbital which is
degenerate with respect to spin. This is well justified since
we are interested in the low-energy charge excitations, specif-
ically, the charge gap.

Hence we consider a Hubbard-Kondo lattice model on
stacked triangular lattices (cf. Fig. 8),

H = −
∑
i, j

∑
σ=↑,↓

ti, j (c
†
j,σ ci,σ + H.c.) + U

∑
i

ni,↓ni,↑

− 2JH

∑
i

�Si · �si +
∑
i, j

Ji, j (�Si · �s j + �S j · �si + �Si · �S j ),

(7)

where the ti, j are the hopping elements and Ji, j are the
magnetic couplings; see Fig. 8(a). These effective magnetic
couplings Ji, j result from virtual excitations of the four d
orbitals, which are treated as local, to the neighboring Mn
sites.

FIG. 8. (a) Illustration of the Hubbard-Kondo model (7) for the
half-filled 3d shell of Mn2+ ions at two sites i and j. (b) Stacked tri-
angular layers with first, second, third, and fourth neighbors specified
so that we distinguish t1, t2, t3, t4 and J1, J2, J3, J4.

The intersite couplings are limited to the four nearest
neighbors specified in Fig. 8(b). We denote the hopping and
the magnetic coupling of the nth neighbor by tn and Jn. The
magnetic couplings are taken from the measured magnon
dispersion [33] to be J1 = 3.072 meV, J2 = 0.0272 meV,
J3 = 0.4 meV, and J4 = 0.16 meV, matching also the ob-
served Néel temperature. The Hubbard interaction U ranges
between ≈5 eV and ≈7 eV, and the Hund coupling ranges
between ≈0.7 eV and ≈1.0 eV, based on estimates from
atomic physics [30] and the DFT [33,54] calculations. We
investigate the effect of U and JH on the MBS in this pa-
rameter regime. The hopping elements tn are determined such
that they are consistent with the intersite exchange couplings,
i.e., Jn = 4t2

n /�, where � is the bare charge gap U + 4JH.
This is to guarantee that the low-energy spin excitations of
the Hamiltonian equation (7) are described by the S = 5/2
Heisenberg model already established for α-MnTe by inelastic
neutron scattering measurements [33]. The explicit values of
the parameters are given in Appendix C. It must be noted that
the larger, dominant hoppings t1 and t3 link sites with AFM
ordering. Hence we expect a noticeable hopping contribution
to the MBS to occur, stemming from the double-exchange
mechanism described in Sec. III.

The DMFT accurately accounts for the local interactions U
and JH. In the limit of infinite coordination number justifying
DMFT, the intersite interactions Jn are consistently treated by
static mean fields [56]. Thus the intersite magnetic interac-
tions are represented by

HMF = −
∑

i

(
hloc

i Sz
i + hiti

i sz
i

)
, (8)

where the effective magnetic fields

hloc
i = 2(J1 − 3J2 + 6J3 − J4)

〈
Sz

i + sz
i

〉
, (9a)

hiti
i = 2(J1 − 3J2 + 6J3 − J4)

〈
Sz

i

〉
(9b)

act on the localized spin (hloc
i ) and on the itinerant spin (hiti

i ),
respectively. They need to be determined self-consistently. For
simplicity, we take the magnetization in the z direction al-
though a weak spin-orbit coupling orients it in the x direction
[33,55]. However, for the spin-isotropic model studied here
this does not matter.

The resulting Hamiltonian is solved using DMFT start-
ing from an initial guess for the self-energy and the local
magnetizations 〈Sz

i 〉 and 〈sz
i 〉. These quantities are updated in
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FIG. 9. (a) Theoretical results for the Mott gap and the local spin polarization m vs T . (b) Theoretical and experimental (given by Bossini
et al. [30] and Ferrer-Roca et al. [31]) results for the MBS in α-MnTe as a function of temperature. (c) MBS vs the squared spin polarization
m2 combining the theoretical results from (a) and (b) for various values of U and JH for nb = 5.

each DMFT loop until convergence is reached within some
tolerance; see Appendix A 2. This approach is well justified
and goes far beyond the previous two-site calculation [30] be-
cause it properly treats the extended lattice and the dynamics
of single charges and it allows us to study the temperature
dependence. Of course, more sophisticated calculations are
conceivable in the future to fix numerical values to higher
accuracy [20,57,58], but our aim here is to elucidate the fun-
damental physics.

In Fig. 9(a) we plot the temperature dependence of the
Mott gap as obtained with nb = 5 and nb = 7 bath sites for
U = 5.5 eV and JH = 0.8 eV. The agreement of both data sets
underlines that the results do not depend significantly on the
number of bath sites. In addition, the local spin polarization
m = |〈Sz

i + sz
i 〉| is shown, coinciding for nb = 5 and nb = 7

and indicating a Néel temperature TN ≈ 380 K. This value
represents a classical estimate since the DMFT approach does
not capture intersite fluctuations, which are shown [33] to re-
duce TN to ≈310 K in accordance with experiment [53,59,60].
Hence the effect of the neglected intersite fluctuations on the
gap appears to be about 6 meV (≈70 K).

The Mott gap remains almost independent of temperature
in the paramagnetic phase T � 380 K in line with our findings
in the Hubbard model. This result supports the assumption in
Fig. 7 that for T > TN the Mott gap remains unchanged and
the increase in the charge-transfer gap g is essentially due to
a smooth relative shift of the p band captured by the Varshni
fit. The antiferromagnetic ordering induces a MBS of the Mott
gap �MG(T ) of approximately 250 meV as T → 0. This is the
shift between the lower d− and the upper d+ Hubbard bands
in Fig. 7, i.e., �d+ + �d−. The MBS of the charge-transfer
gap �CTG(T ), which is the MBS measured in the experiment,
is given by �d+. Since we cannot calculate the individual
contributions �d± separately, we assume that they are shifted
symmetrically, i.e., �d+ = �d−, typical for a half-filled Mott
insulator. This implies that the theoretical MBS of the charge-
transfer gap �CTG(T ) = �MG(T )/2 is about 120 meV at its
maximum.

Figure 9(b) shows �CTG as function of T/TN. For all four
pairs of U and JH we find the same Néel temperature TN ≈
380 K, which is to be expected since TN is determined from
the low-energy Heisenberg model defined by the intersite

exchange couplings Jn, which we kept fixed; for tables of the
explicit parameters used, see Appendix C. However, the Mott
gap changes significantly from ≈7 eV for U = 4.0 eV and
JH = 0.8 eV to ≈11 eV for U = 7.0 eV and JH = 1.0 eV.
Remarkably, there is hardly any change in the MBS despite
this large change in the Mott gap. This corroborates that the
essential parameters for the MBS are the exchange couplings
and the hopping elements as indicated by Eq. (6) above.

We also added the experimental results for the MBS to
Fig. 9(b). The theoretical data agree nicely with the data of
Bossini et al. [30] for T � 0.5TN. It is mentioned by Ferrer-
Roca et al. [31] that their data probably underestimate the
MBS between T ≈ 0.45TN and T ≈ 0.65TN. The results of
Bossini et al. deviate from theory below T ≈ 0.5TN, where
the experimental data turn down in contrast to expectation
and the data set from Ref. [31]. The deviating downturn is
likely due to experimental reasons, e.g., sample quality and/or
stability of the experimental conditions. In fact, due to the sat-
uration of the spin polarization at low temperatures we expect
the MBS also to saturate as is found by Ferrer-Roca et al.
for T < 0.4TN. We emphasize that the very good agreement
between experiment and theory in Fig. 9(b) is achieved using
generic parameters from the literature for the Hubbard-Kondo
model without any fine-tuning in contrast to the approach in
Ref. [29]. This provides strong evidence that the observed
blue shift upon ordering is the generic MBS of the advocated
Hubbard-Kondo lattice model.

Finally, Fig. 9(c) combines the calculated �CTG(T ) and the
local spin polarization m(T ) eliminating the temperature. The
value of the gap at TN is fixed such that the MBS vanishes for
m2 → 0. The figure clearly shows that there is an almost linear
relation between the squared local spin polarization m2 and
the MBS, �CTG(T ) ∝ m2(T ), for various parameter combina-
tions of the local interactions U and JH. This behavior is in line
with previous experimental findings [31] and underlines that
the MBS is a robust effect not depending on details. Reference
[29] also finds a MBS ∝ m2, but the computation strongly
depends on the chosen parameters since it originates from
scenario (i), in which the magnetic order affects the itinerant
electrons only indirectly.

The MBS in Hubbard-Kondo models is governed by a
contribution from the hopping and a contribution from the
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FIG. 10. MBS at T = 0 as a function of the scaling parameter
of the hopping λ as given in Eqs. (10a) and (10b). As in Fig. 4, the
MBS offset on the y axis is proportional to the hopping stemming
from the double-exchange mechanism, while the slope results from
the contribution to the MBS proportional to the magnetic exchange
couplings. Note that for α-MnTe (λ = 1) the hopping contribution
equals roughly twice the exchange contribution.

intersite exchange interaction; see Eq. (6). We investigate this
point for α-MnTe as well by means of a plot analogous to
Fig. 4. In view of the numerous parameters relevant for α-
MnTe (four hopping elements, four exchange couplings, the
Hubbard interaction, and the Hund coupling) a variation of
individual parameters appears to be not practical. Hence we
resort to a uniform scaling by a parameter λ according to

tn → tn(λ) = λtn (10a)

⇒ Jn → Jn(λ) = λ2Jn (10b)

leaving the local interactions U and JH unchanged. The plot
�CTG(T = 0)/λ vs λ for U = 5.5 eV and JH = 0.8 eV in
Fig. 10 recreates the same kind of analytical dependence as
Fig. 4. Note that for λ < 2 we have λtn/� < 0.02, which
corresponds to the deep Mott regime. As expected, we find the
same qualitative behavior as in Fig. 4 described very well by a
linear fit. The offset at λ = 0 is the contribution proportional
to the hoppings due to the rescaled �CTG(0)/λ plotted. In the
same way, the slope results from contributions proportional
to the magnetic exchange couplings Jn(λ) ∝ λ2. The plot in
Fig. 10 again allows us to separate the two contributions, as
the plot in Fig. 4 did for the Hubbard-Kondo model. The
nice linear behavior suggests a hopping contribution of about
76 meV and an exchange contribution of about 43 meV to the
MBS in α-MnTe. This large hopping contribution emphasizes
the important role of the double-exchange mechanism in the
MBS in systems with localized spins.

V. CONCLUSIONS

We established that the MBS in the Mott regime of the
three-dimensional (3D) Hubbard model stems from the mag-
netic exchange coupling. While the decrease in the MBS
with increasing interaction U has been observed before [20],

its proportionality to the magnetic exchange J = 4t2/U is a
finding which sets the energy scale for further contributions.

Our key result relates to systems which involve localized
spins in addition to itinerant electrons. For the Hubbard-
Kondo model with a ferromagnetic Kondo coupling we
showed that there are two contributions to the MBS: one sim-
ilar to the MBS in the Hubbard model which is proportional
to the magnetic exchange, and another which is proportional
to the hopping. The latter stems from the double-exchange
mechanism, which reduces the effective hopping between
sites with antiparallel spin ordering.

This finding opens up a route to applications of the
MBS since a plethora of heavily investigated systems con-
sist of itinerant electrons and localized spins, for instance,
the manganites. Exemplarily, we elucidated the origin of
the experimentally established MBS in α-MnTe, which is a
promising candidate for applications with AFM order at room
temperature. We developed an extended Hubbard-Kondo lat-
tice model for α-MnTe. The MBS found in this model is in
overall excellent agreement with the experimental findings for
α-MnTe.

Strong MBSs in magnetic semiconductors can play a major
role in spin-to-charge conversion on the femtosecond time
scale, which is the characteristic time scale of the hopping
and the intersite exchange interactions. Recent progress in
the manipulation of magnons in antiferromagnets on ultrafast
time scales [24,61] adds to the relevance of a comprehensive
understanding of the coupling of spin and charge dynamics
[62]. A major outlook of our work consists in exploring the
role of the dimensionality of a Mott system in the MBS.
This is highly relevant in view of both the massive present
research activity focused on 2D materials and the widely
explored properties of low-dimensional magnetic semicon-
ductors. Hence the demonstrated MBS paves a promising
route for future research, both fundamental and applied.
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APPENDIX A: THEORETICAL APPROACH

1. General remarks

We use dynamical mean-field theory (DMFT) [3], which is
an established approach for strong local interactions and large
coordination number. The frequency-dependent self-energy
allows us to describe paramagnetic Mott insulators, not ac-
cessible by static mean-field theories. We use the real-space
DMFT (RDMFT) method [63–65] as implemented by one of
us [66] and applied successfully to various models [67–69].
We note that for the bulk properties it is not necessary to use
the real-space extension of DMFT. However, in view of future
analysis of the spatial dependence in thin films as in Ref. [30]
we opt for RDMFT for comparability.

Exact diagonalization (ED) is employed as the impurity
solver [41] providing direct access to dynamics at real fre-
quencies and the quantum mechanical treatment of localized
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spins going beyond previous classical approximations based
on the quantum Monte Carlo solver [44,70,71]. The local
spectral function A(ω) results from the imaginary part of the
local Green’s function, averaged over both sublattice sites. We
compute the Mott gap from the positions of the peaks in the
spectral function. Although the spectral function for a finite
number of bath sites nb consists of a series of sharp peaks
approximating the continuous function, the Mott gap is found
to be accurate and is used to benchmark the results of other
methods [19]. We use the chemical potential μ to satisfy the
condition of half filling. The lattice system is approximated
by clusters of L × L × L sites with L = 10. We checked for
selected temperatures close to the transition temperature that
the results remain the same for L = 20.

2. Dynamical mean-field theory of the Hubbard-Kondo model

After the mean-field decoupling of the intersite magnetic
interactions shown in (8) the Hamiltonian from (7) reads

H = −
∑
i, j

∑
σ

t j,i(c
†
j,σ ci,σ + H.c.) −

∑
i

(
hiti

i sz
i + μni

)

+ U
∑

i

ni,↓ni,↑−2JH

∑
i

�Si · �si −
∑

i

hloc
i Sz

i (A1)

with the effective magnetic fields

hloc
i = 2(J1 − 3J2 + 6J3 − J4)

〈
Sz

i + sz
i

〉
, (A2a)

hiti
i = 2(J1 − 3J2 + 6J3 − J4)

〈
Sz

i

〉
(A2b)

acting on the localized spin �Si and on the spin of the itinerant
electrons �si, respectively, at the lattice site i. We added a
chemical potential term μ to the Hamiltonian (A1) to control
the electron density ni := ni,↓ + ni,↑ in the system keeping
it at half filling. In the derivation of Eqs. (A2a) and (A2b)
we consider ferromagnetic order within the triangular layers
and antiferromagnetic order between them. For simplicity,
the magnetic order is taken to be in the ẑ direction in spin
space, but the choice of direction does not matter since we
consider a fully spin isotropic model. The treatment of the
weak anisotropy stemming from a spin-orbit coupling [33,55]
is left to future research. The effective magnetic fields in
Eqs. (A2a) and (A2b) depend on the local spin polarizations
〈Sz

i 〉 and 〈sz
i 〉 and need to be determined self-consistently in

the course of the iterations of the RDMFT.
Essentially, we use the RDMFT implementation of

Ref. [66] for SU(2) systems with a generalization of the An-
derson impurity model to an Anderson-Kondo impurity model
which includes the additional local degrees of freedom, here
the localized spin in Eq. (A1). Note that we treat the spin fully
quantum mechanically. We also updated the implementation
of Ref. [66] such that some local expectation values are com-
puted during the RDMFT loop so that the mean fields can
be modified iteratively. In the case of the Hamiltonian (A1)
these local expectation values are the spin polarizations 〈sz

i 〉
and 〈Sz

i 〉, needed for the calculations of the effective magnetic
fields in Eqs. (A2a) and (A2b). We stress that the local Green’s
function, the self-energy, and the dynamical Weiss field are all
diagonal in spin space as the Hamiltonian Eq. (A1) is diagonal
in Sz. This simplifies the general formalism of Ref. [66].

The terms in the first line of Eq. (A1) describe the non-
interacting parts of the itinerant electrons from which the
noninteracting lattice Green’s function is constructed. The
second line in Eq. (A1) contains the Hubbard interaction be-
tween the itinerant electrons, the Hund coupling between the
spin of the itinerant electron and the localized spin S = 2, and
the effective magnetic field at the localized spin. They enter
the calculation in the local impurity problem. The RDMFT
loop starts with an initial guess for the self-energy matrix
�(iωn) and the local spin polarizations 〈sz

i 〉 and 〈Sz
i 〉. The

real-space lattice Green’s function is calculated according to
Dyson’s equation

G(iωn) = [iωn1 − H0 − �(iωn)]−1, (A3)

where H0 is the matrix representation of the noninteracting
terms in the first line of Eq. (A1). To address the local problem
at the lattice site i, we use the Anderson-Kondo impurity
model [72]

Hi = −μni − hiti
i sz

i + Uni,↓ni,↑ − hloc
i Sz

i − 2JH
�Si · �si

+
nb∑

	=1

∑
σ

εi
	a†

	,σ a	,σ +
nb∑

	=1

∑
σ

(a†
	,σV i

	,σ ci,σ + H.c.),

(A4)

where a†
	,σ and a	,σ are the fermionic creation and annihilation

operators at the bath site 	 with the spin σ =↑,↓. The bath
sites in Eq. (A4) approximate the effect of the surrounding
sites in the lattice [3]. The bath parameters εi

	 and V i
	,σ are

determined by fitting the dynamical Weiss field [41,66]. The
self-energy as well as the local spin polarizations 〈sz

i 〉 and
〈Sz

i 〉 are calculated using ED of the Anderson-Kondo impu-
rity model (A4). These quantities are employed for the next
RDMFT iteration loop.

Since the model is symmetric with respect to a combined
swap of the sublattice and the spin orientations, we only need
to set up the impurity model (A4) for one representative site.
In this sense, the lattice solutions are homogeneous. Hence
one does not need to fully invert the matrix in Eq. (A3)
because only the two columns for the two spin orientations
at the representative site are needed [66]. This enables us to
treat very large system sizes in Eq. (A3) so that finite-size
corrections are completely negligible.

APPENDIX B: INTERNAL ENERGY AND
MAGNETIC BLUE SHIFT

The internal energy of a general interacting fermionic sys-
tem described by the Hamiltonian

H = H0 + W =
∑
i, j

hi, jc
†
i c j + 1

2

∑
i, j,k,l

Wi, j,k,l c
†
i c†

j ckcl (B1)

can be expressed as [73]

E := 〈H〉 = 1

2

∑
i, j

∫ +∞

−∞
dωAi, j (ω) f (ω)[ωδi, j + hi, j],

(B2)
where i and j specify single-particle quantum numbers,
Ai, j (ω) is the spectral function of the single-particle Green’s
function, and f (ω) is Fermi’s occupation function. Equation
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FIG. 11. The partial energy I (ω) defined in Eq. (B4) vs fre-
quency ω changing over the lower Hubbard band for the 3D Hubbard
model for U = 15t and T = 0.2t in the MI (dark blue) and in the PI
(red) as well as in the MI without MBS (light blue). The vertical
dashed line at U/2 = 7.5t shows the Fermi energy. The number of
bath sites is nb = 6 in the ED impurity solver.

(B2) shows that the internal energy can be determined solely
from the single-particle spectral function. The first contribu-
tion in Eq. (B2) describes 〈H0〉/2 + 〈W 〉, while the second
contribution equals half the kinetic energy, 〈H0〉/2.

The Mott gap separating the lower and the upper Hubbard
bands is typically much larger than the Néel temperature TN.
For temperatures T � TN this essentially restricts the integra-
tion in Eq. (B2) to only the lower Hubbard band (LHB). Then,
the first contribution in Eq. (B2) can be simplified to

ε1 = E1

N
=

∫
LHB

ωA(ω)dω, (B3)

where N is the number of lattice sites and we used the trans-
lational symmetry of the spin-averaged local spectral function
A(ω), which we plotted in Fig. 1.

In order to see how the energy in Eq. (B3) is distributed
over frequency, we consider the partial energy

I (ω) =
∫ ω

−∞
ω′A(ω′)dω′, (B4)

which equals ε1 if ω is large enough to cover the whole LHB.
In Fig. 11 we plot I (ω) for the 3D Hubbard model at U = 15t
and T = 0.2t in the MI and in the PI as well as in the MI
without any MBS of the local spectral function. The results
are obtained using nb = 6 bath sites in the ED impurity solver.
Figure 11 clearly shows that upon entering the magnetically
ordered phase from the paramagnetic phase, a redistribution of
the weight within the spectral function occurs which leads to
a large increase in the internal energy if it is not compensated
by a MBS. Such a redistribution has been observed also in
Ref. [18], both experimentally and theoretically.

For the Hubbard model H = Ht + HU with the nearest-
neighbor hopping term Ht and the Hubbard interaction HU we
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FIG. 12. The internal energy 〈Ht + HU 〉 and the individual con-
tributions 〈Ht/2 + HU 〉 and 〈Ht/2〉 of the Hubbard model H = Ht +
HU per lattice site vs the temperature T for the Hubbard interaction
U = 15t and nb = 6 bath sites in the ED impurity solver.

plot the internal energy 〈Ht + HU 〉 per lattice site in Fig. 12
for U = 15t and nb = 6. We include also 〈Ht/2 + HU 〉 and
〈Ht/2〉, corresponding to the first and the second contribution
in Eq. (B2), respectively. We see that 〈Ht/2 + HU 〉 remains
close to zero and the reduction of the internal energy below
TN is mainly due to 〈Ht/2〉. Without MBS the contribution
〈Ht/2 + HU 〉 would increase substantially in the MI phase;
see Fig. 11. This shows that the MBS is crucial to achieve a
decrease in the internal energy, which is the prerequisite for
the phase transition into the ordered phase to occur.

APPENDIX C: MODEL PARAMETERS FOR α-MnTe

We fixed the intersite exchange interactions in α-MnTe
according to the values from Ref. [33]: J1 = 3.072 meV, J2 =
0.0272 meV, J3 = 0.4 meV, and J4 = 0.16 meV. The hopping
parameters corresponding to the different sets of the Hubbard
interaction U and the Hund coupling JH are calculated from
the relation

Jn = 4t2
n /� (C1)

with � = U + 4JH. They are given in Table I for future con-
venient use.

TABLE I. The hopping parameters tn in α-MnTe according to
Eq. (C1) for the various sets of Hubbard interaction U and Hund
coupling JH. The hopping parameters are in units of meV, and U and
JH are in units of eV. The subscripts of the hopping parameters refer
to the numbers in Fig. 8(b).

(U, JH) (eV) t1 (meV) t2 (meV) t3 (meV) t4 (meV)

(7.0,1.0) 91.91 8.649 33.16 20.97
(7.0,0.7) 86.75 8.163 31.30 19.80
(5.5,0.8) 81.74 7.692 29.49 18.65
(4.0,0.8) 74.36 6.997 26.83 16.97
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TABLE II. The intersite exchange couplings Jn, the Hubbard
interaction U , and the Hund coupling JH in units of t1. The rows
correspond to the different parameter sets used in Table I.

(U, JH) J1 (10−2) J2 (10−2) J3 (10−2) J4 (10−2)

(76.16,10.88) 3.342 0.02959 0.4352 0.1741
(80.69,8.07) 3.541 0.03135 0.4611 0.1844
(67.29,9.787) 3.758 0.03328 0.4894 0.1957
(53.79,10.76) 4.131 0.03658 0.5379 0.2152

Expressing energies in units of t1, as used in the DMFT calcu-
lations, one has the hopping parameters

tn = t1
√

Jn/J1 (C2)

independent of the choice of U and JH. They are given by
t2 = 0.0941t1, t3 = 0.3608t1, and t4 = 0.2282t1. However, the
intersite exchange couplings Jn in units of t1 depend on U and
JH. Table II provides Jn, U , and JH in units of t1 corresponding
to the different parameter sets used in Table I.
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