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Abstract

The field of computer vision has recently been dominated by the fast advancements
made in the area of differentiable programming. CONVOLUTIONAL NEURAL NET-
WORKs (CNNs) are omnipresent in several image analysis tasks, providing expressive
features that are useful for a large set of down-stream tasks. DEEP LEARNING
(DL) in general, enabled through the vast processing power and parallel nature of
current-gen GRAPHICS PROCESSING UNITs (GPUs), allows us to learn relations
between extremely high-dimensional data and high-level features, which often are too
complex for the human mind to grasp and to describe manually. Instead of designing
specific algorithms down to the last detail, we now define the rules and data flows
of how information is processed, taking control at a higher level of abstraction.

In contrast to data in the field of 2D computer vision, which is available in the
form of grid-based images in vast quantity, 3D data representations are much more
diverse and usually need to be chosen for each task individually, mainly because
the cubic complexity of 3D grids does out-scale our current capabilities for storing
and processing data. Thus, data types like point clouds, meshes, and more abstract
3D representations like geometric graphs are widely used concepts to solve tasks in
3-dimensional domains. The beneficial properties of DL are not trivially transferred
to these irregularly structured representations, as they often come with their own
types of inherent symmetries and are not mapped to the GPU as easily as images and
CNNs. Additionally, processing these types of data with pure end-to-end methods,
thus simply feeding the vectorized data into DEEP NEURAL NETWORKS, does usually
not lead to efficient, high quality, or interpretable methods.

This thesis is concerned with designing and analyzing efficient differentiable data
flows for representations in the field of 3D vision and applying it to different 3D vision
tasks. To this end, the topic is looked upon from the perspective of differentiable
algorithms, a more general variant of DL, utilizing the recently emerged tools
in the field of differentiable programming. Contributions are made in the sub-
fields of GRAPH NEURAL NETWORKs (GNNs), differentiable matrix decompositions
and IMPLICIT NEURAL FUNCTIONS, which serve as important building blocks for
differentiable algorithms in 3D vision. The contributions include SplineCNN, a neural
network consisting of operators for continuous convolution on irregularly structured
data, LOCAL SPATIAL GRAPH TRANSFORMERS (LSGTS), a GNN to infer local surface
orientations on point clouds, and a parallel GPU solver for EIGENDECOMPOSITION
(ED) on a large number of symmetric matrices. For all methods, efficient forward
and backward GPU implementations are provided. Consequently, two differentiable
algorithms are introduced, composed of building blocks from these concept areas.
The concepts and algorithms are analyzed with respect to criteria of quality, efficiency,
and interpretability.
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The first algorithm, DIFFERENTIABLE ITERATIVE SURFACE NORMAL ESTIMA-
TION (DISNE), is an iterative algorithm for surface normal estimation on unstruc-
tured point clouds. DISNE is an ITERATIVE RE-WEIGHTED LEAST SQUARES (IRLS)
algorithm, solving a large set of weighted least squares problems in parallel on a
point graph, for which after each iteration the point pairs are re-weighted using a
GNN. It is shown that the algorithm is orders of magnitude faster than previous DL
approaches while also improving on their result quality. Additionally, it is easier to
interpret than full end-to-end approaches, as intermediate representations can be
visualized and analyzed. The second algorithm, GROUP EQUIVARIANT CAPSULE
NETWORKS, is a version of capsule networks grounded in group theory for unsu-
pervised pose estimation and, in general, for inferring disentangled representations
from 2D and 3D data. It is provably able to infer poses that are equivariant with
respect to transformations of a chosen group. It is shown that the algorithm is able
to succeed in the tasks of rotation invariant object classification and unsupervised
pose estimation, while providing interpretable representations.

All in all, this thesis concludes that a favorable trade-off in the metrics of
efficiency, quality and interpretability can be found by combining prior geometric
knowledge about algorithms and data types with the representational power of DL.
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CHAPTER 1

Introduction

The advent of DEEP LEARNING (DL) marks one of the most important milestones
in recent computer science history. The important difference to previous learning
methods and also early neural network research is that it enables us to learn complex,
non-linear distributions and coherences just from a large amount of gathered data
points. The question arises, what made it possible for DL to rise in the recent
years, starting with the well-known work about classifying natural images from the
ImageNet database in 2012 [KSH12]. The basic methods of todays DL successes
were already present very early. The method for iteratively backpropagating errors
through arbitrarily connected systems by applying the chain-rule, the product rule
and linearity of differentiation was already thought of in 1970 by Linnainmaa [Lin70]
and applied to neural networks from 1981 on [Wer81; RHWS86]. The same method
is still the core of today’s neural network training and is an important foundation
of this thesis. Similarly, common neural network models were already introduced
very early, such as Perceptrons in 1958 by Rosenblatt [Ros58] (as a machine instead
of an algorithm at first), the first adaptive MULTI-LAYER PERCEPTRONs (MLPs)
in 1965 [IL65], and CONVOLUTIONAL NEURAL NETWORKs (CNNs) for image
classification in 1989 [LBD+89]. Even more complex architectures with huge
practical success today were already introduced in the 1980s and 90s, such as
autoencoders in 1986 [RHW86; Bal87] and LONG SHORT-TERM MEMORY (LSTM)
for RECURRENT NEURAL NETWORKs (RNNs) in 1997 [HS97]. The history of DL
goes back many years and took several interesting turns, as the reader may discover
in the exhaustive overview by Schmidhuber [Sch15].

The main difference of today’s research to the peak of DL research in the 1980s
is the capability of capturing and processing the sheer amount of data that is used
to train neural networks, allowing for deeper and semantically richer models. The
parallel processing power of modern GRAPHICS PROCESSING UNITs (GPUs) enables
most of these novel and practically relevant applications we see today. Simple
data vectors x € R™ are naturally processed using the well-known MLPs, which
can be efficiently brought to the GPU as matrix multiplication. The same goes for
two-dimensional images with multiple channels X € R**¥*¢ for which CNNs impose
a nearly optimal inductive bias for most real world applications, which is efficiently
parallelized on the GPU over the image pixels. Through this extremely efficient
processing of large real-world datasets, we are able to find relations in data that were
unaccessible before. Evidently, DL enabled us to classify general images [KSH12],
to model and sample from complex real-world image distributions [GPM-+14], to
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2 Chapter 1. Introduction

represent whole 3D scenes as parameters of one MLP [MST+20], to model natural
languages [BMR~+20], to model physical processes [SCW+15], and much more.
Usually, the complexity of the distributions and relations we can model through DL
even surpasses what we can understand, making it hard or impossible to interpret
what deep neural network models actually do internally. Therefore, the research goals
naturally shifted over the past few years. When we formerly tried to understand the
problems we want to solve in as much detail as possible, we are now more interested
in designing data flows that are able to capture and solve the problem for us, given
large datasets with training examples.

This thesis is built upon two premises, from which the first is a consequence of
this observation. It states designing data flows for forward and backward operations,
thus inventing ways to represent and process different data types efficiently on GPUs
or similar parallel processing hardware, is one of the most if not the most important
task when aiming to advance the state of the art in DL. In the field of 3D vision,
which is the focus of this thesis, we often are confronted with more irregular types
of data, such as point clouds, sparse depths maps, meshes or graphs. In addition
to the challenge of processing them using a parallel data flow model, they usually
exhibit different natural symmetries which are way more complex than the often
occurring translative symmetries in the image domain, for which CNNs are a natural
fit. Therefore, this thesis takes a step towards optimal processing methods for
data types in 3D vision, accounting for the different types of representation and
developing appropriate inductive biases.

Years of research in 3D vision led to a vast amount of specialized algorithms and
data structures to process, analyze, and store data, accounting for symmetries in the
data and incorporating problem-specific knowledge [HZ03]. Taking the simple task of
surface normal estimation on point clouds as an example, we know very well that we
can formulate the task as a local least squares plane fitting problem and solve it using
EIGENDECOMPOSITION (ED) or SINGULAR VALUE DECOMPOSITION (SVD) (cf.
Chapter 5), which already accounts for the underlying symmetry of 180° rotations.
In contrast, a full end-to-end deep learning approach might apply a stronger data
prior to solve this task but always has to find such well-understood symmetries
itself, increasing the required amount of training data and required network capacity.
Usually, the fixed function algorithms in the field of computer vision, such as the one
for surface normal estimation, come with a set of free parameters, which are chosen
manually or using heuristics based on data. In many cases, this part of the algorithm
is heavily dependent on prior information about the given data. Consequently, this
is the part were applying a DL solution might provide the optimal benefit, which
leads us to the second premise of this thesis. Instead of either solving a problem
completely end-to-end with deep universal neural networks, ignoring all problem-
specific knowledge, or using traditional algorithms with manually found parameters,
we assume that the best solutions can be found by combining the best of both worlds:
finding algorithms that utilize existing knowledge about the underlying problems while
parameterizing them using data-driven DL models. The goal is to keep advantages
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from both domains. We aim to be more efficient in resource consumption than pure
end-to-end deep learning approaches, increasing practicality of the methods through
faster computation, less required training data, and less memory consumption. The
algorithms should be more interpretable than current DL methods, i.e. it should be
possible to manually analyze and understand some intermediate representations,
allowing for better understanding of the whole algorithm. At the same time, we still
want to be able to capture and utilize the complex, non-linear relations that exist
in real world data and that are otherwise hard to describe, keeping the favorable
properties that led to the success of many DL methods.

This thesis explores two directions to work towards those goals. The first is
to start with existing algorithms, or variants of those, replace certain parts with
neural networks, and make the whole approach differentiable. Secondly, we can
look at the problem from the DL perspective and design inductive biases that are
more appropriate for the given task. This thesis gives examples for both of those
approaches and analyzes them with respect to efficiency, interpretability, and quality.

1.1 Contribution of this Work

The structure of contributions in the chapters of this thesis is summarized in
Figure 1.1. The two main contributions are two differentiable algorithms with
data-driven parameterization for different applications in computer vision. First, the
DIFFERENTIABLE ITERATIVE SURFACE NORMAL ESTIMATION (DISNE) method, an
algorithm for surface normal estimation on point clouds that combines the strengths
of deep learning and traditional ITERATIVE RE-WEIGHTED LEAST SQUARES (IRLS).
The method includes several novelties: a differentiable variant of local plane fitting,
which is efficiently parallelized on the GPU using novel forward and backward
algorithms, a novel graph neural network architecture, LOCAL SPATIAL GRAPH
TRANSFORMERs (LSGTs), which enables the application of an equivariant implicit
kernel function to re-weight the input points for IRLS. Second, GROUP EQUIV-
ARIANT CAPSULE NETWORKs (GECNs) are presented, a sophisticated version of
capsule networks, which mathematically guarantee interpretable representations
that disentangle object pose from identity. The method is able to infer object poses
that are equivariant to input rotation and respective invariant activations. The
work lays the theoretical groundwork of equivariant capsule networks, presenting
an equivariant dynamic routing by agreement, which shows under which conditions
provably equivariant poses can be computed for different groups. The first presented
algorithm considers the 2D case. The second version utilizes a differentiable IRLS
algorithm for 3D pose estimation to route quaternion poses through a capsule
network.

The introduced 3D vision DL algorithms are analyzed from the perspective
of differentiable algorithms, a paradigm to describe sophisticated algorithms that
involve deep neural networks and provide stronger inductive biases and more problem-
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Figure 1.1: Structure and contributions of this thesis. In Chapter 4, the concepts
of GRAPH NEURAL NETWORKs (GNNs), differentiable matrix decomposition, and
ImprLicIT NEURAL FuNcTIONs (INFs), including methods that are used in the
applications of this thesis. Then, the main contributions of this thesis are presented:
DISNE in Chapter 5 and GECNs in Chapter 6.

specific knowledge than pure end-to-end approaches. The paradigm of differentiable
algorithms is introduced as a natural extension to the successes that were achieved
in DL in the previous years. The presented algorithms are analyzed with respect
to qualitative and quantitative metrics for efficiency, interpretability and quality of
results.

Further, this thesis describes important building blocks for differentiable algo-
rithms with data-driven parameterization, namely MESSAGE PASSING GRAPH NEU-
RAL NETWORKs (MP-GNNs), differentiable matrix decomposition, and INFs. The
first concept, MP-GNNs, is important to process irregularly structured data. In addi-
tion to expressing related work in the MP-GNN framework, the SplineCNN [FLW +18§]
method, a GNN operator for continuous convolution on manifolds, point clouds and
graphs is presented. Also the LSGT [LOM20] architecture is introduced, a graph
neural network to achieve equivariant operators in local neighborhood of geometric
graphs. Both of those methods were novel contributions to the field at the time of
publication. The second important concept is differentiable matrix decomposition,
which plays an important part in 3D vision DL methods. In addition to summa-
rizing the related literature, this work describes and discusses the applications in
state-of-the-art 3D vision algorithms and how to compute them efficiently on the
GPU. As third concept, INFs are discussed, which are an efficient method to learn
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functions from implicitly given data points. The contributions in this part include
an implicit kernel function for surface normal estimation and DEEP LOCAL SHAPES
(DeepLS), a method for practical 3D reconstruction from range scans with DL.

1.2 Organization of the Thesis

The thesis begins with a general introduction to differentiable algorithms in Chapter 2.
The chapter defines the general paradigm and introduces the necessary background
about AUTOMATIC DIFFERENTIATION (AD) and the backpropagation algorithm,
which is of utmost importance to the presented methods. Next, background and the
used notations about DL, groups and equivariance, as well as IRLS are introduced
in Chapter 3. It follows the first main chapter, Chapter 4 presenting important
concepts for differentiable algorithms, including GNNs in Section 4.1, differentiable
matrix decompositions in Section 4.2, and INFs in Section 4.3. The subsequent
Chapter 5 introduces and evaluates the first algorithm, the DISNE method, a
differentiable algorithm for surface normal estimation on point clouds. Then, GECNs
are introduced in Chapter 6, providing a theoretical framework for equivariant routing
by agreement to obtain capsule networks that disentangle object identity from pose.
Lastly, Chapter 7 gives a summary of the results and discusses future research
opportunities in the field of differentiable algorithms.

1.3 Author’s Publications and Contributions

The research presented in this thesis was initially published by the author in
a set of peer-reviewed publications. This section details which methods were
originally presented in which publications and outlines the authors contribution to
the respective works. The first of the two subjects of this work, the DISNE method
presented in Chapter 5, was originally published at CVPR in 2020 (accepted for
oral presentation) by the author of this thesis [LOM20]. The author contributed the
majority of the work with respect to idea, conceptualization, implementation, and
evaluation. The second main topic, GECNs as presented in Chapter 6, was published
at NeuRIPS in 2018 [LFL18]. Similarly, the author contributed the majority of the
idea, theoretical results, the realization and the evaluation. The extension to 3D data
and groups, as presented in Section 6.6, was achieved in joint work with Stanford
University and Google Ziirich and was presented at ECCV in 2020 [ZBL+20]. The
author contributed to concept, realization and writing. The SplineCNN method, as
presented in Section 4.1.4, was published at CVPR in 2018 [FLW+18]. Here, the
first two authors made equal contributions to all parts of the work. The DeepLS
method, as discussed in Section 4.3.4, was created as a collaborative work while
participating in an internship at Facebook Reality Labs and was published at ECCV
in 2020 [CLI+20]. The author participated in publishing four more important works
in the field of GNNs [MRF+19; FL19; FLM+20; FLW+21] at top tier venues of
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ICLR, ICML and AAAI as are listed below. Since GNNs are only a subtopic of
this work, these works are only briefly covered in this thesis.

It follows a chronological list of publications, which were created by the author
during his PhD studies and which led to this thesis. For each publication, the
author’s contribution and the appearance in this work are outlined.

[FLW+18] Matthias Fey*, Jan E. Lenssen*®, Frank Weichert, Heinrich Miiller:
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels, CVPR
2018 (*equal contribution). Contribution: The author contributed significantly to
the idea, realization, evaluation and writing. Subject of: Section 4.1.4.

[LFL18] Jan E. Lenssen, Matthias Fey, Pascal Libuschewski: Group Equivariant
Capsule Networks, NeurIPS 2018. Contribution: The author contributed the
majority of the work with respect to idea, proofs, realization, evaluation and writing.
Subject of: Chapter 6, Section 4.2.3.

[MRF+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton,
Jan E. Lenssen, Gaurav Rattan, Martin Grohe: Weisfeiler and Leman Go Neural:
Higher-order Graph Neural Networks, AAAI 2019. Contribution: The author
assisted in experiments, evaluation and writing. Mentioned: Section 4.1.3.

[FL19] Matthias Fey, Jan E. Lenssen: Fast Graph Representation Learning with Py-
Torch Geometric, ICLR 2019 Workshop. Contribution: The author contributed to
idea and concept and assisted in realization and writing. Mentioned: Section 4.1.2.

[LOM20] Jan E. Lenssen, Christian Osendorfer, Jonathan Masci: Deep Iterative
Surface Normal Estimation, CVPR 2020: Contribution: The author contributed

the majority of the work with respect to the ideas, realization, evaluation and writing.
Subject of: Chapter 5, Section 4.1.5, Section 4.2.3, Section 4.3.3.

[FLM+20] Matthias Fey, Jan E. Lenssen, Christopher Morris, Jonathan Masci, Nils
M. Kriege: Deep Graph Matching Consensus, ICLR 2020: Contribution: The
Author contributed to idea, concept and writing. Mentioned: Section 4.1.3.

[ZBL+20] Yongheng Zhao, Tolga Birdal, Jan E. Lenssen, Emmanuele Menegatti,
Leonidas J. Guibas, Federico Tombari: Quaternion Equivariant Capsule Networks
for 8D Point Clouds, ECCV 2020: Contribution: The Author contributed to idea,
concept and writing. Subject of: Chapter 6, Section 4.2.3.

[CLI420] Rohan Chabra, Jan E. Lenssen, Julian Straub, Tanner W. Schmidt, Eddy
Ilg, Steven Lovegrove, Richard Newcombe: Deep Local Shapes: Learning Local SDF
Priors for Detailed 3D Reconstruction ECCV 2020: Contribution: The Author
contributed to realization, evaluation and writing. Subject of: Section 4.3.4.

[FLW+21] Matthias Fey, Jan E. Lenssen, Frank Weichert, Jure Leskovec: GNNAu-
toScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings
ICML 2021: Contribution: The Author contributed to concept and writing.
Mentioned: Section 4.1.3.



CHAPTER 2

Differentiable Algorithms with
Data-driven Parameterization

The field of AUTOMATIC DIFFERENTIATION (AD) has been an active research area for
several years, much longer than the existence of the DEEP LEARNING (DL) concept.
AD is a method to obtain derivatives of functions, using neither manual, symbolic
or numerical differentiation methods. Instead, it tracks the graph of operations
performed to compute a function and utilizes this sequence to iteratively compute
the derivative one operation at a time, applying the chain-rule of differentiation.
Reverse mode AD, one of the main modes of AD, is a generalized formulation of the
backpropagation algorithm, the standard method to obtain sensitivities for training
current DEEP NEURAL NETWORK (DNN) architectures. It opened up the field of
differentiable programming, which serves as underlying technology and motivation
for the differentiable algorithms of this thesis.

Within and out of the context of AD, several optimization methods exist that
utilize higher-order derivative information having, amongst other things, better
convergence properties. However, in the current state of DL, those methods did not
find relevant practical application, mostly for efficiency reasons. Since the topic of
this work are efficient methods for computer vision tasks, where we need to process
vast amounts of high-dimensional data, this work focuses on computing first-order
derivatives for gradient descent methods.

This chapter will first provide the basic AD background in Section 2.1 on a
higher level, motivate the use of the reverse mode AD framework in differentiable
algorithms in Section 2.2. Lastly, the framework for differentiable algorithms as
used in this thesis is introduced in Section 2.3.

2.1 Automatic Differentiation Modes

AUTOMATIC DIFFERENTIATION (AD) stands for a set of dynamic programming
algorithms over a computation graph that iteratively compute partial derivatives
of or with respect to intermediate variables of the graph. AD has two main
modes [BPR+17]: forward mode AD and reverse mode AD.

Computation Graph A computation graph is a directed graph C = (O,V,€),
containing a set of nodes o € O, which represent operations, a set of nodes v € V,
which represent intermediate values, and a set of edges e € £, which describe the

7
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(a) Forward Mode AD (b) Reverse Mode AD

Figure 2.1: The two main modes of AD. Figure (a) shows forward accumulation,
where partial derivatives v are computed along with the forward pass through the
computation graph. Figure (b) shows the reverse accumulation, i.e. backpropagation,
where the sensitivities v are computed in a second, reverse pass through the graph.
Both modes are a direct application of the generalized chain-rule.

data flow between operations and intermediate values. Each operation o € O has
implicit value nodes for output and input values, which often are omitted in the
graph figures. If an edge e exists between two nodes o; and o;, the output value of
o0; has to be equal to the input value of 0;. We make no restriction to the types of
operators in O. They can be elementary operations on scalars/vectors but also more
sophisticated operators containing sequences of operations. Thus, a given algorithm
can be represented by multiple computation graphs, in different levels of detail.

Forward Mode AD Let f:R" - R™ be a function with f(x) =y, for which
the derivative should be computed at a point x € R". For each value node v; € V,
forward mode AD keeps track of the variable ©¥; = g—;’j_, the partial derivative of value
node v; with respect to changes in one element x; of the input x. For one element
x; of the input, these values can be computed by forward accumulation, a process
that runs in parallel to the normal execution of the computation graph. The process
starts with initializing x = e;, the unit vector with entry 1 at j. Then, it computes

the 0; for all v; € V iteratively, along with computing the v;, until it reaches all

—ciT
y’_am]-'

We take a look at one operation g € O within the computation graph of f,
mapping a vector of intermediate values v to a vector of intermediate values w, as
shown in Figure 2.1a. We can propagate the partial derivatives forward using the
generalized chain-rule

W=@=J9ﬂ=ng, (2.1)

where J, = gTuZ)lvk is the Jacobian matrix of the operation g. If we break down the

computation graph of f to elementary operations g on scalar inputs and outputs,
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these Jacobians reduce to elementary differentiation rules like the product rule,
linearity of differentiation, and known derivatives for trigonometric functions. Overall,
one evaluation of the full forward accumulation for a function f with initialization
x = e; amounts to computing the Jacobian vector product Jse;, thus, computing one
column of the Jacobian J; € R™*" of f and all the intermediate partial derivatives
of the v;’s with respect to ;. For the full evaluation of J¢, n evaluations, one for
each element of x € R", are required.

Reverse Mode AD The second main mode is reverse mode AD. In contrast to
forward mode, it keeps track of a different set of intermediate variables. Given a
function f:R"™ - R™ with f(x) =y, it keeps track of v; = g—i’i for each value node
v €V, the partial derivatives of one output value y;, with respect to changes in the
intermediate variables v;. These values v; are also called sensitivities (of y;) with
respect to changes in v;. Computing the v; differs from computing the v; in forward
mode. Here, the v; are computed in a second pass through the computation graph
in reverse direction, which is called reverse mode accumulation. After the output y
is computed in the forward pass, we initialize y = e; for one j at a time and compute
the v; using reverse accumulation as a function of succeeding v;’s and v;’s, until all
xT; = g—ig are reached. In general, the derivatives are propagated backwards using the
transposed Jacobians. For one operation g € O within the computation graph of f,
mapping a vector of intermediate values v to a vector of intermediate values w, as

shown in Figure 2.1b, the reverse propagation is defined as

9; _ 57995

VZ@V 9 Ow

=J,w, (2.2)

owy
vy,
as in the forward mode, the Jacobians are derived from analytic derivatives for

where J ; = )ik is the transposed Jacobian matrix of the operation g. Similar
elementary operations g. One evaluation of the full reverse mode accumulation for
a function f with initialization y = e; amounts to the Jacobian vector product J }ej,
thus computing one row of the Jacobian J; € R™*" of f and all the intermediate
sensitivities of y; with respect to the v;’s. For the full Jacobian, we would need
m evaluations, one for each element of y € R™. The downside of reverse mode
accumulation is the high memory consumption. Since the derivatives are computed
in a second pass, and not alongside the forward computation as with forward
accumulation, the values of most v; € V have to be kept in memory for reverse
mode accumulation, since they usually are required to compute the Jacobians J, for
sub-operations g.

2.2 Backpropagation and Reverse Mode AD

In DEEP LEARNING (DL) we are usually concerned with computing the derivative
of functions f:R"™ — R that have high input dimensionality n and a single output
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dimension, the learning objective. As a consequence, the backpropagation algorithm,
which is one evaluation of reverse mode AD, naturally became the de facto standard
to compute the partial derivatives in DNNs, as the derivatives can be found efficiently
using a single evaluation of reverse accumulation. For a single output objective L,
backpropagation computes v = % for each variable v in the computation graph.
Thus, the vector containing the v of all source variables in the graph is the gradient
of L. Therefore, in this special case, the terms gradient, Jacobian or sensitivities are
often used interchangeably in related literature.

However, applying backpropagation efficiently for large computation graphs is
usually not possible by simply executing a chain of Jacobian vector multiplications.
For most computation graphs and operations, it requires a large amount of individual
engineering for each operation. In the following, a summary of reappearing concepts
is presented.

Grouping of operators If a function f is composed of differentiable functions, it is
always possible to compute the partial derivatives of f by reverse mode accumulation
through all elementary operations in the computation graph, thus breaking it down
into the operations sum, multiplication and trigonometric functions. However, there
are many situations where this is not the most efficient solution. Examples of
those are iterative operations, where we actually know the analytic derivative in
closed-form, like it is the case for some matrix decompositions (cf. Section 4.2.1),
or cases where storing all intermediate variables consumes too much memory (cf.
Section 4.1.4). Also, breaking down the whole graph in its most atomic elements
makes it hard to fully utilize the parallel processing power of GPUs. In those cases, it
can be heavily beneficial to group sets of operations together as one operation in the
computation graph, coming with its own error backpropagation method, a backward
algorithm, which is then used in reverse mode accumulation. However, this approach
also comes with a disadvantage. While it can make the execution of certain parts of
the computation graph more efficient, we can no longer access the sensitivities with
respect to intermediate variables within these grouped operations. Thus, variables
for which the sensitivities are needed for gradient descent optimization need to be
retained in the graph.

Deriving sparse Jacobians In contrast, computing the full Jacobian of an
operation g in the computation graph can become extremely inefficient as well,
so that more optimized implementations are needed. A common example is the
backward algorithm of large matrix multiplications Y = WX, as used in MLPs
on mini-batches. The naive reverse accumulation steps to compute sensitivities
with respect to inputs X and W are g—)L( = %T% and aa—VLV = %T%. For a batch-
size of N, I input neurons and O output neurons, thus W ¢ RO/ X e R™*N and
Y ¢ ROV the full Jacobian (g—§, %) has I2-O?-N? elements, which easily explodes
to untractable sizes for common, real-world MLPs. For most functions, however, it
turns out that the Jacobian is actually very sparsely populated since changes in an
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input variable only lead to changes in very small subset of output values. Therefore,
in the matrix multiplication case, the sensitivities g—)L( = %% and gT%/ = %%
with respect to the input variables X and W can be expressed in a much more
efficient way, that is g—}L( = %WT and g—‘fv = XT%. For a full derivation, the reader
is referred to common DL literature [GBC16]. Similar optimized expressions exist
for other DNN operators, such as CNNs [LBB+98b] (cf. Section 3.1), and often have
to be found for novel operators to make them applicable to large input datasets. A
general way of finding sparsity in the Jacobian of a function f is to disassemble f

into sub-functions and work on a computation graph with higher level of detail.

Customly defining derivatives Functions which are expressed in computation
graphs do not have to be differentiable everywhere in order to compute partial
derivatives using AD. On the contrary, a large number of current DL architectures
consist of non-differentiable functions, such as the max function or the Rectified
Linear Unit (ReLU). Without further adjustments, the AD modes would produce
undefined results if for some function ¢ in the computation graph, which is not
differentiable at x, the Jacobian J,(x) is needed in forward or reverse accumulation.
However, in practice that issue is easily circumvented by simply arbitrarily defining
derivatives for those vectors. As an example, the derivative at ReLU(z) = max(z,0)
can be simply set to 0 and the derivative of max(z,y) at points with = = y is
simply the derivative of x. In practice, there is an infinitesimal small chance to hit
those points exactly so the arbitrary choice usually does not affect the optimization
behavior in a significant way. This principle of customly defining Jacobians can also
be applied in more advanced ways. We can also use it to define surrogate gradients.
Given a function f(x) that is either not differentiable or computing the Jacobian J ¢
is too inefficient or numerical unstable, we can define a custom backward function
that differs from the correct one. This can either be done directly, by defining a
function for reverse mode, or by defining a surrogate loss, which is minimized instead
of the actual one. If the surrogate Jacobian has certain properties, such as pointing to
the same local minima as Jy, this technique might enable backpropagation through
f. Similarly, if the surrogate loss can be shown to be an upper bound of the actual
loss, it can be used to minimize the original function using different sensitivities. An
example of this, a surrogate loss for backpropagating through ED in a special case,
is described in related literature [DYH+20], which is outlined Section 4.2.2 of this
thesis.

Implementations of AD, providing the modular architecture and the possibility to
implement and utilize all those techniques, became extremely popular in the recent
years and are the foundations of many DL frameworks, such as PyTorch [PGM+19],
TensorFlow [MAP+15], MXNet [CLL+15] and JAX [BFH+18]. As a consequence,
such functionality has also been added to other parallel processing frameworks for
computer vision or machine learning like Halide [LGA+18] and Julia [BEK+17].
The rise of these computational frameworks shaped the term differentiable program-
ming [Olal5; LeC18; WDW+18] as a new programming paradigm that allows the
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definition of programs whose execution automatically come with derivatives that can
be used to find program instances in a space of programs. Naturally, standard DL
architectures like MLPs, CNNs, RNNs are easily implemented using this paradigm.
However, the possibilities do not stop there, since much more complex program
spaces with trainable and fixed-function parts can be designed.

2.3 Differentiable Algorithms

With differentiable programming providing such vast possibilities for designing data
flows, the question is which principles to apply when creating algorithms for a
specific problem. To answer this question, we structure algorithms obtained by
differentiable programming under the term differentiable algorithms with data-driven
parameterization and state hypotheses about design philosophies.

Definition In general, we define a differentiable algorithm as a directed graph
A= (0Op,0p,V,E), consisting of trainable operator nodes Or, fixed operator nodes
Op, value nodes V and edges £ describing the data flow between values and operators.
Thus, a differentiable algorithm is a computation graph with further distinction
between trainable and fixed operators. Similar to computation graphs, each operator
has implicit input and output nodes, which can be omitted in figures. The algorithm
computes a function Fg(X) = Y, where input X ¢V and output ) ¢ V are modeled as
(multiple) value nodes representing vectors. For all operations, which stand between
trainable parameters © and the output ), functions to compute g—i from g—JL) for
a scalar criterion L()) need to be available for reverse mode accumulation. The
operations in Op and O are not restricted to be actual differentiable functions but
only require defined derivatives, which can also be customly defined or surrogates (cf.
Section 2.2). Through its trainable parameter vectors © = {61, ..., 0y}, a differentiable
algorithm A spans a space of program instantiations from which one program is
chosen by selecting the parameters O that minimize the scalar loss L(Y) on the
output of the algorithm.

The paradigm of differentiable programming lets the programmer make several
choices to frame this space of programs. Clearly, end-to-end DL models are differ-
entiable algorithms. An MLP, for example, can be expressed as a differentiable
algorithm consisting of only one trainable function node, the MLP itself. Since
MLPs are universal approximators [HSW89], the actual program for a problem then
needs to be found in the space of all possible functions expressible by the network.
This allows to learn and detect complex patterns in data, to model and sample
from the data distribution and to infer semantic information. It might be the best
solution if we have very little information about the problem and how it should be
solved. However, due to the large amount of free parameters that is needed to solve
complex problems, finding a program in such a large program space also comes with
several downsides: it requires a vast amount of training data, might be inefficient
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Figure 2.2: A simple, generic example for a differentiable algorithm with data-
driven parameterization. The algorithm consists of a m fixed function part H € Op
with parameterization ¥ and a = trainable part (a DNN) Gg € Op with trainable
parameters ©. Parameters ¥ are inferred from data X using the DNN and the
algorithm parameters © are trained using backpropagation and gradient descent.

to compute, and it is a black-box solution, making it hard to understand how the
problem is solved internally. These downsides may hinder practical application of
these DL methods in several areas.

In well-understood problems, there often are sub-problems for which programs
are known that already solve them perfectly, given the correct parameterization.
The set of parameters might span a much smaller space of programs, without
excluding relevant solutions from the space. The goal of this thesis is to explore
if the mentioned issues can be resolved by designing algorithms, which solve as
much problem complexity as possible in the fixed function nodes Op instead of
the trainable function nodes Or, without excluding correct programs for relevant
scenarios. This approach amounts to tightening the program space as much as
possible by reducing complexity of functions in O and reducing the number of
trainable parameters in ©. Moving complexity from operators Op to differentiable,
fixed function operators OF can also be understood as introducing a strong inductive
bias that does not reduce the quality of solution. An example scheme for such a
differentiable algorithm with data-driven parameterization is given in Figure 2.2,
where instead of solving the whole problem with a single DNN, a fixed function
algorithm is employed that is merely parameterized by a trainable DNN.

In general, the goal of introducing an appropriate inductive bias has been
present in machine learning for several years, as a consequence of the no-free-lunch
theorem [Murl3]. Usually, the most problem-specific methods provide better results
than general ones. However, in DL, we actually saw the opposite trend for many years.
Often, problems are tackled using the most expressive and deepest architectures in
an effort to learn everything from scratch, given vast amounts of data, ignoring all
existing knowledge about the underlying problem. This might be due to several
reasons: (1) Larger models usually fit well to large sets of real-world data when
trained using a gradient descent variant and backpropagation, (2) designing and
implementing more problem specific algorithms and efficient backward steps can be
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challenging, and (3) it might not be clear how to process different kinds of input
data appropriately, that is, to know which inductive bias to use for a specific data
representation.

To overcome these issues, Chapter 4 will present and discuss several novel and
existing concepts that can be used as building blocks in differentiable algorithms to
introduce the appropriate inductive bias, which takes into account the input data
representation and problem-specific knowledge. Further, applications of differential
algorithms for problems in the field of 3D vision are presented in Chapter 5 and
Chapter 6. By expressing as much complexity in fixed-function parts Op as possible,
the goal is to improve the following algorithm characteristics:

Efficiency There are different degrees of algorithm efficiency that can be evaluated.
Mainly, we are interested in execution time in the inference stage and the amount of
required training data. Required training data is directly related to the number of
trainable parameters that describe the complexity of the model. Thus, we measure
efficiency by comparing inference time and number of trainable parameters of our
algorithms to those of existing DL methods solving the same task.

Interpretability Due to the more sophisticated structure of the differentiable
algorithm, we can hope to obtain intermediate representations that are interpretable.
Naturally, since all operations from Op are fixed, they have to have well-defined
input and output representations, lying in a known space. As a consequence, we
reduce the black-box part of the algorithm, keeping more control over representations
within the algorithm. Interpretability is measured qualitatively by visualizing and
interpreting intermediate representations in the differentiable algorithm.

Quality of results The main advantage of full end-to-end DL methods is their
ability to detect and utilize arbitrary, complex patterns in real-world data in a
tractable way. The goal of the differentiable algorithms discussed in this thesis
is to keep this ability, which is also the difference to previous methods that use
automatic parameterization of algorithms. To this end, data processing techniques
with appropriate inductive biases for specific data representations, such as GNNs
for geometric data or INFs for volumetric data and kernel functions, are important
concepts in this thesis, which find their application in capturing relevant information
from those representations and in producing appropriate parameterizations. Quality
of results is measured using accuracy and error metrics and is compared to the
quality of existing end-to-end DL counterparts.



CHAPTER 3

Background and Notation

Before diving into the concepts for differentiable algorithms, this section introduces
the necessary background and notations for the individual topics. Section 3.1
introduces common DNN architectures and the tensor notation used to describe
algorithms in this thesis. Further, geometric groups and the concepts of equi-
and invariance are introduced in Section 3.2. Lastly, the well-known concept of
ITERATIVE RE-WEIGHTED LEAST SQUARES (IRLS) is summarized in Section 3.3,
as some algorithms in this thesis built upon it.

3.1 General Notation, Tensors and Neural Networks

This section gives an overview about the general notation for differentiable algorithms
using vectors, matrices and tensors, as well as basic deep neural network operators
and their backward computation for reverse accumulation. In general, vectors are
denoted in bold lower case, e.g. x € R?, matrices and tensors in bold upper case, e.g.
A € R™*" gcalars in italic lower or upper case, e.g. 5,5 € R, and sets in calligraphic
upper case, e.g. P € R%. For algorithms presented in this thesis, the tensor notation
is used, in accordance to common differentiable programming libraries such as
PyTorch [PGM+19]. In this context, a tensor is a k-dimensional matrix (or array, in
implementation) A € R%**% which can be indexed using braces (beginning with
index 0), e.g. if k = 3, A[i,7,1] describes the element at position (4, j,1) in the tensor.
We further use the :-Symbol to index slices of the tensor. Using the symbol instead
of a variable selects all indices in that dimension. As an example, B[2,:] selects
the third row of a 2-dimensional tensor B. The element-wise product (Hadamard
product) is denoted by ®, while the standard multiplication symbol - (or no symbol
at all) describes matrix multiplication, matrix-vector multiplication, the inner/outer
product between vectors, or vector scaling. The o-Symbol is used for group law and
group actions, as further detailed in Section 3.2.

Multi-Layer Perceptrons (MLPs) A MurLTI-LAYER PERCEPTRON (MLP) is
the composition of L functions f{m b, :R™ - R™ 1<4< L, with m; =n;y1, and

f‘i}Vi,bi(X) =o(b; + W;-x). (3.1)

Here, o is an arbitrary element-wise non-linearity, such as the ReLLU function
ReLU(z) = max (0, z) or the sigmoid function S(x) = =, and W}, b; are trainable

l+e 2
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parameters for each function. Let z; = b; + W, - X be the intermediate result of a
layer ¢ before application of the non-linearity, then the sensitivities with respect to
parameters W;, b; and input x; are computed as

OL 9L, 0L _9L . 0L . 0L

= X; , = an =W, 3.2
an 8zi ¢ abz azi Oxl 8z7, ( )
given the sensitivities % with respect to z;, which can be computed from the
sensitivities aiL of layer i + 1 as
oL oL
= 3.3
8Zi ( ’L) 8XZ+1 ( )

depending on the used non-linearity o. Several variants and modifications exist for
MLPs, such as different regularization techniques, loss functions and non-linearities,
which also modify reverse mode computations [GBC16].

Convolutional Neural Networks (CNNs) A CONVOLUTIONAL NEURAL NET-
WORK (CNN) is a composition of L functions ff(, b,  RVeYXs | RN Yisr Xy
1 <4 < L, mapping 3-dimensional tensors to 3-dimensional tensors that usually
represent image and feature maps. The functions are usually of one of two types:
convolutional layers and pooling layers. A convolutional layer with kernel size K, a
trainable kernel K; € RNis1*NixExXK 414 a trainable bias vector b; € RVi+1 is defined

as

' K-1K-
fic, b (O 9.2 = o (b + ZZ i1 X [y - L5 ha v i= 15 1), G4
=0

‘7:

with ¢ being an arbitrary non-linearity, similar to the MLP case. To obtain values of
X that lie out of bounds, different padding strategies, such as padding with zero, are
used. It can be observed that the sizes of both trainable parameters do not depend
on input dimensions X; and Y;, and that they are shared across all positions of the
input map. This weight sharing is the most important feature of CNNs, leading to
the useful inductive bias of translation equivariance for images, as the same features
are detected at multiple spatial positions. Another consequence is that a trained
layer can be applied to differently sized inputs later, without modification. Let
Z; be the resulting tensor of the operation inside the non-linearity ¢ and g_zLi the
respective sensitivities, which can be obtained as shown in Equation (3.3). Then,
the sensitivities with respect to K; b; and X; can be obtained by

aL TS 1aL K KT
2] - X|hy-j-|= I-|= 3.5
o= 5 8 [y-i-lglesi-150] . G9)
oL &S oL
e o7 [yl and (3.6)
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K-
(;9; Z Z ESUFIE SZL Y+ lI;J,mH—L%J]. (3.7)

By describing the computatwn as sums of tensor slices, an analogy to MLPs
can be observed. For each combination of filter and input spatial position, the
operations are local variants of the MLP matrix-vector multiplication. In the
case of K =1, the CNN collapses to an MLP, which is shared over all spatial

positions of the input feature map, also called 1 x 1-convolutional operator. Also,

OL
f X,
last two dimensions. In practice, there exist optimized implementations for several

the calculation o can be seen as convolution with a kernel transposed in the
sub-cases of the convolution operator, such as implementations based on the Fast
Fourier Transform [MHL14] or the Winograd transformation for convolution with
a 3 x 3 kernel [LG16]. Pooling layers down-scale the input feature maps X; in X;
and Y; dimensions by using an aggregation function like max() or avg() in a local
kernel window. The implementation is similar to that of convolution without the
use of trainable parameters.

3.2 Groups and Equivariance

Several important inductive biases present in DL are based on equivariant or
invariant operators, such as those present in CNNs and GNNs, utilizing symmetries
in the input data. In order to represent these properties appropriately, this section
summarizes some basic definitions from (Lie) group theory, on top of which they
can be formalized.

3.2.1 Groups, Lie Groups, and Matrix Groups

A group is specified by a tuple (G, o) containing a set G and an operation o called
the group law, which has the following properties:

1. Closeness: For all g1,g2 € G holds g1 0gs €G.

2. Associativity: For all g1,82,83 € G holds (g1 0g2)og3=g10(g2083).

3. Neutral element: There exists e € G so that for all ge G holds goe=eog=g.
4. Inverse: For all g € G there exists g™' € G with gog™l=glog=e.

A Lie group (G,o) is a group that has the following additional properties:

1. Manifold: G is a manifold, a topological space that at each element is locally
homeomorphic to an open ball in R".

2. Smoothness: The group law o and taking the inverse g=! are differentiable
operations.

A matriz group is a group (G, o), where G is a set of invertible n x n matrices and o
is matrix multiplication. In this thesis, we consider either finite permutation groups
or matrix Lie groups, specifically, subgroups of the general linear group GL(n,R),
containing all real, invertible n x n matrices with matrix multiplication as group law.
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3.2.2 Group Representations

Given two groups (G1,01) and (Ga,02), a group homomorphism from Gy to Go is a
function f: Gy - Gy with f(go1 h) = f(g) oz f(h) for all g,h e G;. If f is bijective,
we call it a group isomorphism and say (Gi,01) and (Ga,02) are equivalent.

A group representation of a group (G, o) is a group homomorphism ¢ : G - GL(V)
mapping elements of G to elements of the general linear group GL(V') over a vector
space V, usually to real or complex matrices that mirror the group structure with
matrix multiplication. A representation is called faithful if ¢ is injective, i.e. a
one-to-one map.

3.2.3 Group Action, Equivariance and Symmetry

We say a group (G,o) can act on elements of a space X from the left if there exist a
faithful representation ¢ of (G, o) satisfying

1. ¢(e)x =x for all x € X and neutral element e € G, and
2. ¢(g)(p(h)x) =d(goh)x for all g,heG and x e X .

In case such an operation exists, X together with the action is called a left G-set. In
our context, X usually is R", function spaces containing vector fields, or groups. We
say a group (G,o) acts on another group (H, o), when additionally to the above

P(8)(xony) = p(g8)x on #(8)y (3.8)
holds for all g€ G and x,y € H.

An operator ¥ : X — ) that maps elements from a left G-set X’ to a left G-set Y
is called left-equivariant with respect to a group G if it commutes with the group
action:

U(p(g)x) =p(g)¥(x), forall ge G, xe X. (3.9)

Analogously, we can define right action, right G-set, and right-equivariance. In the
further course of this thesis, we also use the group law symbol o for describing the
group action. Thus, we simply write gox instead of ¢(g)x. Then, equivariance can
simply be expressed as

U(gox)=goVU(x), forallgeg,xeX. (3.10)

We further say that an operator ¥ : X - Y is invariant with respect to G if no
action g on the input changes the output of U:
U(gox)=U(x), forallgeG,xeX. (3.11)

Lastly, we say that the symmetries of an element x € X’ are actions Sx € G under
which x is invariant, formally

Sx={gecG|gox=x}. (3.12)
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3.2.4 Group Products

Two groups (G, og) and (H,o%) can be combined to define the direct product group
(G,0g) x (H,09) = (G x H,0), with disentangled group law

(g1,h1) o (g2, h2) = (g1 0¢ g2,h1 oy ha). (3.13)

If a group (G,og) acts on a group (H,oy) with a function ¢, we can define the
semidirect product group (G,og) x (H,o3) = (G x H,0) with entangled group law

(g1,h1) o (g2, h2) = (81 °¢ 82, h1 o #(g2)h2). (3.14)

3.2.5 Groups in this Thesis

The following groups are relevant in this thesis in Chapters 4, 5, and 6.

Symmetric Groups The first set of groups are the symmetric groups Sy, which
contain all possible permutations of n elements. We choose permutation matrices
P € [0,1]™" as faithful representation of \S,,, which have a single 1 in each row and
column. The neutral element is represented as the identity matrix and the inverse
of an element P can be found as P' since permutation matrices are orthonormal.
Symmetric groups play a role in the field of GNNs (cf. Section 4.1.2), as the set
of graph node features needs to be implemented as ordered tensor and, therefore,
GNNs apply specific mechanisms to ensure permutation equivariance.

Translation Groups The translation groups (R, o) and (Z",0) contain real and
integer vectors together with vector addition. The group (Z?2,0) can act on the input
of CNNs by translating the vector field. We can express the translation equivariance
of a convolutional layer f on a vector field X : Z? - R? as

fb((20 X)) (%) = fxp(X) (2 0x) = (20 fr p)(X) (3.15)

for all x,z € Z2. Vector fields will be formally introduced in Section 6.4.

The 2D Rotation Group The group SO(2) contains all rotations in two-
dimensional space. A common representation, which is also used in this thesis
for designing 2D capsule network architectures in Section 6.5, are 2D rotation ma-
trices, thus all orthonormal 2 x 2 matrices with determinant 1, with which the group
is able to act on R? and SE(2).

The 3D Rotation Group and the Unit Quaternion Group The group SO(3)
contains all rotations in three dimensional space. One often used representation are
the orthonormal 3x3 matrices with determinant 1 (3D rotation matrices), with which
SO(3) can act on R? and SFE(3). Further, we use the group H* of unit quaternions
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together with quaternion multiplication, which is a double cover of SO(3) and can
serve as representation for SO(3), which allows more efficient element generation
and admits itself to an equivariant average operator. Both groups play important
roles in Section 4.1.5, Section 5.3.1, and Section 6.6.

The Roto-Translation Group SE(n) The special Euclidean groups SE(n)
describe the combined affine transformations of rotation and translation. SE(n) is
equivalent to the semidirect product group SO(n) x (R",+) between n-dimensional
rotation and translation. It is important to note that SO(3) acts on (R",+) in the
law of the semidirect product, thus translation is not disentangled from rotation. A
canonical matrix representation is the set of homogeneous transformation matrices
with which SE(n) is are able to act on R™ by matrix multiplication. The groups
SE(n)=50(n)x (R",+) are used to design equivariant capsule architectures on
vector fields, as described in Section 6.4.1.

3.3 Iterative Re-weighted Least Squares

The well-known ITERATIVE RE-WEIGHTED LEAST SQUARES (IRLS) method is
applied and build upon in several parts of this thesis, e.g. it is used to create a
method for differentiable robust surface normal estimation in Chapter 5 and related
to iterative routing by agreement in capsule networks in Section 6.6. Therefore, the
background of IRLS is outlined in the following.

3.3.1 Least Squares Approximation

Least squares approximation is useful to fit a parameterized linear model to given
data points by minimizing the squared distance of points to the model. Formally, a
set of linear equations of the form Ax = b is given, with A being an m x n matrix
with m > n and rank(A) = n, containing m data points a € R" in its rows. We
consider overdetermined systems with m >> n, so there is no unique solution. Then,
the vector

X = argmin |Ax - ng , (3.16)

that minimizes the Euclidean vector norm of e = Ax — b is called a least squares
approximation to the system of equations [HZ03]. A solution to this problem can be
found using ED or SVD, as described in Section 4.2, or by computing the pseudo-
inverse of ATA and find the solution as % = (ATA)"*A"b (in the overdetermined
case) in closed-form, afterwards.

A generalization of least squares approximation is weighted least squares approx-
imation, which minimizes the weighted norm |diag(w)e|3 (with diag(w) denoting
the square matrix with w in its diagonal and 0 elsewhere), effectively weighting the
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error, also called residual, of each data point by a scalar weight w;. We search for
the solution of
% = argmin |diag(w)(Ax - b) Hg , (3.17)

which again can be found as % = (ATdiag(w) diag(w)A)~' ATdiag(w) diag(w)b
with (pseudo-)inverse computation, or using SVD/ED.

3.3.2 Robustness Through Minimizing [/,-Norms

(Weighted) least squares optimization minimizes the /3 norm of the errors e. However,
this is not always the best way to fit a model, e.g. when outliers are present in the
data that heavily influence the resulting model. Finding a model that minimizes a
more general [, error, that is finding the appropriate vector x for a specific p can
lead to more robust solutions in certain situations, i.e. solutions that only weakly
consider outliers. For a vector e € R", the [, norm (or quasi-norm, as the triangle
inequality is not fulfilled for 0 < p < 1) is defined as

lel, - (z |ez-|f’)p . (318)

It has been shown that for each p there exist weights w so that minimizing [e]|, is
equivalent to solving a weighted least squares problem with weights w. Using this
definition, we can define the process of ITERATIVE RE-WEIGHTED LEAST SQUARES
(IRLS), which finds the solution to the system of equations that minimizes the [,
norm for specific p. IRLS is a sequence of weighted least squares optimization steps,
where the weights of an iteration ¢ depend on the errors of iteration ¢, starting with
uniform weights in iteration zero. Formally, the process in iteration 7 + 1 can be
described as finding

2
. (3.19)

%"*! = argmin | diag(f(e’))(Ax - b)|

where the weights are a function f:R™ — R" of the previous errors ' = A%’ — b.
To find the solution for a specific /,-norm, the weights can be chosen as

p—2

wj = f(e)j=e;*, (3.20)

what has been shown to converge to the correct solution for at least 1.5 < p < 3 [Burl4].
For other p several other weighting functions exist, which converge under certain
conditions. For an overview of the vast amount of variants and methods in the IRLS
domain, the reader is referred to review literature [HW77; Burl4].

In this thesis, methods inspired by IRLS are presented, which replace the fixed
weighting function with a DNN, estimating optimal weights for the next information
based on the previous error and additional feature information. While we no longer
can guarantee that the approach converges to the solution for a specific /,, norm, we
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gain other advantages, like the network being much less dependent on the specific, a
priori choice of a norm. It is able to learn its own type of error metric to best fit the
ground truth data, which can be a specific [, solution but also more sophisticated,
data-dependent variants.



CHAPTER 4
Concepts for Differentiable
Algorithms

Differentiable algorithms and complex neural network architectures are often put
together from building blocks that follow the same repeating concepts. This chapter
tackles three common concepts that are of large importance to the applications of
this thesis and to which contributions have been made in several ways: GRAPH
NEURAL NETWORKs (GNNs) in Section 4.1, Differentiable Matrix Decompositions
in Section 4.2, and Implicit Neural Functions and Representations in Section 4.3.
All three techniques are versatile and are used in many state-of-the-art algorithms
in the field of 3D vision. Each section will first formally introduce the concept and
related work, before presenting the methods that are applied in this thesis.

4.1 Graph Neural Networks

This section will introduce GRAPH NEURAL NETWORKs (GNNs), a useful tool
for modeling the data flow of deep neural networks on irregularly structured data.
Examples for irregularly structured data are point clouds and meshes, however, in
every scenario in which we want to obtain feature representations on a structure
that can be modeled as a graph, GNNs can be applied. In this work, we will focus
on MESSAGE PASSING GRAPH NEURAL NETWORKs (MP-GNNs), a quite universal
framework that covers most of the existing GNN operators and allows to naturally
describe the application of GNNs in other algorithms. MP-GNNs are introduced in
Section 4.1.2, along with the necessary background and details. In Sections 4.1.4 and
4.1.5 SplineCNN and Local Spatial Graph Transformers are described in detail, two
operators, which were introduced by the author of this thesis. In the last years, a
vast amount of such GNN operators were presented, an overview of which is given in
Section 4.1.3. The tools described in this section find their application in Chapters 5
and 6, tackling surface normal estimation and capsule networks.

4.1.1 Geometric Graph Data

We begin by introducing the necessary notation for graphs. Let G = (V, &) denote
a directed graph with adjacency A € {0, I}MXM. Further, let x, be node feature
vectors for all v eV, e, be edge feature vectors for edges (v,w) e £ <V xV, and
N(v) ={w eV | (w,v) € £} denote the set of incoming neighbors of a node v. A

23
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directed graph in this general formulation, can model large variety of different data
types. In addition to classical graph data, we can for example model point clouds,
meshes, discrete manifolds or geometric scene graphs.

Point Clouds We model point clouds, by choosing the set of nodes as points of
the point cloud V = {p1,...,pn}, while obtaining the edges either using a radius
threshold, € = {(p:,p;) € Vx V| |p; - pill, <7}, or as a k-nearest neighbor graph,
E= {(pi, pj)eVxV|pje /\/’Sk(pi)}, with N'<¥(p;) containing the k nearest points
of p;. If available, information about point p; (absolute point position, additional
information from the scanner, other arbitrary features) can be modeled as node
feature x; while the edge features contain the relative Cartesian position: e; ; = p;j—p;.

Meshes Meshes are naturally modeled as a graph by taking the vertices as the
set of nodes V = {p1,...,pn} and the mesh edges as graph edges €. Since we model
directed graphs, we store each mesh edge twice, once for each direction. Additionally,
the relative Cartesian positions can be used as edge features e; ; = p; — p;.

Discrete Manifolds Discrete manifolds can be modeled by using a collection of
points sampled from the manifold V = {p1,...,py}. We further can store geodesic
distances dzgzo in edge features e; ; for each pair of sampled points. In most situations,
it is more efficient to only store the distances between neighboring points, i.e. by
only using edges to k nearest neighbors.

Geometric Scene Graphs A further category that deserves mentioning are
geometric scene graphs. Those are general graphs in which each node v € V represents
an entity of the scene and edges £ describe the geometric (or also semantic) relation
between those entities. On the nodes, we can use the node features x, to store
information about the entity while the edge features e, ,, encode the geometric or
semantic relations. Graphs consisting of keypoints of an image can be considered as
a variant of a geometric scene graph.

4.1.2 Message Passing Graph Neural Networks

We now introduce the framework of MESSAGE PASSING GRAPH NEURAL NETWORKS
(MP-GNNs), a general way to describe deep neural networks on all the different kinds
of graph data. MP-GNNs operate on graph-structured data G by following a message
passing scheme [GSR+17; FL.19; Ham20], which computes new node representations
in each iteration. A new node representation is obtained by aggregating incoming
messages, which are computed for each directed edge in the graph, based on the
previous node features and edge features (messages).
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Given a graph G = (V, &) with initial node features (x¥),cy and initial edge
features (e?v’v)(wm)eg, a layer ¢ of an MP-GNN computes new node representations
(x)vey and edge representations (eﬁw)(w,v)eg formally as

4

V4 -1 -1 _0-1
€y = MESSAGE@M (xw Xy ,ewﬂ)),
4.1)
V4 l /-1 V4 (
x, = UPDATE X O e
v @U( 0 w’EN(v)w’U)7

where O is a permutation-invariant aggregation function, like sum, mean, or maxi-
murmn. MESSAGEgz\/I and UPDATEgL (in the following denoted as MEg,, and UPgy,)
are arbitrary differentiable functions with trainable parameter sets ©,; and Oy,
which may or may not be shared over the layers [. In following occurrences, we omit
the layer index [ for simplicity.

Scatter and Gather on GPUs

The MP-GNN framework directly represents a convenient computation scheme for
the GPU, which is one of its main advantages and of importance for deep learning
in general. There are two dimensions for parallelization: the edge parallel space
for computing the MESSAGE function and the node parallel space to compute the
UPDATE function. We can switch between those spaces via efficient scatter and
gather operations on GPU memory, which allow pseudo-parallel memory access.

A gather operation is a parallel read access of E processing cores on the GPU,
each working on one graph edge. Given an index tensor I € R” and a node feature
tensor X € R™ as input, a processing core j reads the feature vector X[I[4],:] from
memory, moving the features from node parallel space to edge parallel space.

Similarly, a scatter operation is a parallel atomic operation of E processing
cores with a predefined aggregation, such as sum, or maximum. Given an index
tensor I € R” and a node feature tensor X € R™? as input, a processing core j
combines its computed result m; € R? (here, the message) with the value at X[I[],:].
Since multiple cores can access the same index, the aggregation is performed using
atomic operations that can be considered to have O(1) time complexity on modern
GPUs. We say scatter-add or scatter-maz to describe scatter operations with sum or
maximum aggregation, respectively. Performing scatter with average aggregation is
a combination of two scatter-add operations, one adding the values and the second
counting the elements, followed by normalization in node space. Overall, we obtain
an O(1) runtime in graph size with O(|€]) processors for the whole message passing
procedure, including MESSAGE, UPDATE functions and parallel gather/scatter.

For training, the framework also provides an efficient reverse accumulation scheme.
Intuitively, the reverse operation of scatter is gather and the reverse operation of
gather is scatter. In more detail, the backward operation of gathering node features
to edge space is a scatter-add operation, adding the sensitivities of MESSAGE function
inputs to sensitivities of node features in node space. The backward function of
scattering messages from edge to node space using the aggregation function O



26 Chapter 4. Concepts for Differentiable Algorithms

depends on the aggregation type. For sum aggregation, the backward function
simply gathers sensitivities into edge space, using the same indices as for the forward
scatter-add. For maximum aggregation, a masked gather can be used, only keeping
sensitivities of features that were the maximum during the forward pass.

The efficient implementation of the MP-GNN framework based on scatter and
gather operations is the core of our Pytorch Geometric (PyG) library [FL19], an
extension for Pytorch [PGM+19], allowing to easily customize individual MP-GNN
models for the given task and train them automatically. Since creation, the library
was developed further and includes several optimizations and helpful tools for
learning on graph structured data.

MP-GNN Properties

In the following, further useful properties of the MP-GNN framework further are
detailed.

Permutation Equivariance The neighborhood aggregation operator is permuta-
tion invariant, that is invariant to the order of neighboring graph nodes. The only
other function over nodes is the update function, which is shared for all nodes in the
graph. Therefore, MP-GNN functions built with the given framework are equivariant
with respect to the symmetric group S,. Formally, for an MP-GNN f, consisting of
multiple message passing layers, that maps input node features X = (x,), ., with
adjacency A to output node features Y = (y,), ., with Y = f(X, A), permuting the
input features and adjacency matrix A with a permutation matrix P is equal to
permuting the output:

f(P-X,P-A-P)=P-f(X,A). (4.2)

This is not only useful for graphs but also for all the geometric data types mentioned
in Section 4.1.1, since in point clouds, meshes, manifolds and other geometric graphs,
the order of nodes, points, or entities does not carry any information either. Thus,
the MP-GNN framework respects the natural symmetries of the input data types by
introducing a fitting inductive bias.

Varying neighborhood sizes Since message functions are shared over edges,
node functions are shared over nodes and the aggregation is agnostic of number
of neighbors, varying neighborhood sizes in a graph, or between training and test
graphs, can be processed by design without any additional computation overhead.
This is especially useful for point clouds, since it allows the usage of radius instead
of nearest neighbor graphs, where the number of neighbors within a radius r is
different for each neighborhood.

Locality Operators built with the MP-GNN framework are local operators, where
locality is induced by the adjacency of the underlying graphs. If the graph as a
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geometric embedding and the adjacency is defined by distance or neighbor relations,
the operators are local in the underlying space. Due to locality, MP-GNN operators
can be applied to partial graphs, even if they were trained on larger training data.

CNNs as Message Passing It should be noted that classical CNNs can be
interpreted as message passing on a grid graph. Although the dedicated, highly
optimized implementations of the CNN convolution operator are certainly more
efficient, viewing it as message passing might help to advance the intuitions for
the operators presented in the following sections. Let G = (V,€) be a grid graph
with V = {p1,...pn} containing one node for each pixel of the input image and
& ={ey,...e,} containing directed edges between a pixel and its eight neighbors
and self-edges. Let further K e RM OM*1x3x3 1o the 4-dimensional filter tensor of a
3 x 3-convolutional layer with M*~! input and M?* output feature maps and b be the
trainable bias vector. Then, the standard convolution operator for two-dimensional
images can be described in the MP-GNN framework as

My - = 1\/IEK (Xwaxvaew,v) = K[:v 5 y(e),x(e)] * Xw, (43)
x( = Upp(x{f™Y, 0 my,,) =a(b+ > my,), (4.4)
we./\f(v) weN(v)

with y(e) and z(e) being functions mapping an edge to one of the 3 x 3 indices
which determines its orientation (note that there are only 9 different orientation of
edges in the grid graph). Essentially, this formulation is obtained by swapping sum
operators in the original convolution expression. Instead of first multiplying each
input feature map with the kernel window and then summing over the input feature
maps, here, the pixel fibres x,, are multiplied by an M* x M*! slice of the kernel
first, before summing over the 9 pixel neighborhood.

Mini-batch handling. FEfficient Deep Learning architectures heavily profit from
the ability to be applied in a batch-wise fashion, that is utilizing parallelization
over multiple input objects. It is not immediately clear how to apply the message
passing scheme to multiple inputs in parallel without introducing significant overhead
through differently sized graphs. However, it can be achieved without overhead by
considering all input graphs of a batch as one single graph. By simply concatenating
the feature matrices containing the x,, e,,, and concatenating the list of edges (or
by creating a block-diagonal matrix out of all adjacency matrices), a batch graph
is obtained. It can be seen that message and update functions can still be applied
in edge parallel or node parallel space, respectively. Even with graphs that have
different topology in a single batch, no additional computation is required.

While there are several applications of MP-GNNs in the general graph domain, this
thesis focuses on geometric data. When applied to 3D data, a MP-GNN operator
consisting of MESSAGE and UPDATE functions can have additional properties:
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Extrinsic vs. Intrinsic An operator which is extrinsic in rotation computes
the message function based on extrinsically defined relative Cartesian coordinates
e;; = P; — P;- The output of the operator changes if the input structure is rotated,
i.e. the operator is not invariant to rotation. An operator can also be extrinsic in
translation by utilizing extrinsic node positions as input features: x; = p;. The result
is an operator which produces different results for different translations of the input
structure. In contrast, an intrinsic operator neither depends on the extrinsically
defined coordinate systems and thus is invariant to rotation and translation of
the input structure. They can however utilize intrinsic coordinate frames that
change together with global input transformation. For simplicity, operators defined
extrinsic or intrinsic coordinate systems are referenced as being extrinsic or intrinsic,
respectively, for the remainder of this thesis.

Anisotropic vs. Isotropic An anisotropic operator distinguishes the neighbors
of a node by utilizing multi-dimensional relation information e; ; (e.g. €; ; = pj — p;
on point clouds or meshes). It computes different messages for different edges in the
same neighborhood and thus is usually more expressive than isotropic operators. In
contrast, isotropic operators compute the message function purely based on the node
input features or one-dimensional edge features, e.g. distances. It should be noted
that (an-)isotropy can also be used to describe properties of pure graph operators,
although in a more abstract fashion, where e; ; are not necessarily spatial coordinates.

As an example, a geometrically correct and maximally expressive mesh convolution
formulated as MP-GNN should be intrinsic and anisotropic. It should consider
the full positional relation between between neighbors in the message function but
should not rely on extrinsically defined coordinate systems. Instead, it needs to
use an intrinsic frame of reference for each point, which is, however, often hard
to obtain in practice. For a more detailed discussion about mesh convolution, see
Section 4.1.3. In the following, two examples of MP-GNNs for 3D applications are
discussed, which were published by the author of this thesis.

4.1.3 Related Work

This section gives an overview about related operators in the GNN literature. In
the original works, the operators are mostly framed in their own notations, which is
why this work will provide important milestones in the unified MP-GNN framework,
which was first mentioned in a similar form by Gilmer et al. [GSR+17], was then
formulated as computational framework in our Pytorch Geometric library [FL19]
and adopted by the wider GNN literature [Ham20]. The section is divided into
four parts: operators for general graphs, those specialized on point clouds, mesh
operators, and manifold convolutions.
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Graph Operators

Although it is not the main focus of this work, this section gives a short overview
about milestones in graph neural networks for general graphs. The first versions of
spatial and spectral GNNs were presented by Bruna et al. [BZS+14]. The authors
describe spectral and spatial versions of GNNs that do not utilize weight-sharing
and are therefore restricted to fixed topology. Their operator is anisotropic though,
meaning that different edges in a neighborhood receive different weights. In order
to introduce weight-sharing and domain independence, the property of anisotropy
was sacrificed by the next iteration of GNN operators, ChebNet [DBV16] and
GCN [KW17], which are spatial low-rank approximations of the spectral GNNs
described by Bruna et al. [BZS+14]. GCN can be described in the MP-GNN

framework as
Xw

\/deg(v) ~deg(w)7

with deg(v) denoting the node degree of v. The update function, given a non-linear,
element-wise activation function o, computes the node features x, as

(4.5)

My = ME (Xw,Xv, ew,v) =

x{ = Upw (x{{™Y, 0 my,) =a(W-Y m,,), (4.6)
weN (v) weN (v)

with trainable weight matrix W, which are shared over all nodes. It is easy to see
that the message function is non-trainable and not dependent on additional edge
features, making this approach isotropic.

The next milestone for spatial GNNs was the introduction of attention mech-
anisms. A prominent example are Graph Attention Networks (GATs) [VCC+18],
which utilize self-attention, that is computing edge features based on the features of
the two adjacent nodes. This self-attention mechanism introduces a form of artificial
anisotropy that can be used in case there are no edge features given in the data.
GAT can be expressed in the MP-GNN framework by

exp(LReLU(a’[Wx,||Wxy]))
Yuen(v) eXp(LReLU(aT[Wx,|[[Wx]))

My = MEW,a (Xwa Xv) = ‘Nva7 (47)

with LReLU denoting the leaky ReLU activation function, || denoting vector con-
catenation and W, a are trainable parameters. In this formulation, the first term
computes normalized edge attention scores based on node features, which weight each
message before aggregation. The update function, given a non-linear, element-wise
activation function o, computes the node features x,, as

x{V = Up(x{D, 0 my,) = 0(Y my,). (4.8)
we./\f(v) we/\/(v)

For graphs, the following research has gone in several different directions. Important
areas include the analysis of operator expressiveness and the introduction of diffusion
processes in GNNs. Regarding the former, several works exist that analyze the
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power of GNNs to distinguish non-isomorphic subgraphs. Research has shown that
several state of the art graph operators have the same distinguishing power as
the well-known Weisfeiler-Lehman (WL) algorithm [MRF+19; XHL+19; WLG68].
As a result, several higher-order operators have been proposed to provide even
higher expressiveness [MRF+19; MSR+19; MBS+19; BFZ+20]. For the latter,
APPNP [KBG19] is a prominent example for diffusion processes in GNNs. It is
interesting to see that fixed or trainable diffusion is easily expressed in the MP-GNN
framework and can therefore be integrated in GNN architectures without additional
overhead. This can also be utilized for operators on manifolds and meshes, as
described in the next sections. Since pure graph applications are not the focus of
this work, the reader is referred to the exhaustive review literature [HYL17; Ham20;
WPC+21] to get a more complete list of advancements in the field of GNNs for
general graphs.

Point Cloud Operators

GNNSs on point clouds were initially described by Qi et al. in their works about
PointNet [QSK+17] and PointNet++[QYS+17]. PointNet is a permutation-invariant
network that aggregates a set of points and computes a feature vector, containing
informations about point patterns in the input. PointNet++ builds on top of
PointNet and creates a hierarchical network consisting of PointNet Operators,
sampling and grouping layers. The sampling step selects a subset of well-distributed
points using iterative farthest point sampling, followed by grouping of k-NEAREST-
NEIGHBOR (k-NN) sets around each of those points. Although initially not described
as GNNs, PointNet and PointNet++ can be naturally expressed in the MP-GNN
framework, where the graph is computed by sampling and grouping, that is the
graph edges point from grouped points to their sampled centers. In contrast to
the general graph case, we have a different set of edges for each network layer to
describe the hierarchy. With e;; = p; — p;, the message function is given as

m;; = MEg, (Xj,X;,€;,) = he, (X;]lej:), (4.9)

where hg, is an MLP, ©; the trainable parameters of hg,, and || denotes feature
concatenation. The update function is given as
x() = UP@2(X7§€_1)].’€ i) = e, (maxmi), (4.10)

with another MLP ~g,, its trainable parameters ©, and maximum aggregation. In
contrast to the original formulation, the execution in the MP-GNN frameworks allows
using radius-based grouping instead of k-NN sets without introducing computational
overhead when the differences in neighborhood size is large.

Wang et al. [WSL+19] follow up on PointNet++ with their EdgeConv approach
and allow the MLP to be conditioned on both point feature vectors (including global
point positions) x;,x;, i.e.

m;; := MEe (X;,%;,€;:) = he, (xil[x;lej;:), (4.11)
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making the network more expressive. If extrinsic point positions are included in
features x;,x;, the whole operator becomes extrinsic in translation and is no longer
invariant with respect to global translation.

After PointNet+-, the field evolved into generalizing point cloud operators in
the framework of continuous convolution [SK17; FLW+18; XFX+18; WDW+18;
WSL+19; TQD+19; LEX+19]. These works have in common, that they define a
continuous filter kernel for convolution, from which weights can be sampled for each
point in a neighborhood. In the MP-GNN framework, this can be described by the
message function

mj; = MEK (Xj,Xl', ejyi) = K(ejﬂ-) *Xj, (412)

where the filter matrix K can be conditioned on e;; in several different ways: Our
SplineCNN [FLW+18], for instance, parameterizes K using B-spline surfaces, which
will be the main topic of the following Section 4.1.4. In SpiderCNN by Xu et
al. [XFX-+18] the kernels are constructed as a combination of Taylor polynomials.
In FeaStNet by Verma et al. [VBV18] the two adjacent node features are mapped
to soft assignments, which build a linear combination of a fixed number of kernel
matrices. Similarly, KPConv by Thomas et al. [TQD+19] constructs its kernels as a
linear combination of matrices lying on regularly spaced points in the kernel domain,
where the weights are chosen based on distance. They also propose a deformable
version, in which the network learns to adequately shift the point positions. The
biggest category, Simonovsky et al. [SK17], Wang et al. [WDW+18| and Liu et
al. [LFX+19], defines the filter as an MLP, mapping the edge features e;; to filter
matrix K.

Another noteworthy operator specifically for point clouds is PointCNN by Li et
al. [LGA+18], which sacrifices permutation invariance in local neighborhood in favor
of a learned permutation of points. First, the relative point positions are mapped
to a permutation matrix using an MLP, before the resulting matrix is applied to
permute the feature vectors in the neighborhood. The approach follows a similar
idea as our LSGTs (c.f. Section 4.1.5), producing elements of the point permutation
group instead of rotation group.

Mesh and Manifold Operators

Operators on meshes or manifolds differ from those on point clouds by assuming
and utilizing the existence of a surface. The core research question is how to choose
local coordinate systems on the surface to make an operator truly intrinsic, without
sacrificing anisotropy and expressiveness. From the perspective of MP-GNNs, the
solutions can be divided into two categories: fixed topology approaches that assume
a given, fixed mesh topology and topology agnostic approaches, which can handle
varying topologies in training and validation data. At its core, the difference comes
down to having unique vertex and edge identity. If the model is always trained on
and applied to data lying on the same topology, we can give each node and/or each
edge individual trainable parameters. Doing so, we usually obtain more expressive



32 Chapter 4. Concepts for Differentiable Algorithms

operators in exchange for topology independence. Fixed topology approaches usually
come into play when the task is to regress a function on an existing and fixed mesh,
e.g. when animating or fitting an existing parameterizable 3D model. Topology
agnostic methods are usually more useful for analyzing captured data, as we can not
assume that the data follows a specific topology and because training and application
topology can differ. They can be easily expressed in the MP-GNN framework, as
they make use of the same weight sharing principle and invariances. Fixed topology
approaches can also be formulated and executed in the framework, however, they
(partially) sacrifice weight sharing across edges or nodes and are therefore more
related to the original spatial GNNs of Bruna et al. [BZS+14].

The first GNN mesh operators for arbitrary topology where Geodesic CNNs (GC-
NNs) [MBB+15], Anisotropic CNNs (ACNNs) [BMR+16] and MoNet [MBM+17],
introducing the term Geometric Deep Learning [BBL+17], which also sparked the
creation of our extension library Pytorch Geometric [FL19]. The key difference to
point cloud and graph operators is that they made an effort to be intrinsic. They
construct surface patches in local coordinate systems, which are used to apply the
filters, making the application invariant to global transformation. GCNNs [MBB+15]
resolve the ambiguity in patch rotation by sacrificing anisotropy, as each filter is
applied for a set of equidistant rotations before aggregating the results using angular
pooling. ACNNs [BMR+16] are built on GCNNs and bring back anisotropy, by
using the principal curvature of the surface as indicator for filter orientation and
anisotropic heat kernels as filters. MoNet [MBM+17] expands on filter expressive-
ness and constructs the continuous kernel as a Gaussian mixture model. From a
computation perspective, MoNet can be described by the message function

K
1 _
MEukEk,g (Xw, Xy, ew,v) = (Z gkeXP(_g(GW,v - Nk)TEkl(GW,v - Nkz)))'xun (4.13)
k=1

as a part of continuous convolution using K Gaussian models as kernel function,
with trainable parameters p;, 3y, for each 1 <k < K and g. The update function
is simply the sum aggregation over all neighbors, as usually seen in continuous
convolution. Note that the formulation of convolution is independent of the chosen
coordinate system for e, ,. If the intrinsic local coordinate system from ACNNSs is
used, all continuous convolution operators with anisotropic kernel functions (MoNet,
SplineCNN, EdgeConv, and so on) can become intrinsic and anisotropic operators.

However, these local coordinate systems, with [MBB+15; SRC+20] or without
angular pooling [BMR+16], suffer from the flaw that if a filter is transported along
the surface, it arbitrarily changes orientation based on the circumstances at each
vertex, be it maximum curvature or maximum angular activation. Therefore, there
are multiple operators refining and extending the ideas of GCNNs and ACNNSs.
Harmonic Surface Networks (HSNs) [WEH20] and Gauge Equivariant Mesh CNNs
(GEM-CNNs) [HWC+21] provide solutions to this issue by computing equivariant
vector features in the tangent spaces of each vertex. Those features can be rotated
based on local coordinate systems when parallel transported between neighbors,
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making the whole approach invariant to local coordinate space conventions. The
message function of HSNs and GEM-CNNs can be abstractly described in the
MP-GNN framework as

MEg (X’LU7 Xvsy ew,v) = K@(awﬂn rw,v) -p(w - U) * Xw, (4'14)

where p(w — v) parallel transports the complex-valued features x,, from the tangent
space around w to the tangent space around v (considering the difference in frame of
reference) and Keg (o, rww) is an equivariant filter set with trainable parameters
© on the polar coordinates e, , = (o, wwp) of w in the tangent space of v.
The update function utilizes sum aggregation and specific equivariance-preserving
non-linearities (c.f. the original literature [WEH20; HWC+21] for the individual
implementations).

Lastly, there are fixed topology approaches, most prominently SpiralNet [BBP+19;
LDC+18] and SpiralNet++ [GCB+19]. While the original formulation of SpiralNet
by Lim et al. [LDC+18] did not restrict itself to fixed topology scenarios, the spe-
cific characteristics of the operator makes it most useful in this domain [BBP+19;
GCB+19]. All three works have in common that they sequentialize local mesh
patches into spiraling sequences of vertices to introduce an order for designing a
filter. The spirals for each vertex are not unique, which is why arbitrary choices have
to be made when constructing them. Lim et al. [LDC+18] randomized those choices,
Bouritsas et al. [BBP+19] designed a criterion based on geodesic distances, and
Gong et al. [GCB+19] makes arbitrary decisions, as the spirals are only computed
once for a mesh. Since all choices are not optimal when weights are shared over the
neighborhoods, this line of methods found its strength in fixed topology applica-
tions, where weights can be learned for each spiral individually. In this domain, all
issues that arise with arbitrary topology (finding local coordinate systems, parallel
transporting filters and features) are circumvented by hard-coding the domain into
the network architecture.

4.1.4 SplineCNN

In this section, SplineCNN is described, an anisotropic GNN operator for continuous
convolution on 3D data. It can be either extrinsic or intrinsic, depending on the
chosen coordinates. The content is adapted from the original publication [FLW+18],
brought into the context of MP-GNNs. The success of CNNs in the 2D image
domain heavily relies on the translation equivariance of the discrete 2D convolution
operator. The goal of SplineCNN is to transfer this feature to irregularly structured
data, such as point clouds, meshes and manifolds, in the 3D domain. One arising
challenge when designing similar operators for those domains is to handle the fact
that the data does not lie on a fixed grid. Therefore, the convolution has to be
continuous, that is we need to convolve the input data with a kernel that is defined
on a continuous range. SplineConv, which is defined in the following section, was
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one of the first in a long list of operators that perform such continuous convolutions
(cf. Section 4.1.3 for an overview of existing operators).

In the following, the SplineConv operator is described as MP-GNN operator.
It expects the input to be a directed graph G = (V,€) with V = {vy,...,v,} being
the set of nodes, £ ¢ V x V the set of edges, D-dimensional edge input features
(eww € [0, 1]D)(w7v)eg for each directed edge (w,v) € &€, and node input features
(xV e RM O)Uey for each node v € V. This formulation allows to apply the operator
to all data types listed in Section 4.1.1, namely point clouds, meshes, manifolds and
other types of geometric graphs.

Edge input features For SplineConv, the edge input features e, are of utmost
importance, since they are used to sample the continuous kernel, which is defined
over the range of those features. For geometric input data, such as point clouds and
meshes, the kernel can therefore be defined over local Cartesian or polar spaces around
input points. For more general graph data, the kernel may be defined over arbitrary
feature spaces. Other than being element of a fixed interval range, we state no
further restrictions to the contents of edge features e; ;. Note that, depending on the
chosen coordinate systems for the edge features, the whole operator becomes intrinsic
or extrinsic. If an intrinsic operator is required, additional effort has to be put in
computing intrinsic coordinate frames for each point in a preprocessing step. The
edge features of all edges are described by a tensor E = (e, € [0, 1]D)(w7v)€g e RIEXD.

Node features We consider each node v to have an input feature vector x9, which
describes a discrete sample of the M°-dimensional input function. Layer £ of a
SplineCNN computes an M*-dimensional node feature vector x! for each node. The
features of all nodes after layer ¢ can be described as tensor X’ = (x),cp € RIVI<M,
In analogy to CNNs, a slice XK[!,i] of that tensor is also called a feature map.

B-Splines We shortly define B-spline bases as preliminary for SplineCNN (cf. Piegl
et al. [PT97]). Let (( ﬂlk‘l)lsklsKl’ e (Nng)lsszKD) be D open B-spline bases
of degree m, based on uniform, i.e. equidistant, knot vectors, with K = (K1,..., Kp)
defining our D-dimensional kernel size.

SplineConv Operator

To express the SplineConv operator in the MP-GNN framework, we need to define
message and update functions. In general, the message function is responsible for
two operations: Firstly, given a set of M* x M*! kernel functions, it evaluates the
kernels at the position given by the edge input feature e, ,. Then, the resulting
matrix of kernel values is multiplied with the feature vector x,, of the neighboring
node, forming the message. The messages coming to one node are aggregated using
the sum or mean aggregation function, before passing through the update function,
which adds a bias vector and applies a fixed, non-linear activation o. It can be seen
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(a) Linear B-spline basis functions (b) Quadratic B-spline basis functions

Figure 4.1: Examples of the continuous convolution kernel for B-spline basis
degrees (a) m =1 and (b) m =2 and kernel dimensionality D = 2. The heights of
the red dots are the trainable parameters for a single input feature map. They are
multiplied by the elements of the B-spline tensor product basis (as seen on the sides)
to form the kernel surface height. The resulting kernel surface is used for continuous
convolution with the input feature maps [FLW-+18].

that the whole process can be interpreted as convolution of input node features with
a set of continuous kernels, if the edge features represent local Cartesian or polar
coordinates. In the following, the process is described formally.

A single spline kernel is defined on a D-dimensional grid of size K1 x...x Kp
that spans the definition range of edge features e € [0, 1]D. A cell (ki,...,kp)
is associated to the element (N{?kl,...,NﬂkD) of the Cartesian product of B-

spline bases (]\ﬁ’f‘k,l)lsklg(1 ..o x(Npy) . For presentation purposes, we

1<kp<Kp
introduce a linear index k = (ky — 1) - T2 Kg+ (k2 — 1) - TI23 Kg+ ...+ (kp - 1)
to uniquely identify grid cells with a single index, and denote the total number of
cells as K = Ky -...- Kp. Further, each cell is associated with trainable parameters.
Thus, for M* x M* ! kernels (one for each combination of input and output feature

x M1

map), the trainable parameters are given as a tensor W ¢ RExM* . Then, one

evaluation of the B-spline kernel functions for an edge feature e is defined as

K-1

G(e)m- = kzo W[k‘,’i,j] . Bk(e), (4.15)

where By, is the product of the spline basis functions that are associated to cell k:

D
Bi(e) = [T NI, (el (4.16)

In total, we obtain a tensor G(e) ¢ RM>M"" that contains the values of the
M x M* 1 kernel functions at positions e, ,. One of such kernel function is shown
in Figure 4.1 for different B-spline degrees and D = 2. The bases of different
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degree are shown on the sides. They span a grid of trainable parameters, which
are indicated by the height of the red points. The trainable parameters W|p, 1, j]
serve as local control values for the height of the resulting B-spline surfaces, which
represents the kernel function. In total, for the M* x M*! kernels in one layer,
we have P = M‘- M*'. K trainable parameters. The B-spline bases have local
support [PT97], meaning that each trainable parameter only influences a limited
part of the kernel surface, since the basis functions By(e) are 0 outside of a small
interval. The degree of locality depends on the B-spline degree m. In practice, this
means that most summands in Equation (4.15) are zero and do not need to be
computed in the first place. The indices of required summands can be determined
from the spline degree m in a preprocessing step. Overall, the local support property
provides two advantages: (1) in practice, only a small amount of basis functions
need to be evaluated for each sample, improving efficiency in the forward step, and
(2) since the output values only depend on a smaller subset of trainable parameters,
the Jacobian of one evaluation is very sparse, leading to more efficient reverse mode
accumulation (cf. Section 4.1.4 and Section 2.1).
Given the kernel function in Equation (4.15), we now introduce the MP-GNN
formulation of SplineConv. The message function is defined as:
m,, , := MESSAGEw (Xfij_l,xé_l, ewﬂ,) =G(eww) -xﬁjl. (4.17)

v

The update function adds a trainable bias vector b and applies a non-linear, element-

wise activation function. Thus, the final node features x! are given as
x!, = UPDATEL (x5, 0 my,) =o(b+ Y my,). (4.18)
weN(v) weN (v)

with sum (as given here) or mean aggregation. Recalling the message passing
formulation for CNNs in Equation (4.3), an analogy between both formulations can
be observed. Specifically, instead of having fixed weights K for each discrete edge
case for CNNs, the weights G are computed continuously from the edge feature,
motivating the term continuous convolution. What follows is that SplineConv is
in fact a direct generalization of the discrete convolution on a grid, which can be
applied to irregular domains.

Periodic edge features. One feature of the presented continuous B-spline kernels
is that they are able handle periodic edge features e. An obvious example of such a
situation is, when the e represent point pair relations in polar coordinates. In these
situations, single dimensions of e might contain angles for which it might be desired
that values at both ends of the represented interval (angles 0 and 27) evaluate to
the same kernel value. In this case, closed B-spline approximation can be used to
naturally achieve this goal. In practice this is done by introducing many-to-one
mappings of border grid cells to a single parameter.
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Edge Features
(ew,v)(v,wyee

Node Features Node feature

(Xv)vev Xuw
Edge Features select weights Weights
(ew,v)(v,w)eg w

Figure 4.2: Forward computation scheme of the proposed convolution operation.
During reverse mode, the sensitivities are computed along the inverted solid arrows,
reaching trainable weights W and the input node features x,. Sensitivities for
edge features e, , can theoretically be computed through the upper part of basis
evaluation. However, this is not required for most applications, where e, , describes
relative coordinates, which are fixed on the input domain.

Efficiency through local support The B-spline bases have local support [PT97],
meaning that each trainable parameter only influences a limited part of the kernel
surface, since By, = 0 outside of a small interval. In detail, only S := (m+1)” of the
K different cells are required to compute one kernel value. The required indices
and values of trainable parameters can be found in constant time, which leads to a
very efficient computation scheme to compute the matrix G(e) for each edge, as
shown in Figure 4.2. The given computation scheme leads to the efficient GPU
implementation of the MESSAGE function, which is explained in the next section.

GPU algorithm

As described in Section 4.1.2, we can obtain the input features x, in edge
parallel space efficiently by using the parallel gather operation. After computing
the messages m, ,, in edge space we can efficiently aggregate them back to node
space by using a parallel scatter operation. Both of those operations, as well as the
UPDATE function have simple forward and backward functions (cf. Section 4.1.2).
This section will therefore tackle the crucial part between those two operations,
namely sampling of G(e) from the B-spline kernel functions and computing the
messages in parallel over all edges in the graph. Since the whole approach needs to
be differentiable, the backward function for gradient computation is of equal interest
as the forward computation. The forward and backward message computations are
shown in Algorithm 1 and Algorithm 2, respectively.

Computing the forward message function consists of two successive steps, where
each run is parallelized over all edges. First, the identities of the S weights and
basis functions that influence the kernel function at position e are computed. To
this end, a function WEIGHT _INDICES is applied that finds those indices using
a combination of scaling and rounding to the previous and next integers in each
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Algorithm 1 SplineConv message function forward algorithm.

Input:

M1 Number of input features per node

M?*: Number of output features per node

S = (m+1)": Number of non-zero By, for one edge

W e REM™M": Trainable weights

(N{?kl)lgkngl,---, (NgL’kD)lngSKD: The D B-spline bases of degree m.

E ¢ RP*P: Input edge features for each edge

X e RE*M'. Gathered input node features for each edge
Output:

M ¢ REXM", Messages for each edge

Parallelize over e€ {1,...,E}, se{l,...,S}:
Ble,s] < 1
Ple,s] < WEIGHT__INDICES(E[e,:])
for each de {1,...,D} do
Ble, s] < Ble, s] * Na Basis_Inpex(s,d) (Ele,d])
end for
Parallelize over ec {1,...,E}, o€ {1,...,M"'}:
r<0
for each i e {1,...,M* '} do
for each pe {1,...,5} do
w < W[P[e,p],i,0]
r<r+(X[e,i] -w-Ble,p])
end for
end for
Mle, o] < r
Return M

dimension. Those indices allow us to only consider weights which have non-zero
basis elements at position e. Then, for each weight, the product of basis functions
over all d dimensions of the kernel is computed. To evaluate the basis functions,
explicit polynomial representations are used, depending on the spline degree m. The
second step gathers the S weights from W using indices P, multiplies them with
the basis elements stored in B, the node input features X and sums them up. After
adding the values for all input features, the resulting messages are stored in M.

The algorithm has a parallel time complexity of O(S-M* '), with small S, using
O(E - M*) processors, thus a constant runtime in input graph size with a linear
amount of processors in number of graph edges.

The backward computation in Algorithm 2 requires slightly more operations
than the forward part. It is described how to obtain the partial derivatives with
respect to all three inputs of the operation, namely the derivatives with respect
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Algorithm 2 SplineConv message function backward algorithm.

Input:

E: Number of edges, M*', M* Number of input Joutput feature maps
S = (m +1)P: Number of non-zero By, for one edge

M ¢ RE*M'. Partial derivatives w.r.t. M

(]Y{flkl )1gkng1’ B (]YEkD)lnggKD'
(Nﬂlkl)lskﬁm’ T (Nglka)lsszKD
Kept from forward:

B ¢ RF*S: Basis products of s weights for each edge
P ¢ N¥*9: Indices of s weights in W for each edge
W e REXM' M. Trainable weights

X e RFin: Gathered node input features for each edge
Output:

: The D B-spline bases of degree m.

: The first derivatives of the D B-spline bases.

W e REMTIME g RNxMT o ¢ REXMTIMY. part  deriv. wrt. W, X, E

Parallelize over e € {1,...,E} and o€ {1,..., M*}:
for each i€ {1,..., M* '} do
for each pe{1,...,5} do
Ble,p] « Ble,p] + M[e,0] - W[P[e,p], i, 0] - X[e, 0]
X[e,i] < F[e,i] + M[e,0] - W[P[e, p],i,0] - B[e, p]
]

W[P[e,p],z,o]eW[ [e,p],i,0 +M e,o0]-X[e,i]-Ble,p]

end for
end for
Parallelize over e € {1,....,E} and d € {1, ...,d}:
E[e,d] <0
for each se{1,...,5} do
g B[€> 8] ’ NCLBASISiINDEX(S,CZ)(E[e’ d])
for cach d e {1,...,d}\{d} do
g<g- Nd,BASISfINDEX(S,d)(E[e7 d])
end for
Ele,d] < E[e,d] +g
end for
Return X, W, E

to input node features X, trainable weights W, and input edge features E. The
first two are required in most operations, since gradient information needs to be

propagated to earlier operations through X and W is needed to update the weights.
The third part is only required for specific operations where we need gradient
information with respect to the coordinates stored at edges. This might be the
case for applications in which we are interested to either learn them directly, or

learn a preceding algorithm that predicts them. In most cases this is not the case
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(a) MNIST superpixels (b) Comparison (c) Classification accuracy

Figure 4.3: MNIST 75 superpixels (a) example and (b) classification accuracy
of SplineCNN using varying pseudo-coordinates and B-spline base degrees. (c)
Classification accuracy on different representations of the MNIST dataset (grid
and superpixel) for a classical CNN (LeNet5), MoNet and our SplineCNN ap-
proach [FLW-+18].

and we can omit the second parallel loop and computation of B[e, p] completely.
The algorithm computes the individual backward steps of all the operations in
the forward step, utilizing stored indices and values. Further, it requires the first
derivatives (N{’fh) Lehehy? (Ng’fh) \eheky, of the B-spline basis functions, which are
explicitly hard-coded in the kernel for different spline degrees. It should be noted
that in case of degree m = 1, the partial derivatives E[e, p] are not well-defined at
the grid centers. However, this is not an issue during computation as we just chose
a surrogate derivative from two nearby basis functions, similar to how we deal with
ReLU activation (cf. surrogate gradients in Section 2.2).

Under the realistic assumption D < Mj,, the backward algorithm has a runtime
complexity of O(S - M) using O(F - M*) processors. Similar to the forward
computation, it keeps constant runtime in input graph size with a linear amount of
processors in number of graph edges.

In the following, we present two simple example architectures utilizing SplineConv.
An additional application can be found in Chapter 6, where SplineCNN is used
as part of a capsule network architecture. We denote a SplineConv layer with
2-dimensional kernels using the pattern SConv((K1, Ko), M*!, M*), where K, Ky
denote the kernel size (number of trainable control points in the two dimensions),
M1 denotes the number of input feature maps and M? the number of output
feature maps.

Example Architecture: Superpixel Graphs

Analogously to CNNs on images, we can use SplineCNN as convolution operator
on superpixel graphs obtained from images, as shown as an example in Figure 4.3a
for the MNIST dataset [LCB10]. This experiment was published in our original
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Figure 4.4: Geodesic error plots of the shape correspondence experiments with (a)
SplineCNN and related approaches and (b) different SplineCNN experiments. The
horizontal axis displays the geodesic distance in % of diameter and the vertical axis
the percentage of correspondences that lie within a given geodesic radius around
the correct node. SplineCNN achieves the highest accuracy for low geodesic error
and significantly outperforms other general approaches like MoNet, GCNN and
ACNN. In Figure (c), three examples of the FAUST test dataset with geodesic errors
of SplineCNN predictions for each node are presented. We show the best (left),

the median (middle) and worst (right) test example, sorted by average geodesic
error [FLW+18].

SplineCNN publication [FLW+18]. In order to imitate a CNN, operators for pooling
on graphs are needed. Several graph pooling operators exist since it is still an area
of active research (see [Ham20] for an overview). For this application, we chose
the Graclus method for graph coarsening [DGK07; DBV16] and pool the feature
values from the original nodes to their respective nodes in the coarsened graph.
A pooling layer is denoted by MaxP(C'), where C is the cluster size. Then, the
architecture to classify superpixel graphs is of the format SConv((K1, K2),1,32) —
MaxP(4) - SConv((K1, K2),32,64) - MaxP(4) - AvgP — Lin(128) — Lin(10),
where AvgP denotes global averade pooling over all remaining nodes and Lin(O) are
fully-connected linear layers with O output neurons. As non-linear activation after
each SplineConv layer, the Exponential Linear Unit (ELU) is used. The results of
the method are presented in Figure 4.3b and Table 4.3c. On the MNIST superpixel
dataset [MBM+17], the presented architecture achieves 95.22% test accuracy and
beats the previous state of the art by 4.11 percentage points. Further, the comparison
shows that a spline degree of one together with Cartesian coordinates already suffices
to produce the best accuracy.

Example Architecture: Shape Correspondence

The second architecture example was created to solve the problem of finding shape
correspondence on the Faust mesh dataset [BRL-+14] via mesh node classifica-
tion and was published in our original SplineCNN publication [FLW+18]. The
dataset consists of a set of 100 three-dimensional fixed-topology meshes with 6890
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nodes each. The 100 meshes are obtained by fitting a template mesh to 10 dif-
ferent persons with 10 different poses each. The goal of the benchmark task
[MBM+17; BMR+16; MBB+15; LRR+17] is to obtain the node id for each node
only from the mesh data and thus finding the correspondences to the template
mesh. The first 80 subjects are used for training while the other 20 are used for
validation. We applied a 6-layer SplineCNN architecture with 3-dimensional ker-
nels of the form SConv((K1, K2, K3),1,32) - SConv((K1, K2, K3),32,64) — 4x
SConv((K1, K3, K3),64,64) — Lin(256) — Lin(6890) directly on the input mesh,
mapping to a distribution over 6890 for each vertex. At time of publication,
SplineCNN achieved state of the art accuracy on this task, with 99.2% of found
correspondences having zero geodesic error in the Princeton benchmark protocol
[KLF11; FLW+18], as shown in Figure 4.4.

4.1.5 Local Spatial Graph Transformers

This section introduces LOCAL SPATIAL GRAPH TRANSFORMERs (LSGTs), a MP-
GNN operator that was developed to serve as a spatial transformer in local 3D
neighborhoods of point clouds. It was initially presented to re-weight the inputs to an
IRLS problem [LOM20] for surface normal estimation. However, the concept behind
LSGTs is generally applicable and therefore given here on its own. As described in
Section 4.1.2, MP-GNN operators for geometric data can make use of extrinsic or
intrinsic coordinate systems. If we want to design filters on surfaces, e.g. meshes or
points assumed to be sampled from a manifold, they should be invariant to global
object rotation and translation, which prohibits the use of extrinsic coordinate
systems. At the same time, they should be as expressive as possible, retaining
anisotropy. An intrinsic, anisotropic operator on a 3D geometric graph needs to
rely on local frames of reference that are defined for each node individually and
translate/rotate with global object transformation, that is, behaving equivariant to
global rotation and translation (cf. Section 3.2 for a formal background). There are
multiple ways to compute such reference frames R; using non-trainable algorithms,
such as gathering local point/surface statistics and curvature or by moving a reference
frame along the surface using parallel transport. A review of those operators is given
in Section 4.1.3.

LSGTs, which are presented in this section, are trainable GNNs that receive
rotationally extrinsic coordinates from local neighborhoods and predict local reference
frames for each point in the geometric graph. They are inspired by the spatial
transformer architectures in the image domain [JSZ~+15], which initially showed
that DNNs are able to succeed in estimating pose and use that pose to canonicalize
the input to another DNN, trained end-to-end. Especially on point clouds, where
parallel transport and curvature statistics are hard to compute and rely on several
assumptions, LSGTs provide an efficient alternative to estimate the local frames
of reference. It should be noted that LSGTs do not formally guarantee to produce
equivariant frames but that they are merely a network that is trained to produce
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an estimation of equivariant frames. However, as shown in the surface normal
application in this thesis (cf. Chapter 5), they provide good results while being
efficient and without relying on further assumptions.

LSGTs can be described in the MP-GNN framework, where the relevant com-
putations happen in the last update function. For illustrative purposes we first
chose an arbitrary MP-GNN scheme fit for point cloud processing (here, a variant
of PointNet++ [QYS+17], cf. Section 4.1.3). Given a geometric graph with points
P and edge input features e, = Py — Pw, the message function is formulated as

m,, , = MEg, (Xuw, Xy, €u) = he, (Xw I ewﬂ,), (4.19)

where hg, is an MLP with parameters ©;. Further, the update function is given by
another MLP ~g,, with parameters ©, after mean aggregation of messages:

¢ -1 1
Xy = Uprg (Xv , g mw,v) =%e (— mwﬂ))' (420)
007 L (W 2,

The goal is that the architecture outputs local reference frames after L layers.
Therefore, we need to parameterize the group of 3D rotations SO(3), using vector
space elements x~ € R?. There are several different options to parameterize SO(3).
These include using Euler angles, axis-angle representations or unit quaternions,
each of which have individual up- and downsides. In this case, we want the
parameterization to be continuously differentiable, which is why we chose the
double cover parameterization of unit quaternions (cf. Section 3.2). To this end,
we choose d = 4 and the output vectors x~ ¢ R* are normalized to unit length in
order to obtain the unit quaternion: q, = x%/ Hx{} H Then, we apply a differentiable
quaternion to rotation matrix map. Forward and backward computations as well
as vector normalization are performed in parallel over the nodes, and thus we can
extend the last MP-GNN update function to produce a rotation matrix R:

BED (m ZweN(v) mw,v)

R:=Uprg, (x ™", O my,) = psoes) , (4.21)
weN (

v) H’Y@z(v\/_}vﬂ Zwe/\/(v) mwﬂ})

where pgo(3) is the representation of unit quaternions in the SO(3) rotation group.
The forward and backward algorithms for the last update function UPé2 are shown in
Algorithm 3 and 4. The forward algorithm uses the standard map from quaternions
to rotation matrices in parallel over all nodes of the input graph. The backward
algorithm applies the Jacobians of the individual forward operations. It computes
the sensitivities X = g—)L(, given sensitivities R = gTIi, utilizing stored intermediate
results for input vectors X and unit quaternions Q from the forward step.

After computing rotation matrices for each point, the network can be trained
either directly or by feeding the matrices into a down-stream task and optimizing

the weights to solve this task well. Given row-wise input points P ¢ R™3, edges
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Algorithm 3 Parallel forward parameterization of rotation matrices.

Input:

N: Number of nodes/input quaternions

X ¢ RV*4: Node Features for each node
Output:

R ¢ RV**4: Rotation matrices for each node

Parallelize ove;r(n e{l,...,N}:
Qln. ] < i
R[e,0,0] <« 1-2-(Q[n,2]-Q[n, 2]+ Q[n,3] - Q[n,3])
R[e 0 1] <2 (Q[TL, 1] Q[TL, 2] + Q[n70] ' Q[n73])
R[e,O, 2] <2 (Q[na 1] Q[n,3] + Q[n,O] : Q[’I’L,Q])
R[e,l,O] <2 (Q[na 1] Q[na 2] +Q[n70] Q[n73])
Rle,1,1] < 1-2-(Q[n,1]-Q[n,1]+Q[n,3]-Q[n,3])
R[e,l,Q] <2 (Q[n’ 2] Q[n,?)] +Q[n70] Q[n’l])
R[ea 2a0] <2 (Q[’I’L, 1] Q[na?’] + Q[n,O] : Q[n72])
R[€7271] <2 (Q[na 2] Q[n,3] +Q[n70] Q[n71])
Rle,2,2] < 1-2-(Q[n,1]-Q[n,1]+Q[n,2]-Q[n,2])
Return R

£ ¢ P x P and row-wise, rotationally extrinsic relative coordinates E € RIE*3, an
example for a task-agnostic training loss is

n
L=7Y |useT(P,&,E)] -R"-Ls¢T(R-P,&,R-E); - I| ,, (4.22)
i=1
with R being uniformly sampled from SO(3) in each training step and I being
the identity. The network is directly trained to behave equivariant with respect to
SO(3), that is, to provide outputs that rotate by the same amount as the input was
rotated (cf. Section 3.2). Note that this does not define an extrinsic rotation space,
as the absolute outputs of LsGT(P,E, E) are not constrained. It only trains the
network to produce rotations that are correct in relation to rotations of the input. If
training is done through a down-stream task, a straight-forward example would be
to use the frame of reference for continuous convolution: Instead of sampling from a
kernel function using extrinsically defined e;; = p; — p;, an arbitrary kernel function
K can be sampled using the estimated intrinsic coordinates e;; = R;(p; — p;) and
used in continuous convolution in the MP-GNN framework as

m;; := MEk (X,%;,e;:) = K(Ri(pi - Pj) - Xj), (4.23)

before trained against a down-stream loss after further processing.

Symmetries An additional advantage of local frames estimated with LSGTs is
that they can deal with symmetries in the input naturally, depending on the given
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Algorithm 4 Parallel backward algorithm of rotation parameterization.

Input:

N: Number of nodes/input quaternions
R ¢ RV**4: Partial derivatives w.r.t. R
Kept from forward:

X ¢ RV: Node feature vectors.

Q ¢ RYV*4: Unit quaternions for each node
Output:

X ¢ RV*%: Partial derivatives w.r.t. X

Parallelize over ne {1,...,N} :
Q[n,0] < 2-(-Q[n,3]-R[n,0,1] + Q[n,2]-R[n,0,2] + Q[n, 3] - R[n, 1,0]

C —QIn1]-R[n1,2]-Q[n, 2] R[1,2,0]+ Q[n, 1]- R[n,2,1])

Q[n.1] < 2-(Q[n, 2] R[n,0,1] + Q[n, 3] -R[n,0,2] + Q[n,2] - 1}[”7170]
-2-Q|n, 1]~ R[n,1,1] - Q[n,0]-R[n,1,2] + Q[n,3]-R[n,2,0]
+Q[n,0]-R[n,2,1]+2-Q[n,1]- R[n~,2,2 ) 3

Q[n,2] < 2-(-2- Q[ZL, 2]-R[n,0,0] + [’CL,l] R[n,0,1]+Q[n~,,2 ‘R[n,0,2]
+Q[n,1]-R[n,1,0] - Q[n,3]-R[n,1,2] - Q[n,0]-R[n,2,0]
+Q[n, 3] -R[n,2~1] 2-Q[n,2]-R[n,2,2]) .

Q[n,3] < 2-(-2-Q[n,3]-R[n,0,0] - Q[n,0]- R[n,0,1]+Q[n,1] ‘R[n,0,2]
+2-Q[n,0]-R[n,1,0] -2 Q[n 3]-R[n,1,1] + Q[n, 2] -R[n,1,2]
+Q[n,1]-R[n, ),(1]+C;2([ 2]-R[n,2,2])

Xn.) < e - R

Return X

down-stream task. If there are rotational symmetries in the input (as they occur
quite often on local point cloud patches), the quaternions essentially become a d-cover
(with d > 2) instead of a 2-cover of the underlying symmetry group. If the following
down-stream task is invariant to those symmetries, the loss surface on SO(3) will
have d local minima, one for each of the d correct quaternions representing the input
orientation. Kernel functions, the usual operator following an LSGT, are invariant
to symmetries in the input since they are functions.

PRFNet Architecture: Deep Equivariant Re-weighting for IRLS

The leading application of LSGTs in this thesis is the re-weighting for an IRLS
surface normal estimation algorithm, which is the main topic of Chapter 5. In
the given setting, the input is a point cloud with a least squares plane fitting
problem given for each node, where each input point for each least squares problem
is denoted by an incoming edge. Since the task is to re-weight all inputs for
all least squares problems in the point cloud, weights for the next iteration and
residuals of the previous solutions lie exactly on the edges of the graph. PRFNet
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aims to perform this re-weighting using an MP-GNN, mapping edge input features
to edge output features, utilizing LSGTs and an implicit parameterizable kernel
function, as described in Section 4.3. PRFNet profits from the MP-GNN properties
of permutation invariance, locality and the ability to process varying neighborhood
sizes. Due to the permutation invariant aggregation function, the order of points
has no influence on the result, as desired. Further, each neighborhood can have a
different number of points, without introducing additional computational overhead.
It is possible for training and testing data to have differently sized neighborhoods.
The property of locality allows the network to be applied on partial point clouds,
achieving equal results, even if it was trained on complete ones.

4.2 Differentiable Matrix Decompositions

After introducing GNNs and the GNN building blocks that are used in this the-
sis, we turn to the next concept, which are differentiable matrix decompositions.
Matrix decompositions in general are a crucial part of many 3D vision algorithms.
For instance, they are used to find solutions of least squares problems for, e.g.
normal vector or fundamental matrix estimation [HZ03], to obtain spectral basis
vectors of the LAPLACE-BELTRAMI OPERATOR (LBO) on surfaces for spectral shape
analysis [Lev06], and for dimensionality reduction using PRINCIPAL COMPONENT
ANALysIs (PCA) [Pea01]. The process of most matrix decompositions is differen-
tiable, that is, we are able to compute the sensitivity with respect to the input
matrix given sensitivities with respect to decomposed matrices, which will be the
topic of this section. The field of differentiable matrix decomposition for deep
learning is relatively new and contains several obstacles, which is why up till now
the process is only applied in special cases. The section begins with introducing
the necessary background in Section 4.2.1 and giving an overview about existing
work in Section 4.2.2. Two special cases for which we can derive practical forward
and backward steps are presented in Section 4.2.2, which find their application in
differentiable IRLS approaches later in this thesis in Chapters 5 and 6.

4.2.1 Matrix Decompositions

This section covers the topics of SVD and ED for the special case of real matrices.
We begin by introducing both concepts, before putting them into perspective of
each other and describe the challenges that arise when computing sensitivities.

Singular Value Decomposition Let A € R"™*" be a matrix with real entries
and m > n. Then, basic linear algebra states that the SVD of A given by

A=UDV’ =% qU; V] (4.24)
i=1
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always exists, where U € R"™ contains n orthogonal left singular vectors Uj;
as columns, D € R™" is a diagonal matrix that contains the n singular values
d;, and 'V € R™" contains n orthogonal right singular vectors V;. As the sum
formulation suggests, the SVD is invariant to permutation of singular values and
their corresponding left and right singular vectors. Therefore, we assume that they
are always sorted by descending magnitude of the singular values d;.

In a differentiable computation graph, we usually map the matrix A (which is
obtained by the preceding part of the algorithm, e.g. a DNN) to its decomposition
A - (U,D, V), by computing the SVD. Thus, for a given scalar loss L as a function
of U, D, and V, the reverse accumulation step amounts to

(DL DL 0L oL
ou’ oD’ oV OA’

The backward computation can be performed independently from the chosen forward

(4.25)

implementation. Specifically, even when using iterative schemes for performing the
SVD, the sensitivities can still be obtained in closed-form using

oL _[U (K@ (UTa_L _ ( OL )TU))D +(1,,-UUT) a—LDl]VT

oA d ou 18]
OL\ <+
v 4.26
+U(I”®aD) (4.26)
AL (OL\' OL\"
T__ = -1 = _ T
+U[D(K®(V 5 (w) V))V+D (W) (I,-VV )],

with I,, being the identity of size n x n and the matrix K containing the inversed,
pair-wise differences of squared singular values with zero diagonal:

1 op s .

— if i+,

Kij=1 &% ’ (4.27)
0, if =7,

It should be noted that, usually, we do not have to compute the full Equation (4.26)
but only the subset of terms with non-zero input sensitivities. It can be seen that
if g—ILJ = 0, the first term becomes zero, if g—é = 0, the second term becomes zero,
and if g—{; =0, the third term becomes zero. In many common computation graphs,
the computations following an SVD only depend on U and, therefore, only g—ILJ is
non-zero, in which case only the first term needs to be computed.

Eigendecomposition Let A € R™" be a matrix with real entries. In this thesis,
we restrict ourself to the special case of positive semi-definite, symmetric matrices to
ensure the existence of positive real eigenvalues, thus there exists a matrix X € R”*"
with A = X"X. Then, a decomposition

A =UDU' < AU=UD (4.28)

exists, with U € R™" containing n orthogonal eigenvectors of A and a diagonal
matrix D containing n non-negative eigenvalues d; of A in its diagonal. Similar to
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SVD, the ED is usually applied in computation graphs by mapping a matrix A to
its decomposition, the matrices U and D. Thus the backward computation needs to
be of the form (2k, 9Ly g—i and can be computed in closed form [Gil08] by

U’ oD
OL __[0L COLN] oo

with K containing the inversed, pair-wise differences of eigenvalues with zero diagonal:

1 ifi+q
Kij=y %% S (4.30)
’ 0, ifi=3.

Relation between SVD and ED Eigenvalues and singular vectors are not the
same but they relate in a specific way [HZ03|: The product of SVDs of a matrix
A and its transpose AT, ATA = VDUTUDV' = VD?V7, amount to the ED of
ATA. Therefore, it can be observed that the eigenvalues of matrix ATA are the
squared singular values of the matrix A and that the left singular vectors U of A are
the eigenvectors of ATA. It should be noted that ATA is symmetric and positive
semi-definite, leading to real, non-negative eigenvalues. This relation between SVD
and ED might help when designing differentiable algorithms. If we can find a
solution to a least squares problem by computing a left singular vector of a matrix
A, we can alternatively compute the ED of AT A instead. Vice versa, the desired
solution is often produced by an ED of a covariance matrix C, which can be per
definition decomposed into C = ATA, allowing to compute an SVD of A instead.
Since forward and backward computations of SVD and ED have slightly different
properties, it might be advantageous to favor one over the other, depending on
the task at hand. For SVD, unstable behaviour can be avoided in some cases (cf.
Section 4.2.2). ED on the other hand, might be more efficient to compute, since the
matrix to decompose is of fixed size, which is independent from the number of input
points to a least squares problem.

Challenges when differentiating SVD and ED When computing the backward
oL
0A
for ED and SVD both face a discontinuity when two ore more singular/eigenvalues
are equal. In Equation (4.26) and (4.29), this surfaces as ill-defined entries of

the matrix K, since they contain inverse differences ﬁ or dg—lrp, respectively.
J T 7%

algorithms of SVD and ED as described above, challenges arise. The sensitivities

The discontinuity leads to two different problems in practice. First, the gradient
becomes very unstable near such discontinuities, even if the exact point of equal
singular/eigenvalues can be practically avoided. Second, if the sensitivities with
respect to the input matrix are computed for a single output singular/eigenvector,
e.g. the one with smallest singular/eigenvalue, the vectors flip if the magnitude
order changes. Therefore, the backward signal abruptly reaches different parameters.
Both effects lead to unstable training in practice.
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4.2.2 Related Work

In general, the closed-form computation of SVD and ED was derived by several
works [PL00; Gil08; Tow16]. For SVD, Papadopoulo et al. [PL00] provide a solution
for the issue of undefined sensitivities, by finding the minimum norm Jacobian
for degenerate cases with d; = d;. However, this does only solve the issue of not
defined sensitivities and does not prevent unstable behavior in border cases. The
first attempt to utilize differentiable matrix decompositions in deep architectures
was introduced by Ionescu et al. [IVS15], who presented neural network layers for
SVD and ED, and apply it to compute the matrix logarithm and normalized cuts.
This section will summarize subsequent work of differentiable matrix decompositions
in the context of deep learning. It will cover two different fields of application and
their individual techniques to make the differentiation work in practice. The first
topic is the application to find solutions of least squares problems in a differentiable
manner, which occur very often in (3D) computer vision. Secondly, the first steps in
the direction of differentiable spectral analysis are tackled, utilizing eigenvectors of
Laplacian-like operators as basis for spectral domains, while enabling the learning
of the basis generating operators.

Differentiable Least Squares Given a set of linear equations of the form Ax =b
with A being an m x n matrix with m >n and rank(A) = n, thus being potentially
over-determined. Then, the vector

% = argmin |Ax - b|? (4.31)
X

that minimizes the vector norm error is called a least squares solution to the system
of equations [HZ03]. It is well established that such a solution can be found using
SVD or ED as:

x=V(U'bod™) (4.32)

with A = UDVT being the SVD of A and d~! containing the inverse singular values
(cf. Hartley and Zisserman [HZ03] for a proof). An important special case of the
above is the homogeneous system of equations Ax = 0 (sizes and rank as above)
with the additional constraint of |x| = 1. In this case, the solution is obtained even
simpler by just taking the right singular vector of A that corresponds to the smallest
singular value. Alternatively, the solution can be obtained by taking the eigenvector
of ATA, corresponding to the eigenvalue with smallest magnitude (which always is
the smallest eigenvalue because ATA is positive semi-definite).

There are several works solving (homogeneous) least squares problems in a
differentiable algorithm to solve important computer vision tasks [SST+18; YTO+18;
RK18; LOM20]. Suwajanakorn et al. [SST+18] perform differentiable Procrustes
alignment by finding the optimal rotation between two sets of keypoints as

R = argmin |[RA - B||% (4.33)
det(R)=0
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and solve the least squares problem using differentiable SVD. The parameters of
the full algorithm are optimized to produce keypoints A and B (under further
constraints) that lead to a low angle error of the alignment. To fight problems with
undefined and flipping SVD sensitivities, they add noise to the keypoints before
computing the SVD.

Ranft] and Koltun [RK18] and Yi et al. [YTO+18] find the fundamental or
essential matrix between to images by first computing the solution of a weighted,
differentiable homogeneous least squares problem (a weighted version of the 8-point

algorithm [HZ03]) as
2

€ = argmin HXTdiag(w)Xe’ (4.34)

lef=1
with X containing preprocessed correspondences. In a second step, they enforce
the rank-deficiency constraint of the fundamental/essential matrix by finding an
optimal solution to the problem

E = argmin HE - EH? , (4.35)
det(B)=0

where E is the matrix form of é. This is achieved by applying an additional SVD
E = U-diag((dy,dz,d3)T)-VT and computing E by setting the smallest singular value
to zero: B = U-diag((dy,d2,0)7) - VT. Both works employ different normalization
and pre-processing steps before solving the actual problems, which are left out for
the sake of a simple overview. In case of Yi et al. [YTO+18], the solution to the first
problem is obtained by computing the differentiable ED of X” diag(w)X. Ranftl and
Koltun [RK18], in contrast, use SVD for both steps. In both works, the parameters
of the whole algorithm are that of a deep neural network producing the weights
w to optimally weight the given correspondences for robust estimation (c.f IRLS,
Section 3.3).

In our work about deep differentiable surface normal estimation [LOM20], which
will be the topic of Chapter 5 in this thesis, we go a similar route to compute the
normal vectors of point clouds by solving a large number of parallel least squares
problems in an iterative, re-weighted fashion. The employed ED algorithm is outlined
in the following Section 4.2.3.

Differentiable Spectral Bases A second prominent application of ED in deep
learning related research areas is that of Laplacian eigenbases for spectral analysis of
functions lying on irregularly structured domains. Given a Laplacian operator (e.g.
the Laplacian matrix for a graph, the LAPLACE-BELTRAMI OPERATOR (LBO) for
manifolds, or approximated variants of the LBO for meshes and point clouds), the
eigenfunctions of it yield a spectral basis for the given domain. A classic example for
regular domains is the Fourier basis. Applying the same principle to other domains
(e.g. graphs or manifolds) we can generalize the concept of Fourier analysis to those
domains, including applying filters by element-wise multiplication in the frequency
domain.
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Formally in a discrete setting, given a Laplacian matrix L, which can be the
graph Laplacian or an approximated LBO on a mesh or point cloud graph, we can
find the functions v, which adhere to

Ly = Ay, (4.36)

as eigenvectors of L by eigendecomposition. Then, the set of eigenfunctions ¥ =
();)1<i<n forms an orthonormal basis of the function space on the original graph,
mesh or point cloud domain. There are several applications of this technique in
deep learning. It motivated the spectral construction of the first graph neural
networks [BZS+14] and networks on manifolds and graphs [BBL+17], as outlined in
Section 4.1.3. Further, the functional maps framework [OBS+12; LRR+17], was
heavily adopted in deep learning, solving correspondence tasks between manifolds.

The Laplacian operator describes how a quantity diffuses on a specific domain
over time. We can multiply the Laplacian with a function on the domain to simulate
this diffusion. In the spatial domain, computing this diffusion for a specific time ¢
would require an iterative process. The Laplacian eigenbasis contains stable modes of
this diffusion, i.e. functions, which do only vary in magnitude when diffused further
(since Lty = A per definition). Using the basis, the diffusion process for a specific
time ¢ can be approximated in closed form by mapping a function to its spectral
representation, exponential scaling based on ¢ in the spectral domain, and mapping
it back to the spatial domain. The resulting diffusion process has differing degree of
locality, depending on the chosen spectral filter, which was recently utilized by Sharp
et al. in their work about diffusing GNNs on meshes and point clouds [SAC+20].
Instead of transferring information only locally, as GNNs usually do, integrating
such a procedure allows for domain dependent global information transfer, which
may supplement the standard properties of GNNs in certain scenarios.

Alternative Differentiation Schemes Even if the analytical gradients of ED
exists and are computable in closed form, they have negative properties in some cases
as outlined above. Therefore, a current trend in research is to find alternative ways
to backpropagate through ED. One example is the work by Wei et al. [WDH+19],
which proposes an alternative backward computation based on the backward function
of power iterations, which is an iterative method for ED that comes with its own
derivative. Through assuming initialization with the actual eigenvector computed in
the forward step, they change the iterative power iteration backward algorithm to a
non-iterative computation, improving efficiency and stability.

Another attractive differentiation scheme for ED is the adjoint method, as
outlined by Xie et al. [XLW20]. As Equation (4.29) shows, the standard analytic
gradient of ED depends on the full set of eigenvectors U and eigenvalues D. In
cases where we only need a small subset of eigenpairs for the subsequent part, we
need to compute all pairs anyway, just for the backward algorithm. The adjoint
scheme formulates a different version of analytic gradients, which is especially useful
when only a small number of eigenpairs is computed in the forward step and only
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the sensitivities to those eigenpairs are non-zero. Formally, in case of a symmetric

matrix A with k eigenpairs (v;, d;)1<i<x having non-zero sensitivities (%, %), the
2 7

sensitivity g—i can alternatively expressed as

oL & (oL
oa -2 (G0 e)v 3

where the &, are the solutions to the linear systems

(A-d;I)¢=(1- VVT)SL

(4.38)

(2

which can be solved efficiently using iterative procedures leveraging Krylov sub-
spaces [XLW20]. It is clear that this approach is only feasible if k is small. For the
most common application with k = 1, the approach becomes very efficient when
combined with e.g. power iterations to only compute the dominant eigenpair in the
forward step.

Another important work was presented recently by Dang et al. [DYH+20] and
introduces a way to completely circumvent the problems with backpropagating
through ED and SVD under certain conditions. The idea follows the concept of
surrogate gradients (cf. Section 2.2), which aims to find alternative ways to produce
learning signals that lead to the same minimum but do not require the actual
backward computation. The method is restricted to cases where the output of the
algorithm is the zero magnitude eigenvector e; of a matrix A, for which a direct
ground truth € is given. Since the implication

Ae1 =0 = elATAel =0 (439)

holds for this eigenvector, we can aim to find the the matrix A that minimizes the
surrogate loss

L(0) = AT Ag, (4.40)

for the ground truth vector €, i.e. aiming to find a matrix that has € as its zero
magnitude eigenvector. Since a trivial minimum of this loss is A =0, the authors
propose to additionally maximize the norm of projections of data vectors that are
orthogonal to €, by adding a loss term:

L(A) = eATAé + aexp(-pBtr(ATA)), (4.41)

with A = A(I-@&é"). For a more detailed derivation the reader is referred to the
original work [DYH+20].

4.2.3 Differentiable Solvers in this Thesis

This section will describe the differentiable least squares solver applied in this thesis.
It mainly covers the parallel differentiable least squares solver for surface normal
estimation, which is the main topic of Chapter 5. Also, the application in 3D capsule
networks, as further described in Chapter 6, is introduced.
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Parallel Least Squares Solver

The problems tackled in Chapter 5 of this thesis include a set of weighted least-
squares problems for plane fitting to estimate surface normals n:

n; = argmin ||P(z)n||2 = argmin Z Ipj - wi j - n||2, (4.42)
n:n|=1 ninl=1 jeN (i)
where P (i) contains the weighted points p; - w;; in the neighborhood of size k;
around point 7. Each problem lies on a node of a graph G = (V, ), where the graph
edges define neighborhood relations. The goal is to provide forward and backward
algorithms that work in parallel over the nodes of the graph, in order to integrate
the algorithms into a MP-GNN formulation.

According to Section 4.2.1, we have two straight-forward options to find the
solution of the least squares problems: SVD and ED. For the former, we would apply
the SVD to the k; x 3 matrix P (i) directly, which becomes difficult to parallelize
over differently sized neighborhoods in the graph, since we need to solve n SVDs
and each one has an input matrix of different size. Instead, we chose to perform ED
on the weighted covariance matrices C; = P (i) diag(w;)P (i), with weights w; € R¥i,
which is symmetric, positive-semidefinite and always of size 3 x 3. ED on symmetric,
positive-semidefinite, 3 x 3 matrices is known to have a closed form solution that
does not require an iterative approach [GV89]. Also, the operations can be easily
parallelized over all graph nodes, since the structure of input, output and required
operations is the same for all n solvers.

The full forward and backward algorithms, from a point cloud graph with
weighted edges to normal vectors and vice-versa for sensitivities, are shown in
Algorithm 5 and Algorithm 6, respectively. The forward algorithm starts with
computing the weighted covariance matrix C; = P (i) diag(w;)P (i) for each node 1,
using an MP-GNN formulation. We can rewrite C as

Ci = P(i)"diag(w;)P(i) = Y P(i)jwi;P(i);, (4.43)
JeN (i)

where we first compute the contribution to the C;’s for each edge in the graph,
before adding them up over the neighborhoods of nodes. In practice, we can achieve
parallelization over edges when computing the individual summands. Then, we use a
scatter-add operation to bring the data to node space, over which we can parallelize
for computing the individual EDs. What follows in node parallel space is the well-
known closed form computation of ED for symmetric 3 x 3 matrices [GV89]. First,
the eigenvalues of the input C are computed by finding the roots of the characteristic
cubic polynomial det(3I-B) for a surrogate matrix B in closed form. The eigenvalues
of C can be recovered later from those of B by a linear transformation. Then, given
the computed eigenvalues d, we compute the eigenvectors of C by choosing the
largest magnitude pair-wise cross product of C - d;I for each eigenvector d;. For an
in-depth description and analysis of the method, the reader is referred to Golub and
Van Loan [GV89].
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Algorithm 5 Parallel, weighted least squares plane fitting: forward algorithm.

Input:

N: Number of nodes
FE: Number of edges
P ¢ RP*3: Relative point coordinates for each edge
w € RP: Weights for each edge

Output:

N e RV*3: Normal vectors for each node

Parallelize over e € {1,...,E}:
Cgle,:,:] <« Ple
C[nsink(e),:,:] < ScatterAdd(Cgle,:,:]) to node space

Parallelize over ne {1,...,N}:

q < tr(Cln,::])/3

i7" wle] - Ple,:]

p</tr((C

if p=0 then

[nv ) :] - qI)2)/6

D[n,:] < (C[n,0,0]||C[n, 1,1]||C[n, 2,2])

else
B < (C[n

7:7:]

r < det(B)/2
if r <-1 then
¢« 7/3

else if r > 1 then

-ql)/p

¢<0
else
¢ < acos(r)/3
end if
D[n,0:2] « (¢+2-p-cos(¢),q+2-p-cos(¢+2m/3))
D[n,2] < 3¢-D[n,0] - D[n,1]
end if
for each x € {1,2,3} do
B[n,:,:] < C[n,:,:] - D[n, z]I
r1<—B[n0 ] xB[n,1,:]
ro < B[n,0,:] x B[n,2,:]
]

r3 < B[n,1,:] x B[n,2,:
i < argmax{|ri|,, |r2[,, [rs],}
U[n,x,:] < ri/ ”r2”2

end for

i < argmin{|D[n,0],D[n,1],D[n,2]|}
N[n,:] < Ul[n,,:]

Return R
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Algorithm 6 Parallel, weighted least squares plane fitting: backward algorithm.

Input:

N: Number of nodes

E: Number of edges

N ¢ RV*3: Partial derivatives w.r.t. N
Kept from forward:

U e RV*¥3: Eijgenvectors for each node.
D ¢ RV*3: Eigenvalues for each node
Output:

W € RE: Partial derivatives w.r.t. w

Parallelize over ne {1,...,N} :

i < argmin{|D[n,0],D[n,1],D[n,2]|}

Uln,::] <0

U[n,i,:] < N[n,:]

K[i,j] < (D[n,j]-D[n,i])7t, Vi,j € {1,2,3} with i # §, 0 else.
Cln,:,:] < Uln,:,:][K o (U[n,:,:]"O[n,:,:]) ] Un,:,:]"
Parallelize over e € {1,..., E} :

Cgle,:,:] < Gather(C[ngmk(e),::])

W[e] <« Zi,j(P[ev :]TP[67::| ©) CE[€> Y ])[Zaj]

Return w

The backward computation in Algorithm 6 utilizes the analytical gradient of ED
given in Equation (4.29) in node parallel space, before gathering the result into edge
parallel space. There, we compute the sensitivity with respect to the weights for
each edge.

Least Squares SO(3) Averaging

The second application in this thesis that utilizes differentiable matrix decompositions
are 3D quaternion capsule networks as presented in Chapter 6. Here, the goal is
to find the weighted geometric mean of a set of SO(3) elements. Specifically,
given a set of SO(3) elements M = {g1,...g,} and a geodesic distance measure
dgeo * SO(3) x SO(3) — R on SO(3), we aim to find the SO(3) element that

minimizes the distances to elements of M:

g = argmin Z deeo(h, ). (4.44)
hESO(?)) geM

In practice, unit quaternions are used to represent the group elements because they
enable us to find the mean efficiently and have additional advantageous properties
(cf. Section 3.2). A differentiable IRLS algorithm is used that iteratively encloses on
the desired mean.
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Given unit quaternions Q = {qi,...q,} with q; € S3, representing the group
elements, weights w € R”, and the quaternion distance dquat(q1,d2) = 2COS_1(qu2),
which equals the angle between the two represented SO(3) rotations, one step of
the iterative algorithm amounts to finding the solution of [MCC+07]

q-= argrélgax q'Mq, (4.45)
qe

with M being the weighted covariance matrix of the quaternions

M = > wiqq; - (4.46)
i=1

After each step, new weights are chosen as a function of the distance dquat(4,q;)
between the input quaternions q; and the intermediate solution ¢ (cf. Section 3.3).
The solution to the problem in Equation (6.35) is given by the largest magnitude
eigenvector of the real, symmetric, 4 x 4 matrix M [MCC+07; ZBL+20]. In the
quaternion capsule networks, the forward algorithm uses the iterative Lanczos solver
implemented in Pytorch [PGM+19]. The backward algorithm implements the closed
form, analytic gradient given in Equation (4.26). For the whole method, the reader
is referred to Chapter 6.

4.3 Implicit Neural Functions and Representations

This section will describe ImpLICIT NEURAL FuNCTIONs (INFs), a simple but
effective concept to learn functions and representations given data points as implicit
function descriptions, which gained a lot of interest through successful applications in
the recent years. The concepts described in this section are applied in the joint work
of DEEP LoCAL SHAPES (DeepLS) and in surface normal estimation, as implicit
kernel function for re-weighting. This section will apply INFs to summarize a deep
and non-linear variant of COMPRESSED SENSING (CS) in Section 4.3.1 and gives
an overview about applications in recent literature in Section 4.3.2. Then, the two
applications in this thesis are described, an INF as parameterized kernel function in
Section 4.3.3 and the application for DeepLS in Section 4.3.4.

Concept In 2- or 3-dimensional domains, we usually implement deep functions
between these domains as CNN, mapping from and to dense data given on grids
like images or voxel grids, or as GNN, mapping from and to irregular, sparse data
points, such as point clouds or meshes. In contrast, an INF is defined continuously
over the domain R%.

We define a family of INFs as functions fy(x,6) :R?x R" > R”, where fy is
realized as an MLP with parameters ¢. Here, MLPs are a natural choice to implement
those functions, due to their ability to approximate any function [HSW89]. The
additional parameter vector 8 decides on a specific function from this family, which
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maps a coordinate vector x € R? to a value y € R™. In practice, the parameter vector
f and the coordinate vector x are concatenated and fed as single vector to the MLP
input neurons. The two sets of parameters allow for a two level training procedure.
First, by optimizing 1) we can find a space of functions, which f, is able to compute.
Second, by optimizing 6 we can find individual functions within this space that best
approximate functions implicitly defined by data points.

There are different ways to realize the given framework. An INF can be in-
tegrated in a differentiable algorithm, which is trained in an end-to-end fashion,
with parameters 1) being directly optimized and parameters 6 being the output of a
preceding part of the algorithm, e.g. another neural network. The kernel function for
IRLS re-weighting described in Section 4.3.3 and Chapter 5 is an example for this
type of application. A more sophisticated way to utilize INFs is to use them for a
differentiable, non-linear variant of COMPRESSED SENSING (CS), which is described
in the following section.

4.3.1 Deep, non-linear Compressed Sensing

Traditionally, COMPRESSED SENSING (CS) is a method to measure and reconstruct
a function from fewer samples than required by the sampling theorem. We aim to
find the signal that best explains a set of samples, given sparsity constraints. Those
sparsity constraints are enforced by compressing the signal in a low dimensional space
using a sparse set of linear independent vectors, which we call the CS compression
matrix. Therefore, we first have to find vectors that span a space in which unique
identification of a signal purely based on the given observation is possible.

DNNSs are known for their ability to heavily compress complex signals in low-
dimensional representations. In contrast to the CS compression matrix, they trans-
form the signal using non-linear functions. Even if we loose most of the theoretical
results from the field of CS (since they rely on the linearity of the compression
matrix), we can generalize the concept to non-linear domains using INFs. We solve
both steps, finding the optimal compression function and finding the best represen-
tation for signal reconstruction by reverse mode accumulation. The compression
space is learned from a data set of functions, each sampled with high frequency.
Then, future signals following the same characteristics can be reconstructed from
very sparse sets of samples. The concept was originally mentioned for shallow
networks in early neural network works [TM95] and was applied to signal error
detection [RM98] and process monitoring [BH12]. Later, a similar concept was used
for deep matrix completion [FC18] and GENERATIVE ADVERSARIAL NETWORKsS
(GANSs) [BJL+18], before it was brought to the field of 3D vision with deep networks
by Groueix et al. [GFK+18], Mescheder et al. [MON+19], Chen et al. [CZ19] and
Park et al. [PFS+19] for representing surfaces, occupancy, indicator functions and
SIGNED DISTANCE FUNCTIONS (SDFs), respectively. In the following, it is described
in general as deep, non-linear CS for arbitrary functions.
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Let g1, ..., gm : R? - R™ be M functions, which are described by sets of implicit
function samples S; = {(x%,y}), ..., (xi;(i,yzki)}, so that each function g; obeys to
gi(x") = y* for all (x’,y") € S;. We denote the set of all those sample sets as
D ={Si,...,Sn}, which will be the training set for our deep non-linear CS model.
Given an INF fy(x,0) :R? x RF - R”, we jointly obtain a compression space and
representations for training functions by finding the optimal parameters 1[1 and
{0:}}) as

R M
(7/’7{92}) = argmin Z ( Z wa(x’gm)_yu +)‘||9m”§)’ (4'47)

{0} m=1\(x,y)eSm

where A 6,3 is an Ly regularization term on the function representations 6; and |-|
can be chosen depending on the application. Given the trained INF f,, we can then
encode a new observation S = {(x1,¥1), .-, (Xk,y¥x )} by finding the representation
0 that optimally fits S, using fixed parameters :

f=argmin Y | fu(x,0)-y]+X]0]3. (4.48)
(x,y)eS

The fixed network f,;, was trained to reconstruct functions from a specific subspace.
Thus, we optimize for the most fitting function representation lying within this
subspace. Having a trained network f, and a representation ¢, the function can
be sampled at arbitrary x in continuous space by evaluating f,(x,#). If the whole
function is needed, it can be efficiently evaluated densely by utilizing batch-wise
matrix multiplication implementations on the GPU, which are highly optimized due
to their use in MLP training.

4.3.2 Related Work

This section will cover the existing work utilizing INFs in computer vision, which can
be mainly found in the field of 3D reconstruction and auto-encoding of shapes. The
idea appeared first in the work of Groueix et al. [GFK+18], describing a method
called AtlasNet, which parameterizes local 2-manifolds using INFs by mapping chart
coordinates x €]0,1[? and surface representation vector 8 € R" to surface patches in
R? using an MLP £ :]0,1[?xR" - R3. The main advantage of describing surfaces as
a set of charts, i.e. atlases, is that the mapping can also be used to parameterize
textures and other surface properties along with the geometry. However, in practice,
the approach faces challenges when it comes to stitching the 2-manifolds together,
as they appear discontinuous at borders.

The next iteration of representing shapes with INFs was introduced simultane-
ously by Park et al. [PFS+19], Chen et al. [CZ19], and Mescheder et al. [MON+19].
Park et al. [PFS+19] represent the signed distance (negative values for points inside
and positive values for points outside of the object) to the surface of an object as
INF fy;(x,0) = s and define the surface as the zero level set of it:

S={xeR?| f,(x,0) =0}, (4.49)
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where the network is trained using densely sampled SIGNED DISTANCE FUNC-
TIONs (SDFs) of different objects. Similarly, Chen et al. [CZ19] and Mescheder et
al. [MON+19] use INFs to represent indicator functions for occupancy, with value 0
for points inside the object and value 1 for points outside.

Several works build upon the idea of representing SDFs with INFs. Genova et
al. presented Structured Implicit Functions [GCV+19], showing that objects can be
composed as a sum of INFs with limited support. In joint work, we presented DEEP
LocAaL SHAPES (DeepLS) [CLI4-20], creating a deep analogue of the widely used SDF
fusion approaches for 3D reconstruction, allowing the INFs to be applied to real scans
of large real-world scenes. DeepLsS is the topic of the following Section 4.3.4. Several
works combined INFs with differentiable renderers, showing that they can be trained
using image-based loss functions [SZW19; NMO+20; YKM+20]. Additionally, they
show that INFs can also regress color [SZW19], can infer depth [NMO+20], and
can refine the camera pose [YKM+20]. Chibane et al. [CAP20] presented Implicit
Feature Networks, a hierarchical extension to the single per object representation
used in previous work. Instead of a single representation 6, they extract a set of rep-
resentations F(x), ..., Fj,(x) for a coordinate x from a feature hierarchy and predict
occupancy through the INF f(Fj(x),..., Fj(x)). Chibane et al. [CMP20] present
Unsigned Distance Function Networks, allowing to model surfaces that are not closed,
together with a rendering technique based on sphere tracing. CvxNet, as proposed
by Deng et al. [DGY+20] uses a differentiable method to decompose objects into
convex parts, before regressing those parts using a network predicting hyperplanes.
The more interpretable representation allows for direct transformation to polygon
meshes. Similarly, Chen et al. [CWH+20] propose BSPNet, which organizes the
convex parts in a binary space partitioning tree. Sitzmann et al. [SMB+20] present
Siren, an INF with periodic activation functions which enables to learn functions
from implicit second and third order information. Through this formulation, they
are able to find solutions to partial differential equations by neural network training.

The appearance of INFs sparked the field of Neural Volume Rendering, which
dominated 3D vision and rendering in the last two years. The field was initiated by
the works of Lombardi et al. [LSS+19] about Neural Volumes, and Mildenhall et
al. [MST+20], presenting Neural Radiance Fields (NeRF). Instead of just regressing
an SDF or occupancy, they directly use an INF to regress color values and opacity
for each point in a volume. In case of NeRF, the view angle is additionally encoded
in the domain of the function, leading to a view-dependent representation. The scene
is rendered by a ray-casting procedure, producing the color value by integration
over a ray through the INF domain. Several optimizations and extensions to NeRF
have been proposed. These include Neural Sparse Voxel Fields [LGZ+20], which
organize the scene in an octree containing representations, increasing rendering
efficiency, and Decomposed Radiance Fields (DeRF) [RJY+20], which divide the
scene into soft Voronoi cells, each having their own representation to increase detail
and efficiency. Zhang et al. [ZRS+20] improve on NeRF with their NeRF++
by modeling the background individually and analyze how NeRF handles the
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shape-radiance ambiguity. Finally, Lindell et al. present Autolnt [LMW21], which
introduces a very general new technique to compute integrals over one-dimensional
subspaces of INFs. Specifically, by applying the chain-rule to an MLP fj: RY - R3,
they obtain a new network fj : R? - R3, which computes the derivative of f and has
the same parameters. Then, f’ can be trained as in INF and f can be evaluated,
using the shared parameters, to obtain integrals over f’ by evaluating the anti-
derivative with only two network evaluations. Several additional works improve on
certain aspects of NeRF and Neural Volumes, e.g. by introducing local reflectance
models [SDZ+21; BXS+20], by conditioning on shape representations [SLN+20],
composing whole scenes of object level representations [GFW+20; OMT+21], and
extensions to handle dynamic scenes [PSB+20; LNS+21]. Since the field of research
is very young, no exhaustive review literature exists. However, initial attempts to
summarize the literature have been made in a non peer-reviewed manner [DL21].

4.3.3 Parameterized Kernel Functions

A straight-forward application of INFs in this thesis is their appearance as kernel
function in DISNE, which is the main topic of Chapter 5. The method requires a
differentiable function, from which weights can be sampled in a continuous domain
and which can be conditioned on a feature vector #. INFs are a natural fit for these
requirements. Specifically, in the DISNE method, the weights for point pairs (p;,
p;) in a neighborhood around point p; are obtained as

wij = fu(Ri(pj — pi)llo:), (4.50)

with fy being an INF realized as an MLP with parameters ) and 6; is a feature
vector for the neighborhood around point p; obtained from a preceding graph neural
network. Additionally, the kernel function can be rotated by inversely rotating the
input coordinates (p;—p;) using a rotation matrix R;. In the DISNE application, this
rotation is obtained by applying a LOCAL SPATIAL GRAPH TRANSFORMER (LSGT)
(cf. Section 4.1.5). The whole algorithm, including the INF for weight prediction, the
LSGT for inferring local rotations and the GNN to obtain kernel parameterization,
is trained end-to-end to achieve the task of surface normal estimation. For a detailed
description and evaluation of the method, the reader is referred to Chapter 5.

4.3.4 Deep Local Shapes

This section will discuss DeepLS [CLI420], joint work to extend DeepSDF [PFS+19]
to represent larger scenes based on real scanned data. We briefly summarize DeepLS,
its application, and its results.

Representing Local Shapes DeepSDF [PFS+19] uses the two step training
formulation described in Section 4.3.1 to first jointly learn a space of SDFs and
representations for a specific object class, before being able to infer representations
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for new (partial) observations of objects from the same class. The main advantage
of this method is the strong integration of prior class information, e.g. restricting
the function space to model for example the SDFs of airplane-like objects. In
consequence, the model is able to reconstruct objects from very sparse observations,
given only a few sample points from one side of the object. In practice, however, the
method is hindered by the vast amount of required training data. For each object
class that should be represented, we need to have a wide variety of training examples,
making representing whole, real world scenes nearly impossible. In contrast, current
scanning technology allows for much denser observation than what DeepSDF actually
requires. Therefore, DeepLS [CLI420] moves a few steps back from the full, global
deep learning solution to apply the same technique only on a local level, aiming to
keep some of the prior incorporating capabilities while being applicable in practice
on real world reconstruction tasks.

With DeepLS [CLI4-20], a scene is divided into a voxel grid of variable cell
size, where each cell C; stores an implicit representation 6; for the SDF function it
contains. Given indicator functions 1¢, : R3 — {0,1} for each cell C; with 1, (x) = 1
for points x within C; and 0 otherwise, the surface for the whole scene is modeled
as a joint zero level set over all voxel cells:

§ = (x e R? | Y 16,(0 fu(T().61) = 0}, (4.51)

with T;(x) = x - x; transforming x into the local coordinate space of cell C;. It is
important to note that the INF' f,, used to decode representations ¢; into SDF values
is shared over all cells, thus utilizing the same function space for reconstruction.
DeepLsS is using the training and inference formulations given in Equation (4.47)
and Equation (4.48), respectively. For rendering, we can densely sample the volume
and apply Marching Cubes [LC87] to obtain the iso-surface. An important difference
to DeepSDF is the required training data. Instead requiring whole objects or scenes,
the DeepLS INF can be trained using only local synthetic shape parts. For the
experiments it was trained on synthetically generated primitives and parts of the
ShapeNet dataset [CFG+15], which are synthetic objects as well. Thus, the learned
function space consists of local surfaces in different forms and orientations, which can
be utilized to complete and reconstruct scanned data on a local level. The trained
model can still be applied to reconstruct scenes from real scans by applying techniques
from traditional SDF fusion. Given depth maps of a scene, we generate two SDF
value pairs (x, s) for each depth point y in 3D scene space by moving the depth point
along the surface normal n at point y in positive (x1,s1) = (y +d-n,||d-n|,) and
negative direction (xg,s2) = (y —d-n,-|d-n|,) for a small value d. Additionally,
we generate free space samples along the observation rays to ensure to not generate
floating surfaces. For rendering, Marching Cubes is only applied in a narrow band
around depth observation points.
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Figure 4.5: Qualitative comparison between reconstruction results of DeepLS and
TSDF Fusion [CLI6] on two scenes from the 3D Scene Dataset [ZK13] (from original
publication [CLI+20]). It can be seen that the local prior information incorporated
by DeepLsS is able to fill spots of missing data. Local surfaces need to be drawn from
the INF function spaces, which have been trained on synthetic primitive objects.

Results and Discussion Along with general qualitative and quantitative evalua-
tion of DeepLS, for which the reader is referred to the original publication [CLI4-20],
we performed experiments to evaluate the trade-offs between usage of prior informa-
tion and practicality. The trade-offs can be controlled by varying the size of local
shape cells. For larger cells, our INFs learn to encode more semantically rich prior
information and are able to perform better in local completion of geometry. However,
we could show that these advantages come at the cost of less accurate reconstruction
and slower inference of representations. Also, since more complex objects need to
be represented, we need more sophisticated training data. By choosing the correct
cell size, is is possible to utilize the prior information from synthetic local surface
training examples to fill unobserved areas and compensate for errors and noise in
the depth data to a certain degree. This can be observed in the comparison in
Figure 4.5, which shows that DeepLS succeeds in reconstructing fine-grained objects
in real scene scans. In addition, we found that inference and rendering is much
faster than for DeepSDFs object level representations. In total, DeepLS bridges the
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gap between traditional SDF fusion and implicit representations, allowing to utilize
data-driven parameterization for practical reconstruction of scanned 3D scenes.






CHAPTER 5

Differentiable Iterative Surface
Normal Estimation

This chapter will introduce and analyze DIFFERENTIABLE ITERATIVE SURFACE
NORMAL ESTIMATION (DISNE), a differentiable algorithm for surface normal estima-
tion on unstructured point clouds, which was originally published in 2020 [LOM20].
The task of surface normal estimation is an important research topic that has been
studied for several years, with early publications dating far back to early computer
vision research [HDD+92], since surface normal vectors are heavily used as local
surface descriptors in several computer vision algorithms, such as surface reconstruc-
tion [KBHO06], registration [PCS15] and segmentation [GMR17]. While there is a
large amount of fixed function algorithms available, data-driven methods for surface
normal estimation, utilizing deep learning, only emerged recently [BLF18; BM16;
GKO+18]. Those method use large DNNs that are trained in an end-to-end fashion.
It was shown that, given the required amount of training data, those methods
are able to produce better results than existing fixed-function approaches, which
can be contributed to their ability of adapting to the given data characteristics.
However, they also have several disadvantages. They need large, annotated training
datasets to begin with, are much slower than fixed function approaches, and are
not interpretable. Further, they often ignore existing knowledge about the intrinsic
problem structure so that the programs instantiations need to be selected from the
full space of all continuous functions, mapping from points to unit vectors.

An important insight into the problem of unsigned surface normal estimation is
that the 3-dimensional unit sphere is a double cover of the space of solutions, as the
normal vectors n and —n describe the same surface plane. Thus, the problem can
naturally be formulated as a least squares plane fitting problem. DISNE utilizes this
problem-specific knowledge by building a differentiable algorithm around a fixed
function IRLS scheme (cf. Section 3.3) for robust surface normal estimation. Instead
of re-weighting the input points using a fixed, concave function, as it is traditionally
done in IRLS, the re-weighting is done based on data, by inferring the weights for
each iteration using a graph neural network on residual features and input points.
Therefore, instead of spanning a differentiable program space of all functions from
points to unit vectors, we only span a space for the subproblem of assigning weights
to input points. Then, computing the normals is just a matter of plane fitting in
local neighborhoods of individually weighted points.

65
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Figure 5.1: Overview of the DISNE method [LOM20]. The method consists of
three steps, illustrated here on three different point neighborhoods. (a) First, normal
vectors are obtained by optimizing weighted least squares. (b) Kernel parameters
and local orientations are obtained using an LSGT, which receives pair-wise residual
features from least squares as input descriptors. (c) Point pairs are re-weighted
using a kernel INF, utilizing the parameters and rotations obtained from the GNN.

The differentiable algorithm is summarized in Figure 5.1. It consists of three steps,
which are iteratively repeated multiple times, during training and inference. First,
least squares plane fitting with uniform weights is applied to local neighborhoods
of the input point clouds to obtain normal vectors. Then, the plane fitting error is
used to compute pairwise residual features prf; ;, which are used as input to a GNN.
The GNN takes the residual features prf; ; and the input points and parameterizes
an INF kernel ¢ with parameters 6; and provides approximately equivariant local
reference frames R; through the application of LSGTs (cf. Section 4.1.5). Lastly,
the parameterized kernel INF 1) is used to assign weights w to points in local
neighborhoods, which are used in the next iteration of weighted plane fitting. All in
all, the following geometric characteristics are incorporated into the algorithm as
inductive bias:

e rotation equivariance of normal vectors,
e point permutation invariance, and
e the double cover property of normal vectors on the sphere.

We show that the algorithm is able to slightly improve on the results of full DL
approaches, while at the same time being orders of magnitude more efficient in terms
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of parameters and execution time. Additionally, the approach is indeed easier to
interpret, as we can visualize the weights and normal vectors within the algorithm.

The chapter will first discuss related work in Section 5.1, before Section 5.2
introduces the necessary background and formal introduction to the task of surface
normal estimation. The method is then detailed in Section 5.3 and evaluated in
Section 5.4.

5.1 Related Work

We first discuss pre-DL methods for surface normal estimation, which have been a
subject to extensive research for many years. Traditionally, surface normal estima-
tion is solved by fitting planes to manually chosen neighborhoods using specific, fixed
kernel functions. The algorithms to solve the respective least squares problems usu-
ally involve unweighted PCA [HDD+92] solved with EIGENDECOMPOSITION (ED) or
plane fitting with SINGULAR VALUE DEcOMPOSITION (SVD) [HJ87; HMO1]. For an
overview of these approaches, the reader is referred to review literature [KAW-09].
These optimization-based approaches share the downside of depending on data-
specific hyperparameters, such as neighborhood size or weighting function, which
usually have to be chosen manually and adjusted for changing data characteristics
like noise or varying point density. As a consequence, several heuristics for hyper-
parameter selection have been proposed, such as methods that automatically find
appropriate neighborhood sizes for plane fitting [MNGO04]. A common limitation of
plane fitting methods is that they tend to smoothen sharp details, in fact, they can be
seen as isotropic low-pass filters. Therefore, approaches that preserve sharp features
have been proposed, such as estimating normals from Voronoi cells [AB98; MOG11]
and combining that with PCA [ACT+07]. Alternative approaches include edge-
aware sampling [HWG+13] or normal vector estimation in Hough space [BM12]. In
addition, several methods arise from more complex surface reconstruction techniques,
e.g. moving least squares (MLS) [Lev98], spherical fitting [GGO07], jet fitting [CP03]
and multi-scale kernel methods [ASL+-17].

Deep learning methods. Deep learning based approaches also found their way
into surface normal estimation with the recent success of deep learning in a wide
range of domains. These approaches can be divided into two groups, depending on
the actual type of input data they use. The first group aims at normal estimation
from single images [BRG16; EF15; FGH13; LZP14; LSD+15; QLL+18; WFG15]
and has received a lot of interest over the last few years due to the well understood
properties of CNNs for grid-structured data.

The second line of research directly uses unstructured point clouds and emerged
only recently, partially due to the advent of graph neural networks and geometric
deep learning [BBL+-17]. Boulch et al. [BM16] proposed to use a CNN on Hough
transformed point clouds in order to find surface planes of the point cloud in Hough



68 Chapter 5. Differentiable Iterative Surface Normal Estimation

space. Based on the widely used point processing network, PointNet [QSK+17;
QYS+17], Guerrero et al. [GKO+18] proposed a deep multi-scale architecture for
surface normal estimation. Later, Ben-Shabat et al. [BLF18] improved on those
results using 3D point cloud fisher vectors as input features and a three-dimensional
CNN architecture consisting of multiple expert networks.

5.2 Problem and Background

Let S be a manifold in R3, P = {p1,...,py} a finite set of sampled and possibly
distorted points from that manifold and N = {fy, ..., ny} the tangent plane normal
vectors at sample points p;. Surface normal estimation for the point cloud P can
be described as the problem of estimating a set of normal vectors N = {ny,...,ny}
given P, whose directions match those of the actual surface normals f; as close as
possible. We consider the problem of unoriented normal estimation, determining
the normal vectors up to a sign flip. Estimating the correct sign can be done in a
post-processing step, depending on the task at hand, and is explicitly tackled by
several works [MGD+10; HLZ+19; WHG+15].

A standard approach to determine unoriented surface normals is fitting planes to
the local neighborhood of every point p; [Lev98]. Given a radius 7 or a neighborhood
size k, we model the input as a nearest neighbor graph G = (P, &), where we have a
directed edge (i,7) € € if and only if ||p; — pj|j2 < 7 or if p; is one of the k nearest
neighbors of p;, respectively. Let N (i) denote the local neighborhood of p;, with
k; = |IN(4)], containing all p; with (i,5) € £. Furthermore, let P(i) € R¥*3 be the
matrix of centered coordinates of the points from this neighborhood, that is

P();=p] -7 ¥ P NG, (51)
v meN (i)
Fitting a plane to this neighborhood is then described as finding the least squares
solution of a homogeneous system of linear equations:
n; = argmin [P (i) -n|3 =argmin > [P(:);-n|3, (5.2)
n:||nf|,=1 n:||nfly=1 jeA (4)
which can be solved in practice using ED or SVD, as described in Section 4.2.1. The
simple plane fitting of Equation (5.2) is not robust and does not result in high-quality
normal vectors. It produces accurate results only if there are no outliers in the
data, which is never the case in practice. Additionally, this approach eliminates
sharp details because it acts as a low-pass filter on the point cloud. Even when
an isotropic radial kernel function 6(||P(7);||) is used to weight points according to
their distance to the local mean, fine details cannot be preserved.
Both issues can be resolved through integrating weighting functions into Equa-
tion (5.2). Sharp features can be preserved with an anisotropic kernel that infers
weights of point pairs based on their relative positions, i.e.

n; =argmin ) ¢(p;-pi)- |P();-nl;, (5:3)
n:nf=1 jeA(i)
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where (-) is an anisotropic kernel, considering the full Cartesian relationship
between neighboring points, instead of only their distance. However, an anisotropic
kernel is no longer rotation invariant, so that equivariance of output normals needs
to be ensured additionally. Robustness to outliers can be achieved by another kernel
that weights points according to an inlier score s; ;. More specifically, Equation (5.2)
is changed to

n; =argmin Y. s;;-|P(i);-nl3, (5.4)

nifn|=1 jeN/(7)

where s; ; weights outliers with a low and inliers with a high score. However, in order
to infer information about the outlier status of points an initial model estimation
is necessary. A standard solution to this circular dependency is to formulate the
problem as a sequence of weighted least squares problems [HW77; RK18] (cf.
Section 3.3). Given the residuals r! of the least squares solution from iteration I,
the solution for iteration [ + 1 is computed as

n'*! = argmin > S(I'i,j) [P () n\|§ (5.5)
n:nl=1 jeN(4)

That is, the inlier score and the estimated model are refined in an alternating fashion.

5.3 Deep Iterative Surface Normal Estimation

In this section, the DISNE method is presented, which combines the described
properties of robustness, anisotropy and equivariance with the deep learning property
of adaptation to large data set statistics. An anisotropic, iterative weighting function
is able to span the full space of possible solutions for normal vectors and includes
all relevant data-dependent degrees of freedom. Therefore, in contrast to existing
deep learning methods [BLF18; GKO+-18], we do not directly regress normal vectors
from point features but build a differentiable algorithm that uses DL only to infer
weights for a single least squares optimization step, utilizing the problem specific
knowledge outlined above.

The core of the algorithm is a trainable kernel INF 1 : R? x R? » R, which infers
weights as

where 60; are kernel parameters and R; is a rotation matrix. The kernel is shared
by all local neighborhoods of the point graph while 6; and R; are individual for
each node. Because there is no a priori information about the structure of the
input data, a reasonable approach is to model 1 as an MLP and to find kernel
parameters through supervised learning from data. To this end, parameters 6; and
poses R; for each neighborhood are jointly regressed by a graph neural network,
specifically, a LOCAL SPATIAL GRAPH TRANSFORMER (LSGT) (cf. Section 4.1.5),
on the point neighborhood graph. Then, the kernel function v regresses anisotropic,
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Algorithm 7 Differentiable iterative normal estimation

Input:

‘P: Point cloud

L: Number of iterations

k or r: Neighborhood size (num. neighbors or radius)
Output:

N: Normal vector estimations

(P, &) « Neighborhood graph from P and k / r

C « CovMatrices(P, E)

U, X < ParallelEig(C) (cf. Section 4.2.3)
N° « Extract Solutions from U

for each [ € {1,...,L} do

(0,Q) « GNN(P,&,N-1) (cf. Section 4.1.2)
R < QuatsToMats(Q) (cf. Section 4.1.5)
W « ApplyKernel (R, P,0,E) (cf. Section 4.3.3)
C + WeightedCovMatrices(P, W, )
U, X « ParallelEig(C) (cf. Section 4.2.3) (cf. Section 4.2.3)
N! « Extract Solutions from U

end for

Return N

approximately equivariant weights w; ; for each edge in the graph, which are used
to find the normal vectors using traditional weighted least squares optimization

n; =argmin Y softmax(w ;) HP(@)]an, (5.7)
n:nl=1 jeN(s) J€ (1)

in parallel for all p; € P, using softmax for normalization of weights in each neigh-
borhood. Similar to iterative re-weighting least squares (c.f. Section 3.3), we apply
the method in an iterative fashion to achieve robustness and provide the residuals
of the previous solution as input to the graph neural network.

The core algorithm is formulated as pseudo code in Algorithm 7. The initial
weighting of the points in a neighborhood is chosen to be uniform, which results in
unweighted least squares plane fitting in the initial iteration. In the following, we
present the graph neural network, the local quaternion rotation and our differentiable
least square solver in more detail.

5.3.1 PRFNet for Kernel Parameterization

For regressing parameters 6; and rotations R; for the whole point cloud, MESSAGE
PAssING GRAPH NEURAL NETWORKs (MP-GNNs) (cf. Section 4.1) are a natural fit
because the network must be invariant to the order of points in a neighborhood and
it must be able to allow weight sharing over neighborhoods with varying cardinality.
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Network ‘ Architecture

hi L(32), ReLU, L(16)
" L(32), ReLU, L(8)
ha L(32), ReLU, L(16)
Yo L(32), ReLU, L(8)
hs L(32), ReLU, L(16)
V3 L(32), ReLU, L(12)
W L(64), ReLU, L(1)

Table 5.1: Details of the PRFNet architecture for iterative re-weighting. L(z)
stands for a linear layer with  output neurons.

As detailed in Section 4.1, MP-GNNs offer both of those properties. Therefore, an
LSGT called PRFNet was designed to regress 6; and R; for each point p;, which is
described in the following.

The PRFNet architecture consists of three consecutive neighborhood aggregation
steps. Given MLPs h and ~, the neighborhood aggregation scheme is given by the
message function

mjﬂ- = 1\/IE@1 (Xg_l, Xf_l, ejﬂ-) = h@l (X§_1 || djﬂ' || prfj,i), (58)
with e; ; = (d; ;]| prf;;) and the node update function

1
l -1
x; = UPg,(x; ", O m;;) =vo,| —— E m;; ), 5.9

with || denoting feature concatenation. Using this scheme, we alternate between
computing messages m;; and new node features xf . In addition to the Cartesian
relation vector d;; = (pj — p;), pair-wise residual features, a modified version of
Point Pair Features (PPF') [DBI18a; DBI18b], are provided as edge input features:

prf;; = (In; - djl, Iy - djal, [ng - myl, [|dyl13).- (5.10)

They are computed directly from the last set of least squares solutions n; and contain
the residuals as point-plane distances |n; - d; .

The GNN consists of three message passing layers, containing 6 MLPs in total,
denoted as hy and ~, for ¢ € {1,2,3} in the following Table 5.1, which lists the
architectures of those MLPs and the kernel network . The h and 1 networks are
shared over all edges in the neighborhood graph while the ~ are shared over all
points. Additionally, all MLPs are shared over the iterations of the algorithm. Each
MLP consists of two linear layers, separated by a ReLU non-linearity. Layer sizes
are given in Table 5.1. All in all, the networks contain 7981 parameters.

After applying the message passing scheme, the output node feature matrix
X e RV*(4+4) g interpreted as a tuple (© e RV*? Q ¢ RV**), containing kernel and
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rotation parameters for all nodes. We use the row-normalized elements of Q as unit
quaternions to efficiently parameterize the rotation group SO(3), as described in
Section 4.1.5. By applying the differentiable map from quaternion space to the space
of rotation matrices given in Algorithms 3 and 4, the local rotation matrices R;
for all point neighborhoods are efficiently computed in parallel. The full algorithm
fulfills the following properties.

Permutation Equivariance Neighborhood aggregation is performed using an
average operator, which is invariant regarding the order of points. Since there are
no other functions over sets of points, the resulting network is equivariant to point
permutation, as described in Section 4.1.2.

Varying neighborhood sizes For the cases in which we decide to use a radius
graph instead of a k-NN graph, the network allows differently sized neighborhoods in
one graph, since all parameters are shared over edge or nodes and the only operation
over the whole neighborhood, the average, is agnostic to the neighborhood size.

Locality Due to using only local operators, the algorithm does not rely on global
point cloud statistics or features. Therefore, it can be applied on partial point clouds
and range scans, which is of importance for many practical applications.

5.3.2 Parallel Differentiable Least Squares

In every iteration of the presented algorithm, the plane fitting problem of Equa-
tion (5.7) needs to be solved. As outlined in Section 3.3, a standard approach to
solve this problem is to utilize the Singular Value Decomposition of the weighted

matrix diag(\/;é)'P(i): Let UXVT be its decomposition, then the column vector
of V corresponding to the smallest singular value is the optimal solution for the
given least squares problem [HZ03; RK18]. However, N SVDs (for potentially
varying matrix sizes) need to be solved in our scenario, one for each neighborhood,
which makes this approach prohibitive. A much more efficient approach in this
case is to consider the eigendecomposition of the weighted 3 x 3 covariance matrix
C(i) = P(i)"diag(w!)P () which has the columns of V as its eigenvectors [HZ03].
The solution for Equation (5.7) is then the eigenvector associated with the smallest
eigenvalue. The computational complexity for the eigendecomposition of this 3 x 3
matrix is O(1) and hence for one overall iteration O(N).

Our algorithm is trained end-to-end by minimizing the distance between ground
truth normals and the least squares solution, requiring backpropagation through
the eigendecomposition. The reader is referred to Section 4.2 for a discussion about
differentiable ED and SVD. Here, given partial derivatives 0L/OU and dL/03 for
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Figure 5.2: Data flow graph for the DISNE algorithm, consisting of m fixed function
parts and the = trainable LSGT and INF networks. Solid arrows indicate data
that need gradient information in reverse mode accumulation in order to train the
algorithm in an end-to-end fashion. To obtain gradients for the network parameters,
the fixed function realizations of the least squares solver and the pair-wise residual
features need to be differentiable.

eigenvectors and eigenvalues, respectively, we compute the partial derivatives for a
real symmetric 3 x 3 covariance matrix C as
oL

oL
U((a—z)dwg+FoUTa—U)UT, (5.11)

oL
oC
where F; ; = (A\; = A;)"! contains inverse eigenvalue differences. We implemented for-
ward and backward steps for eigendecomposition of a large number of symmetric 3x3

matrices, where we parallelize over graph nodes, leading to an O(1) implementation
(using O(NN') processors) of parallel least squares solvers.

Handling numerical instability Backpropagation through the eigendecompo-
sition can lead to numerical instabilities due to at least two reasons: 1) Low-rank
input matrices with two or more zero eigenvalues. 2) Exploding gradients when two
eigenvalues are very close to each other and values of F' go to infinity. In DISNE,
these problems are avoided by applying two practical techniques. First, a small
amount of noise is added to the diagonal elements of all covariance matrices, making
them full-rank. Second, gradients are clipped after the backward step on very large
values, to tackle the cases of almost identical eigenvalues.

5.3.3 Training

Training is performed by minimizing the Euclidean distance between estimated
normals NN and ground truth normals N, averaged over all normal vectors in the

training set:
. 1 X
L(N,N) = NZmiH(Hﬁi—nz'||27||ﬁi+nz'||2), (5.12)
i-1
where the minimum of the distances to the flipped or non-flipped ground truth
vectors is used. While we also experimented with different angular losses, we found
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that the Euclidean distance loss still provides the best result and the most stable
training. A loss is computed after each least squares step and the network is trained
iteratively by performing a gradient descent step after each iteration of the algorithm.
This fights vanishing gradients that occur due to the normalization of vectors in
quaternion and eigenvector computations. The weights of our network are shared
over algorithm iterations, allowing generalization to further iterations.

5.3.4 Differentiability

The computation graph of the DISNE method, including trainable and fixed-function
parts, is shown in Figure 5.2. It can be seen that, in order to train the kernel INF
and GNN, the gradients only need to be backpropagated through the fixed-function
ED for least squares optimization.

The implementation of the computation graph is based on the Pytorch Geometric
library [FL19] and uses the provided scheme consisting of scattering and gathering
between node and edge feature space, as described in Section 4.1. Therefore, varying
neighborhood sizes (e.g. varying node degree) can still be handled in parallel on the
GPU by parallelization in graph edge space.

For ED of a large number of symmetric 3 x 3 matrices and for the parallel
quaternion to rotation matrix map custom modules were implemented as described
in Section 4.2.1 and 4.1.5. The modules include efficient forward and backward steps
on GPU and CPU, which can be parallelized over the whole point cloud.

5.4 Experiments

The following experiments compare the proposed DISNE algorithm with state-of-the-
art methods both quantitatively, measuring normal estimation accuracy and model
complexity, and qualitatively, on a Poisson reconstruction and on a transfer learning
task. Further, we show improved interpretability by quantitatively analyzing normals
and weights over the course of iterations. Section 5.4.1 introduces the dataset used
to train our model and the protocol followed in our experiments. Then, qualitative
(Section 5.4.2) and quantitative (Section 5.4.6) results are presented and an analysis
of complexity and execution time (Section 5.4.3) is given.

5.4.1 PCPNet Dataset and Experimental Setup

The DISNE method is trained and validated quantitatively on the PCPNet dataset
as provided by Guerrero et al. [GKO+18]. It consists of a mixture of high-resolution
scans, point clouds sampled from handmade mesh surfaces and differentiable surfaces.
Each point cloud consists of 100k points. We reproduce the experimental setup
of [BLF18; GKO+18], training on the provided split containing 32 point clouds
affected by different levels of noise. The test set consists of six categories, containing
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‘ Noise [o] ‘ Varying Density ‘

No noise ‘ 0.00125 0.006  0.012

Stripes  Grad. ‘Avg.

PCA 12.29 12.87 18.38  27.5 13.66 12.81 16.25
Jet [CP03] 12.23 12.84 18.33  27.68 | 13.39 13.13 16.29
HoughCNN [BM16] 10.23 11.62 22.66  33.39 | 1247 11.02 16.9

PCPNet [GKO+18] 9.68 11.46 18.26  22.8 11.74 13.42 14.56
Nesti-Net [BLF18] 6.99 10.11 17.63  22.28 | 8.47 9.00 12.41
Ours (k=64, L=4) 6.72 9.95 17.18 21.96 | 7.73 7.51 11.84

Table 5.2: Results for unoriented normal estimation. Shown are normal estimation
errors in angle RMSE. For PCA and Jet, optimal neighborhood size for average
error is chosen. For our approach, we display results for a balanced neighborhood
size k = 64, which improves on the state of the art for all noise levels. Results for
different k are shown in Table 5.3.

four sets with different levels of noise (no noise, o = 0.00125, o = 0.0065 and o = 0.012)
and two sets with different sampling density (striped pattern and gradient pattern).

In the following experiments, we evaluate unoriented normal estimation, without
considering the sign of the normals. The Root Mean Squared Error (RMSE) on the
provided 5k points subset is used as performance metric following the protocol of
related work, where the RMSE is first computed for each test point cloud before
the results are averaged over all point clouds in one category. Model selection
was performed manually using the provided validation set. Despite inheriting the
neighborhood size parameter from traditional PCA, it is possible for a network
trained on a specific neighborhood size k to be applied for other k as well. This
is because all networks can be shared across an arbitrary number of points and
the softmax function normalizes weights for neighborhoods of varying sizes. We
observed that generalization across different & only leads to a very small increase in
average error. However, to fairly evaluate our method for different k, a network is
trained for each k € {32,48,64,96,128}. Training consists of 300 epochs using the
RMSProp optimization method [TH12]. All reported test results are given after 4
re-weighting iterations of our algorithm. Iterating longer does not show significant
improvements. In addition to RMSE results on the given test set, we evaluate
quantitative results over different numbers of iterations, results for extrapolation
over iterations and generalization between different k. For further realization details,
the reader is referred to the implementation®.

5.4.2 Quantitative Evaluation

First, RMSE results for the DISNE method (with &k = 64) and related works on the
PCPNet test set are shown in Table 5.2. DISNE improves on the state of the art

"https://github.com/nnaisense/deep-iterative-surface-normal-estimation
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‘ Noise [o] ‘ Varying Density ‘
Neigh. Size k No noise | 0.00125 0.006  0.012 | Stripes Grad. | Avg.

k=32 9.10 11.22 2841  45.35 | 10.48 9.96 19.09
< k=48 9.94 11.56 23.00 38.48 | 11.40 10.74 17.52
O k=64 10.68 12.08 20.68  33.67 | 12.07 11.35 16.75
. 96 11.93 12.71 18.81  28.81 | 13.18 12.36 16.30

k=128 12.54 12.97 18.12  26.67 | 14.07 13.21 16.26
- k=32 6.09 10.22 18.17  25.17 | 7.22 6.84 12.28
o k=48 6.63 9.63 17.36  22.40 | 7.63 7.19 11.81
j k=064 6.72 9.95 17.18  21.96 | 7.73 7.51 11.84
O; k=96 6.82 10.45 17.03 21.80 | 7.87 7.69 11.94

k=128 7.35 9.64 16.90 22.13 | 8.67 8.49 12.20

Table 5.3: Comparison of unoriented normal estimation RMSE between the
proposed method and PCA for different neighborhood sizes k. It can be seen that
our method consistently provides lower errors while being significantly more robust
to changes of that parameter, compared to PCA.

on all noise levels and varying densities. While the improvement is only small, it
should be noted that we reach it while being orders of magnitude faster and more
parameter efficient (c.f. Section 5.4.3), which is of importance for many applications
in resource constrained environments. For the non deep learning approaches, PCA
and Jet, results for medium neighborhood sizes are displayed. Further, results for
different k are provided in Table 5.3 and compared to errors obtained by PCA with
the same respective neighborhood size. Our method performs better than the PCA
baseline in all scenarios. As expected, varying k leads to a behavior similar to that
of PCA, with large k’s performing better on more noisy data. However, it can be
observed that our approach is more robust against changes of k: Even for small
neighborhood sizes, high noise is handled significantly better than by PCA and large
neighborhoods still produce satisfactory results for low noise data. It should be
noted that for all evaluated k& we improve on the state of the art with respect to
average error.

While the RMSE error metric is well suited for a general comparison, it is not
a good proxy to estimate the ability of recovering sharp features since it does not
take the error distribution over angles into account. Therefore, as an additional
metric, Figure 5.3 presents the percentage of angle errors falling below different
angle thresholds. The results confirm that our approach is better at preserving
details and sharp edges, especially for low noise point clouds and varying density,
where it outperforms other approaches. For higher noise, the achieved results are
similar to those of Nesti-Net.
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Figure 5.3: Comparison for varying angle error threshold [LOM20]. For error
thresholds on the horizontal axis, the vertical axis shows the percentage of normals
which have an error lower than that threshold. Our method and PCA use neighbor-
hood size k = 64. For low noise settings and varying density, our method succeeds in
recovering sharp features, as shown by the higher accuracies for low angle thresholds.

5.4.3 Efficiency

The DISNE model is small, consisting of only 7981 trainable parameters, shared over
iterations and spatial locations. On a single Nvidia Titan Xp, a point cloud with
100k points is processed in 5.67 seconds (0.0567 ms per point). A large part of this
execution time is consumed by the kd-tree used to compute the nearest neighbor
graph, which takes 2.1 seconds of the 5.67 seconds. It is run on the CPU and could
be further sped-up by utilizing GPUs.

In Table 5.4, the practical complexity of the DISNE approach is compared against
the related deep learning approaches Nesti-Net and PCPNet. DISNE is orders of
magnitude (378x and 131x) faster than the related approaches. The comparison
was made as fair as possible by excluding nearest neighbor queries (note that this
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Ours Nesti-Net [BLF18] PCPNet [GKO+18]

Num. parameters 7981 179M 22M
Exec. time, 100k p. 3.57 s 1350 s 470 s
Relative exec. time 1x 378x 131x

Table 5.4: Comparison of efficiency between the approaches using deep learning.
We list number of model parameters as well as average execution times for estimating
normals on a point cloud with 100k points.
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Figure 5.4: Test errors (RMSE) over iterations of the proposed algorithm [LOM20].
Iteration 0 shows results for unweighted PCA only. The network was trained on the
training set for 8 iterations. For evaluation, we perform four additional iterations to
evaluate stability.

favors the other approaches since they need larger neighborhoods) and the original
implementations. The speedup of the DISNE method can be contributed to the
much smaller network size and the parallel design of the GNN and least squares
optimization steps.

5.4.4 Behaviour Over Iterations

The algorithm is trained for L = 8 (performing 8 iterations of re-weighting), where
we compute a loss and perform an optimization step after each iteration. It produces
normal vector estimations after each iteration, which can be analyzed quantitatively.
The RMSE results for the PCPNet test set over algorithm iterations are shown
in Figure 5.4. It can be seen that after iteration 4, further iterations do not lead
to significant improvements. Also, the algorithm behaves reasonable stable, not
diverging immediately after we pass the iterations for which the network was trained.
However, we observe a small drift in favor of low-noise datasets over the iterations.
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Errors for the test sets with no noise or variable density still decrease further while
errors for data with higher noise levels slightly increase. Meanwhile, the average
error stays nearly constant.

‘ Noise [o] ‘ Varying Density ‘

erest No noise | 0.00125 0.006 0.012 | Stripes Grad. | Avg.

ket =32 6.09 10.22 18.17 25.17 | 7.22 6.84 12.28
% ktest =48 6.96 10.01 17.44 22.97 | 7.92 7.46 12.12
= ktt=64 743 10.09 17.22  22.33 | 851 8.06 12.27
aia Etest =96 8.25 10.37 17.08 21.91 | 9.43 8.80 12.64

ktest =128 8.77 10.62 17.05 7.21 | 9.90 9.21 12.89

Etest =32 6.13 10.19 18.28 25.20 | 7.21 6.89 12.31
% ktest =48 6.47 9.93 17.43  22.53 | 7.55 717 11.85
= kt=64  6.72 9.95 17.18 21.96 | 7.73 7.51 11.84
i kst =96  7.10 10.18 17.01 21.69 | 8.16 8.04 12.00

ktest =128 7.27 10.35 16.94 21.67 | 8.03 8.49 12.10
o KT=32 6.66 9.89 20.98  30.99 | 7.80 7.48 13.97
S ogtest=48 701 9.57 18.40 24.94 | 8.14 7.75 12.63
2okttt =64 7.24 9.50 17.63 23.20 | 8.37 8.11 12.34
£ ktet-96  7.29 9.50 17.07 22.34 | 8.61 8.39 12.20
= ktest=128 7.35 9.64 16.90 22.13 | 8.67 8.49 12.20

Table 5.5: Results for transferring models between different neighborhood sizes k.
Shown are RMSE values for models trained with k'™ € {32, 64,128}, each tested
with k'St e {3248, 64,96, 128}.

5.4.5 Transfer Between Neighborhood Sizes

The proposed algorithm generalizes reasonably well between neighborhood sizes,
meaning that a model trained using neighborhood size k" can be applied using
a different neighborhood size £'*** while producing good results. For verification,

train test
k and k

RSME errors for different combinations of are reported in Table
5.5. It can be seen that, if the difference in neighborhood size is not too big,
transferred models often only perform slightly worse than models trained directly for
the appropriate k. However, transferring over a very large difference, like from 128
to 32 or the other way around, leads to a significant decrease in performance. The
model trained on the balanced k = 64 performs very well on all other neighborhood
sizes.

Additionally, Table 5.6 provides results for applying the model on even smaller
neighborhood sizes, to evaluate the minimum k before the method breaks down.
We found that when using a k%" <~ 30, the training becomes unstable, which is

why we transfer the model from k" = 32 to smaller k***. Results show that the
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‘ Noise [o] ‘ Varying Density‘
test No noise | 0.00125 0.006 0.012 | Stripes Grad. | Avg.
ktest =2 1726 |54.02  61.08 61.29|19.50 22.89 [39.34
o k=4 7.23 49.66  60.91 61.26|8.14  8.44 32.59
ikt =8  5.63 33.65 55.32 58.89|6.53  6.51 27.75
g k=16 5.36 13.80  28.17 41.37/6.36  6.23 16.88
e ftest Z 94 577 10.74  19.78 28.99|6.71  6.57 13.09
ktest = 32 6.09 10.22  18.17 25.17|7.22  6.84 12.28

Table 5.6: Results for transferring the model trained on A" = 32 to even smaller
ktest e {2,4,8,16,24, 32} until the method breaks down. Note that k' =2 means 2
neighbors, excluding point 4, so there are still 3 points in total for each neighborhood,
avoiding underdefined plane fitting problems.
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Figure 5.5: Qualitative comparison between our method (k = 64, L = 4) and related
work [LOM20]. We show diverse examples from the test set, sampled from different
categories, noise levels and density variations. The color encodes the angle error of
estimated normals in degrees. Best viewed in the digital version.

algorithm provides good results for noise-free data down to k = 4. For noisy data,
the approach breaks down quite fast when lowering k, as expected: At least k=24
is required to provide reliable results. For lower k, the results approach the accuracy
of random normals.

5.4.6 Qualitative Evaluation

This section visually presents surface normal errors for various elements of the
PCPNet test set in Figure 5.5 and compares them against results from the PCA
baseline and related deep learning approaches. It can be seen that the biggest
improvements are obtained for low noise scenarios and varying density, where the
DISNE method is able to preserve sharp features of objects better than the other
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Figure 5.6: Qualitative results for all examples of the test set [LOM20]. Colors
encode the RMSE in degree for each point. Best viewed in the digital version.
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methods. In general it can be observed that our approach tends to provide sharp,
discriminative normals for points on edges instead of smooth averages. In rare cases,
this can lead to a false assignment of points to planes, as we can see in the example
in column 8. It can be observed that, in contrast to Nesti-Net, our approach behaves
equivariant to input rotation as is seen clearly on the diagonal edge of the box
example in column 3. Sharp edges are kept also in uncommon rotations, which we
can attribute to the applied LSGT network.

Lastly, we provide qualitative results for the whole PCPNet test set in Figure 5.6.
For point clouds with varying density, the point size is reduced in order to better
visualize the densities. Similar to the selected results in Figure 5.5, it can be seen
that the method produces very sharp normal vectors, which usually resemble the
plane normal of one of the plausible planes in the neighborhood. Objects consisting
of primitives are good examples to show equivariance, as all edges show similar
errors, independent of orientation. Sometimes, points are assigned to a false plane,
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Figure 5.7: Local behaviour of our method over several iterations for (a) a sharp
edge and (b) a noisy surface [LOM20]. The partial point clouds where sampled from
the PCPNet test dataset. The colors in the first rows show the weights from the
kernel network for one normal in the neighborhood while the colors in the second
row show the angle error of all neighborhood normals.

leading to high error normal vectors. Compared to other approaches, we do not
observe heavy smoothing around edges.

Interpretability. In order to interprete the results of our method, Figure 5.7
shows a detailed view of local neighborhoods over several iterations of our algorithm.
An example for a sharp edge is shown in Figure 5.7a and a high noise surface in
Figure 5.7b. Both sets of points were sampled from the real test data. For the sharp
edge, the algorithm initially fits a plane with uniform weights, leading to smoothed
normals. Over the iterations, high weights concentrate on the more plausible plane,
leading to recovering of the sharp edge. In the noisy example, we can see that
outliers are iteratively receiving lower weights, leading to more stable estimates.

Surface reconstruction. To further evaluate the quality of the produced normals
when used as input to other computer vision pipelines, Figure 5.8 shows the results
for Poisson surface reconstruction. Since the methods in this comparison all perform
unoriented normal estimation (Guerrero et al. [GKO+18] evaluates both, unoriented
and oriented, where we chose the unoriented version for a fair comparison), we
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Nesti-Net PCPNet

Figure 5.8: Selected results after applying Poisson surface reconstruction using the
estimated normal vectors [LOM20]. In most cases, differences between the methods
are very small. Examples 2 and 3 show reconstructions from point clouds with
varying density, which show the largest differences.

determine the signs of the output normals from all four methods using the ground
truth normals. Most of the reconstructions show only small differences, with our
approach and Nesti-Net retaining slightly more details than the others. Significant
differences can be observed for point clouds with varying density, displayed in rows
2 and 3. Here, our approach successfully retains the original structure of the object
while still providing sharp edges.

Transfer to NYU depth dataset. In order to show generality of the DISNE
approach, the models which were trained on the PCPNet dataset are validated on
the NYU depth v2 dataset [NF12], a common benchmark dataset in the field of
estimating normals from single images. It contains 1449 aligned and preprocessed
RGBD frames, which are transformed to a point cloud before applying our method.
After performing unoriented estimation, the normals are flipped towards the camera
position. Evaluation is done qualitatively, since the dataset does not contain ground
truth normal vectors. Results for three different neighborhood sizes in comparison
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Figure 5.9: Examples for normal estimation on scanned data from the NYU
depth v2 dataset [LOM20]. Colors encode the orientation of normals. Our model
generalizes to this dataset while being able to retain more details and sharper edges
than PCA. However, scanning artifacts are also kept and visible. Best viewed in the
digital version of the thesis.

to PCA are shown in Figure 5.9. The DISNE approach behaves as expected, as it is
able to infer plausible normals for the given scenes. For all k, our approach is able
to preserve sharp features while PCA produces very blurry results. However, this
also leads to the sharp extraction of scanning artifacts, which can be seen on the
walls of the scanned room.

5.5 Discussion

This chapter presented the DISNE method, a novel differentiable algorithm for
deep surface normal estimation on unstructured point clouds, consisting of parallel,
differentiable least squares optimization and deep re-weighting. In each iteration,
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the weights are computed using a kernel function that is individually parameterized
and rotated for each neighborhood by a task-specific graph neural network.

It could be shown that DISNE is able to reach the goals of a differentiable
algorithm. It is much more efficient in number of parameters and execution time
than previous, full end-to-end deep learning methods while slightly improving on
state-of-the-art accuracy on the given task. In addition, it has favorable properties
like approximate equivariance, robustness to noise and higher interpretability than
pure DL approaches. All those features are achieved by using problem-specific
knowledge to design appropriate inductive biases.

A limitation of the DISNE method might be the limited receptive field considered
as input for each normal vector. The applied GNN does not use global information
about the object but purely regresses the normals using inputs from a local patch.
In a hypothetical scenario in which much more annotated training data is available,
which would allow to infer more object level information, an architecture which
considers a wider receptive field might provide a stronger parameterization for
normal estimation on individual neighborhoods. However, on the currently available
datasets, the experiments show that more global approaches as Nesti-Net [BLF18|
and PCPNet [GKO+18] are not able to make use of this information.






CHAPTER 6
Group Capsule Networks for
Orientation Estimation

This chapter introduces GROUP EQUIVARIANT CAPSULE NETWORKs (GECNs), a
differentiable algorithm for processing 2D and 3D data, which comes with provable
equivariance and invariance properties for certain Lie group transformations. They
were originally presented in 2018 [LFL18], from which this chapter is adapted. The 3D
version as discussed in Section 6.6 was published in 2020 [ZBL+20]. Equivariance and
invariance are an important concept in deep learning architectures. CONVOLUTIONAL
NEURAL NETWORKs (CNNs), for example, heavily rely on equivariance of the
convolution operator under translation. Weights are shared between different spatial
positions, which reduces the number of parameters in a model and pairs well
with translational symmetries and hierarchical object relations in image data. It
naturally follows that a large amount of research is done to exploit other underlying
transformations and symmetries and provide deep neural network models with
equivariance or invariance with respect to those transformations as well. Further,
equivariance and invariance are useful properties when aiming to produce data
representations that disentangle factors of variation: when transforming a given
input example by varying one factor, we usually aim for equivariance in one part
of the representation and invariance in another. An important example for such
a transformation is rotation, for which an example for factor disentanglement is
given in Figure 6.1 for the 2D image domain. When rotating the input image of
an architecture, we would like one part of the output representation, that which
describes the image content, to not change (invariance) and another part of the
representation to change according to input rotation (equivariance), encoding the
pose of the image content. One recent line of methods that aim to provide a relaxed
version of such a setting are capsule networks [HKW11; SFH17]. Instead of extracting
scalar features from input data, they compute feature tuples, containing a pose and
an activation. Capsule networks will be described in more detail in Section 6.1.

GECNs, the topic of this chapter, are a formalized version of capsule networks
that guarantees the properties of equivariance and invariance with respect to cer-
tain transformations. Further, they bring together capsule networks with group
convolutions [CW16], which also provide provable equivariance properties under the
transformations of a group.

The chapter is structured in five parts. First, it introduces capsule networks as
proposed by Hinton et al. [HKW11] and Sabour et al. [SFH17] in Section 6.1, before
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Figure 6.1: One layer of dynamic routing in a capsule network, resulting in
equivariant pose vectors Lf,(P, a) and invariant agreements LZ;(P, a) [LFL18]. Layers
with those properties can be used to build viewpoint invariant architectures, which
disentangle factors of variation.

introducing the formal framework of GECNs in Section 6.3, following the derivations
of the original publication [LFL18]. Then, GECNs are formally introduced on vector
fields in Section 6.4, as a more detailed extension of the original publication. Further,
two instantiations of the method on 2D and 3D data are described in Section 6.5
and Section 6.6, which were first published in 2018 [LFL18] and 2020 [ZBL+20],

respectively.

6.1 Capsule Networks

Capsule networks [HKW11] and their main feature, the routing by agreement
algorithm [SFH17], represent a novel paradigm for deep neural networks for vision
tasks, which extends the basic ideas of CNNs. They aim to hard-wire the ability to
disentangle the pose of an object in an image from the evidence of its existence, also
called viewpoint equi- and invariance in the context of vision tasks. Similar to CNNs
they detect linear, hierarchical relationships occurring in the data, where semantically
richer objects are composed of several parts that lie lower in the hierarchy. As input,
they can receive images or irregularly structured data, depending on the architecture.
As output, they produce capsules, which are described in the following. The output
of one capsule network layer is a set of tuples (p,a), containing a pose vector p
and an activation a, instead of just an activation as in regular CNNs. Sabour et
al. [SFH17] encode a as length of the pose vector p and Hinton et al. [HSF18] use
matrix poses. Here, we summarize the general concept by talking about generic pose
vectors and activations, where a pose vector can be any representation that describes
poses. Sabour et al. [SFH17] describe the dynamic routing by agreement algorithm
that iteratively computes how to route capsule data from one layer to the next. The
process of dynamic routing receives n capsules (p;,a;)1<i<n, containing activations
a; € R and pose vectors p; € R and produces m output capsules (Pj,aj)1<j<m. First,
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the input poses are transformed by trainable linear transformations T; ; € R4 to
cast n-m votes, n votes for each of the m output capsules, respectively:

vi,j = Tij Pi

For the j’th output pose, a weighted average p; of the n votes v.; is calculated
to receive a first proposal for the output capsule pose. Then, the weights are
iteratively adjusted by choosing them in proportion to the inverse distances between
votes v.; and the average pj, which amounts to executing an IRLS scheme (cf.
Section 3.3) that iteratively refines the output poses. Lastly, the agreement values
a; are computed to encode how strong the votes agree on the output pose.

Intuitively, one can understand routing by agreement as a detector of input pose
combinations. If the n input poses p; match the inverse of the trained matrices T} ;
well, and thus the resulting votes v. ; agree well on a single pose, the resulting high
activation indicates that the specific pose pattern in T; ; exists in the input poses.
Each output capsule checks for one of those patterns. The detection is robust in
that it filters outliers over iterations so that a small number of not matching input
capsules does not distort the output pose significantly.

Capsule networks using the described routing by agreement algorithm do not
come with guaranteed equivariance or invariance, which are, however, essential to
guarantee disentangled representations and viewpoint invariance. During the work
on GECNs, we identified two issues that prevent exact equivariance in previous
capsule architectures: First, the averaging of votes takes place in a vector space,
while the underlying space of poses is a manifold. The vote averaging of vector
space representations does not produce equivariant mean estimates on the manifold.
Second, capsule layers use trainable transformation kernels defined over a local
receptive field in the spatial vector field domain, where the receptive field coordinates
are agnostic to the pose of the receptive field, instead of considering the induced
action of semi-direct group products (cf. Section 3.2). Both of these issues lead to
non-equivariant votes and consequently, non-equivariant output poses. The GECN
method represents possible solutions for these issues.

GECNSs differs from the original capsule networks in three important parts. First,
they have group capsules as intermediate feature representations, a specialized kind
of capsules where pose vectors are elements of a group (G, o) (cf. Section 3.2). Given
this special representation, GECNs define a general scheme of dynamic routing by
agreement algorithms for which can be shown that, under certain conditions, equiv-
ariance and invariance properties under transformations from G are mathematically
guaranteed. Second, they propose a way to aggregate over local receptive fields on
vector field inputs with changing poses, without losing the guaranteed properties
(cf. Section 6.4). Third, they combine capsule networks with group convolutions
and leverage the group capsule information to obtain convolutional neural networks
that inherit the guaranteed equi- and invariances, as well as producing disentangled
representations (cf. Section 6.4.2).
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6.2 Related Work

Different ways to provide deep neural networks with specific equivariance properties
have been introduced. One way is to share weights over differently rotated filters
or augment the input by transformations [YQQ+17; WHS18]. A related but more
general set of methods are the group convolutional networks [CW16; DDK16] and
its applications like Spherical CNNs in SO(3) [CGK+18; EAM+18] and Steerable
CNNs in SO(2) [CW17], which both result in special convolution realizations. The
difference between group convolution and capsule networks is the data representation.
Group convolutions produce feature maps that are defined for each element (or a
dense sampling) of the group while GECNs produce a set of explicit group elements,
describing object poses.

Capsule networks were introduced by [HKW11]. Lately, dynamic routing algo-
rithms for capsule networks have been proposed [SFH17; HSF18]. Our work builds
upon their methods and vision for capsule networks, as well as connect them to
group convolutional networks.

Further methods include harmonic networks [WGT+17], which use circular
harmonics as a basis for filter sets, and vector field networks [MVK+17]. These
methods focus on two-dimensional rotational equivariance. While we chose an
experiment which is similar to their approaches, our work aims to build a more
general framework for different groups and disentangled representations.

Concurrent to or after the publication of GECNSs, several related method have
been proposed. The line of group equivariant networks was extended to general
surfaces by methods that achieve gauge equivariance [CWK+19]. Recently, it was
brought together with GNNs [WEH20; HWC+21], providing equivariant kernels
on geometric graphs, utilizing parallel transport (cf. Section 4.1.3). The topic of
equivariant convolutions is tackled by a vast amount of research for which the reader
is referred to exhaustive review literature [WEV-+21].

Capsule network research has developed in different directions. They were
extended to process 3D points [ZBD+19], extended to full autoencoders for geometric
objects [KST+19], and several variations or alternatives of the routing algorithm
were proposed [RLK20; PKK19; JLK19; DWG+20; MSC21]. Those advances follow
the original route of capsule networks and do not come with guaranteed equivariance
but aim to learn it from data.

6.3 Group Equivariant Capsule Networks
We begin with essential definitions for group capsule layers and the properties we

aim to guarantee. Given a Lie group (G,o) (cf. Section 3.2), we formally describe a
group capsule layer with m output capsules by a set of function tuples

{(L{;(P,a),Lf;(P,a)) |je{l,...,m}}. (6.1)
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Figure 6.2: Data flow graph for the equivariant routing algorithm, the main
building block of GECNs, consisting of m fixed function parts and the = trainable
transformations t; ;. The gradient information is backpropagated along the inverse
solid arrows in order to train an architecture consisting of multiple layers in an
end-to-end fashion. To obtain gradients for poses p1, ..., Pn, activations aq, ..., an
and transformations t; ;, the fixed function realizations of M, ¢ and o need to be
differentiable.

Here, the functions LZ; : G" xR® - G compute the output pose vectors while
functions LY : G" x R” - R compute output activations, given input pose vectors
P = (p1,..,Pn) € G" and input activations a € R”. We denote the output poses and
activations for all 1 < j <m as L,(P,a) and L,(P,a), respectively, by omitting the
index j. The goal is to achieve invariance of activations and equivariance of pose
vectors under actions of the group. Thus, we define those two properties for one
single group capsule layer (cf. Figure 6.1). First, the function computing the output
pose vectors of one layer is equivariant with respect to actions of the group if

Lp(gOPaa) :gOLP(Paa)a Vgega (62)

where g o P denotes the element-wise group law application on all elements of P.
Second, the function computing activations of one layer is invariant with respect to
actions of the group if

L.(goP,a)=L,(P,a), Vgegd. (6.3)

Since equivariance is transitive, it can be deducted that stacking layers that fulfill
these properties preserves both properties for the combined operation. Therefore, if
we apply a transformation from G on the input of a sequence of those layers (e.g. a
whole deep network), the output activations remain the same and we produce output
pose vectors which are transformed by the same transformation.

6.3.1 Group Capsule Layer

We define the group capsule layer functions as the output of an iterative routing by
agreement, that follows an iterative scheme on elements of G. The whole algorithm
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Algorithm 8 Group capsule layer

Input: poses P = (p1,...,pn) € G", activations a = (ay,...,a,) € R”
Trainable parameters: transformations t; ;
Output: poses P = (P1,...,DPm) € G, activations & = (a1,...,0;,) € R™

Vij < Dioti; for all input capsules 7 and output capsules j
IA)jeM((Vl,]'w"?VnJ)’a) va
for r iterations do
wij < o(=6(Pys Viy)) - a v
Dj <« M((Vijs-- o, Vi ), Wej) v
end for
dj < o(=5 Xy 6(Dj, Vi) v
Return p1,...,pm, a

for one capsule layer, given a generic weighted average operation M and a distance
measure 0, is shown in Algorithm 8. Additionally, Figure 6.2 shows the data flow.

Generally, votes are cast by applying trainable group elements t; ; to the input
pose vectors p; (using the group law o), where ¢ and j are the indices for input and
output capsules, respectively. Then, the agreement is iteratively computed: First,
new pose candidates p; are obtained by using the weighted average operator M.
Second, the negative, shifted J-distance between votes v. ; pose candidates p; are
used for the weight update. After iteratively refining the poses and weights, the
output agreement is computed by averaging negative distances between votes v. ;
and the new pose p;. The functions o can be chosen to be some scaling and shifting
non-linearity, for example o(z) = sigmoid(« -z + ) with trainable o and 3, as done
by Hinton et al. [HSF18], or as softmax over the output capsule dimension, as done
by Sabour et al. [SFH17].

Properties of M and § For the following theorems we need to define specific
properties of M and §. The average operation M : G" x R™ - G should map n
elements of the group (G, o), weighted by values x = (z1, ..., z,) € R", to some kind of
weighted average of those values in G. Besides the closure, M should be equivariant
under the group law, formally

M(goP,x) =goM(P,x), Vged, (6.4)

as well as invariant under permutations of the inputs. Further, the distance measure
6 needs to be chosen so that transformations g € G are -distance preserving:

d(gogi,goge) =46(g1,82), Vged. (6.5)

Given these preliminaries, we can formulate the following two theorems.
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Theorem 1. Let M be a weighted averaging operation that is equivariant under
left-applications of g € G and let G be closed under applications of M. Further, let §
be chosen so that all g € G are d-distance preserving. Then, the function L,(P,a) =
(P1,--.,Dm), defined by Algorithm 8, is equivariant under left-applications of g € G
on input pose vectors P € G":

LP(gOPaa) =gOLP(P7a)7 VgEQ (66)

Proof. The theorem is shown by induction over the inner loop of the algorithm,
using the equivariance of M, preservation of § and group properties. The initial
step is to show equivariance of the pose vectors before the loop. After that we show
that, given equivariant first pose vectors we receive invariant routing weights w,
which again leads to equivariant pose vectors in the next iteration.

Induction Basis. Let p°, f)g be the first computed pose vectors (before the loop)
for non-transformed and transformed inputs, respectively. The equivariance of those
poses can be shown given associativity of group law, the equivariance of M and the
invariance of activations coming from a previous layer (input activations a are equal
for transformed and non transformed inputs) by

Pg=M(((gop1)ots,...,(goPn)oty),a%)
=M((geo(p1ot1)),...,8°(Pnoty)),a)
=goM((p1oty,...,pnoty),a)
=gop’.

Note that we show the result for one output capsule. Therefore, index j is constant

and omitted. In addition, it can be seen that the computed votes also are equivariant.

Induction Step. Assuming equivariance of old pose vectors (go p™ = f)g‘), we
show equivariance of new pose vectors (go p™*! = f)g”l) after the next routing
iteration. First we show that calculated weights w behave again invariant under input
transformation g. This follows directly from the induction assumption, §-distance

preservation, equivariance of the votes and the invariance of a:
wi = o(-d(pg', v§)) - ai
=o(-0(gop™,govi)) - a;
=o(=6(p™,vi)) - ai
= w;.
Am+1

Now we show equivariance of p™"*, similarly to the induction basis, but using
invariance of w:

Pyl = M(((gop1)oty,....(g°Pn) 0 tn), WE)
= M((go (pl Otl))7'” , 80 (pn otn)),W)
:gOM((pl Otla--'7pn°tn)vw)

Am+1

=g°p
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Theorem 2. Given the same conditions as in Theorem 1. Then, the func-
tion L,(P,a) = (a1,...,an) defined by Algorithm 8 is invariant under joint left-
applications of g € G on input pose vectors P € G™:

L.(goP,a)=L,(P,a), Vgeg. (6.7)

Proof. The result follows by applying Theorem 1 and the J-distance preservation.
Equality of a and ag is shown using Theorem 1 and the d-distance preservation of G.

1o
ag =0 _52;5(Lp(glOPva)vglopiogi))

12

=0 —izé(gloLp(Pya)aglopiOgi))
i=1
1o

=0 —525(Lp(P,a)7piogi))
i=1

=a.

d

Again, the result is shown for one output capsule. Given these two theorems, we
are able to build a deep group capsule network by composition of those layers, which
guarantee global invariance in output activations and equivariance in pose vectors.

6.3.2 Examples for Applicable Groups

Given the proposed algorithm, M and § have to be chosen based on the chosen group
and element representations. In the following, different Lie groups that provide
useful equivariances and can potentially be used in the proposed framework are
discussed.

The two-dimensional rotation group SO(2) The canonical application of the
proposed framework on images is achieved by using the two-dimensional rotation
group SO(2), as discussed in Section 6.5. We chose to represent the elements of G
as two-dimensional unit vectors, chose M as the renormalized Euclidean weighted
mean and J(p1,p2) = %(—p{pg +1) as distance (cf. Section 6.5 for details). Then, &
is distance preserving and M is left-equivariant, assuming given poses do not add
up to zero, which can be guaranteed through practical measures.

The three-dimensional rotation group SO(3) Similarly, the framework can
be applied to achieve invariance and equivariance with respect to the 3D rotation
group SO(3). The main challenge is to obtain an equivariant average operator M
on the SO(3) manifold, which can be subject to backpropagation. The realization
using an IRLS Weiszfeld algorithm to compute M and the geodesic distance as § is
discussed in Section 6.6.
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Translation group (R”,+) An potentially interesting application of group cap-
sules are translation groups. Essentially, a layer in the network is no longer evaluated
for each spatial position, but rather predict which positions will be of special interest
and may sparsely evaluate a feature map at those points. Therefore, the number
of evaluations is heavily reduced, from number of output capsules times number
of pixels in the feature map to only the number of output capsules. However, in
our current architectures we would not expect that this construction would work,
because the capsule network would not be able to receive gradients which point in the
direction of good transformations t. It would rather be a random search, until good
translational dependencies between hierarchical parts of objects are found. Also,
due to usually local filters in convolutions and sparse evaluations, the outputs would
often be zero at points of interest. Choosing M and § however is straight-forward:
the Euclidean weighted average and the [2-distance fulfill all requirements.

Group products It should be noted that using the direct product of groups makes
it possible to apply the framework on combination of groups. This is discussed in
Section 6.4.4.

6.4 Vector Fields of Group Capsules

In the previous sections, the considered inputs and outputs of a capsule layer were
simply sets of capsules, thus sets of tuples containing pose vectors and activation.
In practice, however, the goal is to obtain an operator that receives and produces
vector fields of capsules, usually defined over the input domain R™. To transfer the
previously obtained results to that scenario, we first define these fields in general.

Given two groups (H,op), (G,oq), a capsule vector field is a function f:H — G,
that maps group elements h € H to group elements g € G. We say f is a G-vector
field over H. We denote the space of all G-vector fields over H as F(H,G). We
further assume that (G,oq) acts on (H,op) with og. Then, we can define the action
of (G,oq) on a G-vector field f over H as

(goc f)(h) =gog f(g ' och). (6.8)

Additionally, we define the action of G on an R-vector field over H as

(goc f)(h) = f(g " o h), (6.9)

as we consider the activations itself to be invariant to applications of G. In practice,
we will consider discrete vector fields instead of continuous ones. However, we do
not restrict ourself to vector grids but assume our vector fields are defined for a
finite set of elements x € H.

Example Assuming we are only interested in rotation and translation, the input
is an SO(n)-vector field over R™. If a rotation is applied to the input, not only the



96 Chapter 6. Group Capsule Networks

input poses are rotated but also the position of the poses. This is described by the
group SO(n) acting on SE(n), the semidirect product SO(n) x (R",+) between
rotation and translation in n dimensions (cf. Section 3.2), in which SO(n) acts on
R™ as well. For elements R € SO(n) and (R',x") € SE(n) (in appropriate group
representations), where x’ represents the translational and R’ the rotational part,
the action of SO(n) on SE(n) can be described as

Ro(R',x")=(R-R',Rx'), (6.10)

according to the action of semidirect products (cf. Section 3.2). Thus, when the
input of an SO(n) capsule layer, an SO(n)-vector field over R", is transformed by
rotation g € SO(n), not only the deeper SO(n) pose vectors change accordingly but
the rotations also induce changes in positions of those pose vectors in R"™.

Vector Field Capsules Layer, Part I We define a G-vector field capsule layer
over a continuous domain H as a function C : F(H,G) x F(H,R) - F(H,G) x
F(H,R), mapping from and to G-vector fields over H (pose vector field) and R-
vector fields over H (activation field). We use C), to denote the first element of
C, the pose vector field, and C, to denote the second element, the activation field.
Similarly, the inputs to C' are denoted f, and f, for G-vector fields and R-vector
fields, respectively.

Since G acts on ‘H we cannot simply consider equivariance and invariance for each
element of H individually but need to extend the definition. Instead, we want the
pose vector field C), to be equivariant with respect to actions g € G, meaning

Cp(goc fp 8 oa fa) = goa Cp(fp, fa)- (6.11)

Note that the action of g on C), and f, is defined as given in Equation (6.8), as
action on the output and inverse action on the input, while the action of g on f,
is defined as in Equation (6.9), as only the reverse action on the input. Further,
we want the activation field function C), to be equivariant with respect to action of
g € G, meaning

Ca(goG fpagoG fa)=goG Ca(fpvf(l)' (612)

Due to the transfer to vector fields, we also require equivariance in activation fields,
instead of simple invariance in activations. Here, with respect to a transformation
g € G, the function needs to be equivariant in H and invariant in R due to g not
acting on activations.

Before defining how C), and C, are computed and showing that the properties
of Equation (6.11) and (6.12) are fulfilled, we take a closer look at how capsule
networks aggregate poses over spatial receptive fields.



6.4. Vector Fields of Group Capsules 97

6.4.1 Spatial Aggregation with Group Capsules Fields

We point out an issue regarding equivariance in the original capsule formulation by
Sabour et al. [SFH17], before proposing a solution to make our vector field capsule
network equivariant.

In these considerations, we only take a closer look at one receptive field, aggregat-
ing capsules lying at different positions x within the receptive field into capsules on
a single output position. In the original capsule networks by Sabour et al. [SFH17],
the trainable transformations T lie in a fixed kernel window, where entries are
defined for fixed positions of the local receptive field over R™. We bring them to our
vector field framework by expressing them as a GL(R"™)-vector field ¢ : R™ - GL(R")
over R™. Further, we consider the vector field of votes, which are computed at each
input position x € R" of the local receptive field as V(f,)(x) = fp(x) o t(x). It
can be seen that in order for the full operator to be equivariant with respect to
an input transformation R € GL(R™), the computation of vote vector fields has to
be equivariant. However, we can derive that V is not equivariant with respect to
transforming the input vector field f:

V(Ro f,)(x) =Ro f(R™'x) o t(x)
+Ro f,(R'x) o t(R™'x) (6.13)
=R o V(fp)(x).

Therefore, reasonably assuming that the transformation group of output capsules acts
on R", the composition of pose vectors and trainable transformations to compute the
votes changes with input transformation. As a result, the votes (and following pose
averages over the local receptive field) are no longer equivariant and the computed
activations are no longer invariant. A visual example of the described issue (and a
counterexample for equivariance) for an aggregation over a 2x2 block and G = SO(2)
can be found in Figures 6.3a and 6.3b.

Pose-aligning transformation kernels We can derive from Equation (6.13) that
to achieve equivariant computation of votes over vector fields, we need to counteract
the induced action of G on the vector space group H in the t-kernel. This is not
trivially done as the transformations R € GL(R") from Equation (6.13), which we
will call g € G now as we move back to our G-capsules, are not known, since we
only see the already transformed input. However, in GECNs we can utilize that we
already have an estimate of input pose at each position in the vector field, given by
the previous layers output capsules. Thus, those poses can be utilized to canonicalize
the field ¢. According to our group action, we can compute g o t(x) = (g™ o x),
given a pose g from the input vector field. In practice, this means we need to switch
from a discrete to a continuous convolution kernel #(-) (cf. Section 4.1.3), which can
be sampled at arbitrary points x.
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Figure 6.3: Example for the spatial aggregation of a 2 x 2 block of SO(2) cap-
sules [LFL18]. Figure (a) shows the behavior for non-rotated inputs. The resulting
votes have full agreement, pointing to the top. Figure (b) shows the behavior when
rotating the input by /2, where we obtain a different element-wise matching of
pose vectors fp(-) and transformations ¢(-), depending on the input rotation. Figure
(c) shows the behavior with the proposed kernel alignment. It can be seen that f,
and ¢t match again and the result is the same full pose agreement as in (a) with
equivariant mean pose, pointing to the left.

There are multiple candidates for the source pose that is used for canonicalization.
If there is a single pose in the center of the current receptive field, it can be taken

directly. If there is no central one, we can compute g = M(p1,...,Pn,1) or
g = M(p1,-..,Pn,a), a mean pose vector for the current receptive field, given
local pose vectors pi,...,pn and optionally activations a. The appropriate average

operator M is already required for equivariant routing anyway, so we can assume to
have access to one. The estimated poses g of non-transformed inputs and inputs
transformed by g € G differ exactly by g, thus g = go p for a fixed p € G. This
follows from equivariance of M, invariance of M under permutation, and from the
equivariance property of previous layers, meaning that the rotation applied to the
input directly translates to the pose vectors in deeper layers, making these pose
estimations equivariant, too.

Thus, we can apply the inverse pose g = p ™t og™ to the input positions x of ¢
and calculate the votes in one receptive field as V (f,)(x) = p(x) o t(g' 0 x). We
can see that now, if a transformation g acts on the input f,, equivariance holds:

V(go fp)(x)=go (g ox) o t(g ' ox)
=gofy(g " ox) o t(p ogox) (6.14)
=go V(fp)(x),

as also illustrated in the example in Figure 6.3c. Since f,(-) and t(-) are combined in
a way that is independent from g, applying a transformation g to the input results
in a set of votes that is the same as without input transformation, just rotated by g.
Note that p~!' € G is constant for all input transformations and we have no notion of
what a default pose is anyway. Therefore, this does not lead to further issues and p~!
can just be considered as part of ¢. In practice, we use a two-layer MLP to calculate
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t(-), which maps the a local receptive field position x to n-m transformations (for n
input capsules per position and m output capsules). The proposed method can be
understood as pose-aligning a trainable, continuous kernel window, which generates
transformations from G. It is similar to continuous convolution techniques applied
for data aggregation in irregular domains using GNNs, as discussed in Section 4.1.3.

Vector Field Capsule Layer, Part II What is left is to define the computation
of the G-vector field capsule layer that produces whole vector fields defined on
positions x € R", given input capsules (f,(y), fa(y)) at positions y € R". For a
given output position x, we denote its receptive field as N (x) c R”, containing
all input positions y € R", that lie within a predefined radius. Further, let DR,
and DR, denote the dynamic routing after computing votes (that is, lines 2 — 8 of
Algorithm 8 with sets of tuples, containing votes and activations, as input). Then,
we define the functions C), and C,, computing a whole vector field of capsules, as

Cofa(Fpr ) (%) = DRy ({(V(£) (5,9, fu(3)) | y e N ()}), (6.15)

with
V() (x,¥) = fp(y) o t(fp(y) " o (y = %)) (6.16)

computing the votes as described above, for each pair of input y and output x with
y € N(x). Thus, the output capsules at a position x are computed by gathering
the equivariant votes and activations over the receptive field around x and apply
dynamic routing to them. In case f,(y) in Equation (6.16) is not defined, we use
the equivariant mean over the whole receptive field, as described.

The proposed operator fulfills the wanted properties of equivariance as defined
in Equations (6.11) and (6.12) up to an error introduced by sampling of the vector
fields, which is shown by proving the following theorem.

Theorem 3. Given pose and activation vector fields f, and f, for group G as input.
We assume that the weighted average of votes in different samplings of the same
receptive fields is approximately equal, which means that

M({06e3). Falr) [y V(g™ o))
o M{(g " ox g oy). fulg 0y)) [y eN (X))

holds. Then, the vector field capsule layer C},/,(fp, fa) is approximately equivariant
in poses and activations:

Cp(g °a fp,goG fa) R gog Cp(fpafa)7 and (618)
Ca(g oG fp:gOG fa) M goa Ca(fpafa)- (6-19)

Proof. We first show that the computation of votes behaves equivariant, that is

V(go fo)(x.y) = (8o V)(fp)(x,¥) =go V(f) (g ox,8" oY), (6.20)

(6.17)
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given the construction showed in this section:

V(go fp)(x,y) =go fy(go y)ot((go fr(g " oy)) ' o (y - x))
=go (g oy)ot(fp(g oy) toglo(y-x))
=go f((g " oy)ot(fp(g oy) o ((g7 oy) - (g7 0x)))
=goV(f)(g ' ox,g " oy).

The individual steps follow from applying the definitions of actions on vector fields
and the property of group actions on groups as given in Equation (3.8) in Section 3.2.

Given that, we show equivariance of C}, and C,. From Theorem 1 and 2 we
already know that the dynamic routing DR is equivariant/invariant, given equivariant
votes as input. Thus we can follow approximate equivariance (depending on sampling
quality) with

Cp(go fp,go fa)(x)
= DR,y ({(V(g0 £) (5, ¥), fu(g ™ 0y)) |y e N(%)}) (Det.)
=DRa({(goV(f)(& " ox,g oy), fulg o)) [y eN(x)})  (V equiv
=go DR ({(V(f) (g ox,g o), fulg ™ oy)) [y e N(x)}) (DR equiv
© £ DRy ({(V(£:)(x.3). fu¥)) [y e N (g o) }) (Assumption

:gocp(fpafa)(g_l OX) (Def.
= (8°Cp(fp, fa))(x).

Similarly, we can follow the equivariance of the activation map.

Ca(go Ip:go fa)(x)

)
)
)
)

= DR,y ({(V(g0 £) (6, ¥), ful(g™ oy) |y e N(x)}) (Def.)
~DR,o({(go V()& ox g™ o) fulg™ oy Iy eN()})  (V equiv,)
= DR, ({(V(£) (8 ox, 87 0y), fulg ™ oy)) |y e N(x)}) (DR inv.)
5 DR,y ({(V (1) (56 ¥): fa3)) [y € V(g 0x) }) (Assumption)
= Ca(fp, fa) (87" 0x) (Def.)

= (g ° Ca(fpu fa))(x)'
O

The results from Theorem 3 complete our equivariant vector field capsule layer
and we can use it to build approximately equivariant architectures on vector field
inputs. It should be noted that if we down-sample the fields in each layer, conse-
quently reaching a vector field with one sample point in the end, the equivariance
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property of C, again reduces to invariance with respect to input transformation.
The effects of re-sampling errors in practice will be detailed for both full architecture
realizations in Sections 6.5 and Section 6.6, when analyzing the pose vector quality.

6.4.2 Group Capsules and Group Convolutions

This section will discuss the combination of the previously described equivariant
capsule networks with group convolutional networks. A variant of group convolutional
networks over multiple groups is proposed, where only one group is densely sampled
and the other is sparsely evaluated using the group capsules. It is shown that the
architecture inherits the vector field equivariance under the group law from the
capsule part of the network.

In comparison to group capsule networks alone, which have limited expressibility
due to representations being restricted to weighted elements of a group, we gain
expressiveness through the use of arbitrary feature maps and anisotropic filters.
Thus, the extension described in this section improves the qualitative performance
of our capsule networks and is still able to provide disentangled information. In the
following, group convolutions are shortly introduced before the combined method is
detailed.

Group Convolution

Group convolutions are a generalized convolution operator defined for elements of a
group. For a Lie group (G, o) the group convolution is defined as

[F+v)(@) = [ J(@)i(s" o8) dg. (6.21)

which behaves equivariant under applications of the group law o [CW16; CGK+18].
The authors showed that they can be used to build group equivariant convolutional
networks that apply a stack of those layers to obtain an equivariant architecture.
However, compared to capsule networks, they do not directly compute disentangled
representations, which we aim to achieve through the combination with capsule
networks.

Additionally, we consider the convolution over two groups (H,op) and (G,oq),
where (G, oq) acts on (H,op) according to the action of the semi-direct product
(cf. Section 3.2 and Section 6.4). The convolution is given as

Fevlg) = [ [ FOg)y((e oghon(s  ogh). & og8) ddh, (6.22)
where feature maps and filters are defined densely over both groups. In the methods

presented later, (H, oy ) will be a translation group over R™ and (G, og) will be a
rotation group SO(n).
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Sparse Group Convolution

In this section, the sparse group convolution will be presented, which combines
group capsule networks with group convolution. An intuition for the proposed
method is to interpret the pose vector fields throughout a capsule network as a
sparse tree representation of a group convolution in indices g € G. The output vector
field of a group convolution layer [f x ¢] (h,g) over groups H and G, as given in
Equation (6.22), is defined densely for each element g € G. In contrast, the output of
the group capsule layer is a set of tuples (g, a) with group element g (pose vector),
which can be interpreted as sparse indices for the output of a group convolution
layer in dimension G. Instead of evaluating the convolution densely for H and G, we
only evaluate it densely for H and for each g € G given to us by the capsule network.
In this context, the pose g, computed using routing by agreement from poses of
layer [, serves as the hypothesis for the relevance of the group convolution feature
map content of layer [ at position g.

In the following, an additional vector field is introduced, a feature map f : H — R,
which is acted upon by g € G according to

gof=f(g"ox). (6.23)
Then, given pose vector field f, from a G-vector field capsule layer, a feature vector

field f:H — R, and filter ¢ : H - R defined on a group #, which is a G-set (thus,
there exists an action og of G on H), we define the sparse group convolution operator

[f * (fpog )] as
[f * (fpog )] (x) = fhe% F)P((fp(x) ™ ogx71) op (fp(x) ™ og b)) dh. (6.24)

The operator uses poses obtained by the capsule network to index the group
convolution over H with a sparse set of elements g € G. Note that this definition
omits indices and sums for multiple filters, feature maps and pose maps, showing
only one pose map, one feature map, and one filter. In practice, the equation within
the integral is evaluated for larger stacks of poses, filters and features, and summed
over them. The specific dimensions are treated as hyper-parameters. Specifically,
we also sum over multiple poses g € G given at a position h € H, which is the
replacement for the integral over group G. We now show that the operator fulfills
the vector field equivariance property defined in Equation (6.12). In practice, this
theorem will allow us to sample from spatial convolution over a vector field defined
in H =R" by letting the capsule poses from a different group G = SO(n) act on the
filter, and thus keeping invariance with respect to actions of group SO(n) on R™.

Theorem 4. Given pose vector field f,, as output of a group capsule layer for group
G, a feature vector field f: H — R, and filter ¢ : H — R defined on a group H, which
is a G-set. Then, the group convolution [f * (f, og )] is equivariant under joint
left-action of g € G on pose vector field f, and feature field f:

[(gog f) * ((gog fp) og ¥)] (x) = gog[f * (fpog ¥)](x) = [f * (fp o0 ¥)] (8 ' ogx).
(6.25)
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Proof. In order to prove the result we first apply the definitions of group action
on the feature map (gog f)(h) = f(g ! oh), filter (gog 1)(h) =9 (g ! ogh), and
pose field (gog f,)(h) = gog f,(g! og h). Then, the group property (g10cg2) ! =
g5 Log g[l (using existence of inverse and neutral element properties of groups) and
a substitution h — g og h are used, to obtain the result. We use o = og.

[(go ) (g0 fp) o)) (x)
= fhEHf(g’l oh)i(((go f,)(x)  ox V) op (g0 £,)(x) L oh)) dh

= fhEHf(g_l oh)y(((go fu(gox))tox ) oy ((go f(g  ox))t oh)) dh
_ [h LA e mu((y(g o x) M og T ox ) ox (fy(g 0 %) og o b)) dh
= [ (g o) o (g7 %) ) on (g o) o) d

= [f* (fpo)] (g ox)

The key insight is that if f, contains the correct pose for each x, each filter ¥ can
be oriented correctly. Note that in practice, if there are re-sampling errors and the
results from Theorem 3 only hold approximately, the action g on f, is only realized
approximately as well, that is (gog f,)(h) » gog fo(g7  og h). In this case, the
equality between line 2 and line 3 is weakened. 0

Theorem 4 tells us that it is possible to compute convolution with feature maps
over a translation group H using a sparse set of anisotropic, continuous convolution
operators ¢ that are parameterized by elements g € G and obtain features, which
are invariant to actions of G. The process can be performed over a sparse set of
group elements without eliminating invariance. Additionally, the agreement values
from capsules can be used to dampen or amplify the resulting feature map contents,
bringing pose covariances, which have been captured by the capsule network, into
consideration. Figure 6.4 shows a scheme of the resulting full architecture.

In practice, 9 is realized as localized continuous convolution kernel, for which we
use a SplineConv filter (cf. Section 4.1.4). Other operators for continuous convolution
or grid-warp approaches [HV17] can be used as well. The kernel is zero outside
of a given interval around x and always centered around x, the current point of
evaluation. Thus, in Equation (6.24), the x in 1 is always zero and the first part of
the index vanishes so that the capsule poses only need to be applied to h. According
to Equation (6.24), calculation of the convolutions can be performed by applying
the inverse transformation to the local input coordinates using the capsule’s pose
vector, as it is pictured in Figure 6.5.

Further, we can use the iteratively computed activation fields f, from the routing
algorithm to perform pooling by agreement on the feature maps: instead of using max
or uniform average operators for spatial aggregation, the feature map content can
be aggregated as weighted average, using the weights obtained in dynamic routing.
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Figure 6.4: Data flow graph for one layer of the described GECN algorithm,
containing the capsule part on the top and the sparsely evaluated convolution on the
bottom. The building blocks include m fixed function parts and the = trainable MLP
and SplineConv operators. Solid arrows indicate data that need gradient information
in reverse mode accumulation in order to train an architecture consisting of multiple
layers in an end-to-end fashion. To obtain gradients for poses p1, ..., pn, activations
ai,...,an and MLP parameters ©, the fixed function realizations of M, § and o need
to be differentiable.

6.4.3 Full Algorithm and Reverse Mode

A scheme for a full layer of a GECN, including the trainable transformation MLP ¢
and the SplineConv operator indexed by group elements, is shown in Figure 6.4.
The iterative part of the routing algorithm is fixed-function and parameterized by
the learned votes. Those parts of the data flow that need inverse gradient flow
in reverse mode is indicated by solid arrows, while dashed arrows show data flow
that does not need gradient information. Since we aim to parameterize the whole
capsule part of the algorithm by training the transformation kernels ¢ in all layers
to optimally solve a down-stream task, all operators that lie between those kernels
and the output need to be differentiable.

It can be observed that the crucial parts in the computation graphs are the
operators M and 9, as for all other operations, the backward function is known and,
since we restrict the approach to Lie groups G, we obtain differentiability (almost
everywhere at least) in the group representation by definition. Thus, when designing
architecture instances for different groups, the differentiability of M, ¢ and ¢ needs
to be ensured. The explicit reverse mode computations are discussed in Sections 6.5
and 6.6, where the individual applications are presented.
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Figure 6.5: Realization of the sparse group convolution on vector field representa-
tions [LFL18|] with indexing using group elements from dynamic routing. The local
receptive fields are transformed using the calculated pose field f, before aggregated
using a continuous SplineConv kernel function .

6.4.4 Product Group Convolutions

In this section, the potential application of GECNs to product groups is discussed,
which can be a recipe for keeping the disentanglement between poses of a larger set
of groups. The results of this section are not realized in the GECN applications
presented later in this chapter but can be considered a outlook to potential future
work. Given two groups (G,og) and (#, o), we can construct the direct product
group (G,og) x (H,on) = (G x H,0), with (g1,h1) o (g2, h2) = (g1 °¢ g2, h1 op hy).
Therefore, Theorem 1 and 2 also apply for those combinations. As a result, the pose
vectors contain independent poses for each group, keeping information disentangled
between the individual ones.

Acknowledging that, we can go further and only use capsule routing for a subset
of groups in the product: Given a product group (G, o) = (G1,01) x(Ga,02) (note that
both can again be product groups), we can use routing by agreement with sparse
convolution evaluation over the group (Gi,o1) and dense convolution evaluation
without routing over the group (Gsz,02). This is similar to the sparse convolution
described in Section 6.4.2 and can be general recipe for sets of groups that do not
act on each other. Evaluation of the convolution operator changes to

Lf * 9] (x1,%x2) = (€r82) Gf(g17g2)1/1(xfl 01 g1,X5" 09 82) dg1dgs. (6.26)
1,82)€

We preserve equi- and invariance results for the group with routing and equivariance
for the one without, which we show by proving the following theorem. It leads to
evaluating the feature maps densely for the second group while sparsely evaluating
different elements of the first group at each element of the second group and routing
between them from a layer [ to layer [ + 1. Activations would still be invariant under
application of the group that is indexed by the capsule poses.

Theorem 5. Let (G,0) = (R,01) x (T,02) be a direct product group and M and §
be given like in Theorem 1. Further, let e be the neutral element of group 7. Then,
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the group convolution [ f x ¢] is invariant under joint left-applications of r € R on
capsule input pose vectors P € R™ and vector field f: G - R, for all t e T*:

[((r,e) o f) x Y] (Lp(roP,a),t) = [f x Y] (Ly(P,a),t). (6.27)

Proof. The proof is given for one output capsule j and one input feature map 4
(omitting the sum in the process). We show the equality analogously to Theorem 4
by applying the result of Theorem 1, the definition of the direct product group
action on the feature map (g1,g2) o f(hy,hy) = f(g7! ohy,g;t o hy), a substitution
g1 —» rog; and the group property (g;ogs)™! = ggl o gfl, using the existence of
inverse and neutral element properties of groups:

[(r,e)o fx](Ly(roP,a),t)
=[(r,e)o fx](roLy(P,a),t)
) f(gl g2)eG f(xtogieog)y((roLy(P,a)) " ogi,t7 0gy) dgidg:

) f(g g2)eG f(g1,82)0((roLy(P,a)) " orogi t™ ogy) dgidgs
1,82)¢€

) /(-g g2)€G f(g1,82)0((Ly(P,a); or orogy t™ ogy) dgidgs
1,82

= f f(g1.82)0((Lp(P,a); o g1,t™ 0 go) dgidgo
(g1,82)eG
= [f * ﬂ)] (LP(Paa)at)'
OJ

The theorem allows us to create capsule modules which precisely allow to choose
equivariances and invariances over a set of groups. It should be noted that it can
only be applied to direct products of groups, as it depends on the disentangled group
action. For semidirect products like SE(n), the action of one group on the other
needs to be eliminated, for example by the method described before in Section 6.4.2.

6.5 Group Capsule Networks on 2D Image Data

In this section, the instantiation of GECNs on 2D images with SO(2) group capsules
is presented, discussed and evaluated. It was originally published in 2018 [LFL18].
First, the specific design choices and the reasons for them are detailed, before turning
to the evaluation on different MNIST datasets.

6.5.1 SO(2) Group Capsule Networks

In order to derive a practical instantiation of the theoretical, group level considera-
tions in Section 6.3 and Section 6.4, we need to decide on specific realizations of the
group representation, the equivariant mean operator M, the distance measure ¢,
and the network architecture.
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Group Representation For SO(2), a two-dimensional vector representation is
chosen, the set of all two-dimensional unit vectors P = {p € R? | |z, = 1}. Even
if this representation is not minimal (since it is possible to parametrize SO(2) in
1D), it provides the important advantage of being a continuous representation, in
contrast to angle representations, which have at least one discontinuity in SO(2).
This makes it easier to define the following operators so that they obey to the
required properties of equivariance, closeness, distance-preservation (cf. Theorem 1),
and differentiability. To apply the group law, the vectors need to be brought into
the form of 2D rotation matrices. For two poses p1,p2 € P, the group law pop’ is

computed as:
! !
b1 —p2f |P1 P
per= ([ ] i ) ©29
b2 D1 by D7 .

where the first column of the resulting matrix is taken as result vector. In practice,
we can directly compute the operation as matrix-vector multiplication, omitting the
second column of the second matrix.

Distance Measure For two poses p1,p2 € SO(2), we define the distance measure
as

1
6(p1,p2) = 5 (-P1p2 +1). (6.29)

The distance § only consists of elementary operations and thus is easily differentiable
in reverse mode. Note that we are not using the true geodesic distance of the
1-sphere, which would require correct scaling by applying the arccos(-) to the scalar
product. For better efficiency in forward and backward computations, we omit the
arccos(-) and use a linear approximation for scaling, as we found that it does not
have an effect on the algorithm results. The distance is preserved by application of
the group law, as the scalar product is preserved by simultaneous vector rotation.
Thus, the necessary requirement for application in the group capsule network is
fulfilled.

Weighted Average Operator The problem of finding the average of our SO(2)
poses with representations in P is equivalent to finding the centroid of a set of points
on the 1-sphere. That is, for n poses p1, ..., pn € P with weights w = (wq, ..., w,) € R"
the goal is to find the point on the sphere that minimizes the weighted distance to
all given points:
n
p = argmin Z w;d(p, Pi)- (6.30)
peP =1
Finding the correct solution to this problem usually requires an iterative approach,
depending on the distance §. To avoid that, we again use an approximation and
define the weighted average operator M : P x R™ — P as re-normalized Euclidean
distance:
Yit1 wiPi

i . (6.31)
1201 wipi

M(p17 "'7pnvw) =
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The downside of this method is that it is not defined for all possible inputs, as the
vectors may amount to zero. However, in practice this can be easily avoided in
the few rare cases it might happen. Since we expect our capsule poses to be more
relevant if the votes align well (in which case this mean also is more accurate), we
can expect this operator to produce sufficiently good results in important cases.

Verifying the required properties, it can be seen that the operator is easily
differentiable in reverse mode (if the points do not amount to zero) by calculating
the elementary derivatives and that it is left-equivariant:

__Zinwi(pepi)
IX5 wi(popi)l,
__P° Yie1 WiPi
Ip o Xity wipill,
Yic1 WiPi
125 wipil
=po M(pl, cony pn,W)

M(p °pi1,..,po me)

:po

i

utilizing that vector rotation is norm-preserving, that scaling and rotation are
commutative, and the distributive law of matrix multiplication.

Initial pose extraction An important subject which needs to be tackled is
the first pose extraction of a group capsule network. We need to extract pose
vectors f : R* - SO(2) with activations f{ : R* - R from the raw input of the
network without eliminating the equi- and invariance properties of Equations (6.11)
and (6.12). The chosen solution for images is to compute local gradients using a
Sobel operator and taking the length of the gradient as activation. Naturally, a zero
gradient (and thus a zero activation) does lead to an undefined pose. Since the pose
activation is used as weight in the weighted average, those poses have no influence
on the result. One thing that needs to be ensured manually is that capsules with
only zero inputs also produce a zero agreement and an undefined pose vector.

Convolution operator As convolution implementation for the group convolution
part of the architecture, we chose SplineCNN [FLW+-18], the continuous convolution
operator described in Section 4.1.4. Although the discrete two- or three-dimensional
convolution operator is also applicable, this variant allows us to omit the resampling
of grids after applying group transformations on the input image. The reason for
this is the continuous definition range of the B-spline kernel functions. We represent
images as grid graphs and rotate the kernels by inversely rotating the relative
positions given on the edges, as described in Section 6.4.2 and Section 4.1.4.

Dynamic routing In contrast to the method from Sabour et al. [SFH17], we do
not use softmax over the output capsule dimension but the sigmoid function for
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each weight individually. The sigmoid function makes it possible for the network to
route information to more than one output capsule as well as to no output capsule
at all. Further, we use two iterations of computing pose proposals.

Architecture and parameters The evaluated architecture consists of five SO(2)-
vector field capsule layers where each layer aggregates capsules from 2 x 2 spatial
blocks with stride 2. Thus, which each layer, we reduce the number of spatial
sampling points by a factor of 2, until we reach only one spatial position in the last
layer. The learned transformations ¢ are shared over the spatial positions. We also
pair each layer with a sparse group convolution layer, pose-indexed by the output of
the vector field capsule layer, as described in Section 6.4.2, with ReLLU non-linearities
after each layer. The numbers of output capsules per position are 16, 32, 32, 64,
and 10 for each of the five capsule layers, respectively. In total, the architecture
contains 235k trainable parameters (145k for the capsules and 90k for the CNN).
The architecture results in two sets of classification outputs: the agreement values
of the last capsule layer, which has one output capsule for each class, as well as the
softmax outputs from the sparse group convolution part. We use the spread loss as
proposed by [HSF18] for the capsule part and standard cross entropy loss for the
convolutional part and add them up. We trained our models for 45 epochs. For
further details, the reader is referred to the implementation, which is available on
Github'.

6.5.2 S0(2) Capsule Results

We provide proof of concept experiments to verify and visualize the theoretic
properties shown in the previous sections. As an instance of the GECN algorithm,
we first apply the previously described architecture to the task of SO(2) equivariant
classification on different MNIST datasets [LBB+98a]. Further, the resulting capsule
poses are analyzed qualitatively and quantitatively.

Equivariance properties and accuracy We confirm equivariance and invariance
properties of the algorithm by training the network on non-rotated MNIST images
and test it on images, which are randomly rotated by multiples of 7/2. We can
confirm that we achieve exactly the same accuracy, as if we evaluate on the non-
rotated test set, which is 99.02%. We also obtain the same output activations and
equivariant pose vectors with occasional small numerical errors < 0.0001, which
confirms perfect equi- and invariance in case of m/2 rotations, which do not introduce
sampling errors. This is true for the capsule output as well as the output of the
paired CNN. When we consider arbitrary rotations for testing, and thus having
sampling errors, the accuracy of a network trained on non-rotated images is 89.12%,
which is a decent generalization result, compared to standard CNNs, which achieve

Tmplementation at: https://github.com/mrjel/group_equivariant_capsules_pytorch


https://github.com/mrjel/group_equivariant_capsules_pytorch

110 Chapter 6. Group Capsule Networks

MNIST AffNist MNIST
rot. (50k) rot. (10k)

CNN(*) 92.30% 81.64% 90.19%
Capsules  94.68% 71.86% 91.87%
Whole 98.42% 89.10% 97.40%

(a) Ablation experiment results

Average pose
error [degree]

Naive average poses 70.92
Capsules without reconstruction loss 28.32
Capsules with reconstruction loss 16.21

(b) Average pose errors for different configurations

Table 6.1: (a) Ablation experiments for the individual parts of our architecture
including the CNN without induced pose vectors, the equivariant capsule network
and the combined architecture [LFL18]. All MNIST experiments are conducted
using randomly rotated training and testing data. (b) Average pose extraction error
for three scenarios: simple averaging of initial pose vectors as baseline, our capsule
architecture without reconstruction loss, and the same model with reconstruction
loss.

classification results of approximately 60% in this scenario, depending on the chosen
architecture.

For fully randomly rotated training and test sets we performed an ablation
study using three datasets. Those include standard MNIST dataset with 50k
training examples and the dedicated MNIST-rot dataset with the native 10k/50k
train/test split [LEC+07]. In addition, we replicated the experiment of [SFH17]
on the affNIST dataset?, a modification of MNIST, where small, random affine
transformations are applied to the images. We trained on padded and translated
(not rotated) MNIST and tested on affNIST. All results are shown in Table 6.1a.
We chose our CNN architecture without information from the capsule part as our
baseline (*). Without the induced poses, the network is equivalent to a traditional
CNN, similar to the grid experiment presented by [FLW+18]. When trained on
a non-rotated MNIST, it achieves 99.13% test accuracy and generalizes weakly to
a rotated test set with only 58.79% test accuracy. For training on rotated data,
results are summarized in the table. The results show that combining capsules
with convolutions significantly outperforms both parts alone. The pose vectors
provided by the capsule network guide the CNN, which significantly boosts the

2affNIST: http://www.cs.toronto.edu/~tijmen/affNIST/
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CNN for rotation invariant classification. However, the state-of-the-art of 99.29% in
rotated MNIST classification obtained by [WHS18] is not reached. In the affNIST
experiment we surpass the result of 79% from [SFH17] with much less parameters
(235k vs. 6.8M) by a large margin.

Representations We provide a quantitative and a qualitative analysis of gen-
erated representations of our MNIST trained model in Table 6.1b and Figure 6.7,
respectively. We measured the average pose error by rotating each MNIST test
example by a random angle and calculated the distance between the predicted and
expected poses. The results of our capsule networks with and without a reconstruc-
tion loss (cf. next paragraph) are compared to the naive approach of hierarchically
averaging local pose vectors. The capsule poses are far more accurate, since they do
not depend equally on all local poses but mostly on those which can be explained
by the existence of the detected object. It should be noted that the pose extraction
was not directly supervised—the networks were trained using discriminative class
annotations (and reconstruction loss) only. Similar to [SFH17|, we observe that
using an additional reconstruction loss improves the extracted representations. In
Figure 6.7a we show output poses for eleven random test samples, each rotated
in 7/4 steps. It can be seen that equivariant output poses are produced in most
cases. The bottom row shows an error case, where an ambiguous pattern creates
false poses. Figure 6.7b shows poses after the first (top) and the second (bottom)
capsule layer.

We further plotted this error for each MNIST class individually in Figure 6.6. It
can be seen that, for all classes, far away predictions are rarer than those near the
correct pose. We can also observe variances between the classes. The classes with
the largest errors are 1, 4 and 8 while pose vectors from classes 3, 6 and 9 are most
accurate. We suspect that inherent symmetries of the symbols cause a larger pose
error.

Reconstruction For further verification of disentanglement, we also replicated the
autoencoder experiment of [SFH17] by appending a three-layer MLP to convolution
outputs, agreement outputs, and poses and train it to reconstruct the input image.
Example reconstructions can be seen in Figure 6.7c. To verify the disentanglement
of rotation, we provide reconstructions of the images after we applied 7/4 rotations
to the output pose vectors. It can be seen that we have fine-grained control
over the orientation of the resulting image. However, not all representations were
reconstructed correctly. Visually correct ones were chosen for display.

6.6 Group Capsule Networks on 3D Point Clouds

In this section, the 3D application of GECNs on 3D point clouds is described in
more detail. It was originally published as a joint work in 2020 [ZBL+20], from
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Figure 6.6: Angle error histograms for rotated inputs that require resam-
pling [LFL18]. The plots are given for each MNIST class individually. The z
axis shows bins for the angle errors in degree. The y axis represents the fraction of
test examples falling in each bin.

which is section is partially adapted. We begin by detailing the design choices for the
3D capsule representation, operators and architecture, before summarizing results
obtained on 3D point cloud datasets.

6.6.1 SO(3) Group Capsule Networks

In the following, the chosen representation, distance operator and average operator
of the 3D capsule instantiation is described in detail. Then, the architecture for point
cloud rotation estimation and classification is presented, which is later evaluated in
Section 6.6.2.

Group Representation There are several options for representing the SO(3)
rotation group, such as different axis-angle representations, rotation matrices, and
quaternions. They all provide different advantages and disadvantages, which may or
may not fit the given task. For SO(3) capsules, the goal is to have a representation
that (1) continuously represents SO(3), (2) has an easy to compute distance measure,
and (3) lends itself to an efficient, equivariant, differentiable average operation.
Similar to angle representations for SO(2), simple axis-angle representations for
SO(3) usually contain discontinuities at one or multiple points in the group. In
addition to problems with differentiation, those discontinuities pose challenges
for defining an equivariant average, which is why we refrain from choosing those
representations. Rotation matrices, as such, are over-parameterized and averaging
them trivially requires an iterative re-orthogonalization procedure. Considering
all criteria, we chose unit quaternions as the best fitting SO(3) representation for
GECNSs. Thus, the pose vectors p lie in the set of all four-dimensional unit vectors
P ={peR'||z|, =1}. One property that needs to be considered is that unit
quaternions pose a double cover of SO(3), in that the quaternions described by p
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(a) Output pose vectors for rotated in-
puts

(c) Reconstruction with transformed
poses

Figure 6.7: Visualization of output poses (a), internal poses (b), and reconstructions
(c) [LFL18]. (a) It can be seen that the network produces equivariant output pose
vectors. The bottom row shows a rare error case, where symmetries lead to false
poses. (b) Internal poses behave nearly equivariant, we can see differences due to
changing discretization and image resampling. (c¢) The original test sample is on the
left. Then, reconstructions after rotating the representation pose vector are shown.
For the reconstruction, we selected visually correct reconstructed samples, which
was not always the case.

and —p always describe the same rotation. However, it turns out that this does not
pose a problem for defining the required operators.

Given quaternions as SO(3) representation, the application of the group law
can be done efficiently by quaternion multiplication

pop’=pp’ = (p1+pai+paj+pak) (P) +poi+ pij+pik), (6.32)

with subsequent re-normalization to account for numerical errors, which is efficient
in forward and backward computation. It is also possible to convert the quaternion
to a rotation matrix first (cf. Section 4.1.5 for forward and backward operations for
this conversion) but converting and multiplying the matrices is less efficient than
simply performing the multiplication in quaternion space.

Distance Measure Measuring the distances between unit quaternions as rep-
resentation of SO(3) is a well-understood task. The geodesic distance between
quaternion poses p,q € P is defined as

6(p,q) = 2-arccos(|(p,q)l), (6.33)
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which considers the double cover property and can be directly computed in forward
and backward algorithms. It also is preserved by application of the group law:

{gop,goq)l)
[(gp)" (ga)])
Ip'g'gql)
Ip'eq)
l(p,a)l)

l(p, a)|)

d(gop,goq) =2-arccos
=2 .arccos
=2.arccos
= 2-arccos

= 2-arccos

—~ o~ o~ o~~~

= 2-arccos
=d(p,q)

which follows from the orthonormality of the transformations.

Weighted Average Operator Given unit quaternions pi,...pn, and weights
w € R™, the goal of the weighted average operation is to find the solution of

n
g =argmin ) 6(h,p;). (6.34)
heSO(3) i=1
which usually requires an iterative algorithm to solve.

Markley et al. [MCC+07] showed that finding the average of a set of quaternions
can be formulated as a least squares problem, by interpreting the quaternions as
normal vectors of four-dimensional planes and finding the average plane of these
given normal vectors. Fortunately, this can be solved using EIGENDECOMPOSITION
(ED), for which we have a tractable backward operation (cf. Section 4.2). The
problem amounts to finding

q = argmaxq' Mq, (6.35)
qeP

with M being the weighted covariance matrix of the quaternions
n
M = Z w;qq; (6.36)
i=1

for which the largest magnitude eigenvector needs to be found. The operator is
equivariant as required for application in GECNs:

n n
argmaxq' (> wi(goq;)(goq;) )q=argmaxq' () w;gq,q/g")q
q<P i=1 q<P i=1

n
= argmax ng(Z win‘qiT)gTq
qeP i=1

=argmaxq' gMg'q
qeP

= goargmaxp' Mp,
p<P
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utilizing the orthonormality of transformations and a substitution p = g'q.

It is interesting to see that one average computation using the presented scheme
is equivalent to one Weiszfeld iteration, a well-known IRLS scheme for robustly
computing the L, geometric median. Hence, the resulting routing by agreement
procedure for quaternion GECNs can be understood as a trainable variant of the
Weiszfeld algorithm and was called Weiszfeld dynamic routing [ZBL+-20].

Initial pose extraction Similar to the 2D version, GECNs on 3D point clouds
need initial SO(3) poses as input, which need to behave equivariant to global
rotation of the point cloud. A typical descriptor for such poses on 3D point clouds
are estimated Local Reference Frames (LRFs), consisting of three orthogonal vectors,
indicating local surface orientation. We use the FLARE method [PD12] to compute
one for each input capsule locally on the input point cloud. As first vector, a locally
fitted surface normal is taken. The second axis is fixed as the direction to the most
distant point from the tangent plane, projected onto that plane. Without resampling,
the operator is equivariant with respect to input rotation. Similar to the 2D case, if
a different point sampling of the same object is used, the LRFs might differ due to
different sampling.

Dynamic routing The Weiszfeld dynamic routing takes place as detailed in Algo-
rithm 8, where pose vectors p are given as unit quaternions and the transformations
t are the output of an continuous kernel on the point positions, as described in
Section 6.4. As weight scaling function o, the sigmoid functions is used. The number
of iterations r is set to 3.

Architecture and parameters For the experiments on SO(3) capsule networks,
two different types of architectures were used [ZBL+-20]. One standard classification
architecture, mapping input point clouds to one capsule per class, similar to the 2D
MNIST experiment described in Section 6.5, and one siamese architecture for pose
estimation. The siamese architecture maps an object in two different orientations
to the respective pose vectors and computes the relative rotation between the two
inputs. It consists of two instantiations of the classification architecture, sharing
weights.

The classification network consists of two hierarchically stacked capsule layers,
the first receiving 64 input point cloud patches, for each of which an LRF is computed
as input pose. The centers of those patches, called pooling centers, are computed
via uniform farthest point sampling [BI17]. Then, two SO(3)-vector field capsule
layers are applied. In the first layer, the capsules of each patch are aggregated with
the capsules of their 9 nearest neighbors, resulting in 64 output capsules for each
of the 64 points. The second layer takes all intermediate capsules as input and
aggregates them into one spatial point with 40 output capsules, one for each class of
the ModelNet40 dataset, used for evaluation.
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NR/NR NR/AR | Num. Params.

PointNet [QSK+17] 88.45  12.47 3.5M
PointNet++ [QYS+17] | 89.82  21.35 1.5M
DGCNN [WSL+19] 92.90 29.74 2.8M
KDTreeNet [KL17] 86.20 8.49 3.6M
Point2Seq [LHL+19] 92.60  10.53 1.8M
Spherical CNNs [CGK+18] | - 43.92 0.5M
PRIN [YLL+20] 80.13 68.85 1.5M
PPF-FoldNet [DBI18a] 70.16 70.16 3.56M
SO(3) GECN 7443 74.07 0.4M

Table 6.2: Results of the SO(3) GECN for ModelNet40 point cloud classification
in comparison to related methods [ZBL+20]. For both evaluation scenarios (NR/NR
and NR/AR), the classification accuracy is reported in percent. In the rightmost
column, the number of model parameters is compared.

6.6.2 SO(3) Capsule Results

In this section, results for the SO(3) capsule architecture are presented. For the full
evaluation of the method, the reader is referred to the original publication [ZBL+20].
The evaluation is split into two different parts, evaluating classification accuracy
of the proposed architecture and analyzing the quality of output pose vectors for
object alignment and interpretation.

ModelNet40 Dataset The ModelNet40 dataset [WHG+15] contains a large set
of CAD models represented as meshes, which are divided between 40 different object
classes. In the recent years, it was often used for evaluating deep learning methods
for point cloud processing [QSK+17; QYS+17], by sampling point clouds from the
given meshes. For evaluation of the capsule network, the official split with 9,843
objects for training and 2,468 objects for testing has been used. For each object, a
point cloud with 10k points has been randomly sampled from the mesh surface.

Classification Similar to the 2D experiments on MNIST, we evaluated two
different scenarios and compared them against results of related methods. The
goal is to evaluate the network capability of generalizing to different input poses,
that is correctly classifying objects that are given in orientations that were never
observed during training. Thus, for both scenarios, the network was trained on
aligned objects, which are given in canonical orientation for each class. Then, the
trained networks were evaluated on (1, NR/NR) an aligned test set and (2, NR/AR)
a test set, where each test object is given in five different random SO(3) poses.
The results are shown in Table 6.2 as average classification accuracy in percent
over the whole test set. While the network does not reach the state of the art
results in classification of aligned objects, it outperforms all other networks when
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Method Avg. All NoSym. Chair Bed Sofa Toilet Monitor
Mean LRF 0.41 0.35 0.32 0.36 0.34 0.41 0.34
PCA-S 0.40 0.42 0.60 0.53 046 0.32 0.12
PCA-SR 0.67 0.67 0.69 070 0.67 0.68 0.61
PointNetLK [AGS+19] 0.37 0.38 043 031 0.40 0.40 0.31
IT-Net [YHM+18] 0.27 0.19 0.10 0.22 0.17 0.20 0.28
Ours (Siamese) 0.20 0.09 0.08 0.10 0.08 0.11 0.08

(a) Classes without rotational symmetries

Method Table Desk Dresser NS  Bathtub
Mean LRF 0.45 0.60 0.50 0.46 0.32
PCA-S 047 0.23 0.33 0.43 0.55
PCA-SR 0.67 0.67 0.67 0.66 0.70
PointNetLK [AGS+19]  0.40 0.33 0.39 0.38 0.34
IT-Net [YHM+18] 0.31 0.41 0.44 0.40 0.39
Ours (Siamese) 0.40  0.35 0.34  0.32 0.30

(b) Classes with rotational symmetries

Table 6.3: Relative angular error (RAE) of rotation estimation of ModelNet10
categories with (b) and without (a) rotational symmetries [ZBL+20]. The results of
the siamese SO(3) GECN architecture are compared against naive baselines (Mean
LRF, PCA-S, PCA-SR) and previous deep learning methods for alignment of point
clouds (PointNetLK, IT-Net).

classifying objects in arbitrary rotation. The results match those obtained with
the 2D version of GECNs. Notably, it can be seen that it produces better results
than other equivariant or invariant architectures, such as Spherical CNNs, PRIN,
and PPF-FoldNet, while using less parameters. The second best method for this
task, PPF-FoldNet [DBI18a], uses rotation invariant input features, which makes it
completely invariant to input rotation, losing expressiveness by discarding anisotropic
patterns. In contrast, GECNs consider anisotropic features while still being able
to classify objects in arbitrary rotations. Further analysis shows that most of the
classification errors made by GECNs are made between object categories that have
rotational symmetries [ZBL+20].

Pose Quality In addition to classification accuracy on ModelNet40, we analyze
the quality of pose vectors produced by SO(3) GECNs on ModelNet10 [WHGH15],
a subset of ModelNet40. The Siamese architecture, which is described in Section 6.6,
is trained on the ModelNet10 train set to infer the relative rotation between two
randomly rotated input objects of the same type, without using any absolute
pose supervision. The results are shown in Table 6.3, split between classes with
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Figure 6.8: Qualitative results of object alignment with the Siamese SO(3) GECN
architecture (originally published in [ZBL+20]). In each of the two columns, the
two leftmost examples show the input objects while the alignment result is shown
on the right. From both input meshes, point clouds are sampled, which serve as
input the network. The output are two object poses, which can directly be used to
align the inputs.

inherent rotational symmetries and those without, and compared against three
different baselines (Mean LRF, PCA-S, PCA-SR) and two previous state-of-the-art
deep learning methods for point cloud alignment (PointNetLK [AGS+19], IT-
Net [YHM+18]). Here, Mean LRF is simple averaging of all initial LRFs computed
on the point cloud, PCA-S refers to principal axis alignment between two samplings
of the same object, and PCA-SR refers to principal axis alignment between differently
rotated and re-sampled versions of the same object. It can be seen that the naive
approaches produce very bad results, some failing completely. PointNetLK and IT-
Net are iterative DL architectures that can be understood as differentiable versions
of the iterative closest point (ICP) algorithm [BM92]. SO(3) GECNs produce much
better alignment results than the related methods. This is best seen on objects
without rotational symmetries, where the method is able to align the objects up
to a very small error. On objects with symmetries, the error becomes larger, as
GECNs do not have a mechanism for symmetry handling. However, on average,
the errors are still lower than those obtained by previous work. Figure 6.8 shows
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qualitative results for object alignment. The figure shows different examples of object
pairs that have been aligned using a single evaluation of the Siamese SO(3) GECN
architecture. It should be noted that the method receives point cloud samples of
the objects as input.

6.7 Discussion and Limitations

In this chapter, GROUP EQUIVARIANT CAPSULE NETWORKs (GECNSs) have been
detailed that provide provable equivariance and invariance properties for transforma-
tions in certain Lie groups. They include a scheme for differentiable, iterative routing
by agreement algorithms, a spatial aggregation method, and the ability to integrate
group convolutions. The proven properties of equivariance and invariance were
confirmed through experiments on 2D images and 3D point clouds for the Lie groups
SO(2) and SO(3), by showing that the architecture provides informative, disentan-
gled pose vectors which can be interpreted by humans. On certain tasks, for which
invariance or equivariance is advantageous, the presented architectures improved on
previous state-of-the-art results while requiring fewer trainable parameters.

Limitations of the presented method arise from the restriction of capsule poses
to be elements of a group for which we can define proper M and ¢é. Therefore, in
contrast to the original, less restricted capsule networks, arbitrary pose vectors can
no longer be extracted. Through product groups though, it is possible to combine
several groups and achieve more general pose vectors with internally disentangled
information if we can find M and ¢ for this group. As for SO(2) and SO(3), an
implementation of an equivariant center of mass M could be found for more Lie
groups. However, for each group there is a different number of possible realizations
from which only few are applicable in a deep neural network architecture, since it
still needs to be efficiently differentiable. Iterative solutions that need a long time to
converge (or maybe do not) may not be sufficient, since the mean is applied several
times within one model.

The most notable theoretical limitation is the lack of symmetry handling in GECN.
The method imposes the assumption that each capsule represents an object including
its unique pose. However, in reality, several objects have inherent symmetries in
the capsule group. For example, in the 2D version, the digit 1 may look exactly
the same for two different rotations, offset by 180°, depending on the drawing style.
Similarly, a 3D representation of a table might have several poses in which it looks
exactly like the non-rotated version. Thus, the full Lie group is not always the
best representation to describe poses of real world objects, leading to degraded
performance of GECNs in those scenarios. For future work, there are potential
solutions for this issue (cf. Section 7.3).






CHAPTER 7

Conclusion and Future Work

This thesis started with two premises, describing a hypothesis of the current state
of DL, in Section 1. The first premise stated the importance of designing parallel
data flow and data representations to efficiently process the vast amount of available
data types we have in practice. The second premise states the hypothesis that in
the near future, the most successful methods in the near future will combine the
interpretability and efficiency of fixed algorithms incorporating problem-specific
knowledge with a strong data-driven parameterization using DL, methods. In the
following, the contributions of this thesis are summarized in Section 7.1 and their
results summarized and discussed in Section 7.2. Lastly, an outline of potential
future work is given in Section 7.3.

7.1 Summary

The thesis followed the two premises by presenting methods for representing and
processing different types of data and by designing sophisticated differentiable
algorithms to solve tasks in 3D vision. Chapter 4 introduced important building
blocks for designing differentiable algorithms. Contributions were made in the field
of GNNs, including SplineCNN (cf. Section 4.1.4), an operator for differentiable
continuous convolution on geometric data, and LSGTs, a network that infers local
surface poses for equivariant data processing. For both methods, efficient GPU
implementations for forward and backward application were described, allowing
them to be used to capture information from large 3D data sets. For ED on a large
number of symmetric 3 x 3 matrices, efficient forward and backward algorithms have
been proposed in Section 4.2.1, allowing to integrate that operator in large scale,
parallel DL architectures. Additionally, Section 4.3.4 outlined a method for 3D
surface reconstruction, which can be applied to large real world datasets by applying
recent successes in the field of INFs on a local level.

The first main contribution of this thesis, the DISNE method, was presented in
Chapter 5, a differentiable algorithm for surface normal estimation on large point
clouds, which combines traditional IRLS for plane fitting with a data-driven DL
parameterization. The algorithm utilized building blocks introduced in Chapter 4,
namely the LSGT method, the presented ED solver, and a kernel INF for re-weighting.
The second main contribution, GECNs, were presented in Chapter 6, a novel take
on capsule networks, which introduces strong, appropriate inductive biases into
capsules, allowing to achieve provable equivariance properties with respect to the
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group action. Two potential applications in 2D and 3D have been described, utilizing
presented building blocks from the fields of GNNs and differentiable ED.

7.2 Discussion of Results

The two presented algorithms were analyzed with respect to interpretability, efficiency
and quality of results in order to confirm the second premise of the introduction. The
main hypothesis was that using fixed function parts to introduce stronger inductive
bias leads to a better trade-off in these three categories than pure end-to-end DL
approaches or pure hand-designed algorithms.

Differentiable Iterative Surface Normal Estimation (DISNE) After an-
alyzing the results, we can say that the DISNE method clearly provides a better
trade-off in the given metrics than previous methods. The quality of results is only
slightly improved by lowering the average normal error by 4.6% in comparison to
the second best method. However, the true gains are achieved in efficiency and
interpretability. DISNE achieves speed ups of orders of magnitude, being 378x
and 131x faster than previous DL approaches, which achieve second and third best
quality of results. Additionally, DISNE reduces the required number of trainable
parameters by more than 99%. DISNE is also easier to interpret: intermediate
results of inferred point weights and normal vectors can be visualized and analyzed
in behavior over iterations, showing how the method converges to the most plausible
plane. Since the obtained normals are always a result of weighted plane fitting, we
can narrow down the space of possible solutions. Most of the gains can be explained
by the extend of the learning task that is solved. Instead of learning the whole
relation between point sets and normal vectors, we only solve a sub-task of normal
estimation using deep learning and incorporate well-known geometric relationships
in the fixed function least squares solver.

Group Equivariant Capsule Networks (GECNs) When analyzing the results
of the GECN method, the results are mixed, obtaining improvements in some
categories while making sacrifices others. Improvements with respect to traditional
capsule networks could be found in number of required trainable parameters, where
a reduction of 97% was obtained. However, in case of GECNs, this does not lead
to an improved runtime, as the fixed-function group operations are computation-
heavy. The quality of results in generalization to novel test poses was improved
by 12% (SO(2) poses) and 5.7% (SO(3) poses) but it could be observed that the
model suffered in capability of memorization when trained on fully augmented
training sets, which can be contributed to the less number of parameters. The
largest improvements can be seen in interpretability. The capsule pose vectors are
guaranteed to behave equivariant (except for re-sampling artifacts) and can directly
be interpreted as elements of a pre-defined transformation group, making it possible
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to directly use the method for unsupervised pose estimation. Also, it was shown that
when using the capsules as hidden representation, we have fine-grained control over
the pose of reconstructions obtained from them. These are novel achievements in
the area of equivariant networks. All in all, through incorporating stronger inductive
biases, we obtained a method that is easier to interpret and better in tasks for which
it was specifically designed. However, sacrifices in efficiency and memorization had
to be made.

We can conclude that designing sophisticated data flow for differentiable al-
gorithms has the potential to obtain solutions that are more practical than pure
end-to-end approaches while keeping their data-dependency and resulting quality. It
was not possible to extract a general recipe for creating such methods. In order for
them to succeed, they have to be build upon deeper understanding of the individual
task, shifting away complexity from the learned function to fixed-function parts.
However, certain concepts and building blocks, such as those presented in Chapter 4,
are quite general and can be successfully applied in different problem domains.

7.3 Future Work

The area of differentiable algorithms with data-driven parameterization is very broad,
leaving potential for designing methods to solve a large variety of different tasks.
This section will outline three potential areas, which might be advanced by creating
novel differentiable algorithms using the tools described in this thesis.

Consider Symmetries in Group Capsules One important limitation of the
current GECNs as described in Chapter 6 is their inability to correctly detect
and consider symmetries in the detected objects. Lets consider a 3D object like a
table, which is symmetric with respect to 180° rotation. Then, the network should
have the possibility to express two potential poses, instead of only one. There
are two potential ways to solve this problem. One of that is to represent capsules
as a distribution over the group, instead of a single group element, allowing for
multiple peaks in the distributions. Instead of individual poses, we would propagate
those distributions, or patterns, through the network in an equivariant fashion.
Another approach could be to introduce different symmetry groups instead of using
one Lie group, e.g. point groups for rotation, which describe the operations under
which the object behaves invariant. Both approaches would change the method
significantly and would require to recreate all involved operators to correctly process
distributions or multiple symmetry groups in an equivariant way. Since GECNs
already are computation heavy, those approaches would also require significant
additional investigation to create tractable, efficient implementations.

Differentiable Laplacian Eigenbases In Section 4.2.2 it was described how to
use Laplacian eigenbases in differentiable algorithms. The Laplacian operator L
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describes how a quantity diffuses over time over a given domain: we can multiply the
Laplacian with a function on the domain to simulate this diffusion. The eigenbasis
1 of an operator contains stable modes of this diffusion, i.e. functions, which do
only vary in magnitude when diffused further (since Lty = A\¢) per definition). Thus,
the mapping from an operator to its eigenbasis can be seen as a global diffusion
process until convergence.

In most existing works (spectral GNNs [BZS+14; BBL+17], deep functional
maps [OBS+12; LRR+17], diffusion networks [SAC+20]), the process of estimating
the eigenbasis of the Laplacian is considered a fixed-function preprocessing step, using
manually designed Laplacian operators L that adhere to certain properties. Then,
the learning takes place either in spatial or spectral domain, using the eigenbasis of
L as generalized Fourier transform between these two domains. However, in future
work, we might be able utilize differentiable ED to learn information about the
domain instead of just learning functions on a fixed domain, thus, to backpropagate
through global domain diffusion of a trainable operator. If we solve a supervised
down-stream task using the eigenbasis ¥ (or a function of it), we can either directly
learn an optimal operator L as appropriate description of the underlying domain or
train a network to produce an optimal operator based on observed data. First steps
in this research direction have been taken by in recent work [SS21]. However, the
issues with differentiating through ED, stability and complexity of the operation for
large matrices L, currently hinder the construction of advanced methods in this area.
Thus, developing such methods requires more investigation in the area of efficient,
differentiable ED or appropriate surrogates.

Equivariant Operators in INF Reconstruction Volumetric representations,
such as DeepSDF [PFS+19], DeepLS (cf. Section 4.3.4) [CLI+20], and other variants
that express volumes as a set of INFs suffer from the limitation of being restricted
to a single orientation. Thus, an INF that learned to represent a certain object
category, is only able to represent that object in a single orientation. Therefore,
if new data should be fused that comes in a slightly different orientation, the
applied models easily fail. In current local methods, such as DeepLsS, this problem
is circumvented by training the local INFs on objects with randomly augmented
orientations. However, in the future, we can work towards a more sophisticated
approach using equivariant transformations on INF input coordinates. Given a
partial scene, we could estimate local orientations R, e.g. through the application
of LSGT (cf. Section 4.1.5) or GECNs (cf. Section 6.6) and canonicalize the input
domain of an INF by canonicalization: f,(R™'x,0). Since local INFs would no
longer need to learn to represent objects in all possible orientations, this change
has the potential to heavily improve on efficiency. Further, it might be possible to
attach such equivariant INFs to a graph, further increasing the sparsity of local INF
representations.
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