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Abstract

Abstract

End-users in energy systems are becoming heterogeneous with the increasing installation
of distributed energy resources in residential buildings. They can behave as electricity con-
sumers, as electricity producers, as energy storage units, or they can be just self-sufficient.
This heterogeneity implies that the energy system is undergoing certain paradigm chan-
ges. This dissertation defines home-microgrid as a residential building with integrated
distributed energy resources. It suggests the optimal operation of home-microgrids as a
backbone for the operation of future distribution power systems.

Therefore, the work at hand presents an optimal and scalable operation strategy for
home-microgrids using model predictive control. The proposed strategy can coordinate
the operation of a single home-microgrid or the operation of a group of interconnected
home-microgrids.

This research pays particular attention to multienergy home-microgrids. It, consequently,
provides a detailed description of the modeling and optimization of a photovoltaic-heat
pump home-microgrid and a photovoltaic-combined heat and power home-microgrid.

Another main focus of this research is the investigation of coordination strategies for inter-
connected home-microgrids, namely decentralized, centralized, and hierarchical-distributed
coordination strategies. In this context, the work presents the use of the alternating
direction method of multipliers to improve the performance of hierarchical-distributed
coordination strategies.

Finally, this dissertation introduces a framework for the co-simulation of electrical net-
works with penetration of home-microgrids. The simulation results show the functionality
of the framework and enable the evaluation of the effects of the coordination of home-
microgrids on a generic low-voltage grid.

Through simulation experiments, this work concluded that using the l2-norm in the ob-
jective function enables an improvement in local power balancing for home-microgrids.
Moreover, the work showed the use of model predictive control for storage sizing purpo-
ses. The research also concluded that the sharing problem formulation of the alterna-
ting direction method of multipliers could handle binary variables within a hierarchical-
distributed operation strategy for interconnected home-microgrids. In the end, with the
co-simulation framework’s help, the work showed that a local power balancing results in
a reduction of network power losses.
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Abstract

Kurzfassung

Mit der zunehmenden Durchdringung von dezentralen Energieanlagen in Wohngebäuden
werden die Endnutzer in Energiesystemen immer heterogener. Dies bedeutet, dass Sie
Stromverbraucher, Stromerzeuger, Energiespeicher oder einfach nur autark sein können.
Diese Heterogenität impliziert, dass sich das Energiesystem einem Paradigmenwechsel
unterzieht. In dieser Dissertation wird Home-Microgrid als ein Wohngebäude mit inte-
grierten, dezentralen Energieanlagen definiert. Diese Dissertation schlägt den optima-
len Betrieb von Home-Microgrids als Grundlage für den Betrieb zukünftiger Verteilnetze
vor.

Daher wird in dieser Dissertation eine optimale und skalierbare Betriebsstrategie für
Home Microgrids unter Verwendung eines modellprädiktiven Regelungsansatzes vorge-
stellt. Diese Strategie kann den Betrieb eines einzelnen Home Microgrid oder den Betrieb
einer Gruppe von miteinander verbundenen Home Microgrids koordinieren.

Diese Arbeit richtet ein besonderes Augenmerk auf multienergie Home-Microgrids. Die
Arbeit liefert daher eine detaillierte Beschreibung der Modellierung und Optimierung eines
Photovoltaik-Wärmepumpen-Home-Microgrids und eines Photovoltaik-Home-Microgrids
mit Kraftwärmekopplungsanlage.

Ein weiterer Schwerpunkt dieser Forschung ist die Untersuchung von Koordinations-
strategien für vernetzte Home-Microgrids, nämlich dezentralisierte, zentralisierte und
hierarchisch-verteilte Koordinationsstrategien. In diesem Zusammenhang stellt die Dis-
sertation die Anwendung der “Alternative Direction Method of Multipliers” für eine ver-
besserte hierarchisch-verteilte Koordinationsstrategie vor.

Zum Schluss wird in dieser Arbeit ein Framework für die Co-Simulation von elektrischen
Netzen mit Durchdringung von Home-Microgrids präsentiert. Die Simulationsergebnisse
zeigen die Funktionalität des Frameworks und ermöglichen die Bewertung der Auswirkun-
gen der Koordination von Home-Microgrids auf ein generisches Niederspannungsnetz.
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Nomenclature

Acronyms
ABMS Agent-based modeling and simulation
ADMM Alternating direction method of multipliers
Aux Auxiliary gas Boiler
Batt Battery
CCU Central coordination unit
CHP Combined heat and power
DER Distributed energy resources
DG Distributed generator
DHW Domestic hot water
DSO Distribution system operator
EMS Energy management system
EWH Electrical water heater
FIT Feed-in tariff
H-MG Home microgrid
HP Heat pump
LC Local controller
LM Local meter
LP Linear programming
MFH Multi-family house
MG Microgrid
MILP Mixed integer linear programming
MPC Model predictive control
PCC Point of common coupling
PV Photovoltaic
QP Quadratic programming
RES Renewable energy sources
SFH Single-family house
SH Space heating
SM Smart meter
SOC State of charge
TES Thermal energy storage
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Nomenclature

Indices
el Electrical quantity
gas Chemical quantity
k Time step ∈ N≥0

th Thermal quantity
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Nomenclature

Parameters1

α Weighting factor for power peaks
αdd Iteration step size for dual decomposition
β Weighting factor for thermal comfort
∆t MPC sample time ∈ N≥0 (min)
ηAux Efficiency coefficient auxiliary gas boiler ∈ (0, 1]
ηBatt,char Charging efficiency coefficient battery ∈ (0, 1]
ηBatt,dis Discharging efficiency coefficient battery ∈ (0, 1]
ηBatt,sd Self-discharge coefficient battery ∈ (0, 1]
ηEwh Efficiency electrical heater ∈ (0, 1]
ηTes,char Charging efficiency coefficient TES ∈ (0, 1]
ηTes,dis Discharging efficiency coefficient TES ∈ (0, 1]
ηTes,sd Self-discharge coefficient TES ∈ (0, 1]
ηChp

el Electrical efficiency coefficient CHP ∈ (0, 1]
ηChp

th Thermal efficiency coefficient CHP ∈ (0, 1]
γ Regularization factor for power peaks in ADMM
Φ Solar radiation (kW/m2)
ρ Augmented Lagrangian parameter
Aw Window area facing south (m2)
AChp,upth State matrix for CHP thermal start-up behavior
BChp,up

th Input matrix for CHP thermal start-up behavior
CChp,fit Feed-in-Tariff for CHP (EUR ct)
CChp,up Costs for CHP start-up (EUR)
CPv,fit Feed-in-Tariff for PV (EUR ct)
ci Heat capacity of the room air (kWh/◦C)
cm Heat capacity of the large heat-accumulating medium in a building (kWh/◦C)
Cel Electricity costs (EUR)
Cgas Gas costs (EUR)
COP Coefficient of Performance for HP
Np Prediction horizon ∈ N≥0 (time steps)
pLoad

el Household load (kWel)
pDhw

th Power demand domestic hot water (kWth)
pSh

th Power demand for space heating (kWth)
pPv
el Total power output PV-Inverter (kWel)
pl Share of the solar radiation which is directly affecting Tm ∈ (0, 1]
ra Resistance against heat transfer from the house air to ambient air (◦C/kW)
ri Resistance against heat transfer between the house air and the large heat-accumulating

medium (◦C/kW)
T Temperature (◦C)
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Nomenclature

Variables1

λ Lagrange multiplier
bAux On/Off Status auxiliary gas boiler ∈ {0, 1}. On(1)/Off(0)
bBatt,char Battery charging status ∈ {0, 1}. Charging(1)/Discharging(0)
bChp,down Shut-down status CHP ∈ {0, 1}. Shut-down(1)/other operation status(0)
bChp,up Start-up status CHP ∈ {0, 1}. Start-up(1)/other operation status(0)
bChp On/Off status CHP ∈ {0, 1}. On(1)/Off(0)
bEwh On/Off Status electrical heater. On(1)/Off(0) ∈ (0, 1]
bHp On/Off Status heat pump. On(1)/Off(0) ∈ (0, 1]
pBatt,char

el Battery charging power (kWel)
pBatt,dis

el Battery discharging power (kWel)
pChp

el Electrical power output CHP (kWel)
pEwh

el Electrical heater electrical power consumption (kWel)
pGrid,exp

el Total power exported to the grid (kWel)
pGrid,imp

el Total power imported from the grid (kWel)
pHp

el Electrical power input HP (kWel)
pAux

gas Power input auxiliary gas boiler (kWgas)
pChp

gas Power input CHP (kWgas)
pAux

th Power output auxiliary gas boiler (kWth)
pChp

th Thermal power output CHP (kWth)
pEwh

th Generated thermal power electrical water heater kWel
pHp

th Thermal power output HP (kWth)
pTes,char

th TES charging power (kWth )
pTes,dis

th TES discharging power (kWth)
SoCBatt Battery state of charge (%)
SoCTes TES state of charge (%)
Tm Temperature of the large heat-accumulating medium in the house
T room Room air temperature
u Input vector
x State vector
y Output vector
PG
h,el Power exchange between a H-MG and the main grid over the whole prediction

horizon ∈ RNp

1 All variables and parameters are in R≥0 unless something different is stated
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1. Introduction

Electrical power systems are undergoing several concurrent paradigm changes. Small
decentralized power sources are replacing big centralized power plants. Power generators’
connection is no longer exclusive for high voltage networks; it also takes place at medium
and low voltage networks. End-users in electrical networks are not just net electricity
consumers; they can now generate their electricity and store it. Such changes bring
challenges and opportunities for electrical power systems, and this work approaches some
of them.

This work considers the optimal operation of home-microgrids as a backbone for future
distribution power systems’ operation. It aims to present an optimal and scalable opera-
tion strategy for home-microgrids using model predictive control. The proposed strategy
can coordinate a single home-microgrid or a group of interconnected home-microgrids.

Accordingly, this chapter briefly describes the challenges of the energy transition. It pro-
poses a home-microgrid as the smallest controllable distributed energy resource. The
chapter highlights the relevance of the optimal operation of home-microgrids for the ope-
ration of future power systems. It follows by describing the model predictive control
concept and gives a literature review on its application for microgrid operation. Next, the
chapter lists the work’s research questions and contributions. The last section provides
an overview of the content and structure of this dissertation.

1.1. Challenges of the energy transition

There is a worldwide consensus of governments about the importance of reducing green-
house gas (GHG) emissions and moving towards a more secure, competitive, and sus-
tainable energy system. The European Commission sets the target of lowering GHG
emissions by 80% to 95% by 2050 compared to 1990 levels [1]. According to the guide-
line 2009/28/EG of the European Parliament and Council, achieving this target implies,
among others, two main measures: the utilization of all possible renewable energy sources
(RES) and the improvement of energy efficiency. In this context, the guideline also sees
the reduction of transmission losses as an essential aspect, and it points out the necessity
of storage systems for the successful integration of renewable energies [2].

Following this line of action, the Bundesregierung (German government) has adopted
climate and energy policy programs. The “Energy Concept 2010” [3] and the “Climate
Protection Plan 2050” [4] agreed upon in November 2016 include commitments to reduce
GHG emissions at least 55% by 2030, and at least 80-95% by 2050 (in each case below 1990
levels), and to expand renewable energies and energy efficiency by 2050. Consequently, the
Bundesregierung committed to increasing the share of RES in end-energy consumption
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1. Introduction

to 18% by 2020, and 60% by 2050. Furthermore, the share of electricity generation from
RES in gross electricity consumption should rise to 35% by 2020, and 80% by 2050.

The building sector also plays a vital role in the “Climate Protection Plan 2050”. This
sector generates around one-third of GHG emissions, mainly for heating purposes. By
2050, buildings’ primary energy demand is to be reduced by 80 percent compared to 2008.
The “Climate Protection Plan 2050” also states that the provision of electricity and heat
from RES can only contribute to the decarbonization of other sectors if:

1. the energy demand in all sectors is reduced significantly and permanently (“efficiency
first”),

2. the direct use of renewable energies take place in all sectors if technically possible
and economically viable, and

3. electricity from RES is used efficiently for heating, transport, and industry (sector
coupling).

The Bundesregierung has launched with the “National Action Plan for Energy Efficiency”
(short NAPE in German) a strategy to increase the energy efficiency in the building sector
through the promotion of energy-related modernization and the use of heat pumps and
mini combined heat and power (mini CHP) systems, among other measures [5]. Also, the
“Renewable Energy Act" (short EEG in German) promotes clean electricity production
by providing a special feed-in tariff (FIT) for the electricity produced from RES [6]. The
“Combined heat and power act" (KWKG) defines a different FIT, which supports the use
of combined heat and power (CHP) plants for the efficient generation of electricity and
heat [7].

Following these incentives, such low carbon electricity technologies are rapidly penetrating
electrical power systems, particularly at the distribution grid level. According to [8], when
this research started in 2015, 20 of 900 German distribution system operators were hosting
over 75% of the installed RES in Germany. It means that RES’ installation occured at
some particular distribution network areas, as shown in Figure 1.1.

Household owners are increasingly installing rooftop photovoltaic plants (PV) and mini
CHP plants. Energy-efficient power-to-heat appliances, namely heat pumps, are replacing
old fossil-fuel-burning heating appliances in single and multi-family houses. The rapid
penetration of PV, the electro-mobility, and the increasing number of heat pumps and
mini-CHP plants may bring electrical distribution power systems to their limits [9].

Next to the known challenge posed by the increasing fluctuating, decentral, and weather-
dependent power generation from RES, there are further challenges for the operation of
electrical power systems.

Distribution power systems now face reverse power flows due to the simultaneous feed-in
of PV plants and mini CHP plants during low consumption periods. Figure 1.2 presents
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1. Introduction

Figure 1.1.: Penetration of RES in German distribution networks[8]

historical operational data from a high/medium voltage substation in Southern Germany.
It shows an increment of reverse power flows over the years. Notice that, at least for
the last year, reverse power flows also occur during winter. Such circumstance leads to
technical issues such as [10]:

• Overvoltage in medium voltage networks, and overloading of electrical equipment.

• Malfunction of protection devices, as they were not designed for this situation.

• Congestion in sub-transmission and transmission networks.

• Increment of power losses: surplus power goes from a low-voltage network, through
a medium-voltage network to the high-voltage network, back to the consumers in a
different low-voltage network.

Furthermore, the activation of heat pumps at times of high electricity demand can overload
existing electrical infrastructure [12]. Thus, distribution power networks require additional
actions to guarantee uninterrupted regional electricity supply and system stability.

To minimize rather than maximize network expansion through the use of these technolo-
gies (PV, mini CHP, heat pumps, et al.), a proper intelligent deployment of their inherent
flexibilities is necessary.

In this context, flexibility means adjusting the power consumption/feed-in of a system
at a defined time and location according to the network situation. System’s flexibility
capability results from the maximum permissible changes in its power profile without

3



1. Introduction

Figure 1.2.: Evolution of reverse power flows over the years at a high/medium voltage
substation in Southern Germany [11]

compromising its primary purpose (e.g., heat supply). Here, mini-CHP and heat pumps
as sector coupling technologies are suitable for relieving low and medium voltage net-
works. Energy storage systems are also crucial for increasing flexibility. Besides electrical
batteries, thermal energy storage (TES) units serve as time-decoupling units between the
electricity and heating sectors and add flexibility to the demand side.

Figure 1.3 depicts a qualitative example of the targeted and coordinated use of batteries
and heat pumps for modifying the resulting power profile at the local network transfor-
mer1.

1.2. A bottom-up approach based on the cellular
energy system concept

The present work follows the cellular approach proposed by the Power Engineering So-
ciety of the German Association for Electrical, Electronic and Information Technologies

1 This work uses the consumer sign convention where consumed power is positive and generated power
is negative
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Figure 1.3.: Example of the use of local flexibilities to avoid transformer overloading

(VDE-ETG in German) in the studies “The Cellular Approach” [13] and “Cellular Energy
System” [9]. This approach gives a new organizational model for energy supply suitable
for managing multiple decentralized energy systems. The cellular energy system concept
proposes to balance energy supply and demand at a regional and local level.

Based on the principle of subsidiarity, such a system- and grid-friendly balance of genera-
tion and consumption must occur at the lowest possible voltage level. This principle says
that any unbalance or problem in the power system is primarily to be tackled directly at
the problem’s source. Corrective actions in the nearest upstream/downstream network
areas should occur only secondarily.

The improved local energy balance would allow better use of existing infrastructure, the
rapid expansion of renewable energies, and the relief of electrical transmission grids from
grid stabilization actions. In this context, the purpose of the cellular approach is to opti-
mize the electricity grid’s expansion and increase energy efficiency at the local, regional,
and supra-regional levels.

The cellular approach’s central component is the energy cell, which consists of the infra-
structure for different energy sectors (electricity, gas, and heat). An energy management
system (EMS) organizes the balancing of generation and consumption in an energy cell.
If possible, it cooperates with neighboring cells (neighboring EMS) using all available
energy forms (electrical, chemical, and thermal). The cellular approach does not aim at
achieving the highest possible degree of self-sufficiency. Instead, it seeks to enable an
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1. Introduction

optimal exchange with neighboring, subordinate, or superimposed cells using the existing
infrastructure [9].

The concept of cooperative energy cells is similar to the concept of energy collectives or
communities, where groups of end-users can coordinate their energy utilization [14–17].
The European Committee of the Regions points out that local energy communities can
play an essential role in the energy transition. They can promote the development of
sustainable energy technologies to benefit local communities and the European Union
as a whole. Furthermore, the Committee states that the introduction of local energy
communities can improve the efficiency of managing energy at the community level [18].

Other authors refer to the concept of local aggregation of distributed energy resources
(DER) given the coordination of both supply-side and demand-side as microgrids [19, 20].
Accordingly, the term networked microgrids or interconnected microgrids denotes a group
of microgrids that exchange power with each other in order to achieve a common goal
[21].

1.3. Home-microgrid as the smallest unit of the
power system

This work uses the term home-microgrid (H-MG) to refer to a group of generators, loads,
and storage systems located inside a family house (end-user level). Through proper coor-
dination, these energy resources can respond to variable network conditions as a single
flexible unit. Analog to an energy cell, the main properties of a H-MG are:

• its ability to balance power supply and demand within the house, and

• its ability to share power with neighboring home-microgrids.

Here, the local energy management system, or home-microgrid controller, plays a key role
in enabling the coordination of internal energy resources and simultaneously handling
power exchange with neighboring home-microgrids. The home-microgrid controller can
get and send information from/to relevant energy resources inside a H-MG; it aggregates
this information and communicates only aggregated data to the outside world [9].

1.3.1. Home-microgrid controller

References [9] and [22] provide a comprehensive description of requirements for a so-called
energy cell management system. For a home-microgrid controller (H-MG controller), the
same requirements are valid. Therefore, an H-MG controller has to:
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• be able to record, process, and manage all relevant information from loads, genera-
tors storage systems inside an H-MG,

• be equipped with algorithms that enable the H-MG to operate in various scenarios
with the best possible optimization of its consumption,

• automatically regulate all power flows within the H-MG,

• negotiate power supply and demand with neighboring H-MGs, and

• exchange data and information with H-MG controllers from neighboring H-MGs,
energy market participants, and load and weather forecasting systems.

Moreover, according to [23] such an energy management system can achieve the following
goals:

• Distribution network optimization by coordinating fluctuating RES and loads. Here,
load shifting and short-term storage can reduce generation and load peaks in low-
voltage networks. This peak reduction might improve voltage profile and power
utilization in the local grid.

• Use of decentralized generated green electricity directly on site.

• Relief of the medium-voltage networks through local coordination in the low voltage
network.

• Targeted regulation of power feed-in by self-consumption or charging of storage
systems in the event of overvoltage.

The authors in [9] also differentiate between cell manager and cell cluster manager. As
these concepts are of high relevance for the present work, they are adapted as follows:

Local H-MG Controller (Cell Manager): It has control over a limited, locally linked
infrastructure that can include generators, consumers, and storage systems.

Central Coordination Unit (Cell Cluster Manager): It manages several local H-MG con-
trollers

The local H-MG controller and the central coordination unit (CCU) are responsible for
their respective network nodes. A network node can be, for example, the house con-
nection of an H-MG, the local transformer station of a low-voltage network, or a 20 kV
substation.

Figure 1.4 illustrates the bottom-up approach followed in this dissertation. It focuses on
flexibilities at the end-user and low-voltage network level to improve local power balance
in distribution networks.
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Finally, the authors in [9] propose developing agent-based energy management systems
and developing models to simulate cellular energy systems’ behavior as roadmaps to ad-
vance the cellular approach.
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Figure 1.4.: A bottom-up approach: Power balancing starts at end-user and low voltage
network levels (based on [9])
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From here, the conclusion is that the design and implementation of an optimal operation
strategy to enable flexible power supply and power consumption of H-MGs is an actual
topic for investigation. Advanced coordination strategies might be appropriate for this
task. An advanced coordination strategy optimizes the interaction between generators,
storage units, and flexible loads at the end-user level by managing both thermal and
electrical power flows. Within the power and energy research community, approaches
based on numerical optimization methods are very promising [24–31]. These approaches
are attractive because they explicitly consider system operation through mathematical
models and include operational constraints and operational goals in the problem formula-
tion. Within this framework, model predictive control (MPC) is gaining relevance due to
its prediction nature and its robustness against uncertainties [24]. Researchers are using
MPC for the operation and control of transmission and distribution grids, and also for
the operation and coordination of interconnected microgrids [32–35].

1.4. Model predictive control

Model Predictive Control (MPC) is a concept from control theory, which is being used
increasingly in industry. It originated in the late seventies and has grown substantially
since then. MPC optimizes the future behavior of a system by computing optimal trajec-
tories for its inputs within a receding horizon control scheme (RHC). This optimization
is performed within a finite time window by applying numerical optimization techniques
[36]. According to Camacho and Bordons [37], the main ideas in MCP are :

• explicit utilization of a model for the prediction of the process output at future
points in time (horizon);

• computation of a control sequence that minimizes an objective function; and

• receding strategy, so that the horizon moves at each point in time towards the future,
involving the application of the first control signal of the sequence calculated at each
step.

The day-to-day work planning activity example of predictive control presented in the book
of Wang [38] helps to understand the basic ideas in the design of MPC. In this example,
there is a working team, which needs to complete a given set of tasks. The rule is that
they always make a schedule for the next 8 hours, but they only implement the activities
for the first hour. They repeat this scheduling activity for every hour until they fulfill all
the tasks.

The day starts at 9 o’clock in the morning. The team determines the required hour-
by-hour activities for the next 8 hours in order to achieve the goal in the best possible
way. They take into account resources and limitations. As a result, the team gets a
list of projected activities from 9 o’clock to 5 o’clock, and they start working by just
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implementing the activities for the first hour of the plan. At 10 o’clock, the team evaluates
what they have done, and uses this updated information for planning the activities for
the next 8 hours. They continue by implementing just the first hour of activities. The
length of time for the planing always remains the same, i.e., 8 hours. Every hour, they
repeat the same planning process (new projected activities for the next 8 hours) and the
same implementation process until they achieve the objective.

Accordingly, the central aspects of MPC are:

1. Moving horizon window: a time window from an arbitrary initial time ki to ki+Np.
Where Np is the length of the window, which remains constant, and ki is the starting
time for the optimization window. In the previous example, Np = 8 hours, as the
length of the time window was 8 hours. ki starts at ki = 9 : 00 hours and increases
on an hourly basis.

2. Prediction horizon: it determines how far in the future, the planning process requires
a prediction. This parameter corresponds to Np.

3. Receding horizon control: the planning process calculates the optimal trajectory of
the input variables for the whole moving horizon window; however, the implemen-
tation process takes just the first element of this trajectory and neglects the rest of
the trajectory.

4. Model: a way for predicting what might occur.

5. Measurement: to accurately predict the future, the planning process also requires
information at time ki. The vector x(ki) denotes this information, which should be
directly measured or estimated.

6. The optimal decisions (the trajectory of input variables) are related to an objective
function. The planning process finds the optimal decisions by minimizing this ob-
jective function (also called cost function) within the optimization window.

To find optimal input trajectories for a process, there exist approaches based on numerical
optimization techniques such as open-loop and closed-loop optimization. The so-called
open-loop optimization uses a precomputed control trajectory to control a real process
without any feedback. However, in any control application the performance of a control
strategy is subject to uncertainties (unforeseen disturbances or model-plant-mismatch)
[39]. Therefore, and especially for energy systems with RES, an open-loop optimization
strategy might not meet the expected results. For example, if it is necessary to charge a
battery system up to a certain state of charge (SOC) based on a forecast for PV gene-
ration, the storage might end at a completely different SOC than the precomputed one.
This is due to the discrepancy between the predicted PV production and the real PV
generation.
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kiki -1 ki +1 ki + 4 ki + Np

ŷ (ki + 4|ki)

Prediction horizon Np

y(ki)

u(ki) = û* (ki|ki)

û(ki + 4|ki) û(ki + Np -1|ki)

Predicted output

Calculated optimal input trajectory

Past Future

Figure 1.5.: MPC’s principle

By measuring the real process throughout time development, and thanks to its closed-
loop optimization nature, MPC will adjust the control inputs online to obtain a better
performance. Thus, if during the charging process of the battery, the actual PV generation
differs from the original PV forecast, MPC will adapt to the new situation and will
compute and follow a new optimal trajectory.

MPC’s objective function can be a linear function or a non-linear function, and its for-
mulation can be as an economic cost function [28], as a set-point tracking function [27] or
as a function for driving the system to a particular state [40]. The optimization problem
is considered from any arbitrary initial time ki to a final time ki + Np. To predict the
future behavior of the system, MPC considers a model of the process and forecasts for
disturbances. Figure 1.5 illustrates MPC’s principle over time. Optimal trajectories for
the controllable input variables have to be found, which minimize a predefined objective
function within the considered time window. At the start of the time window, MPC gets
initial values of the state variables, together with a forecast for disturbances over the whole
prediction horizon. Then the optimization problem is solved. Once an optimal solution
(input trajectory) is available, MPC implements just the first element of the solution and
discards the rest. In the next time step, the time window moves one step forward, and
the process starts again with updated information on the measured variables and on the
forecast for disturbances [37, 38].

To summarize, the general steps for the implementation of MPC in discrete time are

11



1. Introduction

[37, 39]:

1. Measure or estimate the actual state of the system x(ki).

2. Predict and optimize the future outputs ŷ(ki + k | ki) for k = 1 . . . Np − 1, within
a finite moving horizon window of Np steps. The notation indicates the value of
ŷ at the instant ki + k calculated at point in time ki. These predicted outputs
are dependent on the known state values up to instant ki and on the computed
future optimal control trajectory û(ki + k | ki) for k = 0 . . . Np − 1. This optimal
control trajectory is found by solving an open-loop optimization problem, given a
determined objective function, starting at the state x(ki).

3. Implement the first optimal control action û∗(ki | ki) in the real process and disre-
gard the rest. This is because at the next sampling instant, the state x(ki + 1) will
be already known and, therefore, û(ki + 1 | ki + 1) will be in principle different from
û(ki + 1 | ki) because of this new information.

4. Move the moving horizon window one time step forward and repeat the procedure
with ki = ki + 1.

1.4.1. MPC formulation

To illustrate MPC’s basic formulation, this work adapts the introduction to the basic
principle of MPC presented in the work of Faulwasser et al [41] and the basic formulation
given in the work of Maciejowski (see [42] page 41). For this purpose, this work considers
a time-invariant discrete-time model of a system in the form

x (k + 1) = Ax (k) +Bu (k) + Ed (k) , x (0) = x0 ∈ X0, (1.1a)
y (k) = Cx (k) , (1.1b)

where x ∈ Rn is an n-dimensional state vector, u ∈ Rm is an m-dimensional input vector,
and d ∈ Rl is an l-dimensional disturbance vector. A ∈ Rn×n is the system matrix,
B ∈ Rn×m is the input matrix, E ∈ Rn×l is the disturbance matrix, x0 is an initial state
vector, and k ∈ Z is the discrete-time variable. The output vector is given by y ∈ Rp, and
the output matrix is given by C ∈ Rp×n. The compact sets U ⊂ Rm and X ⊂ Rn restrict
inputs and states respectively. An objective function given by

J =
ki+Np−1∑
k=ki

f (x (k) , u (k)), (1.2)

describes the performance requirements associated to system (1.1) with a continuous stage
cost function f : X × U → R.

12



1.4. Model predictive control

Normally, an MPC scheme implies solving the following optimization control problem in
a receding horizon fashion

minimize
û

ki+Np−1∑
k=ki

f (x̂ (k | ki) , û (k | ki)) (1.3a)

subject to
x̂ (k + 1 | ki) = Ax̂ (k | ki) +Bû (k | ki) + Ed̂ (k | ki) , (1.3b)

ŷ = Cx̂ (k | ki) , (1.3c)
x̂ (ki | ki) = x0, (1.3d)
û (k | ki) ∈ U , x̂ (k | ki) ∈ X , (1.3e)

∀k ∈ {ki, . . . , ki +Np − 1}. (1.3f)

The problem is to be solved at each time step, from any arbitrarily initial time step ki
until a final time step. The prediction horizon is given by Np ∈ N≥0. System behavior and
additional operation constraints are represented in (1.3b)-(1.3f). The embedded model
in MPC’s optimization problem predicts the future behavior of system (1.1) based on
measurements up to time ki, and, if required, on knowledge of the inputs only up to
u (ki − 1), as the solution for the optimal values of the next input vector u (ki) is not
yet available. û (ki + i | ki) indicates the future assumed value of the input u at time
k+ i computed at time ki. x̂ (ki + i | ki) denotes2 the prediction of state variables x made
at time ki, assuming the realization of some sequence of inputs û (ki + j | ki) and some
sequence of disturbances d̂ (ki + i | ki) for j = 0, 1, . . . , i − 1. This work assumes that
the equations in (1.1) determine real system’s behavior. Since MPC’s model uses the
same equations, the predictions will be consistent with the assumed linear model. When
forecasting errors in the disturbances are present, or parameters in the system matrix or
the input matrix are wrongly estimated, mismatches between MPC’s prediction and real
system occur.

Let û∗ (ki | ki) denote the first element of the optimal input solution for the optimal control
problem (1.3). Then, accordingly to MPC, just the first element of this optimal input
sequence is implemented with

u (ki) = û∗ (ki | ki) , (1.4)

and the next state of the closed-loop system is obtained as

x (ki + 1) = Ax (ki) +Bu (ki) + Ed (ki) , (1.5a)
y (ki) = Cx (ki) . (1.5b)

2For the sake of compact formulation, this work does not use this notation when postulating optimization
problems in the upcoming chapters. For optimization strategies that work under an MPC scheme,
the reader needs to keep the meaning of this notation in mind.
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For the next time step, i.e., ki = ki + 1, the initial state is updated as x0 = x (ki). If the
actual state x (ki) cannot be directly measured, it must be estimated using measurements
from y (ki).

The interested reader can refer to the book of Maciejowski [42] and the book of Cama-
cho and Bordons [37] for further background information on MPC. This work formulates
MPC’s optimization problems as mixed-integer linear programming problems (MILP) or
mixed-integer quadratic problems (MIQP). Appendix A gives a general theoretical back-
ground on mathematical optimization which is required to understand and follow concepts
and formulations presented in this dissertation. For more information on numerical op-
timization methods, the reader can also refer to the work of Boyd and Vandenberghe in
[36].

One advantage of MPC is that its implementation can take place at different layers of a
control hierarchy structure. It means that MPC can be present in the low-level controllers
of an automation system, and it can also reside in the supervisory and management level
[43]. This work considers MPC at the energy management level of a home automation
system (HAS), and it does not investigate low-level control loops. The MPC-controller
sends power set-points to the low-level controllers, and this work assumes that they can
track the given set-points. Figure 1.6 shows a schematic structure of MPC for a H-MG.
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Figure 1.6.: Basic principle of model predictive control for Home-microgrids (based on
[27, 44])
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1.4.2. Review on MPC and optimization approaches for
multienergy home-microgrids

This section provides a literature review on MPC for the operation of multienergy systems
at the end-user level, i.e., at buildings and microgrid (MG) levels. Subsequently, the
section presents the main contributions of this work.

According to Parisio et al. [24], three main aspects make MPC attractive for MG opera-
tion:

• as MPC is based on predictions and future behavior of the system, it is suitable
to coordinate systems, which greatly dependent on forecasts of demand and RES
generation;

• due to MPC’s inherent feedback mechanism, uncertainties can be handled with more
robustness; and

• MPC can handle MG operation constraints, such as storage capacity and distributed
generators (DG) limits.

For these reasons, MPC has drawn the attention of the power system community in recent
literature. Faulwasser and Engelmann [45] identified two main branches of research on
MPC for energy systems.

1. MPC for fast time scales (a few seconds): Voltage and frequency stabilization.

2. MPC for slow time scales (15 minutes to 1 hour): Energy management and generator
dispatch using price-based objectives.

This literature review focuses on the second research branch, specifically on MPC’s use
for the operation of multienergy microgrids and buildings. It does not aim at providing a
complete extensive review of the existing literature on this topic, but rather at presenting
a structure of the leading research topics in this area.

Parisio et al. in [24] propose a well-developed mixed-integer linear programming (MILP)
approach for modeling and optimizing the operation of a campus MG. They consider unit
commitment, economic dispatch, energy storage, sale and purchase of energy to/from the
main grid, and curtailment schedule for a MG composed by RES, CHP units, electricity
storage units, flexible and non-flexible loads. The authors conclude that the MPC-MILP
operation scheme is able to economically optimize the operation of the MG and save
money when compared to other existing operation approaches. MG’s thermal balance
constraints (i.e. thermal demand and heat storage) are disregarded in the formulation. If
thermal flexibilities are considered within the scheme, the results may vary.

In the work of Houwing et al. [28], the use of MPC for the demand response (DR) of
a micro combined heat and power system (µ-CHP) is presented. The authors formulate
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the optimization problem as a MILP, where thermal comfort satisfaction is defined as a
constraint for the optimization problem, given a thermal demand prediction. A different
way to consider thermal comfort satisfaction is to include a building’s thermal model in
the optimization problem and define upper and lower room temperature boundaries as
constraints, as proposed in the works of Chen, Oldewurtel, Ali, and Sossan [25, 26, 29, 46].
A load management strategy using MPC for PV with electrical heaters was investigated
by Zong et al. [27], in which the thermal comfort satisfaction issue was treated as a
temperature set point tracking problem using the l1-norm (see [36] for further information)
in the objective function to minimize absolute deviations of the actual room temperature
to the given set-point temperature. Another characteristic of the operation strategy
adopted in the cited references is that, the DR activity was defined as the minimization
of operation costs with an assumption that the utility offers a variable price signal.

An interesting example for the application of MPC including thermal flexibilities in a
residential setting is presented in the work of Sossan et al. [47]. The authors apply
MPC to shift the electricity consumption of a freezer for demand response purposes.
Simulation results are supported by lab experiments showing the ability of MPC to exploit
the freezer as flexible electrical load. Further thermal flexibilities can be utilized if building
space heating is considered within the MPC structure. As example, Oldewurtel et al. in
[25] present a stochastic MPC tractable formulation for the building application domain,
taking into account uncertainty in weather predictions. Even though energy flexibility
related topics - e.g., demand response or self-consumption with RES generation - are not
directly addressed in the paper, it provides a general basis for including space heating
into the MPC formulation. In the work of Costanzo et al. [48], the authors present a
case study where the thermal inertia of the building is considered for the operation of a
building climate control system for demand response applications. Here, MPC is used as
reference to evaluate data-driven control approaches.

A different application for (DR) with thermal energy storage and direct electric space
heating appliance is illustrated in the work of Ali et al. [46]. The authors present a
linear programming (LP) formulation to shift power demand from peak price periods to
the cheapest hours without sacrificing user comfort. The simulation results show that the
thermal energy storage together with thermal inertia of the house can offer much flexibility
in DR control. Because the authors considered the system for an open loop optimization,
assuming perfect knowledge of prices and weather for the scheduling horizon, the impact
of uncertainties is not addressed in that work.

MPC is also used for an appliance scheduling case under dynamic electricity prices in the
work of Chen et al. [26]. The thermal mass of the building is integrated into the opti-
mization problem and user’s comfort range is modeled by the predicted mean vote index.
Impact of uncertainties coming from user’s comfort range and electricity price forecast
are also assessed. Due to the fact that the work focuses on flexible loads, distributed
generators (PV or CHP) are not examined in the scheme.

16



1.4. Model predictive control

When DGs are integrated in the optimization, the complexity of the problem increases.
A real lab demonstration of MPC implementation for active load management of heater’s
power consumption together with PV and wind generation is reported in the work of Zong
et al. [27]. Here, the authors uses the potential of residential optimization to support the
penetration of RES and improve the use of the existing distribution grid infrastructure.
Weather forecast and prediction of dynamic electricity price are integrated. The lab
results demonstrate that MPC strategy with weather and price predictions improves the
matching of demand and supply. Robustness of MPC against uncertainty in measurements
and prediction is left as future work.

Houwing et al. in [28] investigates the extent to which demand response with time-varying
tariffs and mini fuel cell CHP leads to reduced energy costs for households when compared
to standard heat-led control. An MPC strategy is proposed for enabling demand response
of the mini CHP systems. The authors show that demand response with mini CHP
lowers variable costs for households. However, trade-off between economic performance
and uncertainties is neither quantified nor discussed.

In [29], Sossan et al. evaluate the added value for a consumer to have the capability to
choose the most convenient source for providing space heating to a building according to
a dynamic electricity price. This energy replacement is achieved using MPC as operation
strategy using dynamic models of the considered elements. The authors propose a new
model for a fuel-cell CHP obtained using a system identification grey-box approach based
on experimental measurements. The simulation results show that the predictive energy
replacement strategy reduces the operation costs of the system and is able to provide a
larger amount of regulating power to the grid. The flexibility of such a MG setting can
be enhanced if a second generator (e.g. PV) and a second storage system (e.g. battery)
are incorporated.

This is the case presented in the work of Kriett and Salani [30]. Here, a generic MILP
model within an MPC scheme is proposed, which minimizes the operating costs of a resi-
dential MG. The proposed strategy aims at finding the minimum cost operating schedule
of both electrical and thermal supply and demand in a residential MG. The residential
setting covers photovoltaic plants, CHP, thermal storage, battery, controllable loads and
non-controllable loads. The authors quantify cost reduction that result from minimum
cost control by comparison with other benchmark models on the basis of a case study,
revealing the performance of the minimum cost control strategy. They discuss the uti-
lization levels of selected units to provide further insight into the effects of minimum
cost control on residential MG operation. The authors also confirm the optimality of
the presented results as well as its robustness to changes in estimated costs parameters.
Nonetheless, robustness to errors in forecasts and model mismatches are not attended.
Furthermore, the presented case study does not involve DGs with different FIT.

Next, in the work of Zhang et al. [31] a MILP problem is formulated for the optimal
operation of a grid-connected residential MG composed by RES (wind and solar), a CHP,
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energy storage units (battery and water tank), electrical vehicle, and flexible loads. The
MILP problem is integrated into an MPC framework to reduce negative impacts of forecast
errors. A case study which considers forecast uncertainties is implemented for evaluating
the performance of the proposed method. Moreover, a further sensitivity analysis is
realized in order to discuss the impacts of energy storage units on the MG operation.
The authors take into account forecast uncertainties coming from RES generation, load
demand and electricity price. Issues such as impacts of uncertainties coming from storage
model mismatches, DGs with different FIT, and the self-consumption problematic are not
included in the investigation.

Gupta et al. [49] consider a single building with the objective of introducing an algorithm
that increases the thermal comfort of building users while simultaneously reducing energy
costs through load management. The algorithm takes into account the requirements
of each user regarding room temperature together with the thermal interactions of the
different building areas. Hence, an optimal temperature set-point is to be found for
all building areas. In large buildings, however, users may have different perceptions of
comfort. It is therefore not trivial to determine a temperature set-point that is acceptable
for every user. Thus, a method for joint temperature control in rooms with many users
is presented. Among other things, this method uses price feedback to reach a consensus
between users (increase comfort, reduce energy costs) and the building operator (thermal
management system). Each user is represented as an agent in the simulation, transmitting
feedback signals to the building operator via sensors or smartphone apps. The algorithm
achieves a temperature set-point that minimizes the sum of the community discomfort
of the users and thereby lowers the overall energy costs of the building. This target
value is then used by a control structure with proportional feedback and an adaptive
control component to bring the building to the desired temperature level. The developed
solution works only with agents without MPC. The solution assumes that users think
energy-efficiently.

In the work of Chen et al. [50] a single building is also examined, but this time an
MPC strategy is used as the control method. Building users are modeled as agents and
thermal sensitivity is considered in detail. They use a data-driven dynamic heat sensitivity
model. The goal is to minimize energy consumption while maintaining thermal comfort.
The presented MPC algorithm is designed to determine the probability of a violation of
thermal comfort limits. Under this consideration a balance between energy saving and
thermal comfort shall be achieved. It is assumed that a feedback channel exists through
which users can transmit their personal perception to the control system. To calibrate the
model, user data is continuously recorded. This includes the perception of the different
users with regard to actual thermal situation. The simulation results show that the MPC
algorithm, which is based on user feedback, provides better results for thermal comfort and
energy consumption than one based on the theoretically determined thermal comfort.

The assessment of several buildings in a network is the focus in the work of Mai et al.
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[51]. Here the important agents are the building itself, a building aggregator and the
energy supplier. This is a centralized MPC concept. The building aggregator developed
in the paper coordinates the heating, ventilation and air conditioning (HVAC) loads of
commercial buildings and sends the resulting power flexibility to the energy supplier. This
allows flexible and fast responding power reserves to be made available, which in turn
enables the energy supplier to control the power over a wide area within the grid. For this
purpose, a contractual framework is created between commercial buildings, the aggregator
and the supplier, which can maximize and reward the reserves of power flexibility provided
by commercial buildings. The authors formulate a robust, centralized MPC algorithm
that can both maximize aggregator’s profit and minimize the payments of a participating
building. Furthermore, the comfort limits of the building are not violated while the
systems are available to the network as a fast control reserve. Another contribution is the
presentation of a suitable, detailed building model. Although the simulation results are
system-specific, they also reveal the need for further investigation. Since the building users
are not considered in detail, significant knowledge about behaviour of building users in
commercial buildings and the effects on the building temperature when providing system
services must be obtained.

Larsen et al. in [52] developed a distributed MPC concept for the coordination of several
households with controllable loads (washing machines) within a local network area. The
idea is to solve the optimization problem in a distributed way by dividing the problem
into several subproblems so that the calculations take place at each household level. Each
household is treated as an agent and thus a reduction on computation effort is achieved.
Within the network, the decisions for switching on the washing machine are made and
the exchange of information regarding a specific topology is coordinated. By exchanging
price information with a few neighbors within an information network and taking into
account their own local information, each household makes its own decision on when to
purchase energy. By exchanging information with neighbors, it is also possible to match
and coordinate the switch-on times of the washing machines with the overall demand
within the network, thus reducing the overall peak load in the network. The scalability
of the algorithm remains the biggest challenge in this approach.

In another paper [34], Larsen et al. further develop the distributed MPC concept. The
main focus of the work is on the integration of mini CHP plants into the supply network.
In order to avoid a central structure, an information network is presented where each
agent (household) has only local information about the system for decision making. A
fully distributed MPC algorithm is used in combination with the presented information
network. At the beginning, the topology of the information network is defined so that
the prosumers can exchange the energy price information with their neighbors within
the selected information network topology. The agents of the information network are a
subset of the agents of the supply network. The aim is to minimize the difference between
generation and consumption within the information network by locally determining the
on/off status of the mini CHP plant. Thus, the local energy production and demand
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should be coordinated in order to avoid transport losses. One question that remains
unanswered is the organisation of the information network model. One possibility is for
the DSO to take over this task. Another possibility would be to introduce the role of the
aggregator. It could then manage the flexibility of the various information networks.

Worthmann et al. consider in [35] a network of residential energy systems, each of them
consisting of PV, battery storage, and non-flexible loads. They present three MPC-based
approaches to flatten the network’s aggregate power usage: centralized, decentralized, and
distributed. The proposed distributed control methodology is a hierarchical-distributed
control approach as it requires a central coordination unit. It does not rely on any know
decomposition method for optimization problems (see [53]). The results show that the
centralized MPC-based approach gives the best performance but suffers from scalability
problems. The decentralized MPC-based approach does not present scalability issues. Ho-
wever, this approach does not lead to network-wide optimum. The hierarchical-distributed
MPC scheme shows a compromise between these two extremes, as limited information ex-
change occurs between subsystems, and the optimization problem remains local.

A cooperative distributed MPC for wind farms is the focus of the work of Spudić et
al. [54]. They present a fully distributed MPC approach, where each wind turbine
computes its optimal input by taking into account local information and communicating
to neighboring turbines only. In terms of the required number of iterations, they compare
the performance of the distributed MPC using two distributed optimization techniques:
dual decomposition and the alternating direction method of multipliers (ADMM). The
authors conclude that ADMM outperforms dual decomposition significantly. Compared
to a centralized MPC approach, ADMM achieves a good performance after ten iterations
for the studied case. After 100 iterations, ADMM’s performance is virtually the same
as with the centralized MPC. The paper indicates that the scalability of the distributed
MPC needs further investigation.

The recent paper of Parisio et al. [55] focuses on designing an energy management system
for urban districts consisting of multiple multienergy microgrids. They present an MPC-
based cooperative energy management system that optimizes, via aggregators, energy
users’ flexibility. The proposed energy management framework requires solving a certain
number of MILP problems. The authors argue that commonly used distributed optimiza-
tion methods, e.g., fast gradient techniques, dual decomposition, ADMM, do not apply to
MILP problems. Therefore, the authors propose a kind of heuristic-based algorithm for
the coordination task. As an outlook, the authors indicate that the approach’s scalability
needs to be improved and that stochastic approaches are needed to address uncertainties
more effectively.

Moret and Pinson introduce the concept of energy collectives in [14]. They present a dis-
tributed structure, where all end-users communicate with a central node that coordinates
the energy exchange process. The authors present the corresponding convex optimization
problem and its decomposition using ADMM and give simulation results for an energy
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collective of 15 participants. Here, the authors do not consider binary variables formula-
tion, and they see scalability and robustness towards more extensive and more realistic
test cases as future challenges.

A hierarchical distributed MPC with ADMM for large-scale energy systems is the topic
in the work of Braun et al. [56]. The authors propose a variant of the ADMM algorithm.
A central entity needs to solve an optimization problem that does not require detailed
information about the subsystems and is independent of the number of subsystems. Each
subsystem solves an optimization problem that depends on a single quantity broadcast
from the central entity and local information. They implement the approach for a network
of RES. With the help of simulation results, the authors demonstrate how the use of the
algorithm optimizes the network’s operation. The authors do not consider binary variables
in their formulation, and the case study does not include multienergy systems. As an
outlook, the authors say that the generalization of the approach to consider nonlinear
and nonconvex systems remains an open issue.

Hans et al. [33] also deal with a hierarchical distributed economic MPC implementation
using ADMM. They investigate how to increase the renewable infeed from MGs by using
a transmission network for allowing the exchange of energy between MGs. For this pur-
pose, they propose a hierarchical distributed scheme that allows optimizing the operation
of multiple interconnected MGs. The optimization model considers loads, thermal gene-
rators, wind generation, PV generation, battery systems, and a linearized DC power flow
model for the transmission network. The economic objective function includes generators’
costs and electricity prices. The authors consider binary variables in the formulation, and
in the end, they use ADMM to decompose a MIQP. To deal with the binary variables,
they use a relaxation step and a mixed integer update step in the hierarchical distributed
MPC algorithm. Extending the approach for more complex MGs (e.g., multienergy MGs)
and investigating the mixed-integer update feasibility are seen as the next steps.

Finally, Stoyanova et al. [57] investigate three MPC strategies for cooperative energy
management of household electro-thermal devices, namely a hierarchical distributed MPC,
a distributed MPC, and a combined method. The authors conclude that the combined
method achieves better integration of RES.

In summary, this literature review allows to identify two main MPC research trends for
multienergy microgrids:

1. MPC for the operation of single buildings or microgrids. Here, the cited authors
indicate that future research paths are the development of more detailed building
thermal models, more detailed appliance models, and more detailed models for user-
behavior and the development of robust and stochastic MPC strategies for handling
uncertainties.

2. MPC for the operation of interconnected buildings/microgrids. Here, the research
outlook is the design of fully distributed or hierarchical distributed coordination
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strategies, where scalability towards large-scale systems and robustness against un-
certainties play a significant role.

The dissertation at hand focuses on the use of MPC for the optimal operation of single
multienergy H-MGs, and on the use of MPC for the hierarchical-distributed coordination
a group of interconnected multienergy H-MGs. It considers the energy balance at both
building level and neighborhood level. This work differs from the presented literature by
investigating the formulation of optimization problems for local balancing when hetero-
geneous distributed energy resources - e.g., heat pumps, CHP, battery, TES, and PV -
at the end-user level are involved. It also differs from the previous research by designing
a suitable hierarchical-distributed strategy to coordinate the operation of such hetero-
geneous flexible resources using the ADMM sharing problem with binary variables. In
addition, this work provides a framework to co-simulate electrical distribution networks
with H-MGs.

1.5. Research questions and contributions

As previously stated, this work follows a bottom-up approach that pursues the impro-
vement of local balancing in low voltage networks by using flexibilities from H-MGs (end-
user). Accordingly, this work aims at answering the following research questions:

1. What is a suitable approach for the optimal management of power flows
within an H-MG? The use of flexibilities from H-MGs implies an optimal operation
inside the H-MG. An end-user will only agree to provide flexibility for improving balancing
with its neighbors, just if it does not affect its comfort and costs. Therefore, an approach to
operate H-MGs optimally must consider end-user restrictions and objectives, and find the
best solution accordingly. Finding the best solution requires not only looking into actual
information but also taking future information into account. Doing this allows considering
uncertainties from weather-dependent power generation and human-behavior-dependent
power consumption.

2. How to model and describe flexibilities at the end-user side in a systematic
way, and how to formulate optimization criteria for each H-MG? It is necessary
to correctly represent the energy conversion and energy storage process inside the H-MG
as well as the involved interactions between components. Such a modeling demands a
certain level of detail to fully characterize the flexibility of a unit, but it also needs a
certain level of abstraction as these models are intended to run in an energy management
system. Moreover, it is also essential to carefully decide which dynamics to consider
and how to treat end-user comfort. End-user comfort can be a hard constraint, or it
can be a soft constraint with a high penalty. Finally, the formulation of an operation
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target for minimization or maximization is fundamental to evaluate the optimality of the
operation.

3. How to coordinate a group of interconnected heterogeneous H-MGs? An
optimal local balancing between H-MGs requires a coordination strategy, which takes
into account local consumption and local generation of each H-MG and the state of their
respective internal components. If an H-MG has an electrical power surplus at a given
point of time, its local management system can decide to store this surplus for later usage
within the H-MG. It can also decide to supply a neighboring H-MG, which has high
electrical demand at that time. For this purpose, a handful of coordination strategies are
viable. One option is to let each local H-MG controller decide, based on its operation goal,
what to do without any knowledge on power consumption/injection of its neighboring H-
MGs expecting a natural simultaneity between total generation and total consumption of
the group of H-MGs. Another option is to collect and manage all information centrally
and to have just one global controller that decides on the power flows of all H-MGs.
This implies that this global controller has the knowledge on the status on every single
component and it has the right to manipulate every internal component of a H-MG
as desired. A different option is to have a central controller that does not possess the
information from every single component but rather aggregated information per H-MG.
This central controller sends coordination signals to incentive local H-MG controllers to
adapt their resulting power profile to improve local balancing between H-MGs.

4. How to design a scalable coordination strategy for interconnected H-MGs,
which accounts for limitations on information exchange in large scale energy
systems? When coordinating a large number of interconnected H-MGs, scalability
is crucial. A suitable coordination strategy must restrict information exchange, while
ensuring an optimal (or close to optimal) operation. The strategy must also consider
data privacy issues and it needs to be consonant with the structure of the local H-MG
controllers.

5. How to integrate the developed models for H-MGs and the proposed ope-
ration strategies with a power grid model in a simulation environment? The
simulation of the behavior of a complex system composed by interconnected heterogene-
ous H-MGs, local controllers, central controller, and electrical and information networks
is not straightforward. The simulation environment must support a bottom-up process
in order to be consistent with the modeling approach, and it has to support a modular
development.

1.5.1. Statement of contributions

The purpose of this work is to present an optimal and scalable operation strategy for
H-MGs. The proposed strategy can coordinate the operation of a single H-MG or the
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operation of a group of interconnected H-MGs. This work investigates the formulation of
optimization problems for MPC when heterogeneous distributed energy resources at the
end-user level are involved. Also, it proposes a suitable hierarchical-distributed strategy
to coordinate the operation of such multienergy H-MGs. Furthermore, the work presents
a framework to simulate large-scale systems consisting of H-MGs together with electrical
networks. More specifically, the main contributions of this work include:

1) an optimization problem for the optimal operation of a photovoltaic-heat pump H-MG
considering heat pump operational characteristics, thermal dynamics of the building
and a thermal energy storage unit (see [58]),

2) an optimization problem for the economic operation of a photovoltaic-combined heat
and power H-MG considering a thermal model for the dynamic behavior of the mini
CHP and the evaluation of the impact of battery size and TES size on the economic
operation (see [59, 60]),

3) a problem formulation for the MPC based centralized coordination of interconnected
H-MGs taking into account costs minimization and peak power reduction (see [61]),

4) the design and implementation of a hierarchical-distributed MPC strategy for distri-
buted coordination of interconnected H-MGs using the alternating direction method
of multipliers sharing problem with binary variables, and

5) a co-simulation framework to assess the impact of operation strategies of H-MGs on
electrical distribution networks (see [62]).

The referenced peer-review publications support these claimed contributions.

1.6. Structure of this work

The remaining part of this work starts with the analysis of a single-family H-MG in
Chapter 2. For single-family houses, the combination of roof-top PV plants and heat
pumps with TES is already economically attractive. The flexibility from the coupling
of the electricity sector and the heat sector, together with the storage capability of the
building envelope and the TES, make these kinds of systems interesting for local balan-
cing. The chapter, therefore, investigates an MPC-based optimal operation of a PV-heat
pump H-MG. It presents the corresponding optimization problem and gives conclusive
simulation results regarding the most appropriate objective function formulation. Subse-
quently, Chapter 3 focuses on a multi-family H-MG. Such buildings can have a gas-based
cogeneration plant for electricity and heat supply, and a roof-top PV plant for increasing
self-sufficiency. For the same purpose, a heat storage unit (TES) and a battery storage
unit can complement the residential setting. The chapter proposes and simulates an eco-
nomic MPC for the operation of these systems, which handles the inherent uncertainties.
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As the capacity of storage units is a determining factor for the degree of flexibility of
an H-MG, the dimensioning of these units, with economic feasibility as the main driver,
requires special care. In this context, the concept of MPC is also useful not just in the
operation phase but also in the dimensioning phase, where simulations that include uncer-
tainties deliver additional insights regarding the optimal size. The chapter also evaluates
the impact of storage capacity on the total costs of the H-MG.

The work continues looking at the coordination of interconnected H-MGs. The goal here
is to design and evaluate coordination strategies for improving local balancing between H-
MGs, while also having regard to their local economic operation. Accordingly, the assess-
ment of three different MPC architectures - centralized, decentralized, and hierarchical-
distributed - for the coordination of a group of interconnected H-MGs is the topic of
Chapter 4. Distributed optimization techniques are intrinsic to MPC-based hierarchical-
distributed strategies. In this respect, the alternating direction method of multipliers is
a promising approach, which is the topic of Chapter 5. The chapter aims to present,
evaluate, and discuss a novel hierarchical-distributed coordination strategy for intercon-
nected H-MGs based on the ADMM sharing problem. The co-simulation of complex
energy systems is the subject of Chapter 6. It describes a simulation framework to co-
simulate H-MGs and coordination strategies, together with power distribution networks.
The chapter presents an overview on the simulators that form the framework, their main
tasks, and how they communicate with each other. The simulation of a generic low voltage
network with H-MGs serves as example to show the functionality of the framework. Fi-
nally, Chapter 7 recapitulates the dissertation’s content, gives concluding remarks, and
suggests further research paths.
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2. Flexible power operation of a
photovoltaic-heat pump home-microgrid

This chapter investigates model predictive control problem formulations for the flex-
ible operation of a photovoltaic-heat pump home-microgrid. Two flexible operation
strategies using model predictive control are proposed and thoroughly evaluated. The
simulation results indicate that the problem formulation always poses a trade-off be-
tween the comfort of the inhabitants, peak power reduction at the point of common
coupling, and computation time for the optimizer. For the presented case in this
chapter, a quadratic objective function shows the most promising results.

The content of this chapter is adapted from [58]: D. I. Hidalgo Rodríguez, J. Hinker,
and J. M. Myrzik, “On the problem formulation of model predictive control for demand
response of a power-to-heat home microgrid,” in 19th Power Systems Computation
Conference. Genoa, Italy, 2016.

2.1. Introduction

This chapter investigates a H-MG which combines a HP, a TES and a PV plant. It
represents a single family house (SFH). The objective is to minimize extreme power peaks
(in generation and consumption) at the point of common coupling (PCC) between the
H-MG and the distribution grid. This type of flexible operation could be promoted by the
distribution system operator (DSO), by requiring limitations on PV feed-in at the PCC.
In doing so, the DSO avoids reverse power flows from the low voltage to the medium
voltage grid as well as large consumption peaks, which are normally not desired in the grid
operation. For an energy retailer this kind of flexible operation could also be interesting if
electricity tariff based on demand rates on peak power consumption is desired. To achieve
this flexible operation, this chapter proposes to minimize the instantaneous difference
between PV generation and house electricity consumption (household load and heat pump
consumption). For thermal comfort satisfaction, it follows the idea of temperature set-
point tracking problem as discussed in [27], but the chapter investigates an alternative
problem formulation, namely the use of the l2-norm in the objective function for flexible
operation and thermal comfort satisfaction. Even though the l2-norm in the objective
function is usual for control purposes, this investigation pays special attention to its
residuals and resulting implications for local balancing. The chapter presents a benchmark
of the l2-Norm - against the l1-Norm and against a classical heat-led operation - with
respect to the resulting peak power at the PCC, resulting mean absolute thermal comfort
error and resulting mean CPU time.
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To sum up, the purpose of this chapter is two-fold. First, the aim is to formulate three
operation strategies for flexible operation of residential PV-heat pump systems. Second,
using numerical simulation, these three formulations are compared in terms of peak po-
wer reduction, thermal comfort and CPU time. The contribution of this chapter will
specifically be on:

1. focusing on residential PV-Heat pump systems and formulating the optimization
problem for such systems considering heat pump operational characteristics, thermal
dynamics of the house and a thermal energy storage unit, and

2. providing conclusive results on the best problem formulation for these specific sys-
tems by comparing three operating strategies using MPC for this kind of systems.

The chapter is organized as follows: First, the model description for the PV-HP-TES
system and the formulation of the optimization problem for MPC are presented. Then,
three operational strategies are developed and formulated as objective functions. Evalu-
ation criteria and simulation setup are presented next. In the end, numerical results are
illustrated and discussed.

2.2. Problem formulation

In this section dynamics and constraints for the MPC are formulated, followed by the
description of the objective functions for each operation strategy. Finally, indicators for
evaluation and simulation setup are defined. One advantage of MPC is that the concept
can be implemented at different layers of an automation system i.e. MPC can be used at
the low controller level or at the supervisory level [43]. In this chapter, MPC is considered
at the supervisory level of the home energy management. Low level control loops are not
investigated. MPC determines optimal power set-points and sends them to the low level
controllers. It is assumed that these controllers are able to track the given set-points.
Figure 2.1 shows an MPC schematic structure for a photovoltaic-heat pump H-MG.

The MPC strategy is applied to dynamic models of a single family house (SFH) and a
TES. Measurement data for PV, load and weather from a field test in Germany serve
as input data. The goal of MPC is to find a future trajectory for the TES and the
HP, over a finite prediction horizon, to minimize the instantaneous difference between PV
generation and electrical consumption (household loads plus HP). This is done by shifting
the operation times of the heating appliance using the flexibility provided by the TES
and the storage capacity of the house.

In the upcoming subsections, models used in the optimization problem to represent the
main thermal characteristics of the considered system are presented. For the formulations
below the relative time within the prediction horizon is indicated with k ∈ {ki, ..., ki +
Np − 1}, where ki denotes the initial time step for the optimization.
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Figure 2.1.: Information flows and structure of the whole setup including H-MG
components and MPC controller (with LC# as local controllers, and M# as

measurement devices).

2.2.1. Heat pump model

In [63], the economic addressable market for HPs and µ-CHP in Germany is estimated,
concluding that for SFH, heat pumps are more cost efficient.

The heating system is assumed to be monovalent, consisting of just the HP as heating
source without auxiliary boiler. The HP is directly connected to the TES, which feeds
the residential heating circuit.

Figure 2.2 shows a schematic representation of the considered system.
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Figure 2.2.: Overview of the system components in the H-MG setting
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The relationship between the generated thermal power and consumed electrical power in
a HP is given by the coefficient of performance (COP) as

pHp
th (k) = pHp

el (k) · COP, (2.1)

where pHp
th (k) denotes the generated thermal power, and pHp

el (k) is the consumed electrical
power.

In this work a brine/water HP is considered. Brine/water HPs use heat from the ground as
source, at a relative constant temperature over the year [64]. Therefore, a constant COP
for the entire year is assumed, neglecting variations due to weather conditions. The HP
is driven by a frequency inverter, which implies that it can be modulated. The operation
range of the HP is given by

bHp (k) · pHp,min
el ≤ pHp

el (k) ≤ bHp (k) · pHp,max
el , (2.2)

bHp (k) ∈ {0, 1}, (2.3)

here, the binary variable bHp (k) is used to indicate the ON/OFF status of the HP. The
inequality restricts the operation of the HP to its maximum allowable power pHp,max

el and
minimum allowable power pHp,min

el .

2.2.2. House thermal model

There exist detailed building models for MPC applications in the literature (see for exam-
ple the work of Oldewurtel [25] and Appendix B). As the focus of this chapter is on the
formulation of the objective function, the thermal behavior of the house is represented by
a simple model as proposed in [65] which has already been used for demand side mana-
gement with heating systems in [66–68]. The storage capacity of the house is dominated
by the air in the room and a large heat-accumulating medium, composed mainly by the
walls and the floor. The thermal behavior is given by

 Tm (k + 1)
T room (k + 1)

 = A ·

 Tm (k)
T room (k)

+B ·


TAmb (k)
pSh
th (k)

ΦSolar (k)

 , (2.4)

where the states of the system are Tm, the temperature of the large heat-accumulating
medium in the house, and T room, the house air temperature. Model inputs are outside
ambient temperature TAmb, solar radiation ΦSolar and the space heating power pSh

th . As
mentioned before, this work uses the discrete-time version of MPC, hence the discrete-time
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matrices A and B in (2.4) are obtained by discretizing the continuous-time matrices

Acont =
− 1

ri·cm

1
ri·cm

1
ri·ci

−
(

1
ri·ci

+ 1
ra·ci

)
 , (2.5)

Bcont =
 0 0 Aw·pl

cm

1
ra

1
ci

Aw(1−pl)
ci

 , (2.6)

with MPC’s sample time. These matrices are composed of building physical parameters,
such as the heat capacity of the large heat-accumulating medium cm, heat capacity of
the room air ci, the resistance against heat transfer from the house air to ambient air
ra, and ri as the resistance against heat transfer between the house air and the large
heat-accumulating medium. Besides, other parameters like the window area facing south
Aw, and the share of the solar radiation which is directly affecting Tm (as pl) are also
considered.

2.2.3. Thermal energy storage model

As shown in Figure 2.2 besides building’s thermal storage capabilities for space heating,
the H-MG has an an extra TES. A simple TES model for MPC strategies is given in
[28, 69]. Based on these references, the evolution of the energy state of charge over the
time is determined with

SoCTes (k + 1) = ηTes,sd · SoCTes (k) +
(
pTes,char
th (k)− pTes,dis

th (k)
)
·KTes, (2.7)

where SoCTes (k) is the TES’ state of charge relative to its capacity in percentage points
(0% is empty, and 100% is full). KTes = ∆t/(60 · CapTes)× 100. ∆t is the MPC sample
time and CapTes is the total energy capacity of the TES. ηTes,sd is the self-discharge
coefficient.

pTes,char
th (k) and pTes,dis

th (k) denote the thermal charging and discharging power respectively.
They are given by:

pTes,char
th (k) = PHp

th (k) · ηTes,char, (2.8)

pTes,dis
th (k) = pSh

th (k) + pDhw
th (k)

ηTes,dis , (2.9)

with ηTes,char and ηTes,dis denoting charging and discharging efficiency respectively. pDhw
th (k)

is the domestic hot water consumption. For TES, it is possible to charge and discharge
thermal power simultaneously. The state of charge is also bounded to its allowable limits
with

SoCTes,min ≤ SoC (k)Tes ≤ SoCTes,max. (2.10)

31



2. Flexible power operation of a photovoltaic-heat pump home-microgrid

With equations (2.1) to (2.10) all dynamics and constraints for the MPC are defined.
The next subsection describes the objective functions that define the different operation
modes.

2.2.4. Objective functions

Three operation strategies are contrasted. The first strategy is heat-led operation strategy
which serves as reference. The second strategy seeks a flexible operation of the H-MG by
using the l1-norm in the objective function. The third and last strategy aims as well at
a flexible operation of the H-MG but uses the l2-norm in the objective function.

2.2.4.1. Heat-led operation

In this operation strategy the only objective is to satisfy thermal comfort. The HP and
the TES are operated in a way that the given temperature set-point is satisfied. For this
purpose the objective function is

J1
(
T Room,pHp

el

)
= β

( ki+Np−1∑
k=ki

|T Setpoint (k)− TRoom (k)|
)
, (2.11)

and this work uses the relaxation presented in the work of Boyd [36] to treat the l1-norm
problem as a linear programming problem.

2.2.4.2. Flexible power operation DR-l1

In this operation strategy there are two objectives: the minimization of deviations of the
room temperature to the desired set point temperature and the minimization of peak
power flows at PCC. As positive and negative deviations have to be minimized, the
absolute value of the difference is formulated in the objective function using the l1-norm
as

J2
(
T Room,pHp

el

)
= α

( ki+Np−1∑
k=ki

|pPv,ac
el (k)− pLoad

el (k)− pHp
el (k)|

)

+β
( ki+Np−1∑

k=ki

|T Setpoint (k)− TRoom (k)|
)
.

(2.12)

2.2.4.3. Flexible power operation DR-l2

Similar to the previous operation strategy, deviations in thermal comfort and peaks at
PCC have to be minimized. Here, not the absolute difference is considered but instead the
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square of the difference is used. This is done using the squared l2-norm in the objective
function with

J3
(
T Room,pHp

el

)
= α

( ki+Np−1∑
k=ki

(
pPv,ac
el (k)− pLoad

el (k)− pHp
el (k)

)2)

+β
( ki+Np−1∑

k=ki

(
T Setpoint (k)− TRoom (k)

)2)
.

(2.13)

Table 2.1 summarizes all three considered objective functions.

Table 2.1.: Three operation strategies
Operation strategy Motivation
heat-led (see (2.11)) Thermal comfort is the only

objective so the heating system
will act accordingly. As there
is no trade-off, this is the refe-
rence scenario.

DR-l1 (see (2.12)) Thermal comfort and the net
energy flow at the PCC are
evaluated in an integrated, li-
near l1-norm metric. The
weights of the two components
can be defined at will.
(default weights: α = 0.5, β =
0.5)

DR-l2 (see (2.13)) Like DR-l1, but with a squa-
red l2-norm metric.
(default weights: α = 0.5, β =
0.5)

To summarize, MPC problem’s formulation for these operation strategies, i.e., n ∈ {1, 2, 3},
is

minimize
ûa

Jn
(
T Room,pHp

el

)
(2.14a)

subject to
T Room,T Tm ∈ PHouse, (2.14b)
pHp
el ,p

Hp
th , b

Hp ∈ PHp, (2.14c)
pTes,char
th ,pTes,dis

th ∈ PTes, (2.14d)
∀k ∈ {ki, . . . , ki +Np − 1}. (2.14e)

Where the set PHouse is given by (2.4), PHp is defined by (2.1)-(2.3), and PTes is given
by (2.7)-(2.10). The vectors T Room, T Tm, pHp

el , p
Hp
th , bHp, pTes,char

th , and pTes,dis
th ∈ RNp, and
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2. Flexible power operation of a photovoltaic-heat pump home-microgrid

the decision variables vector is ûa =
[
pHpᵀ
el , bHpᵀ

]ᵀ
.

2.2.5. Evaluation criteria and scenario

To evaluate the performance of the three operation strategies, these are compared with
regard to customer comfort, power peak reduction as well as computational effort. The
evaluation is based on a 30 day long simulation with a time resolution of 10 Minutes
(∆T =10 min) from an initial simulation time kini to a final simulation time N . The
objective is to guarantee thermal comfort to the inhabitants as well as to operate in a
flexible way.

As a first approach, a 1◦C difference in temperature is assumed to be equally important
as a 1kW difference at the PCC. Thus, to perform a fair comparison of all simulations,
the setting of the weighting factors is α = 0.5 and β = 0.5. Although the optimal value
of these parameters is a whole optimization problem in itself and therefore falls out of the
scope of this work, these values will be briefly discussed as follows:

For the sensitivity of people to a change in the temperature, the international standard
ISO 7730 [70] can be utilized to evaluate the corresponding neutral temperature levels that
go along with a minimum of dissatisfaction. Typical household conditions and building
category Class A gives a desirable, comfortable temperature of 21.0◦C and an appropriate
allowed temperature variation of roughly 1.0K. The linear combination of temperature
and power, through the coefficients α and β in the objective function, directly depends
on the magnitude of the power and temperature values.

The assessment of simulation results uses the following performance indicators as a basis.
The results section will refer to them when evaluating the strategies.

2.2.5.1. Local PV usage

To quantify the local usage of PV two indicators are defined: a self-consumption quota
and a self-sufficiency quota. First the amount of PV power, which is instantaneously and
directly used by the local loads at each time step is calculated using:

pPv,used
el (k) = min{pPv,ac

el (k) , pHp
el (k) + pLoad

el (k)} (2.15)

The self-consumption quota qsc is calculated as the ratio of total PV used to total PV
generated for the whole simulation period as expressed below:

qsc =
∑N
k=kini

pPv,used
el (k)∑N

k=kini
pPv,ac
el (k)

(2.16)
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2.2. Problem formulation

The self-sufficiency quota qss is calculated as the ratio of total PV used to total electrical
consumption for the whole simulation period as expressed below:

qss =
∑N
k=kini

pPv,used
el (k)∑N

k=kini
pHp
el (k) + pLoad

el (k)
(2.17)

2.2.5.2. Mean thermal comfort

The temperature mean absolute error (MAE) serves as key performance indicator for
customer comfort. The mean error is given by:

MAE = 1
N

N∑
k=kini

|T Setpoint (k)− TRoom (k)| (2.18)

within the simulated time, all time steps are treated equally so that the absolute error is
evaluated by giving the mean for the absolute temperature error between set point and
actual room temperature.

2.2.5.3. Further indicators

Since every time step is of different computational effort, the mean of the CPU time for
each optimization has to be evaluated as well. For the evaluation of the flexible operation
strategies DR-l1 and DR-l2, the maximum value and the minimum value of all observations
of the electrical power at PCC are compared.

2.2.6. Simulation setup for a single family house H-MG

Building physical characteristics are taken from [71], for a SFH with an area of 140m2,
constructed in 1990 with low thermal modernization. Weather data consist of ambient
temperature and global radiation, which are used as disturbance inputs for the building
thermal model. Time series data for weather and PV power generation are for Germany for
30 days of April. Profiles for electrical household load, and DHW are taken from the VDI
guideline 4655 [72] for a SFH with an annual thermal consumption of 136kWh/(m2a) and
an annual electrical consumption (without HP) of 5000kWh/a according to [73]. Profiles
are obtained for 30 days in 10 min resolution. A temperature set-point is given, which
varies according to the hour in the day. From 22.00 to 6.00, the temperature is set to
18◦C, whereas during the day (i.e. from 6.00 to 22.00) a room temperature of 21◦C is
desired.

For this case study, MPC requires a forecast for PV generation, ambient temperature,
electrical load demand, and DHW consumption. The implemented MPC uses a simple
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2. Flexible power operation of a photovoltaic-heat pump home-microgrid

Table 2.2.: Parameters for Simulation
Parameter Value Parameter Value

COP 3 ηTes,sd 0.01 (%/hrs)
Np 12 (hrs) ∆t 10 (min)
ci 1.35 (kWh/◦C) CapTes 11.50 (kWh)1

cm 11.20 (kWh/◦C) pHp,min
el 1 (kWel)

pHp,max
el 5 (kWel) ηTes,char 0.9
ri 0.60 (◦C/kW) ηTes,dis 0.92
ra 4.21 (◦C/kW) SoCTes,min 0 (%)
Aw 2 (m2) SoCTes,max 100 (%)
pl 0.5 pPv,nom

el 7.5 (kWp)

1as for a typical water tank with 500l and ∆T = 20K

one-day persistence forecast for PV generation and ambient temperature, which assumes
that the current day’s PV production and ambient temperature are the same as those
from the day before. A seven-day persistence forecast is used for electrical load consump-
tion and domestic hot water consumption, as they are dependent on end-user weekday
behavior. It means that the MPC assumes that these consumptions are the same as those
from one week before.

Table 2.2 gives the parameters used for the simulation. The implementation is done in
Python using Pyomo [74, 75] as modeler, and CPLEX [76] as solver.

2.3. Simulation results and discussion

In this section numerical simulation results are presented and discussed. First a qualitative
analysis for two exemplary days is given considering interactions and side-effects of the
considered operation strategies. Next, a 30 day study is discussed based on performance
indicators, TES usage and local PV usage.

Figure 2.3 contrasts the three target values for the three operation strategies using the
two exemplary days. The first row shows the coincidence of set point room temperature
and actual temperature achieved. The second row gives information about the activity of
the heat pump and the electrical power flow from the PV. Finally, the third row shows
the delta of consumption and PV in-feed. Note that (just as discussed in (2.12)) this is
not just the delta of PV electricity generation and heat pump consumption as there is a
household load included.
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Figure 2.3.: Exemplary day profiles for temperature, electrical consumption, and PCC
power flow

2.3.1. Thermal comfort

In Figure 2.3, it can be seen that for the heat-led operation, the room temperature
follows the given set-point quite well. During the setback period at night, the room
temperature gradually decreases showing the expected behavior of the dynamic building
model. Although a complete match of the curves might be expected at first sight, the
simple reason for the remaining discrepancy at setback times is that cooling is not possible
for the chosen system.

For the DR-l1 strategy, there are some spiky temperature over- and undershoots visible
that even reach temperatures of 20 degrees. As a consequence, the temperature comfort
cannot be guaranteed satisfactorily, but depends on the actual occupancy and the personal
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2. Flexible power operation of a photovoltaic-heat pump home-microgrid

thermal sensation of inhabitants. This might not pose a big problem as the spikes are
only momentary.

Looking at the temperature profile for the DR-l2 strategy, the fluctuation becomes present
over the whole heating time frame, which therefore makes the restrictions of the whole
system and the necessity of a detailed analysis much clearer. There is a clear deterioration
in performance concerning the temperature control quality. Another aspect to notice is
that even during the setback period, there are undershoots that might not be expected
beforehand. It also becomes clear that during the morning time when the heating period
starts again, such deviations are no problem at all: the capacity of the heat pump fits
the corresponding heat consumption quite well and is able to quickly counterbalance the
undershoots that result from the system operation at night. However, the temperature
deviation can be as high as two degrees, although normally in the range of 0.5 degrees.

2.3.2. Side-effects of the operation strategies

In the second subplot of Figure 2.3, electrical profiles for PV generation and electrical
consumption of the heat pump are illustrated. Under the heat-led operation the heat
pump is operated with a power level that is sufficient to just cover the thermal demand
(or as much of it as possible), while the PV generation profile is completely ignored. In
the example shown, the heat pump reduces its electrical power consumption around noon,
although there is a clear peak in the PV generation. This results in large peaks at the
PCC for both electrical consumption and feed-in.

For the DR-l1 strategy the temperature set point is well tracked, even in direct comparison
with the reference scenario. However, it has to be noticed that the temperature sag is
visible at an earlier point of time. This is because the optimization according to the
objective function has to care about both the temperature and the peak power at the
PCC at the same time. As there is no PV generation in the evening, it is more favorable
to lower the heat pump activity than to invest high power to achieve higher temperatures.
For the temperature peak, the operation strategy dictates to rather use the given power
from PV generation and accept the overshoot than to have high power flows at the PCC.
It can be stated that the heat pump runs more often and at higher average powers than
in the reference scenario. That is because the TES is loaded whenever there is power
from PV generation but no instant space heating demand. However, even though the
heat pump is operated in a smarter way than before, short activation times of the heat
pump are present at full power. Although this is appreciated during periods of high solar
radiation, this is also visible for the night times. This clearly affects the balance of demand
and in-feed at the PCC. On the one hand, peaks are clearly reduced at the generation side
to less than 1kW. So, the optimization by the l1-norm achieves a significant improvement
of the correlation between activation of the heat pump and the given power from PV
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2.3. Simulation results and discussion

generation. On the other hand, this operation strategy is not able to gain much flexibility
by charging the TES, because the heat pump is already running for long periods.

Using the DR-l2 operation strategy, the deviation of the room temperature rises although
the quadratic approach behind the squared l2-norm generally favors smaller values in
comparison to the l1-norm. However, looking at the electrical profiles at the PCC, it can
be seen that the correlation between PV generation and heat pump operation significantly
improves the power flow at the PCC. Therefore, large activation peaks of the heat pump
at times of no PV generation are effectively avoided when employing the squared l2-norm,
which is a clear advantage of the squared l2-norm. Another important factor is that in
contrast to the DR-l1 strategy, the heat pump is only operated at minimal power (roughly
1kW) when there is no solar radiation present. So, the charging of the TES is bound in
a more restrictive way than for the DR-l1 strategy. Here, the MPC-algorithm anticipates
the heat demand of the day and tries to include the TES without overburdening the power
budget at the PCC. In fact, this results in a flat power flow profile at the PCC as it can
be seen in the third subplot.

2.3.3. Extensive 30 day study
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Figure 2.4.: Resulting power flows over the PCC

To provide a better analysis, a quantitative evaluation is done for 30 days simulation in
April. The distribution of all observations for net power at the PCC is displayed in box
plots in Figure 2.4. It can be seen how the DR-l2 operation strategy is able to reduce
peaks from heat-led and peaks from DR-l1. What is not directly visible from the above
discussion is to what extent the TES is used by the operation strategies. It should again
be stated that the TES usage is not an objective itself. In this regard, Figure 2.5 shows a
discrete histogram of the TES charging states. The heat-led strategy does not make proper
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2. Flexible power operation of a photovoltaic-heat pump home-microgrid

use of the capabilities of the TES, as the state of charge (SoC) shows a dramatic peak at
zero and mostly lies below 40%. This is possible because the heat pump operation is only
limited by its technical maximum power of 5 kW, which does not pose a big constraint
on the target to follow the heat temperature with the given building.
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Figure 2.5.: Histogram of TES usage

For the operation strategy DR-l2, the situation is completely different: the peak at
SoCTes = 0 is only half as high as for the reference scenario, and the tail is much more
balanced along the whole spectrum. On the contrary, there is a small but noticeable peak
at SoCTes = 100%, which signifies that the optimizer had to deal with a constraint here.
Even though the question of the right TES size cannot be answered directly from this fin-
ding, the side-effects of optimiziation strategy and chosen boundary conditions becomes
clear now, and is subject to further evaluations in the future. Next, Table 2.3 summarizes
the resulting performance indicators for all strategies.

As mentioned before, DR-l2 achieves a significant reduction in max and min peaks at
PCC. However, there are two important aspects to discuss here, namely the increments
in MAE and mean CPU time. The distribution of CPU time for all runs shows a large
number of occurrences with a duration of around 1 min, and some extreme cases when
the optimization takes 9 min or more, as illustrated in Figure 2.6.

It can be seen that for the considered strategy with a probability of 75% the computational
time for the optimization using this operation mode will take less than 1 min. On the
other hand there is 21% of probability that the computation time will take 9 min or
more. In the simulation, a time limit for the optimization of 540 sec was set, and if this
time was reached, available results provided by the solver at that moment were used.
This long computation times can be explained by the complexity of the MIQP problem.
The relative mipgap tolerance is 0.01, meaning that the solver only stops when it finds
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2.3. Simulation results and discussion

Table 2.3.: Performance indicators with adjusted weights
Heat-led DR-l1 DR-l2

Indicator (-) (α = 0.5
β = 0.5)

(α = 0.5
β = 0.5)

(α = 0.5
β = 1.0)

(α = 0.5
β = 1.5)

Mean absolute error
(MAE, ◦C)

0.21 0.32 0.55 0.41 0.36

Mean CPU time
(sec)

0.05 0.06 125.87 133.73 128.97

Max peak PCC
(kWel)

6.05 6.05 2.24 2.69 2.96

Min peak PCC
(kWel)

-6.29 -6.13 -2.61 -2.61 -2.61
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Figure 2.6.: Variation of CPU time (for DR-l2-strategy)

a feasible integer solution proved to be within 1% of optimal. If after 9 minutes, this
mipgap has not been reached, the optimization was stopped, and available results were
used. Even though the available results are still not the optimal, they are good enough
to be used, compared to the results obtained with heat-lead and with DR-l1. In this
chapter, the optimization is done every 10 minutes, and the resulting optimal value is
sent as set-point to the lower controllers. In this case, getting the optimization results in
9 minutes is an issue and must be further investigated for implementation purposes.

On the other hand, an MAE of almost 0.6◦C may be not acceptable in practical situations.
By adjusting the weight of β in the objective functions i.e. prioritizing comfort over peak
reduction, smaller deviations can be reached. Resulting indicators for adjusted β values
are presented in Table 2.3. From this table it can be concluded that by adjusting β to 1,
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2. Flexible power operation of a photovoltaic-heat pump home-microgrid

the temperature error is around 0.45◦C, which is a more realistic value to be admissible
by customers. Also, even when thermal comfort weight β is three times larger than peak
reduction weight, resulting maximal and minimal power peaks at PCC are still lower than
the ones obtained by heat-led and DR-l1 operations.

Self-consumption quota and self-sufficiency quota are also calculated and analyzed in Ta-
ble 2.4. In theory a self-consumption quota of 100% is always possible. With a flexible
demand management operation, the self-consumption quota improves around 28 percen-
tage points in comparison to the heat-led operation. As expected, the DR-l2 operation
presents the highest self-consumption quota.

Table 2.4.: Energy indicators
Indicator Heat-led DR-l1 DR-l2
qsc (%) 55.93 82.91 84.99
qss (%) 33.02 49.26 50.57
Energy import (kWh) 295.31 114.47 100.57
Energy export (kWh) 760.49 572.39 556.67

The self-sufficiency quota depends on the total PV production, total household load con-
sumption and total heat pump electrical consumption. For the considered dates there is
a total PV-production of 670kWh and a total household load consumption of 380kWh.
The heat pump electrical consumption varies for each operation strategy, with a total
consumption of 754kWh, 747kWh and 745kWh for the heat-led, DR-l1 and DR-l2 re-
spectively. This is explained due to the fact that in heat-led mode thermal comfort is well
satisfied, which means that thermal energy produced by the heat pump is higher. As the
flexible management operation strategies have a second objective to optimize, the thermal
comfort is reduced, which results also in a reduction in the thermal production and accor-
dingly in the electrical consumption of the heat pump. For the heat-led operation there
is a theoretical maximum self-sufficiency quota of 59.02%, which means that the heat-
led operation achieves a self-sufficiency quota 26 percentage points below its theoretical
maximum. For the DR-l1 and DR-l2 there are theoretical maximums for self-sufficiency
quota of 59.40% and 59.50% respectively. Both strategies achieve a self-sufficiency quotas
around ten points below the theoretical maximum.

2.4. Summary of the chapter

This chapter concerned itself with the optimal operation of a power-to-heat H-MG using
model predictive control. It presented the particular optimization problem considering a
ground source heat pump, the household thermal dynamics, and thermal energy storage.
The chapter evaluated three operation strategies that differ in the weight of individual
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2.4. Summary of the chapter

objectives and the implemented norm. Numerical simulation and performance indicators
such as customer comfort, peak power reduction as well as computational effort, helped
in the evaluation.

In the first step, using two days as an example, simulation results revealed the interactions
of the system components and the working principle of the MPC operation strategies.
With the help of this example, it becomes clear that even for smaller interconnected
systems, the effects are not always directly foreseeable. Thus, finding the proper weight
of individual objectives and the norm is not trivial. Afterward, an extensive 30-day study
was conducted to depict the range of electrical power flows at the PCC. Here, the squared
l2-norm was the most promising for peak power reductions, while l1-norm and the heat-led
mode respectively showed higher and less reliable power flows.

Further steps are the evaluation of MPC sensitivity to uncertainties coming from forecasts
and model mismatches, an extension of the approach to multiple systems in a distribution
network, including other technologies such as mini-CHP and batteries, and a benchmark
between a decentralized MPC approach and a centralized MPC approach for grid opera-
tion with flexible H-MGs. The next chapters elaborate on some of these issues.
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3. Economic operation of a
photovoltaic-combined heat and power
home-microgrid

This chapter investigates the economic model predictive control operation of a Home-
Microgrid with photovoltaic-combined heat and power storage systems. The purpose
of the chapter is to present the problem formulation and quantify the impact of un-
certainties. The chapter compares a model predictive control-based strategy with an
open loop-based operation, and a perfect forecast based operation. The chapter dis-
cusses the effects of having uncertainties in the operation, relaying the benefits of
using model predictive control to handle such situations. Additionally, the chapter at
hand presents a sensitivity analysis regarding storage size, concluding that the pro-
posed economic model predictive control strategy can be used to reduce total annual
costs.

The content of this chapter is adapted from [59]: D. I. Hidalgo Rodríguez and J. M.
Myrzik, “Economic model predictive control for optimal operation of home microgrid
with photovoltaic-combined heat and power storage system,” in Proceedings of the
20th IFAC World Congress. Toulouse, France, 2017.

3.1. Introduction

In this chapter, the purpose is to provide new insights regarding H-MGs’ operation using
an economic MPC approach. Here, economic MPC is a receding horizon control stra-
tegy with a stage cost that includes an economic objective function and does not merely
penalize the distance to a desired set-point. More specifically, this chapter investigates
the impact of mini CHP dynamic behavior prediction and storage size on the economic
operation. This chapter includes the following contributions:

1. a thermal model for the dynamic behavior for a commercial internal combustion
engine mini CHP in the optimization problem,

2. an analysis on the impact of uncertainties from mini CHP thermal power settling
times, PV generation, electrical demand, and thermal demand,

3. a quantification of the added value of MPC compared to an open loop-based opti-
mization strategy, and

4. a sensitivity analysis on the impacts of battery size and TES size on the economic
operation.
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3.2. System description and problem formulation

The chapter is organized as follows: Section 3.2 describes the system under investigation,
the optimization problem, operation strategies and simulation setup. Then, simulation
results and corresponding discussion are presented in Section 3.3. Finally, Section 3.4
summarizes the main outcomes of the chapter, its limitations and future work.

3.2. System description and problem formulation

A system for a multi-family house (MFH) is investigated, which combines one mini CHP,
one TES, one PV plant and one battery, as Figure 3.1 presents. System’s operation
is formulated as a mixed integer linear programming (MILP) problem within an MPC
framework. This section first briefly describes the utilization of MPC for the system under
investigation, then it presents correspondent constraints and objective function for the
optimization problem, followed by the description of operation strategies and simulation
setup.
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Figure 3.1.: Overview of system components in the home microgrid

3.2.1. MPC for the considered H-MG

For the actual case study, the goal of the proposed economic MPC-based operation is
to find a future trajectory for the electrical and thermal power output of the mini CHP,
the state of charge of the storage systems, and the thermal power of the auxiliary gas
boiler over a given prediction horizon, to minimize operational costs of the H-MG. This
is done by shifting operation times of the mini CHP using the flexibility provided by the
TES and the battery. The MPC strategy considers dynamic models for CHP thermal
behavior and evolution of state of charge of the storage systems, as well as measurement
data for PV, load, space heating and domestic hot water for a MFH in Germany. The
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MPC is considered at the management level of the H-MG automation system, and power
set-points are sent to low level controllers of system’s components (see Figure 3.2).
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Figure 3.2.: Structure of the whole setup including microgrid components and MPC
controller (LC#:local controllers, and M#: measurement devices)

In the following subsections, all equations and inequalities are valid for each time step k,
where k ∈ {ki, . . . , ki +Np − 1}.

3.2.2. Mini CHP model

This section describes the modeling for the considered internal combustion engine (ICE)
mini-CHP. Reference [30] uses an approximated piece-wise linear model, initially develo-
ped for large scale CHPs, to describe the behavior of the CHP considered in that work.
Thermal and electrical response times from large scale CHPs may significantly differ from
response times of mini-CHPs. The authors in [29] introduce a grey-box data-based model
for a fuel cell mini-CHP, which is also used within an MPC scheme. As basic principles of
fuel cell mini-CHPs and ICE mini-CHPs are different, the representation of the dynamic
response of ICE mini-CHPs needs a specific model. Figure 3.3 depicts the operation of
a commercial ICE mini CHP [77]. The brown line indicates the input power, and the
red and green line the thermal and electrical output power respectively. It is noticeable
that the two outputs present different step response characteristics. While the electrical
output reaches the steady state very fast, in a matter of seconds, the thermal output
needs more time to reach the steady state. The figure also shows different step response
behaviors for the thermal output. According to [77], ICE mini-CHPs present two types
of step responses for their thermal output: cold-start response and warm-start response.
Depending on how long an OFF status of the mini CHP lasts, it takes more or less time
to reach a given nominal power set-point. In the figure, for the first start the mini-CHP
needs around 60 minutes to reach its nominal power. This is a cold-start. Then, two
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Figure 3.3.: Step responses for a commercial mini CHP (see [77])

consecutives warm-starts occur, one at minute 190 and the next at minute 350. For these
warm-starts, it takes for the mini-CHP around 40 minutes to achieve the steady state.

In view of the fact that the dynamic response of the electrical output is faster than the
thermal one, and that the settling time of the electrical power output is shorter than
the MPC sample, it is reasonably acceptable to describe the relationship between mini
CHP power input pChp

gas and electrical power output pChp
el using a steady-state model (static

model) as
pChp
el (k) = pChp

gas (k) · ηChpel , (3.1)

where pChp
gas is the power input and pChp

el is the electrical power output. The electrical
operation range is given by

bChp (k) · pChp,min
el ≤ pChp

el (k) ≤ pChp,max
el · bChp (k) , (3.2)

bChp (k) ∈ {0, 1}, (3.3)

with the binary variable bChp (k), which is used to limit pChp
el (k) to its minimum and

maximum allowable values when the mini CHP is ON.

However, the thermal output dynamic behavior needs a more detailed model. Therefore,
the work at hand uses the data-based model proposed in [78], which reproduces the ther-
mal step-response behavior of an ICE mini-CHP. The model is given as continuous-time
transfer function. After a transformation to state space representation and a discretiza-
tion, the resulting model is

pChp
th (k + 1) = Awarm

th · pChpth (k) +Bwarm
th · pChp

gas (k) . (3.4)

The following constraint is used to have a continuous operation of the mini CHP for mcont
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steps
pChp
gas (m) = pChp

gas (m+ kcont) , (3.5)

and this must hold for all m ∈ {ki, ki + mcont, . . . , ki + Np − mcont − 1} and for all
kcont ∈ {0, . . . ,mcont}.

In this work, just the warm start behavior is taken into account. Considering both, cold
start and warm start behavior in the optimization problem is beyond the scope of this
work and is left as future work.

3.2.3. Electrical battery

The behavior of the battery is described by

SoCBatt (k + 1) = SoCBatt (k) · ηBatt,sd+(
pBatt,char
el (k) · ηBatt,char − pBatt,dis

el (k)
ηBatt,dis

)
·KBatt, (3.6)

SoCBatt,min ≤ SoCBatt (k) ≤ SoCBatt,max, (3.7)

0 ≤ pBatt,dis
el (k) ≤ pBatt,dis,max

el ·
(
1− bBatt (k)

)
, (3.8)

0 ≤ pBatt,char
el (k) ≤ pBatt,char,max

el · (bBatt (k)), (3.9)

bBatt (k) ∈ {0, 1}, (3.10)

with KBatt = ∆T
CapBatt × 100. SoCBatt gives the available energy level in the battery in

percent. Self-discharge coefficient ηBatt,sd, charging and discharging efficiencies, ηBatt,char

and ηBatt,dis, are also taken into account. Similar to [24], battery power at time k is
modeled with two different variables pBatt,char

el for charging, and pBatt,dis
el for discharging

to be able to implement separate efficiencies for both processes. To avoid simultaneous
battery charging and discharging at a single time step, a binary decision variable bBatt (k)
is used which makes both process mutually exclusive in the optimization problem.
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3.2.4. Electrical power balance

The electrical power balance at PCC (see Figure 3.1) is given by the expression

pLoad
el (k) + pBatt,char

el (k) + pGrid,exp
el (k) =

pChp
el (k) + pPv

el (k) + pBatt,dis
el (k) + pGrid,imp

el (k) , (3.11)

as pBatt,char
el (k) and pBatt,dis

el (k) are mutually exclusive, just one of them can be larger than
zero at time k. In addition, because costs of power import from the grid are higher than
the FIT for pGrid,exp

el (k) in the objective function (see (3.20)), it implies that whenever
there is power export to the grid pGrid,imp

el,k is zero. This implies that for this case, there is
no need of an additional constraint to set mutual exclusivity between power import and
power export.

The constraint below avoids charging the battery from the grid as

0 ≤ pGrid,imp
el (k) ≤

(
pLoad,max
el

)
·
(
1− bBatt (k)

)
, (3.12)

and it is used just for the stand-alone H-MG operation. When the operation of inter-
connected H-MGs is investigated, the optimization problem does not include this con-
straint.

3.2.5. Auxiliary gas boiler

The relationship between gas input power and thermal output power is given by

pGboiler
th (k) = pth (k) · ηGboiler, (3.13)

with the boiler efficiency ηGboiler. Similar to the CHP, a binary variable is used here to
keep the thermal output power pGboiler

th (k) within its limits as

bGboiler (k) · pGboiler,min
th ≤ pGboiler

th (k) ≤ pGboiler,max
th (k) · bGboiler (k) , (3.14)

bGboiler (k) ∈ {0, 1}. (3.15)

3.2.6. Thermal energy storage

Similar to Subsection 2.2.3, the following TES model is implemented in this chapter. It
reproduces the evolution of TES state of charge considering stand-by heat loss coefficient,
charging efficiency and discharging efficiency.
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SoCTes (k + 1) = SoCTes (k) · ηTes,sd +
(
pTes,char
th (k)− pTes,dis

th (k)
)
· KTes, (3.16)

with KTes = ∆T
CapTes × 100,

SoCTes,min ≤ SoCTes (k) ≤ SoCTes,max, (3.17)

and the charging-/discharging for TES is given by

pTes,char
th (k) =

(
pChp
th (k) + pGboiler

th (k)
)
· ηTes,char, (3.18)

pTes,dis
th (k) = pSh

th (k) + pDhw
th (k) + pLost

th (k)
ηTes,dis . (3.19)

3.2.7. Objective function

The economic objective function gives the total operation costs for the H-MG over a given
time horizon as

J4 =
ki+Np−1∑
k=ki

Cgas
(
pChp
gas (k) + pGboiler

gas (k)
)

+ Cel · pGrid,impel (k)− (3.20)

CFit · pGrid,exp
el (k) + CLost · pLost

th (k) ,

where ki is any arbitrary initial time step. Cgas is the gas price, Cel is the electricity
price, CFit is the feed-in tariff for injected power, and CLost is the penalty cost for wasting
energy in the TES. This function is minimized within the MPC scheme.

To summarize, the optimization problem is stated as

minimize
ûb

J4 (ûb) (3.21a)

subject to
pChp
el ,pChp

th , bChp ∈ PChp, (3.21b)
pBatt,char
el ,pBatt,dis

el , bBatt ∈ PBatt, (3.21c)
pImp
el ,pExp

el ∈ PGrid, (3.21d)
pGboilerth , bGboiler ∈ PGboiler, (3.21e)
pTes,char
th ,pTes,dis

th ∈ PTes, (3.21f)
∀k ∈ {ki, . . . , ki +Np − 1}. (3.21g)
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3.2. System description and problem formulation

Where the set PChp is given by (3.1)-(3.5), the set PBatt is defined by (3.6)-(3.10), the
set PGrid is defined by (3.11)-(3.12), the set PGboiler is given by (3.13)-(3.15), and the set
PTes is defined by (3.16)-(3.19). The vector of decision variables vectors is

ûb =



pChp
gas

pGboiler
th

pBatt,char
el

pBatt,dis
el

pLost
th

bChp

bBatt


, (3.22)

where all decision variables vectors are in RNp.

3.2.8. Operation strategies for a photovoltaic-combined heat
and power H-MG

To better quantify the advantages or disadvantages of an MPC-based operation for a
photovoltaic-combined heat and power H-MG, two further operation strategies are si-
mulated for comparison purposes. The next paragraphs briefly describe the operation
strategies.

Perfect forecast strategy : The optimization problem is solved assuming perfect
knowledge of the system. It gives the optimal solution and serves as a lower bound for
the other strategies. This is the baseline scenario.

MPC-based strategy : Here, uncertainties in thermal behavior of the mini CHP are
considered. The mini-CHP model in the optimization problem differs from the real system.
The optimization problem is solved for the next 24 hours, but just the set-points for the
first hour are sent to the low level controllers. After, one hour, actual states of the system
are updated in the model and a new optimization loop starts.

Open loop-based strategy : Similar to the MPC-based strategy, uncertainties in the
thermal behavior of the mini CHP are present. The optimization problem is solved for
the next 24 hours, and the whole sequence is implemented in the real system. After 24
hours, the procedure is repeated.

Some authors include a terminal constraint to avoid the battery’s full discharge at the
end of the horizon. This work does not consider such a terminal constraint either for the
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MPC-based strategy or for the open loop-based strategy. Therefore, the comparison is
made on the same basis.

3.2.9. Simulation setup for a multi-family house H-MG

Time series data in 10 min resolution for space heating, domestic hot water, household
load (from the VDI guideline 4655 [72]) and PV power generation (from a field test) are
for Germany for one year. The MFH has an annual electrical consumption of 23655.70
kWh/a, and a thermal consumption of 74888.57 kWh/a. The PV plant has an annual
energy yield of 8529.24 kWh/a. Table 3.1 gives the parameters used for the simulation.
Moreover, for the economic analysis, specific investment costs of 1724 EUR/kWh for a
6 kWh battery, and 1108 EUR/kWh for a 12 kWh battery are assumed. Similarly, total
investment costs of 1100 EUR, 1387 EUR, 1546 EUR, and 2300 EUR are used for the 100
liter TES, the 300 liter TES, the 500 liter TES, and the 1000 liter TES respectively. The
annual costs per year considers an annuity factor of 0.09. The calculation of the annuity
factor uses an interest rate of 5% and a useful life-time of 15 years. The implementation
is done in Python using Pyomo [74, 75] as modeler, and CPLEX [76] as solver.

Table 3.1.: Parameters for Simulation
Np 24 (hrs) ∆t 10 (min)
pChp,max
el 4.5 (kWel) ηChp

th 0.633
pChp,min
el 1 (kWel) Awarm

th 0.088
CapBatt 12 (kWh) Bwarm

th 0.577
pBatt,char,max
el 6 (kWel) ηBatt,char 0.9
pBatt,dis,max
el 6 (kWel) ηBatt,sd 0.999
pLoad,max
el 10 (kWel) ηBatt,dis 0.92
pGboiler,max
th 40 (kWth) ηGboiler 1
pGboiler,min
th 1 (kWth) pPv,nom

el 9 (kWp)
Cel 28.38 (ct./kWh) ηTes,sd 0.998
CapTes 11.50 (kWh)1 ηTes,char 0.9
Cgas 6.52 (ct./kWh) ηTes,dis 0.92
CFit 12 (ct./kWh) ηChp

el 0.238

1as for a typical water tank with 500l and ∆T = 20K
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3.3. Simulation results and discussion

This section present relevant simulation results for the optimal operation of the photovoltaic-
combined heat and power H-MG. The section is divided in three parts. First, a qualitative
analysis of resulting profiles for one exemplary day helps for further understanding the
operation of the system. The second part quantifies the overall impact of uncertainty in
the mini CHP model on annual costs. Also, a sensitivity analysis on TES and battery
storage sizes shows how costs change if smaller storage systems are used. In the end, the
section presents results from annual simulations considering all sources of uncertainties.

3.3.1. Qualitative analysis

Figure 3.4 presents resulting profiles for the system operation. The first subplot contains
the electrical profiles of the system, and the second subplot shows resulting thermal pro-
files. The last subplot depicts storage systems’ state of charge. When looking at the
electrical power output of the CHP, two operation patterns are visible: one during night
and early morning hours, and one different during the day. When there is no PV genera-
tion, the CHP runs under an electricity-led strategy, i.e. following the household load in
order to reduce electricity costs.

As soon as the MPC predicts the thermal load peak at around 6:00 in the morning (second
subplot), the CHP changes to a heat-led operation. It increases the operation point in
order to fully charge the TES, so that the coming peak in thermal demand can be covered
without using the gas boiler. During PV production hours, the CHP continues under
heat-led operation, the electrical load is covered mainly by the PV production, and the
electricity surplus is sold into the grid. Due to the high thermal demand during the
day, there are just few cases when the TES can be charged (see 10:00 and 14:00 hours).
Regarding the battery system, the MPC decides not store the electricity surplus, but
to sell it to the grid. Just when the MPC predicts the evening peak in household load
around 19:00 hours, it decides to charge the battery at around 13:00 hours to have enough
energy to cover the coming peak. As PV generation decreases, the CHP switches again
to electricity-led operation.

3.3.2. Impact of a small uncertainty in the thermal behaviour of
CHP on annual costs

The second part of this section presents the quantification of the impact of uncertainty
in the CHP thermal behavior. For this purpose, two operational costs are compared:
the resultant costs for a simulation with optimal operation without uncertainty (perfect
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Figure 3.4.: Example of resultant profiles for perfect operation strategy

knowledge of the system) over a year, against the resultant costs for the open loop optimi-
zation operation and the MPC operation, also over a year but including uncertainty in the
model. Here, it is assumed that the model in the optimization problem is different from
the real system, and this is done by decreasing the time constant of the thermal power
system of the CHP. The real system behaves as described in Figure 3.3 for the warm start,
while the MPC assumes that the mini CHP reaches its nominal thermal power in about
10 minutes. To better illustrate the responses, Figure 3.5 shows the real, and the mini
CHP thermal behavior assumed by the MPC. The brown line shows the gas power input
set-points sent from the MPC to the mini CHP. The purple line is the thermal power
output assumed by the MPC, while the red line denotes the real thermal power output
of the mini CHP.

For the perfect optimal operation the resultant annual operational costs are 7470.79
EUR/a. If uncertainties in the thermal behavior of the mini CHP are present, the an-
nual operational costs increase to 7472.18 EUR/a and 7518.10 EUR/a for the MPC-based
operation and the open loop optimization-based operation respectively. These resultant
costs can be explained as follows: Because the real system responds slower than assumed
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Figure 3.5.: Step responses for the real system and the model in the optimization

by the MPC, this results in the TES receiving less energy than planned when the CHP is
running up. On the other hand, when the CHP is running down, slower than assumed by
the MPC, the TES receives more energy that initially planned. This may be problematic,
if the TES is almost full. In such a situation, the MPC will shut-down the CHP assuming
that it will reduce its thermal power very fast, so that the upper limit of the TES will
not be reached. In reality, the CHP reduces its thermal power slower than required, me-
aning that more energy is supplied, leading to an overcharging of the TES. To deal with
this issue, the real system has to waste some energy in order to allow further operation,
incurring in extra costs. This situation affects the MPC as well, because there may exist
situations where in the beginning of MPC’s time window the TES is already or almost
full, and the CHP is still running down, so that no matter what action the MPC takes, the
optimization problem is already infeasible. For this reason, the decision variable PLost

th is
included to also enable the MPC to waste some power in order to make the optimization
problem feasible. On the contrary, if less energy than expected is given by mini CHP
and the storage is almost empty, then the gas boiler has to supply the missing energy.
The MPC leads to lower annual operational costs, compared to the open loop strategy,
mainly because of its closed loop property, which allows to correct mini CHP schedules
every hour. Since the open loop-based operation calculates fixed schedules for the next
24 hours, it must waste more energy due to the presence of uncertainty in the mini CHP
thermal behavior. Figure 3.6 gives the net additional operation costs for MPC-based
operation and open loop-based operation.
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Figure 3.6.: Net additional annual operation costs

3.3.2.1. Sensitivity analysis on storage sizes

Finally, a sensitivity analysis reveals the effects of storage sizes on H-MG operational costs.
The baseline is the resultant costs for the perfect operation with 500liter TES and battery
capacity of 12 kWh. Simulations over a year with variations of TES volume and battery
capacity, recording the corresponding additional operation costs are conducted. The
simulation scenarios correspond to TES volumes of 1000 liter, 500 liter, 300 liter and 100
liter, and battery capacities of 12 kWh and 6 kWh, for both operation strategies - MPC-
based and open loop-based. Through this experiment, it will be possible to determine
how small the storage systems could be, such that under a suitable operation strategy the
additional operation costs are still moderated. Figure 3.7 helps to visualize the results of
the annual simulations.

As expected, a home microgrid with 1000 liter TES and 12 kWh battery gives the mi-
nimum operation costs under MPC-based operation. If the system uses a 100 liter TES
with a 6 kWh battery under an open loop-based operation, the operation costs increase
by ca. 200 EUR/a compared to the baseline case. This configuration presents the larger
additional costs.

In general, for a given configuration, MPC-based operation is always cheaper than the
open loop-based. Another aspect worth to mention, is that a system under MPC-based
operation with TES-300 liter and 12 kWh battery shows lower operation costs than a
system with the same battery size but with larger TES capacity under open loop-based
operation.

It is usual that the smaller the storage capacity is, the lower the investment costs are. The-
refore, annuity costs, based on investment and operation costs, are shown in Figure 3.8.
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When considering total annual costs, system configurations with battery sizes of 12 kWh
(green) are not attractive anymore. From this chart, the optimal system configuration for
a photovoltaic-combined heat and power H-MG is a 1000 liter TES and a 6 kWh battery
under an MPC-based operation.
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3.3.3. Full year simulations considering all sources of
uncertainties

The previous section showed resulting operation and investment costs when a small un-
certainty in the CHP’s thermal behavior was present. However, there are further sources
for uncertainties in this kind of system. Uncertainties are present in the CHP’s thermal
behavior, the forecast for PV generation, the forecast for electrical demand, and the fo-
recast for heat demand - space heating and domestic hot water. This section delivers
simulation results considering all these sources of uncertainties in the system.

Similar to the previous section, the analysis considers three operation strategies. The
perfect operation strategy does not include any uncertainty, and the optimization assumes
perfect knowledge of all uncertain parameters. This approach exemplifies the case of sizing
a storage system using historical data as a reference.

The other two strategies are the open-loop operation strategy and the MPC operation
strategy (closed-loop). These strategies are usually not used in the design phase of storage
systems but during the operation phase. They emulate the operation planning of energy
systems, which occurs day-ahead and intra-day. For these two operation strategies, the
optimization works with imperfect knowledge of uncertain parameters.

The open-loop operation strategy and the MPC operation strategy require a forecast for
PV generation, electrical demand, and thermal demand. As the PV power and the space
heating demand are highly weather dependent, the prediction for PV generation and space
heating demand includes a simple 1-day persistence forecast. The optimization assumes
that the PV generation and the space heating consumption for the current day are the
same as from the previous day.

For electrical load consumption and domestic hot water consumption, the prediction uses
a 7-day persistence forecast, i.e., the optimization assumes that these consumptions are
the same as the ones from one week before (7-day persistence). This assumption is because
of the dependency of electrical consumption and DHW consumption on weekdays.

Again, the examination comprises simulations with different storage sizes. It considers
TES with 300 liters, 500 liters, and 1000 liters, and battery systems with 6 kWh and 12
kWh. The 100-liter TES is out of the examination because the previous section showed
that its operating costs are not competitive. Therefore, there are six possible combi-
nations for storage systems, and each combination requires an annual simulation with
a correspondent operation strategy. In the end, a total of 12 annual simulations are
necessary.

Figure 3.9 shows the resulting operation costs per year. One interpretation of the chart
is that during the design phase, the expectation is that the systems will have operating
costs between 6800 EUR and 7000 EUR per year.
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Figure 3.9.: Operation costs considering all uncertainties

However, during the operation phase, these costs could be about 500 EUR up to 3000
EUR higher. The reason for this is the assumption of perfect knowledge of the uncertain
parameters during the design phase. In general, MPC gives a cost reduction for a given
system configuration of about 2200 EUR/a compared to open-loop. The gap between
MPC and perfect operation strategy is around 500 EUR. It is an upper bound for the
MCP operation since the strategy used a simple prediction approach for the conducted
simulations. If a more accurate prediction is available, this cost gap will be smaller. For
all operation strategies, the configuration with the lowest costs is 1000 liters TES and
12 kWh battery, while the configuration 300 liters TES and 6 kWh battery delivers the
highest costs.

Figure 3.10 allows the appreciation of the difference in operating costs between system
configurations for MPC.
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Figure 3.10.: Operation costs for MPC considering all uncertainties
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The next lowest operation costs are for the 1000 liters TES with 6 kWh battery, followed
by the 500 liters TES with 12 kWh battery. It is also clear that a system with 500 liters
TES and 6 kWh battery gives similar operational costs that a system with 300 liters TES
and 12 kWh battery.

Next, it is interesting to take a look at the total annual costs in Figure 3.11.
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Figure 3.11.: Total annual costs considering all uncertainties

Here again, at least for MPC and the perfect operation strategy, systems containing
a 12 kWh battery are not competitive. This situation is not valid for the open-loop
operation strategy. Notwithstanding, the analysis will now focus on determining the
optimal configuration for the MPC operation strategy. When analyzing the systems with
the presence of uncertainties, it becomes clear that the lowest total annual costs are for
by a system consisting of a 1000 liters TES and a 6 kWh battery under MPC operation.
The larger TES capacity is better exploited by the MPC operation strategy, as already
mentioned for the operation cots.
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3.4. Summary of the chapter

This chapter investigated the economic MPC operation of an H-MG with photovoltaic-
combined heat and power storage systems. The purpose of the chapter was to present the
economic MPC problem formulation and investigate the impact of uncertainty coming
from the thermal behavior of the mini CHP. The chapter included a comparison of an
MPC-based strategy and an open loop-based strategy with a perfect-forecast strategy to
quantify the effects of this uncertainty. Additionally, the chapter also presented a sensiti-
vity analysis of storage size. The main consequence of having an imperfect model for the
thermal response of the mini CHP is that the TES might be overcharged or underchar-
ged. Therefore the system has to waste energy or use the auxiliary gas boiler to overcome
these situations, incurring additional gas costs and inefficient operation. Simulation re-
sults showed that, even for a minimal mismatch between the optimization model and the
real system regarding the settling time of mini CHP thermal power, resultant additional
operating costs are substantially different between the open loop-based operation and the
MPC-based operation. While the later one achieves operation costs almost equal to the
perfect case, the costs for the open loop-based strategy are notably higher. This outcome
confirms the robustness of MPC against uncertainties, as well as its advantages for the
operation of H-MGs.

The chapter gave as well a sensitivity analysis regarding the impact of storage size on
annual costs. Here, the MPC-based operation enabled a better usage of the storage
systems, such that it might be possible to reduce battery size, with a moderate increase
in operational costs, but a total reduction in investment costs (smaller storage systems).
In the end, the chapter presented simulation results for a whole year considering all
sources of uncertainties, namely, thermal CHP behavior, PV generation, and electrical
and thermal demand. The results allowed to appreciate the added value of MPC against
the open-loop operation strategy. They also indicated that there is still improvement
potential for the MPC strategy when employing more accurate prediction approaches.
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4. Coordination strategies for optimal
operation of interconnected
home-microgrids

This chapter presents the formulation and comparison of three different model pre-
dictive control coordination strategies for a group of interconnected home-microgrids.
First, a decentralized coordination strategy is taken as a reference case, followed
by the proposed centralized coordination. Lastly, employing dual decomposition, a
hierarchical-distributed strategy is derived from it. The simulation results indicate
that the proposed centralized formulation can improve the electrical power balancing
among systems, with a reduction in extreme power peaks at the point of common
coupling. The hierarchical-distributed strategy also shows an improvement in power
profile compared to the decentralized strategy, while solving the global problem in
a distributed way. The trade-off among local balancing with peak power reduction,
energy bill, and storage losses demands further investigation.

The content of this chapter is adapted from [61]: D. I. Hidalgo-Rodríguez and J.
Myrzik, “Optimal operation of interconnected home-microgrids with flexible thermal
loads: A comparison of decentralized, centralized, and hierarchical-distributed model
predictive control,” in 20th Power Systems Computation Conference. Dublin, Ireland,
2018.

4.1. Introduction

The coordinated operation of interconnected microgrids is a well-studied topic in the
recent literature [14, 33–35, 54–57]. Within the context of MPC, several architectures are
possible [40, 79]. For a group of H-MGs in a residential area, each H-MG is an independent
agent, which tries to minimize its own economic cost function. A H-MG will minimize
its total energy bill costs given electricity and gas prices, and feed-in-tariff. These prices
can be fixed for the whole year, or dynamic e.g. changing every hour. In a decentralized
coordination strategy (see Figure 4.1a), each H-MG solves its own optimization problem,
based only on knowledge of its own state and forecasts for disturbances affecting only H-
MG’s individual performance. As there is no coordination between agents, such structure
is called a decentralized. In this decentralized strategy, there are many small optimization
problems. Furthermore, as each H-MG just uses its own information, there is no need for
information exchange, which is an advantage of this strategy. The main disadvantage is
that the obtained solution is suboptimal.
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(a) Decentralized architecture (b) Centralized architecture (c) Hierarchical-distributed
architecture

Figure 4.1.: Architectures for coordination strategies (CCU: Central Coordination Unit)

From the perspective of the electrical grid, a pure economic operation will result in large
power peaks at the residential substation, since there is no incentive to reduce such peaks
neither at consumption nor at generation side. This issue reveals the need of some kind
of coordination between the H-MGs in order to avoid simultaneous power peaks. One
option to tackle this issue is to use a centralized architecture (see Figure 4.1b), where
a central unit coordinates all involved H-MGs and has global knowledge of the whole
system. A centralized coordination strategy implies, therefore, a centralized optimization
problem with a global objective function, which consists of two terms: one for the economic
operation and, one for penalizing large power peaks. A central entity must have the
complete optimization model of the system with information about the state of each H-
MG. It solves the optimization problem, based also on disturbance forecasts, and decides
about the operation schedule for each H-MG. The advantage of this strategy is that it
achieves the optimal solution, as it is assumed that all information is available. On the
other hand, it possesses the disadvantage of having to collect all the information from
the systems, which subsequently results in a limited scalability of the approach. As
this strategy implicates the central unit having knowledge of every model, constraint,
parameter and state of each H-MG, the privacy aspect is another disadvantage of the
centralized architecture.

Within the architecture for a hierarchical-distributed coordination strategy (see Figure
4.1c), a central coordination unit (CCU) gathers just certain local information from each
H-MG and coordinates all involved H-MGs through some incentives. Hence, there is no
need to reveal all constraints or variables of each H-MG, which helps keeping some privacy
issues. In contrast to the centralized coordination strategy, the central unit does not solve
a large optimization problem. Instead, this central unit performs simple computations
based on the actual state of the system and sends indirect control signals (price signals)
to the H-MGs. Each H-MG solves an optimization problem based on this input signal.
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4. Coordination strategies for optimal operation of interconnected home-microgrids

The information exchange in this strategy is moderate. Although the solution might be
suboptimal, it is still better than the solution from the total decentralized strategy.

The purpose of this chapter is to present and contrast a decentralized MPC operation,
a centralized MPC operation, and a hierarchical-distributed MPC operation for a group
of interconnected home-microgrids with flexible heating systems. This chapter builds
upon the work presented in [58, 59]. Specifically, the main contributions of this chapter
include:

1. a new formulation for the centralized MPC optimization problem, taking into ac-
count costs minimization and peak power reduction,

2. a description and implementation of the hierarchical-distributed MPC strategy ba-
sed on dual decomposition, which allows a more distributed implementation of the
coordination strategy with less information exchange, and

3. a comparison of the above mentioned strategies against a reference decentralized
strategy, providing new insights into the trade-off among local balancing with peak
power reduction, energy bill, and storage losses.

The organization of this chapter is as follows. Systems under investigation, and the
reference decentralized coordination strategy are described in Section 4.2 and Section 4.3
respectively. The description of the decentralized coordination strategy implies a detailed
formulation of local optimization problems for each H-MG. These problem formulations
include static and dynamic models of involved subsystems, operational constraints, and
local economic objective functions. The Section 4.4 discusses the proposed centralized
MPC formulation, while Section 4.5 gives a detailed description of the decomposition
technique used for the hierarchical-distributed strategy and introduces the corresponding
algorithm. Simulation outcomes are presented and discussed in Section 4.6. Finally,
section Section 4.7 sums up the core results and conclusions of the chapter.

4.2. System description

The first part of this section will focus on the description of the considered H-MGs. Each
H-MG consists of different types of appliances, generators and/or storage elements, which
determine H-MG’s electrical flexibility. The work at hand considers three types of H-MGs:
H-MGs including a photovoltaic-battery storage system, H-MGs with photovoltaic-heat
pump storage system, and H-MGs with an installed photovoltaic-cogeneration storage
system. The section gives a compact formulation of set of constraints for battery units,
heat pump units, TES units, mini CHP units, electrical water heater units, and electrical
balance and power exchange with the grid.
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Figure 4.2.: Overview of considered home-microgrids

4.2.1. Considered home-microgrids

Home-microgrids under investigation are residential systems for single or multi-family
households. This work focuses on three specific home-microgrids shown in Figure 4.2.
The home-microgrid 1 is a photovoltaic-battery system (PV-Battery), which represents
a single-family household with an installed PV plant and a battery. The PV plant can
charge the battery, inject power to the grid, or feed the residential inflexible loads - in this
case fridge, washing-machine, lights, etc. Home-microgrid 2 is a photovoltaic-heat pump
system (PV-Heat pump). It also stands for a single-family household and is composed of
a PV plant, a heat pump as flexible load, a TES, and further residential inflexible loads.
The PV plant can either inject power to the grid or supply the heat pump, which is directly
connected to the TES. Here, thermal energy is either stored or used to cover the residential
thermal demand, i.e., space heating (SH) and domestic hot water (DHW). Finally, there is
home-microgrid 3, which is a photovoltaic-combined heat and power storage system (PV-
CHP-Storage) corresponding to a multi-family home-microgrid. It consists of one mini
combined heat and power plant (mini CHP), one PV plant, one battery, one electrical
water heater (EWH) as flexible load, one TES, and a group of inflexible residential loads.
The mini CHP directly feeds a TES with thermal power, which at the same time provides
energy to cover space heating and domestic hot water. Additionally, the EWH supplies
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4. Coordination strategies for optimal operation of interconnected home-microgrids

thermal power to the TES to cover peaks in the thermal demand. On the electrical side,
a PV plant either injects electrical power to the grid, charges the battery or supplies the
household loads. Analogously, the electrical power output of the mini CHP can flow to
the grid or to the battery and loads.

4.2.2. Models and constraints for the considered technologies

As the previous chapters already described in detail the considered technologies (see Chap-
ter 2 for PV-Heat pump, and Chapter 3 for PV-CHP-Storage), the following descriptions
only aim to provide a compact and unified formulation for the coming optimization pro-
blems. The formulations are valid for any H-MG with index h, for h ∈ {1, . . . , H}. Where,
H denotes the number of interconnected H-MGs.

4.2.2.1. Set of equations for battery units

The set PBatt
h describes the behavior of a battery unit. The following equations form this

set:

SoCBatt
h (k + 1) = SoCBatt

h (k) · ηBatt,sd
1 +(

pBatt,char
h,el (k) · ηBatt,char

h −
pBatt,dis
h,el (k)
ηBatt,dis
h

)
·KBatt

h , (4.1a)

SoCBatt,min
h ≤ SoCBatt

h (k) ≤ SoCBatt,max
h , (4.1b)

0 ≤ pBatt,dis
h,el (k) ≤ pBatt,dis,max

h,el ·
(
1− bBatt

h (k)
)
, (4.1c)

0 ≤ pBatt,char
h,el (k) ≤ pBatt,char,max

h,el ·
(
bBatt
h (k)

)
, (4.1d)

bBatt
h (k) ∈ B, (4.1e)
∀k ∈ {ki, . . . , ki +Np − 1}. (4.1f)

In general, equations (4.1a)-(4.1d) give the evolution of battery’s state of charge and
its limits, the maximal battery charging and discharging power, as well as the mutual
exclusivity for the battery charging and discharging. Normally, B is {0, 1}. Just if the
binary variables are relaxed, B is [0, 1].
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4.2.2.2. Set of equations for heat pump units

The equations of the set PHp
h , which defines the operation of a heat pump, are:

pHph,th(k) = pHph,el(k) · COPh, (4.2a)
bHp,onh (k) · pHp,minh,el ≤ pHph,el(k) ≤ bHp

h · p
Hp,max
h,el , (4.2b)

bHp,on
h (k)− bHp,onh (k − 1) = bHp,up

h (k)− bHp,down
h (k), (4.2c)

bHp,up
h (k) + bHp,down

h (k) ≤ 1, (4.2d)

tHp,ON
h · bHp,up

h (k) ≤
min{k+tHp,ON

h
−1,Np−1}∑

j=k
bHp
h (k), (4.2e)

tHp,OFF
h · bHp,down

h (k) ≤ tHp,OFF
h −

min{k+tHp,OFF
h

−1,Np−1}∑
j=k

bHp,on
h (k), (4.2f)

bHp,on
h (k), bHp,up

h (k), bHp,down
h (k) ∈ B, (4.2g)

∀k ∈ {ki, . . . , ki +Np − 1}. (4.2h)

The relationship between consumed electrical power and produced thermal power, and the
working range for electrical power are given by equations (4.2a) and (4.2b) respectively.
The use of (4.2c) and (4.2d) enables the tracking of heat pump’s start-up and shut-down
processes. Constraints (4.2e) and (4.2f) guarantee that the HP stays at least tHp,ON

2 time
steps in ON status or tHp,OFF

2 time steps in OFF status after a start-up or a shut-down
process, respectively.

4.2.2.3. Set of equations for TES units

Equations (4.3a), (4.3c), and (4.3d) of the set PTes
h give the progress of TES state of

charge over the prediction horizon, and the thermal power balance - which occurs in the
TES.

SoCTes
h (k) = SoCTes

h (k) · ηTes,sd
h +(

pTes,char
h,th (k)− pTes,dis

h,th (k)
)
·KTes

h , (4.3a)

SoCTes,min
h ≤ SoCTes

h (k) ≤ SoCTes,max
h , (4.3b)

pTes,char
h,th (k) = pGen

h,th(k), (4.3c)
pTes,dis
h,th (k) = pCons

h,th (k), (4.3d)
∀k ∈ {ki, . . . , ki +Np − 1}. (4.3e)
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4.2.2.4. Set of equations for mini CHP units

For a mini CHP unit, the following equations hold:

pChp
h,el (k) = pChp

h,gas(k) · ηChp
h,el , (4.4a)

bChp
h (k) · pChp,min

h,el ≤ pChp
h,el (k) ≤ pChp,max

h,el · bChp
h (k), (4.4b)

pChp
h,th(k + 1) = Ah,th · pChp

h,th(k) +Bh,th · pChp
h,gas(k), (4.4c)

bChp,on
h (k)− bChp,on

h (k − 1) = bChp,up
h (k)− bChp,down

h (k), (4.4d)
bChp,up
h (k) + bChp,down

h (k) ≤ 1, (4.4e)

tChp,ON
h · bChp,up

h (k) ≤
min{k+tChp,ON

h
−1,Np−1}∑

j=k
bChp,on
h (k), (4.4f)

tChp,OFF
h · bChp,down

h (k) ≤ tChp,OFF
3 −

min{k+tChp,OFF
h

−1,Np−1}∑
j=k

bChp
h (k), (4.4g)

bChp,on
h (k), bChp,up

h (k), bChp,down
h (k) ∈ B, (4.4h)

∀k ∈ {ki, . . . , ki +Np − 1}. (4.4i)

Equations (4.4a) and (4.4c) respectively consider the electrical and thermal dynamic beha-
vior of the mini CHP. Analogous to the previously described heat pump unit, constraints
(4.4c)-(4.4g) assures a minimum ON status or a minimum OFF status after a start-up or
a shut-down process. All these equations form the set PChp

h .

4.2.2.5. Set of equations for electrical water heater units

Similar to a heat pump unit, the behavior of an EWH is given by the set PEwh
h with the

equations:

pEwhh,th (k) = pEwhh,el · ηEwh
h , (4.5a)

bEwh
h (k) · pEwh,min

h,el ≤ pEwh
h,el (k) ≤ pEwh,max

h,el · bEwh
h (k), (4.5b)

bEwh
h (k) ∈ B, (4.5c)
∀k ∈ {ki, . . . , ki +Np − 1}. (4.5d)

This work assumes, that an EWH does not have any restriction on ON/OFF status.
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4.2.2.6. Set of equations for electrical balance and power exchange with the
grid

The set PGrid
h comprises:

pCons
h,el (k) + pExp

h,el (k) = pGen
h,el (k) + pImp

2,el (k), (4.6a)
0 ≤ pImp

h,el (k) ≤
(
pImp,max
h,el

)
·
(
bGrid
h (k)

)
, (4.6b)

0 ≤ pExp
h,el (k) ≤

(
pExp,max
h,el

)
·
(
1− bGrid

h (k)
)
, (4.6c)

bGrid
h (k) ∈ B, (4.6d)
∀k ∈ {ki, . . . , ki +Np − 1}. (4.6e)

These equations determine the electrical balance within the H-MG, together with the
mutual exclusivity for power import and power export.

4.3. Decentralized coordination strategy

The decentralized strategy is the reference coordination strategy for this chapter, in which
each H-MG minimizes its own local economic objective function - f1 for H-MG 1, f2 for
H-MG 2, and f3 for H-MG 3. There is no central coordination unit and therefore this
strategy does not require information exchange between the H-MGs.

As similar problems were already described in detailed in previous chapters (see Chapter 2
for PV-Heat pump, and Chapter 3 for PV-CHP-Storage), the upcoming paragraphs give
just a compact overview on the decentralized local optimization problems for each H-
MG.

4.3.1. Local optimization problem for a photovoltaic-battery
H-MG

This is the first and simplest system, where only the battery offers flexibility. In order
to reduce the energy bill, the management system has to decide when to use PV power
production to feed the residential loads, when to use it to charge the battery and when
to inject to the grid. Additionally, the management system also determines when to
discharge the battery to cover the local demand.
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The equations below define the optimization problem for the first H-MG.

minimize
û1

f1
(
pImp

1,el ,p
Exp
1,el

)
(4.7a)

subject to
pBatt,char

1,el ,pBatt,dis
1,el , bBatt

1 ∈ PBatt
1 , (4.7b)

pImp
1,el ,p

Exp
1,el , b

Grid
1 ∈ PGrid

1 , (4.7c)
pCons

1,el = pLoad
1,el + pBatt,char

1,el , (4.7d)
pGen

1,el = pPv
1,el + pBatt,dis

1,el , (4.7e)
B ∈ {0, 1}. (4.7f)

Where the vector of decision variables is

û1 =


pBatt,char

1,el
pBatt,dis

1,el
bBatt

1
bGrid

1

 . (4.8)

Here, pBatt,char
1,el , pBatt,dis

1,el , bBatt
1 , and bGrid

1 are in RNP .

f1 denotes the local economic objective function with the continuous variables pImp
1,el (k)

and pExp
1,el (k) describing power import and power export exchange with the main grid.

4.3.2. Local optimization problem for a photovoltaic-heat pump
H-MG

For this H-MG, the goal is to minimize electricity costs by shifting operation times of the
heat pump using the flexibility provided by the TES.

The electrical power output of the heat pump and the binary variable for the ON/OFF
status of the heat pump, are the main decision variables of the optimization problem.

Domestic hot water consumption, space heating demand, PV generation, and household
load consumption are inputs that cannot be controlled, and therefore are considered as
disturbances. As their future values are uncertain, a forecast for them is needed.
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The equations below define the optimization problem for H-MG 2.

minimize
û2

f2
(
pImp

2,el ,p
Exp
2,el

)
(4.9a)

subject to
pHp

2,el,p
Hp
2,th, b

Hp
2 ∈ P

Hp
2 , (4.9b)

pTes,char
2,th ,pTes,dis

2,th ∈ PTes
2 , (4.9c)

pImp
2,el ,p

Exp
2,el , b

Grid
2 ∈ PGrid

2 , (4.9d)
pCons

2,el = pLoad
2,el + pHp

2,el, (4.9e)
pGen

2,el = pPv
2,el, (4.9f)

pCons
2,th =

pSh
2,th + pDhw

2,th

ηTes,dis
2

, (4.9g)

pGen
2,th = pHp

2,th · η
Tes,char
2 , (4.9h)

B ∈ {0, 1}. (4.9i)

With the vector

û2 =
pHp

2,el
bHp

2

 , (4.10)

where

bHp
2 =


bHp,on

2

bHp,up
2

bHp,down
2

 . (4.11)

The local economic objective function is given by f2. The vectors pHp
2,el, b

Hp,on
2 , bHp,up

2 ,
bHp,down

2 , and bGrid
2 are in RNP .

4.3.3. Local optimization problem for a photovoltaic-combined
heat and power H-MG

Same as for the previous systems, the goal of the proposed economic operation is to
minimize operational costs.

This is achieved by shifting operation times of the mini CHP using the flexibility provided
by the battery and the TES.
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A compact description of the problem for H-MG 3 is given below:

minimize
û3

f3
(
pImp

3,el ,p
Exp
3,el

)
+ f̃3

(
˜̂u3
)

(4.12a)

subject to
pChp

3,el ,p
Chp
3,th , b

Chp
3 ∈ PChp

3 , (4.12b)
pEwh3,el ,p

Ewh
3,th , b

Ewh
3 ∈ PEwh

3 , (4.12c)
pTes,char

3,th ,pTes,dis
3,th ∈ PTes

3 , (4.12d)
pBatt,char

3,el ,pBatt,dis
3,el , bBatt

3 ∈ PBatt
3 , (4.12e)

pImp
3,el ,p

Exp
3,el , b

Grid
3 ∈ PGrid

3 , (4.12f)
pCons

3,el = pLoad
3,el + pEwh

3,el + pBatt,char
3,el , (4.12g)

pGen
3,el = pChp

3,el + pPv
3,el + pBatt,dis

3,el , (4.12h)

pCons
3,th =

pSh
3,th + pDhw

3,th + pLost
3,th

ηTes,dis
3

, (4.12i)

pGen
3,th =

(
pChp

3,th + pEwh
3,th

)
· ηTes,char

3 . (4.12j)

B ∈ {0, 1}. (4.12k)

The decision variables vector is û3 =
[
pChpᵀ

3,gas ,p
Ewhᵀ
3,el ,pBatt,charᵀ

3,el ,pBatt,disᵀ
3,el ,pLostᵀ

3,th , b3
]ᵀ
, where

b3 is given by b3 =
[
bChp

3 , bBattᵀ
3 , bGridᵀ

3

]ᵀ
, and bChp

3 =
[
bChp,onᵀ

3 , bChp,upᵀ
3 , bChp,downᵀ

3

]
.

The vectors pChp
3,gas, pEwh

3,el , p
Batt,char
3,el , pBatt,dis

3,el , pLost
3,th , b

Chp,on
3 , bChp,up

3 , bChp,down
3 , bBatt

3 , and bGrid
3

are in RNP . f3 defines the local economic objective function and f̃3 defines additional
generation costs.

4.3.4. Local objective functions

Finally, the local economic objective function fh for each H-MG, i.e. h = 1, 2, 3, given a
fixed electricity price Cel and a fixed feed-in tariff Cfit is

fh
(
pImp
h,el ,p

Exp
h,el

)
=

ki+Np−1∑
k=ki

Cel · pImp
h,el (k)− Cfit · pExp

h,el (k). (4.13)

For any H-MG h containing a CHP unit, the additional generation costs are

f̃h
(
˜̂uh
)

=
ki+Np−1∑
k=ki

Cgas · pChp
h,gas(k) + CChp

start · bChp,up
h (k) + CLost · pLost

h,th (k). (4.14)
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4.4. Centralized coordination strategy

This section mainly deals with the design of an optimal centralized coordination strategy
for interconnected H-MGs. It extends the decentralized economic coordination to a cen-
tralized approach to improve the power exchange between H-MGs. This strategy seeks to
lower energy bill, improve power exchange among H-MGs and reduce large power peaks
at the point of common coupling (PCC in Figure 4.2). For this purpose, the objective
function of the centralized coordination strategy includes a quadratic term for minimizing
the instantaneous quadratic difference between power import and power export among
H-MGs over the prediction horizon. The centralized optimization problem is then given
by:

minimize
{ûh}

H∑
h=1

Jh (ûh) +
ki+Np−1∑
k=ki

(
pG,total
el (k)

)2
(4.15a)

subject to
H∑
h=1

(
pImp
h,el (k)− pExp

h,el (k)
)

= pG,total
el (k) ∀k ∈ {ki, . . . , ki +Np − 1}, (4.15b)

ûh ∈ Υh ∀h ∈ {1, . . . , H}, (4.15c)
B ∈ {0, 1}. (4.15d)

Where Jh (ûh) = fh
(
pImp
h,el ,p

Exp
h,el

)
+ f̃h

(
˜̂uh
)
for h = 1, . . . , H. H denotes the number

of interconnected H-MGs. For the current case, H = 3 and f̃1
(
˜̂u1
)

= f̃2
(
˜̂u2
)

= 0.
The set Υh include all the local constraints defined for the decentralized problems, i.e.,
{Υ1,Υ2,Υ3} = {(4.7b)− (4.7e), (4.9b)− (4.9h), (4.12b)− (4.12j)}.

4.5. Hierarchical-distributed coordination strategy
based on dual decomposition

This strategy builds upon the centralized optimization problem presented before. The
idea now, is to perform the optimal coordination in a more distributed way. This is achie-
ved by breaking the global optimization problem down, by means of dual decomposition,
to smaller subproblems that can be solved possibly in parallel. Because of the presence of
binary variables in the local optimization problems, the resulting subproblems are non-
convex. On that account, these variables are first relaxed, and the separable dual problem
is then solved by sub-gradient iterations. Once convergence of the sub-gradient iterations
is established, an additional method to recover feasible primal solutions from the dual pro-
blem completes the procedure. If the reader is new to the concept of dual decomposition,
Subsection A.5.1 in Appendix A provides a detailed description of decomposition with
constraints by means of dual decomposition which may be helpful in order to understand
the upcoming formulations. This section illustrates the decomposition and recovering
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process, states the resulting optimization subproblems, and concludes by presenting the
hierarchical-distributed coordination algorithm.

The idea behind this coordination strategy is to decompose the centralized primal pro-
blem, shown in (4.15), into local smaller subproblems in order to solve them possibly in
parallel. The centralized problem would be easily separable, except for the quadratic term
in the objective function, which cannot be decomposed. For this reason, it is proposed
to use dual decomposition, where the global centralized problem is solved by working
with the dual problem and by manipulating the dual variables [80]. Accordingly, the first
step is to form the partial lagrangian associated to the centralized problem (4.15). It will
be shown later that all binary variables from (4.15) will be relaxed, and therefore it is
possible to form the partial lagrangian. The partial lagrangian is

L
(
û,pG,total

el ,λ
)

=
H∑
h=1

Jh (ûh) +
ki+Np−1∑
k=ki

(
pG,total
el (k)

)2
+

ki+Np−1∑
k=ki

λ(k)
(

H∑
h=1

(
pImp
h,el (k)− pExp

h,el (k)
))
−

ki+Np−1∑
k=ki

λ(k) · pG,total
el (k),

(4.16)

and shows a relaxation of the coupling constraint from the centralized problem, which is
now accounted in the objective by adding it as a weighted term. Here û = [ûᵀ

1, . . . , û
ᵀ
H ]ᵀ

denotes the local decision variables, pG,total
el =

[
pG,total
el (ki) . . . , pG,total

el (ki +Np − 1)
]ᵀ

is the
vector of coupling variables and λ = [λ(ki), . . . , λ(ki +Np − 1)]ᵀ is the vector of lagrange
multipliers. A subgradient iterative method helps to solve the dual problem which is
now separable. The solution of the dual problem gives a lower bound for the original
centralized problem.

4.5.1. Subproblems for H-MGs and central coordination unit

To compute the dual problem in parallel, each H-MG must find the optimal power grid
profile PG

h,el that minimizes

(
ûl+1
h ,pG,l+1

h,el

)
:= argmin

ûh,p
G
h,el

Jh (ûh) +
ki+Np−1∑
k=ki

λ(k)l · pG
h,el(k)

 (4.17a)

subject to
ûh ∈ Υh, ∀h ∈ {1, . . . , H}, (4.17b)
B ∈ [0, 1] . (4.17c)
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where pG
h,el =

[
pImp
h,el (ki)− p

Exp
h,el (ki), . . . , p

Imp
h,el (ki +Np − 1)− pExp

h,el (ki +Np − 1)
]ᵀ
. In gene-

ral, the objective value obtained by dual decomposition with subgradient iterations con-
verges to the solution of the centralized problem [80]. However, since there are binary
variables in the formulation, there is not guaranty for such convergence. Tackling this
issue requires a relaxation of constraints involving binary variables. Therefore, within
the hierarchical-distributed coordination strategy each H-MG has to firstly solve (4.17)
subject to the same constraints as in the respective decentralized problems, but changing
the domain of the binary variables to [0, 1]. Furthermore the central coordination unit
(CCU) has to find the optimal pG,totalel that minimizes

pG,total,l+1
el := argmin

pG,total
el

ki+Np−1∑
k=ki

(
pG,total
el (k)

)2
−

ki+Np−1∑
k=ki

λ(k)l
(
pG,total
el (k)

), (4.18)

by adjusting the dual variable λ(k) to coordinate its decision with the decisions of the
H-MGs using a subgradient iteration. The subgradient update is given by

λl+1 = λl + αdd
(

H∑
h=1
pG,l+1
h,el − p

G,total,l+1
el

)
, (4.19)

where αdd designates the iteration step size. In this work, the hierarchical-distributed
strategy employes αdd = 0.5/l as iteration step size.

4.5.2. Recovering primal feasible solutions

One limitation of dual decomposition is that the solution to the dual problem does not
automatically produces the optimal primal decision variables, but only the optimal value
of the primal centralized problem. This situation is aggravated in the present case, since
it is solving a relaxed version of the original problem. Hence, the dual decomposition
method needs to be complemented by a method for recovering primal feasible solutions.
For this purpose, after a convergence for the subgradient iterations is found, problem
(4.17) is solved again with λlmax and the original constraints, i.e. without relaxation on
binary variables as

(
ûh,p

G
h,el

)
:= argmin

ûh,p
G
h,el

Jh (ûh) +
ki+Np−1∑
k=ki

λ(k)lmax · pG
h,el(k)

 (4.20a)

subject to
ûh ∈ Υh, ∀h ∈ {1, . . . , H}, (4.20b)
B ∈ {0, 1}. (4.20c)
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4.5.3. Disturbance forecasts

Inputs from photovoltaic generation, domestic hot water and space heating consumption,
and household load are handled as disturbances in the MPC structure. To handle such
uncertainties, the MPC needs a forecast for their values over the considered prediction
horizon. Existing methods to perform such a forecast based on historical data include
polynomial regression and artificial neural networks among others. As the focus of the
present work lays in the formulation and simulation of different coordination strategies,
the development of an advanced forecast algorithm to predict disturbances is out of the
scope of this work. Instead, the implemented MPC uses a straightforward prediction of
disturbances based on persistence. For strong weather-dependent uncertainties -i.e PV
generation and space heating consumption- a one-day persistence forecast is employed,
and for behavior-dependent uncertainties, like household electrical load and domestic hot
water consumption, a seven-day persistence forecast is used.

4.5.4. Algorithm

The steps below in Algorithm 1 give a description of the algorithm for the hierarchical-
distributed coordination strategy based on dual decomposition.

Algorithm 1 MPC based hierarchical-distributed algorithm using dual decomposi-
tion

1: Initializing. Given ki and λ1 = 0, each H-MG h = 1, 2, 3 measures its actual states,
and gets forecast for disturbances

2: Sub-gradient iterations. For l = 1, . . . , lmax do

• Each H-MG solves the relaxed problem (4.17), and communicates PG,l+1
h,el to the

CCU

• CCU solves (4.18), updates the lagrange multipliers (4.19), and broadcasts λl+1

3: Recovering primal feasible solutions. Each H-MG solves (4.17) again with λlmax

and original constraints without relaxation
4: Implementation. Implement first element of the feasible solution vector, increment
ki = ki + ∆t, and go to 1

4.6. Simulation results and discussion

This section presents relevant results for the three different MPC operation strategies
based on a simulation for 7 days in winter. The same simulation setup as in Chapter 2
and Chapter 3 is used. The problem is solved using Pyomo [74, 75] as modeler and
CPLEX [76] as solver. The analysis is first conducted from a H-MG perspective and then
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4.6. Simulation results and discussion

from a main grid perspective. First, from a H-MG’s perspective, the decentralized and
the centralized strategy are analyzed. Figure 4.3 presents power import and power export
at each H-MG for the decentralized and the centralized strategy.
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Figure 4.3.: Resultant electrical power profiles for decentralized and centralized strategy

Looking at the upper left subplot under a pure economic operation, the PV-Battery system
imports electrical power during morning and afternoon hours and injects PV surplus to
the grid around noon. With the centralized strategy, this system now contributes in a
small portion to balance the demand of H-MG 2 and also shifts the injection peaks so that
they can be absorbed by H-MG 3. Under the decentralized strategy, the PV-Heat pump
H-MG (center left subplot) mainly imports power from the grid in order to supply the heat
pump and the household loads, with a very large peak of approximately 8 kWel around
8:00 o’clock. For this specific day, the grid receives just a small amount of PV power
from this system. For the centralized case, the PV-Heat pump system also presents some
changes in its operation that can be seen in the center right subplot. Using the flexibility
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4. Coordination strategies for optimal operation of interconnected home-microgrids

from the TES, the heat pump avoids running at high power resulting in a reduction of
consumption peaks. H-MG 3 has a minimal interaction with the grid when working in
the decentralized mode, as shown in the lower left subplot. Except two import peaks, this
H-MG almost supplies itself during this day. This behavior completely changes under the
centralized coordination, as the lower right subplot displays. Now, this H-MG actively
imports and exports power. Electrical power export is mostly for balancing the demand
of the PV-Heat pump system, while electrical power import occurs in order to absorb
surplus from H-MG one. It can be appreciated how the proposed centralized formulation
optimally coordinates power exchange between systems, so that extreme power peaks at
consumption and generation at the PCC are reduced.

The convergence of the dual decomposition approach is now discussed. The objective value
obtained with the hierarchical-distributed strategy (JHierar−dist), and the one obtained with
the centralized strategy (JCent), versus the iteration count l are shown in Figure 4.4. The
plot shows that JHierar−dist converges to the optimal objective value (green line) from the
centralized operation strategy. This confirms that the implementation of the hierarchical-
distributed strategy is working as expected, and after a certain number of iterations the
results obtained with the hierarchical-distributed strategy are acceptable.
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Figure 4.4.: Convergence of objective value for dual decomposition algorithm

To continue the analysis from a main grid perspective, resultant power profiles at the PCC
for all strategies are presented in Figure 4.5. As under the decentralized strategy (purple
line), each H-MG minimizes its own economic objective function, without caring about
power exchange among neighbors, this strategy gives a volatile power profile with large
peaks at consumption and generation. In contrast, the centralized strategy (green line)
presents an almost regular power profile reducing extreme peaks at generation and con-
sumption. This fact confirms the effect of adding the additional quadratic peak reduction
term in the objective function of the centralized problem. For the hierarchical-distributed
strategy, it is decided to use 30 as the maximum number of iterations. The orange line
displays the resulting power profile.
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Figure 4.5.: Comparison of electrical power profiles for all considered coordination
strategies

Since an arbitrary limit for iterations is set in order to speed up the computation, results
of the hierarchical-distributed strategy are not as good as the ones obtained with the
centralized strategy. Notwithstanding, they show a considerable improvement compared
to the decentralized coordination from the point of view of reduction of large peaks.

Observations for pG,total
el for a simulation over 7 days in winter are shown in Figure 4.6.

Again, all three different strategies are simulated. For the decentralized strategy, the
distribution shows large peaks at consumption and generation side, approximately at 9
kWel and -7.5 kWel respectively, while most of the observations lie between 0 kWel and 5
kWel. The centralized strategy gives a narrower distribution, where most of the values are
between 0 kWel and 1 kWel. The hierarchical-distributed strategy also results in a compact
distribution, with maximum peaks around 3 kWel and -2 kWel. Although this strategy
does not give the same narrow power band as the centralized one, it does reduce the
extreme power peaks from the decentralized strategy. The advantage of the hierarchical-
distributed strategy is that it does not require the central coordination unit to solve a
global optimization problem, therefore, there is no need to collect all the information from
H-MGs - e.g. state of charge of batteries, load consumption, PV production, etc. - in
a central instance. Instead, individual optimization problems are solved locally and in
parallel by the H-MGs and the CCU, and only the expected power profile at the house
connection point and prices (lagrange multipliers) have to be communicated.
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Figure 4.6.: Distribution of pGrid,total
el over 7 days under the different strategies

Energy efficiency is another important aspect to evaluate. For this purpose, storage
losses in [kWh] due to self-discharge, charging, and discharging are also quantified by
determining the difference in net energy input and output over the 7 days. They are
visualized in Figure 4.7. In general, for all strategies, losses in TES are larger than
resultant losses in battery systems. Moreover, under the centralized and the hierarchical-
distributed strategy, losses in TES increase. For battery systems, this situation is not
entirely evident.

Tes3 Tes2 Batt3 Batt1

551 kWh
159 kWh

14 kWh 15 kWh

Centralized Decentralized Hierar-dist

Figure 4.7.: Resulting storage losses for the different strategies over 7 days
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Figure 4.8.: Resulting costs for the different strategies over 7 days

Total energy bill for all H-MGs for the 7 days are calculated and presented in Figure 4.8.
Operation under the centralized strategy, or under the hierarchical-distributed strategy
implies an increment in energy bill. This is because under these strategies, power peak
reduction at PCC is also taken into account in the objective function.
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4.7. Summary of the chapter

This chapter introduced three coordination strategies for a group of interconnected H-
MGs. First, it presented a reference decentralized MPC operation, which involved the
formulation of local optimization problems for each H-MG, i.e., without considering the ex-
change of power with neighboring H-MGs. Within this kind of operation, each H-MG tries
to minimize its operation costs, including energy bills, by using its installed flexibility. The
investigation comprised three main possible H-MG configurations: a photovoltaic-battery
system corresponding to a single-family house, a photovoltaic-heat pump storage system
also corresponding to a single-family house, and a photovoltaic-cogeneration storage sy-
stem corresponding to a multi-family house. Accordingly, optimization problems for each
H-MG configuration were stated, considering the respective static and dynamic models,
and constraints. The chapter then moved to the investigation of the optimal operation of
a group of interconnected H-MGs, where the goal was, besides minimization of operating
costs, that the H-MGs exchange power between them and reduce extreme power peaks at
the main connection point (PCC). Thereupon, the chapter continued with the develop-
ment and description of a hierarchical-distributed optimization approach, which handles
the optimal operation of a group of interconnected H-MGs in a more distributed fashion
than the centralized approach does. All three strategies were simulated and contrasted
for seven days in winter. The results demonstrated that the proposed centralized formu-
lation was able to improve the electrical power balancing between systems while reducing
extreme peaks at the generation and consumption side at the PCC.
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5. A hierarchical-distributed coordination
strategy for interconnected
home-microgrids using the ADMM
sharing problem

This chapter looks at the optimal operation of a group of interconnected home-
microgrids using a model predictive control based hierarchical-distributed strategy
with the “Alternating Direction Method of Multipliers” (ADMM). It gives the mathe-
matical formulation for the optimal operation of such a system as an ADMM sharing
problem. It investigates two approaches to deal with binary variables in the presented
ADMM implementation. The chapter also examines termination conditions for the
ADMM algorithm, and in the end, it proposes a new termination condition.

5.1. Introduction

This chapter concerns itself with a novel hierarchical-distributed coordination of intercon-
nected H-MGs. The chapter improves the previous presented dual decomposition based
strategy by applying the alternating direction method of multipliers (ADMM). ADMM
is an algorithm for large scale distributed optimization which combines the properties of
dual decomposition and augmented Lagrangian methods [81]. Subsection A.5.2 in Appen-
dix A provides the theoretical description of ADMM, while this chapter focuses only on
ADMM’s implementation for the considered case. More specifically, this chapter makes
use of the ADMM sharing problem formulation, as presented in [81], to tackle the issue of
coordinating interconnected H-MGs. Building upon the centralized coordination strategy
presented in Section 4.4, the chapter shows how to formulate such a centralized problem
as an ADMM sharing problem and elaborates on the ADMM implementation. As the
original centralized problem includes binary variables in its formulation, handling the in-
volved non-convexity becomes an issue when implementing ADMM. On that account, the
chapter proposes and investigates two approaches to deal with binary variables, namely:

1) solving a relaxed version of the original subproblems and subsequently recovering pri-
mal feasible solutions (ADMM-feasible), and

2) solving the original non-convex subproblems without any relaxation (ADMM-unrelax).

Moreover, the chapter pays special attention to termination conditions for ADMM, since
it turns out that deciding when to terminate an ADMM algorithm is not straightforward.
In this context, the chapter examines state-of-the-art termination conditions for ADMM
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and proposes a new termination condition which exploits the properties of the MPC
concept. More specifically, the contributions of this chapter are:

1. an ADMM sharing problem formulation for hierarchical-distributed coordination of
interconnected H-MGs,

2. conclusive results on the best approach to handle binary variables within the current
ADMM implementation, and

3. a simple yet effective new termination condition for the presented ADMM imple-
mentation.

The remainder of this chapter is organized as follows: The first section introduces the
problem formulation, going from the centralized problem to the hierarchical-distributed
ADMM updates. The second section gives an overview of the ADMM implementation,
paying special attention to the handling of the binary variables and ADMM’s termination
condition. The second section ends by presenting the hierarchical-distributed MPC algo-
rithm based on ADMM. The third and last section shows and discusses the simulation
results.

5.2. ADMM sharing problem formulation

Let the vector pG
h ∈ RNp , which is dependent on the vector of decision variables ûh,

denotes the power exchange between a H-MG h and the main grid over a prediction
horizon Np. Formally,

pG
h =

[
pImp
h,el (ki)− p

Exp
h,el (ki), . . . , p

Imp
h,el (ki +Np − 1)− pExp

h,el (ki +Np − 1)
]ᵀ
,

where pImp
h,el and p

Exp
h,el are continuous variables that depend on the decision variables and ki

is the actual time step. The centralized coordination problem (4.15) defined in Section 4.4
can be rewritten as:

minimize
{ûh}

H∑
h=1

Jh (ûh) + g

(
H∑
h=1
pG
h

)
(5.1a)

subject to ûh ∈ Υh, ∀h ∈ {1, . . . , H}, (5.1b)
B ∈ {0, 1}. (5.1c)

Where the local cost function Jh and the shared objective g define the objective function.
The problem is constrained by the set of local constraints Υh. The argument for g is the
sum of local variables pG

h over all H-MGs such that
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g

(
H∑
h=1
pG
h

)
= γ

Np

‖
H∑
h=1
pG
h ‖2

2, (5.2)

with a regularization parameter γ.

Problem (5.1) is a shared problem. Here, each H-MG h adjusts its individual power
consumption/injection pG

h to minimize its own energy costs Jh as well as the shared ob-
jective g

(∑H
h=1 p

G
h

)
, which involves improving balancing between H-MGs and reducing

extreme power peaks at the reference node in the main grid. This problem can be for-
mulated in ADMM form by copying the local public variables pG

h to zh as follows (see
subsubsection A.5.2.2 in Appendix A and Chapter 7.3 in [81] for further information):

minimize
{ûh}

H∑
h=1

Jh (ûh) + g

(
H∑
h=1
zh

)
(5.3a)

subject to pG
h − zh = 0, ∀h ∈ {1, . . . , H}, (5.3b)
ûh ∈ Υh, ∀h ∈ {1, . . . , H}, (5.3c)
B ∈ {0, 1}. (5.3d)

According to Boyd et al. [81], the ADMM algorithm to find the solution to such a sharing
problem consists of the iterations:

(
ûl+1
h ,pG,l+1

h

)
:= argmin

ûh

(
Jh (ûh) + (ρ/2)

∥∥∥pG
h − p

G,l
h + p̄G,l − z̄l + al

∥∥∥2

2

)
, (5.4)

z̄l+1 := argmin
z̄

(
g (Hz̄) + Hρ

2
∥∥∥z̄ − al − p̄G,l+1

∥∥∥2

2

)
, (5.5)

al+1 := al + p̄G,l+1 − z̄l+1, (5.6)

where

g (Hz̄) = γ

Np

‖Hz̄‖2
2 . (5.7)

ûh is the vector of local decision variables (private and public) of H-MG h, and pG
h

is a vector dependent on local public variables of the same H-MG. a can be seen as a
coordination mechanism sent by the CCU and z̄ as the global variable. ρ is the augmented
Lagrangian parameter. Only the CCU has knowledge on the global variable. At each
iteration process every single H-MG h, for h = 1, . . . , H, computes its ûh-update in
(5.4) in parallel and builds and communicates its respective pG,l+1

h . For the z̄-update
step, the CCU first collects all pG,l+1

h to form the averages and then solves (5.5). It is
an unconstrained minimization problem with Np variables, whose closed-form analytical
solution is given by the following expression (see Appendix C):
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z̄l+1 =
ρ
(
al + p̄G,l+1

)
2γ
Np
H + ρ

, (5.8)

where

p̄G =
∑H
h=1 p

G
h

H
. (5.9)

The optimal value of z̄ depends on the coordination mechanism a and the average of
powers of all subsystems p̄G. With this information the CCU can calculate the a-update
in (5.6). Finally, the CCU broadcasts the new value of p̄G,l+1−z̄l+1+al+1 to all H-MGs.

The reader may refer to subsubsection A.5.2.2 in Appendix A for a detailed step by step
deduction of the presented ADMM algorithm for the sharing problem.

5.3. ADMM implementation

This work approaches the ADMM implementation from a global perspective where a
central collector coordinates the jobs of a set of H-MGs. The central collector broadcasts
z̄ and a to the H-MGs, wait until they finish their local computations, collects all pG

h ,
and updates z̄ and a.

To implement ADMM each H-MG h must store its current value of ûh. Furthermore, it
must be capable of solving its local optimization problem and have access to the required
local information for defining Jh. It is necessary to have a global aggregator (CCU), which
acts as a central collector and its main tasks are averaging local public variables, updating
the global variable, and computing and broadcasting the coordination mechanism. Fur-
thermore, all subsystems (H-MGs) have to be synchronized, i.e. updating local variables
must occur before conducting global aggregation, and the latest available global variable
and coordination mechanism are to be used for the local updates. Similar requirements
are also valid for the implementation of the dual decomposition approach.

As mentioned earlier, for the considered case the ADMM implementation also demands to
answer two questions: how to cope with the non-convex problems and when to terminate
the algorithm. The following subsections treat these subjects in detail.

5.3.1. Approaches for handling the mixed-integer nature of the
subproblems within the ADMM algorithm

ADMM is well suited to work for distributed convex optimization problems [81]. For non-
convex problems (in this case a problem with binary variables), ADMM can converge to
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non-optimal points. This work investigates two approaches for handling binary variables
within the ADMM algorithm:

1. ADMM-feasible. It is based on similar case studies discussed in [33] and [34]
and implies carrying out two additional steps, namely relax and recover. It firstly
consists in relaxing all binary constraints in the local subproblems, such that the
relaxed variables are constrained by the real interval between 0 and 1. Once the
algorithm’s solution satisfies the defined termination condition or the algorithm
reaches the maximum allowed iteration counts, the resulting solution vector may not
be feasible i.e. the solution for the binary variables is not necessarily boolean. As a
consequence, this approach requires an additional step to recover feasible solutions.
This is done by solving the ûh-update with the original binary constraints and last
available information.

2. ADMM-unrelax. Based on the work in [82], this approach proposes to perform all
ADMM steps without any relaxation with the hope that the algorithm will converge.
If it converges, the point of convergence may be a good point - compared against
the global optimum. Furthermore, the resulting solution will be already feasible and
can be implemented directly. The advantage of this approach is the sparing of the
relaxation and recovery steps.

5.3.2. Termination condition for the ADMM algorithm

The primal residual norm and the dual residual norm are normally used to check termi-
nation condition in ADMM applications. The primal residual norm ‖rl‖2 at an iteration
count l is:

‖rl‖2 = ‖pG,l −Hz̄l‖2, (5.10)

where pG,l = ∑H
h=1 p

G,l
h . This can be seen as the l2-norm of the vector difference between

the sum of H-MGs power schedules and the power schedule computed by the CCU. When
the l2-norm of this vector difference is small enough, the algorithm is said to meet the
primal residual convergence criterion. The dual residual norm at iteration count l is
defined as:

‖sl‖2 = ‖ρ(z̄l − z̄l−1)‖2, (5.11)

when the l2-norm of the vector difference between two consecutive computations of z̄ is
small enough, the algorithm is said to meet the dual variable convergence.

The termination criterion is met, when the primal residual norm and the dual residual
norm are smaller than a given tolerance. The same tolerance definitions as suggested in
[81] are used in this work as reference. Accordingly, the primal tolerance is defined as:

εpri =
√
NpHε

abs + εrel max
{
‖

H∑
h=1
pG,l
h ‖2, ‖Hz̄l‖2

}
, (5.12)
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and the dual tolerance as:

εdual =
√
NpHε

abs + εrel‖ρal‖2, (5.13)

where εabs is an absolute tolerance and εrel is a relative tolerance. The implemented values
for these tolerances are εabs = 10−4 and εrel = 10−2.

5.3.3. A new termination condition for ADMM

As the considered ADMM implementation works within an MPC framework, checking the
whole time window with the primal residual norm is not necessary and inefficient. This
work proposes new termination conditions for the considered ADMM implementation.
First, by exploiting the principles of MPC where just the first element of the solution
vector is implemented and the rest is discarded, a new termination criterion pays special
attention to ‖rlki

‖1, which is the absolute value of primal residual’s first element as shown
in (5.14). In other words, the termination condition implies that the absolute difference
between the sum of electrical powers pG,l

h,el(ki) sent by the H-MGs and the estimated power
at reference node at time ki, computed by the CCU, must be less than a given tolerance.

‖rlki
‖1 =

∣∣∣∣∣
H∑
h=1

pG,l
h,el(ki)−Hz̄l(ki)

∣∣∣∣∣ . (5.14)

Additionally, the l∞-norm helps to check the maximum discrepancy between the electrical
power profiles from the H-MGs and the estimated power profile from the CCU over the
whole prediction horizon, as indicated in (5.15). Then, the termination condition also
includes the criterion that a solution is valid only if ‖rl‖∞ is below a certain tolerance.

‖rl‖∞ = max
k

{∣∣∣∣∣
H∑
h=1

pG,l
h,el(k)−Hz̄l(k)

∣∣∣∣∣ : k = ki, . . . , ki +Np − 1
}
. (5.15)

The dual variable convergence is checked by using the same dual residual norm and the
same dual residual tolerance as defined in the previous section in (5.11) and (5.13).

5.3.4. Algorithm for the hierarchical-distributed strategy based
on ADMM

Algorithm 2 illustrates the sequence of computations of the algorithm for the hierarchical-
distributed coordination strategy based on ADMM.
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Algorithm 2 MPC based hierarchical-distributed algorithm using ADMM
1: Initialize. CCU broadcasts p̄G,1 − z̄1 + a1 = 0 to H H-MGs
2: ADMM Iterations. For l = 1, . . . , lmax do

• LP-relaxation (optional). If required, each H-MG relaxes its local binary
variables

• ûh-update. Each H-MG h recovers its stored value of pG,l
h where pG,1

h = 0,
solves (5.4) locally and communicates pG,l+1

h to the CCU

• z̄h-update. The CCU collects pG,l+1
h from all H-MGs, computes the average

p̄G,l+1 and solves (5.5)

• ah-update. The CCU computes al+1
h from (5.6) and broadcasts p̄G,l+1− z̄1 +a1

to all H-MGs

• if termination condition is True then break

3: Recovery of primal feasible solutions (optional). If required, each H-MG solves
(5.4) again with the last value sent by the CCU and original unrelaxed variables

4: Implementation. Implement first element of the feasible solution vector, wait for
ki = ki + ∆t, and go to 1

5.4. Simulation results and discussion

The upcoming subsections present and describe simulation results from the hierarchical-
distributed operation strategy using ADMM. The simulation setup uses Np = 96, ∆t = 15
min, γ = 100, and ρ = 0.5. The rest of the simulation parameters are the same as
in Section 4.4. The first part of the results compares the objective convergence from
dual decomposition (see Section 4.5) and ADMM approaches and gives insights into the
quality of the solution for the ADMM-feasible approach and the ADMM-unrelax approach.
The second part presents the behavior of the ADMM approaches regarding a reference
termination condition which uses as basis the primal and dual residual norms and primal
and dual tolerances. Finally, the last part shows the performance of the algorithm and
the quality of its solution when using the new proposed termination condition.

5.4.1. ADMM objective convergence

To better illustrate the performance of the MPC based hierarchical-distributed coor-
dination strategy using ADMM, the objective convergence of the ADMM algorithm is
compared against the objective convergence of the dual decomposition algorithm. For
this purpose, it is of interest to evaluate the convergence speed and the evolution of the
objective gap for both algorithms, where the objective gap at a given iteration l is defined
as
∣∣∣pl − p?∣∣∣. Here, p? denotes the global optimum, i.e. the optimal value found with the

centralized coordination strategy described in Section 4.4.
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Figure 5.1.: Objective value ADMM vs dual decomposition

Simulation experiments are conducted for input data corresponding to three days from
different seasons of the year, namely summer, winter, and fall as transitional season. For
illustration purposes, one single optimization run is solved for each day - i.e. without
receding horizon control - recording the value of the objective at each iteration and the
corresponding iteration count. The initial starting values for all simulations are the same.
The plots in Figure 5.1 display the evolution of the objective value over the iteration
count for both algorithms for the three distinct input data. For the sake of correctness,
the ADMM-feasible approach is denoted here by ADMM-relax, since at this point the
problems are still relaxed.

The optimal value is given by the green line and the red line denotes the results obtained
for dual decomposition. As mentioned above, two approaches are simulated for ADMM.
Consequently, the blue dashed line depicts the progress of the objective value for the
ADMM-relax approach, whereas the black dashed line shows the evolution of the objective
value for the unrelaxed version of ADMM. In general, it becomes clear that the ADMM
algorithm converges faster than the dual decomposition algorithm, and that the final
objective gap for dual decomposition is considerable higher than the final objective gap
for ADMM.

The plots also show that the optimal global value is different for each day, and that the
speed of convergence also differs for each day. This implies that the speed of convergence
also depends on the input data. For the interested reader Appendix D provides further
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Figure 5.2.: Objective value ADMM relax vs ADMM unrelax

information on the objective gap for all considered cases. Figure 5.2 allows a more detailed
analysis for the ADMM cases. Compared to the ADMM-relax, the speed of convergence
of the ADMM-unrelax is slightly slower - at least for the summer and the winter data.
Moreover, the observed objective gap is minimal for both approaches.

Even though at this point the ADMM-relax approach performs well in terms of objective
gap and speed of convergence, it may contain infeasible solutions as all binary variables
(On/Off status for heat pump, CHP, electric water heater, etc.) are still relaxed. This
situation is better appreciated in Figure 5.3, which shows the value of the variables for
the On/Off status of the heat pump over the considered time window. As in the previous
plots, the green line gives the feasible and optimal solution for the variables, which is
either 0 or 1. The blue dot-line represents solution values obtained from the relaxed
ADMM (a pre-step of ADMM-feasible) and they can have any value between 0 and 1.
Since a decision has to be taken on whether the heat pump must be turned on or off, such
relaxed solutions are not feasible.

To complete the picture the relaxed ADMM is complemented by recovering primal feasible
solutions from the relaxed solutions. In other words, once the relaxed ADMM is stopped,
the last available vector of prices λlmax is used for solving the unrelaxed version of the
subproblems so that their solutions are all feasible. This is now the complete ADMM-
feasible approach and its solutions are depicted by the orange dash-dot line in the plots.
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Figure 5.4.: Power profiles at reference node: feasible ADMM vs. unrelaxed ADMM

Finally, Figure 5.4 helps to evaluate the effects of recovering feasible solutions from the
relaxed problems on the resulting power profile at reference node.
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It can be seen that when feasible solutions are recovered from the relaxed ADMM, the
resulting pG, indicated by the orange line, shows larger peaks than the power profile
from ADMM-unrelax. Although the relaxed and recover approach offers a fast speed of
convergence considering objective value, primal residual and dual variable residual (see
Appendix E), its final feasible solution yields a power profile which is outperformed by
the ADMM-unrelax approach.

This implies that it could be more advantageous to use the ADMM-unrelax approach, as
it does not require neither relaxation nor recovering procedures and because its resulting
power profile at reference node gives acceptable power peaks. The issue now is to find a
proper termination condition for the ADMM approach, such that it does not need a large
number of iterations to achieve an acceptable power profile at reference node.

5.4.2. Results for termination condition for ADMM

The results exposed in the previous section illustrate the performance when the respective
algorithm iterates until a maximum iteration count is reached. However, it is desirable to
stop the algorithm at an early stage if the available solution meets a certain termination
condition. A real hierarchical-distributed MPC implementation cannot make use of the
objective gap to check a termination condition, as no information regarding the global
optimal value - provided by a centralized strategy - is available.

To overcome this situation, the authors in [81] and [14] recommend to monitor the primal
residual and dual residual (see (5.10) and (5.11)) in order to establish convergence. The
termination criterion is met, when the primal residual norm and the dual residual norm
are smaller than a given tolerance.

To check the algorithm’s behavior when applying the stopping criterion described in
Subsection 5.3.2, Figure 5.5 displays the resulting primal residual norm of new conducted
simulations for the ADMM-feasible approach (upper subplot) and the ADMM-unrelax
approach (lower subplot). The line in light red denotes the primal tolerance which is
different for each approach. It can be seen that the ADMM-feasible meets the primal
tolerance for all three scenarios before iteration count 40, such that the algorithm stops
before the maximum allowed iteration count. Contrary, the ADMM-unrelax approach
does not meet the defined primal tolerance and it stops only when it reaches the maximum
number of iterations (200 for this case).

In the sequel, the Figure 5.6 presents the value of the dual residual and the value of the
dual tolerance for each iteration count. In contrast to the primal residual, both approaches
meet the dual tolerance relatively fast in less than ten iterations.

It is desired to continue with the ADMM-unrelax approach as for practical issues it is
better to solve the original problem without having to deal with relaxations inside H-MGs.
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Figure 5.5.: Primal residual norm with implemented termination condition for
ADMM-feasible and ADMM-unrelax

It may be hard to coordinate a hierarchical-distributed optimization when sometimes the
agents have to send a schedule obtained from a relaxed problem and other times they
have to send a schedule obtained from the unrelaxed problem.

Furthermore in terms of power profile at the reference node, the ADMM-feasible approach
does not show any clearly advantage over the ADMM-unrelax approach. Nonetheless, a
proper termination condition has to be designed for the ADMM-unrelax approach. The
next subsection elaborates on this matter.

5.4.3. Results for new termination condition for
ADMM-unrelax

Numerical simulations for the same considered cases as in previous section help to demon-
strate the effectiveness of the proposed new termination condition for the ADMM-unrelax
approach. The optimization loops are embedded in an MPC scheme. Forecast for PV
and space heating consist in simple one-day-persistence forecasts, while the forecast for
household load and the forecast for domestic hot water use a simple seven-day-persistence
forecast.
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Figure 5.6.: Dual residual norm with implemented termination condition for
ADMM-feasible and ADMM-unrelax

Figure 5.7 shows the distribution of the required iterations for the ADMM-unrelax ap-
proach with the new proposed termination condition. For comparison purposes, the dis-
tribution of iteration counts for the ADMM-feasible approach with termination condition
as proposed by [81] is also shown as reference. The median of the iteration counts with
the proposed termination condition for a summer day is 2.0, for a transitional day is 2.0
and for a winter day is 5.5, while for the reference termination condition the medians of
the distribution are 56.0, 34.0 and 56.5 respectively. In average, to find a solution the
ADMM-unrelax approach with the proposed termination condition needs 2.88 iterations
in a summer day, 2.96 iterations in a transitional day and 6.01 iterations in a winter day.
Accordingly, the ADMM-feasible approach with reference termination condition accounts
for an average of 55.53, 40.00 and 64.20 iterations for the evaluated scenarios.

Even though the two approaches cannot be directly compared to each other as they
are based in different termination conditions, the objective of the plot is to illustrate the
behavior of the iteration counts of the proposed termination condition against the behavior
of iteration counts of a state of the art termination condition. It would be also possible to
implement the ADMM-feasible approach with the new proposed termination condition,
however, as mentioned before, the ADMM-feasible approach is no longer attractive for
real application purposes, as it requires further communication effort between the CCU
and the H-MGs in order to know if the problem to be solved by the H-MGs has to be
relaxed or not.
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Figure 5.7.: Distribution of iteration counts for ADMM-feasible and ADMM-unrelax

Finally, Figure 5.8 presents the resulting power profile at reference node. It is noticeable
that the ADMM-unrelax approach yields similar results as the centralized approach for
all three season scenarios. The upper subplot allows a comparison between ADMM-
unrelax and ADMM-feasible. Note that it is a zoom over the y-axis. It follows from this
subplot that there is no remarkable difference between the profiles resulting from these
two approaches.

The lower subplot shows the improvement against the decentralized strategy. For the
summer and transitional scenario, the ADMM-unrelax approach is able to reduce extreme
power peaks and obtains an almost flat power profile at reference node. For the winter
scenario during night and morning hours it is possible to reduce power peaks as well, in
the afternoon and evening periods not all peaks can be reduced, nevertheless the large
peak around 20:00 hours is reduced by almost 1kW. This situation in the winter scenario
is not inherent from the ADMM-unrelax approach as those power peaks are also present
with the centralized strategy. As the simulated MPC strategies work with a very simple
forecast approach (persistence forecast), it can be expected such power peaks in winter
to be reduced if a more accurate forecast method is implemented. This aspect is out of
the scope of the present work and must be addressed in a future work.

Based on the presented results it is possible to conclude that the ADMM-unrelax approach
offers, from a practical point of view, advantages for implementation over the ADMM-
feasible approach because:

• the H-MGs do not need to relax their optimization problems,
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• the H-MGs do not need to recover feasible solutions once the iterations are done,
and

• the resulting recovered feasible solution from the feasible ADMM approach is not
necessarily better than the one obtained working with unrelaxed problems right
from the start.

Furthermore, when implemented within an MPC scheme, the ADMM-unrelax approach
with a new proposed termination condition delivers results that are competitive to the
centralized strategy, while considerably decreasing the iteration counts compared to a
state of the art termination condition. Consequently, this work recommends the ADMM-
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unrelax approach with the proposed termination condition for laboratory, demonstration
and field implementations for hierachical-distributed coordination of H-MGs.
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5.5. Summary of the chapter

This chapter looked at the optimal operation of a group of interconnected H-MGs using an
MPC based hierarchical-distributed strategy with ADMM. It showed the mathematical
formulation for the optimal operation of such a system as an ADMM sharing problem.
The chapter examined two approaches to deal with binary variables in the presented
ADMM implementation, namely:

1) ADMM-feasible, which solves a relaxed version of the original subproblems with sub-
sequently recovering primal feasible solutions, and

2) ADMM-unrelax, which solves the original non-convex subproblems without any relax-
ation.

The chapter also investigated termination conditions for the ADMM algorithm. In the
end, by taking advantage of the MPC implementation, it proposed a simple yet effective
termination condition which allows terminating the ADMM algorithm after a few iterati-
ons, while also achieving results similar to that of the centralized operation strategy. The
chapter concluded that the ADMM-unrelax is advantageous for implementation purposes
because the H-MGs do not need to relax their optimization problems, and they do not
need to recover feasible solutions once the iterations are ready. Furthermore, when im-
plemented within an MPC scheme, the ADMM-unrelax approach with a new proposed
termination condition gives results that are competitive to the centralized strategy, while
considerably decreasing the iteration counts compared to a state of the art termination
condition.
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6. A co-simulation framework for electrical
networks and home-microgrids

This chapter describes a co-simulation tool for evaluating the impact of home-
microgrids’ operation on electrical distribution networks. Technical aspects of the
co-simulation tools are explained in detail. The co-simulation framework described
in this chapter was created within the research project ’Collaborative Data and Risk
Management for Future Energy Grids - a simulation Study’ [83]. The framework was
developed by the project team.

The content of this chapter is adapted from [62]: D. Hidalgo-Rodríguez, S. Hoffmann,
F. Adelt, J. Myrzik, and J. Weyer, “A socio-technical simulation framework for col-
laborative management in power distribution grids,” in International ETG Congress
2017. Bonn, Germany, 2017.

6.1. Introduction

End-users in energy systems are becoming heterogeneous with increasing penetration of
distribution energy resources (DER) in distribution grids. Sometimes they behave as
electricity consumers, sometimes as producers, sometimes they store energy, or someti-
mes they are just self-sufficient. This heterogeneity implies that the energy system is a
large complex system, and simulating its behavior taking into account inter-dependencies
between heterogeneous actors is not a trivial issue. Hence, aiming at simulating this whole
large complex system with just one single simulator is not practical. Co-simulation techni-
ques are interesting approaches for such simulation purposes. Within the co-simulation
approach, existing simulators are adapted in such a way that they can communicate with
each other such that instead of simulating the behavior of the system with one single
simulator, many simulators are involved to reproduce the behavior of the system. Con-
sequently, this chapter describes a co-simulation framework for assessing the interactions
between H-MGs and electrical distribution networks. The proposed framework is based
on design principles of agent-based modeling and simulation (ABMS). The contributions
of this chapter are:

1. it presents a co-simulation framework to assess the impact of operation modes of
H-MGs on the electrical distribution network, and

2. it shows with the help of simulation results that a coordination of H-MGs brings
benefits to the network operation.
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Figure 6.1.: Structure of the overall co-simulation framework and information flows
between simulators

The chapter is organized as follows: Section 6.2 introduces the proposed co-simulation
framework and describes the involved simulators and their inter-dependencies. Section 6.3
gives a description of the experimental setup consisting of a generic low voltage network
for Germany with a certain penetration of H-MGs, and presents corresponding simulation
results. Finally, Section 6.4 states concluding remarks and provides insights into next
steps.

6.2. Co-simulation framework

As indicated previously, a co-simulation framework may help to understand the (bottom-
up) dynamics of complex energy systems and to detect emergent, unintended effects. The
proposed co-simulation framework for operation of a power distribution grids is shown in
Figure 6.1. It consists of the following simulators.

The end-user simulator describes the decision-making of consumers: Based on indivi-
dual preferences and values, actors decide to switch electricity tariffs, change their energy
consumption behaviour or follow recommendations from energy-monitors (e.g. smart me-
ters or mobile applications). These decisions are furthermore translated into load values,
which primarily serve as inputs for other simulators (see building simulator). The grid
and information management simulator primarily represents controlling interventions on
part of the distribution system operator (DSO) and therefore the standard operating bu-
siness of grid management. Controlling interventions require comprehensive knowledge of
the grid, which is why this module also entails the flow of data and information between
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different actors. The simulator for the power distribution grid is used for load flow calcu-
lations, i.e. the current status of the grid. This status is the result of an equation system;
values generated by end-users (i.e. loads), producers (i.e. decentralize feed-in), feed-ins
from the transmission grid and DSO commands are inputs for these equations. DSOs, in
turn, use the output data from this module to interpret and manage the grid’s status.

A high potential for load shifting on end-user level can be found in the heat sector, ma-
king the precise modeling of space heating and hot water demand necessary. Therefore, a
building simulator is included to represent the actual behavior of a H-MG. This building
simulator has to reproduce different technological entities and characteristics (see Fi-
gure 2.1 and Figure 3.2), e.g. the energy management system (based on MPC), the type
of the building, as well as the technological equipment - i.e., standard gas heating devices,
photovoltaic plants, batteries, heat-pumps and mini CHP plants. Framework conditions
are externally given and consequently not open to influences from other simulators. They
encompass pre-parametrized values and trajectories, e.g. weather/temperature or electri-
city prices on the European Energy Exchange (EEX). Furthermore, political regulations
or feed-in capacity from the transmission grid also represent external inputs. Conse-
quently, framework conditions basically help to characterize scenarios. The emergence of
framework conditions is, however, not subject of analysis here (i.e., political negotiations
etc.).

This work makes use MOSAIK to enable the coupling of multiple simulators [84, 85]. The
MOSAIK framework is specific for the co-simulation of cyber-physical systems and smart
grid systems, and its goal is to allow the usage of existing simulators in a common context
to perform coordinated simulations. MOSAIK pays particular attention to provide flex-
ibility for the configuration of large-scale scenarios. These scenarios serve as test bed to
conduct simulation experiments for different control strategies (centralized, distributed,
hierarchical distributed, etc.). By means of an application programming interface (API),
the connected simulators can communicate with MOSAIK, which schedules the step-wise
execution of the simulators and coordinates the data-flow between them. For this pur-
pose, two main modules comprise the MOSAIK framework: the simulator management
module and the scheduler module. The simulator management module is in charge of
creating connections with the simulators in order to allow data exchange with them. The
scheduler module is in charge of coordinating the data exchange between simulators by
using a shared simulation clock.

For interaction with the user, MOSAIK uses two fundamental application programming
interfaces (API). The Scenario-API enables the user to create instances of models from
the connected simulators and to define the communication structure between simulators.
By using the functions provided by the Scenario-API, within a scenario script, the user
can run a co-simulation process. A second API, the Component-API, arranges a trans-
mission control protocol (TCP) socket and manages the data exchange between simulator
and MOSAIK in JSON format. The user needs to implement a Component-API for
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each simulator that connects to MOSAIK. There are versions of this API available for
different programming languages. The implementation consists of providing a high-level
description of the models to be simulated, and their respective variables, as meta data.
Additionally, some interface functions are also necessary in order to allow MOSAIK to
control the simulator [85].

Consequently, the key challenge is to define relevant information flows between the diffe-
rent simulators. Figure 6.2 illustrates the data flow between simulators over four simula-
tion steps.

At the beginning of the simulation, all H-MGs (instances of building simulator) connected
to the power grid send the actual total power consumption/injection at their respective
connection node. With this information, the power grid simulator performs a load flow
calculation and communicates the resulting power at the main node (reference bus) to
the grid manager which using a heuristic algorithm compute individual recommendations
for each connected end-user. End-users, in turn, decide whether to accept the recommen-
dation or not and if necessary modify their cost function. For the next simulation step,
all H-MGs receive updated cost functions and the cycle repeats until the last simulation
step.

The following sub-sections describe the power grid simulator, the building simulator and
the grid manager simulator in detail.

6.2.1. Power grid simulator

The goal of the power grid simulator is to represent an electric distribution network
within the simulation environment. It includes models of relevant electrical components
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Figure 6.2.: Processing sequence of simulation steps for four simulators (Manager: Grid
and information management simulator)
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of a power distribution grid such as busbars (nodes), transformers, and lines. Detailed
models for loads, storage and generators are not handled in this simulator (see simulator
building). It also contains information regarding grid topology i.e. how and through which
lines different busbars are interconnected with each other, and which generators, loads
and/or transformers are connected to each busbar. A set of nonlinear equations describes
the relationship between electrical components in a compact way, and from now on, this is
called the power grid model. Values of end-user consumption (loads), power feed-in from
distributed generators and overlaying voltage networks, as well as control commands from
the DSO serve as inputs for this power grid model. With this information, and based on
some initial conditions, the power grid simulator computes a load-flow calculation and
provides resulting power flows for each line, and respective voltage magnitudes at each
busbar [86]. The output of the simulator would allow to determine if, for the given
initial conditions and inputs, voltage and loading values are within safety limits. In
the power grid model, it is assumed that only one reference node (slack busbar) exists,
and that the remaining nodes are PQ nodes, i.e. nodes with known active and reactive
power feed-in/consumption and unknown voltage magnitude and voltage phase. Active
and reactive power values are coming from a different simulation instance: the building
simulator. Accordingly, in the co-simulation framework the PQ nodes are the coupling
points between the power grid simulator and the building simulator. This works makes
use of PYPOWER as power grid simulator [87].

6.2.2. Building simulator

The building simulator involves models of H-MGs (flexible and non-flexible residential
appliances). These models can be static models - no dependency with previous states, or
dynamic models - there is a dependency between actual state and previous state, e.g. a
storage unit. Hence, the task of the building simulator is to solve local residential electrical
and thermal power flow equations, to give the total electrical power consumed or injected
at a specific node, and to compute the resulting state of the dynamic elements (for example
state of charge of a thermal energy storage or room temperature of the building). These
set of equations describing the behaviour of corresponding building appliances is called
the building model. Because of their flexible operation to balance intermittent power from
RES, residential heating systems play an important role in the current work. Therefore,
heating demand and heating supply in residential systems requires detailed modeling. For
accounting the demand, the building model uses some dynamic equations to represent
the thermal dynamic behaviour of a residential building. This helps to consider building
storage capacities as well. Residential buildings imply two types of objects: single-family
houses (see H-MG 1 and H-MG 2 in Chapter 4), and multi-family houses (see H-MG
3 in Chapter 4). Clearly, buildings must contain not just thermal, but also electrical
appliances. For example, a single-family house can embrace two energy sectors. In the
electrical sector, there can be a rooftop photovoltaic plant, and the normal inflexible
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residential loads - lights, refrigerator, washing machine, stove, etc. In the heating sector,
an example will be a heat pump with respective thermal energy storage. Here, the heat
pump will be the coupling element between the electrical and the heating sector. As
residential units can follow different operation schedules, there is an energy management
system (EMS), whose task is to compute such operation schedules. Particularly the EMS
contains an MPC unit.

Setting of the simulation parameters for the building model, such as type of appliances
present in the building, technical characteristics of the appliances, MPC prediction hori-
zon, MPC sample time, etc., happens just once at the beginning of the simulation. The
building simulator gets weather input data from the external conditions module, and addi-
tionally, data from the end-user simulator serve as input for the model. Specifically, these
input data contain information regarding end-user building operation preference (self-
consumption or energy costs minimization), and comfort limits (temperature set-points
for the heating appliances). With this information, the MPC starts the optimization
and concludes by giving the resulting optimal values for electrical consumption of the
flexible loads, power generation for the distribution generation units, and charging and
discharging power for the storage systems. After balancing electrical power flows within
the residential system, the output of the building simulator is the total power consump-
tion/injection of the considered residential setting. This is treated as a single variable,
which denotes consumption if the variable is larger than zero, or generation if the variable
is negative. This variable is then forwarded to the power grid simulator, which reads the
variable as the power at the specific node, where the instance of the building simulator is
connected. Once all the solutions from all building simulator instances are available, the
power grid simulator can start with its power flow calculation, and a new simulation cycle
starts. To sum up building appliances’ operation mode may change over time depending
on end-user preferences. For instance, end-users may decide to respond to an incentive
from the DSO, or change comfort settings. These kinds of actions are computed in the
end-user simulator, and are the coupling points between end-user simulator and building
simulator.

The python scripts used to conduct the simulations of local H-MGs in previous chapters
constitutes the building simulator. For this purpose, an adaptation of the python scripts
to fit the structure of MOSAIK was necessary.

6.2.3. Grid and information management simulator

This subsection further elaborates on the logic of the grid and information manager si-
mulator. This simulator receives the resultant power at the reference bus, i.e., the local
substation, as an output value from the power grid simulator. It is desired to keep this
power within a specific range, such that there are a maximum power limit and a mini-
mum power limit. If the power at the reference bus is above the maximum limit, the grid
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manager must try to increase local generation and reduce loads. On the other hand, if
the power at the reference bus is below the minimum limit, the grid manager recommends
to reduce the local generation and increase loads. If the end-user accepts the recommen-
dation, he/she adapts his/her behavior and forwards it to the building simulator as a
cost function. Accordingly, the building simulator will optimize the desired operational
objective by adjusting the power at its connection node. Figure 6.3 depicts the logic of
the grid manager. This simulator also builds on python as programming language.

Figure 6.3.: Logic of the grid and information manager simulator

The interested reader can refer to the final report of the KoRiSim project for detailed infor-
mation on implementation aspects, installation and use instructions of the co-simulation
framework [88].

6.3. Simulation results and discussion

This section illustrates the functionality of the co-simulation framework by presenting
simulation results for a considered case study. The generic low voltage network in Fi-
gure 6.4, presented in [89] and used in [90], serves as the reference network for the study.
Its original topology is meshed low-voltage network with open sectioning points and, the-
refore, it operates as a radial network. It represents the supply of a residential area with
single-family households (SFHs) and multi-family households (MFHs). It disposes of 167
house connection points (red nodes) and a local substation of 400 kVA (black reference
node).
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Consequently, 167 heterogeneous H-MGs populate the network, as described in Table 6.1.

Table 6.1.: Population of H-MGs
H-MG Quantity Penetration
PV 59 35.33%
PV-Battery 17 10.18%
PV-HP 8 4.79%
HP 17 10.18%
Just household load 66 39.52%∑ 167 100%

Figure 6.5 shows the resulting power at the reference node(reference bus). It illustrates in
black the case without any control (i.e., the grid manager does not conduct any action),
and in red, a situation with activated control where, depending on the grid state, the grid
manager actively sends recommendations to the H-MGs.

This plot helps to demonstrate the functionality of the co-simulation framework. From
here, it is possible to appreciate that all simulators are communicating with each other
such that a coordinated simulation can take place. Furthermore, it also indicates that
the simple heuristic coordination algorithm implemented in the grid manager can achieve
a reduction in extreme power peaks, both at the consumption and generation side. This
situation is better observed in Figure 6.6.

For the simulated week in October, the logic in the grid and information manager reduces
the consumption peak from ca. 280 kW to 200 kW, and the generation peak from ca.
-180 kW to - 100 kW. Since the simulation considers a model of the electrical network,
the impact of such a peak power reduction on the network can be appreciated. Figure 6.7
presents the cumulative network losses over the simulated week. In this case, such a
decreasing of extreme power peaks results in a lowering of grid energy losses of around
30%.
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Reference node
10 kV/0,4 kV Trafo

Figure 6.4.: Generic low voltage network for a residential area with SFHs and MFHs (cf.
[89, 90])
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Figure 6.5.: Electrical power profile at reference bus
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Figure 6.6.: Distribution of power at reference bus
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Figure 6.7.: Cumulative network losses
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6.4. Summary of the chapter

This chapter presented a framework for the co-simulation of electrical networks with high
penetration of H-MGs. The chapter described in detail the involved building simulator,
power grid simulator, and grid and information management simulator. It explained the
interactions between simulators and demonstrated the functionality of the co-simulation
framework employing one-week simulation results. The proposed co-simulation framework
supported the evaluation of the impact of coordination strategies on the electrical grid.
For the presented case, the results indicated that avoiding extreme power peaks leads to
a significant reduction of energy losses on the network.
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The work at hand focused on the optimal operation of home-microgrids. For this pur-
pose, the work followed a model predictive control approach, where the formulation of an
optimization problem thoroughly embraces main aspects of the operation of the home-
microgrid. The optimization runs within a receding horizon control scheme. Consequently,
the work provided some background concepts on model predictive control, followed by a
literature review on the application of model predictive control for the operation of micro-
grids. This work paid particular attention to multienergy home-microgrids. It provided
a detailed description of the modeling of a photovoltaic-heat pump home-microgrid, and
a photovoltaic-combined heat and power home-microgrid.

For the photovoltaic-heat pump home-microgrid, the work considered a ground source
heat pump and the thermal flexibility provided by a single-family house with thermal
energy storage. For this home-microgrid, the evaluation included a comparison of three
operation strategies that differed on the implemented objective function. Here, a flexible
operation using the squared l2-norm in the objective function resulted in a reduction of
peaks of electrical power, while not affecting thermal comfort notably.

For the photovoltaic-combined heat and power home-microgrid, the investigation was on
the economic operation. The work compared an MPC-based strategy and an open loop-
based strategy, against a perfect-forecast strategy to quantify the effects of uncertainties.
Simulation results indicated that for minimal uncertainties, the resultant additional ope-
rating costs are substantially different between the open loop-based operation and the
MPC-based operation. While the MPC-based strategy achieves operation costs almost
equal to the perfect case, the costs for the open loop-based strategy are notably higher.
The analysis also included a sensitivity analysis regarding the impact of storage size on ad-
ditional operation costs. Here, the conclusion was that an MPC-based operation enabled
a better usage of the storage systems, and it allowed a reduction in investment costs.

The examination of coordination strategies for interconnected home-microgrids was also a
central topic. Here, a decentralized coordination strategy, a centralized coordination stra-
tegy, and a hierarchical-distributed coordination strategy were the relevant architectures
for investigation. Accordingly, a part of the work dealt with the mathematical formulation
of these strategies. Numerical simulation results helped to demonstrate how a centralized
coordination strategy can improve the power balancing between home-microgrids.

The results showed that a hierarchical-distributed strategy was able to solve the optimi-
zation problem with a moderate exchange of information between home-microgrids and
the central control unit. For the hierarchical-distributed strategy, the implementation
included a dual decomposition approach and an approach with the alternating direction
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method of multipliers. The use of ADMM improved the performance of the hierarchical-
distributed strategy, which produced results similar to those obtained with the centralized
coordination strategy.

The work showed the mathematical formulation for the optimal operation of a group of
interconnected home-microgrids as an ADMM sharing problem. Next, the work examined
two approaches to deal with binary variables in the presented ADMM implementation.
An ADMM-feasible approach solved a relaxed version of the original subproblems with
subsequently recovering of primal feasible solutions. In contrast, an ADMM-unrelax ap-
proach solved the original non-convex subproblems without any relaxation. The work
also investigated termination conditions for the ADMM algorithm. In the end, by taking
advantage of the MPC implementation, it proposed a simple yet effective termination
condition that allows terminating the ADMM algorithm after a few iterations.

The conclusion was that the ADMM-unrelax is advantageous for practical purposes be-
cause the home-microgrids do not need to relax their optimization problems. Also, it is
not necessary to recover feasible solutions once the iterations are ready. Furthermore, the
ADMM-unrelax approach with a new proposed termination condition provided results
that were competitive to the centralized strategy, using a few iteration counts.

The work ended with the presentation of a framework for the co-simulation of electrical
networks with home-microgrids. This framework offered the possibility of simulating
such a complex system using dedicated individual simulators instead of having a single
simulation environment. Here, numerical simulation results showed the functionality of
the framework and enabled the evaluation of the effects of the coordination of home-
microgrids on a generic low-voltage grid.

7.1. Limitations and outlook

One limitation of the approach used for the optimal operation of a photovoltaic-heat
pump home-microgrid, is that the linear combination of temperature and power, through
the coefficients α and β in the objective function, directly depends on the magnitude of
the power and temperature values. The optimization may lead to different results if the
temperature values are in Fahrenheit instead of degrees Celsius. One possible solution to
this issue would be a scaling of data (set-points and measurements) before optimization.
This work did not handle this aspect.

Future work can include a more detailed model for the thermal dynamics of the buil-
ding. To accurately represent the inner room temperature and the thermal capacity of
the building, such a model has to take into account each wall and room of the house.
The consideration of detailed thermal models of the building would result in a more flex-
ible operation of the heat pump, as larger thermal capacity will be available. Still, the
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conclusion of this work regarding the l2-norm formulation as the best operation strategy
will remain valid since a detailed model of the building will only change some of the
constraints. The behavior of the objective function will remain the same.

For the photovoltaic-combined heat and power home-microgrid, future work must include
a more detailed model of uncertainties in the evaluation, i.e., more detailed forecast models
for household load, PV generation, and thermal demand. Also, a sensitivity analysis
regarding larger storage systems (TES larger than 1000 liter and battery systems larger
than 12 kWh) may provide new insights for determining maximum feasible capacity for
such an home-microgrid.

The evaluation performed for the photovoltaic-combined heat and power home-microgrid
also indicates an interesting path for future research. The evaluation showed that simu-
lations with MPC are not just for controller and operation design. They are also useful
in the planning stage. Usually, when planning energy systems using numerical optimi-
zation, the planner assumes perfect knowledge of the system and its inputs. As these
systems operate under uncertain conditions, waiting until the operation stage to decide
how to deal with such uncertainties can be inefficient. It will be logical to consider all
sources of uncertainties right from the planning stage. In this context, simulations using
an MPC strategy may help to consider the impact of uncertainties directly in the planning
stage and to sketch possible solutions to handle those uncertainties, either with advanced
operation strategies or by adjusting the dimensioning of the equipment.

For the operation of interconnected home-microgrids, there are still some limitations that
future work needs to address. First, a simulation for a more extended period, e.g., a
complete winter season, has to be conducted for a more significant evaluation and com-
parison of all strategies. The trade-off among local balancing with peak power reduction,
energy bill, and storage losses requires further analysis. The scalability of the hierarchical-
distributed strategy must also be tested based on the computation burden and the re-
sulting power profiles. Finally, robustness against uncertainties from model mismatches
and forecast errors is another issue for further investigation.

In order to exploit the full functionality of the co-simulation framework, further simulation
experiments are necessary. They need to involve more advanced coordination strategies
(see ADMM) and more extended simulation periods, e.g., seasonal simulation. Also,
future analysis can include further grid state information, such as voltage profiles at
critical notes and loading of critical lines, to observe the impact of coordination strategies
on these network elements.

The scalability of the ADMM based hierarchical-distributed strategy is also an issue
that remains open and requires special attention in future research. Moreover, a warm-
start technique would improve the performance of the ADMM algorithm, and such an
implementation is still required.
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Within the scope of the co-simulation framework, an ADMM approach can be realized
as a coordination strategy inside the grid manager simulator. It will allow evaluating the
advantages and disadvantages of an ADMM based hierarchical-distributed strategy from
a grid point of view.

A more formal and generalized approach for handling non-convexities and binary va-
riables within the ADMM-based hierarchical-distributed coordination strategy is also a
research outlook. Here, issues such as speed of convergence, proof of stability, and further
performance guarantees need to be analyzed and formalized.

Dealing with uncertainties is a crucial topic that this work did not approach in detail.
Since the proposed coordination strategies are considerably sensitive to the prediction of
disturbances, the improvement of disturbance forecast plays a central role in the perfor-
mance of MPC-based operation strategies.

Machine learning techniques, e.g., artificial neural networks or polynomial regression met-
hods, are also paths for future research for improving forecasting of disturbances based
on historical data. In this context, the performance of forecasting methods should be eva-
luated within an MPC scheme and not out of it, i.e., the value of the objective function
of MPC’s optimization problem should be the performance criterion.

114



Bibliography

[1] European Commission, Energy Roadmap 2050 - Impact Assessment (2011).
URL https://ec.europa.eu 1.1

[2] European Parliament and the Council of the European Union, Directive
2009/28/ec of the European Parliament and of the Council of 23 april 2009 on
the promotion of the use of energy from renewable sources and amending and sub-
sequently repealing Directives 2001/77/ec and 2003/30/ec: Directive 2009/28/ec
(April 2009).
URL https://eur-lex.europa.eu/eli/dir/2009/28/oj 1.1

[3] Bundesministerium für Wirtschaft und Technologie, Energiekonzept für eine um-
welschonende, zuverläsige und bezahlbare Energieversorgung (September/2010).
URL https://www.bmwi.de/Redaktion/DE/Downloads/E/energiekonzept-
2010.pdf?__blob=publicationFile&v=5 1.1

[4] Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit, Klimaschut-
zplan 2050 - Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung (No-
vember 2016).
URL https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Klimaschutz/
klimaschutzplan_2050_bf.pdf 1.1

[5] Bundesministerium für Wirtschaft und Energie, Nationaler Aktionsplan für Energi-
eeffizienz (Dezember/2014).
URL https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/nationaler-
aktionsplan-energieeffizienz-nape.pdf?__blob=publicationFile&v=6 1.1

[6] Bundesministerium für Wirtschaft und Energie, Renewable Energy Sources Act:
Res act2014 (2014).
URL http://www.bmwi.de 1.1

[7] Bundesministerium für Wirtschaft und Energie, Gesetz für die Erhaltung, die Mor-
denisierung und den Ausbau der Kraft-Wärme-Kopplung: Kwkg 2002 (2002).
URL https://www.clearingstelle-eeg.de 1.1

[8] S. Küppers, DSO 2.0 - Entwicklung des Verteilnetzbetriebs durch die Energie-
wende.
URL https://docplayer.org/20450127-Dso-2-0-entwicklung-des-
verteilnetzbetreibers-durch-die-energiewende.html 1.1, 1.1

[9] VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V., Zellulares
Energiesystem - Ein Beitrag zur Konkretisierung des zellularen Ansatzes mit Hand-
lungsempfehlungen.

115

https://ec.europa.eu
https://ec.europa.eu
https://eur-lex.europa.eu/eli/dir/2009/28/oj
https://eur-lex.europa.eu/eli/dir/2009/28/oj
https://eur-lex.europa.eu/eli/dir/2009/28/oj
https://eur-lex.europa.eu/eli/dir/2009/28/oj
https://eur-lex.europa.eu/eli/dir/2009/28/oj
https://www.bmwi.de/Redaktion/DE/Downloads/E/energiekonzept-2010.pdf?__blob=publicationFile&v=5
https://www.bmwi.de/Redaktion/DE/Downloads/E/energiekonzept-2010.pdf?__blob=publicationFile&v=5
https://www.bmwi.de/Redaktion/DE/Downloads/E/energiekonzept-2010.pdf?__blob=publicationFile&v=5
https://www.bmwi.de/Redaktion/DE/Downloads/E/energiekonzept-2010.pdf?__blob=publicationFile&v=5
https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Klimaschutz/klimaschutzplan_2050_bf.pdf
https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Klimaschutz/klimaschutzplan_2050_bf.pdf
https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Klimaschutz/klimaschutzplan_2050_bf.pdf
https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Klimaschutz/klimaschutzplan_2050_bf.pdf
https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/nationaler-aktionsplan-energieeffizienz-nape.pdf?__blob=publicationFile&v=6
https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/nationaler-aktionsplan-energieeffizienz-nape.pdf?__blob=publicationFile&v=6
https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/nationaler-aktionsplan-energieeffizienz-nape.pdf?__blob=publicationFile&v=6
https://www.bmwi.de/Redaktion/DE/Publikationen/Energie/nationaler-aktionsplan-energieeffizienz-nape.pdf?__blob=publicationFile&v=6
http://www.bmwi.de
http://www.bmwi.de
http://www.bmwi.de
https://www.clearingstelle-eeg.de
https://www.clearingstelle-eeg.de
https://www.clearingstelle-eeg.de
https://docplayer.org/20450127-Dso-2-0-entwicklung-des-verteilnetzbetreibers-durch-die-energiewende.html
https://docplayer.org/20450127-Dso-2-0-entwicklung-des-verteilnetzbetreibers-durch-die-energiewende.html
https://docplayer.org/20450127-Dso-2-0-entwicklung-des-verteilnetzbetreibers-durch-die-energiewende.html
https://docplayer.org/20450127-Dso-2-0-entwicklung-des-verteilnetzbetreibers-durch-die-energiewende.html
https://www.vde.com/resource/blob/1884494/98f96973fcdba70777654d0f40c179e5/studie---zellulares-energiesystem-data.pdf
https://www.vde.com/resource/blob/1884494/98f96973fcdba70777654d0f40c179e5/studie---zellulares-energiesystem-data.pdf
https://www.vde.com/resource/blob/1884494/98f96973fcdba70777654d0f40c179e5/studie---zellulares-energiesystem-data.pdf


Bibliography

URL https://www.vde.com/resource/blob/1884494/
98f96973fcdba70777654d0f40c179e5/studie---zellulares-energiesystem-
data.pdf 1.1, 1.2, 1.3, 1.3.1, 1.3.1, 1.4

[10] E. J. Coster, J. M. A. Myrzik, B. Kruimer, W. L. Kling, Integration issues of dis-
tributed generation in distribution grids, Proceedings of the IEEE 99 (1) (2011)
28–39. doi:10.1109/JPROC.2010.2052776. 1.1

[11] C. Töbermann, et al., PV-Integrated - Integration großer anteile photovoltaik in
die elektrische energieversorgung - neue verfahren für die planung und den betrieb
von verteilnetzen: Schlussbreicht (0325224a-d). Laufzeit: 01.10.2010 - 31.12.2014.
URL https://www.iee.fraunhofer.de/de/projekte/suche/2014/pv-
integrated.html 1.2

[12] P. Mancarella, C. K. Gan, G. Strbac, Evaluation of the impact of electric heat
pumps and distributed CHP on LV networks, in: IEEE PowerTech, IEEE, Trond-
heim, Norway, 2011, pp. 1–7. doi:10.1109/PTC.2011.6019297. 1.1

[13] VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V., The cellular
approach.
URL https://shop.vde.com/en/vde-study-the-cellular-approach 1.2

[14] F. Moret, P. Pinson, Energy Collectives: A community and fairness based appro-
ach to future electricity markets, IEEE Transactions on Power Systems 34 (5)
(2019) 3994–4004. doi:10.1109/TPWRS.2018.2808961. 1.2, 1.4.2, 4.1, 5.4.2

[15] T. van der Schoor, B. Scholtens, Power to the people: Local community initiati-
ves and the transition to sustainable energy, Renewable and Sustainable Energy
Reviews 43 (2015) 666–675. doi:10.1016/j.rser.2014.10.089.

[16] S. Chen, C.-C. Liu, From demand response to transactive energy: state of the art,
Journal of Modern Power Systems and Clean Energy 5 (1) (2017) 10–19. doi:
10.1007/s40565-016-0256-x.

[17] B. P. Koirala, E. Koliou, J. Friege, R. A. Hakvoort, P. M. Herder, Energetic com-
munities for community energy: A review of key issues and trends shaping inte-
grated community energy systems, Renewable and Sustainable Energy Reviews 56
(2016) 722–744. doi:10.1016/j.rser.2015.11.080. 1.2

[18] The European Committee of the Regions, Opinion of the European Committee
of the Regions on models of local energy ownership and the role of local energy
communities in energy transition in Europe (March 2019).
URL https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=
1584871876006&uri=CELEX:52018IR2515 1.2

[19] N. Hatziargyriou (Ed.), Microgrids: Architectures and control, online-ausg Edition,
John Wiley & Sons, Ltd, Chichester, West Sussex, U. K, 2013. 1.2

116

https://www.vde.com/resource/blob/1884494/98f96973fcdba70777654d0f40c179e5/studie---zellulares-energiesystem-data.pdf
https://www.vde.com/resource/blob/1884494/98f96973fcdba70777654d0f40c179e5/studie---zellulares-energiesystem-data.pdf
https://www.vde.com/resource/blob/1884494/98f96973fcdba70777654d0f40c179e5/studie---zellulares-energiesystem-data.pdf
http://dx.doi.org/10.1109/JPROC.2010.2052776
https://www.iee.fraunhofer.de/de/projekte/suche/2014/pv-integrated.html
https://www.iee.fraunhofer.de/de/projekte/suche/2014/pv-integrated.html
https://www.iee.fraunhofer.de/de/projekte/suche/2014/pv-integrated.html
https://www.iee.fraunhofer.de/de/projekte/suche/2014/pv-integrated.html
https://www.iee.fraunhofer.de/de/projekte/suche/2014/pv-integrated.html
http://dx.doi.org/10.1109/PTC.2011.6019297
https://shop.vde.com/en/vde-study-the-cellular-approach
https://shop.vde.com/en/vde-study-the-cellular-approach
https://shop.vde.com/en/vde-study-the-cellular-approach
http://dx.doi.org/10.1109/TPWRS.2018.2808961
http://dx.doi.org/10.1016/j.rser.2014.10.089
http://dx.doi.org/10.1007/s40565-016-0256-x
http://dx.doi.org/10.1007/s40565-016-0256-x
http://dx.doi.org/10.1016/j.rser.2015.11.080
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1584871876006&uri=CELEX:52018IR2515
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1584871876006&uri=CELEX:52018IR2515
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1584871876006&uri=CELEX:52018IR2515
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1584871876006&uri=CELEX:52018IR2515
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1584871876006&uri=CELEX:52018IR2515


Bibliography

[20] S. M. Nosratabadi, R.-A. Hooshmand, E. Gholipour, A comprehensive review on
microgrid and virtual power plant concepts employed for distributed energy resour-
ces scheduling in power systems, Renewable and Sustainable Energy Reviews 67
(2017) 341–363. doi:10.1016/j.rser.2016.09.025. 1.2

[21] M. Shahidehpour, Z. Li, S. Bahramirad, Z. Li, W. Tian, Networked microgrids:
Exploring the possibilities of the IIT-Bronzeville grid, IEEE Power and Energy
Magazine 15 (4) (2017) 63–71. doi:10.1109/MPE.2017.2688599. 1.2

[22] E. Vaahedi, K. Nodehi, D. Heim, F. Rahimi, A. Ipakchi, The emerging transactive
microgrid controller: Illustrating its concept, functionality, and business case, IEEE
Power and Energy Magazine 15 (4) (2017) 80–87. doi:10.1109/MPE.2017.2688619.
1.3.1

[23] Netzintelligenz zum anfassen: Das Smart Operator-Projekt.
URL iam.innogy.com 1.3.1

[24] A. Parisio, E. Rikos, L. Glielmo, A model predictive control approach to microgrid
operation optimization, IEEE Transactions on Control Systems Technology 22 (5)
(2014) 1813–1827. doi:10.1109/TCST.2013.2295737. 1.3.1, 1.4.2, 1.4.2, 3.2.3

[25] F. Oldewurtel, C. N. Jones, A. Parisio, M. Morari, Stochastic model predictive
control for building climate control, IEEE Transactions on Control Systems
Technology 22 (3) (2014) 1198–1205. doi:10.1109/TCST.2013.2272178. 1.4.2, 2.2.2

[26] C. Chen, J. Wang, Y. Heo, S. Kishore, MPC-Based Appliance Scheduling for Re-
sidential Building Energy Management Controller, IEEE Transactions on Smart
Grid 4 (3) (2013) 1401–1410. doi:10.1109/TSG.2013.2265239. 1.4.2

[27] Y. Zong, D. Kullmann, A. Thavlov, O. Gehrke, H. W. Bindner, Application of mo-
del predictive control for active load management in a distributed power system
with high wind penetration, IEEE Transactions on Smart Grid 3 (2) (2012) 1055–
1062. doi:10.1109/TSG.2011.2177282. 1.4, 1.6, 1.4.2, 2.1

[28] M. Houwing, R. R. Negenborn, B. de Schutter, Demand response with micro-
CHP systems, Proceedings of the IEEE 99 (1) (2011) 200–213. doi:10.1109/
JPROC.2010.2053831. 1.4, 1.4.2, 2.2.3

[29] F. Sossan, H. Bindner, H. Madsen, D. Torregrossa, L. Reyes Chamorro, M. Pa-
olone, A model predictive control strategy for the space heating of a smart buil-
ding including cogeneration of a fuel cell-electrolyzer system, Electrical Power and
Energy Systems 62 (2014) 879–889. doi:10.1016/j.ijepes.2014.05.040. 1.4.2,
3.2.2

[30] P. O. Kriett, M. Salani, Optimal control of a residential microgrid, Energy 42 (1)
(2012) 321–330. doi:10.1016/j.energy.2012.03.049. 1.4.2, 3.2.2

117

http://dx.doi.org/10.1016/j.rser.2016.09.025
http://dx.doi.org/10.1109/MPE.2017.2688599
http://dx.doi.org/10.1109/MPE.2017.2688619
iam.innogy.com
iam.innogy.com
http://dx.doi.org/10.1109/TCST.2013.2295737
http://dx.doi.org/10.1109/TCST.2013.2272178
http://dx.doi.org/10.1109/TSG.2013.2265239
http://dx.doi.org/10.1109/TSG.2011.2177282
http://dx.doi.org/10.1109/JPROC.2010.2053831
http://dx.doi.org/10.1109/JPROC.2010.2053831
http://dx.doi.org/10.1016/j.ijepes.2014.05.040
http://dx.doi.org/10.1016/j.energy.2012.03.049


Bibliography

[31] Y. Zhang, T. Zhang, R. Wang, Y. Liu, B. Guo, Optimal operation of a smart re-
sidential microgrid based on model predictive control by considering uncertain-
ties and storage impacts, Solar Energy 122 (2015) 1052–1065. doi:10.1016/
j.solener.2015.10.027. 1.3.1, 1.4.2

[32] G. Valverde, T. van Cutsem, Model predictive control of voltages in active dis-
tribution networks, IEEE Transactions on Smart Grid 4 (4) (2013) 2152–2161.
doi:10.1109/TSG.2013.2246199. 1.3.1

[33] C. A. Hans, P. Braun, J. Raisch, L. Grüne, C. Reincke-Collon, Hierarchical distri-
buted model predictive control of interconnected microgrids, IEEE Transactions on
Sustainable Energy 10 (1) (2019) 407–416. doi:10.1109/TSTE.2018.2802922. 1.4.2,
4.1, 1

[34] G. K. H. Larsen, N. D. van Foreest, J. M. A. Scherpen, Distributed MPC applied
to a network of households with micro-CHP and heat storage, IEEE Transactions
on Smart Grid 5 (4) (2014) 2106–2114. doi:10.1109/TSG.2014.2318901. 1.4.2, 1

[35] K. Worthmann, C. M. Kellett, P. Braun, L. Grüne, S. R. Weller, Distributed
and decentralized control of residential energy systems incorporating battery
storage, IEEE Transactions on Smart Grid 6 (4) (2015) 1914–1923. doi:10.1109/
TSG.2015.2392081. 1.3.1, 1.4.2, 4.1

[36] S. P. Boyd, L. Vandenberghe, Convex optimization, Cambridge University Press,
Cambridge, UK and New York, 2004. 1.4, 1.4.1, 1.4.2, 2.2.4.1, A.2

[37] E. Camacho, C. Bordons, Model predictive control, 2nd Edition, Advanced text-
books in control and signal processing, Springer, London, 2007. 1.4, 1.4, 1.4, 1.4.1

[38] L. Wang, Model Predictive Control System Design and Implementation Using
MATLABr, Advances in Industrial Control, Springer, London and Heidelberg,
2009. doi:10.1007/978-1-84882-331-0.
URL http://d-nb.info/996617213/34 1.4, 1.4

[39] S. Gros, Diehl Moritz, Numerical Optimal Control, draft Edition, April 2019.
URL https://www.syscop.de/numericaloptimalcontrol 1.4, 1.4

[40] R. R. Negenborn, J. M. Maestre, Distributed model predictive control: An over-
view and roadmap of future research opportunities, IEEE Control Systems Maga-
zine 34 (4) (2014) 87–97. doi:10.1109/MCS.2014.2320397. 1.4, 4.1

[41] T. Faulwasser, L. Grüne, M. A. Müller, Economic nonlinear model predictive
control, Foundations and Trendsr in Systems and Control 5 (1) (2018) 1–98.
doi:10.1561/2600000014. 1.4.1

[42] J. M. Maciejowski, Predictive control with constraints, Prentice Hall, Harlow, 2002.
1.4.1, 1.4.1

118

http://dx.doi.org/10.1016/j.solener.2015.10.027
http://dx.doi.org/10.1016/j.solener.2015.10.027
http://dx.doi.org/10.1109/TSG.2013.2246199
http://dx.doi.org/10.1109/TSTE.2018.2802922
http://dx.doi.org/10.1109/TSG.2014.2318901
http://dx.doi.org/10.1109/TSG.2015.2392081
http://dx.doi.org/10.1109/TSG.2015.2392081
http://d-nb.info/996617213/34
http://d-nb.info/996617213/34
http://dx.doi.org/10.1007/978-1-84882-331-0
http://d-nb.info/996617213/34
https://www.syscop.de/numericaloptimalcontrol
https://www.syscop.de/numericaloptimalcontrol
http://dx.doi.org/10.1109/MCS.2014.2320397
http://dx.doi.org/10.1561/2600000014


Bibliography

[43] S. Engell, I. Harjunkoski, Optimal operation: Scheduling, advanced control and
their integration, Computers & Chemical Engineering 47 (2012) 121–133. doi:
10.1016/j.compchemeng.2012.06.039. 1.4.1, 2.2

[44] J. Siroky, F. Oldewurtel, J. Cigler, S. Privara, Experimental analysis of model
predictive control for an energy efficient building heating system, Applied Energy
88 (9) (2011) 3079–3087. doi:10.1016/j.apenergy.2011.03.009. 1.6

[45] T. Faulwasser, A. Engelmann, Toward economic nmpc for multistage ac optimal
power flow, Optimal Control Applications and Methods 41 (1) (2020) 107–127.
doi:10.1002/oca.2487. 1.4.2

[46] M. Ali, J. Jokisalo, K. Siren, M. Lehtonen, Combining the demand response
of direct electric space heating and partial thermal storage using LP optimi-
zation, Electric Power Systems Research 106 (2014) 160–167. doi:10.1016/
j.epsr.2013.08.017. 1.4.2

[47] F. Sossan, V. Lakshmanan, G. T. Costanzo, M. Marinelli, P. J. Douglass, H. Bind-
ner, Grey-box modelling of a household refrigeration unit using time series data in
application to demand side management, Sustainable Energy, Grids and Networks
5 (2016) 1–12. doi:10.1016/j.segan.2015.10.003. 1.4.2

[48] G. T. Costanzo, S. Iacovella, F. Ruelens, T. Leurs, B. J. Claessens, Experimental
analysis of data-driven control for a building heating system, Sustainable Energy,
Grids and Networks 6 (2016) 81–90. doi:10.1016/j.segan.2016.02.002. 1.4.2

[49] S. K. Gupta, K. Kar, S. Mishra, J. T. Wen, Collaborative energy and thermal
comfort management through distributed consensus algorithms, IEEE Transacti-
ons on Automation Science and Engineering 12 (4) (2015) 1285–1296. doi:
10.1109/TASE.2015.2468730. 1.4.2

[50] X. Chen, Q. Wang, J. Srebric, Model predictive control for indoor thermal comfort
and energy optimization using occupant feedback, Energy and Buildings 102 (2015)
357–369. doi:10.1016/j.enbuild.2015.06.002. 1.4.2

[51] W. Mai, C. Y. Chung, Economic MPC of aggregating commercial buildings for
providing flexible power reserve, IEEE Transactions on Power Systems 30 (5)
(2015) 2685–2694. doi:10.1109/TPWRS.2014.2365615. 1.4.2

[52] G. K. H. Larsen, N. D. van Foreest, J. M. A. Scherpen, Distributed control of the
power supply-demand balance, IEEE Transactions on Smart Grid 4 (2) (2013) 828–
836. doi:10.1109/TSG.2013.2242907. 1.4.2

[53] S. Boyd, Xiao Lin, Mutapcic Almir, Mattingley Jacob, Notes on decomposition
methods.
URL http://stanford.edu/class/ee364b/lectures.html 1.4.2, A.5

119

http://dx.doi.org/10.1016/j.compchemeng.2012.06.039
http://dx.doi.org/10.1016/j.compchemeng.2012.06.039
http://dx.doi.org/10.1016/j.apenergy.2011.03.009
http://dx.doi.org/10.1002/oca.2487
http://dx.doi.org/10.1016/j.epsr.2013.08.017
http://dx.doi.org/10.1016/j.epsr.2013.08.017
http://dx.doi.org/10.1016/j.segan.2015.10.003
http://dx.doi.org/10.1016/j.segan.2016.02.002
http://dx.doi.org/10.1109/TASE.2015.2468730
http://dx.doi.org/10.1109/TASE.2015.2468730
http://dx.doi.org/10.1016/j.enbuild.2015.06.002
http://dx.doi.org/10.1109/TPWRS.2014.2365615
http://dx.doi.org/10.1109/TSG.2013.2242907
http://stanford.edu/class/ee364b/lectures.html
http://stanford.edu/class/ee364b/lectures.html
http://stanford.edu/class/ee364b/lectures.html


Bibliography

[54] V. Spudić, C. Conte, M. Baotić, M. Morari, Cooperative distributed model pre-
dictive control for wind farms, Optimal Control Applications and Methods 36 (3)
(2015) 333–352. doi:10.1002/oca.2136. 1.4.2, 4.1

[55] A. Parisio, C. Wiezorek, T. Kyntaja, J. Elo, K. Strunz, K. H. Johansson, Coopera-
tive MPC-based energy management for networked microgrids, IEEE Transactions
on Smart Grid 8 (6) (2017) 3066–3074. doi:10.1109/TSG.2017.2726941. 1.4.2

[56] P. Braun, T. Faulwasser, L. Grüne, C. M. Kellett, S. R. Weller, K. Worthmann,
Hierarchical distributed ADMM for predictive control with applications in power
networks, IFAC Journal of Systems and Control 3 (2018) 10–22. doi:10.1016/
j.ifacsc.2018.01.001. 1.4.2

[57] I. Stoyanova, E. Gümrükcü, G. Aragon, D. I. Hidalgo-Rodriguez, A. Monti, J. My-
rzik, Distributed model predictive control strategies for coordination of electro–
thermal devices in a cooperative energy management concept, Optimal Control
Applications and Methods 41 (1) (2020) 170–189. doi:10.1002/oca.2528. 1.4.2,
4.1

[58] D. I. Hidalgo Rodríguez, J. Hinker, J. M. Myrzik, On the problem formulation of
model predictive control for demand response of a power-to-heat home microgrid,
in: 19th Power Systems Computation Conference (PSCC), IEEE, Genoa, Italy,
2016, pp. 1–8. doi:10.1109/PSCC.2016.7541024. 1, 2, 4.1

[59] D. I. Hidalgo Rodríguez, J. M. Myrzik, Economic model predictive control for
optimal operation of home microgrid with photovoltaic-combined heat and po-
wer storage system, in: Proceedings of the 20th IFAC World Congress, Toulouse,
France, 2017. doi:10.1016/j.ifacol.2017.08.2039. 2, 3, 4.1

[60] T. M. Kneiske, M. Braun, D. I. Hidalgo-Rodriguez, A new combined control al-
gorithm for pv-chp hybrid systems, Applied Energy 210 (2018) 964–973. doi:
10.1016/j.apenergy.2017.06.047. 2

[61] D. I. Hidalgo-Rodriguez, J. Myrzik, Optimal operation of interconnected home-
microgrids with flexible thermal loads: A comparison of decentralized, centra-
lized, and hierarchical-distributed model predictive control, in: 20th Power Sy-
stems Computation Conference (PSCC), IEEE, Dublin, Irland, 2018, pp. 1–7.
doi:10.23919/PSCC.2018.8442807. 3, 4

[62] D. Hidalgo-Rodriguez, S. Hoffmann, F. Adelt, J. Myrzik, J. Weyer, A socio-
technical simulation framework for collaborative management in power distribution
grids, in: International ETG Congress 2017, VDE, Bonn, Germany, 2017. 5, 6

[63] L. Spitalny, J. M. A. Myrzik, T. Mehlborn, Estimation of the economic addressa-
ble market of micro-CHP and heat pumps based on the status of the residential
building sector in germany, Applied Thermal Engineering 71 (2) (2014) 838–846.
doi:10.1016/j.applthermaleng.2013.12.027. 2.2.1

120

http://dx.doi.org/10.1002/oca.2136
http://dx.doi.org/10.1109/TSG.2017.2726941
http://dx.doi.org/10.1016/j.ifacsc.2018.01.001
http://dx.doi.org/10.1016/j.ifacsc.2018.01.001
http://dx.doi.org/10.1002/oca.2528
http://dx.doi.org/10.1109/PSCC.2016.7541024
http://dx.doi.org/10.1016/j.ifacol.2017.08.2039
http://dx.doi.org/10.1016/j.apenergy.2017.06.047
http://dx.doi.org/10.1016/j.apenergy.2017.06.047
http://dx.doi.org/10.23919/PSCC.2018.8442807
http://dx.doi.org/10.1016/j.applthermaleng.2013.12.027


Bibliography

[64] F. Wosnitza, H. G. Hilgers, Energieeffizienz und Energiemanagement: Ein Über-
blick heutiger Möglichkeiten und Notwendigkeiten, Vieweg+Teubner Verlag, 2012.
URL https://books.google.de/books?id=_00eBAAAQBAJ 2.2.1

[65] H. Madsen, J. Holst, Estimation of continuous-time models for the heat dynamics
of a building, Energy and Buildings 22 (1) (1995) 67–79. doi:10.1016/0378-
7788(94)00904-X. 2.2.2, B.1

[66] Y. Zong, L. Mihet-Popa, D. Kullmann, A. Thavlov, O. Gehrke, H. W. Bindner,
Model predictive controller for active demand side management with PV self-
consumption in an intelligent building, in: 3rd IEEE PES International Conference
and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), IEEE, Ber-
lin, Germany, 2012, pp. 1–8. doi:10.1109/ISGTEurope.2012.6465618. 2.2.2

[67] F. Shahnia, M. T. Wishart, A. Ghosh, G. Ledwich, F. Zare, Smart demand side
management of low-voltage distribution networks using multi-objective decision
making, IET Generation, Transmission & Distribution 6 (10) (2012) 986–1000.

[68] R. Missaoui, G. Warkozek, S. Bacha, S. Ploix, Real time validation of an optimiza-
tion building energy management strategy based on Power-Hardware-in-the-Loop
tool, in: 3rd IEEE PES International Conference and Exhibition on Innovative
Smart Grid Technologies (ISGT Europe), IEEE, Berlin, Germany, 2012, pp. 1–7.
doi:10.1109/ISGTEurope.2012.6465791. 2.2.2

[69] T. Kashima, S. P. Boyd, Cost optimal operation of thermal energy storage system
with real-time prices, in: X.-M. Nguyen (Ed.), 2013 International Conference on
Control, Automation and Information Sciences (ICCAIS 2013), IEEE, Nha Trang,
Vietnam, 2013, pp. 233–237. doi:10.1109/ICCAIS.2013.6720560. 2.2.3

[70] ISO, ISO 7730: Ergonomics of the thermal environment — Analytical determina-
tion and interpretation of thermal comfort using calculation of the PMV and PPD
indices and local thermal comfort criteria (2005).
URL https://www.iso.org 2.2.5

[71] C. Nabe, B. Hasche, M. Offermann, et al., Potenziale der Wärmepumpe zum Last-
management im Strom und zur Netzintegration erneuerbarer Energien.
URL https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/potenziale-
der-waermepumpe.html 2.2.6, B.2, B.2, B.2

[72] VDI, VDI 4655 - reference load profiles of single-family and multi-family houses for
the use of CHP system (01.05.2008).
URL https://www.vdi.de/richtlinien 2.2.6, 3.2.9

[73] D. Walberg, Wohnungsbau in Deutschland 2011 - Modernisierung oder Bestandser-
satz, Mauerwerk 15 (5) (2011) 294–300. doi:10.1002/dama.201100508. 2.2.6

121

https://books.google.de/books?id=_00eBAAAQBAJ
https://books.google.de/books?id=_00eBAAAQBAJ
https://books.google.de/books?id=_00eBAAAQBAJ
http://dx.doi.org/10.1016/0378-7788(94)00904-X
http://dx.doi.org/10.1016/0378-7788(94)00904-X
http://dx.doi.org/10.1109/ISGTEurope.2012.6465618
http://dx.doi.org/10.1109/ISGTEurope.2012.6465791
http://dx.doi.org/10.1109/ICCAIS.2013.6720560
https://www.iso.org
https://www.iso.org
https://www.iso.org
https://www.iso.org
https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/potenziale-der-waermepumpe.html
https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/potenziale-der-waermepumpe.html
https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/potenziale-der-waermepumpe.html
https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/potenziale-der-waermepumpe.html
https://www.vdi.de/richtlinien
https://www.vdi.de/richtlinien
https://www.vdi.de/richtlinien
http://dx.doi.org/10.1002/dama.201100508


Bibliography

[74] W. E. Hart, C. Laird, J.-P. Watson, D. L. Woodruff, Pyomo – Optimization Mo-
deling in Python, Vol. 67, Springer US, Boston, MA, 2012. doi:10.1007/978-1-
4614-3226-5. 2.2.6, 3.2.9, 4.6

[75] W. E. Hart, J.-P. Watson, D. L. Woodruff, Pyomo: Modeling and solving mat-
hematical programs in python, Mathematical Programming Computation 3 (3)
(2011) 219–260. doi:10.1007/s12532-011-0026-8. 2.2.6, 3.2.9, 4.6

[76] IBM, IBM ILOG CPLEX optimization studio.
URL http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
2.2.6, 3.2.9, 4.6

[77] B. Thomas, Mini-Blockheizkraftwerke: Grundlagen, Gerätetechnik, Betriebsdaten,
2nd Edition, Vogel, Würzburg, 2011. 3.2.2, 3.3

[78] D. I. Hidalgo Rodriguez, L. Spitalny, J. Myrzik, M. Braun, Development of a con-
trol strategy for mini CHP plants for an active voltage management in low voltage
networks, in: 3rd IEEE PES International Conference and Exhibition on Innova-
tive Smart Grid Technologies (ISGT Europe), IEEE, Berlin, Germany, 2012, pp.
1–8. doi:10.1109/ISGTEurope.2012.6465797. 3.2.2

[79] J. M. Maestre, R. R. Negenborn (Eds.), Distributed Model Predictive Control
Made Easy, Vol. 69 of Intelligent Systems, Control and Automation, Springer Net-
herlands, Dordrecht and s.l., 2014. doi:10.1007/978-94-007-7006-5.
URL http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=
nlebk&db=nlabk&AN=662900 4.1

[80] B. Yang, M. Johansson, Distributed optimization and games: A tutorial over-
view, in: A. Bemporad, M. Heemels, M. Johansson (Eds.), Networked Control Sy-
stems, Vol. 406 of Lecture Notes in Control and Information Sciences, Springer-
Verlag London, London, 2011, pp. 109–148. doi:10.1007/978-0-85729-033-
5{\textunderscore }4. 4.5, 4.5.1, A.5

[81] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Foundations
and Trendsr in Machine Learning 3 (1) (2010) 1–122. doi:10.1561/2200000016.
5.1, 5.2, 5.2, 5.3.1, 5.3.2, 5.4.2, 5.4.3, A.5, A.5.2.2, E

[82] R. Takapoui, N. Moehle, S. Boyd, A. Bemporad, A simple effective heuristic for
embedded mixed-integer quadratic programming, International Journal of Control
66 (3) (2017) 1–11. doi:10.1080/00207179.2017.1316016. 2

[83] KoRiSim - Kooperatives Informations- und Risikomanagement in zukunftsfähigen
Netzen - eine Simulationsstudie. Grant number: BMBF 03ek3547.
URL https://forschung-stromnetze.info/projekte/kooperatives-
informations-und-risikomanagement/ 6

122

http://dx.doi.org/10.1007/978-1-4614-3226-5
http://dx.doi.org/10.1007/978-1-4614-3226-5
http://dx.doi.org/10.1007/s12532-011-0026-8
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://dx.doi.org/10.1109/ISGTEurope.2012.6465797
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=662900
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=662900
http://dx.doi.org/10.1007/978-94-007-7006-5
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=662900
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=662900
http://dx.doi.org/10.1007/978-0-85729-033-5{_}4
http://dx.doi.org/10.1007/978-0-85729-033-5{_}4
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1080/00207179.2017.1316016
https://forschung-stromnetze.info/projekte/kooperatives-informations-und-risikomanagement/
https://forschung-stromnetze.info/projekte/kooperatives-informations-und-risikomanagement/
https://forschung-stromnetze.info/projekte/kooperatives-informations-und-risikomanagement/
https://forschung-stromnetze.info/projekte/kooperatives-informations-und-risikomanagement/


Bibliography

[84] mosaik — A flexible Smart Grid co-simulation framework (13.06.2019).
URL https://mosaik.offis.de/ 6.2

[85] C. Steinbrink, A. A. van der Meer, M. Cvetkovic, D. Babazadeh, S. Rohjans,
P. Palensky, S. Lehnhoff, Smart grid co-simulation with MOSAIK and HLA: a
comparison study, Computer Science - Research and Development 33 (1-2) (2018)
135–143. doi:10.1007/s00450-017-0379-y. 6.2

[86] E. Handschin, Elektrische Energieübertragungssysteme, 2nd Edition, Dr. Alfred
Hüthig Verlag Heidelberg, Heidelberg, 1987.
URL https://books.google.de/books?id=OFa5XwAACAAJ 6.2.1

[87] Pypower: Power flow and optimal power flow (opf) solver (28.06.2018).
URL https://pypi.org/project/PYPOWER/ 6.2.1

[88] F. Adelt, S. Hoffmann, D. I. Hidalgo Rodríguez, J. Myrzik, J. Weyer, Kooperatives
Informations- und Risikomanagement in zukunftsfähigen Netzen - eine Simulati-
onsstudie (KoRiSim) : KoRiSim: Schlussbericht zu nr. 3.2 (BNBest-BMBF 1998).
Laufzeit des Vorhabens: 01.05.2015-31.12.2018. doi:10.2314/KXP:1681046261.
6.2.3

[89] J. Scheffler, Bestimmung der maximal zulässigen Netzanschlussleistung photovol-
taischer Energiewandlungsanlagen in Wohnsiedlungsgebieten, Ph.D. thesis, TU
Chemnitz, Chemnitz (18 Juni/2002). 6.3, 6.4

[90] L. Spitalny, Analyse der Systemeffizienz beim netzgeführten Betrieb von Wärmeer-
zeugern im Wohngebäudesektor, Dissertation, TU Dortmund (2016). 6.3, 6.4

123

https://mosaik.offis.de/
https://mosaik.offis.de/
http://dx.doi.org/10.1007/s00450-017-0379-y
https://books.google.de/books?id=OFa5XwAACAAJ
https://books.google.de/books?id=OFa5XwAACAAJ
https://pypi.org/project/PYPOWER/
https://pypi.org/project/PYPOWER/
http://dx.doi.org/10.2314/KXP:1681046261




Appendices

125



A. Mathematical optimization background

This appendix gives background concepts on mathematical optimization and provides
theoretical support to the main ideas presented in the chapters of this dissertation. By
giving foundations and derivations of the methods and approaches used in this research,
this appendix aims at facilitating the reader the understanding of the proposed optimiza-
tion problems. This appendix, however, does not pretend to cover all topics at detailed
level as in a textbook. To have a broader insight into this topics the reader should take
a look at the referenced literature. The author also recommends to check online courses
on mathematical optimization.

The appendix starts defining the structure and elements of an optimization problem
together with some basic definitions for mathematical optimization. Next, it handles the
basic ideas behind decomposing and pays special attention to the dual decomposition and
the ADMM approach, as they are the approaches used in this dissertation.

A.1. Convexity

This works uses convex optimization as approach to formulate and solve the stated op-
timization problems, as it allows to make use of existing efficient and reliable algorithms
to solve them. Before handling the topics regarding optimization problems, definitions
for convexity needs to be stated. First of all, a set is convex if the line segment, between
two points in the set, is also contained in the set. Formally, a convex set C can be defined
as:

αx+ (1− α) y ∈ C,∀x, y ∈ C,∀α ∈ [0, 1] . (A.1)

In other words, there should be always a clear line path, without leaving the set, between
any two points x and y in the set C. Furthermore, the epigraph of a function f is the set of
points lying on or above the function’s graph. Then, a function f is convex if its epigraph
is a convex set. Formally, a function f is convex if, for a given parameter θ ∈ [0, 1], the
following is true:

θf (x) + (1− θ) f (y) ≥ f (θx+ (1− θ) y) , (A.2)

meaning that the value of f at the given linear combination between the two points x
and y, lies always on or below the line segment between f(x) and f(y).
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A.2. Optimization problems

Following the notation from Boyd. et al. in [36], the standard formulation of an optimi-
zation problem is as follows:

minimize
x

fo (x) (A.3a)

subject to
fi (x) ≤ 0, i = 1, . . . ,m, (A.3b)
hi (x) = 0, i = 1, . . . , p, (A.3c)

where fo is the objective function, x ∈ Rn is a vector of decision variables, fi are functions
for the corresponding inequality constraints in (A.3b), and hi are functions for the equality
constraints in (A.3c). Problem (A.3) is convex if the following requirements are met:

1. the objective function fo is convex,

2. the inequality constraint functions fi are convex, and

3. the equality constraint functions hi are affine.

An optimization problem is a linear programming (LP) problem, if objective function,
inequality constraints and equality constraints are linear expressions. If the decision vari-
ables are not continuous but integers, i.e., x ∈ Z, then the problem is not convex anymore.
In this case, the problem becomes a mixed-integer linear programming (MILP) problem
. Furthermore, some formulations used in this dissertation also involve a quadratic ex-
pression in the objective function and therefore such problems are called mixed-integer
quadratic programming (MIQP) problems.

The simplex method and interior point methods (also called barrier methods) are the most
common methods used in commercial solvers to solve LP problems. If integer variables
are present, then the solver also makes use of linear relaxation and heuristic methods (e.g.,
branch and bound or branch and cut) to find the optimal solution. For MIQP, interior
point and heuristic methods are normally used.

A.3. Duality

Another important concept used in this research is the concept of duality, also called
Lagrangian duality. The main idea behind duality, is to formulate and solve a dual
problem associated to the primal problem given by (A.3). If certain conditions, which we
will describe later, are met when obtaining the solution for both primal and dual problem,
then the obtained solution is the global optimum.
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The first step to formulate a dual problem is to form the Lagrangian, which implies taking
the equality constraints (A.3c) and the inequality constraints (A.3b) to the objective
function, weighted with a parameter (Lagrange multiplier). Then, the definition of the
Lagrangian associated with the problem (A.3) is:

L (x, λ, ν) = fo (x) +
m∑
i=1

λifi (x) +
p∑
i=1

νihi (x), (A.4)

where λi is called the Lagrange multiplier associated to the ith inequality constraint, and
respectively, νi is called the Lagrange multiplier associated to the ith equality constraint.

The second step to formulate the dual problem is to define the dual function. The dual
function g is the infimum of the Lagrangian over x and it is defined as:

g (λ, ν) = inf
x
L (x, λ, ν) = inf

x

(
fo (x) +

m∑
i=1

λifi (x) +
p∑
i=1

νihi (x)
)
. (A.5)

Note that it is a function of λ and ν, not a function of x. It can provide a lower bound on
the optimal value f ∗o of the problem (A.3), for each pair (λ, ν). If there are no constraints
on the value of λ and ν, it is often the case that the value of the infimum of the Lagrangian
is −∞. Thus, in order to find a useful lower bound on the primal objective value, we need
to constraint these variables.

The dual problem helps to find the best lower bound on the optimal value of the primal
problem, obtained from the dual function, as it explicitly contains the above mentioned
constraints on λ and ν. The formulation of the dual problem is given by:

maximize
λ,ν

g (λ, ν) (A.6a)

subject to
λ � 0, (A.6b)

which is a convex optimization problem and we say that the pair (λ, ν) is dual feasible
if λ � 0 and g (λ, ν) ≥ −∞. The vectors λ and ν are also referred as the dual variables
of the problem (A.3). Furthermore, the term dual optimal refers to the pair (λ∗, ν∗), i.e.,
the optimal solution of the dual problem (A.6).

A.4. Optimality conditions

The primal problem (A.3) and the dual problem (A.6) provide some important properties
and concepts that allow us to define certain conditions in order to establish optimality.
The following four conditions are called Karush-Kuhn-Tucker (KKT) conditions, with the
triple x̃, λ̃, ν̃ representing a solution for the primal and dual problems, respectively.
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1. primal feasibility: fi (x̃) ≤ 0, i = 1, . . . ,m, hi (x̃) = 0, i = 1, . . . , p

2. dual feasibility: λ̃ � 0

3. complementary slackness: λ̃ifi (x̃) = 0, i = 1, . . . ,m, which implies that either
λ̃i = 0 or fi (x̃) = 0. Since hi (x̃) is also zero (see primal feasibility), then according
to (A.4), fo (x̃) = L

(
x̃, λ̃, ν̃

)
4. gradient of Lagrangian with respect to x vanishes: ∇xL = 0, and therefore the value

of the infimum of the Lagrangian over x is equal to the objective value of the dual
problem, i.e., g

(
λ̃, ν̃

)
= L

(
x̃, λ̃, ν̃

)
thus, fo (x̃) = g

(
λ̃, ν̃

)
. Consequently, if x̃, λ̃, ν̃ satisfy these four KKT conditions for a

convex problem, then they are global optimal.

A.5. Decomposition of optimization problems

There are several approaches for decomposition of optimization problems. Here, we focus
just on the methods used in this dissertation namely, dual decomposition and ADMM. For
a broader and detailed introduction to decomposition methods the author recommends to
check the material from Boyd et al. in [53] and [81] and also the tutorial on distributed
optimization by Yang and Johansson in [80].

A.5.1. Dual decomposition

In this research, we handle the case of the decomposition with constraints, which can be
elaborated considering the following optimization problem:

minimize
x1,x2

f1 (x1) + f2 (x2) (A.7a)

subject to
x1 ∈ C1, x2 ∈ C2, (A.7b)

h1 (x1) + h2 (x2) � 0, (A.7c)

where fi, hi, and C are convex. (A.7c) is a set of coupling constraints, which involve both
x1 and x2. These coupling constraints can be seen as a capacity restriction on resources
shared between two subproblems.

To solve problem (A.7) in a distributed, or hierarchical-distributed way, the first step is
to form its separable partial Lagrangian given by:
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L (x1, x2, λ) = f1 (x) + f2 (x2) + λT (h1 (x1) + h2 (x2)) , (A.8)
=
(
f1 (x1) + λTh1 (x1)

)
+
(
f2 (x2) + λTh2 (x2)

)
,

and now the problem is separable. We can the define subproblem 1 as:

minimize
x1

f1 (x1) + λTh1 (x1) (A.9a)

subject to
x1 ∈ C1, (A.9b)

and subproblem 2 as:

minimize
x2

f2 (x2) + λTh1 (x2) (A.10a)

subject to
x2 ∈ C2, (A.10b)

with optimal solutions x̃1 and x̃2 respectively.

To conclude, the dual decomposition algorithm includes the following steps:

1. Solve subproblem 1 (A.9) and subproblem 2 (A.10) in parallel, finding an optimal
x̃1 and x̃2.

2. Update dual variables using the projected subgradient with:

λ := (λ+ αk (h1 (x̃1) + h2 (x̃2))) . (A.11)

Where αk is the step size for the subgradient update. x̃1 and x̃2 are not necessarily
feasible for (A.7) at each iteration, but feasible primal variables can be constructed using
projection.

A practical interpretation of dual decomposition for this case is to see the vector λ as prices
of resources. Taking into account the revenue or cost from/of resources, the subproblems
are solved independently from each other and a master algorithm adjusts the prices at
each iteration until the prices converge. Prices on over-demanded resources are increased
and prices on under-demanded resources are reduced.
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A.5.2. Alternating Direction Method of Multipliers (ADMM)

ADMM is a method which supports decomposition of optimization problems. Consider
the optimization problem:

minimize
x,z

f (x) + g (z) (A.12a)

subject to
Ax+Bz = c, (A.12b)

with f and g convex, two set of decision variables x and z, and a coupling constraint
(A.12b). Similar as in dual decomposition, in ADMM we want to form the Lagrangian
associated to the problem (A.12) but this time we add an extra quadratic term involving
the coupling constraint as follows:

Lρ (x, z, y) = f (x) + g (z) + yT (Ax+Bz − c) + (ρ/2) ‖Ax+Bz − c‖2
2 . (A.13)

We denote this expression as augmented Lagrangian, where y is the Lagrange multiplier
associated with the coupling constraint and ρ is a weighting parameter for the quadratic
expression. As the augmented Lagrangian is not separable with respect to x and y due
to this extra quadratic expression, it cannot be minimized over x and z at the same time.
Instead, ADMM is an iterative method that uses an alternating optimization minimizing
over x with z fixed, and vice versa. The ADMM algorithm includes then three steps
within each iteration: x-minimization, z-minimization, and dual update. They are given
by:

xk+1 := argmin
x

Lρ
(
x, zk, yk

)
, (A.14)

zk+1 := argmin
z

Lρ
(
xk+1, z, yk

)
, (A.15)

and
yk+1 := yk + ρ

(
Axk+1 +Bzk+1 − c

)
(A.16)

respectively. The superindex k denotes the iteration number.

A.5.2.1. ADMM with scaled dual variables

ADMM can be also expressed in a scaled form which allows a more compact and shorter
formulation. In the scaled form, we define the vector r = Ax + Bz − c, the scaled dual
variable ui = (1/ρ) yi, and combine the linear and quadratic terms in the augmented
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Lagrangian (A.13) as follows:

yT r + ρ/2 ‖r‖2
2 =

∑
i

yiri + ρ/2
∑
i

r2
i +

∑
i

1
2ρy

2
i −

∑
i

1
2ρy

2
i (A.17)

=ρ/2
∑
i

(
r2
i + 2

ρ
yiri + 1

ρ2y
2
i

)
−
∑
i

1
2ρy

2
i

=ρ/2
∑
i

(
ri + yi

1
ρ

)2

− ρ/2
∑
i

(
yi
ρ

)2

=ρ/2
∑
i

(ri + ui)2 − ρ/2
∑
i

u2
i

= (ρ/2) ‖r + u‖2
2 − (ρ/2) ‖u‖2

2,

and now the augmented scaled Lagrangian can be expressed as:

Lp (x, z, u) =f (x) + g (z) + (ρ/2) ‖r + u‖2
2 − (ρ/2) ‖u‖2

2 (A.18)
=f (x) + g (z) + (ρ/2) ‖Ax+Bz − c+ u‖2

2 + const.

As we want to minimize over x and z the last term in (A.18) can be denoted as a constant.
Consequently, ADMM in scaled dual form is:

xk+1 := argmin
x

(
f (x) + (ρ/2) ‖Ax+Bzk − c+ uk‖2

2

)
, (A.19)

zk+1 := argmin
z

(
g (z) + (ρ/2) ‖Axk+1 +Bz − c+ uk‖2

2

)
, (A.20)

uk+1 := uk + Axk+1 +Bzk+1 − c. (A.21)

A.5.2.2. Sharing problem in ADMM form

In this dissertation we used the sharing problem as a suitable formulation for a hierarchical-
distributed coordination strategy. The sharing problem involves N subsystems with local
cost functions and a shared global objective function. The sharing problem as optimiza-
tion problem can be expressed as:

minimize
x

N∑
i=1

fi (xi) + g

(
N∑
i=1

xi

)
, (A.22)

with fi as a local cost function for each subsystem i, and g as the shared objective. The
argument of the shared objective is the sum of the local variables from all subsystems.
By copying the local variable xi into a new variable zi, the sharing problem can expressed
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in ADMM form as:

minimize
x,z

N∑
i=1

fi (xi) + g

(
N∑
i=1

zi

)
(A.23a)

subject to
xi − zi = 0, i = 1, . . . , N, (A.23b)

(A.23c)

with xi and zi ∈ Rn. Note that there are now N coupling constraints. Accordingly, the
scaled ADMM algorithm for problem (A.23) is

xk+1
i := argmin

xi

(
fi (xi) + (ρ/2) ‖xi − zki + uki ‖2

2

)
, (A.24)

zk+1 := argmin
z

(
g

(
N∑
i=1

zi

)
+ (ρ/2)

N∑
i=1
‖zi − uki − xk+1

i ‖2
2

)
, (A.25)

uk+1
i := uki + xk+1

i − zk+1
i . (A.26)

As each zi has n elements, the z-update in (A.25) implies an optimization over Nn
variables. Boyd. et al. in [81] showed that the z-update for the ADMM sharing problem
can be reduced to a minimization over n variables. We will elaborate this reduction for
the sake of completeness. A possible reformulation for the z-update is:

minimize
zi

g (Nz̄) + (ρ/2)
N∑
i=1
‖zi − ai‖2

2 (A.27a)

subject to

z̄ = (1/N)
N∑
i=1

zi, (A.27b)

with z̄ ∈ Rn and ai = uki +xk+1
i . To solve this constrained minimization problem, we first

form the Lagrangian associated to (A.27):

L (zi, z̄, ai, λ) = g (Nz̄) + ρ

2

N∑
i=1
‖zi − ai‖2

2 + λT
(
z̄ − 1

N

N∑
i=1

zi

)
, (A.28)

and with fixed z̄, we find the gradient of the Lagrangian with respect to zi

∇zi
L = ρ (zi − ai)−

λT

N
(A.29)

and we set ∇zi
L := 0 to find the optimal solution, which gives

zi := λT

Nρ
+ ai. (A.30)
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By replacing (A.30) in (A.27b) we have:

z̄ = 1
N

N∑
i=1

(
λT

Nρ
+ ai

)

= 1
N

(
NλT

Nρ
+

N∑
i=1

ai

)

= λT

Nρ
+ ā, (A.31)

and by solving for λT

Nρ
and replacing again in (A.30) we obtain the optimal solution to

problem (A.27) as
zi = z̄ − ā+ ai. (A.32)

The z-update becomes now an unconstrained optimization problem over z̄

minimize
z̄

g (Nz̄) + (ρ/2)
N∑
i=1
‖z̄ − ā‖. (A.33)

By replacing (A.27) in (A.26) the u-update becomes

uk+1
i = uki + xk+1

i − aki − z̄k+1 + āk

= uki + xk+1
i − uki − xk+1

i − z̄k+1 + ūk + x̄k+1

= ūk + x̄k+1 − z̄k+1, (A.34)

showing that the u-update does not depend on the individual dual variables ui from each
subsystem i and therefore a global single dual variable u can be used for all subsystems.
By substituting zi, ai and ā in the x-update and the z-update respectively, the reduced
ADMM algorithm for the sharing problem becomes:

xk+1
i := argmin

xi

(
fi (xi) + (ρ/2) ‖xi − xki + x̄k − z̄k + uk‖2

2

)
, (A.35)

z̄k+1 := argmin
z̄

(
g (Nz̄) + (Nρ/2) ‖z̄ − uk − x̄k+1‖2

2

)
, (A.36)

uk+1 := uk + x̄k+1 − z̄k+1. (A.37)
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B. Two rooms building model for
application in MPC schemes

This appendix presents a two rooms building model for application in MPC schemes,
which extends the model presented in Chapter 2. The model is accurate enough to
consider each wall and roof within each of the rooms of the building. The thermal model
is subjected to real measurements of the solar radiation and ambient temperature. The
simulation results indicate the total energy consumed for the required level of comfort.
The modeling and simulation work were conducted by Diego Hidalgo and Mohamad
Jaber.

B.1. Introduction

The heat dynamics of a two rooms house is represented by the model proposed in [65]
which has already been used for demand side management with heating systems. The
storage capacity of the house is dominated by the air in the room and composition of
materials of the walls and roofs.

Initially, the proposed model [65] was extended such that instead of merely estimating
the temperature of the room air and the temperature of the large heat-accumulating
medium, it became two rooms building and is now able to estimate each of the wall,
roof and room temperatures with respect to their room air and large heat-accumulating
medium. Then this model was validated where its stability and speed were checked.
Lastly, it was applied to a model predictive control (MPC) scheme were it was subjected
to a quadratic optimization problem to control its thermal behavior throughout the year
and the total energy consumed was calculated for this building. The controlled part was
the space heating system which was built in each room. And the disturbances were the
solar radiation and the ambient temperature to ensure realistic values for the model.

B.2. Model description

As illustrated in Figure B.1, there are eleven states in this building which are the wall,
roof and room temperatures. All the external walls have windows except the inner wall
which does not have. The dotted lines represent the roof of each room. The building is
subjected to solar radiation and ambient temperature. Moreover, a space heating power
is applied for each room, which distributes heat equally inside the rooms.
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𝑇𝑤𝑎𝑙𝑙1

𝑇𝑤𝑎𝑙𝑙2

𝑇𝑤𝑎𝑙𝑙3
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𝑇𝑤𝑎𝑙𝑙7

𝑇𝑟𝑜𝑜𝑓2

𝑇𝑟𝑜𝑜𝑚1 𝑇𝑟𝑜𝑜𝑚2

𝑇𝑤𝑎𝑙𝑙5

Wall
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𝑃𝑡ℎ
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𝑇𝐴𝑚𝑏

Φ𝑆𝑜𝑙𝑎𝑟

𝑃𝑡ℎ
𝑆ℎ1

Figure B.1.: Two rooms building (with all the states, inputs and disturbances)

Such model of linear dynamic system can be described in discrete state space form. The
structures of the involved matrices and vectors can be shown in (B.1). The states of the
system are the temperatures of the each wall, roof and room and is denoted by Tk. Model
inputs uk are the space heating power in each room. Disturbances dk are the outside
ambient temperature and solar radiation.

Tk+1 = A · Tk +B · uk + E · dk, (B.1)
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where

Tk =



Twall1k

Twall2k

Twall3k

T roof1
k

Twall4k

T roof2
k

Twall5k

Twall6k

Twall7k

T room1
k

T room2
k



, (B.2)

uk =
P Sh1

th,k

P Sh2
th,k

 , (B.3)

and

dk =
TAmbk

ΦSolar
k

 . (B.4)

The system matrix A ∈ R11×11 shown in (B.6) is mainly composed of the inverse pro-
duct of thermal capacitances and thermal resistances illustrated in (B.5). The window is
considered part of the wall while applying the calculations. Each of (B.5) is placed such
that it is multiplied with its respective wall/roof and room states.

1
RnCn

, (B.5)

A = [M N ], (B.6)

where matrices M ∈ R11×6 and N ∈ R11×5 are
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M =



−1
R1C1

0 0 0 0 0

0 −1
R2C2

0 0 0 0

0 0 −1
R3C3

0 0 0

0 0 0 −1
R4C4

0 0

0 0 0 0 −1
R5C5

0

0 0 0 0 0 −1
R6C6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
1

R1Ca

1
R2Ca

1
R3Ca

1
R4Ca

1
R5Ca

0

0 0 0 0 1
R5Ca

1
R6Ca



, (B.7)

N =



0 0 0 1
R1C1

0

0 0 0 1
R2C2

0

0 0 0 1
R3C3

0

0 0 0 1
R4C4

0

0 0 0 0.5
R5C5
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. (B.8)

The constant x1, x2, y1, and y2 are represented in (B.9) and (B.10). x1 and x2 shows that
each room considers the summation of the inverse product of the thermal resistances of
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each wall/roof Rn that is affecting that room and the thermal capacitance of the room
air Ca. y1 and y2 shows the summation of thermal resistances of inside surfaces of each
wall/roof R′n that has affect on that room and the thermal capacitance of the room air
Ca.
Each room takes into account the walls and roof which are straightly affecting it. So x1

and y1 are added which affect T room1 . x2 and y2 are also added which affect T room2 . In
this case, those two states will be similar since the two rooms are identical.

x1 =
5∑

n=1

1
RnCa

, y1 =
5∑

n=1

1
R′nCa

, (B.9)

x2 =
9∑

n=5

1
RnCa

, y2 =
9∑

n=5

1
R′nCa

. (B.10)

The thermal resistance of each wall/roof Rn is taken from [71], where the product of ther-
mal transmittance or the U-value and the area of each wall/roof is inversely proportional
to the thermal resistance as shown in (B.11).

Rn1 = 1
Un ∗ (An − Awn ) , Rn2 = 1

Uw
n ∗ Awn

, (B.11)

thermal resistances of walls and windows are added in parallel as follows:

1
Rn

= 1
Rn1

+ 1
Rn2

. (B.12)

The thermal resistance from the room air to the ambient temperature R′n was obtained
based on [71] in which the coefficient of the inside surface of the wall/roof was divided by
the area of each wall/roof.

R′n1 = 0.13
An − Awn

, R′n2 = 0.13
Awn

, (B.13)

and their total thermal resistance is shown in (B.14).

1
R′n

= 1
R′n1

+ 1
R′n2

. (B.14)

Since [71] can not provide enough information to get the parameters of the thermal capa-
citance like the number of layers of each wall/roof, the width, the insulating materials, the
density etc., assumptions based on specific heat of solids were used for finding the thermal
capacitance values. The product of the specific heat capacity, area, width and density of
each wall/roof is directly proportional to the thermal capacitance of each wall/roof Cn.

Cn1 = cp ∗ (An − Awn ) ∗ w ∗ ρ, Cn2 = cwp ∗ Awn ∗ ww ∗ ρw, (B.15)
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and then the thermal capacitances are added in parallel:

Cn = Cn1 + Cn2. (B.16)

For the thermal capacitance of the room air Ca, it is directly proportional to the specific
heat capacity, density and volume of the room air as illustrated in (B.17). The volume
of each room V was calculated based on the dimensions of the rooms (which in this case
are identical).

Ca = cap ∗ V ∗ ρa. (B.17)

The input matrix B ∈ R11×2 and disturbance matrix E ∈ R11×2 are shown in (B.18).
Other parameters like the window area facing south Aw, and the share of the solar radi-
ation (as p) which is directly affecting the walls and rooms are also considered.

B =
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, (B.18)

x1 and x2 were shown in (B.9) and (B.10) are having affect on the ambient temperature
TAmb. z1, and z2 shown in (B.19), are the summation of the area of the windows with
respect to that referred state and the coefficient of the solar radiation p and are hence
divided by the thermal capacitance of the room air Ca.

z1 =
3∑

n=1

Awn (1− p)
Ca

, z2 =
7∑

n=5

Awn (1− p)
Ca

. (B.19)
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In this work, the discrete-time version of MPC is used, hence the continuous-time model
is discretized.

B.3. Numerical Results

Since the two rooms are identical, plots for each T room1
k and P Sh1

th,k are only shown. Also,
plots for TAmbk and ΦSolar

k were shown. The total energy consumed per year was 29562.20
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Figure B.2.: One year (Room temperature, Input, Solar radiation and ambient temperature)

kWh, per seven days in winter 1532.42 kWh and per day 178.79 kWh.

B.4. Conclusion

The two rooms building (in this case) were identical. So the trajectories of the room
temperature and the space heating system for each room will be the same. For a 140 meter-
square area, the total energy shall be close to 21840 kWh for an entire year. The MPC
showed a very satisfactory trajectories where it considered real values of disturbances.

From the previously shown results, it was clear that the quadratic optimization problem
followed its track well and respected the constraints. Each and every state in the model
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Figure B.3.: Seven days in Winter (Room temperature, Input, Solar radiation and ambient
temperature)

such as the walls, roofs and rooms temperature can be estimated and is taken into account
while approximating other states. The controlled part, which is the space heating system,
maintained to supply room comfort throughout the year and mostly at winter, where the
ambient temperature and the solar radiation were so low.

Future work is to consider the floors of the rooms, non-identical rooms for different tra-
jectories, add more rooms and change the heat pump function which supplies the space
heating system with thermal energy, in which it will consider the ambient temperature,
the inside tank water temperature which will give a varying coefficient of performance.
The MPC optimization problem should be updated with the mentioned proposals.
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Figure B.4.: One day in Winter (Room temperature, Input, Solar radiation and ambient
temperature)
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Table B.1.: Nomenclature
Parameter Definition

Twalln Temperature of wall n
T roomn Temperature of room n

T roofn Temperature of roof n
P Shn
th Space heating power of room n

ΦSolar
k Solar radiation
TAmbk Ambient temperature
Un Thermal transmittance of wall n
Uw
n Thermal transmittance of window n

An Area of wall n
Awn Area of window n

Rn Thermal resistance of wall/roof n
R′n Thermal resistance of inside surface of wall/roof n
Cn Thermal capacitance of wall/roof n
Ca Thermal capacitance of room air n
cp Specific heat capacity of wall/roof
cwp Specific heat capacity of window
cap Specific heat capacity of room air
An Area of wall n
Awn Area of window n

V Volume of each room
w Width of wall/roof
ww Width of window
ρ Density of wall/roof
ρw Density of window
ρa Density of room air
p Solar radiation coefficient
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C. Closed-form analytical solution for the
z̄-update

This appendix elaborates the closed-form analytical solution for the z̄-update for the
ADMM algorithm presented in Section 5.2. Let the z̄-update be defined as:

z̄ := argmin
z̄

(
g (Hz̄) + Hρ

2 ‖z̄ − a− b‖
2
2

)
(C.1)

with the vector of variables z̄ ∈ RN , where a ∈ RN , and b ∈ RN are vectors of parame-
ters. For the sake of simplicity, the iterations indices are omitted. The function g (Hz̄)
is defined by:

g (Hz̄) = γ

N

N∑
k=1

(Hz̄ (k))2 (C.2)

The objective function in (C.1) can be rewritten as:

f (z̄) = γ

N

N∑
k=1

(Hz̄ (k))2 + Hρ

2

N∑
k=1

(z̄ (k)− a (k)− b (k))2 (C.3)

The partial derivative of f (z̄) with respect to z̄ (k) is:

∂

∂z̄ (k)f (z̄) = 2γH2

N
z̄ (k) +Hρ (z̄ (k)− a (k)− b (k)) (C.4)

The minimum value of f (z̄ (k)) can be found by setting (C.4) to zero:

2γH2

N
z̄ (k) +Hρz̄ (k)−Hρ (a (k) + b (k)) := 0 (C.5)

Then, the following equality holds for all elements z̄ (k), a (k) and b (k):

2γH2

N
z̄ (k) +Hρz̄ (k) = Hρ (a (k) + b (k)) ∀k ∈ {1, . . . , N}

Therefore, in vector notation the closed-form analytical solution for the z̄-update can
expressed as:

z̄ = ρ (a+ b)
2γ
N
H + ρ

(C.6)
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D. Objective gap for ADMM and dual
decomposition

This appendix presents detailed results on the convergence comparison between ADMM
and dual decomposition discussed in Subsection 5.4.1. Table D.1, Table D.2 and Table D.3
elaborate further on the objective gap for all considered cases. They show the objective
gap at some selected iterations for the three cases and each considered scenario (winter,
summer, and transitional).

Table D.1.: Objective gap winter
|p|admm−unrelax |p|admm−relax |p|dual−unrelax

Iteration
5 12.82 0.63 1497.37
10 6.05 2.47 581.50
50 3.05 3.35 137.19
100 4.28 3.46 88.10
200 1.81 3.51 58.73
500 - - 42.89
1000 - - 21.95

Table D.2.: Objective gap summer
|p|admm−unrelax |p|admm−relax |p|dual−unrelax

Iteration
5 15.10 3.82 1621.88
10 5.08 3.42 658.45
50 2.76 4.01 120.44
100 2.76 4.08 66.21
200 1.12 4.11 20.99
500 - - 2.32
1000 - - 4.89

For all scenarios the relaxed ADMM approach reaches objective convergence around ite-
ration number 10. It is also noticeable, that for this approach the objective gap starts
to increase slightly after iteration 10. Therefore, this algorithm should be stopped at
this iteration. The relaxed dual decomposition approach shows a poor performance and
even after 200 iterations its objective gap is larger than the objective gap reported for the
ADMM approaches at iteration number 10. The table also shows that even though the
objective gap of ADMM unrelaxed at iteration number 10 is larger than the objective gap
of ADMM relaxed, it may be small enough and acceptable for a hierarchical-distributed
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Table D.3.: Objective gap transitional
|p|admm−unrelax |p|admm−relax |p|dual−unrelax

Iteration
5 4.85 1.56 1365.91
10 3.77 0.26 600.14
50 4.63 0.67 224.03
100 2.74 0.79 163.37
200 5.30 0.85 116.40
500 - - 78.13
1000 - - 63.95

MPC application. This issue is further investigated in Section 5.4 taking into account the
residual convergence and the dual variable convergence.
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E. Primal residual and dual residual
open-loop behavior for ADMM
approaches

This appendix gives a thoughtful discussion on the results for primal residual and dual
residual for the ADMM cases presented in Subsection 5.4.1.

As in real applications for MPC based hierarchical-distributed coordination strategies
there is no information regarding the global optimal value, the hierarchical-distributed
operation strategy needs a termination condition which does not involve any information
about the global optimum, i.e. terminating the algorithm based on the objective gap
is not possible. Therefore it is necessary to use the primal residual norm and the dual
residual norm described by (5.10) and (5.11) as termination conditions, since they do not
rely on information of the global optimal value [81].

Figure E.1 presents the progression of the primal residual norm over iteration count for
the ADMM approaches.
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Figure E.1.: Primal residual norm

For the relaxed ADMM approach the primal residual norm converges fast to zero, while
for the unrelaxed ADMM approach this norm does not show convergence but rather os-
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approaches

cillates around 1. This implies that the relaxed ADMM approach reaches primal residual
convergence and this criterion can be used to stop the algorithm. On the other hand, the
unrelaxed ADMM does not meet the primal residual convergence criterion for the consi-
dered scenarios and the algorithm has to be stopped after a given maximum number of
iterations. Even though the unrelaxed ADMM does not show primal residual convergence,
nothing can be said yet regarding the quality of the solution. As the relaxed ADMM is a
relaxed version of the original problem and a feasible solution still needs to be recovered,
it may happen that the solution from the unrelaxed ADMM approach achieves better
results, in terms of objective value, than the recovered solution from the relaxed ADMM
approach. This issue is further discussed in Subsection 5.4.1.

In the sequel, Figure E.2 shows the dual residual norm as a function of the iteration count
for both ADMM approaches. For the relaxed ADMM approach the dual residual norm
rapidly becomes smaller and converges to zero, similar as the primal residual norm. The
dual residual norm of the unrelaxed ADMM approach also presents a fast decrease but
it does not clearly tends to zero. Nonetheless the values for ‖s‖2 could be small enough,
such that both approaches might meet the dual variable convergence. This aspect will be
further elaborated in the next section.
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Figure E.2.: Dual residual norm

Figure E.3 depicts the resulting power at reference node pG for relaxed ADMM (black
line) and unrelaxed ADMM (dashed blue line). The green line serves as reference denoting
the optimal power profile obtained with the centralized coordination strategy, which as
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expected, reduces extreme power peaks and improves power balancing between home-
microgrids. The figure shows that the relaxed ADMM better fits the optimal power
profile at reference node, while the unrelaxed ADMM still presents some minimal peaks
below +/- 1 kWel.
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