International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/5s10009-021-00635-x

EXPLANATION PARADIGMS LEVERAGING ALGEBRAIC INTUITION l‘)

Check for
updates

Special Section: Introducing ExPLAIn

Algebraic aggregation of random forests: towards explainability and
rapid evaluation

Frederik Gossen' - Bernhard Steffen’

Accepted: 25 June 2021
© The Author(s) 2021

Abstract

Random Forests are one of the most popular classifiers in machine learning. The larger they are, the more precise the outcome
of their predictions. However, this comes at a cost: it is increasingly difficult to understand why a Random Forest made a
specific choice, and its running time for classification grows linearly with the size (number of trees). In this paper, we propose
a method to aggregate large Random Forests into a single, semantically equivalent decision diagram which has the following
two effects: (1) minimal, sufficient explanations for Random Forest-based classifications can be obtained by means of a simple
three step reduction, and (2) the running time is radically improved. In fact, our experiments on various popular datasets show
speed-ups of several orders of magnitude, while, at the same time, also significantly reducing the size of the required data
structure.

Keywords Random forest - Algebraic decision diagram - Aggregation - Explainability - Interpretability - Running time

optimisation - Memory optimisation

1 Introduction

Random! Forests are one of the most widely known clas-
sifiers in machine learning [2,19]. The method is easy to
understand, to implement, and at the same time achieves
impressive classification accuracies in many applications. In
contrast to a single decision tree, Random Forests—a col-
lection of many trees — do not overfit as easily on a dataset
and their variance decreases with size. On the other hand,
their running time for classification linearly grows with the
number of trees, which is critical as forests may well consist
of hundreds, if not thousands of trees—a problem especially
for applications with a high throughput [9].

In this paper, we present an optimisation method that
is based on algebraic aggregation: Random Forests are

I The paper is based on the sketch of our approach presented in [15].

B<I Bernhard Steffen
bernhard.steffen @tu-dortmund.de

Frederik Gossen
frederik.gossen @tu-dortmund.de

Chair for Programming Systems, TU Dortmund University,
Dortmund, Germany

Published online: 29 September 2021

transformed into a single decision diagram in a semantics-
preserving fashion, which, in particular, also preserves the
learner’s variance and accuracy. Being a post-process, the
ease of Random Forest training is also maintained.

The great advantage of the resulting decision diagrams
is their absence of redundancy: during classification every
predicate is considered at most once, and only if its evaluation
is required. This allows one to obtain concise explanations
and evaluation times that are optimal.”

Key to our approach are Algebraic Decision Diagrams
(ADDs) [28]. Their algebraic structure supports compo-
sitional aggregation, abstraction, and reduction operations
that lead to minimal normal forms. In combination with a
reduction that exploits the infeasibility of paths in decision
diagrams, this results in a three stage aggregation process:

[u—y

Faithful Aggregation. Using basic algebraic operations,
such as concatenation and addition, allows us to aggre-
gate a Random Forest into a single ADD that faithfully
maintains the individual results of each tree in the forest.
2. Abstraction. Abstracting results (i.e. the leaf structure
of the decision diagrams) to the essence, in this case the

2 Up to an underlying predicate ordering

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00635-x&domain=pdf

F. Gossen, B. Steffen

petallength < 2.7
N N
petallength < 4.85
petalwidth < 1.65 petalwidth < 1.7
| A

sepallength < 5.4 sepalwidth < 2.65
\ AN
\

Iris-virginica petallength < 5.45
N N
N

Iris-setosa

Iris-versicolor

Iris-versicolor

Iris-virginica

petallength < 2.45
\
petalwidth < 1.65

petalwidth < 1.45
\\

sepallength < 7.05

petallength < 5.0

'
petalwidth < 1.55
B
Iris-virginica

Iris-virginica

Iris-virginica
Iris-versicolor

Iris-virginica

Iris-versicolor Iris-versicolor

Iris-versicolor Iris-virginica

Iris-versicolor

sepallength < 6.15

Fig. 1 Random forest learned from the Iris dataset [8,11].

outcome of a majority vote, maintains the classification
function of the original Random Forest while drastically
reducing the size of the representing decision structure.
In fact, given an ordering of the involved predicates, this
step, which is realised just by playing with the underlying
algebra, results in a minimal normal form.

3. Infeasible Path Reduction. Eliminating infeasible paths
(path with contradicting predicates) addresses the redun-
dancies imposed by the semantic dependencies between
the involved predicates. This reduction would be vacuous
for the original trees, but has a radical impact after the
aggregation. In contrast to the previous reduction steps,
infeasible path reduction, which can be considered a don’t
care optimisation, does not yield normal forms.

The result of this three-stage aggregation process is a min-
imal representation of the original Random forest in terms
of an ADD. Being as easy to understand as common deci-
sion trees, the resulting ADD may indeed be considered a
precise solution to the model explanation problem [16]. In
addition, it is a good basis for deducing concise explanations
for individual classifications and for optimising the evalua-
tion performance:

Outcome Explanation. Given a Random Forest R F and some
sample profile ¢,> a minimal, sufficient explanation for the
corresponding classification RF (o) can be obtained from
its explanation model A by means of three further reduction
steps, which follow the same pattern used for the aggregation
to obtain the previous ADDs:

e Changing the majority vote algebra underlying A to a
Boolean algebra allows us to distinguish the chosen class

3 Sample profiles are typically certain measurements of real world
objects.

@ Springer

N
N
N
Iris-versicolor Iris-virginica

RF (o) from the rest. The result is a Binary Decision
Diagram (BDD) [3] B with terminal nodes RF (o) and
—RF (o), which precisely characterises the set of sample
profiles o which RF would classify as RF (o).

e Building the conjunction of the choices in B for the path
leading o to RF (o).

e Removing choices from the conjunction as long as redun-
dant choices exist.?

The resulting conjunction is then a sufficient minimal expla-
nation for the Random Forest’s choice (see Sect. 8 for more
details).

Please note the importance of the reduction of A to a
BDD that characterizes the class R F (o'): It eliminates all the
choices in A that are required for distinguishing two classes
that are different from R F' (o). This has already a significant
effect for the three class example used for illustration in this
paper. Of course, the effect grows with the number of distinct
classes. We are not aware of any work that achieves a similar
effect.

For the ease of notation we will abbreviate sample profile

by sample in the rest of the paper.
Rapid Evaluation. The evaluation time is radically improved.
In fact, it is even provably optimal for a chosen predicate
ordering in the sense that each predicate is considered at
most once, and only if its evaluation is required. Our experi-
ments with popular data sets from the UCI Machine Learning
Repository [8] showed performance gains of several orders
of magnitude (see Fig. 10 and Table 1).

A potential problem of our aggregation method is only an
explosion in size which can, in principle, be exponential for

4 These are either predicates in B or their negations.

5 Please note that there may be redundant predicates on a path that are
all necessary in the BDD as a whole due to the considered predicate
ordering.

Algebraic aggregation of random forests: towards explainability and rapid evaluation

decision diagrams. However, this problem did not arise in
most of our experiments. On the contrary, we even observed
drastic size reductions (see. Fig. 11 and Table 2).

Please note that these results are achieved in a very generic,

algebraic fashion using a common classifier on standard
datasets. In particular, no scenario-specific heuristics have
been applied. We are therefore convinced that our aggrega-
tion approach has the potential to be applied in a wide range
of related scenarios.
The Iris Cast Study. Figure 1 shows a small Random For-
est that was learned from the Iris flower dataset [8,11]. The
task is to predict a flower’s species based on its sepal and
petal dimension. This dataset is a popular choice in machine
learning, both, for test cases and also as a running example
to present new methods.

For classification, all three trees must be evaluated indi-
vidually. Only then, we can derive the most common answer
among the trees (also known as the majority vote) and pro-
mote it to be the overall decisions. This effort clearly grows
linearly with the number of trees, i.e. the size of the forest. In
the following, we use this example to illustrate our approach
to forest aggregation and its great effects on running time,
size, and explainability.

The following Sections provide the foundations for Alge-
braic Decision Structures (Sect. 2), Random Forests (Sect. 3),
and Algebraic Decision Diagrams (Sect. 4). Section 5, sub-
sequently, defines transformations on simple co-domains
which are then lifted to semantics-preserving transforma-
tions of Random Forests (Sect. 6), before Sect. 7 addresses
the heuristic treatment of infeasible paths. The impact of our
transformational approach is then illustrated in Sect. 8, which
presents solutions to three explainability problems, and in
Sect. 9, which shows our experimental performance evalua-
tion. The paper closes after a discussion of related work in
Sect. 10) with our conclusion and directions to future work
in Sect. 11.

2 Algebraic decision structures

Core ingredients of decision structures, in particular decision
trees and decision diagrams, are predicates that we assume
to come in a linearly ordered fashion:

Definition 1 (Predicate Systems)
A Predicate System is linearly ordered set of predicates

P = ({PO, pl’ M) p}’lfl}’ <'P)

The (concrete) semantics of predicates p € P is defined
relative to a semantic domain X. In particular, for the ease of
notation, we will avoid explicit reference to X, P, and <p
whenever they are clear from the context.

Definition 2 (Predicate Semantics)

A function [-]p : P — (X — B) is called a predicate
semantic function. This function naturally extends to the set
of logical formulas £ comprising A, V and —.

We consider also the concrete semantic function [[-]p as a
given for the rest of the paper. Interesting is also the following
symbolic semantics, which considers predicates as Boolean
variables and thus, in particular, as mutually independent.

Definition 3 (Symbolic Predicate Semantics)

Let ¥¥ =P — B be a predicate assignment. The symbolic
predicate semantic function [-J3; : P — (% — B) is then
defined as

[Pl =0 = a(p).

The essence of this paper focuses on Algebraic Decision Dia-
grams (ADDs), which typically live in the symbolic world.
In other words, they are typically based on Boolean vari-
ables and not on predicates which may have dependencies.
Sects. 4-6 concern this symbolic setting. Dependencies are
only considered starting with Sect. 7.

In order to prepare the algebraic treatment of decision
structures, we focus on decision structures whose leafs are
labelled with the elements of an algebra A = (A, O). This
subsumes the classical case of sets, which are simply algebras
where O is empty.

Definition 4 (Algebraic Decision Tree)

Let A = (A, O) be an algebra with the carrier set A and set
O of operations. An Algebraic Decision Tree (ADT) over
the algebra A is inductively defined by the following BNF:

T::=a|(p,T,T)witha € Aand p € P.

Let 74 denote the set of all such ADTs.

We can merge nodes in these ADTs, which leads to the
more general Algebraic Decision Structures (ADS):

Definition 5 (Algebraic Decision Structure)

Let t be an ADT and ¢’ and ¢” be two nodes in ¢ such that #”
is not reachable from #’. Then, the two step transformation
of t

e re-route the incoming edges of t” to ¢’ and
e climinate all unreachable nodes of 7.

is called a ¢” into ¢’ merge. A rooted directed acyclic graph
(DAG) that results from an ADT by a series of node merges is
called an Algebraic Decision Structure (ADS). Let S4 denote
the set of all such ADSs.

We can define their semantics inductively.

@ Springer

F. Gossen, B. Steffen

Definition 6 (Decision Structure Semantics) The (concrete)
semantic function

[ls, :Sa— (2= A

for ADSs is inductively defined as

la]s,(0):=a

[t]s,(e) if [p](e) =1

, 1, =
7., W)sy @ {[[uﬂsA<o> it [p] (@) = 0

The symbolic semantic function [-J5 : Sa — A for
ADSs only differs from the concrete semantics in that it uses
the abstract predicate semantics [-]°.

The following notion of Ordered Algebraic Decision
Structures (OADS) is essential for the intended lifting of the
algebra to the decision structure.

Definition 7 (Ordered ADS)

An Ordered Algebraic Decision Structure (OADS) is an ADS
t whose predicates respect the order <p of the associated
predicate system:

e ift =(p,(q,,),) then p <p g and
o ift = (pa) (qv))) then P =pPq.

Let U4 C S4 denote the set of all OADSs.

We can transform any given ADS into an OADS simply
by reordering its nodes according to <p.

Definition 8 (OADT Transformation)
Let (P, <p) be apredicate system andlet p — Oand p — 1
assign a predicated p € P the value of 1 and 0, respectively.
Then we can partially evaluate any ADS as follows:

ay:=a, wherea € {p — 0, p — 1}

(p,t, u)pr—>]:=tp}—>l

(P, 1, 1) prs0:=Upi>0

The function A~ : S4 — Uy with
Ap(a):=a

A<7D (P7 t! M):Z(qv A<'P ((pa ta u)(p—)l)a
A<p ((p, 1, M)q»—)O))

where ¢ is the smallest predicate appearing in the child ADSs
t, u and the predicate p according to <p then defines the
transformation from any ADS to an OADS that respects the
order <p.

Note that the result of this transformation will always be
an ADT. The following theorem guarantees that ADSs can
be arbitrarily (re)ordered in a semantics-preserving fashion
[28]:

@ Springer

Theorem 1 ((Re)Ordering)
For any t € Sy and any predicate order <p, the following
holds:

o A_.(t) is an OADS respecting <p,
° HZ]]SA = [A<P(t)]],5A, and
o [t]5, =A<, D],

Theorem 1 says that an ADS and any of its (re)ordered vari-
ants are semantically equivalent according to the following
definition:

Definition 9 (Semantic Equivalence)
Two ADSs t and u are semantically equivalent iff their
semantic functions coincide

t~uiff [t]s, = [u]s,

Analogously, we define symbolic semantic equivalence
based on the abstract semantic functions

t~"uiff [t]s, = [u]s,

The following theorem states that one of two different nodes
of an OADS that are semantically equivalent is redundant:

Theorem 2 (Semantic Reduction)

Let t be an OADS with two nodes t' and t" that are seman-
tically equivalent, i.e., t' ~° t”, and such that t" is not
reachable from t'. Moreover, let u be the t” into t' merge
of t. Then t and u are semantically equivalent, i.e, t ~* u.

Theorem 2 can be proven by induction over the ADS struc-
ture of ¢/. Algebraic Decision Diagrams are now defined as
OADS without such redundancy:

Definition 10 (Algebraic Decision Diagrams)

OADSs without redundant nodes are called Algebraic Deci-
sion Diagrams (ADDs). We denote the set of a all ADDs for
an algebra A with Dy4.

ADDs are popular, because of the following uniqueness
property [3,28]:

Theorem 3 (Normal Form)

Every function B" — A has a canonical representation (a
minimal normal form) as an ADD that respects the predicate
ordering <p. In particular, for every OADS there exists a
unique ADD that is symbolically semantically equivalent and
preserves <p.

We call the corresponding normalising function

A~ Uy — Dy

Algebraic aggregation of random forests: towards explainability and rapid evaluation

which can straightforwardly be realised by successive elim-
ination of redundant nodes ~*-quotienting transformation.
Given a fixed predicate ordering, ADDs are canonical. The
size of such canonical representations can, however, be very
sensitive to the underlying ordering. The function AL,
allows us to flexibly switch between different orderings in
a semantics-preserving fashion. There exist efficient algo-
rithms that directly work on ADDs and allow one to find
good predicate orderings heuristically [32].

That ADDs are not necessarily minimal for the (concrete)
predicate semantics is due to possible dependencies between
different predicates in P, which induces so-called infeasible
paths in the corresponding ADDs. Such dependencies impact
the minimisation of ADDs in a similar fashion as the well-
known don’t care the minimisation of Boolean formulas. As
a consequence, given <p, the results of our approach are
(only) optimal relative to the abstract predicate semantics,
and we deal with further dependency-based optimisations in
a heuristic fashion (Sect. 7).

Section 4 presents the essence and impact of lifting the
algebraic structure of A = (A, O) to the ADD-level in the
classical case, i.e., with abstract semantics. The treatment
of infeasible paths is somewhat independent and treated in
Sect. 7.

It is straightforward to establish that the symbolic semantics
allows one to separate the predicate evaluation step from the
subsequent classification step in a way that the latter can be
regarded to work on independent predicates:

Theorem 4 (Early predicate evaluation)

LetI : ¥ — X be the function that evaluates each predicate
according to its concrete semantics and returns a predicate
assignment I (0):=p +— [p](c). Then the following relation
between (concrete) semantics and symbolic semantics holds
forall ADSs t € Sx:

[1ls, = [I5, o I-

After introducing forests in the next section, Sects. 4, 5, and
6 will focus on the classification step, before Sect. 7 will deal
with the phenomenon of predicate dependency.

3 Random forests

Random Forests are one of the most widely known classifiers
in machine learning for classifying the elements of a domain
space X. The classification algorithm is relatively simple and
yields good results for many real-world applications [2]. Its
decision model generalises from a training dataset ©’ C &
that holds examples of input data labelled with the desired
output, also called the class. In the following, C denotes the

set of considered classes, which is assumed to be linearly
ordered by some precedence <¢.

ADTs, with the classes C for their underlying algebra,
form the classification components of a Random Forest:

Definition 11 (Random Forest, ADT Forests)

Let C be the set of classes and let C be the corresponding
algebra with no operations. A Random Forest (for C) is a
finite list of ADTs (for C). © Let 77 denote the set of all
Random Forests.

In practice, the ADTs forming a Random Forest are
learned from randomly selected samples of a training
dataset’. Consequently, all trees are pairwise different in
structure, represent different decision functions, and can
yield different decisions for the same input data.

For classifying (previously unseen) input data, Random
Forests

e evaluate each of their component ADTs ¢ separately to
determine the class ¢ = [1] 7. (o) for the considered input
o € X, and

e determine the overall result via (weighted) majority vote
according to the following definition. Please note that
we need two versions of the majority vote function, one
just for election based on a given frequency function
f': C — Nand a lifted version f : ¥ — (C - N),
which is parameterised by samples ¢ € X:

Definition 12 (Majority Vote)
The ¥ domain-independent majority vote function u : (C —
N) — C is defined by:

n(f") == argmax.cc f'(c).
and its lifted version
M:(Z—>(C—>N)—> (-0
by
M(f) =0 > argmax ¢ f(0)(c)

where, in both cases, possible ties are resolved by the class
precedence order <c.

With this we can define the semantics of a Random Forest
as follows:

6 Essential is here the multi-set facet of lists. We use the ordering only
to identify individual trees.

7 In this paper we use Weka [37] as a reference implementation for this
purpose. However, our approach does not depend on specific imple-
mentation details and can be easily adapted to other implementations.

@ Springer

F. Gossen, B. Steffen

Mo HTC*
I ADT Forest / Random Forest }~ - -
b .
M o [[]]Ug \l
OADTForest|>—————~‘\\ |
N |
> |
= \
g o ~‘
= M o [H]D* .
9) c Classifier
ADD Forest | ~~~----- :
g Forest |- r.-x-c¢
: T
S Aw i
Mo #w o [lpy - |
Word ADD|------ il /
/l !
Ay S
Mo#vo[loe” |
Vector AD |> ————— - /
/
Ac /!
Lloe -~

’ Majority Vote ADD %

Fig.2 Overview of the random forests transformations

Definition 13 (Random Forest Semantics)
The semantic function HTC* :Tf — (2 - (C—N)) fora
Random Forest 7o - #1 - - - ,—1 € 7 is defined as

n—1

IIIO - [n_lﬂr]-ék(d)(c) = ZH([[tiHTC (U) = C)‘

i=0

where I evaluates to 1 if the argument condition holds and to
0 otherwise.

The composition M o [-]7; defines the corresponding
majority vote-based classifier.

Key advantage of this approach is the, compared to sin-
gle decision trees, reduced variance. A detailed introduction
to Random Forests, decision trees, and their learning proce-
dures can be found in [2,19,27].

In the following, we aim at aggregating Random Forest
into a single, concise ADD. This requires to

e transform the component ADTs into ADDs, followed by
e algebraic aggregation (Sect. 6).

In the remainder of this section, we will focus on the first
step which allows us to transform Random Forests into ADD
Forests. Figure 2 gives an overview of the complete transfor-
mation with all its steps. The algebraic aggregation, the main
technical contribution of this paper, will follow later.

With the semantics-preserving transformations from ADTs
to OADTs (Definition 8) and from OADTSs to ADDs (Theo-

@ Springer

rem 3) we can already treat the forests’ individual trees. The
generalisation to the entire forests is just a straightforward
element-wise application of the respective transformations.

Definition 14 (OADT Forest)
An OADT Forest is an ADT Forest whose individual trees
are OADTs. For a given ADT Forest

(10, t1, .. ty—1) € TS

the corresponding OADT Forest

CD<73 (t()v tla s tn—l) € Z/{é

is derived by component-wise application of A_,.

As classification components of an OADT Forest are still
ADTs, the semantic function of Random Forests (Defini-
tion 13) naturally carries over as [-]o.

In the same fashion, we can derive ADD Forests.

Definition 15 (ADD Forest)
An ADD Forest is an OADT Forest whose individual trees
are ADDs. For a given OADT Forest

(uo - uy -+ up—1) €UE
the corresponding ADD Forest
D5 (ug - uy -+ -up—1) € Dg

is derived by element-wise application of A~s.

Again, the semantic function of Random Forests (Defini-
tion 13) carries over as [-]pz.

With that, we can establish semantic equivalence of all
forest representations seen so far, i.e. both @, and ®s are
semantics-preserving.

Theorem 5 (Forest Equivalence)
For any ADT Forest (to -1, - - - tn—1) € 17, the derived OADT
Forest is semantically equivalent:

lto- 11+ tami] 7z = [P<p o1+ tnD)]usz

For any OADT Forest (ug-uy---up—1) € L{’é the derived
ADD Forest is semantically equivalent:

[uo -y - un—1]ogr = [®rs(uo - ur -+ un—1)] >

The proof of Theorem 5 is essentially a repeated application
of Theorem 1.

From here on, we will leave all unconstrained ADSs and
ADTs behind and focus only on the ADD Forests which

Algebraic aggregation of random forests: towards explainability and rapid evaluation

allows us to take full advantage of the properties that are
unique to ADDs.

At the top level, 7%, U, and Df. are all just word-like
structures, which form monoids together with the (polymor-
phic) word concatenation o5 In this sense, ®_, and P.s
are both just homomorphisms, elegantly defining the forest
transformation steps.

In the next section, we will lift the algebraic structures to
the classical ADD level.

4 The essence of ADDs

It is well-known that algebraic structures A = (A, O) can
be lifted to an algebraic functional space

Fsoa=({f1f:%— A} OF)

where OF is the result-wise extension of O and X is adomain
set. Also every homomorphism « : A — A’ can be lifted to
a homomorphism

ap :Fyx 4 — Fy_u

in a similar fashion.

Semantically, ADDs Dy live in the world of these func-
tion spaces, where ¥ = P — B, but they are special in the
following sense: Due to their canonicity (Theorem 3) it is
is straightforward to define a set of operations Op such that
Dys = (D4, Op) and its corresponding semantic domain
Fp_m)—a are isomorphic. In particular, D4 also inherits
the algebraic structure of A, as well as possible homomor-
phisms and functions® from its co-domain:

Theorem 6 (Lifting)

Let A = (A,0) and A’ = (A, O') be two algebras,
a: A — A’ a homomorphism, C a set, and g : A — C
and g' : A" — C two functions: Then there exists a unique
homomorphism

ap : Dy — D)
such that
ao [['HDA = [H]DA, oap.
In particular, g = g’ o o implies
80 [H]DA = g/ © [H]'DA, o ap.
8 If the distinction of the structures is important, we write e with an

index, e.g. in Fig. 4.

9 Functions are just homomorphisms with no underlying algebraic
structure.

Class Words C* xC* - c*
6V - 5V
|
Class Vectors NIC¢I x NI¢I —— NI€|

dc

Majority Vote C

Fig.3 Co-domain algebras and their relationships

Also the following theorem is a direct consequence of the
fact that the algebraic structure of a codomain is inherited by
its corresponding functional space:

Theorem 7 (Aggregation)
Let A = (A, O) be an algebra, t, u € Dy be two ADDs, and
e € O be an operation of A. Then we have

[t]p, o [[MHDA = [r ®p4 u]]’DA’

This allows us to define aggregation functions on .4 and apply
their lifted variant to ADDs of Dy4. Even better, it generally
allows us to focus on the structure of the underlying alge-
bra A when proving properties of homomorphisms between
ADDs, in particular, that they preserve the majority vote. In
the following, we will denote operations of an algebra A and
the operations of the corresponding ADD algebra D4 with
the same symbols for brevity.

We exploit this property for the aggregation of Random
Forests by partial evaluation with respect to three algebraic
co-domains: the class word co-domain C*, the class vector
co-domain NIC! , and the co-domain of classes C themselves.

5 Co-domain algebras and their
relationships

The co-domain algebra for forests is just the (linearly
ordered) set of classes C. There are no operations that may
support the aggregation of the votes of the individual trees or
ADDs. Such an aggregation operation must maintain enough
information that the subsequent majority vote is not affected.
The algebra which most directly mimics the standard eval-
uation process of forests simply records each vote in their
respective order:

Definition 16 (Class Word Monoid)
The Class Word Monoid is defined as W:=(C*, o, €) with
concatenation e and the empty word € as its neutral element.

With that, we can finally aggregate the individual trees’
decisions:

@ Springer

F. Gossen, B. Steffen

Definition 17 (Aggregation)
Let ag, ai, ..., a,—1 € C be class labels. Since C C C*, we
can define a aggregation function

Sw:Cx---xC—C*

directly on C, simply by concatenating the component
classes:

(Sw(a(), al, ..., an_l)::ao ed| e ---0d, 1.
Obviously, W maintains much more information than is
required: For the majority vote evaluation, we do not need to

know which tree voted for which class. The following algebra
therefore abstracts from this information:

Definition 18 (Class Vector Monoid)

The Class Vector Monoid is defined as V:=(NI!, +. 0) with
component-wise addition + and the O-vector 0 as its neutral
element.

The corresponding transformation can now be defined as
a function directly from class words to class vectors. To this
aim, let us first define a function to count class frequencies
in the obtained class words:

Definition 19 (Class Word Frequencies)
The class word frequency function #, : C* — (C — N) is
defined as

#y (e):=c > 0

#y (a - w)=c — [(a = c) + #, (W)

where I is the indicator function which evaluates to 1 if the
condition holds and to 0 otherwise. Analogously, we can
define the correspondingly lifted ¥ domain-dependent vari-
ant

#w: (T —>CH— (T - (C—N)

that we will later need when reasoning about ADD semantics.

The abstraction from class words to class vectors can now
be defined based on #;,. It is essentially its vector-embedded
representation:

Definition 20 (Class Vector Abstraction)
The class vector abstraction function §y : C* — NICl s
defined as
Sv (w):=(n(co), n(c1), ..., n(cic|-1))
with n(c):=#y, (W(c)).

To define the final majority vote abstraction (and also
to reason about semantic equivalences later), let us define
another function that determines class frequencies, this time
simply via a projection of class vectors.

@ Springer

Definition 21 (Class Vector Frequencies)
The class vector frequency function

#, :NC - (¢ - N)
is defined as

#'V(no, ni,...,nc—-1)c):=n;

where i is the index associated with class c. Analogously, we
can define the correspondingly liffed ¥ domain-dependent
variant

#y (X > N S (2 > (€ —> N)

again to later reason about ADD semantics.

Based on this, the final majority vote abstraction yields
the most frequent class:

Definition 22 (Majority Vote Abstraction)
The majority vote abstraction §c : N Il — Cis defined based
on #|, and u (Definition 12):

(SC ZZ,LLO#/V.

The commuting'® diagram shown in Fig. 3 indicates that 8y
is a homomorphism. This is important to support an incre-
mental aggregation and abstraction for growing forests. ¢
is no homomorphism, meaning that it has to be applied at the
very end.

6 Correctness and optimality

We are now prepared to explain the ADD hierarchy dis-
played in Fig. 2 and 4. In fact, only Ay, Ay, and A still
need to be defined. They all arise from lifting (Theorem 6):

Definition 23 (Lifted aggregations and abstractions]

With Theorem 6, we can derive the aggregations and abstrac-
tions on ADDs, Aw, Ay, and A¢, from their definitions on
the underlying algebras, Sy, dy, and é¢. Let

e Ay be the lifted version of §y (Definition 17),
e Ay be the lifted version of §y (Definition 20), and
e A be the lifted version of §¢ (Definition 22).

Figure 4 shows the lifted ADD algebras and their relation-
ships. All transformations, except A ¢, are homomorphisms.
This guarantees that the five classifying function composi-
tions that end in ¥ — C are all semantically equivalent, a

10" indicated by =.

Algebraic aggregation of random forests: towards explainability and rapid evaluation

o7
c
TexXTs ——Ta

ADT Forest
¢<7> = ¢-<1=
.u(’«j
OADT Forest UG XUE ——— UG
b = Ds
oD
ADD Forest D¢ x D —— DE
Ay = Aw
(%7
Class Word ADDs Dw X Dw —— Dw
Ay = Ay
oy
Class Vector ADDs Dy x Dy —— Dy
Ac
Majority Vote ADD Dc

Fig.4 ADD algebras and their relationships

precondition for the correctness of our incremental aggrega-
tion/abstraction approach.

Theorem 8 (Correctness)

The majority vote semantics of Random Forests /ADT Forests
/ OADT Forests / ADD Forests / Class Word ADDs / Class
Vector ADDs and Majority Vote ADDs are equivalent:

Mo [-J7z = Mo [z o P<p
=Mo [H]DZ odPsod,
=Mo#wo[-]p, o Awo Pus 0o D,
=Mo#yo[]p, oAy o Ay o Pus o P,
=[]pcoAcoAyoAyodusod_,

While Random Forests necessarily use predicates with poten-
tial dependencies, ADDs are typically thought of as using
Boolean variables, which are mutually independent. It is
worth noting that Theorem 8 makes no assumption about the
underlying predicate semantics. It holds for both, the con-
crete semantics (Definition 2) as well as for the symbolic
semantics (Definition 3).

As all the forest and ADD transformations (®~,, ®~s,
Aw, Ay, and Ac) can be statically evaluated, the following
ADDs can pre-computed:

Definition 24 (Partial evaluation)

For every input forest t € 7 we define:
dy:=Aw o s 0 D, (b)

dv:=Ay oAy oD o D (1)
do:=AcoAy oAy odsod_ (1)

The effect of this partial evaluation is, in particular, that
[dc]p, can be regarded as a very efficient realisation of the
classifier defined by the original Random Forest t € 7.

Figures 5, 6, and 7 show the aggregated ADDs for the
exemplary Random Forest (Fig. 1). The aggregated structures
are not only faster to evaluate (shallower), with increasing
size of the forest they are also the smaller representation. This
effect can already be observed when comparing the exem-
plary ADDs to each other. We will analyse these effects in
more detail in Sect. 9.

Due to the canonicity (Theorem 3), we know that the
resulting ADDs are minimal for representing their decision
function for a given predicate ordering < when considering
the predicates as independent. In particular, we have:

Theorem 9 (Optimality)
Lett € 1 be a Random forest and assume that all predicates
in t are independent, then

dc =AcoAy oAy odusod_ (1)

is the smallest, <p-respecting decision structure satisfying
ldc]pe = [t 7z

This result leaves us with two aspects for optimisation:

e Exploiting the dependencies between predicates:
Dependencies between predicates may lead to infeasible
path in the resulting ADDs. Conceptually, eliminating
infeasible paths reminds of the well-known don’t care
optimisation of Boolean formulas: There are no nor-
mal forms but we can heuristically eliminate all imposed
redundancies as long as the underlying logic is decidable.
We will discuss such heuristics, which turned out to have
quite some impact, in the next section.

e Finding good predicate orderings: The reordering The-
orem 1 guarantees that we can dynamically adjust the
variable ordering at any time and without affecting the
ADD semantics. ADD implementations typically come
with good heuristics for this purpose [14,32] and they
usually aim to reduce the size. While this is the adequate
goal for explainability (Sect. 8) and to reduce the memory
footprint, it may be a secondary concern in other con-
texts: To reduce evaluation time (Sect. 9), e.g., reducing
the depth of ADDs is more important. Both goals also
dependent on the treatment of predicate dependencies
which may affect a good ordering. Luckily, size-reduced
ADDs are typically also shallower and so we can rely
on common heuristic implementations, which will not
be discussed further in this paper.

@ Springer

F. Gossen, B. Steffen

e |]

Fig.5 Class word ADD dy (108 nodes)

potallongth < 2.45

petalwidth < 1,65

petalvidth < 1,65

petallength < 2.7

potallength < 4.85

etallength < 2.7

petallength < 2.7

Sepalvidth <30 petallength < 26 x patallength < 2.5
L~

potallength < 5.45

Sopallongth <5.4

pealiongth < 4.95

petalwidth < 1.5

petalwidth < 1.55

[reronea] [Feerscse g @]

Fig.6 Class vector ADD dy (79 nodes)

petalongh <26

petavicth < 155

T 272
@ etatwith < 1,65

o>

Sopanian <265 |

petatength <545

potalength <545

ris-selosa

Fig.7 Majority vote ADD d¢ (64 nodes)

@ Springer

Algebraic aggregation of random forests: towards explainability and rapid evaluation

petallength < 5.45

petallength < 5.45 petallength < 5.45 petallength < 4.95

petallength < 245
petalwidth < 1.65

petallength < 2.6
Sepalwidih < 2.65 sepalwidih <265 '
petaliength < 5.45 le ngth < 5.45 petallength < 2.7

petallength <2.7 sepallongth <705 Sepallength < 7.05. Sepallength < 7.05. sepallength < 7.05 Sepallength < 7.05 sepallength < 7.05 pau ngth < 7.05 Sepaller glh 7.08 sepallength < 7.05 petallength < 2.6

petallength < 4.85 petallength < 2.6

' Sepalwidin <2.65

Fig.8 Redundancy-free majority vote ADD (50 nodes)

7 Infeasible path reduction

Moving from symbolic semantics (Definition 3) to concrete
semantics (Definition 2) allows for dependencies between
predicates. This means, in particular, that predicates can
appear in the aggregated ADDs that are necessary with regard
to symbolic semantics but redundant with regard to their con-
crete semantics.

Deﬁrlition 25 (Vacuity)
Let P be the set of negated predicates of P. Then we call
T =po-- Ppm—1 € (PUP)* apredicate path.

e 7 iscalled apredicate path of a decision structured € Dy
iff there exists a path 7’ = p,...p,, _; € P* from the
root of d to one of its leaves such that p; = p! in case
that 7z’ follows the left/true branch at p; ind and p; = ﬁlf
otherwise. We denote the node of d that is associated with
the predicate p; by node(p;).

e A predicate p; is called vacuous in m iff the conjunction
of the preceding predicates pg - - - pj—1 in implies p;.

e A decision structure d € Dy is called vacuity-free iff
there exists no predicate path with a vacuous predicate.

This allows us to define the following optimisation step.

Definition 26 (Vacuity Reduction)

Let d € D4 be a decision structure and let
T =p0...Pm—1 € ('PU']B)>I<

be a predicate path in d on which p; is vacuous. Then, re-

routing the edge from node(p;_1) to node(p;41) is called a
vacuity reduction step.

p'z\l ngth < 5.0 B petallength < 5.0 ; petallength < 5.0 petallength < 5.0 g le ngth < 5.0

Sepalwidth < 3.0 petallongth < 4.85
sepalwidth < 3.0 ,f’
sepaliength < 5.4 Jote

ADDs, being DAGs, only have finitely many predicate
paths which can be effectively analysed for vacuous pred-
icates. As the elimination vacuous predicates is a simple
semantics-preserving transformation we have:

Theorem 10 (Minimality)

Every ADD can be effectively transformed into a semanti-
cally equivalent, vacuity-free ADD that is minimal in the
sense that any further reduction would change its semantics.

This guarantees that the following transformation is effec-
tive:

Definition 27 (Redundancy Elimination)
A transformation that eliminates all redundancies of a given
ADD is called a Redundancy Elimination transformation.

For the simple predicates considered here transformations
for eliminating all partial redundancies are easy to imple-
ment, e.g., using some SMT solver like Z3 [5]. Please note,
however, that the result of redundancy elimination very much
depends on the order and how in which partially redundant
predicates are treated. Fig. 8 shows a redundancy-free major-
ity vote ADD for our running example.

In the following let A, : D¢ — D¢ (polymorphi-
cally) denote a (heuristic) transformation that eliminates all
vacuities from it argument ADD.

In practice, applying A, on intermediate ADDs, not only
between the different phases, but also already when aggregat-
ing the ADD Forest, is vital to improve scalability. It should
be noted, however, that applying A, does not preserve ~ and
may therefore have a tangible effect on future reductions.

@ Springer

F. Gossen, B. Steffen

8 Towards explainability

While the unprocessed Random Forest is impossible to
understand in its entirety and is, therefore, considered a black
box model in the literature [16], the aggregated ADDs pre-
sented above are semantically equivalent representations of
the same classification functions in a form that is as easy to
understand as usual decision trees. Therefore, we consider
the most concise ADDs as illustrated in Fig. 8 as an ideal
form of Model Explanation [16]. It can be achieved via the
following functional:

Definition 28 (Model Explanation)
The function E,, : 77 — Dc defined by

Ey=AyoAcoAyoAyoPusod_,

=A, odc
is called Model Explanation Functional.

Before discussing our solution to Qutcome Explanation, let
us consider the new notion of Class Characterisation. It is
important to achieve minimal Outcome Explanations, but it
is also interesting in its own right.

Class Characterisation is based on a transformation of the
Model Explanation Model into a Binary Decision Diagram
that characterises a chosen class.

Definition 29 (Binary Decision Diagram)

Binary Decision Diagrams (BDDs) are ADDs over the stan-
dard Boolean algebra B = (B, A, Vv, —). Let Dy denote the
set of all BDDs.

BDD-based Class Characterisation can be defined via the
following simple transformation function:

Definition 30 (Class Projection)
Given a class ¢ € C, we define a corresponding projection
function §g(c¢) : C — B on the co-domain as

spe)cy=] L Te=e
c)(c).=
B 0 otherwise.

for ¢/ € C. Again, the function 85 (c) can be lifted to operate
on ADDs, yielding Ag(c) : Dc — Dg.

Moving from the majority vote algebra to the standard
Boolean logic via class projection continues our line of
abstraction. The resulting BDDs are explanations of the
Random Forest’s behaviour that provide a precise and very
focused explanation of when a certain class is chosen (Fig. 9,
where Iris-setosa stands for 1). Like Model Explanation, the
resulting Class Characterisation can be obtained via a corre-
sponding functional:

@ Springer

petallength < 2.45

“

petallength < 2.6

petallength < 2.6
sepalwidth < 3.0

petallength <2.7

>/

sepallength <7.05
B petallength < 5.0

sepallength < 7.05

Fig.9 Explanation BDD for the class Iris-setosa (15 nodes)

Definition 31 (Class Characterisation)
The function E. : C — (7% — Dp) defined by

E-(c) = Ap(c)o E,

is called Class Characterisation Functional.

Figure 9 shows the Class Characterisation for the class
Iris-setosa which has only 15 nodes, in comparison to the
50 nodes of the Model Explanation. In fact, the sum of the
number of nodes in the Class Characterisations for the three
classes is smaller than 50, which indicates the potential for a
corresponding semantic decomposition of the Model Expla-
nation Model.

Class Characterisation is particularly interesting because
it allows one to reverse the classification process: Instead
of determining a class for a certain sample, one obtains a
characterisation of the set of all samples that will be classified
as the given class. This change of perspective may have an
important impact, e.g., in marketing contexts for switching
from a customer to a product perspective [12].

For aresponsible use of automatically derived classifications,
the Outcome Explanation Problem is essential [16]. Class
Characterisations allow us to solve this problem in two fur-
ther steps:

e Path-based explanation. Focusing on just one input at a
time allows us to further refine the obtained explanation.
When evaluating the aggregated BDD resulting from the
first step, the conjunction of the components of the corre-
sponding predicate path, i.e., of the predicates (if required
negated) along the classification trace, provides a suffi-
cient condition for the decision made. E.g., considering
the sample

petallength = 2.6,
petalwidth = 1.5,
petallength = 2.65,
sepallength = 6,9,

Algebraic aggregation of random forests: towards explainability and rapid evaluation

we obtain

petallength > 2.45
A petalwidth < 1.65,
A petalwidth > 1.45,
A petallength < 2.7,
A petallength > 2.6,
A sepallength < 7.05

e Simplifying conjunctions. The collected predicates
along a trace may yield redundancies—even when
unsatisfiable paths were eliminated from the ADD.
Removing choices from the conjunction as long as
redundant choices exist!! yields a minimal explana-
tion of the finally predicted class.'> In our example,
petallength > 2.45 is redundant relative to the stricter
predicate petallength > 2.6, which overall leads to a
conjunction with five predicates.

This two step transformation
Q: D — (Z— L)

yields the desired Outcome Explanation, which can be
obtained via the following functional:

Definition 32 (Outcome Explanation)
The function E, : 7% — (X — L) defined by

Eot)(0):=2(Ec(c)(t) (o)
with c:=E /(t)(0)

for a given ADT Forest t and 0 € X is called Outcome
Explanation Functional.

Please note that it is important to go via the Class Char-
acterisation. Otherwise the Outcome Explanation may be
significantly larger because of predicates separating detail
not required for the explanation of the outcome of consid-
ered class.

The three forms of explanation are precise (in the sense
of representing the same classification function) and optimal
up to variable re-ordering and infeasible path elimination,
which are both known to have canonical solutions:

I please note that there may be redundant predicates on a path that are
all necessary for the BDD due to the considered predicate ordering.

12 please note that, in contrast to the vacuity elimination during infea-
sible path reduction, the order in which the predicates appear in the
predicate path does not matter here.

Theorem 11 (Explanation)
Given an ADD-Forest t and a class ¢ € C we have:
Precision of Explanation:

o B, (1) = Mo [t]7x

¢« Vo € B.E (M) =1 iff Mo[t]7:(0) =

e [E,(D(0)]p(c) =1 = E,(t)(0) =E,(t)(c)
forallo, o’ € X.

Conciseness of Explanation: The Explanation models 2, (t),
8, (c)(t), and B, (t)(0) are size minimal up to two heuristics:
(1) variable re-ordering and (2) infeasible path elimination.

The proof of this theorem follows straightforwardly from
the results of the previous section and the canonicity of the
ADD construction.

Explainability is, however, not the only effect of our ADD-
based aggregation. As illustrated in the next section, it leads
to drastic reductions of the classification time.

9 Experimental performance evaluation

ADD-based aggregation radically improves the evaluation
time. In fact, it is even provably optimal for chosen predi-
cate ordering in the sense that each predicate is considered at
most once, and only if its evaluation is required. Our experi-
ments with popular data sets from the UCI Machine Learning
Repository [8] showed performance gains of several orders
of magnitude (cf. Fig. 10 and Table 1).

A potential problem of our aggregation method is an
explosion in size which can, in principle, be exponential for
decision diagrams. However, this problem did not arise in
our experiments. On the contrary, we even observed drastic
size reductions (cf. Fig. 11 and Table 2), an effect we cannot
generally expect.

It should be noted, however, that all results reported in this
section are achieved in a very generic, algebraic fashion using
a common classifier on standard datasets, which indicates at
least some generalisation potential.

Our three-tree accompanying example is useful to explain
the concepts but inadequate to illustrate the impact of our
radical aggregation technology. This section, therefore, pro-
vides a careful quantitative analysis on the basis of a number
of popular data sets that illustrate the performance differ-
ences between the semantically equivalent representations
of the original Random Forest.

The diagrams in this section show the results of our exper-
iments with the Iris flower data set, which was previously
also used for our small running example. Tables 1 and 2
summarise the results for other popular data sets to indicate
the generalisation potential of our approach. All the reported
classification time and size results were determined as an
average over the complete corresponding data set. For the

@ Springer

F. Gossen, B. Steffen

Fig. 10 Average running time
for classification over all
examples in the Iris dataset [10]

104 4

103 E

102 5

Average running time (steps)

10% $=-7~

Random Forest
Class word DD
Class vector DD
1 Class DD

1 —— Class word DD*
1 ---- Class vector DD*
| — class bD*

-

10°
10!

107 103 104
Trees in Random Forest

Table 1 Running time improvements for classification with Random Forests of size 10.000 for other datasets [8]

Dataset 100 1,000 10,000
Random forest Final DD R. forest Final DD R. forest Final DD

Balance Scale 802.21 7.71 (- 99.04%) 8,014.12 7.73 (= 99.90%) 80,277.03 8.16 (- 99.99%)
Breast Cancer 1,298.72 17.12 (- 98.68%) 13,020.03 17.11 (= 99.87%) 130,361.20 17.73 (= 99.99%)
Lenses 452.50 3.67 (- 99.19%) 4,431.42 3.67 (—99.92%) 43,883.79 3.67 (- 99.99%)
Iris 436.11 6.82 (- 98.44%) 4,395.77 6.97 (- 99.84%) 44,043.89 7.01 (- 99.98%)
Tic-Tac-Toe 1,066.66 14.25 (- 98.66%) 10,733.68 14.22 (- 99.87%) 107,300.69 14.18 (= 99.99%)
Vote 693.57 9.02 (- 98.70%) 6,921.56 8.33 (- 99.88%) 69,216.62 8.30 (- 99.99%)

Iris flower example, these are 150 records, a number that
also explains the quite smooth result graphs.

Our implementation relies on the standard Random Forest
implementation in Weka [37] and on the ADD implemen-
tation of the ADD-Lib [13,14,33]. Please note that the
considered data sets have been developed with evaluations
of this kind in mind by independent parties, and that we are
not using any additional data for our transformation. Thus,
our analysis can be considered unbiased.

Optimising the classification time was the original goal
when we started to develop our approach. As wall-clock time
measurements are very sensitive to implementation details
and machine profiles, we decided for the—in our eyes more
objective—step count measure for performance analysis. We
consider here the steps through the corresponding data struc-
tures, and in cases where the most frequent class must be
computed at runtime, we account one additional step per
read. For both, the original Random Forest and the word-

@ Springer

based decision diagram these are n additional steps and the
class vector variant needs |C| additional steps.

Figure 10 shows the average evaluation times of the deci-
sion models for Random Forests of up to 10,000 trees. The
evaluation time of the original Random Forest grows lin-
early as expected: Every new tree contributes approximately
the same running time. Due to the large number of trees rel-
ative to their individual sizes our measurements appear as an
almost straight line.

Already, the word-based diagrams (see Class word DD in
Fig. 10) significantly reduce the classification time in com-
parison to the original Random Forest. This is due to the
suppression of redundant predicate evaluations. In fact, the
overall classification time is dominated by the linearly grow-
ing time to compute the most frequent class in each terminal
word.

The reduction to just |C| terminal nodes of the class vector-
based variants has two effects:

Algebraic aggregation of random forests: towards explainability and rapid evaluation

Random Forest
Class word DD
Class vector DD
Class DD
——- Class word DD*
---- Class vector DD*
—— Class DD*

Fig. 11 Sizes of the random
forest and its semantically
equivalent decision diagrams
108 -
106 -
m
[}
°
<}
£
N
»n 104 -
102 ~
10°
10!

107 103 104
Trees in Random Forest

Table 2 Decision diagram sizes for Random Forests of size 10.000 for other datasets [8]

Dataset 100 1,000 10,000

Random forest Final DD R. forest Final DD R. forest Final DD
Balance Scale 21,720 137 (- 99.37%) 214,844 139 (- 99.94%) 2,158,330 144 (- 99.99%)
Breast Cancer 55,172 3,501 (- 93.65%) 546,504 3,647 (- 99.33%) 5,494,682 3,760 (= 99.93%)
Lenses 1,518 11 (- 99.28%) 14,132 11 (= 99.92%) 136,986 11 (= 99.99%)
Iris 1,312 722 (- 44.97%) 13,492 1,458 (- 89.19%) 135,952 1,267 (= 99.07%)
Tic-Tac-Toe 55,232 1,563 (= 97.17%) 570,976 1,593 (- 99.72%) 5,670,532 1,529 (- 99.97%)
Vote 9,768 1,337 (- 86.31%) 97,770 1,168 (— 98.81%) 988,358 1,148 (— 99.88%)

e A partial collapse of the decision diagram: It is no longer
essential which tree proposes which class, unifying all
cases where the various classes are equally often pro-
posed.

e Reduction to a constant overhead for the final aggregation
step, in this case |C|.

The evaluation time reductions are again quite significant.
Only the space requirement got (like for the word-based vari-
ant) out of hand very soon (see Fig. 11), explaining the cut-off
in Fig. 10.

Whereas the previous two model structures can directly be
computed compositionally, the most frequent label abstrac-
tion, i.e. the evaluation of the majority vote at compile time,
can only be applied at the very end. Thus its construction has
the same limitation as the class vector variant, and its impact
on the size of the corresponding decision model is compar-
atively moderate (see Fig. 11). Its impact on the evaluation
time is, however, quite substantial (see Fig. 10): Many of

the internal decision nodes have become redundant by just
focusing on the results of the majority vote.

Exploiting the dependencies between the predicates by
unsatisfiable path elimination overcomes the scalability
problems that are due to the enormous space requirements.
In fact, in our experiments it avoids the exponential blow-up
in size in all three variants, with DD* even becoming signifi-
cantly smaller than the original Random Forest (see Fig. 11).

Moreover, the classification times are drastically reduced
in all three cases (see Fig. 1). In fact, the classification times
eventually stabilise for D D*, illustrating the key feature of
Random Forests, the reduction of the learner’s variance. !> As
sketched in Tables 1 and 2, these observations carry over to
other popular data sets in the UCI Machine Learning Repos-
itory [8].

13 Remember, being just a different representation of the original Ran-
dom Forest, D D* has the same variance.

@ Springer

F. Gossen, B. Steffen

10 Related work

Related work splits into two categories, explainability of
automatically generated classifications and the correspond-
ing classification performance.

In machine learning, explainability is a topic of increasing
importance, as learned structures, be it, e.g., neural networks
or, as in the focus of this paper, Random Forests, are more
and more used to replace/support human decisions [30]. In
particular in cases where the proposed classification is appar-
ently counter-intuitive, explanation is important.

Being based on a well-understood predicate structure,
Random Forests are easier to control than, e.g., neural net-
works. Nevertheless, because of their diverse structure with
its high degree of parallelism they are considered black-box
models [16].

Various methods for making Random Forests inter-
pretable exist such as extracting decision rules from the
considered black-box model [6], methods that are agnos-
tic to the black-box model under consideration [21,29] or
by deriving a single decision tree from the black-box model
[4,7,18,35,38]. In this context, single decision trees are con-
sidered key to a solution to both

e the model explanation problem [16], i.e. the problem to
make Random Forests as a whole interpretable and under-
standable by humans. Here, the tree itself is considered
to be understandable. And

e the outcome explanation problem [16], i.e. explaining
(the reasons for) a concrete classification to a human.
Here the conjunction of the (if required negated) predi-
cates on the path from the root to the classifying leaf are
considered an adequate explanation.

State of the art solutions to derive a single decision tree from
a Random Forest are approximative [4,7,18,35,38]. Thus,
their derived explanations are not fully faithful to the original
semantics of the considered Random Forest. This is in con-
trast to our ADD-based aggregation, which precisely reflects
the semantics of the original Random Forest. This means:

e ADD-based aggregation provides a precise solution to the
model explanation problem (Sect. 8). The fact that ADDs
are not trees but acyclic graphs can either be accepted or
easily be taken care of by expanding the ADD to a tree.

e Our formula derived in Sect. 8 is a precise and mini-
mal explanation of the proposed classification. To our
knowledge none of the existing approaches for explain-
ing Random Forest in terms of decision trees are precise.

Runtime performance of Random Forests has been

addressed, e.g., via optimising code generation with mod-
erate success [9,20,34,37], and, with a greater performance

@ Springer

impact, via model simplification which, however, changed
the semantics [17]. Yet, others applied semantic aggregation
[1,17,22,26] to Random Forests without explicitly address-
ing the runtime performance, while the authors in [24,25]
focused solely on the memory footprint, all with moderate
success.

The only paper on Random Forests we know of that uses
decision diagrams similar our ADDs is [23]. However, it uses
these diagrams only to compact the individual tree rather than
to aggregate an entire forest. In fact, the reported speedup by
a factor of up to 61 seems to rather rely on technical and
even hardware details than on the use of decision diagrams.
In contrast, our approach focuses on the decision diagram-
based holistic aggregation of entire Random Forests, which,
due to its globality, has a much greater impact. In fact, we
obtain speed-ups already at the hardware-independent level
that are orders of magnitude higher than in [23].

11 Conclusions and future work

In this paper, we have presented an approach to aggregate
large Random Forests into single and compact decision dia-
grams that faithfully reflects the semantics of the original
Random Forest for a considered purpose. Here purpose com-
prises intents, like understandability and performance, but
also more technical features like compositionality. Key to
our approach is the combination of conceptual ideas:

e Aggregation: Decision trees can easily be translated into
ADDs. In cases where the set of leaves of the original
decision tree forms an algebra this translation can be used
to lift the algebraic semantics to the ADD-level: The cor-
responding set of ADDs itself becomes an algebra which
reflect all the algebraic operations of the leaf algebra. This
is best illustrated by looking at the class vector ADDs.
The majority vote underlying the Random Forest evalu-
ation can be straightforwardly mimicked by aggregating
the ADDs for the different decision trees according to
addition.

e Abstract Interpretation: Abstracting the leaf algebra
allows one to tailor the ADD-based representation
according to the considered needs: While, e.g., the word
algebra faithfully reflects the original Random forest,
the class vector algebra anonymises the ’voters’, but is
still detailed enough to faithfully and compositionally
model the majority vote. The other considered abstrac-
tions either trade compositionality (most frequent label
abstraction) or introduce a special focus (class character-
isation).

e Predicate Evaluation: The ADD algebra considers the
underlying predicates as independent. Thus, it is not sen-
sitive to relations between predicates, like inconsistency

Algebraic aggregation of random forests: towards explainability and rapid evaluation

or redundancy. It is, however, possible to take care of
these aspects in a separate process called infeasible path
reduction (cf. Sect. 7), which, in fact, does not even affect
compositionality of the imposed semantics. Also the
elimination of redundant predicates for obtaining concise
outcome explanations (cf. Sect. 8) falls into the category
of predicate evaluation.

We have seen that these three conceptual ideas in combina-
tion allow one to increase understandability and performance
without any penalty concerning precision:

Explainability. Individual ADDs are intuitively as easy to
understand as individual decision trees, a typical format used
to explain Random Forests [16]. Our approach can therefore
be considered to provide solutions to three black box expla-
nation problems:

e Model explanation problem: The most frequent class
abstraction (cf., e.g., Fig. 7) itself precisely reflects the
classification semantics of the original Random Forest.

e Class characterisation problem: The most frequent class
abstraction (cf., e.g., Fig. 9) which distinguishes a partic-
ular class from the rest is a concise and precise specifica-
tion of all samples that the Random Forest will classify
as this class. To our knowledge, our BBD construction is
the first solution to this problem which, as a side-effect,
allows one to reverse the original classifcation perspec-
tive from sample-to-class to class-to-samples.

e Outcome explanation problem: The reduced conjunction
of the predicates characterising a sample’s path through
the class characterising BDD is a sufficient condition that
explains the Random Forest’s classification of the consid-
ered sample. In the considered example, this conjunction
just comprises five comparisons.

To our knowledge, these solutions are all unique in precisely
reflecting the semantics of the underlying Random Forest
[4,16,18,38].

Rapid Evaluation. We have reported running time reduc-
tions by factors of thousands on multiple popular datasets (cf.
Fig. 10 and Tab. 1). It is interesting to note both the quantita-
tive performance gain and the clean semantics-oriented way
in which it is achieved:

e ADD-based aggregation is canonical as soon as an order
of predicates has been fixed. Thus the freedom of choice
here reduces to the choice of an adequate variable order-
ing, atask heuristically taken care of by the corresponding
frameworks [32].

e Class frequency abstraction is the coarsest, compositional
abstraction that still allows one to faithfully represent the
classification function of the original Random Forest.

e infeasible path reduction does not support normal forms,
but the results are minimal, meaning that the resulting
structures cannot be reduced further without changing
the semantics of the classification function. In essence,
the variability here is a consequence of the freedom of
choice where to root infeasible paths. It can be seen as
a generalisation of the classical problem of minimising
Boolean functions with don’t cares.

e Most frequent class abstraction reduces the final com-
positionally reduced decision diagrams to the smallest
diagram that still represents the original classification
function.

Thus our approach is optimal relative to two well-known con-
ceptual hurdles, the choice of variable ordering for decision
diagrams and the treatment of don’t cares. In particular, our
approach does not exploit any peculiarities of certain classi-
fiers or data sets.

Of course, the impact of our approach may still strongly
depend on the structure of the specific considered scenario.
We are therefore currently investigating how easily these
results can be adopted to other data sets and classifiers. An
extension to weighted Random Forests [36], or even to forests
that propose distributions!# can be achieved simply by choos-
ing an adequate leaf algebra for the ADDs.

Whereas introducing weights for the individual trees of
a Random Forest should not cause any additional overhead,
the treatment of distributions, even though being technically
easy to realise, may come with an explosion of the size of
the leaf algebra which we expect to require an approximative
treatment.

An even more critical source of explosion is the num-
ber of predicates. They may lead to an exponential growths
of the resulting ADDs, and will probably also require ade-
quate approximation techniques. On the other hand, we do
not expect any specific problems for treating slight structural
variations like Decision Jungles [31].

The generalisation potential of ADD-based aggregation is
large, as is the challenge to overcome or bypass the obstacles
that characterise a new application scenario. Dealing with
huge leaf algebras or with vast sets of predicates are just two
obvious examples for such challenges, many of which will
have to be dealt with using clever heuristics.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the

14 With distribution we mean here an association of weights to the
classes which sum up to 1.

@ Springer

F. Gossen, B. Steffen

source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

10.

11.

12.

13.

14.

15.

16.

17.

Bonfietti, A., Lombardi, M., Milano, M.: Embedding decision trees
and random forests in constraint programming. In: Michel, L. (ed.)
Integration of Al and OR Techniques in Constraint Programming.
pp. 74-90. Springer International Publishing, Cham (2015)
Breiman, L.: Random forests. Mach. Learn 45(1), 5-32 (2001)
Bryant, R.E.: Graph-based algorithms for boolean function manip-
ulation (1986)

Chipman, H.A., George, E.I., McCulloch, R.E.: Making sense of a
forest of trees (1999)

De Moura, L., Bjgrner, N.: Z3: An efficient smt solver. In: Inter-
national conference on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 337-340. Springer (2008)

Deng, H.: Interpreting tree ensembles with intrees. Int. J. Data Sci.
Anal. 7(4), 277-287 (2019). https://doi.org/10.1007/s41060-018-
0144-8

Domingos, PM.: Knowledge discovery via multiple models.
Intell. Data Anal. 2(1-4), 187-202 (1998). https://doi.org/10.1016/
S1088-467X(98)00023-7

Dua, D., Graff, C.: UCI machine learning repository. http://archive.
ics.uci.edu/ml (2017)

Facebook: evaluating boosted decision trees for billions
of users. https://code.fb.com/ml-applications/evaluating-boosted-
decision-trees-for-billions-of-users (2017). Accessed: 11 June
2019

Fisher, R.A.: The use of multiple measurements in taxonomic prob-
lems. Ann. Eugen. 7(7), 179-188 (1936)

Fisher, R.A.: The use of multiple measurements in taxonomic prob-
lems. Ann. Eugen. 7(2), 179-188 (1936)

Gossen, F., Margaria, T., Steffen, B.: Towards explainability in
machine learning: the formal methods way. IT Prof. 22(4), 8-12
(2020). https://doi.org/10.1109/MITP.2020.3005640

Gossen, F., Margaria, T., Murtovi, A., Naujokat, S., Steffen, B.: Dsls
for decision services: a tutorial introduction to language-driven
engineering. In: Margaria, T., Steffen, B. (eds.) Leveraging Appli-
cations of Formal Methods, Verification and Validation. Modeling.
pp. 546-564. Springer International Publishing, Cham (2018)
Gossen, F., Murtovi, A., Linden, J., Steffen, B.: The java library for
algebraic decision diagrams. https://add-lib.scce.info. Accessed 1
Apr 2019

Gossen, F., Steffen, B.: Large random forests: optimisation for
rapid evaluation. CoRR abs/1912.10934 (2019). http://arxiv.org/
abs/1912.10934

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti,
F.,, Pedreschi, D.: A survey of methods for explaining black
box models. ACM Comput. Surv. 51(5), 93:1-93:42 (2019).
10.1145/3236009,

H. Kargupta, B.P.: A fourier spectrum-based approach to represent
decision trees for mining data streams in mobile environments.
IEEE Trans. Knowl. Data Eng. 16 (2004)

. Hara, S., Hayashi, K.: Making tree ensembles interpretable: a

bayesian model selection approach. In: Storkey, A.J., Pérez-Cruz,
F. (eds.) International Conference on Artificial Intelligence and

@ Springer

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lan-
zarote, Canary Islands, Spain. Proceedings of Machine Learning
Research, vol. 84, pp. 77-85. PMLR (2018). http://proceedings.
mlr.press/v84/haral8a.html

Ho, T.K.: Random decision forests. In: Proceedings of the Third
International Conference on Document Analysis and Recognition
(Volume 1). ICDAR ’95, IEEE Computer Society, Washington
(1995)

Browne, J., Mhembere, D., Tomita, T.M., Vogelstein, J.T., and
Burns, R.: Forest packing: fast parallel, decision forests (2019)
Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classi-
fication and regression. In: Yang, Q., Agarwal, D., Pei, J. (eds.)
The 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’12, Beijing, China, 12-16
Aug 2012, pp. 150-158. ACM (2012). https://doi.org/10.1145/
2339530.2339556,

Mulvaney R., PD.: A method to merge ensembles of bagged or
boosted forced-split decision trees. IEEE Trans. PAM (2003)
Nakahara, H., Jinguji, A., Sato, S., Sasao, T.: A random forest using
a multi-valued decision diagram on an fpga. In: 2017 IEEE 47th
International Symposium on Multiple-Valued Logic (ISMVL), pp.
266-271 (2017)

Painsky, A., Rosset, S.: Lossless compression of random forests. J.
Comput. Sci. Technol. 34(2), 494-506 (2019)

Peterson, A.H., Martinez, T.R.: Reducing decision tree ensemble
size using parallel decision dags. Int. J. Artif. Intell. Tools 18(04),
613-620 (2009)

Philippe J. Giabbanelli, J.G.P.: An algebra to merge heterogeneous
classifiers. CoRR (2015)

Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81—
106 (1986)

R. Iris Bahar, Erica A. Frohm, CM.G.G.D.H.EEM.A.PES.: Alge-
braic decision diagrams and their applications. In: Proceedings of
the 1993 IEEE/ACM International Conference on Computer-aided
Design. IEEE Computer Society Press (1993)

Ribeiro, M.T., Singh, S., Guestrin, C.: “why should I trust you?:
Explaining the predictions of any classifier. In: Krishnapuram, B.,
Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R.
(eds.) Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pp. 1135-1144. ACM (2016).
10.1145/2939672.2939778,

Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Miiller, K.
(eds.): Explainable Al: interpreting, explaining and visualizing
deep learning. In: Lecture Notes in Computer Science, vol. 11700.
Springer (2019). Doi: https://doi.org/10.1007/978-3-030-28954-
6,

Shotton, J., Nowozin, S., Sharp, T., Winn, J., Kohli, P., Criminisi,
A.: Decision jungles: compact and rich models for classification.
In: Proceedings of the 26th International Conference on Neural
Information Processing Systems, Vol. 1 (2013)

Somenzi, F.: Efficient manipulation of decision diagrams. Int. J.
Softw. Tools Technol. Transf. 3(2) (2001)

Steffen, B., Gossen, F., Naujokat, S., Margaria, T.: Language-
Driven Engineering: From General-Purpose to Purpose-Specific
Languages, pp. 311-344. Springer International Publishing, Cham
(2019)

Treelite: Treelite: model compiler for decision tree ensembles.
https://treelite.readthedocs.io (2017). Accessed 7 June 2019

Van Assche, A., Blockeel, H.: Seeing the forest through the trees:
Learning a comprehensible model from an ensemble. In: Kok,
J.N., Koronacki, J., Mantaras, R.L.d., Matwin, S., Mladeni¢, D.,
Skowron, A. (eds.) Machine Learning: ECML 2007. pp. 418-429.
Springer, Berlin (2007)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s41060-018-0144-8
https://doi.org/10.1007/s41060-018-0144-8
https://doi.org/10.1016/S1088-467X(98)00023-7
https://doi.org/10.1016/S1088-467X(98)00023-7
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://code.fb.com/ml-applications/evaluating-boosted-decision-trees-for-billions-of-users
https://code.fb.com/ml-applications/evaluating-boosted-decision-trees-for-billions-of-users
https://doi.org/10.1109/MITP.2020.3005640
https://add-lib.scce.info
http://arxiv.org/abs/1912.10934
http://arxiv.org/abs/1912.10934
http://proceedings.mlr.press/v84/hara18a.html
http://proceedings.mlr.press/v84/hara18a.html
https://doi.org/10.1145/2339530.2339556,
https://doi.org/10.1145/2339530.2339556,
https://doi.org/10.1007/978-3-030-28954-6,
https://doi.org/10.1007/978-3-030-28954-6,
https://treelite.readthedocs.io

Algebraic aggregation of random forests: towards explainability and rapid evaluation

36. Winham, S.J., Freimuth, R.R., Biernacka, J.M.: A weighted random 38. Zhou, Y., Hooker, G.: Interpreting models via single tree approxi-
forests approach to improve predictive performance. Stat. Anal. mation (2016)
Data Min. ASA Data Sci. J 6(6), 496-505 (2013)

37. Witten, .LH., Frank, E., Hall, M.A_, Pal, C.J.: Data Mining, Fourth
Edition: Practical Machine Learning Tools and Techniques, 4th

Publisher’'s N i N i 1 with juris-
edn. Morgan Kaufmann Publishers Inc., San Francisco (2016) ublisher’s Note Springer Nature remains neutral with regard to juris

dictional claims in published maps and institutional affiliations.

@ Springer

	Algebraic aggregation of random forests: towards explainability and rapid evaluation
	Abstract
	1 Introduction
	2 Algebraic decision structures
	3 Random forests
	4 The essence of ADDs
	5 Co-domain algebras and their relationships
	6 Correctness and optimality
	7 Infeasible path reduction
	8 Towards explainability
	9 Experimental performance evaluation
	10 Related work
	11 Conclusions and future work
	References

