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Flooding of separation columns is a severe limitation in the operation of distillation and liquid-liquid extraction columns.

To observe operation conditions, machine learning algorithms are implemented to recognize the flooding behavior of sep-

aration columns on laboratory scale. Besides this, the investigated columns already provided the modular automation

interface Module Type Package (MTP), which is used for data access of necessary sensor data. Hence, artificial intelligence

(AI) tools with deep learning offer high potential for the process industry and allow to capture operating states that are

otherwise difficult to detect or model. However, the advanced methods are only hesitantly applied in practice due to com-

plex combination of operational sensing, data analysis, and active control of the equipment. This article provides an over-

view on how AI-based algorithms can be implemented in existing laboratory plants. Process sensor data as well as image

data are used to model the flooding behavior of distillation and extraction columns for stable and robust operational con-

ditions.
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1 Introduction

With upcoming data science and neural network knowhow,
a lot of application fields are emerging in the process indus-
try. In order to use these new methods (e.g., for control
algorithms), it is reasonable to gain experiences with small
scale apparatus, but comparable processes already in the
laboratory. The following brief overview shows that there
are good examples for procedures and interoperability when
adopting machine learning (ML) solutions. The main focus
is set on an easy-to-follow procedure for the integration of
ML solutions and combine these solutions with existing
concepts of service-oriented architecture as well as the man-
ufacturer independent interface module type package ac-
cording to VDI/VDE/NAMUR 2658.

ML algorithms are widely employed in process engineer-
ing and often hidden behind the terms of artificial intelli-
gence (AI) [1], soft sensing [2], data fusion [3] or digital
twin [4]. In the process industry, typically, large amounts of
data are available from the physical sensors in a production
plant [5]. This data can be collected, combined, and pro-
cessed by means of ML algorithms (data fusion, soft(ware)
sensors) to obtain more meaningful data for the training of
data-driven models that capture the real process conditions
[2, 3]. The virtual model (digital twin) can be further used
to optimize the production process and an implementation

in a loop with the physical world ensures the adaptability of
the model [6]. Commonly, one of the following three goals
is pursued when applying ML techniques in the process
industry: (i) online prediction, (ii) process monitoring,
(iii) process fault detection [2]. Some of the most popular
algorithms to achieve these goals are provided in Tab. 1 [7].
The ML algorithms are classified into supervised or unsu-
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Table 1. Examples for popular unsupervised and supervised ML
methods.

Unsupervised learning Supervised learning

Principal component analysis Partial least squares

K-means clustering Support vector machine

Kernel density estimation Decision tree

Self-organizing map Artificial neural network
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pervised depending on training data being labeled or unla-
beled, respectively. The working principles behind those
algorithms with some example applications are concisely
summarized in Ge et al. [7].

Principal component analysis (PCA) and partial least
squares (PLS) are particularly popular as they are easy to
implement and capable of tackling a variety of problems,
e.g., reduce the dimensionality of the data, extract key fea-
tures and detect outliers. Hence, it is not surprising that
these algorithms make up for the majority of applied ML
models that are described in literature [7]. In combination
with a regression model, reliable online predictions with
high-dimensional data become available [2]. Often used
regression models include support vector machines (SVMs)
[8] and models based on decision trees (e.g., gradient boost-
ing regressor (GBR), ADABoost or random forest) [9–11].
The advantages of these regression tree ensembles include
fast training times and the ability to handle large amounts
of data, while providing good accuracy due to combination
of multiple estimators [9]. This decision is also made to
facilitate the integration of adaptive solutions in future,
which would require repeated training of new models, e.g.,
via recursive or ensemble-based methods [12]. However,
individual regression trees are usually not competitive with
other methods like SVMs or neural networks [13], but
thanks to the low computational cost, regression trees can
be combined with bagging or boosting techniques to build a
group of estimators to improve predictive accuracy and
control overfitting [14, 15]. In bagging, each estimator is
trained on a subset of data and the output of every estima-
tor is averaged for the final prediction, e.g., random forest
[15] or extra trees regression [13]. In boosting, ‘‘weak’’ esti-
mators are trained in succession on a subset of data and
combined into a single ‘‘strong’’ estimator. This can be
achieved, e.g., by weighting the weak estimators according
to their accuracy (AdaBoost) [14] or by fitting the weak
estimators using an arbitrary loss function (gradient boost-
ing) [16]. Clustering is another popular method that is used
to organize unlabeled data according to their similarity.
Combined with PCA it is a common method for process
monitoring and process fault detection [7].

The aforementioned algorithms belong to the classical
ML techniques and can be quickly implemented as they are
readily available in software libraries for, e.g., Matlab,
Python or R [17]. The following procedure to employ ML
techniques in a digital twin framework was demonstrated
by Min et al. and can be roughly applied in most cases [6]:
– data preprocessing
– feature extraction
– model training and validation
– tryout and optimization
– online deployment

Preprocessing describes, e.g., the temporal alignment,
denoising or scaling of data [2, 18], feature extraction, the
selection or transformation of data by means of a correla-
tion matrix [19], PCA [20] or even operator experience [6].

Some common modeling techniques were already presented
in Tab. 1. Other noteworthy approaches include genetic/
evolutionary algorithms, fuzzy logic, probability-based tech-
niques (e.g., Gaussian processes, [21]), semi-supervised and
reinforcement learning or artificial neural networks. For the
latter kind, structures with convolutional layers and long
short-term memory units (LSTM) have proven to be effec-
tive for image analysis and time series data, respectively.
These neural networks capture the spatial or temporal
structure of the data and led to the remarkable advances in
image classification and speech recognition [22]. As the vast
number of choices for a ML model can be overwhelming at
first, it is common practice to test different models and
compare their performance based on chosen metrics. In
case of a regression problem, the root mean squared error
or the coefficient of determination (R2) are often used. If an
adaptive online mechanism is desired, the training and fore-
cast speed can be a deciding factor as well.

During the tryout and optimization stage, the trained
model is tested in a real-time operating environment. Since
the model is trained on historical data, it is important to
verify its operational reliability in the latest environment
and adapt the model if necessary. Finally, the virtual model
is deployed with connection to the real-time data and the
process control or monitoring system. The optimal set of
control parameters can be found by means of search algo-
rithms like depth-first search, breadth-first search or grid
search [6] or by employing model predictive control or
other control strategies [2, 19]. For security reasons, it is
advisable to implement visible recommendations from the
ML model for an operator rather than a direct access to the
process control system, especially at an experimental stage
[23, 20]. This is related to the veracity problem that is often
associated with ML solutions [24]. It can be difficult to gen-
erate interpretable suggestions made by purely data-driven
models and justify the adaptation of, e.g., a control strategy
based on these models. A possible solution lies in the incor-
poration of first-principle models to form hybrid models
that support rational decision-making [20, 25]. Such advan-
ces could revolutionize the perception of ML solutions in
process engineering, but are still considered as a ‘‘long,
adventurous, and intellectually exciting journey’’ [25].

Another opportunity exists in the integration of edge and
cloud computing solutions for the facilitated access and
treatment of data [23]. With the increasing computational
power of microcontrollers, it becomes more and more pos-
sible to locally preprocess and analyze sensor data, e.g., for
each unit operation and forward the processed information
to a higher-level control or data handling structure, which
in turn can function more efficiently due to the reduced
amount, but higher quality of data [3, 23]. The development
of this type of ‘‘smart equipment’’ by using new sensor or
ML solutions to determine hard-to-measure variables and
offer more process flexibility has attracted considerable
attention in academic and industrial research [1, 4, 26].
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Some examples include the digitalization of extraction col-
umns by means of novel measurement techniques comple-
mented by modeling and simulation methods to create tools
for predictive online monitoring, which is reviewed in Hla-
witschka et al. [27]. Other approaches work on the integra-
tion of novel sensors and actuators to obtain valuable process
information and create more responsive equipment [28]. In
order to facilitate the integration of the given examples and
other ML solutions into existing processes, new concepts
with standardized interfaces and communication protocols
are emerging [29]. One promising concept that stands out in
these aspects is the module type package (MTP), which is a
module-based approach with embedded process knowledge
and standardized interfaces according to VDI/VDE/
NAMUR 2658 part 1–4 [30–33]. MTP enables a quick and
flexible design of processes and integration of modules, so-
called process equipment assemblies (PEAs), compare with
VDI 2776 [34], into a higher-level control system, which is
referred to as process orchestration layer (POL) [35]. Due to
the standardized interfaces, the data from every PEA or the
entire process is easily accessible for devices communicating
within the network of this plant. Hence, for a device directly
communicating with the PEA, ML solutions can be quickly
implemented. In order to make these data also accessable to
software located outside of the field-level, e.g., a cloud appli-
cation, it is referred to the NAMUR Open Architecture con-
cept (NOA) [62]. A special MTP feature is the service-orient-
ed architecture that provides the possibility to run recipes
with the predefined services each PEA offers to the POL [36].
This feature could be used to run the process with many dif-
ferent control variables, study the respective effects of control
variables and observe states that are usually undesired. For
most processes this kind of data is scarce as it is not the opti-
mal way to operate the process, but it is useful for the training
of ML models that are supposed to prevent those states [20].
The recipe feature already existing in modular automation
and MTP context could also be further used for the auto-
mated conduction of experiment plans that were designed
via design of experiments (DoE). Additionally, ML algo-
rithms could be used subsequently to optimize a product or
process [37]. The implementation of such ML solutions via a
service-like architecture as proposed by Soto et al. [38] is also
an interesting concept, which would greatly benefit from
accepted standards.

The aim of this work is to build upon these good practi-
ces and provide additional guidance for the implementation
of ML methods based on another use case, i.e., flooding pre-
vention in a spinning band distillation and an extraction
column. For a distillation column, sensor data is evaluated
to forecast the pressure drop with supervised learning
methods. Subsequently, the operating state is classified
based on the forecast combined with a clustering algorithm
to form an early flooding warning system. The distillation
column is designed according to the MTP (module type
package) concept, which provides easy access to all sensor
data from OPC UA servers via a Python script, demonstrat-

ing the advantages of standardized modular equipment
including its interfaces. Flooding in the extraction column
is analyzed via computer-vision and a convolutional neural
network to design smarter equipment that can identify its
own operating state. Finally, an online control strategy
based on the ML models is discussed and its usability within
the MTP architecture is evaluated.

2 Experimental Setup

The laboratory experiments were performed with two sepa-
ration columns for distillation and extraction, respectively.
Both are equipped with a newly developed, modular auto-
mation system following the MTP approach [47].

2.1 Spinning Band Distillation Column

The investigated spinning band distillation column (SBDC) is
built as a modular process equipment assembly according to
VDI 2776. It consists of a DN25 glass column with a solid
rotating internal – the spinning band (Fig. 1, right) manufac-
tured by Normag-Pfaudler, Ilmenau, Germany. Hence there is
only a thin gap for the countercurrent liquid-vapor flow be-
tween the spinning band and the wetted glass wall of the col-
umn. The rotation induces an intensified mass transport
between liquid and vapor, resulting in better separation effi-
ciency with higher rotation speed. On the other hand, increas-
ing the band speed, pressure drop is increasing due to higher
liquid loading and higher vapor velocities in the column. At a
certain point, depending on band speed, liquid loads, and
vapor velocity, the liquid is accumulating, which results in
flooding. For detailed information about the spinning band
column and its behavior see [39, 40, 63, 64] Flooding can be
seen visually but also detected by very steep rise of the pres-
sure drop, which is measured via a pressure difference trans-
mitter between bottom and head of the distillation column.

In literature, several phenomena are described leading to
flooding behavior in distillation columns. Depending on the
column internals – tray or packing – the flooding mecha-
nisms differ, but in the end, it is always an excessive accu-
mulation of liquid at a specific location that negatively
affects the desired separation process [42, 43]. In case of the
spinning band distillation column, flooding always occurs
below the feeding zone due to the highest local liquid load
at this point. Since the pressure drop for this flooding
mechanism always behaves very similar for this situation,
regardless of whether the situation was caused by high rota-
tion band speed, liquid load or evaporation rate, observa-
tion and prediction might be easier compared to industrial
columns. Besides the already mentioned actuators and sen-
sors, the column is equipped with necessary sensors and
actuators to be operated nearly fully automated. The auto-
mation is executed on a PLC by WAGO Kontakttechnik
GmbH & Co. KG, Minden, Germany, and features the man-
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ufacturer independent interface module type package
(MTP) standardized in the VDI/VDE/NAMUR 2658 guide-
lines. Besides this, the distillation column offers a service
‘‘distill’’ with a state machine implemented in the decentral-
ized logic of the modules PLC. Enabled by the MTP, the
distillation column can be integrated to the prototypical
Process Orchestration Layer (POL) by ABB Research
Center, Ladenburg, Germany, where the service can be
conducted and the human machine interface (HMI) is
automatically visible. Deeper insights of the MTP concept
and its architecture can be taken from [35, 44], the architec-
ture combined with the ML implementation is explained in
more detail below.

Regarding the flooding phenomena, the distillation col-
umn is behaving similarly to conventional distillation col-
umns. The pressure drop is increasing nearly linearly with
the gas factor and liquid loading. Beyond certain gas factors
and liquid loadings, called loading point, the pressure drop
is increasing more steeply than before until the flooding
point is reached, which is an undesirable state of the col-
umn.[45, 46] In the case of the spinning band distillation
column, the pressure drop is also massively influenced by
the spinning band speed. This behavior could be already
implemented to a control strategy [47], but still, the column
is running into the undesired state of flooding. The complex
hydrodynamics of the system with a rotating internal and
the two-phase flow is very hard to model and predict pre-
cisely. Hence, the flooding points need to be examined
experimentally. This procedure is very time consuming and
still has some uncertainties, which cannot be described
completely. Thus, it is of high interest to predict the pres-
sure drop and classify the current operating point with help
of a trained ML algorithm with historical data. Like this, it
would be possible to already get information about a certain

parameter set and a classification even before undesired
states like the flooding point is reached in operation.

2.2 Liquid-Liquid Extraction Column

A liquid-liquid extraction column serves the purpose of sep-
aration of solvent mixtures with the help of a third solvent
immiscible with the carrier solvent [48–50]. In the inves-
tigated case, a value component dissolved in a light phase
is contacted with the heavy phase, from which it can be
separated more easily in a following process step. Butyl
acetate is used as the organic phase and deionized water
is used as the heavy, aqueous phase. Two operating states
within an extraction column can be identified. The regu-
lar operating state, characterized by a high separation effi-
ciency through a large mass transfer of the solute from
light to heavy phase. On the other hand, the separation
efficiency decreases significantly as flooding, the second
but undesired operating state occurs, and the volumetric
throughput breaks down.

As the laboratory extraction column is optically accessi-
ble, a different approach based on computer vision is imple-
mented for flooding detection [51, 52]. Here, image or video
data is fed into a deep learning algorithm, i.e., a convolu-
tional neural network (CNN). The network’s objective is to
distinguish between the desired normal operating mode
and flooding of the column.

The investigated DN15 glass extraction column is
equipped with a stirrer HS-30D from WiseStir and a pulsa-
tion unit HT-120DX from Witeg (Fig. 2, left side) to opti-
mize and control the performance of the extraction. The
overflow is used to set the height of the liquid-liquid phase
boundary in the column’s head.
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Figure 1. Normal flooding behavior with increasing band speed (left), spinning band column with a view of the un-
insulated column with vacuum double jacket and internal (right) [41].

1920 Research Article
Chemie
Ingenieur
Technik



A Panasonic DMC-FZ72 camera is permanently installed
on a tripod and hung in a scaffold around the extraction
column. The camera’s image resolution is about 0.13 mm/
pixel. Images are taken under various different illumina-
tions, light from the right-, the left-hand side, both sides, or
daylight only. An image preprocessing routine follows,
where the desired image section is cut out as indicated in
the right-hand side images in Fig. 2.

2.3 Modular Automation

For the implementation of ML
scripts, following hardware and
software architecture is used.
Sensor data from the SBDC is
transferred to and stored on the
OPC UA server of the PLC. Cur-
rent and historical values for each
PEA can be accessed by the POL
via the MTP interface. The MTP
can be seen as part of the digital
twin, describing the available ar-
chitecture of sensors, actuators
and functionalities of a PEA [53].
In order to implement ML meth-
ods to design an early flooding
warning system, the sensor data
is directly taken from the OPC
UA servers via a Python script

and fed to the developed moni-
toring system to determine the
current operating state of the dis-
tillation column by classification.
The monitoring concept is imple-
mented in four steps: i) pressure
drop preprocessing and filtering,
ii) forecast by supervised learning
methods, iii) operating state clas-
sification through clustering, iv)
graphical output for the operator
with forecast and classification.
Data flow and implementation of
the flooding prevention system
are visualized in Fig. 3.

As described before, the distil-
lation PEA is implemented to the
POL via an open standard, the
MTP. This architecture can be
used additionally to implement
the ML in a faster way, as the
OPC UA server and needed pro-
cess variables already exist and
the location is completely de-
scribed in the MTP file. Like this,
the ML script is based on the ex-

isting architecture as an add-on for monitoring and classifi-
cation of the set operation point. Furthermore, it is conceiv-
able to implement a feedback loop as control for the
distillation column. The ML script is then acting as a con-
troller of the PEA. For the compliance with the MTP con-
cept, the service of the distillation PEA needs to be adjusted
with a new procedure. Within this new procedure, the spin-
ning band speed is not anymore given by the POL, but self-
adjusted by the PEA logic with the ML script as an internal-
ly acting controller within the distillation PEA logic. How-
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Figure 2. Image of extraction column (left-hand side), example pictures for optimal operating
point (upper right-hand side) and flooding (lower right-hand side) indicated by a dense layer of
droplets within the area of interest (where the two states are distinguishable) indicated by the
white boxes.

Figure 3. Software and data architecture of distillation PEA with integrated ML.

Research Article 1921
Chemie
Ingenieur
Technik



ever, this is not implemented yet, since the scope was to en-
sure the applicability of the forecast and classification first.

3 Flooding Detection in the Distillation
Column by ML Tools

Generally, AI-supported tools for process monitoring and
detection of malfunctions in process industry is of common
interest and is becoming increasingly important in the con-
text of industry 4.0 [54, 55]. Once the acceptance of such
tools is given and operators are properly trained in its use,
the benefit regarding resource, energy and time savings are
huge. A lot of AI tools in context with downstream process-
ing units found in literature are derived for industrial col-
umns [56–58]. However, with a certain degree of instru-
mentation such models can already be implemented for
laboratory or technicum columns in order to test the algo-
rithms and tools in an early stage of process design. In the
following sections, the preprocessing of the acquired sensor
data, feature extraction, training of the ML methods and
the implementation with live data are described.

3.1 Data Set and Preprocessing of Time Series Data

Time series from previous distillation column laboratory
tests were used as training and test data. About 17 h of data
were used, during which flooding occurred approx. 35 times
within the column. For later validation, live data was used.
The Python script accessed the OPC UA server of the con-
trol unit and processed it in real time.

Multivariate time series data can be tricky to deal with as
the temporal structure should be preserved in some way
during the training process. One way to make supervised
learning methods applicable to time series data is the sliding
window method [40], which transforms data in such a way
that past and ‘‘future’’ measurements are preserved for each
data point. For this use case, the future pressure drop
(Dpt+1, Dpt+2, K) will be predicted based on the past data of
pressure drop and other significant parameters Xi (K, Dpt – 1,
X1,t – 1, K , Dpt, X1,t, K). These other significant parameters
are determined in Sect. 3.2. A schematic representation of the
sliding window data transformation is given in Fig. 4. The
window size refers to the time window of past data and the
response size describes the forecast window.

This transformation results in many additional data col-
umns, which must be considered for the choice of an appro-
priate ML model. For the denoising of the pressure drop
signal, an exponentially weighted moving average (EWMA)
is used that weighs the most recent measurements stronger
as they are more important to detect changes in trend and
level of the pressure drop. For some ML methods that are
based on distance (SVM, clustering), an additional scaling
step is necessary that normalizes the input data. Linear re-
gression and decision tree regressors do not require this
scaling step.

3.2 Feature Extraction via Machine Learning

The spinning band distillation column contains the sensors
and control variables summarized in Tab. 2.

In order to train a robust and reliable ML model and
avoid issues regarding co-linearity [2], it is helpful to pick
significant features for the training process. This can be
achieved by applying PCA or PLS regression, but since the
number of parameters is manageable for this work, features
are picked based on operator experience and a correlation
matrix instead (Fig. 5). An advantage of this approach is
that the results will be more interpretable compared to PCA
or PLS regression, which addresses possible veracity issues
as well.

The values in a correlation matrix describe the linear rela-
tionship between two parameters, where 1 and –1 indicate a
perfectly linear relationship. The sign of the correlation
coefficient describes the direction of the relationship: a posi-
tive sign means that the value of one parameter increases or
decreases, if the other parameter increases or decreases,
respectively; a negative sign describes the opposite relation-
ship.
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Figure 4. Sliding window method for the transformation of
time series data.

Table 2. Sensors and control inputs of spinning band distillation
column relevant for ML.

Sensor Control variable

Pressure drop Band rotation speed

Liquid level (bottom) Heater power

Temperature (bottom) Feed flow

Temperature (middle) Reflux ratio

Temperature (head)

Distillate mass

Bottom product mass
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The correlation matrix indicates that there is a strong lin-
ear relationship between the temperature measurements
and heater power, which is expected for a distillation col-
umn (1). Further, there is a strong relationship between dis-
tillate and bottom product mass (2), but these features are
not considered for the pressure drop forecast as it is known
from experience that there is no significant impact on the
pressure drop in the column. The same argument applies to
the liquid level in the bottom (3). In terms of temperature
measurements, the temperature in the head of the column
is retained as a feature because it contains information on
the boiling point of the volatile component and the current
concentration. Pressure drop is kept as a feature as it de-
scribes the recent pressure drop trend, which can be useful
for the forecast. The remaining parameters show no strong
linear relationship. Furthermore, as known from experience
and physical relationships the liquid holdup directly influ-
ences pressure drop in the distillation column. Thus, they
are selected as features as well. In total, six parameters
(pressure drop, column head temperature, band rotation
speed, heater power, feed flow, and reflux ratio) are selected
and used to model the forecast.

The clustering step will be performed based on the pres-
sure drop data alone to identify flooding behavior in the
distillation column. Pressure drop is preprocessed and

transformed as described for the forecast problem in order
to maintain the same data structure and facilitate the imple-
mentation with live data. Time series data can be typically
decomposed into the following four features: trend, level,
seasonality and noise. To ensure good visualization and
interpretability of the occurring clusters, two features are
chosen for the clustering process. As the flooding behavior
does not occur in specific regular intervals (seasonality) and
noise has been reduced by means of EWMA, trend and level
should contain the significant information to identify
meaningful clusters and are therefore chosen as features.

3.3 Model Training and Validation

Data from the spinning band distillation column is acquired
in intervals of 1 s and since flooding happens abruptly, it is
important to maintain this sample frequency despite the
large amount of data that is collected. Therefore, scalable
and computationally inexpensive models based on regres-
sion trees, which are explained in more detail in Sect. 1.1,
are prioritized in the scope of this work. These bagging and
boosting methods will be used with regression trees as base
estimators for the pressure drop forecast and their perfor-
mance will be compared based on chosen metrics, i.e., root
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Figure 5. Correlation matrix for data of spinning band distillation column, left hand parameter has a linear im-
pact to top hand parameter with positive or negative correlation.
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mean squared error and coefficient of determination (R2).
Additionally, linear regression will be applied for the pres-
sure drop forecast to serve as a reference model.

The window and response size are determined prelimi-
nary via a grid search approach using a representative
regression model (random forest regression). Investigated
window sizes range from 5 to 20 s and response sizes from
15 to 30 s. The goal is to use a small window size to keep
the amount of data during the transformation small (Fig. 3)
and a large response size for a long forecast, while
maintaining a good prediction accuracy on the test data set
(R2 > 0.95). Training data consists of 8 and test data of 2
recorded distillation runs, which corresponds to 54 948 and
9884 measurements, respectively. The resulting window and
response size using this approach are identified as 10 s and
20 s, respectively. A shorter window size might result in
missing the system’s response to a change of control vari-
ables and larger response sizes lead to a strong decline in
model accuracy.

For the pressure loss forecast the following ML methods
are compared: linear regression, random forest, extra trees,
AdaBoost, and gradient boosting regression. To achieve the
best performance, the hyperparameters (e.g., number of
estimators and depth of the decision trees) were optimized
for the bagging and boosting regressors in a k-fold cross-
validated grid search (k = 5) utilizing the training data.
Finally, the performance of every model is compared in
Tab. 3 based on the test data set and the chosen metrics.
Note that AdaBoost and the extra trees regressor are com-
bined via a voting regressor for an additional model as their
training time is quite low. Due to the different working
principles, weaknesses of the respective models could be
eliminated by combining them. The training time is based
on an INTEL Core i5-6600K CPU overclocked to 4.5 GHz.

Extra trees, gradient boosting, and the combination of
AdaBoost and extra trees regression perform very similarly
in terms of accuracy. If an adaptive ML solution is desired,
the training time could play a critical role, but for the scope
of this work all three highlighted models will be further
evaluated with live data in the tryout stage (Sect. 3.5).

For the monitoring system, the pressure drop time series
will be classified based on the 20 s forecast window and the
measurements from the last 10 s to determine the current
operating state of the distillation column, i.e., flooding or
not flooding. Therefore, the historical pressure drop data is
preprocessed as described in Sect. 3.1 with a window size of
30 s and used to identify meaningful clusters (k-means clus-
tering) and label the data. As this method is distance based,
a prior scaling of the data is performed. The time series
features trend and level are determined from the slope of a
linear fit and the median of the 30 s windows, respectively.
Additionally, the data is filtered for positive slopes and me-
dians above 80 Pa as flooding is only observed for increas-
ing pressure drop trends and high pressure drop levels.

In order to identify an appropriate number of clusters,
the elbow method is applied [59]. For this method, the
k-means clustering algorithm is executed with a varying
number of clusters, which are plotted against the inertia,
i.e., the sum of squared distances of samples to their closest
cluster center. Adding additional cluster centers after there
are already enough clusters to describe the data, leads to a
smaller change in inertia and a characteristic kink (elbow)
is observed in the plot (Fig. 6, left). For the presented data
this elbow is found at five clusters. In Fig. 6 (right) the data
and cluster centers are visualized by a median against slope
plot. Most of the data lies around a slope of 0, as it is the
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Table 3. Accuracy of pressure drop forecast for different algo-
rithm methods based on the test data set.

Algorithm RMSE R2 Training time [s]

Linear regression 12.7836 0.9361 0.38

Random forest 9.6330 0.9670 59.94

Extra trees 9.2411 0.9698 7.75

AdaBoost 10.1047 0.9636 37.85

Gradient boosting 9.0973 0.9700 275.08

AdaBoost + Extra trees 9.0849 0.9703 110.99

Figure 6. Elbow method for choosing the number of clusters with k-means clustering (left); median and
slope plot with resulting clusters (right).
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desired stable operating state. The blue and green (far right-
hand side) clusters describe operating states, where the
pressure drop is increasing, and the column might flood
soon. For the implementation with live data a warning will
be displayed if those conditions are observed. The remain-
ing clusters will indicate normal operating behavior. Note
that the data was transformed back to the original values
for the visualization, but scaled data was used for the clus-
tering process.

3.4 Implementation

As shown in Fig. 3, the distillation PEA is equipped with a
PLC as a PEA internal control unit. An OPC UA server is
located on this PLC, on which all process variables are pub-
lished relevant for the process. The modular concept with
OPC UA provides a standardized server interface, on which
the ML algorithm can be adapted. The ML tool developed
in Python has an OPC UA client taken from the Python
package freeopcua [60], which reads the process variables
every second and processes them into a data frame. This
data frame can be processed further as shown above. There-
fore, the data is preprocessed according to Sect. 3.1 and the
developed models are applied to the data frame. As output
the models provide on the one hand the prediction of the
pressure for the next 20 s. On the other hand, the current
operating status is classified from the prediction. The struc-
ture of the ML forecast implementation as well as the
results plotted in a real time diagram are shown in Fig. 3.

The diagram shows the curve of the pressure difference,
the filtered pressure curve and the prediction of future pres-
sure difference. The current operating status is displayed
above the diagram as text, which informs the operator if
flooding occurs.

3.5 Distillation experiments and optimization

As validation data, a test procedure is carried out, in which
the column is flooded several times. Care is taken to ensure
that the flooding is generated by various parameter changes
in order to check whether the influence of all parameters on
the flooding behavior is reliably mapped. It could be shown
that all three trained algorithms (gradient boost, extra trees,
AdaBoost + extra trees) are able to detect and reliably
display the flooding behavior. The accuracies (coefficient of
determination) of the different models with respect to the
validation data are R2

gradient boost = 0.878, R2
extra trees = 0.853

and R2
AdaBoost + extra trees = 0.857.

The results of the flooding detection for the trained and
selected models are shown in Fig. 7. It can be seen that all
three models have similar accuracies, but the resulting pre-
diction curves show significant differences. The prediction
of the combined model of AdaBoost and extra trees regres-
sion shows a strongly fluctuating behavior, which makes it
difficult to evaluate the forecast. The pure regression by
extra trees is much smoother, but the prediction is too flat
and has problems to follow the current pressure curve. In
contrast, the Gradient Boost model shows a significantly
more reactivated response with sufficient smoothing of the
prediction curve, which makes this model the most suitable
solution out of the three models investigated.

After the gradient boost algorithm is selected as the most
suitable one, the response of the model will be discussed in
detail. The data that the model receives as input is generated
specifically for evaluation and has not been exposed to the
model at any previous time. Fig.8 shows the response of the
model to changes in the speed of the spinning band. At the
beginning a steady state is shown, which is expressed by a fil-
tered pressure value of about 190 Pa. The spinning band
speed is set to a constant value of 300 rpm. This results in an
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Figure 7. Behavior of the model response different trained models while flooding occurs in the spinning band distillation col-
umn.
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almost stable prediction of the pressure difference. The clas-
sification on the top of the diagram shows that the column is
working in a normal operating window (see Fig. 8, left).

Subsequently, after approx. 30 s, the speed of the spinning
band is increased from 300 rpm to 400 rpm (see Fig. 8,
right). This results in an increase of the pressure difference
and the forecast predicts a stronger rising trend for the next
20 s. Due to the existing learned correlations, the classifica-
tion of the model indicates already at this early stage that
the column is entering a flood point, which enables the
operator to take appropriate countermeasures.

It can thus be shown that the ML model is able to clearly
predict the flooding of the SBDC, therefore in the following
it will be analyzed in more detail what happens when the
speed of the spinning band is reduced (see Fig. 9).

The speed is reduced to 150 rpm after 60 s. As a result of
inertia within the system such as the slow discharge of the
liquid in the flooding area of the column, there is a delayed
flattening of the pressure difference. At this point, the
course of the model deviates from the actual course, as a

falling trend for the next 20 s is already apparent in the
model. The classification also indicates that a stable operat-
ing condition will be achieved. This is due to the fact that
the model was strongly adapted to the speed of the spinning
band as a decisive influencing parameter. After 110 s a sta-
tionary state is reached, which shows that the classification
works reliably.

4 Liquid-Liquid Extraction Column Flooding
Detection

The images are labeled according to the operating state
‘‘normal operating state’’ or ‘‘flooding’’. 1344 images per
class are fed as training data to the neural net. This data set
is subdivided into 80 % training data and 20 % validation
data. An external test data set with 252 images per class is
provided as well. Image size is 224 ·224 pixel, with a few
pixel of deviation regarding the shown image section that
have no influence whatsoever on the classification results.
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Figure 8. Response of the model in steady state (left) and an increase of the spinning band rotational speed (right).

Figure 9. Response of the model to a decrease of the spinning band rotational speed.
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As convolutional neural network CNN resnet18 is used
[61] and retrained for this purpose. The core idea of ResNet
is introducing a so-called ‘‘identity shortcut connection’’
that skips one or more layers. Since the shortcut connection
is learning only the residual, the whole module is called
residual module. The shortcut connection’s skipping of cer-
tain layers speeds up the training process of the net. Resnet-
18 consists of 18 convolution blocks, which each consist of
several different layers.

After seven training epochs the neural net achieves an
accuracy of 99.3 % in recognizing the correct operating state
of the training set. For training purpose, the batch size was
chosen to 4 with stochastic gradient descent and momentum
(SGDM) as solver and with an initial learning rate of 0.001.

To check whether the net provides a reasonable perfor-
mance, a confusion matrix is created. Here, the predicted
class of the network is compared to the true class that is giv-
en to the image. If the predicted and the true class are the
same, the network can make correct predictions. For valida-
tion of the trained net a set of 252 test images with 126 for
each state, not used for the training of the neural net before-
hand, is used. The obtained accuracy is 99.7 % with a single
misclassified image predicted as flooding state instead of
regular operation state.

During the investigations, the following question came
up: what if the net can predict the class correctly, but is
based on unreasonable sections within the image? To ex-
clude this error source from training a network, a class acti-
vation map (CAM) is introduced. Its purpose is to visualize,
within which area of the image the neural net deems most
important to base on its class prediction decision. Thus,
CAMs support making the ML algorithm’s decisions
explainable. This CAM is constructed in Matlab by using
the ‘‘activations()’’ function and plotting it on top of the
analyzed image (see Fig. 10).

It proves that the neural net focuses on a reasonable sec-
tion within the image to determine whether it sees an image
of the normal operating state or flooding. With these two

criteria satisfied, a first step towards an image-based control
of an extraction column is made.

Since the successful detection of the columns state using
ML could be shown, the ML is now to be developed into an
ML-based smart sensor for online monitoring, displaying
the current state of the column. As an even further outlook,
a feedback control tool is to be developed of this smart
sensor. The AD Labs DN32 extraction column is built as a
modular column according to VDI 2776, just like the
spinning band distillation column. For automation it as well
uses existing control architectures such as the MTP
(cf. Fig. 3). Thus, the linkage of the results of this optical
sensor to control the PEA system to for example increase
pulsation or decrease stirrer speed to avoid flooding is the
next feasible step.

5 Conclusion and Outlook

The application of machine and deep learning in the pro-
cess industry is an adequate way to predict or detect the
flooding behavior or malfunction of columns. In this case,
flooding detection with ML tools were implemented to a
laboratory distillation and liquid extraction column. It was
shown that both time-series data of process values and im-
age recognition can be used for modeling. Parallel to this,
examples were given, which enable the simple integration of
AI-based monitoring systems into existing plants enabled
by existing control architectures such as the module type
package. Adaptation of process parameters avoid flooding,
reaction on disturbances, e.g., trace elements and their
influence on the surface tension or surface wetting phenom-
ena. An adaptation of camera setups or the existing data
structures, such as OPC UA, are sufficient to provide an
interface for a data science implementation. This results in
a high potential for tooling up existing equipment with AI
methods as part of the digital twin. It is possible to combine
both analytical methods in order to specify the flooding
behavior even more and to transfer the flooding detection
from an AI-supported to an AI-controlled monitoring sys-
tem.

The BMWi is acknowledged for funding this research in
the ORCA project as part of the ENPRO2.0 initiative
(Support code: 03ET1517B). The BMWi is acknowledged
for funding this KEEN project initiative (Support code:
01MK20014S). Open access funding enabled and
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Symbols used

R2 [–] coefficient of determination
RMSE [–] root mean squared error
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Figure 10. Class activation map of a flooding image. The neural
net’s main focus is on the red area with decreasing importance
towards the blue area. Gray areas are identified as unimportant
for the classification problem. Here, the upper part of the
flange is taken as most interesting area for the decision.
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Abbreviations

CAM class activation map
CNN convolutional neural network
DOE design of experiments
EWMA exponential weighted moving average
GBR gradient boosting regressor
HMI human machine interface
LSTM long short-term memory
ML machine learning
MTP module type package
PCA principal component analysis
PEA process equipment assembly
PLC programmable logical controller
PLS partial least squares
POL process orchestration layer
SBDC spinning band distillation column
SVM support vector machine
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