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Infinite-horizon optimal control – Asymptotics and dissipativity

Timm Faulwasser1,∗ and Christopher M. Kellett2

1 Institute for Energy Systems, Energy Efficiency and Energy Economics, TU Dortmund University, Emil-Figge-Str. 70,
44227 Dortmund, Germany

2 School of Engineering, Australian National University, Canberra, ACT, Australia.

This note discusses the interplay between dissipativity and the asymptotics of continuous-time infinite-horizon optimal control
problems. We focus on the results on convergence of optimal primal solutions derived in [6]. Moreover, we present a result
on the attractivity of the infinite-horizon optimal adjoint trajectories, which is closely related to transversality conditions for
infinite-horizon optimal control problems. Proofs and further results can be found in [6].
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1 Introduction

The analysis of infinite-horizon optimal control problems arises in different contexts ranging from economics, to design
of optimal feedback strategies, and inverse optimal control approaches. Early treatments of the problem include [10], a
comprehensive overview is provided by [2]. It is also well-understood that there exist close relations between stability and
infinite-horizon optimal control, see [12], and between dissipativity and stability, cf. [8, 11, 14]. Moreover, one may argue
that Jan Willems constructed his formal system-theoretic definition of dissipativity by leveraging infinite-horizon optimal
control [15, 16]. Recently, in the context of economic model predictive control a dissipativity notion of Optimal Control
Problems (OCPs), proposed by [1], has proven to be of crucial importance in the stability analysis, see e.g. [5]. Moreover, it
has been shown by [7, 9] that dissipativity allows certifying turnpike properties of OCPs.1

Despite the crucial importance of infinite-horizon optimal control for many problems, there are also open issues related to
it. Obviously—and except for special cases like LQR problems—computing the transient solution to infinite-horizon problems
is intrinsically difficult since the objective functional does not need to be bounded. Moreover, it is known since the seminal
insights of Hubert Halkin [10] that in the infinite-horizon case solving the adjoint/co-state dynamics is challenging. This is
mainly due to the fact that the corresponding adjoint transversality condition cannot be inferred by taking the asymptotic limit
of the finite-horizon one. Specifically, Halkin constructed an example of a Lagrange problem wherein for any finite horizon
the adjoint at t = T has to be 0 (due to the absence of a Mayer term), while for the infinite-horizon cases it is shown that
the adjoint does not converge 0. This note summarizes parts of the results of a recent paper [6] in which we analyze infinite-
horizon OCPs with respect to the interplay between dissipativity and stability. Moreover, in [6] we have shown that under a
strict dissipativity assumption, the optimal adjoint converges to the value of the optimal steady-state Lagrange multiplier of
the dynamics. Put differently, strict dissipativity imposes an asymptotic limit on the co-state trajectory which can be different
from 0.

2 Problem Statement

We are interested in time-invariant OCPs in Lagrange form given by

VT (x0)
.
= inf

u(·)∈L∞([0,T ],Rnu )

∫ T

0

ℓ(x(t), u(t))dt (1a)

subject to
dx

dt
= f(x(t), u(t)), x(0) = x0 and 0 ≥ gi(x(t), u(t)), i = 1 . . . ng, (1b)

wherein the horizon T ∈ R+ ∪ ∞ can be finite or infinite. The dynamics f : Rnx × Rnu → Rnx , the stage cost ℓ :
Rnx × Rnu → R, and the mixed input-path constraints gi : Rnx × Rnu → R, i = 1 . . . ng are at least twice continuously
differentiable. Moreover, we suppose that for all initial conditions of interest, i.e. x0 ∈ X0 ⊆ Rnx , an optimal solution exists,
such that the optimal state response is absolutely continuous. The object of investigation is the stability of the considered
dynamics under the open-loop infinite-horizon optimal control u⋆ : R+

0 × X0 → Rnu , i.e.,

ẋ = f(x, u⋆(t, x0)), x0 ∈ X0. (Σ)

∗ Corresponding author: e-mail timm.faulwasser@ieee.org, phone +00 49 231 755 2359, fax +00 49 231 755 2694
1 The term turnpike property was coined by [3] and has received considerable attention in economics [2,13]. It refers to similarity properties of solutions

of OCPs being parametric in the initial condition and the horizon length, see [4] for a recent overview.
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2 of 3 Section 20: Dynamics and control

Our analysis relies on the following strict integral dissipation inequality

S(x⋆(t1))− S(x0) ≤
∫ t1

0

−αℓ (∥(x⋆(t), u⋆(t))− z̄∥) + ℓ(x⋆(t), u⋆(t))− ℓ(z̄) dt, (sDI)

to hold along optimal pairs for all x0 ∈ X0, where αℓ ∈ K∞ and z̄ = (x̄, ū)⊤ is a steady state pair, i.e., 0 = f(x̄, ū).
We remark that strict dissipativity implies that z̄ is optimal in problem (2) introduced below. Moreover, let λ̄, µ̄ denote the
corresponding Lagrange multipliers in (2).

Theorem 2.1 (Strict dissipativity ⇒ primal attractivity [6]) For all x0 ∈ X0, let OCPT (x0) be strictly dissipative with
respect to z̄ = (x̄, ū)⊤ and suppose that, for all x0 ∈ X0, V∞(x0) < ∞. Then, for all x0 ∈ X0, the solutions of (Σ) satisfy
lim
t→∞

x(t, x0, u
⋆(·, x0)) = x̄.

Furthermore, if there exists an optimal input u⋆(·, x0) absolutely continuous on [0,∞), then lim
t→∞

u⋆(t, x0) = ū.

The proof given in [6] relies on Barbalat’s Lemma. The extension towards the asymptotics of the adjoints is given next.

Theorem 2.2 (Strict dissipativity ⇒ adjoint attractivity [6]) For all x0 ∈ X0, let OCPT (x0) be strictly dissipative at
z̄ = (x̄, ū) ∈ Z, let V∞(x0) < ∞, suppose that

• the Jacobian linearization of (Σ) at (x̄, ū), (A,B)
.
= (fx, fu), is stabilizable and

• the uniqueness of the Lagrange multipliers λ̄ ∈ Rnx , µ̄ ∈ Rng in

min
(x,u)∈Rnx+nu

ℓ(x, u) subject to 0 = f(x, u), 0 ≥ gi(x, u), i = 1 . . . ng. (2)

Then, for all x0 ∈ X0, the infinite-horizon adjoint λ⋆(·, x0) satisfies lim
t→∞

λ⋆(t, x0) = λ̄.

Further results without uniqueness of multipliers can also be derived. For details and for the discussion of the link to
Hamilton-Jacobi-Bellman-Equations we refer to [6].

3 Conclusions

This note has recapitulated on key insights on the implications of strict dissipativity in infinite-horizon optimal control. Specif-
ically, we have commented on adjoint transversality conditions for infinite-horizon optimal control and on the convergence of
states and inputs based on a strict dissipativity assumption. These results and further ones in [6] can be regarded as a nonlinear
extension to the classic results of Jan Willems [15].
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