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Abstract
One approach for the simulation of metamaterials is to extend an associated continuum theory concerning its kinematic
equations, and the relaxed micromorphic continuum represents such a model. It incorporates the Curl of the nonsymmetric
microdistortion in the free energy function. This suggests the existence of solutions not belonging to H1, such that standard
nodal H1-finite elements yield unsatisfactory convergence rates and might be incapable of finding the exact solution. Our
approach is to use base functions stemming from both Hilbert spaces H1 and H(curl), demonstrating the central role of
such combinations for this class of problems. For simplicity, a reduced two-dimensional relaxed micromorphic continuum
describing antiplane shear is introduced, preserving themain computational traits of the three-dimensional version. Thismodel
is then used for the formulation and a multi step investigation of a viable finite element solution, encompassing examinations
of existence and uniqueness of both standard and mixed formulations and their respective convergence rates.
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1 Introduction

Materials with a pronounced microstructure such as meta-
materials, see e.g. [2,3,7,19], porous media, composites etc.,
activate micro-motions which are not accounted for in clas-
sical continuum mechanics, where each material point is
equipped with only three translational degrees of freedom.
Therefore, several approaches tomodel suchmaterials can be
found in literature, such asmulti-scale finite elementmethods
[1,10,11] or generalized continuum theories. The latter can
be classified into higher gradient theories [5,17,23,32] and
so called micromorphic continuum theories [30,42]. These
theories extend the kinematics of thematerial point. Depend-
ing on the extension one obtains for example micropolar
[16,25,26], microstretch [38] or microstrain [13,15] theories.
In its most general setting, as introduced by Eringen und
Mindlin [12,22], a micromorphic continuum theory allows
thematerial point to undergo an affine distortion independent
of itsmacroscopic deformation arising from the displacement
field. Consequently, in the micromorphic theory a material
point is considered with 3 + 9 = 12 degrees of freedom,
of which the microdistortion P encompasses 9. The vari-
ous micromorphic theories differ in their proposition of the
free energy functional. While classical theories incorporate

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-021-02002-8&domain=pdf
http://orcid.org/0000-0001-9693-9693


2 Computational Mechanics (2021) 68:1–24

the full gradient of the microdistortion ∇ P into the energy
function [31], the relaxedmicromorphic theory [20,31,33,34]
considers only Curl P . The incorporation of the Curl of
the microdistortion, formally known as the dislocation den-
sity, into the free energy functional relaxes the continuity
assumptions on the microdistortion and enlarges the space
of possible weak solutions, i.e. [H1]3 × H(Curl). Further-
more, the relaxed micromorphic theory aspires to capture
the entire spectrum of mechanical behaviour between the
macro and micro scale of the material. This is achieved via
homogenization of the material parameters and the introduc-
tion of the characteristic length Lc [19,29], which determines
the influence of the dislocation density in the free energy
functional. Specific analytical solutions to the full isotropic
relaxed micromorphic model are presented in [35–37].

For non-trivial boundary value problems, solutions of
continuum theories are approximated via the finite element
method. While the standard Lagrange elements are well
suited for solutions inH1, solutions inH(curl)may require a
different class of elements, dependingon theproblemat hand.
The lowest class of finite elements in H(curl), sometimes
called edge elements, have been derived by Nédélec [27,28].
Extensions to higher order element formulations canbe found
in [8,9,41,44]. In this paper we consider finite element for-
mulations employing eitherH1 ×[H1]2 orH1 ×H(curl) and
investigate their validity in correctly approximating results
in the relaxed micromorphic continuum. Furthermore, we
test both a primal and mixed formulation of the correspond-
ing boundary problem for increasingly large values of the
characteristic length Lc. To that end, we consider a planar
version of the relaxed micromorphic continuum, namely of
antiplane shear [43]. More precisely, the matrix-Curl in 3D
reduces to a scalar-curl of the microdistortion in 2D. How-
ever, the results of our investigation directly apply to the full
three-dimensional version.

The paper is organized as follows: In the following section
we introduce the planar relaxed micromorphic continuum.
Section 3 is devoted to prove solvability of the primal
and mixed problem and discussing properties in the limit
case Lc → ∞, in both the continuous and discrete set-
tings, respectively. In Section 4 we present appropriate base
functions for H(curl), the corresponding covariant Piola
transformation for Nédélec finite elements and the result-
ing stiffness matrices. Finally, we present several numerical
examples to confirm the theoretical results.

2 The planar relaxedmicromorphic
continuum

The free energy functional of the relaxed micromorphic con-
tinuum [29,31] incorporates the gradient of the displacement
field, the microdistortion and its Curl

I (u, P) = 1

2

∫
�

〈Ce sym(∇u − P), sym(∇u − P)〉

+ 〈Cmicro sym P, sym P〉
+ 〈Cc skew(∇u − P), skew(∇u − P)〉

+ μmacro L2c
2

‖CurlP‖2 − 〈f, u〉 − 〈M, P〉 dX ,

(2.1)

∇u =
⎡
⎣u1,1 u1,2 u1,3
u2,1 u2,2 u2,3
u3,1 u3,2 u3,3

⎤
⎦ , CurlP =

⎡
⎣(curl

[
P11 P12 P13

]
)T

(curl
[
P21 P22 P23

]
)T

(curl
[
P31 P32 P33

]
)T

⎤
⎦ ,

curlv = ∇ × v , (2.2)

with u : � ⊂ R
3 → R

3 and P : � ⊂ R
3 →

R
3×3 representing the displacement and the non-symmetric

microdistortion, respectively. Here, Ce and Cmicro are stan-
dard elasticity tensors and Cc is a positive semi-definite
coupling tensor for rotations. The macroscopic shear modu-
lus is denoted byμmacro and the parameter Lc ≥ 0 represents
the characteristic length scale motivated by the microstruc-
ture.

From now on, we consider the planar reduction of this
continuum to antiplane shear, still capturing the main mathe-
matical aspects of the three-dimensional version, namely the
additional microdistortion and the curl

I (u, ζ ) =
∫

�

μe‖∇u − ζ‖2 + μmicro‖ζ‖2

+μmacro
L2
c

2
‖ curl2D ζ‖2 − 〈u, f 〉

−〈ζ , ω〉 dX , � ⊂ R
2 , (2.3)

where we employ the two-dimensional definitions of the curl
and gradient operators

curl2D ζ = ζ2,1 − ζ1,2 , ζ ∈ R
2 ,

Dcurl(u) =
[
u,2

−u,1

]
, u ∈ R ,

∇u =
[
u,1

u,2

]
, u ∈ R . (2.4)

In Eq. (2.3) we reduced the displacement to a scalar field
u : � ⊂ R

2 → R and the microdistortion P to a vector field
ζ : � ⊂ R

2 → R
2. The displacement field u is now perpen-

dicular to the plane of the domain. The elasticity tensors Ce

and Cmicro are replaced by the scalars μe, μmicro > 0 and
Cc no longer appears.

Remark 2.1 The simplification of the model to antiplane
shear serves to facilitate the mathematical analysis of the
model and allows for a thorough investigation of the numer-
ical behaviour of finite element solutions in the relaxed
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micromorphic theory. Whether this reduced model can be
applied to real-world metamaterials is unclear at this time.
For applications of the full three-dimensional theory see
[19,20].

In order to find functions minimizing the potential energy I
we calculate the variations with respect to u and ζ

∫
�

2μe〈(∇u − ζ ), ∇δu〉 dX =
∫

�

〈δu, f 〉 dX , (2.5a)
∫

�

2μe 〈(∇u − ζ ), (−δζ )〉 + 2μmicro 〈ζ , δζ 〉

+ μmacro L
2
c 〈curl2D ζ , curl2D δζ 〉 dX =

∫
�

〈δζ , ω〉 dX .

(2.5b)

Partial integration of Eq. (2.5a) and Eq. (2.5b) yields the
strong form including boundary conditions (see Appendix A
for more details)

− 2μe div(∇u − ζ ) = f in �, (2.6a)

− 2μe(∇u − ζ ) + 2μmicroζ

+ μmacroL
2
c Dcurl(curl2D ζ ) = ω in �, (2.6b)

u = ũ on �u
D , (2.6c)

〈ζ , τ 〉 = 〈̃ζ , τ 〉 on �
ζ
D , (2.6d)

〈∇u, ν〉 = 〈ζ , ν〉 on �u
N , (2.6e)

curl2D ζ = 0 on �
ζ
N , (2.6f)

where τ and ν denote the outer tangent and normal vector
on the boundary, see Fig. 1, and with ũ and ζ̃ the displace-
ment andmicrodistortion fields on�u

D and�
ζ
D are prescribed.

From amathematical point of view, it is possible to prescribe
the tangential components of the microdistortion ζ on the
boundary �

ζ
D . This is used to test our numerical formulation

in Sect. 5. However, from the point of view of physics it is
impossible to control the microdistortion of the continuum
with no direct relation to the displacement u and as such,
the consistent coupling condition 〈ζ , τ 〉 = 〈∇ũ, τ 〉 arises
on the Dirichlet boundary, being common to both u and ζ ,
enforcing the condition �

ζ
D ⊂ �u

D . Furthermore, Dirichlet
boundary data for the microdistortion ζ are not required for
the existence of a unique solution here, as coercivity in the
appropriate spaces is still determined.

3 Solvability and limit problems

3.1 Continuous case

In this section we prove the existence and uniqueness of the
weak form of the planar relaxed micromorphic continuum.

Fig. 1 Outer tangent τ and normal vector ν on the boundary of the
domain �

Further, the corresponding mixed formulation is presented,
whose coercivity constant is independent of Lc. Finally, we
study necessary and sufficient conditions such that∇u = ζ is
guaranteed in the limit Lc → ∞. For simplicity, we assume
homogeneous Dirichlet conditions on the entire boundary
throughout this section, i.e., u = 0 and 〈ζ , τ 〉 = 0 on �u

D =
�

ζ
D = ∂�, and mention that the proof can be readily adapted

for inhomogeneous and mixed boundary conditions as long
as theDirichlet boundary for the displacements is non-trivial,
|�u

D| > 0, [14].
Wedefine the followingHilbert spaces and their respective

norms

H1(�) = {u ∈ L2(�) | ∇u ∈ L2(�)2} ,

‖u‖2H1 = ‖u‖2L2 + ‖∇u‖2L2 , (3.1a)

H1
0 (�) = {u ∈ H1(�) | u = 0 on ∂�} , (3.1b)

H(curl,�) = {ζ ∈ L2(�)2 | curl2D ζ ∈ L2(�)} ,

‖ζ‖2H(curl) = ‖ζ‖2L2 + ‖ curl2D ζ‖2L2 , (3.1c)

H0(curl,�) = {ζ ∈ H(curl, �) | 〈ζ , τ 〉 = 0 on ∂�} ,

(3.1d)

which are based on the Lebesgue norm and space

‖u‖2L2 =
∫

�

‖u‖2 dX
L2(�) = {u : � → R | ‖u‖L2 < ∞} ,

L20(�) =
{
u ∈ L2(�) |

∫
�

u dX = 0

}
. (3.2)

Further, we use the product space X = H1
0 (�) ×

H0(curl,�) with the norm

‖{u, ζ }‖X = ‖u‖H1 + ‖ζ‖H(curl) , (3.3)

to define the followingminimization problem1: Find {u, ζ } ∈
X such that for all {δu, δζ } ∈ X

1 Note carefully that u and ζ are two independent variables and lead to a
minimization problem despite the resemblance to mixed formulations,
i.e. saddle-point problems.
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∫
�

2μe〈(∇u − ζ ), (∇δu − δζ )〉 + 2μmicro 〈ζ , δζ 〉 + μmacro L
2
c 〈curl2D ζ , curl2D δζ 〉 dX

︸ ︷︷ ︸
= a({u, ζ }, {δu, δζ })

=
∫

�

〈δu, f 〉 + 〈δζ , ω〉 dX ,

(3.4)

In order to show the existence of unique solutionswe consider
the Lax–Milgram theorem.

Theorem 3.1 If μe, μmicro, μmacro, Lc > 0, then Prob-
lem 3.4 has a unique solution {u, ζ } ∈ X and there holds
the stability estimate

‖{u, ζ }‖X ≤ 1

β

(
‖ f ‖L2 + ‖ω‖L2

)
,

with β = β(μe, μmicro, μmacro, Lc) > 0 .

Proof Using Cauchy–Schwarz and triangle inequality yields
the continuity of a(·, ·)

|a({u, ζ }, {δu, δζ })| ≤ 2μe‖∇u − ζ‖L2‖∇δu − δζ‖L2
+ 2μmicro‖ζ‖L2‖δζ‖L2
+ μmacroL

2
c‖ curl2D ζ‖L2 ‖ curl2D δζ‖L2

≤ c1

((
‖∇u‖L2 + ‖ζ‖L2

)(
‖∇δu‖L2 + ‖δζ‖L2

)

+ ‖ζ‖L2‖δζ‖L2 + ‖ curl2D ζ‖L2‖ curl2D δζ‖L2
)

≤ 3 c1‖{u, ζ }‖X‖{δu, δζ }‖X , (3.5)

for all {u, ζ }, {δu, δζ } ∈ X with the constant c1 =
max

{
2μe, 2μmicro, μmacroL2

c

}
.

By employing Young’s2 and Poincaré-Friedrich’s3 inequ-
alities we show the bilinear form to be coercive

a({u, ζ }, {u, ζ }) = 2μe

(
‖∇u‖2L2 + ‖ζ‖2L2 − 2〈∇u, ζ 〉L2

)

+ 2μmicro‖ζ‖2L2 + μmacro L
2
c‖ curl2D ζ‖2L2

≥ 2μe

(
‖∇u‖2L2 + ‖ζ‖2L2 − ε‖∇u‖2L2 − 1

ε
‖ζ‖2L2

)

+ 2μmicro‖ζ‖2L2 + μmacro L
2
c‖ curl2D ζ‖2L2

≥ c3
(
‖∇u‖2L2 + ‖ζ‖2L2 + ‖ curl2D ζ‖2L2

)

≥ c3
2
min

{
1,

1

1 + c2F

}
‖{u, ζ }‖2X , (3.6)

2 Young: −v w ≥ −
(

ε v2

2
+ w2

2ε

)
, ∀ε > 0 , v, w ∈ R

3 Poincaré-Friedrich: ∃cF > 0 : ‖v‖L2 ≤ cF‖∇v‖L2 ,∀v ∈ H1
0 (�)

when the constant ε is chosen as 1 > ε >
μe

μe + μmicro
,

which is possible forμe, μmicro > 0. Consequently, the coer-
civity constant reads

β = c3
2

min

{
1,

1

1 + c2F

}
,

c3 = min

{
2μe(1 − ε), 2μe

(
1 − 1

ε

)
+ 2μmicro, μmacroL

2
c

}
. (3.7)

This finishes the proof. ��

Remark 3.1 Note, that the proof fails when taking instead
X = H1

0 (�) × [H1
0 (�)]2 as a(·, ·) is then no longer coer-

cive in this space because one cannot find a constant c > 0
such that ‖ζ‖2

L2
+ ‖ curl2D ζ‖2

L2
≥ c ‖ζ‖2

H1 , for all ζ ∈
[H1

0 (�)]2. As [H1(�)]2 is dense in H(curl,�), we might
expect convergence for ζ ∈ [H1(�)]2, however, at the cost
of sub-optimal convergence rates in the discretized setting.
We present numerical examples, where the exact solution is
in H(curl,�) but not in [H1(�)]2 observing only slow con-
vergence. If the exact solution is smooth, i.e. ζ is also in
[H1(�)]2, optimal convergence is observed.

An important aspect of the relaxed micromorphic contin-
uum is its relation to the classical continuum theory (linear
elasticity). This relation is governed by the material con-
stants, where the characteristic length Lc plays a significant
role. We are therefore interested in robust computations with
respect to Lc.

The following result characterizes the conditions when a
trivial solution with respect to Lc is expected.

Theorem 3.2 Assume that the requirements of Theorem 3.1
are fulfilled. Further, let ω = ∇r be a gradient field, then,
the microdistortion ζ is compatible, i.e. ζ = ∇χ and the
solution {u, ζ } ∈ X is independent of the parameter Lc.

Proof We make the ansatz ζ = ∇χ , χ ∈ H1(�) and insert
it in Problem 3.4 choosing δu = 0

∫
�

2μe〈∇χ − ∇u, δζ 〉 + 2μmicro〈∇χ, δζ 〉 dX

=
∫

�

〈∇r , δζ 〉 dX for all δζ .
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We can express

∇χ = 1

2(μe + μmicro)
(∇r + 2μe∇u) (3.8)

and inserting into Problem 3.4 choosing δζ = 0 gives the
following Laplace problem for u

∫
�

2μe μmicro

μe + μmicro
〈∇u,∇δu〉 dX =

∫
�

f δu

+ μe

μe + μmicro
〈∇r ,∇δu〉 dX for all δu ,

which is uniquely solvable. Since by Lax–Milgram the solu-
tion is unique, ζ = ∇χ and the resulting u are the only
possible solutions. According to Eq. (3.8) the solution of
Problem 3.4 is given independently of Lc. ��

Considering the limit case Lc = 0, the continuity of the
bilinear form a(·, ·) follows automatically from Eq. (3.5).
However, for coercivity to hold, the space for ζ must be
changed to [L2(�)]2, i.e., the regularity of ζ is lost.

Theorem 3.3 If μe, μmicro > 0 and Lc = 0 Problem 3.4 has
a unique solution {u, ζ } ∈ H1

0 (�)×[L2(�)]2. Further, if the
right-hand side ω = ∇r is a gradient field with r ∈ H1(�),
the microdistortion ζ results in a gradient field ζ = ∇χ

with χ ∈ H1(�). Especially, there holds the regularity result
ζ ∈ H(curl,�).

Proof The proof of existence and uniqueness follows exactly
the same lines as the proof of Theorem 3.1. Ifω = ∇r we can
conclude as in the proof of Theorem 3.2 that ζ is a gradient
field. ��
Remark 3.2 Using Theorem 3.2 and assumingω = 0, we can
reformulate Eq. (2.6b) to retrieve ζ from the known field u

ζ = ∇χ = μe

μmicro + μe
∇u . (3.9)

Furthermore, we can condensate Eq. (2.6a) into the Poisson
equation

− div

(
2μe μmicro

μe + μmicro
∇u

)
=
(−2μe μmicro

μe + μmicro

)
︸ ︷︷ ︸

=−2μmacro


u

= −2μmacro 
u = f , (3.10)

where the homogenization of the material constants follows
as in [29]. We notice, that Theorem 3.2 and Theorem 3.3
imply the field u is always independent of themicrodistortion
ζ in this setting. In the condensed state, the relation of the
model with antiplane shear for membranes is apparent.

Remark 3.3 We note that the previous result does not hold in
the full three-dimensional relaxed micromorphic continuum,
i.e. the absence of external moments does not automatically
imply P = ∇χ for χ ∈ [H1(�)]3.

Having considered the limit of the characteristic length
Lc → 0, we reformulate Problem 3.4 as an equivalent mixed
formulation in order to examine its limit for Lc → ∞. We
start by introducing the new variable

m = μmacro L
2
c curl2D ζ ∈ L20(�), (3.11)

and constructing a new bilinear form by multiplying it with
a test function

∫
�

〈curl2D ζ , δm〉 − 1

μmacro L2
c
〈m, δm〉 dX = 0

for all δm ∈ L20(�) . (3.12)

The restriction to m ∈ L20(�) follows from the Stoke’s theo-
rem

∫
�

curl2D ζ dX =
∮

∂�

〈ζ , τ 〉 ds = 0 for all ζ ∈ H0(curl, �) .

(3.13)

We introduce the (bi-)linear forms

a({u, ζ }, {δu, δζ }) =
∫

�

2μe〈(∇u − ζ ), (∇δu − δζ )〉
+ 2μmicro 〈ζ , δζ 〉 dX , (3.14a)

b({u, ζ }, δm) =
∫

�

〈curl2D ζ , δm〉 dX , (3.14b)

c(m, δm) =
∫

�

〈m, δm〉 dX , (3.14c)

d({δu, δζ }) =
∫

�

〈δu, f 〉 + 〈δζ , ω〉 dX , (3.14d)

and the resultingmixed formulation reads: find ({u, ζ },m) ∈
X × L20(�) such that

a({u, ζ }, {δu, δζ }) + b({δu, δζ },m) = d({δu, δζ })
for all {δu, δζ } ∈ X , (3.15a)

b({u, ζ }, δm) − 1

μmacro L2
c
c(m, δm) = 0

for all δm ∈ L20(�) , (3.15b)

where the Lagrange multiplier m has the physical meaning
of a moment stress tensor.

The limit case lim Lc → ∞ of Eq. (3.15) is well-defined,
resulting in the problem: Find ({u∞, ζ∞},m∞) ∈ X×L20(�)
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such that

a({u∞, ζ∞}, {δu, δζ }) + b({δu, δζ },m∞)

= d({δu, δζ }) for all {δu, δζ } ∈ X , (3.16a)

b({u∞, ζ∞}, δm) = 0 for all δm ∈ L20(�) . (3.16b)

Consequently, at the limit lim Lc → ∞ we have curl2D ζ =
0.

We now show existence and uniqueness of both mixed
problems and that in the limit case Lc → ∞ the solution
of Eq. (3.15) converges to the solution of Eq. (3.16) with
quadratic convergence rate in Lc.

Theorem 3.4 For μe, μmicro, μmacro, Lc > 0 Eq. (3.15) has
a unique solution ({u, ζ },m) ∈ X × L20(�) satisfying for
(μmacroL2

c)
−1 ≤ 1 the stability estimate

‖{u, ζ }‖X + ‖m‖L2 ≤ c1
(
‖ f ‖L2 + ‖ω‖L2

)
, (3.17)

where c1 is independent of Lc. Further, let ({u∞, ζ∞},m∞) ∈
X × L20(�) be the unique solution of Eq. (3.16). Then, we
have the estimate

‖{u∞ − u, ζ∞ − ζ }‖X + ‖m∞ − m‖L2
≤ c2

L2
c

(
‖ f ‖L2 + ‖ω‖L2

)
, (3.18)

where c2 does not depend on Lc.

Proof Existence and uniqueness follows from the extended
Brezzi theorem [6, Thm. 4.11]. The continuity of a(·, ·),
b(·, ·), c(·, ·) and non-negativity of a(·, ·) and c(·, ·) are obvi-
ous. Therefore, we have to prove that a(·, ·) is coercive on
the kernel of b(·, ·)

ker(b) =
{
{u, ζ } ∈ X | b({u, ζ }, δm) = 0 for all δm ∈ L20(�)

}

=
{
{u, ζ } ∈ X | curl2D ζ = 0

}
. (3.19)

However, we already know from Theorem 3.1 that
a({u, ζ }, {δu, δζ })+∫

�
〈curl2D ζ , curl2D δζ 〉 dX is coercive.

This leaves us with the Ladyzhenskaya–Babuška–Brezzi
(LBB) condition to be satisfied

∃ β2 > 0 : sup
{u,ζ }∈X

b({u, ζ },m)

‖{u, ζ }‖X ≥ β2 ‖m‖L2

for all m ∈ L20(�) . (3.20)

We choose u = 0 and ζ such that curl2D ζ = m with ‖ζ‖L2 ≤
c‖m‖L2 leading to

b({u, ζ },m)

‖{u, ζ }‖X =
∫
�〈m, curl2D ζ 〉 dX

‖ζ‖L2 + ‖ curl2D ζ‖L2
≥ c

‖m‖2
L2

‖m‖L2
= c ‖m‖L2 ,

(3.21)

where the construction of ζ is according to [18]4. Thus, there
exists a unique solution independent of Lc satisfying the sta-
bility estimate Eq. (3.17).

With the (classical)Brezzi-Theoremalso the existence and
uniqueness of Eq. (3.16) follows immediately and estimate
Eq. (3.18) due to the continuous dependence of the solution
with respect to the parameter Lc, [6, Cor. 4.15]. ��
Remark 3.4 As mentioned in [18] the space for m must be
chosen as L20(�), where its mean is zero, if Dirichlet data are

prescribed on the whole boundary �
ζ
D = ∂�. This follows

from Eq. (3.13)

∫
�

m dX = μmacroL
2
c

∫
�

curl2D ζ dX

= μmacroL
2
c

∫
∂�

〈ζ , τ 〉 ds = 0 for all ζ ∈ H0(curl,�).

(3.22)

If also Neumann data is prescribed for ζ , the appropriate
function space for m is L2(�).

Remark 3.5 In the full micromorphic continuum, where the
gradient takes the place of the curl of the microdistortion

∫
�

2μe〈(∇u − ζ ), (∇δu − δζ )〉 + 2μmicro 〈ζ , δζ 〉 + μmacro L
2
c 〈∇ζ , ∇δζ 〉 dX

︸ ︷︷ ︸
= agrad({u, ζ }, {δu, δζ })

=
∫

�

〈δu, f 〉 + 〈δζ , ω〉 dX , (3.23)

4 The construction is derived directly from the 2D Stokes LBB condi-
tionwith H(div)-conforming elements and applies here since the curl2D
operator is a rotated divergence operator in two dimensions.
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existence and uniqueness follow similarly with the space
X = H1(�) × [H1(�)]2. However, the limit case Lc → ∞
yields∇ζ = 0 and consequently ζ = const ., for which non-
trivial boundary conditions cannot be considered, compare
also Section 5.7 for a numerical example.

To conclude this section we investigate the necessary and
sufficient conditions such that in the limit Lc → ∞ the solu-
tion satisfies ∇u = ζ . This state represents a zoom into the
microstructure in the three-dimensional theory with micro-
scopic stiffness given by μmicro [29]. In Theorem 3.2 we
found sufficient conditions to obtain a gradient field for the
microdistortion, which, however, does not have to be ∇u.
The following theorem states that only for a zero right-hand
side f , but arbitrary ω, the desired behaviour is achieved.

Theorem 3.5 Let � be simply connected and �u
D = �

ζ
D =

∂�. Then there holds for the solution {u, ζ } ∈ X of Prob-
lem 3.4

‖ζ − ∇u‖H(curl) ≤ c

L2
c

, (3.24)

if and only if f = 0, where c does not depend on Lc.

Proof From the limit solution {u∞, ζ∞} ∈ X of Eq. (3.16)
we have that ζ∞ ∈ H0(curl,�) and curl2D ζ∞ = 0. This
implies the existence of � ∈ H1

0 (�) such that ζ = ∇� ∈
ker(curl2D). Inserting this into Eq. (3.16a), where δζ = 0 is
chosen, yields

∫
�

2μe〈∇u − ∇�,∇δu〉 dX =
∫

�

〈δu, f 〉 dX

for all δu ∈ H1
0 (�).

Thus, u = � ∈ H1
0 (�) is the unique solution if and only

if f = 0 and correspondingly {u∞, ζ∞} = {�,∇�}. The
claim follows with the triangle inequality, Eq. (3.18) and the
equivalence of the mixed and primal problem

‖ζ − ∇u‖H(curl) ≤ ‖ζ − ζ∞‖H(curl) + ‖ ζ∞ − ∇u∞︸ ︷︷ ︸
=0

‖H(curl)

+‖∇u∞ − ∇u‖L2 ≤ c

L2
c

.

��
Remark 3.6 We can weaken the assumptions of Theorem 3.5
to �u

D = �
ζ
D �= ∅. Further, also non-homogeneous Dirich-

let data can be considered, provided the consistent coupling
condition 〈ζ , τ 〉 = 〈∇ũ, τ 〉 on �

ζ
D holds.

From the proof of Theorem 3.5 we obtain from the exis-
tence of a potential such that ζ = ∇�. Thus, ζ is expected
to be in H(curl,�) as in general ∇� /∈ [H1(�)]2 for
� ∈ H1(�).

3.2 Discrete case

Motivated by the de’Rhamcomplex (seeFig. 2)we formulate
a finite element combining base functions from both H1(�)

andH(curl,�) (andL2(�) for themixed formulation) setting

uh, δuh ∈ Vh ⊂ H1(�) , ζ h, δζ h ∈ Uh ⊂ H(curl,�) ,

mh, δmh ∈ Qh ⊂ L2(�) . (3.25)

Throughout this work we will use meshes consisting of
quadrilaterals. On each element we denote the set of quadri-
lateral polynomials by Qn,m = span{xk y j | 0 ≤ k ≤ n, 0 ≤
j ≤ m}, compare alsoEq. (4.5), and further the set ofNédélec
ansatz functions by

Pk =
[
Qk−1,k

Qk,k−1

]
. (3.26)

We start with the Lax–Milgram setting by defining Xh =
V h ×Uh . We note that solvability of the discretized problem
follows directly from the continuous one as Xh ⊂ X. Using
Cea’s lemma for the quasi-best approximation

‖{u, ζ } − {uh, ζ h}‖X ≤ α

β
inf

{δuh ,δζ h }∈Xh
‖{u, ζ } − {δuh, δζ h}‖X ,

(3.27)

we can generate convergence estimates a priori.

Lemma 3.1 Assume a smooth exact solution {u, ζ } ∈ X.
Further, if on each element Qk,k ⊂ V h and Pk ⊂ Uh, then
the discrete solution {uh, ζ h} ∈ Xh converges with the opti-
mal convergence rate

‖{u, ζ } − {uh, ζ h}‖X ≤ c(L2
c, μe, μmicro, μmacro) h

k .

(3.28)

Fig. 2 The de’ Rham complex in two dimensions depicting Hilbert
spaces and approximation spaces connected by differential and inter-
polation operators. The kernel of one differential operator is exactly the
range of the previous differential operator on its space and the differen-
tial and projection operators commute
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Proof By inserting the interpolation operators associated
through the commuting diagram we find

‖{u, ζ } − {uh, ζ h}‖2X ≤ c inf
{δuh ,δζ h}∈Xh

‖{u, ζ } − {δuh, δζ h}‖2X

≤ c
(
‖u − 
gu‖2H1 + ‖ζ − 
cζ‖2L2

+ ‖ curl2D ζ − curl2D 
cζ‖2L2
)

= c
(
‖u − 
gu‖2H1 + ‖ζ − 
cζ‖2L2

+ ‖(id − 
0) curl2D ζ‖2L2
)

≤ c h2k
(
|u|2Hk+1 + |ζ |2Hk + | curl2D ζ |2Hk

)
, (3.29)

where | · |Hk denotes the standard Sobolev semi-norm. ��
Note that the constant c in Eq. (3.28) depends on Lc. One

may prove robust estimates in this setting. We, however, test
for robustness with respect to Lc in the context of mixed
methods and use the equivalence of both.

In general the solvability of the discretized mixed prob-
lem does not follow from the continuous one. However,
thanks to the commuting property of the de’ Rham complex,
the discrete kernel coercivity and the LBB condition follow
immediately. Thus, we obtain the quasi-best approximation
error

‖{u, ζ } − {uh, ζ h}‖X + ‖m − mh‖L2
≤ c inf

({δuh ,δζ h},δωh)∈Xh ×Qh

(
‖{u, ζ } − {δuh, δζ h}‖X

+ ‖m − δmh‖L2
)
, (3.30)

where c is independent of Lc.

Lemma 3.2 Assume that the exact solution ({u, ζ },m) ∈
X ×L2(�) of Eq. (3.15) is smooth and that on each ele-
ment Qk,k ⊂ V h, Pk ⊂ Uh, and Qk−1,k−1 ⊂ Qh. Then
the discrete solution ({uh, ζ h},mh) ∈ Xh × Qh satisfies the
optimal convergence rate independent of Lc

‖{u, ζ } − {uh, ζ h}‖X + ‖m − mh‖L2 ≤ c hk . (3.31)

Additionally, with {u∞, ζ∞} the (smooth) solution of the limit
problem we obtain

‖{u∞, ζ∞} − {uh, ζ h}‖X + ‖m∞ − mh‖L2 ≤ c1
L2
c

+ c2 h
k .

(3.32)

Proof Using the interpolation operators 
g , 
c, and 
0

gives estimate Eq. (3.31). Inequality Eq. (3.32) follows
immediately by adding and subtracting the solution of the
corresponding continuous solution ({u, ζ },m) ∈ X ×L2(�)

for a fixed Lc, using triangle inequality, Eq. (3.18) and
Eq. (3.31). ��

Inequality Eq. (3.32) states that, as long as the discretiza-
tion error is not reached, we have quadratic convergence to
the limit case lim Lc → ∞. Due to the equivalence of the
primal formulation Problem 3.4 and the mixed Eq. (3.15) we
can deduce that the solution of Problem3.4 is also robustwith
respect to Lc. As we will see in the numerical examples, the
mixed formulation is better suited for extremely large values
of Lc due to rounding errors.

4 Finite element formulations

4.1 Appropriate base functions

In the following we demonstrate the construction of the
hybrid element in the linear case. The finite elements for
the mixed formulation are employed directly using the open
source finite element library NETGEN/NGSolve5 [39,40].

For the mapping of x and y, see Fig. 3, we make use of
linear quadrilateral Lagrange nodal base functions

N1(ξ, η) = 1

4
(ξ − 1)(η − 1) ,

N2(ξ, η) = 1

4
(ξ + 1)(1 − η) ,

N3(ξ, η) = 1

4
(ξ + 1)(η + 1) ,

N4(ξ, η) = 1

4
(1 − ξ)(η + 1) , (4.1)

x =
n⋃

e=1

[
N1 N2 N3 N4

]
︸ ︷︷ ︸

H(ξ, η)

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦

︸ ︷︷ ︸
x̄e

, y =
n⋃

e=1

Hye ,

x = [
x y
]T

, (4.2)

where n is the number of finite elements in the mesh. As
shown in Fig. 3, the elements are mapped via

x : � �→ �, � = [−1, 1] × [−1, 1] ,

� =
n⋃

e=1

�e ⊂ R
2 . (4.3)

We approximate u according to the isoparametric concept

uhe = H ūe , uh =
n⋃

e=1

uhe . (4.4)

5 www.ngsolve.org
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Fig. 3 Element mapping from the parametric space into the physical
space

However, for ζ we make use of linear Nédélec base func-
tions of the first type for quadrilaterals [4,21,27,44]. These
functions are built around approximations of the curl oper-
ator. The corresponding spaces are those of quadrilateral
polynomials

p(ξ, η) =
( n∑

k=0

ckξ
k
)( m∑

j=0

d jη
j
)

∈ Qn,m . (4.5)

The weak form of the curl in the 2D space is formulated via
Greens’ formula6

∫
�

q curl2D ζ dX =
∮

∂�

〈q ζ , τ 〉 ds +
∫

�

〈ζ , Dcurl q〉 dX
for all q ∈ C1(�, R) . (4.6)

Therefore, the curl in � is fully determined by its interface
and inner rotation field. Consequently, we can decompose the
two terms, such that the elements’ dofs determine the inter-
polated field completely. This can be confirmed by setting all
dofs to zero, checking for a vanishing field. The correspond-
ing dofs and degrees of the polynomial spaces have been
defined by Nédélec [27]. The element’s boundary has been
decomposed as ∂� = �1 ∪ �2 ∪ �3 ∪ �4. The dofs read

4k edge dofs: fi j (ϑ) =
∫

� j

qi 〈ϑ, ς j 〉 d�

ϑ ∈ Pk(�) for all qi ∈ P
k−1(� j ) ,

2k(k − 1) cell dofs: fi (ϑ) =
∫

�

〈ϑ, qi 〉 d� ,

ϑ ∈ Pk(�) for all qi =
[
q1
q2

]
,
q1 ∈ Qk−2,k−1(�)

q2 ∈ Qk−1,k−2(�)
,

(4.7)

6 curl2D(q ζ ) = div(R (q ζ )) = q curl2D ζ − 〈ζ , Dcurl q〉 , R =[
0 1

−1 0

]
.

ϑ1 ϑ2

ϑ3 ϑ4

Fig. 4 Nédélec base functions from Eq. (4.10) in the parametric space

wherePk andQ are according to Eq. (3.26) and Eq. (4.5), and
P
k is the space of polynomials of order k. Since we employ

linear Nédélec base functions with k = 1, no inner dofs
occur. The ansatz for the base function reads

ϑm(ξ, η) =
[
d0 + d1η
c0 + c1ξ

]
, ϑm(ξ, η) ∈ P1(�) ,

m =
{
1, 2, . . . , dim(P1) = 4

}
. (4.8)

Applying the dofs along all edges with the variable basis
qi = 1

fi j (ϑm) =
∫

� j

qi 〈ϑm, ς j 〉 d� = δi j , (4.9)

we find our base functions

ϑ1 = 1

2

[
1 − η

0

]
, ϑ2 = 1

2

[
0

1 + ξ

]
,

ϑ3 = 1

2

[−1 − η

0

]
, ϑ4 = 1

2

[
0

ξ − 1

]
. (4.10)

The factor 1/2 is chosen instead of the resulting 1/4 as to sim-
plify prescription on the Dirichlet boundary. The functions
are depicted in Fig. 4.

For the mixed formulation involving m ∈ L2(�) the
corresponding finite element space is given by piece-wise
constants, N0(ξ, η) = 1. To enforce zero mean value, i.e.
m ∈ L20(�), a Lagrange multiplier λ ∈ R has to be used,
leading to one additional equation in the final system.
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Using higher polynomial orders, we can achieve faster
convergence rates and better approximations. The finite ele-
ment software NGSolve offers the use of hierarchical high
order base functions forH1,H(curl), and L2 spaces [44]. We
employ NGSolve in our investigation of the mixed formula-
tion with higher order base functions.

4.2 Covariant Piola transformation

In the previous section we formulated our base functions for
the curl in the parametric space. In order to preserve the prop-
erties of the base function ϑ j acting on the curve’s tangents
ς (see Fig. 3), namely

∫
�i

〈ϑ j , ς〉 d� =
∫

�i

〈θ j , τ 〉 ds = δi j , (4.11)

where θ j is the base function in the physical space and
∂�e = �1∪�2∪�3∪�4, the so called covariant Piola trans-
formation is required [24]. The transformation is achieved by
considering the push forward of the boundaries’ normal vec-
tors

〈v, ν〉 = det J 〈v, J−T 
〉 , (4.12)

where J is the Jacobi matrix of the element mappings. In
two dimensions the normal vectors on the element boundary

 and ν are the 90◦ rotation of the tangent vectors given by


 = Rς , ν = Rτ , R =
[
0 1

−1 0

]
. (4.13)

Using Eq. (4.13) in Eq. (4.12) results in

〈v, Rτ 〉 = det J 〈v, J−T Rς〉 , (4.14)

finally yielding the definition of a transformation preserving
integration along the tangent

v0 = det J RT J−1R v , v = 1

det J
RT J R

︸ ︷︷ ︸
J−T

v0 . (4.15)

The transformation in Eq. (4.15) alone cannot guarantee the
aligned orientation of base functions on the edges of neigh-
bouring elements [44]. In order to achieve conformity we
introduce a topological correction function ψ j based on the
global orientation of edges given by node collections as
demonstrated in Fig. 5. The drawings in Fig. 5 show the
different roles of the mapping functions:

1. The covariant Piola transformation scales the projection
onto the edge tangent.

2. The topological correction function sets a consistent ori-
entation.

Thus, the final form of our edge base functions reads

θ j = ψ j J−T θ j , ψ j =
{

1 orientation is equal
−1 else

.(4.16)

UsingEq. (4.16) for the approximation of themicrodistortion
ζ yields

ζ h
e = [

θ1 θ2 θ3 θ4
]

︸ ︷︷ ︸
�

⎡
⎢⎢⎣

ζ1
ζ2
ζ3
ζ4

⎤
⎥⎥⎦

︸ ︷︷ ︸
ζ̄ e

, ζ h =
n⋃

e=1

ζ h
e . (4.17)

For vectors undergoing a covariant Piola transformation, the
transformation of the curl operator simplifies to

curl2Dx θ j = 1

det J
ψ j curl2D θ j . (4.18)

4.3 Element stiffness matrices

For ease of presentation we consider only the Lax–Milgram
setting. The mixed formulation follows directly with simple
adaptations.

With the approximations in Eq. (4.4) for the displacement
field u and in Eq. (4.17) for the microdistortion ζ the weak
form in Problem 3.4 results in

n⋃
e=1

(K e + Kmicro + Kmacro)e

[
ūe
ζ̄ e

]
=

n⋃
e=1

[
f̄e
ω̄e

]
, (4.19)

where K e, Kmicro and Kmacro are the element stiffness matri-
ces employing the base functionmatrices H and� according
to Eq. (4.17) and Eq. (4.2), respectively

K e = 2μe

∫
�

[
(∇H)T∇H −(∇H)T�

−�T∇H �T�

]
det J d� ,

(4.20a)

Kmicro = 2μmicro

∫
�

[
O O
O �T�

]
det J d� , (4.20b)

Kmacro = μmacroL
2
c

∫
�

[
O O
O (curl2D �)T curl2D �

]
det J d� ,

(4.20c)
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Global edge
orientation array︷ ︸︸ ︷⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
2 3
3 6
4 1
4 5
5 6
5 2
3 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A1 edge array E1︷ ︸︸ ︷⎡
⎢⎢⎣
1 2
2 5
5 4
4 1

⎤
⎥⎥⎦

A2 edge array E2︷ ︸︸ ︷⎡
⎢⎢⎣
5 2
2 3
3 6
6 5

⎤
⎥⎥⎦

ψj(E1)︷ ︸︸ ︷⎡
⎢⎢⎣

ψ1 = 1
ψ2 = −1
ψ3 = −1
ψ4 = 1

⎤
⎥⎥⎦

ψj(E2)︷ ︸︸ ︷⎡
⎢⎢⎣

ψ1 = 1
ψ2 = 1
ψ3 = 1

ψ4 = −1

⎤
⎥⎥⎦

Fig. 5 Covariant Piola transformation and topological correction func-
tion ψ j mapping of Nédélec base functions from the parametric space
into the physical space

with O ∈ {0}4×4. The finite element has 8 degrees of free-
dom. The right-hand side reads

f̄e =
∫

�

HT f det J d� , (4.21)

ω̄e =
∫

�

�Tω det J d� . (4.22)

In order to compare our formulation, we also derive a nodal
H1-finite element

ζ =
n⋃

e=1

[
N1 I N2 I N3 I N4 I

]
︸ ︷︷ ︸

N

⎡
⎢⎢⎢⎣

ζ1
ζ2
...

ζ8

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ζ̄ e

, I =
[
1 0
0 1

]
. (4.23)

In contrast to the hybrid element, the approach in Eq. (4.23)
requires 8 dofs per element for the microdistortion. Using
Eq. (4.23) we obtain the following stiffness matrices for the
nodal element

K e = 2μe

∫
�

[
(∇H)T∇H −(∇H)T N
−NT∇H NT N

]
det J d� ,

(4.24a)

Kmicro = 2μmicro

∫
�

[
O OT

a
Oa NT N

]
det J d� , (4.24b)

Kmacro = μmacroL
2
c

∫
�

[
O OT

a
Oa (curl2D N)T curl2D N

]
det J d� ,

(4.24c)

with Oa ∈ {0}8×4. Consequently, ω̄e changes to

ω̄e =
∫

�

NTω det J d� . (4.25)

In conclusion, we compare the hybrid element having 8
degrees of freedom in total with the nodal element having 12
degrees of freedom. The difference in the overall degrees of
freedom results from the vectorial approach to the microdis-
tortion in the hybrid element.

5 Numerical examples

In following examples we construct analytical solutions by
imposing predefined displacement andmicrodistortion fields
and calculating the resulting right-hand side. The predefined
fields are the analytical solutions to the resulting right-hand
side along with the derived Dirichlet boundary conditions
(for a full derivation see Appendix B). Further, in all subse-
quent examples the domain and the flux field ζ lie in the x−y

123



12 Computational Mechanics (2021) 68:1–24

plane and the displacement u is parallel to the z-axis. Corre-
spondingly, for figures of u we provide a three-dimensional
perspective and figures of ζ are aerial views of the x − y
plane. The examples have the mechanical interpretation of a
membrane antiplane deformation.

5.1 Benchmark for an imposed vanishing
microdistortion

We impose the predefined fields

ũ(x, y) = 4 − x2

8
− y2

8
+ x y , ζ̃ (x, y) = 0 . (5.1)

In order to constrain the numerical solution to that of our
proposed fields in Eq. (5.1), we set the following Dirichlet
boundary conditions

u(x, y)

∣∣∣∣
∂�

= ũ(x, y)

∣∣∣∣
∂�

,

〈ζ (x, y), τ 〉
∣∣∣∣
∂�

= 〈̃ζ (x, y), τ 〉
∣∣∣∣
∂�

. (5.2)

In the following example we set for simplicity

μe = μmicro = μmacro = Lc = 1 , (5.3)

and extract the resulting force and moment (the right-hand
side)

f = 1 , ω =
⎡
⎢⎣
x

2
− 2y

y

2
− 2x

⎤
⎥⎦ . (5.4)

Our simulations consider the domain � = [−4, 4]× [−4, 4]
with irregular meshes under h-refinement, as shown in Fig. 7.
Both element formulations converge towards the analytical
solution, see Fig. 6. The microdistortion field ζ displayed in
Fig. 8 approaches zero with each refinement, satisfying the
imposed field. We notice faster convergence in the hybrid
element.

5.2 Benchmark for a non-vanishing imposed
microdistortion

In the following step in our investigationwe test our finite ele-
ment formulations for a non-vanishing microdistortion field
ζ , specifically a rotation field, as to determine the conver-
gence behaviour of the nodal element with respect to the curl
stiffness. We set � = [−4, 4] × [−4, 4], μe = μmacro =

μmicro = Lc = 1 and the fields

ũ(x, y) = xy

(
y2

16
− x2

16

)
− 1 ,

ζ̃ (x, y) =

⎡
⎢⎢⎣

−y(
x2

8
− 2)(

y2

8
− 2)

x(
x2

8
− 2)(

y2

8
− 2)

⎤
⎥⎥⎦ (5.5)

with the corresponding Dirichlet boundary conditions

u(x, y)

∣∣∣∣
∂�

= ũ(x, y)

∣∣∣∣
∂�

,

〈ζ (x, y), τ 〉
∣∣∣∣
∂�

= 〈̃ζ (x, y), τ 〉
∣∣∣∣
∂�

. (5.6)

The following force and moment are extracted, for details
see Appendix B,

f = − x y

2

(
y2

8
− x2

8

)
, (5.7)

ω =
[−(x2y3)/16 + (25x2y)/16 + (7y3)/8 − 18y

(x3y2)/16 − (7x3)/8 − (25xy2)/16 + 18x

]
.(5.8)

Consequently, the curl term is neither explicitly nor implic-
itly omitted. We compare the displacement u and the error
‖̃ζ −ζ‖L2 for both element formulations on an irregularmesh
undergoing refinement, see Figs. 9, 10 and 11.

As shown in Fig. 10, both elements converge towards the
analytical solution. However, we notice differences in the
convergence rates, namely the nodal element converges faster
in ζ .

5.3 Solutions in H(curl)

As H(curl) is a larger space than [H1]2, we have the relation
[H1]2 ⊂ H(curl). Consequently, we can envision solutions
belonging toH(curl) and not [H1]2. Such solutions fulfill the
continuity of tangential components along element edges of
H(curl), but not the continuity of the normal component.
Elements living in [H1]2 require the continuity of both com-
ponents.

In the domain � = [−4, 4] × [−4, 4] with �u
D = ∂�

and �
ζ
D = ∅ we set μe = μmacro = μmicro = Lc = 1, the

boundary conditions and external forces

u(−4, y) = u(4, y) = 0 , u(−2, y) = u(2, y) = −2 ,

u(0, y) = 2 , f = 0 , ω = 0 , (5.9)
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Fig. 6 Convergence behaviour of element formulations under mesh refinement

(a) Analytical solution (b) 336 elements (c) 1344 elements

Fig. 7 Displacement u of the analytical and finite element solutions

for which the analytical solution reads

ũ(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 4 − x for −4 ≤x ≤ −2

2 + 2x for −2 <x ≤ 0

2 − 2x for 0 <x ≤ 2

x − 4 for 2 <x ≤ 4

,

ζ̃ = ∇ũ

2
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[−0.5 0
]T

for −4 ≤x ≤ −2[
1 0
]T

for −2 <x ≤ 0[−1 0
]T

for 0 <x ≤ 2[
0.5 0

]T
for 2 <x ≤ 4

, (5.10)

where ζ̃ follows from Eqs. (2.6a) and (2.6b). Note that
the boundary data of ζ̃ jumps and is therefore not in
H1/2(�D). Consequently, the problem cannot be posed with
ζ ∈ [H1(�)]2 if we set �

ζ
D = ∂�, see Remark 3.1. For

ζ ∈ H(curl,�) the problem could be posed as 〈̃ζ , τ 〉 ∈
L2(∂�) ⊂ H−1/2(∂�).

We test both elements on an irregular mesh undergoing
refinement Fig. 12. We note the hybrid element finds the
exact solution immediately with a coarse mesh, whereas the
nodal element requires a much higher level of refinement

in order to deliver a viable approximation. The nodal ele-
ment localizes the error due to the discontinuity further with
each refinement as seen in Fig. 13. The convergence graph
in Fig. 14 depicts the slow sub-optimal convergence of the
nodal element, compare Eq. (3.28). Note, the error in the
hybrid element for the same meshes is always at a factor
10−15 for both u and ζ . Due to the higher continuity condi-
tions of the nodal element, it could never find the analytical
solution, but would converge further towards it with each
refinement.

We present a second example allowing us to compare
the convergence rates for both formulations. Let � =
[0, 1] × [0, 1], μe = μmacro = μmicro = Lc = 1, and
�u
D = �

ζ
D = ∂�. For the given exact solution {̃u, ζ̃ } ∈

H1
0 (�) × H0(curl�)

ũ(x, y) = exp(1 − x)y(1 − y)

{
x for x ≤ 0.5

1 − x for x > 0.5
,

ζ̃ = ∇ũ , (5.11)

the corresponding boundary conditions and external forces
result in

u(x, y)

∣∣∣∣
∂�

= 0, 〈ζ , τ 〉
∣∣∣∣
∂�

= 0, f = 0, ω = 2̃ζ . (5.12)
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(a) 84 hybrid elements (b) 336 hybrid elements (c) 1344 hybrid elements

(d) 84 nodal elements (e) 336 nodal elements (f) 1344 nodal elements

Fig. 8 Decay of the microdistortion ζ according to Eq. (5.1) on irregular meshes undergoing refinement. The intensity of the microdistortion
approaches zero with each refinement. This is seen here in a decrease of the flux vectors

(a) Analytical solution (b) 256 elements (c) 1024 elements

Fig. 9 Displacement u of the analytical and finite element solutions
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Fig. 10 Convergence behaviour of element formulations under mesh refinement

(a) Analytical flux solution (b) 256 elements (c) 1024 elements

Fig. 11 Microdistortion ζ of the analytical and finite element solutions on unstructured grids according to Eq. (5.5)

(a) Analytical displacement solution (b) Solution with 46 hybrid elements (c) Example mesh with 184 elements

(d) Solution with 46 nodal elements (e) Solution with 184 nodal elements (f) Solution with 736 nodal elements

Fig. 12 Analytical solution and finite element front view (x − z plane) for solutions of Eq. (5.10)
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(a) Microdistortion with 46 hybrid
elements

(b) Microdistortion with 184 hybrid
elements

(c) Microdistortion with 736 hybrid
elements

(d) Microdistortion with 46 nodal el-
ements

(e) Microdistortion with 184 nodal
elements

(f) Microdistortion with 736 nodal
elements

Fig. 13 Finite element solutions of the microdistortion for Eq. (5.10) for both formulations
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Fig. 14 Convergence behaviour of element formulations under mesh refinement

Here, the boundary conditions are compatible with ζ ∈
[H1(�)]2, but the exact solution is only in H(curl,�), not
in [H1(�)]2. We use structured quadrilateral meshes (see
Fig. 16) resolving the interface at x = 0.5, where the nor-
mal component of the exact solution of ζ jumps, with linear,
quadratic and cubic polynomials for the nodal elements.
We observe that higher polynomial degrees do not increase
the convergence rate and only sub-optimal root-convergence
is achieved (see Fig. 15). For linear and quadratic ansatz
functions in the primal H(curl) method we observe optimal
convergence rates.

5.4 Convergence for Lc → 0

Asmentioned in Section 3, the characteristic length Lc repre-
sents an important term in the relaxed micromorphic theory.
This scalar governs the relation of the relaxed micromor-
phic continuum to the standard Cauchy continuum. In the
previous examples we have been able to generate stable
results for the case Lc = 1. In this example we consider
the limit Lc → 0, which can be interpreted as a highly
homogenous material. In the Lc = 0 setting, the relaxed
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Fig. 15 Convergence rates of the microdistortion on both element
formulations across multiple polynomial degrees undergoing mesh
refinement

micromorphic continuum retrieves the results of the classi-
cal Cauchy continuum, no external momentsω occur and the
microdistortion ζ lives in [L2(�)]2. This results in the emer-
gence of a single Poisson equation for u (see Remark 3.2),
being an analogue of the standardmembrane partial differen-
tial equation. We define the domain � = [−5, 5] × [−5, 5]
with μe, μmicro = 1, Lc = 0 and the imposed displacement

ũ(x, y) = 2 − sin(x)2 + cos(x)2 − sin(y)2 + cos(y)2 .

(5.13)

We use ũ to recover the analytical solution for ζ̃

ζ̃ = μe

μmicro + μe
∇ũ =

[−2 cos(x) sin(x)
−2 cos(y) sin(y)

]
, (5.14)

and the resulting right-hand side

f = 4 (cos(x)2 + cos(y)2 − sin(x)2 − sin(y)2) . (5.15)

Note, since we require ζ ∈ [L2(�)]2, no boundary condi-
tions can be prescribed for ζ . The microdistortion field ζ

can always be approximated using either H(curl) or [H1]2
elements. However, the direct use of discontinuous [L2]2 ele-
ments for ζ requires less computation and can also capture
gradient fields. With Theorem 3.3 we have for ω = 0 the
regularity result that ζ is in fact a gradient field and thus ζ ∈
H(curl,�), which confirms to use Nédélec elements with-
out risk of sub-optimal convergence rates, compare Sect. 5.3.
The finite element solution converges towards the analytical
solution as expected with optimal rate, see Figs. 17 and 18.

5.5 Robustness in Lc

The upper limit of the characteristic length Lc is defined
to be infinity. In this example we prove the robustness of
our computations for Lc → ∞. The analytical solution on
� = [−4, 4] × [−4, 4] with homogeneous Dirichlet data on
∂� and μe = μmacro = μmicro = 1 is given by

(a) Displacement analytical solution (b) Displacement with 256 hybrid el-
ements

(c) Displacement with 256 nodal el-
ements

(d) Microdistortion analytical solu-
tion

(e) Microdistortion with 256 hybrid
elements

(f) Microdistortion with 256 nodal
elements

Fig. 16 Analytical and finite element solutions of the displacement and microdistortion fields according to Eq. (5.11)
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(a) Displacement analytical solution
(b) Displacement with 180 hybrid el-
ements

(c) Displacement with 2880 hybrid
elements

(d) Microdistortion analytical solu-
tion

(e) Microdistortion with 180 hybrid
elements

(f) Microdistortion with 2880 hybrid
elements

Fig. 17 Analytical solutions and finite element solutions on unstructured grids of the displacement andmicrodistortion fields according toEqs. (5.13)
and (5.14)
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Fig. 18 Convergence behaviour of the hybrid element formulation under mesh refinement for the case Lc = 0

ũ(x, y) = cos
(π x

8

)
(y2 − 16) exp

(
x + y

100

)
, (5.16a)

ζ̃ (x, y) = 2

[
x(y2 − 16)
y(x2 − 16)

]

+ 1

L2
c

(
x2

8
− 2

)(
y2

8
− 2

)[−y
x

]
, (5.16b)

fromwhichwe can extract the resulting force fields according
toEqs. (2.6a) and (2.6b).We test for convergence using linear
elements.

As expected from the theory, we observe uniform con-
vergence up to the point where rounding errors occur in the
primal method for very large Lc terms. The convergences
of the mixed formulation remains stable for all values of Lc

as it is not affected by rounding errors, cf. Fig. 19. Using
lowest order linear nodal elements for ζ leads to non-robust
behaviour in Lc in terms of immense locking. Considering
quadratic Lagrange elements overcomes this locking phe-
nomena, however, at the cost of more dofs.
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Fig. 19 Convergence behaviour for fixed Lc on 1 × 1, 2 × 2, 4 × 4, 8 × 8, 16 × 16, 32 × 32, and 64 × 64 structured quadrilateral grids for the
primal and mixed hybrid methods
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Fig. 20 Convergence behaviour for Lc → ∞ for fixed 4 × 4, 16 × 16, 32 × 32, 64 × 64 and 128 × 128 grids
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Fig. 21 Convergence behaviour of the difference ∇u − ζ and curl2D ζ for Lc → ∞ with primal hybrid method
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Fig. 22 Energy convergence in the relaxed and full micromorphic models according to Eq. (5.18)

To test the convergence depending on Lc, Eq. (3.18), for
the case Lc → ∞ we use quadratic elements - i.e., quadratic
H1 and Nédélec elements, and linear L2 elements for m in
the mixed formulation - in NGSolve and four different struc-
tured grids. The same domain as in the previous example is
considered and for the limit solution Eq. (5.16) is used, with
Lc → ∞ in Eq. (5.16b). Again, the primal methods suffers
for large values of Lc from rounding errors, whereas for the
mixed method we observe the expected quadratic conver-
gence rate up to the discretization error, compare Eq. (3.32)
and Fig. 20.

5.6 Convergence for Lc → ∞
Weprove the theoretical result of Theorem 3.5, with the same
domain, boundary conditions, andmaterial constants as in the
previous example, by setting the external force and moments

f = 0 , r = (16 − x2)(16 − y2)(xy − y2) ,

� = x3y2 − xy2(1 − x) − 256

9
, ω = ∇r + Dcurl(�) ,

(5.17)

and testing for convergence ‖∇u − ζ‖H(curl) = O(L−2
c ) for

Lc → ∞ using NGSolve with linear base functions.
The results are computed using the primal method. By

staying within the rounding precision bounds retrieved from
our investigation of the robustness in Lc, we are able to find
results converging quadratically to the previously derived
expectations, see Fig. 21.

5.7 The consistent coupling condition

We conclude our investigation by considering the consistent
coupling condition on both the full and relaxedmicromorphic

continuum models using NGSolve with the primal method.
We set the domain � = [−4, 4] × [−4, 4] with the material
parameters μe, μmicro, μmacro = 1, the boundary conditions

u(x, y)

∣∣∣∣
∂�

= y2 − x2,

〈ζ , τ 〉
∣∣∣∣
∂�

= 〈∇u, τ 〉
∣∣∣∣
∂�

=
〈[−2x 2y

]T
, τ
〉 ∣∣∣∣

∂�

, (5.18)

and the external forces

f = 0 , ω = [−y x
]T

, (5.19)

and test for convergence in both micromorphic formulations
with increasing characteristic lengths Lc.

As observed in Fig. 22, the relaxed micromorphic con-
tinuum converges towards a finite energy, whereas the
non-trivial boundary conditions on the full micromorphic
continuum lead to boundary-layers and consequently, ever-
increasing energy for Lc → ∞. The result is consistent with
the problematic mentioned in Remark 3.5.

6 Conclusions and outlook

The relaxed micromorphic continuum theory introduces the
Curl operator in the formulation of the free energy functional.
As a result, the solution of theweak form lies in the combined
space H1 ×H(curl). The Lax–Milgram theorem confirms
this result by assuring existence and uniqueness for the com-
bined space. Our benchmarks with a completely nodal finite
element show its capacity to approximate solutions in the
combined space. However, the tests also show its inability
to find the exact solution for discontinuous microdistortion
fields and the corresponding sub-optimal convergence. A
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comparison between the linear nodal and hybrid element
formulations also reveals the difference in the arising ele-
mental stiffness matrices, namely K nodal ∈ R

12×12 and
K hybrid ∈ R

8×8, resulting in slower computation times for
the nodal element. In contrast, the hybrid element yields
stable approximations and convergence rates for all tested
scenarios, being capable of finding the exact solution also
for discontinuous microdistortion fields. The relaxed micro-
morphic theory aims to capture the mechanical behaviour of
metamaterials, highly homogeneous materials and the entire
spectrum in between. To that end, the characteristic length Lc

takes the role of aweighting parameter, determining the influ-
ence of the energy from the dislocation density (the energy
depending on the curl operator). The range of the characteris-
tic length Lc is an open topic of research into metamaterials.
However, from a theoretical point of view, it may vary
between zero and infinity. Our tests reveal the arising insta-
bility of convergencewhere increasingly large Lc parameters
are concerned and emergence of locking effects if linear
nodal elements are chosen to approximate the microdistor-
tion. For the case of the hybrid element, lost precision can
be recovered via the formulation of the corresponding mixed
problem.Locking effects in the nodal version of themicrodis-
tortion can be alleviated via higher order polynomials at the
cost of increased dofs. In addition, also in Lc = 0 setting,
where the external moment ω vanishes, we recognize the
optimality of using H(curl)-elements for the computation of
the microdistortion, seeing as it is in fact the natural space
for the microdistortion in this setting. Lastly, we recognize
the advantage of the relaxed micromorphic continuum with
regard to its ability to generate finite energies as Lc → ∞
for arbitrary boundary conditions.

These findings build the basis for the extension of the
formulation to the fully three-dimensional or a statically
condensed two-dimensional versionof the full relaxedmicro-
morphic continuum.
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A Derivation of the strong form

In order to find the strong form of the Euler-Lagrange equa-
tions to Problem 3.4 we start with the most general setting

�u
D ∩ �u

N = ∅, �u
D ∪ �u

N = ∂� and �
ζ
D ∩ �

ζ
N = ∅,

�
ζ
D ∪�

ζ
N = ∂�. The Dirichlet and Neumann boundary parts

of u and ζ and assume that |�u
D| > 0 (for Lax–Milgram solv-

ability). We assume smooth fields such that we can integrate
by parts. Using the Green identity

∫
�

div q v dX =
∮

∂�

〈q ν, v〉 ds −
∫

�

〈∇q, v〉 dX ,

v ∈ C1(�,R2) , q ∈ C1(�,R) , (A.1)

where ν is the normal vector on the boundary, and splitting
the boundary terms of the first weak form Eq. (2.5a), we find

∫
�

2μe〈(∇u − ζ ), ∇δu〉 − 〈δu, f 〉 dX

=
∫

�u
D

δu〈(∇u − ζ ), ν〉 ds +
∫

�u
N

δu〈(∇u − ζ ), ν〉 ds

−
∫

�

〈div(∇u − ζ ) − f , δu〉 dX = 0

for all δu ∈ C1(�,R) . (A.2)

As the Dirichlet data is directly incorporated into the space
we have δu = 0 on �u

D and thus, for given Dirichlet data ũ,
we obtain the strong form

−2μe div(∇u − ζ ) = f in �,

u = ũ on �u
D ,

〈∇u, ν〉 = 〈ζ , ν〉 on �u
N . (A.3)

For the second weak form Eq. (2.5b) we employ another
Green identity

∫
�

λ curl2D q dX =
∮

∂�

〈λq, τ 〉 ds +
∫

�

〈Dcurl λ, q〉 dX ,

λ ∈ C1(�,R) , q ∈ C1(�,R2) , (A.4)
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and split the boundary, obtaining for all δζ ∈ C1(�,R2)

∫
�

2μe 〈(∇u − ζ ), (−δζ )〉 + 2μmicro 〈ζ , δζ 〉
+ μmacro L

2
c 〈curl2D ζ , curl2D δζ 〉 − 〈δζ , ω〉 dX

=
∫

�

2μe 〈(∇u − ζ ), (−δζ )〉 + 2μmicro 〈ζ , δζ 〉
+ μmacro L

2
c〈Dcurl(curl2D ζ ), δζ 〉 − 〈δζ , ω〉 dX

+
∫

�
ζ
D

μmacro L
2
c curl2D(ζ )〈δζ , τ 〉 ds

+
∫

�
ζ
N

μmacro L
2
c curl2D(ζ )〈δζ , τ 〉 ds = 0 . (A.5)

Again, the Dirichlet data is incorporated into the space, such
that the following strong formulation arises

− 2μe(∇u − ζ ) + 2μmicroζ + μmacroL
2
c Dcurl(curl2D ζ )

= ω in �,

curl2D ζ = 0 on �
ζ
N ,

〈ζ , τ 〉 = 〈̃ζ , τ 〉 on �
ζ
D . (A.6)

The complete boundary value problem is given by Eqs. (A.3)
and (A.6).

B Constructing analytical solutions

The predefined fields are given by ũ and ζ̃ . We redefine the
variables of the strong form u∗ = u − ũ and ζ ∗ = ζ − ζ̃ and
insert them into the partial differential equation

− 2μe div(∇(u − ũ) − (ζ − ζ̃ )) = 0 , (B.1a)

− 2μe(∇(u − ũ) − (ζ − ζ̃ )) + 2μmicro(ζ − ζ̃ )

+ μmacroL
2
c Dcurl curl2D(ζ − ζ̃ ) = 0 , (B.1b)

yielding compositions of additive terms. Therefore, we can
rearrange the equations

2μe div(∇u − ζ ) = 2μe div(∇ũ − ζ̃ ) ,

− 2μe(∇u − ζ ) + 2μmicroζ + μmacroL
2
c Dcurl(curl2D ζ )

= −2μe(∇ũ − ζ̃ ) + 2μmicroζ̃

+ μmacroL
2
c Dcurl(curl2D ζ̃ ) . (B.2a)

It is clear that the solutions of the PDE must be u = ũ and
ζ = ζ̃ . Since both ũ and ζ̃ are known a priori, their insertion

in the PDE can be calculated. We define the calculated fields

f := −2μe div(∇ũ − ζ̃ ) ,

ω := −2μe(∇ũ − ζ̃ ) + 2μmicroζ̃

+ μmacroL
2
c Dcurl(curl2D ζ̃ ) . (B.3)

The strong forms with the newly found right-hand sides are
multiplied with the corresponding test functions

∫
�

2μe〈div(∇u − ζ ), δu〉 dX = −
∫

�

〈 f , δu〉 dX , (B.4a)
∫

�

−2μe〈(∇u − ζ ), δζ 〉 + 2μmicro〈ζ , δζ 〉

+ μmacroL
2
c〈Dcurl(curl2D ζ ), δζ 〉 dX =

∫
�

〈ω, δζ 〉 dX .

(B.4b)

Employing Greens’ identities Eqs. (A.1 and (A.4) we find

∮
∂�

2μe δu〈(∇u − ζ ), ν〉 ds −
∫

�

2μe〈(∇u − ζ ), ∇δu〉 dX

= −
∫

�

〈 f , δu〉 dX , (B.5a)
∫

�

−2μe〈(∇u − ζ ), δζ 〉 + 2μmicro 〈ζ , δζ 〉
+ μmacro L

2
c 〈curl2D ζ , curl2D δζ 〉 dX

− μmacroL
2
c

∮
∂�

curl2D ζ 〈δζ , τ 〉 ds

=
∫

�

〈ω, δζ 〉 dX . (B.5b)

The latter integrations generate terms for transmissions on the
boundary ∂�. As the Dirichlet data is directly incorporated
into the space and the natural Neumann boundary conditions
Eqs. (2.6e) and (2.6f) hold, we observe

∫
�u
N

2μe δu〈(∇u − ζ ), ν〉 ds = 0 ,

∫
�

ζ
N

curl2D ζ 〈δζ , τ 〉 ds = 0 , (B.6)

allowing us to find the original weak formulation with the
corresponding force and moment

∫
�

2μe〈(∇u − ζ ), ∇δu〉 dX =
∫

�

〈 f , δu〉 dX ,

∫
�

−2μe〈(∇u − ζ ), δζ 〉 + 2μmicro 〈ζ , δζ 〉

+ μmacro L
2
c 〈curl2D ζ , curl2D δζ 〉 dX =

∫
�

〈ω, δζ 〉 dX .

(B.7)
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